

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY AND MANUFACTURES. $\underset{\substack{\text { Vol. XXXIV.-No. } \\ \text { [NEW SERIES.] }}}{ }{ }^{\text {3. }}$ ] NEW YORK, MARCH 25, 1876. $\left[\begin{array}{c}\text { 83.20 per Annum. } \\ \text { [POSTAGE PREPAD. }\end{array}\right]$

## MULTIPLE DRILLING MACHINE.

The advantage of drilling the rivet holes in wrought iron structures, instead of punching them, has long been recognized by engineers, and the same is true of steel, where the gain in tensilestrength is about 25.5 per cent. The illustration, extracted from the Engineer, shows a machine in the form especially adapted for traveling over the upper or lower flanges of straight or hog-backed girders, and drilling flanges of straight or hog-backed girders, and drilling
through the whole of the plates at once, in the position they through the whole of the plates at once, in the position they
will permanently occupy. It is driven by a steam engine, will permanently occupy. It is driven by a steam engine,
self-contained, which is supplied with steam from a portable boiler alongside, connected by a strong flexible pipe.
The arrangement of working parts is such that the com bination may also be regarded as bringing to bear six or more independent drilling machines upon one piece of work and under the eye and control of a single attendant. The whole of the spindles work normally in conjunction, being fed down together self-actingly, and also being run up quickly together out of their work by simply striking the feed belt on the group of pulleys at the left hand end of the machine; yet any one of them may be worked independently at pleasure for by piving the small hendle of the feed at pleasure, for, by giving the small handle of the feed clutch half a turn, the self-acting feed becomes disconnected and the spindle may be wound either up or down by hand,
with a removable hand wheel, as shown on one of the spindles. with a removable hand wheel, as shown on one of the spindles.
The drilling heads are also independent in their adjustment upon the cross slide, to suit varying pitches of holes. They admit of being brought together within $3 \frac{9}{4}$ inches. Yet it will be observed that the driving wheels, by the arrangement of passing each other alternately at a higher and lower level, admit of being kept nearly 6 inches in diameter, and thus the stress upon their teeth is so light that, with well formed teeth of gun metal, driven by a steel screw, the wear is not appreciable
The method of securing each drill in socket is designed to obtain the perfectly true running of the drills, so that the drill points find their centers without the aid of a center punch pop, and afterwards run traly through the work; and it enables any drill to be released by merely tapping one end of the small cotter, and this may be done without stopping the revolution of the spindle, as would have to be done in the case of an ordinary cotter, or a set screw fixing. This part of the invention is applicable to all drilling machines, and forms a very efficient way of driving and securing a drill The shank of the drill is truly parallel, fitting into a bored
parallel hole in the drill socket. It has a flat formed on one $\mid$ clined flat formed upon it, which, when the pin is struck in side which serves to drive the drill, which is detained by a one direction, tightens against a flat formed on the drill one-sided cotter going through the socket; and by the taper

on the cotter tightening against the flat on the drill shank, he drill is secured from dropping out of the holder. The drilling tools, A, are secured in the sockets of the
drill spindles, B, by a round pin, C, Fig. 2, having an in-
shank. By striking the pin on the opposite end, the fastenthe course is loosened. $D$ is the belt drum on the end to the feed pullow, E ; from this drum motion is impar plle the in is the 1 , pulley, the work
The feed and return motion are communicated to the spin dle, B, by the screw, G, working into the worm wheels, H. The latter have an internal thread like a nut which works upon a feed screw, I, Fig. 3, whereby, when the screw is pre vented from revolving, the spindles feed down; but if the screws are left free to revolve, they will turn with the nu or may be rotated by the handle as at J .

The means whereby the screws are set free or are prevent ed from revolving is shown at K, Fig. 3, where there is a small bush embraced by a friction brake which is gripped or slackened by means of the handle, I. By this arrangement the bush may be allowed to revolve or caused to stop at pleasure. The bush besides is fitted with a feather key taking into the feed screw: thus, when the brake, $t$, is on the bush, the feed screw cannot revolve, and the motion of the worm wheel operates upon it to wind it up or down. On the brake being released from the bush, the screw becomes free to turn round by hand, carrying round with it the bush and may then be made to wind the spindle, $c$, up or down, in dependently of the movement of the worm wheel.

Petroleum as a Lubricant for Turning Tools. Considerable comment has appeared of late in foreign mechanical journals relative to the use of petroleum as a means of facilitating the action of turning tools in operatin upon very hard alloys. A writer in Les Mondes states that a mirture of 7 parts zinc, 4 copper, and 1 tin, resisted all tools even when the latter were tempered to extreme hardness. As soon, however, as the cutting edges were moistened with petroleum, the alloy immediately pielded and was turne ithout diffeity. It is also said that by using a misture pithoum of petroloum and turp an likewise be turned.
We know of no direct practical confirmation of this, but should be glad to hear from any of our readers who may test the suggestion. Meanwhile we shall experiment fo ourselves, and note the results as soon as perfected.


MOLTIPLE DRILLIMG MACHITE.

## §rientifir Gmerican.

MUNN \& CO., $\overline{\text { Editors }}$ and Proprietors. PUBLISHED WEEELY AT
NO. $B^{7}$ PARK ROW, NEW YORK.
O. D. MONN.

One copy, one year, postage included.....
One copy, one year, postage included...
One copy, six months, postake included.
ClubRates.
Ten coples, one year, each 82 20, postage included.......
Over ten coptes, same rate each, postage included.... 160
the subscriber then recelves the paper free of charge.
Notr.-Persons subscribingwill please to give their fall Offle and State address, platnly written. and also state at which time they wish their subscriptions to commence.otherwise the paper will be sent from the recelpt of the order. In case of changing resi lence, state former address, as well as give the new one. No changes can be made unless the formeraddress is given
If any of our readers fail to recelve their numbers regularly; if the direc.
tlon is not plainly written; if premfums are not recelved; or if there is thon is not plainly written; if premiums are not received; or if there is
tault of any sort at this offlice, we will thank our friends to send us postal rault of any sort at this offlice, we will thank our friends to send us postal
card complaints, and repeat the same, if need be, untll the remedy ts effect card complaints, and repeat the same, if need be, $D$ not hesitate to complain. We desire to keep all matters between ourselves and patrons right and satisfactory.

VOLUME XXXIV., No. 13.[New SEries.] Thirty-first Year.
NEW YORK, SATURDAY, MARCH 25, 1876.


THE SCIENTIFIC AMERICAN SUPPLEMENT.
For the Week ending March 25, 1896, table of contents.

## 



III. ELECTRICITY,LIGHT, HEAT, ETC. With 11 igures. - Allantic Tel











x. MISCELLANEOUS.-French Con

COMBINED RATES.




## THE OERA LINDA LETTERS AND FIGURES

The scheme of letters and figures given herewith is a rescript, lately come a after the family in which it has been an heirloom from time immemorial. The present owner is C. Oera de Linda, chief superintendent of the royal dockyard at the Helder, in Friesland, North Holland. In obedience to a family tradition, the book has been religiously preserved through many generations, though no one knew whence it came or what it con tained, both the language and the writing being unknown A Frisian scholar, Dr. Verweijs, heard of the work not long ago, obtained permission to examine it, and at once discovered it to be written in a more ancient form of Fries than that which appears in the book of ancient Fries laws, hitherto the oldest known literary monument of that people. The tradition to which the book is indebted for its preservation was found to rest upon two endorsements, the later, by fter, surnamed Oara Linda, being dated the $3,449 \mathrm{~h}$ year after Atland was submerged: that is, according to Christian reckoning, the year 1,256: the earlier, by Liko Oera Linda was written in the year 803. Hiddo describes the work as a history of his family and of the Fries people, and earnestly rects his son to preserve it with body and soul; and relates that he had just copied it upon "foreign paper" to prevent its perishing in consequence of a wetting it had got during a local flood. Liko quite as earnestly enjoins his successors to keep the work from the eyes of the monks, who spoke
"sweet words," but underhandedly sought to destroy every"sweet words," but underh
thing relating to the Fries.


## sm0128486888 <br> RUN. OO. 1\%. 21. 33. 44. 55. 66. 2\%. 88. 89

The book consists of several parts, differing widely from ach other, and of dates very far apart. The writer of the first part calls herself Adela, wife of Apol, chief man of the Linda country. The first date mentioned in it is the year 1602 after the disappearance of Atland, or B. C. 591. The writing was begun thirty-two years later, or B. C. 559. The account is continued by Adela's son Adelbrost and his sister Apollonia. Some two hundred and fifty years later, another book was begun by Frethorik, to which additions were afterward made by his widow, by their sons, and by their grandson. The page which we have reproduced appears in the portion written by Adela, upwards of twenty-four centuries ago : or about the time of Solon, Confucius, the prophet Dan iel, Pythagoras, and shortly after the destruction of the first emple at Jerusalem by Nebuchadnezzar
According to Adela's account, this portion of her book was copied from an inscription on the walls of Waraburgt. The divided circle, with the letters voralda around it, is the Jol-wheel, the first symbol of the Almighty, also of the beginning from which time is derived: "this is the Kroder, which must always go round with the Jol." According to this model, Frya (the primal priestess, the first daughter of Earth)formed the set hand which she used to write her Tex. When Fasta was chief mother, she made a running hand out of it. The sea king. Godfried the Old, made numbers for the set hand and for the runic hand. "It is therefore not too much," says the Waraburgt inscription, "that we celebrate it once a year. We may be eternally thankful to Wr-alda that he allowed his spirit to exercise such an influ ence over our forefathers."
The Tex of Frya was what we may term the Magna Charta of the Frisian people. Fasta was the first Eremœder or chief priestess, appointed by Frya, some time in the happy period before the dispersion of the Frisians by the sinking of their country beneath the waters of the North Sea. The Jol feast was the midwinter festival, now called Christmas.
The Waraburgt inscription further narrates that Finda's people, that is, the yellow race, whose surviving remnant n Northern Europe is the Finns, also had a system of writng; but it was so difficult and full of flourishes that they lost the meaning of it. Subsequently, the Finde people including the Thyria and the Krekalanders (Tyrians and Greeks) learned the Frisian text, but corrupted it so that it ost its legibility.
Touching this reference to the Greek alphabet, the learned anslator of the Oera Linda book calls attention to the ac
own invention. They attributed the introduction of it to Kadmus, a Phœnecian. The names of their oldest letters, from alpha to tau, agree so exactly with the names of the Hebrew letters, with which the Phœnecian was closely connected, that there can be-little doubt of their source. But the forms of their letters differ so entirely from those of the Phœnecian and Hebrew writing, that in that particular no connection can be thought of between then. Whence, then, did the Greeks derive the forms of their letters?
The book of Adela's followers shows that, at the time Kadmus is said to have lived, a brisk trade was carried on be tween the Frisians and the Phœnecians, whom they called Khadmar, or coast people, a name too closely resembling Kadmus to escape a suspicion of identity.
The same book also describes, at length, the founding of athens by a Frisian colony, whose priestess was Min erva, and the subsequent deification of Min-erva by Grecian priests, who sadly corrupted the pure religion she had introduced. This, in connection with the Waraburgt inscription above described, makes it very clear how it came to pass that the earliest Greek letters had, to a marked degree, the forms of the Fries letters, with the names of the letters of Finda's people.
It is even more surprising to find our current figures ex isting, in so perfect a form, from such remote antiquity. The scheme is suspiciously perfect: still, the internal evi dence of the genuineness of this remarkable record of a civilization in Western Europe, antedating Athens and the Trojan war, is too cogent to be lightly set aside.
The single circumstance that the writers of the record were perfectly familiar with the pile dwellers of Switzerland, whom they call Marsaten and describe at considerable length, is proof enough that the book is either as ancient as it purports to be, or else is a very recent forgery. Previous to 1853 , when the first remains of that people were accidentally discovered, there was no other record of their existence. We usually call our figures Arabian, but it is well known that the art of expressing all numbers by means of ten signs was unknown to the Arabs of the East. It was learned in the West. Perhaps, if a few more records of Friesland had the West. Perhaps, if a few more records of Friesland had
been kept from the monks, the matter would not be under been kept from the monks, the matter would not be under
such a cloud. Our figures are also called Indian, and their such a cloud. Our figures are also called Indian, and their
currency in the East is quite consistent with the story of this book, since a considerable part of it is devoted to the fortunes of a Frisian colony in the Punjab (established B. C. 1551), from which a knowledge of the numerals, as based on the lines of the Jol, may have been communicated to the surrounding nations. No names of places in this colony are given ; but it is narrated how the Frieslanders first established themselves on the east of the Punjab, and afterwards moved to the west of the rivers, in both of which localities the sun was directly overhead, at midday, in summer time. Confirmation of this account is found in Herodotus and Strabo, who speak of a people then called Germans; in the writings of the historians of Alexander's expedin, who speak of an Indian colony from the distant unknown North and Ptolemy, who mentions two places called Minnagara, one $24^{\circ}$ north, on the west side of the Indus, the other $6^{\circ}$ to the eastward, and in north latitude $22^{\circ}$. The name is pure Fries, and comes from Minna, chief master at the time the exhibition sailed.

## WORK AND WAGES IN NEW YORK CITY

The New York Times has recently published some elaborate and suggestive statistical information relative to the present condition of labor and wages in this city. The principal result and indeed the most striking one adduced is the marked falling-off in the numbers of the trades' union members. These societies have lost fully two thirds of their strength since 1873 , and a membership of 48,180 in that year is now reduced to less than 18,000 . It needsno especial discernment to see the reason of this; it is the logical effect of the disastrous strike of 1872 , succeeded by the financial crisis of 1873. The one demonstrated the fallacy of trade union domination, the hollowness of the promises of those men who provoked the agitation and urged and compelled others to join in it,and the misery and privation which must inevitably follow a struggle where the strength and union and staying power of those sought to be coerced is in marked contrast to the disorder and weakness of those who assume the aggressive. It cannot be denied that the results of that uprising dealt the cause of the unions a terrible blow, and it only needed the sudden collapse of the pecuniary resources of hundreds of employers, and the consequent enforced idleness of thousands of workmen, within a period tce short for a complete recovery from the effects of the strike, to reduce the trade societies in this city from a great, to a comparatively insignificant power in the labor market.
Few can adequately realize how sudden and vast a change in the condition of labor took place when the financial panic wept over the country. Perhaps this can best be gleaned by a short retrospect of the condition of affairs in 1872, when the great strike occurred, and a comparison of matters then with matters now. At that time the total number of workmen employed when the shops were full was 82,938 , out of which aggregate $61,050 \mathrm{men}$ joined in the strike. As this last mentioned total is obtained from trade union records, it follows that the balance were non-society men ; so that in 1872 there appeared but 20,888 men outside the unions, or, in other words, the membership of the latter was in the proportion to outsiders of about three to one. At the present time the total number of workmen is 76,350 , of whom 18,000 are society men. The proportion now is exactly the other way, the non-union men having a majority of over four to one
No
fallacy that "ten hours pay should be given for eight hours work;" and this, reduced to its simplest terms, amounted to a demand for 20 per cent more wages. It is instructive to place side by side the wages then paid (in a vain effort to force
which to higher figures the workmen threw away $\$ 1,674,950$ ) which to higher figures the workmen threw away $\$ 1,674,950$ )
with the wages of to-day. By the aid of the Times' article, with the wages of to-day. By the aid
we have prepared the following table:

|  | Trade unton scale of wages per week before pantc. | Lowest trade union scale of wages per week now. |
| :---: | :---: | :---: |
| Carpenters and jolners Bricklayers stone cutters | ${ }_{*}^{821}$ | ${ }_{\$ 12} 15$ down to 89 ( 8 hours) |
|  | *27 |  |
| Plasterers. | ${ }^{8} 8$ | ${ }_{8}^{\text {game }}$ (2) but oft |
| ${ }_{\text {Srass mors }}^{\text {Shoers and }}$ finisiliers.: | *20 to \$30 | *10 to *18 |
|  |  | ${ }_{\text {\% }}$ |
| ¢resco painters ................. | ${ }_{8}^{*} 2$ |  |
|  |  |  |
| Sallmakers ${ }_{\text {Carriage bulders................: }}$ |  |  |
| Caulkers....... ................ | *24 | *21 |
| Coamet inaikers.............: | ${ }_{*}{ }^{18}$ |  |
|  | 818 |  |
| Varnishers and polichers....: | ${ }^{18}$ | *10 to \$ 2 (piecewor |
| Machinists and blacksiniths..: | * ${ }_{\text {* }}^{4}$ |  |
| ${ }_{\text {Bax makers }}$ B | \$15 | \% 6 to 12 |

If we may take this as an index, the reduction of wages is something over 33 per cent; and therefore men are now gladly receiving pay one third less than that which they struck against in 1872 . Nor is this all: a still more impres sive contrast is yet to be drawn. When the strike broke out in the last mentioned year, the signs of prosperity were everywhere, the shops were reasonably full, and the aggre gate of 82,938 persons given above shows the men actually employed at the time. But as is well known, works stopped, employers failed, and men left for other localities: hence we account for the difference of 6,588 men which there is between the numbers of workmen then and now; but besides these is a deficiency which does not show, namely, the ratio of employed to unemployed. Out of our 76,350 working men, 25,210 are idle. Therefore not only have wages been reduced one third, but the actual supply of work has fallen nearly two thirds. In brief we employ one workman to three employed in 1872; and for the wages then paid to three men, we now obtain the labor of four
Turning now from general conditions to separate trades, it is easy to trace, in the decline of some, the natural effect of the cessation of the unnacural haste which characterized the expansion of certain industries. Take, for example, building. In 1869 real property in this city would sell for fully one fourth more than it now will, and rent in the same propor tion. As a result every one who had unimproved lots built on them, and our higher uptown streets presented the anomalous spectacle of block after block of mere shells of houses rising like mushrooms with astonishing rapidity. Then was the harvest time for the bricklayers, and the masons, and the carpenters, and their wages were $\$ 5$ and $\$ 4.50$ per day. But as soon as the financial trouble came-in fact, as soon as the strike began-work stopped, and as it has not been resumed, and probably will not be for a great many years to come, to an equal extent, necessarily the trades thus depressed have suffered severely. On the other hand, the hatters, the bakers, the tailors, and all who contribute to human necessi-
ties, although their trade is dull, have undergone no heavy losses
The metal trades have been as severely affected as the building trades; and in general, it appears that all those call ings whose work involves capital to be laid out have suffered. People are not poor for if they were, the fact would be apparent among the carriage, pianoforte, cigar, and cabinet makers. For articles of luxury there is a fair demand, but not at high prices. The tendency is to economize and hold on to money, as witness the extremely large surplus in the hands of some of our city savings' banks, one institution having over four millions, another over two millions, and others over one million of dollars above their liabilities.
The signs, on the whole, are encouraging, for habits of thrift and a persistent opposition to high prices will speedily bring down living expenses, from the unnecessarily high figure at which they now stand, to the rates obtaining previous to the war. And this done, and the purchasing power of wages in creased, we may soon look for the return of substantial pros perity to our industries.

## THE DRAINING OF THE ZUYDER ZEE.

In the year 1170 the waves of the ocean, driven by a hur ricane, broke down the dunes and dikes on the northern boundary of Holland, and, pouring in upon the low land, converted a thriving and populous district into an inland sea. There are scores of quaint and curious legends regarding the submerged cities in the Zuyder Zee; and it is said sometimes that, when the water is still, the turrets and pinnacles of the ancient buildings can be recognized protruding above the ooze and mud on the bottom. For seven centuries this great lake has existed ; but long before the close of the hills, will again be hills, and where now the storms beat up hills, will again be hills, and where now the storms beat up
waves, as high and as dangerous as any in the North Sea, waves, as high and as dangerous as any in the
will be a broad expanse of fields and pastures.
There is no country in the world which possesses a greater interest to the engineer than does Holland. Her sea shores are lined with the great dikes built of Norway granite, timbers, turf, and clay, heaped up to a hight of thirty feet or so, and broad enough at the top for two wagons to drive abreast. Over a billion and a half of dollars have been expended in making these vast embankments. The canals, which form a perfect network of waterways over the country, are wonderfully substantial ; so also are the country roads, with their triple line of trees, between the leafy arches of which one can drive for miles in the shade. But
the greatest of Dutch engineering work is the draining of the greatest of Dutch engineering work is the draining of
the lakes, ninety of whick already have been converted into the alkes, ninety of which already have been converted into
arable land. It took sixteen years of continuous operations, including three years of pumping by gigantic engines, to re move the water of Haarlem Lake, which covered an area of seventy square miles. Now, however, in the draining of the Zuyder Zee, a task has been begun which throws all previous undertakings far in the shade, and which, as a colossal piece of engineering, will take rank with the Suez canal, and the Mont Cenis and British Channel tunnels.
The Zuyder Zee covers an area of 1,200 square miles, about equal to that of Rhode Island, less Narragansett Bay. Of the provinces which constitute the Netherlands, North Brabant, Gelderland, Friesland, and Overyssel extend over a larger area. North and South Holland, Zealand. Utrecht, Groningen, Dienthe, and Limburg are all smaller. All the area of the Zuyder Zee will net, however, be drained, it being the intention to remove the water from but 753 square miles. Of this total 73 square miles will be devoted to dikes, roads, and canals, leaving an extent of 680 square miles of arable and canals, leaving an extent of 680 square miles of arable
land. The new province of Zuyder Zse will then rank tenth in point of size-Zealand and Utrecht being smaller-and will render Holland about one eighteenth larger than it is at present.
The preliminary soundings have recently been made, and have shown most satisfactory results. With the exception of along the coasts and about the sand banks, the bottom of the lake is a deposit of 160 feet of clayey earth. This soil is rich almost beyond description. It may be used for crops for a century without impoverishment. We have been informed that, at the time of the separation of Belgium from Holland, when for four years the countries were in a state of war, the frontier cities of Holland were protected by large inundated ditches. When peace returned, these bodies of water were drained, and the soil devoted to agriculture. The deposit precipitated even in so short a time resulted in en riching the land so that never before had it yielded such enormous crops, and even now that section is one of the most
fertile in all Holland. Now, with 160 feet of the richest fertile in all Holland. Now, with 160 feet of the richest earth at his disposal, it may easily be imagined that, with his proverbial agricultural skill,the Dutch farmer will some day astonish the world with the extent and magnitude of the vegetable productions gleaned from the bed of the Zuy der Zee.
In a few months the plans for the whole work, now being made by Heer Leemans, of Kampen, will be submitted to the government, and operations will shortly follow. These will last probably some sixteen years. Pumping will continue for two years and eight months. The average depth of the lake in the portion to be drained is 14.4 feet. The volume of water to be lifted and discharged on the other side of the dike is 306 billion, 505 million cubic feet. The pumping machinery will aggregate a force of 9,440 horses and will lift 158,850 cubic feet of water per minute, or 228 , 787,200 cubic feet per day of 24 hours.

## ANOTHER OBNOXIOUS POSTAL LAW.

Since the assembling of Congress, the people have patiently awaited the repeal of the obnoxious postal law, passed during the closing hours of the last session, the effect of which was to double the postage on transient newspapers, magazines and periodicals, books, and merchandise. It was generally un derstood that this much desired measure would early engage the attention of our representatives; but although the House has taken satisfactory action with moderate celerity, it still hangs in the Senate, having been referred to the Committee on Postal Matters, of which Senator Hamlin, the originator of he very objectionable law passed last winter, is the chair man. This committee has been engaged in devising an entirely new schedule of rates for third class postal matter, which has recently been laid before the Senate by Mr. Hamlin. The act fixes the following rates
For distances not exceeding three hundred miles, one cent for each two ounces or fractional part thereof; for distances between three hundred and eight hundred miles, two cents for distances between eight hundred and fifteen hundred miles, three cents; and for each additional thousand miles, one cent additional for each two ounces or fractional part thereof. A special rate is, however, proposed for transient newspapers and magazines, namely, one cent for every two
ounces or fractional part thereof for any distance not exceeding one thousand miles; but for any greater distance, double this rate is to be paid.
The object of this discrimination is to relieve the govern ment of a portion of the expense involved in carrying the mails over long distances, in sparsely settled portions of the country, and thus to place the post office on a basis which shall more nearly approximate self-maintenance. This is all that the most earnest supporter can urge in behalf of the bill, which otherwise is a marvel of stupidity and vexation It is a retrograde measure, reminding one of the rates 30 years ago, when 6 c ., 12c.,18c.,and 25 c . were the charges on letters the rate depending upon the distance. But no intelligent person demands or expects the postal service, in which every
body has an interest, to be self-sustaining like the Patent body has an interest, to be self-sustaining like the Patent
Office department, whose receipts are in excess of its expenses very year. In fact, there is no tax that the public pay more willingly than that due to postal deficit; all they ask is that the department be economically managed, and that business capacity be shown in making contracts for carrying the mails, etc. ; but no one desires to reduce the accommodation it affords to the public.
The immediate effect of the proposed measure will bring chaos on all the postal affairs to which it relates. It preupposes a geographical knowledge throughout the entire population, which never could exist. Not only must a man
know the distance of every post office from his residence, but the distance of every post office from every other post office, else he could not stamp his packages correctly. As it would require a public of Zerah Colburns to keep such math. ematical knowledge in their heads, tables will have to be prepared, and the people taught to use them; or else the postmasters, especially at large centers, will have to employ clerks for the express purpose of imparting the necessary information. Publishers and business houses mailing packages of papers, books, or merchandise will be put to vast inconvenience, for the distance of the destination of each packet will have to be determined before the required postage stamps can be affixed. Then when errors are made, in prepayment, the post offices will be filled with periodicals and bundles retained for short postage; and the service will be put to more expense, in notifying the senders of the fact.
The bill is fifty years behind the age. It is a retrogression to the earliest days of the existence of the post office. That system went out of existence when the ten cent postage to California was abrogated; and its principle was then scouted as an absurdity. The people want no more tinkering of the postal laws for the benefit of the express companies-a fact too plainly apparent. The immediate result of the law which it is now sought to repeal has been a large decrease in the receipts of the post office, for the government found itself left with the most unprofitable part of the service, the long distance carriage; while for short distances the people have used the expresses, whose rates are cheaper.
The outcry which arose all over the land last winter; when the public appreciated the effect of Senator H mlin's ill considered law, should have indicated to that official the drift of public sentiment, sufficiently well to have prevented his perpetrating the present blunder. The people feel that the mail is a great and useful vehicle for the dissemination of knowledge, and that it is, moreover, a valuable convenience for the distribution of seeds and other light merchandise among the agriculturists throughout the country. Senator Hamlin's bill should not pass; and the sooner Congress sets about fulfilling the will of the people, by simply repeal ing the present unjust law and re-enacting the old one, the sooner will it merit the approbation of the public.

## TO OUR SUBSCRIBERS.

At this season of the year, many thousands of subscripions are renewed, and a large number of clubs comprising new names are formed; and we are happy to state that our old patrons have never renewed their subscriptions at the commencement of a year more promptly, and we have never had so large an accession of
If any person fails to receive the paper or any premium to which he is entitled, we would thank him to inform us at which he is entitled, we would thank him to inform us at
once. Notwithstanding the provision we had made for a once. Notwithstanding the provision we had made for a
large increase in our circulation, by printing several thoularge increase in our circulation, by printing several thou-
sands extra of the first ten numbers of the year, we find sands extra of the first ten numbers of the year, we find some of the editions already exhausted, which will prevent
our sending complete sets of back numbers from the commencement of the volume. The first six numbers can be supplied, and some of the subsequent issues, but, we regret, not all. If persons, when remitting their subscriptions, ex press a wish for such back numbers as we can supply, those not out of print will be sent: otherwise, the subscriptions will commence from date of their receipt.
Our mail clerks, wrapper writers, and folders are under special injunctions to write the subscriber's name and ad dress legibly, and to fold the paper neatly. We shall be glad to be informed if any one receives slovenly work of any kind rom this office
It is our desire to give satisfaction to every person doing business at this office; correspondents should write over
their own signatures, and give address legibly, enclosing a postage stamp. No attention is paid to inquiries if the name and address of the writer is not given.

## dEFEAT OF THE SEWING MACHINE MONOPOLY IN CONGRESS

The Committee on Patents of the House of Representa tives has reported adversely on the application of A. B Wilson for an extension of his patent for sewing machines. This is the celebrated four motion feed now used by the Wheeler \& Wilson and other machines. The dispatch to the Associated Press says that the application has been before Congress for several years; and protests against the exten sion have been received, during that time, signed by nearly one million persons. All of the small sewing machine companies, which had been required to pay a heavy royalty to the sewing machine combination composed of the four leading machine companies, have fought the extension savagely. This refusal will ultimately reduce the price of sewing ma chines very greatly, as soon as the four motion feed becomes public property. The Committee say that the applicant has already made two or three large fortunes out of his inven tion, and that it is time now to give the public a chance. The testimony taken before the Committtee shows that the cost of making a sewing machine is not more than from $\$ 12$ o $\$ 15$.
This action of the House Committee defeats the scheme of the monopolists for the present session, but will not prevent a renewed attempt hereafter
M. Nomaison has devised a simple apparatus for removing the bark from timber, an operation now commonly performed only when the wood is in soak. He proposes a small steam generator which sends dry steam into a chamber in which the wood is enclosed. Under the influence of the steam, the bark easily peels off.

## THE AQUEDUCT OF LA VANNE

An aqueduct, one hundred and thirty-five miles long, which is nearly, throughout its whole length, one solid mess of stone, a colossal monolith, may well be considered one of the engineering marvels of the century. Such is the great aqueduct which, toward the close of the late French Empire, was constructed to bring into Paris, from the Departments de l'Aube and de l'Yonne, th River. The greatest diffi culties met with in building the structure were found in crossing the forest of Fontainebleau, a distance of thir-ty-seven miles, entirely destitute of good building material, and cut up by immense hills of almost impalpable quicksand. To this section the béton Coignet construction, afterward continued through nearly the whole work, was begun. As shown in the engraving, the Fontainebleau section is composed of a series of arches, some of them as much as fifty feet in hight. Eight or ten bridges of large span (from 75 to 90 feet) are also included, all made of solid masses of béton Coignet. The composition of this concrete was: For foundation and gravel walls, sand and gravel equal parts, 5; hydraulic lime 1, Portland cement $\frac{1}{4}$, parts. For pillars, abutments, etc., sand, and in some cases gravel, 4, and hydraulic lime 1, parts. The other portions were made from sand 4, hydraulic lime Portland cement from to $\frac{1}{2}$ parts. This concrete, properly dampened, was com
perly dampened, was
ined in a mill of especial construction, and agglomerated at once in molds at the spots needed.

## IMPROVED WATCHMAKER'S LATHE

In the improved watchmaker's lathe, illustrated in the accompanying engraving, the novel features consist of an adjustable bed, the hight of which, in relation to the centers, may be varied to suit different kinds of work, an adjusting tail stock, and an attachment for cutting gear wheels and pinions. Figs. 1 and 3 are side elevations of the lathe ad. justed for turning; in Figs. 2 and 4 an end and jude elevation are shown, exhibiting the ad justment for gear cutting.
The stationary part, A, of the lathe carries the live spindle, $B$, and supports the bed, $C$, which is clamped to it by T-headed bolts, D , so as to be raised and lowered by the adjusting screw, E. The tail stock, F, is pivoted to the end of the bed by the clamp bolt, $G$, so that it may be turned down out of the way, as in Fig. 2, when not required for use. When said stock is in working position, a block, $H$, is screwed on the bed in order to adjust the center, J , in line with the live center, through the screw, $K$, on said block acting against the stud, $L$. The screw, I, also secures the tool rest, $M$, and the bed, N , for the slide, P , which carries the gearcutting center, R , to be worked backward and forward to feed the blank to the cutter. Said slide is operated by the hand lever, $Q$. The template, S , is fastened by a lever latch, T , working into notches in the edge. There is a pointer, U , to gage the gear-holding centers to the rotary cutter in setting the bed, $N$, and slide, P .
The cap, $V$, for holding the live spindle in the bearing of the head stock, is hinged to the stock and fastened with a single screw, $\mathbf{W}$, to facilitate the changing of the mandrels, two or more of the latter with different centers or attachments being employed for different kinds of work.
Patent pending through the Scientific Ameri can Patent Agency. For further information address the inventor, Mr. Daniel M. Williams, Calvers, Robertson county, Tex.

## Comparative Cost of Gas and Candle

## Light.

Eight star candles give as great a quantity of light as a gas burner consuming 5 to 6 feet per hour. Thecost of 5 feet of gas,at prices charged in Louisville, Ky., is 1.35 cents. That of the candles is $9 \cdot 2$. Therefore, to produce the same quantity of light in a parlor, the gas is cheaper than candles. But counting in another way, can. dle light is greatly cheaper than gas. Thus a candle placed on a table, one foot from a book, gives twice as much light to the reader as a gas light placed four feet above the book. By this comparison it will be seen that the candle
costs only four tenths of a cent per hour, while the gas costs 135 cents. The rule in calculating the strength of light is hat it decreases as the square of the distance.
A pound of star candles costs $16 \frac{1}{2}$ cents and burns 42 hours, giving a soft, pleasant light, and, at 17 inches from an object, gives a light equal to a gas burner 4 feet from the object, consuming 5 feet per hour. The calculations are as follows: The square of 17 inches is two feet. The square of 4 feet is


AQUEDUCT OF LA VANNE, FRANCE.
16 feet. That is to say, the quantity of light from gas must be in the proportion of 16 to 2 , or of 8 to 1 , to make the gas and candle light equal at the distances given above. From
which it appears that, for reading and many other uses, candle light of the same power costs only one third as much as gas.

Stanns inside of wine decanters can be removed by putting in a handful of chopped raw potato, with some warm water, and shaking briskly.


Novel Use of Apomorphia.
Ed. T. Robinson, M. D., says: The report of the follow ing case may be interesting to your readers, so far, at least as it suggests the value of the comparatively new remedy apomorphia, in a class of cases in which I have not heard of ts having been used. On the 30th of November, 1875, was called to see a little boy, thr ee years old, who had, two hours previously, accidentall y swallowed a biconvex lens shaped tin whistle. I found it lodged near the cardiac ter minus of the œsophagus The little fellow was suffer ing considerable pain, writhing his body when he at tempted the act of degluti tion, which act seemed irre sistible every few seconds A small quantity of bread and water was given him to ascertain whether the œeso phagus might be completely occluded. He rejected it al most immediately, with no admixture of the stomach contents. I then administered hypodermically in his arm of a grain of apomorphia. In three minutes, by the watch the emetic quality of the dru was manifested by pallor H was then placed on a bed, fia was tisu placed on a bed, fia on his bely, when, after thre or four violent attempts. he in one heave emptied entire ly the stomach, the whistle taking the lead, and ringing, as it fell in the basin, produ cing a most agreaable sound to the ears of the anxious mo ther, who before had but lit tle faith in my expedient. The whistle measured $1 \frac{3}{16}$ inches in diameter. The child, when seen an hour later, was bright and run ning about as well as ever.-Medical Record.

The Total Solar Eclipse of September 17-18, 1876 . The track of totality in this $\epsilon$ clipse is wholly upon the $\mathrm{Pa}_{\mathrm{a}}$ cific Ocean, and in such course that only two or three small islands or reefs appear to be situated near the central line Using the Nautical Almanac elements, which are almost identical with those of the American Ephemeris, wherein the moon's place is derived from Peirce's Tables, St. Matthia Island, west of Admiralty Islands off the northeast coast of New Guinea, is traversed by the central track of the shadow, with the sun at an altitude of $5^{\circ}$ at 6 h .16 m . A.M on the 18 th ,local time. Thence, skirting Ellice Islands, it passes between the Fijis and the Samoan or Navigator group to Savage Island, in $170^{\circ}$ west of Greenwich, lati tude $90^{\circ}$ south, which is apparently the only spot where totality may be witnessed under anything like favorable conditions, and even here the duration of totality is less than one minute. The after course of the central line does not encounter any land.
In the northern of the two large islands of the Fiji group (Vanua Levu) $169^{\circ}$ east, a partial eclipse will occur, commencing at 7 h .47 m . A.M., $44^{\circ}$ from the sun's north point towards the west, for direct image, and ending at 10 h 16 m ., magnitude 0.86 . In the larger island of the Navigator group, Savaii of the Admiralty Navigator group, Savaii of the Admiralty though nearly approaching totality; eclipse bethough nearly approaching totality; eclipse be-
gins 8 h .23 m . A.M. at $53^{\circ}$ from the sun's north gins 8 h .23 m . A.M. at $53^{\circ}$ from the sun's north noint to wards the
magnitude 0.97 .
Assuming the north point of Savage Island to be in $169^{\circ} 48^{\prime} \mathrm{W}$., with $18^{\circ} 55^{\prime}$ south latitude, a direct calculation gives a total eclipse commencing at 10h. 8 m . 6s. A.M. local mean time, and continuing 57 seconds with the sun at an altitude of $58^{\circ}$; the first contact of the moon with the sun's limb at 8 h .48 m . A. M, 49 from his north point towards west for direct im age; and the end of the eclipse at 11 h .29 m .
In New Zealand the eclipse attains a magnitude of about 0.5 at Auckland, greatest phase at 9 h .18 m. A.M. ; towards the extremity of the southern island about Otago, one third of the sun's diameter will be obscured about 9 h .12 m . local time. A partial eclipse between similar limits will be visible on the east coast of Aus tralia and in Van Diemen's Land.-Nature.

According to experiments by M. Rudorff, on cold produced by solution of 20 different salts, the two which give the greatest lowering of temperature were sulphuretted cyanide of am monium and sulphuretted cyanide of potas sium : 105 parts of the former dissolved in 100 parts water, produce a lowering of temperature of $31 \cdot 2^{\circ}$; and 130 parts of the latter, in 100 parts of water, as much as $34 \cdot 5^{\circ}$.

## MAGNETO-ELECTRIC MACHINES.

leoture deliferid at the stevens institute of technology, by professor george f. barker, of the
vania.
It will be remembered, from the previous lecture (see page 181, current volume), that every magnet is surrounded by a field of force, consisting of lines of force proceeding from it in every direction; and that whenever these lines are traversed or cut by a conductor, a current of electricity will be developed in the latter, which is themore powerful the more nearly the lines of force are cut at right angles. This is the principle of the magneto electric machines to be described. It may not be superfluous to to be described. It may not be superfluous to define a magneto-electric machine as one in which magnetism is used to produce electricity, while an electro magnetic machine is one in
which electricity is used to produce magnetism. which electricity is used to produce magnetism.
In 1831, Faraday proved the conversion of magnetism into electricity, by using a flat iron ring having on both sides a carefully insulated coil of wire. On passing a current through one coil, a galvanometer needle connected with the other coil was deflected. Now, this could only be effected by an induced current, and this current could only be due to the magnetism produced in the iron ring by the first coil-a result which Faraday undoubtedly foresaw when he
constructed his apparatus.
The principle of this discovery was then shown by the lecturer by introducing a very small magnet into a small coil of wire connected with a galvanometer needle, which was projected on the screen by means of the lantern. It was observed that the needle was deflected in different directions, according as one or the other pole of the magnet was introduced into the coil, or as one or the other end of the coil was selected for the introduction of the magnet. It was furthor observed that the effect was produced only at the instant of introducing and at the instant of removing the magnet from the coil. Here, then, we have the condi tions requisite for the construction of a magneto-electric engine. We know that the lines of force must be frequently cut at right angles, and the whole problem becomes a mechanical one: How can it be done to the best advantage?


Fig. 1.-CLARK'S MAGNETO-ELECTRIC MACHINE.
So soon as the year following Faraday's discovery, Pixii, an instrument maker of Paris, made a magneto-electric engine for the celebrated Ampère. In this machine, the steel magnet revolves on a vertical axis below two coils of wire containing soft iron cores. The electrical current induced in the wire was strong enough to decompose water, melt thin platinum wire, and replace the battery in all respects.
The same year (1832), our distinguished countryman, Joseph Saxton, long employed in the Philadelphia Mint and the United States Coast Survey, used a stationary horizontal magnet, and revolved a series of four coils before its poles magnet, and revolved a series of four coils before its poles
As Professor Joseph Henry had observed marked differences As Professor Joseph Henry had observed marked
of effect with different thicknesses of wire, Saxof effect with different thicknesses of wire, Sax-
ton made two of his coils of fine and two of ton made two of his coils of fine and two of
coarser wire. Now when the coils revolve becoarser wire. Now when the coils revolve be-
fore the poles of the magnet, currents in opposite direction are induced in them in the two halves of their revolution; and in order to throw these opposite currents in one direction, he in vented a commutator, consisting essentially of double points of metal, connected with the axis of rotation, and making connection by dipping into a cup of mercury, so as to carry off each current before the next is produced. In other machines, the same is effected by insulating, on the axis of rotation, all but two strips, connected with the coils, and carrying off the current by means of metallic springs pressing against it.

As Saxton did not publish a description of his machine, although he had it exhibited in London for a long time, Clark, a London instrument maker, brought out, in 1836, the machine repre sented in Fig. 1, which is in its principles a copy of Saxton's, with the exception of the commutator.

In the next place, Page took two magnets and revolved his coils between them. This was the

he great electro-magnets at the stevens institute.
nets, as they occupied much less space, and made a more compact machine. This result was favored still more by the invention of the Siemens armature in 1857. This was a new device for cutting the lines of force, in the place of the revolving coils or bobbins. It consists of a long soft iron bar, a cross section of which is shown in Fig
2. The grooves represented there serve for the recep tion of the insulated wire, which is wound lengthwise over the bar. In order to use this new form of armature, the electro-magnet, be tween the poles of which it revolves, is made long and flat, as in Fig. 3, which represents the Wilde machine with the Siemens armature. A smal magnet on top induces a current of electricity in the wire of a small armature, which in turn herge the large electro marnet below, and pro charg the duces a po arful current in the armature. There are two of these machines in this country, one in Boston and one at the print ing establishment of Frank Leslie, in New York. The latter is driven with a velocity of 1,800 revo lutions per minute, and the current derived from it will electrotype several plates of his paper in twenty minutes. It is also used as a source of of electric light for photographing on cloudy days.
But a yet further improvement was made in this machine. Siemens and Wheatstone proposed to do away with the small magnet entirely That looked very much like perpetual motion What is there to start the machine? There is alwaysenough residual magnetism left in thearmature, when the machine has sidual magnetism left in thearmature, when the machine has once been started, to produce a feeble current of electricity;
and if this is made to flow into the wire surrounding the and if this is made to flow into the wire surrounding the large electro-magnet, it will charge it sufficiently to increase the current by which it is supplied. In this way, the large electro-magnet soon gains its full strength. The principle of such machines is, therefore, to divert a portion of the induced current back into the electro-magnet, and use the remainder for outside work.
Ladd, a London instrument maker, constructed a machine on this principle, which received the first prize at the Paris exhibition of 1867 .
The next improvement was made by Professor Pacinotti, of Pisa, who made his armature in the form of a ring, so


Fig. 6.-IMPROVED FORM OF GRAMME'S MACHINE.
that the current should always flow in one direction. It consisted of a ring of soft iron, surrounded by insulated wire, and revolved between the poles of the existing magnet. The current was tapped and carried off half way between the poles.

This form was almost forgotten, when, in 1871, M. Gramme, a furniture dealer and general tinker of Paris, was led to construct a machine by studying one that had been brought to him to mend. The principlesinvolved are of importance, as they led to the most perfect instrument of the kind yet invented. Conceive, as was shown by the lecturer, that a bar of soft iron, surrounded by insulated wire, is subjected to the influence of one of the poles of a permanent magnet, say the north pole. Let this mag net be passed gradually over the length of it. Then there will be produced a south pole in the bar wherever the magnet happens to be, begin ning at one end and stopping at the other. A the same time a continuous current will flow in the coil as long as the motion lasts. Now, sup pose this bar with its coil to be made in a ring and revolved before one pole of a magnet, and we have the same conditions in the best available form. If such a ring be revolved between the two poles of a magnet, however, they will act on it in opposite directions, and the currents so formed will constantly tand to neutralize each other a wo points half way between the poles. In order two points half way between the poles. In orde to utilize both currents, it is only necessary to tap the neutral points by means of conducting wires Fig. 4 shows the method of winding the coils adop ted in practice. The wire, B, is divided into sec tions, say of 300 turns each, but there is no break in passing from one section to the other. A loop of the wire only is left exposed; and this is connected with a copper conductor, R, bent at right angles so as to pass through the ring. When the ring is revolved, several of these conductors touch
two metallic rubbers or brushes, by which the current is carried off. The rubbers or brushes are so arranged as to be always in contact with more than one of the conductors.
The original Gramme machine, which was exhibited before the French Academy of Sciences by M. Jamin, is represented in Fig. 5, in which the circular armature already described was revolved by hand'between the poles of a permanent magnet. Since that time M. Gramme has made a great mans important changes and modifications in his machine, the most notable of which are the substitution of electromagnets for permanent ones; the adoption of the dynamic principle, as it is called, of starting the machine by its own residual magnetism; and the adaptation of a single armature to the purposes both of electroplating and the electric light. Fig. 6 represents the latest form of this machine. It is the one which was used by the lecturer. Its dimensions are 22 one which was used by the lecturer. Its is
inches in every direction and its weight is 500 lbs.
This machine was driven by means of the engine in the This machine was driven by means of the engine in the
workshop of the Institute in the basement below, the belting passing through the floor of the stage. The electric light so produced was of intense brilliancy. A dynamometer was attached to the instrument in order to measure the power used, and a class of Institute students was in attendance to take notes. They also studied the photometrical measurements made, to determine the intensity of the light. Their notes will be worked out with the greatest accuracy.
For the photometrical measurements, the lecturer placed the electric lamp in the rear of the hall, some 60 feet away, and caused it to cast a shadow of the pointer he used to show the parts of apparatus exhibited, on the screen. Then, on taking a standard candle and causing it to cast another shadow of the same object, he carefully approached the candle to the pointer until the intensity of the shadows was the same.
Supposing this distance to be 2 feet, then will the light of Supposing this distance to be 2 feet, then will the light of
the electrical lamp be to that of the candle as $2^{2}$ is to $60^{2}$, which is as 1 to 900 ; or in other words, the electric light yielded is equal to 900 candles. The actual light obtained, however, was still more powerful.
Professor Julius Thomsen, of Copenhagen, by an ingenious method of converting the light rays into heat, has calculated the mechanical equivalent of light (that is, of a standard candle) to be equal to $13 \cdot 1$ foot pounds per minute. Now, as one horse power is 33,000 foot pounds, the theoretical maximum amount of light obtainable from one horse power is $\left.\frac{3}{} \frac{3000}{13}\right\}^{0}$ or 2,518 candles. In practice, the lecturer obtained in round numbers about 1,000 candles per horse obtained in round numbers about 1,000 candles per horse
power. The best effect was obtained when the carbon points power. The best effect was
were $\frac{3}{16}$ of an inch apart.
The lecturer in the next place threw on the screen a magnificent image of the carbon points, and showed the spectra of the solid and of the vaporized carbon. He concluded his lecture by removing the belt, which connected the machine with the engine, and connecting the powerful battery in the basement of the Institute with the brushes of the machine. The latter immediately began to rotate with great rapidity, and it was stated that 70 per cent of the power could thus be utilized.
The same machine has also been used by President Morton to exhibit all the experiments connected with a lecture on spectrum analysis to his class at the Institute, and so convenient did it prove that scarcely an hour was required to prepare all the requisite apparatus.
C. F. K.

The Iron Works of the United states. We are indebted to the American Iron and Steel Association, Philadelphia, Pa., for a copy of their "Annual Directory" of the iron and steel manufacturing establishments of this country. It is an important and valuable document, giving particulars in detail of all establishments connected with the above industries. The following is a general summary
Whole number of completed blast furnaces,Jan. 1, 1876. Annual capacity of all the furnaces, in net tun Whole number of single puddling furnaces (each double furnace counting as twosingle ones)
furnace counting as twosingle ones)................
Total annual capacity of all rolling mills in fnished iron,
net tuns.................................................
Annual capacity of all the rail mills, in heavy rails, net
tuns................... .......................
Number of Bessemer steel works, Jan. 1, 1876
Number of Bessemer steel works, J
Annual capacity in ingots, net tuns
Number of Bessemer
Number of Bessemer converters..................
Number of open hearth steel works, Jan. 1, 1876
Number of open hearth furnaces..
Annual capacity in ingots, net tuns
Number of crucible and other steel works, Jan. 1, 1876
Annual capacity of merchantable steel, net tuns.
of which there are of crucible steel, in nettuns.
Number of Catalan forges, making blooms direct from
the ore, Jan. 1, 1876
Annual capacity in blooms and billets, net tuns
Number of bloomaries, Jan. 1, 1876, making blooms from pig iron.
Annual capa
Annual capacity in blooms, net tuns

## A New Mucilage.

The Journal de Pharmacie states that if, to a strong solution of gum arabic, measuring $8 \frac{1}{2}$ fluid ozs., a solution of 30 grains sulphate of aluminum dissolved $\frac{z}{z}$ oz. water be added, a very strong mucilage is formed, capable of fastening wood together, or of mending porcelain or glass.

A NEW nickel-plating solution, said to yield beautiful results, is prepared by mixing the liquid obtained by evaporating a so'ution of $\frac{1}{2}$ oz. nickel in aqua regia to a pasty mass and dissolving it in 1 lb . aqua ammonia, with that obtained by treating the same quantity of nickel with a solution of
ozs. cyanide of potassium in 1 lb . of water. More cyanide renders the deposit whiter, and more ammonia renders it render
grayer.

## Conrespadfence.

## Small Engines for Agricultural Purposes.

## To the Editor of the Scientific American:

As many of your readers are interested in the performance of small engines, I will tell you what we have accomplished with one, diameter of cylinder of which is 3 inches, and length of stroke $5 \frac{1}{4}$ inches. I can only give you the amount of work done, as we have neither steam gage nor water glass. On February 2, we threshed 239 bushels of oats inside of $5 \frac{1}{4}$ hours. The thresher was 120 feet from the engine, and was driven by $\frac{1}{2}$ inch seagrass rope from engine to idler, thence by 3 inch belt to thresher. The snow drifted on to the engine so that it was nearly covered : the parts that were hot, gine so that it was nearly covered : the parts that were hot,
however, kept the snow thawed. The boiler is of our own design, built entirely of 1 inch gas pipe, and has about 50 feet of heating surface. I have taken your paper for years, but I have never seen any design at all like this one. It works to a charm, does not leak a drop, and will stand immense pressure. It holds but 3 pails of water, and is as easily managed as any 36 or 40 horse shell boiler; and I have had some experience with such sizes. We havedesigned a pump expressly for this boiler, and I will venture to say it cannot be beaten for one holding so small a quantity of water. The amount of fuel used in threshing the grain abovementioned was $4 \frac{1}{2}$ cords of old rails, cut to two feet lengths. The engine made about 300 revolutions per minute, working steam at full stroke. I can give you no better data, but I think the results are hard to beat. We are farmers and not machinists, but we have constructed the entire engine and boiler.
L. Cooper.

Cortlandville, N. Y

## Photo Suggestions.

We have long been familiar with the fact that telescopic images may very easily be produced in the camera by the simple expedient of mounting a small camera upon the eyepiece end of the telescope, the degree of amplification de pending upon the distance between the eyepiece and the sen sitive plate. As might be anticipated, the amount of angle included is exceedingly small, the object glass of a telescope being corrected only for axial rays; and indeed, owing to the tube, the transmission of an oblique ray would be quite im possible.
It may not be generally known that, by means of an opera glass used as a camera objective, a greatly enlarged image of any view to which it is presented may be obtained. Owing to the shortness of the tuoe, and to the optical principles involved in the formation of a large image by means of an objective when used in conjunction with a concave eyepiece, this form offers advantages, in the production of a directly magnified image, not possessed by the ordinary telescope. We recently made several experiments with an instrumen which, owing to its expense and the niceties involved in it construction, is very seldom manufactured. It has a short
body, about four inches in length, but possesses very great body, about four inches in length, but possesses very great
magnifying powers, attributable to its construction. It is magnifying powers, attributable to its construction.
comprised of three triplet lenses in each tube : an object glass of large diameter and short focus-not plano-convex but rather as the form known as crossed ; a center bi-concave triplet of large diameter and great curvature; and a plano concave triplet eyepiece, the flat piece being next the eye. This form of tube, when used as an objective for the camera produced images of great sharpness in the axis, the sharp ness being more extended than we have seen it with an other form. By means of this instrument we obtained an ex cellent and sharp photograph of the sun three inches in di ameter.-The British Journal of Plotography.

## Preparing Relief Blocks from Photographs.

 A German process for getting surface blocks from photos, o be printed by letterpress process, is: Take a piece of look ing glass about $2 \frac{1}{2}$ inches larger all round than the original, and pour on it, in the daris room, the result of $1 \mathrm{oz} . \mathrm{bi}$ chromate of potash in 15 ozs. water, put over a slow fire and add gradually 2 ozs . of fine gelatin. When dissolved and at boiling point, strain through a fine linen rag.The plate must be placed in a horizontal position. Spread all over with a fine broad brush. Give fresh layers till the film reaches about a line and a half thick. Let dry for two
or three days, and keep from the light. Take a glass posi tive from the negative of the original ; place the prepared plate in contact with it in the printing frame. Remove to
the dark room; pour over tepid water till fully developed. Dry with filtering paper, paint over with glycerin, and wip off also with filtering paper. Develop the relief upon the plate; its subsequent treatment need not be effected in the dark. To make the plaster mold, mix fine plaster of Paris with spring water in two vessels, to the consistence of oil in one, of thick cream in the other. Hold the plate in the hand, pour over it the thinner solution, tap the bottom of the plate gently with the hand to prevent air bubbles. Place the plate orizontally upon the table, and pour the thicker solution ver to a moderate hight. Leave it to settle and dry fo some $16 \frac{1}{2}$ hours. Cut away the thin edges of the gypsum
with a knife. Separate the plaster mold gently from the with a knife. Separate the plaster mold gently from the re-
lief plate. Pour stereo metal into the mold, and a printing plate will be the result. Rectify defects with flne-pointed tools in the plaster mold previously to casting.

According to M. Tisserand, the French Inspector General of Agriculture, milk will yield more butter and cheese when the pans are set in an apartment where the temperature is

Weighing Light. The London Times gives the following description of Mr William Crookes' new apparatus for weighing a ray of light: In a tube in which a vacuum has been produced, a very fine In a tube in which a vacuum has been produced, a very fine
thread of glass is suspended by both ends, and at one part thread of glass is suspended by both ends, and at one part
of it is a small cross thread, to which is attached a disk of of it is a small cross thread, to which is attached a disk of
pith with one side blackened. At the junction of this cross piece is a small circular mirror, so arranged that a ray thrown on it from a lime light shall be reflected on to a graduated scale, and any twisting of the glass thread shall be thus recorded. At one end of the glass thread is a turning disk and a Harding's counter, outside the tube. The light to be weighed is allowed to fall on the pith. This, as in the simple radiometers, is repelled, and its motion causes a torsion of the glass thread and a motion of the mirror spot along the scale. The turning disk is employed to unwind the thread against this action, the mirror spot going back to zero on the scale. The counter tells the degree of torsion the glass thread has undergone by counting the amount of unwinding required. Then a little iron weight, the one hundredth of a grain, which is within the tube, is lifted by a magnet on to the cross bar; its weight causes a torsion, the mirror spot travels along the scale, and the unwinding is performed as before. A candle placed six inches away from the pith was found to give 1,628 degrees of revolution, and the little iron weight 10,021 degrees. The candle light is therefore calculated to weigh 000172 grains. Mr. Crookes has made expe riments on the sun's light, and has worked out some calcula tions on it It is equal to 32 grains on the square foot, 57 tuns on the square mile, or $3,000,000,000$ tuns on the whole earth.
Thereare two practical applications of this discovery which bid fair to be of considerable scientific value. The first is its employment as a photometer. If, for instance, the candle light above noted weighs 0.00172 grains, that weight could be made to cause a certain deflection of a dial finger. With this might be compared the deflection caused by any other light, and thus the intensity of one illuminator conve-
niently measured by the other, used as a standard. Mr. niently measured by the other, used as a standard. Mr. Crookes tried this, and found that a correspondence between the light of a candle flame and that of a gas burner took
place when the candle was 48 inches and the burner 113 place when the candle was 48 inches and the burner 113
inches distant. Consequently the light of the burne inches distant. Consequently the light of the burner
equaled in intensity that of $5 \frac{1}{2}$ candles. This gives a way of testing any burner, the deflection due to the light of which when good gas is employed, is previously known. If the deflection should fall short, then gas of poor quality would be presumed. So also the varying intensities of sunlight might be measured, and this would prove a valuable addi tion to meteorological records.

Nen Lion Palace, Zoological Gardens, London. The lion palace is two hundred and fifty feet long out side and two huncred and twenty-seven inside; the width of the asphalt pavement in front of the dens is thirty-siz feet, the height is thirty-four feet. There are altogether fourteen dens, four large onf $s$, one at either end, and two in the center; they are twenty feet long by ten feet wide, the maller are about $t w e l v e$ feet square. The supports to the oof are varnished wood, such as is seen in new churches, and the blue tint given to the ceiling gives a general lightnes tc the whole edifice. The floors of the dens are sloped to wards the front, and just outside, in front of the whole series of dens, there is a trough which has a constant flow of water running through it, so that the cleanliness and the comfort of the animals have been provided for in every possible way The ventilation and warming apparatus is most perfect.
The following is a list of the animals: No. 1, "Th Shah," a Persian lion; No. 2, lioness, East Indies; No. 3 Indian leopard and a Nubian lioness; No. 4, Indian leopard No. 5, clouded tiger; No. 6, three Mexican pumas; No. 7 two lionesses and one lion, born in menagerie, July 8, 1872 No. 8, Indian tiger; No. 9, Indian tiger; No. 10, American jaguar; No. 11, South American jaguar; No. 12, three tiger cubs, about ten months old; No. 13, Indian tiger; No. 14 Indian tiger.
There is a considerable echo in the building, and the splendid roar of the lion can now be heard in all its true grandeur.

Anthracite Coal Prices for 1876 .
By a combined agreement among the anthracite coal com panies, the rates for 1876 agreed upon, to consumers only, or lump, steamer, broken, and chestnut sizes, free on board at any of the shipping ports in the vicinity of New York, are as follows:

March
May.
June.
July.
Augu
July......
August..
Septembe
September
October....
October....
November
November
December

| Lump. | Ste |
| :--- | :--- |
| $\$ 420$ | $\$ 1$ |
| 425 |  |
| 430 |  |
| 435 |  |
| 440 |  |
| 445 |  |
| 450 |  |
| 455 |  |
| 460 |  |

 $\$ 430$
435
440
435
450
455
460
485
460
and at thirty-five cents per tun less free on board at Port Richmond, Pa., except for chestnut coal, which may be sevnty cents per tun less than the New York free on board price: It being provided that all such contracts shall be made in writing prior to April 1, and that no commissions or allowances of any kind be made thereon, and that no such con tracts be made with any other than a consumer of coal.

Camphorated oil is highly recommended as a furniture polish. This is simply sweet oil in which gum camphor is dissolved. The camphor serves the additional purpose of driving away moths

## PRACTICAL MECHANISM.

## by joshua rose.

 $\overline{\text { Number Xliv. }}$to mark off the distance between the centers of Two hubs of unequal hight
When the hights of two hubs are unequal, as shown in Fig. 222 , the distance required being that from $A$ to $B$, we must make the necessary allowance (in the distance at which we set the compass or trammel points) for the difference in

hight of the surfaces upon which our circles are to bemarked, from the body of the lever or arm. If the arm is to be finished along its whole length, it is better to mark off the body of the arm first, which we perform as shown in Fig. 223. Setting our work upon the table, A, and wedging it as shown, we mark off with the scribing block the lines, C C

and $D \mathrm{D}$, making their distance apart the thickness of stem required, and leaving about an equal amount of metal to be taken off each face. We then mark off the hight of each hub face, measuring from the line, $C$, and scribe a line around each hub face as far as the scriber point will allow. We next mark off (with a square, resting against the surface of the marking-off table) the lines, E and F, marking them as near the center of the hub as the eye will direct: their use being simply as guides in setting the work in the lathe or machine. These lines being dotted with a fine centerpunch, to prevent their becoming obliterated, we next measure the hight of the face, $G$, and that of the face, $H$, both from the line, C .
We now turn to the marking-off table, and on its surface draw a straight line a little longer than the length of our arm or lever, as shown in Fig. 224, the lines, a A A A, representing the outline of the marking-off table, the line, $B$, representing the hight of the hub from its surface, $G$, to the

FGgRA. 1

line, C, in Fig. 223, and the line, B, representing the hight of the hub from its surface, $H$, to the line, $C$, in the same figure. The two lines, $B$ and $D$, are to be struck at right angles to the line, C , and the distance between them (as denoted by the dotted line, F) being the required distance from center to center of our lever. These lines being drawn, we have only to set our compass or trammel points to the length of the dotted line, E , to be able to mark off the correct distance apart for the centers of the circles to be marked on the faces of the two hubs. Proceeding, then, we place our lever on the marking-off table in the position sliown in Fig. 225; and

after putting a centerpiece in each hole, we draw (along the entire length of the lever and across the faces of the hubs) the center line, A, locating it in the center of the stem; we then apply the trammels, set as already directed, to mark off the centers of the holes. Setting our compasses at the in tersection of the line, A, with the line marked on each of the hub faces, we strike the necessary circles on the faces of the hubs, as shown. We next mark off the breadth of the lever or arm on the face from the center line, $A$, and our marking is complete.
When, however, there are a number of such levers to be made, all requiring to be of nearly equal length from cente to center of the holes, one only should be marked off for the hole centers, care being taken to mark it off with great ex actitude. Then after that one is bored, and the faces of the hub are faced off true with the hole, a pin. as shown in Fig. 226 , should be made, the diameter of the part, $\mathbf{A}$ being made
to neatly fit one of the holes in the end of the arms or levers, and being marked shorter in length than is the length of the lever hole into which it fits. $B$ is a washer, turned to fit lever hole into which it fits. $B$ is a washer, turned to fit
easily to the diameter of $A$, and $C$ is a collar, solid with $A$. easily to the diameter of A, and C is a collar, solid with A.
D is a stem, turned parallel and true; and it is a little less in D is a stem, turned parallel and true; and it is a little less in
length than the thickness of the chuck plate upon which the

arm is to be held while the holes are being bored. Upon each end a scrow is provided to receive a nut. The use of this stud is as follows: Upon the chuck plate of the lathe or boring machine, and at the requisite distance from the center is bored a hole to receive at a close fit the plain part, $D$, of the stud; and into this hole that end of the stud is fastened by means of a nut. One end of the lever or arm (being bored to fit the part, $A$, of the stud) is placed thereon, the stud being bolted to the chuck plate while the hole at the oppo site end is being bored: thus insuring that the holes are ex actly the same distance apart in all the levers. The manner of chucking is shown in Fig. 227, in which A represents a portion of the chuck, B the lever or arm to be bored, C th stud, and D D the plates bolted against the chuck so tha their ends contact with the stem of the work to prevent i

from moving sideways during the operation of boring. Th use of this stud, modified in shape to suit the work, is als applied to the turning of cranks, eccentrics, and other simi lar work, requiring unusual exactitude in the positicn of a hole or holes, or of a diameter in its position relative ${ }^{2}$ hol
To mark off a crosshead in which one hole requires to be at right angles to the other, we proceed as follows: Firs placing the crosshead upon the marking table, in position 1 in Fig. 228, we draw with the scribing block the center line A, marking it all round the crosshead; and if the crosshea has a hole or holes in it, we put centerpieces in those holes to receive the center lines. We then place a square with it back resting upon the marking-off table, and draw, paralle

with the edge of the blade, the center line, B. From th intersection of the lines, $A$ and $B$, we draw the lines, $C$ and D, marking their distances from the line, A, with a pair of compasses, and carrying the lines round with the scribing block. We draw the circle, E, using the line, A, as a center and locating it, as nearly true as we can, the other way from the hub or stem. We now stand our crosshead in the posi tion shown in Fig. 229; and applying a square to the line, A, we set it to a right angle with the face of the line, $A$, wedg ng it upright with the wedges shown. Then, setting the scribing block needle point even with the line, B, of position 1 in Fig. 229 ; and setting that line true with the surface of the table, we carry it across the other face, as shown in po sition 2, locating its position sideways to suit the forging or casting; and then we strike the circle, F, which completes he marking.
It will be noted that the lines, $A$ and $B$, are mere guides whereby to obtain the centers of the circles from; and it ma therefore be asked for what purpose those lines are center punch-marked. The reply is that those lines must be used as guides to set the work by when chucking the crosshead
on the lathe or machine. We may here also note that the length of those lines is often too short, in consequence of the shortness of the work, to form a very accurate guide for the setting. To obviate this difficulty, the machinist should firs chuck the work by one of the lines, and then perform all the duty necessary at that chucking. Then, in the second

chucking, he should adopt one of the following methods to the work true, independent of the second line:
In Fig. 230, A represents the face plate of a lathe, and C an angle plate, that is, a plate having its two flat surfaces at a right angle to each other. It is evident that if the work has the hole, parallel with the line, B, bored, and the end faces round that hole trued with it, we have only to bolt he angle plate, $C$, to the face plate, $A$, of the lathe, and hen to bolt one of the turned faces of our work to the face of the angle plate, and set the latter so that the paralle tem, D , of the work runs true; and then it will be so se that the holes, if bored true with the tool, will stand at a right angle to each other. In all cases, however, in whic an angle plate is used, or in which, from other causes, there

is a greater amount of weight on one than on the other side of the face plate of the lathe, there should be bolted to the latter a weight sufficient to act as a counterbalance, such a weight being shown at E, in Fig. 230 ; otherwise the wor will be bored and turned slightly oval. Theother method of chucking referred to is to bore out one hole; and having aced up the faces at the end of that hole, to then chuck the work with a parallel mandrel, fitting neatly into and projec ing from the hole already turned. The work must be so se that the mandrel stands true or parallel with the face plat of the lathe; this may be done in conjunction with the use of the angle plate, thus insuring accuracy in the chucking of the work.

## A Shower of Meat.

The Bath County (Ky.) News says: On Friday, March 3 1876, a shower of meat fell near the house of Allen Crouch, who lives some two or three miles from the Olympian Springs in the southern portion of the county, covering a strip of ground about one hundred yards in length and fifty wide. Mrs. Crouch was out in the yard at the time, engaged in making soap, when meat which looked like beef began to in making soap, when meat which looked ike beef began to
fall around her. The sky was perfectly clear at the time, fall around her. The sky was perfectly clear at the time,
and she said it fell like large snow flakes, the pieces as a gen and she said it fell like large snow flakes, the pieces as a gen
oral thing not being much larger. One piece fell near her eral thing not being much larger. One piece fell near her
which was three or four inches square. Mr. Harrison Gill whose veracity is unquestionable, and from whom we obtai the above facts, hearing of the occurrence, visited the locali ty the next day, and says he saw particles of meat sticking to the fences and scattered over the ground. The meat when it fell appeared to be perfectly fresh.
The correspondent of the Louisville Commercial, writ ing from Mount Sterling, corroborates the above, and says the pieces of flesh were of various sizes and shapes, some of them being two inches square. Two gentlemen who tasted the meat, expressed the opinion that it was eithe mutton or venison.

The enlightenment of the Chinese in religious matters, more especially in singing, is a work of extreme difficulty. Mr. Walker, a missionary at Foochow, writes to the Missionary Herald:
"There is one very serious drawback to the use of music as a means of preaching the Gospel in China. In singing, the word tones cannot be given, and this destroys the sense. For in Chinese, as a rule, every articulate sound represents at least two or three different words, while the more common, suih as 'ting,' ' ling,' and 'sing,' of ten represent two or three dozen different words, and without the help of the tones they ave no meaning whatever. So when a hymn is sung to a Chinese audience who are not already familiar with it, it has scarcely more meaning to them than it would have to a foreigner just arrived. In fact I have sometimes just sung a foreign hymn to the audience, and then interpreted and expounded it, and it seemed to answer as well as a native hymn.

## W IMPROVED MILLSTONE.

We illustrate herewith a new millstone, in which is em bodied a large number of novel and useful improvements, mainly in mechanical construction, the object being to render the stone more effective in operation and more readily ad justed and balanced. These will be found noted in their proper places in the following description, reference first being had to Fig. 1.
The lower millstone, $A$, is bound with bands in the usual way, and its eye is madecircular to receive a correspondingly shaped bushing, B. Within the latter are four radial boxes to re-
ceive the wooden bearing blocks shown, and ceive the wooden bearing blocks shown, and
also the metal wedges, C , by which said also the metal wedges, C, by which said blocks are forced against the spindle. The
wedges are adjusted from the lower side of wedges are adjusted from the lower side of
the stone by the screws, $D$. The bushing the stone by the screws, D. The bushing
has a cover, E, to which it is attached by has a cover, E, to which it is attached by
bolts. This projects over the bushing, and its edge enters a rebate in the lower stone. Said cover is convex above and flat below, and is hollow in order to receive tallow or other lu bricant. An upward projecting flange on the convex part enters a cavity in the driver, and serves to protect the spindle, which passes through, from contact with the substances ground, etc. The upper end of the spindle fits into a polygonal socket in the driver, so fits into a polygonal socketin the driver, so The onds of the driver onter recesses in op posite posite sid same, and and has projections, $a$, which enter notche in the side of the eye of the moving stone The bail has on its outer surface four spiral grooves, flaring downward so that they may not become clogged
In the upper part of the runner are holes to receive the pockets, $H$. In these ar placed the weights which receive screws swiveled in the covers so that said weights may be adjusted by turning the screws. This construction adapts the weights to serve as a standing and as a running balance. The screws may be easily operated by a wrench Around the runner, between the usual main and edge bands, are placed several narrow bands which are cut away successively as the
stone wears, the edge band being driven up.
When the runner is to be backed, a skeleton shell, I, Fig 2 , is placed upon it and secured by rods, J, which hook int the radial bars above, and are leaded into holes in the stone below. The plaster is then poured upon the shell and turned down true. The radial bars are made of such a length at their inner ends that the eye may be formed to the proper size without uncovering said end. This construction of the eye, the inventor states, enables him to put in a dress with 14 inches draft for each foot of the diameter of the stone 14 inches draft for each foot of the da and twenty-four furrows at the edge and quarter, or seventy-two in all. The main furrows, $J$, are on a draft of about $1 t$ inches from the Their outer part and also their length. Their outer part and also
the furrows, $K$, are on a draft of $1 \frac{8}{4}$ inches the furrows, $K$, are on a draft of $1 \frac{8}{8}$ inches per foot of diameter of the stone. The
furrows, $J$, are about three eighths of an furrows, $J$, are about three eighths of an inch deep at the eye, and gradually decrease in width and depth toward the skirt, being about three sirteenths of an inch deep at the two thirds point, where the draft changes. The furrows, K , also gradually decrease in depth and width from their inner to their outer ends. All he furrows at the skirt are not more than five eighths of an inch wide, and, for grinding corn and other coarse grain, not more than one eighth of an inch deep. For wheat the depth does not exceed one thirty-second to one twenty-fourth of an inch. This dress gives an almostunbroken skirt and full lands, producing an even grade of meal or flour, and, it is claimed, more flour to the bushel of grain than the ordinary dress.
Patent now pending through the Scientific American Patent Agency. For further information address the inventor Mr J. W. Truax, Essex Junction, Vt.

## IMPROVED FAUCET AND VENT.

The function of the device illustrated in the annexed engravings is twofold: First, to admit air into a barrel, keg, or ther vessel, so as to counterbalance the tmospheric pressure at the outlet, and hus allow a free discharge of the com hus allow a free discharge of the con er for the aucet for drawing off the liquid, without, however, admitting air to fill the va cuum in the vessel due to the escape. Thus the invention may be used either as a vent or as a faucet, and to this end a sleeve, provided with oppositely located air vent and liquid discharge holes, is applied to a hollow gimlet-pointed stem,
so as to be rotated thereon, and locked in either of the two positions necessary to the performanc of one or the other o the above stated functions. The invention also consists in corkscrew and brush attachment. and in certain other fea tures, due reference to which will be made as we proceed. The implement is composed of a T-shaped open-ended tube, A, and a gimlet tube, B, in which is a spring-acted plunger rod, C (Fig. 2), having a piston as shown. Said pis ton is packed with cork and india rubber so that the swelling
ir vent openings, $G$, and in the stem are like holes to co respond. When the sleeve is adjusted in one position, th holes, $F$, therein will register with the similar apertures in he stem ; and the piston having been pushed down and locked below said holes, $F$, the device will act as a faucet, the liquid discharge taking place through said coincident orifices and hrough the tube, A, as will readily be understood from Fig. 2.
When, on the other hand, the sleeve is turned half round from the position above described, the vent holes, $G$, will similarly register, and the device


## TRUAX'S IMPROVED MILLSTONE.

of said packing will compensate for wear. There is a rubber washer applied to the rod, C, immediately beneath the head or thumbpiece, which serves to form a tight joint around the plunger when the piston is forced down and locked by lugs at $D$, to hold it away from the vent holes.
A rotating tube, E, is applied to the body of tube, B, which is correspondingly reduced in diameter to form a smooth exterior, as shown in Fig. 1. This sleeve has liquid discharge holes, $F$, arranged spirally around it, and the holdischarge holes, F, arranged spiraly areund it, and the hol-
low stem has similar apertures. The sleeve also has similar durable metal throughout.
Patented through the Scientific American Patent Agency, March 7, 1876. For further information relative to proposals for manufacture, purchase of territory, etc., address the inventor, Mr. James Talley, Jr., Kansas City, Mo. The inventor calls attention to the simplicity and cheapness, especially of the automatic bung, which can be supplied to brewers, distillers, and original package men, at a cost but little ver sommon bungs.


Photography as a Detective.
Recent attempts at forgery, by the alteration of the dates and amounts of written checks and drafts, have resulted in investigation as to how erased writing may be rendered visible. Various chemical processes, more or less efficacious, have been suggested, but the simplest process yet devised seems to the photographing of the suspected paper.
This is founded on the fact that cer tain colorless or feebly colored substances, while very slightly affecting the eye, act powerfully upon the sensitive film in the camera. Photographers are aware that a photographic proof nearly effaced through age may, by photography, be reproduced with all its primitive detail and intensity. Generally all yellowish stains may thus be brought out; and peroxide of iron in the smallest proportion, so as to be practically imperceptible to the eye, gives proofs of great clearness.
Common ink, says M. Gobert, to whom is due the credit of the suggestion, is a compound of tannin and oxide of iron. Now it matters little what chemical means are used to remove the ink marks; for however carefully the chemical be applied, some traces of peroxide of iron are sure to be left either on the surface or in the substance of the paper. It is only necessary, therefore, to photograph the sheet, and to enlarge it besides, to bring out in the proof the effaced writing in an entirely legible condition.

A recently proposed casing for steam pipes is composed of equal parts of fuller's earth and coal ashes, mixed to a paste with water and with as much calf's hair as it will take up. Before using, add one eighth its quantity of calcined gypsum and apply in thin coats.

## CLEOPATRA'S NEEDLES.

Of the many monuments which at one period of history rendered Alexandria, in Egypt, the grandest city in the world after Rome, but few relics remain beyond the column known as Pompey's Pillar and the two obelisks called Cleo patra's Needles. Of the latter, one is still standing; the other lies prostrate, half buried in the sand, not many feet from the sea shore, its fall having probably been caused by an earthquake. These curious monuments, which are excellently represented in the engraving given herewith, measure $73 \cdot 6$ feet in length, and are supposed to have been made during the reign of Thothmes III, about 1,600 years before Christ, an epoch when ancient Egyptian art vigorously flourished. They were transported to their present site by Rameses II, from Heliopolis. No hieroglyphics known were more clearly cut and defined than those inscribed on the sides; but since the obelisks have been in nowise protected from the weather, the beauty of the carving has yielded greatly to climatic influences, and we can only obtain an idea of its former perfection by comparison with those obelisks which have been transported to Rome and Paris, and there carefully guarded for many years.
The prostrate monument belongs to England, and has been the property of that country since the beginning of the present century, when Mehemet Ali made it a gift to the English government. Up till quite recently, however, the British authorities have not concerned themselves regarding the stone, for the reason that, its inscriptions having become so impaired, Egyptologists reported it as of little value or scientific interest. Since the completion of the Thames embankment, the project has been broached of claiming the monument, transporting it to London, and setting it up in some commanding position. The Khédive of Egypt has acknowledged England's right to carry off the obelisk when she pleases; and the probabilities are that, sooner or later, the transportation will be effected, that is, as soon as some one suggests a wholly feasible plan for overcoming the engineering difficulties involved in the operation. The last time an obelisk went to sea (that of Luxor, now located in Paris), its behavior was not of the best ; for in heavy weather its vast weight seriously strained and nearly caused the foundering of the vessel in which it had been stowed.
The most recent plan for shipping the Needle that has come to our knowledge was suggested last summer, and seemed to find considerable favor at the hands of engineers, though we have not heard of its having been adopted. This was to fasten wooden beams around the stone until its quadrilateral form was changed to a cylinder. It might then be rolled over a temporary road to the sea. The wooden envelope, it was considered, would diminish the specific gravity of the whole bundle so that it would float in the
water; and so it might be towed to England, beached on the shores of the Thames river, and rolled up to its site. Our engraving, from L'Univers Illustré, shows the monument as it lies on the shore of the Red Sea.

Explosion of Krout.
About 9 o'clock on February 20, when the storm was at its hight, a number of the inhabitants on "the hill" were startled by a report resembling artillery. In a few minutes some of the most daring darted out through the tempest in the direction whence the noise proceeded, and encountered one of our German citizens, shouting at the top of his voice, like one crazed, "O mein Sauer-kraut! Mein Sauer kraut!"
All endeavors to pacify him were unavailing; and while some took charge of the miserable man, others entered his dwelling. Here a scene presented itself that completely beggars description. On a lounge sat his wife, a picture of despair, endeavoring to "unkrout" her new dress, while three children nearly covered with sour krout were flying about the apartment, taking handfuls of the stuff out of their mouths, noses, and eyes. Every article of furniture in the room was displaced, and over the door and all around was krout-sour krout
krout-sour krout.
It soon transpired that a large barrel full of krout had been brought up from the cellar to the fire, to be thawed out; and the head being closely nailed in, the gas generated had no vent, and exploded with terrific force, bursting the barrel and scattering the contents in every direction. The entire apartment was, for the time being, converted into a strange phantasmagoria. Fiom every piece of furniture hung festoons of sour krout, like Florida moss in southern forests - Adrian (Mich.) Press.

## Camphor Poisoning.

The Pharmaceutical Journal publishes a rare and interest ing case of camphor poisoning, the leading features of which are as follows:
While some camphor was being weighed out, a lad of thirteen picked up two small pieces and took them away with him for the purpose of floating and burning them. Soon afterward he began nibbling the camphor, and, as it afterward appeared, liking the taste of it, continued to do so until he had eaten the two pieces. This was about four o'clock in the afternoon. Four hours afterward the child was with his brother in the dispensary, looking on, and was observed to do something which elicited the remark: "Are you dream. ing?" No reply was given by the child, and it was noticed that something was wrong with him: his eyes were fixed in a stare, and he stood motionless and unconscious. His bro ther took him up to carry him into an adjoining room, where
is father was, when he immediately became convulsed and perfectly rigid, with his head and legs bent back, so that he could only be placed on his side upon the floor. The convul sions increased until the flesh from the head to the shoulders became purple, and the pulse decreased rapidly until it could not be felt. The body then lost its rigidity and was appar ently lifeless; but in about ten seconds the pulse could again be felt, the convulsions returned, and the child foamed a the mouth. Applications of cold water brought him round in about four minutes; violent vomiting then ensued; the child was for a time hysterical, but within an hour from the first attack he was so far recovered that he could be put to bed. The child afterward described the pieces of campho which he ate as being each half the size of his thumb; and the assistant, who noticed him take one piece, thought it must have been about sixty grains in weight. The effects produced in this case were more severe than in any of those previously reported; and there was the further difference that unconsciousness preceded the convulsions, while in the other cases it followed them.

Prizes for Photographic Materials, etc.
The Industrial Society of Rouen, in their lately publisbed programme, offer, among some fifty others, the following three prizes: A gold medal for a substance which shall be cheaper than egg albumen, and which shall replace it in all its applications to printing; a medal (sort not mentioned) for process for producing oxygen as an article of commerce heaper than it can at present be produced; a gold medal for a practical commercial application of photo-engraving to the production of prints. The competing works must be sent to the President of the Industrial Society of Rouen before the 1st of October, 1876, and should be signed. They must bear a motto, and be accompanied by an envelope bearing the same motto, and enclosing the author's name and address.

## On the Digestibility of Milk.

Dr. Carter read a paper in London lately, entitled "Observations on the Digestibility of Milk," in the course of which he discussed various methods which had been generally used with a view of promoting its digestibility, pointing out that their efficiency was essentially due to the dilution of the casein of the milk,thus causing the precipitation, on its introduction into the stomach, in a granular form, of what would otherwise be firm, bulky, and compact. He further showed, by experiment, that simple dilution with water was insufficient for this purpose, and that this object was far better attained by admixture of alkaline or starchy waters with the milk. He summed up by giving a decided practical preference to barley water. His conclusions wer illustrated by experiments and reference to cases.


The Royal Aquarium at Westminater.
The large building which has been slowly rising at Westminster, on the ground facing the Abbey and the Houses of Parliament, and which is to present under one roof the varied attractions of an aquarium, a summer and winter
garden, with a museum and picture gallery, in addition to garden, with a museum and picture gallery, in addition to
the more commonplace but useful features of a reading room, library, and restaurant, was formally opened on January 22 by the Duke of Edinburgh, in the presence of a large gathering of ladies and of the members of the society under whose auspices the scheme has been so far brought to a successful issue. The building, which has been erected by Messrs. Lucas, from the plans of the architect, Mr. A. Bedborough, stands on a site of three acres, stretching from the St. James' Park station on the Metropolitan Railway the freehold of the land having been secured by the society. It will give some idea of the extent of the center or main transept, which is to be used for promenade and concert purposes, and in which the opening ceremonial took place, if we state that it is 8 feet greater than the principal transept
of the Crystal Palace, reaching to 160 feet. The hight from of the Crystal Palace, reaching to 160 feet. The hight from
the floor to the level of the roof is upwards of 70 feet, the floor to the level of the roof is upwards of 70 feet,
and round the building are the galleries, which are used for and round the building are the galleries, which are used for
the fine art exhibition and as a museum. So far the architect has proceeded on well-worn lines, and has produced a handsome and spacious hall, suited alike for promenade or for musical performances. This, however, although the chief part of the structure, is not to be its main attraction; for it is in the aquarium proper that the great raison d'être of the undertaking, according to the views of its promoters, will be found. The tanks for the reception of the fish are of enormous extent, but at present, although complete, they are untenanted. The system on which they are to be sup. plied will insure a constant circulation of water; and as it will thus be kept in freshness and comparative purity, it is anticipated that the results will be even more satisfactory than in those aquaria already opened in this country and on the continent, where the water is never changed. This method of keeping the water in circulation has been invented by Mr. W. A. Lloyd, the naturalist. There are thirty-one show tanks, nine for fresh water fish and twenty-two for sea water fishes and animals, in addition to the marine tanks which are to contain the food supply of the permanent inhabitants, and to serve for the segregation of the sickforming, in fact, a sort of hospital. The water for the tanks, consisting of about 600.000 gallons of sea water and 200,000 of fresh, is to be supplied from reservoirs below the center transept, to which it is returned after flowing through the tanks. Another feature of the undertaking-and probably one of the most attractive parts of the programme-will be the daily concerts by an orchestra of forty-eight performers, selected by Mr. Arthur Sullivan, and conducted by Mr. George Mount. Classical concerts, personally directed by Mr. Sullivan, are to be given at intervals. Following the system recently introduced at the Crystal Palace and the Alexandra Palace, a theater forms part of the scheme, and in this building dramatic performances will be given.

English Products in the United States We called attention, recently, to the collapse of the English steel rail trade, which in this country at the presen time is totally dead, no rails having been imported hither from Sheffield for over nine months. From a statement of exports from the United Kingdom to the United States, lately issued by the Chief of the Bureau of Statistics at Washington, the following figures are given, indicating the exports in January, 1875, and in the same month of the exports in J :

Hardware and cutlery.
$\stackrel{1875 .}{.}$.
1876.1
$\$ 34,765$
1,7

Pig iron and steel, tuns.
2,637
242
Bar, angle, bolt, and rod iron, tuns.
2,376
Hoops, sheets, boiler and armor plates, tuns.
Steel, unwrought, tuns.
269
793
1,948
1,948
240
23

Steel, unwrought, tuns. .................. $793 \quad 640$
The immense fall in railroad iron shows that the decline
is not confined, in that class of exports, to steel rails alone, is not confined, in that class of exports, to steel rails alone,
while the very small amount of other metal goods brought while the very small amount of other metal goo
over indicates that the trade has shrunk greatly.
Nor is this decline visible in metal industries alone. The comparative returns for the two months show a falling off of over a million yards of cotton goods ; in haberdashery, a reduction of over fifty per cent; over a thousand tuns out of eight thousand in tin plates; a million yards of linen (ten million odd to nine million odd). In silk goods there is a falling off of fifty per cent; the same in carpets, in writing and printing paper, in beer and ale, and in spirits. About the only exports on the list which hold firm are china ware, wall paper, articles of silk mixed with other materials, stationery other than paper, and worsted cloths. The value of the English machinery imported hither, on the other hand, has nearly doubled, from $\$ 73,475$ to $\$ 126,370$; but neither of these sums is large, and probably the increase is due to apparatus brought here in anticipation of the Centennial.

## Etching Process.

In Ackermann's Geweerbezeiting, Herr Fichtner gives an account of a way of producing etchings in relief by asphalt. Select pieces of asphalt which do not melt at $90^{\circ}$, and are difficult to dissolve in turpentine; dissolve five parts in a misture of ninety parts of benzole and ten parts of oil of lavender; the benzole must be separated by distillation from any impurities that would render it too sensitive to light(?), after which it must be thoroughly drained before being used.

The oil must be perfectly free from water. Coat a perfectly clean and smooth zinc plate with the varnish, allowing the latter to run off like collodion; then dry in a horizontal posi-
tion in the dark. Expose the plate under a negative from twenty-five to thirty minutes in the sun, or three or four hours in daylight, according to the sensitiveness of the as phalt film, which must be ascertained by experiment. Th xposed plate is then developed with rock oil, to which a sixth of its volume of benzole has been added; the oil is poured over the plate and moved about until the whites are perfectly clean ; the plate is then washed under a jet of water ust be careful avoidance of air bubble

## Improvement in Electric Illumination

It is well known that the electric light is due simply to the lectric current heating the medium it passes through: and he more resistance is offered to the current, the greater is he heat developed. The great intensity of the ordinary lectric carbon lamp is owing to the badly conducting layer f atmosphere between the carbon points, and the layer being ery much heated makes the carbon burn with a white glow. by reason of the great resistance of this layer of atmosphere, which only a powerful current can overcome, the light must necessarily be a very brilliant one.
It is possible, without the aid of air or gas, to make a solid body quite hot, as, for instance, in the case of a platinum wire; the illumination thus produced is, however, weaker and more uniform, and may be intensified or diminished. But it cannot be applied practically by reason of its great ex pense, and because, if the heat becomes too intense, the ire is apt to fuse. For this reason, the idea struck Ladi guin to replace the platinum wire with thin bars of graphite
or carbon. This graphite possesses, at an equal tempera ure, much greater radiating properties than platinum. The eat capacity of the latter is twice that of the carbon, so that the same temperature will heat a thin bar of graphite to double the degree which would be attained by a platinum wire of the same dimensions under similar circumstances. Moreover, the electric resistance of the carbon in question is about two hundred and fifty times that of platinum, and the carbon rod may be fifteen times as thick as a platinum wire of the same length, supposing the current is to give the same amount of heat. Finally, there is no disposition for the car amount of heat. Finaly, there is no disposit.
For these reasons the Ladiguin method of ele
For the be regarded as illumin ation may be regarded as a most valuable one, as, indeed, it has already proved to be. The only drawback to it seems to
be that the carbon gradually combines with the oxygen of be that the carbon gradually combines with the oxygen of the atmosphere and burns away; but this defect the inventor
has overcome by confining the carbon in an airtight glass, has overcome by confining the carbon in an airtight glass from which the oxygen has been removed in the simplest mann

## Remarkable Coal Mine Explosion.

The anthracite coal region in the vicinity of Wilkesbarre Pa., was the scene of a very remarkable gas explosion on March 6, 1876. The following particulars are from the New York Herald:
The explosion occurred in the mine known ss the Prospect shaft, and owned by the Lehigh Valley Coal Company. The mine has been in operation about five years, and has always had the reputation of making more gas than any other mine in the anthracite coal region. In consequence the utmos precautions have always been taken against an explosion while the mine was in operation, by applying the best means of ventilation known. On the night of the 19th of January last, the mine took fire from the ignition of a current of gas, found necessary to force waterinto the mine for three weeks, until it was estimated that nearly ten millions of gallons of water had been poured in.
Operations were lately commenced to take out the water, and this was done by means of buckets holding 1,100 gal lons each, which were fixed in the shaft and raised and lowored alternately. It was calculated that about $60,000 \mathrm{gal}$ lons were raised in this way every twenty-four hours. The shaft has a depth from the surface of 600 feet. When the work of bailing the mine was commenced, there were about 100 feet of water in the shaft, showing that the chambers mile square, were all filled. As the water was lowered, the gas, which had been forming constantly since the fire, began to push its way through the water. It is calculated that the water was charged with millions of cubic feet of gas, more or less; the gas escaped up the shaft. The work of bailing continued until about nine o'clock on the evening of the 6th of March, when suddenly a low, rumbling sound was heard below ground; and in a moment after, an explosion like a hundred earthquakes broke on the air, and sent its terrible echoes along the valley for miles in every direction. The shaft is located on a high hill, and instantly a stream of fire, forty feet long and twelve wide, shot up into the air for a distance of 500 feet. The whole country around for miles was brightly illuminated by this vast column of burning gas. The houses in the vicinity of the shaft shook like reeds a turned out in terror to see what had caused the unusual comturned out
At Wilkesbarre, a little distance in the valley below, the loud report was heard, and the great flame of light, shooting heavenward above the shaft in the mountain, caused the greatest excitement, which grew momentarily as the illumination continued. Those at a distance could only conjecture
what the cause of the Vesuvius counterpart was. Many
people really believed that a volcano had broken loose, and terror seized upon more than one nervous witness. The tremendous stream of fire shot up from the shaft for three
hours, loud explosions occurring every fifteen minutes. In the meantime thousands of excited people from all sections flocked to the vicinity of the shaft, and stood mute witnesses of the greatest sight which any eye had ever looked upon. It is supposed that as the water was taken out of the mine, the pressure below became lighter, and the gas, which had been pushed back by the weight of the water before, now mingled with the flood, and to such an extent that the water itself was capable of being ignited at the touch of a inatch; this must have been the case, for one of the men, who stood near the mouth of the shaft with lighted lamp when a bucket of water came up, was splashed by the over low, and a drop falling in the flames of his lamp instantly caught fire, and in a moment the frame heading which tands over the shaft took fire; and as the sparks dropped nto the deep pit below, they ignited the gas there generated, and of course an explosion followed.

## f the Mi Works.

An Associated Press telegram of March 5 states that the hree-masted schooner Mattie W. Atwood, 783 tuns, with argo of 2,250 bales cotton, and drawing $13 \frac{1}{2}$ feet, was put to sea through the jetty channel at South Pass on that morning This is the first merchant vessel that has passed through he jetty channel, where, seven weeks ago, there was barel $\frac{1}{2}$ feet of water; now there is 14 feet.
" Constant soundings and surveys are being made," says the New Orleans Times, " and we know from these that, in many places right on the bar, where there was formerly six or seven or eight feet of water, there is now eighteen and twen y and twenty-three feet. This will soon be practically de monstrated by the passage of the deepestladen vessels. 'Tis only a question of a few days or weeks, not months. The reat engineer, Eads, and the indefatigable builder, Andrews, are to be congratulated on the success of this mos mportant national work, and New Orleans cannot do too nuch honor to these men for what they have done toward onsummating her future prosperity and commercial pre eminence.'

## Giffard's Cold Air Engine

The principle of the cold air generators is well known. When air is subjected to compression, heat is developed When deprived of the heat, and subsequently allowed to xpand, it re-absorbs heat so eagerly as to produce a notable owering of the temperature, which is susceptible of applica ion to a variety of practical purposes. A new description o irtight cylinder, new joints, and a new stuffing box have enabled M. Giffard to so far improve upon previous machines that his cold engine, when driven by an ordinary steam en gine, will make 20 lbs . of ice for each lb . of fuel burned.

## New Property of Glycerin.

R. Godeffroy, on examining a chemically pure glycerin from he Apollo Japan Works in Vienna, found that when heat od to $150^{\circ}$ it took fire, and burned with a steady, blue, non luminous flame, without diffusing any odor or leaving a resi due. The glycerin had the specific gravity of $1 \cdot 2609$. This property enables glycerin of lower specific gravity to be burned by means of a lamp wick.

## DECISIONS OF THE COURTS.

United States Circuit Court--Northern District of







## 

New mechanical and enaineering inventions.
improved car coupling
Daniel B. Palmer and David S. Kepler, Chambersburg, Pa.-The bject of this invention is to provide an improved automatic coup-
ing for cars. The principal features of the invention consist in a ng for of hook-shaped, vertically moving jaws, held together by prings and operated by levers, in combination with a long pivoted link permanently attached to one of the jaws, each set of jaws carrying one of said links. The invention also consists in the arrangement of the drawbar, and in a set of automatically releasing levers which, when the jaws are opened by the hand lever, take the link and lift it into such a position as to
withdrawn when the cars are to be separated.
improved apparatus for transmitting power. Joseph L. Crabtree, Flintstone, Md.-This is mainly an arrange-
ment of parts to form a wheel, in combination with a cylindrical ment of parts to form a wheel, in combination with a cylindrical an eccentric shaft, to rransmit to greater advantage the power received. The device is adapted to over and under shot water wheels.

IMPROVED PIPE COUPLING.
Isaac Johnson, Chicago, Ill.-This invention relates to a novel mode of connecting the sections of a pipe made of lead and sheet metal, and consists in the employment of a hollow connecting piece annularly grooved near each end, the metal of each pipesec-
tion being quickly pressed into the groove. When the tool is pressed and turned around the pipe, the metal is drawn forward and the pipe shortened by flling the grooves, without pulling apart the ends.
improved eaves trough machine. Charles A. Codding, Dowagiac, Mich. This invention relates to certain improvements in machines for making eaves troughs. It platform is firmly attached a half cylinder. On each edge of the half cylinder is arranged a set of standards, through which rods run for the support of the former lever and their gripe attachments. These levers are made in a semi-cylindrical form, one end
having a shank through which a hole is made for attachment to having a shank through which a hole is made for attachment to
and lateral adjustability on the supporting rod. The under side of nud lateral adjustability on the supporting rod. The under side of
ihis shank also bears upon the bead or tube of the trough, forcing this shank also bears upon the bead or tube of the trough, forcing
it down to the platform. The other end of these levers has a shank the upper side of whish is beveled, upon which beveled face bears a set screw or bolt in the V-shaped gripe attachment, which latter
are pivoted upon a supporting rod and made laterally adjustable. improved feathering paddle wheel.
Ross Forward, Cincinnati, Ohio.-This invention relates to the
paddle wheels for use on steamers, and adapted to work at any desired depth beneath the surface of the water, thereby increasing the resistance to the paddles or blades, at the most effective point for propelling the vessel, a ad lessening the power required to more it at a given speed. The paddles of each wheel are pivoted trans-
versely between two circular rims, also weighted on one side, below the pivots, and combined with mechanism for locking them at various angles, whereby they are made capable of assuming and maintaining an inclination to the surface of the water, both on en-
tering and leaving it, and a vertical position while immersed in it.
improved eartit auger.
William McK. Burns, Concordia, Kan.-This improvement consists in a novel construction and arrangement of the cutting bit,
also of the contrivance of the reamer and the case. The btt conalso of the contrivance of the reamer and the case. The bart of its
sists of a long spiral steel plate, formed, for the most part length, on an acute pitch for carrying the earth away from the to a much more obtuse pitch on the point, corresponding to the
 required rate of movement of the auger into the ground. De
are added whereby the bucket may be hauled up separately. improved gas regulator.
David B. Peebles, Edinburgh, Scotland.-The wet governor consists of a bell working in a tank in water. Around the bottom of the bell a float is made, which tends to raise it when immersed, and
from the top and center of the bell is suspended a valve, the seat of from the top and center of the bell is suspended a valve, the seat of
which is fixed on the top of the vertical inlet pipe of the governor. which is flxed on the top of the vertical inlet pipe of the governor.
On the bottom of the valve is arranged a closed tube about one and On the bottom of the valve is arranged a closed tube about one and municates with the water by means of a pipe passing laterally municates with the water by means of a pipe passing laterally
through the vertical inlet and outlet pipes, and fixed thereto by nuts. The cbject of this arrangement is to give a pumping action
to the valve when it moves, which tends to steady the bell and obto the valve when it moves, which tends to steady the bell and obviate bobbing or oscillation by the gas waves. Another important
feature of the invention is the manner in which the governor is feature of the invention is the manner in which the governor is
acted on so as to increase, diminish, or maintain pressure. In any acted on so as to increase, diminish, or maintain pressure. In any
part of the inlet gas pipe a small tube is fixed ; and in the casing of the governor, pre wet governor. Another tube connects the chamber above the bell with the outlet pipe, and into this tube is inserted a disk of tin, through which a small hole is pierced. Instead of loading or unloading the bell of the large givernor, in the usual manner, with
weights, the small governor only requires to be adjusted to give weights, the small gesired presure.
improved apparatus for charging retorts. Joel F. Rice, Louisiana, Mo.-In order to prevent loss of gas and
also cracking of retorts by sudden change of temperature, charges, also cracking of retorts by sudden change of temperature, charges, rating them quickly, have been devised, and, to some extent, adopted in practice. This invention is an improvement in this class of apparatus, and consists, chiefly, in the combination with a charger formed of a tube or cylinder (open on its upper side, and provided with means for reciprocating it horizontally), of a plug or
stop devlce, and means for holding the same stationary, in order to force the coal out of said charger, as the latter is being drawn out force the coal
of the retort.
improved wrench.
R. N. Collingsworth, St. Louis, Mo.-This invention consists in providing an ordinary carriage wrench with an arm, projecting
laterally or at right angles from the shank thereof, and having socket in its outer end to adapt it for application to nuts of shaft couplings, etc. The said arm also answers the purpose of a handle by which to rotate the wrench when applied to the nut of a carriage axle.

IMPROVED OIL CUI' FOR JOURNALS.
Amer R. Yost, Somerset, Ohio.-This invention relates to an improvement in that class of lo a shaft or axle and provided with a device for forcing the lubricant out of the reservoir between, or in contact with, the
friction surfaces. The invention is embodied in a cylindrical cup friction surfaces. The invention is embodied in a cylindrical cup or reservoir secured to the axle, an adjustable screw cap therefor,
and a plunger formed of a spiral spring, and a piston which is hinged thereto. The springstem, or body of the plunger, is com-
pressed by screwing the cap down on the tube, and the oil or other pressed by screwing the cap down on the tube, and the oil or other
lubricating matter is forced out by the reacting force of the spring. The piston is hinged, to adapt it to turn downward, and thus pre-
vent suction when being drawn out the tube. The piston is hinged, to adapt it to turn down when being drawn out the tube.
improved car wheel.
Sebastian Stutz, Pittsburgh, Pa.- In this wheel the nave or hub is
closed at the front by a cap cast in one piece with the body of the closed at the front by a cap cast in one piece with the body of the
wheel, and the pipe box is inserted at the inner end and provided with a radial flange which adapts it to be secured to the hub by
screw bolts. Passages or chambers are formed between this box screw bolts. Passages or chambers are formed between this box and the hub proper, etc.; the lubricant circulates freely through
them and in contact with the friction surfaces. The lubricant is them and in contact with the friction surfaces. The lubrica
supplied through an opening in the aforesaid cap of the hub.

## MI'ROVED SAND PUMP.

Edward F. Andrews, Augusta, Ga.-This invention relates to an improved pump adapted for collecting and removing sand, mud,
and such like matters from wells, without at the same time remorand such like matters from wells, without at the same time remor-
ing any water. The pump barrel is formed of two parts, a piston chamber and a sand or mud chamber. These are separated by a
strainer or sieve-like diaphragm, so that the sand and mud, drawn up with the water through vertical tubes arranged in the lower chamber, are prevented from passing up into the piston chamber along with the water, but deposited in said lower chamber, from
which they may be discharged when the pump has been drawn out of the well. The water is discharged from the piston chamber while the piston is working
improved tightener for elevator belts, Peter H. Zacharias and John M. Swift, Ann Arbor, Mich.-A
end clevis of a lever is fastened to one part of the belt, and the fre end of said part is carried through a buckle on the other portion of the belt, and thence to a clevis on a banging clamp attached to
the lever. The belt is then tightened by raising the lever, and i the lever. The belt is then tightened by raising the lever, a
s ecured by the tongue of the buckleentering a suitable hole.

IMPROVED FEed water heater.
Cassius R. Shepler, Port Perry, Pa.-This invention
Cassius R. Shepler, Port Perry, Pa.-This invention relates to a
ovel construction of feed water heater for steam boilers, which is novel construction of feed water heater for steam boilers, which is lation of mud in the bottom of the same. It is a well known fact that in all boilers there will be, in spite of mud drums, an accumulation of mud in the bottom of the boiler, which prevents the water from coming into direct contact with the metal, which latter (becoming very much heated) frequently results in a disastrous explo-
sion. This is especially the case with large longitudinal boilers and sion. This is especially the case with large longitudinal boilers and
boilers used upon the western rivers, where the water is always more or less impregnated with sediment. The invention consists in a series of nozzles arranged in the bottom of the boiler, through which the feed water is delivered in jets against the bottom of the boiler, and the metal kept clean and free from an accumulation of
mud at the points where it has a tendency to settle. The invention mud at the points where it has a tendency to settle. The invention also consists in the peculiar construction of the feed water heater
whereby the water is retained in the steam space for a longer time than usual.
IMPROVED CAR COUPLING.
John S. Purnell, Berlin, Md.-This invention relates to that class together. It consists in the peculiar construction and arrangement of devices in which a wide coupling pin with a curved face and shoulder is pivoted upon a horizontal detachable bolt or pin in the
slotted drawbar, and is provided with an upper extension above slotted drawbar, and is provided with an upper extension above
the drawbar, against which a spring bears to restore and hold the pin in vertical position after being deflected by the entering link The drawbar is provided upon the interior with a projection which ward movement of the pivoted pin, thus preventing too great a strain upon the spring.

## NEW AGRICULTURAL INVENTIONS.

## IMPROVED PLOW.

Asa H. Piland, Margarettsville, N. C.-This invention relates to certain improvements in plows of that class in which one or more detachable sweeps are employed for the cultivation of cotton and
corn in the earlier stages of its growth; and it consists in the pecucorn in the earlier stages of its growth; and it consists in the pecu-
liar construction of a combined moldboard and sweep, made in a liar construction of a combined moldboard and sweep, made in a
single piece in the shape of a bat's wing, and adapted to be used at once as a moldboard and sweep.

IMPROVED CRANBERRY SFFPARATOR.
John Buzby, Moorestown, N. J.-The object of this invention is to provide an improved machine for cleaning cranberries and separating the sound from the unsound or otherwise defective ones. upon which the berries are allowed to fall, and from which they rebound. The sound ones, being hardest, bound farthest, and thus pass into a different receptacle from the unsound ones. For the details of construction and arrangement of parts, reference must be made to the patenc.

MPROVED FERTILIZER
Albert G. Griffith, Baltimore, Md.-The invention relates to an improvement in soil fertilizers of the class in which a suitable acid is employed to ixx the nitrogenous matters contained in fecal substance, and thereby produce a compound which is so far free from
noxiousand offensive odors as to beadapted for handling and transportation in casks or boxes, like gypsum and other dry fertilizing substances. Horse manure forms the base of the compound, and to it are added certain proportions of sulphuric acid, bone dust, and Mexican guano. The product combines the highest proportions of
nitrogenous and mineral elements which can be safely united in a nitrogeno
fertilizer.
TMProved Grain Drill.
Truman A. Hill, Jefferson City, Mo.-This invention relates to ertain improvements in grain drills, and it consists, frrst, in two rock bars which are connected with the parts which conduct the
grain to the earth, and are geared together by means of toothed grain to the earth, and are geared together by means of toothed the alternating spouts to reciprocate in opposite directions; second, in the combination with the said rock bar of a clutch mechanism for throwing them in or out of gear; third, in the combination with the driving wheels of a worm and pinion gearing, and a grad-
uated face and index hand for the purpose of determining the uated face and index hand for the purpose of determining the
amount of ground seeded; fourth, in the peculiar construction amount of ground seeded; fourth, in the peculiar construction
and arrangement of the seeding devices; and fifth, in the means chanism.
improved fertilizing compound
G. J. Popplein, Baltimore, Md.-The invention relates to that class of fertilizing compounds that are intended to replace, cheaply and conveniently, the elements that form the constituent parts or
food of plants, and that have been eliminated therefrom by previous cropping, or are absent or deficient from some natural cause The compound consists of tripoli united with soda or potash, both minutely subdivided and intimately mixed in proportions to suit he requirements of each particular crop.
IMPROVED COMBINED CORN PLANTER AND CULTIVATOR. Henry H. Balding, Terre Haute, Ind.-This includes a number of useful devices whereby a corn planter is combined with an ordinary cultivator, so that the latter machine may be used for planting corn, as well as for its regular work. The novel features relat mainly to po
improved cultivator.
James A. Price, Houston, Tex.-This cultivator is provided with rear adjustable side beams, one placed in advance of the other, on
opposite sides of the main beam, pivoted in front and curved backward therefrom. It may thus be readily adjusted for cultivating rows of plants of varying widths.

NEW WOODWORKING AND HOOSE AND CARRIAGE BUILDING INVENTIONS.

IMPROVED GATE.
Van Rensselaer Cole, Reedtown, Ohio.-The panel of this gate
lides to and from the latch post on friction rollers, and is mounted a a triangular frame hinged to the pivot post. The said frame attached to the post by means of a peculiar form of hinge, and the panel may be detached from the rollers to set it hig
so that it may swing over snow or other obstructions.

IMPROVED TILE ROOF.
Jonas Smith, Lebanon, Ky.-The greater durability and dryness of tile and metal-covered roofs, as well as the greater protection
they afford against flre, have tended to rapidly extend their use in recent years, even in localities or districts subject to no legal re trictions in respect to the materials of which buildings are composed. The present invention is an improvement in this class, and relates to an improved form of tile or metal plate, and means of fastening for the same, whereby an economy is effected in the cost of the roof covering, its weight lessened, and the attachment of the
individual tiles or plates rendered more secure than heretofore.

IMPROVED METHOD OF ATTACHING HUBS TO AXLES
Alden B. Brown, Comstock, Mich.-This inventor proposes a coming and interlocking ring flanges, and the axle having an enlarged threaded collar. By this construction the oil cannot get out, and dirt and sand cannot get in to wear the axle arm and box.

IMPROVED SAWMILL DOG.
Henry Williamson, Bay City, Mich.-The invention relates to an improvement upon the sawmill dog shown in patent No. 150,534, and relates to the construction and arrangement of parts whereby the
sliding bar which carries the dog is attached to the frame and sup sliding bar which carries the dog is attached to the frame and sup-
ported bs its operating lever. This forms a simple lever power dog ported bs its operating lever. This for
which is adjustable to logs of any size.

MPROVED VEIICLE SPRING
Silas Newcomb, Pike, N. Y.-The invention relates to an improve ment in the class of wagons unprovided with a reach, and consists
in combining rearward extended torsion springs and pivoted or hinged stay bars with the body of the wagon. The rear axle is therefore separated from the wagon body to the extent of such increase in the size of the arcs of which said springs and stay rods are radii. These arcs so far correspond that the axle is maintained in
a practically vertical plane, and hence the bolt connections between it and the springs are not strained at each vertical vibration of the wagon body.
improved folding table.
George K. Hoff, Philadelphia, Pa.-This table may be readily folded into small space for being more conveniently carried to the
place of use, and when opened it forms a stool or bench of considplace of use, and when opened it forms a stool or bench of consid
erable strength. The invention consists of two hinged symmetrical bench sections, with hinged folding legs that are fitted by suitable recesses, and locked to a central stiffening piece, which is hinged to one of the bench sections.

IMPLOVED bASE FOR CHAIRS AND STOOLS.
William T. Doremus, New York city.-Around the upper part of the socket which receives the pivot of the chair is cast a downwardly inclined flange. The flange has four $V$-shaped grooves
formed in it to receive the $V$-shaped upper edges of the upper ends formed in it to receive the $V$-shaped upper edges of the upper ends To enable the chair to be raised from the floor without having the legs drop out, bolts are passed down through the flange and through legs drop
the legs.
mproved running gear.
George W. Gilmore, Weatherford, Tex., assignor to himself and vehicles, and upon the patent granted to James Patterson, Apri 16, 1850. The rear axle consists of two opposite arch bars connecte at each end by angular pieces, and is braced and secured to the reaches by a middle post. The front axle has a fifth wheel formed upon it in one piece. The connection of the supporting springs With the axles, and the rigid connection of both front and hind
axles by a brace, producean iron suspension frame of great strength
and and durability.

## new chemical and miscellaneous inventions.

improved millstone dressing machine.
Albert Hoppin, La Crosse, Wis.-The use of emery wheels for better mechanical result than the devices previously employed But the machines hitherto devised for the purpose have been cum bersome or otherwise objectionable. The object of this invention is to furnish a machine better adapted for such work. For details, will be necessary to refer to the patent.
improved falcet and vent.
James Talley, Jr., Kansas City, Mo.-This invention is an imdovement upon a device patented to Love and Talley, Jr., Jun
0,1874 . The improvement relates to a rotating sleeve applied to the boring tube, and provided with openings on opposite sides, the djustment of said tube in either of two positions rendering the device capable of acting either as a vent (for admission of air to the
cask) or a faucet (for discharge of liquid from the cask). The in vention likewise includes an improved corkscrew and brush tube attachment. For an illustration of this invention, see page $\mathbf{d} 98$ o this issue.

IMPROVED SUSPENDER AND OTHER LOOPG.
Joseph W. Bradley, New York city.-This invention consists of a
e-edforcing loop of metal or other substance in combination with the loop of a suspender or other strap, commonly employed to the loop of a suspender or other strap, commonly employed to
connect the strap to a ring, buckle, or other device, the re-enforcing loop being secured by an eyelet or other suitable means. The
straps with which suspenders and the like are commonly provided are subjected to rapid wear at the point where they loop over th uckle or ring, owing to friction and the deterioration of the leather by perspiration. To remedy this defect, the inventor applies metal plates and a narrow re-enforce loop to the strap loop, and
thereby enhances, as he states, the value of the article without materially increasing its cost or impairing the flexibility of the strap.
improved process of glossing coffee
Herman A. Kroberger, Philadelphia, Pa., assignor to H. A. Kro erger \& Co., of same place.-This consists in glossing roasted cof French gelatin, and a strong solution of dextrin. The dextrin solution readily unites with the starch and gelatin compound pre viously put on, and forms a tenacious airtight covering with a beau iful gloss. The advantages of this process are threefold, namely the percentage of loss in roasting is less, the evaporation of the aroma of the
is improved.

## NEW HOUSEHOLD ARTICLES

## IMPROVED FLY TRAP.

David S. Kidder, Turner's Falls, Mass., assignor to himself and rotated by clockwork, and which is separated by partitions int three divisions. Gates are hinged to the side of the platform, from Which the pan passes to cut off the escape of the flies in that direc-
tion. Said gates rise to let the partitions pass, and have vertical tion. Said gates rise w let the partitions pass, and have vertical plates, so that they close progressively and prevent any opening a the outer part of the pan. Directly behind the gates is a covered
way leading into a light chamber, through which the flies are crowded by the partitions as they advance toward the gates

IMPROVED STOVE.
William Young Cruiksbank, Shamokin, Pa.-The object of this of coal mines in direct manner, without special preparation an expense, so that the same is fed in dried, heated, and well regu lated state to be burned in the stove or furnace. The new feature consist in a distributing cone, a drying plate, and a revolving
feeder, by which the coal dust is conveyed in small and thin sheets feeder, by which the coal dust is conveyed in small and thin sheet
continually to the fire below.

## Tusitess and wersoual

## lar a Line. If the Notices exceed Four Lines, Dol

 Dollar and a Half per Line will be charged. Dry Steam, the only fit Lumber, Fruit, Tobacco, The "Catechism of the Locomotive," 625 pages,250 engravings. The theory, construction, and management of American Locomotives. Sent post pald, on re-
cefpt of $\$ 3$. H. P. Stetn, RR.Gazette. 33 Broadway,N. Wanted-A purchaser for a new Invention, just
patented. My reason for selling: I am a widow, and not able to introduce it.
For Sale-6 Millers, $\$ 175$ eacb; 6 -spindle Drill, $\$ 150$.
No. 2 Fowler Press, $8200 ;$ No. 1 Ditto, $\$ 125 ; 15$ in x 4 ft Lathe. $\$ 150$; Pratt \& Whitney Screw Machine. $\$ 200$; Pro 300 new and second hand machives of every de
scription for sale at low prices. Send stamp for our List No. 5 , just printed, fully describing each machine, stating just what gou want. Don't buy unt11 you look over our
list. S. C. Forsaith \& Co., Manchester, N. H. "Abbe" Bolt Forging Machines and "Palmer"
Power Hammers a spectalty. Send for descriptive lists ter. N. H
Engineers, Read about Allen Governor, on our
last page. Send to Mr. Allen for ctrcular. Blake's Belt Studs are the best fastening for Lea-
ther or lubher Belts. Greene, Tweed \& Co., 18 Park Corner Cutling Machine, Chocolate Mill, Bolt
Cutter, Letter Press and Stand-all at Bargains. A. B. Gas and Water Pipe, Wrought Iron. Send for
rices to Balley, Farrell \& Co.. Pittsburgh, Pa. Inventors should correspond with the Allen Fire
Ipply Co., Providence, R. I., as to manufacturing. Walrus Leather and Walrus Leather Wheels for
polishing. Greene, Tweed \& Co., 18 Park Place, N. $\mathrm{\Sigma}$. Painters, Grainers, \& C.. send for Circulars and
Sample of first class \& quick $\operatorname{Grann}$ Ing, done with my perSample of first class \& quick Graining, done with my per-
forated Metallic GUraining tools. J.J.Callow,Clevel'd, $\mathbf{O}$. Telescopes and object glasses manufactured by
John Byrne, No. 121 East Fourth St., New York Cty. Seeds \& Implements-200 Illustrations-just out.
Mailed on recelpt 2 3c. stamps. A. B. Cohu, 197 Water A Mechanical Draughtsman desires employment.
Has had a thorougheducation, and five years' experience Has had a thorougheduction, and five years' experience
as a machnntst li locomotive and stationary engine 2 Hydraulic Presses, in perfect order. Ram 12
Inches, for Tallow, Cloth, or Tobacco. J. Howard, No. 1720 nittenhouse St., Philadelpha, Pa.
Patent Right of first class Plow for Sale. AdBest light Portable Engine out, at Novelty
works, Corry, Pa. Send for Circular. Hest Band and Scroll Saws, Surface Planers,
Matchers, Universal Wood Workers, etc. Bentel, Marsedant \& Co., Hamilton, Oht
"Wrinkles and Recipes" is the best practical valuable trade suggestions, prepared expressly by celeValuable trade suggestions, prepared expres "Sclentific
bratedexperts and by correspondents of the
American." 250 pages. Elegantly bound and tllustrated. A splendid Christmas gift for workmen and apprentices. Malled. post pala, Munn, Publisher, P O. Box 772 . New York city.
N. For Sale-An established business, manufactur-
Ing metal goods. Patented. Box 729, Providence, R. I. Our new catalogue of drawing materials will be
sent on recelpt of 10c. Add. Keuffel \& Esser, New York. Boult's Paneling, Moulding and Dovetailing Ma-
chine Is a complete success. Send for pamphlet and sample of work. B. C. Mach's Co., Battle Creek, Micn. Patent Scroll and Band Saws, best and cheapest
in use. Cordesman, Egan \& Co.. CIncInnati, Ohio. Round Thread Hose Couplings and "Controlling
Nozzles" are the best in use. E.M. Waldron, Prov.,R.I. Sash and Door Factory, Planing Mill, \&c., for
Sale. See
бdvertsement on page 505 . Wanted-Patent of some genuine and real im-
provenent worth being introduced and exploted in I'hlladelphia now, by a gentleman who has means and
spectal factlities for forming compantes, etc. Address Wanted-Every Machine Shop to send for one of
Gardiner's pat. centerng and squaring attachments for Lathes. On five days' trial, to be returned at our ex-
pense if not satisfactory. 700 one inch shafts centered andqued,
Famille Dhio
Sish Drainer-Shop right deed and pat
J. R. Abbe, Lawrence, Mass.
Yocom's Split-Collars and Split-Pulleys are same
appearance, strength, and price, as $\mathbf{W}$ hole-Collars, and Yapearance, strength, and price,
Whole-Pulleys. Shatting Works, Drian
North Second Street, Phtladelphta, Pa
Solid EmeryVulcanite Wheels-The Original Solid
Emery Wheel-other kindsimitations and in ferior. Cau-ton-Our name 1s stamped in full on all our best stand-
ard Beiting, Packing, and Hose. Buy that only. The
hest ts the cheapest. New York Belting and Packing Companv, 37 and 38 Park Row, New 1
Steel Castings, from one lb. to five thousand lbs.
Invaluable where great strength and durabillty are required. Send for Circular. Pittsburgh Steel Casting Hotchkiss Air Spring Forge Hammer, best in the
market. Prices low. D. Fribie of Co . New Haven. Ct. For best Presses, Dies, and Fruit Can Tools, Bliss
Willams, cor. of Plymouth and Jay, Brooklyn, N. $\mathbf{Y}$. For Solid Wrought-iron Beams, etc., see adver-
tisement. Address Union Iron Mills, Pittsburgh, Pa., for litbograpp, \&c.
Hotchkiss \& Ball, Meriden, Conn., Foundrymen
and workers of sheet metal. Fine Gray Iron Castings and workers of sheet metal.
to order. Job work solletted.
American Metaline Co., 61 Warren St., N.Y.City. For Solid Emery Wheels and Machinery, send to
the Union Stone Co., Roston, Mass., for circular. Hydraulic Presses and Jacks, new and second
nand. Lathes ana Machnery for Potishing and Buffing Spinning Rings of a Superior Quality-Whiting-
ville Sppnning R1ng Co., Whitinsille. Mass. For best Bolt Cutter, at greatly reduced prices,
sodrees $\begin{aligned} & \text { R. Brown }\end{aligned}$ Co.. NewHaven Conn. Diamond Toole-J. Dickinson, 64 Nassau St., N.Y. Temples and Oilcans. Draper, Hopedale, Mass. Peck's Patent Drop Press. Still the best in use.
Address Milo Peck, New Haven. Conn. address milo Peck. New Haven. Conn.
All Fruit-can Tools, Ferracute W'ks, Bridgeton,N.J.

## Matinturaturies

B. W. J. will find full directions for mount ing maps on cloth on p. 91, vol. 32.-J. E. S. will find a recipe for silverplating fuid, for use with-
out a battery, on $p .408$, vol. 32 . For a silver batb,
for plating with a battery, see $p .362$ vol. 31. For out a battery, on p. 4l8, vol. 32 . For a silv ver batb,
for plating with a battery, see p. 362 vol. 31. For
directions for polishing silver ware, see p.251, vol directions for poliehing silver ware, see p. 251 , vol.
33.-J. D.'s circle-equaring demonstration proves 33.-J. D.'s circle-equaring demonstration proves
nothing.-J. G. R. will find rules for calculating the proportions of screw-cutting gears on p. 107, looking glasses on p. 267, vol. 31.-H. E. J. must use Indian or Chinese ink for Patent Office draw-ings.-A S can mold rubber by the process de-
scribed on p. 363 , vol. 30 .-J. . W. can attach scribed on p. 363, vol. 30.-J. L. W. can attach
sheet rubber or leather to iron pulleys by the process described on p. 409, vol. 33.-C. M. C. can callaid down on . 33 , vol. 33-F. G. R.'s the rules is a pantagraph. See p 179. vol. 28.-L. L. T. can make rubber varnish for coating canvas by fol-
lowing the directions on p. 11, vol. $32 .-0$. W.I. can purify his silver solution by the method described on p. 324, vol. 33.-The instrument that M. McC. irquires about is the pantagraph, described
on p. 179, vol. 28.-E. L. G., A. B. C. W. P. T., J.B., G. W. B., E. F. C., G. S. H., F. D. D., H. J., E.G.K.,
and many other correspondents who ask us to recommend books on industrial and scientific subjects should address the booksellers who advertise in our columns, all
worthy firms, for catalogues.
(1) X. B. X. asks: What shall I mix with red lead to flll joints in iron? A. Use white lead (dry) to make a putty.
(2) J. N. P. says: 1. I notice on some loco. motive engines small tubes running from the What is its use? A. They are pipes connected with oil cups in the cab. 2. What causes the deafening noise sometimes heard about a locomotive?
A. We do not know to what you refer, unless it is that occasioned by the sudden action of the pop valve. 3. Is there a gage attached to the cylindrical reser voir of compressed air, used in the Westair? A. We believe so. 4. Which is the best coal for burning in locomotives, anthracit.
nous? A. That is an open question.
(3) W. H. D.-Your statement as to freezing of water is not complete. Let us know all the conditions of the question, and we will beglad give you our opinion.
(4) H. C. E. says: A friend asserts that the fly or balance wheel of an engine gives power to
the engine, and that the engine would not run the engine, and that the engine would not run
without. I say that the fly wheel is put there only to regulate or keep the motion steady when right? A. Your idea is the more nearly correct of the two. The object of the fly wheel is to regulate the speed of the engine, not only at the centers but on all occasions where there is a change in
the amount of work. That engines will work the amount of work. That engines will work
without fly wheels is very evident from the nuwithout fly wheels is very evident fro
merous examples to be found in boats.
(5) F. T. H.-We do not get from your de scription a clear idea of the arrangement: but the wheel is free to
(6) R. F. H. says:I had a coarse half round file, 6 incheslong, that had become magnetized in
a peculiar way. One pole was at the top and the other 2 inches from it. Is it usual for the poles to be thus situated? If so, how is it explained? A. We cannot say that such cases are usual; butit is probable, if the fle were placed in the line of the
dip, that a smart rap at two inches from the dip, that a smart rap at two inches from the
tip, that is, where the second pole is situated, would tend to magnetize it in the manner repre ented
(7) W. T. says: Please publish for the beneft of those who contemplate running small boats
by steam, carrying neitber passengers, hired men, nor freight, what sized boats we can use and not be amenable to the inspection law? A. The act
requiring inspection and licenses for steamers aprequiring inspection and licenses for steamers applies to all steamboats, of
run for pleasure or profit.
(8) W. J. W. says: It is desired to use hy-
draulic pressure, and to run several presses with draulic pressure, and to run several presses with
one pump, pumping into a reservoir tank from one pump, pumping into a reservoir tank from
which each press will be operated. It is desired to have the reservoir large enough to hold sufficient urenearly uniform, the pressure being used irregularly, according to the work to be done. The pressure used is as great as 1,000 lbs. to the square
inch, and the air over the water (in the reservoir) is soon absorbed by the water unless provision is made to prevent it. A rubber diaphragm has been used to separate the air from the water, but the form of reservoir to admit of sufficient size and strength. Cannot a reservoir in the form of a cyl-
inder be used, with oil floating on the water to keep the air from the water? Would the water absorb the air through the oil? A. We do no know that this bas ever been tried. It is custom-
ary in such cases as yours to use Sir William Armccumulator
(9) M. V. A., of Brunswick, Australia says: There is a dispute about the power require
to lift water by the common suction pump. to lift water by the common suction pump. A lift water 2 feet than it does for 1 foot. Bower
B. maintains that the power required will be as the verti-
cal hight to which the water is raised. What the fact? $\mathbf{A}$. The idea of power is incomplete
right. For example, it takes twenty times much power to raise 1 lb . Water through
hight of 20 feet in a minute, as it does to raise hight of 20 feet in a minute, as it does to $r$
lb. through a hight of 1 foot in the same time.
(10) J. H. P. says: In your last issue C. W . asks why it is easier to lift the upper millstone by the regulating screw while it is in motion, than
when it is at rest. You ask if it is a fact an illustration: Suppose a wagon wheel be suspended by a horizontal bar passing through the hub. To slide the wheel bodily on the bar would require considerable force. Now set the wheel
revolving; and the slightest pressure against the wheel will cause it to move (slowly) along the bar If youcan explain this, you will have a clew to the center of gravity or weight seems to move in a sort of spiral or inclined plane, and the friction is more easily overcome than when the wheel is at
rest. So of the millstone: The friction of the rest. So of the millstone: The friction of the
shaft tbrough the lower stone and the friction of the upper bearing is more easily overcome when friction (call it a weight, if you please) moves up an ascending inclined plane, instead of perpendicularly; the general Jarring caused by the motion of the wheel causes the regulating screw to move more uniformly instead of by fits and starts. A.
We must suggest to you, as we did to C. W. T that if you have any experimental data in support of your statement we would be glad
fore attempting an explanation.
(11) W. J. W. asks: What size of engine at 5 miles an hour? I have an engine $2 \times 31 /$ inch es,and a boiler (upright tubular) 22 inches high and 9 inches in diameter? Are the engine and boiler large enough ? A. The engine might possibly do
(although it is rather small) with a boiler of suffi(although it is rather small) with a boiler of suffi-
cient size. We do not think your boiler wouldgive very satisfactory results. For a boat of the size you mention, the diameter should be
nches, and hight from 3 to $3 ; 6$ feet.
(12) R. K. asks: 1. Would 8 or 9 lbs. of hard lime scale? A. So far as we know the prin cipal action of zinc is rather to prevent corrosion. As to the experience of correspondents with zinc as a scale preventive, see p. 369, vol. 31, and p. 36,
vol. 32.2 . Is it proper to blow off the water from a vol. 32. 2. Is it proper to blow off the water from a
steam boiler with a pressure of $40 \mathrm{lbs} ., 4$ hours after the engine stops, with the fre'all raked out and the et the water remain in the boiler? A.er night, until it becomes comparatively cool: and then allow it to run out, and clean the boiler at once, washing the
parts inaccessible by hand with water from a
(13) G. W. M. says: I have an engine $3 \times$ $31 / 2$ inches; what size of propeller will it drive, to
propel a boat 16 feet long by 5 feet beam? A. You can make a propeller 20 inches in diameter, $21 / 8$ feet pitch. 2. What size of boiler will it take to
run the engine at 300 strokes per minute? A. Use vertical boiler 24 inches in diameter and $31 / 2$ feet high.
(14) W. P. H. asks: 1. How can the motive be measured ? A. By measuring its velocity and the sectional area of the inlet. 2. What means can be adopted to measure suction in the fre box, and compare it with the suction in the smoke box (the difference being mostly due to the
friction of gases in the flues)? A. Two delicat friction of gases in the flues) A. Two delicate
gages might be used, such as bent tubes, containing fluids. 3. It has been stated that a vertical boiler of two thirds the capacity of a horizon
tal one, will furnish the same amount of steam is this so? A. We would hesitate to endorse such sweeping assertion.
(15) S. C. N. asks: What is the least mount of water pressure that would feed a boile carrying 90 lbs. of steam per squareinch ? A. We knowing size and arrangement of connection and amount of feed; but in general it would be well to have a pressure of water of from 3 to bs. greater than that in the boiler.
(16) D. H. D. says: I want enough hyor stop out water under water, to cement a spa of about 8 feet in diameter in the bottom of my cistern. What is best to use ? A. Portland cemen is the best you can use, and you will find it adver-
tised in our columns. If you can make the bottised in our columns. If you can make the bot
tom of your cistern concave, it will present greath.
(17) G. C. asks: How can I filter dust out placed against an opening will cause the particles of dust in the current of air striking against it to fall below, where, if a pan of water is placed, said dust will be retained, and the purifled air may en ter below the
the water.
(18) L. H. P. gays: 1. Does E. H. R., in an swer to H. F. R., No. 49, February 19, mean one
fifth as much heating surface in the boiler as he has of radiating surface, or does he measure the A. He probably has reference to the effective heat ing surface in the boiler, which is usually taken as only one half the entire surface, meaning that the rule for finding the size of supply pipes for coils where exhaust steam is used, also for live large enough not to make an obstruction by fric tion within it, and no smaller than the pipe where it leaves the cylinder. There is no rule other than custom for live steam, which has most usuall adopted 1 inch pipe. 3. In your answer to A. S.,
I think you are extravagant in your amount of I think you are extravagant in your amount of
heating surface for a factory. Ms experience has
been that one superficial foot of heating surface
to 100 to 125 feet of air for the first floor, 150 for the second, 175 for the third, and 200 for the fourth (where there are stairways and hatchways) is suf-
ficient, even with exhaust steam. With live steam less will answer. The exposure and construction of the buldingsshould also be considered. A. All systems of heating should be adapted for zero weather; it is easy to turn down the steam to
grade it for milder weather. For factories, howgrade it for milder weather. For factories, how-
ever, where well protected, your quantities would ever, wh
suffice.
(19) S. \& P. M. Co. say: We are engaged in the manufacture of a tifficial stone. What could we use for coating the stone with to ren-
der it weatherproof? A. Stone itself is weatherproof; and the manufacturers of artuficial stone have not yet succeeded in discovering an application that will make their imitation \&tone quite equal to the real. Pure Portland cement probably affords the best surface for unbuint ware, and glazirg is the
passed tbrough the kiln.
(20) O. A. L. asks: What is the rule fo Anding the length of a perlin post of a building following pitches: $\frac{1}{8}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}$ ? Let the width of the building be 36 feet, pitch $1 / 3$. Then the hight is 12 feet and the length of the rafter is 21.633 feet. What would be the length of the perlin post? A.
Multiply the hight by half the length of the rafte Multiply the hight by baif the length of the rafter and divie the product by hall the span; the quo a general rule for any pitch. But unless you pro vide a post or wall to support the point in the span on which the purlin post rests, this is a very faulty construction, subjecting the tie beam to a
cross strain; the proper position for the purlin cross strain; the proper position for the purlin span to the middle of the rafter, the center of 1. Weing held up by the suspension post or rod 1. What is the average power of a horse in foo estimated at $22,500 \mathrm{lbs}$. raied 1 foot in a minute fo 3 hours a day. 2. A map of a certain town says that one dam in the river is of 30 horse power and
another is 115 horse power. Please explain the term as there used. A. It indicates that the vol ume of water and the hight of the fall are suffi espectively.
What is the quickest time made by any steam vessel between New York and Liverpool? A.
See p. 97, vol. 34 . As the Liverpool steamer generally stop at Queenstown, the time is usu ofly given from the latter port. The steamer Cit own in 7 days, 15 hours, and 48 minutes.
(21) N. S. J. asks: Please give me the rule iven the diameter, weight, and velocity of the balance wheel, the size and pitch of screw, the friction, and any other elements entering into the problem. A. It would take a very extensive in vestigation, and a great deal of calculation, to en able us to answer these questions. You will find
considerable information on the subject in Ny -
(22) M. D. L. R. says: I am building portable engine. The boiler is vertical, of 26 inch moke box that runs down and forms the fire in a There are 30 tubes of 2 inches inside diameter; $d$ rection of draft is up between the smoke box and boiler, also through the vertical tubes. Will it do o have the fre to go between boller and smoke ax, thereby heating the outside of boiler shell A. It wil not improve your boiler. 2. How hig shall I keep the water level in said boiler? A.
About 4 feet. 3. Have I too many tubes for the
(23) J. B. asks: How can I paste silk on to rood without spoiling the silk ? A. Good flour
aste has given satisfaction for this purpose.
(24) ${ }^{\circ}$ J. D. P. says: Please inform me of omething reliable that will curecorns and warts A. If the corn has attained a large size, remova
by cutting or ligature will be necessary. If it by cutting or ligature will be necessary. If able. It is done by tying a silk thread around the corn, and, on its removal next day, another stil tighter, and so on until completely removed When the base is broad, a cautious dissection o he corn from the surrounding parts by means o a sharp knife or razor is necessary. This is don yy pas of cutting corns, the feet ought to be In a ously washed, as in case of making a wound in the the great danger may result from want of cleanlinessin this respect. Mortiffcation has been the
result in some cases of this neglect. For the erad result in some cases of this neglect. For the erad tassa (stick) is highly recommended.
(25) J. M. and others ask : How can we dissolve shellac in alcohol, aqueous solations of
orax, etc. ? A. Dissolve 5 parts borax in 25 parts hot water, and add 41/2 parts of bbellac in fine does not form transparent alcoholic solutions.
(26) M. A says: 1 . How can I bleach felt sulphurous acid gas. Felt hats are dyed by alter nate immersion in a hot aqueous solution of log wood 38 parts, 3 parts green vitriol, and 2 parts o verdigris, and exposure to the air (each part of
this process having a duration of about 10 or 15 minutes). This dipping and draining is sometime repeated as many as 13 or 14 times, or until ors may also be used for this purpose. Felt much more difficult to thoroughly dye than ordinary woven woolen goods. 2. How can I mak the stiffening for felt hats? A. A good stiffening is made as follows : Dissolve 3 parts earbonate of
potash and 10 parts borax in hot water ; then
add 50 parts shellac, and boil until solution is effected. The stiffening may be applied (to the in-
side of the hat) by means of a brush side of the hat) by means of a brush. As soon as
this is done, the hat should be immediately immersed in very dilute oil of vitriol in order to neutralize any excess of alkali, and to properly fix the shellac.
(27) A. N. asks: Is there any danger of the use of sugar of lead as a wash for sores? The danger depends upon the strength of the so lution used and the frequence of the application Colic sometimes results from the very free use of solutions of acetate of lead. Pereira states
paralysis is caused by using acetate of lead.
(28) J. E. K. says: You gave the following recpe for aliquafor mixing rocket stars: Alcohol $9 / 4 \mathrm{oz}$., camphor $1 / 2 \mathrm{oz}$., isinglass $1 / 2 \mathrm{oz}$. How can the isinglass be dissolved in alcohol? A. It can
not. The quantity of alcohol given is just suff not. The quan the of anor civen is just suffperly incorporated with the other ingredients by maceration. Do not add the gelatin untilall the other ingredients have been uniformly intermixed y gentle triturationin a mortar.
(29) S. B. asks: In crushing highly sulphurous ores with Cornish rollers at 120 revolu-
tions per minute, will the sulphur have any efect on the iron or face of the rolls so as to inju texture? A. We think not.
(30) A. B. asts: 1. Of what is Indian ink of carefully purifted lampblack and size, or aniof carefully purifed lampblack and size, or ani-
mal glue, with the addition of perfumes, not nemal glue, with the addition of perfumes, not ne-
cessary, however, to its use as an ink. 2. In what cessary, however, to its use as an ink. 2. In what
substance is lampblack soluble? A. Commercial lampblack always contains more or less resinous and tarry matters, that are soluble in oil of tur-
p $\operatorname{mantine,~benzine,~naphtha,~etc.;~but~the~purifed~}$ p $\because$ ntine, benzine, naphtha, etc.; but the purified
lampblack (carbon) is itself insoluble in any menlampblack
struum.
(31) C. K. asks: What metal or alloy ex pandsthe most and quickest at a temperature with in $300^{\circ}$ Fah.? A. Zinc. Taken at $32^{\circ}$ Fah., a rod of zinc 25 feet 4 inches long will h
(32) V. C. T. says: I have a lot of thin malleable iron castings, which I am having ground, polished, and nickel plated, but they all have
dull leaden appearance after being plated. The tell me the fault is in the casting, that the malleatell me the fault is in the casting, that the mallea-
ble iron was burnt. Can this be true? A. Malleable iron may be readily nickel plated if the work
be flrst properly finished. If the castings are burnt, it will be necessary to refnish them before satisfactory deposit can be obtained.
(33) E. S. T. asks: Why do preserves, that re in perfectly airtight jars, mold? A. If th completely fill the jar and expel the air, the preserves will not mold.
(34) E. S. H. asks: How can I make colored res? A. Try the following: For light blue 61 per cent of chlorate of potash, 16 of sulphur, 23 of
strongly calcined alum. Fordark blue 60 per cent of chlorate of potash, 16 of sulphur, 22 of carbonate of copper, 12 of alum. For deep blue, use 54 per cent of chlorate of potash, 18.5 of charcoal,
and 27.5 of ammoniacal sulphate of copper It is hardly necessary to mention that great care is $r$ hardy necessary to mention in mixing these materials, and that each red fire use 297 parts chlorate of potash, sulphu $17 \cdot 9$, charcoal 17 , nitrate of strontia 457 , black sul phuret of antimony 5.7 . For green, chlorate of potash $32 \cdot 7$, sulphur $9 \cdot 8$, charcoal $5 \cdot 2$, nitrate of ba ryta $5 \% 3$. For yellow, sulphur 23
nitrate of soda 98 , saltpeter $62 \% 8$.
(35) T. L. asks: Is a large deposit of soda och as is generally deposited from soda springs, of any value? A. Yes. It might be proftably used as a flux in reducing ores.
(36) K. S. asks: How should bodies of cellular structure, being saturated with nitrate of silver to become conductors of electricity, be
treated with hydrogen gas? A. Enclose in an attreated whe of pure hydrogen and heat to redness.
mosphere
Solutions of copper are preferable to silver, as Solutions of copper are preferable to silver, as they are much cheaper. How is the double sulphate of nickel and ammo-
nia prepared? A. See p. 139, vol. 29 .
(37) G. S. says: I have a drum head that has lettering on it, done in black. How can I take the marks off without inju ring the head? A.You should have stated, if possible, the character of lowing is a list of the solvents commonly employed where this is not known : Water, ether, ether and alcohol, benzole, naphtha, chloroform, bisulphide of carbon, caustic alkalies, diluted acids, solution of cyanide of potassium. They should be applied consecutively in the order given. It must be borne
in mind that many of the abovementioned solv. in mind that many of the abovementioned solv. drum head, and care should be exercised to pre vent any unnecessary contact.
(38) J. H. B. asks: How can I renovate a sponge mattrass that has become hard by use and dampness? A. his has not been satisfactorily (39) C. \& Co. ask: 1 . In the manufacture charge the fountain with carbonic acid gas? A.
To 12 ozs. water add $1 / 3$ oz. magnesia and add citric cid to slightly acid reaction. Such aoidty is gen erally found more palatable than a neutral solu tion. Sweeten, add a few drops oil of lemon to flathe proper fluid magnesia. Many sell a spurious article made of tartrate of soda with a little sods bicarbonate flavored with lemon. 2. How is the magnesia bottled? A. Bottle in the ordinary way, not using the oarbonic acid apparatus.
(40) E. B. J. says: I desire to make a mu
sical instrument, the sound being produced by sal instrument, the sound being produced by varying length. Supposing the shortest strip is 4 nches long, what will be the length of the other ne? What is the best material for the hammers and what kind of wood gives the best sound? A. The relative lengths of the pieces, for an octave
 uning a note one oc anes, thus: $\frac{4}{9}, \frac{2}{5}, \frac{3}{8}, \frac{1}{3}, \frac{3}{10}, 4_{4}^{4}, \frac{1}{4}$, and so on as long as
ures. traw, and struck with wooden hammers. Som f our readers, however, may be familiar with th use of the instrument, and will correct us if in
error.
Given a set of conjugate diameters of an ellipse
ow can the axes be found so that the curve cank

the given conjugate diameters. From $d$ draw ine perpendicular to $e b$, and make its length,
$d \mathrm{E}$, equal to $e \mathrm{O}$. Join the points, O and E , by E, equal to $e 0$. Join the points,, and E , by
traight line, and upon O E,as a diameter; describe circle. Draw a straight line, $d \mathbf{H}$, through $d$ and , the cuts the of this circle. Gand H , whing axes, and $G d, H d$, are the lengths of the semi (41) (41) J. B. asks: How can I produce a gloss
n hard rubber? A. Ebonite may be worked, in all respects, like any hard wood. Pumice powder and rottenstone are commonly employedas finish-
(42) E. P. J. asks: 1. What is the precise diameter of the piston of a reciprocating engine,
presenting 144 square inches of area? A. Calling $\pi$ the ratio of the circumference of a circle to a diameter, the diameter in question is equal to 2 value of $\pi$ cannot be precisely expressed in num bers, it is impossible to give the precise diameter of the piston. 2. What would be the horse power 100 lbs, boiler pressure to the square inch at 100 rev olutions per minure,and cutting off at 1 foot, or $1 / 2$ curate: A.Theation. See p.33, vol. 63. 3.Whan ac calculation as to the percentage of power lost by friction in the reciprocating engine? A. It vaFrom 20 to 25 per cent would possibly present a fair average. 4. What would be the increase of
power in the above named engine if the steam power in the above named engine if the steam
both before and after the cut-off, were always operating at 1 foot leverage from the center of th mencing near one dead center and losing its expansion in the other? A. The mean leverage throughout a rerolution is about $0^{\circ} \cdot 6366$ of the
length of the crank, and the center of the crank pin moves 1.5708 times as far as the piston in a revlution: so that the whole power exerted by the ost by friction. It would seem impossible to do more than this, whatever the leverage might be . With what speed would a 1 inch square column of water, with 15 feet head, enter a vacuum, with of a little more than 56 feet per second. 8. Is is true that air enters a vacuum at the rate of 1,300
feet per second? A. This is an aver feet per seco
mate value.
(43, H. E. E. asks: 1. What is squaring equal to the area of a circle of given diameter? A. Yes. 2. If so, does not the whole trouble lie in
ading the area of a circle? A. Yes. 3. Does no geometrydemonstrate the process beyond the possibility of error? A. No.
(44) H. D. P. asks: How is the bronze Bronze statuary does not require the application of any bronze. Make your castings of: Copper 88 parts, tin 9 parts, zinc 2 parts, lead 1 part. Yo
then polish the castings to suit your taste.
(45) T H says: I saw in
(45) T. H. says: I saw in a recent issue of arth 150,000 or 200,000 years ago. Will you refer me to the evidence of the existence of pre-adamite iquity of Man" is a complete resumé of the whol
in iquity of Man" is a complete resumé of the whol
cubject, which is too extensive for our columns.
(46) P. S. says: I saw a meteor in Kansa n December 27,1875 , and I wish to know of what ind of matter such bodies are composed. A.Ma poric bodies are of two classes. Some are com combustible and incombustible, matter. They re volve around the sun in orbits more elliptical than the orbit of the earth, so that parts of their orbits re internal and parts are external to the earth's
orbith the earth and the meteoric bodies rbit. When the earth and the meteoric bodie within the earth's atmosphere thes are ignited by the resistance, and are either wholly or partiall consumed. If their course and the attraction of the earth would bring them to the earth's surface, hen the combustible ones would probably be holly consumed before reaching it, while th thers fall in the form of iron, etc. At times the only pass through the upper portion of the atmo ion for a few moments, are allowed to go on, bu not in their old paths.
(47) J. C. C. asks: What are the ingreditspers for taking impressions of type? A. Yellow beeswax will do very well.
(48) L. \& G. M. Co. ask : What preparation can be applied, with a pen, to mark numbers on lemon into a cup plate? A. Squeeze the juice o the size of a cent. Let it stand for a day or two en use it with a quill pen
(49) J. H. says: I have a material con taining free sulphur. By applying heat I drive he sulphur off in the form of gas. How can sulphur? A. It is necessary that the sulphur vapor should not come in contact with the air, otherwise a portion of it will be oxidized and converte into sulphurous acid gas. Sulphur may be vola cilized or sublimed at a temperature of $792^{\circ} \mathrm{Fab}$ if it then be condensed in suitable vessels, we hav he substance commonly known as lowers of sul phur. This is done, says the United States Dis the walls of a brick chamber
(50) R. E. says: J. H. P. states on p. 114 current volume, that no chimney burners are safe on account of the shortness of the wick tube, and instead of $11 / 2$. He is certaialy mistaken. Every
coal oil burner should, and most of them do, concoal oil burner should, and most of them do, con-
tain a little flat tube, which serves for the escape tain a little flat tube, which serves for the escape
of gas formed by heated oil. With this tube a nowith chimneys g a great deal hotter than those without, for two reasons: The chimney, producing a better draft causes a more perfect combustion of the oil, and onsequently a whiter light and more heat from the same amount of oil burnt; and the chimney, being always near the flame, gets a great deal hot a chimney, and will consequently radiate heat to all the surrounding objecta, of which the oil reser-
voir gets its share. If J. H. P. wants to use a wic ube $21 /$ in shes and that oil of 150 gravity, as the law now require most of the States, will not rise at all so high in umpiefore get charred, and he will be obliged to burn lighter oil, and so increase the danger of ex-
(51) J. M. S. says: In a recent issue you ecommended strips of plank to be used beneath have used the same, but for applying or removing overed them aboveand below with felting or rub
(52) M. W. L. says, in reply to C., who ask os to the weight of the 20 and 15 inch guns: The
(53) J. J. B. says, in answer to a correspond nt who complained of heating of millstones: To avoid hot grinding, reduce the speed of your mill put in a piece of writing paper, and let the ston be just so tightly fixed that the paper will slip out from under the staff, near the eye of the stone.
(54) J.J. B. says: Tooil a mill spindle at the in bush, next to spindle. Take a piece of $9 /$ inch ron gas pipe, bend, and insert it, bringing unde the stone up through the floor, outside of the curb. Let the outside end be the highest. Use castor oil in oiling, as it never congeals, and you the coldest weather.
(55) W. L. S. says, in reply to an inquiry bell of analarm clock does not work: Every telegrapher knows that a quick tap on the key, n
matter how hard, will not affect the sounder, it does not give time for the magnet to work. The
troke of the alarm striker is exactly of this na ture, and therefore cannot repeat itself on the (56) J. C. siys, in reply to L. S. C.'s queries
ns to the effect of dampness on unused boiler fur as to the effect of dampness on unused boiler fur naces: Into a closed vessel place 5 to 10 gallon
heavy oil (petroleum paraffin); place the vessel at a safe distance, with a pipe to lead the vapor ot the oil under the boilers. Close up every crack or crevice by luting, put a fire under the vessel, and evaporate the oil. The whole of the fire surface, and even where the brick is in contact with th boiler, will be sweated or covered with the con densed vapor of the oil. To protect the inside of
the boller, first dry it by a very light fire under it; then put a few gallons petroleum in each boller and evaporateit by a light fire under the boiler As the oil vapor condenses, the whole inside of the
ofl
(57,".D. F. J.' says, in reply to J. A. H., who ays that the carrying boards of his reels are flat, carrying boards enough pitch, keep yourstones in ood order, and do not grind hot, you will not hav any further trouble in that line. Sandpaper the boards and then put shellac on them.
(58; J. B. J. ssys, in reply to H. M.'s query atitude and longitude of the place are not given the question may be considered under two hypotheses: 1. The line may be in Maine or thereabouts, here the decination of the magnetic needie from he meridian has varied from $14^{\circ}$ to $17^{\circ}$ during the rn Slates, where an equal declination, but oppo ite in direction, has existed during the same pe iod. If the flrst supposition be true, then the frst surveyor made due allowance for the declin ation, and located substantially a true meridian The subsequent surveyors, neglecting the declin ation, located a magnetic meridian, which is con stantly and indefinitely fluctuating. If the line in
question is west of the Alleghanies, it would seem that the first surveyor ran the line parallel with this needle, disregarding declination: hence it would not be a true meridian, the two subsequent survesors being in this case approximately cor-
rect. The amount and direction of the diecrepney between these two latter appear to favo the first hypothesis : it is readily accounted for hat the deviation of the magnetic needle from the true meridian is a constantly varsing quantity.
(59)
(59) D. C. R. says: S. H. B. and many others desire information as to building boats. In the bout $11 / 4$ inches thick and 4 inches wide, with rabbet to receive the edge of garboard strake Put on stem and stern as required, and fasten loor ; the good support about 2 feet from about 5 sections, across the keel and secure them and cut the first strake to fit keel and stem an tern. Nail on, and continue to cutand nail on until of the depth required; then bend in ribs
and put in seats and other inside finish.
Mnnrals, fTC.-Specimens have been re xamined, with the results stated
J. M. M. - It is ramie fiber.-T. T. R. - It is sulphide of lead igalena) accompanied by sulphate
of baryta (heavy spar).-W. P. T.-It is sulphuret f iron, irised by a superticial oxiation.-J. L.-I value - Wyrites, at present not of much conmercia alue.- . A.J.ng metallic appearance is due.-G D. M.-It mpossible to make an analysis of any value on 2 ealed upater. One gallon is needed, carefully G. J.-No. 1 is alunogen, a variety of nativ lum consisting of sulphuric acid, water, alumina a little iron, etc. It may be purified by solution water, and then, by saturation with alkali an No. 2 is blende or sulphide of zinc. No. 3 is black argillaceous shale. No. 4 is ferruginous quartz.M. R.-There appears to be no market in New York for sand of this character which has to b ransported any distance.-J. R. M.-It is calcite or crystallized carbonate of lime.-C. E. G.-Th metal
J. W. S. says: I am taking a carbolate of iodine inhalant for catarrh, and it scents my f som with an unpleasant odor. Can yo pleas dor?-W. McD mix with it pan I get a smoot surface on planished copper plates?-T. J. asks How are the inches, etc., put on wooden rules?W. S. says : R. W. R. states that he is carrying 20 ain the proper tension during damp or dry weather?

## COMMUNICATIONS RECEIVED.

The Editor of the SCIENTIFIC AmRricas ac nowledges, with much pleasure, the receipt of Jriginal pape
ng subjects:
On Thermometrical Tables. By J. B. G.
On the Sargasso Sea, etc. By
On Bored Wells. By L.
On Windmills. By A. McL.
On a Registering Barometer. By W. A.B.
On Projectiles. By R. H.
Also inquiries and answers from the following


## HINTS TO CORRESPONDENTS.

Correspondents whose inquirles fall to appear may conclu that, for eclines them. The address of the writer should anays be given.
Enquiries relating to patenta, or to the patenta published here. All such questions, when initial only are given, are thrown into the waste baske as it would fill half of our paper to print them all by mail, if the writer's address is given.
Hundreds of inquiries analogous to the following re sent: "Whose is the best smut mill for wheat Who sells incubators? Who makes fuses fo lasting? Who makes small copper tubing? Who
sells crushers for treating copper ores? Who sell railroad spike machines? Who sells ear trumpets?
Who makeselectrical musical reporters?" All such
personal inquiries are printed, as will be observed, is specially set apart for that purpose, subject to the charge mentioned at the head of that column. almost any desired information can in this way be expeditiously obtained.
[OFFICIAL.]
INDEX OF INVENTIONS

## Letters Patent or the United States

 February 22, 1876, and each bearing that date.


## advertisements

## 

## Engravings may head advertisements at the same rat

 perline, ly measurement, as theletter press. Adver carly as Friday morning to appear innext issue.C

HOISTRERGSBLE





 A Gift Worthy of a Rothschild
ONE CENT.






 EOI 18376.

This work is Just fresh from the prest, and all he orders which had accumulated have been filled; and
new ones.
The Science Recond for this year-the fifth of is publication-contains 600 octavo pages and
reat number of engravings, illustrating new $d$ iscoveries, novel inventions, etc.






 All the preceding volumes of Science Record nay be had separately at $\$ 2.50$ each, or $\$ 11$ for the
five volumes, 1872, 1873, 1844,1875 , and 18786 The five volunes comprise a librarry of information which
overy student or man of science should preserve. MUNA \& CO., PUBLishers, $\underset{37}{ }$ Park Row

Park Row.
New York city

STEAMPUMPS. FIRST PRIZES VIENNA, PABIS, NEW YORK, Send for ecrcolar or recent pitented 1mprovements.
$T$ Be baster Magnemic engine and


TITIIIII+」 WROUGHT
IREAMS \& GIROERS THE UNION IRON MILLS, Pittsburgh, Pa.to our improved Wrought-Iron Beams and Girders (pat-
ented) in which the compoud welds between the get
and flanges, which have proved so objectionable in the old
and
 GFO. W. READ \& CO. AND VENEER-CUTTING 86 to 200 L

Hard-Wood Lumber The LAD CHOICE FIGURED VENEERS, CEF Enclose Sta COF Enclose Stamp for Catalogue and Price-List.
Orders by mail prompty and fatthrully executed.

## WHIPPLE'S

Patent Door Knob.


 LOVEJOY, SON \& CO ELECTROTYPERS and SMEREOTYPERS, B ${ }^{\text {IG }}$ PAY to
Terms free. DO YOU $\begin{aligned} & \text { Male or female. Send your ad- } \\ & \text { dress and get something that will bring }\end{aligned}$

 W iThERBY, RUGG \& RICHARDSON, Man-



MACHINERY.
IRON \& WOOD WORKING MACHINERY OF EVERY DESCRIPTION
Cold Rolled Shafting.
HANQRRS, PULLETS COUPLINGS, BELTING,
GEORGE PLACE
 Wall St. Caricatures. A NEW BOOK. 48 PAGES, contaling 14 engrave by mall TU MBRIDGE \& Co., Bankers and Brokers,
2 Wall Street, New York.

W TURER, $78 \& 80$ St. Andrew Street, Liverpool, Fng \$42 A WEEK, Agents wanted everywnere. Iu-

STAVE, SHINGLE, HANDLE AND CABINE
Planing \& Matching,
 $\$ 5$ to $\$ 20 \begin{aligned} & \text { per day at home. Samples worth } \\ & \text { free. stinson \& } \\ & \text { Co. Portland. Me. }\end{aligned}$
 Machlnery. OTIS, BROB. at CO
NO. 348 BROADWAY. NEW YORE. PUNCHING

P. BLAISDEIL \& CO. Worcester, Mass.,
Mannfactarers of the Blalsdell Patent Upright Drills and
Other Arst-class Machintat's Toois.


CLARK \& COMPANY'S
PATENT SELF-COILING, REVOLVING STEEL SHUTTERS




## FINETOOLS



## Pond's Tools.

 ENGINE LATHES, PLANERS, DRILLS, \&-Send tor Catalogue. DAVID W. POND, Successor t



Bratnard Milling Machines an sty Bis. Send for
Boson, mase.
MAUPGAREEMER Wanted---To Manuracturers and Patentees- Use



Planing and Matching

FOR CHARLIE'S PRESENT.


 telegraphing, many beautiful experiments can be made,
such as the magnetic carves, electric light, Hifting
welghts, making compasses, magnetizing knives, elec



 JAS. LEFFEL \& CO. ${ }_{109}$ Liberivg ineld Now io or NIAGARA STEAM PUMP
 ENeINBS $\triangle$ ND Pulley,,Shafting and Hanger a Specialty.

fagle foot laties,




The latest and best combination


Centenntal drill chucks are a suc







PLANING \& MATCHING, TENONING,RESAWING,SHAPING


 A M LCECOUnt's, Patent get Iron Dog.
$\because:$
$: 3$
steel
$!$


## Second Edition of

 Wrinkles and Reci pesNOW READY

Useful Hints, Suggestions, and Recipes, For Engineers,

> MECHANICS,

FARMERS, and
HOUSEKEEPERS

## contains

The concentrated wisdom of the practical correspondents and the able experts who have con tributed to the SCIENTIFIC AMERICAN during late years. Also the cream of the Practical Mechanise on testing metals by Professor R. H. Thurston Simple rules in steam engineering, besides hun dreds of valuable trade secrets and recipes
Handsomely bound and conpiously illustrated, 250 pages. Price, post-paid, \$1.50; with Scientific american, for one year, $\$ 420$. Address

$$
\begin{aligned}
& \text { H. N. MUNN, Publisher, } \\
& \text { 3y Park Row, New Yor }
\end{aligned}
$$

Crude Gutta Percha EORGE A. ALDEN \& CO: by
 der, builorng and machinery new. Sat sfactory rea ons
grven for selling. Managing partner willing to retal
his inter






## Water Elevators.



## Hammation Itamini beme $4=4$ se only. read FOR PLEASUR All by PETER HENDERSON EVERYTHINC <br> GARDEN gavimaw Letertendersonios

FOR SALE-A Valuable Patent, that I will sell
Machilists' Tools
Man \& Co's. Patent Oficices.

## Established 1846.

The Oldest Agency for Soliciting Patents in the United States.
tWENTY-NINR YEARS EXPERIENCE.
MORE PATENTS have been secured through this agency, at home and abroad, than through any other in e world
They employ as their assistants a corps of the most ex perienced men as examiners, spectfication writers, and
drattemen that can be found, many of whom have been se ected from the ranks of the Patent Office. SIXTY THOITSAND inventors have availed themselves of Munn \& Co.'s services in examing their in
ventions, and procuring their patents. Scientifio American, continue to examine invention confer with inventors, prepare drawings, specifications. and assignments,attend to flling applications in the Patent Office, paying the government fees, and watch eacn case step by
step while pending before the examiner. This is done hrough their branch office, corner F and 7th streets, Washington. They also prepare and flle caveats, procure desig (prepared by the inventor or other attorneys), procure copy rights, attend to interferences, give written oplnions on
matters of infringement, furnish copies of patents, and, in ract, attend to every branch of patent business both in this
and in foreign countries a speciol countries.
Alinventions ported in the Sientific American of and residence of the patentee. Patents are often sold, in part or
notice.
Paten
Patents obtained in Canada, England, France, Belgium, Colonie, Russia, Prussia, Spain, Portugal, the British ranted at prices anther countries where patents ar or pamphlet pertaining specially to foreign patents whic sates the cost, time granted, and the requirement for each country
Persons desiring any patent issued from 1886 to No: em er 26,1867 , can be supplied with offlial coples at a r ings and length of encecificending
Any patent issued since November 27. 1867, at whit ame the Patent Office commenced printing the drawing and specifications,may be had by remitting to this office \& A copy of the claims of any patent issued since 1886 wil be formiahed for $\$ 1$.
When ordering coples, please to remit for the same as date or patent. obtaining United States patents sent free. a handsomely oound Reference Book, gilt edges, contains 140 pages and any engravings and tables important to every patent rybody. Price 25 cents, msiled

MUNN A CO
Publishers SCIENTIFIC AMERICAN
Branoi Offion-Corner Park rand 7th Street Waahington D. C.

Aatuettisements,

## Back Page :-: : 81.00 a line nnside Page cents a line. Engravings may head advertisements at the same rate perline, by measurement, as the letter press. Adperline, by measurement, as the letter press. Ad- <br> THE ALLEN GOVERNOR   OFFFICIAL TEST: DES: NAVY DEPART   Cairr Exaysww. 










 RAILROAD CARS \& IRON ORE

 POPE'S LATHE.


 POPE M'f'G CO.. 45 High St., Bo


PASSENGER ELEVATOR





## ROOTS' PATENT PORTABLE FORGE. <br>  <br> ADAPTED TO EVERY VARIETY <br> OF WORK.

THE ONLY FORGE WITH FORCE BLAST BLOWER. THE ONLY EFFECTIVE FORGE MADE.
P. H. \& F. M. ROOTS, Manuf'rs, CONNERSVILLE, IND.
S. S. TOWNSEND, Gen'I Ag't, 31 Liberty St., NEW YORK.
che
PERFECT
NEWSPAPER FILE

 DITCHING and EXCAVATION

Todd \& Rafferty MachineCo.






cal

The NILES ENGINE.
3-4wer
 Hamilton, Ohio.

W. C. DUYCKINCK, Railway, Machinists' and En gineers' Supplies,

## Diamonds s Carbon




## Diamond Solid Emery Wheels.





