

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY AND MANUFACTURES.

A SEMI-ROTARY ENGINE.

If anybody should ever apply the development theory of creation to steam engines, the apparatus represented in the engraving herewith annexed would doubtless be hailed as the connecting link between rotative and rotary machines. It certainly is a curious hybrid; it is a reciprocating machine, and yet it is not wholly so, nor is it exactly a rotary ; perhaps the inventor's name for it, as above stated, is the best, after all, that could be devised. Its construction and operation will be easily understood from the illustrations, which we take from the Engineer.
A is the crank shaft, B the crank pin, C the piston, D the valve, E the cam, F the cam wheel, G the valve spindle, and H the supply pipe. The steam is admitted on the face of the piston, through the valve, which, as shown in the side elevation, is worked by the cam, E. The piston then travels in the direction of the arrow, first ahead, then up, down, and back. The governor is so arranged that full boiler pressure is always admitted.
The advantages claimed are (over the ordinary piston engine) reduced cost, it occupies less than half the space, it is goveined expansively in an ef ficient manner, and there are few wearing parts. It is the invention of Mr. Andrew Hig. ginson, of Liverpool, England.

A New Flooring.

A new system of parquet flooring has recently been introduced in France by M. Buffaut The squares are composed of slips of wood made in patterns. The pieces are held together by a layer of bituminous cement laid hot on their under side, and this cement is, in turn, covered with a paving tile, so that the three substances are intimately united. Conical pins are driven through holes left in the tiles and into the wood, while the cement is still in a liquid state. The squares are laid in mortar or cement over a layer of sand, and are joined together by very fine iron tongues fitting in grooves. This system is applicable where marble and ordinary par ments are employed, and may be also ap plied to cabinet work.

MPROVED CONTROLLING NOZZLE

We illustrate herewith an improved nozzle, adapted to fire extinguishing apparatus and for other purposes, whereby the size of the stream, and consequently the volume of water projected, may be easily controlled, or the jet be altogether shut off. There are many advantages at tending this arrangement, which will sug gest themselves to all conversant with the demerits of the ordinary nozzles. Perhaps the most important advantage (and the one that will especially commend itself to in surance companies) is that the device is calculated to prevent the indiscriminate flooding of warehouses, and the conse quentlarge damage, by water, to buildings and to valuable stock. The reduced stream suffers no diminution of force, and can be thrown as far as, if not farther than, a je projected from a common plain or ring nozzle. Consequently, in small fires, the quantity of water necessary for their extin guishment can be applied, and any surplus drenching avoided. The controlling me chanism opens and closes the nozzle very uniformly and gradually, so as to avoid the shock due to sudden starts or stoppages of the water. The hose is thusprevented from bursting, while the apparatus is rendered safe for use on hose or hydrants carrying high pressures, and on hose connected to fire engines equipped with relief valves. Greater facility is also afforded in handling hose, by closing down the nozzle and reducing or cutting off the back thr ust of the stream.

An exterior and a sectional view of the invention are given in the annexed engravings. The nozzle barrel, A , is screwed into an end piece, B, which has its discharge orifice, C, opening into a valve guard tube, D, in which are air inlet holes, E. A long pointed cone valve, F, placed concentrically with the nozzle, has its stem, G, accurately fitted, but free to the nozzle, has its stem, G, accurately fitted, but free to
move in a small tube, H, which is supported by two thin
city to throw a stream of $1 \frac{1}{8}$ inches, 1 inch, and $\frac{8}{4}$ inch in di ameter. These are adapted to all requirements, including those of hotels, warehouses, factories, steamships, etc., up to the largest pumping engines, and are likewise capable of hrowing jets as small as $\frac{1}{4}$ inch.
The inventor, Mr. Melville Clemens, of Worcester, Mass. submits a large number of testimoniais from the chiefs of the Fire Departments of New York, Philadelphia, Worces ter, Holyoke, Mass., and othe cities, pump manufacturers, and others, all of which indi cate that the device is both use ful and efficient.
Patented March 14, 1876. Pa tents applied for abroad and in Canada. For further informa tion and circulars, address the manufacturers, the Eaton, Cole and Burnham Company, 58 John street, New York city.

Cinnamon and Cloves.

The cinnamon of commerce is the inner bark of a tree close ly resembling the laurel, or sweet bay, a native originally of Ceylon, but which is now grown in the other parts of th East Indies, and also in Jamai ca and other West India islands. The trees are left to grow un molested until they are nin years old, at which time th young shoots or branches that are about thre years old are lopped off. The bark is the slit on one side and removed from the branch, tied up in bundles until the next day when it is loosened, and the skin or outer bark scraped off It is then dried or rolled up into quills or pipes, about three fee long, which have a slit dow

HIGGINSON'S SEMI-ROTARY ENGINE

father-edged wings, I, fixed transversely in the barrel. A one side, where the bark was cut. The smallest quills ar ong narrow slot, K is formed through the wings and bar- rolled up inside the larger; the whole then tied up in bun el, in which slot traverses a flat bar, L, which is fixed to the valve stem. Said bar has rack teeth on its ends, which ungage the screw threads of a milled sleeve, M, which re volves freely on the barrel, A, and which moves the cone valve out and in from its seat at the discharge orifice, to regulate the size of tte stream or to shut off the same. The water forms on the cone a solid round jet, which does not fill or touch the tube, D. A spraying attachment (notshown in the engravings) is made by placing in the outer end of the tube, D , a disk perforated with divergent holes, which is se cured in place by a suitable cap. When this disk is placed in one position it throws a spray, and when it is turned over it throws a solid stream, in both cases backing the water up

THE CLEMENS ECONTROLLING NOZZLE.
ear spray from the holes, which protects the pipeman from smoke and heat. The nozzles are made in three sizes, respectively of cap flame being conveniently carried from point to point. The The nozzles are made in three sizes, respectively of capa- crack will run before the flame in any desired direction.

Srientifir eqmericam.

MUNN \& CO., Editors and Proprietors. published weekiy at
NO. B^{7} P PARK ROW, NEW YORK.
O. D. MUNN.
A. ह. BEACH

TERMS.

One copy, one year, postage included....
ClubRates.
Ton coples, one year, each $\mathbf{8 2} 70$, postage included.
ge included..........................82y 000 subscriber then recelves the paper free of charge.
Notr.-Persons subscribing will please to give their full names, and Post Office and State address, plainly written, and also state at which time they Wish their subscriptions to commence, otherwise the paper will be sent from dress, as well as give the new one. No changes can be made unless the ar dress. as well as give
meraddress is given.
If any of our readers fall to receive their numbers regularly; if the direc. tion is not plainly written; if premiums are not received; or if there is tault of any sort at this office, we will thank our frlends to send us postal card complaints, and repeat the same, if need be, unt1l the remedy is effect-
ed. Do not hesitate to complain. We desire to keep all matters between ed. Do not hesitate to complain. We desire
ourselves and patrons right and satisfactory.
volume Xxxiv., No. 15.[New Series.] Thirty-first Year.
NEW YORK, SATURDAY, APRII 8, 1876

the scientific american supplement. No. 15.
For the Week ending April 8. 1876 table of contents.

v. ASTRONOMY.-The Velled Solar spots,

combined rates.

THE CENTENNIAL EXPOSITION AS AN ELEMENT IN THE DEVELOPMENT OF OUR MANUFACTURING INTERESTS
There can be reasonable doubt that the United States is about to assume a new and important position as a mar ufac turing nation. But a few short years ago, we were known as an agricultural country, having vast mineral resource lying idle and unproductive. Our imports of the various metals and of manufactured goods were something enor mous; we have just emerged from a war unsurpassed in it war in which the whole losses of both sides fell upon one nation and people; and yet since the close of that conflict nation and people; and yet since the close of that confict,
we have made our debitt as a manufacturing people and maintained a rate of progress hitherto unparalleled in the history of nations. To this fact more than to any other will the Centennial Exposition point. Of the 60 acres of ground covered by the exhibition buildings, only about 12 acres are devoted to agricultural and horticultural pursuits, while there are 14 acres devoted to the products of machinery alone. Time will probably show that the markets of the world will be opened to American manufacturers, and the Centennial Exposition will do much to bring the demand for our mineral and manufactured products in direct contact with the supply. The more we examine into this view of our subject, the more impressive it becomes.
During the last decade, the prices of our raw material and labor have ruled exceedingly high; and yet we have driven foreign steel from our markets Our imports of cotton and of neariy afí other manufactured goods are largely and continuously on the decrease. At the present time, our cost of production is diminishing by cheapness of labor. We are steadily grasping the edge tool trade. Our cast iron is forcing its way as the best yet produced, and the inventive power and intelligence of our mechanics are universally recognized. We are about to repeat the experience of the older nations. During an era of high prices, we developed our mineral resources and learned to manufacture high class goods, and to spin and weave our own products; but the comparatively high price of our labor and other similar causes excluded us from entering the competitive markets of the world. Fortunately for us, there has set in, with every prospect of a continuance, an era of diminution of the values of both material and labor, which will enable us to tender
our goods in markets other than our own; and more fortunately still, the Centennial Exposition steps in and brings the purchaser to inspect our goods.
This is the first instance, in the history of the six great international exhibitions of the last 25 y tars, in which the question of the comparative cost of productions has been largely considered or mooted in an international sense. Never before have the representatives of national industries debated the questions of comparative cost of production, of affixing to exhibited articles their prices, of the propriety of competing unless such prices were affixed, and of the ques tionable policy of putting on exhibition products of manuathe nation mainly interested in such should gather information and ieas rendoring then stin more for-
midable as competitors in the world's markets. These are the facts which evidence the existence of a feeling that the Centennial will become the means through which new chan nels of trade are to be opened up, and long established markets are to be closed; and through which, while new cus tomers are to be found, old ones are to be certainly lost.
Among the branches of American trade to be the most largely benefited, we may doubtless mention the iron, steel, machine, edge tool, saw, agricultural implement, woodcottong machinery, general and special tool, imber, and foreign visitor fail to perceive that our remarkable progress in manufactures is largely due to the comparative liberality of our patent laws,and the encouragement given to inventors through the progressive character of our people. That the through the progressive character of our people. That the
number of visitors to the exhibition will be large, the travelnumber of visitors to the exins are probably a sufficient guarantee: that the attendance of the business community will be proportionately larger than at any previous international exhibition, there is every reason to presume, for the reason that competition is here unusually close. Every tradesman considers it his duty to be "posted" as to his competitor's goods and facilities to carry on his business; the "drummer," as our genus of the commercial traveler is facetiously termed, is a profuse American institution; while an American housewife scarcely makes a purchase without having priced the desired article at two or more stores.
We are convinced that the honors in the shape of awards will be eagerly sought, and that their possession will largely influence many branches of trade; while the benefits to be bestowed upon us by this peaceful industrial mouument erected to the Centennial of our national existence, are at present almost incalculable.

bad ventilation at the capitol

If the dozen or so of Congressmen now sick withthroat disease shall serve, even in a moderate degree, to impress upon the people the evils of bad ventilation and of vitiated air, our afficted legislators will not have suffered in vain. As martyrs, they will perhaps have done the country better service than as law makers. But the wretched ventilation of the House of Representatives is no new thing; neither is the foul atmosphere in the public schools of New York, though the existence of both sources of peril is once more being prominently brought into public notice by the daily papers. Poisoning the innocent pupil on one hand, and smothering the statesman on the other, are standing national abuses which, it might be argued, are only to be remedied by the
superfluously glaring, and, by such examples as the present being brought into daylight, it is to be hoped that the full extent of their dangers can be rendered so apparent as to show the folly and culpability of neglecting the precau tions necessary to avoid them. Carbonic acid is the pro duct of perfect combustion and of the breathing of animals, the oxygen in the latter case uniting with carbon in the system; and the air expired contains about $4 \frac{1}{2}$ per cent of carbonic acid gas. This, if confined, contaminates the pure air in the room to such an extent that, if an atmosphere, contain ing one two-hundredth of it be breathed, headache and lassi tude result. This, however, is not fatal, as air mixed with 5 or 6 per cent of the deadly gas may be safely breathed ; bu an atmosphere of 25 per cent carbonic acid is deadly. Child ren breathe about 14 cubic feet of air per hour, and this, when exhaled, contains 430 times the normal amount of car bonic acid; and so swift a poison does the air then become that if 100 persons were confined in a room, 18 feet square by 11 feet high, in which there was no ventilation, within two and a half hours every individual would be dead. Therefore when people of sedentary occupations become afflicted with headaches and sore throats, and it is known that they habit ually exist in a foul atmosphere, it is as safe to assert that they are being slowly poisoned as it would be had they contract ed the opium or any other injurious habit. Butto this source of danger must be added another : It appears that the ventila ting arrangement of the House of Representatives is such tha the cold air sweeps down upon the floor, and thus forces upon the members the foul atmosphere, generated by the gas burn ers and by the occu;ants of the galleries. The fresh air supply is taken in through the basement into the cellar, and is then forced up by fans through iron pipes, which, it is said, are coated by many years accumulation of rust and particles of decaying animal and vegetable matter." From these the current goes through a series of horizontal air ducts, and finally, at a temperature of 100° or thereabouts, is driven into the chamber through registers, which for years have filled the office of spittoons. It is further reported that the mouth of the sewer which drains the Capitol is submerged so that from every sink there is an escape of sewer gas into the building. Under this condition of affairs, there is no cause for wonder that those who occupy the House should complain.

AFRICAN RUBBER.

The coast region north and south of the Congo is becom ing quite an important source of caoutchouc. It is produced by a giant tree creeper (landolphia), which grows principall along the water courses. It covers the highest trees, and fre quently considerable extents of forest are festooned down to the ground, from tree to tree, in all directions with its thick stems, like great hawsers. Sometimes its stem is as thick as a man's thigh. Above, the trees are nearly hidden with its large glossy leaves of dark green hue, and studded with beautiful bunches of, pure white star-like flowers, most sweet ly scented. Its fruit is of the size of a large orange, yellow when ripe, and perfectly round, with a hard brittle shell inside it is full of a soft reddish pulp of an agreeable acid flavor, much liked by the natives. It is not easy to obtain ripe seeds, as the creeper is a favorite resort of a villanous, semi transparent, long-legged red ant-with a stinging bite, like the prick of a red hot needle-which is very fond o the pulp and the seeds distributed through it.
Every part of the creeper yields a milky juice when wounded; but, unlike the juice of the American rubber tree this milky sap will not run into a vessel placed to receive it It dries so quickly that a ridge is soon formed over a cut, and the flow arrested. When collecting it, the natives make long cuts in the bark with a knife, and as the sap gushes out they wipe it off continually with their fingers and smear it on thei arms, shoulders, and breasts, until a thick covering is formed Then they peel it off and cut it into small squares for trans portation.

A COPPER-BEARING BIRD.

One of the most interesting of the West African birds is th plaintain eater, corythaix paulina, found abundantly in th thick forests of Angola. By the natives these birds are regard ed with superstitious reverence, due apparently to their loud hoarse, unbirdlike cry, which is of such evil omen that, i uttered within the limits of a town, the place is immediatel abandoned. They are sometimes brought from the interio to the coast for sale, but the carriers are not permitted to bring them into towns along the road.
It is a remarkable characteristic of this bird that the gor geous blood red color of its wing feathers is soluble, especial ly in a weak solution of ammonia, and that the soluble color ing matter contains a notable quantity of copper. By burn ing the smallest portion of a feather in a Bunsen burner, th presence of copper is clearly manifested. By transmitted
light,the ammoniacal solution is of a magnificent ruby red col light,the ammoniacal solution is of a magnificent ruby red col
or. From a bunch of 300 feathers brought from Sierra Leon by J. J. Monteiro, about 16 grains of turacin was obtained by Mr. Henry Bassett, who reports that two copper determination gave quantities of oxide of copper corresponding to 7.6 and $8^{\circ} 0$ per cent of metallic copper. From an earlier investiga tion, Professor Church found 6 per cent of copper. Mr. Monteiro reports that the copper is derived from particles of malachite, so universally distributed over Angola, the habits of the birds seeming to favor this, as they are ex tremely inquisitive in their wild state, and given to picking up bright objects. On the other hand, he has known them to moult regularly and reproduce their splendidly colored feathers when kept in confinement where copper could by feathers when kept in confinement where copper could by
no means enter into their diet, except what might be con
tained in fruit, rice, bread, biscuits, and vegetables, their customary food in the absence of their favorite bananas. A specimen of an allied species, c. Livingstonii, was brought to England by Mr. Monteiro, who describes it as beautifully tame and gentle. It was most amusing in its habits and in the notice it took of everything around it. A change of dress, or even a new ribbon, excited its attention greatly. It would utter a loud cry and open out its lovely wings in astonishment, and, coming close to the bars of its cage, examine the new decoration with the liveliest curiosity It was very fond of looking at pictures, especially brightly colored prints. At night it roosted in a little flat basket, in which it showed a child-like reluctance to nestle until it was sung to for a few minutes, when it would utter a satisfied sort of low rumbling noise, squat down, and go quietly to sleep.

The wild birds display their observing and extremely in quisitive disposition by running along the large branches of the treess in an excited and fussy manner, with outstretche neck and expanded wings, peering down on any intruder with
every expression of interest. The natives believe that these every expression of interest. The natives believe that these
demonstrations are intended to give travelers warning of danger from wild beasts and robbers.

the cost of moths and mildew

A very striking illustration of the value which often at. taches to a patent for a comparatively small invention, espe cially when the introduction of the same is skilfully managed, may be found in the large sums paid by our govern ment for the use of a process for preventing moth and mildew
in army clothing. The aggregate amount made thus far by in army clothing. The aggregate amount made thus far by Quartermaster General's report for 1874, the following pasQuartermaster General's report for 1874, the following pas-
sage occurs: " The expenditures on account of the moth sage occurs: "The expenditures on account of the moth
and mildew proof process of Cowles \& Co., during the fiscal year, have been $\$ 350,000$. This includes $\$ 200,000$ appro priated for the current fiscal year, but made available for expenditure during the last fiscal year." To prepare arti. cles not yet treated, an additional appropriation of $\$ 100,000$ is asked; but this subsequently was cut down in Congress to $\$ 50,000$. The patent was granted, September 20, 1864, to George A. Cowles, Jesse P. Case, and Victor Vieron, of New York city, and is based on the preservative action of sulphate of copper on vegetable fibers. By the addition of alum, the preserving qualities of the mixture are, it is claimed, greatly enhanced; and when gelatin is also combintd, the fibers are
said to be not only proof against decay, but also impervious said to be not only proof against decay, but also impervious
to water. The ingredients are: Alum, 2 lbs., dissolved in 60 to water. The ingredients are : Alum, 2 lbs., dissolved in 60
lbs. of water; blue vitriol, 2 lbs., dissolved in 8 lbs. of water; lbs. of water; blue vitriol, 2 lbs ., dissolved in 8 lbs. of water;
to which is added gelatin, 1 lb ., in 30 lbs . of water. A still to which is added gelatin, 1 lb ., in 30 lbs . of water. A still
further improvement is said to be effected by acetate of lead, further improvement is said to be effected by acetate of lead,
$\frac{1}{2} \mathrm{lb}$., dissolved in 30 lbs . of water. The solutions are all hot, and separately mixed, with the exception of the vitriol which is added cold.
The circumstances attending the adoption of, and the continued royalty paid for, this process, are soon, we learn, to be made the subject of Congressional investigation, it being and that some officials have acted fraudulently with regard to it. Whether these charges are substantiated or not, the fact nevertheless remains that the government is out of pocket some $\$ 400,000$, and that the patentees or managers of pacents are the gainers of a very large sum of money. The actual value of a process which will effectually destroy moth and prevent mildew in cotton or woolen goods would be
great, even if the particular process now in question proved great, even if the particular processnow in question proved
worthless. The simple fact of such large amounts having been paid for the use of the patented process in a single article conveys some idea of what may be realized by the in ventor of any other process for like purposes which can be proved to be really efficient, especially if he be lucky enough to find in the government so liberal a patron.

THE POWER OF BOILERS.

Our readers must have observed the many questions on this subject that occur in our correspondence columns; and it manufacturer talks of the horse power of his boilers, we have invariably repled that we were unable to define the term, or furnish any standard rules relating to it. We think, however, that we can give good reasons for the position that we anything, we must have some unit if we wish to measure anything, we must have some unit of comparison in which
the measurement may be expressed. It is easy to determine the measurement may be expressed. It is easy to determine these are standard units, fixed by law. But if every manu facturer of cloth used a measure of his own which he called at pleasure a yard or an inch, without regard to its actual length, it is clear that a general expression like two yards of
cloth would not have any definite meaning; and if we wished cloth would not have any definite meaning; and if we wished
to speak of yards, it would be necessary to specify what parto speak of yards, it would be necessary to specify what par
ticular yards were meant: so that it might be said, for inticular yards were meant: so that it might be said, for in
stance, that 5 of Mr. A's. yards of cloth were the same as 10 of Mr. B's. We shall show directly that this is about the way in which we have to compare boilers rated by different makers. Any one who has looked over the catalogues of steam engine builders has doubtless noticed that different an engine may be rated in one list as 5 horse power, while another maker may rate one of the same size at 10 horse power. Fortunately, the term horse power, as applied to a
steam engine, has an arbitrary meaning; and if an engine is steam engine, has an arbitrary meaning; and if an engine is
sold under the guarantee that it shall develope a certain armount of useful horse power, all engineers will agree upon
the meaning of the guarantee. When there was little difthe meaning of the guarantee. When there was little dif.
ference in the details of engines, it nsually bappened that a
boiler large enough to furnish one engine with steam would answer for any engine of the same dimensions; and as each of these engines would develope about the same amount of power, it was usual to speak of a boiler as being of such a
horse power, meaning thereby that it would furnish steam forse power, meaning thereby that it would furnish steam
for an engine of that horse power. Having found by experiment the proper size of boilers for engines of different di mensions, the builders were enabled to construct empirical rules, and to say that, for each horse power that the engine was to develope, a certain weight or volume of water must be vaporated by the boiler per hour, requiring a definite amount of heating and grate surface. In those days, a boiler of 10 or a 10 horse engine and as the that would furnish stean gines varied but little, the term had a tolerably definite meaning. In the course of time, as improvements were in troduced, it was found that the size of a boiler was not always a measure of its efficiency, and that different engines were operated with widely varying measures of economy as heating, in which it was difficult to estimate the effect in horse power. Another disturbing cause arose from the fact that,as the demand for machinery extended and new manu tories were started, under the competition of the trade it was not uncommon for makers to change the old rating, so as to
induce their customers to believe that they were getting induce their customers to believe that they were getting more for their money. Now if Mr. Smith, who keeps a dry and offer to sell 12 yards of calico for the same price that Mr Jones, who uses a standard yard stick, asks for 8 yards, very few people would be imposed upon,and probably an inspector would make things unpleasant for Mr. Smith. But it is very common for Mr. Robinson, who is a boiler maker, to decide that 0 feet of heating surface per horse power is a good proportion for a boiler, and offer a 15 horse power boiler for the same price as Mr. Brown's 10 horse boiler, which has 15 feet
of heating surface per horse power. If any one will compare of heating surface per horse power. If any one will compare
a few price lists of boilers, he will find just such anomalies afew price lists of boilers, he will find just such anomatioe will not enable him to express its power, for the reason tha he has no standard by which to measure it. If he extend his inquiries a little farther, he will find engines developing precisely the same power, but requiring boilers of very differ ont size and efficiency, for the reason that one engine may be much more economical than another. Experience shows, for nstance, that there are some engines which require th evaporation of more than 100 lbs . of water per hour for each horse power, while others need less than 20 , which suff ciently demonstrates the impossibility of rating the standard power of a boiler by connecting it to any engine, taken a pleasure, and measuring the horse power developed. It is
ovidently unfair to make a good boiler suffer for the faults of a wasteful engine-and the number of engineers supporting our view of the matter is daily on the increase-this view, briefly expressed, being that the proper method of es timating the power of a boiler is to measure the quantity of water which it can evaporate in a given time, as, for instance,
n hour. Now if feed water is supplied to one boiler at n hour. Now if feed water is supplied to one boiler at er square of 60 , and the steam phather boiler is 120° and the steam pressure only 50 lbs , a pound of water vaporated in the first boiler must have more heat imparted may be still different; and in order to make a fair comparison etween different boilers under various circumstances, it is ecessary to reduce the evaporation of each to a commo tandard, the standard usually chosen being the equivalen ovaporation that would have taken place if the temperature
of the feed had been 212°, and the pressure of the steam the same as that of the atmosphere. A simple manner of mak ing this reduction was explained a short time ago in the Scl entific American (page 225, volume XXXIII). In measurin he evaporation of any given boiler, it is to be remembered tha in some boilers water is carried over with the steam; and unless its amount is determined, the evaporation will be he hasis ited. A purchaser who buys a boiler measurd o getting for his money; but it seems desirable to many that some unit should be fixed upon, so that the performance can e expressed in horse power. Such a rating would un doubtedly be convenient in many respects; and the value of he unit does not appear to be a matter of much importance in this respect. A few years ago a committee was appointed by the Franklin Institute to fix upon a standard for the horse power of a boiler. After long deliberation, they presented two reports. All the members of the committee agreed tha the true measure of a boiler's power was its actual perform ance, or its equivalent evaporation of dry steam, from and a 212°. A portion of the committee considered that the proper measure of a horse power was the equivalent evaporation of one cubic foot of water per hour, while che remainder stated hat were unable to agree upon any standard. The re regard to the practice of different makers in proportioning boilers.
The most recent publication upon the horse power of oilers is a little pamphlet by Mr. Nystrom, which has al ready been briefly noticed in our columns. Mr. Nystrom claims a have established the legal definition of the horse power of law of dynamics, and is not contrary to the law of the land, Without discussing this point, it is sufficient to say that Mr. Nystrom's definition, however legal it may be from his point of view, is certainly not legalized, and consequently
only adds one more to the sssumed standards, which are al
ready too numerous and confusing. His method may be briefly illustrated as follows:
A cubic foot of water, when evaporated, forms a definite volume of steam, corresponding to the pressure; and if we take the product of: 1. The number of cubic feet of water vaporated per hour. 2. The increase of volume of each cubic foot of water, by its conversion into steam. 3. The pressure of the steam, in lbs. per square foot:and divide this product by $1,980,000$, the quotient, which is the greatest power this steam can develope in a non-condensing engine, without expansion, is the horse power of the boiler. Suppose, or example, that a boiler evaporates 25 cubic feet of water per, hour, and that the pressure of the steam above the atmosphere is 130 lbs . per square inch,or $18,720 \mathrm{lbs}$. per square foot. The relative volume of steam of this pressure is $192 \cdot 83$, so that the increase of volume for each cubic foot of water, on its conversion into steam, is $191 \cdot 83$ cubic feet, and the horse power of the boiler is the product of $25,191 \cdot 83$, and 18,720 divided by $1,980,000$, or $45 \cdot 3+$
Mr. Nystrom gives a formula for reducing the observed vaporation to equivalent evaporation from feed water at 32° He states, as we understand him, that the correct determina
tion of the quality of the steam is impossible in the present state of our knowledge, and consequently his rule is defective, basing the rating of a boiler upon its apparent evaporation, uncorrected for priming or superheating. Of course engineers who think that they are able to make these corrections can readily introduce them into Mr. Nystrom's formulas; but they will probably find that the method previously stated, of basing estimates of power upon the equivalent evaporation from and at 212°, is preferable, on many accounts.

the pay of the patent bureau.

The policy of reducing the salary of office holders, gener ally, which has occupied considerable attention in our present Congress, we do not intend to discuss; but we agree Wew The sentiments of a Washington correspondent of the should be pursued in the opinion that age potent which not only is self-supporting, but has acquired a large surplus fund. The inventors pay all the expenses of this department; it costs the government nothing to run it; and it would be poor policy to reduce the expenses attending its management if inferior talent is to take the place of the present efficient Commissioner and his force of assistants, which
will be the natural result. Inventors were never more active will be the natural result. Inventors were never more active
than now; and it would be a bad commentary on our Centhan now; and it would be a bad commentary on our Cen husiasm of our great body of inventors, to whom is due so much of our nation's progress.
R. H. Duell, Commissioner of Patents, thinks, states the same correspondent, that it will be very unwise to cut down the expenses of a self-sustaining bureau like his. He says that the United States Patent Office has long had a large annual surplus, that its business is increasing, and that there is no reason apparent for reducing either the number or pay of its officers. "The work of the office requires special raining; even with the present pay, it is not possible long to keep in government employ many of those
best fitted by talent and experience for the duty; best fitted by talent and experience for the duty;
the credit of the office and the interest of inventors, whose the credit of the office and the interest of inventors, whose
money supports the office, and of manufacturers, whose money supports the office, and of manufacturers, whose
capital to the extent of many millions is involved in capital to the extent of many millions is involved in
patents, are imperiled by inefficient work; and the inpatents, are imperiled by inefficient work; and the increased number of patents and the general progress of the arts render the proper examination of applications each year more difficult. The erroneous issue of a single patent may easily involve the loss of ten times the amount of the yearly pay of an examiner. These examiners are not only to grant patents, but to see that none are improperly granted. Inventors pay to the government more than enough to afford the small pay now allowed. To take possession of this fund, and then furnish half paid (and consequently poor) service, seems like fraud on inventors. Should the proposed reduction be made, it will be impossible to keep up the business of the Office." The receipts from applications for patents have run up from $\$ 703,191.77$ in 1873 to $\$ 743,453.36$ in 1875 , and the surplus last year was $\$ 21,795.65$. The appropriation for 18756 was $\$ 436,400$; the House bill proposes to cut down 351 to 294.

Black Varnish for Iron.
A durable black and shining varnish for iron is made by adding to oil of turpentine strong sulphuric acid, drop by drop, stirring until a sirupy precipitate is formed, and no more of it is produced on further addition of a drop of acid.
The liquid is now repeatedly washed with water, until the The liquid is now repeatedly washed with water, until the water exhibits no more acid reaction. The precipitate is next brought upon a cloth filter, and after all the water has un off, the sirupy mass is fit for use. This is painted over the iron with a brush, being previously diluted with oil of turpentine, in case it does not flow well. Immediately afterward, the paint is burnt in by a gentle heat, and, after cooling, the bla.jk surface is rubbed with a piece of woollen stuff dipped in linseed oif. Thisvarnish is said to combine chemically with the metal, and does not wear or peel off.

Some idea of the immense slaughter of buffaloes which yearly takes place on the plains and which is rapidly leading
to the total extinction of that animal, may be gleaned from to the total extinction of that animal, may be gleaned from
the fact that seven cars freighted with buffalo bones recently arrived in this city. The material will be worked up inta buttnns, ' knife bandles, etc.

A PORTABLE HYDRAULIC RIVETING MACHINE. Mr. Tweddell, a well known English mechanical engineer, has recently designed apparatus for riveting locomotive boilers without removing them from the engines. The machine has been erected and is now in use at the Crewe Locomotive Works of the London and Northwestern Railway, where it has been found very useful for doing such work as could not conveniently be brought to the fixed riveting machines. The arrangement, says Engineering, is so simple that not much description is needed. An ordinary swing crane has attached to it an hydraulic sleeve or outer cylinder, which is $\left.\begin{aligned} & \text { attached to it an hydraulic sleeve or outer cylinder, which is } \\ & \text { moved along a fixed tube or pipe by means of a pinion }\end{aligned} \right\rvert\, \begin{aligned} & \text { and matters combined therewith, obtained in the distillation, }\end{aligned}$
tillation till finally a heat as high as 600° or 800° Fah. is the distillation of heavy oils from coal tar (thus making one reached. As the heat rises, the more solid constituents of the pitch become volatilized, till anthracene comes over; this oc curs at a temperature of 600° or 800°.
Fig. 1 represents a plan view, and Fig. 2 a side view, part. ly in section, of the apparatus. a is a cast iron vessel, in which the coal tar pitch is placed for distillation by the furnace, b. $c c$ are flue spaces by which the heat may be retained in contact with the surface of the vessel, $a . \quad d$ is a pipe with a stop cock, d^{\prime}, by which pitch may be supplied

郎 heavy oils frocess of the two operations) by distiling the ted with a ted with a soon as the heavy oils have been worked off, a residuum of pitsh is left; and without allowing to cool, it is at once run off into a set of vessels, a, which have been previously heat ed, and in which the distillation is proceeded with until the liquid or gaseous products have passed over to the conden ser, aided in some cases by the use of a partial vacuum. Fig 3 represents a sectional view of the apparatus arranged to.

TWBDDELL'S HYDRAULIC RIVETER AND CRANE.
worked by a sprocket wheel, this pinion gearing into a rack attached to the crane. The water, which is supplied under dell's differential accumulators, is taken from the main laid along the shop wall, and thence up the center on which the crane radiates. Thus any motion caused by swinging the crane is reduced to a minimum, and a swivel joint, almost frictionless, causes no twisting strain to be imparted to the pipe. After leaving this joint the pipe is led along the jib, as shown. There is communication between this fixed pipe and the larger one which slides on it, and this sleeve or sliding tube is balanced.
The riveter is hung from one end of the sliding sleeve, and the pipe conveying water to it from the other. The water is then, by means of a simple frictionless universal joint, led into the machine, which is free to turn completely round in a horizontal plane. The raising or lowring is done by blocks, and the anle of the machine aws can be altered from vertical, as from vertical, as hown, to horizonal, by the quadran the suspending gear. It will be een that there is o strain on any of the pipes, and the great difficulty in transmitting the pressure to a rivetor or other machine in a portable form is overcome. We understand that the saving in cost of iveting by this me veting by this mehod over the preent mode is about our fifths, and the quality of the work is, like all that done by hydraulic pres sure, excellent

THE MANUFACTURE OF ANTHRACENE

We illustrate herewith an improved method of obtaining anthracene, one of the most valuable products from coal tar, which has been invented by Messrs. Fenner and Versmann, of England, and patented in this country. The inventors claim that they have succeeded in obtaining anthracene from coal tar pitch, all previous attempts to do which have been failures. The anthracene is obtained in a comparatively failures. The anthre is ure state, wis gressively increasing temperatures are employed in the dis-
condensing chamber, f; but in the passage of the vapors along the pipe, e, they become cooled by the surrounding at mosphere, and the products of condensation flow by one or other of the branch pipes, $e^{1} e^{2} e^{3}$, to the receiving tank, g. The oil collected in the vessels or tanks, f and g, is drawn of herefrom through suitable taps. When the product distilled at about 400° begins to issue from a, it passes along and at first reaches to and (part being principally non-condensed vapor or gas) enters f, as the temperature is raised, and anthracene begins to pass over. The richer oily product containing anthracene passes along e^{1} into the chamber, g The temperature being still further raised, or continued at a high standard, such as from 600° to 700°, the oily product distilled becomes more charged with anthracene. The tap in the branch pipe, e^{2}, is then opened, and if necessary, owing
operate according to this method of working. m is a pipe by whish liquid pitch may be conducted from the boiler, which is not shown in the engraving, to branches, d, with taps, d^{\prime}, by which to supply vessels, a, such as already re ferred to. $\quad m^{\prime}$ is a tap in the pipe, m, to regulate or to stop the supply, as required.

An Ostrich Egg Incubator.
We have pointed out in previous articles that the raising of ostriches in this country, for their feathers, might prove profitable industry. It would further seem that the sim plest way of obtaining the birds would be to procure the os rich eggs, and pack them according to the well known re cipes for preserving hens' eggs. On their arrival in this country, hatching might be accomplished by an incubato similar to that now in successful use in South Africa. Th apparatus is a wood en box about thre feet square, open from above and ca pable of containing twenty-five eggs. I rests upon a coppe or zinc pan thre inches deep and equal in size to th box. The warm tem perature of the wa ter is maintained by paraffin lamp kep burning outside, un erneath an exten sion of the pan which is carried through the wall of the box. The heat can be regulated as necessary, thermo meters being con tantly in use con mperature of the temperature of the

o the increasing density of the oil, the tap in the tube, e^{3}, is opened, so as to provide a short and ready passage for the distilled product into the receiving vessel, g.
The production of anthracene can herein be combined with
two weeks it is gradually reduced to 100°, and in two weeks more to 98°. The period of incubation is forty.two days. The eggs are turned and aired by opening the box and blanket covering once or twice a day. A fortnight before the time they are held up against the light to examine their condition, and a week after are slightly punctured near the top, to enable the chicks more readily to break the shell. When hatched they are turned, kept warm, and fed with cut lucerne, and allowed to run about their inclosures like ordinary fowls. It is stated that in natural hatching the average number of birds raised is sixteen out of twenty eggs; in artificial, when properly managed, not more than one out of twelve eggs fails.

THE CATTLE OF THELEMARK, NORWAY.

We find in an interesting report by Mr. H. M. Jenkins, on the agriculture of Sweden and Norway, a description of a remarkable breed of cattle indigenous to Norway, which, even in these days of cross breeding and improvement, is still found in its original purity. We select the engraving from the Journal of the Royal Agricultural Society of Eng. land, Mr. Jenkins being commissioned by the Society to make the report. The cattle, as will be seen, are small, full grown cows seldom attaining a greater weight than 700 or 800 lbs . ; they are a mountain race, and their diminutive size 800 lbs . ; they are a mountain race, and their diminutive size
may be fairly attributed to the poverty of their food and the rough weather and long winters of their habitat. They are good milkers, the best in this particular of many breeds kept at the royal farm at Ladegaardsoen having been of this race. Moreover, the care and good living bestowed on the race at the farm have somewhat increased the stature and weight of the stature and weight of the animals. One cow milked, in 1868, $646 \frac{3}{4}$ gal lons, in 1869, 720 gallons, in 1870, 6894 gallons, or on an average of three years, $685^{\frac{1}{2}}$ gallons, with a living weight of about 790 lbs ; that is nearly 9 lbs. of milk for each 1 lb . living weight annually, a result which bears comparison with the best milking breeds. Usually the Thelemark cows do not milk highly imme diately after calving, sel dom more than $3 \frac{1}{3}$ gallons daily, but they maintain the yield evenly, and do not remain long dry. Like every other good milking breed, the Thelemark cows are very liable to milk fever; for which reason it is very important to keep them on a low diet for some time before and after calving.

SELF-CLOSING CLOSET LID AND ANTI-NUISANCE CLOSET.
The invention represented herewith aims to exclude sewtr or vault gases from yard closets, and to offer protection against the very injurious cold draft in these as well as in railroad car accommodations. The lid is provided with a self closing device and elastic packing, which exclude the gases from all sorts of closets. The closet door is suitably connected with the lid, so that, when the former is opened for the exit of the user, the lid is shut invariably. A board apron, A, below the seat closes the vault,compelling the gases to pass out by the ventilator flue, B. A tube, C, attached to the lower side of the seat board and provided below by

balanced valve or flap, passes through the apron, tightly fit ted by packing. Anybody cognizaut of the present unwhole some yard closets and railroad car accommodation, through out the country, will readily appreciate the improvement.
Patented December 14, 1875. For further information, re lative to sale of rights, etc., address R. d'Heureuse, P. O box 395, New York city.

Packing Butter.

A well known dairy authority gives the following direc tions for packing butter so that it will keep sweet for 8 or 9 tions for packing butter so that it will keep sweet for 8 or 9
months: "Make a brine with a saturated solution of the purest salt you can get, using 1 lb . of saltpeter to about 20 lbs . of salt. Scald the brine by bringing it to a boiling heat, skim, and apply when sufficiently cool. The casks should be carefully prepared as well as the brine. If the gum and sap in the wood are not removed before the casks are used, they will work out into the brine and affect the butter. To remove the woody flavor from the casks, a thorough steam ing with a high pressure is the quickest and best means. If soaked before the steam is applied, hot steam will cut the gum and woody flavor all out in a short time. If steam is not convenient, soak in brine a week or so, and then fill with boiling hot brine, and let it stand till it gets cool. By keepng the butter under the brine and the casks full and in a cool
place, the butter can be kept safely. Some of the tin-lined packages which have recently been introduced, and which are easily hermetically sealed, would be much more conven-
ient and probably fully as cheap as the oak casks and brine, ient and probably fully as cheap as the oak casks and
and are claimed to be equally efficient in preserving."

Straightening and Bending Pipes.

In order to straighten lead pipe, if the bore of the pipe is inch or more in diameter, dress oure ; then point one end rease the surface thoroughly, and work and drive the rod in to the pipe. Draw the rod back and turn it a trifle at every

The Coming Fiber
It is well known that with proper methods a certain per centage of fiber suitable for felting into a sheet which may be called paper can be produced from any plant that grows. This fact shuts the door in the face of the inventor in this line. It is possible to obtain letters patent in this country for a certain plant as a material for papermaking, but the value of such a patent is questionable. All who are interested in seeking new papermaking materials among the pro ducts of the vegetable kingdom must bear in mind the several absolutely essential elements which are necessary to any successful operation. A vegetable fiber to compet rags or other leading ma terial, must be such as will terial, of rearly production dmit of yearly production rom soed sown and cult rom seed sown and cult ated, like jute or straw; it must grow in large quanti ties, and must not presen great obstacles to ready and cheap harvesting; it must be grown in easy connec tion with cheap transporta tion lines; it should yield at least fifty per cent good fiber; and should not offe difficulties which the pres ent improved systems of treating other vegetable fibers will not readily over come. Faillng to possess any or all of these attri butes, any new candidate to he favor of the trade would undoubtedly meet with dis favor. As stated above, the vast majority of the so called new fibers fail in one or more of these essentia points, and people who are experimenting to-day with such materials will onl have their labor for their
blow. If the pipe is small, less than one inch in diameter, drive in a pointed iron rod, turning it at every blow, so that the rod may not stick so tightly that it cannot be with drawn. To bend a lead pipe without forming kinks, fill the bore with dry sand. To bend an iron pipe, fill the bore with dry sand, stop the ends with stiff clay, heat the pipe where it is desirable to have the curve, and the pipe will bend readily without making kinks. If the dry sand will not run out water will wash it out.

Annual Report of the Chief Signal officer.
We are indebted to Brigadier-General Albert J. Myer Chief Signal Officer, U. S. A., for a copy of his annual report being for the year 1875. This book, of 475 pages, exhibits annual reports from the United States Signal Stations in every part of the United States, in the West Indies, Canada, and Alaska, showing the work done, the number of disasters averted, the improvements made, and the wide favor in which the signal service is held. It contains monthly weather reports for the year for all parts of the country, illus trating by numerous charts, the temperatures, barometric pressures, rainfall,humidity, and direction and force of winds. It is a record of all important electrical and optical phe nomena, all general storms, and all marine disasters. It contains several large international weather maps, which illustrate the great meteorological changes in North America and Europe. The oscillations or variations of the tides, of the principal rivers in the United States, are recorded by diagrams. The records of miscellaneous phenomena are in teresting and extensive, covering natural history, forests, polar lands, meteors, zodaical light, earthquakes, etc. The extensive, varied, and exact information contained in thi report makes it a document of unusual scientific value. I is published at the government printing office, Washington D. C.

Toning of Photo Transparencies on Glass. This operation is scarcely necessary if the transparency should have been reinforced with acid silver, and is only re quired to be viewed by transmitted light. But silver as wel as alkali-intensified films have generally a very disagreeable color by reflected light, and many amateurs object to this. The use of a weak solution of chloride of gold obviates this difficulty, but, unfortunately, the color thus given is too cold to suit many tastes. The best toning agent we have used is chloride of copper, followed by an application of alkaline pyro. ; any tone by transmitted light is attainable, while the color of the deposit by reflected lightis either black or a dee warm brown. On no account resort to any of the formerly ecommended methods of toning by mercury; the colors hough beautiful to the eye, are evan nal of Photography.

Fast Ocean Steaming.

The Germanic, mean displacement 8.525 tuns, recently made the trip from New York to Queenstown, Ireland, 2,89 national miles or knots, in 7 days, 15 hours, 17 minutes, being an average of 15.8 knots per hour. This is the fastes ime on record. The mean boiler pressure throughout the oyage was 63 lbs., mean vacuum pressure (condensers) 27 inches, revolutions of engine $55 \cdot 57$ per minute, indicated
horse power, 5,434 .
pains. It may be truly said that this diligent search for new egetable fibers is to-day unnecessary. Esparto, straw, and wood are the great substitutes for rags in foreign mills. In his country wood and straw have the field to themselves With the present processes wood can only be made into the better grades of paper by chemical auxiliaries, whichare expensive and can be worked profitably only by recovering the alkalies. Ground wood is the great cheapening element in paper manufacture at present, and it can only be used in the lower grades of paper. Straw therefore comes to the point as fulfilling more completely than any fiber the wants of the trade. If worked to better advantage, it alone, in addition to rags, would furnish all the papermaking material required.-Paper Trade Journal.

A NEW GARDEN PUMP.

M. Reynier, of Paris, France, is the inventor of a new garden pump, asily operated, and which gives a continu ous, spray-like stream directed to accurate directed to the plant which it is desired to water, without neces-
sitating the wetting of thers. Wateris drawn in at the flared orifice D (which is provided with a sieve to preven entrance of impurities) and passes through the tube, C , and ball valve, B, to the interior pipe, in which works the perforated and valved piston, I. When this piston is drawn back the water, already in ts rear, passes through it, the valve, I, open ng. On being driven forward, the valve, $I_{\text {, }}$, shutting, and the valve, E, opening, the water is forced into the pump body, A, where it compresses the air which, in turn, forces it out through the tube H, and nozzle G. he same time a fresh upply of ater is upply of water drawn in through valve, B. The annex-
ed engraving is ex. racted from the French Bulletin du Société de l'Encouragement de l'Industrie.

The mucilage used by the government for postage stamps is composed of dextrin 2 ozs ., acetic acid 1 oz ., water 5 ozs ., alcohol 1 oz

Cortespmademe.

Multiplication of Minus Quantities.

To the Editor of the Scientific American:
As some of your readers are puzzling over the question why minus multiplied by minus gives plus, and plus multiplied by minus gives minus, I wish to explain thus
In multiplication, it is all the same which of the factors you call the multiplicand and which the multiplicator: 2×3 $=3 \times 2$ and also $3 \times-2=-2 \times 3$. Now multiplication means to take one factor units in the ther factor: -2×3 is therefore minus 2 taken 3 times, thus: -2
and by the above 3 multiplied by minus 2 must be the sam
minus. -2×3 being $=-6,-2 \times 2$ being $=-4,-2 \times 1$
Again: -2×3 being $=-6,-2 \times 2$ being $=-4,-2 \times 1$
being $=-2,-2 \times 0$ being $=0$, we see that the product being $=-2,-2 \times 0$ being $=0$, we see that the product
increases by +2 for every unit of decrease in the multipliincreases by +2 for every unit of decrease in the multipli-
cator. If we then decrease the multiplicator still farther by single units, the product must continue to increase by plus twos, namely: $-2 \times-1=+2,-2 \times-2=+4,-2 \times-3=$ +6 . Nothing seems simpler or clearer.
But if there is any one who yet fails to see how the product of multiplication can increase in proportion to the decrease of the multiplicator, let him look at it in this way: It is a negative quantity (-2) which we multiply. The negative product decreases with the multiplicator.
Three times minus $2=$ minus 6 , twice minus $2=$ minus 4 , once minus $2=$ minus 2 , no times (0) minus $2=$ nothing (0).

We have here the products of -2 multiplied by $+3 ;+2$; $+1 ; 0$; each multiplicator being one less than the preceding one; each product is -2 less than the preceding one. Minus one (-1) is one less than nothing (0). The product of $-2 \times$ -1 must therefore be one minus two less than nothing (0), that is, +2 . But how does -2 , taken away from nothing, leave +2 ?
To make this clear you have only to substitute +2-2 fof 0 . Of course if I have two less two, I have nothing. But ir from this nothing thus expressed, $+2-2$, you take away the -2 , does it not leave you +2 ?
C. F. Erhard.

The Alluvial Lands of the Mississippi.

To the Editor of the Scientific American:
The reclamation of the alluvial lands of the Mississippi iver can be accomplished simply by allowing sufficiert breadth between the levees or banks on each side of the river for the water to escape through at flood hight. This can be done by straightening the levees, running from bend to bend, and allowing a breadth of from four to six miles from levee to levee, which will allow a flow of water across the neck of points in the case of extreme high water, which gives a more direct and regular current than is attainable with the present levee system, from the fact that the current across the neck meets and counteracts the force of the channel current, and prevents its rolling with so much force into the bends and against the portion of the levee that is most exposed. Besides, it would facilitate the escape of water through the Valley to the Gulf. Straightening the false banks and widening the distance between them will allow
of closing the side channels without danger to the levees, of closing the side channels without danger to the
and will lower the flood water mark one or t wo feet.
The levees, once established on this basis, will seldom need repairs. But the present system of leveling in the points confines the water at flood hight within the limits of its banks; and as the water rolls away from the point, it throws the current into the succeeding bend with its undivided weight, until the levee is forced in, and crevasse and overflow ensue.

Horatio F. Hices.

St. Paul, Minn

The Centennial on Sunday.

To the Editor of the Scientific American:
Correspondents of some of your cotemporaries are advo cating keeping open the Centennial Exhibition on Sundays, for the benefit of working men who may be poor or too occupied to lose a working day to go and see the show. Americans generally attend some church or pass the day with their families, believing six days' labor in the week to be sufficient. Now why should several hundreds be compelled to work all day on Sunday at the exhibition buildings, in attending upon the visitors, running the railroads, etc., for the accommodation of a throng of sight-seers? It seems to me it would be better for the limited class of persons that are unable to visit the exhibition on a week day to subscribe for the Scientific American, and read the accounts of what is exhibited and study the illustrations accompanying the descriptions, rather than impose needless labor upon those who prefer and need one day of rest from the arduous labors of the week.
a Member of the Society of Mechanics
and Tradesmen.

The Demand for Labor

To the Editor of the Scientific American:

Your correspondent in Harlem, in speaking of the troubles of a tool maker, seems to overlook the fact that at the present time the supply of labor is in excess of the demand, which, of course, puts the workman or the seller of labor in the power of the purchaser or employer of labor. The remedy which he suggests, that each man should have a certificate of his skill, is rightenough for some purposes; but what
is the use of a certificate when there is no situation? If two men with certificates of equal merit apply for work from the same employer, who requires but one, and stern necessity compels one man to accept any terms, he that will work for the lowest wages will of course get the preference. These both, but, by each working half time until there is more deooth, but, by each working half time until there is more de-
mand for men, we shall each not only have a fair share of what wages there are earned, butprevent the employer from pitting one against the other in the struggle to live." This remedy, I believe, should be applied at all times when the supply of labor is in excess of the demand. Of course, to those at present fully employed, it would create a slight stringency in the money market; but it would drive absolute want from many a fireside.
Toronto, Canada.
One of the Employed.

Ho
 Remedy.

In the edition of your paper for Murch 18, a c rresponden. complains of the fact that certain parties, after advertising for tool makers, were unwilling to pay more than $\$ 2.50$ per diem for competent men. He thinks that the state of affairs which enables an employer to hire a skilled man for that sum is not right,and he proposes to rectify matters by having the trade "l legally recognized, so as to have a complete and perfect registry kept of all men who pretend to be skilled workmen," the wages being regulated by a mixed board of employers and employees. The first thought that occurs to me on reading such letters is to wonder that a man of sufficient ability to write a letter at all, or make tools requiring intelligence in their construction, should have so little ac quaintance with the laws which control wages and kindred matters, as is exhibited by D. In expressing his disbelief in the efficacy of strikes to smooth the way of the working man, D. shows that his is not as hoptless a case as others; but he has a longing for governmental interference between employer and employed that savors too much of communism to be acceptable to working men of self-dependent power. He condemns strikes, but attributes the prevalence of those organized acts of folly to the fact that employers get men to work for the lowest wages they will take. Why will not D and men who argue in his train of thought consult their own action, and learn the true explanation of the labor troubles Does D. ever pay $\$ 10$ for a pair of boots when he can get as good ones for $\$ 5$? If he does not, how can he expect an employer to act on different principles, and pay $\$ 4$ a day to workmen when other men of equal skill ask to be employed at $\$ 2.50$? "But," says D., " they are not of equal skill, and the employer does not get as profitable return from the $\$ 2.50$ as he would from the $\$ 400$ one." Will not D. see that the employer, in the majority of cases, knows his own business best, and that it is batter that he and the workmanshould make terms on which to exchange money and labor rather than call in the assistance of outside parties to settle it for hem? Would D. maintain that it would be better to make him give A $\$ 10$ for the boots than get th $\in \mathrm{m}$ of B . for $\$ 5$, or exchange four day.' labor for what can be had for two days' Men will be better off when they learn to look facts in the face, and not delude themselves with sentimental longings for a Utopian state where "everything is lovely." This wages and labor question is simply a continuation of the fight for existence which Science shows to have gone on in the past among all living things, and still goes on.
The present writer is a working man, and as anxious as anybody to get the best price for his labor; but he has had the good fortune to have read works by the working man's best friends, the writers on political economy, and he has become convinced that the truth, as established by Nature and confirmed by experience, is what should guide working men in their efforts to improve their general condition. It is unfortunate in the extreme that elementary works on political economy are not studied in the public schools. From the halls of Congress to the humblest workshop in the land, profound ignorance reigns on subjects of vital importance to the public welfare. When grave and reverend sen. ators eloquently advocate excluding the products of foreign countries, so as to reduce competition with the interests they represent, there can be no consistency in the bosses of those factories condemning the principle of strikes. But both are wrong. The striker is wrong, not in refusing to work if he does not like the wages, but in obliging others to desist from working for the wages he refused. The protectionist is worse than the striker; for while looking solely to his own interest, he pretends to have the welfare of his working men at heart, and besides uses the public money and officials to secure himself against competition, that is, he can sell dear where but fcr them he would be obliged to sell cheap. The labor problem is so complicated that no one can, in newspaper articles, explain and make clear every point of the subject; but a vast deal of good can be accomplished by directing the attention, of those most interested, to sources where the subject is discussed in full. If every working man, and every employer too, in the country would read Bastiat's little book on political economy, I think that it would do much to put an end to strikes and dis igreements among employed and employers. It would show both parties how dependent on each other they are, and teach them the folly of quarreling. It would also open the eyes of working men to the mistake they make on the whole, when they sustain the doctrine of protection and monopoly. Capital is simply preserved labor, pickled down for future use The workman's capital is his skill and strength; he ought to be allowed to exchange it at will, and where he can do it to
the best advantage : but the striker and protectionist deprive
him of that right. When justice comes to rule the world, protectionist and striker will have no advocates. In that ay it will be admitted that perfect freedom is the condition most conducive to general and individual prosperity, and that, although competition and the introduction of machinery may occasion temporary suffering, the cause of virtue, hap iness, and progress is best promoted by free trade.
Rochester, N. Y.
E. R.

The Great Engineer for President.
To the Editor of the scientific American:
Your nomination of James B. Eads for President was a happy thought, whether it will amount to any thing or not. There are many, who now never go to elections, who would go if there were any hope of electing a man of bis intellect, who could not be corrupted. "But," says one, "what evidence have the people at large of his great intellect, or of evidence have the peop
his incorruptibility?"
By his works we know him to be a man of great intellect; and by his dealings with men, as well as with Science, we know that he is not liable to be led astray. The choice of his education in the exact sciences shows that he was born a lover of truth; and bis success in mastering and applying them indicates an intellect which will not easily turned into uncertain ways.
What could produce a happier Centennial event than to lect such a man President, one who has never been soiled by politics, whose great intellect has always been on the rack of truth, with such universal succoss.
Lyons Falls, N. Y.
D. S. Howard.

[For the Sclentifl American ARTIFICIAL ICE. by P . H. Vander weyde.

It has been explained in the previous article, published on page 177, current volume, that when, without the aid o heat, water is evaporated by means of a vacuum, aidtd by the absorbent action of sulphuric acid on watery vapor, the latent heat needed for the formation of this vapor wi/l cause the abstraction of so much heat as to freeze five eighths of the remaining water. In a liquid more volatile than water, this evaporation takes place more readily; and hence many at empts have been made to produce cold by the evaporation of very volatile substances, such as alcohol, various ethers, car on bisulphide, liquid ammonia, and even nitrous oxide and carbonic acid. Among the partially successful attempts, I may mention those made some 15 years ago by Professor Twining, of New Haven, and Siebe, in Eagland; they used common ethylic or so-called sulphuric ether. More recently, about 10 years ago, Tellier, in France, used methylic ether, of which the effectiveness was supposed to surpass that of the ethylic ether in proportion to the lowness of its boiling point, which is at about $0^{\circ} \mathrm{Fah}$., while the common ether boils at $90^{\circ} \mathrm{Fah}$. It was, however, soon found out that there is no advantage in using liquids of such very low boiling points, as part of the power used has to be employed for working powerful compression pumps to reduce the ob tained vapors to the liquid condition, as of course economy of the process absolutely requires the use of the same liquid over and over again. The use of two ot her liquids was patented some eight years ago: one, carbon bisulphide, by Professor Paersh, of New Orleans, and chymogeve (petroleum ether), by myself. The first of theseliquids boils at $112^{\circ} \mathrm{Fah}$., while the latter has the advantage of being cheap and abundant, being a by-product of petroleum distillation, where it can be obtained in various desrees of volatility, varying in its boiling points from 20° to 50° or more Fah. It ought to be stated that the vapor of the substance is quite dense, being 4 times heavier than atmospheric air, while in its fluid condition it is decidedly the lightest of all liquids, its specific gravity being 06 . So that while water, when evaporating, expands to 1,728 times its vglume, forming a vapor of which the specific gravity is about half that of the atmosphere, the expansion of the liquid, when assuming the state of vapor, is only equal to $1,728 \div 2 \times 4=216$ times. As the amount of expansion which various liquids undergo, when evaporat. ing, bears a close relation to the amount of latent heat absorbad by the vapors, this small expansion may appear disadvantageous to the use of light liquids producing heavy vapors, for the purposes of refrigeration; however this ise especially in the case of chymogene, compensated for by the fact that, in displacing vapors by the air pump, we have only to do with volumes; and as the figures representing tht atent heat of vapors have only relation to equal weights, ir is evident that a heavier gas will, for the same bulk, contain an amount of latent heat proportional to its specific gravity, and will therefore withdraw, during its formation, a propor ionately large amount of hat from the material to be cooled. As an offset to this, the latent heat of gases is almost in inverse proportion to their specific gravity; so that after all, the amounts of latent heat for equal bulks do not diffe, widely, but vary only slightly from just under 400 to a little ver 600 Fabrenheit units of heat.
Chymogene possesses one special advantage in its boiling point, which is not so high as to require so great a degree of exhaustion to evolve the vapors as is the case with water, and even alcohol, carbon bisulphide, and ether, nor so low as to equire extraordinary pressure to recondense the vapors to the liquid conditiun, as is the case with ammonia, methylic ther, and especially nitrous acid and carbonic acid.
In regard to the two last named substances, they were thoroughly tried, in their liquefied condition, as to their adaptability to produce cold and refrigeration. The first, nitrous acid, boiling at 130° below 0° Fah., was tried by me;
and in 1864 I applied for a patent for the invention, but soon
withdrew and abandoned the same, becoming convinced of the serious disadvantage of having to employ machinery calculated to withstand pressures of 700 or more lbs. to the square inch, which this liquefied gas exerts at the common temperature of 65° Fah. Professor Lowe, of balloon fame in attempting to use the pressure of carbonic acid gas (when liquefied by powerful pumping machinery, under a pressur of 600 lbs . to the square inch) as a source of power for flying machines, was struck by the evolution of great cold during the evaporation of this liquefied gas; and he obtained patents for its use for making ice, and for refrigeration in gene ral. Notwithstanding that he spent many thousands of dol lars to put this scheme in practical operation, and kept to its pursuit for several years, it finally utterly failed; and all at tempts in this line were given up, the stumbling block be ing the same as was found in using liquefied nitrous acid namely, the difficulty of keeping the joints tight under th enormous pressure required; for even the solid metals them selves showed, under the extreme pressure, such porosity that the gases passed through as through a sieve.
The process of Professor Paersh, of New Orleans, using carbon bisulphide, was abandoned for a contrary reason ts boiling point being 112° Fah., more than 22° above tha of ether, it was even less successful than the common ether the process for which has never been quite satisfactory, a fully proved by the results of the labors of Siebe, in Eng land, Twining, in New Haven, and others afterward.
Liquefied sulphurous acid boils at 14° Fah., and at the ncreased temperature exerts a pressure of 60 lbs . per squar inch, or 4 atmospheres; and thus it appears well adapted for the purpose, and some years ago it was proposed to use it, and, if I am not mistaken, its employment was patented by Professor Seely, of New York city; but its corrosive effec on the metals of which the machine was made forbade it practical application.
The methylic ether machine of Tellier, in France, was a first said to be a great success; and about 13 years ago one of the apparatus was imported from France and exhibited in operation at the Morgan Iron Works in this city. There ap pears, however, to have been great difficulty in procurin the pure methylic ether required, notwithstanding that it preparation had been minutely described in Tellier's patent. The ignorant persons who had charge of the machine be came possessed of the idea of cutting short all trouble, by using ammonia, which was easily procured ; and, as any well informed person could have warned them, within 24 hour the whole beautiful machine, a credit to the Parisian work shops whence it came, was utterly ruined, the ammonia hav ng destroyed all the brass parts. Machines using ammoni are therefore always built entirely of iron.

PRACTICAL MECHANISM.

by joshua rose.

$\overline{\text { Number XLV }}$
marking off slide valves and cylinder ports. If, in marking off a set of cylinder ports and a slide valve for the same, we are provided with a detail drawing, we have no option, of course, as to their proportions; but if, on the other hand, we have liberty to proportion the same, we have to consider the following: If we make the slide valve to cover the ports without having any steam lap, the exhaust will not be sufficiently free, and there will be a back pressure upon the engine. The amount of steam lap necessary to prevent back pressure will be an amount equal to one quarter of the width of the steam port in a slowly running engine, and equal to about three quarters of the width of the steam port in a fast running engine. If it is incumbent that the valve have no steam lap, or an amount of such lap equal to or less than one quarter of the width of the steam port we may make the cylinder exhaust port about one and thre quarters as wide as the steam port, which will be sufficient to maintain, at all parts of the stroke, an exhaust opening in the cylinder exhaust port equal to that obtaining in the steam port acting (at the same point of the stroke) as an exhaust port: the object of narrowing the cylinder exhaust port in this case being to keep the valve narrow, so that its friction upon its seat may be kept as small as possible, in consequence of its reduced area for the steam to act on, pressing it to its seat. The best results are obtained from a slide valve by giving it sufficient steam lap to cut off the steam supply when the piston has traveled about three quarters of the length of the stroke; if more than such an amount of steam lap be given to the valve, its action becomes distorted, that is, unequal at and during one stroke as compared to the ther
The area of the steam ports should be proportioned by the following rule, which is given by Mr. John Bourne in his " Catechism of the Steam Engine:" " Multiply the area of the cylinder in square inches by the speed of the piston in feet per minute, and divide the product by 4,000 . The quotient will be the area of each cylinder port in square inches." Thisrule is a much better one than any which gives a definite and fixed proportion between the area of the cylinder and of the steam port, because it takes into consideration the quantity of steam required to pass through the port in a given time, and increases the area of the port in proportion as the speed of the engine is increased.
Having determined the dimensions and proportions of our ports and valve, we proceed as follows: Beginning with the cylinder, we place in the exhaust port a center piece, as shown in Fig. 231, in which A represents the steam port, B B the cylinder exhaust port, and C the center piece wedged or fastened therein. In the center of the position intended for the ports, we mark upon the center piece the center line, D, and trom the points, E, F, we mark with the compasses the seg-
ments of circles from which the width of the steam ports, ments of circles from which the width of the steam ports,
exhaust port, and bridges are marked, the lines being drawn oxhaust port, and bridges are marked, the lines being drawn ports by the aid of a straight edge and square. To mark off the valve, we may either plane up two of the edges and

Miq. 231.

mark the lines by the aid of a square, allowing an equal amount to be taken off each side of the exhaust port, or we may place a centerpiece in the exhaust port of the valve, and perform all the marking-off before any of the planing is done, the operation being shown in Fig. 232. From A to B is the width of the exhaust port of the valve, and from C to D on each side is the lap of the valve.
It is found that valve seats (the cylinder faces on which the valves slide) will have when they become worn, a groove cut across the bridges between the ports and extending along the face beyond on each side, running close to the edge of

Flq. 232.

the ports, and at right angles to the lengths of the ports. To prevent the formation of this groove, it is found necessary to drill in the face of the valve the four small holes (say of $\frac{1}{4}$ inch diameter) shown in Fig. 232, at E, E, E, E, heir depth being about half the thickness of the valve.
To mark off the back of the valve where the slide spindle frame fits, we must stand it on the marking table, with the face standing perpendicularly and at a right angle to the face of the table, and draw a center line on the back of the valve, from which line we may mark off the back of the valve to the necessary conformation.

PROGRESS OF THE CENTENNIAL EXHIBITION.
The exhibition buildings and grounds are fast approach ng completion.
the main building
is completed internally, the painting and gas pipe connections having just been finished. Show cases are rapidly appearing, that of Devlin, the clothier, being especially notable, both for its style and size. The floor is strewn with packages, prominent among which, on account of their size, are those sent by J. D. Burchall and Co., woolen manufacurers, of Leeds, England, containing woolen goods, and cases of terra cotta from Messrs. Doulton, of England, who are erecting four elegant show cases in which to exhibit pottery and porcelain. Among the exhibits for warded by the Secretary of State for India, London, England, is a fine muslin, into which threads of gold are interwoven. This material is made exclusively for the rajahs in India, and is so fine in its texture that 50 yards of it can be doubled up and passed through a lady's finger ring.

INDIAN COURT.
The exhibits for the Indian court are nearly all in the building, having been transported from the Indian Museum, Lon don, England.
The Egyptian, Norwegian, Chilian, Spanish, and other courts are all graceful and nationally characteristic edifices, and are fast approaching completion. They promise to be among the most attractive parts of the exhibition. The Norwegian goods are mostly on the ground.

MACHINERY HALL.
In the Machinery Hall, the workmen are busy erecting the shafting and laying steam pipes for the Corliss engine all the parts of which are on the spot, and most of them rected.
Messrs. Mirrelees, Tait, \& Watson, of Glasgow, Scotland, are erecting an engine and sugar mill, the total weight of are erecting an engine and sugar mill, the total weight of
which is 180 English tuns. It is a compound beam engine,
fis the parallel motion order, with Corliss valves, the bigh pressure cylinder being of 24 inches bore and 56 inches stroke. The top roller of the mill weighs $24,780 \mathrm{lbs}$. The entries of the above firm also include 26 and 36 inch centrifugals and two smaller engines, one driving a small mill and one driving a centrifugal. One of these engines is a valveless engine, which takes steam through the head of the piston, which is a very long one, having in it ports arranged to operate with ports in the bore of the cylinder, and not at the ends thereof.
Messrs. Wm. Sellers \& Co.. of Philadelphia, have their slotting, planing, vertical, and horizontal boring, drilling, and punching and shearing machines, as well as several large and small engine lathes, in position. J. Mitchell, of Philaderphia, is erecting a column composed of English, French, German, American, and Austrian grindstones, of various grades. J. P. Morris, of Port Richmond Iron Works is erecting a vertical column compound engine of the following description: High pressure cylinder, 50 inches in diameter, of 84 inches stroke; the low pressure cylinder is in line with it, so that both piston heads are fast upon one rod. The valves are constructed under Wanock's patent, and are balanced. The (two) fly wheels are each 24 feet in diameter, and of 21 tons weight, the whole engine weighing 110 tuns. This engine will drive a blower (for blast furnaces) of the following description: The cylinder is like an ordinary steam cylinder, and is provided with a similar piston, save that the piston rings are composed of maple wood, and are cut in segments to accommodate their being set out. The blower valves are of the griddle order. The size of the blower cylinder is 90 inches in diameter by 7 feet in stroke.
The floor spaces are all marked off, and many foundations for the various entries are being laid. Some few of the exhibitors who have their entries all ready are delaying the placing of them in position in the hopes of being able to obtain space in more prominent locations, provided the owners of such latter space shall be dilatory enough to warrant the commissioners in disposing of the space now allowed to them. The fears of the latter are, however, having the effect of hastening the forwarding of entries; hence it is improbable that any reallotment of space will take place, save in the case of those who are very much behindhand.

THE GROUNDS.

Swarms of workmen are busy leveling roadways, removing débris, and laying out the grounds and planting additional shrubs, evergreens, etc., notwithstanding the unpropitious weather. The railroad men, both steam and horse car, are at work in full force, giving promise that their preparations will be completed in ample time.

agricultural hall.

The above hall is the most backward of all the buildings but the rate of progress is proportionally rapid, every day making a noticeable difference in its appearance. The working force is here exceptionally strong; and there is evidence that it will soon be ready for the reception of enevide
tries

THE FOREIGN EXHIBITORS

As a rule, the foreign exhibitors have more goods upon the ground than is the case with the American entries, a fac to which their representatives point with a feeling of pride. There is no doubt, however, that the arrival of American goods will, during the coming week, be very large. Repre sentatives of foreign governments who were present at the Paris and Vienna Expositions give it as their opinion that the vista of the main building at Philadelphia excels, in general design, lightness, and airiness, that of any previous international exhibition.

A Metric Treaty.

The President has recently sent to the Senate for ratifica tion a treaty, the object of which is to establish an interna tional uniformity and precision in the standard of weights and measures. The treaty is between the United States and the governments of Austria, Argentine Republic, Belgium, Brazil, Denmark, Spain, France, Italy, Peru, Portugal, Russia, Sweden and Norway, Switzerland, Turkey, and Venezue la. It contains an agreement between all the parties to maintain in Paris, at the common expense, a permanent bureau of weights and measures, to be under the control of an international committee. The bureau is to be charged with international commit

1. All comp duties:
2. All comparisons and.verifications of the new prototype of the meter and kilogramme. 2. The custody of the international prototypes. 3. The periodical comparison of the in ternational standard with the international prototypes and of test copies, as well as comparison of the standard thermome ters. 4. The comparison of the prototypes with the funda mental standards of non-metrical weights and measures used in different countries for scientific purposes. 5. The standarding and comparison of geodesic measuring bars. 6. The comparison of standards and scales of precision, the verification of which may be requested by governments, scientific societies, or even by constructors or men of science.

We are indebted to Mr. R. O. Morris, Secretary of the Rod and Gun Club, Springfield, Mass., for a very attractive pamphlet containing a list of premiums and rules to govern the dog show which takes place on April 26, under the auspices of the abovenamed club. Many very handsome pre miums are offered, and it is expected the country will be es pecially large and fine.

IMPROVED WALL PAPER TRIMMER.

We illustrate herewith a new and simple apparatus for trimming the edges of wall paper up to the printed line its shaft an end of the paper is attached so, that the single operation of rotating said shaft drives the saw and feeds the paper to it. The cut, as we find by practical trials, is perpaper to it. The cut, as we find by practical trials, is per-
fectly smooth, and as neat as if made by shears, while it is fectly smooth, and as neat as if made by shears, while it is done with great rapidity
trim a large double roll.
The frame is made of cast iron, and supported upon legs. One end of the roller, A, has its bearing in a fixed standarã, while the other end bears in the standard, B, which is hinged to the frame, and can be turned down for the purpose of removing the roll of paper from the roller, A, after the trimming is accomplished. The journal of the roller in the stationary standard projects through the same, and a wheel is firmly secured thereon. This wheel is made dish shaped or flanged and surrounds the standard within. Upon the inner edge of the flange is secured the cutter, C , which is made in the form of a circular saw. One side of the roller, A, is made concave, and at one edge of such concavity is hinged a plate, D, by means of a rod which extends out through the journal of the roller to the outer side of wheel, where the rod is bent to form the handle, E. The plate, D, forms a clamp for fastening the end of the paper to be trimmed. It will thus be seen that the roller is the spindle on which the paper is rolled, and,is also the shaft of the cutting device, whereby the machine is greatly simplified. The roll of paper to be trimmed is placed upon the shaft laid in two standards upon a movable carriage, F, sliding in guides on the rear part of the frame. The one standard is stationary on the carriage while the other is movable thereon, so as to be adjusted to the width of the paper placed on the shaft. On the under side of the carriage is a rack bar, into which gears a pinion on the end of a shaft, under the frame, extending to the front part thereof, and provided on its front end with a handle wheel, G, whereby the carriage may be moved to the right or left as required. After the roll of paper has been placed upon the shaft, its loose end is trimmed for two or three inches, either by the machine or hand shears, so as to enable it to pass the cutting device. The end is then inserted in the clamp and secured. By revolving the shaft or roller, A, the paper passes under and between the cutting device, and is trimmed and rolled upon the roller. The only care required while trimming the paper is to see that it is so fed as not to leave a white line or cut into the figure. This can be regulated by means of the wheel operating upon the carriage, as already described. By turning down the hinged standard, the trimmed roll is easily removed.
The machine is compact, while at the same time it is heavy enough not to need fastening down, so that it can be placel in any convenient position.
Patented December 7, 1875. For further information ad dress Mr. Charles Boust, Northumberland, Pa.

WESTON'S LIGHTNING ROD DISCHARGING POINT. In order to render lightning rods of any efficacy as a protection to a building, it is absolutely necessary that the

ground terminals shall be large, and sufficiently so to discharge all the electricity from the rod. The object of the device illustrated herewith is to secure an extensive metallic surface in contact with the earth, with comparatively little cost and trouble.
The device consists of four metallic arms, formed as shown and riveted about a central socket. When closed, the point
appears as in Fig. 1. To attach it to the lower end of the ground rod, the pivot of the latter is inserted in the socket and the nut screwed on from the inside, as represented in the broken away portion in Fig. 1. A hole is then made in the earth with a crowbar, and the point, with the section of rod attached, inserted. When at the bottom, by forcing the rod down, the sheets or arms of the point will spread out as in Fig. 2, thus giving a large discharge area. The nut which connects the lower section of the rod with the point is left loose, so that the former is allowed to turn when screwing it

John Griffith, a miller, gives his secret of successful four grinding as follows, in Leffel's Illustrated Milling and Me chanical News:
" My burr is 26 inches in diameter, and has 15 leading fur ows, with one short furrow to each leading one; the shor nes one inch wide and very shallow. The chief secret i in the shape and condition of the furrows and draft. The stone being in face, running balance, and tram, the draf should be 1 inch to the foot in diameter of the stone; th width of the furrows should not be les than 2 inches for a 3 foot stone, pretty deep at the eye and taper out to the skir to half an inch deep; it is then worked as smooth as possible with a pick and rubstone or emery wheel to a feathe edge at the face. A stone dressed in thi way will grind one third or one half mor wath the some power and the same choth will bolt it and leare no clammy flour will bolt it, and leave no cla ind flour to clog the cloth. It bolts freely and the clot is clean. I run about four bushels through the No 9 cloth (6 feet in length and 29 inches in diameter), and return from 2 to 4 feet No. 10 in an hour. Grain does not want to be ground ; what it needs is to be mashed and rubbed between the two smooth surfaces. Where the furrow are deep and rough, they will grind some too fine and some not fine enough, and throw out unground grain or unmashed particles. A grain of wheat is a bundle of fine particles; and if the bran or shell is broken and rubbed, it will be or is broken and rubbed, it will be flour. have ground 4,000 bushels of wheat since
there was a pick on my burrs, and they run nicely yet."

BOUST'S WALL PAPER TRIMMER

into the section above. To attach the point to cables a zinc ring is first put on, then the discharger, and then another ring near the ond of the rod. The discharger and upper ring are slipped back to their proper position and fastened with set screws.
Patented through the Scientific American Patent Agency, March 7, 1876. For further information address the inventor, Mr. J. H. Weston, 29 West Sixth street, Cincinnati, Ohio.

RIGGS' METHOD OF MENDING CRACKED BELLS.
Mr. Daniel L. Riggs, of Salem, Oregon, has patented June 16, 1874) a new method of mending cracked bells, which, if we may judge from the testimonials submitted, has proved highly successful in many trials. The inventor proposes its application to repairing the Independence Bell at Philadelphia, and claims that he can render that histori-

cal object as good as new, and that its tones will ring out as clearly on July 4, 1876, as they did a hundred years before. clearly on July 4, 1876, as they did a hundred years before.
The idea is simply to melt the metal at the crack so that the latter becomes closed by the fusion; and this is carried out by the novel arrangement of two furnaces and a mold, shown in the annexed engraving applied to the bell.
The apparatus is madein two portions, secured, one without and the other within the bell, so as to encompass the cracked part. Each section consists of a mold, A, of plumbago or fire clay, which exactly corresponds to the contour of the bell. On these molds are added walls, B, so as to form chambers or furnaces, to each of which air blasts are admitted and controlled by the system of tubes and check valves, C. At D are the clamps and hand screws by which the whole is held tightly in place. In the upper edge of the mols and The furs a metal. The furnace chambers being supplied with fuel and ignited, a blast is thrown into them until the edges of the crack are fused and united. Molten metal is then poured in in sufficient quantity to fill any deficiency which may be found to exist.
The Centennial Committee and others can, for further particulars, address the inventor as above.

Several years ago the Berlin Museum paid $\$ 24,000$ for what were supposed to be Moabite antiquities. It has been discovered that they are not genuine.

Foul Smells trom Drains.

There is but one simple way, says a writer in the Journal of Chemistry, to prevent noxious emanations from cellar drains; and that is to start the drain pipes at the outer wall, and hang all the waste pipes from the cellar ceiling in plain sight, where the slightest leakage can at once be detected. These pipes had best be of iron, and in any ordinary building can be arranged to have a sufficient pitch towards the drain, without coming below the cellar ceiling enough to interfere with headway, and at the wall can be carried down perpendicularly into the mouth of the drain pipe, where the junction should be made tight with cement, and should be in plain sight. The best kind of drain pipes are of glazed stone ware with socket joints, and they be should laid in a bed of cement, and the joints made tight with the same. For com mon drains, a pitch or fall of one half inch in a foot is sufficient.

NEW AUTOMATIC GREASE CUP.

A sectional view of a new automatic grease cup, adapted to the lubrication of valve chests and cglinders, is represen ted in the annexed engraving, which we extract from the Bulletin du Musée. It consists of an exterior box, a, which terminates below in a screw shank, by which the apparatu is secured in place. Within the box is suspended a smal receptacle, b, at the lower part of which is a small capillary tube, d, and above this a fine sieve, g. The top is hermeti cally sealed by the cover, e, a central orifice in which serves for the introduction of the lubricant (melted tallow), being closed by the screw, f. The receptacle, b, is filled with tal low until the grease begins to enterthe screw aperture above The object of the sieve, g, is to retain any impurities; and it may easily be cleaned by removing the core, e.
In operation steam enters the cup in the direction of the arrows, passes up above the receptacle, b, and presses upon the grease therein. At each momentary diminution of pres

sure, which takes place in the cylinder or in the valve chest at each change of stroke, a drop of tallow escapes at d, being forced down by the steam above. The apparatus is thus entirely automatic, giving a quick supply when the engine runs rapidly, and vice versá, while the delivery stops al together when the motion of the machine is arrested. This device is now in use on many locomotives on railroads in Saxony.

ANIMAL FEROCITY.

The tiger has so long been deemed a beast that can only be feared and avoided, except by large parties of well armed men, that there is some sort of satisfaction in contemplating the masterly engraving which accompanies this article; and the dread grip which has seized the most terrible of marauders appeals strongly to our sense of justice. Mr. Joseph Wolf (whose genius may fairly be classed with the master spirits of animal painting, Landseer and Rosa Bonheur, although it is devoted to the comparatively humble work of drawing on wood for book illustration) has here given us a picture very characteristic of the wild animal life in the pathless jungles of the East Indies; and the powerful brute is shown in the remorseless hold of parhaps the only creature who can equal him in strength and ferocity. The elephant certainly now and then gores and tramples to death a tiger who may venture to attack him ; but frequently the tiger is the master, and the bones of the "huge, earthshaking beast,"
that hath between his eyes A serpent for a hand, are soon left to bleach in he sun. The crocodile of the East, however, is covered with an almost impenetrable armor of shell-like scales, the head being protected by a seamless horny integument ; and its hold is not easily relayed by the not easily relaxed by the struggles, however powerful, of its prey. That it will ultimately tire out, drown, and devour the ti-
ger) seems probable, and ger) seems probable, and
although crocodiles are litalthough crocodiles are lit-
tle likely to elicit much sympathy from the human race, it is well to know that victory will not belong to the man-eating monster.
The engraving is the work of Messrs. J. W. and E. Whymper, and is published in "The Life and Habits of Wild Animals," issued by Messrs. Alexander Macmillan \& Co., London.

Diving for Drink

One of the hotrest regions of the earth is along the Persian Gulf, where little or no rain falls. At Bahrein the arid shore has no fresh water: yet a comparatively numerous population contrives to exist there, thanks to copious springs which burst forth from the bottom of the sea. The fresh water is got by diving. The diver, sitting in his boat, winds a great goatskin bag around his left arm, the hand grasping its mouth; then he takes in his right hand a heavy stone, to which is attached a strong line, and thus equipped he plunges in and quickly reaches the bottom. Instantly opening the bag over the strong jet of fresh water, he springs up in the ascending current, at the same time closing the bag, and is helped aboard. The stone is then hauled up, source of these copious submarineath, plunges again. The dry carbon tissue, and having nothing on hand but red in the green hills of 0 marine springs is thought to $b e$ aistant.

The Richest Silver Mine in the World

The Consolidated Virginia Mine is the most profitable in the world. During 1875 it yielded 169,307.tuns of ore worth $\$ 98$ per tun, average, the total gield in bullion being $\$ 16$,731,653.43. Since December 13, last, about 600 tuns of ore have been hoisted daily. As soon, however, as the connections with another shaft are complete, it is computed that this hoisting capacity will be increased to 2,000 tuns per day or ore equivalent in value to $\$ 200,000$. The superintendent of the mine says that, even under this great drain, there is enough ore in sight to last for many years. The almost fabulous amount of wealth which still lies buried, and which the drills of the miners have not yet exposed, cannot be conjectured.

Comparative Richness of Human milk.

Mr. H. A. Mott, Jr., E.M.,' Ph. B., has recently read a paper before the New York Academy of Sciences, entitled "Comparison between the Milk of the African Race and that of the Caucasian." The author has conducted considerable re-
search and has made numerous analyses, the result of which goes to show that the milk of colored women is richer in milk solids than that of white females. An average of 12 this is compared (among others) with an average of 89 analy ses by Vernois and Becquérel, of white woman's milk, which shows water 88.90 , milk solids 11.09 . The milk of the ne gro appears especially rich in milk sugar, fat, and inorganic salts. Microscopically examined, the two milks are similar with the exception that the negro milk contains a larger number of globules.

A White Light for Dark Room Windows
At the last meeting of the Ghent section of the Belgian Society, Dr. Von Monckhoven communicated a very interest-

ated again, and thus becomes impervious both to gases and to liquids. For cementing the rubber sheet, or the material in any shape, to metal, glass, and other such surfaces, the ce ment is strongly recommended.

The Depth of the Se

At the last meeting of the Royal Society, Mr. Siemens D.C.L., F.R.S., exhibited the instrument he has devised to ascertain the depth of the sea by a new means, without a sounding line. He has worked out the requirements, start ing with the proposition that the total gravitation of the earth, as measured on its normal surface, is composed of the separate attractions of all its parts, and that the attractive influence of each volume varies directly as its density and inversely as the square of its distance from the point versely as the square of its distance from the point of and that of the solid 1026 uents composing the crust of he earth about $2 \cdot 763$ (this being the mean density of mountain limestone, granite, basalt, slate, and sandstone), it follows that an interven ing depth of sea water mus xercise a sensible influence pon totalgravitation if $m \in a$ sured on the surface of the sea. Mr. Siemens showed how this influence can be proved mathematically, in onsidering, in the first place he attractive value of an thin slice of substance in a plane perpendicular to the earth's radius, supposing tha he earth is regarded as perfect sphere, of uniform density, and not affected by centríugal force. It was in 1859 that Mr. Siemens first attempted to construct an in strument based on these prin ciples. The difficulties h then encountered he has since overcome, and the pre ent instrument is the result f his latest work. He pro poses to call it a bathomete nd it consists essentially of a vertical column of mercu y, contained in a steel tub having cup-like extensions at both extremities, so as to increase the terminal area of the mercury. The lower cup s closed by means of a cor rugated diaphragm of thin steel plate, and the weigh of the column of mercury is balanced in the center of the diaphragm by the elastic force derived from two care fully tempered spiral stee springs of the same length as the column of mercury One of the peculiarities o this mechanical arrangemen is that it is parathermal, th diminishing elastic force o the springs with rise of tem perature being compensate by a similar decrease of po tential of the mercury col umn, which decrease depend upon the proportions give the areas of the steel tub and its cup-like extensions he instrument is suspende short distance about a al joint, in order to cause i y carbon tissue, and having nothing on hand but red to retain its vertical position, notwithstanding the motion and green glass, and not enough of either to cover the win- of the vessel; and vertical oscillations of the mercury are dow entirely, he used half of each, alternating it. The re sult was that at a certain distance from the window the red and green lights blended together and formed a white light. This white light has no action on the sensitized carbon tis sue. If it should have no action on the sensitized collodion plate, it would be excellent to illuminate our dark rooms. If there should be no difficulty in procuring red and green glass which would transmit no rays having a chemical action, a window might be fitted alternately with red and green panes of small size. - Photographic News.

N New India Rubber Cement.

A good cement,that will render india rubber in any form ad erent to glass or metal, is oft-times a desideratum with pho ographers, and in the Polytechnisches Journal for last month there is a simple recipe given for the preparation of such a compound. Some shellac is pulverized, and then softened in ten times its weight of strong ammonia, whereby a trans parent mass is obtained, which becomes fluid after keeping some little time, without the use of hot water. In three of four weeks the mixture is perfectly liquid, and, when applied, it will be found to soften the rubber. We are told that the rubber hardens as soon as the ammonia has evapor-
almost entirely prevented by a local contraction of the mer cury column to a very small orifice. The reading of the in strument is effected by means of electrical contact, which is stablished between the end of a micrometer screw and the center of the elastic diaphragm. The pitch of the screw and the divisions upon the rim are so proportioned that each division represents the diminution of gravity due to one fathom of depth. Variations in atmospheric pressure have no effect on the reading of the instrument, but corrections have to be made for latitude The instrument has been ac ally tested in voyages across the Atanic in the Faraday, an the compris with Sir Thompon' and the comparisons with Sir W. Thompson's steel wire ounding apparatus showed was very in whe pape concluded with pointing out many ways in which the instru ment might be of use; among others, was that of indicating approaching danger, if contour lines were first efficiently mapped.-London Times.

A sImple brown dye for cloth is made of japonica, b. ; bichromate of potash, 2 ozs.; alum, 1 oz. ; and water gallons. Put the ingredients in a vessel, dissolve, im simmer for three hours.

ASTRONOMICAL NOTES.

Observatory of Vassar College.
The computations and some of the observations in the following notes are from students in the astronomical department. The times of risings and settings of planets are approximate, but sufficiently accurate to enable an ordinary observer to find the objects mentioned.

Position of the Planets for April, 1875.
Mercury.
On the 1st of April Mercury rises at 5 h .14 m . A. M., set ting at 4 h .39 m . P. M. On the 30 th , Mercury rises at 5 h . 23 m . A. M., setting at 7 h .44 m . P. M. Mercury is very unfavorably situated all through the month, as it is far from the earth, and its time of meridian passage is nearly the same as that of the sun.

Venus.

On the 1 st of April Venus sets at 10 h .07 m . in the evening, and on the 30 th at 10 h .52 m . The motions of Venus can be very easily followed during the month, as its course lies among the bright stars of Taurus. Its change of position at setting should be watched from night to night; it is farther and farther north all through the month.

Mars.
Mars rises on the 1 st at $7 \mathrm{~h} .29 \mathrm{~m} . \mathrm{A}$. M., and sets at 9 h . 54 m . P. M. On the 30 th , Mars rises at 6 h .40 m . A. M., and sets at 9 h .40 m . P. M. Mars is small, but can be known by its ruddy light, and on the 1st of April it is very near Venus, and sets earlier than Venus.

Jupiter.

Jupiter rises on the 1st at 10 h .28 m . P. M., and rises earlier and earlier every night, coming up on the 30th at about 8b. 21m. P. M., the star β^{1} Scorpii rising at nearly the same time. On the 4th, this star and Jupiter are almost nearly together, but at any time during the first week of April the planet, its moons, and the star can all be seen at once in the field of a telescepe of low power
Sturn.

Saturn rises on the 1 st of April at 4 h .25 m. A. M., and sets at 3 h .01 m . P. M. On the 30th, Saturn rises at 2 h .37 m A. M., and sets at 1 h .20 m . P. M. It will be seen that Saturn is above the horizon mostly in the daytime, and therefore is not well situated for observation.

Uranus.

Uranus rises on the 1 st at $1 \mathrm{~h} .30 \mathrm{~m} . \mathrm{P} . \mathrm{M}$., and sets at 3 h . 34 m . the next morning. On the 30 th , Uranus rises at 11 h . 35 m . A. M., and sets at 1 h .39 m . the next morning.

Neptune.
Neptune, which can never be seen without the aid of a elescope, is at present very unfavorably situated, even for the best instruments.

Sun Spots.

The report is from February 22 to March 18, inclusive. In the photograph of February 22 was seen, on the edge, the last of the chain of spots mentioned in the last report. The pictures of February 25 and February 18 showed two small spots coming on. From February 26 to March 7 photographing and observations were interrupted by clouds; but the picture of March 7 showed faculæ, without any visible spot, on the edge, going off. On March 9 a small spot appeared on the eastern limb, and it was still visible, March 18, on the western limb. The picture of this date shows also a small group coming on, surrounded by faculæ, and two small groups near the center of the disk.

FIRE APPARATUS FOG ALARMS AND CORK MACHINERY.

Mechanisms of the above named descriptions constitute our extracts from Knight's 'New Mechanical Dictionary *' for the present week.
There are perhaps sixty patents for various forms of the fire annihilator. The devices particularly refer to the modes of construction, the acid and alkali chamber, and the method of mingling the gas-generating chemicals.

THE PHILLIPS FIRE ANNIHILATOR.
This invention was introduced into this country by P. T.
Fig. 2.

Barnum, the enterprising showman, some twenty years ago. At that time the newspapers of the day were full of its praise. A number of experimental exhibitions were given in this and other cities, and for a time, through Barnum's management, the Phillips fire annihilator was the great sen sation of the day. But we believe the great showman, after expending considerably more than his receipts in this ven ure, concluded that the introducing of new inventions from abroad into our country, which is so much in advance of all
others in respect of novel devices, was not his forte; and he finally abandoned the annihilator enterprise and returned to the exhibition business, in which he has acquired both re nown and profit.
The annihilator is shown at A, Fig. 1; it was one of the earliest of these inventions. A compound of sugar and chlorate of potash is so placed as to receive the contents of a bottle of sulphuric acid, which is broken by striking a plug, on the top of the can, when a fire occurs. Around the perforate case.which contains the mixture of sugar and chlorate is another case, and this is in a third envelope, between

which last and the outer shell is a water space. The car bonic acid produced by combustion passes out of the top of the machine, meeting on its passage out the water, which is raised in the side pipe by the pressure and heat of the chemical action, and which thus becomes saturated with the gas. A well known apparatus, now in the market, is repre sented at B. In this the sulphuric acid is in a leaden bucke hung upon trunnions below its center, so that, if set free, the bucket immediately turns upside down. It is kept rigidly upright, however, by a stopper attached to a rod passing through the cap of the apparatus. When the extinguisher is to be used, the stopper is pulled up by an exterior handle, when the bucket turns over and the acid and alkali are mingled, the reaction generating carbonic acid gas. The machine shown in Fig. 2 contains acid in a glass bottle, which

Fig. 4.

is shattered by dropping upon a stud, when forced below the fianges of the tin cylinder which holds it. An improved form of

FIRE PLUG
is represented in Fig. 3. At the point where the branch pipe is coupled to the main, the stopcock is placed, and it is operated by gearing and connecting shafts from a hand wheel in the vicinity of the plug.
fog alarms
are various in their kinds, their operation, and their construction. As shown at A. Fig. 4, the apparatus is erected on the deck of a moored boat, and a pendulous frame is arranged to be swung to and fro by the motion of the vessel. A bar on this frame actuates a wheel, which, by means of a pulley and belt, rings the bell. In B, the clapper is moved by a cam wheel actuated by chains, which run over pulleys as the float arm rises and falls on the waves. C has a spiral coil
pipe leading to the trumpet. The fog whistle, Fig. 5, is similar in operation to the device, C, above. The vessel is tubular and semicircular ; and as it is oscillated, air is forced
 Fig. 6 is a
COREING MACHINE, for inserting corks in bot tles. The workman seat himself with one foot on the treadle, and the han dle, h, in his right hand He places a bottle on the wedge, n, with its neck be neath such one of the three tubes as will contain a cork of suitable size. Such a cork being placed in the tube, a motion of the trea dle raises the bottle, and the depression of the lever, $h g$, drives the cork into the neck. Reverse motions of lever and treadlo releas the bottle. Two forms of cori presses
are exhibited in Fig. 7. In the first, the cork is placed be tween the serrated surfaces of the concave and eccentric cam, and pressed to a less or greater extent by a partial rota

Fig. 8.

Cork-Presses.
Cork-Pall.
tion of the latter. The second form is simply a lever press with jaws. Fig. 8 is a

CORK PULL.
The jaws, while collapsed by the slide, are passed through the neck of the bottle, and, being opened, are then clasped around the cork, which is then easily withdrawn.

DECISIONS OF THE COURTS.

United States Circuit Court--Northern District of Illinois.
of tubing oscillating with the vessel. Each end of the spiral has a whistle and valve opening inward. The coil contains a quantity of water, which, in changing its position, forces the air out through the whistles, with a prolonged sound. In D the air is mechanically condensed and stored in a reservoir. The cam on the rotary shaft actuates the valve for the purpose of varying the sounds, to give a series of signals, more intelligible than single sounds repeated. A trumpet and whistle are attached to connecting pipes proceeding from

Fig. 5.

trade mark case.-the tucker manufacturing company vs. levic. $\stackrel{\text { LIn eq }}{\text { GETT, } \mathrm{J}:}$
 This is an application for an injunction to restrain the defendant from
the use of the trae mark which has been reakistered by the complainant in
the manner required by te Actor Congre

\qquad fores
does
Borspl
prope

Trcent Mmetcan and fartign fatents

NEW MECHANICAL AND ENGINEERING inventions.

 improved gas regulator.Joseph Desha Patton, Trevorton, Pa.-This consists of a hinged or pivoted and weighted gate resting on or against the current o passing gas, for the purpose of reducing the pressure and flow so as to form a very efficient and sensitive regulator
improved flour mill and staffing device for mill stones.
David Leib,Rich Hill,O.-In the mil, bination of the bedstone with an adjustable flanged ring, having elivery spout and top casing to discharge at any desired point The ring simply fits around the stone and is attached by fastening screws. The same inventor has devised an improved staffing device for millstones. This consists of a supporting plate, that may be pring standards, that carry at their mortised front ends the bear ers of the red staff, that is adjusted by set screws to the surface o the stone. The device is equally applicable to runners and bed stones, and is readily adjustable.

IMPROVED CAR STARTER.
Louis Funke, Champion Mills, New Mexico Ter.-This inventio consists of a brake drum geared with the axle by a reversing train, and cootrived with a spriag for storing up the power exerted by he brake in stopping, so that, by shiftigg gean after stoppi he car, the spring will assist in starting.
mproved truss bridge.
Joseph M. McDonald, Tomlinson, Ark.-This consists, mainly, in he construction of an arch made of laterally braced and bolted pieces of alternately interlocking timber, in combination wit IMPROVED DEVICE FOR RUNNING BELTS' ON TO MACHINERY. Eddy T. Thomas, Boston, Mass.-This consists of a spring hook or uheel, and swings over the belt, so as to retain the same until run on the wheel, being then thrown off by the belt.
improved arch plate for steam boilers.
George Fox and George Fox, Jr., NewYork city.-In place of the solid cast iron arch plate of steam boilers, that is exposed to be burned through by the action of heat in the fire box, the present nventors propose a hollow arch plate connected to the boiler in the same.

IMPROVED BRICK MACHINE
David Manley, Franklin, Pa.-In this machine is combined a large mount of new and ingenious mechanism for molding and pressing brick. It is so constructed that the three operations of filling the
mold, pressing the brick, and removing the pressed brick may all be performed at the same time

IMPROVED SAW MILL DOG
Luke Buzzell, St. Johnsbury, Vt.-This is a dog for holding the log on the head block. It is mounted on a vertical screw having a thereby, and can be kept in so as not to work loose by the jarring and shaking of the mill. It is specially applicable to the dogging of frozing logs, in which the ordinary dogs will not hold at all.

IMPROVED COMBINED BOLT AND KEY FASTENER. Edward H. Schnell, South Norwalk, Conn.-This is a contrivance of ingenious mechanism within the lock for fastening the key inside of the lock after it has thrown the bolt out, and also to fasen the bolt so that the key cannot be turned from the outside by nippers nor the bolt drawn back.
improved method of propelling canal boats, etc. Louis F. A. Legouge, Wheatland, Cal.-A pair of push bars are here caused to push on each side at the same time, and without intermission, and through a reciprocating revolving motion the poles regain their working position with little or no friction. In
order to prevent slip, the push bars are curved at the end on the front side.
improved machine for bending scythe snaths. John H. Russell and George Birner, Milwaukee, Wis.--In using the machine, the wood to be bent is steamed, the movable part of the form is secured in upon the stationary part, and the cross bar
is run back to the proper distance from the form. The timbers to be bent are then arranged with their larger ends in the cavity of the cross bar, and their smaller ends in the cavity of the form. The cross bar is then forced forward by turning a screw, pressing the timbers into the form and giving them the desired shape. The the form is detached, taking the timbers with it, and the said part and the timbers are taken to the drying room.
rmproved car coupling Duncan MacDougald Campbell, Holly, Mich.-This invention
consists in a spring attached to truck and bottom of car, in the rear of the buffer frame, to take up the strain of back pressure andthus prevent injury to the king bolt; also, in a check attached to the truck and stiffening bar of the buffer frame.

NEW WOODWORKING AND HOUSE AND CARRIAGE BUILDING INVENTIONS

improved harness hame.

Benjamin F. Haviland, Danville, Vt.-This is a contrivance o the rein guides of hames, whereby the rein can be shifted higher
or lower, and inward or outward, to meet the requirements of different horses. It is simply an arrangement of one or more upper and lower and outwardy projecting rein guides, additional to the ordinary rein guide

IMPROVED MACHINE FOR TENONING SPOKES.
John G. Peace, Salem, Mo.-This spoke-tenoning machin ϵ may be applied to the ends of the spokes after they have been driven into the hub, so that the wheel may be finished without moving it from place to place. It consists of a spring auger, that is guided in producing the exact tenoning of the spoke end by turning the auger.

IMPROVED SASH HOLDER
Charles E. Steller, Milwauk rooved disk encircled by an elastic band, and pivoted eccentr cally to the sash, so as to act as a wedge to hold the latter agains the casing, and so sustain the sash at any desired point. This in
improved die for making carriage body loops
John Garvin, West Meriden, Conn.-This invention consists in wo sets of dies, consisting of the forming dies, made with recesse o form the lug, head, and prong. The finishing dies are made wit recesses, and there is a projection to inish the loops and form th mproved
IMPROVED HARNESS TUG.
Charles Franklin Towsley, Brinkley, Ark. This invention con ists of a metal loop for suspending the thill of a buggy from the back strap. Said loop has a latch piece to open for adme in the bot om, to avoid wearing the thill. Suitable connections are added or suspending it from the back strap and connecting the girth.

IMPROVED WHIP SOCKET.
William Hughes and Joseph K. Alexander, Minerva, O.-This whip socket is so constructed as to enable the whip to be locked in when desired. It is a combination of a coiled spring and a lock

NEW CHEMICAL AND MISCELLANEOUS INVENTIONS

IMPROVED CARTRIDGE
Albert Hall, New York city.-This consists in securing the anvi by projecting points in recesses of the shell of a shot gun cartridge, nd holding the same by a sheet metal cap piece at the base of the shell.

IMPROVED BOTTLE STOPPER
Charles de Quillfeldt, New York city.-This consists of an elastic stopper applied to a solid cap piece, and hung by a curved slot to a
 most part of the slotted cap piece, to secure thereby the stopper to the neck.
improved ratlroad rail joint
George N. Hodgdon, Enfield, N. H.-This inventor proposes, as an improvement in rail joints, the combination of the rails, which re laterally braced at their meeting ends, with longitudinal sleepcross ties at both ends to provide a steady, continuous bearing for the rails.

MPROVED SUSPENDER STRAP.
Francis E. Johnson, New York city.-This inventor makes the button straps on suspenders of woven webbing; and instead of them to a piece of leather looped through the ring. The straps may be either in two pieces or in ove; in the latter case, they are folded diagonally at the point of attachment to the ring connection. Said connection is covered with satin jean, which obviates the staining of the shirt by the leather. The device is simple and
improved bale tie.
Stephen Callanan, Castleton, N. Y.-This consists of a ring bent on one end of a wire, and a hook on the other, such as are employed in a weaver's knot, together with a bend on each wire at the point
where the ring and hook begin, or thereabout, in such manner that the hook may be passed through the ring, hooked around the wire above the ring, and then drawn back into it, forming a substantial

NEW AGRICULTURAL INVENTIONS.

IMPROVED FLAIL
Theodore F. Drake, Great Valley, N. Y.-This inventor proposes a light bundle of wires as a substitute for the heavy metal shod flail beater ordinarily used. He considers this device to be just as effective as the latter and much less costly.

IMPROVED SEED DROPPER.
Hermann H. Koeller, Camp Point, Ill.-This improved device for ropping seed is so constructed that it may be readily adjusted to drop larger or smaller seeds, as may be required, and will preven the dropping slide from carrying out any more seed than enough
to fill the dropping holes of said slide. It consists in combining to fill the dropin two armed apring with cut-off block and in making the cut-off of a side-slotted box, a block with side pins, spring, a bolt, and certain angle plates.

IMPROVED SPRING LOCK FOR PLOWS.
Milton K. Wheat, Paris, Ky.-The object of this invention is to hold the plow plate of cultivators, drills, and shovel plows in place when at work, in such a way that, should the plow plate strike an ken. The device swing back and thus prevent it from being bro ders at their upper ends, pivoted to the plow beam or the plow ndard, and having the plow plate attached to their lower ends.

IMPROVED STRAW CUTTER.
William H. Harrison, Clay Village, Ky.-This consists of a cam end, and a roller at each end of the rocker to work in the cam as substitute for the ordinary pivot. The object is to contrive a con nection of the cutter that will not be subject to the lateral play o the cutter common to the ordinary pivots, and which will give shear cut throughout the whole swing of the cutter.

IMPROVED REAPER AND MOWER.
Marvin W. Freeman, Beatrice, Neb.-The invention consists in sickles concaved upon their inner sides, and provided with sickle
teeth, and in the combination of the stationary adjustable sickles and their bar with the vibrating sickles and their bar, and with dividing fingers and the cutter bar. By using two sickles, serrated, mathed, and concave, right and left oblique edges are made to
work in close proximity with each other; while by making the upper sickle section longer than the lower one, the whole weigh of the former is made to bear on the heel thereof, the main ba and bevel edges of low
gether until worn out

IMPROVED HOG SCRAPER.
Peter Johnson, Wauconda, Ill.-This hog-scraping tool is formed ecured to its respective extremities. The conformation of the blades admits of all portions of the body being equally reached ad hence of the soluing being more effectively performed IMPROVED SELF-RAKES FOR REAPERS. Abner S. Smith, Hannibal, Mo.-This is an improved rake for attachment to harvesters and reapers to remove the cut grain from ties are mainly improvements in construction, requiring the aid of drawings for their proper description.

IMPROVED PORTABLE FFNCE
Levi Chipman, Vermont, Ill.-This is mainly an improved fence quires neither nails, keys, wedges, pins, nor bolts for connecting quires panels thereto. It is formed of inclined bars, a notehed sill and crossbar, made in two parte, and an upright bar. With this are ombined the projecting ends of the horizontal bars of two adjaent panels, placed at an angle with each other.

IMPROVED SCRAPER ATTACHMENT FOR PLOWS.
Eugene Slosson, Morris, IIl.-The scraper plates have arms which are pivoted to the standards. The ens of the arms are fastened ordinary circumstances, but which, should the scrapers strike an obstruction, will break and allow the scrapers to swing back. The pitch of the scrapers is adjusted by wedges, and there are other useful and novel improvements in construction.

IMPROVED CULTIVATOR.

Thomas J. Montgomery and George W. Montgomery, Winchester, Tenn.--The standards are curved outward to bring the plows at the proper distance apart, and then downward, and their lower
parts are curved forward to form seats for the plows. There is a new arrangement of braces attached to the standard for sustaining the draft strain, and a bar is provided which acts as a guard to as a gage to regulate the depth to which the plows may enter the ground.
John Tr. Brown, IMPROVED CHURY
John 'T. Brown, Morrisville, and J. W. Colbert, Fredricksburg, ers revolved in opposite directions, to produce conflicting currents; also a bearing plate between the cover and an inner shoulder of the churn body, the same being arranged so as to form both a bear ing for the dasher shafts and a guard against the exudation of the
milk or cream : also a collocation of mechanism with cover, so as to make a single dotachable pion

IMPROYED PLOW
Henry D. Straight, Denmark, Iowa.-This plow is so constructed entirely by the handles. The landside ground may be controlled bent forward to serve as a colter to cut the soil, instead of tearing the same, as is ordinarily the case.
improved portable fence.
Tilmon A. H. Cameron, Petra. Mo.-The panels of the picket fence are formed by inserting and securing the pickets in holes in the top and bottom rails. The adjacent ends of the top and bottom rails of the contiguous panels are overlapped, and through them are passed round pickets, which have heads formed upon thei upper ends to prevent them from dropping through the said rais. The panels are supported away from the ground by the device, in ends of which are secured to braces. The fence is easily levele upon inclined or uneven ground.

IMPROVED CHURN
Robert M. Neal, Belle Plaine, Kan.-The object here is to throw the milk into violent agitation, so as to bring the butter in a very short time. This is effected by using both a dasher moving up and
down, and beaters revolving in opposite directions, the whole ope down, and beaters revolving in opposite
rated by novel and simple mechanism.

NEW HOUSEHOLD ARTICLES

MPROVED NURSERY CHAIR.

Lewis P. Lawrence, Port Morris, N. J.-This is an ingenious arti cle of furniture, so constructed that it may be arranged for use a and as a low stationary chair.
improved wash tub stand, clothes holder, and iron ING BOARD
Va.-Thisinve
John J. White,Norfolk, Va.-Thisinvention consists in construct wash tubs, and support the ironing board; also in providing oppe site inwardly inclined ledges to receive the wash tubs as well a bottom sections, and to sustain the ironing board; also in nove means for holding the bottom sections of the stand in a secure and stable position.
improved table leaf support.
Eli J. Wolfrom, Washington, Ohio.-The invention relates to modes of supporting hinged table leaves, and consists in so doing it that the support will be automatically thrown into true bracing position by the act of raising the leaf, and, at the same time, effec tely locke agana the posibity or arpacement

> improved washing machine.

Thomas H. Peavey, Epworth, Iowa.-The essential feature here is contrivance of the apparatus for working a swinging washer in a ox-shaped tub, so that the projecting portions may be readily de ub, and thus the mach. A table top may be put on the top of th equired for washing.

IMPROVED KNOB LATCH
William W. Gardiner, New York city.-This lock is so constructe operate the catch bolt.

IMPROVED HEAT RADIATOR.
Emerson C. Angell, New York city.-This is a combination of ear each end, provided with ination draft flue, that has a valv hese valves connected by cross pipes, so that all the flues will mpty into a continuous tube, being thus easily cleaned, and a diect or indirect draft being secured. The invention p arge radiating surface, while tending to economize fuel.

IMPROVED FOOT-WARMING STOVE.

Edwards A. Reed, Oliver Springs,Tenn.-The invention relates to roviding the outer box of the foot stove with braces for support The furnace mand forming a handle by which to carry the same. he furnace may be withdrawn by a handle from the casing, an siderable advantage in traveling.
improved candlestick
Philipp Schauble and Louis Dohm, Elizabetbport, N. J.-This onsists of a coiled wire fixed upon a suitable base to serve for the解 of the candle, with a stem projecting out from it through the space own, rproved ironing table.
Jacob Closs, Decatur, Ind.-This is a new ironing board, so contructed that it may be readily attached to an ordinary table, and provided with a small board, which may be swung over the larg ooard and secured for use, and swung back out of the way whe

Wustress and qetsoual.

 Lar a Line. If the Nexiese exceed Fobr Leene
Agricultural Implements and Industrial Machin-
erv or Export $\&$ Domestic Use. R.H.Allen $\&$ Co... N. \mathbf{y}. Catechism of the Lheoomotive : an elementary
treatise for mechantics, locomotive engineers, firemen treatse for mechanics, 10 ocomotive engineers. firemen
and others.
It explaing the theory, construction, and working of iocomotive engines. 625 pp.,250 engravings.
The Catechism of the Loocmotive will be mailed
and on receate, ${ }^{7} 3$ Brone
Employers of Labor in every Line-A cheap and
perfect pay ystem. For books or information, address
W. . N. Gray, Hamiton,
$\$ 1,000$ for any hand sawmill equal to A. B.
Cohu's, 197 Water St., New York. Friction Hoisting and Mind
Baldwin's Gear Cutter for sale cheap for cash.Baldwin's Gear Cutter for sale cheap for cash.-
Address W . E. Lewws Clevelan, onto.
Hamilton Rubber Works, Trenton, N. J, ManuHamilton Rubber Works, Trenton, N. J, Manu-
facturers of 2 y pavement Hose, and any size, alos Beltfacturers of \& pavement
Inge Packing, Car spring
use. Send for price ilst.
 Castings for 1ow pressure beam, Engine, about.
2 in. bore of cyllider,adress P.O. Box 24, Albany, N.Y. Canadian Patent on a Life-Preserving Stool, for
sale cheap. H.H.Nash, 223 So. Euta wt., Battimore, Md. Companies engaged in casting "cast stel"" may
secure a deefrabie contract by sending their cotalogues of
 men- 12 feet hlgh , 25 feet tread, 8425, f,
Mitchell, 310 York Ave., Philadelphta, Pa.
Wanted-The address of parties who manufac-
ture machninery for makking paper pulp from wood. H. Split-Pulleys and Split-Collars of same price,
strength, and appearance as Whole-Pulleys and Whole-
 For Best Band and Scroll Saws, Universal Wood
Workers, laning and Matching Machnnes, address BenWorkers, Plannng and Matchlng Mach1
tel, Margedant \& Co., Hamilton, onio.
Patent for Sale, on royalty-Road Engine. A
valuanle Machine for hill gradng as well as on level. Address J. Henry Bange, Edwardsville, inl.
Family Knitting Machines-All ferd L . Lincoln,
Knox P.O., pai., wishes the best klnd made Best Speed Indicator. Mails \$2. Write for dis-
count to Agents. Samuel Harris, Lind Block. Chicago. For Sale or to Let on.Royalty-Patent Oiler.
Address George F. Dutton, Farminton Falls, Maline. Sure Cure for Slipping Belts-Sutton's Patent
Pulley Cover is warranted to double the power of any punley. Circulars Free. Agents
Sutton, 55 LItoerty St , New York.
Patent for sale-A Water Wheel two inches in dameter, In a case three (3) by five (5) Inches, tor run.
ning Sewing Machines, dcc., using very little water. Larger sizes can be bullt. Address C. H. Sturges, Sar-
atoga springs, N. Y.

 Small Launch Engine, 3 in. $\times 331 / 2$ in. Link Motion,
cheap for cash. H.R.SIlman, 160 smith $S t$. , Brookl $n, N . Y$. M'frs of Shating, Palleysand Hangers, addreess,
with lowest price list, the Dueber Watch Case ManufacWalrus Leather and Walrus Leather Wheels for
polishnng. Greene, Tweed \& Co., 18 Park Place, N. Y.
 Address, with full par
Box 75, Burlington, Vt
Meter and Yard Comparing Rods, Meter Sticks,
and Meter Scales of every description, at Keuffel \& Esser's, 11 Fulton St., New. York.
Parties about to build, write Pugsley, 6 Gold St., 300 new and second hand machines of every de- de
scription or sale at low prices. send stamp for our List
No. 5 , just printed, full desecribtingeach machine, stating Just what you want. Don't buy until you look
Hist. S. C. Forsalth \& Coo., Manchester, N.H.
"Abbe" Bolt Forging Machines and "Palmer",
Power Hammers a specialty. Send for descriptive lists Power reduc
ter, N. N.
t.
Gas and Water Pipe, Wrought Iron. Send for
prices to Balley, Farrell $\&$ Co., Plttsburgh, Pa. Best light Portable Engine out, at Novelty
Works, Blake's Belt Studs are the best fastening for Lea-
ther or mubher Belts. Greene, Tweed \& Co., 18 Park Place, New York.
Boult's Paneling, Moulding and Dovetailing Ma-
chine is a complete succeess. Send for pamphlet and samchine ets a complete success, Send for pamphlet and sal
ple of work. B. C. Mach's Co., Battle Creek, Micn. Patent S. Srolll and Band Saws, best and cheap
nuse. Cordesman, Egan \& Co., Clncinnati, ohio. Our new catalogue of drawing materials will be be
sent on recelpt of loc. Add. Keuffel \& Eser. New York. The Original Skikiner Portable
proved), 2 to 8 H.P. L . G . Skinner, Ere, Pa. Shingles and Heading Sa wing Machine. See ad-
vertisement of Trevor \& Co.,Lockport, N. Σ. Seds \& Implements- 200 Illustrations-just out.
Mailed on recelpt 2 3c. stamps. A. B. Cohu, 197 Water st., New York.
"Wrinkles and Recipes" is the best practical
Handoook for Mechances and Englneers. Hundreds of Handooon for Mechanics and Engtineers. Hundreds of
valuable trade suggestions, prepared expressl| by ece.e.
brated experts and by correepondents of the "sclentilice

 Solid EmeryVulcanite Whels-The Original Solid
Emery Wheel-other kinds m matation and Inferior. Cau-ton-Our name is stamped in full on on oun our bests. standard Betting, Packlng, and Hose. Buy that only. The
peest 18 the cheapes. New rork Betting and Packing
Cest pest 18 the cheapest. New York Beltng
Company, 37 and 33 Park Row. New York.
Steel Castings, from one lb. to five thousand lbs. Invaluable for strength and durabiltty. Citculars free.
Pittsburgh Steel Casting Coo., Pittsburgh, Pa.
 For Solid Wrought-iron Beams, etc, see adder-
đisement. Address Union Iron Mills, Plttsourgh, Pa.,
 and workers of sheet meetal. FIne Gray Iron Castings
to order. Job work solietted. american Metaline Co., 61 Warren St., N.Y.City For Solid. Emery, Wheels and Machinerry, yend to
the Union Stone Co., Boston, Mass., for clrcular. Hydraulic Presses and Jacks, new and second
anand. Lathes and Machinery for Pollshing and Bufling Syinning Rings of a Superior Quality-Whiting-
ville spinning ingin Co., Whitinsville, Mass. For best Bolt Cutter, at greatiy reduced prices,
dadress H. B. Brown © Co., Diamond Tools-J. Dickinson, 64 Nassau St., N.Y. Temples and Oilcans. Draper, Hopedale, Mass. Peck's Patent Drop Press. Still the best in use. all Fruit-can Tools,Ferracute W'ks,Bridgeton,N.J.

E. J. T. will find directions for painting tin roofs on p. 202, vol. 30.-G. D. can remove colored writıng ink from paper by the process given
on p. 410, vol. 32. Water may be purified by the process given on p. 38 , vol. 33.-S. H. will find a description of a process for canning green corn
on p. 234, vol. 33.-G. G. M. P. will find a descripon p. 234, vol. 33.-G. G. M. P. Will find a descrip-
tion of a tracing machine (pantagraph) on p. 179, vol. 28. -W. R. will find directions for using the lactometer on p. 208, vol.34.-C. O. R.'s device for
improving a vertical boiler is not new.-W. E. S. should address Seth Green, Esq, Rochester, N. Y., as to trout culture.-J. A. G. can ebonize wood by
the process described on p. 50, vol. 33 . Shirts may the process described on p. 50, vol. 33. Shirts may plating without a battery on p. 399, vol. 31.-W plating withomed that the sparks from a leather
F. is informed
belt in motion are electricity. See p. 10, vol. 34.belt in motion are electricity. See p. 10 , vol. 34.-
C. M. will find a recipe for filling for wood on p. 315 , vol. 30 --P. B. T., G. M. G., S. H. W. J. K., B. L., and H. T., who ask us to recommend books
on industrial and sclentific subjeets,should address the booksellers who advertise in our columns all.
of whom are trustworthy firms, for catalogues, (1) J. L. W. says: If we use a plain iron
pipe in drive wells, in some localities, it will run into holes in about one year; in others it will last a little longer. Why does the pipe not wear out
sooner than the pipe 8 or 10 years ago? A. The new pipe may be driven through dissimilar strata
of earth, and thus subjected to different condiof earth, and thus subjected to different condi
tions from the old; or the old may have holes in tions from the old; or the old may have holes in
it also, but the rust and compact earth around it close them so that they do not show. Rubber
coated pipe is now used for gas when laid in the coated pipe is now used for gas when laid in the
ground, and might be serviceable for drive pipe.
(2) J. E. M. asks: Will it do to cement on soft sand walls in a cistern? A. Dig your cistern in a circular form and cut the sides as true and
smooth as you can: put on the cement all in one coat about one inch thick, and float it down to a
(3) E. A. V. says : A refrigerator is built
of brick. It is 4 feet square, and 5 feet 6 inches high inside. The wall is 10 inches thick, having high inside. The wall is 10 inches thick, having
a hollow space of 2 inches wide in the wall. It is cemented on the inside. Theroom has no venti lation, and the ice melts very fast. How can it be
made to work? A. The heat is most probably demade to work? A. The heat is most probably de-
rived from the earth at the bottom of the refrigrived from the earth at the bottom of the refre
erator, and through the brick wall, where the isolation is not perfect. A wooden lining set off from same, and a little ventilation, would most likely improve it.
(4) S. \& P. M. Co. says : In the manufac-
ture of artificial stone from Portland cement use wooden molds and coat them with shellac varnish; but it becomes soft in a short time. Is there anything that we can coat them with that will become hard and resist the action of the cement?
A. Glycerin is sometimes used for plaster molds, A. Glycerin is sometimes used for plaster mol
but more usually a mixture of lard and oil. (5) F. N. R. says: Please tell me how can make a good galvanic battery without many cups. A. Get a glass jar, and at the bottom of it perch a-covered wire has previously been attached. Let the wire be long enough to extend five or six inches out of the jar. Fill the latter, about two thirds full, with water, in which a quarter of a pound of zinc sulphate may be dissolved. Then
suspend a piece of zinc in the jar so that its upsuspend a piece of zinc in the jar so that its up-
per surface is just below the level of the water. When this has been done, drop crystals of copper sulphate (blue vitriol) in the jar, taking care that none remains on the zinc. About half a pound will de enough to start the battery; more may be added from time to time as needed, but care must be taken that the blue does not extend quite up
to the zinc. A wire leading from the zinc and the to the zinc. A wire leading from the zinc and the
one from the copper form the poles. The number of cells required for any given case, as well as their arrangement, will depend upon the work to
be done.
(6) J. B. asks: Can shellac be dissolved in
sulphuric ether by heat? A. No. It can be dissulphuric ether by heat ? A. No. It can be dis-
solved by the alkalies and by aqueous solutions of borax.
(7) H. S. J. says: 1. Please give me the value of paraffin as an insulator, counting shellac as 1,000 . A. We do not recollect eyer having seen
a statement of the relative values, but believe that paraffin stands a very little below shellac as an insulator. 2. In the chloride of silver battery
described on p. 390 , vol. 33 , do you mean that each described on p. 190 , vol. 33, do you mean that each
cell is equal to 1.03 of Daniell's? A. Yes. 3. How
many cells of this battery would be necessary to
produce a powerful electric light? A. That depends upon the resistance of the battery, which, we believe, is high; consequently the number of
cells would be considerable. We have, however, ever experimented with it.
(8) E. W. asks: Is there an equal amount f fertilizing material in old dry bones and green ones? A. The difference is in the loss of tion of the fatty and other matters. The percentage of phosphate of lime in the two cases is the same.
(9) T. K. asks: Do wire hair brushes make the hair stiff and harsh? A. The excessive use of a stiff brush should be avoided, as it irritates the scalp and promotes the formation of dandruff.
We have found that thorough cleansing of the We have found that thorough cleansing of the
hair with tepid water and pure white Castile soap hair with tepid water and pure white Castile soap
(the soap being completely removed by rinsing thoroughly rubbing the scalp and roots of the hair with hair oil, will keep the head clean and the hair soft and free from dandruff.
(10) J. A. G. says: What can I use to pre vent the disintegration of rubber hose? A. Try
the following: Flow the interior of the tube with a solution of strong glue in water, and inmedi ately afterwards with a strong solution of tannic
acid in water. India rubber is partially dissolved acid in water. I
by kerosene oil.
(11) A. B. asks: What is the reason of the . whoduced when lime and water are mixed A. When two liquids or a solid and a liquid com companied by a considerable evolution of heat. As might be expected, the contrary is the case when a solid passes into the liquid form, as in the case of ice and salt. When caustic lime is mixed with about one half its weight of cold water, the ime and the water combine to form a white dry powder (which is the hydrate of lime),and the hea en sufficient to ignite gunpowder.
(12) C. P. says : In November last I was traveling in the west, and the prairie fires had
spread over hundreds of square miles, and the ground was black. During the bright daylight, the ground was continuously spread over with a gossamer covering of spiders' webs for miles and
miles. Whence came the multitude of insects that spun the webs? A. The fire had been superficial and would not have destroyed the germs of vegetible
cace.
(13) F. W. G. asks: What is the best method of polishing hard rubber? A.Use pumicestone and rottenstone. Some varieties of hard
rubber goods are given a natural polish by the presence in their composition of bodies similar to

How can

How can I stain pearl to an color?
never heard of this having been done.
(14) W. W. B. asks: How many lbs. marble does it take to make 100 cubic i
carbonic acid gas? A. About 200 grains.
(15) B. G. asks: 1. Please tell me the mount of correction to be applied to an aneroid
arometer for an altitude 6,000 feet above sea level. We have a mercurial barometer from
which to make the adjustment. A. The adjustment is best made directly from the mercurial ing to the readings of the mercurial, or (by obser ing to the readings of the mercurial, or (by obser-
vation) make a table of comparative values. 2 . Water boils here at some 11° below the temperature required at sea level. By the same rule, should water freeze at a different temperature
than at sea level? A. The freezing point is not than at sea level? A. The freezing
displaced in any appreciable quantity
(16) A. B. says: Galvanized iron nails throw the putty when the latter is made of lead.
Would a putty made of zinc do better? A. Yes, try it.
With
what,oetter than with white lead paint,can ter? A. Fill the render it impregnable to wacovering of shellac varnish.
(17) B. V. P. asks: Is there any way to drawing? A. The acid pickle may be omitted, but if so the tool is in danger of being rapidly corroded by the scale of oxide formed on the surface of the wire during the operation of anneal-
ing. Wash your wire immediately as it comes out ing. Wash your wire immediately as it comes out
of the pickle in alum water, and dry as quickly as possible. This method, if the acid used is free from copper, will, in most cases, be all that is re-
quired. Another method is that of neutralizing any of the acid liquor that adheres to the wire after removal from the pickle by means of a weak lye, washing with water, and drying quicky. The wire should not be allowed to remain,
while moist, in contact with the air any longer than possible. Sawdust may be used for rbsorbng the moisture, but in some cases it will be ound advisable to employ good lime instead.
(18) J. W. L. asks: What cheap stuff can I use to dye hemp or feathers to
scarlet color? A. Use aniline red.
(19) T. W. A. asks : Can you give me any
information in regard to the manufacture of illuminating gas from fine sawdust? A. Very rich illuminating gas may be obtained from wood by
subjecting it to destructive distillation in retorts similar to those employed in the production of in order to convert the empyreumatic vapor that in order to convert the empyreumatic vapor that vapor through tubes heated to redness. The gas bonicacid than coal gas, and consequently re bonicacid than coal gas, and consequently r
quires a larger percentage of quicklime for t
elimination of this impurity. It is, however, free
from sulphur and ammonia compounds. Wood gas requires larger burners than coal gas because of its greater specific gravity. If this precaution
is not taken, the luminosity of the gas flame will is not taken, the lum
be greatly reduced.
(20) J. M. N. asks: What is the best way of protecting the iron bottom of an aquarium
from rust? A. Mastic varnish will answer the from rust? A. Ma
purpose very well.
(21) S. W. N. asks: What is a good stove polish? A. The best stove polish is the purest
graphite, ground very fine and mixed with a little alcohol or vinegar; the addition of other carbonaceous substances only injures its polish and refractory qualities. The plumbago now employed
is in many cases adulterated with finely pulveris in many cases adulterated with finely pulver-
ized gas carbon, which, although it resists high mperatures, detracts greatly from the polish.
(22) P. A. says: If I have an inverted siphon, one end being larger than the other, filled with water and closed at each extremity with a
closely fitting piston,and a weight or pressure of 100 ibs. be applied to the larger end, what will be the amount of pressure at the smaller end ? If apat the larger end? A. The pressure per square inch will be the same at each end of the tube, so
that the total pressure will be in proportion to the that the
area.
(23)
(23) H. B. asks: How can I make the mix ture of clay that is used in the place of firtbrick
for stoves? A. Fire clay is a common article of rade. When required for use, it is mixed with with a little water, kneaded into a thick dough, with ased at once. The clay is sometimes mixed ccasionally employed in place of clear water.
(24) J. M. asks: Is there not a method by y electricity alone. Gunpowder and gun cotton can be fired by electricity, and dynamite and ni-
tro-glycerin by a suitable percussion cap ignited an electric current.
(25) J. D. G. says: 1. I wish to warm seve-
al chambers and a bath room. Is it practicable to do it with 1 inch iron pipes of water, passing through 2 stoves with constant fire, water being supplied from a barrel "on the second floor, pass-
ing down to stoves on first floor, thence up to the chambers, and back to the barrel? A. it can be made to work if properly set. The pipe in the stove should be in a spiral coil, the water from the reservoir entering at the bottom and the warm water passing out at the top; set the coil against the lining of the fire chamber, and let the coal lie higher than the highest part of the pipe, and the pipe so set that the water will all drain back to should be provided to discharge it when a required. A coil from the same pipe could be placed in a second stove, providing regard is had to discharg-
ing the same as above. The water in the reservoir ing the same as above. The water in the reservoir be supplied to the bath tub, etc. 100 cubic feet of pace in the rooms? A. One foot of radiating surace to every 50 to 100 cubic feet of air, according to the conditions of exposure to winds, etc.
(26) L. P. L. asks: What is best to prevent ter? A. Try a few drops of oil of cloves.
(27) A. O. W. asks: 1. Does wind affect 'a thermometer? A. If the glass bulb of the therthe same whether the surrounding air is in motion or at rest. The truth of this is very easily dem-
nstrated by experiment. If we moisten the bulb onstrated by experiment. If we moisten the bulb
of the thermometer, however, we shall find that of the thermometer, however, we shall find that
the temperature indicated will be decidedly lower the temperature indicated will be decidedly lower difference in the indications is dependent upon the rapidity with which the water on the exterior
of the bulb is evaporated. The analogy between of the bulb is evaporated. The analogy between
the human body and the wet bulb thermometer in the human body and the wet bulb thermometer in
this respect is obvious. 2. How much colder is it at the surface of the earth than 5 feet above, in he shade? A. Practically the means uniform. . How can I make a rain gage? A. The cheapest form of rain gage we know of is that composed
of a graduated bottle, having a narrow neck with perforated stopper, through which passes the eg of a glass funnel, the mouth of which is of known area. For one of
ometer, see p. 150, vol. 34 .
(28) A. L. S. asks : How can I make a good quid acid for soldering iron? A. Dissolve zinc
(29) B. asks : Is it possible for a lady to atain proficiency in the arts of engraving, etching, and carving without a master? A. There are
many artists of both sexes who, having natural ability, have made great progressin these arts with ittle or no instruction except what is gained from books and diligent practice. The demand for art workers is increasing, and is likely, in the future, to be great enough to insure remunerative em
(30) W. X. C. asks: How can I wash print er's rollers? A. When printing ink was made
with burnt linseed oil, as it should be, a little pearlash lye would clean any roller fresh from the turpentine. But the inks of the present day are many of them, made with mineral oil: and caus tic lyes and petroleum benzine, with much labor re required to clean rollers or type.
(31) F.E.H. asks: What size of wire is best or a magnet ($1 / 2 \mathrm{inch}$ core) to ringa small bell?
. No. 18 copper wire will be found about
(32) W. P. D. says: 1 . What should the power of the telescopeof an ordinary spectroscope
be? A. That dependsupon the class of work required. 2. What should be the length of the collimator tube? A. It should be the focal length of ength of the slit? light. 3. What should be the Should the lens in the collimator tube be achro matic? A. It is not essential: but the lens mus
free from spherical aberration.
(33) A. W. asks: Of what size and how far from an objective, consisting of 3 plano-convex
lenses of $\frac{3}{16}$ inch focal length, should a diaphragm be? A. That can only be determined by trial. Some objectives do not require any diaphragm. (34) B. C. says: 1. I wish to make a magic lantern. Can you tell me the best size of lenses
to use, both condensing and objective, to throw a picture on a screen from 10 to 30 feet away? A. Use $41 / 2$ inch condensers with objective of $11 / 4 \mathrm{inch}$ aperture and 6 inches focal length. 2. What change away? A. Only a change of focus. The farthe away, the larger the pieture. 3. Do the burner and the centers of the lenses require to be in line A. Certainly.
(35) J. C. W. asks: What has become of
the Keely motor? I hoped that there was something in it, as, allowing for large exaggerations, I did not think it possible that lawyers or mon of standing in society could or would suffer theic a humbug of such magnitude. What has become of it? A. Echo answers: What?
(36) E. asks: Is it possible by the use of rays of light as to enable the photographer to take pictures in colors? Chromos were first made by adding one color at a time. Why may not the
rays of the camera be tinged by passing through rays of the camera be tinged by passing through
media of prismatic colors superimposed on each media of prismatic colors superimposed on each
other? Experiments in this direction will, I believe, yet solve the problem which has so long tographing colors is not in the manner of lighting the subject, but in the fact that the photographic chemicals are insensitive to all colors except the blue and violet.
(37) M. J. M. says: I have a small stream of water carrying about 20 cubic feet per minute, in which I can obtain a head of not over 2 feet.
Can I raise with such a head water enough for Can I raise with such a head water enough for
family use, with an hydraulic ram, to the hight of about 20 feet, say about 10 or 15 gallons per A. This should be done without difficulty. What is the rule for setting thimble skeins on
axles? A. Perhaps some of our readers will give axles? A. Perhaps some of our readers will give
this correspondent the benefit of their experience.
(38) F. G. asks : 1. Is there any work in the English language that gives formulæ for grinding and arranging the lenses in modern compound
microscopes? A. "The Microscope and its Revelations," by Dr. W. B.Carpenter. They are ground lations," by Dr. W. B.Carpenter. They are ground
like all other lenses. 2. Can I get optical glass,
both crown and fint, of uniform ref ractive power, both crown and flint, of uniform refractive power, whose index of refraction has already been ascer-
tained with sufficient accuracy on which to calcutained with sufficient accuracy on which to calcu-
late the curves of lenses without testing each late the curves of lenses without testing each
piece separately? A. We do not think you can; but you can get glass of known specific gravity,
which will enable you to form some idea of its quality.
(39) E. L. H. says: We differ on ventila tion under the roof. One wants to ventilate directly through from the gable ends. I want venti-
lators in the ceiling, constructed so that they can be closed when desired,with an escape out through the steeple. Which will be the best? A. Your
plan is the best; but it is also necessary to have openings near the floor as a part of a good system of ventilation. Theseshould be arranged so as to
prevent drafts as much as possible
(40) E. L. H. asks: Are we to understand that you are opposed to arched ceilings for church-
es? We are building a church which is to be 50 x es? We are building a church which is to be 50 x
76 feet x 35 feet, ceiling to be arched, having a 76 feet $x 35$ feet, ceiling to be arched, having a
spring of 9 feet, and paneled, commencing at the spring of 9 feet, and paneled, commencing at the
spring of the arch. The ribs forming the panel
will be of these ribs to give the desired finish, forming continuous panels from spring to spring of the arch. We desire your opinion. A. It is true that arched ceilings have proved to be subject to echoes more than those of other forms, but this seems to be governed somewhat by the hightof ceiling, low
ceilings being apparently more subject to them ceilings being apparently more subject to them
than high ones. An arched ceiling is more objectionable still, on account of its tendency to thrust out the side walls and thus to cause a settlement. This has occurred in many cases where the buttresses were insufficient or entirely wanting, and
where no tie rod or beam extended across the church at the eaves.
(41) H. C. D. asks: In making malleable cast iron it is melted in an air furnace. When it is put in, it is a gray cold blast charcoal iron. It
remains there untilit changes from gray to white. Does it contain more carbon when it is white than when it is gray? I think it does, for ir it remains in a little too long it becomes steel, which we can take to the blacksmith's fire, and draw and tem-
per. A. The white contains the least carbon. (42) G. L. P. Jr. asks: 1. Where can I get
information as to making models and patterns for information as to making models and patterns for casting small steam cylinders and other articles
A. Consult our advertising columns. 2. What
should be the length and breadth of ports, meas uring on the cylinder face, of a cylinder, the bore of which is $21 / 4$ inches and the stroke $41 / 2$ inches ?
A. Make your cylinder steam ports $3 / 4$ long and 118 A. Make your cylinder steam ports 34 long and $1 / 8$
inch wide, the exhaust port $1 / 4$ wide, and the inch wide, the exhaust port $1 / 4$ Wide, and the
bridges between the ports $1 / 8$ wide. 3.What should be the size of the slide valve for same cylinder? nch wide.
(43) R. C. asks: At how many revolution meter with 8 inches face, with perfect safety A. You may run it safely at 300 revolutions per A. You
minute.
(44) M. R. asks: 1. How old is the earth according to geology and astronomy? A. The age quity is so great that many cycles of ages, more
or less, are of little consequence. 2. How long ha or less, are of little consequence. 2. How long has it been since man made his first appearance on the earth? A. No one knows. The answe
previous question applies to this one also.
If on a solid wheel, 4 feet in diameter, the point hroug way (or 1 foot) from the cence time that a point furthermost from the center does, is ther not good reason to believe that there is a point in
the center that does not move at all? A. Ther he center that does not move at all? A. There
is in every rotativg body, theoretically, a point of is in every rotating body, theoretically, a point of
no rotatory motion. But it is a point, "without parts or any magnitude."
(45) H. H. A. says: I have a pump with $1 \frac{1}{4}$ nch suction and 1 inch discharge pipe. At a very
ow speed it works well; but with full head of steam, it does not half fill the pump, and thumps badly. Is the suction pipe large enough? A. No. Make it 2 inches in diameter.
(46) W. F. S. asks: 1 . Of what alloy shal make a lead wheel on which to polish cut flint glass stoppers? A. Use odd type metal. 2. How
will I prepare the rottenstone to use with it? A
and You had better purchise it already prepared (47) A. asks: Please inform me of the rule or determining the diameter of a wheel when number of teeth and pitch are given. A. Multiline, and divide by 31416. The quotient is the di ameter at the pitch line.
(48) J. E. H. asks: How is it that telegrams an be sent two ways over one wire at the same the current sent does not affect the receiving instrument of the station sending. This is effected in various ways. One of these consists in winding the magnets with double coils, the convolutions are so made that theresult amounts to the same thing. One end of one coil is connected to the ine wire: one end of the opposite coil, to the
ground, through a resistance equivalent to that of the line; and the other ends of the coils are joine together. The junction is then connected to th transmitting apparatus. When a current is sent ing through one coil to the line, the other half, through the opposite coil and resistance, to ground. As the half currents are oppositely di-
rected in the two coils, the action of one neutral izes that of the other, and the iron cores remain unpolarized. The half current which goes to line passes on to the receiving instrument at the dis
tant station, and, if the key at that point is open, the also be a time, in multaneous transmission, when the received hal current passes through both coils of the home instrument. It will be observed, however, that, for such a case, the convolutions of the coils supplement each other; but at the same time, the cur-
rent must pass through the extra resistance, so that while the number of convolutions is doubled, the current is reduced one half by this added resistance, and thus the effect remains as before.
(49) A. I. says: Please give me a recipe f making the black composition that picture frame moldings are coated with. It is afterwards easily your frames of plaster of Paris mixed with thin glue water. When dry, cover them with size and lampblack, and varnish with the following compo
sition: Boil turpentine until it becomes and sprinkle on it 3 parts amber in fine powder to 1 turpentine. When the amber is melted, add some sarcocolla and more spirit of turpentine, and stir the whole. Strain the mixture, mix with ivory black, apply in a hot room to the plaster frames, and place in a he
will be necessary.
(50) G. P. S. says: I have a zinc and carbon battery, the carbon plates of which are supported up on these connections and corrodes them. What can I use to prevent the corrosion? A. The best plan is to deposit copper on the end of the carbon
and then solder a wire to the deposit. First heat and then solder a wire to the deposit. First heat the end of the carbon and touch the part just beinch from the end) with a piece of paraffin, takin care it does not run up the part to be deposited ong should it do so, however, it may be driven off by a strong heat. When cold, cut a few scores in the
surface to give a hold to the copper, and drill a hole through, in which fix firmly a copper wir projecting on each side. With a warm iron,spread good nimg of par down them carbon os the intended be immersed in the liquid of the battery when working. Connect a wire to the carbon, by a screw clamp, and insert in a copper solution, arranging at first for a quick deposit. When a good deposit is made, drill a few holes right through copper and carbon, soak in water to remove any absorbed copper salt, and dry it thoroughly. Now tin the
part to which the connecting wire is to be sold and stand the carbon with its coppered end in melted paraffin till its upper partis well saturated. When the connection is soldered, a coating of par-
affin may be spread with an iron over the copper affin may be spread with an iron over the copper and all parts of the
(51) J. M. W. says: 1. It is universally acenly complete when the metallic circuit wire is only complete when the metallic circuit is com-
plete, and that a wire of 400 miles in length in re-
ality is 400 miles of electricity. What becomes of
the charge whenthe circuit is broken? Does itrethe charge whenthe circuit is broken? Does itrestarting out upon its journey? This does not seem possible when we consider the amount of
surface in both battery and wire. For instance, he surface of $4 C 0$ miles of wire exceeds many time bat of a battery consisting of 200 cells of gravit That burcomes of all this amount of force? A complete; but it is not essential that the latter should be metallic. If the circuit is interrupted, When insulation is perfect, the conductor on each magnitude to its surface, and its potential is qual to that of the battery
(52) S. asks: Is there in existence a whit ement for outside building purposes capable o bly the lightest : it is advertised in our columns. Ordinary hydraulic cement will make a light tucco by using white sand or a good lime paste
with it. The lime paste may equal in volume th with it. The
(53) H. C. N. says: I send you the follow
ng simple method of ascertaining the sides of ng simple method of ascertaining the sides of

hen from center, A, at distance, A C, cut of The rest explains itself. Draw C \mathbf{A} D the the side of an in scribed trigon, C D is the side of a square, D E the side of a hexagon, A the side of a heptagon,
E the side of an octagon, D B the side of a dodecagon.
(54) J. M. W. says: 1. There are 9 or 10
wires feeding from two Callaud batteries ; both take earth from same ground wire. If we adjust closelv, we get a cross from either of the 9 wire
We did not have this trouble on same wire with We did not have this trouble on same wire with an acid battery. Is this a feature of the Callaud,
or is the defect at the point of junction with the ground wire, or is it in the ground wire wholly A. No. The ground wire may be faulty ; but it is more probable that defective insulation is the cause of the phenomenon. 2. Working a wire 40 miles in length, will it improve its working condi
(55) J. M. W. asks: 1 . Is the conductivity of a wire altered by expansion and contraction contracting? A.As the temperature rises, the con ductivity becomes less. 2. In speaking of low and high resistance, is the term low used to designate
resistance from 1 upwards, and high resistance in resstance from 1 upwards, and high resistance ine ing? A. Low and high resistance are relative terms; 1,000 ohms would be called exceedingl a mile of telegraph wire. 3. Common line relay are measured and marked like this: 75 ohms, 100 ohms, 130 ohms, etc. Is the one of 130 preferable to the others for intensity of attraction, and more uitable for general use? A. It would be more suitable for average telegraph lines; but thes matters depend altogether upon the circuit in
which the instruments are to be used. 4. I have a which the instruments are to be used. 4. I have a
battery constructed as follows: The glass cell is 3 inches in diameter and about 4 or 5 inches high In the bottom of this, I place a piece of cast iron,
and suspend a disk of copper, both connected with and suspend a disk of copper, both connected with
insulated wire. I then fill up the cell with a strong insulated wire. I then fill up the cell with a strong
solution of lye from wood and coal ashes. I get a solution of lye from wood and coal ashes. I get
pretty good current from it. Is it of any value? A. Very little.
(56) G. C. N. asks: Please tell me of some harmless substance by which light brown hair can ion of chlor-nitric acid (arua A. A dilute sol hair wash will effect this. A similar preparation of peroxide of hydrogen may also be employed. But we cannot recommend the use of either. Any
one who knows of a better recipe will please one who knows of a better rec
send it to box 773 , New York city.

Minerals, mTC.-Specimens have been re ceived from the following correspondents, an examined, with the results stated:
L. B. D.-The explosion was most probably caused by marsh gas or light carburetted hydrogen. This gas likewise forms the chief part of
fire damp.-C. W. G.-It consists of oxide of iron, lumina, and silex. For anti-incrustators, see our advertising columns.-S. F. S.-It is yellow and blue clay. You might, with proft, see how it will
stand heat.-D. T. G.-No. 1 consists mostly of silex, silicate of alumina, and carbonate of lime, nothing to render it more valuable than any common earth. No. 2 is a fine white clay, remarkable
for its small percentage of combined water. Try for its small percentage of combined water. Try
its capabilities in the way of absorbing grease stains, drying up and disinfecting foul places, and
similar uses. No. 3 is inspissated bitumen. Ye similar uses. No. 3 is inspissated bitumen. Yo
ought to be able to make use of it in manner pro
osed. No. 4 is rather doubtful. It contains a
mall percentage of oxide of iron. No. 5 . mall percentage of oxide of iron. No. 5. Th he rest are quartz grains and byacinths.-The pider from Jacksonville, Fla., has been handed to distinguished entomologist for examination.-
M. P. C.-It is celluloid. See p. 23, vol. 33 .
W. A. F. asks: Will some one give a pla W. A. F. asks: Will some one give a plan
or straightening wire, from No. 16 to No. 8?-F. A. R. asks: How can I calculate the number o
ushels of shelled corn contained in a crib of an certain size, the corn being on the cob ? -G. M. Jr asks : How can I make Cologne spirit?-J. W. B asks: How can I put a fine black finish on gun
work?-J. C. W. asks: How large a cube can be work ?-J. C. W. asks: How large a cube can be
cut out of a ball 12 inches in diameter ?-W. J. ays: I am about to construct a flouring mill Will some one tell me the size and length of ree merchantable fiour?-L. M. H. asks: Would lin merchantable fiour?-L. M. H. asks: Wo
wood do for building a boat 20 feet long ?

COMMUNICATJONS RECEIVED.
The Editor of the Scientific American ac oniginal papers and contributions upon the follow ng subjects:
On Cheap Postage. By C. E. H, On Superseding Steam. By H. C. D. On Explosives. By J. N. K.
On Frost and Waste Heat. By T. P. On Creeping Rails. By L. D. On a Blowpipe. By C. H. H.
On Bone Black. By F. On Bone Black. By F. L. B.
On Steam Domes. By T. H. On the Years of the Planets. By J. H. On the Years of the Planets.
On Electric Organs. By T. G. also inquiries and answers from the following: A.K.-A.C.-A.W.-K. S. D.-E.H. C.-G.C. P.Jr
-J. F. M.-B. F. G-A. B. P.-L. C.-J. S.-J.H.R -J. L.-J.S.Y.-J.W.G.-A. L.-W.S. B.-D. R.-
W M. W.-M. McD.-H. F, G.-E. R. G.-I. J.-
W. F. W.

HINTS TO CORRESPONDENTS. Correspondents whose inquiries fail to appear may conclude that, for good reasons, the Edito declines them. The address of the writer should always be given.
Enquiries relating to patents, or to the patenta bility of inventions, assignments, etc., will not be
published here. All such questions, when initials only are given, are thrown into tne waste basket as it would fill half of our paper to print them all but we generally take pleasure in answering briefly by mail, if the writer's address is given.
Hundreds of inquiriesanalogous to the followin are sent: "Who sells machinery for making flou sacks, add paper bag machines? Who sells mete orological instruments? Who makes large weigh
power machines? Who makes an artificial hand, which a disabled man can attach to the stump of his fore arm, so as to carry pails, etc.?" All such in the column of "Business and Personal," which is specially set apart for that purpose, subject t the charge mentioned at the head of that column Almost any desired inform.
be expeditiously obtained.

[OFFICIAL.]

INDEX OF INVENTIONS
ed states March 7, 1876
AND EACH BEARING THA T DATE.
Alarm, burglar, J. H. Thorp -.................. Animal weaning bit, A. \& A. J. Ba
Apples, etc., paring. J. L. Furey.

Bale band tightener, J. L. Sheppard........
Barrel-painting machine, M. P. Carpenter
Base balls, manufacture of, W. Fletcher
Bedstead sofa, F. A. Hopper.
Belt fastenfing, T. D. Brady
Belt fastening, T. D. Brady.
Boat knees, socket for, D. True.
Boats, construction of, G. W. S
Boats, , steam wash, J. T. Brown.........
Botler
Bolting apparatus, J. Turner....
Boot and shoe heel stiffener, G. w. Day....
Boot jack, G. W. Phentx.
Boots, stand for blacking
Bottil
Bottle stopper Garwood..
Bouquet holder, J. A. Hurdie
Bridges, construction of, T. C. Fidler.
Bride bit, F. Crane
Bridle bit, F. Crane.
Bronzing machine, D
Brush bInder, B. H. Parks.......
Buckets, protecting
Buckets, protecting,
Buckte, W. Doyle.
Ber
Buckle, tug, Darr \& Bowman.
Buckle, trace, J. Thornton
Buggy seat fastener, O. S. Gorton..
Bung hole spout, C. F. Wilson....
Burner, gas, A. Barbarin
Cancelling device, H. McDougall
Car brake. W. L. Hofecker
Car brake, J. Homer... ..
Car araw bar, J. D. Rhod
Car heater and ventilator, E. E. Hargreaves
Cars, street,J. Stephenson (r) $6,985,6,98$........... Car truck, C. T. Jeffries.
Cars, transferring goods to and from, w.H.Elliot Carriage, child's, J. Walker
Carriage top, landau,
Carriage top, landau, H. Line
Carriage spring fastener, F. Miller
Carriages, top for children's, G. E. Whitmore.. Catamenial sack, F. A. Knabe..............
Chair seats, etc., material for, F. Hickman. Chair seats, etc., material for, F. Hick
Check, bank note, etc., J. B. Johnston. Chronograph, electro, A. H. Russell Cigar machine, M. F. Grimm Cigar perforator. E. L. Conkey..........
Cloth-measuring machine. J. S. Gold.. Clothes dryer, J. J. Reed Clothes dryer, H. Shirey. Clutch, friction, W. F. Holsk
Cock, gage, W. Andrews...... Cock, gage, W. Andrews.
Coffee roaster, C. L. Hall Compound, cleansing. M. N. Cross. Confectionery, slab for, J. B. Rivera
Cooler, fluid, G.. Jr., and J. J. Murray Cop tube, J. Essex...........
Cotton scraper, L. Ewing Cracker machine, W. H. Paln
Culinary vessel, F. Morandi. Culinary vessel, F. Morandi
Cultivator, H. Packer....... Cultivator, H. Packer....
Cultivator, A. Rutledge Curry comb. C. E. L. Holmes. Curtain fixture, J. W. Johnson Desk, C. A. Atkinson...... Digger, potato, J. H. Gedne Door, grain, J. W. Merriman
Door spring, J. K. Gilfillan.. Doubletree socket, W. F. Cochrane
Drawer pull. W Drawer pull. W. N. Weeden..
Drills, tripod for rock, L. W.

Duster, wool, J. E. Overacke

 Elevator. C. B. Wheelock.....................Elevator and carrier. hay, M. C. Smith et
Elevator and conver Elevator and conveyor, J. A. McAn
Elevator, water, J. Chenoweth Engine, rotary, w. Lyon...........
Engines, link for steam, G. Palm Engine valve gear, H. Tesseyman Eraser holder, ett., rubber, H. C. Benson
Feather renovator, N. P. Chane Feed cutter, T. J. and G. M. Clark Fence barb former, wire, Pooler and Jones. Fence, wire, W. D. Hunt (r) Ferrotype plate, etc. $=$ H. M. Medden (r Foot rest, E. B. Lovett..
Fruit, machine for stoning, B. A. Lille Fuel, composition for, F. Brown....
Furnace, blast, Ra wlings and Irelan Furnace, puddling, Reynolds and Thomas. Gage for cutting bias, E . S. Coon. Game counter. H. Bryant. Gas. making, F. H. Eichbaum Gas machine T. G Springer J. J. Carberry Gas, makling, G. olney...... Gaslieers, suspending, J. R. Shirley
Gate, H. A. Webber.........
Gate, automatic, J. L. Manlo
Gate, flood, R. H. C. Rhea Glass, tempering. F. De La B Grain binder, C. B. Withington..
Grapnel, self-acting, J. B. Tosel Grapneis, self-acting, J. B. Toselli.. Hammer connection
Harness, A. Grabner.
Harness hame, J. Thornton Harrow, land, M. S. Hill.. Harvester guard finger, A. Burkholder.. Hatchway, self-operating, E.A. Handraham Hay cutter, G. M. Clark.
Heat regulator, automatic. o. Plummer Hinge, spring, G. D. Carleton.
Hoisting apparatus, N. Thom
Hook, safety, J. Thornton..
Hoops, cutting, H. Fowler.. Hoops, cutting locks in, L. S. Hoyt.
Horse powe Horse power, H. Smith (r)..................
Horses and cattle. feed for, H. H. Beach. Horses and cattle. feed for, H. H. Beach.
Horses, stopping. W. T. and J. B. Burton Horseshoe nails, finishing, H. A. Wills. Ie machine pipe, T. L. Rankin. Injector, J. Fergus ...

Injector, E. B. Rynear.

Jewelry, imitation, c. Downs
Knife, pocket, G. H. Evans
Knife, pocket, G. H. Evans...
Knitting machine, c. J. Appleto.........
Knitting machine, circular, w. H. Abel
Label for plug tobacco, Liggett and Myers
Labeling machine, F. Russell.
Lamp, A. Brandes.
Lamp extinguisher, J. L. . Shililito.....
Lamp shade holder, H. W. Hayden.
Lantern, T. B. Osbourne.
Latch, knob, H. H. Elwell
Lathe chuck for ovals, M. T. Boult..........
Lathe gear-cutting attachment, C. Walter
Lightning rod, J. H. Weston..................
Lime and cement, manufacturing, A. Smith
Loom shuttle, G. C. Millis....
Lubricator, Bruce and Pool..
Lubricator, E. Faull...
Lubricator, Mans, Holand (r .
Mangle, J. F. Bald win .
Measure, registering yard, J. Conno
Mechanical movement, M. H. Allen
Mitten, knit, w. H. Abel..
Molds and cores, material for, W. P. Darling
Mosquito bars, , adjusting, I. A.
Mosquito net frame, J. B. Platt.
Mosquito net frame, J. B. Platt.
Mucilage holder, W. J. Shilling.
Music portfolio, A. F.
Nut lock, W. Onions
Oil cup for journals, A. R. Yost..... Painting machine, barrel, M. P. Carpenter
Paper box, F. Kuehne.
Paper-drying machine, A. W. Keeny.
Paper, moth-proof, J. M. Cobb........
Pavement, stone, Dean \& Higdon...
Photographic phate, H. M. Hedden.
Pipes or tubes, pending, R. Wright
Pipes or tubes, pending, R. Wright
Pistol, spring air, H. M. Quackenbush
Planisphere, P. Kuhnel
P'low A. W. Johnson
Plow, A. S. Kearney
Plow, E. R. Knight

	Plo
	Plow point, w. H. Trissler
	Power brake, automatic, J. T. w
	Printing rallway tickets, H
	and engine
	Pump barrels to base
	Pump, steam jet, H. P. Tenant.................... 174,390
	Punch, tubulsr cutting. J. A. Smart....... 174,286
	Rallway frog, E. H. Johnson..................... 174,368
	Rallways, eic., subway for, M. A. Shepard....... 174,384
	7
	fifying cylinder, liquor, S. B. Hulbert........ 174,532
174	Rein holder, I. w. Littie.
	Rings, embossing, J. Jennin
	Ropeway griper, w. Eppelsheimer 174.358
174,577	Running gear, A. B. Wroth...................... 174,610
	Saddle, riding, w. B. Crosby....... 174,492
	Salls, reefing fore and aft, s. C. Loud 174,425
	Sash fastener, w. G. Cook....................... 174,889
	Sash fastener. J. J. Dinna
	Sash fastener, L. J. Ea
	Sawmill, circular, Elllo
	Saw, scroll, E. C. Wate
	, s. sm
	Separator. grain, 0
	Sewing machine bo
	Sheet metal ring, A
	Shingle edging machine
	Sbingle machine, M. S
	Shirt, Woif \& Jackson........................... 174,605
	ance for testing, I. \& G. Dimock.... 174,966
	Soap mold, J. L. Jackson........... 174,365
	Spigot and pump, vent, W. C. North............ .. 174,378
	spinning mule, J. s. Brown...................... 174,349
	9
	hing machine, L. Sternberger. 171,587
174,483	Sterescope, Pagilingl \& Ardito.................. 174,557
	Stove, cooking, E. Busse (r)........... 6,984
	um, Wanderer \& Glly.... 174,393
	Stove, vapor-burning, Jeff
${ }^{174,426}$	Surcingle, L. C. Chase
	Suspender tastening,
	Sus
	Table and writing desk, D
	Table, folding, G. B. Crear
	Takle, ironing, J. v.
	Tailor's drafting apparatus,
	Tank filler, automatic, A. Haer
	Teapot handle, J. A. Graff
	Telegraphy, A.
	Tether, s
	Thil
	Thrashing machines, spike
	Throat and lungs, medicine for,
174,547	Time and di
	Tob
	Toy.mechanical, W. Gifif
$174,454$	Toy money box, J. D. But
	Toy money bux, H. W. Pr
	Trap. animal, Barnett \& Carpen
174,	Tr
	Tuoing, bending, R. Wright.
	Umbrella, J. P. Ouderdonk.
	Valve and gear, piston, J. wh
	Valve, globe, D. McKenzie. Jr.
	Valre, steam, E. Purvis
	Valves, thermostat, for controlling.
	Vehicle seat fastening, J. H. Adam
	de
	Vehicle wheels, fender for, E.
	Vise, J. W
	Wagon, dumping, w
	Wagon end gate, S. F. \& E.
	Wagon end gate, w. H. Th
	Washing machine, J. J. Quin
	Washing machine, , W. Will
	Water closet, E Pea
174,	Water, supplyIng, M. G.
	Water wheel. N. M. Princ
	Wheat, steaming, E. A. \& C. L.
	Wool, removing burrs, etc
	Collingswor
	Wrench, pipe, I. Cressey................. 174,354
	designs patented.
	9,120.-Paprr Cuips.-O.F.Fogelstrand.Kensington,Ct.
174,401	9.121.-Thernowrtrr Stands.-C.Kitschelt, N. Y. city.
	9,122.-Typrs - A. Littile, New Tork city
	9,123.-Brackris.-J. P. Miller, Philadelphia
	9,127.-Perforated Paper.-G. M. Jacocks et al., New
	$9,128$. -Ranges.-S. H. Ransom, Albany, N. Y.
	${ }^{9,129 .-B a d g e .-A . ~ J . ~ D a l l a s, ~ U ~}$
	9,130.-Mrdat.-R. J. J. Delany, Philadelphia, Pa.
	9,131.-Prrporatrd Paprr.-G. M. Jacocks et al, New
174,451	ity.
	2.-Lamp Stands.-F. R. Seidensticker, West Mert
508	schedule of patent fees.
	On each Caveat........................... $\mathbf{8 1 0}$
174,	On each Trade mark.............................825 $\mathbf{8}_{\mathbf{8}}^{\text {On }}$
	On issuing each original Patent....................820
	On appeal to Examiners-1n-Chief................... $\$ 10$
	On appeal to Commissioner of Patents........ $\mathbf{\$ 2 0}$
${ }^{174,402}$	On application for Reissue...........s30
	On flling a Disclaimer................................ $\mathbf{8 1 0}$
	application for Design (3\% years)s10
	On application for Design (7 years)... $\mathbf{\$ 1 5}$
	On application for Design (14 years) $\mathbf{8 3 0}$
	Aduetismanty.
	Inside Page -:-: \% 75 cents a line.
. 174,369	per line, ly measurement, as the letter press.
174,484	tisements must be received at publication office as
5,977	C Wood-working Machinery, imade by' s . HEALD $\&$ SONS, Barre, Mass. Prices low. Send for circulars.
	(Machine Shops, Tools and Machinery, which are running on full time- 88,000 . Address ISAAC MCFADDDIN Rocklille, Park Co., Ind.

Horsixitg eligan

HeBLAKE'S PATENT Stone and Ore Breakex

International Watch Company, Schaff hansen, Ssitzerland.
Mechanical Watch Manufactory; Watches after the American System PUBLIC SALE
On Friday, April 21,1876 , Stadt House in Schaffhausen. Work can be resumed again at once at the Establishment. Descriptive pamphlets free of charge of Messrs. MANDEL \& FRANK, G7 \& 69 william St., N.
R. A Vervalen's Brick Machines Made at Haverstraw, Rockland Co. N. Y. Making nine
tentho of all the brick used in the State. Send for circular

NETVBOK.
 The Economy of Workshop Manipulation. A logical method of learning Constructive Mechanics
Arranged with Questions for the use of Apprentice
Engineers and Students. By J. Richards. Crown 8vo
Cloth
'pons' Architects' and Builders' Pocket-Book of Useful Memoranda and Prices for 1876. Third edt
tion. 32 mo , cloth, $\$ 1.50$.
*** * Descripittive Catalogue sent free on application.
E. \& F. N. Spon, 446 Broome Street, $\mathbf{N} . \mathbf{Y}$

$\mathbf{W}^{\text {ANTED-A first class, }, ~(2 d ~ h a r d) ~ f u l l ~} 8$ H. P tationary Engine and Boiler from 15 to 0 H. P .
bout as good as new; in perfect order. Address
I. A. BEEKs, Gr fln, Ga.
NDEX PLATES FOR GEAR-CUTTING MA

MCHINERY OF IMPROVED STYLEES FOR
making SHINALES, HEADING, and STAVES;
ISO GAUGE LATHES for TURNING HANDLES. Sole
VINPGGAR HOW MADE IN
Wrecking or Draining Steam Pump,

W AN TED-Punch, for punching 23/4 inch hole

 arspective drawing, A permanent situation work, for anit
abe man. Adress, enclosing specimens of work an
aferences, WROUGHT IRON BRIDGE CO., Canton,
sciencer record JEOIC TBPB

This work is just fresh from the press, and all he orders which had accumulated have been new ones.
The ScIENCE RECORD for this year-the fifth o ts publication-contains 600 octavo pages and a
great number of engravings, illustrating new dis-

Che followng in and METALLURGY,
MECHATRTSS AND ENGANEERING

GEOGRAPHY
GEOTOGY MINERALOGY,
ASTRONOMY,
BIOGRAPHY'AND NECROLOGY.

All the preceding volumes of Science Record
may be had separately at $\$ 2.50$ each, or $\$ 10$ for the
volumes comprise a library of information which MDNN \& CO., Publishers,

Park Row,
Wew Yo

FOREIGN PATENTS

THE CENTENNIAL. There is no doubt that our Centennial Exposientative people from all parts of the world, and they will take home with them many of our best mprovements to introduce into their own manufactures.
An unusual opportunity will be offered for sellng to these people such foreign patents as hav respective countries from which these visitor ome.
Athe abroad, our people will lose a chance no kely to occur again, if they do not avail them elves of the opportunity of securing their inven their patents ready to negotiate the coming sum-

For cost of patents in the different countries and he conditions on which they are granted, send for pamphlet containing full information.
Address
37 Park Row, New York Washington, D. C
OPIOM:
It Pays to Alveritise.
Every business man admits the necessity of advertis proft of so doing. But it is not all who advertise that or advantageously, and in the most effective manner, ule, it is the bestateconomy to advertise what one bas to irculation among the class of persons likely to be interested in the article. Parties having Manufacturing
Establishments to sell or lease, or who wish Estimate made for Constructing Bridges, Dams, Iron Buildings, Wood and Iron Working Machinery, Agricultural Im plements, or Contracts for Engineering Works of all inds, will find that
TIFIC AMERICAN.
The value of the SCIENTIFIC AMERICAN as an ad nto all the machine and workshops in the country, and
s taken at the principal libraries and reading rooms in is taken at the principal librar
the United States and Europe.
We invite the attention of those who wish to make
Back Page......... $\$ 1.00$ a line
$\left.\begin{array}{l}\text { Inside Page.................7. } 75 \text { a l line. } \\ \text { Business and Personal.. } 1.00 \text { a line. }\end{array}\right\}$ Insertion
Engravings may head advertisements at the same rat per line, by measurement, as the letter-press. Adver
tisements must be received at the publication oftice a early as Friday morning to appear in next issue. If anything is wanted in the mechanical line, advertis
for it in the SIENTIFIC AMERICAN. he SCIENTIFIC AMERICAN

The Supplement.

 culation of any paper of its class publifhed. The SUP-
PLEMENT is a distincr publication from the SCIEN. TIFIC AMERICAN, and has a large circulation, othe han among the subscribers of the regular edition
\qquad Back Page, tinted Cover....35c. a line. $\} \begin{aligned} & \text { EACH } \\ & \text { Inside Page...............25c. a line. }\end{aligned}$ Insertio

[^0]Munn \& Co.

The UNION IRON MILLS, Pittsburgh, Pa. The UNION IRON MILLSA, Pittsburgh, Pa.ented, in which the compound welds between the stem
and flangee, Wht hhave provedsoobjectonable tn the old
mode of manufacturing,are entliel yavolded. Weare prepared to furnish all sizes at terms as favorable as can be
btained elsewhere. For descriptive ithograph, addre

WHIPPLE'S
Patent Door Knob.

LOVEJOY, SON © CO.
ELFCTROTYPERS and SMEREOTYPERS,
MACHINERY.
IRON \& WOOD WORKING MACHINERY OF EVERY DESCRIPTION.
Cold Rolled Shafting.

GEORGEPLACE,
 THE 2 BEST

GOLDPGNS

Stone Channeling
Quarrying
Machine

WARDWELL PATENT
FOR CUTTING STONE INTO VARIOUS SIZES
AND DIMENSIONS IN ALL KINDS OF QUARRIES.
STEAM STONE CUTTER CO., RUTLAND, VT
SOLE PROPRIETORS AND MANUFACTURERS.
Model Engines. casting

 dend

PATENT CLARK \& COMPANY'S PATENT SELF-COILING, REVOLVING STEEL SHUTTERS

\qquad FREE TICKET
To Philadelphia and RETURN:
AGETTS

Tools,
Wall St. Caricatures.

 Enatisks and Boilers, Pulleys,Shafting and Hangers a specialty
MACHINIST'S Patent TOOLS. get ron Dogs, Rediced Pricees. \because steel

 PATENT
Planing and Matching

Pond's Tools.

 ENGINE LATHES, PLANERS, DRILLS, \&c.Send for Catalogue. DAVID W. POND, Successor to

FOR CHARLIE'S PRESENT,

 Can eb seen in practlcal poration at the "sclentific
 telegraphing, many beautiful experiments can be made,
such as the magnetic curves, electric light, lifting weights, making compasses, magnettizing knvere, elec
tro-plating, \&c.
F. C. BEACH CO., makers, 24

EAGLE FOOT LATHES,

P. BLAISDELI \& CO.

 Machinery. NO. 348 BROADWAY, NEW YORE. | PUNCHING | Fort, he Best and |
| :--- | :--- |
| ent | |
| ent | |

THE BASTET MAGNETIC ENGINE AND

Planing \& Matching,

FOOT LATHEES $\underset{\substack{\text { foot Drill } \\ \text { Presses }}}{\text {. }}$

AMATEUR WORKERS Rape and fancy Woods

Beautiful Designs.
 $\xrightarrow{G \in \mathrm{EFO}_{1}}$

STEAMPUMPS

 TO ELECTROPLATRES JENELERS,
 Water Elevators. 107 Lake st., , wnicabe. C

SAN Nhainery
 PLANING \& MATCHING, TENONING,RE'SAWING, SHAPING BAND \& SCROLL SAWS \&c. \&c.
 J.A.fitise

 W Hull
Crude Gutta Percha

Mrun \& Co's. Patent Offices.

Established 1846.

Fhe Oldest Agency for Soliciting Patents in the United States.
TWENT Y-NINE YEARS' EXPERIENCR
MORE PATENTS have been secured through the world.
They employ as their assistants a corps of the most e perienced men as examiners, specification writers, an draftsmen that can be found, many of whom have been s lected from the ranks of the Patent Office.
themselves of Munn \& Co.'s services in examining their in entions, and procuring their patents.
MUNN \& CO., in connection with the publication of th Confer with inventors, pontinue to examine inventions assignments,attend to fling applications in the Patent Office paying the government fees, and watch eacn case step by
step while pending before the examiner. This is don step while pending before the examiner. This is don ington. They also prepare and file caveats, procure desig patents, trademarks, and reissues, attend to rejected cases (ight rights, attend to interferences, give written oplnions on
matters of infringement, furnish copies of patents, and, in fact, attend to every branch of patent business both in this and in foreign countries.
a special notice is made in the Solentifio American o all inventions patented through this Agency, with the nam
and residence of the patentee. Patents are often sold, in part or whole, to persons attracted to the invention by such notice
Fermany,
 ranted at prices greatly reduced from formerrates. Send for pamphlet pertaining specially to foreign patents which country
Persons desiring any patent ssued from 1836 to Novem ber 26,1867 , can be supplied with official copies at a rea sonable cost, the price depending upon the extent of draw tags and length or specifications.
Any patent Issued since November 27, 1867, at which and specificastions,may be had by remitting to this office *1. A copy of the claims of any patent lissued since 1836 wil be furnished for $\$ 1$.
When ordering copies, please to remitfor the same as above, and state name of patentee, title of invention, and date or patent.
A pamphlet containing the laws and full directions for
obtaining United States patents sent free Dound Reference Boos palt Dound Reference Boak, gilt edges, contains 140 pages and
many engravings and tables important to every patentee and mechanic, and is a useful handbook of reterence tor ev body. Price 25 cents, mailed free. Adaress

MUNN \& CO
Publishers SCIENTIFIC AMERICAN
Branot Offion--Corner Park Rind ythit streetr,
adturtisemencs,
 Engravings may head advertisements at the same rate
perline, by measurement, as the letter press. Adperline, by measurement, as the letter press. Ad$\xrightarrow{\sim}$

POPE'S RIFLE AIR PISTOL
 Harvard Pocket cigarette roller, \$1. ow Sent
of prien
High

${ }_{\text {Re }}$

PORTLA ND CEMENT

 Machinist's Tools. New Haven M'f'g Co.

Asbestos Roofing. with the improved White Asbestos
Hire Proof Coating, for steep or flat Roofsin all cllmates. Asbestos Roof Coating, for old Leaky Roofs.
Asbestos Cement for reparing Leakson Roofs.
Asbests Root Paint for Tlin Roofs Ironwor, \&c.
Asbestos Paints-all colors-for structural purpo

 H. W. JOHNS, 87 Maiden Lane, N.Y. Wrinkeses andiliecines Useful Hints, Suggestions, and Recipes, for Engineers, Mechanics, Farmers, and Housekeepers.
Contains the concentrated wisdom of practicalmen who have contributed to the SCIENTIFIC AMERICAN during late years. Also the cream of the Practical Mechanism series by Joshua Rose. Hundreds of valuable trade secrets and recipes.
Handsomely bound and copiously illustrated, 250 pages. Price, post-paid, $\$ 1.50$; with SCIENTIFIC
an MUNN Publisher,
P. o. Box $772 . \quad$ B. \quad B. Mark Row. New York city.

$\mathbf{W}^{\text {ITHERRRX, RUGG \& RICHARESON, Man- }}$

American Vehicles Wanted in Germany.
$\frac{\text { Manufacturers are invited to send Illustrated }}{\text { PERFECT }}$

NEWSPAPER FILE

D0 YOU Male or female. Send your ad-
 HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY.
W. B. PRAMKLIN, F. Pres't. J. M. ALLERT, Pres't. J. B. PIERCE, Sec'r.

4Niagara SteamPump Works Established 1862.
ARLES B. HARDICK 23 Adams Stree
BROOKIYN, N. Eureka Lathe, \$9.00. Send tor Circular. St $\mathrm{B}_{\text {TRIC }}^{\text {OGARDSS PATENT UNTVERSAL ECCEN }}$

$\mathrm{D}^{\text {REDGING AND DTTCHING MACHINERY }}$

> To Roofers, Builders, \& Property Owners.

Diamond Solid Bmery Wheels.

I MPORTANT FOR ALL CORPORATIONS AND

L ESSONS IN MECHANICAL DRAWING.-

Portland Cement

R OGERE, TANNATE OF SODA BOILER
RSCA PREVENTIVE JOS. G. ROGRRE, DOO."

The Tanite Co., STROUDSBURG, PA. EMERY WHEELS\& GRINDERS

with "air space" improvenient Upright Stationary Engines, Strong, Simple, Safe, and Ser4, 6, and 8 Horse Power. GRIFFITH \& WEDGE,

Mill FurnishingWorks

 The NILES ENGINE.
 Niles $\boldsymbol{T o O l} \boldsymbol{W o r k s}$,

Rug

SCIENTIFIC AMERICAN, FOR 1876, THE MOST POPULAR SCIENTIFIC PAPER HIRTY-FIRST YEAR

VOLUME XXXIV--NEW SERIES.

 The publishers of the SCIENTIFIC AMERICAN 1886, a new volume commenced. It will continue to be the aim of the publishers to render the con-tents of the new volume'more attractive and usetents of the new volume'more attractive and us

To the Mechanic and Manufacturer
No person engaged in any of the mechanical pursuits should think of doing without the SCIEN-
TIFIC AMERICAN. Every number contains from Tirfic American. Every number contains from
six to ten engravings of new machines and inven six to ten engravings of new machines and inven
tions which cannot be found in any other publica-
interests of Popular Science. the Mechanic Arts, Manufactures, Inventions, Agriculture,Commercl, and the industrial pursuits generally; and it is vap
uable and instructive not only in the Workshoe uable and instructive not only in the Workshoe
and Manufactory, but also in the Household, the and Manufactory, but also in the Household, the
Library, and the Reading Room. Each volume contains hundreds of Notes, Recipes, and Suggescontions and Advice, by Practical Writers, for Working Men and Employers, in all the various arts.
TERMS OF SUBSCRIPTIONS.--POSTAGE PAID BY US.
One copy Scientific American, one year.... $\$ 3.20$ One copy Scientific Δ merican, six months..
One copy Scientiflc Δ merican,three months
1.00 One copy Scientific American,three month8
One copy Scientific American and one copy Scientific American Supplement, both
for one year, post-paid.................... 7.00 One copy of Scientific American for one
year, and one copy of engraving, "Men
 One copy Scientitic American, one year,
and one copy Science Record for 1876. \ldots.
Ren Remit by postal order, draft, or express.
Address all letters and make all Post 0 Ofice ders and drafts payable to

MUNN \& CO.

[^0]: Address the Pub

