A WEEKLY JOURNAL OF PRACTICAL INF0RMATION, ART, SCIENCE, MECHANICS, CHEMISTRY AND MANUFACTURES.
$\underset{\text { [NEW SERIES.] }}{\text { Vol. }}{ }^{\text {XXXIV.] }}$
NEW YORK, APRIL 15, 1876.
$\left[\begin{array}{c}\text { [3.20 per Annum. } \\ \text { [PosTAGE PREPAD. }\end{array}\right.$

A LOCOMOTIVE MAGNETO-ELECTRIC INDUCTION ENGINE.
We recently published Professor G. F. Barker's excellent lecture on magneto-electric machines, in the course of which a description was given of the Siemens armature. One of the most recent applications of this important apparatus for converting magnetism into electricity is represented in the accompanying engraving, which we take from the Practical
Magazine. The machine is a locomotive magneto-electric induction engine, in other words a very powerful electrical battery, mounted on a carriage, to which horses may be harnessed in order to transport it from place to place. The fore part of the vehicle is occupied by the magneto-electric apparatus, which is driven by a small vertical steam engine located in the rear. The machine was built at the Siemens Halske telegraph works, in Berlin, and is mainly intended for the production of the electric light
Currents of electricity are induced in coils of insulated

The engine works up to 200 revolutions per minute, proucing 450 revolutions per minute of the drum of the induc on apparatus. The latter is of thin German silver plate, covered with eight separate coils of copper wire of 0.28 inch age, and rotates between two very powerful horseshoe magnets. At full speed, the current induced is sufficiently intense to heat a copper wire, 004 inch in diameter and 38 feet long, to redness, and, photometrically, is equal to 14,000 wax candles. The draft of the apparatus is about $2 \frac{1}{2}$ tuns

The Use of Well Water in the Cities.
The State Geologist of New Jersey, in his recent report, calls attention to the habit, still in use in some of the older cities of New Jersey, of people drawing their supplies of water from old wells. In an analysis of the water coming from some nine wells in Princeton, five of them were found to contain free ammonia, albuminous matter, and chlorides
al ways attend the use of water contaminated with putrefying organic matter

An Incendiary Machine.

The Hartford Phœnix Insurance Company lately unearthed the latest incendiary device in connection with an $\$ 1,800$ barn loss in Schoharie county, New York. It is to be hoped that the machine will form a part of the underwriters' Cen tennial exhibit. The apparatus consists of a board covered with sand paper that faces another board filled with matches, set so that the sulphur of the matches can rub against th sand. These were set against a hay mow, and with the match-filled board attached to a ten foot lever with its bear g in the middle. At the end of the lever is a tin mill pail, and set above the pail was an ordinary funnel supply ing the bottom to a bushel box filled with fine sand. This sand was allowed to run into the pan; and when the pres

PORTABLE MAGNETO-ELECTRIC MACHINE
wire wound upon a metal drum, by causing the latter to rotate rapidly around an iron core placed between powerfu magnets The electric current can be conducted, either con tinuously or intermittently, to any desired point, by mean of conductors connected with the magnetic poles. When used for illuminating and signaling purposes, the conductors are led to an electric lamp, which is provided with a special arrangement for regulating the intensity of the current The steam boiler is vertical, made of steel plate, with a fir box suspended below; there are twin cylinders, which set in motion a couple of driving wheels, connected, by means of belting (omitted in the figure), with the drum of the induction apparatus
in excess. In tracing the effects of these waters, it was
found in almost all cases that diarrhoea and typhoidal fevers accompanied their use. It is almost impossible to be sur of the good quality of any well which is surrounded by houses, where drains and sinks empty into the surrounding soil. It would be well if the proprietors of large country hotels and summer resorts would not only look more closely to for or the health of their guests, it is better, in all cases wher rom cisterns hich Wherever such rain water is used, it may be safely Wherever such rain water is used, it may be safely stated
that there is an entire exemption from the diseases which
sure was sufficient to move the lever, a string unloosed the funnel, and the balance of the sand, dropping suddenly into the pan, moved the lever, and so the board ignited the matches, thus firing the barn. A belated traveler passing discovered the thing in working order, rushed in, and saved , and presented it to the insurance odjuster as an evidence the ingenuity of man.

An excellent varnish for photographic negatives is made of 3 ozs. bleached shellac dissolved in 24 ozs . alcohol. Filter when dissolved, which will be in 1 or 2 days, then add gum sandarac 1 oz ., essential oil of lavender $1 \frac{1}{2}$ ozs. Filter again and bottle for use

Stientific ${ }^{2}$ mmxticatu.

MUNN \& CO., Editors and Proprietors. PUBLISHED WEETLI AT
NO. BY PARK ROW, NEW YORK. o. D. MUNN.
4. \mathbf{e}. ведace.

THE SCIENTIFIC AMERICAN SUPPLEMENT. No. 16.
With 51 Figures and 60 Articles.
For the Week ending April 15, 1876. TABLE OF CONTENTS.

${ }^{\text {III. }}$.

v. LESSSNS IN MECHANICAL DRA Wing. By Profrssor MacCord.
Vi. AgRicivliture, Etc.-The Chemical Action of Plants, by Profrs-

Remit by postal order. Address
MUN

A goLD lacquer closely resembling the real Chinese article is made by first melting to a perfectly fluid mixture 2 parts copal and 1 part shellac. To this add 2 parts good boiled oil. Remove the vessel from the fire, and gradually mix in 10 parts oil of turpentine. To give color, add a solution of gum guttæ in turpentine for yellow, or of dragon's blood for red, a sufficient quantity of coloring material being used to give the desired shade.

floosillicic acid in the arts.

One of the compounds of silicon with hydrogen and fluorine, known as hydrofluosilicic acid, $\mathrm{H}_{2} \mathrm{Si} \mathrm{F}_{6}$, seems likely to become at some future time as useful and well known as it is now rare and untalked-of. It is not a new substance, but has long been used in analytical laboratories for precipi tating potassium, one of the most difficult salts to precipi tate; and also it is used for separating barium from calcium and strontium. About eight years ago, Tessié du Motay and E. Karcher attempted its manufacture on a commer cial scale at Grossblittersdorf; but the Franco. Prussian war interrupted the business, which has never been revived. Their process consisted in smelting together in a shaft fur nace, by means of a cold blast, a dry mixture of sand, clay fluorspar, and fine coke. The gases evolved, consisting chiefly of nitrogen, carbonic oxide, carbonic acid, and fluor ide of silicon, were passed through water in a condensing apparatus, when the fluoride of silicon was decomposed into silicic acid and hydrofluosilicic acid. The acid solution wa either introduced into commerce in that form, or employed in preparing silico-fluoride of potassium and sodium. This process was quite imperfect, and, until a better one is devised, the manufacture of fluosilicic acid on a large scale is not likely to be revived. In the first place, not all the fluoride of silicon is decomposed by the water, and this in volves a waste secondly, some hydrofluoric acid is formed, which cannot be expelled, and this interferes with its usefulness in decom-
posing the chlorides of potassium and sodium. Finally, the posing the chlorides of potassium and sodium. Finally, the silice fluorides of potassium and sodium, when formed, are not completely decom
and alkaline fluorides. moth is highly desirable to devise a cheap and perfect method of manufacturing fluosilicic acid will be seen when we mention some of the uses to which it is applicable, al-
though some of these are of less value to us than to our though some of these are of less value to us than to our
German neighbors. This is especially true in regard to the manufacture of fluoride of potassium from the Stassfurt brines, rendering its separation from the troublesome mag nesium very easy. It can also be employed to separate so dium from sea water. The alkaline silico-fluorides are decomposed by heat into fluoride of silicon gas, which is utilized, and alkaline fluorides, which are easily converted into caustic alkalies by means of quicklime. Kessler has also patented a process for making soda from table may be used over again in making the fluosilicic acid, in place of fluorspar.
But there are many other uses to which fluosilicic acid may be put beside the preparation of caustic alkalies. It has been proposed to use it for decomposing bones, phosphorites, and sombrerites, in the manufacture of artificial fertili. zers; while fluosilicate of potassium is itself a very suitable form in which to introduce this alkali into the soil.
Fluosilicic acid has been used in the manufacture of beet sugar, as it is able to precipitate the alkaline salts contained in the molasses, which hinder the separation of the crystalliz able sugar. Their precipitation by this acid was first pro posed by Von Kletzinsky and afterwards by Marix
Combe and Wright recommendits use in the manufacture of glass and porcelain. They propose to replace the lime by silicofluoride of calcium, either alone or with the barium salt, in the manufacture of glass; and instead of carbonate Still more important is the substitution of fluosilicic acid for Still more important is the substitution of fluosinicic acid for
boracic acid in the lime, alumina, and other compounds used in English stoneware. Silico fluorides could scarcely be used for glass on account of the evolution of fluoride of silicon
vapor when fused.
It may also be mentioned that it has been proposed and used in making artificial stone, for fixing stereochromatic colors, in making tartaric acid, as a substitute for this acid, as a mordant in dyeing and calico printing (in place of the drug bath), for whitening pins, for removing the lime from beet juice in making sugar, and many other uses. It pro duces an incomparably beautiful patina on brass, bronze zinc, and German silver. A French manufacturer uses its sodium salt to make hard alloys rich in silicon. T. Christy has taken a patent in England for its use in the manufacture
of ammonia from gas liquor. It seems as if fluosilicic acid, notwithstanding the service it has already rendered, is not attracting the attention it deserves either from chemists or manufacturers. Let America take hold of the problem and show the old world what she can do with this curious and useful acid. On a small scale in the laboratory, it is made by mixing together puling. Thorspar and fine sand, adding oil of formed is passed into water, precautions being taken to prevent the tube from choking up with precipitated silica. The products are pure gelatinous silica and a solution of hydrofluosilicic acid.

the baobab as a fiber plant

The baobab (Adansonia digitata) has long been known as one of the giants of the vegetable kingdom. It has lately become an important source of fiber for papermaking. The fitness of its inner bark for this purpose was demonstrated some years ago, but it is only within the past decade that it has begun to rank as an important article of commerce. By the natives of Africa the bark is put to various uses: Twisted into string and rope, it is used for all sorts of purposes, and in
nntwisted strips it serves to secure loads and to bind together the poles employed in making their huts. Finer pieces are pulled out so as to resemble coarse netting; and the edges being sewn together, they make handy bags for cotton, gum, grain, and the like. Coffee and ground nuts are brought
down from the interior to the coast in very strong bags wov. en from thin strips of the bark.
The bark is obtained by first chopping off the softer outer bark of the tree with a hatchet, after which the inner bark is stripped off in large sheets. The pieces are beaten with a stick to soften them, and shaken to get rid of some of the pithy matter which they carry. The sap is then dried out in he sun, and then the fiber is pressed into bales for shipping. The smaller trees produce the finest and softest fibers. The bark is taken off all round the tree. which does not appear to suffer much injury. A fresh layer of bark grows and is hick enough to be taken off in six or eight years. Mr. J. J. Monteiro, who has the credit of adding this valuable fiber to the resources of the paper trade, tells some amusing stories of the difficulty he experienced in developing the business of collecting the fiber. By paying liberally, he induced some of the natives to take hold of the new work at last, and matters went on tolerably smoothly until a season of drouth came on. The fetich men declared that the "big iron"-his hydraulic press-had fetiched the rain and prevented its ap. pearance. The matter was discussed throughout the counry ; and at a general meeting of the people of the neighbor gi towns, it was decided to apply the usual tests to the big ron, and, if it proved to be a sorcerer, to destroy the press nd throw it into the sea. It is the custom in those parts to ry all cases of supposed witchcraft by subjecting the suspected to the ordeal of poison. For this purpose they use asca, the bark of a large tree, the erythrophloum Guineen. is, which acts either as a violent emetic or as a purgative nocence or guilt being determined by the manner of its ac tis.
In the case of the press, the application of this simple and them, perfectly satisfactory test was seriously interfered with by the absence of any stomach or insides to the big iron, or the poison to take effect on. After much deliberation it was resolved to employ a substitute in the person of a slave to the king. To this unwilling representative of the big iron the casca was duly administered, and luckily acted as an emetic; so the press was declared innocent of bewitching the rain. Still the rain held off, and gravesuspicions arose as to the sufficiency of the trial. To resolve all doubts, the poor slave had to undergo the ordeal a second time, fortunately with the same result, and the press was never more suspected of complicity with evil spirits.

THE SECRETS OF MAKING VIENNA BREAD.

One of the most practical and useful works which has recently emanated from the government printing office, at Washington, is Professor E. N. Horsford's report on the sub ject of Vienna bread. Professor Horsford was a member of the United States Scientific Commission to the Vienca Fair of 1873 ; and the present book is the result of careful and exhaustive research, the aim and object of which was to unearth the secret of the world-famed bread peculiar to the Austrian capital. There is something very appetizing in his description of the Kaiser Semmel, as the bread is theretermed. It is "a smooth, irregul arly rounded small wheaten flour loaf, of uniform weight. It presents a ricb reddish brown crust and a delicately shaded yellowish, almost white, interior. It is always light, evenly porous, free from acidity in taste or aroma, faintly sweet without the addition of sac charine matter to the flour or dough, slightly and pleasantly fragrant, palatable without butter or any form of condiment, and never cloying upon the appetite.'
The reverse, the Professor might have added, on one hand, of the dyspepsia-breeding, doughy compound which passes for bread in many a country bome, and of the attenuated, alum-treated, tasteless loaf which is produced in many a alum-treated, tasteless loaf which is produced in many a
city bakery. It seems, however, that these gastronomic city bakery. It seems, however, that these gastronomic
abominations are not necessary evils, and that, despite the re abominations are not necessary evils, and that,despite the re-
peated efforts which bave been made to imitate Vienna bread peated efforts which have been made to imitate Vienna bread
out of Vienna, which have uniformly failed, a way does exist of producing it in all its delicacy. And that way is very mple, as the reader will see by the following:
The first requisite is to procure as good flour as the Vienna bakers have. Good flour can only be made from pare sound wheat, and by good milling. This means in general flinty wheat reduced by the process of high or half high milling, and a selection of the products of the milling, not to exceed one half the total weight of the wheat ground. Good fresh middlings flour, Professor Horsford says, would com pare favorably with the average Hungarian flour used in ienna.
The next requirement is fresh pressed yeast. This is already made in the United States. It is not difficult to manufac ure, since it is made by skimming the froth from beer mash in active fermentation. This contains the upper yeast which must be repeatedly washed with cold water until only the pure white yeast settles clear from the water. This soft tenacious mass, after the water has been drawn off, is gathered into bags, and subjected to hydraulic pressure until there remains a semi-solid, somewhat brittle, dough like substance, still containing considerable water. This is the pressed yeast, which will keep for eighty days in summer and for an indefinite time on ice. For use it should be of re cent preparation and sweet, so that it will yield only alcohol and carbonic acid as products of fermentation.
Next follows the very important operation of mixing. Into the middle of a zinc-lined trough, about $2 \frac{1}{2}$ feet wide and 8 feet long,semicylindrical in form, the Vienna baker empties his flour sacks. Then, into a pail holding about five gallons, equal parts of milk and water are poured, and left to stand until the mixture attains the temperature of the room, between 70° to $80^{\circ} \mathrm{Fah}$. It is then poured into one end of the rough and mixed with the bare hand with a small portion of the flour to form a thin emulsion. The press yeast is
next crumbled finely in the hands, and added in the proportion of three and a half ounces to every three quarts of liquid, and then one ounce of salt in same proportion is diffused through the mixture. The trough is now covered and left undisturbed for three quarters of an hour. Then follows the incorporation of the flour from the neighboring heap; and as this is the last of the ingredients, we may write the recipe as a whole, thus: Flour 8 pounds : milk and water 3 quarts pressed yeast $3 \frac{1}{2}$ ozs. : salt 1 oz .
The mass of dough, being left quiet for two hours and a half, becomes a smooth, tenacious, puffed mass, of yellowish color, which yields to indentation without rupture and is elastic. It is now weighed into pound masses, and each lump is then cut by machinery into twelve small pieces, each of three quarters of a inch in thickness. Of each one of these, the corners are brought together in the center and pinched to secure them. Then the lump is reversed and placed on a long dough board for further fermentation, until the whole long dough board for further fermentation, until the whole
batch is ready for the oven. Before being introduced into the latter, the rolls are again reversed and restored to their original position, having considerably increased in volume, original position, having considerably increased in volume,
to be still farther enlarged in the oven to at least twice the to be still farther enlarged in the oven to at least twice the
volume of the original dough. In the oven they do not touch volume of the original dough. In the oven they do not touch
each other, and the baking occupies about fifteen minutes. each other, and the baking occupies about fifteen minutes.
To glaze the surface they are touched in the process of baking with a sponge dipped in milk, which, besides imparting to them a smooth surface, increases the brilliancy of the slightly reddish cinnamon color and adds to the grateful
aroma of the crust. No peculiar form of oven is required, aroma of the crust. No peculiar form of oven is required,
the only necessary point being that the receptacle shall be capable of maintaining a temperature of about $500^{\circ} \mathrm{Fah}$.

THE UTILIZATIONS OF MICA.

A correspondent encloses us a sheet of very clear mica, and asks us for what the material may be employed. Of late, large quantities of mica have been mined in Mitchell and adjoining counties, in North Carolina, which are proving very remunerative. The material is got out in sheets of from two by three to fifteen inches square, according to patterns furnished by dealers, and the best priçe is given for dark or brandy-colored mica. In obtaining these sheets, of course, immense quantities of scraps and fragments must be made, and it is mainly with regard to these waste bits that the utilizations above to relate. The first employment which suggests itself as worthy of a wider field than it now possesses is the substitution of mica for glass in spectacles worn by workmen, especially stone and metal workers, to protect their eyes from chips and splinters. As already made in Germany, these mica glasses are concaved in the shape of watch glasses, and are about one twimple brass wire frames, and are made sufficiently large to fit closely around the eye and are made sufficiently large to fit closely around the eye
sockets. The advantages gained by this utilization are greater than would at first be imagined. Mica spectacles greater than would at first be imagined. Mica spectacles
cannot be broken. Pounding with a sledge hammer merely cannot be broken. Pounding with a sledge hammer merely
flattens them, nor does molten metal poured on the mica flattens them, nor does molten metal poured on the mica
affect it. The shower of pointed iron particles which issues affect it. The shower of pointed iron particles which issues
from lathes merely rebounds from the elastic mica glasses. In weight, mica spectacles are about half as heavy as glass ones; and when a pure material is used, the mica, with the exception of a slight grayish tint, which is rather agreeable to the eye, is fully as transparent as glass.
Another use for mica is its application, when previously colored or metalized, to ornamental purposes. From its unalterable nature, the material preserves gilding, silvering or coloring from deterioration; and from its diaphaneity, the articles so treated will preserve all their brilliancy. The process of
treating mica, devised by Murray, of Paris, is as follows treating mica, devised by Murray, of Paris, is as follows.
The mineral is first cut to the desired thickness, then coated The mineral is first cut to the desired thickness, then coated
with a thin layer of fresh isinglass diluted in water, and with a thin layer of fresh isinglass diluted in water, and
the gold or other surface applied, after which it is allowed to dry. A copper pattern of the desired design is next placed on the reverse side of the sheet, and any superfluous parts of the gilding are removed by means of a small brush, the design remaining on the parts not brushed. Colors are then laid on as desired, and the whole is coated with a solution of liquid glue, diluted in spirits of wine, which is applied for the purpose of rendering the mica pliable. The sheet is then fastened with glue permanently in position junction can be rendered imperceptible by first gluing with iron.
Puscher, of Nuremberg, has also suggested several ways of converting mica sheets into very elegant ornamentation. For one application the thin plates are first purified by treat-
ment with strong sulphuric acid, and then silvered by the ment with strong sulphuric acid, and then silvered by the
ordinary process adopted with looking glass. The mica thus acquires a beautiful silver luster, and it may assily be cut into any shape for inluying work. The flexibility of the mica will, of course, allow of its being applied to irregular surfaces. When a sheet of mica is heated to full redness for a time, in a clay muffle, it loses most of its flexibility, and is changed considerably in appearance. Under reflected light, it has a dead silver white look; but viewed by trans appearance is lost when two or three pieces are superposed. The mica, after heating, is also a beautiful material for inlaying work; it should be cut into the desired shapes prior laying work; it should be cut into the desired shapes prior
to the heating process. Another very pretty effect is obtained to the heating process. Another very pretty effect is obtained
by scattering small fragments of mica on freshly poured clear sheets of gelatin, and varnishing it with a darkcolored solution of gelatin. Finely ground mica, on col ored gelatin, also shows handsome effects : and when mixed
with a solution of gum arabic, it makes a good silver ink, with a solution of gum arabic, it makes a good silve
Thegelatin combination is used for inlaying kuttons.

Another beautiful application of mica is in the production of bronze-like colors, which bear the names brocades ond well crushed, boiled in hydrochloric acid, then washed in water, and assorted according to the size of the laminæ. Mica scales thus obtained exhibit a glass-like luster, combined with a silver white appearance. Among the advantages of these brocades are that they are indifferent to sulphurous exhalations, are very light in weight, and in ome colors are even more brilliant than the metal bronzes. They may be fixed upon all kinds of articles of metal, wood, glass, plaster of Paris, and paper board, so that they are
well adapted to the preparation of artificial flowers, fancy well adapted to the preparation of artificial flowers, fancy
papers, sealing wax, and for use in tapestry, furniture papers, sealing wax, and for use in tapestry, furniture-
making, and paiating: in fact, they may be applied to all purposes now filled by ordinary bronze powders. In fixing hese brocades, the articles are first painted in bronze color; f silver is to be imitated, a ground of white lead is suitable. Either oil or glue color may be used, the latter fixed with a mixture of 4 parts glue and 1 part glycerin. Upon his coat, when hard, the binding material for the brocade is spread, and after fifteen minutes the latter is sifted over. As a binding material, a paste consisting of 4 parts boiled tarch and 1 part glycerin is recommended. If the ground is formed by an oil paint, the binding material for the brocade should be constituted of pale copal varnish, upon which, when only pitchy, the powder is sifted. When finally varnished, articles treated as above assume a very beautiful appearance.
When small particles of mica silver are spread over articles coated with asphalt varnish, the result is a good imitation of granite. The crystal colors are also suitable for calico-printing; and fabrics to which they are applied surpass in brilliancy the heavy bronze and glass dust fancy porcelain and glassware, the articles undergoing a second heating up to the fusing point of their glazing. By suitabe dyes, the material is easily colored to a variety of hues. Mica has been used instead of glass on board war vessels, in localities where glass would be broken by the concussion
due to the firing of heavy guns. It is also employed for due to the firing of heavy guns. It is also employed for water and fireproof covering for strata of rubber, tar, canvas, felt, and similar materials.

THE INTERNATIONAL EXHIBITION OF 1876---PROGRESS

 OF THE MACHINERY DEPARTMENT.The commencement of the period of hustle and tussle, such as has been more than once predicted in these columns, is at hand; and Machinery Hall and its offshoots are now a very pandemonium of iron, wood, brick, stone, and mortar, in every conceivable shape and position. Heaped up in the most indiscriminate manner may now be seen monstrous castings and forgings, belonging to such mighty engines as steam hammers, rolling mills, etc.; and they lie about the steam hammers, roling mins, etc.; and the in manner as though some Titan, in mockery of all floor in a manner as though some Titan, in mockery of all
human effort, had carelessly dropped the ponderous objects human effort, had carelessly dropped the ponderous objects the day to bring them into place; and one might pass on in the full conviction that busy man had hereoverreached himself in his attempt to master these unwieldy masses and
bring order out of such a chaos by the 10th of May, if it bring order out of such a chaos by the 10th of May, if it
were not for those modern and veritable titanicl aids, the steam cranes, three of which are now constantly at work lifting and moving heavy objects into place. One of these machines picks up a 10 tun piece of iron and whirls about upon its vertical axis with it, to deposit it where wanted, or moves off to the desired spot with the piece of metal hanging rom its extended arm, with all the ease imaginable. Much of his kind of material as there now is upon the floor, car load pon car load continues to arrive almost hourly. As an it may be stated that eighty car loads of material arrived upon the grounds on Saturday last. In view of such facts, we may well believe that, before the whole is in its destined place, many figurative corns will be trod upon and some peculiarly centennial anathemas be added to the language. Mixed up with such ponderous objects as the foregoing may be seen, here and there, a fancy little show case occupying its half dozen square feet of floor, and others of greater size and pretensions looming up in all their majesty of polish, gilding, and ornate carving; and one is led to wonder how their present high state of finish is to be preserved amid an assemblage which may be described as the furniure of some huge smithy.
Some of the "early birds"-to whom we give all creditave their exhibits finished, and they can look on at their nore tardy confreres with all the complacency of a man with n umbrella among his friends caught out in a heavy shower
without any. Among these is a rather peculiar exhibitwithout any. Among these is a rather peculiar exhibit-
and one which will become quite a prominent landmark in the hall-made by J. H. Mitchell, of Philadelphia. It consists of a column erected upon an ornamental pedestal of brick, the whole being about thirty feet in hight. The plinth, base, a section of the shaft at about every four inches, and the members of the capital, are each made of a separate grind stone, the whole being proportioned so as to form a very hand of which there are thirty-six-being a real grindstone, except the plinth and the upper member of the capital, both of which are, of course, square, and could not therefore well be used for grinding purposes. These stones are of all shades of color, and come from all parts of the world
where such material is found ; altogether, this column makes a conspicuous and curious object.
Another of the American exhibitors who has taken time
by the forelock is the firm of J. P. Morris \& Co., of this city, who have now erected, at a short distance westward of the large Corliss engines, an immense vertical blowing engine. With the exception of a very few of the minor details, it is now complete; and from its great hight and massive proportions, it may readily be seen from almost any part inches in diameter by 7 feet stroke, and the air cylinder is inches in diameter by feet stroke, and the air cylinder is
90 inches in diameter, with the same stroke. It is of the style generally known as the "steeple," with the air cylinder placed vertically upon the steeple, frame. The axes of the cylinders are in one line, and the piston rods are severally connected to a yoke, which encompasses the crosshead, the rod of the air cylinder passing upward, and that of the steam cylinder downward. The whole hight of this machine is 37 feet 6 inches above the floor, and its total weight over 100 tuns. It is a condensing engine, but will be run (without pressure in the air cylinder) during the exhibition as a high pressure or non-condensing engine, at about 16 revolutions per minute, discharging into the upper regions of the building nearly 10,000 cubic feet of air per minute, which ought to render the immediate vicinity of this engine a favorite locality during the heated term, which we are sure of in the months of July and August. Upon either end of the shaft, which is below the bottom cylinder head, is a massive fly wheel of 20 tuns weight, which is, in some respects, quite notable. The hubs or centers of the wheels are somewhat larger than in the ordinary constructions of this kind, sufficiently so as to permit of the crank pin being inserted into them as in the ordinary disk crank. These hubs or centers have holes bored radially in their edges for the reception of the arms of the wheel ; and each arm, cast with its own sec-
tion of the rim, has a corresponding cylindrical projection upon it, which is turned in the lathe to fit the radial holes in the hub. The sections of the rim where they join each other are secured with the usual internal link and driven keys, riveted over on the outside to prevent withdrawal; and the turned ends of the arms are secured in the hub with similar riveted keys through slots, cast in them and the hub for that purpose. This is something of a novelty in the construction of large sectional fly wheels, and has at least the merits of heapness, precision, and security
A rather curious feature in this engine is that the connecting rods-as necessarily must be the case with the crank pins inserted in the wheel centers-pass outside of the fly wheels; the crossheads being of sufficient length to permit of the fly wheels revolving between them and the steam cylinder; and the shaft being below the cylinder, the connecting rods are long enough to keep the crosshead clear of the rims of the wheels at the top. The weight of the two pistons, piston rods, and crosshead is balanced by coring out some of the arms and a part of the rims of the wheels, which externally are symmetrical in form. The valve gear very much resembles the old Stevens cut-off with its side pipes, poppet valves, and overhung lifting rods: except that the long toes of that form of valve gear are replaced by friction rollers working in the lower ends of the lifting rods and actuated by peculiar cams upon a rotating shaft which receives its motion by the intervention of spur gearing from the engine shaft. This arrangement is called the Wanock cut-off, and, as an expansion gear, can only be adjusted by hand. This machine seems to be a well conceived design for blowing purposes under pressure, all the strain being received and transmitted in direct lines, except in the case of transverse strains upon the crosshead, which, if the work of the machine requires that the fly wheels should be as heavy as they are made, has the appearance of being entirely light to transmit the momentum of these rotating masses of iron.
The Japanese mechanics have finally entombed themselves in their new abiding place, for any one of them is now rarely to be seen outside of that structure. The clatter going on with in, however, gives note that they have by means ceased their labors. They have expressed themselves as considera bly astonished-which must, however, have been in the form of words or gestures, for their immobile visages seem incapable of any such expression-at the rapidity with which the " Melican man" erects his large and handsome buildings, and they rather feel themselves in the shade in this respect At the beginning of their labors, a large and curious throng was always to be found observing and criticising the tools and methods of the " Japs," and no doubt gave the foreigners the impression that they were creating a grand excitement among, and imparting much valuable knowledge in the building line to, the American mechanics and architect. If such has ever been their state of mind on that subject, they have evidently become disabused of it; for not only have they expressed their surprise at the rapidity of our workmen, but they now look upon their own chosen instruments and tools as inferior to ours: as is instanced in the fact that Mr Henry Disston, saw manufacturer of this city, has received an order from them for 900 hand saws to be sent to Japan. Iu the operation of such tools as planers and saws, their cut ting is done by pulling the tools towards them; but they are evidently coming to the conclusion that a little American "push" is the best.
J. T. H.

Editorial Amenities.
Under the head of "New Industries Wanted," we lately published a paragraph relative to the needs of the people of the Mississippi Valley, which we quoted from and credted to the Engineering Neoos, as it appeared in that paper ithout credit to any other journal, and, we supposed, wa riginal with the News. We are now in receipt of a note from the editor of the Indianapolis Journal of Commerce,
desiring us to inform our readers that the paragraph in desiring us to inform our readers that the paragraph in
question was original with hign and first printed in bis paper

MPROVED FEED WATER HEATER.

We illustrate herewith a new feed water heater, so constructed as to avoid risk of fracture by contraction or ex pansion, and also to afford an efficient application of heat without obstructing the escape of steam.
Fig. 1 is a sectional elevation, and Fig. 2 is a horizontal section. A is the inner cylinder into which the steam is discharged from the engine, by the pipe, B. C is the water cylinder, inclosing the cylinder, A, and having inlet and out let pipes, D, E; and F is the steam jacket surrounding the water cylinder. The hollow conical studs, G, radiate from the shell of cylinder, A, to its center, or nearly so, and conduct the water into the steam space from cylinder, G, so as to distribute the application of the heat very efficiently. The small exit steam pipes radiating outwardly from said cylinder, A, make another efficient distribution. Both the hollow studs and the exit pipes are distributed uniformly, or as nearly so as is necessary for producing uniform effects throughout the heater, and the capacity of the pipes, H , is regulated to that of the exhaust pipe, B. This pipe is prolonged a littleabove the bottom of the cylinder, A, to make a kind of trap to prevent the water of condensation from flowing back in it, and passages, J, are made for it to flow into the steam jacket, F, from which it may be drawn from a cock, K. Cylinders, A and C , are cast in connection together at L , making a substantial base, to which the jacket, F, is also connected, so as to seat the heater on the top of the pipe, B, or any other suitable support. Conical studs are provided, instead of tubes connécted at both ends, with express reference to the changes of temperature to which the heater will necessarily be subjected when in use.
Patented February 22,1876 , through the Scientific American Patent Agency, to Mr. Timothy W. Hayes, of Trenton, N. J.

Tin in Tuscany.

At a meeting of the Paris Society of Civil Engineers, a paper was read on a discovery, said to have been made in Tuscany, of a vein of bioxide of tin. The vein is reported to be situated about a mile and a quarter southwest of the town of Campiglia Marittima, in Tuscany, at a place called Cento Camerelle, upon the western side of the Fumacchio, a spur of the Monti Calvi, a chain celebrated for its mineral deposits. The Cento Camerelle (Hundred Chambers) consists of a series of excavations attributed to the Etruscans, and dug out horizontally in the side of the mountain. The concretions with which they were filled have been removed in the course of ironstone mining. The tin was stumbled upon some yards from the Cento Camerelle in following up a vein of brown hematite. The tin ore is very compact, of a yellowish gray color, and of granular fracture. Specimens yielded from 58 to 72 per cent.

Fargier:s Carbon Process.

According to the Moniteur de la Photographie, Fargier's According to the Moniteur carbon process may be summed up in new carbon process may be summed up in
a few words. A sheet of paper is allowed a few words. A sheet of paper is allowed
to float upon a solution of five grains of to float upon a solution of five grains of
chloride of iron and a similar amount of chloride of iron and a similar amount of
citric acid, which are dissolved in one huncitric acid, which are dissolved in one hun-
dred grains of water. This paper is afterdred grains of water. This paper is afterwards dried in the dark, and placed under a negative to print, upon a bath of colored gelatin solution, when it is found that the gelatin attaches itself to the portions of the surface that have been acted upon by light. There remains nothing but to wash the sheet in water, and the picture is finished. If, instead of a colored solution of gelatin in water, softened tissue were employed, the printed chloride of iron paper being pressed into contact with the same, warm water being used subsequently to separate the two surfaces again, there would perhaps be a step further gained in the simplification of the carbon process, for the pictures would be visible at once during the printing operation, and could therefore be controlled. Dr. Liesegang, writing in the $A r$ chiv, is of opinion that an improvement in the carbon process may be effected in this direction, and that the Fargier method indicates a branch of the subject which dicates a branch of the subject which
might be investigated with advantage.might be investigat
Photographic Nevos.

Pig Iron Pavement

Twenty different kinds of paving have been tried in Paris ; wood paving has been judged, gutta percha paving is too dear, in bitumen paving there is room for improvement, and now paving by pig iron is to be tried in a few days. A bed of mortar is first laid down, which is covered by a strong ayer of asphalt; it is in this layer that the iron cakes, which are about $1 \cdot 6$ inches thick, are set. These cakes it appears,
preserve the homogeneity of the bitumen, and prevent its
depression, and render the asphalt less slippery for horses This pavement will cost more, assuredly, than the compressed asphalt, but it is estimated that this mode of paving will save 50 per cent upon the repairing expenses, which are very considerable. The end desired is to avoid, by the adoption of a kind of pavement, the depressions in roads ver which a great deal of traffic passes. To attain this, it does not suffice to pour bitumen upon a well prepared

HAYES FEED WATER HBATER.

ground lightly covered with a coat of lime; the resistance of the ground should equal that of an old macadamised
bank; and a very thick bed of mortar, which should be very homogeneous, should be laid before the asphalt is laid.

Spectrum of the Electric Arc--A New Experiment. In general, the electric light refers to the light coming from the incandescent carbon points, as well as from the space between them. Now, in this sense, the spectrum of the electric arc is a very common lecture experiment. But the words electric arc, in the strict sense of that term, belong to the arch of light between the points. This he ordinary use of the spectrum of the electric light, the carbon lines occasionally flash out for an instant from lateral discharge.

Man's Allotted Span.

The determination of threescore and ten years as the al otted period of human existence is doubtless in a considera ble degree owing to that period having been adopted by the royal psalmist; but modern science, while it has postponed somewhat the average termina tion, has also still more largely prolonged the hypothetical duration of life. Flourens, rea soning from the time required for the full phy ical development of a human being, as com pared with that taken by other animals, fixe the natural limit at 100 years, and this is also the period fixed by Dr. Farr as man's natura death time, although at present he finds, as the result of ten years' approximately accurate and complete registration, that this limit is scarce ly reached by one English child in a hundred thousand. In some districts, of which th town of Liverpool is an exceptional example the proportion is much below this. In this however, as in many other respects, we are fa in advance of our ancestors. The early Eng lish poets fix the appearance of the signs of approaching senility much earlier than we ar now accustomed to notice them, and Dr. Far shows that, while two hundred years ago the mortality of London was about 8 per cent, and one hundred years afterwards 5 per cent, it is now only 2.4 per cent. And there is good reaso to believe says Iron that it may be still furthe to belud-very much of the existing furthe reduceding upon the mortalit depending upon the preventible causes, such as impure air and impure water, negligence on railways, on shipboard, in mines, in stree police, and in many other ways. What is also of equal importance is the fact that any de crease in the mortality from these causes wil be necessarily accompanied by the absence of disease, and an increase to survivors of tha good health without which length of days is scarcely a boon. The economical results wil be no less important. Disability from sicknes is a source of pecuniary loss not only to the sufferer but to the entire community; whil the longer old age, that one incurably malady can be staved off, so much will be gained, fo when the season of effective work is over, the individual,in ceasing to contribute to the general wealth, be comes a pensioner upon it. Thus, according to Dr. Farr, the Norfolk agricultural laborer, worth $\$ 25$ at his birth and reaching at the age of twenty-five years his maximum valu of $\$ 1,230$, sinks at eighty to $\$ 205$.

The Time to Plant.

It is useless to put seeds in the ground, The American Gar den sensibly says, before the soil becomes warm and dry For this reason no particular time can be specified for plant ing-everything depends upon the location, soil, and temper ature. A very good guide is the taking up of a handful of the loam and closing the fingers tightly upon it. If, on open ing the hand, the soil remains in a hard lump, and retains the imprint of the fingers
it is too wet; while if it falls apart in an ir regular heap, it may be deemed in a condi tion for the seeds. Another reminder, and one that will prove a guide in all latitudes, is the forest tree. When trees put forth their young leaves, all nature is ready for active work. Seeds planted then germinat at once, and seldom fail to come up and grow vigorously. Nothing is gained by very early planting. Better be a grain too lat than too early.

Save your Soapsuds.

Who would throw away a barrel full of soft soap or a box of hard soap? Were it not otherwise useful, it would be of great value as a fertilizer, if spread, in its raw state, as a fertilizer, if spread, in its raw state,
about our fruit trees or berry bushes. But, after being dissolved in water and passing through the wash tub, gleaning the imper ceptible elements of the best manure from soiled linen, its fertilizing power is vastly increased. Indeed we may almost say that the average soapsuds from the kitchen and laundry is worth more than the soap whic produces it. Do not, then, allow your soap suds to run away wasted, while you have trees which it might benefit.

A Good Lacquer.

HAYES' FEED WATER HEATER.

light is but slightly luminous, and is of a pale blue or violet color. Ordinarily, with a battery, the distance between the points is so small that the pure arc itself cannot be had separated from the points, and so its spectrum cannot be separately projected. But, during a recent lecture experi ment by Professor G. F. Barker, at the Stevens Institute, with the arc of the Gramme machine, the experiment was successfully performed, the carbon lines being plainly produced on the screen. This, we believe, has never been don before as a distinct experiment; at any rate, we call to mind

Fig. 2

A preserving lacquer for brass or bronze, which gives a beautiful gilding to the articles, is also mentioned in the same paper. It is prepared simply by dissolving in 332 parts of rectified spirit 16 parts of shellac, 4 parts of dragon' lood, and 1 part turmeric root. The metal to be lacquered is warmed, and the varnish applied means of a sponge. Brasswork becomes beautifully gilded by this application, As the liquid is a spirit solution, it is necessary, of course to keep it in a well stoppered bottle.-Photographic News.

HORSE POWER PUMP.

We are constantly receiving inquiries, from farmers and thers, as to the easiest and most economical way of bringing water from a moderately distant point into a dwelling or barn. Probably the cheapest plan and one of the most efficacious is to use a windmill to actuate a suitable pump, and some of our correspondents have availed themselves of this means; others, however, have found local objections to the windmill, and, possessing horses, have asked us for a method of devoting the power of their animals to the purpose of raising water
One of the simplest and most compact machines designed to meet this requirement is illustrated in the annexed engraving. The beam to which the horse is harnessed turns by its vertical shaft an inverted crown wheel, which actuates two smaller pinions, the rotary motion of which, changed by simple means into changed by sime the into recip of the tw pura tus is an English invention, and is manufactured by Messrs. Hayward, Tyler \& Co., of London. It is light and portable and easily constructed, while it is capable of raising a large body of water. Such an apparatus would be useful on any large farm for supplying stock with water, or for irrigating purposes. Any of our manufacturers of pumps and horse powers may get an idea from this illustration which they can modify to suit special requirements, by omitting one of the pumps or by substituting some other kind of pump, or by changing the mode of gearing. It would seem as if there would be a good demand for something of the kind which is compact, simple, and not too costly.

IMPROVED KITCHEN FURNITURE.

Mr. George Holt, of Minneapolis, Minn., has recently in vented an article of kitchen furniture which shows considerable ingenuity in economizing space, and contains places for nearly all the articles required for use in culinary operations, the utensils, etc., all being arranged so as to be read at hand.

A represents the top or table; B is a hinged leaf at the rear side, supported on suitable slide pieces; and C is an ironing board that is placed in front corner slides, C^{\prime}, which are also made use of for sharpening knives. The central front part of the cabinet is arranged for shelves, D, forming a dish cupboard with hinged doors. At both sides of the shelves, D, are drawers, E, for miscellaneous articles-flour, sugar, meal, towels, etc. ; and above the shelves, D, and drawers, E, are two drawers, G, of smaller hight, but with inside partitions, one drawer being for forks, knives, and spoons, the other for spices, etc. Below the the other for spices, etc. Below between the slides, C^{\prime}, are top, and between the slides, C, are arranged various sliding devices, as a bread board, a vegetable cutter, a knife scourer, a grater, and others, which are drawn outas required, being pushed in after use. The space at the rear part of the cabinet is divided by a central partition into longitudinal chambers, F, for storing various larger articles of kitchen use, as tinware, potato mashers, etc., while longitudinal drawers, \mathbf{F}^{\prime}, occupy the remaining available space. Patented October 5, 1875. For further particulars address the inventor as above.
Progress of the Sewing Machine in Europe.
At the annual soiree of the employees connected with the extensive works of the Howe Sewing Machine Company, Glasgow, Scotland, recently held, the chairman stated that the British islands alone had taken a third of the machines $(61,123)$ which the company had made in 1875 . The little kingdom of Belgium, with her $5,000,000$ of industrious people, took twice as many machines in proportion to population as Great Britain ; but France, with her $36,000,000$ of people, as yet took but half as many as Great Britain, with
$33,000,000$. Germany,with her $40,000,000$ did no better. Italy $33,000,000$. Germany, with her $40,000,000$ did no better. Italy and Spain, the former with $26,000,000$ and the latter with 17,000,000, as yet purchased but a few hundred machines per year. Entire Scandinavia was an explored region; while Russia, with her $85,000,000$ of active and rapidly progressive people, as yet received but the tenth part of what were now sold in Great Britain.

A little strong soap lather mixed with the starch will pre vent flat irons sticking to linen.

The removal of sand, etc., adhering from the molds to iro fected far better by means of of thin strips of steel, in the form of ordinary scrubbers, and also in that of whitewash brushes, and are reported to re main sharp for a long time, and to be far more convenient in use than the file.
Bronze powders: Bright yellow, copper 83 parts, zinc 17 ; orange, copper 90 to 95 , zinc 5 to 10 ; copper red, copper 97 to 99 , zinc 1 to 3.
A correspondent of the Country Gentleman reports excel ent results for the following recip for staining wood: 1. Wash the wood with a solution of sulphuric acid and water, madein the propor tion of 1 oz . to a pint of warm water. Mix when wanted; put on warm and wash evenly over ever part. 2. Stain the wood thus prepared with tobacco stain, using a piece of flannel or sponge, rubbing it in lightly. To make the stain take 6 lbs. common shag tobacco cover with water and boil, letting it simmer slowly away till of the consistence of sirup. Strain for ase. 3. When entirely dry, brush it over with the iollowing mixture $\frac{1}{2}$ lb. beeswax, $\frac{1}{2}$ pint linseed oil, 1 pint boiled linseed oil. This may be omitted, and the wood simply varnished and polished instead When it is desired to give the ton of light oak or maple, the solution of sulphuric acid should be much weaker, and only a light coat of the stain used. When a dark tone is preferred, two coats of the stain should be put on.
Linseed oil has been sold for phar maceutical use mixed very largely

HOLT'S KITCHEN CABINET

ered Spanish whiting; 1 lb . of clean glue, which has been over a slow firolved by soaking it well, and then hanging with water. Add 5 gallons of hot water to the mixture, stir it well, and let it stand a few days covered from dirt. It must be put on quite hot. For this purpose it can be kept in a kettle on a portable furnace. About a pint of this mixture will cover a square yard
A process of tinning iron tacks is to triturate chloride of zinc with a large quantity of oil and heat it in an oscillating vessel. As soon as this has reached the proper temperature, throw in the tacks and the necessary quantity of metallic tin, and after a few seconds dip them out with wire gauze and cast them in water. spring. action of the weather.
the rubbing repeated. In the course of time the walnut be- \mid detected by mixing $1 \frac{1}{8}$ ozs. of the oil with adulteration is 0.4 oz. of nitric comes very dark and rich in color, and in every way is supe- acid, and agitating. The liquid is then put by till the acid and rior to that which has been varnished.
To separate honey from wax, put honeycomb and all in a tin pan upon a moderately warm stove, adding a tablespoonful of water to each pound of honey. Stir occasionally with piece of wire until the contents of the pan are in a liquid from the fire and set it aside to cool. The cake of wax, to which all impurities will adhere, may then be carefully lifted off with a knife.
A good durable whitewash is made as follows: Take half a bushel of freshly burnt lime, slake it with boiling water; cover it during the process, to keep in the steam. Strain the liquid through a fine sieve, and add to it 7 lbs. of salt previously well dissolved in warm water; 3 lbs. of ground rice boiled to a thin paste and stirred in boiling hot; $\frac{1}{2}$ lb. of pow

Washing the face night and morn added is said to be a good remedy for freckles.
The secret of raising fine quinces, according to a correspondent of Inter-Ocean, is to purchase the orange variety, and set the trees from six to eight feet apart in rich soil Bandage the stem with two or three wrappings of old cloth as far down in the ground as possible, as the roots start from near the surface. Let the bandages run six or eight inches above the ground, then pack the soil a couple of inches around the bandages. This should be renewed every

Waterproof glue may be made by boiling 1 lb . of common glue in 2 quarts of skimmed milk. This withstands the

THE MAGNETIC SPECTRUM

In a lecture delivered by Professor Barker at the Stevens Institute of Technology, and described in the Scientific American of March 18, one of the most striking experiments was the exhibition of the magnetic spectrum upon the screen. The name magnetic spectrum has been given by physicists to the arrangement which iron filings assume under the influence of the poles of a magnet; and these spectra afford a convenient means of studying the lines of magnetic force. Professor Mayer's method of rendering magnetic spectra permanent will enable any one to obtain plates like that from which the engraving herewith has been made.
Having dissolved shellac in strong alcohol, it is allowed to stand for a week or more until it is perfectly clear. It is then decanted and flowed over a thin glass plate, just as photographic plates are oated with collodion. After arefully drying for a day or wo in a place free from dust, "the plate is placed over the magnet or magnets, with its ends resting on slips food, so that the under surface of the plate just ouches the magnet. Fine ron filings, produced by rawfiling Norway iron which has been repeatedly annealed, are now sifted uniformly over the film of lac by means of a fine sieve. The spectrum is then produced by vibrating the plate by letting fall vertically upon it, at different points, a light piece of copper wire. The plate is now cautiously lifted vertically off the mag. net, and placed on the end of
a cylinder of pasteboard,
which serves as a support in bringing it quite close to the under surface of a cast iron plate (1 foot diameter and $\frac{1}{2}$ inch thick), which has been heated over a large Bunsen flame. Thus the shellac is uniformly heated; and the iron filings, absorbing the radiation, sink into the softened film and are fixed."
When the plate is to be used for photogiaphic prints, the heat is kept up until the metallic luster of the filings disappears by their complete immersion in the shellac. The pho tographic prints will exhibit the lines of force in white upon a black ground. When the plates are used for exhibit ing them upon the screen, the lines of force will appear black. When prepared with great care, such plates may be used for the most accurate measurements of the magnetic field.
The engraving herewith was made directly from a pla prepared by Professor Mayer.
C. F. K.

A NEW LECTURE EXPERIMENT

One of the most curious and interesting compounds of nitrogen and oxygen is that formed when nitric acid is poured upon copper, silver, mercury, tin, and some othe metals, as well as when heated with charcoal. The com pound ($\mathrm{N}_{2} \mathrm{O}_{2}$) is known as nitric oxide, and is the gas em ployed, in connection with bisulphide of carbon, for photo genic purposes in Sell's new lamp. When this gas comes into contact with free oxygen, it is at once converted into the higher oxides-nitrous and hyponitrous acids, $\mathrm{N}_{2} \mathrm{O}_{3}$ and $\mathrm{N}_{2} \mathrm{O}_{4}$. The latter compounds are red vapors, and are very soluble in water. These are the poisonous red fumes always observed on dissolving sugar, starch, or metals in nitric acid.
G. Bruylants has devised the accompanying simple appa

ratus for illustrating its ratus for inustrating its bottle is fitted with a doub ly y perforated inda ruber stopper throughwhich pass which, A, is drawn out to a fine jet; the other, B, is bent at right angles at one end, and the other end is bent like a J, and drawn out as shown in the engraving, terminating at the bottom of theinverted bottle. The bottle is filled with water, the cork in serted, the tube, A, drawn out so as to project but a stopper, and the bottle in verted. Nitric oxide is al lowed to enter through B, until nearly all the water has been driven from the bottle. The tube, A, is then pushed in until about four inches from the bottom, as seen in the illustration, and the other end inserted in a vessel of water, C. Oxygen gas is now passed in through B, the aperture at once fills with red fumes, which dissolve in the small quantity of water still in the bottle, producing a species of vacuum. The water then ascends through A, producing a small fountain. If, in admitting the oxygen, excess is carefully avoided, the bottle may be completely filled with water. The experiment is more instructive if the water be first
made blue with litmus; the acid in the vessel then changes it into a
sellschaft.

How to Set Out Roses.

Messrs. Dingee \& Conard, the great rose raisers, give the following directions for the treatment of their favorite flowers: Make a hole so large that the roots may be spread out nicely. Cover the roots with fine soil, rather deeper than they were grown, and pack down lightly with the hand. It is generally best, though not always necessary, o protect the plants for a few days from the sun and chilling winds, until they become somewhat accustomed to their new position. Paper grocery bags are useful for this pur-

THE MAGNETIC 8PECTRUM

pose, turaing the bag completely over the plant, and supporting this with one or more sticks, heaping on a little arth to keep it in place. If the ground is dry, water thor oughly, soaking the earth down to the roots of the plants Do not water too often. Like persons, rose plants wan water only when thirsty. Let them get thirsty before giv ing them a drink.

SIMPLE FORM OF THE GYROSCOPE.

by join. o. deane.
Take an ordinary plumb bob, with a smooth hole wher the cord is attached; wind about three feet of smooth har cord about the neck of the plumb bob. Hold the end of the ord firmly and let the plumb bob fall; as it descends, and the cord unwinds, it will spin rapidly on its axis like a top but instead of pointing toward the floor the axis will take a horizontal position at right angles to the cord, as shown in the engraving ; and while revolving rapidly on its axis, th

point will slowly describe a circle around the cord, as shown by the dotted line. This form of gyroscope may have been noticed before; but I have never seen it described, and acciIndianapolis, Ind

Messrs. Frahm and Scharnweber,of Chicago, Ill., reques us to state that their spring power, described in our issue of March 11, can be constructed in large as well as small sizes and that a machine of nearly 3 horse power is now being made.

Correspondeuce.

Something about Belting

To the Editor of the Scientific American:

A first class leather belt will do $3 \frac{1}{2}$ times the service of the best rubber belt that is found in the market. There is no economy in using a rubber belt at any price, unless it be where there is great heat or dampness.
Leather belts should be thoroughly oiled before using. A good way to apply the oil, where there is much belting to be oiled, is to have the belting run off from one reel to another through a pot of oil, with suitable rubbers to wipe off the superabundance of oil. Another very good method of ap plying the oil-and perhaps it would be preferable in a ma jority of cases-is to put it on with a paint brush. This should be done on both sides, with no sparing hand. A bel thus oiled will not require a second application under ten years, unless there be much dust to absorb the oil, and then it may be put on very sparingly compared with the first ap. plication. The advantages that an oiled belt has over a dry one are these: 1. It lasts lonone 2. It requires less power ger. to d to drive the mas may be run much more slack, which makes the bearings less
liable to heat, requiring less oil and less attention.
There are but few people who pay any attention as to how they put on a cross belt, consequently they are just as likely to get it on wrong as right. There are but two ways
to put such belts on. The right way is this : Put the belt on in such a manner that the drive pulley will have a tendency to rough up the splices; then when the splices come to the crossing they will smooth each other down instead of catchng under each other's corners and tearing open a splice.
A quarter twist belt should never be used where it can be avoided; but when it is used, it should be as narrow as practicable, and the pulleys should be large. Increasing the width of a quarter twist belt does not increase its power in the same ratio as in a straight or cross belt. There is not more than one per cent advantage in using an oiled belt with the grain side next to the pulley, which will hardly compensate for the ugly look which a belt presents when put on in that manner.
In lacing a belt, the lacing should never be crossed on either side. To lace a belt in this manner, there must be one more hole in one end than the other, consequently there will be a hole in the middle of one end, which is the place of beginning. Draw the lacing to its middle through this hole, lace each way to the edge and back to the middle again, and you have by far the nicest joint that can be put into a belt. No one will ever lace the old way after once getting "the hang" of this method. But it is old to me, as I have laced in no other way for twenty-five years.
Plaited belts for engine governors and small machinery may be as scientifically laced, and the fastening will last as long as the lacing of a flat belt, with no more uneven ness.
To determine the width of a belt to drive all kinds of ma chinery, where power and speed are known. Rule : Place the number of horse power for a numerator, and the speed of the belt in hundreds of feet per minute for a denomina tor. That will give what the width of the belt should be in fractional parts of a foot. Example 1: What is the re quired width of a belt for a planer which requires six hors power to drive it, the verge of thedriving pulley running at

900 feet per minute? Answer: $\frac{f_{9}}{9}=8$ inches. Example 2 What is the necessary width of a belt for an engine of 10 horse power, running at 100 strokes per minute, with a band wheel $3 \frac{1}{2}$ feet in diameter (11 feet in circumference)? An swer: $\frac{1}{11}=10 \frac{1}{1} \frac{0}{1}$ inches.
E. H. Davies,

Santa Clara, Cal.

Human Remains in Michigan.

A party of scientists have begun the work of excavating and exploring the mounds at Spoonville, Mich., which were supposed to couceal the remains of prehistoric inhabitants of this region. Two mounds were opened. There were found human skulls, pottery, copper utensils, hatchets, needles, etc. It was the unanimous verdict that they were at least two thousand years old. Further explorations will be made. The scientists are of the opinion that this will prove among the richest discoveries of the kind on this continent.

HOW THE EARTH IS WEIGHED AND MEASURED.

It may seem paradoxical to state that the earth is the least accessible to us of all the heavenly bodies; but the fact is that we possess more accurate information concerning the surface of other bodies, such as the moon, for example, than we do of our own planet. There are six cardinal facts connected with the earth. 1. It hangs freely in space. 2. It is approximately spherical, having a diameter of about 7,912 miles; 3. It weighs about six sextillions of tuns, or would if the operation could be performed on its own surface, by bringing up one basketful after another to the surface and weighing it. 4. Its density is about 5.55 times that of water. 5. It rotates on its axis once a day. 6. It revolves about the sun once in a year.
The spherical form of the earth is proved by the shape of -he shadow it casts upon the moon in an eclipse of the latter, and by the fact that we see the masts of a ship before the hull comes in sight. There are several other proofs, which it would take too long to describe; but the above are sufficient. The rotation of the earth is proved in various ways. If the earth did not rotate, a falling body would move in a straight line towards the center of the earth. In fact a body, however dropped, say from the top of a tower, will fall a little to the east of the vertical line. The reason is that the top of the tower moves faster than the bottom because it has a larger circle to describe in the same time, and the body dropped partakes of that motion. At a hight of 500 feet, this easterly deviation amounts to about an inch and a quar. ter. On the same principle a cannon ball will not preserve its true direction, but will be influenced by the rotation of the earth. The direction of the winds is also influenced in an important manner. Suppose a wind to start with a direction due north and south, and to keep that direction constantly. Then the earth's'rotation from west to east will cause the wind to come more and more from the eastward, and it will change to northeast, east, southeast, south, southwest, west, and northwest. All this takesplace without any real change in the direction of the wind ; the change is only apparent, and because our position has changed. In this way the wind veers around in the direction of the hands of the clock about five or six times a year in the northern hemisphere. When there is any change it is due to a disturbance, and a storm is to be looked for. Storms usually rotate in the opposite direction. The lecturer proceeded to show how the rotation of the earth is demonstrated by means of Foucault's pendulum, which consists of a heavy globe of metal suspended by a wire in a frame, which may be rotated by means of a crank. When the pendulum is set in motion, it is found to swing in the same direction, no matter how much the frame is rotated. Now suppose such a pendulum to oscillate for several hours; it will constantly keep in the same plane, but the earth in the meantime carries the table under the pendulum around from west to east, and the pendulum will appear to have changed its plane in the opposite direction. This change is made apparent by means of a graduated circle on the table under the pendulum. In order to make accurate experiments, an extremely long wire and a heavy ball are used; and to insure a perfectly regular motion in one plane only, without any sideward swing, the ball of the pendulum is pulled back by means of a string, which is then fastened and burnt off To keep it in motion for hours, an electro-magnetic apparaTo keep it in mon tus is employed. At the pole the plane of ost the equator it appear to move all around the circle, while at the equator it
would continually coincide with the meridian, notwithstandwould continually coincide with the meridian, notwithstand-
ing the rotation of the earth, and would appear unchanged. ing the rotation of the earth, and would appear unchanged.
In latitudes between the equator and the poles, the appaIn latitudes between the equator and the poles, the appa-

Fig. 1, a drawing by Professor MacCord, neatly illustrates he reason why the amount cf deviation in the plane of oscilation of the pendulum diminishes as we pass from the pole to the equator. Suppose a pendulum to be set in motion at a, swinging in the direction of the meridian at that point,
which direction is represented by the tangent, A V. It will tend to preserve this direction, when it is carried to B by the rotation of the earth; so that, instead of oscillating in the direction of the meridian at that point, represented by the tangent, B V, it will differ from it by the angle, AVB, included between the two tangents. Now, on taking a parallel of latitude nearer the pole, the angle, $A^{\prime} V^{\prime} B^{\prime}$, formed by the tangents drawn to the two successive positions of a pendulum taken on the same meridians as before, will be greater; or in other words, the displacement of the plane of oscillation of the pendulum will begreater for the sameamount of the earth's rotation on the parallel of $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$ than on $\mathrm{A} B$. The angles, $A V B$ and $A^{\prime} B^{\prime} V^{\prime}$, which appear only as projections in the main figure, are shown in their true relation to the right. It will be noticed that the tangents drawn to the different meridians, at their intersections with the parallels of latitude, form the elements of a cone, the apex of which recedes further and further from the center as we approach the equator, and that therefore the angles between these elements become less and less. At the equator, all the tangents, as E I, being perpendicular, they would form a cylinder and not a cone; and as they are of course all paral. lel, the direction of the pendulum would not be changed in passing from one to the other. Another instrument for showing the rotation of the earth is the gyroscope, consist. ing of a well poised wheel, which continues to gyrate in one direction, but seems to describe a circle with its axis because the earth moves under it. The size of the earth has been pretty accurately determined. The following are the results btained respectively by Bessel, Airy, and Clarke:

Bessel. Arry. Clarke. $\begin{array}{llll}\text { Polar radius in feet. } & 20,853,662 & 20,853,810 & 20,853,429 \\ \text { Equatorial radius in feet } & 20,923,596 & 20,923,713 & 20,923,161\end{array}$ Equatorial radius in feet $20,923,596 \quad 20,923,713 \quad 20,923,161$ Ellipticity. .

According to Charles, the equator is also elliptical, and his measurements of it are as follows : Semi-major axis 20,926 ,350 feet (longitude $15^{\circ} 34^{\prime}$ E.): semi-minor axis $20,919,972$ feet (longitude $105^{\circ} 34^{\prime}$ E.): difference 6,378. Equatorial ellipticity, $\frac{1}{3} \frac{1}{275}$.

Now in order to determine the dimessions of the earth so accurately, numerous arcs of meridians had to be measured. For this purpose two stations, say two hundred miles apart,
are selected, and their latitude is first determined. This is are selected, and their latitude is first determined. This is the only part of the whole operation which properly belongs to astronomy. The latitude of a place is its distance from the equator reckoned on the meridian, or, which is equal to the same thing, the altitude or distance of the celestial pole above the horizon. This latter may be measured either by observing the same star at its highest and lowest points, or by observing the pole star, which describes a small circle about the celestial pole, and crosses the meridian twice in each revolution. These observations are made with the tran sit instrument and the zonith telescope. Having thus deter sit instrument and the zenith telescope. Having thus deter mined the true position of the two stations on the earth's surface, we proceed to the measurement of the distance be tween them. This is done by means of what is called trian gulation. A piece of level ground, four or five miles long, is selected to get a base line, c d, Fig. 2, which is very accu rately measured. Then a third station, e, is selected, and the angles it forms with the two ends of the base line are measured with a theodolite. Then, having one side and the angles, the other sides can be easily calculated. In the same way we compute the distance of the stations, f and g, and finally B. Usually hill tops are selected for the intermedi ate stations, and the observation of the angles is facilitated by the reflection of a beam of sunlight by means of a mirror, called a heliotrope, into the measurement. The observations are repeated many times to reduce the errors as much as pos sible; two feet in two hundred miles is about the limit of orror allowed.

The measuring rods used in the United States Cosst Sur vey are made of iron and brass in such proportion as to com pensate for the elongation and contraction due to tempera. ture. One is placed on tressles, and the other is carried for ward and made to touch the first very accurately. The moment of contact is indicated by a spirit level connected with the rod by means of levers.
The length of a degree depends of course on the shape of the earth's surface, and the clock furnishes us with a ready means of determining that shape. The vibration of the pendulum is due to the attraction of gravitation, and tbis becomes greater as we approach the center of the earth. Hence a clock will go faster at the poles than at the equator. It will gain about four minutes, three of which are due to the centrifugal force as has been found by calculation, and one is due to the form of the earth. Therefore, in order to determine the form of the earth, or, in other words, the dis tance of the surface from the center at different points, all that is necessary is to carry the same pendulum to those points and observe the rate of variation. The best instrument for this purpose is Kater's pendulum, based on the principle (of Huyghens) that the point of suspension and the center of oscillation are interchangeable. It is adjusted by means of sliding weights until it keeps the sametime, when it is suspended by its ordinary point of suspension, or turned upside down and suspended by its center of oscillation, which is also provided with a knife edge. This instrument is hung up in front of an astronomical clock beating seconds, and their rate of variation is ascertained by observing them through a telescope and noting the coincidences. It has been found that the degrees are about one seventh longer at the poles than at the equator. Although the accuracy of these measurements is often extolled, it not unfrequently happens that an error of two or three hundred feet is made in deter mining the latitude of places. Such errors are not the fault of the methods or of the observers, but are due to the variations of the direction of the plumb line caused by the atraction of mountains or dense rocks at the places in question. In the work of the United States Coast Survey, the average error is one hundred and twenty five feet.
We are enabled to compute the weight of the earth by first determining its density; and this is done by comparing the attraction of the earth upon some object with the attraction of a body of known mass upon the same object.
Dr. Maskelyne accomplished this by determining how much a plumb line was deflected from its normal direction by Mount Schehallian, in Scotland. This deflection was found to be twelve seconds. If the mountain had been as dense as the interior of the earth, the deflection would have been twenty-one seconds. The mean density of the moun. tain was ascertained, by numerous borings and actual deter minations, to be two and three fourths times that of water. Hence the density of the earth is $12: 21:: 2 \cdot 75=4.81$.
Cavendish, in 1798, compared the attraction of the earth with two lead balls, F and G, Fig. 3, each a foot in diameter. Two small lead balls, A and B, upon which the attraction was exerted, were attached to a wooden rod six feet tion was exerted, were attached to a wooden rod six feet
long, suspended by a fine wire, D, E. When at rest, the position of the rod was observed by means of a telescope, T; then the large balls were brought near, on opposite sides, so that their attraction should conspire to twist the wire, and the change of position was observed by means of the telescope. The amount of force exerted in producing the torsion of the wire, D E, is the measure of the attraction of the balls. The attraction of the earth on the same balls is, of course, represented by their weight. Then, from the known density of lead and the law of gravitation that bodies attract each other directly as their masses and inversely as the squares of the distances, Cavendish computed the density of the earth to be 5.45 times that of water. More recent experiments with an improved form of the apparatus have experiments with an improved
proved that the density is 556 .
proved that the density is 556 .
Another method is by observing the rate of vibration of a pendulum at the top and bottom of a mine, or of a mountain. At the bottom of a mine a pendulum will be attracted only by the particles of matter below it, the stratum above it exerting no influence upon it whatever. More accurately speaking, a pendulum carried to a depth of 500 feet would

vibrate as though it were on the surface of a sphera having a radius 500 feet shorter than that of the earth. Since the density of the stratum above the pendulum can be found by experiment, we are enabled to deduce that of the earth by a simple calculation.
From the dimensions of the earth already given, its volume is found to be about $260,000,000,000$ cubic miles, and its weight six sextillions of tons, which, when written out, will present the formidable appearance of $6,000,000,000$ $000,000,000,000$ tuns.
C. F. K.

TESTING BOILERS.

An English firm (Messrs. Howard \& Co., of Old Hill, Worcestershire) is now making boiler shells with welded seams, a form of construction involving some difficulty in manufacture, the trouble of which will be amply repaid by the improvement in strength and durability of the boiler. Hydraulic pressure is used for testing the soundness of the welds, and for this purpose Messrs. Tangye Brothers, of welds, and for this purpose Messrs. Tangye Brothers, of
Birmingham, have designed and construcced the machine herewith illustrated. It is capable of testing shells up to 4 feet in diameter and 35 fee long, at a pressure of 200 lbs . to the square inch.
The appliance, the engraving of which we select from The Engineer, consists of a fixed hydraulic cylinder, 12 inches in diameter and of 12 inches stroke, connected to a traveling stroke, connected to a traveling ion bars, 5 inches by 2 inches, io on bars, 5 inches by $2 \frac{1}{2}$ inches, pierced with cotter holes of 11 inches pitch; the platen at tached to the hydraulic ram slides along the bars. When a boiler shell is to be tested, the traveling head is run out of the way along the line of rails, and the shell is run in on a truck, the head is brought back to its place, and the cotters are inserted in the nearest cotter holes. Pressure is then ap.
plied to the cylinder by means of hydraulic pumps ;the ram forces the platen against the end of the shell, and the joint is thus made tight, ready for testing. The shell is then filled with water from a tank by means of a flexible hose inserted into a passage in the platen, while the air escapes by the tube, marked B, in the traveling head ; this tube is made to slide diagonally, so as to suit any sized shell. The tube is then closed by means of a cock, and the test pressure is applied by the hydraulic pumps.
The boiler seams are welded by means of a gas furnace placed over them; and special machinery has been made for planing the plates, bending them into the form of tubes, and facing the ends of the latter, as well as for testing them by the machine now under notice.

ATKINSON'S IMPROVED DESK

Any person that has spent an hour or two bending over a sitting desk, steadily writing, knows what a wonderful re-

lief is experienced when he can transfer his work to an up right standing desk and straighten the painful stitch out of his back. To afford this relief, and to add many convenien ces not heretofore embraced in a single desk, are the objects

of the invenion inustrated herewith. This desk is readily changeable from a sitting to a standing desk, or vice versâ, by simply raising or lowering the table, which can be adjusted to any hight; and besides, it can be placed at any angle desired. The movable table is pivoted to sliding pieces which travel in vertical guides on each side of the frame. Its weight is balanced by metal counterpoises which are se.
cured by chains to the upper part of the slides, which chains pass over pulleys, so that the counterpoises hang inside the desk out of sight. The curved arms, A, which support the outer portion of the table, are also secured to the slide. These arms serve as guides for a third arm, B, which has projections on its inner end which engage in the rack teeth shown in Fig. 1, so as to aid in holding the table in whatever position it may be adjusted. The appearance of the ever position it may be adjusted. The appes
desk with the table closed is shown in Fig. 2.

HO WARD \& CO 'S BOILER TESTING MACHINE

The invention has 9 compact and ornamental shape, ren dering it a handsome article of furniture for the library. Patented through the Scientific American Patent Agency, March 7, 1876. For further information relative to rights

to manufacture, etc., address Chas. A. Atkinson, 2 Clinton Place, New York city.

IMPROVED MUCILAGE BOTTLE

George R. Wight, of New York city, has recently in vented a mucilage bottle, so constructed that the mucilage may beapplied without a brush or any detached instrument.「he bottle has a metallic cap, provided with an S tube and sponge.
A represents the bottle or cup; and upon the neck of the bottle, A , is formed a screw thread to receive the screw thread formed upon the inner surface of the flange of the metallic cap, B. In the center of the cap, B, is formed a hole, in which is secured the upper end of the small metallic tube, C.

The tube, C, is bent into an S shape, so as to prevent the air from entering the bottle, and to keep the mucilage close to the sponge. D is a sponge cut into a tapering or conical form, the base of which is secured to the cap, B, by sewing, small holes being formed through the cap for convenience in securing the sponge in place. E is a cap, made of such a size as to cover the sponge, D, without touching it, which fits snugly and airtight upon the outer surface of the cap. In using the device, the sponge should be kept moist with water to enable the mucilage to pass through it freely. To apply mucilage, the cap, B, is removed, the bottle is inverted, and the sponge, D , is rubbed over the place to which the mucilage is to be applied, care being taken to replace the cap, E, to prevent the sponge from becoming dry and stiff.

French Railway Signals.
The Paris correspondent of the London Times says: "The French Minister of Public Works has addressed a circular to the railway companies, calling their attention to an appa ratus designed to prevent the terrible accidents resulting from the inefficiency of danger signals. The question is of mmediate interest on account of the lamentable accidenta Abbot's Ripton, and the ministerial circular deserves, therefore, the greatest publicity, I wished, before transmitting it, to obtain information per sonally as to the efficiency of the system patronized by M. Caillaux. The results communicated to the companies by the circular may be considered con clusive, and seem destined to make up for the ingesined to make up for the inadequacy of optical signals, which are na turally thwarted by fog or by a sharp curve, an inconvenience which it has been attempted to remedy by fog signals. In England a mechanical contrivance has been devised putting in motion a rod which, being struck by the engine, produces a whis the; but the recent accident has proved that this device is no infallible. The system indorsed by the Minister of Public Works seems, on the other hand, to meet every objection. It can be placed at any distance, as it acts simply by laying down a wire The board which indicates danger, in moving, excites an elec tric current which leads to an apparatus placed in contact with the locomotive, and which produces a loud whistle As soon as the indicator no longer indicates danger, the cur rent is intercepted, and the locomotive may come in contact with the apparatus without causing a whistle. These experiments have been made during snow, and have invariably succeeded, the warning being given at a sufficient dis tance to allow of a train, running at full speed, being pulled up in time.

NEW FUSIBLE BOLLER PLUG,

The annexed engravings, taken from the English Me chanic, represent a new fusible plug, which is intended to act as an efficient safeguard against boiler explosions. A bulb of gun metal, C , is provided with a screw shank, whereby it may be screwed into the top of the fire box. Through the bulb passes an inclined tapered tube, D, so that the out

er surface of this tube and the inner surface of the bulb are subject to the heat of the fire, while the exterior of the bulb and interior of the tube are surrounded by the water in the boiler, which circulates through the latter The tube, D, is slotted, and the slots, E, are filled with soft metal, which,

FIG. 2

so long as the tube is full of water, is thereby kept from melting; but should the water in the boiler fall below the level of the tube, then the heat of the fire melts the fusible metal, forming apertures through which the steam rushes, thus relieving the boiler of pressure and at the same time putting out the fire. The device is the invention of Mr. T. J. Smith, of North Bow, England. Fig. 1 is a perspective view, and Fig. 2 is a vertical section

AN ORNAMENTAL GOURD.

We have already called attention to the beauty of many of the varieties of gourd, and their value in the flower garden as trellis plants. Their foliage is generally very handsome, and the fruit is frequently interesting on account of its eccentric appearance. Plants suitable for covering walls and arbors are by no means numerous; and the gourds are plants of large growth and rapid development, and are therefore worthy of cultivation. Nearly all members of the genus can be utilized for climbing purposes; and one of the best is the cucumis metuliferus, shown in our graving. The venous structure of the leaf is highly organized, and the curious oblong fruit is studded al over with horny protuberances. The foliage is of beautiful fresh green color; and if planted in a deep beautiful fresh green color; and if planted in a deep soil,in a sunny place sheltered from high winds,a ver ornamental addition will be made to the garden. The gourds require plenty of water in dry w
liquid manure is highly beneficial to them.

The Early Discovery of Coal.
Bituminous coal, or sea coal, was known upwards of a thousand years ago, in the year 853, but did no come into general use until the 16th century, and was not used in the manufacture of iron until the 17th cen tury. Anthracite coal came gradually into use so late as the 19th century, and was not used as fuel in the manufacture of iron until about 16 years ago.
So early as 1790 anthracite coal was known to abound in the county of Schuylkill, in the State of Penn sylvania; but it being of a different quality from tha known as sea coal or bituminous coal, and being har of ignition, it was deemed useless until the year 1795 when a Pennsylvania blacksmith, named Whetstone, whought it into notice His success in burning it in duced persons to dig for it: but when found,every per duced persons to dig for it: but when found,every per son connected with the enterprise had to experimen on its combustion, and vain were the attempts to burn
it by the majority of them, and all came to the conclusion that it would not come into general use
About the year 1800, Mr. Morris. who had a large tract of land in Schuylkill county. Pennsylvania, pro cured a quantity of coal therefrom, and took it to Philadelphia city, but he was unable with all his heroic exertions to bring it into rotice, and abandoned all his plans. From that time until 1806 it was talked about as a humbug; when accidently a bed of coa was found in digging a tail race for a water wheel for a forge, which induced another blacksmith, David Berlin, to mat a trial it His success was gener lly made known to try to bur ally made known,
Pennsylvania coal.

Study and Business.

In learning, concentrate the energy of the mind prin cipally on one study; the attention divided among cipally on one study; the attention divided among
several studies is weakened by the division: besides, several studies is weakened by the division; besides,
it is not given to man to excel in many things. But $\begin{array}{ll}\text { it is not given to man to excel in many things. } & \text { But } \\ \text { while one study claims your main attention, make }\end{array}$ while one study claims your main attention, make oc casional excursions into the fields of literature and science,
and collect materials for the improvement of your favorite and collect materials for the improvement of your favorit
pursuit.
The union of contemplative habits constructs the mo
The union of contemplative habits constructs the most useful and perfect character; contemplation gives relief to action; action gives relief to contemplation. A mandine of customed to speculation is confined to a action; a man of mere speculatility.
Excellence in a profession and success in business are to be obtained only by persevering industry. None who thinks persevering industry. None whimself above his vocation can succeed himself above his vocation can succeed in it, for we cannotgive our attention to what our self-importance despises.
None can be eminent in his vocation None can be eminent in his vocation
who devotes his mental energy to a purwho devotes his mental energy to a pur-
suit foreign to it, for success in what suit foreign to it, for success in what
we love is failure in what we neglect.

ACALYPHA MARGINATA.

To the myriads of fine foliage plants which have been introduced of late years this is a welcome addition. The leaves, as regards size, resemble those of acalypha tricolor, but the markings, in which their chief beauty resides, are of a character wholly different from those of that variety. In the present case, the center of the leaf is brown, around which is a distinct margin of rosy carmine about a quarter of an inch in width; and the surface is entirely in width; and the surface is entirely covered with little hairs, which add
considerably to its beauty. This plant, considerably to its beauty. This plant,
says the English Garden, belongs to says the English Garden, belongs to
the spurgeworts, an order comprising the spurgeworts, an order comprising upwards of a hundred species, which are more or less distributed over all tropical and subtropical regions, but the headquarters of which are in South America. A goodly number are annual, but the great mass are perennial plants, having much the appearance of nettles, and readily known from their nettle-like leaves and the disposition of their flowers.

Incombustible lamp wicks are made in Austria of asbestos

ACALYPHA MARGINATA.

dents are constantly occurring simply tbrough people think ing that they can drive across a track before the locomotive can reach the crossing, or on attempting to cross, and failing to observe the coming train until too late to avoid it. By sinking or raising the track, so as to leave a clear passage, these accidents, of course, become impossible. In England, these accidents, of course, become impossible. In England,
it is of a very unfrequent occurrence for railway and high-
way to cross on the same plane; and whenever such intersection does exist, guards with signals are kept constantly on the alert.

The Thickest Armor Plate Ever Made.

Experiment was lately made at the great works of Charles Cammell \& Co., Sheffield, Eng., which, it is believed, will have an important influence upon the future of ironclad navies. It was the rolling of the thickest armor plate which has ever been produced. Four and a half inches is the thickness of the plates with which vessels of the Warrior class are covered. Step by step the size has been in creased till it has reached 14 inches, which, until the present experiment, was the thickest plate known. Messrs. Cammell \& Co. have now succeeded in producing one of 22 inches, this being eightinches thicker than any armor plate ever yet rolled. The plates, of which this is a sample, are intended for the Dandolo and Duilio, two war vessels now being built in Italy for the Italian government-one at their dockyard at Castellamare and the other at La Spezzia. These vessels are to be armored at the water line with plates of this thickness, and the representative plate now rolled was ordered for the purpose of ascertaining the relative resistance of plates of this enormous thickness compared with the thickest that has yet been manufactured. The gun to be used in testing this great plate is one of the 100 tun guns now being made by Sir William Armstrorg \& Co., at Newcastle. The vessels are to have two turrets, and each turret will contain two of these enormous pieces of artillery. The guns will be about 30 feet long, their bore 19 inches in diameter, and they will throw a shot weighing nearly one tun. Several hundred pounds weight of powder are necessary for each charge. One of the guns is nearly ready, and Sir W. Armstrong has been specially asked to make a crane, capable of lifting 150 tuns, to move it. To give some idea of the enormous mass of metal of which the plate is formed, it may be stated that it had to be in the furnace upwards of wenty-seven hours before it was fit to be placed upon he rolls. It weighs upwards of 35 tuns, and meacures 17 feet in length and 5 feet in width. The experiment of rolling such a monster was a bold one. Sir Joseph Whitworth, Sir W. Palliser, and a number of officials and diplomatists were present to witness the operation. Before the plate was rolled, a luncheon was served at the works, at the conclusion of which a few toasts were given and responded to. Sir Joseph Whitworth's health was proposed in connection with his guns. In giving it, Mr. Cammell stated that if Sir Joseph's guns succeeded in penetrating the plate about to be rolled, he should have no hesitation in rolling one of 30 or even 40 inches in thickness. In reply, Sir Joseph Whitworth kept significant silence with regard to what he believed his guns would do when opposed to a 22 inch plate. Sir William Palliser's health was also given. In replying, he said, that, owing to the success of his projectiles, he at first hought that the days of iron-plated vessels were numbered, thought that the days of iron-plated vessels were numbered, and that we should return to unplated ships with heavy guns. Subsequen experiments, hor of projectiies, unless they happened to strike exactly at projectiies, unless they happened to strike exactly at
right angles; and it was this enormous resistance that, in right angles; and it was this enormous resistance that, in
his opinion, rendered the retention of ironclad ships nehis opinion, rendered the retention of ironclad ships ne-
cessary to the country. Nobody could yet say whether the cessary to the country. Nobody could yet say whether the gun or the plate would win. If Sir Joseph Whitworth made a gun that would penetrate even a plate 22 inches thick, then a plate must be made that it could not penetrate; in fact, the bigg plates. Nobody could deprecate more than he the idea that, because of the increase in the power of pene ration of our guns, iron-plated ships must be abandoned. What they required was that their plates should be more powerful. It was only in direct firing that the greatest penetration had been obtained, and it was but fair to presume that in actual warfare the greatest portion of the shots would be fired obliquely. He was quite aware that Sir Jos $¢$ ph Whitworth had invented a shot which would bite when fired from an oblique position; but even then the penetration was much inferior to that obtained by a direct shot. That being so, he was inclined to think that armor-plated ships would always possess an advantage over guns.
Shortly afterwards an adjournment was made to the armor plate mills. A group of men were standing round the furnace in which the plate was being heated, and at the word of command from a superior they began to pull away the bricks at the mouth of it. Instantly the flames leaped out, and the men, accustomed as they are to stand a great heat, were constrained to retreat until the fury of the flames had subsided. Then one wearing only trousers and a shirt approached the furnace, raised a little doorway, and looked at the huge monster within. The view was doubtless satisfactory, though how any one could look into this furnace unscorched was a mar. vel. Men were then seen guiding, up to the mouth of the furnace, a huge pair of tongs with which the plate was to be
grasped. A trolly, too, was sent almost up to the mouth of the furnace, and, by and bs, it received the plate when the tongs. had done their work. Everything was now ready. The doorway of the furnace was lifted up, the flames shot out and lit up the mill, and, while spectators shielded their faces with their hats or handkerchiefs, the workmen, with their backs to the furnace, pushed up the tongs until they grasped the plate within. Balks of wood were then put on each side of the furnace to enable the plate to be drawn out the more readily; but the flames seized upon them and appeared to devour them as if mere shavings. There was no time to lose, the order was given, and machinery began to move, the chain fastened to the tongs slowly tightened, and the huge mass, which had required twenty-seven hours in such a furnace as this before it was done, made its appearance. Fierce as had been the heat before, it was now ten times greater. One could hardly look upon the plate, white with heat, over and around which little blue flames appeared to be lingering. Slowly it fell upon the trolly, the tongs were then removed, and in a moment or two the rolls, which had been revolving for a while, caught the end of the plate; and the huge mass, weighing 35 tuns, passed between them with as much ease as if it were but a $4 \frac{1}{2}$ inch plate. Backwards and forwards it came six or seven times, each time the dis tance between the rolls being decreased, and the operation ended as soon as the required size had been attained. The rolling was most successful, and it is believed the plate is without a flaw. The destination of the plate is Spezzia, where the test is to be carried out.
The experiment shows that there is absolutely almost no imit to the thickness of which armor plate can be made. It was no idle boast on the part of Mr. Cammell when he said that, if Sir Joseph Whitworth's gun penetrated this plate, he would make one 30 inches or 40 inches thick. The result of the test at Spezzia will be watched with great interest.Iron.

SCIENTIFIC AND PRACTICAL INFORMATION.

strange natural cisterns.

In the rough granite country back from Mossamedes, on the west coast of Africa, are some very remarkable natural cisterns. The country itself is peculiar,huge single rocks rising out of the nearly level plain in some places, and in others hills of rock, in several of which deposits of water are found at the very top. A recent traveler visited one of these, and describes it as a natural tank with a narrow entrance, containing some three or four hundred gallons of exqusitely clear and cool water. It was covered by vast slabs of granite,from which the rain drained into it during the rainy sea son, shading the water so that it could not be seen without a torch, and so protecting it that the sun cannot evaporate it during the dry season. Thus a bountiful store of excellent water is preserved while there is not a drop to be had else. where for miles.
A still more remarkable cistern of this sort is that of the Pedra Grande, or Big Stone, some thirty miles from Mossanedes, a huge rounded mass of granite rising out of the sandy plain. On the smooth side of this rock, twenty or thirty feet above the plain, is a circular pit about ten feet deep and six feet across. The rainfall on the rock above the pit drains into it, filling it completely every rainy season. The walls of the pit-which is shaped like a crucible, nar rowing gently to the bottom-are perfectly smooth and regu lar, the enclosing granite being of the closest and hardest description. The cistern will hold several thousands gallon of water. Near by are smaller pits of similar character. Their formation is unexplained. The water of this strange well furnishes the natives and travelers with an abundant supply during the dry season; consequently it is a noted halting place.
a spitting snake.
There is a dangerous snake, not uncommon about Ben juella, West Africa, called by the natives naja neje, and by the Portuguese cuspedira. It is small in size and remarkable from its habit of spitting when interfered with. The aliva is ejected to considerable distances, and is said to ause blindness if it touches the eyes. One of the snakes wa captured by the natives and brought to where some English miners were at work. It was teased by a miner who was
standing over the cage, which was on the ground, and retaliated by a discharge of spittle. Some of the liquid entered one of the miner's eyes; and though the eye was immediately washed out with water, it was very much irritated or several days. The snake was killed before any experi ments could be made with it by the scientific superintenden of the mine; he has,however, no doubt of the miner's statement and that of his companions, corroborated as it is by the testimony of the natives and the Portuguese.

RIVER OF INk.
In Algeria there is a river of genuine ink. It is formed by the union of two streams, one coming from a region of erruginous soil, the other draining a peat swamp. The water of the former is strongly impregnated with iron, that o he latter with gallic acid. When the two waters mingle the acid of the one unites with the iron of the other, forming a
true ink. We are familiar with a stream called Black true ink. We are familiar with a stream called Black
Brook in the northern part of this State, the inky color of whose water is evidently due to like conditions.
A. Ricco, of Modena, Italy, says: To cure the swellings of chilblains, rub them well at night with petroleum. It will
take three or four nights rubbing to cure them.

The Breaking of the Lynde River Reservoir Dam. mills and disaster calion of valuable ans er, Mass., on the 30th of March, through the rupture of the dam of the Lynde river reservoir, whence the water supply
of the above city is derived. The reservoir has a capacity of some $670,000,000$ gallons, and by the recent heavy rains became filled to its utmost extent. The embankment wall, it is said, was known to be too low for safety, and engineers had recommended its enlargement. These warnings, how ever, passed unheeded, and consequently, when the dam was subjected to an unusual strain, due both to the large amount of water in the reservoir and to the waste weir becoming choked, it became leaky, and a small stream began to escape through its masonry, thus commencing the destruction that was completed by the breaking of the whole structure thirty hours later. As soon as the first dangerous sign appeared, poople in the vicinity of the threatened flood abandoned heir houses and shops, and so the loss of life, which atended the like disaster at Mill River a year or so ago, was verted. The damage done is estimated at several million dollars. Several houses, the Bottomly, Smith \& Co. Mills, besides a number of smaller manufacturing establishments, and eight hundred feet of the Boston and Albany Railroad were washed away.

THE NATIONAL STEEL TUBE CLEANER

We show in the accompanying illustration an improved
 apparatus for cleaning the flues of steam boilers. All intelligent users of steam appreciate the economy of keeping the flues of their boilers clean and free from deposits of unconsumed carbon and ash, which are non conductors of heat and cause a marked difference in the working of a boiler.
The National Tube Cleaner is a plain, practical, durable tool, and has many points of advantage. Among these may be mentioned the absence of small steel springs or thin bands of metal, which, when thrust into a hot flue, lose their temper and elasticity. The scraping edges, supported on blades of Bessemer steel, are cut from saw plates, and are held in place by doubly riveted braces of malleable ron. The blades are dove-tailed into the malleable iron butt, which insures their being held firmly in place. The thread thed in place. The threaded steel rod in he center is provided with a washer, which runs up and down upon it, by means of which the spread of the blades is adjusted to the size of the flue. These implements received the silver medal at he American Institute in 1875, the first premium at the las Industrial Exhibition in Pittsburgh, and also at the Providence (R. I.) exhibition. It is manufactured by the National tbrough the agency of the Chalmers Spence Company of New York. It is sold by the principal dealers in engineers' and mechanics' supplies throughout the country.

NEW BOORS AND PUBLICATIONS.

he first German Reader: a Modification of Marcel's Method. By Charles F. Kroeh, A. M., Professor of Modern Languages,
Stevens Institute. 67 pp . New York city: D. Appleton \& Co. Stevens Institute. 67 pp . New York city: D. Appleton \& Co.
This is a conctse and admirable instruction book, for Engish pupis, in German. The entertaining story of Cinderella is presented in German, accompanied by a literal linear translation, which exhibits at one view the etc., are given, the author's object being to convey a practical knowledge of., the subj
grammar.
Ortratts of Celebrated Dogs. Price \$2, for Set of Eigl. Portraits. New York city: "Forest and Stream" Company, 17 Chatham street.
These are well executed wood engravings of celebrated pointers and set-
ers, and they will undoubtedly have a large sale among the shooting ters, and the
fraternity.
he Philadelphia Ledger. Philadelphia, Pa.: G. W. Childs.
The enterprising publisher of this old and respectable dally journal naugurated, on March in, the forty-irstyear of its publication, by increasing its size and improving its general appearance. Under the proprietorhost profitable newspapers in the country.
Reference Book for Inventors and Mechanics. 125 pages. city: Munn \& Co., Publishers Scientific Americas York Scientific American Supplement.
This is a valuable little book for inventors, patentees, mechanics, and
others. It contains the patent laws of the United States complete, with directions for obtaining patents, trade marks, caveats, designs, copyrights, and forms for transferring, by assignment and license, Interests in patents
It contains the census of the United States, by States and Territories; an It contains the census of the United States, by States and Territories; and
contains also engravings of 150 mechanical movements, which willbe found convenient for all mechanics and inventors to have at hand for reference. a more valuable compliation of rare and useful information has neve Every Man His Own Lawyer. By John G. Wells. 612 very Man His Own Lawyer. By John G. Wells. 612 pages.
Price, by mail, \$2.25. New York city: John G. Wells, 3 East Price, by
4th street.
Mr. Wells has just issued a new edition of his business form book, adapte sadapted for every State in the Union. To those who have occasion to raw conveyances, to frame wills, agreements, and powers of attorney, or o make assignments, this work will be found most conventent. It con
tatns a synopsis of the laws of all the States relating to usury, the rights of
married women to hold property, how to obtain pensions and letters patent and other matters likely to arise in the life and experitence of most persons. and other matters likely to arise in the life and experience of most persons.
THEALDINE.- Parts 6 and 7 of the new issue of this beautiful art pub-
lication are just from the press; and they compare favorably with the five lication are just from the press; and they compare favorably with the five
first numbers of this year's sssue. Several finely executed wood engravfirst numbers of this year's issue. Several finely executed wood engravings of American and forelgn scenery and coples from celebrated paint-
ings of our best modern artists, executed by our most distinguished deings of our best modern artists, executed by our most distinguished de-
signers and engravers, are features in these issues which render the publication of special interest to lovers of art. Published fortnightly by the Aldine Company, 18 and 20 Vesey Street, New York city, and supplied, to

new chemical and miscellaneous inventions.

improved tinned blank.
John C. Milligan, South Orange, N. J.-This inventor forms a little extension lip at one part of the edge of a round plate or blank
of tin plate, the object of which is to receive the beads of tin that of tin plate, the object of which is to receive the beads of thin that
flow to the lower edge, and there solidify on drawing the sheet out of the bath, so that they can be removed from the sheet by cutting off the lip without destroying the symmetry of the blank.

IMPROVED BALE TIE

Jesse R. Horton, St. Louis, Mo., and Henry A. R. Horton,
McKinney, Tex.-This is a simple device whereby the end of the band is held in close contact with the other end by means of a lug so that the swelling of the bale can never affect the security of the fastening, since the flanges of said lug do not permit it to be pressed out of the slot. The lugs are so arranged that they do not catch in
the cotton or wrapping of the bale, either in the act of locking or the cotton
unlocking.

IMPROVED CORSET SPRING
Joseph Day, New York city, assignor to himself and Nathan Hyman, same place.-Th upon it, in combination with an overlapping stay having eyes hinged to fastening bands which pass around the stay, said eye being made with broad base, to allow the easy connecting and separating of the parts.
improved mica light for stoves.
John W. Elliot, Toronto, Canada.-This invention consists in a mica light, provided with a handle at the upper end, a perforation, and a strengthening tip, the same being applied to a window frame
having a lip. The plate is sprung into the rim and guard lip of the having a lip. The plate is sprung into the rim and guard lip of the
stove body, and is provided wlth an eyelet at the lower part to adstove body, and is provi
mit the entrance of air.

IMPROVED FILTERING APPARATUS.
Leo Prange, South Brooklyn, N. Y.-In this filter, the liquid is passed through a body of charcoal and a series of bags, formed of woven fabric and suspended vertically from short tubes attached
to the bottom of a tank. In order to hold the charcoal necessarily employed as a fitering medium, a strainer supported on a circular flange forms a false bottom to the vessel. The liquor filters through the charcoal and enters the space between the bottoms, whence it escapes as fast as it can ooze through the bags. In order to indicate the hight of liquor a glass tube is attached to the outer side; and in order that the tube may not become choked, the lower end is made to communicate with the space between the false and true
bottom, so that only clear or filtered liquor can enter.

MPROVED LOCK FOR POCEET BOOKS
Daniel M. Read, New York city.-The device is fastened by pushing a catch into one of the holes in the case of the lock, when the edge of a latch bar, pushes it back, and passes it. To unfasten the ock, the rear edge of the catch plate is slightly raised, which throws the engaging end of the catch back a little, so that its upper incline may readily slip off the rounded edge of the latch bar. With this construction there is no projection upon the outside of the lock to wear the pocket
improved metallic seal.
Alphonse Friedrick, Brooklyn, N. Y.-This invention relates to certain improvements in that class of metallic seals in which a sec-
tion of wire is employed for forming the loop, the ends of which wire are bent and secured in a soft metal button by compression. It consists in the construction of the soft metal button, which is made with a deep circumferential groove around its edges forming two connected disks, with or withouta hole through the central smaller portion or stem connecting the disks. Around this button,
in the groove and through the hole, the wire is variously twisted and secured by the compression of the soft metal button which, When sta milled flange, which imparts greater security to the seal
IMPROVED GUIDE AND REEL bAND FOR FISHING RODS. Francis Endicott, New York city, assignor to himself and Henry F. Crosby, same place.-This consists of open (expanding and con-
tracting) guide and reel baads for fishing rods, constructed with a loop and binding screws on one end, and a tongue on the other end, passing through the loop for being readily fastened on rods of different sizes. In case a rod is broken, a temporary $10 d$ can be easily rigged, and the carrying of a rod may be avoided by taking
the rings and reel along and procuring the rod when wanted the rings
for use.
process for separating mixed coal tar products. Charles Lowe and John Gill, Manchester, England.-The nature of this invention is, first, to submit the partially or wholly dydrated mixtures of tar acidsto the prolonged action of temperatures between 150 Fah. and 6 role taining the liquid tar acids and a residue of carbolie acid dissolved in them; thirdly, to effect complete purification of the more or less hydrated carbolic acid crystals thus obtained by recrystalization, either by partial fusion or solution in water with subsequent refrigeration; and lastly, to prepare carbolic acid of high or complete degrees of purity by dehydrating the partially or wholly

IMPROVED C
IMPROVED COMBINED WATCH CHARM AND KEY.
Patrick Dever, Glen Riddle, Penn.-This consists of a suitable case with a sliding and a spring-acted key, that is retaine
mproved press for forming spring shanks for shoes. Emil Briner, New York city.--The object here is to improve and
perfect the press or dies for forming spring-shanks for shoes, for perfect the press or dies for forming spring-shanks for shoes, for which letters patent have heretofore been granted to same invenor under date of February 9,1875 . New devices are provided for perforating the shank blanks and carrying off the punchings, for
conveying the sheared-off blanks ready for the action of the haping dies, and for the purpose of shaping, feeding, and cropping foward the shanks.
improved double apron
William G. Heaney, Camden, N. J.--This is an improved double

IMPROVED VARNISH FILTER.
Jerome Rich, Jackson, Mich.-This is a tube, in the bottom of which is a filter suitable for filtering the dust out of carriage var-
nish. Below the lower end, which is conical, is a conical cup valve nish. Below the lower end, which is conical, is a conical cup valve,
attached to a rod sliding up and down the tube, to close the filter to prevent any gum or skins from entering it as it passes down to the bottom of the can for filling, also to open the filter and let the varnish in from the bottom of the can. It is intended to draw the varnish from the filter by a liquor thief, the filtering tube mean-
while to remain in the can, and to be corked at the top to protect while to remain in the can, and to be corked

IMPROVED ORE CONCENTRATOR.
Charles Crane and David F. McKim, Parley's Park, Utah Ter.This invention consists of an endless carrier, slightly inclined late rally, along the upper side of which, near the receiving end, are
spouts with fan-shaped corrugations, for distributing the slime in thin layers on the carrier as it slowly passes along. Near the other end are spouts for discharging clear water, for washing the matters received from the other spouts while being carried along under stationary brushes arranged above the carrier for stirring the matters on it. Below the carrier is a sluice for receiving the tailings washed off from the lower edge of the carrier, and at the end
is a box to receive the ore. The box is divided parallel to the lonis a box to receive the ore. The box is divided parallel to the lonDirectly behind where the ore falls into the box is a perforated off any particles that may adhere to it
improved apparatus for pumping ships, etc. Charles Huxford, Edgartown, Mass.-This consists of a paddle wheel mounted on a float and dragging astern of the ship, so as around it, and around a pulley on the ship, in such a manner that the rope is made to work the pump, and thus save the working o t by hand in ships not having steam power.

IMPROVED CARTRIDGE boX
Charles K. Howe, Hallowell, Me.-This box is so constructed as to allow only one cartridge to be taken out at a time. It may be atached to the shoulder rest of a pocket rifle, or carried in the pocket. It is formed of a ring-flanged block, having holes (for the artridges) in different radial planes, and covered by a slotte block. It is a convenient device for carrying revolver or pisto cartridges, as well âs those of rifles and larger fire arms.

IMPROVED SYRINGE.
Reinhold Vander Emde, New York city.-This invention consists in improving upon the ordinary syringe caps, made of soft rubber, y using a centrally perforated exterior cap, provided with a flange that fits around the end, and an interior groove that fits over the rim of the barrel. This offers a better guide and stuffing box for the piston
refitting.

IMPROVED DUMPING SCOW.
Daniel Dailey, New York city.-This is an improved dumping scow, from which the refuse may be readily and conveniently
dropped for subemersion. It consists of a scow divided by a longidropped for submersion. It consists of a scow divided by a longi-
tudinal center bulkhead and lateral brace walls into compartments, which are each closed by hinged bottom gates that are raised or dropped by chains winding on a top shaft.
improved method of uniting pieces of leather, etc. George V. Sheffield, East New York, N. Y.-This is a new method frough a loop of the needle thread and drawing the under thread oop up to the surface by the needle thread, thus quadrupling the ower thread in the work, and binding the same by the upper hread, and connecting these quadrupled threads from hole to hole y a thread on each side of the work. The method is mainly d
improved composition for dental plates, etc. Cornelius Reagles, Schenectady, N. Y.-This is an improved con vory, gutta percha, and hard rubber are used, which way ivory, gutta percha, and hard rubber are used, which may be
molded, pressed, sawed, turned, planed, carved, inlaid, polished, tc., shall not be liable to combustion, shall have great tensile trength, and in the liquid form will make a waterproof varnish of great toughness and brilliancy. The ingredients are pyroxylin, compound ethylated camphor, flexible lac, rubber shavings, Canada balsam,and white wax. The important feature is the combina ion of india rubber and cellulose

IMPROVED CENSER.

Rev. James J. Dunn, Meadville, Pa.-This invention consists of reticulated pocket, for holding the charcoal, with a lamp burne arranged under it for igniting the charcoal more conveniently pot of the ordinary censer, in which the fire often dies out befor the service is over for want of air.
improved artificial leg.
Joseph B. Warner, North Dighton, Mass.-This invention relate to an improved knee joint, by which it is impossible for the join ficial leg is suspended by a sliding strap from the upper section, in connection with a slotted guide band of the detached knee piece upporting the upper section and causing it to bear tightly on the liding band when the weight rests on the leg.
improvement in plating metals.
Charles S. Minchew, Taunton, Mass.-This invention consists in a new process of plating Britannia ware with silver, whereby the ware may be made much harder and lighter and the resonance of
solid silver ware imparted to the plated goods. The invention exsolid silver ware imparted to the plated goods. The invention ex-
tends generally to the plating of all of the baser metals with the more precious metals, and to the process has been given with the "impulsic plating," to distinguish it from the ordinary method ing the ar The invention consists, irst, in electric current from a hot alkaline solution; and secondly, in de positing a thin coat of the precious metal, then heating the coated rticle, and afterwards suddenly cooling it, the steps of depositing ueficient thickness of plate is obtained. When succession until a irst heated, the pores of the base metal expand and a metal vacuum is produced. A tmospheric pressure forces the thin of the precious metal into the opened cists, and the sudden cooling produces a contraction of the under metal, which seizes and hold the precious metal that is driven in.
mproved pill machine.
Jacob Dunton, Philadelphia, Pa.-This invention relates to an in a movable or detachable compression chamber or powder re eptacle, in combination with two movable dies having concaved onds, the upper one cr when is adapted to be driven the lower one In a base piece together with the pill. The invention also consists in the construction of the base piece, which is provided with a
ole terminating in a laterally discharging curved chute, through convenient position; and it also further consists in the combina tion with the powder receptacle of the base piece provided with guides, which permit the powder receptacle to be shifted from its
position for compressing to its position above the hole for di harging the pill wishout misplacement and without the delicat adirging the pill without misplacement and wit
mproved device for detaching horses
Josephus T. Willis, Pushmataha, Ala.--This consists of lockin leeves, sliding at the ends of the whiffletree to lock or release th catches that retain the traces. The bands are moved by lever rods connected to a fulcrumed center lever, governed by a fork main strap to a hole of the whiffletree, to lock the sleeve and allow the detaching of the traces only after withdrawing the pin. IMPROVED AIR GUN.
Wilhelm Hebler, New York city.-This air gun is designed to each the range of an ordinary rifle. The essential feature consists in a novel combination and arrangement of valves and other
devices, in connection with the air-compressing chamber, whereby very large amount of air may be compressed, which by its high andive amount of air may be compressed,

IMPROVED PHOTOGRAPHIC PRINTING FRAME.
Claude Léon Lambert, Paris, France.-This invention relates to certain improvements in photographic presses for working of ositive openings covered with glass of the size and shape of the hav ing openings covered with glass of the size and shape of the out placed. A hinged leaf, provided with apertures corresponding to the openinge, but a trifle smaller, is then fastened down upon th negative; and the sensitized paper being placed in little compar ments above these apertures, a set of little doors, lined with felt,
are shut down, and held in place by bearing springs on the lid, are shut down, and held in place by bearing springs
which, being fastened, holds the press tightly together.

IMPROVED TRUNK.
William J. Large, Brooklyn, N. Y.-This trunk is so constructe that the tray may be conveniently raised to obtain access to th place. To the tray are may be conveniently moved from place to ways in the sides of the trunk, and which support it when lifted above the body of the trunk, to allow access with the latter. There re several ingenious devices connected with this general feature.
IMPROVED ORNAMENTAL LINKS FOR NECKLACE CHAINS. ollow links, having hork aty.-Tends of the slots of a large diameterthan the end parts of said slots, and having a small plate inserted in one end to receive the ends of the open ring. In this
way a strong and beautiful necklace is produced from a compara way a strong and beautiful necklace is produced from a compara-
tively small amount of material, while at the same time it has the tively small amount of material,
appearance of being very heavy.
NEW MECHANICAL AND ENGINEERING INVENTIONS. IMPROVED PUMP.
George Washington Johnson, Yarmouth, Canada.-This inven ion improves the construction of the pump known as the Sluhour pump, so as to adapt it to be used on shipboard, and in $0^{+t h}$ flaces where f stoppage ord to als cho moved from the valves or suction pipe, to enable the pump to work smoothly, to be conveniently sounded, and to admit of an ven motion of the pump buckets to be produced when worked by crank and fly wheel.

IMPROVED GRINDING AND HULLING MILL Elam Morrison Query,Harrisburgh,N.C.-This invention consists n constructing a grinding and hulling machine with reversible
nd, therefore, self-sharpening teeth on the cylinder and concave.

> IMPROVED AUTOMATIC STOP MOTION.

Augustus A. Hagen, New York city.-This is an improved auto achines; motion for feed wheels in tobacco-cuttiog and othe ontact with a raised part of the feed screw, a transverse slid iece, and, by a connecting swinging slide, the spring pawl of the wheel, so as to throw the same out of gea

IMPROVED NUT LOCK WASHER.
Isaac Van Kuran, Omaha, Neb.-This is an improved elasti washer for the nuts of rail joints and similar purposes, and consist ing by side lips the elastic top plate in a central position. The de vice is cheaply made, and the drilling of holes and riveting is voided.

IMPROVED LOCOMOTIVE ROCKER SHAFT AND BOX
John T. Crowther, Carbondale, and William J. Crowther, Urbana,
IIl.-This invention consists in an open bushing, made in one or Ill.-This invention consists in an open bushing, made in one o wo pieces, and provided with three sets of oil holes, in combina on with the rock shaft and the box: and in the rock shaft made opposite the centers of the space keysean the one end bein other end, to enable the shaft to be adjusted in six different positions. It is well known that the rocker shafts of locomotive en gines soon wear oblong,which causes a loss of motion to the valves, and a corresponding loss of power to the engine. The present de vice enables the shaft to be repaired easily and quickly, an ithout disarrranging in the least
improved punching and shearing machine. Austin W. Comstock, Mount Pleasant, Iowa.--This machine is dapted for punching and shearing off flat and round iron, plates ars, and rods. It consists of wo levers fulcrumed to supporting erforating the plate, which is held by hooks of the lower jaw. The rear ends of the levers have square recesses for shearing of ound and flat bars.

IMPROVED CRIMPINQ MACHINE FOR LEATHER.
Chas. M. Robinson and John F. Lister, Newton, Iowa.-The pu ose of this invention is to provide a machine for shoemakers' use facilitate the work of crimping the leather for the uppers
utting out the soles, and pressing the same into the proper form tit the last without lap hammering. The invention consists in and operated at the other end in vertical direction, to produce the necessary pressure by means of a secondary lever, to be worked necessary pressure by means of a secondary lever, to be worked pivoted to the first lever, and the other end to a set of links, pivoted at their lower ends to the table, which arrangement give
compound motion for the operating lever, between which and the table the crimping stamping, and pressing devices are con ained.

Charles K. Dickson, Jr., St. Louis, Mo.-This invention consist n the combination of a three-armed head with the plug of a
three-way cock, in such a way that the said arms may be directly
over the openings of said plug, to indicate the position of said
openings with reference to the three pipes of the cock. This de. viee, we learn, has already been adopted by the Water Commis
ven sioners of St. Louis, Mo.

NEW WOODWORKING AND HOUSE AND CARRIAGE INVENTIONS.
IMPROVED DOOR CHECK
Edsell W. Chamberlain, Sullivan, O., assignor to himself and J. W. Spencer, same place.-This invention consists in forming a revers-
ible door check of two pieces, one of which has a pivot, baseplate, an
to be us
but two buttwo castings, ready to receive the spring and to be applied to doorways without drill, file, or other tool, at very small expense. it serves as a right or left check by simply changing sides.

IMPROVED SASH FASTENER.

Lloyd J. Earll, Pittsburgh, Pa.-This invention relates to certain mprovements in that class of sash locks which have an arc-shaped head or binding surface, which bears either against the window sash or is pivoted to the window sash, and binds against the win dow frame, for the purpose of holding the window sash in any wous band of leather or rubber about the face of the holder to prevent scratching the paint. The invention also consists in a sliding bolt passing through a lug on said holder, so as to enter a socket of the window frame, and having a shoulder upon one ide, so that, when the bolt is in the socket and turned, it cannot be withdrawn. The invention also further consists in the particular in the form of a wedge with a hollow head and flat face, which解

NEW AGRICULTURAL INVENTIONS

IMPROVED GRAIN BINDER
Joshua A. Kay, Melbourne, Colony of Victoria.-This is an apparatus for tying knots in single or double string, being mainly insheaves of grain. The invention consists of certain tools, implements, or devices for tying knots together, with the mechanisms for imparting th primarily, of a prolonged looper, a horizontally sliding hook, a rotating hook, and a hooked finger and thumb; and secondarily, of a needle, a knot slipper, a ixed hook, a top, bottom, and middle cord catcher, a holder, and a cutting knife, by the joint working
of all of which inside of an oblong casing or kiotting box the knots are produch insid

IMPROVED PLOW SHOULDER.
Joseph G. Blount and Elias Haiman, Columbus, Ga.-This conists of a shoulder for is used, or as the plow plate wears away.

IMPROVED CORN PLANTER
Charles A. Andersson, Mineral Ridge, Iowa.-This is an apparatus and, and can be readily changed from a self-dropper to a hand dropper, as desired. The new features consist in combining, with a seed hopper having perforated walls and false bottom, a spring having points that pass through and hold the bottom; also, in combining seed plates and crank levers, connected by a rod having ally op arme, who a rifery hides. The two rims and diametricate arms insure the uniform revolution of the wheel, even when the ground is rough.

IMPROVED CULTIVATOR
Silas Walton, Moorestown, N. J.-This invention relates to an pass clods and rubbish without clogging, having the blades so exended from the frame and so placed that they lift and pass under the vines and lateral parts of plants, thus allowing the earth to be nly by puer them, and so adjusted as io be used as a cultivator nly, by pulverizing the sol and lavith or oil at the same time either to or from the riows of planging the sired. It consists in the combination, with the main beam and inged arms of a cultivator, of certain standards which are in shape and position curved, downward and outward, terminating at the outward end with a vertically inclined stem, made conca

NEW HOUSEHOLD ARTICLES.

IMPROVED BROILER.

Frederic Martin, Jr., West Jefferson, O.-This is an improved culinary vessel, that may be employed for broiling and baking, case, having a lid with a central hole, provided with a pan having entral bottom hole, and having a vertical crank shaft with stirers thereon.
improved combined table knife and spoon
James Higgins, Detroit, Mich.-This inventor has arranged a poon bowl-shaped cavity in the blade of a table knife, near the back of the blade, so that the latter remains in suitable form for its functions.
improved heating stove
Marius C. C.Church, Parkersburg, W. Va.-This invention relates to certain improvements upon the heating stove, for which letters patent No. 167,497 were granted the same inventor September \%,
1875, and it consists in the particular construction and arrangement of the parts in which the smoke pipe is connected with the back art of the fire chamber, instead of the top, and the upper tapered portion of the heating chamber is expanded into a closed drum, hrough the detachable vessel at the point of exit for the hot a metal forms the back of the fire pot, and a perforated partition of the same material rests thereupon and divides the heating chamber from the fire pot.

IMPROVED MATCH SAFE.
William Dawson, Philadelphia, Pa.-The object of this invention is to provide a convenient receptacle for the stubs or burnt ends of matches. After the match has been used, the disposal of the burnt end is always a source of more or less trouble. It either nd an unsightly appearance, p it has to be thrown into the stove or carried out of the room, either of which involves more trouble than the insignificance of the object justifies. The invention consists in constructing a match safe with two compartments in the same containing case, one of which is provided with a lid and
employed for holding the matches, and the other of which presents an opening through which the burnt ends or stubs are inserted, the said latter receptacle having also a door or slide, through
\$usimes and sersoual.
 Dolur and Hat per Line w will be chargeed.

Nickel Salt of best quality, with full instruc
Hons for plating sold by Key \& Co, 211 Allen St. N. Agricultural Implements and Industrial Machinn
erv for Export \& Domestic Use. R.H.Alle $\&$ Co...N.Y. Catechism of the Locomotive: an elementary
treatse for mechanics, locomotye en treatise for mechanics, locomotive engineers. firemen
and others. It explains the theory, construction, and
and
 Send 50 cents for sample by mail of Codding's
Meat Tenderer. Agents Wanted. Address Desper Manu-
Feturing Company, Barre, Mass.
For Sale-A valuable Patent in the Hardware
Hine. For terms,address J. W.TInsley, Blakesburg.,owa. We are often asked: " What is the best Engine
Governor ?? Before declding this question, we advise all machnints, engnineers, and mill owners wo writ to
Mr. S. B. Allen, Boston, Mass., for a copy of his illus300 new and 2 d hand Machine Tools, Saw Mills,
Wood Working Machines, Pumps, Water Wheels, EnWood working Machines, Pumps, water wheels, En-
gines, Bollers, etc., for sale. See first column of page 253, th18 number.
Hair Felt for Steam Boilers and Pipes, Manufac-
turea \AA appled Asbestos Felting Co 316 Eront st. N.Y. Wanted-Steam Pump, about 1 , horse pow
use Kerosene for fuel. Box 1 , Andover, Mass. Wanted-To purchase the Patern, of a a good and
Wheap Burglar Alarm. or will manufacture and pay royalty. Address, with full partic
186 Vine St., Cincinnati, Ohto.
Parties wishing the agence for a new and useful
invention wanted in every family, adaress, for particulars, w. J. Pettis \& Co., Box 433. Providenence, .R. I. 300 newand 2 d band Machine Tools, Saw Mills,
Wood Working Machnes, Pumps, Water Wheels, EnWood Working Machines, Pumps, Water Wheels, En-
gines, Bollers, etc., for sale. See irrtcolumn of page New Silverwhite Plating on Brass, etc.-For in-
structions, address Kes Co Co., 211 Allen St., New York. Parties making or dealing in Portable Gas Ma-
chines, please send circulars and prices to Semtnary, Mt. Carroll, Carroll Coo., Illtnols.
I want to buy a 2 da hand Foot Lathe. I Ilso want
to sell or trade a 1 H.P. Engine. Address P.o. Box 620 ,
Champaign, Champalgn, ill.

 Trade Marks in England.-By a recent amend-
ment of the English laws respecting Trade Marks, ctizens of the United States may obtain protection in
Great Britain as readily as in this country Great Britatn as readill as in this country, and at about
the same cost. All the necessary papers prepared at
this ofice. For further information, address Munn \& this Oifice. For further informat
Co... 7 Park Row, New York elty.
Friction Hoisting and Mining Engines.-J. s.
Mundy, 7 R.R. Ave., Newark, N. J.
 Split-Pulleys and split-CDllars of same price,
strength, and appearance as Whole-Pulleys and WholeCollars. Y. Yocom \& Son, Dr
Second St., Phlladelpha, Pa
Sure Cure for Slipping Belts-Sutton's Patent
Pulley Cover is warranted to double the power of any Pulley Cover is warranted to double the power of any
pulley. CIrculars rree. Agents Wanted. John w.
Sutton, 55 Liberty St, New York.
 scription or saile at low prices. Send stamp for our List
No. 5 , just printed, fully describling each machine, statitng Just what you want. Don't buy unth1 you look
Hist. s . C. Forsath \& Co., Manchester, N. H.

 ter, N. H.
Gas and Water Pipe, Wrought Iron. Send for
prices to Balley, Farrell $\&$ Co., Pittsburgh, Pa.
 Seds $\&$ Implements - 200 Illustrations-just out.
Mailed on recelpt 2 3c. stamps. A. B. Cohn, 197 Water st., New York
"Wrinkles and Recipes" is the best practical
Handoook for Mechancs and Entineers. Hundreds of
valuabe trade senter valuad uraee suggestions, prepared expressly by cele-
brated experts and by correspent American." 250 pagers. Eliegantis bound and illus-
trated. A splendid Christmas glit for workmen and
 Solid EmeryVulcanite Whells-The Original Solid
Emery Wheel-other kinds Imitations and Infertor. Cau-lon-Our name is stamped in tull on all our best stand-
ard Belting, Packlng, and Hose. Buy that only. The
 Steel Castings, from one lb. to five thousand libs, Pittsburgh steel Casting Co., Pittsburgh, Pa.
For best Presses, Dies, and Fruit Can Toools, Bliss For Solid Wrought-iron Beams, etco, see adver--
tisement. Address Union Iron Mill, Plttburgh, Pa.,
 and workers of sheet metal.
to order. $J o b$ work solletted.
Δ merican Metaline Co., 61 Warren St., N.Y.CIty. For Solide Emery. Wheels and Machinery, send to
the Union Stone Co., Boston, Mass., tor clrcular. Hydraulic Presses and Jacks, new and second
hand. Lathees ana Machtnery for Pollithng and Buflng Metals. .. Lyon, 470 Grand Street, New York Spinning Rings of a Superior Quality-Whiting-
vile Spinning RIng Co., Whitingulle, Mase. For best Bolt Cutter, at greatly reduced prices,
address H.
B. Brown Co., New Iaven Conn. Diamond Tools-J. Dickinson, 64 Nassau St., N.Y. Temples and Oilcans. Draper, Hopedale, Mass. Peck's Patent Drop Press. Still the best in use.
Address Mllo Reck, New Haven, Conn. All Fruit-can Tools,Ferracute W'ks,Bridgeton,N.J. Baxter Wrenches fit peculiar Corners where no
ther wrench answers.
Greene, Tweed $\&$ Co., 18 Park

Linen Hose for Factories-1, $11 / 2,2 \& 21 /$ inc
At lowest rates.
Greene, Tweed $\&$ Co., 18 Park Place File-cutting Machines. C. Vogel, Fort Lee, N. J. Yacht \& Stationary Engines, Sizes 2, 4, $6 \& 8$ \&.P.
Best for Prica. N. w.Twiss, New Haven, Conn. Inlaying and Fret Sawing in Woon, Shell, Metal, Hand Fire Engines, Lift and Foree Pumps for fire
and all other purposes. Address Rumsey $\&$ Co., Seneca Falli, N. N. . . U. S. A. A.
Correr
Cuter
Cuting Cutter, Letter Press and Stand-all at Bargains. A. B.
Conu, 197 Water St.,N Ne W Ork.

W. A.'s query as to radiation does not give o S. O. M., as to supposed diamonds.-J. D. G will find full information as to the ether ice-making process on p. 228, vol. 34.-A. R.'s communi-
cation is founded on a misconception. See pp. 195,228 , vol. 33 , as to the mature of electricity.-A J. R. will find on p. 120, vol. 33, directions for ma ought to know that the only way to find buried treasure is to dig for it.-X. Y. Z. can copper his cast iron articles by following the directions given on pp. 90, 139, vol. 31-E. F. M. will find full direc-
tions for plating with nickel on p. 235 , vol. 33 . tions for plating with nickel on p. 235, vol. 33
For plating with goid, see p. 116, vol. 33. For platFor plating with gold, see p. 116, vol. 33. For plat-
ing with silver, see p. 362 , vol. 31.-A. B. can ebonze wood by foll b 50 , vol. 33.-W. B. J. can gild his clock hands by
the process described on p. 116, vol. 33.-A. G. L. should proceed in zincography exactly as in lith-
ography. The specimen sent appears to be a phoography. The specimen sent appears to be a pho-
to-engraving from a pen and ink drawing. L . M. to-engraving from a pen and ink drawing.- L. M.
M. will find full directions for electro-silvering M. will find full directions for electro-silvering
with a battery on p. 361, vol. 31.-E. D. N. can remove the rust from his sword by the method given
on p. 56 , vol. 33 .-W. D. should read our article on p. 241, vol. 33, on constructing a windmill.-J. C.
H., F. A. H., J. H. G., L. N. B., M. G., J. L., S. H W., P. S., G. D., F. G., J. H. M., C. M., G. G.,
and others, who ask us to recommend books on industrial and sclentific subjeets, should address he booksellers who advertise in our column,s all
(1) B. V. P. asks: Please inform me of some way to harden light common iron wire in
quantities. A. Box harden it, by the process dequantities. A. Box harden it, by the process de-
scribed in No. 5 of "Practical Mechanism," p. 6, vol. 31 .
(2) H. J. W. asks : 1. I am running an old-
fashioned high pressureengine. The cylinder is 15 by 48 inches stroke, cut off at half stroke. It has a balance wheel of 15 feet diameter, also a pulley attached, 11 feet in diameter. It takes steam through about 15 feet of 3 inch pipe. The gover-
nor is an old-fashioned throttle. I have been running 48 turns per minute, and wish to increase it
about 8 turns; but I think the latter is rather too much, as the brasses and journals on main shaft are badly worn. Would it be safe to run her so fast? A. You bad better not increase the speed if the bearings are worn. 2. Would it use any
more steam to speak of? A. If you run your enmore steam to speak of? A. If you run your en-
ine faster, you will use more steam in propor gine faster, you will use more steam in propor-
tion. 3. Would I have to run the governor fasttion. 3. Would I have to run the
er or slower? A. Run it slower.
(3) O. M. B., of San Juan Bautista, Mexico. duce the power, unless, as you propose, you increase the steam pressure. It would probably be better to alter the size of the gearing, thus using the same steam pressure and same piston speed,
and to decrease the speed of the rollers; whiletheir and to decrease the speed of the rollers; whiletheir power will be proportionately increased.
(4) W. S. says, in reply to the query: How it that minus multiplied by minusgives pius,and plus multiplied by minus gives minus? By trigo-
nometry, the cosine of any arc divided by its sine is equal to its cotangent. Take the arc of 135°. $\frac{-\sqrt{5}}{\sqrt{1 \cdot 5}}$
$\sqrt{1 \cdot 5}$ That is, a minus quantity is equal to a minus quantity into a plus quantity, which was to be proved. cosine. $\frac{1}{-V^{\cdot} \cdot 5}=-\sqrt{ } 2$ Clearing of fractions, $1=$
$-\sqrt{2 \times-V} \cdot 5$. That is, a plus quantity is equal
to a minus quantity into a minus quantity. A. This is an illustration which might possibly be admissible, if at all, only in the higher analysis, but
would be obviously out of place for establishing the fundamental principles of elementary an-
How far is the earth from the sun, as estimated recently by the transit of Venus? A. The ob-
servers have not got that far, we imagine. Inservers have not got that far, we imagine. In-
deed, we noticed that, at the last meeting of the British Assoclation, one of the members state that he thought they would be doing very well if
they worked up the observations in seven years.
(5) R. S. N. says : 1. I have a turning lathe perated by a treadle attached to the shaft of a 36 inch wheel of 4 inches face. The treadle cranks
make 6 inches sweep; the bearings are $7 / 8 \times 21 / 4$ make 6 inches sweep; the bearings are $18 \times 21 / 4$
inches. The chuck spindle bearings are $7 / 8 \times 214$.
A. Such a lathe will require about $1 /$ horse power A. Such a lathe will require about $1 / 8$ horse power.
2. What do you think of this arrangement? A. It is a powerful lathe to be worked by the foot. (6) S. M. says: 1. A line joins two fixed points on the earth's surface. Presuming thatno these points, will time produce any change in the direction of this line? Oan it point due north to-
day, and 1° or 2° east or west of north a few years day, and 1° or 2° east or west of north a few years
hence? A. No. 2. In other words, if two surveyors state A. No. 2. In other words, if two survey
direction differently, an interval of ors state its direction differently, an interval of
time intervening, can you predicate error of either
or both? A. If we knew by what method the sur-
veyors determined the astronomical meridian and
applied it to the line above spoken of, we should applied it to the line above spoken of, we should
probably be able to predicate the error of one or both.
(7) B. K. A. asks: Will you let us know
what is the difference between a high pressure and a low pressure engine? A. A high pressure engine exhausts the steam when the piston has
arrived at the end of the stroke. A low pressure arrived at the end of the stroke. A low pressure
engine condenses the steam, and thus has live steam on one side, and a partial vacuum on the e, of the piston.
(8) E. R. says : I propose to build a yacht
90 feet long and of 18 feet beam, to draw 18 inches 90 feet long and of 18 feet beam, to draw 12 inches
of water when light, and not to exceed 18 inches with all machinery and 6 tuns of coal on board. I intend to use two engines 8×10 inches (to work quartering), two uprightboilers of 36 inches diameter, with 75 tubes, $13 / 4$ inches in diameter and 4
feetlong. Fire grate surface is $21 / 2$ feet $x 31 / 2$ feet in each boiler. I will use the best propeller I can find, and fully submerge the same under the of a sea boat will she be? A. We do not think uch a boat would stand rough weather very well and for smooth water it might be advisable to use side wheels.
(9) M. M. C. says: We are putting in a 50 horse power engine which will run at 85 revolu-
tions of the crank per minute. The drive pulley is 4 feet in crank per minute. The drive pulley feet. What should be the width of the leather
(10) A. C. asks: How many times more wa er will go through a 3 inch pipe than would through a inch pipe? A. The question is too in
definite to admit of a single answer. If the velodefnite to admit of a single answer. If the velo
city in each pipe is the same, the discharge will be in proportion to the squares of the diameters. If the head is the same for both pipes, and the pipes
bave the same length,the velocities will bedifferent bave the same length,the velocities will be different and the discharge will vary as the products of the
velocities by the squares of the diameters. w give below Weissbach's rule for determining the velocity: Let $l=$ length of pipe in feet, $d=$ diame
ter of pipe in feet, $v=$ velocity of flow in feet pe second, and $h=$ head of water in feet. Then $v=$ $8.02 \times v^{\prime} h+\sqrt[V]{ } 1505+\left(0.01439+\frac{0.017155}{\sqrt{ } v}\right) \times \frac{l}{d}$
(11) J. W. G. asks: What is used in the
navy for blacking boilers? A Paint made of navy for blacking boilers? A Paint made of
common charcoal ground in oil is an excellentarticle for the purpose.
(12) T. W. R. asks: 1. Will steam after eating a building, return to the boiler, no matter how much pressure you may bave in the boiler,
that is, will steam return against $20,40,60$ lbs. of steam? A. It can be made to return, by the use of a suitable trap. 2. Is the pressure equal on all sides of a boiler? A. The pressure is greatest on the bottom, on account of the weight of water in the boiler. 3. In low pressure boilers, could not the return be run half way below the waterline
rangement of this kind is not uncommon.
(13) R. S. Jr. asks: Will my engine, the troke, drive a back-geared engine lathe of 16 inches swing and $51 / 2$ feet bed? A. Your engine and boiler are both rather too small for the pur-
(14) J. \& C. say: We have a stationary engine of 16 inches diameter, 5 feet stroke, using steam
from 90 to 100 lbs., and cutting off at 10 to 12 inchrom 90 to 100 lbs ., and cutting off at 10 to 12 inches on the stroke, as the work requires. The fly wheel is 20 feet in diameter, weighing $18,000 \mathrm{lbs}$., with wrought iron key and links. The center is held by two flanges bolted together through the arms. Would it be safe and economical to run the engine at 35 revolutions per minute? A. Yes,
if the bearing surfaces of your engine are suffiif the bearing surfaces of your engine are suffi-
ciently broad and strong to stand the wear and tear.
(15) W. E. P. says: For extinguishing kerosene flames, I would recommend ashes from the ashes from the stove extinguished them immedi-
tely.
(16) A. M. T. asks: 1. Has the pump, used on locomotive engines, suction? A. Yes. 2. Are
the air pumps, used on ocean steamers, ever made of brass or steel? A. Brass.
(17) W. T. H. asks: Why is it darkest just
before dawn? A. The statement to thiseffect is
without foundation.
(18) S. asks: Does cast iron contract or expand when cooled from a liquid state? A. Iron acts very much, in this respect, like water. Solid
iron floats upon the molten metal and is consequently lighter. As molten iron cools, within certain limits, it gradually expands; but when it has reached a certain temperature, it begins to con-
tract, and this it continues to do however low the temperatures may be carried. It is for this reason ron copies so accurately the molds into which it is poured while in a molten condition, and allowed gradually cool.
(19) J. McC. asks: How are pictures pro duced on white porcelain glass cone shades? A.
They are for the most part put on by the decalcomanie process.
What is the
What is the coloring principle in ruby-stained
(20) J. A. G. asks: What can I use on or in
rubber hose to prevent kerosene oil from rotting it, or what flexible material can I use in place of There are several methods by which the tube mar be protected completely or in part; but we should recommend, as liable to give the best satisfaction, the use of a good tube of leather of sufficient
suppleness to avoid the objectionable tendency
to close the duct by creasing, when bentate to close the
What is the best material to use on boots that are exposed in water a great deal? A. Try a solution of india rubber in bisulphide of carbon.
(21) J. W. says: I had occasion to remove aiece of mica from a stove, and noticed that, on noticed on scoopitg out flashes similar to those strument. Can you give an explanation? A. The lashes of light are due to the electrical disturbance consequent upon the forcible disruption of
contiguous laminæ. It is a well known phenom-
(22) P. asks: What will prevent the pig ment permanent white from scaling off parchment? A. Try the following: Reduce to powder gum tragacanth quickly in cold water a quantity of o give to the diluted gum the consistence of a jelly. Mix with this your pigments (sulphate of baryta), and, after finishing the work, spray with ometime a quantity of caoutchouc. The naphtha will soon evaporate, leaving behind the caout chouc as an extremely thin and adhesive, but per ectly transparent, film.
(23) A. L. E. says: A friend of mine states that, to be able to run an engine in a small building in New York city, the engineer must have a
certificate showing that he has the ability to run certificate showing that he has the ability to run is right? A. Your friend's stat ϵ ment is correct.
(24) A. C. McK. asks: 1. Is tellurium valu able? A. Yes. 2 Is it difficult to extract? A.
Very. 3. Is there any market forthe ore or th metal in America? A. The market will have to etadin America? A. The market will bave to
ene, owing to the scarcity of the metal has as yet been little employed in the arts. What is the probable cost of extraction per tun? A. The cost will have to be determined by trial. (25) R. J. P. asks: Can ordinary Indian ink ave anything added to it to make it indelible?
. Try the addition of a little nitrate of silver . Try the additio
ust before using.
(26) A. C. McK. asks: How can I extract ellurium from its ore? A. Professor von Schroeteparating tellurium in its free state: The finely rushed ore is first digested with strong hydro ulphidacia (in order to decompose or dise and arated from the insoluble residue, which is then
treated with aqua regia, when gold and tellurium reated with aqua regia, when gold and tellurium
re dissolved, and thus separated from silver are dissolved, and thus separated from silver
From the solution thus obtained the gold is pre cipitated by protosulpbate of iron, and the telluraphite crucible with borax and the tellurium in n iron pot, when both metals are obtained in pure state, the latter being a white metal of from $6^{\circ} \cdot 0$ to $6 \cdot 4$ specific gravity and of great fusibility.
The present value of tellurium (fused) is about The present value of te
$\$ 200$ per lb. avoirdupois.
(27) W. L. S. asks: Can you tell me of a afe way of preventing mildew in cotton duck
ails, etc. ? A. We find the following recorded as good preventive of mildew: Boil the fabric for everal hours in a solution consisting of 50 parts common salt, 4 parts lime, and 1 part alum, disolved in a suitable quantity of clear water. (28) A. B. O. says: I find the following al oy to answer for repairing the damage to steam oneycombed by the use of impuresuet, tallow, nd other bad oils: First make molds of Russian sheet iron, bent at right angles where surfaces or r's clay or plaster Clean the surfaces: and if there is no hold for the alloy, small holes must be drilled in the iron to secure the casting in place. timony, and 6 parts common ladle to dull red, and file the mold. The alloy cannot be worked down with anything but
file and scraper. I have saved with this alloy a file and scraper. I have saved with this alloy a
couple of steam chests which would have cost $\$ 500$ renew in a short time.
(29) T. H. W. asks: Is there any instrument, similar to a thermometer, for indicating the
degree of purity of the air ? A. This desirable
little instrument has not little instrument has not yet been invented; and from the numerous obstacles to be overcome, it is
not probable that anything of practical utility in his line will ever be devised.
(30) M. R. asks: How can I make ink to Write blue, and afterwards turn black? A. For dered nutgalls, and digest for 2 or 3 days in 1 gallon of cold water; add to this about 6 ozs. each of nely powdered copperas, gum arabic, and sul-
phate of indigo.(chemic or Saxony blue). Heat the whole to the boiling point, and allow to stand with occasional stirring for several days in a warm place. Then filter through a fine linen cloth, add a few cloves, and bottle for use. To make the so-
called sulphate of indigo (Saxony blue) : Dissolve well sifted indigo in 5 times its weight of strong oil well sifted indigo in 5 times its weight of strong oil
of vitriol, previously heated over a water bath to about 150° Fah. Neutralize the solution by cauof a fine powder. Collect and dry the precipi-
(81) M. C. asks : How can I dress Arkansas diamonds? A. With copper wheels, and emery (32) C. asks: Which is the best soap for
(3n) for the toileta good variety of glycerin soap. The common yellow soap answers well enough for 1 Is therposes.

1. Is there an alloy that resembles gold, and is
as hard as 14 carat gold after it is annealed? A

Try the following: Copper $86 \cdot 4$ parts, zinc $12 \cdot 2$ parts, tin $1 \cdot 4$ parts. Fuse the copper first,and then that will fuse as easily as 12 carat gold solder? A. Try 1 part silverand 2 parts brass.
(33) L. L. L. asks: Has the author of arti-
cles, which have been published in and paid for by literary periodicals, a right to publish the same in book form? Or does the property in said arti cles vest in the publishers of the periodicals, ma king it necessary for the author to obtain permis-
sion from them to publish such book? A. The right to republish articles in book form depend on the agreement between the author and the on publisher.
(34) C. F. asks: Can common red earthen ware be, by any process, glazed white either be ter's clay are too fusible to admit of being enam eled with porcelain. Try the following: Masti 10 parts, red lead 60 parts, calcined tin (putty powder) 26 parts,and common salt 10 parts. Mix them, four times. Apply to the ware (after baking) in the manner of a paint, and place again in the oven.
(35) J. M. says: I am using a cast iron po in galvanizing, and have been told tbat the zinc in slag by galvanic action than a wrought iron pot
would. Is this so? A. No.
(36) F. P. asks: 1 . Can the color of coal tar be changed conveniently to a red or brown, or any other color that would be suitable to paint
farm buildings, without changing its nature? A. farm buildings, without changing its nature? A.
No. Use red ocher or red lead. 2.How can coal tar be thinned? A. Use naphtha.
(37) E. D. says: I have a pack of playing cards that stick together when affected by the quickly. Can you inform me of any preparation to prevent their sticking and to give them a gloss? A. The trouble is due to the interiority of the glazing with whick the cards are enameled. We o not think you can overcome the objection with
out the expenditure of too much time and labor
(38) J. G. M. \& Co. say : In cooking fish for canning, we need a greater heat than 212° Fah calcium, heating the water by steam. But the oil from salmon, mixing with the calcium, is hard to clean off the cans after cooking. Can you tell us of some cheap preparation which we can heat
(with steam coils) to 240° Fah.? A. It would be better to heat the water to the requisite temperaThe temperature of the boiling point might thus be arranged to suit your convenience, and by suitable valves caused to remain constant. Saturated saline solutions are objectionable
(39) J. M. A. and others.-It is a popular
idea that the sunflower will prevent disease, but we have no reliable authority for the statement. It is not used in medicine.
(40) H. W. H. asks: Is it possible to blow glass in the shape of a cylinder, with a very small opening along one side? A. Yes; it is readily
done. The molten glass, as it is drawn from the pot, adhering to the end of the punta tube, is pot, adhering to the end of the punta tube, is
blown into a pear shape, elongated by swinging, rolled on a steel slab into the cylindrical form, and slit through lengthtwise, and the cone-shaped
bases at both ends removed. It is then placed in bases at both ends remo
the annealing furnace.
(41) M.F., of Gaggenau, Germany, asks: Is there a good gas tight membrane, not affected by heat or water, or by the impurities (acids, etc.)
contained in the gas? A.This desirable invention has as yet been very imperfectly realized.
(42) M. W. asks: How are rain gages gen-
erally constructed? If a vessel 12 inches in diamerall inches deep, should be filled with rain water to depth of 3 inches, would 3 inches really have fallen, or more? A. Less. If the vessel employed as the receiver is not a uniform tube, it should be carefully graduated before using.
ble ink from linen? A. Use a strong solution of cyanide of potassium in water. As the cyanide is very poisonous, it is necessary to avoid contact with sores or cuts in the flesh.
Do the crossheads of a locomotive make a re
trograde movement when the engine is going trograde movement when the engine is going wheels slip ? A
(43) H. J. asks: Will oil evaporate into the ter or not? Can water evaporate into the ai ter or not? Can water evaporate into the air
when its surface is covered with oil? A. The application of a film of any of the fatty non-drying oils to the surface of water will preve

oration. The oil itself is not volatile

(44) F. N. B. says: I have been trying to make a friction match composition by a formula in which there is a large proportion of niter. The niter spoils the composition; the matches are
good when first dried, but an exposure to damp placed in a cellar they will in 24 hours, when my fingers like tacks to a magnet. When kept in a dry place,the phosphorus slowly burns off, filling
the room with a strong garlic odor, and the matches are worthless. What is the matter? A. Afte preparing the matches, and while dry, dip the tips into a moderately strong collodion for a moment
and allow to dry. This will form a thin protect ing film over the friction composition. This film is not affected by moisture or other atmospheric influences, and does not interfere with the ready ignition of the match when required. as the slight abrading influence of the friction is sufficient t remove the film, while in itself itis a very inflam mable substance, and aids, by the heat of its com
bustion, the ignition of even a common wooden plint.
(45) W. S. H. asks: Is it possible to beout a tutor, to enable one to complete the study in a short time under instruction? A. It is neces-
sary to take an extended course of study in the office of an architect of experience, where you will have access to his library.
(46) S. M. O. and others.-The diamond oc urs in the form of rounded pebbles covered with brownish crust. Its crystals are in the form of he regular octohedron, but their faces are often ractive and dispersive action upon light, is a non conductor of electricity, and is not acted upon by acids or alkalies. If the stone is a diamond, it will easily scratch corundum and quartz, and will have a specific gravity of from 3.52 to 355 . Th pecific gravity of quartz crystals is from 250 to is6, while that of corundum, true sapphire, etc. from 39 to 4.16. A diamond dealer alone could
(47) F. S.\& S. ask: What is the best mode (clea discolored by fly dirt and dust? A. Use freshly prepared lime water. It may require several ap-
plicationsand an exposure of several days to perplications and an exposure
(48) A. H. S. asks: Does nitro-glycerin lose ny of its explosive force when combined with arth to form dynamite? A. The nitro-g!ycerin itself remains unaltered in the mixture, but, a er explosive, volume for volume, than good nitro (19).
(49) A. H. asks: Will it injure the burning ess explosive to filter, or make it any more or ous paper to remove sediment? A. It will al
ald er neither its illuminating nor its explosive qual
(50) C. B. F. W. asks: How can I test laun dry soaps for adulterations, such as silex, silicate
of soda, soapstone, etc.? A. Dissolve a small quantity of the soap eompletely in a large smal of boiling water, and filter through clean whit filtering paper. Observe whether or not any in soluble inorganic residue remains behind on the filter; if so, examine it with a strong magnifying glass, and, if the particles appear to be homogene ous in character and transparent or translucen of quartz sand. If opque and of a pearly dark color, it is probable that the material consists of talc, chalk, soapstone, barytes, or some of the other numerous and common adulterants. In order to be sure that part, at least, of the residue does not consist of resinous or other organic mat terials, the residueshould be heated to bright red lass. To test for the presence of water glass add (to the filtrate from the above experiment) mall quantity of muriatic acid, heat to boiling and allow to stand for some time. If a precipitate orms, wash it several times with clean water,hea
(51) G. J. B. says: What effect on the
acoustic qualities of a room would a cove in a ceiling have, the room being 90×47 feet, and 27 feet high? The cove is 4 feet out from the side walls. A. Itis not likely that so small a cove would affect ic qualities of the room.
(52) F. P. says: I read that Governor Bagey, of Michigan, suggests that all land owner What kind of tree would be most suitable as a shade and ornament tree, an evergreen being preferred? A. The Norway spruce fir is a good evergreen for this purpose; the scarlet maple or the
sugar maple is a good ornamental shade tree among the class not evergreen. The elm is als (53) F. R. asks: How many Bunsen ce ter, with moderate rapidity? $\mathbf{T w o}$ or thre cells will evolve has readily from acidulated wa-
(54) C. K. M. asks: 1. Will $\frac{1}{2}$ lb. No. 16 cotton-covered copper wire, for a primary coil,
and 1 lb . No. 23 cotton-covered wire for the secondary coil, and 1 cup of Callaud battery, do for giving electric shocks? A. Yes. Stronger shocks
would be obtained if smaller wire were used for the secondary. 2. How thick ought the bundle of iron w.
inch.
(55) J. L. W. asks: In taking a gun barrel and holding it perpendicularly, and taking a com-
pass, holding it on the side of the same and lowering it to the breech, the needle will suddenly re-
verse when lowered about half way; and on raising, it will again reverse half way; and on raisWhat is the cause of this change? A. In such a position the gun barrel is almost in the line of the
dip, consequently it will become magnetic from dip, consequently it will become magnetic from
the inductive action of the earth. The lower end will be a south pole, the upper a north pole.
(56) W. H. G. says: I have made an induchalf inch core of iron wires, using 2 turns of No. 22 cotton insulated cooper wire for the primary, and about 25 turns of No. 32 cotton insulated copper wire for the secondary coil, making the atter about 20 times as long as the primary. The have insulated the two coils from worh well have insulated the two coils from each othe put 1 sheet of varnished paper between each two turns of the secondary. With the above I only get feeble shocks on holding the two ends of the secondary wire on my tongue, using 7 cells of the gravity battery in connection with the primary A. It is quite likely that different convolutions of the greater part of the action is cut off.
(57) J.B.J. says, in answer to several corresagnents who ask as to how the rariation of the hange, increasing or diminiching the declination rom 1^{\prime} to 7 , annually, according to locality. There is an annual change, affectivg the needle about
twice as nuch in summer as in winter. There is twice as nuch in summer as in winter. There is diurnal change, during which the declination ac cording as it is W. or E.; and there are also irreguar changes, depenaing upon the condition of the atmosphere, magnetic storms, etc., as well as local attraction, proximity of iron, ore, steel, etc. It wust be evident to any one conversant with the bject that it is practically impossible defnitely idian, with a surveyor' instrument unaided by ome external object. The only reliable method f determining the angle, if any, between the line in question and a true meridian, would be to se p a surveyor's instrument over,say, the south end of the line, sight to the pole star at its extrem longation, and drive a stake in the range thu nd repeat the process for the extreme western longation: midway between the two stakes is the rue meridian from the instrument. The distance rom the midway point to the line in dispute, diided by the distance from that point to the in trument, will be the ine of the angle betwee he line and true meridian. As the operation will rosshairs of the instrument will need to be illu minated by light of lamp reflected upon them from a white object. A lamp or candle may b
(58) W. M. R. says in reply to P. A. K
who asks who invented the first railroad sleeping ar : In 1838, when I was chief engineer of the nd Chambersburgh, Pa., we had sleeping and Chambersburgh, Pa., we had sleeping cars
built, which ran for some years. One end of the car was arranged in the ordinary way, with da eats; the other end was fitted up with eighteen leeping berths, for the night,which were changed or the day's running, so as to make omnibus seat n each side of the car. There were three length of berths and three tiers on each side. The to by rope supports to the ceiling of the car. Th middle tier consisted of the back of the omnibu eat, hinged and supported in the same manner. The lower tier was the day seat along the side o the car. At that period, there were two coach
loads of passengers arriving by turnpike road loads of passengers arriving by turnpike road
nightly from Pittsburgh; and they were very glad to have the benefit of the sleeper during the fou Harrisburgh, on the old plate rail. There was n harge for sleeping accommodations.
(59) A. H. says, in answer to C. E. A.' hink it arises principally on account of the brev ity of the contact between the hammer and bell. If so, he can ascertain the fact by pressing th mature ourht to respond In edy would be to place the wire now attached to the bell in contact with a piece of metal, so ar at each vibration, a length of time sufficient fo
J.S. J. says: Water is forced into all parts
J.S. J. says: Water is forced into all parts
ron pipes. Frequently is heard a loud singing noise like air escaping slowly; but after the spigot is opened and the water runs freely, the noise
continues about a minute. What is the noise?
E M.H. asks: I nave an open buggy of 5 feet track feet 1 inch. What is the necessary under axe?

COMMUNICATIONS RECEIVED.

The Editor of the Scientific American ac original papers and contributions upon the follow ing subjects:
On the Aeroscope. By W. S. H.
On French Apartment Houses. By N. L. D.
Oa Life and Blood. By J. F. G. M. On The and Blood. By J. F. G. M.
On a Book on Geology. By E. K.
On the Hidden Forces
On Public Works. By J. C. W.
On the Financial Question. By W. H
Also inquiries and answers from the following:

HINTS TO CORRESPONDENTS.

Correspondents whose inquiries fail to appea should repeat them. If not then published, thes declines them. The address of the writer should always be given.
Enquiries relating to patents, or to the patentability of inventions, assignments, etc., will not bs published here. All such questions, when initiale only are given, are thrown into the waste basket.
as it would fill half of our paper to print them all: by mail, if the writer's address is given
Hundreds of inquiries analogous to the following are sent: "Whose is the best brick-making machine, and what is its price? Who makes coiled springs to order? Who buys sulphate of lead?
Who sells wire-straightening machines? Who makes vegetable parchment? Who are the prin makes bung machines?" All such personal inquiries are printed, as will be observed. in the column of "Business and Personal," which is specially $\mathrm{B} \in \mathrm{t}$ apart for that purpose, subject tothe charge men tioned at the head of that column. Almost any
desired information can in this way tiously obtained.
[OFFICIAL.]

INDEX OF INVENTIONS

etters Patent of the United States were in the Week Ending March 14, 1876 ,

A complete copy of any patent in the annexed list,
ncluding both the specification and drawings, will be furnished from this office for one dollar. In ordering, and remit to Munn \& Co., 77 Park Row, New York city

[^0] Vehtcle fifth wheel, C. Gormann
Vehicle seat, S. Gilzinger
Ventill Ventilating rooms and bulldings, J. Ev
Vessels, propeller for, T. M. Rankin. Wagon brake, o. T. Baker
Wagon brake iever, S. J. McDonald. Wagon hound, W. Mercer
Washing machine, D. and D. F. Born Washing machine, D. Jennings......
Washing machine, C. A. Lockwood Washing machine, B. Ta
Water trap, waste, Rode Water wheel, H. Waltner......
Water wheel, W. N. Whipple
Whistle and flag combined, W. R. Park
Wind wheel and gearing, G. S.
Windmill, Baker and Snashall
Windmill, Brower and Reed...
Windmill, G. A. Swartz (r).....
Window screen, C. B. Sheldon
Wood-bending machine, S. R. Bailey..

DESIGNS PATENTED
33.-Coffin Handle Socket.-R. H. Burr, W. Mer Iden, Ct.
,135.-Child's Carriage.-I. Cole, Newark, n
,136.-Trimmings.-G.H. Prindle, Yhiladelphia,Pa.
137.-Flag Holder.-J.W.Barth Jr.,Philadelphaa,Pa 138.-FAN.-L. M. Beard, Brooklyn, N. Y.
139.-LANTERN.-J. H. De Barry, Philadelphia,Pa.
140.-Chain Links.-V. Draper, North Attleborough
Mass.
ton, Conn.
,142. -PENRACKs.-O. F. Fogelstrand, Kensington,Ct,
143.-INKSTAND,-O. F. Fogelstrand, Kensington, Ct. , $144 .-$ FAN. $-J$. A. Lynch, Washington.D. C
yremitting one dollar to Munn \& Co., 37 Park Row, New York city
sCHEDULE OF PATENT FEES.

On each Trade mark

On issuing each original Patent....
On appeal to Examiners-In-Chief
On appeal to Examiners-In-Chief.....
On appeal to Commissioner of Patents
On application for Reiss
On filing a Disclaimer
On an application for Design ($31 /$ years)
On application for Design (7 years)...
Advertisments

perline ly measure advertisements at the same ra per line, by measurement, as the letter press. Adver
tisements must be received at publication office a early as Friday morning to appear in next issue.
 FLEETWOOD SCROLI SA w, Finest and most Artistic Work
such in Inaving and
Cutting in woov, SHELL,
and METALS. Qu Every Macnine Warranted as re
presented. Price $\$ 10$ to $\$ 15$. send stamp for Descriptive Circular
and Illuetrate List of DDesigns for
BRACKETS, BOXES EEASELS,

Coblering,

 fatented and only reiliable article. Saves 20 per cent Asbestos Felting Co CCROLL SAWS-We have 3 Moyer's Iron Frame
 INSTANTANEOUS SELF-ACTING COPYING PAPER Copies Scroll or Fretwork Designs, Leaves,

A $\begin{gathered}\text { GENTLEMAN OF GOOD ADDRESS, AND } \\ \text { ners, } \\ \text { who has a considerable accuatntance }\end{gathered}$

WILL SEND ISY MALL 1 DOZEN RAMIE NAPKINS
for 25 c . Ad dress G . W. LAKE, P.O. Box 3959 , N. Y
Co DUPLICATE Patterns, Plans, \& Drawing

W HO WANTS A FORTUNE ? - Patent Right
 COCULAR SAW MI LSS. PLANERS, AND OTHER
SONOD-working Mach inery, made by S. HEALD \&
Sons, Barre, Mass. Prices Iow. Send for circulars.

CELEBRATED F00T LATHES

HOTSTHVERSIBLE

Nod
BLAKE'S PATENT Stone and Ore Breaker
 Wrecking or Draining Steam Pump

R. A. Vervalen's's Brick Mactines,
and and ratraw, Rockland Co. N. Y. Making nine
enths of all the brickused in the state. Send for circular W Side Planer; Puancer for heavy six roll four Naxibrivivizeze

FOREIGN PATENTS
THE CENTENNIAL.
There is no doubt that our Centennial Exposi-
tion will attract to our shores multitudes of repretion will attract to our shores multitudes of repre-
sentative people from all parts of the world, and they will take home with them many of our best factures.
An unusual opportunity will be offered for sell ing to these people such foreign patents as have
been secured on good American inventions in the respective countries from which these visitor At the
At the reduced prices for which patents are obikely to occur again, if they do not avail them selves of the opportunity of securing their inventions in foreign countries at once, so as to have
their patents ready to negotiate the coming sum neir patents ready to negotiate the coming sum-
For cost of patents in the different countries an he conditions on which they are granted, send fo Address MUNN \& CO 37 Park Row, New York Branct Office, cor. F and 7th Sts.,

OPIUMEw=

It Pays to Adverisise.
Every business man admits the necessity of advertis
gg. All who have tried it know the advantages and profit of so doing. But it is not all who advertise that o derive the greatest benefit for their money. As sell or wishes to purchase, in papers having the largest
circulation among the class of persons likely to be interested in the article. Parties having Manufacturing
Establishments to sell or lease, or who wish Estimates nade for Constructing Bridges, Dams, Iron Buildings,
Furraces, Heating Apparatus, Steam Engines, Boilers Wood and Iron Working Machinery, Agricultural Im-
plements, or Contracts for Engineering works of aall FInds, will find that it pays to advertise in the SCIEN The value of the SCIENTIFIC AMERICAN as an ad vertising medium cannot be over- estimated. It goes
into all the machine and workshops in the country, and the United States and Europe

Back Page.

Inside Page.
Business and Personal. $\left.\begin{array}{l}75 \text { a line. } \\ 1.00 \text { a line }\end{array}\right\} \begin{gathered}\text { Each } \\ \text { Insertion }\end{gathered}$

Engravings may head advertisements at the same rate tisements must be recelved at the publication offic If anything is wanted in the mechanical line, If anything is wanted in the mechanic
for it in the SCIE NTIF IC AMERICAN.
If one has a patent or mach
the SCIENTIFIC AMERICAN.

The Supplement.

TIFIC AMERICAN SUPPLEMENT has the largest circulation of any paper of its class publiched. The SUP PLEMENT Is a distinct publication from the SCIEN-
TIFIC AMERICAN, and has a large circulation other than among the subscribers of the regular
Terms for advertising are very low, as follows: Back Page, tinted Cover... 35c. a line. $\left.\left.\} \begin{array}{c}\text { Each } \\ \text { Inside Page.................25c. a line. }\end{array}\right\} \begin{array}{l}\text { Insertion }\end{array}\right)$

Discount for large space
Address the Publisher
nd to que.) insertion.

Munn \& Co.,

TITIIIIT+J WROUGHT
THE UIINN IRON MILLS, Pittsurgh, Pa

 WHIPPLE'S Patent Door Knob.

MACHINERY.

iron \& Wood workina machinery
Cold Rolled Shafting.
HANGRRS, PULLEYs, COUPLINGS, BKLTING, *
GEORGE PLACE,

Inter-State
Industrial Expossition,
CHICAGO, 1876.
A GRAND EXHIBITION
CENTENNIAL YEAR!
ENLARGED \& improved in all respects.

Will Open Sept. 6, 1876.

The fact that this shafting has 75 per cent greate

This work is just fresh from the press, and all the orders which had accumulated have bee

The Science Record for this year-the fifth its publication-contains 600 octavo pages and reat number of engravings, illustrating new disTHE Volume for 1876 embraces the most Interesting acts and Disconeries in the various Arts and Silences
ant have transirided during the preceding yarce exhtos
ng in one view the General Progress of the Wor'd
in che following Departments:
CHEMISTRY AND METALLURGY,
MECHANICS AND ENGINEERING,

AGRLCLLNRE
RUAAL AND HOUSEHOLD ECONOMY,
MATERAN MEDTAA THERAPEUTICS, HYGIENE
NATURAL HISTORY AND ZOOLOGY, GEOGRAPHY
GEOTOGY MINERALOGY,
ASTRONOMY,
BIOGRAPHY'
Every person Ano desires o be bewell informed concern-
in the Progress of the Arts and Sciences should bave
 verv Household and Library
Handsomely Boond Liscount to the trade.
Price $\$ 2.50$. Sent, post-paid, on recenpt ot price. All the preding vise of Schence Recorb ve voluad separately at $\$ 2.50$ each, or $\$ 1$ The the volunes comprise a library of information whic very student or man of science should preserve. MUNN \& CO., PUBLISHERs,

Park Row,
New York oity

BARGAINS IN MACHINERY.
We offer the follow in for sial e, the nee maa
marked N., all others being second

PATENT SELF-COILING, REVOLVING STEEL SHUTTERS

 Wall st. Caricatures.

 ENGIN MA NUFAOTVRRR Pulleys,Shafting and Hanger Specialty PAENTOURE ECCENTRICCORNICE- BRAKE,
OTIS' maxhminery OTIS, BROS. de CO
AY, NEW YORE.
THE BASTET MAGNETIC ENGINE AND HE BASTET MAGNETIC ENGINE AND
tists' and Jerwe for runnng Sewing Machnes, Den-

GEO. W. READ \& CO. AND VENEER-CUTTING MILLL,
Hard-Wood Lumber The LAD CHOICE FIGURED VENEERS,

 53

 ${ }^{\text {samplen }}$ Improved Solid Steel Cutters for
all Kinds of Vartety Moulder
nade to order, and warranted
the Machiver ,
Batile reek, Mich

ROSES

Pond's Tools.

ENGINE LATHES, PLANERS, DRTLLS, \&c.
Send for Catalogue. DAVID W. POND, Successor to
LUCIUS W. POND, Worcester, Mass.

STEEL CASTINGS.

FOR CHARLIE'S PRESENT,

EAGLE FOOT LATHES

Planing \& Matching,

 5000 AGETS MANTED-Samples sent free be

 Batieries, chemidis, AND MARRIALS

Water Elevators.
${ }^{107}$ Lake st. WM, Witaze. C ENTENNIAL DRILLL CHUCRS ARE A SUC-

INDIA RUBBER,

STEAM ENGINES FOR SALE.-I offer the for

 TRARE Noiseless in oporation-Perfect
in workmand

 RODY M'F'G. Co.,
FINETOOLS

 PATENT
Planing and Matching

Crude Gutta Percha

RER Imporita andor anate

Mran \& Co's. Patent Oficices.

Established 1846.

The Oldest Agency for Soliciting Patents in the United States.

TWENTY-NINR YEARS' EXPERIENCR

MORE PATENTS have been secured through the world.
They employ as their assistants a corps of the most experienced men as examiners, specification writers, and draftsmen that can be found, many of whom have been selected from the ranks of the Patent Office.
SIXTY THOUSAND inventors have availed ventions, and procuring their patents. MUNN \& CO^{2}, in connection with the publication of the Soientifio Amerioan, continue to examine inventions, assignments,attend to fling applications in the Patent Office, paying the government fees, and watch eacn case step by step while pending before the examiner. This is done through their branch office, corner F and 7th streets, Washington. They also prepare and file caveats, procure design patents, trademarks, and reissues, attend to reiected case (prepared by the inventor or other attorneys), procure copy
rights, attend to interferences, give written oplnions on matters of infringement, furnish copies of patents, and, in
mind act, attend to every branch of patent business both in this and in foreign countries.
all inventions patented through this antreic Amerions on and residence of the patentee. Patents are often sold, in part or w
notice.
Patents obtained in Canada, England, France, Belgium, Germany, Russia, Prussia, Spain, Portugal, the British Colonies, and all other countries where patents are granted at prices greatly reduced from formerrates. Send
for pamphlet pertaining specially to foreiga patents which states th
countr
Copios of Patents.
Persons desiring any patent ssued from 1836 to Novem ber 26, 1867, can be supplied with offictal copies at a reasonable cost, the price depending upon the extent of draw-
Any patent issued since November 27, 1867, at which time the Patent Office commenced printing the drawings
and speciflications, may be had by remitting to this office $\$ 1$ A copy of the claims of any patent issued since 1886 wil be furnished for $\$ 1$
When ordering copies, please to remit for the same as
above, and state name of patentee, title of invention, and date or patent.
A pamphlet containing the laws and full directions for oound Reference Book, gilt edges, contains 140 pages and many engravings and tables important to every patentee erybody. Price 25 cents, mailed free. Adaress MUNN \& CO.
Publishers SCIENTIFIC AMERICAN
Washington, D. \mathbf{C}.

gaduertisements,
Pack Page Inside Page Pa : Engravinuss may head advertisements at thesame rate carly as Friday morrinnt to appear in next issue.
POPE'S RIFLE AIR PISTOL Shoots darts or slugs a distance of 50 feet Price $\$ 5.00 ;$ Nickel Plated, $\$ 6 . c 0$ Invaluable for target practice.
Harvard Pocket CIGARETTE ROLLER, \$1. Sent by mail on receipt POPE M'F'G CO.. 45 High St., Boston, Mass.要 Send for Circular.

Asbestos Roofing. with the Improved White Asbestos
Fire Proof Coating, for steep or flat Roofsinall cllmates. Fire Proof Coating, for steep or flat Roorsina all climate
Asbestos Raof oating, orol Leaky Roofs
Asbestos Cement. for refarring Leaks on Roofs.

 These artycles are, ready for usee. and can be easily a
lied by any one. Send tor Pamphlets. Price Lists, षc. H. W. JOHNS, 87 Maiden Lane, N.Y.,

Wrinkles and Recines

NOW READY.
Useful Hints, Suggestions, and Recipes, for En gineers, Mechanics, Farmers, and Housekeepers.
Contains the concentrated wisdom of practical men who have contributed to the Scientific Ameri CAN during late years. Also the cream of the Practical Mechanism series by Joshua Rose. Hun dreds of valuable trade secrets and recipes. Handsomely bound and copiously illustrated, 250
pages. Price, post-paid, $\$ 1.50$; with ScIENTIFIC pages. Price, post-paia, $\$ 1.50$; with
American, for one year, $\$ 4.20$. Address
H. N. MUNN, Publisher P. o. Box 772. 3y Park Row. New York city

REYNOLDS \& CO., 145 EAST STA, NEW HA

PATENT SCROLL SAWS.
 PUNCHING For the Rest ind cien

Mill FurnishingWorks
 The NILES ENGINE.
 Niles Tool Worles,

ROOTS' ROTARY HAND BLOWER.

FOR ALL KINDS OF BLACKSMITHING. DOES MORE AND BETTERWORK, SAVES ROOM, LABOR, AND COAL, AND LASTS TEN TMES LONGER THAN BELOWS.
P. H. \& F. M. ROOTS, Manuf'rs, CONNERSVILLE, IND.
S. S. TOWNSEND, Gen'I Ag't, 31 Liberty St., NEW YORK.

HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY.
W. B. FRAMKLNN, V. Pres't. J. M. ALLRNT, Pres't. J. B. PIERCE, Sec'ry. matrfobd, ojna.

Diamonds Carbon

 ened steel, Calender Roliers, and for Sawing, Turning.
Worrins stone and other hard dubsances; alion Glazer
Diamonds. J. DICKINSON, 64 Nassau St., New York.
PORTLAND CEMENT

D0 YOU Male or female. Send your at-

TMPORTANT FOR ALL CORPORATIONS AND

11×36 Sivch corliss Evaine, 200 LB

Water Wheels.

Portland Cement,

 Gr send tor pook on Bo ler Ther Hodition, Ina.

W. C. DUYCKINCK, Railway, Machinists' and En gineers $_{\text {AND }}$ Supplies, .o. Box 4101 NEW York Todd \& Rafferty MachineCo.

The Standard-Best Stock-Finest Finish. D. ARTHUR BROWN \& CO., Fisherville, N. H. Machinist's Tools.

MREMOPE

- robbint s sons, Manafactur

Steel Tube Cleaner.
 COVERING
 Upright
Stationary Engines, Strong, Simple, Safe, and Ser4,6 , and 8 Horse Power. GRIFFITH \& WEDGE,

MROUSY (

SCIENTIFIC AMERICAN, FOR 1876,
THE MOST POPULAR SCIENTIFIC PAPER IN THE WORLD.

THIRTY-FIRST YEAR.

VOLUME XXXIV.-NEW SERIES.
The publishers of the SCIENTIFIC AMERICAN beg to announce that on the first day of January 1876, a new volume commenced. It will continue ents of the new volume more attractive and use ful than any of its predecessors.

To the Mechanic and Manufacturer No person engaged in any of the mechanical pur suits should think of doing without the Scien tific American. Every number contains from
six to ten engravings of new machines and inven tions which cannot be found in any other publica
The SCIENTIFIC AMERICAN is devoted to the interests of Popular Science. the Mechanic Arts, and the industrial pursuits generally; and it is val uable and instructive not only in the Workshop and Manufactory, but also in the Household, th Library, and the Reading Room. Each volum contains hundreds of Notes, Recipes, and Sugges tions, and Advice, by Practical Writers, for Work EERMS OF SUBSCRIPTIONS..--POSTAGE PAID BY US. $\$ 3.20$ One copy Scientific American, one year.... $\$ 3.20$ One copy Scientiflc American,three months 1.00 One copy Scientific American and one copy

Scientific American Supplement, both
for one year, post-paid... 7.00 cear, and one copy of engraving, " Men
of Progress" 10.00
ne copy Scientific American, one year,
andone copy Science Record for 1876....
5.20 Remit by postal order, draft, or express. Adurd ander payable to

MUNNN \& CO
The "Scientific American", is printed with

[^0]:

