
a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY AND MANUFACTURES.

Vol. $\underset{\text { [NEW SERIES.] }}{\text { XXXIV.-NO. }} 11$]	

NEW YORK, MARCH 11, 1876.
[83.20 per Annum.

A NEW SOURCE OF POWER.-ABSORBENT STRATA. M. G. Hanrian, of Meaux, France, has discovered a source of power in wells and absorbent rock strata, which is certainly both curious and original, and possibly capable of a wide utilization. He proposes to drive machinery or raise water through the absorption of water by the lower strata of the soil, the avidity with which the absorbent rock absorbs
the water creating, in the descent of the latter, the power, which is transmitted by mechanism to the surface. This will be better understood by reference to Fig. 1 of the annexed engravings, which we select from the Bulletin du nexed engravings, which we select drom d'Encouragement pour L'Industrie Nationale. A well,D, is first dug until the water. bearing stratum is pierced. This well is suitably curbed, and then another and smaller excavation, E , is carried downward in the impermeable rock, B , until the absorbent stratum, C , is nearly reached. The bottom of this bore is covered with concrete, F; and a small tube, surmounted by a hood to prevent its being choked by impurities, is continued still further down and into the absorbent rock, C. Inside E is a sheet iron tube, H,entering a wide receptacle at its upper end (at the bottom of which sediment is deposited) and extending down into the water in
the lower well. I is a valve governed by the hand wheel from above, which serves to admit water from the main well, D, into the tube, H. Said tube has within it one part of an endless bucket chain, J, which passes over and acts as a bolt on the pulley, N. Another tube, K, is placed in the well, D, and this also contains a bucket chain, M, which passes over the pulley, O. The valve, I, being opened, the water in D, of which there is a continual supply from the springs in the aquiferous stratum, descends the tube. H, and enters the well,
E; thence it escapes by the tube, S, through which it is E; thence it escapes by the tube, S, through which it is
forcibly drawn by the absorbent action of the rock at C. In forcibly drawn by the absorbent action of the rock at C. In
its descent through I, the water, acting on the buckets of the chain, J , thus rotates the pulley, N . This pulley being on the \mid the water, in c, is compelled to ascend the tube, f, and thus is

號
same shaft as pulley, D, the latter also is rotated, and the bucket chain in pipe, K, therefore lifts the water from D, into the receptacle, M, whence it is led away for distribution by the conduit,P. The absorption which takes place through the layer, C, is said to be so complete that, when the valve, I, is closed, the bottom of the well, E (pipe, S, having perforated ides), becomes perfectly dry.
In Figs. 2, 3, 4, 5, and 6 are shown various forms of chain buckets. Fig. 5 is best adapted for thick liquids, Fig. 6 for tubes of large diameter, where the weight to be lifted is ism designed for the application of the power to machinery. Δ is the neath, and C the absorbent rock. The well, D, is dug as be neath, and C the absorbent rock. The well, D , is dug as be-
fore, and inside is placed a kind of coffer dam, in the center of the area enclosed by which is sunk a small well, E. The valve,I, admits water from D, into the pipe, H, and the water as before carries down the bucket chain; the ascending part of the chain is guided through another tube, passing over the tightener: 0 ; and finally the power is transmitted to the pulley, N , to the shaft of which the driving pulley of the machine is attached. Fig. 8 is a section of the well, E .
In Fig. 9 an entirely different arrangement of machinery is shown, the device known as Hero's fountain being utilized instead of the bucket chains. This is perhaps best applicable when the absorbent rock lies above the water-bearing stratum, as in the case of an artesian well. From the latter rises the tube, a, the water rising in which has access to the eservoir, b. A portion of the water descends into the lower receptacle, c, by the tube shown, compresses the air in said receptacle, and thus through the small pipe,e, causes a simila compression in the reservoir, c. But into the latter a portion the water, in c, is compelled to ascend the tube, f, and thus is $\left.\right|_{1,587}$
raised the required hight, to a receiving reservoir above A soon as the water which enters c is no longer equilibriated by the weight, h, on the lever, g, which holds shut the mova ble bottom, said bottom falls open, and the weight, h, rolls to the left along the lever, holding the bottom in this position until all the water has escaped. Then the weight counter balances, the bottom closes, and the operation abovedescribed is repeated. The water is at once absorbed by the surround ing rock ; and this water, sinking in said rock, tends to displace the water in the layers beneath, and thus forces the same up the tube, a, keeping that conduit constantly filled.
It is stated that at Bailly-Romainvilliers, near Couilly, in France, the arrangement first described, and shown in Fig. 1, is in operation, and lifts from 600 to 1,000 quarts of water per is in operation, and lifts from 600 to 1,000 quarts of water per 2,500 to 4,000 quarts at a depth of $185 \cdot 6$ feet. The apparatus 2,500 to 4,000 quarts at a depth of $185 \cdot 6$ feet. The apparatus
shown in Fig. 1 has raised 1,000 quarts per hour 12.8 feet, the sounding tube passing to a depth of 238 feet. These were little more than experimental trials, and therefore can hardly be taken as estimating the possible capabilities of the plan. The advantage of course lies in a constant power, availa ble wherever a water stratum and an absorbent stratum can be found. The principal obstacle liesin the choking of the pores of the absorbent rock by impurities, but this the inven. or proposes to check by filtering the water, and by occasionally administering doses of hydrochloric or sulphuric cid, which will destroy organisms, etc., and expose a clea rock surface.

THE following shows the degree of heat at which gold of varying degrees of fineness melts: 23 carat gold, $2,012^{\circ}$ Fah. 22 carat, $2,009^{\circ}: 20$ carat, $2,002^{\circ}: 18$ carat, $1,995^{\circ}: 15$ carat $1,992^{\circ}: 13$ carat, $1,990^{\circ}: 12$ carat, $1,987^{\circ}: 10$ carat, $1,982^{\circ}$ carat, $1,979^{\circ}: 8$ carat, $1,973^{\circ}: 7$ carat, $1,960^{\circ}$: composition ,587 ${ }^{\circ}$

§rieutific ${ }^{\text {smanerican. }}$

MUNN \& CO., Editors and Proprietors. publushed weekly at
NO. 37 PARK ROW. NEW YORK.
O. D. MUNN.
A. B. BEACH.

Ten coples, one year, each 82 70, postage included...
Over ten coples, same rate each, postage included.
CTy By the new law, postage to payable in advance b.
be subscriber then recelves the paper tree of charge
Note.-Persons subscribing will please to glve thetr full
Notr.- Persons subscriblng will please to give their full names, and Pos
Offlce and State address, plainly written, and also state at which time they wish thetr subscriptions to commence,otherwise the paper will be sent from the recelpt of the order. When requested, the numbers can be supplied from January 1 st , when the volume commenced. In case of changing residence, state former address. as well as give
be made unless the former address is kiven.
If any of our readers fall to recelve the
tion is not plainly written; if premiums are not regularly; if the direc tault of any sort at this offlce, we will thank our friends to send us postal card complaints, and repeat the same, if need be, untll the remedy is effect ed. Do not hesitate to complain. We desire to keep all matters betwee ourselves and patrons right and satisfactory

VOLUME XXXIV., No. 11.[New Series.] Thirty-first Year
NEW YORE, SATURDAY, MARCH 11, 1876.

THE SCIENTIFIC AMERICAN SUPPLEMENT. No. 11.
For the Week ending March 11, 1876. TABLE OF CONTENTS.

II. TECHNOLOGY. With 9 engravings, -File-Holding Applances, by

 v. ASTRONOMY, ETC.-The Large Telescopes of the World.
II. PROCEEDINGS OF SOCIETIES.-British and American Archæologi-
cal Soclety, Rome.-Chemical Soclety, London.-French Academy of
Sclence

viII. METEOROLOGY.-Remarkable Wind Storm in Callforna.-Climate

COMBINED RATES.
 be sent
or
Remitit
Remp
hUNN \& Co., Pobusprbs

The publishers of Forest and Stream have opened, at their ffice, 17 Chatham street, in this city, a "Kennel Stud Book," or register for recording the pedigree of thoroughbred dogs. This work will undoubtedly in time occupy the same important position among the owners and breeders of pointers, setters, and spaniels that the "Herd Book" now
does among the admirers of fine cattle:

THE COMING EMPEROR.

When the sovereign of a great country visits a sovereign people, not imperially, to conquer or conciliate, but as a people, not imperially, to conquer or conciliate, but as a
private gentleman, to study their works and ways for the private gentleman, to study their works and ways for the
benefit of his own subjects, it is obvious that a new order of royal entertainments is called for. The greeting which a barbaric empire like India accords to its future ruler may fitly be characterized by barbaric shows, parades, illumina tions, and festive entertainments ; but from a free people, to an enlightened sovereign like the Emperor of Brazil, such hings would be out of place, and utterly distasteful.
He comes for information, not to be bored with windy speeches or pretentious dinners. Our local cooks and office holders have few charms for him, compared with the achieve ments of our explorers and pioneers, our engineers and in ventors, our scientific and industrial leaders. We shall herefore, entertain him most royally by furthering to th most unobtrusive and sensible way, our physical and in most unobtrusive and sensible way, our physical and inmeans by which a great wilderness has been conquered fo man. The great region which he is doing so much to im prove is still very largely similar in condition to what the Great West was a few years ago-a land of fertile plains untilled, broad rivers barren of commerce, mountains of precious metals undisturbed. He has railways to build internal navigation to develop, immigration to foster, and wild country to subdue and make tributary to the needs of men. His expressed desire is to study on the spot the means and methods by which this country has been so rapidly and normously developed, withal so largely brought under the ominion of science and civilization. And we may be sure that he will not thank us for any attentions which may draw him away from the grand purpose of his visit.
We may be equally sure that he will be royally grateful fo any proper assistance that may be given to the prosecution of his studies. There is talk of his entering the country by way of the Mississippi. That course would be singularly happy, since it would lead him straight to an engineering enterprise in which he cannot but take the highest interest; and at the same time his visit would give éclat to the completion of a work which may do very much to increase the social and commercial relations of the two countries. It is morally certain that, by May, the Mississippi will be open to naviga tion by vessels of the highest class, and nothing could be first to demonstrate the freedom of the Mississippi to the commerce of the world. It requires no prophet to foresee that the largest river of the world and the longest are plainly destined to furnish each the principal market for the produc tions of the other. The one extends, from north to south almost across the temperate zone, draining the heart of the most productive valley-and likely to be the most populousin the temperate regions of the globe. The other drains a vast basin, almust wholly within the tropics, and extending across a tropical belt covering thirty degrees of longitude. Bet ween the two there can be no rivalry, for their products are wholly diverse, yet each produces what the other lacks. Before the next Centennial celebration of our country, the trade between these two regions will be vast beyond the wildest dreams of to-day.
A passage from New Orleans to St. Louis, on one of the floating palaces of the Mississippi river, will show the Emperor, as no other journey can, the future aspect of his own great river when it shall have become the highway of a boundless commerce. How many of the cities of the West he proposes to visit, we cannot say : enough, no doubt, te enable him to study the working of our railway system, and other great works of internal improvement. Compared with these, the Exhibition, great as it promises to be, will be but secondary attraction.
The termination of his visit may be as happy as the beginning, for he will take his departure from this city just about the time when the Hell Gate improvement will be ready for of staishing stroke, and we venture to say that no cerement final victory of Science over Nature, in opening up a new and better channel for the commerce of our metropolis. It is to be hoped that obtrusive placemen will respect his wish to travel as a private observer, and leave him free to enjoy a most unconventional "royal" welcome by the scientific and industrial magnates of the land.

THE FATHER OF WATERS.

We publish, in this week's Scientific American SupLEMENT, a remarkable document written for our paper by James B. Eads, C. E., of St. Louis, being a review of the Report of the United States Levee Commission, made in 1875. This board was appointed, by authority of Congress, to report a permanent plan for the reclamation of the alluvial lands of the Mississippi river. The subject is one of extraordinary importance, as will be readily understood if it is considered that the area of the lands that might be saved to agriculture, by a proper system of reclamation, is estimated at about 70,000 square miles, of unsurpassed natural fertility, and capable, if peopled as thickly as Belgium of supporting a population of over $300,000,000$
In this aspect of the subject, the work of reclamation may be justly regarded as perhaps the most useful and importan engineering enterprise now before the civilized world. Its successful accomplishment would rastly add to the prosperity of our own country, and benefit all nations, by enlarg ing the special domain of food supply, besides opening th Father of Waters to the free commerce of the world, float ing the largest vessels for an inland distance of fifteen hun dred miles.

By reference to the review, it will be seen that Engineer Eads and the Levee Commission have arrived at diametrically opposite conclusions, not only as to the best method of execating the work, but as to the results that might be expected from the adoption of their respective plans. The subject is a grand one, but the principles involved are simple, and their relative correctness would seem to be caprole of determination without serious difficulty. The most curious thing is that practical engineers should disagree about the matter
The Levee Commission aver that the volume of the Mis sissippi is too great; hence the overflow, to prevent which they recommend a reduction of the river volume by means of side channels. These are expected to conduct large portions of the water to the Gulf, and thereby reduce, as they allege, the flood discharge to the limits of the levees. They further advise the raising of the hight of the artificial banks or levees, the cost of which they estimate at forty-six mil lions of dollars $(\$ 46,000,000)$. This expense, although large when exhibited in figures, is as nothing compared with the gain to be derived from a successful reclamation.
The chief questions to be settled are: Is this plan practi cable? Will a reduction of the river's volume diminish the flood discharge? What has been the experience on the Mis sissippi and on other rivers having analogous bottoms? Is it not a fact that, below the points where side channels have been formed and water drawn off, the river bottom has be come filled up, and the flood level raised? Is it not true, in respect to other rivers, that their flood levels have been owered by increasing rather than by diminishing the river olume, by stopping up old side channels rather than open ng new? Is it not plain that, in an alluvial bottom like the Mississippi, the quickest and best way to lower the flood leve is to deepen the bed of the river?
Will not the river deepen its own bed if its volume is in eased?
The weight of evidence, derived from past experience on the subject, clearly gives an affirmative answer to the latter question, and this, substantially, is the position taken by Engineer Eads. He declares that the recommendations of the Levee Commission are founded in error. He avers that the proper way to lower the flood line of the Mississippi is to do the very opposite of that recommended by the Com. mission. He advises that the side channels be closed, so as to increase the volume of the water; and that, escepting repairs, the levees be not raised, because the increased flow will deepen the river bed, rendering the artificial building up of the levees unnecessary. He adduces an array o practical evidence, in support of his position, that seems nanswerable.
We shall recur to the subject hereafter.

SOME ANNALS OF A SUCCESSFUL INVENTION.

If we may judge from Punch's frequent cartoons, and from the attention paid to the subject in the English jour nals, all England is undergoing a skating mania, which outrivals the velocipede furore of six years ago. It is not gliding over the ice on glistening steel blades which has captured the British fancy, for frozen lakes and rivers in England are of rare occurrence, and it is now several years since any regular skating club has had its winter carnival. Asphalt floors have replaced the ice; and over their smooth surface John Bull cuts "spread eagles" and " figure eights," and otherwise disports himself on that ingenious Yankee invention, the roller skate. There is an interesting history connected with that device and its inventor, which may here be reviewed. It is a record of how an enterprising man has managed, and is managing, an invention so as to make it yield a fortune, how he has fought and triumphed in protecting his right; and, at the same time, it conveys sugges tive thoughts as to the value of popular devices, not merely at home but abroad, emphasizing in brief our oft-repeated assertion that the inventor's field is not restricted to any one country, but is as wide as the world itself.
It was about eighteen years ago when a then-termed 'parlor" skate furore broke out in this vicinity. Halls in various parts of the city were fitted up with smooth floors, and one part of the public flocked thither and hired the skates at so much per hour, while another portion paid for the privilege of viewing the others learn how to manage the new invention. Education in that direction, though vastly amusing to lookers-on, was just the reverse to the learners; for however good skaters on ice the latter might be, they soon found out that managing roller skates was a very different affair, that gliding straight ahead was easy enough, but to attempt to guide oneself by turning the foot was to invite sudden and painful precipitation to the floor. Perhaps for this reason public interest in the first forms of parlor skate soon waned. Meanwhile, however, Mr. J. L. Plimpton, of this ity, perceiving the difficulty, set to work to remedy it by devising a skate which would keep the floor without referonce to the angle of the body or the sharpness of the curve urned. With remarkable perseverance he labored on fo several years, expending some $\$ 25,000$ in fruitless efforts. Finally, however, he produced a device which a learned English judge has recently pronounced "almost as ingenious pastern and fetlock." In the center of the sole of the skate, he fixed a spherical spring of india rubber, yielding to the slightestinclination of the foot, a mere change of motion by well known mechanical means causing the axles of the roller wheels to converge. This invention was patented in this country, through the Scientific American Patent Agency, in January, 1863, and subsequently in England, in 1866. His deriee perfected, Mr. Plimpton began its introduction
in certainly an ingenious and novel way. He first fitted up a hall adapted to his purposes in this city, and for a long time practised himself, and taught invited friends to use his skates. Afterwards he took with him a rew of his best trusting by general advertising to draw a promiscuons throng, he would, after preparing his establishment in any to wn, issue neatly printed cards of invitation to the most in fluential people in the place. These would asually accept from curiosity, and, finding a genial, pleasant gentleman ready to tell them something new without apparently aiming at their pockets, would besome interested, try the skates,
and in a very short time "set a fashion " which would and in a very short time "set a fashion" which would
speedily be followed by the remaining townsfolk. No long speedily be followed by the remaining townsfolk. No long period would elapse before the skating rink would be doing a thriving business, and enterprising investors would speed ily seek a share in so proftable a concern. Then Mr. Plimpton would dispose of the lease of his hall and ixtures with the right to use the invention within certain counties and States. His next step would be to locate in anothe town, and repeat the operation of introducing the invention and thus he continued until he had sold rights for ten State to one firm, besides territory in all parts of the Union. Since 1867 he has realized $\$ 50,000$ for State rights alone, and this sum is nothing beside the profits of the lucky purchasers, who generally followed the inventor's novel plan of introduction, as already described. One man bought the right in the State of California for $\$ 4,000$, and resold it for $\$ 36,000$ and the purchaser of the right for San Francisco, it is stated, made $\$ 45,000$ in one year at the rink in that city. It would take far too much space to recapitulate all the instances of this kind, therefore we may turn to the inventor's efforts toward the introduction of his skate in England. Mr. Plimpton had already an agent in Great Britain, whose success had been very great ; so the inventor concluded to join him. The pre sence and tact of Mr. Plimpton resulted in measures which kindled the present furore abroad. Rinks have been estab
lished all over England and France. In a single rink in lished all over England and France. In a single rink in
London $\$ 500,000$ is said to be invested, and in Brighton London $\$ 500,000$ is said to be invested, and in Brighton
$\$ 40,000$ has been refused for the establishment by its owner. $\$ 40,000$ has been refused for the establishment by its owner. Paris has a magnificent rink in full operation. The skates
are manufactured in Brooklyn, where a new and large facare manufactured in Brooklyn, where a new and large fac-
tory is shortly to be erected for this special purpose. We are informed that $\$ 60,000$ worth of the skates have been made during the past six months, and that the average weekly shipment to Liverpool is now 2,000 pairs.
It could hardly be supposed that so successful an inven tion would lack infringers, and the latest attempt in England has resulted in a patent suit, considered so important in a legal aspect by the press of that country that whole columns of the London journals are given to verbatim reports of its proceedings. One Malcolmson, it appears, substitated a skee
spring for the movable rubber spring in the Plimpton akate, spring for the movable rubber spring in the Plimpton skate,
and started rinks on his own account. He, out of a dozen and started rinks on his own account. He, out of a dozen
infringers, was selected as the typical offender. Celebrated infringers, was selected as the typical offender. Colebrated
counsel were engaged on both sides, and Sir George Jessel, counsel were engaged on both sides, and Sir George Jessel, of great ability, presided at the trial. The questions to be settled were: First, was or was not the Malcolmson skate a colorable imitation of Plimpton's device? And if it was, was Plimpton's skate "new within the realm," so as to come under the protection afforded by the patent laws to all novel inventions? His Lordship disposed of the first point by de ciding that Maich is, if anything, a little wo plaintiff's, as it zannot be adjusted " and rendered a decisio at once in favor of Plimpton on that issue.
On the second question came the tug of war, and (as is usual in most patent litigations in this country) the ScIENtific American came into prominence, forming part of the defendant's evidence. When Mr. Plimpton obtained his first patent in 1863, we, in accordance with our usual castom, printed a brief abstract of the claim, and profaced it by an editorial note describing the gist of the invention. A copy of the Scientific American was sent to the British Paten Office, where it was open to pablic inspection. Δt the same time the proprietors of Jevett's Illustrations, in which was a drawing of Plimpton's skate, together with other patent drawings used in our Commissioner of Patents' annual re port, found its way to the same place. But this book, it ap pears, was lost; at all events, it was not discovered until during the progress of the trial. But the book containing American, which was published in connection with the claims, comprised the evidence of the defendant in his ef forts to prove that the invention of the plaintiff had been introduced by publication into England before the patent of Plimpton was applied for. The courts declared against the defendant's evidence as insufficient, decided in the plaintiff's favor on all the issues, and granted an injunction restraining the defendant from using the plaintiff's invention, or any part thereof, and from selling or letting for hire any roller or runner skates not made by the plaintiff or his licensees, or differing only colorably therefrom by the substitation of mere mechanical equivalents, ordering him at the same time to deliver up or destroy those in his possession, and to pay the costs of the suit. To afford the defendant an opportunity of presenting an appeal, the judgment would, however be suspended for six weeks; and in the meantime, though restrained from making or selling skates in infringement of the plaintiff's patent, the defendant would be at liberty to continue his rink at Brighton, keeping an account of the proceeds.
Aparc from the importance of this trial to the parties in direct interest, it hasa bearing of significance in relation to the rights of American inventors in England. At the pres
ent time, printed copies of all Δ merican patents, which include both the drawings and full descriptions of the invenBritish Parwarded, directly afer each woek's this trial and the ruling of his Lordship, there can be but little doubt but that the introduction of these copies into England constitutes a publication, and therefore, in the eye of the law an introduction of the invention, which would preventa patent subsequently taken there from being sustained in the British courts.
But, on the other hand, this very apparent disadvantage is met and counteracted by that admirable provision of our patent law which accords to every inventor six months delay between the allowance of his patent and the paymento the second government fee. Not until that payment is made does the patent issued; and hence, during the above interval, the inventor, at once knowing that his right is secure and at his disposal at any time during the half year on his paying $\$ 20$, and besides that it is kept secret from all the world, has abundant opportunity to proceed with his applications for foreign protection. Should he neglect to avail himself of that opportunity, then the unfortunate result noted in the preceding paragraph might well occar, but he can then blame only himself. There is not so great and beneficial a safe guard in the patent law of any other country; it is a stand ing monument to the wisdom and good sense of those who ramed it.
There is one more suggestive point to be noted by way of conclusion to this already over-long article, and that is that
this successful invention is one out of fifty of similar nathis successful invention is one out of fifty of similar na no such large benefit to humanity as does a sewing machin or an electric telegraph; it is little else than a plaything and yet look at the money that is being made out of it! If a little thing like this, properly managed, yields a fortune wha should be the proportionate returns from a great or highly useful invention-one not out of fifty, but standing alon in its value, novelty, and utility?

cylinder condensation.

We have recently received from the author, Mr. George Basil Diswell, a pamphlet bearing the above title, and con taining much that is of interest to engineers. Mr. Dixwell, if we may judge from his treatment of the subject, is not an engineer, but he states that he has been aided by the advice of an eminent expert; and all his experiments seem to have been carefally conducted. We could wish that he had fol lowed the example of Mr. Isherwood, which he commend so highly, and given full details of the apparatus employed and the results obtained, in his many experiments. But it will doabtless be more interesting to our readers, if, instead of criticising, we proceed at once to give a summary of Mr Dixwell's views.
Most persons who have devoted any attention to the ques tion of the expansion of steam are aware of the very great economy that might be realized by high grades of expansion in perfect engines, and know also that this economy is far from being attained in practice. Mr. Dixwell devotes a consider able portion of his pamphlet to discussions of the reasons fo this difference, which is chiefly illustrated by the results ob tained from experiments with the United States steamer Michigan : results which have been, as he states, confirmed by fifty other examples. The reasons for the enormous con densation shown by these experiments are detailed unde the following heads:
External radiations, which he considers very slight in gen oral, and which may be almost entirely prevented by cover ing the cylinder properly.
ing the cylinder properly.
Conversion of heat into work. Under this head, Mr. DisConversion of heat into work. Under this head, Mr. Dix
well has given some remarks which are well worthy of atwell has given some remarks which are well worthy of at-
tention. He discusses the point as to whether the whole tention. He discusses the point as to whether the whole
work is to be considered in estimating the condensation from this cause, or only the work performed during expansion and decides, as a corollary to some experiments which he details, that the latter measurement is the correct one. W think he could have drawn a more logical proof from Régnault's experiments on the properties of saturated steam, or from the fundamental principles of thermo-dynamics; but he is entitled to great credit for giving prominence to a truth that is too often disregarded by experienced engineers.
Internal radiation, or alternate cooling and heating of the cylinder, and re-evaporation of the steam condensed for work is another of the causes of condensation, and Mr. Dixwell shows that the maximum amount due to this can readily be calculated. Mr. Diswell, in common with a great many hers who have examined the subject, is disposed to look with little favor upon Mr. Isherwood's theory of condensa tion from " expansion per se," and gives some pertinent rea sons for accepting an opposite conclusion. Having disposed of these generally received causes of cylinder condensation, which he finds far from sufficient to account for the whole loss, the auihor gives his theory of the manner in which the principal loss occurs, and which he calls 'cumulative action.' Suppose, for the sake of illustration, that the cylinder is so much cooled, from the causes enumerated above, that ozs. of the entering steam are condensed, up to the point of cat-off, and that, during the remainder of the stroke and during exhaust, 3 ozs. are re-evaporated : the cylinder wil hus be cooled to such an extent that during the next strok ozs. will be condensed, and some of it re-eraporated At each successive stroke, the amount of condensation will be increased, until the amount of heat received by the metal
lic surfaces from the entering steam, up to point of cut-off is just equal to the amount of heat lost from condensatio due to causes previously enumerated, increased by th
amount of heat required for re-evaporation. Hence this ac
tion, which multiplies the effect of primary condensation, may properly be called "cumulative.
In his interesting review of the causes of cylinder con whenion, we think that Mr. Dixwell is somewhat in erro when he assumes that the results obtained from the Michi gan experiments are generally applicable; and we think tha he overlooks some important elements, notably the effect of the relation between diameter, length of stroke, and piston speed. As far as he has gone, however, his views are very reasonable. Having discovered all the causes of cylin der condensation, as heimagines, Mr. Dix well next discusse he means of preventing it, showing the effect of steam jackts, compounding, and the use of superheated steam. H has devised a pyrometer which can be placed in a cyliuder and will give the temperature at various parts of the stroke by means of suitable cunnection with a dial on the outside. We regret that the author did not devote more space to a description of this instrument, but he merely states that it is a thin strip of copper, rolled up into the form of a hollow cylinder, and pierced with many holes. By the aid of this instrument, he discovered that, when using highly super heated steam, it parted with all or the greater portion of its extra heat as soon as admitted into the cylinder, and that the emperature in the cylinder remained nearly constan throughout the stroke. This is a genuive discovery, so far as we know; and were this the only fact stated in the pam phlet, it would be enough to make it an important additio to engineering literature. The general supposition is, as our readers well know, that superheated steam does not im mediately have its temperature reduced, when admitted to he cylinder, and that there is in consequence some dange of overheating the working parts of the engines. Mr. Dix well explains the sudden cooling by reference to experi ments, in which it was shown that a highly polished metal lic surface, when covered with a thin film of a powerfully radiating gas, like steam, is itself converted into a very en argetic radiator; and he makes a calculation to determine the thickness of metal that was alternately heated and cooled in one of his experiments. On this theory, it is evident that the proper degree of superheating is dependent upon th conditions under which an engine is running; and this Mr Dixwell finds to be the case in practice. He is thus led t recommend two plans, for the purpose of preventing conden sation and increasing the efficiency of an engine: one, super beating the steam just enough to enable the internal surface to repel the spray formed by condensed steam, or, secondly superbeating the steam to a degree that is found safe for an given cut-off. He takes the limit of safe temperature in the cylinder at about 400° Fab. The experiments do not appea to have been carried far enough to determine the proper de gree of superheat for each point of cut-off; and the autho suggests that it can be conveniently ascertained, in any given ase, by the use of his pyrometer.
It has been impossible, in this brief notice, to do mor han call attention to the most prominent points discussed in this interesting pamphlet, which treats in a rational manner
of one of the most important matters connected with the esign and management of steam machinery.

PATENT RIGHTS VS. STATE RIGHTS.

We have herotofore had occasion to call attention to the unconstitutionality of the various attempts, by State legisla ion, to interfere with the rights of inventors and patentees in the disposition of their patents. In some States, laws have been passed which practically authorize the citizen of such States to cheat the inventor out of his fees if he sells on credit. Such laws provide that a note given in purchas of a patent must state on its face that it is given for th patent, the number, date, and other particulars whereof mus be designated on the note, otherwise such note shall be void and the holder debarred from receiving payment. All suc aws are, under the constitution of the United States, void A note given for a patent right will be binding if drawn in he usual manner, all State laws to the contrary notwith tanding.
So in the case of that class of State laws that require the aking out of licenses in order to sell patents, or that require nder penalties, the filing of copies of patents with count State officials as a condition precedent to selling paten ights within the boundary of any State-all such laws ar anconstitutional and void. We have heretofore publishe he decisions of the United States courts declaring thei ullity.
Another decision against the applicability of State laws to patent rights has lately been made by the United States Cir cuit Court, in Massachusetts. We publish the decision in his issue. This was a recent action to recover damages fo an infringement which took placeas far back as 1863, up to 1867. The defence was that under the the State laws of Massachusetts-statute of limitations-the plaintiff could not recover, he not having brought the action within si ears from the time of the alleged injury. This defence was ot allowed. The court ruled as follows

Should the legislature of a State pass an act in expres terms limiting the time for bringing an action in the federa courts for infringement of patent rights, there can be no
reasonable doubt that such a statute would be unconstitu tional and void. The policy of the Government to provide a niform system of rights and remedies throughout the United States upon the whole subject matter of patents for new and useful inventions and diccoveries, by placing it un
der the control of Congress and the federal courts, would be rustrated if such State legislation could directly or indi rustrated if such State legislation could dimit, restrict, or take away the remedy

Fine gold will melt at $2,016^{\circ}$ Fah. ; pure copper at $1,994^{\circ}$ fine silver at $1,873^{\circ}$ and pure spelter at 773°.
the st. CHARLES RAILROAD BRIDGE, MO.
We herewith publish an engraving of the St. Charles bridge, over the Missouri river, built by a company formed for the purpose and leased to the North Missouri Railroad Company at a rental of $\$ 100,000$ a year. The bridge cost $\$ 1,800,000$, or nearly double the original estimate, the diffculties in constructing the foundations being greater than were anticipated.
It is the longest iron bridge in the United States, consisting of three through spans on the Fink plan, four Fink suspension spans, and the iron viaduct approaches, making a total length of iron bridge of 6,535 feet. The seven river spans vary in length from 805 feet to 321 feet. There were eight river foundations-most of them presenting new and extraordinary difficulties in construction-varying from 54 to 76 feet in depth, the caissons for which had to be carried down through alternate strata of quicksand, large boulders, and tangled masses of drift logs. Add to these subaqueous diffculties the facts that at the bridge site the Missouri river rises and falls 40 feet; that its flood speed is nine and one half miles per hour; and drift islands drawing 20 feet of water, and which are more than 300 feet in diameter, are not unfrequently carried past in the heavier freshets, and an adequate idea may be formed of the character of the work During the progress of the work wowi During thal freshet of to an unusual freshet, the general direction thousand feet above the site of the bridge a diversion of the current carried away 1,400 feet of the south bank, and, curving outward and returning in the form of an S, brought its abrading force directly upon the south abutment. In this emergency, when the entire demolition of the abutment was threatened, the engineer constructed a groyne, which so diverted the current as to reclaim a large tract from the river bed and confine the channel. The south abutment is now surrounded by dry land. This groyne projects 700 feet from the south shore, and extends above the shore some 400 feet. Out from the south shore a spile wall was driven, from which coarse rip-rap was thrown in, and an embankment made upon it, producing an eddy immediately below. In this eddy, material could be deposited without danger of wash, and so the work was carried forward in an irregular line, guided by the slack water which preceded the bank in its progress down stream. This was continued until a space 700 by 400 feet, more or less, was inclosed by the wall meeting the shore below the bridge line. After being properly packed and protected from wash, this immense cofferdam, for such it now was, was pumped out, leaving the former uncertain bed of the river comparatively dry land, upon which the pier could be erected without interference from the principal enemy , the river current.
It was afterward built to such a hight and so strengthened that its outer walls now form the south bank of the river at that point, thus effectually and permanently forcing the current to keep toward the north shore and to be confined within fixed limits. Although the cross section of the river is necessarily narrowed, it
the current.
The bed of boulders found immediately below the shifting bottom, although more permanent in position, by their bulky and unyielding nature, made the passage of the foundations through them very difficult. To drive a pile through them required an average of 3,000 blows of a $3,000 \mathrm{lbs}$. hammer, and, in some cases, over 5,000 blows were required to sink the pile to the bed rock. Sycamore piles alone were found capable of standing the continued batter of the pile hammer. The pile basis was used only when the pile was entirely protected from scour. The superstructure is of the Fink and trellis or double form, the latter modified by the omission of the usual counter ties. The counter strains are taken by compression ties, extending a few panels on each side of the center, and consisting of two parallel plates stiffened by short diagonal braces of wroughtiron riveted to the side plates and at the centers. The wrought iron strut columns are secured to the chord by wrought iron suspension between the systems $^{\text {The }}$ counter brace action is secured \mid Louis bridge and of the Mississippi delta improvement, joints, so that they are equally available for tensile strains a points where such strains occur, thus dispensing with the center tie rod usually found in this form of truss. The substitution of the peculiar ties at the center, for counter ties, constitutes the essential difference between this truss and the one used at Kansas City.
The details show many important features of novelty. A leading idea of the engineer has been to construct the bridge of as few pieces as possible. For instance, the upper chord

is composed of a single cast iron tube. The structure is of these spans. As no false work could possibly stand at this fastened throughout by pin joints. The cross ties are placed \quad	of these spans. As no false work could possibly stand at this
point in the river, temporary piers were constructed, resting	directly upon rolled iron girders placed between the chords ${ }^{\text {on }}$ piles and surrounded by cribs 18 feet wide and 50 feet proper, thus throwing all the bending strains upon parts not long, filled with stone. There were three of these piers in subject to either tension or compression, dispensing with the each span, and on these were placed, bodily, by means of ordinary stringers, and avoiding the bulky depth of flooring beams usually seen. The Fink deck spans are proportioned to carry 2,250 lbs. per foot, the chord is 2 feet in diameter,

and the main post is 21 inches. The truss itself is a double The bridge was designed and constructed by Mr. C. Sha triangular girder, with inclined end posts and no connection $/$ lor Smith. Captain James B. Eads, the engineer of the St was placed the fal

THE TWIN CHANNEL STEAMER CABTALIA. Unlike the Bessemer, which vessel is now admitted to be a failure, the Castalia, as the twin-hulled steamer plying across the English Channel is named, has turned out a success. Both ships were built with the idea of reducing rolling or pitching motion, and consequent sea sickness among the passengers, to a minimum. The Bessemer, it will be remembered, was fitted with a swinging saloon which, it was imagined, would remain at rest despite the oscillations of the ship. The Castalia has no such appliance, but her inventor has relied on her long and widely separated hulls never being submitted to the action of one and the same wave. While this last might not be possible on the Atlantic, where the long ground swells will affect even the largest of vessels, it is apparently quite true of the English Channel, where the sea is short and chopping. The Castalia therefore has been found to be remarka-
bly exempt from the uneasy motions of bly exempt from the uneasy motions of
ordinary vessels, while she is as readily controlled and directed as the latter.
The length of each hull is 234 feet beam of each 16.4 feet, depth of hold 12.6 feet, and they are separated a distance of 252 feet. The bridge which unites the two vessels is of elliptical tubular sec tion, and is extremely strong, as it neces sarily must be in order to bear the opposing wrenching strains of the double hull. On the bridge are located the cabins and saloons, a hurricane deck above serving as a promenade. The ship is flat-bottomed, and draws but 5% feet of water, so that she can easily enter any port in
the vicinity of her station without regard the vicinity of her station without regard
to the condition of the tide. Her motive power consists in two paddlewheels arranged in the space between the hulls, each wheel having its own engine. An excellent representation of the vessel is given in the annexed engraving.

IMPROVED METHOD OF COVERING STEAM BOILERS, ETC.

Inventions and appliances for economizing steam and fuel are continually being patented and brought into general use, and in times of depression like the present claim the attention of manufacturers and steam users in a more than ordinary degree. By no means the least economizer of fuel and steam is a good durable covering for boilers and steam pipes, such as is illustrated in the annexed engravings. The invention, shown in section in Figs. 1 and 2, consists, first, in leaving an air space or dead air chamber between a wire covering and the surface covered; second, in the keying of some plastic material on the wire cloth; and third, in giving a double check to radiation by the confined air and the non-conducting composition. There are numerous other advantages which might be mentioned, but the abovenamed are the most prominent. The air space is made by taking heavy wire cloth, to which is fastened, eve ry four or five inches, a stud one inch or more in length. The wire cloth is then fitted over the surface to be cc vered, the studs keeping it the necessary distance off. The plastic material is next applied in two or more coats. The first coat partly penetrates the meshes of the wire cloth and keys itself obtaining a strong durable hold. The second coat makes asmold. The finish, which may be painted finish, which may be painted,
grained, or varnished, as may grained, or
There are many objections to
applying a covering direct to the surface of the boiler, for it has been found, especially in marine boilers, that, when so covered, the inside as well as the outside of the boiler rapidly scales. The air space method, we are informed, is not open to these objections. On the contrary it keeps the iron clean and bright, besides preventing the radiation of heat and condensation of steam. Fig. 3 shows the application of of the invention to steam pipes. We learn that it is used extensively in the United States navy, the boilers of several of the largest steamers being thus covered. The Pacific Mail Steamship Company have also had the boilers in the last new steamers-City of Sydney, City of San Francisco, and City of New York-protected with the air space covering. It has besides, we are informed, been extensively applied to large manufacturing works in all parts of the country
This method of covering was patented in June, 1866, to John Ashcroft, but has not been prominently brought before the public till within the past year, when the patent was purchased by the Chalmers Spence Company, of New York, who now apply it in connection with their non-combustible plastic covering. Their works in New York city are located at the foot of 9th street, East River, next to the Morgan Iron Works; and they may be applied to, at that address, for further information.

THE TWIN CHANNEL STEAMER CASTALIA

from the sun's north point towards the west (direct); and the annulus is formed, according to the Nautical Almanac elements, at 10 h .49 m .10 s. , and continues 10 seconds. This point is a little south of Kaavaroa, by the Admiralty chart, and close to the spot where the monument to Captain Cook was erected; the central eclipse leaves this island, Hawaii, near Manienie, also marked on the Admiralty chart of this group. The eclipse will be central and annular also in Van couver Island and British Columbia. The central line ap pears to enter Vancouver at Refuge Cove, Sydney Inlet leaving it at Orange Point, Duncan Bay, whence its course is to George Point, British Columbia. In Vancouver Island the annulus may continue 7 or 8 seconds, being formed about 0h. 27 m . P.M. local mean time. At New Westminster, Brit-

The Solar Eclipse of March 25, [1876.

It is quite possible that this eclipse, which is given as an annular one in the Ephemerides, may be total for an instant on the North Pacific Ocean in longitude $140^{\circ} 16^{\prime}$ west of Greenwich, and latitude $35^{\circ} 39^{\prime}$ north, or near this position it may prove one of those rare phenomena characterized in our tert books as total without continuance. The central line traverses the southern and largest island of the Sandwich group, where the eclipse will be annular for a few seconds. At a point in longitude $155^{\circ} 56^{\prime} \mathrm{W}$., latitude $19^{\circ} 28^{\prime} \mathrm{N}$., the eclipse commences at 9 h .30 m . A.M. local mean time, at 130

the which are miled out semi oval cavities, connected by small channels. These are the molding rollers, and the mate rials passing between them are compressed and molded in the shape of eggs, and delivered in that shape on an endless wire cloti belt, which enters the drying oven on top. In this oven, which is a brick construction, 86 feet long, 14 feet wide, and 26 feet high, there are five endless wire cloth belts, geared together, and traveling in opposite directions. This oven is heated, by a fire placed at each end, to from 250° to 300° Fah. The coal enters, as said before, on the upper belt coming from under the press, travels five times in suc cession the entire length of the oven, at the speed of 12 feet in one minute, falling from one belt to another, and finally comes out perfectly dry on the lower wire cloth belt, which en ters the waterproofing building. In this building the lumps of coal are discharged into a tank containing a certain liquid composed of candle gum dissolved in crude benzine. In the same tank, and guided on both sides by a curved groove, travels wire cloth belt on which the lumps are discharged from the lower belt coming from the oven The lumps are thus immersed mechanically into the water proofing liquid, while the belt describes a curve into the tank and the same lumps are then carried, waterproofed, into the evaporating oven, where all the vapors of the benzine are collec. ted and carried through large pipes into a condensing coil 200 feet in length. The condensed benzine returns to the main tank, and the coal, perfectly dry and waterproof, is carried up

ASHCROFT'S BOILER COVERING.

ish Columbia, calculation gives a large partial eclipse commencing at $11 \mathrm{~h} .22 \mathrm{~m} . \mathrm{A} . \mathrm{M}$., and ending at 2 h .3 m . P.M., lo cal times, magnitude 0.95; here the first impression of the moon upon the sun's disk is made at 127° from his north point towards the west. For further information on the rack of the central line over these parts the large Admiral

Fig. 3.-ASHCROFT'S PIPE COVERING
ty chart of Vancouver Island and vicinity should be consult. od; the above names of points traversed by the central clipse are taken from it.
On the central line this eclipse must prove one of very considerable and unusual interest.-Nature.

Tre proper velocity for the periphery of a circular saw is nine thousand feet per minute, or one hundred miles an hour. A saw 12 inches in diameter should make 3,000 hour. A saw 12 inchos in diameter should make 3,000

The grounds on Dust Fuel.
The grounds on which are erected the works of the Loi aau Pressed Fuel Company belong to the Philadelphia and Reading Railroad Company, and have been leased for five ears. All the coal dust made at the wharves at Port Rich mond, Pa., during the same number of years, has been se cured by contract. When the works are started, if the sup ply at Port Richmond is not sufficient, additional quantities, as required, will be shipped from the coal regions. The buildings are erected at the southwest corner of Bath and Linden streets. Their length on Bath street is 128 feet, and on Linden street 275 feet. They are seven in number.
The clay is driedjin a kind of core oven, and is ground by one of Baugh's grinding mills. In the same room is an iron tank, six feet high and six feet in diameter, in which is prepared a composition of lime rye flour, and water, which, in a liquid state, is discharged into a wooden reser voir or tank placed under the coal dust and clay pockets. In front of these pock ets is placed a very ingenious machine by means of which 95 per cent of coal and 5 per cent of clay are continually and mechanically taken out of their respective pockets and delivered under a shain elevator, and there sprinkled, through a per forated pipe, with the liquid from the wooden reservoir. All the materials which are to make the lump of fuel are here brought mechanically together and are taken up by the chain elevator, which carries them up and discharges the whole into the mixing machine. This machine has a capacity of six tuns, and it delivers through two openings at the bottom, regulated by hand wheels, the materials on a leather belt, 3 feet wide, which carries and discharges them into

NEW PHOSPHIDES OF SILVER, AND A METHOD OF ESTImating silver quantitatively by means of PHOSPHORUS.

In continuation of my communication commenced on page 48 of the last issue of the Scientific american: The question now occurred whether the phosphorus solution could be advantageously employed for the estimation of silver; for, as has been previously observed, the whole of the silver can e separated, in a short time, from many of its salts. Silver is generally estimated as chloride, and this is a process in which te results. At first it must be precipitated as a chloride and
be allowed to settle, then collected upon a filter and washed very rapidly to prevent any silver from being reduced by the organic matter of the filter, and, lastly, it must be transferred to a crucible and ignited. This method involves more or less difficulty and loss. After a series of experiments, the following phosphorus method is suggested as superseding the use of a filter, and in which the silver is at once weighed in the metallic state. Into a carefully weighed and dried tube or capsule, the salt of silver (the nitrate) is put, and dissolved in a small quantity of water. Then at least one fifth of its weight of phosphorus, dissolved in carbon disulphide, is added, and the tube, with its contents, slowly warmed. At first the silver is reduced with some phosphide admixture, then the carbon disulphide evaporates, and lastly the water is removed by careful evaporation, so as to prevent any spurting. After the whole is nearly dry, which is generally accomplished in less than half an hour, the tube may be heated for a short time, by gradually applying the flame to it. The excess of phosphorus undergoes combustion, and the phosphide also, so that nothing remains in the tube excepting metallic silver and phosphoric oxide, which is dissolved out with some distilled water, and the solution is poured out, as the silver adheres together in a spongy or sculy condition. After washing a few times, by decantation, the tube containing the silver is well dried by semi-ignition, and weighed by subtracting the weight of the tube from the ube and silver, and thus the weight of the silver is known. A few of very many experiments are given to show how accurate and simple the method is: Tube, $7 \cdot 275$ grammes ($112 \cdot 267$ grains); silver nitrate, 0.068 gramme (1.049 grains); phosphorus, 0.025 gramme ($0 \cdot 3858$ grains); carbon disulphide 0.5 cubic centimeter (0.0305 cubic inch); water, 3.000 cubic centimeters ($0 \cdot 183$ cubic inch.)
After analysis: Tube + metallic silver, 7.318 grammes 112.929 grains) - tube, $7 \cdot 275$ grammes (112.267 grains) $=$ silver 0.0430 ; calculated in the nitrate, 0.0432 , showing a difference of only 0.0002 of a grain.
Another example showed: Silver calculated in nitrate, 0.2617 : silver found in nitrate, $0.2615=0.0002$.

From this it will be seen that (by simply taking a capsule or tube previously well dried and adding the salt of silver or its solution, then the phosphorus dissolved in carbon disulphide, and mixing the whole), by careful evapora tion and lastly semi ignition, and then washing out after cooling the phosphoric acid and again drying, the silver may, as such, be at once weighed and determined. Many other salts of silver are at present under investigation, of which, in the future, more will be heard
For descriptions of the few compounds of silver and phosphorus thus far known, which are of a very unsatisfactory nature, on account of the difficulty of the investigations, the reader may see Watt's " Dictionary of Chemistry," volume V., page 303.

English Railway Car Signals.

How to establish a suitable means of communication be tween the interior of the passenger cars and the engine driver is still a harassing and unsettled problem in the minds of our British cousins. The simple cord used in this country, they think, will not do, because they fear that the unruly subjects of the Queen, pent up in the little apartments of the cars, will pull the string when they ought not. Hundreds of devices have been proposed. What John Bull wants is sometbing that is simple, and that will show to a certainty in which of the thirty compartments of a train the signal originated. Here is the last contrivance: Mr. Stewart, patentee of a new flag signal for railway carriages, recently exhibited his invention in the theatre of the Society of Arts. The invention consists of an apparatus which is inclosed in a small wooden box and placed inside of the carriage against one of the top corners of the compartment. On a catch being released by means of a cord suspended from the roof, a flag is projected through the side of the carriage, and at the same time a rope in connection with the apparatus causes the ringing of a bell in the guard's van and the whistle of the engine to be sounded. The intention of the invention is to provide instantaneous communication simul taneously with the guard and driver of the train, and, at the same time, means of informing both, by the exhibition of the flag, of the exact carriage in which the apparatus has been set in motion. A rope, running from end to end of the train, keeps the boxes in the various compartments in connection with the guard's van and the engine. The general opinion of those who examined Mr. Stewart's model was that, provided the machinery should not be liable to get out of order in the working, and that the expense should not deter railway managers from its adoption, it would be a great improvement on the existing means of communication between passengers and guards in traveling trains. The projection of the flag from the side of the carriage in which the bell had

been rung was considered to be very valuable, as directing the attention of the guard at once to the spot where his assistance had been called for. Mr. Stewart stated that the probable cost of fitting railway carriages with his apparatu would be about one per cent of the cost of the carriages, which would be $\$ 50$ for a car costing $\$ 5,000$.

Cratrespoudente.

To the Editor of the Scientific American:

I recently noticed at the Stevens Institute of Technology a very handy form of wash bottle, devised by Mr. F. L. Bar deen, of which I inclose a sketch. It may be termed a constant bottle, for it throws a stream as long or longer than is required for most washing purposes. With a globe-shaped flask, holding about a liter (four fifths of a quart), the stream is constant for 45 seconds; and with the hot water bottle of the same size, for 1 minute or more, owing to the expansion of air within. With larger flasks, the time of flowing would of course be lengthened. The length of time, obriously, depends on the size of the jet and amount of air in jected; bat for ordinary purposes, the time is about as stated. Globe shaped flasks should be used, and they should never be more than two thirds full; and as the space for air increases as the water flows out, the stream remains constant for a greate ongth of time

The device is made by perforating the cork in three places: the first for the exit tube, which extends to the bottom of the flask, the second for the tube through which the air is forced, and the third for an open tube for stopping the flow by relieving the pressure. On the lower end of tube, A , is a valve, made by slipping a short piece of rubber tubing over the tube, making a slitin the side, at B , and closing the lower end with a piece of glass rod. As this slit opens out. wardly, all air forced through it is retained, and the expansion of this produces the jet. At C is the third opening in the cork, in which is a short piece of small tube, left even with the cork at the top and projecting a little way through the cork at the bottom.
The mode of use is as follows: Place the first finger of the hand thet holds the bottle over the hole, C , and give a strong blast. If the finger remains over the hole, the water will flow for the space of 1 minute or more. The flow is instantly stopped by removing the finger. By using the movable nozzle, indicated at D , the jet may be directed to any required spot. It is especially convenient, as thus constructed, for washing down the precipitate from an inverted beaker and as it is frequently desirable not to disturb the latter, in the above device the head is not obliged to follow the bottle into uncomfortable positions and remain so while the wash ing proceeds.
New York
W. Knowlton.

New York city.

The Great Engineer for President.

To the Editor of the Scientific American:
"The right man in the right place." This oldfashioned doctrine is revived in your able article nominating James \mathbf{B} Eads for the Presidency.
A statesman, an anti-monopolist, an advocate for the rights of the laborer, a gentleman of the highest scientific attainments and literary culture, James B Eads has rendered more lasting service to the Republic than any man living in the United States.
He is truly a representative of the best type of American citizen. Progressive, energetic, endowed with inventive powers in an extraordinary degree, he has contributed more to the advancement of practical science than any man of the age. Constructing an ironclad navy for the Western waters, he originated many important improvements therefor, which resulted in the building of ironclads of lighter draught than had been deemed possible.
As a civil engineer, James B. Eads occupies an eminent position. There is nothing in scientific history to compare with the St. Louis and Ilinois bridge, with its wonderful aisson work. Slender and airy as the masonry of this bridge in its perfect symmetry appears, it contains 103,000 cubic yards of masonry-almost double the amount contained in the piers of any other bridge of equal length. The reports of the projector have been translated into many languages, and form the basis of text books used in schools of engineer ing in Δ merica and Europe

Although yet in the prime of life, James B. Eads has ac complished grand public improvements which might compass centory. The records of the Patent Office exhibit him as he originator of many useful and varied improvements The Jetty system, now being constructed by this distinguished ongineer, at the mouth of the Mississippi river, is one of the grandest works of the nineteenth century. The Mississippi river drains one of the most extensive, fertile, and salubrious valleys on the face of the globe, yet the only outlet to the sea, of this grand region, has always remained blocked by a bar over which commerce has vainly striven to fin unfettered passage. The success of this great enterprise is Iready nearly established.
An honest man, an enlightened gentleman, gifted with dministrative abilities of a high order, a statesman of broad comprehensive views and sound logic, James B. Eads i re-eminently fitted to fulfil the duties devolving upon the Executive of this great nation.
a Patron of Husbandry.

Can We Protect our Bank Vaults ?

To the Editor of the Scientific American
The article in your issue of February 20 on this subject is worth attention; but let me ask how it is that bank safes i London, Paris, and Vienna are not robbed? They certainly keep as much specie and currency generally on hand in Lon don as we do here, yet I cannot call to mind a single case of a bank safe being robbed in that city. When I resided in London, I was informed by a friend who had been employed as clerk in a London bank that, when he first commenced his duties there, he was compelled to sleep on the premises with some three or four other junior clerks, and that it was made obligatory on them that two of them should always remain at home to look after the building, in conjunction with the janitor and his family. Thus a band of burglars could have no opportunity of robbing such a bank, save by collusion with four or five persons. The country banks in collusion with four or five persons. The country banks in
England, I am told, are guarded in the same manner. It seems to me that, if we give the burglars full opporiunity to work, it is quite useless making strong vaults and safes Guard the building: that is the true remedy. Our safe de posit institutions have wisely adopted this plan, and so far successfully.

Depositor.

ASTRONOMICAL NOTES.

Observatory of Vassar College.
The computations and some of the observations in the following notes are from students in the astronomical department. The times of risings and settings of planets are approximate, but sufficiently accurate to enable an ordinary observer to find the objects mentioned. M. M.

Position of the Planets for February, 1875.

Mercury.

Mercury, which was seen so beautifully after sunset in the latter part of January, can in March be seen before sunrise. On the 1st of March it rises at 5 h .30 m . A. M. and on the 31st at 5 h .15 m . A. M. The best time to look a it is on the morning of the 10th.

Venus becomes more and more conspicuous in the evening sky, setting on the 1st of March a little before 90 P . M., and on the last of March a little after $10 \mathrm{P} . \mathrm{M}$.
As Venus passes the meridian between 2 and 3 in the afternoon all through the month of March, with an in creasing apparent diameter and at higher and higher alti tude, it can probably be seen with the naked eye at its culmination.

Mars.
Mars rises on the 1 st of March at 8 h .33 m . A. M., and sets at 10 h .5 m . P. M. On the 31 st , Mars rises at $7 \mathrm{~h} .30 \mathrm{~m} . A . M$., and sets at $9 \mathrm{~h} .54 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. The apparent diameter of Mar is now very small, in consequence of its distance, but on the 29th it may be recognized from its nearness to Venus.

Jupiter.

Jupiter continues to be very near to the star β Sc.rpii and its motionscan be very nicely followed by comparing it position with that of the star. In the first half of the month of March, Jupiter is seen to be moving away from the star; on the 17th it is stationary, after which its motion becomes retrograde, and on the 31st it is very near the star Jupiter is coming into better position for evening observ rs; on the 31st of March it rises about 10 h .32 m . P. M and comes to meridian at 3 h .10 m . the next morning, a which time the star β Scorpii is west of Jupiter by about half the diameter of the moon.

saturn.

Saturn sets before the sun in March, but it rises earlier and earlier through the month, and in the latter part canbe well seen in the morning. On the 31st, Saturn rises at 4 h 28 m. A. M., and sets at 3 h .5 m . P. M. Mercury and Saturn are in conjunction on the morning of the 18th.

Uranus.

On the 1st of March Uranus rises at 3 h .36 m . P. M. On he 31 st , Uranus rises at $1 \mathrm{~h} .34 \mathrm{~m} . \mathrm{P}$. M. Uranus can be found at meridian passage, which on the 1 st is at 10 h .37 m P. M., at an altitude (in this latitude) of about 58°. On the 31st, Uranus passes the meridian at 8 h .36 m ., at an altitude of $58 \frac{1}{2}^{\circ}$
The report is from January 19 to February 20, inclusive The photographs of January 20 and January 21 show a large spot (followed by a very small one) coming on, a smal roup near the center, and another on the western limb.
Clouds prevented pholographing till January 25, when the group seen going off on January 21 had disappeared; the
group then near the center was now on the western limb,and group then near the center was now on the western limb,and
the large spot had separated into a group, composed of one large and several small ones.
From January 26 to February 12, when observations could be made, the sun's disk appeared free from spots. On February 12a large spot, measuring nearly $\frac{1}{48}$ of the sun's diameter, with very marked penumbra and followed by facule, was observed. On February 16 this spot was seen to have broken up into a chain of small ones, which measured when last seen, February 20, nearly $\frac{1}{16}$ of the diameter of the sun. Observers should look for the return of this spot about March 9 .

PRACTICAL MECHANISM.

by joshea rose.
Nuxber XLIII.
marking out a connecting rod.
Our next operation is to mark out the keyway, which is performed after the butt end of the rod and the inside and outside of the strap have been planed. We first, with a pair of compass callipers, which are better for the purpose than compasses, mark the center of the strap edgeways, and then, laying it with its broad surface on the marking-off plate, we mark off the keyway as follows: In Fig. 213, A represents

the table, and B the connecting rod strap. C is the center line of the strap, and therefore of the keyway; the end, E, of the keyway should be drawn the necessary distance from the inside crown of the strap, as denoted by the dotted line, because it is that distance upon which the thickness of the brasses depends. Hence the line, E, is the first one to be drawn: then, from the line, E, we mark the length of the keyway, and strike the line, F; the breadth of the keyway we mark by setting the compasses to the radius of a circle whose diameter will be equal to the required breadth of keyway. Then using the center line as a center, wemark the circle, G, and (parallel with its diameter, the center line) the lines, H and I, thus completing the marking of the keyway on the strap. Our next operation is to mark the oil hole of the strap, which should be placed exactly in its proper position, for the following reasons
A connecting rod whose crosshead end has a strap with a gib and key (or, what is better, two gibs and a key to hold it, the crank pin end baving its strap held by bolts, and the key between the bolts and the brass) would maintain its original length, provided the wear on the crosshead brasses were as great as is the wear on the crank pin brasses ; but since that on the latter is the greatest, the rod wears longer to half the amount of the difference of the wear between the crosshead and crank pin journals. If both the straps of a rod are held by bolts, the key of one end being between the brasses and the main body of the rod, and the key of the other end between the brasses and the crown of the strap, it would maintain its original length if the wear on both ends was equal ; but this not being so, it wears longer, as above stated. The oil hole of a strap, for either a connecting or side rod, should therefore be in the exact center of the space intended to be filled by the brasses. It will thus be central with the joint of the brasses, and from center to center of the oil holes, and will, therefore, represent the proper length of the rod. When, therefore, the brasses of a rod end, whose strap is held by a gib and key, have worn so that the key is let down, the brasses must be lined up to bring the key back to its original position, the back brass being lined up so that its joint face comes even to the center of the oil hole, and the other brass being lined up sufficiently to bring the key back to its original position ; then the rod is sure to be of the proper length. But if the strap is held by the bolts (in which case it does not move when the brasses are let together and the key further through), lining the back brass up to the center of the oil hole at once insures the rod being of its correct length, without any reference as to what thickness of liner is put on the other brass, or how far the key may come through. In either case it will be observed that the center of the oil hole, when placed as described, forms a gage to keep the rod its proper length.
To mark off the oil hole, we lay the strap on its side face, as shown in Fig. 214, and, placing a straight edge along the inside crown face of the strap, we mark a line even with it and across the jaw of the strap, as shown at A, in Fig. 214, and from that we mark with the compasses the line, B, the distance between the two being half the total depth of the brasses, or, what is the same thing, the thickness of the crown brass (when
new) from its joint face to new) from its joint face to its bedding crown. We then, with a square and scriber, carry the line, B, over to the center line of the edges of the
strap (C in Fig. 213), and the junction of the two is the censtrap (C in Fig. 213), and the junction of the two is the center of the oil hole. In centerpunching the center for the oil hole to be drilled, make a deep centerpunch mark to prevent the drill from running to one side and thus deceiving the become worn) as to thickness of the liner to be placed behind the back brass to keep the rod to its original length.

The marking of the keyway in the butt or stub end of the rod is performed in the same manner as that of the keyway in the strap, care being taken to make the edge of the keyway nearest to the end of the rod at the exact proper distance from that end: otherwise the amount of space left, when the strap is in its place, between the end of the rod and the crown of the strap (which regulates the thickness of the brasses), will not be correct, and the oil hole will not stand in its correct position on the strap, unless the key and gib are made to suit the inaccuracy of the position of the keyway in the rod end. For example : Suppose the keyway of the rod to approach too near the rod end; then the strap will, if the gib and key are made of the proper width (when placed together, as shown in Fig. 215) across, as at A, not pass sufficiently along the block end, and there will be too much space allowed for the brasses, and the oil hole will stand much space allowed for the strap. The only method of cor-
too near the crown of recting this defect is to make the width of the key and $g!b$, recting this defect is to make the width of the key and gib,
at A, Fig. 215, wider to the necessary amount, and to cut the at A, Fig. 215, wider to the necessary amount, and to cut the
keyways, both in the strap and the rod end, wider, by cutting out the metal on the edge of the keyway furthest from the rod end, and the metal on the edge of the keyway in the strap at the end nearest to the crown of the strap. If the keyway of the block end errs in the opposite direction, the keyways must of course be made wider, the metal being cut out in the exact opposite to the above direction. By mark ing out the two keyways as above described, we have no occasion to take any account of the draw, since that will come right of itself when the brasses are put in their places in the strap, and the strap is put in its place upon the rod end. In marking off the rod end from keyways already cut in the strap, the following plan must be adopted: Place the strap upon the rod end, leaving the space between the rod end and the crown of the strap narrower than is required to receive the brasses (when the latter are new) by an amount equal to the amount of taper there is in the full length of the key, and mark the keyway in the rod end even with the strap, taking no account of the draw required on the keyway, which is provided for in the position in which the strap is placed on the rod end, as will be perceived when we consider that the length of a keyway is always the width of the key and gib, at A, when placed together, as shown in Fig. 216. Hence, by marking off the keyway in the rod end with the keyway in the strap, the latter is in the position in which it will and when the key and gib are in the position shown n Fig. 216. Supposing then the gib and key to be in their

places in the rod and strap, and in the position shown in Fig. 216, and that we then lift the key up so that it will stand in the position shown in Fig. 215, and that we then pull the strap as far off the block end of the rod as it will come, the key will then stand in its correct position, and there will be the proper amount of draw in the keyway, both in the strap and on the rod end, and the space between the end of the rod and the crown of the strap will also be correct. To mark off the key and gib, we proceed as follows: After the keyways are filed out, we take a piece of thin sheet iron and fit it to a tight fit in the breadth or thickness of the keyway, and have the thickness of the key and gib planed, using the piece of sheet iron as a gage; we then mark off the key on both edges to the proper widthat top and bottom, and hence give it the correct amount of taper. We also have the plain or straight edge (that is, the edge opposite to the jaws) of the jib planed straight; we then place the jib and key in the position shown in Fig. 217, and mark off (from the edge face, B, of the key) the line, A, on the gib, using the compass callippers set to the full width of the keyway in the strap or rod ond, taking no account of the draw. Hence the key and gib will, when in the position shown, just fill the keyway. The width between the jaws of the gib, as denoted by C, should be marked a trifle less than is the extreme outside width of the jaws of the strap, so as to allow for the metal taken off in filing up the outsides of the jaws of the strap and off the nside of the jaws of the gib.
When the rod is fitted up and ready to mark off the brass es, to bore them out by, we proceed as follows: We take the top brass and mark on its outside face two lines level with the faces which fit against the inside jaws of the strap, as shown in Fig. 218, A and B being the lines referred to. We then key Fig, $278 \quad \begin{aligned} & \text { up the brasses in their places in the } \\ & \text { rod and fasten a center piece in the }\end{aligned}$ rod and fasten a center piece in the brasses at each end of the rod. Upon
thsse centerpieces we first mark a thsse centerpieces we first mark a line parallel with and central between the lines. A B, and then a line across faces meet, and in the center of the space between them if they do not meet, and in either case to the center of the oil hole, if the rods have
of the lines so obtained will, from one to the other, be the length of the rod. The rod sbould, however, always be test ed with a pair of trammels set to the necessary distance be tween the brasses from center to center of their bores, care being taken to stand the rod, while trying the trammels, in the position in which it works, for all rods deflect by thei weight, the amount of such deflection depending upon the position in which the rod is suspended. The trammels als deflect, it is true, but their deflection is allowed for in set ting them, whereas the deflection of the rod will not be ac counted for unless it is trammeled when standing or lying in the position in which it works.
We now come to ascertaining what thickness of liner it is necessary to insert on the back of each brass, when such is necessary on account of the wear of the brasses and on account of the key having passed through the keyway so that its head is level with the top of the jib, and hence requires to be set back. Beginning with the back or bottom brass, which beds against the crown of the strap, we find that the brass at each end of the rod furthest from its key will, no matter what the construction of the rod may be, require lining up so that the center of its bore is even with the center of the oil hole in the strap, that is, providing the oi hole has beenmarked off as directed. The thickness of liner

necessary to place behind the brass nearest to the key should be ascertained as follows: The brass furthest from the key having been lined up, we put the rod end, together with the brasses and keys, in position, and key the rod up properly, when, as shown in Fig. 219, the key will pass too far through the rod end. Then we mark across the face of the key a line, A, even with the edge face of the strap; we then put the key back to its proper position, and mark another line B, even with the edge face of the strap; and taking the key out, we shall find the two marks shown in Fig. 220, A being the first and B the second line struck upon the face of the key; and the dif ference between the width of the key at A and its width at B will be th thickness of the liner ne cessary to be placed behind the brass nearest to the key. To ascertain the pre cise amount of this differ ence (because a very smal error as to this amoun causes a great deal of extra labor), we set a pair of out side callipers to the width at A ; and then passing the calliper points down to B we keep one of the points even with the line, B, and inser a wedge until it just fills the space between the other poin and the side of the key. as shown in Fig. 221, C being the wedge, which should be chalked along its surface so that, when inserted (as shown) until it touches against the calliper point, the latter will leave a mark on the wedge, denoting exactly how far the wedge entered and hence the exact re quired thickness of liner.

Bicycle vk. Horse.

A ten mile race, between a fast horse named Happy Jack and a velocipede rider named Stanton, recently took place a Lillie Bridge, England, for $\$ 250$. For the first three miles the horse kept level with the bicyclist. The ground was rather sticky-owing to late rains-for both, and Stanton seemed laboring, but this is his peculiar way of riding. Stanton was the favorite at as much as 3 to 1 , for the star allowed him was generally considered too much. For three miles the horse went easily ; where he lost at the corners he made up in the straight. This style he kept up until the sixth mile, when his stride began to falter, not being ridden so well as on the last occasion, combined with the effect of the extra weight he was carrying. Stanton from this point gradually went ahead, and in the next mile he had gained fifty yards. The horse was now beaten, and after going another lap was pulled up at eight miles. Stanton went on and finished the distance, ten miles less 764 yards, in 34 minutes 34 seconds, being at an average velocity of nearly eighteen miles an hour. He rode a 58 inch machine made by Keen weighing 40 lbs. He seemed to have a good deal more in him had it been required.

A correspondent says: For kitchen and pantry floors ther is nothing better than a coat of hard paint; the cracks shou!d be filled with putty before it is applied, and the paint allowed to dry at least two weeks before using. Then it is easily kept clean by washing (not scrubbing) with milk and water soap should never be allowed to touch it. "Red lead and yel low ocher I prefer for coloring; the former makes a hard paint that wears well.'

I PATENT GEAR-CUTTING ATTACHMENT/ FOR1LATHES. We illustrate herewith a new and powerful device designed for the use of machinists who require a gear-cutting machine, but who have not sufficient work for an apparatus of that description to warrant their purchasing one of the larger and more expensive appliances now in the market. The present invention is claimed to be able to perform all the work peculiar to it that is necessitated by the average machine shop; and through its low cost,the advantages which it offers are brought within the reach of mechanics generally.

This machine will cut all kinds of gearing-spur, bevel, miter, spiral, and worm-and also taps, reamers, and indexed milling. It is 24 inches in hight, weighs 96 lbs., and its index plate is 12 inches in diameter, and has 38 circles of holes, dividing every number up to 75, and every even number up to 150 , or 112 different numbers. Attached to the in. dex is a counter which pre vents the possibility of making mistakes.
The general construction will be clearly understood from the engravings. The apparatus is shown on the tool post slide of an ordinary engine lathe as arranged for cutting spur gearing, Fig. 1, and for bevel gearing, Fig. 2. The cutter mandrel is represented separately, beside the machine.
Patented to Mr. Thomas 0. Mills, and manufactured under his supervision by the Michi. gan Manufacturing Company, of Kalamazoo, Mich., to whom inquiries for further information may be addressed.

SMITH'S FLOUR AND MEAL CHEST.

The annexed engraving represents a handy receptacle for flour and meal, which protects its contents from inroads by rats and mice, and allows of the withdrawal of the exact quantity of material required in a sifted state ready for im mediate use. The upper portion of the device is separated into two compartments, one of which serves for flour, the other for meal, the partition being immediately over a bottom orifice. A separate canvas spout, as represented, leads fromeach compartment to a sieve beneath, which is sustained in a simple holder, which is vibrated and the sieve so shaken by suitable mechanism operated by the crank shown. Slide

are provided to shut off or admit meal or flour to the chutes and are controlled by the knobs shown respectively in front of the chest and beneath the crank. The lower compartment receives the vessel into which the meal or flour is sifted, and also answers as a convenient closet for storing bread, tray, rolling pin, bread board (which last, with a sieve, is provided with the chest), biscuit cutters, and baking utensils generally. Each compartment may be made to hold a bushel of meal and one hundred pounds of flour, or it may be constructed smaller.
The inventor points out that, with this device, no material is wasted in removing it from the receptacle in which it is kept, and moreover that the same is kept from becoming stale and wormy, as is often the case. No old flour remains at the bottom, as that at the bottom is used first, and every time the slide is drawn the bulk is disturbed and fresh air admitted. In this way the contents of the chest are always kept in a fresh state. The hinged lid at the top admits of ready access to the upper compartments; and when the doors below are closed, the device becomes a neat piece of furniture, fit to be located in the dining room if desired.
Patented January 5, 1875. For further particulars regarding sale of rights, etc., address the inventor, Mr. A. W. Smith, Lexington, Mo.

Kerosene flames are readily extinguished by throwing a rug or cloth over them. But cloth is not always in the kitchen, where kerosene accidents are most likely to occur. Flour is recommended as a substitute. Thrown upon the flames, it quickly absorbs the fluid and deadens the flame.

OORNELL'S IMPROVED LIFTING JACR
The new jack herewith illustrated offers the advantage of continuous lift or press from bottom to top, while its me chanical construction is such as to apply the power with grea offect. It is thus well adapted to situations where the jack screw cannot be used. It is always ready for operation, is claimed to be perfectly safe under a load, and admits of low ring the weight gradually when desired.
Between projecting flanges, Fig. 2, upon the two vertica
standard upward. On the back of the body are attached me tallic plates, which form the bearings for metal friction roll ers. The latter play through slots in the body and rest agains he standard, so that, in lifting heavy weights, the lever and awl press upon one side of the standard while the roller elieve the friction on the other. Also at the rear of the ma chine is a metallic bar, Fig. 1, which has its ends bent at right angles to its length, but in opposite directions. A pin passe through the upper bent extremity and into the top of th standard, so as to keep the ba in place and secure it to the latter. The lower arm of the bar is used to hook under objects which are lower than the top of the jack. A wooden block may also may be added, as shown for loads to rest upon, so that the machine can easily be justed to objects of any hight The bar is detachable by simply lifting it from its resting place. In Fig. 2 the application of the jack to a cider press is re presented. Here there are two levers, each with its pawls act ing on standards on each side of the standard, so that a greater amount of power can be applied. As regards this especial adapta tion of the jack, the invento points out that theiron in a cider points out thas or whine press comes in contac with the acid of truit, and soon becomes corroded, and thi does not happen in the presen case. It will be seen that the invention is useful as a wagon jack, fence or timber lifter, and a press for a large variety of pur poses.' Patented February 1,1876 For further particulars address Munsell \& Dexter, 165 Green
MILL' GEAR-CUTTING ATTACHMENT FOR LATHES
metal bars which form the body, is pivoted the hand lever On the side nearest said lever, of the wooden standard which plays in the hollow body, is secured a metal rack bar. The lever near its inner end is provided with two pawls, one of which works upon the lever bolt between the prongs of the

lever, and the other has a separate pivot also between the prongs. The longer pawl on the lever bolt is stationary ; the other moves with the lever, so that the first acts as a lifter and the second as a detent. By operating the lever, these pawls are so caused to catch into the rock bar as to lift the
street, New York city
wich street, or 49 Courtland street, New York city
We illustrate herewith a simple and effective little device for sustaining window sashes in any position in which they may be placed. In addition to this, it may also be employed as a sash lock, on sashes which are supported when raised or lowered by cords and weights or like means.
Fig. 1 shows the holder as applied to sashes, and Fig. 2 is perspective, and Fig. 3 a sectional, view of the invention. t consists of a disk of iron, A, something over an inch in

diameter, having a broad flanged portion, and pierced with holes for the reception of the fastening screw. In the center of the disk is a threaded projection, upon which screws an other disk, B. The whole thus forms a grooved wheel, of which the flange constitutes the periphery. Around the latter is slipped a rubber ring, C. To apply the device the disk, C, is removed, and the remainder attached by a single screw to the window sash. It thus is secured eccentrically and consequently, when the rubber covering takes against the casing, the holder becomes jammed through the downward pressure of the sash, so that the latter cannot possibly descend further. This is clearly shown by the dotted lines on the upper sash in Fig. 1. It will easily be seen that, by turning the holder so that its greater portion is above instead of hanging below the screw, the jamming will then take place when the sash is sought to be lifted, and thus the apparatus becomes a simple, self adjusting, and very efficient lock. The invention is neat, tasteful in appearance, and cheap, and doubtless will meet a ready welcome from carpenters and the hardware trade generally. Patent now pending through the Scientific American Patent Agency. For further parti culars address the inventor, Mr. C. E. Steller, 352 East Wa ter street, Milwaukee, Wis.

HAECKEL ON THE HUMAN PEDIGREE

The "Schöpfungsgeschichte" of Professor Ernest Haeckel, of the University of Jena, has recently been translated into English and published under the title of " The History of Creation." The work is a greatly condensed epitome of the thoughts of one who has probably reached the ultima thule of scientific rationalism; but the admirable clearness with which the great theories which are dividing the scientific world into two hostile camps, and which are constantly widening the breach between scientific thought on one hand and theological dogma on the sther, are here presented and amplified will command for the treatise the attentive study even of those to whom the doctrine of man's origin and development, as here enunciated, is most repugnant.

Dr. Haeckel's theory includes both that of Lamarck and that of Darwin. With Lamarck, he holds that all animal and vegetable species are descended from common, most simple, and spontaneously generated prototypes; and then he adopts Darwin's conclusions in showing us why a progres sive transformation of organic forms took place, and what causes, acting mechanically, effected the uninterrupted causes, acting mec
production of new forms and the everincreasing variety of animals and men. Dr. Haeckel, however, sets before himself the task of establishing, in the light of the above theories, a probable scheme of the genealogical relationship of organisms. And to this he brings the ripe fruits of extended research, and of a vast store of knowledge in biology and kindred sciences, a knowledge in which he is unexcelled. He thus deals with the descent of man in a directly practical sense while Darwin only Wheats it in a general treats it in a general way; and at the very outset he disagrees wholly with Darwin in the latter's final conclusion relative to the descent of all organic beings"from some primordial form, into which life was first breathed by the Creator." In a word, Haeckel sets about constructing a genealogy for the race-and indeed for all animated nature - with the same coolness with which an antiquary would hunt for a family pedigree or a lawyer prepare an abstract of a title to a piece of real estate. And in this work he uses three powerful aids: first, the study of the development of the individual, which the individual, which he declares to be a
short, quick repetishort, quick repetition of the development of the tribe or chain of ancestors
to which it belongs, to which it belongs,
determined by the determined by the laws of adaptation and inheritance;" second, the study o the development of the tribe from palæontological and geological records; and third, the study of comparative anatomy, or the investigation of the chain of different, but related and connected, forms which exist side by side at any one period of the earth's history. Regarding all these, he affirms that the laws of inheritance and adaptation known to us are completely sufficient to explain the perfect para lelism of the three developments.
In the beginning was the fire mist, thinks our author adopting the theory of a gaseous chaos which formed the basis of Kant's "Cosmogony." By a universal rotary move ment in this nebulous Universe, portions aggregated, and these aggregations, by refrigeration, changed into masses o fiery fluid. The latter, cooling and condensing, became as molten metal. An outer crust formed on the new worlds, and thus, "by the inherent forces of eternal matter, entirely without supernatural interference, the solar and planetary systems came into being. When our earth's crust had so far cooled that the water, present hitherto as a gas, could condense into liquid form, then came into existence the pri mordial germs of life.

In the narrow limits of this article it would be impossible o trace every link of the chain which, from this point Haeckel forges with infinite care; but we may note the stages into which he divides the pedigree of man, and, by the aid of the accompanying engravings (which are not drawn to re lative scale), convey an idea of the being which forms or fmed a near or exact type of each stage of development.
We are now able to produce in the laboratory certain com binations of carbon, oxygen, nitrogen, and hydrogen, which are similar, in the complexity of their constitutions, to the combination entering into the mere lump of albumen which forms the body of the still existing moneron (1). This is the simplest of all organisms-as simple as any crystal which consists of a single inorganic combination. "Now," says Dr. Haeckel, "there is absolutely no reason for supposing that there are not conditions in free nature, also, in which such combinations could take place;" and he inclines to the view that such conditions existed at the early epoch of the earth's history, following the formation of liquid water This combination, taking place, produced a primeval mucu
arose the primeval stomach animals, the gastræads (5), pos sessing a simple oval or globular body, which enclosed a simple cavity having a mouth
At this point we reach two divergent lines: One branch f gastræads gave up free locomotion, adhered to the bottom of the sea, and developed into zoorphytes or animal plants he other branch retained free locomotion and developed into he primary form of worms. In these last appeared the firs formation of a nervous system, the simplest organs of sense, ecretion, and generation. The nearest akin to these prime al forms are the ciliated gliding worms (turbellaria), of which one is represented at 6 Through the formation of a rue body cavity and blood, within the gliding worms, arose the soft worms, which include very many different interme diate stages. A type of one of these links is shown at 7. Next, by the formation of a dorsal nerve marrow, and of the pinal rod which lies below it were produced the sack worm 8 and 8) It ju 8 and 8 . erween the dor tinal canal on the ventral side, which is most characteristic
of all vertebrate animals, including man, and also of the larvm of the ascidim here represented Now followed the for mation of body seg ments, the furthe differentiation of the organs, a more perfect development of dorsa marrow and spina rod, and probably the separation of the two sexes-producing th acrania or skull les animals of which the still living lancelet (9) affords a faint dea
We next meet the development of the first brain. It was formed out of the anterior end of the dorsal marrow, while the anterior end of the dorsal chord develop. ed into a skull. The first animal possess sing a brain was sim ilar to the lampre (10), a single nostrile creature. This single nostril divided into two lateral halves; a sympathetic nervou system, a jaw skele ton, a swimming blad der, and breast and ventral fins appeared and so, in the Silur an period, originated the shark-like ances tors (11) of all fish By adaptation to lif on land, by the trans formation of the swimming bladder into an air-breathing lung and of the nasa cavity into air pas sages, arose the mud fish, to which the still living ceratodus or grass-eating fish (12), the lepidosiren (13) bear a near resem blance. At the same time originated the now extinct sea dra now extict sea ora gons, like the plesio the mud fish, by of tranformb by th paddling finsinto five
rystals individualizes itself, in crystallization, to produce crystals. Thus in the Laurentian period arose the earliest progenitor of life-a mere lump of protoplasm, but capable 1 a).
By the process of segregation, taking place in the homo ceneous viscid body, a kernel was formed within, differ entiated from the surrounding plasma, and producing thus the simple cell, of which the low organism, still existent and known as the amœba (2), is a type. By self.division, the cell fell into a mass of simple and equiformal amoba.lik ells, eash exactly similar to the other, and each containing a kernel. These groups of cells are termed synamœbæ (3), and the conformation of the organism reminds one of a mul berry. But as development progressed, the cells lying on he surface extended hair-like processes, which, by striking gainst the water of the primeval ocean in which the crea ture existed, kept the body rotating; and so another differ ontiation occurred, the external cells covered with cilia dif ering from the non-ciliated internal cells. These organisms are called ciliated larva or planeads (4). From the planeads
toed legs, and also by the more perfect differentiation o various organs, came the most ancient amphibians, which, like the axolotl (15) of the present day, besides possessing lungs, retained throughout life regular gills. From thes rose the tailed amphibians, which, like tne newts or sala manders (16) lost the gills which they had possessed in early ife, but retained the tail. They originated by accustomin hemselves to breathe only through gills in early life, and later in life only through lungs. In the mesolithic or secondary period, the tailed amphibian, through loss of gills, by the formation of the amnion, of the cochlea, of the round window of the auditory organ, and of the organs of tears produced the primeval amniota, of which the true lizard 16) may be taken as a type. Here we meet another branch ng, for on one hand the amniota developed into reptiles and hence into birds, and on the other into mammalia. Follow ing the second branch, we find that, by the transformation of scales into hair, and by the formation of a mammary gland, were next evolved the promammalia, closely related to the beaked animals, such as the ornithorincus (18) Now come the transition to placental animals, by the promammalia and the evolution of the marsupials, such as the kangaroo (19)

Out of the rat-like marsupials, by the formation of the placenta, development of the commissures of the brain, etc., come the semi-apes, of which the lemur (20) is an existin type. From the semi-apes, by the transformation of the jaw nosed tailed (21). Then the nosed tailed ape (21). Then the tail disappeared, the hairy covering partially departed, and the brain above the facia portion of the skull developed, producing the orang-outang (22), or the chimpanzee, or the gorilla-the human apes of the miocene period. These apes gradually became accustomed to an upright walk, and the separate pairs of legs differ. entiated. The fore hand became a human hand, the hind one, a foot. Thus was produced the ape man, the pithec anthropus (23), who existed toward the end of the tertiary period. Genuine man developed out of the ape-like man oy the gradual development of the animal language of These went hand in hand with the higher differentiation of the larynx and the brain. Primæval man, Haeckel divides into the straight haired and the wooly-haired. From the last arose the Papuans (24), the oldest of all still living human species, and nearest related to the original primary form of wooly-haired men. Next come the Hottentots, be longing to the same branch as the Papuans. To the other branch belong the Negroes and the Kaffirs.
The straight-haired men generated the Australians and Pro-Malays, the latter, the Mongols and the Malays. The Mongols produced the eighth and ninth species, the Americans and the Arctic Men, and the last produced the Esquimaux. The Malays have developed into no other distinct spacies. A third branch of the Pro-Malays, however, produced the Dravidas, from whom sprang the Cingalese, the Nubians, and the Mediterranese, thus completing the series of twelve species and thirty-six races.
Tracing, lastly, the history of nations or historic tribes, the Mediterranese gave rise to four races, the Semites and Basques in one branch, the Indo-Gərmans and Caucasians in another. From the Indo-Germans, in regular progression, came Sclavo-Germans, the primeval Germans, the Germans, Low Germans, Saxons, and. lastly, Anglo Saxons. And here our chronicle ends, for thus over a lapse of thousands of millions of years-ages, according to Haeckel, countless and incalculable save by mere approximation-we have traced the development of man from the clot of albumen to the race which now populates these United States.

The Heat of Slags and Economy of Furnaces

From two recent papers of Professor Grüner we obtain the following interesting data: The experiments on which they are based were made with a water calorimeter of 18 kilogrammes (nearly 40 lbs .) weight,and upon quantities of molten material varying from 50 to 100 grammes ($1 \cdot 6$ to 32 ozs). The heat is given in French calories, or centigrade units.
The less fusible slags of the blast furnace (accompanying gray pig) possess, on issuing from the furnace, 450 to 500 units. Those proceeding from non-fusible ores,and most frequently associated with white pig, have 400 to 450 ; white glass (70 per cent silica) heated to the temperature for glass-blowing, 415 to 420; bottle glass under the same circumstances, 380 to 400. The ferruginous and manganiferous scoriæ from the Martin process (54 to 55 per cent silica) require for smelting 410 to 415 units; porphyroidal copper slags from Swansea (60 per cent silica and quartz), 405 to 410 ; bisilicate protoxide of iron slags (45 per cent silica), 380 to 400 ; puddling or reheating cinder (30 to 35 per cent silica), 320 to 330 ; monosil:cate slags from lead and copper furnaces (28 per cant silica), 75 to 300. Pure, well carburized pig requires for melting 225 to 230 units; gray silicious pig (3 per cent carbon), 250 red copper, which, like the foregoing, has its melting point at about $1,200^{\circ}$ C. $\left(2,192^{\circ}\right.$ Fah.) may be brought to that temperaure with 160 to 165 units of heat. Iron copper matte requires 230 to 240 ; iron lead matte, 200 . Lead, which has, like platinum, a very low specific heat, can be brought to clear orange redness with 45 to 50 units.
From the foregoing figures, and other researches which he has previously made public, Professor Grüner has deducted he following interesting statements
In the wind furnace, which is from this point of view the most imperfect apparatus, there is utilized, in the fusion of steel in crucibles, but 17 of the total heat capacity of the fuel, or at most 3 per cent of the heat generated. In the reverberatory, when steel is melted in crucibles, the useful ef. fect is 2 per cent of the total heat, or 2 per cent of the heat generated. In the Siemens crucible furnaces, 3 to 3.5 per cent; in Siemens glass furnaces, operating on a large scale, 5.5 to 6 per cent; in ordinary glass furnaces, 3 per cent; in fusion upon the open hearth of a reverberatory, of glass, 7 per cent; of iron, 8 per cent; in well arranged Siemens and Ponsard furnaces, up to 15,18 , and even 20 per cent of the total heat is utilized.
The caloric effect is much greater when the fuel is mixed with the material to be fused. In old cupolas, 29 to 30 per cent; and in modern cupolas, higher, more rapid in working, and narrower in zone of fusion, upwards of 50 per cent is realized. Large iron blast furnaces utilize, according to their working, 70 to 80 per cent of the heat generated, or 34 o 36 per cent of the total heat which the complete combustion of the fuel would set free.-Engineering and Mining Journal.

Cat Racing.
Since the siege of Paris a great deal of interest in the breeding and training of homing pigeons has been created by the admirable service rendered by these swift-flying mes-
sengers from the besieged inhabitants of that city to friends
outside. The birds in which the homing powers were found to be most strongly developed were of a breed of Belgian pigeons now pretty generally known as Antwerps. This homing faculty, it seems, a Belgian society is now endeavor ing to develope in the domestic felines of that country by in ugurating cat races, on much the same principles as pigeon dying matches. A cat race was very recently instituted in Liège. There were thirty-seven competitors, all of which were liberated some distance from the town, and the prize was awarded to the animal which reached its home in that own first. They were started at 2 P. M., but the distance hey had to traverse is not stated; suffice it to say, the first prize animal won in a canter, as he arrived at home at 6:48 P. M. the same evening, the second cat not appearing until 2:24 A M., the following morning.

DECISIONS OF THE COURTS

United States Circuit Court---District of Massachusetts.

 act.
Whenever the cause of actlon 18 one cognizable by a court of common
law a court of equity, in accordance with the general rule
prud en

United States Circuit Court--. District of Massach u-

 endeavored $\begin{aligned} & \text { teprive the } \\ & \text { depr }\end{aligned}$

sar
he
hed
He
He
ing

out
oat
tec

NEW BOOKS AND PUBLICATIONS

The Elements of Physical Geography, for the Use of Schools, Academies, and Colleges. By Edwin J. Houston, A.M., Procestral High School of Philadelphia. Price \$1.75. Pbiladelphia, Pa. Eldredge and Brother, 17 North Seventh street.
This is one of the best school books that we have lately recelved. It is
ull of information, which bas been thoroughly condensed without losing ny of its clearness of explanation; and it is written in a stsle to interes the young reader, and to induce him to glve proper attention to every
branch of the subject. The maps and other lllustrations are excellent, and the book is evidently the work of a writer who knows how to teach,
The Economy of Worishop Manipulation, a Logical Method of for the Use of Apprentice Engineers and Students. By J Richards, Author of a "Treatise on Woodworking Machines," etc. New York city : E. \& F. N. Spon, 446 Broome street
Mr. Richards' works on the economy of the mechanical arts are well
nown and hls new book will enhance bls reputation as a fuent and pleasIng writer. His views are always sound and enlightened, and his precept mechanicai drawing in the book now before us is an excellent plece of it

The Polytechnic Review, Devoted to Science as Applied to the Useful Arts. Published Monthly. Subscription $\$ 3$ a year, pay 119 South Fourth street.
This publication is intended to occupy some portion of the extensive fiel Il the current information on the many subjects included under the gene Ite irtan
pers Relating to the foreign relations of the United STates, transmitted to Congress with the Annual
the President, December 6, 1875. In Two Volumes.

Notes on the Yucca borer. By Charles V. Riley, Ph.D. St
Scribner's Monthly for March offers its usual attractive table of con tents. The number opens with an excellent description of the new bulld
ings of Trinity College, Hartiord. Conn., with llustrations. The architecings or Trinity College, Hartiford. Conn., with illustrations. The architec
ture of these prcposed edifices is altogether different from that of any othe college bulldings in the country, and will attract considerable popular in terest. The kindergarten system of Instructing very young chlldren 1
clearly expounded by Dr. Eggleston. Mr. Dorsey Gardner writes upon the strugglesand successes of Wilson, the celebrated ornithologist. The edito has some thoughtful essays on "Public Halls" and "Common Schools." Mr. P. T. Quinn contributes some timely directions about laying out smal
places and suggestions relating to rural topics, and there is a goodly vaplaces and suggestions relating to rural topics, and there is a goodly va
riety of entertaining serial and short stories. Subscription price 84 a year. riety of entertaining serial and short storles. Subscrip
Scribner \& Co., publishers, 743 Broad way, New York.
St. Nicholas for March is, as usual, preternaturally good. If the should be half inclined to welcome it as a pleasing variety, just as a discor In mustc often adds to the beauty of the surrounding harmony. Mr. Whitther sends a new and beautiful poem, Mrs. Ollphant the beginning of a se-
ries of interesting papers on Windsor Castle, Mr. Charles Dudley Warner and Mr. Bayard Taylor contribute interesting sketches of forelgn countries, Miss Alcott continues her pleasant talks; in fact, we cannot pretend to tel ratiog good things with which the youngsters are provided. is saying a great deal. Subscription price 83 a year. Scribner \& Co., pub11shers, 473 Broadway, New York.
The AtLantic Monthly for March begins with Mr. T. B. Aldrich's new poem "'the Legend of Ara Coeli;'" Mr. John Fiske concludes his papers on the 'Unseen World, imparting results or modern scientific relliglous cellent essay on the "State and the Rallroads," one of the most valuable and thoughtful contributions to the literature of the rallway that we have ever read. The besuty of inflation and the advantages of a paper cur-
rency Mr. Henry Carey Baird attempts to show in an article, none the less well written and interesting, even if its writer, in the opinion of most people, is on the wrong slde of the present important financlal controversy.
Mrs. Fanny Kemble continues her pleasant " Gossip," Mr. E. W. Jones tells us some new facts about the Welsh in America; and besides a varity of short poems by Dr. Holmes and other well known writers, the editor contributes his usual careful and critical reviews of current ilterature. Hurd \& Houghton, pablin,
Thr Aldine.-The Aldine Company, 18 and 20 Vesey street, New York,
have issued, of this year's numbers, Parts $1,2,3$, and 4 . The engraving, letterpress. and paper are all of the highest standard of art work. Pubpublishers announced it as their intention to make it the leading art journal of America. They are fuifiling their proxise.

Inventions Patented in England by Americans.
[Complled from the Commissioners of Patents' Journal.]
From January it to February 3, 1876. Incluasive.
Boat Detacger.-R. F. Hyde, Springfeld, Mass
Boller, ftc,-B. T. Babbitt, New York city.
Boller, etc.-B. T. Rabbitt, New York cly
Car Axle.-T. S. E. Dixon, Chicago, ill.
Car axle.-T. S. E. Dixon, Chicago, Ill.
Casting Coppre, kTC.-J. Turner, Bridgewater, Mass.
Concretr Block Press.-T. Cook, Sing Sing, N. Y.
Oncretr block Press.-T. Cook, Sing Sing, N. Y.
or Tubr.-G. H. Simmons, Bennington, Vt., etal.
Oop TUbe. - G. H. Simmons, Bennington, Vt ,
cutting Oil Cake.-A. B. Lawther (of Chicago, ill.), Liverpool, Eng
Electric Requlator.-.J. Sangster et al., Buffalo, N. Y.
Extinguishing Fires.-J. L. Hastings et al., Pittsburgh, Pa. Extinguishing Fires.-J. L. Hastings et al., Plttsburgh, Pa.
Flangine Machine.-R. C. Nugent, Dayton, Ohio. Two patents
Friction Clutch.-W. F. Holiske et al., New York city. Flangina Machine.-R. C. Nugent, Dayton, Ohio. Tw, Furnack.-E. Savage, West Meriden, Conn.
Gulove Fastenina.-F. G. Farnham, Hawley,
GLinve FAATENino.-F. G. Farnham, Hawley, Pa.
HARVESTER Sion.-Johnston Harvester Co., Brock
Harvester Shoe.- Johnston Harvester Co.,
Hors ${ }^{2}$.
Hot Water Supply.-J. Archer, Den
Lamp.-A. Burbank, Rochester, N. S.
Liquid Meter.-D. W. Huntington et al., South Coventry, Conn.
Lock Wasmer.-S. E. Gee. New York city.
Lubricant.-H. V.P. Draper et al., Hannibal,
Making Cigars, etc.-J. T. Hannaman et al, Mo., Baltimore, Md
Making Concrete blocks.-T, Cook, Sting Sing Mahing Concrete Blocks.-T, Cook, Sing S
Making Gas ertc.-J. P. Gill, Newark, N. J
Making Gas, etc.-J. P. Gill, Newark, N. J.
Makina Sacks,-H. P. Gariand (of San Franclsco.Cal.), Dundee,Scotland. Making Strel.-J. Baur (of Brooklyn, N.Y.), London, Eng. Two patents. Mafing Steel Rjds, etc.-C. P. Haughlan, Brookly n, N.:Y.
Metal-Turning Lathe.-H. M. Quackenbush, Hersimer, N. Y Metal-Turning Lathe. - H. M. Quackenbush, Herbimer, N. Y.
Printing and Cutting Machine.-R. M. Hoe et al., New York city.
 Railway Gate, etc -S. A. Jenks, Lincoln, r. I.
Railuay Wheme, btc.-J. Bowron. Senr., Philadelpha, Pa., et al. Reefing Sails.-P. C. Marsh, Nor hampton, Mass.
Refrigrrator.-J. J. Bate, Brooklyn, N. Y. Refrigrrator.-J. J. Bate, Brooklyn, N. Y
Regvolving Pistol.-E. P. Boardman, Lawr Rock Drill.-M. D. Converse, New York city.
Roller Skate.-S. O. Brown (of San Francisco. Cal), London, England Roller Skate.-S. O. Brown (of San Franc
Rowlock.- F. A. Gower, Providence, R. I.
Screwing Machine.-F.P. Sheldon, Providence, R. I.
Sewing Machine, mtc.-R. H. St. John, Springfild, Ohio.
Sewing Machine, ric.- -R. H. St. John, Springfield, Ohio.
Sewing Machine.-Howe Machine Company, Bridgeport, Conn. Sewing Machine.-Howe Machine Company, Bridgeport, Con
Sewing Macine.-J. E. A. Gibbs, Steele's Tavern, Va. Sewing Machine.-J. E. A. Gibbs, Steele's Taver
Srwing Nerdie.-H. M. Jenking, New Tork clyy.
Sharpening Saws.-W.L. Covel, Providence, R.
Steam Enaine.-W. C. Wilcox et ar., San Francisco, Cal.
Treating Oil Serds.-A. B. Lawther (of Chicago, ill.), L
 Type Writer, etc.-G.H. Morgan, Alexandria, Va,
Wood Screws, etc.-T. J. Sloan, New York clty.
qucent durcticau and foreign tatents.

new agricultural inventions.

improved butter package.
Andrew Jackson Dibble, Franklin, N. Y.-This is a new package aontaining butter, so constructed that the cover may be readily attached and detached, and when attached will be held securely cnd airtight in place, and will prevent the tub from spreading. It and cover of a tub, together with a locking latch.
mproved milk pan cover.
Alfred F. Morgan, Mason City, Iowa.-This is a cover for milk pans, made of wire gauze for the top, tin or other sheet metal for the rim and for the flange which shuts down the sides of the pan.

IMPROVED HARVESTER RAKE.
Samuel M. Morrison, Fairfield, Iowa.-This is an improved attachment to harvesters that raise the cut grain to the binders' table by the action of vibrating rakes, so as to cause the grain to be delivtion. The invention consists in the combination of the upper rakes tion. The invention consists in the combioation of the upper rakes
and their crank shafts with the lower angular rakes and their crank shafts. There is a slight variation of speed of the rakes during a portion of their revolution, and the consequent jostling of the grain has a tendency to cause tangled grain to become parallel with the teeth, which are set in horizontal lines. The upper rakes are so set that their teeth may slightly overlap the teeth of the lower rakes, while leaving sufficient space between the rake bars, cility.

improved cotton planter.

Leonidas M. Rhodes, Warrenton, Ga.-This is an improvemen upon a machine hitherto patented to same inventor, in which the
seed is discharged through a slot in the bottom of the hopper. It is now found that a better result may be attained by constructing the hopper without a slot, and providing the traveling wheel with pins or fingers inclined rearward, so as to draw the seed toward the
side of the wheel and deliver it through the space between the hopside of the whe
per and wheel.

John Platten, Fort Howard, Wimp Extractor. rated by a horizontal sweep, to which the a vewer is applied. The windlass winds the fall of a single purchase, from the moving block of which connection is made to the stump by a series of bars se-
cured together. The lower end of the windlass cylinder cured together. The lower end of the windlass cylinder revolves
in a ring formed in the center of a lower bar, and restsand revolves in a cup-shaped plate connected with and supported from the bar, a space being left between the edge of the cup and the ring of the bar, to enable any sand or dirt that may get into the said cup to be conveniently removed

IMPROVED GRIT SEPARATOR.

Walter M. Jackson, Augusta, Ga.--This consists of a pair of rid-
dles, which detain and transversels shake the dles, which detain and transversely shake the grain until the latter
passes through their perforations, while the lighter impurities are eliminated in front of the winnower by a blast from the fan, com veyers, converging toward each other in is placed a pair of con and toward the middle of a subjacent grading sieve.

IMPROVED CHURN.
David L. Epperson, Mill Shoals, IIl.-The novel feature here is da3her geared with a crank shaft, so as to be rapidly revolved, and top, through and out of it at the periphery, and back to the top, by which it churns the cream into butter in a short time.

NEW CHEMICAL AND MISCELLANEOUS INVENTIONS.

IMPROVED SHIRT

Geo. D. Eighmie, Poughkeepsie, N. Y.-This invention relates to certain improvements in shirts, designed to obviate the breaking and the girding of the suspenders. It consists in a bosom the body attached to the shirt about an inch from the edge, so as to leave a
oose edge all round, beneath which the suspenders pass when bend-
ing forward. The upper part of the bosom is atteched to the ing forward. The upper part of the bosom is attached to the neck on the shoulders does not cause the top of the bosom to bend or rumple.
IMPROVED HARNESS.
Benjamin H. Cross, Byron, Ga.-In order to connect the trace a buckle tongue suspended from a bar fastened in a loop attached to the back strap, so that the trace chain passes through the rings and is fastened by the tongue.

IMPROVED CARTRIDGE.
Louis T. De Froideville, Paris, France.-This inventor interposes between the powder and the bullet a layer of grease to keep out dampness, to operate as a gas check, and lubricate the gun; and then, to prevent the grease from permeating the powder grains, he places between the grease and the powder two wads, with a metal tration of the grease through the wads.

IMPROVED HARNESS SADDLE.
Robert Spencer, Brooklyn, N. Y.-The object of this invention is same to automatically adjust itself to the horse's back. It consists in the combination, with the bearings and trimmings of a harness saddle, of a thin main plate of elastic steel, securely attached to,
and worked up with, the other parts of the saddle. The crupper and worked up with, the other parts of the saddle. The crupper loop also, being held in place by the cruppe
being held in place by its rein, cannot turn.

IMPROVED LOCK FOR TRUNKS, ETC.
Christian H. Stall, Red Falls, N. Y.-This consists of a system o checks to obstruct the turning of the key and prevent the unlock ing of the lock, except by one acquainted with the order of opera-
tion by which the checks may be displaced or avoided.

NEW HOUSEHOLD ARTICLES.

IMPROVED COMBINED SKIMMER AND FORK.
Emerson E. Flagg, Brattleborough, Vt.-A skimmer and a fork are here connected with each other in such a manner that they
may be slid back and forth upon each other, to adapt the instrument to be used as a skimmer or as a fork.

IMPROVED CUPBOARD.
Lewis Spangler, Auburn, Ind.-This is a cupboard constructed to extend through two stories, connecting the kitchen and dining room
fioor with the cellar fioor below. It is set into the dividing wall o the kitchen and dining room, and arranged with doors at both sides to give access from either side. The cupboard is arranged with sinks, hinged tables at both sides, and an elevator that is raised and lowered by hoisting mechanism, to connect with the
cellar. A refrigerating and other shelves serve to preserve articles cellar. A refrigerating and other sh
that have to be kept in a cool state.

IMPROVED FLOUR SIEVE.
Ferdinand Blair, Pleasanton, Kas.-This invention relates to supporting the rotating crank shaft of the $\mathbf{i}^{\circ+4}$ er upon arms which are bent upward at the middle: the object being to provide a space at
the center of the concave wire bottom of the sifter for reception of hard particles in the flour, or worms, insects, or other foreign bodies.
George Sherwin and Edmond Hoople, New York city.-In thi device the chimney is fitted on guides, with or without friction ollers, to enable it to be raised up and let down for lighting, trim ming, filling, etc. The guides control and keep the chimney in place, so that it will not fall when raised up, and will drop into its place with certainty when down.
improved weather strip.
Thomas Walker and Washington A. McCrery, Pleasantville, Md The object of this invention is to provide a weather strip for clos onsists in the particular construction of a strip of molding hav ng an extensible slide held to the molding by a sprng, with a trip of rubber upon its bottom, and the whole so arranged that When the door is open, the spring holds the slide up and away from the carpet, and out of sight, and when the door is closed the
slide is extended downward, so as to entirely close the crack.

> IMPROVED MOTH- PROOF COMPOSITION.

Wm. H. Hall, Jersey City, N. J., and John Kennell, Passaic, N. J. The invention relates to that class of preventives which have een long employed to deter moths from attacking woolen goods, urs, and pictures, and consists in dissolving purified tar and mix ract of cedar. The solution may then be sprinkled on the wrappe

NEW WOODWORKING AND HOUSE AND CARRIAGE BUILDING INVENTIONS.
improved tire upsetter.
Charles H. Reynolds, Brooklyn, N. Y., assignor to himself an William Freudel, same place.-This invention consists of grippe radius; and it also consists of a novel contrivance of the pivots fo oth the stationary and movable jaws, arranged so that the resist nce is taken directly by the supporting blocks instead of being xpended on pivot bolts.

IMPROVED THILL COUPLING.
William O. Hanby, Osceola, O.-In this thill coupling, the inven tor employs a clip having a perrorated block, through which passes the pintle, to which the thill iron is hinged. The invention is a non-rattler, the work and wear being brought upon the couplivg bolt, wh
of rubber.

NEW MECHANICAL AND ENGINEERING INVENTIONS.

mproved combined barrel hoop machine and coiler George C. Skidmore, Grand Rapids, Mich. This invention relate to a novel construction of a machine for making barrel hoops. It onsists in the arrangement of devices for feeding the boards to hoop slip. It also consists in the means for aulomatically revers ing the motion of the reciprocating shuttle, and in the means fo trimming the ends of the hoop slip, crimping it into the circula form, and coiling them into bundles for the market.
improved belt coupling.
James K. P. Shelton, Gaston, Ala.-A series of square holes is made in each end of the belt. On the under side of the latter are
placed uransverse wires. The lacing is flrst secured to one end of the belt, passed through the first hole around the wire, then led to the other end of the belt, carried through the opposite hole and around the wire, and so on untii all the holes are laced. Notched
strips of belting are inserted between the wires and the belt to pre-
improved car coupling
Horace Resley, Cumberland, Md.-This invention relates to certain improvements in that class of automatic car couplings in
which a gravity catch is pivoted in the draw bar so as to rise above the entering link and fall through the same to effect the coupling. It consists in the particular construction and arrangement of the said gravity catch, provided with a hole which receives a coupling pin of the ordinary construction, to secure the short links of cars unprovided with the gravity catch, whereby the devicesare equally
as well adapted to be coupled with the draw bars of the ordinary as well
form.
improved treadle
Henry Reese, Baltimore, Md.-The object of this invention is to essen the fatigue of operating sewing machines and other devices dle which permits the movement of the latter to be made without bending the ankles, and enables the operator to run the machin with a very light expenditure of muscular power. This result is accomplished by a peculiar construction of two independent trea dles hinged or pivoted upon opposite sides of the fulcrum of the main treadle, held in proper horizontal position by mea
springs, and arranged adjustably for either foot foremost.
improved screw-cutting dies.
Shadrach N. Cudworth and George R. Stetson, New Bedford, Mass., assignors to the Morse Twist Drill and Machine Company,
same place.-The die consists of two parts, held together by means of a guide, which has holes for screws formed in it, which are elon gated to admit of adjustment of the dies to which the guide is con nected. The invention also consists of two adjusting screws fitted in the body of one part of the die to secure the die positively afte being adjusted, and an improved adjusting die and guide connected with a screw plate.

IMPROVED BFLLT STRETCHER.
Frederick L Spiess and William Spiess, New York city.-Barsare clamped on the meeting ends of the belt. On the ends of said bar are journaled two or more loose pulleys; also hcoks are fastene on two or four of the extremites. To the hooks are attached the standig parts of cords which, passing over the pulleys of the bars,
form tackles whereby the ends of the belt may be drawn together IMPROVED PUMP PISTON.
Lorenzo D. Hovey, Clinton, Ill.-This piston has tapering base
 such a hight that a heavy cylindrical valve may slide vertically within them. Their upper ends are attached to the connecting socket of the pump rod. On ascent of the plunger, the valve's leather-lined packed bottom bears on the interior wedge ring, so a to close the opening through it watertight. The descent of the
piston lifts the valve and allows the passage of the water through piston lifts the
the base rings.

improved gigging machine

Carl Gerber, Sr., and Christian Woelfel, Webster, Mass.-This vention consists in combining, with the stretching and guiding
olls of a napping machine, sliding napping cards, arranged be ween each pair of guide rolls, and adapted to reciprocate in plane at right angles thereto. The quick withdrawal of the cards from the cloth gives them, it is claimed, no chance to stick, and over-
comes thereby the objectionable rigidity of the rotating wire cards, comes thereby the objectionable rigidity of the rotating wire cards, while doing the dressing in a more perfect and rapid manner tha the teasels,
the same.
improved nail machine.
Stephen Butterfield, Boston, Mass.-This invention consists of two sets of dies, arranged like comb teeth and fixed on slides. The lat-
ter are caused to move the teeth of one set into the spaces of the other set, in which condition they form dies, which shape rod hanging down from a feeder, so that they are caught between the fingers and shaped into nails by them. Below these fingers the pro jecting ends of the rods are upset, to form heads, by a header freed up nearly against the dies by the slide which works the dies The points are formed by the upper margins of the dies, and by cuttersimmediately above the dies the points of the nails are sepa-
rated from the rods. The header then moves laterally a little, and opens passages for the escape of the nails when freed by the open ing of the dies.
improved rotary engine and water wheel.
John Lucas, Hastings, Minn.-This invention consists in the conin diametrical registering slots, in which is arranged a piston plate the journals of which are seated in recesses made in the parts of the piston wheel. The pivoted piston is arranged to oscillate in a lin at right angles to the rotation of the piston wheel, by the action of the water or steam admitted into the engine casing. Said casing is
provided with an oblique opening for the passage of the pistonprovided with an oblique opening for the passage of the pisto bear against the inner sides of the casing. The pivoted pisto plate is made in two or more parts, to adapt it to receive and hold packing between said parts.
IMPROVED POST DRIVER.

Isaiah W. Norton, Memphis, Mo.-This is an improved portable post driver, that may be used on sloping ground for the purpose ty. The in the posts is perpendicular position with great rapid f a lever, and the post is then placed into position in the guides The hammer is then adjusted to the hight of the same by raising r lowering its pivoted supporting frame. When the hammer is in he required position, the drum is operated and the cams of th ul strokes of the hammer in rapid succession, until the post is driven into a level with the hight of the bed frame.

improved water elevator.

Andrew B. Flowers,Thibodeaux, La.-This consists mainly of a endless bucket chain. The buckets are provided with suitable hanging the tension of the chain, and also an adjustable spout The apparatus is suitable for draining marshes, irrigating land, and The appa
the like.

IMPROVED CHEESE CUTTER.
Bowne G. Yates, Madelia, Minn.-A hinged section ls opened fo he purpose of cutting off a portion of the cheese; the knife is the the knife, which is then carried down, cutting the pieces in radia direction from the cheese. After the piece is taken out the front ection is brought back on the base part, so as to inclose thereb the cheese completely, and keep off flies, etc.

IMPROVED SPRING YOWER.
Charles M. Frahm and William Scharnweber, Chicago, Ill.-This a new arrangement of a series of colled springsand gears, whereby an be wound up independently chine is running. There is an ingenious regulating apparatus an top mechanism, the whole forming a machine designed for

Tusturss and Eexsoual.

 The Charge for Insertion under this head is One DolLar a Line. If the Notices exceed Four Lines,Dollar and a Half per Line will be charged.
The "Catechism of the Lovomotive," 625 pages,
250 engravings. The theory, construction, and management of Amertcan Locomotives. Sent post patd, on re-
celpt of $\$ 3$. H. P. Stetn, RR.Gazette, 73 Broadway, N.Y. "Wrinkles and Recipes" is the best practical
Handoook for Mechanics and Engineers. Hundreds of
valuab'e trade suggestlons, prepared expressly by eelebrated experts and by correspondents of the "Sclentifl
American." 250 pages. Eleganty bound and illua-
trated. A splendid CCristmas gift for workmen and
 Wanted-Machines for Knitting Fancy Worsted
webs sultable for borders. H. E. Dillingham, 39 and 41 West Broadway, New York.
For the manufacture of experimental machinery,
correspond with the Allen Fire Supply Co., Prov., R.I. $\$ 1,000$ for any Churn ahead of "The Prize."
B. Cohu, 197 Water Street, New York. Parties familiar with the Sewing Machine Busi-
gess may hear of good business, by applying, by letter or In person, to the Pennsylvanis Tack Works, Norrt Warte
Wanted-A large size second hand Vacuum Pan
also large size Hydraulic Press. Address A. G. Pinke
on, 103 South Street, Baltimore, Md Sash and Street, Baltimore, Md
For Sale-Wood Wh on page 172 . For Sale-Wood Working Mill, 2 Story, 35x60,and
Machinery complete, near I. Y.C.R.R. Depot, S. North

Painters \& Grainers-Send for descriptive Cata-
logue, \& Sample ot frrst class \& quick Graining. Executed with mv new perforated Metallic Graining Tool
40,000 in dally use. J. J. Callow, Cleveland, Ohto.
Wanted-Every Machine Shop to send for one of Wanted-Every Machine Shop to send for one of
Gardhner's pat. centerng and squaring attachments for
Lathes. On five days' trial, to be returned at our expense if not satisfactory.
and squared up per day. Price 835 . R. E. State \& Co.
Springield onto. Springitield, Ohio
aboanted 48 inch swing. Address Bentel, Margedant \& Co. Hamilton, Ohlo.
Family Dish Drainer-Shop right deed and pat-
terns, one year or more, 810 per year. J. R. Abbe, Laswterns, one yea
rence, Mass.
Locomotive-A No. 1,10 tun, Narrow Gauge,for
Sale, very cheap. C. M. Hart, Clarksburg, West Va. For Sale-6. good Millere, $\$ 115$ each; ; No. 1 Brown
\& Sharpe Screw Machine, $8100 ; 14$ in. Bolt Cutter, 81155 ;
 3 Water Powers for Sale- 15,30 \& $50 \mathrm{H} \cdot \mathrm{P}$. (ooncen-
trated would average over 90 H.P.), on the "Buskh111,' at Easton, Pa., and 25 a . Land, 5 D Delling ", 3 Mill Sites, with 2 good Dams. Sale March 7, 1876 , on the premises For 6 1st class Shapers and other tools, new and
2nd band, address E. P. Bullard, 43 Beekman St., N. Y. Makers of Metal Button Machinery, address
Smith $\&$ Wicks. Baltimore. Md. Soeds and Implements-200 illustrations just out.
Enclose 5 cent stamp. A. B. Cohu, 197 Water St., N. Y. For Sale-125 Horse Power Beam Engine, with
parallel motion, sultable for a steamboat. P. O. Box 208, New Haven, Conn.
Yocom's Split-Collars and Split-Pulleys are same appearance, strength, and price, as Whole-Collars, and
Whole. Pulleys. Shaftng Works, Drinker St., below 147
Piles-A sure cure. Sample free, post paid. A
trial is its best advertisement. Wonder Worker MediSolid EmeryVulcanite Wheels-The Original Solid Emery Wheel-other kinds imitations and inferior. Cau ard Betting, Packing, and Hose. Buy that only. The
eest is the cheapest. New York Belting and Packing Company. 57 and 38 Park Row. New York.
Steel Castiogs, from one lb. to five thousand lbs.
Invaluable where great strength and durabillty are required. Send for
Co., Pittsburgh. Pa.
The Original Skinner Portable Engine (Im-
proved), 2 to 8 H.P. L. G. Skinner, Erie, Pa. Boult's Paneling, Moulding and Dovetailing Ma-
chine is a complete succeas. Send for pamphlet and sample of work. B. C. Mach'y Co., Battle Creek, Micn. Patent Scroll and Band Saws, best and cheapest
in use. Cordesman, Egan \& Co., ClncInnati, Ohio. For best and cheapest Surface Planers and Uni-
versal Wood Workers, address Bentel, Margedar ; $\&$ Co. Mach'y Depots, Mech. Eng'rs, Millwrights, New Our new catalogue of drawing materials will be
ent on recelpt of 10 c . Add. Keuffel \& Esser, New York. Hotohkise Alr Spring. Forge Hammer, vest in the
market. Prices low. D. Friobie \& Co. . New Haven, Ct. Water, Gas and Steam Goods-Send eight stamps
or Catalogue, contalning over 400 Illustrations, to Balley, Por Cratague, contanning over
Farrell \& Co. Pittsburgi, Pa.
For best Presses, Dies, and Fruit Can Tools, Bliss
\& Williams, cor. of Plymouth and Jay, Brooklyn, N. Y. For Solid Wrought-iron Beams, etc., see adver-
tusement. Address Union Iron Milla, Pittsburgh, Pa.,

Hotchksess \& Ball, Meriden, Conn., Foundrymen
and workers of sheet metal. Fine Gray Iron Casting
to order. Job work solleited.
Peck's Patent Drop Press. Still the best in use
Address Mllo Peck, New Haven, Conn. All Fruit-oan Tools,Ferracute W'ks,Bridgeton,N.J
Americen Metaline Co., 61 Warren St., N.Y. City. For Solid Emery Wheels and Machinery, send to
the Unlon Stone Co., Boston, Mass. , for circular.
Hydraulic Preseses and Jacks, new and second
hand. Lathes and Machnery for Pollshing and Bufming
Metals. E. Lyon, 470 Grand Street, New York. Spinning Rings of a Superior Quality-Whitins-
ville Spinning Ring Co., Whitingrill, Mase. For best Bolt Cutter, at greatly reduced price
cddress H. B. Brown © Co., New Haven Conn.
Dlamond Tools-J. Diflinson, 64 Nassau St., N.Y.
Temples and Ollcans. Draper, Hopedele

THuces (4uniis

G. C. will find a recipe for liquid glue on p
C, vol. 32.-F. G. S. will find a description of th ventilation of the Paris opera house on p. 134, vo 3.-J. O. M. will ind a description of artificia ivory on p. 234, vol. 30. See above for liquid glue
-R. W. E. will find directions for making a æolian barp on p. 315, vol. 33.-J. H. P. will find recipe for a light metal on p. 347, vol. 32.-N. M. E will find directions for cleansing water pipes on p
49 , vol. $34 .-\mathrm{F}$. L. J. will find full directions fo 49, vol. 34-F. L. J. will find full directions for
making paper boats on p. 163, vol. 27. This also making paper boats on p . 163, vol. 27. This also
nswers F. T. H.-E.S. S . will find full direction for constructing a windmill on p. 241, vol. 32
This also answers B. W . S. -N . will find direction for filling black walnut on p. 315, vol. 30.-F. B. M will ind the information he wants, as to condensa-
ion on a cold vessel, on p. 43, vol. 31.-A. J. should ion on a cold vessel, on p. 43, vol. 31.-A. J. should
ddress the School of Mines, Columbia College address the School of Mines, Columbia College
New York city.-J. H. K.'s query as to color o New York city.-J. H. K.'s que, vol. 53.-N. E. F will ind a description will find a description of brown stain for wood on this or the next page.- s . B. will find a description of a battery suited fo
plating on p. 26 , vol. 32 .-G. H. W. should read plating on p. 26, vol. 32.-G. H. W. should read
Chevreul's book on color, to be obtained through ny good bookseller.-A. N. will find directions fo silding on stone or marble on p. 59, vol. 30.-J. B will tind full
p. 150 , vol. 33 .
(1) P. C. says: Please state the number of hots that can be fired from the best kind of mi raile.
(2) J. M. R. asks: 1. How much steam will
pass through a $21 / 2$
inch pipe in 1 minute at pressure of 60 lbs. to the square inch? A. The question cannot be answered generally, as it de pends on the length and arrangement of the pipe,
the quality of the steam, etc. As a rough approxthe quality of the steam, etc. As a rough approx-
imation, the amount may be taken as between 1,600 and 1,700 cubic feet a minute. 2. How many cubic feet of steam will 1 cubic foot of wate
make? A. It will depend upon the pressure o the steam. You will find tables in any good mod
rn treatise on the steam engine. 3. How many ern treatise on the steam engine. 3. How many cubic feet of water will a boiler (diameter 62 inch-
es, 15 feet long, with 40 three inch tubes) evaporate in one hour, fired externally, to ma? A tween such boilers in practice, about the following range of results is obtained: Coal burned per
qquare foot of grate per hour, 5 to 15 lbs., wate vaporated per lb. of coal, 6 to 10 lbs. Hence you ee that it would be tolerably difficult to answer so eneral a question as you have proposed, in a de will pass through an 12×14 engine in one hour, running at a speed of 150 revolutions per minute at 50 lbs. pressure per square inch? A. There is about the same range in engines of this size as
there is in the boilers, theamount of water used per horse power per hour varying from 30 to 100 (3)
(3) W. M. asks: What is the name and What is the mode of drawing the proper curve upon which to turn the points of piles in order to
have them sink the deepest with a given blow? A. We imagine that you refer to the so-called antifriction curve, or tractrix. Its equation, referred to rectangular axes, is as follows: $x=h \times \log$.

$\left(\frac{h+\sqrt{h}-v^{2}}{y}\right)-\sqrt{v^{2}-v^{2}}$

(4) F. T. T. asks: Can you point to a series tress on very short bars, the lengths of whic are, as a maximum, but little greater than the lines that are the measures of their cross sections? A. If, as we understand you, you refer to a loa,
uniformly distributed over a very short beam axed or supported at the ends, we imagine tha you mightsafely proportion the part by a consid
eration of the shearing resistance. We shall be very glad, however, to receive and publish any ex perimental data that our readers may have.
(5) A. J. asks: 1. In driving a sawmill, is he engine drel? A. No. 2. How would this compare fo safety with the usual method of using a long belt A. Not well. 3. How many feet of soft timber per
hour, with suitable feed, can be sawn with a 52 inch saw driven by a 15 horse power engine? A This depends on a variety of conditions. 4. Is it truethat the bore of a new engine cylinder
ways an even number of inches? A. No.
(6) J. W. P. says: I am about making an
ngine to drive an ordinary skiff. I think that two oscillating cylinders, each about $1 ; j^{\text {inches }}$ bor by 3 inches stroke, will be about as good a form a wish you would be so good as to tell me boiler. wish you would be so good as to tell me the prope
size and form of boiler, also the best kind of fue to burn, and what degree of power it would b likely to develope. A. Make a boiler from 18 to 20 inches in diameter, and $31 / 2$ feet high, with two
inch tubes. Use anthracite coal, nut size, for fuel In regard to the horse power of this or any othe
(7) B L give
(7) B. L. asks: What is meant by sul
(huric acid at $50^{\circ} \mathrm{B}$. ? A. 50° of Beaum phuric
meter.
When
What shape of tool is most suitable for turning cett wheels, such as are used for pol
crocus, etc.? A. A carpenter's chisel.
(8) W. T. says: I am about to put an en-
gine of $11 / 2$ horse power, making usually 300 revolutions per minute, into a boat 18 feet long, 5 fee wide, drawing 8 inches forward and the diameter of the propeller aft. What should be the size and
peller, it should have a diameter of at least 18 inch
es, and about $21 / 2$ feet pitch. 2 . Should the shaft be placed pout $21 / 2$ feet pitch. 2. Should the shaf parallel to the keel? A. Make the shaft approximately parallel to the keel. It is difficult to give general estimate of the slip of small propellers, but for a small boat like yours you will do ver
well if the slip does not exceed 25 or 30 per cent. (9) J. E. R. says: Will you please inform me how I can restore edge tools, such as plane bit, chisels, etc., to their original temper, after the ave gone through a fire? A. Heat them to lean water. Then brighten the surface with em ery and reheat them slowly over a piece of heated ron until a b
(10) J. B. J. says : I wish to roll sheet brass and crimp the same while hot. The heat softens the metal and takes all of the stiffness out of it.
By what process can it again be hardened? A. By olling it cold.
(11) C. B. asks: 1. Is there any way of ma ng wiped joints on water pipes older than freez off? A. We know of none. 2. What is the urne an air chamber in a force pump? A. To make the supply and delivery of water even. 3. Why does
waterpipe burst when frozen? A. Because the water pipe burst when fr
(12) D. H. asks: Does the pressure on the valve of a common slide valve engine depend on
the area of the valve or the area of port? A. On the area of the valve or the area of port? A. On
(13) J.S. asks : 1. What temper is required for a butcher's steel? A. The steel may be hard empered to a brown color. 2. Is there a certain quality
steel.
(14) J. H. says : It is proposed to chang hecourseof a slow, circuitous, and now unhealthy re 50 feet wide, and are ample to resist spring reshets. It is proposed to cut through a bank o clay above the town : this cut would be 1,000 feet n length by 22 feet deep, and in it a fall of 10 feet ould be obtained, and the water would go clea width would we require to cut to carry off the mount of water mentioned? A. The proposed all of 10 feet in 1,000 would create a .elocity too reat for the permanent stability of the bottom and sides of the cut, on account of the scouring
ffect it would have upon them. This would herefore, involve the necessity of paving the oftom and sides, to prevent the gradual abrasio estruction of the cut itself caving in and ecessity and the depth of the excavation re quired, you will find it more economical to con truct a light, brick, cylindrical aqueduct, and to effect your excavation by tunneling, through the disturbing the surface of the ground. The size o he excavation should be 6 feet 8 inches in diame with a brick arch 4 inches thick, carefully laid in ement : this would give a clear section of 10 feet and would discharge all the water of the stream, in in the season of freshets. In excavating, be in at the lower end and follow on at once wit the brick arch, being careful to pack the earth
well over the top of the latter, and behind the ides of it, as fast as a course mas be constructed ; in this way you will support the earth as you pro gress, and make all safe. You can secure the
proper grade by means of a leveling instrument, having the bottom edge inclined at the gradient o inch in 100 inches. and the top edge level; this can be applied to the bottom of the aqueduct. In upon boards laid upon the bottom to protect the brickwork. If you should strikea vein of sand his need nut prevent your proceeding, as in this ase sou can use the shield tunnel excavato
(15) L. M. S. says: I have care of an engine which is 12×25 inches, and runs at 130 revolutions per minute. It cuts off at $9 / 4$ stroke, and has $1 / 8$ of hen the engine is on the center). Is the lead too nuch? A. The $\frac{1}{1}$ inch lead will be better. You may cut off at 78: but if you give steam to the ful rful for want of a free exhaust
(16) D. P. P.asks: 1. If a water wheel is at throw up as much water as the wheel would re quire to operate it? A. No. Such a machin would be a perpetual motion, which is absurd. If I fill a small strong chamber with air and com ress it sufficiently to drive a small air engine ould 1 get power enough to operate one or more er for any length of time? A. No. This is an ther version of the idea in your first query.
(17) T. D. W. says: I am about to make your opinion as to the bearings for the spindle? want it to run as light as possible, and to turn ried a cone on each end of spindle, but found that the spindle ran very hard. It would jamb or shake, no matter what care was used. Were the
cones at a wrong angle? They were at 30° from he horizontal. A. Place two broad projecting your lathe will run all right.
(18) I. B. asks: 1. What is the best quanin a boiler? A. From 30 to 38 square feet of heating surface per square foot of grate. 2. Does this proportion vary for different kinds of fuel? A.
Not essentially. 3. What is the proportion of cross
$\frac{1}{5}$ to $1 / 1$. 4. What is the proportion of area in the
second row of return tubes? A.Generally somewhat maller; for instance, if $\frac{1}{6}$ in first row, $\frac{1}{8}$ in sec ond. 5. Would you consider it just as economical in fuel to get the sameamourt of cross section by one row of 5 inch return tubes as by two rows of
inch return tubes? A. Generally, there would ot be any great difference
(19) L. G. C. asks: Is there a method to find true circle if there is not room to put the center Any number of points may be found, in a simar manner to that in which they are determined or a ra:Iroad curve. Perhaps some of our read-
rs will be sufficiently interested in the problem to their hands at a geometrical solution.
(20) H. S. T. asks: How can I make a stain or wood to imitate mahogany? A. A simple wa quafortis, and dry it at the fre. This is good fo veined birch and beech. The latter may also be stained by putting 2 ozs. dragon's blood into 1 quart ectified spirit; let the bottle stand in a warm
lace and shake it frequently; and when the gum dace and shake it frequently; and
(21) J. B. Jr. asks: How can I make lime ater? A. Slake 4 ozs.lime with a little distille water, then add distilled water to make 1 gallon,
Cover the vessel and set it aside for 3 hours. Pour the clear liquor for use.
(22) J. P. M. says: A trough is 12 inches wide, 1 inch deep, and has a fall of 3 inches. How
many feet of water will run through the eame per
minute? A. You do not send sufficient cata, as he discharge will depend upon the length of the trough, as well as the other elements. You can make the calculation, approximately, by the fo

($\frac{\text { area of way in } \mathrm{Eq} . \mathrm{ft}}{\text { wet perimeter in } \mathrm{ft} .} \times 2 \times$ fall in ft .per mile)

(23) R. R. Z. asks : How high a column of water can air be forced through with a pressur ower? How many lbs. air pressure would thak column of water 12 feet high, with no obstruc ion to the passage of the air on the top of water A question of this kind could best be deter oined by experiment. If any of our readers hav
(24) G. B. asks : How can I make impression aper? A. Take the very thinnest writing paper ith pure tallow. lie the past hen wipe smooth with a piece of cotton waste ny colored pigment may be used in place of lam lack, but it must be very finely pulverized.
(25) W. P. C. asks: How can I obtain iron the form of impalpable dust? A. The iron ob tores, answers your description; it can be pre pared as follows: Take 30 troy ozs. subcarbonat f iron, and wash thoroughly with water till n races of sulphate of soda are shown by the ap-
propriate tests; then calcine, in a shallow vessel ropriate tests; then calcine, in a shallow vessel, by bending an oblong piece of sheet iron in form of an incomplete cylinder, and introduce into thi wrought iron reduction tube, about 4 inches in iameter. Place the reduction tube in a charcoa urnace; and by means of a self-regulating gener or of hydrogen, pass through the mass a stream of that gas, previously purified by bubbling sucdiluted with three times its volume of water, and hrough milk of lime, severally contained in hal gallon bottles, about one third filled. Connect ith the further extremity of the reduction tube lead tube bent so as to dip into water. Lute a en junctions airtight; and when enough bydro he apparatus, light the fire and bring that part o he reduction tube occupied by the subcarbonat o a dull red heat, which must be keptup as lon the bubbles of hydrogen contain aqueous va
When the reduction is complete, ramove the ph. When the reduction is complete, remove the
and from the reduction tube
(26) W. S. H. M., of Reading, England, asks: Has it ever been proposed to utilize water
and other power, now running to waste, by storing it up for future consumption? A. Yes, ver ften. The compression of air in strong vessels, requently suggested.
(27) L. L. H. asds: How can I prevent oil paintings from cracking? A. Cracks occur in of aintings when the colors wereground in oil con aining impurity or otherwise unfit for the pur ut purity is the essential quality of all vehicle
(28) J. D. R. asks: Is there any remedy fo ender fingers? Iam a printer, and my fingers ge ore and the skin peels off. A.Printers frequently place with the resulting oil.
(29) G. H. C. W. asks: 1. Does multiplying ive the area in square inches or circular inches? A. In square inches. 2. What is a circular inch A. A figure the square of the diameter of which multiplied by 0.7854 gives 1 square inch.
(30) A. B. D. says: I am finishing wire work ith paint mixed with varnish; it takes too long
or it to dry hard. What will dry quickly and not reak off easily? A. Bill diry quicsly and not nough litharge to make a stiff paint; add 1 part b weight of pigment to every 10 parts of the lith
(31) G. H. S. asks: Is there anything that remove the smell of tobacco from old ciga oxes? A. Varnish the box on the
(32) Q. C. asks: 1. How many degrees or
whatportion of a degree is an ohmaccording toOer-
sted's law? A. That depends upon a number of onditions, and consequently varies with differen instruments. You will find full information on tific American Supplement. 2. How in ien if a current of electricity is passing through a ightning rod? A. If occasional tests show little or no appreciable resistance, there is no occasion o trouble oneself further. As a general thing owever, it may be assumed that currents are al ways traversing the rod. 3. Could a pocket com pass be arranged f
(33) J. A. asks: 1. Which is the most ef fective, a glass or a hard rubber plate, for an elec
trical machine? A. Ebonite plates are recom trical machie A. Ebonite plates are recom
mended as preferable to glass.
2. Is the struction of the machine the same with eithe plate? A. Yes. 3. Must an amalgam be used o the cushions of a hard rubber plate machine? A.
(34) E. A. F. asks: Why is it that a circuar saw, after being used long enough to require two or three gummings, becomes rim bound, or, in the saw becomes dished? A. There exists in th minds of many persons, who are not fully acquainted with the principle upon which circular saws are made, an erroneous opinion that a saw
should work the same until worn out, if it is not ccidently sprung in use, or strained in gumming. So far as any damage to the saw is concerned, there is no difference between the use of a bur gummer and a flle; but if proper care is not exor-
cised in the use of the emery wheel, there is mor danger from their use than with the file or the burr After a few times gumming, the saw will be en larged on therim, so that the slightest warmth will ause it to buckle, and there is no remedy left but ome, ho wever, entertain the erroneous impressio that a saw rehammered will never run as well as when new. Never was there so great an error ; on the contrary, a saw rehamniered will generally run (or nearly all) is worked out of the sam by using and it generally works stiffer than when new. aw must become red hot to cbange the temper Inserted toothed saws are not as liable to become
expanded on the rim as solid saws.-J. E. E., of expa
Pa .
${ }^{(35)}$ J. M. H. says: I wish to give a nice finish to the walls of my parlor, and propose to use
the recipe on p. 53 , vol. 12 . Wouid you recom mend it? Is the size spoken of a paste or prepar ation of glue? Please give me proportions of ingredients, etc.. A. We have not tried the process the size intended is the ordinary glue water. You would do well to try experiments with it on a piece of wall thatit would not injure.
(36) S. B. Jr. asks : I. Which electro-magized wire, one to lift an armature weighing 1 anen suspended $\frac{1}{16}$ of an inch from its poles, or one where the distance is $\frac{1}{3}$ g of an inch and the weight 1 lb . A. Electro-magnets, such as are used for telegraph sounders, having three or four ohms recells of Callaud battery are required to enable such an electro-magnet, through the medium of 1/2 mile of ordinary line wire, to lift the armature as above? A. Six or eight cells of Callaud battery will answer, provided the resistance of the circuit does not exceed 30 ohms.
(37) C. F. S. says: 1 want to make a magner and 6 inches long, and magnetize it to saturater and 6 inches long, and magnetize it to satura-
tion. Will you please tell me what size of wire, number of layers, and battery power will serve
my purpose? A. A couple of sounder coils like my purpose? A. A couple or sounder coils like
those to be seen in any telegraph office, with two or three cells of battery, will charge a soft iron core highly.
(38) N. Y. S. asks: Is the compound used in charging fre extinguishers a secret ? A. No. Car-
bonates of the alkalfes or alkaline earths are commonly employed for this purpose, such as carbonate or bicarbonate of soda, carbonate of lime, etc, etc. These are placed in the lower part of a suitable vessel; and immediately over it is placed a vessel containing a strong acid, such as muriatic
or sulphuric, so arranged that, when the instrument is required for use, the vessel containing the acid may be inverted, thus emptying its contents upon the carbonate below. A violent action immediately ensues, and carbonic acid gas is liberated in great quantity. This gas is the fire extinguisher. Various modifications of this instrument, in the method of placing and manipulating the recarboaic acid gas as a fire extinguisher was first recognized: but the principle is the same in all.
(39) J. H. P. asks: How is prepared rubby this name. Do you mean ordinary vulcanized rubber, vulcanite, or ebonite?
(40) J.H.P.says: A lady in the N. Y. Times is an excellent remedy for swollen joints caused by rheumatism. I attempted to dissolve some niter in alcohol of 95 per cent, and it would not dissolve. What is the matter? A. Niter is almostabsolutely insoluble in strong alcohol. Dissolve the
saltpeter in the smallest quantity of cold water saltpeter in the smallest quantity of cold water a time, with constant stirring. The addition of too much of the alcohol will precipitate the salt.
(41) P. L. \& Co. ask: How can we make senimmediately curl up with the heat? A. By passing a good quality of gelatin, previously softened by
hot water, between oiled rcllers set so
puce a film of the required thickness.
(42) H. F. B. says: In constructing a grind ng mill, the grinding being done by cast iron rings, it is very desirable to have them of the hardcan be obtained by mixing cast iron with spiegel isen. Am I correct ? A. Yes. Aceording to th percentage of spiegeleisen employed, the percent age of carbon may be changed in the pig
duced, with a similar change in properties.
(43) P. S. B. says: 1. I have in my posses ion an oriental ruby of great hardaess, weighin tremely fine color, b:illiancy, etc., is said to be even more highly valued than a diamond of the same weight. The exact value of your ruby could
not be given without seeing it. 2 . What book or books must I consult in order to obtain the most the most exhaustive knowledge of the finer metals
and precious stones? A. Consult Emanuel on "Diamonds and Precious Stunes," and Jones on "The Treasures of the Earth."
(44) D. L. asks: Would it be possible to re store vision in an eye of which the lens is de
stroyed, by putting in an artifieial lens? A. The oretically, yes; but the science of surgery has not as yet, become sufficiently skilled to attempt such an operation on this most delicate and susceptible organ.
(45) S. R. asks: 1. Can sulphuric acid be concentrated to sufficient strength in lead kettle o treat the refractory silver ores of Colorado and Nevada? A. Concentrated sulphuric acid mustb mployed, and for thislead vessels are not ade quate. Instead of making the ore digesters o o employ digesters of cast iron, white or mottled ron being preferred. It has been found that these vessels are unacted upon by the strong acid, since the surface becomes coated with a thin lase of metallic silver. 2. In using iron pyrites and ores heavily charged with sulphur, what fue Fould be the best? A. Sial furnace or in heaps in the openair; the ignition of the sulphur in the or being effected by placing the latter upon a layer of brushwood. The roasting must not be carried too far, but sufficient sulphur must be left to produce a proper regulus. The roasted ore may then be
(46) S. C. P. asks: What is the origin of the
symbolsused in apothecaries' weight ? A. These symbols used in apothecaries' weight? A. These inscriptions on the ancient monuments of Egyp This supposition is made more probable by the re the bones of a mummy in a tomb of the Necropolis at Thebes. This papyrus contained a treatise on medicine, written about 1552 B . C., and is conequently more than 3400 years old. In it the vol umes are indicated by special signs, and figures with dots above them represent weights. The equivalent to ${ }^{6}$ of a liter. The sign for a enatbears a striking resemblance to our sign fo a drachm.
(47) D. D. asks: Can you inform me how large ine or whisky vinegar is made? A.Obtain onstruct a false perforated bottom. Above thi fll the cask with good, well burnt charcoal in coarse lumps, over which pour frrst a sulficien it. Let the whole stand for a short time, when
it will be ready for the introduction of the alcoholic liquors This should be introduced in small quan tities at a time, and the apparatus kept in a moderately cool place to prevent too energetic an ac-
tion. This method will give you a pure vinegar which will suffer considerable dilution. Use very small quantity of annatto as coloring mat (48) yellow spots marked on the opposite sides two globe holds five gallons, and is placed close to the wall on a table directly between two windows. The light from the windows passes through the water in the globe and strikes the opposite side. The spots are of a soft, slimy nature, easily rubbed offr. Can you tell me what they are composed of ?
A. The spots may consist of several substances. Send some of the material, and we will tell you what it is and the mode of formation. It is not improbable that the water held bicarbonate of iron in solution, which gradually became decomposed on standing in a warm room, and, from some peculiarity in the currents generated in the vesmel, deposited hyd
(49) W. C. say
(49) W. C. says: Please give me a recipe
or dyeing veneers green. A. Put the veneers in for dyeing veneers green. A. Put the veneers in main immersed for 3 or 4 days, changing the water once or twice as occasion may require. Let them dry for about 12 hours before they are put into the dye: by observing this the color will strike quicker, and be of a brighter hue. Prepare the dye as follows: To 1 gallon of strong vinegar
add 1 lb . of the best verdigris fliely ground, 2 ozs . sap green, and 2 ozs. indigo. Place this in an ron or copper vessel, with as many of the veneers as the liquor will cover, and boil for several hours or until the requisite (intensity of color is obained.
(50) J. M. says: 1 am building a small engine. The boiler is 5 feet long $x 16$ inches in diameter, without files; it is made of $1 / 8$ inch iron.
Could this boiler afford steam enough to run a drag saw requiring 2 horse power, and what press-
ure could it stand to the square inch with ure could it stand to the square inch with safety?
A. We do not think the boiler would be large enough to do the work satisfactorily. You could maintain a working pressure of about 50 lbs . per square inch.
(51) A. J. H. asks: 1 . What preparation dion flm holding iodide and bromide of silver Can the camera obscura be utilized for photo graphy? A. Yes, but not so conveniently as the
rdinary camera. 3. Does any number of the SCientific American contain directions for pho ography? A. No complete treatise, but valuable uggestions will be found in almost every num-
What nd salt.
(52) C. L.asks : What effect (if any) do the many steam mills, locomotives, and steam vessel We do non the hum!dity of the atmosphere? A ating to this point: but we imagine that the ef ect, if any, is very slight and strictly local.
(53) F. G. W. says: The Boston and Albany ailway Company has some 240 locomotives, most which have no steam domes; and if you ask the men who handle these engines how they carry
heir water, they will tell you that no engine ork drier steam or less water than they do,unde all circumstances. It is well known that much o the track of this line, on the mountain slope beof 83 feet per mile. Steam domes are not anly ex pensive, but are a decided injury to a boiler, and f locomotives work as well, ther are certainly much better without them. This company is coninually building locomotives without domes, Which seems to be the best evidence possible tha hey are as useless as a steeple to a church. A omes. The celebrated Crampton engines, mad in 1847, had none, and gave excellent results. It is usually considered, however, that drier steam obtained from the
(54) W.H. B. asks: Where was the first ailroad located? A. Railroads or tramways, use m mines, worked by horses, are very old. The firs England ; the first passenger road worked by stean was the Stockton and Darlington Railway, Eng
nd.
(55) I. L. asks: 1. How can I construct a evel to use in a steam boiler to indicate the wate aciently light and yet stand the external pressur of 100 lbs . per inch? A. Make your float of cop per. 3. I have thought that a float made of com-
mon tin, made airtight, with a small quantity of water in it, would answer, as the water inside the plate would be converted to steam from the heat of the steam outside the float, the quantity of wa ith used to be equal to that required to fll the floa practicable? the required pressure. Would this be ticable. 3. Is the fusing point of common tin

(56) R. W. R. says, in answer to W. H. hoasks as to preserving a cotton ropeused in the
pen air : We are carrying 20 horse power by a open air: We are carrying 20 horse power by
cotton rope 1 inch diameter and 800 feet long, ove -shaped pulleys 5 feet in diameter. To protec sionally with $1 / 8$ black lead and $7 / 8$ tallow.
(57) W. C. S. says, in solution of his probfom proposed on p. 107, vol. 34: The answer is as
follows: Assume that R , the radius, $=1$. Then area of circle $=3 \cdot 14159264$, area of sector, A B C, 52359877 , area of triangle $=0.4330127$, area of seg ment A B=0.09058507, area of centerspace $=0.16125449$
Thesefore $0.16125449 ; 43560$ (feet in an acre) :: hesefore 0.16125449; 43560 (feet in an acre): :
2:1032. $\quad 2: 1032=520 \cdot 6+$ feet, the required radiu

J. E. N., F. L. R., M. B., F. E. B., D. E. Q., J. H. B C. J. T., J. W. I., C.A., E. L. W., M. R., P. J. D. M.C., P. M., R F., A. F. W. answers which, like the above, are approximately N. M. B., V. P. B., F. G. G., I. D. S., H. M. A.,
G. D. T., R. C., R.J. McL.,W.J. McG.,and G. H. O send erroneous answers; and L. S. W. sends dif
ferent solutions with no results state. ferent solutions with no results stated. C. W.M.
answer is incomplete. C. says: "One curious fact I notice is that the division of the 160 rods by the exact figure, which is a trifle less than 0.162 , ives the following regular arrangement of numerals, the root of which "we extract for the an
(58) H. S. says in answer to F. H. D. query as to cast iron and steel sleigh shoes Wrought steel sleigh shoes arè not tempered, as it would crook them out of shape; and cast iron shoes, if they are what they ought to be, are made nd shows a white crystaline drilled or filed, broken.
(59) G. G. W. says, in reply to several coring: To caseharden wrought iron, take wood soo
and urine, mix and work them up into a dry mas-
ic, and cover the article to be hardened with it eat to a red heat slowly in a charcoal fire, so a to heat through. Take out and knock off the
soot, and plunge in cold water; then draw the mper, as done with steel.
E. M. M. asks: How can I make and use a ood oil finish, similar to that used on parlor or ons ?-A. S. B. asks: Can you give me informa aid in England, Ireland, and Scotland?-E. P sks : How is printing in gold or bronze done, to roduce a smooth sarface and a clear, sbarp, out ne?-J. J. T. asks: How is wall paper varnishe

COMMONICATIONS RECEIVED. The Editor of the SCiENTific American ac
mowledges, with much pleasure, the receipt of riginal papers and contributions upon the followg subject
On the Resources of Georgia. By M. E. C.
On the Angora Goat. By H.
On the Angora Goat. By H. G.
$\begin{array}{ll}\text { On Magic Squrres. } & \text { By J.S. } \\ \text { On the Epicycloid. } \\ \text { By L. F. }\end{array}$
On Spontaneous Combustion. By J. S. W
On a First Class Tool Maker. By D.
On the Power of Figures. By G. B. M.
On a Singular Medical Case. By R. W. B.
On Spirit Photography. By C. M.
On Head Work. By J.
On Head Work. By J. K.
On Bank Vaults. By S. K.
On Food. By C. S. P.
lso inquiries and answers from the following

HINTS TO CORRESPONDENTS.
Correspondents whose inquiries fail to appear
hould repeat them. If not then published, they may conclude that, for good reasons, the Edito eclines them. The address of the writer should always be given.
Enquiries relat
Enquiries relating to patents, or to the patenta published here. All such questions, when initial only are given, are tarown into the waste basket as it would fill half of our paper to print them all;
but we generally take pleasure in answering briefly but we generally take pleasure in answe
Hundreds of inquiries analogous to the followios Hundreds of inquiries analogous to the followis shes works on pottery and porcelain? Wh one dust? Wrys in large quaners of microscope dvertise in the Scientific American $i^{\prime \prime}$ All such personal inquiries are printed, as will be observed, tbe column of "Business and Personal, Whic specall set almost any desired informstion can in thls way be expeditlously obtained.
[OFFICIAL.]
INDEX OF INVENTIONS
Letters Patent of the United States wore February 8, 1876
and each bearing that date.

Castings, preparing metal for.S. M.
Chain llnk clamp, A. J. Gourdier..
Chair, folding, B. F. Little.........
Chimney, globe, etc., W. R. Lindsay te maker, pocket. Streeter et , Retlon. G. H. Starbuck Composing stick, W. H. Thomas Copying. transfer \& heet for, T. F. Corset and skirt supporter, S,
Corset fastening, w. B. Carg
Corset spring, C Cotton opener. beater. etc.
Cultivator, w. H. Mosher.

Cultivator, hand, Pierpont et a Cury comb, C. W. Saladee Damper, w. L. McDowell.......... Desk, schooll, S. Crumrine..
Drawer pull, w. N. Weeden Drill. ratchet, H. R. Way. Eulloscope, P. M. E. Malligand Elevating grain. etc ., A. C. Mand. Elevator, hay, J. K. Mount. Engine, traction, R. Creuzbaur. Faucet. L. W. Serrell.
Faucet, vent, Wrifin, Class... Feather renovator, C. D. Smiley....
Fence, iron, J. H. and D. Van Dorn Fence, portable, W. W.
Fence, wire, M. Kelly Fece wire, barbed, W. G. Collins. Fire escape, L. Falk.............. Flish, hatching, E
Flail, T. F. Drak
Flat iron heater, C. G. Besse
Fodder cutter, G. Dentz..... Food, cereals for. L. S. Chichester
Fork blank bar, Pedder and Abcl. Furnace, air heating, G. R. W. Netghbur. Furnace, hydrocarbon, H. Napier....
Furnaces, air duct for hot air, N. M.
Furnaces, stirrer for ore. J. Brodie Gage, sheet metal, J. Atkins Gas pipes, etc., threading, L w. Stock Gate, J. G. Sherman.

Glove fastening, F. G. Farnham Grain blnder R

 Grain drill, wight and EwingGuns, projectlle for air, H. M. Quackenbush
Harness, N. Teas.
Harness check rain,
Harness machine, w. Barry
Harvester, J. F. Place..
Harvester cutter bar, G. F. Underhill.
Harvester pltman
Hides, apparatus for treating, !. Royer Hoisting apparatus, A, B. Lipse Hoops, etc., cutting, G. c. Skidmore.
Horseshoe, T. W. Murphy........ Horseshoe calks, sharpeni Hubs to axles, attaching, A. B. Brown Ice machine congealer, D. Smith Inkstand, G. A. Wilbur
Jas, ec., bcrew-Lhreaded, J. L. Mason (1) Knife blank bar, Pedder and Abe Lamp, H . Seldler

Lamp shade holder, W. Scarle Leather-dressing machine, w. A. Perkin Lock, time, E. Stock wel Locomotive rock, etc., E. Stockwel Loom let-off strap, Rose et al.
Lubricators, C. H. Parshall (r). Match safe, J. G. Warren..
Mattresses, stretching, wir Meat cutter, J. Adt
Meat tenderer, J. w. Smith Jucngst Medicaments, capsuling, S. A. A. Limousin.
Metal bands, doubling ends of, S. H. Gillman. Metil, puncerving and beveling, w . Barne Ordnance, vent stopper for, R. L. Pruyn Organ case, reed, wing and Ishell. Overalls, S. Laskey

Pan, frying, E. Laufer

Pendulum ball, H. F. Henderson....
Photo-chemical printing, w. Wills
Planos, hand gulde for, w. Bohrer.
Pipe and hose coupling. E
Pipe coupling, T. J. Rice
Pipes and hose, T coupling for, E. A. Leland Plane, bench, J. Nicht.
Planter, corn, W. F. Osgood
Planter, corn, G. A. Siders.. Plow, gang, S. Bryan..
Plow wheel, M. Sattles

Engs.

2dtertisments.

Engravings may head adertisements at thessame rate perline, by measurement, as the letter press. Adver tiscments must be received at publication office
carly as Friday morning to aqpearin next issue.

C Cord, of the SEAREns Insittute of Technology

The fact that this shafting has 75 per cent greate

PATENT
Planing and Matching

THE UNION IRON MILLS, Pittsburgh, Pa.-

THE CENTENNIAL INTERNATIONAL EX

 complete and splendid illustrated Record of the Centen
nalikxoition should have the SCIENTIFIC ANERI
CAN SUPPLEMENT.
MACHINIST, WITH $\$ 5,000$, CAPABLE O
 COMPRESSED AIR MOTIVE POWER.-For

RaCING BOAT STOCK.
SPANISH $\&$ wHITE CEDAR.
RACING BOAT STOCK.
SPANISH \& WHITE CEDAR. and unplaned. Also, fall stock of HARD- WOOD LUMM-
BER and VENEERS. MAHOGANY, SATINWOOOD, ROSEWOOD, WALNUT, \&c.

Geo. W. Read \& Co.,

Todd \& Rafierty MachineCo.

The Textile Colorist,

 act price hist sent on appicalon.

SUPERINTENDENT WANTED-In a Foundry and Machine Shop. Would prefer one with smay
Cash Capital to invest. Adderess
Jotiv ROY, Bowling Green, Ky.
 Wanted---fo Manufacturersand Patentees-Use artcles for manufactur

D ERCATCOMANTE,

$\frac{1}{2}$

F0R CHARLIES PRESENT,
 paratus, battery, key, wrires. and chemicals, complete,
ready for operation. Price 83.50 , with full drections.
Can be seen tn pren Can be seen in practical operation at the "Sclentific
American"' offlice, 37 Park Row; at Packard"s Bustness American'' office, 37 Park Row; at Packard's Business
College, 805 Broadway; and many other places. Besides telegraphing, many beautiful experiments can be made,
such as the magnetic curves, electric light, ufting welghts, making compasses, maknetizing knives, elec-
tro-plating, \&c. F. C. BEACH \& CO., makers, 246
Canal St., near Center St., New York.

March II, 1876.]

 MANENOD Machinery

 PLANING \& MATCHING, TENONING,RESAWING, SHAPING J.A.FATECO ASBESTOS STEAM PIPE AND HOILER Asbestos Cement Felting in Bbls, ready for use--Asbestos Lined Hair Felt, dx H. W. JOHNS, 87 Maiden Lane, N. Y., ASBESTOS ROOFING, STEAM PACEING, PAINTS, αc,eque the genuine. Infingers will be prosecuted.

 FRICTION CLUTCHES क्र
VOAND ELEVATORS. RON BRIDGE BUILDING-A complete de-
scription, with dimensions,
perraping drawings, and

 ELECTROTYPERS and STEREOTYPERS,
 Sclewee recond FOE 18TO.

Science Record is a splendid book of 800 pages, published an-
nually, about the 15th of January. Mlustrated with many engra-
vings. Price $\$ 2.50$.

 Progress of the World

 MATURAL HISTORY AND ZUOLOGY
GEOGRAPHOGY, TERRESTRIAL PHÝSICS, GEOGRAPHAND MINERALOGY,
GEOLRONOMY,
ASTOGRAPHY AND NECROLOGY
 ceresting and Valuable Boor, and ehould have a placern
 All the preceding volumes of SCIENCE RECORD may be had separately at $\$ 2.50$ each, or $\$ 10$ for the
five volumes, 1872, 1873, 1874, 1875, and 1876 . MUNN \& CO., PUBlishers,

Park Row,
New York
\%rientific Americau.

PATENT SELF-COILING REVOMPANY'S (an birnd

 agents wanted.

 $\mathbf{S}_{\text {Mave, shingle hand }}^{\text {the }}$ Planing \& Matching,
 I CE BoATs-THER CONSTRUCTION AND

OPIUNM
FINE TONLS AND FOOT LATHESS.

 OR CUTTING STONE INTO VARIOUS SIZES QUD DIME
STEAM STONE CUTTER CO., RUTLAND, VT SOLE PROPRIETORS AND MANUFACTURERS. PABR'S Damascres Spring Steel Self-Adjasting
 $\left\{\begin{array}{l}\text { With each frame is included } 12 \\ \text { nimitable and oriminal fret or } \\ \text { scroll patit \& Paterns, } 8 \text { bracket sa: }\end{array}\right.$

\%

SCREW PROPELLERE, THEIR SHAFTS AND
 THE BASTET MAGNETIC ENGINE AND

WHIPPLE'S
Patent Door Knob.

$\begin{array}{cc}\text { NIAGARA } & \text { IMPROVED } \\ \text { STEAM } \\ \text { STMP }\end{array}$
 a Specialty.
The Myers Portable Engine,4, 5, 6,8 h.p. Some SECOND-HAND IRONM
AND WOOD WROR

$\$ 12 \begin{aligned} & \text { a day at home. Agents wanted. Outft an } \\ & \text { terms ree }\end{aligned}$

H OME-MADE TELEESCOPES.-Directions for

EAGLE FOOT LATHES,

DO YOU $\begin{aligned} & \text { Male or female. Send your ad- } \\ & \text { dress and get something that will bring }\end{aligned}$

 CeCount's Patent
M CHINIST'
CTOUS.

 BOOKWALTRER ENGINE
Compect, Substan tlal Economica
 3 Horse Power....
41/3 " $\ldots8252030$ JAS. LEFFEL \& CO. Spring field, Obio; or
109 Liberty St.. New Yort City
D REDGING AND DITCHING MACHINERY Dery The latest, most extensive, and successful machi

STEEL CASTINGS.

FOREIGN PATENTS

THE CENTENNIAL. There is no doubt that our Centennial Exposisentative attract to our shores multitudes of reprethey will take home with them many of our best improvements to introduce into their own manu
factures. factures.
An unusual opportunity will be offered for sellbeen secured on good American inventions in the respective countries from which these visitors come.
At the reduced prices for which patents are obtained abroad, our people will lose a chance not likely to occur again, if they do not avail them tions in foreign countries at once, so as to have their patents ready to negotiate the coming sum-
mer cost of patents in the different countries and
For the conditions on which they are granted, send for pamphlet containing full information.
Address
MUNN $\& C O$

Address

Branch Office, cor. F and 7th St

STEAMPUMPS.

P. BLAISDEII \& CO.,

 of every description.
Cold Rolled Shafting.
 GEORGE PLACE,

Machinists' Tools;

Man \& Co's. Patent Oficices.

Bstablished 1846.

「he Oldest Agency for Soliciting Patents in the United States.

TWENTY-NINE YEARS EXPERIENCE
MORE PATENTS have They en
They employ as their assistants a corps of the most ex draftsmen that can be found, many of whom have been se lected Prom the ranks of the Patent Office.
SIXTY THOUSAND inventors have availed themselves of Munn \& Co.'s services in examining their in entions, and procuring their patents.
cientipic avper in the SCIENTIFIC AMERICAN, continue to examine inventions
confer with inventors, prepare drawings, specitications. and paying the government fees, and watch teacn case step by step while pending before the examiner. This is done through their branch office, corner F and 7th streets, Wash ington. They also prepare and file caveats, procure design (prepared by the inventor or other attorneys), procure copymatters of infringement, furnish copies of patents, and, in fact, attend to every branch of patent basiness both in this a special notice is made in the Scientific American of all inventions patented through this Agency, with the name
and residence of the patentee. Patents are often sold, in part or whole, to persons attracted to the invention by such otice.
Patents obtained in Canada, England, France, Belgium, Cermany, Russia, Prussia, Spain, Portugal, the British
Colonies, and all other countries where patents are granted at prices greatly reduced from former rates. Send or pamphlet pertaining specially to foreign patents which states the cost, time granted, and the requirement for each country

Coples of Patonts.
Persons desiring any patent issued from 1836 to Novem ber 26. 1867, can be supplied with official copies at a reaonable cost, the price depending upon the extent of draw Any pstent tisuued since Nove
Any pateat isued since November 27, 1867, at which and specifications,may be had by remitting to this office \$1. A copy of the clsims of any patent issued since 1836 will be fornished tor $\$ 1$.
When ordering copies, plesse to remit for the same as above, and state name of patentee, title of invention, and date or patent.
A pamphlet containing the laws and full directions fcr
obtaining United Etates patents sent oound Reference Book, gilt edges, contains 140 pares and many engravings and tables important to every patentee mechanic, and is a useful handbook of reterence for orPrice 25 cents, mailed free. Adares
$\mathbf{W N N N}$

DUNN \& CO.,
Publishers SCIENTIFIC AMERICAN
37 Park Row, N. Y.
Brance Officr

 FIRH proof Shutters strongest and best. I save 5

Iron Planer,

Niles Tool Works, Hamilton, Ohio. SEND FOR CIRCULARS OF ONLY CHOICE Sy ${ }^{2 d}$ hand Engines and Boilers, Portable and StationDITCHING AND EXCAVATION.

HARTFORD

STEAM BOILER

Inspection \& Insurance COMPANY.
 J. B. PIERCI, Sex'r.

 Upright Stationary Engines, strong, stimple, safe, and ser4, , and 8 Hiceabol GRIFFITH \& WEDGE

Second Edition of Wrinkles anid Recines NOW READY.

Useful Hints, Suggestions, and Recipes, For ENGINEERS,
mechanics,
FARMERS, and
HOUSEKEEPERS

CONTAINS

The concentrated wisdom of the practical correspondents and the able experts who bave con-
tributed to the SCIENTIFTC AMERICAN during late tributed to the Scientific American during late years. Also the cream of the Practical Mechanism
series by Joshua Rose, together with a new paper series by Joshua Rose, together with a Thurston. Simple rules in steam engineering, besides hunHendsomely bound and copiously fllustrated, 250 pages. Price, post-paid, \$1.50; with Scientific American, for one year, $\$ 4$ 20. Address
\qquad 3. N. MUNN, Publisher,

ROOTS' ROTARY HAND BLOWER.

FOR ALL KINDS OF BLACKSMITHING.

DOES MORE AND BETTER WORK, SAVES ROOM, LABOR, AND COAL, AND LASTS TEN TIMES LONGER THAN BELLOWS.
P. H. \& F. M. ROOTS, Manuf'rs, CONNERSVILLE, IND. S. S. TOWNSEND, Gen'I Ag't, 31 Liberty St., NEW YORK.

THETANITE CO.,

olid Emery Wheels and Emery Grinding Machinery.

THE HEALD \& SISCO Patent Centrifugal Pumps.

Pope's Iathe

Diamond Solid Emery Wheels.
 In your order for wheels. Emery Grindersanequaled by
inv in the world
CO., Woonsocket. R. I.

ROGERS' TANNATE OF SODA BOTLER R GGALE PREVENTIVE. JOB. G. ROGAERB Matison,

$\$ 5$ a year by mail, post-paid. Send 10 cents for Specimen Copy. TO ILLUSTRATE AND DESCRIBE the many interesting themes and objects presented in the
Great Cexntennial International Exposition of 1876, and also to meet the wants of that large class of readers who desire an increased supply of Scientific Information, particularly of the more Technical and Detailed character, we shall isgue a SPECLAL PUBLICATION, entitled the SCI-
ENTIFIC AMERICAN SUPPLEMENT, to ENTIFIC AMERICAN SUPPLEMENT, to be printed weekly during the Centennial year of 1876, and, perhaps, permanently thereafter. Each
number will have airteen large quarto pagee, issued weekly, printed in the best atyle, uniform with the SCIENTIFIC AMERICAN, but sepa-
rately paged. In addition to the special matter pertaining to the International Exposition, will embrace a very
wide range of contente, covering the most recent and valuable papers by eminent writers in ALL THE PRINCIPAL DEPARTIGRNTS OF BCIENCE AND USEFUL ENOWLEDGE, to wit:
1.-Chemistry and Metallurgy.-Embra cing
and
New
Procesees, wical
Chis
engroverres, Improvements,
 2.-Mechanics and Engineering.-The
 an orking drawing
3.-Electricity, Light, Heat, sound.-

4.-Architecture.-Examples or the
structures, with detalls and drawings. Address MUNI \& CO., Publishers, 37 Park Row. How York

Mill FurnishingWorks

THE BES T INJECTOR
 ovor 15,000 Not in Uoo Hore and in Barovo

Portland Cement

 The NILES ENGINE.

Niles Tool Works,

IRON PLANPRS,

 COTERTNG

 THE
 Soinyinizican

For 1876.
The Most Popular Scientific Paper in the World.
thirty-First Yrar
only 83.20 a year including Postage.
Send 10 cents for Specimen copy
NTIFIC AMERICAN, now in its 31s THE SCIENTIFIC AMERICAN, now in its zlst year, enjoys the widest circulation of any weekly eewspaper of the kind in the world. A new vol me commenced January $1,18 \%$. Published week clubs. mbrace the latest and most interesting informa tion pertaining to the Industrial, Mechanical, and Scientifle progress of the world; Description with beautiful Engravings, of New Invention New Implements, New Processes, and Improve
Industries of all kinds; Useful Notes, Recipes, Suggestions and Advice, by Practical Writers, fo Workingmen and Fmployers, in all the variou arts.
EVERY NUMBER contains airteen large quarto pages, elegantly printed and illustrated with many engravings. The year's issue contains 832 large
pages, equal to four thousand book pages, at a cost, pages, equal to four thousand book pages, at a cost, seriber.
Engineers, Mechanics, Telegraphers, Inventors Manufacturers, Chemists, Photographers, Physiclans, Lawyers, Clergymen, Teachers, and People all Professions, will find the SCIENTIFIC AMERICAN most useful and valuable. Its page and conversation, and are an unfailing source of new and instructiveinformation. As an Instruc tor and Educator, the SCIENTIFIC AMERICAN has noequal. It is promotive of knowledge and progress in every community where it circulates, It should have a prominent place in every Household, Reading-Room, and Library.
10 cents.
TERMS OF SUBSCRIPTIONS.-POSTAGE PAID BY US.
One copy Scientific American, one year.... $\$ 3.20$ One copy Scientifle American, six months.. 1.60 One copy scientific American,three months 1.00 One copy Scientific American and one cop
Scientific American Supplement
for one year, post-paid.................
One copy Scientiflc American, one year,
$\begin{array}{ll}\text { and one copy Science Record........... } & 5.20\end{array}$
We make a liberal discount and give advan tageous premiums to those who form Clubs or procure Subscriptions. Δ beautifully illuminated
Subseription List, also Prospectus and Rates, sent

MUNN \& CO.
The "Solentific American", If printed with

