a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY AND MANUFACTURES.

NEW YORK, FEBRUARY 12, 1876.

THE NEW TELESCOPE IN THE PARIS OBSERVATORY.
An immense reflecting telescope, equaling in size the similar instrument located at Melbourne, Australia, has lately been constructed under the supervision of M. Leverrier, at the Observatory at Paris, France. The reflector, which is 46.8 inches in diameter, is mounted in a tube 23.3 feet in length, which is composed of a central cast iron cylinder. to the extremities of which two smaller tubes, $9 \cdot 6$ feet long each, are secured. The end tubes are formed of four rings of wrought iron connected by 12 longitudinal bars of like material. The whole tube is At and weighs $5,280 \mathrm{lbs}$ fixed the cast iron is al fixed the cast iron barrel
which holds the reflecting which holds the reflecting
mirror ; at the upper end a mirror; at the upper end a
circle, movable on the open circle, movable on the open
orifice of the telescope, supports a plane mirror which reflects sideways the cone o rays previously reflected by the large glass, and directs them into the field of the eye piece.
It will be seen from the above that the telescope is constructed on the Newtonia system, and differs from th Melbourn instrom from Melbourne instrument in tha the latter is built on the Cas segrainian plan. The weigh of the huge reflector in its
barrel is 1,760 lbs., and the barrel is $1,760 \mathrm{lbs}$., and th eyepiece, with its accessories, aggregates the same. The poising of the mass is so per fect that even in the most un favorable positions the mir rors are exactly concentric and not the least deflection is perceptible. For the accom modation of the observer a carriage running on rails, as shown, is used, which supports a lofty balcony. Th ports a lofty balcony. Th latter is sufficiently elevated to allow easy access to the eyepiece, which can be ad justed at any point around the orifice of the instrument

The equatorial mounting turns on an axis of cast iron and steel, the direction of which is parallel to the axis of the celestial sphere. The telescope can be inclined mor or less on this axis by turn ing around a second steel asis, which traverses the first a right angles, and participates in its movement of rotation The two axes taken togethe are a marvel of mechanical accuracy. With the telescop they weigh $22,000 \mathrm{lbs}$., and yet so perfect is the machine ry that the great tube follows the movements of the heavenly bodies, in obedience to the regulation of a chronometer with as much certainty and delicacy as move the hands of the timepiece itself.

The optical portion of the telescope is as perfect as the adjusting mechanism. Both mirror and eyepiece are fault less, and the former, it is stated, reflects fully nine tenths of the light received With an instrument, there fore, uniting in itself so many highly important advantages, it may be hoped that valuable discoveries will be made.
M. Wolf, the well known astronomer, to whom has been confided its care, proposes to begin with the study of the planets and their satellites, with the view of investigating many unsolved questions relative to the rotation of the worlds furthest removed from our own; and at the same time, an extended series of spectroscopic and photographic studies of the fixed stars will be prosecuted.

THE GREAT TELESCOPE AT PARIS, FRANCE;
food is much to be preferred, for an animal in such condition, to medicine for two reasons, partly because it is cheaper and leaves no bad after effects, and partly because it is better, being the remedy provided by Nature, and Nature is alway tural evils, just as a genuine diamond is of more value than any paste imitation. A couple of carrots, chopped up very small and mixed with the feed of horses, has upon them a
very beneficial effect. They are slightly cathartic, and, given
two or three times a week to horses standing in stables during the winter, they keep them in good condition, supply to a great extent the need of green food, increase their appetite and prevent their coats from becoming dry, dull, and hard. Horses are very fond of them. When the weather is dry and not very windy, horses that are not much used should, in town, be taken out for exercise daily, and, in the country, should during the day be allowed to run at large in the fields, or they will become cramped and stiff from long standing.

Decreasing Flow of Rivers.
The Vienna Academy of Sciences is occupied with a question which concerns al Europe-the decrease of the quantity of water in springs rivers, and water courses. A circular, accompanied by a very instructive report has been addressed to the scientific societies of other countries, inviting them to undertake observations which, in time, may yield useful results. The Acade my calls attention to the fact that during a certain number of years there has been observed a diminution in the waters of the Danube and other large rivers, especiall since the practice of felling forests has become common The Austrian Engineers' and Architects' Union are also oc cupied with this question and have appointed a hydrostatic commission to collect facts and prepare a report The Danube, the Elbe, and the Rhine have each been assigned to two members, while two others will be oc cupied with the metereology relating to the same subject and with the influence tha glaciers and Alpine torrents may exercise on the genera result. The commission con siders the question urgent,
 diate adoption of measures to remedy the evil. Accord ing to the Revue des Eaux et Forêts, it is unanimous in de claring that the prime cause of the disastrous decrease of the water is the devastation of the forests.-Nature.

Remarkable Locomotive

 Accident.The Rochester Democrat and Chronicle, of January 20, states that on January 17 while a train, bound for At tica, on the Buffalo division, was nearing the river bridge about a mile west of the vil lage of Avon, an accident oc curred which was most sin gular in itself and serious in its results. The iron net work over the top of the swokestack on the locomo tive became clogged up with cinders, etc., in such a man ner that the gas generated could not escape from it consequently it was pent up consequently it was pent up so soon as the fireman loosened the fastening of the door to open it an explosion occurred, the fire being blown with great force out into the cab, en veloping the persons in it in a sheet of flame. The fireman, William Russell, who was nearest the door, was flung backward with great force. His leg was broken and his body was badly burned. William Farnum, the engineer, was no so badly hurt. His left hand was burned in a painful manner, and the whiskers of the left side of his face were burn off. M. Breen, a brakeman, who happened at the time to be
in the cab, was very seriously injured. His face and shoul. ders were terribly burneä, and his eyes were so injured tha it is thought he will be blind for life.

Sricutific Ammerican.

MUNN \& CO., Editors and Proprietors. published weekly at
NO. BY PARK ROW, NEW YORK.
O. D. MUNN. A. е. BEACR.

TERMS.
One copy, one year, postage included.
One copy, six months, postage included

Ten coples, one year, esch 8270 , postage included...
Overten coptes, same rate each, postage included
By the new the subscriber then recelves tie paper free of charge.
Notr.- Persons subscriblng will please to give their full names, and Post
office and State address, plainly written. and also state at which time the Ofish their subscriptions to commence, otherwise the paper will be sent from the receipt of the order. When requested, the numbers can be supplited from January 1st, when the volume commenced. In case of changing residence, state former address. as well as give
be made unless the former address is given
if any of our readers fall to recelve their
tion ts not plainly written; if premiums are not received; ;if the direc tault of any sort at this offlce, we will thank our friends to send us postal card complatints, and repeat the same, if need be, untll the remedy is effect ed. Do not hesitate to complain. We desire
ourselves and patrons right and satisfactory.

VOLUME XXXIV., No. 7. [New Series.] Thirty-first Year.
NEW YORK, SATURDAY, FEBRUARY $12,1873$.

THE SCIENTIFIC AMERICAN SUPPLEMENT.
For the Week ending February 12, 1876. table of contents

 ngravings

VII. GELOGYY, MINERALOGY, NATURAL HISTORY.-Celestalite.-

VIII PROEEEDNGGSOF SOCIETIIES. Academy of Sciences, San Fran-
IX. MEDICSL- Physilology of Fatige- Curloug Brain Wounds. - Drunk

${ }_{\text {MUN }} \&$ CO., PUBLISHERS,
0 cents. Single coples of sopplexens sent to any address on receipt

RE-DISCOVERIES AND RE-INVENTIONS.

The investigator who thinks he has hit upon some new an important fact, but finds, on publishing his discovery to the world, that he has merely re-discovered an old and long. known phenomenon, is very much in the position of an in ventor who has spent months in perfecting some machine which he believes to be new, but which, as the Patent Office examiners tell him, was patented years ago: perhaps it was used and abandoned before he was born. The airy castles each has been building are dashed to the earth, and dire dis appointment destroys the searcher's peace of mind. Under these trying circumstances, it is difficult for him to sit patiently down and feel that the experience gained while prose cating his work is a sufficient reward for his time and toil. Yet such is frequently the case; and but for the fact that most inventors and investigators are dependent on their daily abor for the bread they eat, they could in all cases feel tha an honest, conscientious labor in the pursuit of a noble end, whether successful or not, is its own sufficient reward Failure is to some minds a spur to greater exertion; it incites them to increased care, and thus proves more beneficial than success would have done. That man (or crew) that comes out of a race second best is generally confident of his ability to win next time; and he goes into training with eagerness for another chance to test his power. To another class of minds, failure is very discouraging. They have not perse verance enough to try again; or if they stand the shock of a ow failures, they break down at last under the weight of continued ill luck, as they call it. That "nothing is so suc cossful as success" is not more true than that nothing is more disheartening than failure. But since failure and dis appointment fall, in a greater or less degree, to the lot of
every man in every undertaking, we would first offer such balm as we may to heal the bruises, and then prescribe some preventives that will reduce the number of failures, espe cially those of re-invention and re discovery, to the minimum number.
We bave already hinted at the manner in which we would have the unsuccessful investigator regard his labors. The searcl:r for truth can no more measure the value of his labors by their results, than can the competitors in our intericliegiate contests, wheth 3 rl literary or athletic, measure the benefit they derive from the training by the value of the prizes conferred. A school boy of ten or fifteen diligently pursues the study of some subject, for which a beautifu prize is offered, with that prize and its inherent honor as his
sole object and incentive. The prize was offered for the purpose of teaching the boy perseverance, of imparting to him the habit of study, and, in some cases, of putting him it possession of the knowledge thus acquired. The competitor who has labored industriously for the prize, but failed to obtain it, is benefited quite as much by the training he has received as the one who is successful, provided only that disappointment does not breed discouragement. While boys may strive for prizes with no higher end in view, it is beneath a man, and more especially an investigator, to work with that aim only. Work undertaken in the proper spirit does not yield the expected fruit, it has been all the while conferring other benefits,more lasting, if less pleasing. There i : a story, no doubt familiar to most of our readers, about an cld man, who, when on his death bed, told his sons that treasure had been buried somewhere on his farm. Eager for gold, they explored every field, digging over every foot of it to a considerable depth. Of course, they found no gold; but the increased fertility of the land amply repaid their labor. Parallel cases are abundant, wherein the object sought was never found, but where incidental results proved of immense importance. The old alchemists worked with but two aims
before them, to transmute the base metals into gold, and to find the elixir of life. They succeeded in neither, but they gave us many substances more valuable than either. Many of the acids and metals, as well as phosphorus, were pre pared or discovered by them, and their experiences have been woven together to form the foundation of the scienc now called chemistry. Unfortunately, however, their selfish jealousy induced them to conceal rather than promulgate
their discoveries, and many of their most important secrets were buried with them. It is only recently that men have begun to observe and carefully record the little incidenta discoveries. These little facts, trifling and disconnected as they are, may some day find a place of importance in the science, or they may become the seed which, falling on the
fertile soil of some other active brain, will there spring up in fertile soil of some other acti
Reader, if you are an experimenter, carefully record all your experiences, and publish such as are new, for you know not which of these tiny sparks will start a huge conflagra tion, or which trifle will be to some active mind what the falling apple was to Newton, or the oscillating chandelier to alileo.
To give such directions as would aid the investigator to save his time and energies, on subjects already thoroughly examined, and in repeating well known experiments, is not difficult. Scientific men of the present century have been careful to record in permanent form most of their investigations, and hence it becomes possible for a person, before beginning a research, to ascertain just what has already been done, provided he has access to a good scientific library, such as the Astor or the Columbia College School of Mines Libraries in this city, both of which are free to all and possess excellent catalogues and obliging librarians. The method of study will be somewhat as follows: Suppose a chemicel student is abou He may first, if he chooses, make use of the excellent dic tionaries of chemistry published in eaeh of the principal lan
guages, for our student ought to read French and German with some fluency. The best works to consult are Watts, Wurtz, and Fehling, but every accessible work should receive attention. Having obtained a general idea of the sub. ject in hand, he next proceeds to search the scientific jourals one by one,from volume I to the latest number. Among the most important of these we would mention the 4 merican Journal of Science and Arts, 1818 to date, 110 volumes. The task of examining these numerous volumes is not so very great, since every tenth volume contains an index to everything in that and the preceding nine, so that only 11 indices have to be consulted. Poggendorff's Annalen now embraces over 230 volumes. from 1799 to date, but the titles of all the articles are registered in half a dozen indices. Dinler's Polytechnisches Journal, now in its 218th volume, has indices. The Annales de Chimie et de Physique, which now number 275 volumes, beginning as far back as 1789, have several index volumes. The same holds true of most of the scientific journals where original papers are to be looked for. Comptes Rendus is an unfortunate exception to this rule.
Before beginning this search, a suitable note book should be procured, and so arranged that every reference can be quickly recorded as soon as found, either chronologically or in some other systematic order. Or the references may be taken down in a blotter, and subsequently posted in the order desired, care being taken to give date, subject, name of au thor, and name of journal, with page and volume. Such an ndex of a subject, carefully carried out, will be found inaluable. The student now has a guide book which will di ect him at once to the spot where just such information a he seeks is given. From these, it is easy to ascertain just what has been accomplished, and hence it is almost impossi be to repeat unwittingly what another has already done.
The inventor may not find it quite so easy to learn what has been attempted in his line, as inventors usually jealously guard their ideas as invaluable secrets. The patent records of different countries, however, afford material for quite an extensive search, and, as in the case of the chemist, will be f great assistance in preventing a waste of time in re-in venting old things.
Let no one say that it takes too much time to make all these preliminary examinations, for it will prove a saving in he end, not only of time and labor, kut of good nature and nthusiasm. If those who can afford the time would join in reparing reliable indices of the whole literature of differen ubjects, and permit them to be published by the Smithonian Institute or other scientific body, they would be valua e contributions to Science, and great aids to their fellow borers of today and of the future; and they would serve to perpetuate the compilers' own memories.

FELTING AND ITS USES.

The employment of felt for other purposes than hats, which use was described in a recent number, has created several other branches of industry. The most common pro ducts are felts in flat layers like cloth, and the most usual mode of manufacture is a kind of wadding (by means of a machine similar to that used for the same purpose in cotton mills) and to submit this to the felting process, often felting several layers together so as to obtain great thickness. With improved modern machinery, such wadding may be made of considerable dimensions. A special and peculiar article of this kind, and of great comparative value, is the elt used for the covering of the hammers of pianofortes. Th best material for this purpose is derived from the wool of sheep found only in Hungary. They are called the Ester hazy flock; and the wool gives a more elastic felt, resisting better the cutting effect of the strings, which soon wea ther kinds of felt a way. These felts come in the trade in longated pieces, very thick at one end and quite thin at the other, so as to suit the requirements, which are that the hammers striking the bass strings should be covered with thick felt, the substance being gradually diminished for the higher tones, so that the hammers striking the strings producing igh tones have a very thin covering. The pianoforte makers have then only to cut those felts into strips to have all the needed assorted degrees of thickness, it being a first requisite of the pianoforte, and in fact of every other musical instru mert, to attain equality of tone, avoiding sudden changes in power when passing from one tone to another of the scale.
Other feltsare manufactured into carpets, and printed with figures, forming the so called rugs, and others, well known, are blankets and materials for cloaks, women's skirts,socks, slippers, insoles for boots and shoes, etc. Some kinds of fine felts are saturated with varnish or paint, and changed into a material not unlike patent leather; this is used for the shades of caps, by carriage makers, etc., being much more tenacious and elastic than pasteboard, in which the fibers are not interlaced, and only are held togethar by a simple adhe sion originated by great pressure during the process of man ufacture. We must also mention the use of felt for roofing or which purpose it is saturated with asphaltum, coal tar, pitch, or other equivalent waterproof material; and felt is also used in shipbuilding, as a layer below the copper sheet ing, and on steam cylinders, conduits, and boilers as a non conductor of heat, for which parpose it is often prepared with various ingredients, intended either to make it less com bustible or to incr\&ase its capacity for retaining heat. A modern industry of this kind sprang up during the late war. Contractors, in order to increase their gains, had blankets and even soldiers' clothes made from felts of which the hair was not of the proper kind, but consisted of the offal of woolen factories, fibers too short to be spun, but which, by felting, could be made to hang together and form an appar felting, could be made to hang together and form an appar.
ently woven fabric; which, however, soon showed its tru
nature by its lack of strength. This material has obtained the name of shoddy; and while felt made from the proper kind of hair, of sufficient length, is as strong as any good woven fabric, this shoddy, or felt made from unsuitable kinds of hair and hairs of insufficient length, is comparatively worthless. Unfortunately thousands of dollars have been made in this disgraceful way before the nature of the deceit became known.

NO REST.

Science teaches us that the crust of our earth is perpetually moving, and that the sea level is constantly changing. Our globe has its daily rotation on its axis and its yearly revolution about the sun. The sun, with all its satellites, sweeps on toward a moving point in the constellation Hercules. Every so-called fixed star is in motion. Fifty thousand
years ago the constellation of the Great Bear or Dipper was a starry cross; a hundred thousand years hence the imagi nary Dipper will be upside down, and the stars which form the bowl and handle will have changed places. The misty nebulæ are moving, and besides are whirling around in great spirals, some one way, some another. Every molecule of matter in the whole Universe is swinging to and fro; every particle of ether which fills space is in jelly-like vibration. Light is one kind of motion, heat another, electricity another, magnetism another, sound another. Every human sense is the result of motion; every perception, every thought is but motion of the molecules of the brain translated by that incomprehensible thing wecail " mind." The processes of growth, of existence, of decay, whether in worlds or in of growth, of existence, of decay, wheth
the minutest organisms, are but motion.

TIMBER WASTE A NATIONAL SUICIDE.

"At a meeting held this 29th day off Aprill, 1699, in Breucklyn (Brooklyn), Benjamin Van de Water, Joris Haussen, Jan Garritse Dorlant" were chosen officers to consider the "greate inconvenience and lose" that the inhabitants of the town suffered because that unauthorized tradesmen "doe ffall and catt the best trees and sully the best woods." This appears to be the first step toward the first law promulgated in this country against the wasteful hewing down of timber: trees a proceeding recognized as an important waste, be it noticed, at a period when vast forests stood on the sites of our now most popular western cities, and when, so far as human knowledge of the continent went, the supply of wood might be inexhaustible. Since the date of this
local ordinance, State legislatures and the general governlocal ordinance, State legislatures and the general govern-
ment have enacted laws carrying with them penaltifs, appament have enacted laws carrying with them penaltics, appa-
rently of sufficient severity to deter the reckless use of the rently of sufficient severity to deter the reckless use of the
axe. The United States statute of March, 1875, imposes axe. The United States statute of March, 1875 , imposes
$\$ 500$ fine or a year's imprisonment for wanton destruction or injury to, or the unlawful cutting of, "any timber tree or any shade or ornamental tree, or any other kind of tree" on national grounds; and $\$ 200$ fine, or six months' imprisonment, for permitting cattle to injure trees and hedges on similar territory. Despite, however, the stringency of the various laws, their effect has not been to stop the waste, and the denudation of our timber lands continues at a rate which may be well deemed a matter of grave alarm.
In the very admirable statistical atlas prepared by General Francis A. Walker, Superintendent of the last census, appears a chart showing accurately the distribution of forests
throughout the country. It seems to us that the governthroughout the country. It seems to us that the govern-
ment would do a good work if it would lithograph this map ment would do a good work if it would lithograph this map and scatter it broadcast, with copies of the statutes forbid-
ding the destruction of forests, over the whole land; for it ding the destruction of forests, over the whole land; for it very small are the heavily wooded tracts having 360 or more acres of timber to the square mile. Of the western domain, Nevada has no such districts, neither has Arizona, nor New Mexico, nor Texas, nor Colorado, nor Dakota, nor Nebraska, nor Kansas, nor the Indian Territory. In fact, considering the whole face of the country, there is a patch of heavy forest in Maine and Now Hampshire, a small one in New York, large areas covering half of Minnesota, Wisconsin, and Michigan; the largest tract of all is located in the far northwest corner of the country; and there are heavily
wooded districts in Florida, Georgia, Alabama, Tennessee, Virginia, and the Carolinas. After eliminating these widely separated regions, the total area of which appears to be about equal to that of the Atlantic States, of the remainder of the country (fully four fifths of our whole territory), one half has no timber at all; the map shows a uniform blank.
Although there are no available statistics to show the exact rate of speed with which we are using up our wood supply, it is easy to see that we are doing so with great rapidity. Taking the legitimate use of lumber alone, indus tries based on its manufacture constitute the second in point of magnitude in the country, and are only exceeded by the ducing sawn lumber alone; $\$ 143,500,000$ are invested there in, and $1,295,000,000$ laths, $3,265000,000$ shingles, and in, and $12,756,000,000$ feet of timber are yearly manufactured. Considering next in order the secondary industries based on the sidering next in order the secondary industries based on the
use of lumber as a raw material, carpentry, cabinet making. shipbuilding, and so on through all wood workers, we shal find millions of our people employed. Now add to this Professor Brewer's assertion that wood forms the fuel of two thirds the population, and the partial fuel of nine tenths the remaining third, and some general idea will be obtained of the enormous drain upon our forests that is constantly in progress. If we restricted our use of wood to manufactures and its limited employment as fuel; in other words, if we rigidly cut off every source of waste, did not burn forests to
render the land fit for agriculture, and took proper measures to prevent those forest flres of unknown origin which, just
at present, are a colossal source of waste, and if we constantly planted trees: the timber yield would, without doubt,
be practically sufficient for our needs for some long period to come. But this is exactly what we are not doing, and as a result we are drifting to a condition which few adequately realize.
With
With these considerations before us, it is easy to fore see that, with the disappearance of the forests, the conditions
of all our territories wili change, and that eventually, when of all our territories wili change, and that eventually, when the land no longer becomes suited to the needs of our descendants, then gradually but surely they will abandon it. It may take canturies for this to be brought about, but no many, if the present rate of waste be main so , and thu practically tomorrow, as compared with the history of the prace, is at hand when our existence as a nation will end.

SHALL WE UNDERGJ DISSECTION?

To yield up our lives for the advancement of Science is something that few of us would be willing to do, but to yield our bodies as a sacrifice on the altar of truth and knowedge, after we no longer have any use for them, is not a very hard thing; and therefore we are not surprised to read that a society has been formed in Paris, the members of which bind themselves, by a special testamentary disposition, not to be interred after death. Their bodies are to be delivered to the dissecting rooms of the various medical schools for dissection.
Thé cremation fever of 1873-4 accomplished something in the way of making people more indifferent to the disposition of this earthy tabernacle when life has fled. There were thousands of people who had firmly resolved that, if the projected cremation societies bad their furnaces in success-
ful operation, they would "give their bodies to be burned." The cremation cry is sicoldering, the cremation corporations have turned to smoke and vanished in thin air, the gasmen will not take our carcasses, and what are reformers to do? They are now offered the expedient of our Paris friends, who invite them to throw themselves on the dissecting table, and be of some use to the world after they are dead, if they never have been before. We are not afraid that the whole world will follow this example, and flood the market with useless corpses. There will still remain those who desire an old-fashioned burial. The scarcity of subjects in many countries at the present time, the attendant necessity of working on those in an advanced stage of decay, and the premium offered in some localities to body snatchers are a few of the reasons that may be advanced in favor of the formation of mutual dissecting societies. One of the great objections urged on moral grounds against cremation, that it would shield crime by destroying its chief witness, does not apply to dissection. The first duty, of the student into whose hands the body fell, would be to determine besond a doubt the cause of death. If this fact alone did not deter the poisoner or malpractioner from his nefarious work, it would at least have the effect of bringing to light many crimes which now are hidden without any suspicion being aroused. It might even prove a protection to a man's life to be known as a member of a mutual dissecting club.

PATENT MATTERS BEFORE CONGRESS

Our abstract of the patent bills row before Congress, given in another column, exhibits the opening raid of the sewing achine monopolists, proving that these indefagable indi viduals, nothing daunted by repeated defeat in previous
Congresses, are abcut to bring all their forces to bear on the Congresses, are about to bring all their forces to bear on the
present one. The country is indebted to Mr. Dobbins, of New Jersey, for the presentation of the Wilson petition, which aims at a third term of seven years for the feed mo tion patent, used in the Wheeler and Wilson and other machines. The effect of this job, should it succeed, will be to render the whole sewing machine trade of the country tributary to the owners of the patent, and thus to saddle the people with a most oppressive and irksome monopoly, but little less obnoxious and gigantic than the old combination; in fact, it is advocated by, and in the interests of, the same parties. The second term ended November 12, 1871, and every Congress since that date bas been besieged to give the expired patent new life; but, to their credit, thus far they have refused. It is to be hoped that the bill will meet a like ate this winter. Senator Logan revamps the Akin and Felthouser sewing machine compensation grab, which the
Congresses of 1873 and 1874 rejected. Both of the above measures are presumably well known to the older members of the National Legislature, and it behooves them to keep watch that no ingenious lobbying or parliamentary sharp practice results in the passage of either of the bills. For the benefit f newly elected members, who may be unfamiliar with the tactics of the sewing machine monopolists, a brief statement of the merits, or rather demerits, of their claim may prove suggestive. A. B. Wilson's patent was granted for one of he first abortive attempts to make a sewing machine. This patent was construed to cover all styles of feeding devices in which the cloth can be turned round the needle, or in
which the cloth is fed between two clamping surfaces. It which the cloth is fed between two clamping surfaces. It
was extended for seven years, and then, for the swall sum of $\$ 50,000$, Wilson transferred all his rights to the trustees of the Wheeler and Wilson, Grover and Baker, and Singer companies, in the hands of which corporations the patent has proved an effectual instrument for the complete monopoly of the sewing machine business. Now because Wilson got but $\$ 50,030$ for his patent, he asks Congress for another term of seven years for the benefit, there is but little doubt, of the same combination. Wilson might, from other capitalists, for bis rights; but so large a consideration would not look
so well when the next application to Congress for a second extension was to be made, so the payment of a small amoun o the patentee was a necessary part of the job.
In previous years, members of the lobby have been un sparingly rotained, and large sums have been spent in attempts to secure a passage of the bill. It is probable that still further and more determined efforts will be made this year. It remains, then, for every congressman who has the interests of his constituents at heart to scrutinize keenly and arrowly every move made by those who are manipulating this gigantic extortion, and to oppose its progress by his oote at every point. It remains, beside, for the people to le their representatives understand their will in this matter in a way that cannot be mistaken. As matters stand now, the patent is public property, free to all users; the door is open to fair competition, and the sewing machine, which has to fair competition, and the sewing machine, which has
been somewhat reduced in price since the expiration of the been somewhat reduced in price since the expiration of the
patent, will be furnished to the public at a still lower price when the manufacturers outside the ring are insured, agains injunctions and suits by the monopolists, by Congress re jecting the petitioner's application. Every housewife, every seamstress, every philanthropist, is interested in having al bills defeated which have for their purpose the protection of any combination of sewing machine manufacturers.
We shall watch with interest the discussion and votes on hese bills when they are reported from the sommittees.

THE ATLANTIC FERRY.

The Herald has published an excellent report of the teamship lines plying between New York and Europe, with the names and tunnage of all the vessels, the number of trips made by each line, the number of passengers carried, the amount of freight, and other particulars of interest in regard to the character of the vessels, the kind of merchandise carried, quick trips, the improvements made in the different fleets, etc. We select from the report the following items oets, etc.
The oldest line is the National, plying between New York The oldest line is the National, plying between New York,
Liverpool, and London. It employs 12 iron steamers, Liverpool, and London. It employs 12 iron steamers,
full powered and among the largest in the service, having an full powered and among the largest in the service, having an
aggregate tunnage of $51,48 \mathrm{j}$ tuns. These vessels made, during the year 1875, 81 regular trips, carrying 25,521 passen gers and 464,709 tuns of cargo.
The Cunard Line-New York to Liverpool-employs 17 vessels, aggregating 53,200 tuns, and made 206 voyages, car rying 15,000 cabin and 27,550 steerage passengers, and 465 , 000 tuns of cargo. The quickest passage from Queenstown to New York was made by the Russia in 8 days and 14 hours; the quickest eastward was by the Scythia in 8 days and 10 hours.
The White Star Line-New York to Liverpool-employs 6 vessels, with an aggregate tunnage of 25,251 tuns. During the year they carried 24100 passengers (5,174 in cabin) and 185,000 tuns of freight. They made 50 trips in all, the fastest by the Germania in August, time 7 days, 22 hours, and 8 minutes. In October the Adriatic made the run in 7 days, 22 hours, and 57 minutes.
The Anchor Line-New York to Glasgow and the Mediter ranian-employs 27 vessels, with an aggregate tunnage of
57289 tuns. They made 87 voyages from New York, 53 from Glasgow to New York, and 37 from Mediterranean ports to New York, carrying in all nearly 20,000 passengers (cabin 4,569 , steerage 15,363), and 841,723 tuns of cargo.
The Inman Line-New York to Liverpool-employs 13 vessels, aggregating 42,075 tuns. They made 55 trips each way, 110 in all, and carried 300,000 tuns of cargo, and 34 , way,
389 passengers, 6,592 of them cabin passengers. The fast 389 passengers, 6,592 of them cabin passengers. The fast
trips were, by the City of Richmond from Sandy Hook to trips were, by the City of Richmond from Sandy Hook to
Queenstown, 7 days and 18 hours; by the City of Berlin, Queenstown, 7 days and 18 hours; by the City of Berlin,
westward, 7 days, 18 hours, and 2 minutes; eastward, 7 westward, 7 days, 18 hours,
days, 15 hours, and 48 minutes.
The Hamburg-American Packet Company-New York to Hamburg-omploys 15 vessels, which carried nearly 30,000 passengers (cabin 7,426, steerage 22,496), and 137,000 tans of merchandise.
The North German Lloyds-New York to Bremen-em. ploys 15 vessels, aggregating 48,710 tuns. They made last year 51 trips each way, carrying in all over 30,000 passen gers (cabin 6.935, steerage 23,748), and 114,500 tuns of car go. The best time made was 9 days and 10 hours.
The new State Line-New York to Glasgow-employs 7 vessels, aggregating 17,000 tuns. They carried 4,900 passenvessels, aggregating 17,000 tuns. They carried 4,900 passen-
gers and 48,900 tuns of freight from New York. Number of gers and 48,900 tuns of freight from New York. Number of
trips and amount of freight from Gla sgow not given. Quickest trip, 9 days and 15 hours.
The Williams and Guion Line-New York and Liverpool -employs 6 vessels, aggregating 22,360 tuns. They made
38 trips each way, and carried 150,000 tuns of cargo : number of passengers not given.
The French Line-General Transatlantic Company-New York to Havre-has 6 vessels, aggregating 24,300 tuns The whole number of passend and carried b, by all these lines was about 225,000 , and the freight over $2,000,000$ tuns.

Nineral Wool.

The method of manufacture at the Krupp Works, Essen, Prussia, is as follows: The pig iron furnace is provided with tap an inch in diameter, out of which a continual stream of slag is allowed to flow and to fall a distance of 2 feet 6 inches, at which point the falling stream of slag is met by a strong blast of cold air, the effect of which is to separate the slag into myriads of hairlike threads. as white as snow, resembling the finest wool. These fibers, like spun glass, if handled, will penetrate the skin. The mineral wool is used for pa
duct.

RECENT IMPROVEMENTS IN LOCOMOTIVE ENGINES.
A lively competition between three leading railroad lines carrying passengers and freight between London and Scotland has continued for some time past; and some very important improvements in locomotive construction have al ready been produced by the rivalry. The morning express train on the Great Northern Railway accomplishes the dis tance from London to Edinburgh, 399 miles, in $9 \frac{1}{2}$ hours, including all stoppages, one of which is long enough to allow the passengers to take dinner, and the London and Northwestern Railway is by no means behind its competitor in speed. The authorities of the Glasgow and Southwestern line, over which passes a vast amount of traffic from London to the manufacturing districts of Scotland, have recently constructed
sideratum; and we think that our readers will find that th ${ }^{\ominus}$ object has been successfully achieved in the apparatus of Mr . James Stirling, shown in Figs. 1 to 8 of the accompanying ngravings.
As will be seen from the views given, the apparatus con sists of a pair of cylinders (each 5 m nches in diameter, and of sufficient length to accommodate a stroke of about 9 inches) bolted down to a cast iron bed plate, which forms the top of the right hand trailing wheel cover. The two cylinders are almost identical, being cast from the same pattern, but in one of them-that next the firebox-the exhaust port is omitted, therebeing merely two passages leading from the ends of the cylinder to the face on which the regulating valve (shown in detail by Figs. 6,7, and 8) is fixed. The other cylin
controlled by the piston in the front cylinder, this cylinder being completely filled with oil, which, as the piston moves, is forced from one end to the other through the regulating valve, which we have already mentioned as being fixed on he top of that cylinder. As will be seen from the detail view,Fig. 6, there is provided at the top of this valve a cock, hrough which oil can be supplied when required to mak p any losses by leakage, and thus all slack can be kept properly taken up.
One of the leading features of the arrangement is that, when the steam cock is closed, the valve regulating the flow of the oil is closed also, and thus, when the steam is shut off he gear is firmly locked in the position it then occupies. As will be seen from the in the position it then occupies.

STIRLING'S STEAM REVERSIEG GEAR FOR LOCOMOTIVES

some new locomotives, which deserve the attention of all persons interested in rapid and economical railway communication. These engines have two pairs of driving wheels, coupled outside by horizontal bars, and four leading wheels are united in a bogie in front of the engine. The cylinders are 18 inches in diameter by 26 inches stroke,and the driving wheels are 7 feet 1 inch in diameter. Each engine shows a heating surface of $1,111 \cdot 8$ square feet: this total, which is large for a narrow gage engine, being obtained by using boiler tubes of small diameter. Mr. James Stirling, the lo comotive engineer of the line, has managed to make tubes of $1 \frac{1}{2}$ inches diameter thoroughly efficient; and our locomotive friends are well aware that this is a problem of considerable importance, owing to the difficulty of cleaning such tubes. Mr. Stirling hinges the exhaust pipe on one side at the bottom, so that, by slackening a bolt, it can be turngd out of the way, giving free access to the center tubes of the boiler.
But we must now call attention to the most important improvement, which successfully solves the difficulty which locomotive engineers have hitherto found in applying steam power to the reversal of the engine: the introduction of which gives the engineer control over his engine to a degree which is found to be of the highest value when any accident happens or the signals are against him. Our readers are doubtless familiar with the ordinary reversing gear of a locomotive, constructed by attaching the ends of the rods of two eccentrics (set nearly diametrically opposite to each other) to the ends of a link, in which the die attached to the slide valve rod runs. This link regulates the cut-off of the slide valve by controlling its travel, and the position of the link is regulated by the way shaft and the reversing lever notch plate, into which the lever controlling the link is fastened. But if the engineer lifts the lever out of a notch while the steam is on, the speed of the engine and the difficulty of reversing the travel of the slide valve under steam pressure will prevent his altering the position of the great difficulty when he has link and slide valve till in great dificulty in moving the link and sill the engine has considerably slackened speed. To apply steam power, therefore, to the immediate reversal of a locomotive, both when at full speed and when engaged at work which
requires frequent reversal, such as shunting, is a great de-
er has the usual two steam ports with the exhaust port be-
ween them, and these ports are covered by a kind ween them, and these ports are covered by a kind of revol ving slide valve which can be turned so as to place either of the cylinder passages in communication with the exhaust, the other passage being at the same time made free to re ceive steam through an opening in the valve itself. Thus with the valve position in which it is shown in Fig. 1, the steam would be admitted to the front end of the cylinder and exhausted from the rear end. The cylinder of which we re now speaking is fitted with an ordinary steam piston, while he other cylinder-which we may term the cataract cylinder -is fitted with a cylinder packed by two cup leathers as shown. Both pistons are attached to one rod, which passes out through the front cover of the front cylinder, and is con-
il.regulating valve are connected so that they are opened or closed together, the connection between the two being such as to admit of all requisite adjustment of their respective movements. Altogether the arrangement is very simple, and he details are well worked out, while in practice the apparatus is found to act admirably. "We may add," says En . ineering, to which we are indebted for the engravings, that, as the engine cannot be reversed when out of steam, it is an established rule that all engines fitted with this steamreversing gear should be left by the drivers in mid-gear and with the handles locked Mr. Stirling has now worked this arrangement for upwards of a year, and has experienced no bad results from moving the engines fitted with itin either direction when cold."

the piston rod carries an index which works over a flxed scale, and shows the position of the valve gear and the percentage of the stroke at which the steam is being cut off.
The action of the apparatus is as follows: When the steam cock (shown in detail by Fig. 5) is opened and steam admited to the pipe leading to the rear cylinder, this steam passes to the front or rear end of that cylinder, according to the poition of the rotary valve with which the cylinder is fitted Supposing the steam to pass to the front end, the piston Supposing the steam to pass to the front end, the piston
would be forced backward; but this motion of the piston is on side, punch three holes each s $_{\text {river }}$ This makes a neat, strong job. two branches to strike vineyards considerably distant from each other, and then the branches must have produced 330 and 100 jets respectively in order to strike the separate vines.

IT is not a difficult matter to mend harness tags so long as harness leather, copper rivets ($\frac{8}{4}$ inch) and a good steel punch are at hand. Cut two strips of leather as wide as the tug and eight inches long; join the broken ends with a strip

Peculiar Effects of Lightning on vines At a recent meeting of the Société Helvêtique des Sciences Naturelles, Professor Dufour mentioned a lightning stroke which in the month of June last struck simultaneously two vineyards, distant over 360 feet apart. In one, the surface affected measured 57 feet square, and included some 330 vines. In the other the surface was about 32 feet square and about 100 vines appeared to be destroyed, while others were partially so. In August, however, those vines which appeared to be the most severely injured threw out vigorous branches, and early in September were covered with new bunches of young grapes. But on the other hand, those prapes already started, and which, had the lightning not intervened, would have formed the year's crop, ceased all development.
In his treatise on lightning, Arago cites, as remarkable facts of rare occurrence, lightning strokes apparently divided into two or three branches. Here, however, the lightning divided into

IMPROVED AUTOMATIC CRADLE,

The accompanying engraving represents a new form of cradle, which, by means of suitable clockwork, may be caused to rock itself for periods ranging from thirty minutes to an hour and a half, according to the strength of the actu ating mechanism. The cradle proper is mounted on its pe destal in a novel manner, and is so connected with the rock ing device that its motion may be uniform without reference to the position of its occupant.
The clockwork, as shown in the engraving, rotates a crank shaft which, through the medium of the pitman, A, oscillates the bell crank, B. On the vertical arm of the latter a spool, around which passes a cord, which is extended betweentwo springs, C, attached as represented, inside the hollow head board The rotation of the crank shaft determines the oscillation of the bell crank, the spool of which, traveling along the extended cord, alternately depresses the ends thereof, and so communicates motion to the cradle. It will be obvious that the inclination of the cradle is compensated for the self-adjustment of the springs, C, so that these, with the cord, form an automatic regulator, by which the rocking lever is always adjusted in proper position to operate. As the child might be placed far over to one side in the cradle, thus givirg the latter a prominent "list" in that direc tion, the utility of the above device, which causes the rocking to be always uniform, wi be readily appreciated. The motion or swing of the cradle is regulated by the weight, D within the headboard ; said weight is adjusta ble by a screw clamp attached thereto, which works through a slot in the headboard (see dotted lines).
The mode of attaching the rockers to the base or pedesta 1 consists simply in the pivo ted connecting bars, E . On the rear rocker the bar, F, is extended and terminates in treadle, as shown, thus affording an easy means of rocking the cradle by the foot when it is not desired to use the spring. Patented November 23, 1875. For further information relative to sale of rights, royalties, etc., address the inventors, Messrs. W. V. and N. W ties, etc., address the inventors, Messrs. W. V.
Vandervort, New Antioch, Clinton county, Ohio.

BROOKS IMPROVED CLOTHES DRYER.

The new portable clothes dryer, illustrated in the annexed engraving, is so constructed as to admit of its being opened, either as shown in Fig. 1. or with its frames vertical, af. either as shown in Fig. 1. or with its frames vertical, af-
ter the manner of an ordinary clothes horse. To adapt it to be placed in either position, the inventor has attached a novel be placed in either position, the inventor has attached a novel
hinge, which forms the principal feature of the device. The hinge, which forms the principal feature of the device. The
construction of the hinge will be understood from Figs. 2 construction of the hinge will be understood from Figs.
and 3 . One portion of it has apertures through which the attaching screws pass; the other has a slot to accommodate a button which, when inserted and pinned as in Fig. 3, fastens that side of the hinge. There is also a stop, A, which prevents the hinge from opening too far, and also has an aperture through which a cord is passed to afford additional accommodation for the clothes.

The location of the hinges is apparent from Fig. 1. Two at the upper extremities of the vertical pieces of the frames connect the latter together, so that they may be adjusted as shown. When it is desired to set the frames up, clotheshorse fashion, one of the upper hinges is disconnected; and the vertical bars being brought together, their lower parts are fastened by the hinges shown near the bottom.
Patented November 2, 1875. For further particulars relative to sale of State and county rights, address the inventor, Mr. G. A. Brooks, Norwich, Conn., or J. W. Heaton, Bridgeport, Conn

The Art of Skeletonising Leaves

"The subject having excited a little interest among some horticulturist lately, owing to the exhibition of some beautifully executed examples at some of the large provincial exhibitions held in the Northern and Midland counties of England, I took the liberty of appealing to a lady friend, who has been very successful as a skeletoniser of foliage, request-
ing her to favor me with the modus operandi by which she ing her to favor me with the modus operandi by which she produces her specimens with such perfect completeness.
" My informant states at the outset that the art of skeletonising leaves and flowers would be found much less difficult of accomplishment were the nature and character of the various plants thoroughly studied at first. This is, no doubt, a very important matter. For instance, it would be but a poor direction to the learner to say: "Gather the leaves on a certain day," unless proper attention be also paid to the leaves chosen. They must have reached a certain degree of maturity, neither too old nor too young; and as all leaves do not reach this point at the same time, it is obvious that care must be taken that each kind must be gathered when fit for use. The leaves of the magnolia, for instance, may be gathered

VANDEVORT'S AUTOMATIC CRADLE

when the plant is in bloom, varying in time from June till August. They will require from a month to six weeks time to be well immersed, and so be easy to dissect, as the fiber is so strong. The leaves of the ivy rank among the most difficult, and, because of the peculiar beauty of the fiber, will amply repay the trouble involved in the preparation. These may be immersed from the beginning of May to October, but should be leaves of the previous year's growth. All leaves will not answer for dissecting, but those that have been most successfully operated on are from the magnolia, ivy, pear, rose, holly, orange, poplar, willow, elm, lime, service tree, Spanish and horse chesnuts, and the oak. The leaves of the last-named should not, however, be put into the same vessel with the others, as it affects them in an undesirable manner. Seed vessels may also be dissected in an admirable manner; such are those of the stramonium, winter cherry, poppy, etc.
" To procure good specimens, put the leaves into a deep jar, and cover them with soft water, which must not be changed the jar is then to be put into a cool place. When, upon ex amination, the leaves are found to be quite soft, they must be carefully brushed in a weak solution of chloride of lime for a short time, to whiten the fiber, and afterwards washed well in two or three waters, and dried carefully between sheets of blotting paper or linen; after which they are ready for mounting. To make stems for this purpose, thread, stiffened with gum, is most useful, and it has a natural appearance. The leaves may be formed into bouquets or wreaths, according to the taste of the operator, and should be placed under glass shades to preserve them from harm.
"I have seen groups of leaves so prepared, that formed most acceptable table ornaments in sitting and drawing rooms; and it suggests a pleasant employment for the fair sex, with which to fill up moments of leisure. It is evident that much nice discrimination in the selection of the right leaves is required; and a light and careful manipulation is also essenquired; and a light and careful manipulation is also essen-
tial ; and in the case of failure from a first attempt, no small amount of patience is needed to carry the operator through to ultimate success."-R. D., in Land and Water.

Compulsory Education in New York.
A recent report of the Superintendent of Truancy to the Board of Education of this city exhibits the practical working of the compulsory education law, which went in force on the 1st of Feburary, 1875. By comparing the figures showing the average attendance on the above date, and those showing the same at the close of December last, there appears an increase of 6,443 in the number of pupils registered, and of 6.515 in the daily average attendance. Including the ncrease of average attendance at the industrial schools also, the last mentioned figures are augmented to 7,614. In other words, in ten months and at an expense of $\$ 14,355.88$ for the period, nearly 8,000 children have been induced to abandon a course of idleness and vagrancy, fitting them to become
paupers and criminals, and to enter upon a course of industry and instruction, preparing them to be future thrifty and intelligent citizens. This is an admirable and encouraging showing for the first workings of the law, although one which we may hope to see improved upon after the lapse of another year.

Koumiss.

The foreign medical journals are giving considerable pro minence to the discussion of the utility of koumiss as a remedy for that, now to all intents, incurable disease, consumption. It is to this peculiar preparation that the Tartars at-
ribute their total immunity from the disease; and that this immunity has long since been traced to koumiss by Rus sian physicians is proved in the fact that the latter as fre quently send consumptives to regions where koumiss is con stantly used as the physicians in this country dispatch patients to the orange orchards of Florida for the winter.
The Tartars, above all other people, excel in the manufac ture. The material is an alcoholic liquor produced by the fermentation of mare's milk. A certain quantity of the latter is placed in a wooden vessel, and one sixth of its amount in water is added. A similar amount of cow's milk is next poured in, and then the receptacle is covered with a thick cloth, and either buried in the earth or subjected to a moderate heat for 24 hours. The mixture becomes sour, and thick clots form on its surface, but these last are again incorporated by brisk stirring, which is continued until the liquor becomes homogeneous. Another twenty-four hours' repose follows; the liquid is transferred to a higher and narrower vessel, and the stirring and beating operation is repeated. It is then ready for use, although the stirring has to be done over again every time the contents of the vessel are drawn upon after any period of rest.
The taste is agreeable, and of a kind of acid sweet. A dose of something less than a quart is intoxicating, even to persons habituated to its use. It appears to act on the faculties of nutrition like alcohol and raw meat, that is, it moderates the consumptive action of the disease. The patient gains in weight.
In the large cities of Europe, koumiss has, in cases where large quantities of mare's milk were unattainable, been made of cow's milk alone, or mingled with asses' milk. To use it as a medicine, it is bottled, and a tube is forced down through the stopper, as in the siphon jars so much in use by mineral wate makers, said tube having a suitable faucet The pressure of gas generated in the bottle is always sufficient to drive out the koumiss forcibly, so that it can be drawn off at pleasure, like artificial seltzer water.

A NEW STEAM TRAP.

We extract from the Belgian Bulletin du Musée de l'Indus trie the annexed engraving of a new steam trap, for drying saturated steam during its passage from the boiler to the en gine cylinder. The apparatus is composed of a cast iron chamber, m, which is surrounded by felting or other nonconducting material. The steam enters at the opening, a; and in its descending course between the sides, m and n, and in rising in the bell, c, it deposits the water of condensation, which, sinking to the lower portion, d, of the receptacle,

there accumulates. In order to allow this water to escape, a double seated valve, f, is placed at the bottom. On the stem, l, of the valve, a spherical float, e, is carried. The stem is fixed in a tube which traverses the sphere, and is guided above by three arms, at g. When the water level rises in the receptacle, the float is raised and the valve beneath lifted, allowing of an escape until the sphere falls sufficiently to close the valve. The weight of the float may be rfgulated by admitting a suitable amount of water at the opening closed by the plug, h. The dry steam makes its exit above and is conducted to the cylinder by the pipe, b.

Thousands of dollars are lost by farmers through neglect to shelter their farm machinery during winter. It only takes the joints, and to render the bolts leose and weak.

Chortespondenct.

Employers and Trade Unions in England.

To the Editor of the Scientific American:
As I told you in my previous communication (published in your last issue), the workman Tom continued in his course, determined to let the matter work itself out; but while he was in this state of mind, matters assumed an entirely new phase, inasmuch as the foremen began to urge the day work men to do more work, complaining that the cost of day work must be made to approximate that of piecework. Some men were reduced by being put back from the erecting pits to the fitting benches, one or two were threatened with dismissal, and apprentices just out of their time were not given the full amount of the usual rise in their wages. One old hand, who had performed some twenty years of service under that company, and rearly all of it in the same shop, had his wages re duced, and the whole shop became as it were in an uproar Tom was charged with injuring his fellow workmen; he re rom was chaged rithinjurg but his wor, he replied that he had nothing to sell but his labor, and he had a sight to realize that no manhad a right to injure a whole community, that the rights (and even the privileges) of the individual that the rights (and even the privileges) of the individual were ignored by governments when the welfare of a community demanded it. He was told how the discoverer of gold in California had his lands seized by the people, and had been utterly unable to obtain any redress at the hands of the cuarts. Another said: "See here! I was engaged to work for this compasy; I have given them satisfaction for years; I am doing the same amount of work that I always did, but I no longer give satisfaction. I am given to understand that I must do no more work for the same price. I would not object to your doing what you like with your labor; but when you are set up as a standard by which I am to be measured, a standard by which we are all to be measured, to our detriment, what are we to do?" Still another said: "Do not you see that your perseverance and skill are merely taken advantage of to our detriment? You are not given any credit for any unusual ability, but our employers set you up as an average, and say that, if you can do so much work, others must do it. Doctors and lawyers have legal charges which they can enforce, the one so much a visit, the other so much for each professional service; but we have no protection whatever." Tom replied that he was not answerable for the actions of the company, and that in a matter of business he had a right to consult his own interests only. They replied that it was a matter of bnsiness to them also, and that they had a right to consult their interests only. The result of his work had been a business detriment to them, and he must thereafter expect no favor from them.
Here was an entirely new disturbance. The foremen got into difficulty, the superintendent said that it looked badly on the books for a workman to be making so much money, and also for one man's work to be done so much more cheaply than another's. The foremen were unable to get others to either take piecework at Tom's prices, or to make day work cost anywhere near that of his. They therefore looked upon Tom as the cause of their troubles also, and dealt with him in no very friendly spirit. In the meanwhile, Tom employed another man to work for him and sometimes two, and at times an apprentice. Among the apprentices was a certain young gentleman (who is now the master mechsmic of a railroad not a hundred miles from Williamsport, Pa.), who was an earnest and assiduous worker, and probably the most skillful of Tom's assistants, and who will probably recognize the sabject of this lotter, since he was cognizant of nearly the whole of the contest. The result of the foremen's displeasure was that Tom was likely to lose his po ition. He learnt that it was to be urged upon the superintendent that the disturbance created in the shop by piecework was more detrimental to the company than was the piecework advantageous. The claim was probably not without foundation, since Tom was on his entry to the shop greeted with ringing of hammers on iron plates, the erection of a gallows frame in his vise, shouts, and other similar salutations, the better class of workmen looking upon these demonstrations with pleasure, but holding aloof; the inferior ones helped the folly, hoping it would intimidate Tom; the apprentices en oured into it with a gusto half from deviltry and half from desire to become popular among the men. Then the groups of workmen and apprentices would argue the question, pro and con, and would not, as a rule, commence work till one or the other of the foremen appaared. This aroused in Tom a direct spirit of opposition; he took more piecework, cut down the prices still lower, and still he earned more than the reg. ulation "time and a half." His work was repairing and making new work for old engines. A few men were continually engaged in building engines by piecework, and thus it often happened that, at the time that Tom was doing a certain job for one engine, another man was doing similar work from the same drawings for another, the castings being from the same patterns. Tom's price was, as the books of the company attest, never less than 25 per cent lower than that of the men referred to; and yet, because Tom earned more money, or, in other words, because he did more work, he was harassed by his employers, and came into indirect conflict with them, by reason of their insisting upon his voluntarily reducing his prices, although his rival was not even requested to reduce, and was allooed to continue at the old price, although he did not do so much work. He did not earn so much money, and was therefore considered to have committed no offence.
It has not been attempted, in this letter, to show the bit terness attending Tom's struggle, both with the workmen and the foremen, but merely to illustrate the difficulties of the piecework system; but Tom finally decided to go to the

United States, and, wishing to have an introduction to some one there, called upon Mr. Zorah Colburn, then editor of Engineering, a mechanical newspaper well known to your readers. Mr. Colburn had heard of Tom, and gave him let ters of recommendation to several prominent engineering gentlemen in the United States. I subjoin an exact copy of one of them:

My Dear Sir
London, 11th day of February, 1867.
Mr. - Who will hand you this, has been engaged for some years at the - piecew ork alm ost every part of the finished we has taken comotives, and I believe he has succeeded very well at moderate prices. Indeed he has brought down the displeasure of the union men, with whom the workshops of this country are unfortunately overrun, for having been more industrious and therefore more prospero is than their regulations allow of. He has de ermined to go to America; and I trust that, if mend him, as I think you may with coofidence as a bard working, capable, and va uable man. In this latter case, will you kindly return to him this letter, and endorse it to any of our mutual acquaintances whom you think likely to further his wishes?

Zerah Colburar.
Ton came here, found immediate employment, and in a very few weeks was working piec \ddagger work; but in less than two years he found that " so much work for so mach money," as illustrated by the piecework system, is (as a means of ad vancement) a delusion and a snare, since his value as a workman was sufficient to render his employment in a b 'gher position'questionable in a money point of view. Tom, however, still believes that piecework, carried out with a desire on the part of both employer and workman to be reasonable and just, would be a decided advantage to both.
New York city.
Piecework

Some Further Eiectric Experiments.

To the Editor of the Scientific American:
I send you notes of three electrical experiments, which any of your readers can try for themselves. Fig. 1 repre. ents the common magneto electrical machine in general use

By turniug the crank, A, sparks can be obtained eitht r at B or C. These sparks can be obtained at the free or open end a conductor, by proper connection.
Fig. 2 represents common voltaic induction, and the sparks can be obtained either at B or C, and transmitted the same as by the magneto electrical machine, but with batter results.
Fig. 3 represents the Rulbmkorff induction coil. C is the battery, D the vibrator, and A and B the ends of the fine wire

or second coil. Sparks can be obtained at either A or B, b_{j} touching the knob with a wire or piece of metal. A physiological effect can be obtained by slightly touching the free or open $\epsilon \mathrm{Ld}$ of the wire leading, from either A or B, to the end

of the tongue. It makes no difference from which, A or B, you lead the wire, the spark will appear; and of course, by touching A and B together, you have the common result of the coil. Connecting A to the gas pipe, G, thereby grounding the whole coil. does not affect the sparks or physiological effect at B, or their transmission through conductors. The sparks can be made to produce mechanical effects in this form, and they can be made to produce mechanical ef fects similar to those obtained by Mr. Edison.

A Freak of Nature

To the Editor of the Scientific American:
In a forest in the vicinity of this place, there are two trees variety known as red oak, which, at about 12 fee other. The trees are about 2 feet 6 inches apart. The one
which the limb extends is 44 inches in circumference near the arth, 41 below the limb and 36 above. The other is 26 inches in circumference at the stump, and 24 below and 33 above the junction with the limb, which is 22 inches around. In the large tree, the trunk is healthy below the limb, lut the top evinces signs of decay. The top of the small one is healthy and flourishing, while its trunk is nearly dead, and has scarce ly grown an inch in several years. The large tree is about 30 feet high, and the small one over 40.
If any museum would like to obtain the specimen, it will be put on the cars at Farley, addressed to any person who may give me necessary directions.
Farley, Iowa,
W. J. McGee.

Wells of Mineral Water

To the Editor of the Scientific American

It is well known that mineral water in wells, by reason of its greater specific gravity, sinks to the bottom, while water which contains little or no mineral floats to the surface. Hence it is impossible to obtain pure water by the use of the common pump: for since the pump draws from the bottom, it must of course draw the mineral water first, leaving the pure water in the well. To remedy this, I suggest the following:
Privide a piece of $\frac{3}{4}$ inch oak plank about 15 inches square, and boil it well in clean water to remove the sap. Procure a piece of rubber hose about $1 \frac{1}{4}$ or $1 \frac{1}{2}$ inches in diameter, and of sufficient length to reach fiom the bottom of the well to the surface of the water when at its highest point. Split one end of the hose in halves to the length of 3 inches, open the mouth thus formed about 2 or $2 \frac{1}{2}$ inches, and join it to the center of the square plank by means of tacks through the edges of the lips, the slots on the two opposite sides being distended at least 1 inch. Attach the other end of the hose to a spile of $1 \frac{1}{2}$ inch bore inserted in the pump stock about 10 inches from the bottom, stopping up all other water inlets below the surface. The hose may be lashed on the spile with a well waxed cord. Introduce the pump, with the hose thus attached, into the well, allowing the plank supporting the upper end of the hose to flat on the surface, and the pump is ready for use.
The advantages of this plan are that, as no water can $\in \mathbf{n}$ ter the pump but through the slots in the hose under the plank, all the pure surface water will be drawn off before the mineral water is reached, and no débris or sediment of wha+ever kind can enter the pump from below, nor floating foreign bodies from above. And the floating plank will rise and fall with the varying hight of water, so that none but surface water, the purest in the well, can be drawn. Alma, Ohio.
J. Taylor.

Value of the Scientific American.

To the Editor of the Scientific American:
In your issue of January 15, current volume, is an extract headed: "Make a Note of It!" My advice to everybody is nstead of keeping a notebook and pencil always ready, and looking very much like a city local reporter, subscribe, like a sensible man, to the Scientific American, read it care fully and then lay it away. I can assure you that, if anything worth making a note of is published, it will be sure to come out in its volumes; and by looking over back numbers, as well as the new ones as they come out. any one will be sure of finding anything that is worth making a note of I have found it so during the few years that I have been taking your journal, and for iny small business it has been as good as a large cash capital. "Knowledge is power." $\begin{array}{ll}\text { Wilson, N. C. } & \text { H. B. Benton }\end{array}$

Electricity as an Executioner

To the Editor of the Scientific American:
In your paper of January 8 is an article on the above sub ject. It is very suggestive. Should the electric fluid be used to shuffle off the mortal coil of criminals, the judge in pro nouncing sentence would have to say: "The sentence of the court is that you be taken to the county jail, and thence to the place of execution, where you will be struck with light ning until you are dead, dead, dead!"
We might go still further with improved methods of deal ing with culprits. Experiments could be made to determine whether human beingscould be frozen in such a manner that life would return when the body was thawed out, as is the case with fish and other animals. If successful, instead of long imprisonment at the expense of the State for food and clothing, and the risk of escape, criminals could be securely incased in blocks of ice, and stored a way in refrigerators during their allotted term. Had Tweed been thus immured, there would now be less anxiety about him. Then, again, any one dissatisfied with the hard times could stop into the machine, and request a frie
specie payment was resumed.
The length of this kind of improvement would add years, but not age, to the prisoner. With proper care, we should be immortal. A hundred years would be as one day Troublesome mothers-in-law could be disposed of for a time, care being taken not to break them in two in the act of sto ring.
S. Brown.

Pniladelphia, Pa.

Enlarged Images Projected on a Screen with Microscope.

To the EVditor of the Scientific American:
In your issue of December 18 (Notes and Queries, No. 48) you say that a person cannot throw an enlarged image on a fortune to listen to a course of lectures, by Professor Bolles
on the microscope, in which he stated that he produced some of his images on the screen in that way. To confirm my im. pression, I wrote to him and received the following
"The answer in the Scientific American is only true in one way. It is true that you cannot use the microscope to project objects to any size on the screen, if you use the or-
dinary illumination employed for viewing objects, because the light (a gas jet, a candle, ordinary daylight, a kerosene lamp) is not intense enough to give a bright picture when diffused so much as it must be on the screen. But if you increase your illumination, you can project the smallest objects which the microscope can show. The enlarged objects which I showed in New Bedford were projected from a microscope placed in front of the calcium light. Dr. J. J. Woodward, of est wors of this kind. He uses sunlight, thus:

You can see the object on the screen; and if a photographic plate be substituted for it, a negative can be taken. In this way Dr. Woodward has photographed the most difficult His results, published by the government, are the best in the. way in the world. A great deal of this sort of thing has been done, and almost any book on the microscope has some thing about it. Any microscope and any lens can be used if there is a light intense enough. I often photograph micro
believe this will be interesting to New Bedford, Mass.
D. W. C.

To Describe a Circular Motion Around an Inaccessible Center.
To the Editor of the Scientific American:
The following problem recently came up in practice. It became necessary to tip the leaf of a bench or table about an axis which was inaccessible for using a hinge or trunnion. Sliding arcs as guides were also inadmissible, and nothing should project above the surface of the table. The derice shown in the engraving accumplishes the object.

A B is the leaf to be raised or lowered about the corner, A. C and D are pivots upon a fixed frame. $\mathrm{C} h, \mathrm{D} i$, and $i f$ form the well known parallel motion. Upon C h is erected the connecting link, $g e$,
uction, A $f, \mathrm{C} h$, and completing the movement. In construction, Smithville, N. J. John Saltar, Jr.

To the Editor of the Scientific American

I notice in your Supplement No. 5 an article upon the "phenomenon of induction," by Professor Houston of Phila. delphia, copied from the Journal of the Franklin Institute, in which he claims that etheric force is nothing but inductive electricity, and that he observed the same phenomenon in 1871. He attributes my failure, to obtain indications with the test instruments used, to the fact that the positive and negative currents from the vibrator followed each other with great rapidity,and thus prevented the instruments from responding. In reply, allow me to state the gentleman is entirely wrong in his conclusions, and that he cannot bo familiar with the extra currents of low resistance magnets otherwise he would have known that, upon connecting the battery,the extra current is provided with a circuit in which it may pass, consisting of the battery, connecting wires, and electromagnet. Under the conditions by which I obtain etheric force, no spark should theoretically be obtained, even if it were due to extra current upon closing the circuit; and in all my experiments none has ever been obtained. Neither is the brilliancy of the spark reduced by replacing the iron core of the electromagnet (used in one form of experiment) with a copper one, which should be the case were the spark due to extra current.
In regard to the Professor's claim of priority, I have on every occasion stated that the spark has been observed by electricians for many years, and attributed by them to induc tive electricity; and all that I can lay claim to is that per haps (if that is not too strong a word) I was the first to dis cover that it was not due to electricity.
In conclusion, I suggest that, as I have freely laid myself open to criticism by presuming to believe in the capacity of Nature to supply a new form of energy, which presumption rests upon experiment, it is but fair that my critics should also back up their assertions by experiment, and give me an equal chance as a critic.
T. A. Edison.

Newark, N. J.
The Nature of the Phenomena Discovered by Mr To the Editor of the Scienifis.
Allow me to correct a slight typographical error in the last paragraph of my article on page 39 of your current volume, where it said: " Another argument that this force is not elec
tricity itself, and is only related to electricity," etc. This makes me say the reverse of what I wished to convey. It should read: "Another argument that this force, if not electricity itself, is related to electricity only, and not to heat," New York city
P. H. Vander Weyde, M.D.

Sixty Quails in Sixty Days.

We wonder if there is anything epidemic in the desire to eat thirty quails. Two or three weeksago we fcund a story of some one in Indiana accomplishing that most nauseous columns.
 lave been trying their hands, or their stomachs rather, at the same proceeding, and they also have succeeded. We are beginning to lose faith after all in the assertion that the task is difficult: at all events, it is one which has been mas-
tered, apparently, by the indomitable will of the Gallic gourmands
But this is not all. One of the twain, after smacking his lips over quail No. 30, sighed, Alexander-like, for more quails to conquer. Thirty quails had glanced harmlessly from that flinty stomach, and the hero of the astonishing organ felt justified in beginning on quail No. 31. He continued until five birds had been engorged, and then outraged nature rebelled; but with a burs: of that gigantic will, which, in Napoleon, surmounted the rocky barriers of the Alps, theintrepid eáter hurled himself uponthe seventh bird, and, in his own words, "chewed him up, bones and all." Like the old guard at Waterloo, that stomach, "which dies, but never surrenders," withstood the onslaught of bird after bird, until finally, after the thirtieth quail, its heroic owner quaffed off a goblet of wine, and announced that for the last ten meals he-had enjoyed his repast. After this, these columns will be rigidly closed to any further stories about the impossibility of eating quails.

Patent Proceedings in Congress.

The following is an abstract of patent measures brought before Congress, up to the period of the going to press of this issue:

house of representatives.

Mr. Dobbins, of New Jersey, January 11, presented the pe ition of A. B. Wilson for extension of his patent on sewing machines. Referred to Committee on Patents.
Mr. Hartzell, of Illinois, January 12, introduced a bill to amend section 4,898 of Revised Statutes relating to patents. This bill was reported from the Committee on January 26, with the recommendation that it pass. It was accordingly read a third time, and passed. Mr. Hartzell also introduced on January 18, a bill relating to sections 4910 and 4,916 Referred to Committee on Patente, and ordered to be printed. Mr. Foster, of Ohio, January 18, introduced a bill authorizgextension of Horace Woodman's patent for a card-strip ping machine. Same disposition as preceding bill.
Mr. Hoar, of Massachusetts. January 14, offered petition of Samuel A. Knox for extension of his patent on plows. Referred to Committee on Patents.
Mr. Vance, of North Carolina, January 13, reported a reso lution " that the chairman of the Committee on Patents, and the acting chairman of any sub-committee thereof, be author ized and empowered to administer oaths when deemed by them necessary in any and all investigations before them.' Adopted.
Mr. Seelye, of Massachusetts, January 24, offered a petition for the renewal of Thomas A. Weston's patent. Referred to Committee on Patents.
Mr. Whitehouse, of New York, January 24, introduced a bill for extending Reynolds' patent for brake for power looms, Same disposition as the preceding.
Mr. Warren, of Massachusetts, January 24, presented a bill relative to copyrighting patterns for castings. Referred to Committee on Manufactures.
Mr. Caldwell, of Alabama, January 24, introduced a bill to enable Charles A. Fondé to make application to the Commigsioner of Patents, for the extension of his letters patent for a dredging machine. Referred to Committee on Patents.
The bills amending sections $4,898,4,910$, and 4916 of the Revised Statutes, referred to in our abstract, are designed to give to the assignment of patents and interests in patents the same solemnity and formality that attach to conveyances of real estate. They authorize officers commissioned to take acknowledgments of deeds to take acknowledgments of as signments of patents, which assignments are of effect from date of record in the Patent Office.
Mr. Douglas, of Virginia, on January 26, reported from the Committee on Patents a bill which is aimed at a custom, said to be prevalent among clerks at the Patent Office, of searching the records and procuring information for claimants at a distance. The bill makes the acceptance of money or any valuable thing, other than his salary, by any officer, clerk, or employee of the Patent Office, for wor pertaining to the Patent Office, a misdemeanor punishable by fine and imprisonment. It extends to the Patent Office the provisions of section 190 of the Revised Statutes, which de clares that no officer, clerk, or employee in any departmen or bureau of the government should act as counsel, attorney,
or agent in prosecuting any claim pending in his bureau or department while in the government service. It also forbids his acting in such capacity within two years after leaving the public employment.
Senator Hamlin, of Maine, January 10, intreduced a bill of the same tenor as that of Mr. Foster, of Ohio, in the House above noted. Referred to Committee on Patents, and ordered to be printed.

Senator Logan, of Illinois, January 21, presented the pe tition of W. H. Akins and Jacob D. Felthouser, praying compensation for inventing new and useful improvements in sewing machines. Referred to the Committee on Patents.
Senator Eaton, of Connecticut, January 21, introduced bill of same tenor as that of Mr. Seelye of Massachusetts in the House, above noted. Referred to Committee on Patents, and ordered to be printed.

Artificial Vanillin

The details of Haarmann and Tiemann's process (menioned on page 37 of our volume XXXI) for the manufacture of vanillin, are given as follows in the Deutsche Industrie Zeitung: Dissolve 10 parts of coniferin in hot water. Con duct this concentrated solution in a fine steam into a moder ately warm mixture of 10 parts bichromate of potash, 15 parts sulphuic acid, and 80 parts water; then heat to boiling for three hours. The vanillin formed is either extracted by ether, or isolated by distilling in steam.

The Supposed New Cereal.

M. B. says: "In a recent issue of your paper I see an ar ticle concerning a new grain found in the crop of a wild goose. I discovered this identical grain in 1850, where civilized man had never before trod the soil; it wes growing as an aboriginal product, in a gulch in the Utah Mountains. The location is northwest of Salt Lake. The grain was ripe, and resembled rye more than any other distinct type.

Incombustible Wood.

The invention of Mr. A. F. Richard, of Dax, France, re ates to the preservation and incombustibility of wood by the aid of crystallized chloride of sodium in solution in water at between 6° and 24° by Baumé's aerometer, and of a solution of chloride of sodium and alum at between 4° and 27°, either mixed in variable proportions or employed separately

What the Preacher Said.

A lady, residing at Joliet, Ill., writes to a friend in this city that, at church, the other day, the minister said that on very sure way of discriminating, between a good young man and one of frivolous habits, was by watching them as they went to the news stand for a paper. When a youth was seen to stlect the ScIentific American instead of a daily or an illustrated story paper, the observer might feel pretty confident of that young man's future.

Business of the Canadian Patent Office According to the Canadian Patent Office Record for Decem ber, 1875, there were issued in Canada, from October 20 to November 24, 1875, inclusive, 127 patents, of which 81 were granted to citizens of the United States, 39 to Canadians, θ to subjects of Great Britain, and 1 to a citizen of France. It will be understood from the above that nearly two thirds of all the fees paid to the Canadian Patent Office are furnisk ed by American inventors

The Conviction of L. W. Pond

Mr. L. W. Pond, the once well known machine tool builde of Worcester, Mass., was captured some time ago in San Francisco, Cal., and brought back to Worcester for trial fo the forgeries he had committed. Some thirty-two indict ments were found against him; but on being arraigned, he plead guilty to three. Without considering the other charges, the court sentenced him to fifteen years in the State prison.

Pasfage of the Centennial Appropriation Bill. The bill appropriating $\$ 1,500,000$ for the purposes of the Centennial Exhibition has passed the House of Representa tives by the close vote of 146 to 130 . A few amendments were added, mainly with reference to the filing of bonds by those accountable for disbursements, and for regulating the payment of the sum from the Treasury.

Usefal Recipes for the Shop, the Household.
 and the Farm

To make cider: Take good sound apples (the sweeter the better, the sweeter the cider) late in the fall, the later the do for vinegar furst frost. Early apples and windals may any length of time. Fill the barrel full, put in the collar, take out the plug, and let the cider foam out for about ten days, keeping the barrel full with cider made at the same time. After the cider has worked about ten days, take a long slim bag that, when filled, will go in at the bung hole, pu in about 1 lb . of English mustard for every $£ 0$ gallons, and drop into the c.der; then cork the barrel airtight, and let it stand about three weeks, then draw off into another barrel A precaution relative to the care of carriages, which is of ten overlooked, is to prevent rust of the spring plates where they are joined together and not covered with paint. The joints should be lubricated ; and the best material for this purpose, where dark colors are used in painting, is com posed of 2 parts each of pure beef and mutton tallow to 1 part blacklead, well mixed, applied warm and in small quan tities. When light colors are used in painting, diminish th quantity of graphite
It is said that leather may be affixed to metal, so that it will split before it can be torn off, by means of the follow ng composition: A quantity of nut galls reduced to powde dissolved in 8 parts of distilled water, and after remain ing for 6 houre is filtered through a cloth. This decoction is to be applied to the leather. Then take a similar quan tity of water and add to it 1 part (by weight) of glue, which is to be held in solution for 24 hours, and then applied to the metals, which should first be roughened and heated The leather is then laid upon the metal and dried under pressure.

tmproved adjustable almanac.

We illustrate herewith a new almanac, which, by a simple rearrangement of marked pegs inserted in cavities in a block may be adapted for any year. In the annexed engraving, Fig. 1, a portion of the device (three months) is shown. The pegs are placed in columns in the month divisions of the wooden block. Each of said divisions, for the sake of uniformity, contains 42 pegs, and on these pegs are figures to denote the days of the month, so that, of course, as many blank peg appear as the total number exceed that of the days in the month
The pegs are alike in size, and therefore are interchangeable in the block orifices. On the unde side of each, at the same end as the figure marked, is inscribed the da of the year. The opposite extremi ty of the peg is blank, so that. ac cording as it is inserted in the block it shows either the plain or num bered end. To use the calendar, al the pegs are inserted so as properly to indicate the days of the month but are pushed into the block to thei full length. As each day arrives, its corresponding peg is drawn out un til the number denoting the yea day, on the under side of said peg, appears. Thus, for every day ex pired, a drawn peg will be shown while those days yet to come are in dicated by the untouched pegs, so that the last drawn peg points out the current day.
The year in progress is shown at the top by similar movable pegs, which are also interchangeable with those already described. Those pegs not in use for indicating the year are inserted, rear end out, in the blank month spaces, and thus are conveniently stored until needed.
Each peg, as shown in Fig. 2; has a movable metal slide on its upper side. On this slide are figures, and, as the slide is moved out or in on the peg, said figures are shown in succession. This is called a "reminder," and the object is to denote that as many different matters are to be attended to, on the day shown by the peg, as are indicated by the last figure appearing on the slide. Another device may be used to symbolize events. In the engravings, pins are represented

apart. When it is desired to dispense with one seat, the front one is altogether removed and the rear thrown forward on its pivots. The construction is simple and strong, the supports being made of one half inch round iron, and there being no lateral play in the journals.
Patented through the Scientific American Patent Agency tion for jump seats of carriages, which admits of both front and rear seats being brought together so as to occupy the space required for but one, and also of the front seat being altogether removed when desired. This arrangement tends considera bly to economize room in the vehicle, and a the same time affords an easily adjustable and strong method of attaching the seat.
In Fig. 1, A is the front and B the rear seat The uprights, C, of the front seat are pivoted to the seat support and also to an inside plate not shown, which enters a recess in the plate D, which is secured to the side piece of the wagon. The inside plate may easily be lifted out of the recess, so that the mode of attach ing or detaching the front seat from the wagon is obviously simple. On plate, D, is a pivoted double latch, having two opposite horizontal projections and a vertical thumbpiece. This serves to fasten the two plates together, when the inner one is inserted, while one of its pro jections always enters one of the loops shown on plate, D, thus causing the latch to furnish a support to the uprights of the front seat frame in whatever position the latter may be placed.
The arrangement of the rear seat is shown in Fig. 2 and also in Fig. 1. The uprights are pivoted directly to the wagon plate, and are provided with a connecting piece, which equalizes the strain on them. Here
As shown in the illustration, the seats are brought togeth er, but it will be readily understood how they can be swung
 May 5, 1874. For further particulars relative to sale of patent, with patterns, \&c., or relative to sale of rights, address

Fig. 1

MILLER'S ADJUSTABLE ALMANAC

Messrs. Hanna \& Brother, carriage makers, Bel Air, Harford county, Md.

The Chinese Railroad

We mentioned recently the undertaking of the first rail road in China, the material for which is already en route to the last mentioned country from England. We learn that the line, which is to extend between Shanghai and Woosung a distance of $9 \frac{1}{2}$ miles, will be completed by July next. There is in China an excessively strong prejudice against railroads, which it is hoped this new enterprise will aid greatly in overcoming. It was only recently that several newspapers, published in some of the principal Chinese cities, and edited by natives in other respects intelligent and well informed, published bitter articles against the introduc tion of the locomotive, and even went so far as to assert that even in America and Europe the number of casualties, due to swift trains rushing about the country, was so excessive that people never used the cars as means of conveyance except when forced to do so by lack of time or similar necessity. We hardly share in the sanguine anticipations, of the promoters of the Chinese railroad, that,if the inhabitants of the Flowery Kingdom once get used to seeing traffic conducted on a short line, they will speedily abandon their present obstinate opposition. The Chinaman, say those who are familiar with the peculiar notions of his race, does not object to the railroad because of the dangers thereof, as above intimated, but purely on religious scruples. Every one knows how extremely solicitous the Chinese are as to the ultimat how extremey soir dead. In San Francisco there are special
disposition of their disposition of their dead. In San Francisco there are special
companies who insure their compatriots burial in the ground companies who insure their compatriots burial in the ground of their native land, and who make it their business to con vey back to China the remains of emigrants who die in this country. So also, when coolies are hired to go abroad, there is always a stipulation in the contract that the bodies of such as die shall be shipped back to the Chinese territory. Chine in fact has been described as one huge burial ground, and it is asserted that her soil is fairly packed with the dust of the countless number of generations which have formed her

HANNA'S JUMP SEAT FOR CARRIAGES.

 istence. This of course is more figurative than literal, bu the circumstance nevertheless remains that it is particularly impossible for railroads to ran, through the thickly settled districts, without in some measure approaching, and thus (in the dead. Such, it seems, is the objection to railroads ; an
New Blasting Powder.

The new blasting agent lignose invented by Baron von Trutzschler Falkenstein, and apparently made of woody fiber prepared with ni troglycerin, has been recently test ed (we learn from Deutsche Indus trie Zeitung) in various mines in Upper Silesia. The results wer on the whole not unfavorable, but the action was not always regular The substance has not (as was a first claimed for it by the inventor) five times the force of an equal weight of ordinary black blasting powder, and even four times wa oubtful; but a threefold forcemay be readily conceded. The price fixed by von Trutzschler is $\$ 33.7$ per cwt, or three and a half times heaper than the price of 3 cwt of owder. The advantar of owder. ew agent are less danger, as oes not explode on contact with pen fire, and is but difficultly ex ploded by friction or concussion and the fact that, to effect its explosion in a blast hole, the strand match may be used. The powder is very light, and in the loose state burns very slowly. A manufactory for the new agent has been established at Kieltsch.

Utilizing Tin Plate Scrap.
The invention of Mr. F. G. Morton, of Lynton street, Lon don, England, has for its object a simple, economical, and efficient means of separating the tin from the iron of tin plate scraps, and generally for separating, from iron or other metal, tin, solder, zinc, or mixtures thereof which may be attached thereto in the form of a coating. The tin plate

scraps or other combination of metals to be operated upul are submitted to the action of a blast or current of highly heated air in an encased or jacketed vessel or chamber, pro vided with a perforated false bottom or grating, in such a manner as to melt the coating of tin, solder, zinc, or mixture f these, causing it to leave the iron or other metal and pass off through the false bottom or grating. The blast of air is caused to pass through or over a suitable furnace, and con ducted into the jacket of the melting chamber, the interna shell of which is perforated to admit the heated air into the melting chamber, where it is diffused and caused to act upon the tin platescraps or other substances to be operated upo as aforesaid, which substances are simulte neously agitated.

New Method of Preparing Vaccine
The following method has been recom mended and used by one of our correspondents:
On the eighth day, or thereabouts, after vaccination, the calf being placed in a con venient position, the lymph from the vesi cles is caused to flow into shallow dishes, and evaporated to dryness; then it is pulve rized and put into tubes and hermetically sealed; and it is then ready for use.
The advantages of this mode of obtain ing lymph are, first, you obtain a pure lymph free from all the contaminating matter which bovine virus is liable to, such as hair, cuticle, pus, freces of the animal, dust, etc. Se cond, the lymph preserves its integrity very much longer than under the modes of prepa ration and preservation in ordinary use Third, it is much easier for physicians to manipulate when vaccinating than the quills, ivory points, or liquid lymph in tubes.

A good brown oak stain is produced by preparing the wood with a solution of 1 oz . catechu, boiled in $1 \frac{1}{2}$ pints of water. Whendry, brush over a solution of bichromate of potash 1 oz . to $1 \frac{1}{3}^{\circ}$ pints of water.
as long as it exists we imagine that the missionaries will have better success in counteracting it than the party of en gineers and workmen who, it is expected, are to demonstrate before the oblique ocular organs and to the equally oblique intellect of John Chinaman, the immense practical value o the iron horse.

THE FISH HAWKS.

The hawks are a family of birds containing members of varying characteristics, but the similarity of the branches is sufficiently obvious to show their relationship. The vul tures, eagles, owls, and almost all other birds of prey are entitled to share in the attributes of speed, courage, and en durance with which we are accustomed to endow the hawks and the bsautiful specimen shown in our engraving, the osprey, embodies these characteristics thoroughly. It be longs to the sub iamily aquilince or eagles, of the family falconidce or hawks, and Savigny further distinguishes as a separate genus, pandion. It is characterized by a shor bill, curved from the base to the acute-hooked tip, and com pressed laterally with slightly festooned margins; the wing extend to the tip of the tail. The general form of the bir is heavier and less adapted fapid and vigorous flight than is hear and and the toes are very that of the eagles: the tarsi and united at the base, and the claws are long, curved, and sharp. Three different species of osprey or fish hawk are known, inhabiting respectively America Europe and Asia, and Aus tralia. They all belong to the temperate regions, liv ing in the vicinity of arms of the sea, lakes, and riv ers; but they are sometimes found some hundreds of miles from land, especiall in stormy weather. They usually keep at a moderat hight in the air, watching the surface of the water upon the appearance of a fish within reach, the haw closes its wings and plunge headlong, sometimes goin entirely beneath the sur face, but seldom failing to catch its fish. The rise of the bird with its prey i singularly characteristio and majestic; and the em nent naturalist and artist Mr Joseph Wolf ha Mr. Joseph Woized the occasion at this instant, to portray one o the most vigorous and del cate pictures of animal lif which have come under ou notice
The scene is one of the highland lochs of Scotland and the sky and distance, together with the rock and water, are drawn with remarkable accuracy and delicacy of effect. The sol itary rock with its roughl built nest, from which two hungry young ones ar peering, is an effective cen ter to the picture.
The fish hawk in this country, however, finds a formidable foe in the Ame rican or bald eagle, who disdains fishing on his own account, but has a grea talent for obtaining that procured by the courag and industry of other birds. He usually watches the fish He k till be thinks he ha hawk an opportunit, and the overcomes him by superio weight and strength, a carries away the prize. We select this beautifu engraving from the pages of a handsome volume of drawings by Mr. Joseph Wolf, which have been engraved by the celebrated brothers Whymper, and printed by one of the fraternity. Mr. Edward Whymper adds to his great artistic genius an undaunted spirit in scientific research; and he has gained great renown as a traveler in many almost inaccessi ble countries and as a member of the Alpine Club, of London. We shall, as occasion may arise make some furthe selections from this volume which is published by Mr. Al exander Macmillan, of London, England.

The Industries of Hartford, Conn

While the statistics of the manufactures of Hartford, Conn. for the year 1875, are not on the whole encouraging, some of the companies manufacturing articles protected by patents seem to have been very successful, for instance: The Woven Wire Mattress Company has paid the largest percentage of return upon its capital. It divided $\$ 24,000$ on a capital of $\$ 60,000$, or at the rate of 40 per cent. The National Screw Company, which has since been absorbed by the American Screw Company of Providence, paid 22 per cent. The Willimantic Linen Company (which makes cotton thread), the Hartford Carpet Company, and the Gatling Revolving Gun Company declared each 20 per cent.

THE OSPREY AND ITS PREY
ply the immediate demands. The Croton River drains an area of about three hundred and fifty square miles. From careful observations by the engineers of this department,ex ending over a period of many years, it is ascertained that an average daily quantity of $300,000,000$ gallons of water flows over the Croton dam, nearly all of which could be brought o this city if we had sufficient storage and aqueduct facilities. The plans now presented contemplate the building of a dam on the Croton River, about one fourth of a mile above the head of Croton Lake, to an elevation of thirty feet above the top of the present dam, forming a settling basin of about 800 acres in extent, and a capacity of $1,180,000,000$ gallons Thence a tunnel is to be cut through the hills south of he Croton River, through which the water will be conveyed to the head of the aqueduct. The aqueduct is to be built on ne of the two routes described-the Bronx River route, 36 8100 miles in length, or the Saw Mill River route, 36 52-100 miles in length-to High Bridge. The masonry aqueduct will not be continued beyond a point in the vicinity of Jerome Park, in the newly annexed territory, where it is proposed to build a receiving reservoir of a capacity of $550,000,000$ or $600,000,000$ gallons. The niveau of this reservoir will be 42 feet above that of the Central Park reservoirs, and from there the water can be carried in iron pipes, the ground fall-
ing off abruptly towards the Harlem River, and rendering a masonry aqueduct impracticable. These pipes may cross the Harlem River either on High Bridge, which can readily be arranged for that purpose, or under the sidewalks of tunnels which the Department of Parks proposes to build under the Harlem River. In either case the expense would be com paratively small, and the pipes could be laid from time to ime, as necessity demands. The new aqueduct is to have a capacity to deliver $150,000,000$ gallons of water daily, thus increasing the supply by the two aqueducts to $250,000,000$ gallons per day, with the additional and inestimable advan age of the elevation of head of the new supply of 42 feet bove that of the park reservoirs, furnishing abundant water to the highest elevations in the city. The estimated cost of the new aqueduct is $\$ 10,000,000$

Fireproofing Fabrices and wood
In nearly all the recipes published for rendering ladies' dresses or woodwork uninflammable, the chief inredient has been tungstate of soda; and although this salt has been proved to be very competent for that duty, its scarcity and the consequent expense puts it out of the reach of many. The following formulæ of Patera have been recently subjected to careful experiment at Vi nna, and have been found most excellent.

1. A mixture of borax and sulphate of magnesia (Epsom salts) is prepared by dissolving 3 parts by weight of borax and $2 \frac{1}{4}$ parts of Epsom salts in 20 parts of water. The efficiency of this mixture is due to the formation, upon the flber of the cloth or the tissues of the wood, of the borate of magnesis, which is alike insoluble in hot and cold water; and the fiber be ing enveloped by it, the evo lution of combustible gases lution of combustible gases
is verydifficult, and the flame is prevented from seizing pon them.
2. Another excellent mate rial for fireproofing is a mix ture of sulphate of ammonia and sulphate of lime or gyp sum, in different proportions, according as it is to be used pon fine or coarse goods The sulphate of lime seems form, with the ammonia salt, a double sulphate which does not (or only in a ver light degree) possess the dis greeable properties of tha alt. The action of this mix ure of salts, which is capa le of extensive use on a count of its cheapness, de pends, on one hand on its enveloping the fiber, and on he other on the volatility of he ammonia salt at a high emperature, whereby the fame is smothered; 1 part of sulphate to 2 parts of gypsum may be employed, and wood work simply painted ove ith a concentrated solutio of the salt is sufficiently pro ected from fire. The wood s not, indeed, incombustible but it takes fire much les easily, gives but little flame, and ceases to burn of itself a soon as the igniting body is removed. Since roofs thus im pregnated would lose this property because of the salt wash ig out, Patera soughtto protect it by a coat of tar, oil pain or oil varnish, and found that the fireproof quality suffered but little. If it were allowed to thoroughly penetrate the wood, as is done in protecting timber from rot, the effec would be increased; but no experiments have been made nder those conditions. Patera also tried Fuchs' proposed method of mixing water glass with an insoluble substance ke elutriated chalk, bone ash, clay, glass, etc., and decided hat his process was the best for wood.

Universal Nature.

Nature has always had the credit of adapting her mean o ends. The tenderness of her provision for the wants of he humblest of her creatures is illustrated by Mr. Darwin, who says that male grasshoppers use their hind legs to fid ie on the edge of their wings, and that the best fiddler firs ucceeds in fascinating the females. Behold how the indus rious spider spins her web, and then sucks the blood of he usband and flings his carcass out in the back yard. Thus it that the harmonies of life swell the grand diapason of th Universe, as it were

POWER LOOMS

We publish herewith engravings of two forms of power loom, selected from Knight's "Mechanical Dictionary,"* on of which is adapted for weaving patterned fabrics.
The first practical power loom was made by Dr. Edmund Cartwright, a clergyman totally unacquainted with mechanics, and his attention was directed to the subject by some one dropping the casual remark |that when Arkwright's patents expired so many persons would go into the spinwing business that no hands would be found to weave the cotton Cartwright's first effort was a very rude affair. In bis ac count of it, he says: "Tho warp was placsd perpendicular ly, the reed fell with the weijht of at least half a hundred weight, and the springs which threw the shuttle were strong enough to have thrown a Congreve rocket." Two men were required to work the machine. It was novel, however, and he obtained a patent for it in 1785. Curiously enough, he then went for the first time to see how other people wore, and returned disgusted with the clumsiness of his own contrivance. His efforts to improve his machine, bowever, continued uninterrupted ly, and he spent over $\$ 150,000$ in perfect ing his various devices. Sceam was appiied to his looms in 1807, and in 1828 he died, atthe age of eighty-eight years. Five distinct actions are now performed in the power loom by steam : 1st. Raising and lowering alternately the two sets of warp threads. 2d. Throwing the shuttle. 3d. Driving up each life has left the body, we have organic, cellular, and molecu weft thread after the shuttle is thrown. 4. Unwinding the lar life left, and that is the food which we delight to suck warp from the beam. 5 Winding the cloth on the cloth roller. An arrargement is introduced for stopping the loom when a thread breaks, when the shuttle sticks in its passage, or wi.
In Fig 1 is shown the power loom with a warping and windıng machine, designed for the manufacture of light and medium cotton goods. With this loom the cost at Manchester, England, of weaving a piese of cotton cloth, 25 inches wide, 29 yards long, and 11 picks per qua ter ibch, is estimated at 104 cents. One person can attend to t wo or three looms, and each loom produces 26 pieces of such cloth per day. On the old hand loom of 1800, one man would attend to one loom, and produce 4 pieces per day at a cost of 66 cents each. The adaptation of the
power loom for fancy weaving
is shown in Fig. 2. The pattern chains, d, are mounted in a frame at the top of the loom; and in their movement, their pins act on vertical hooked wires or jacks, c, connected with a series
of coupled levers, e, connected in turn with the harness frames, f. A rocking frame the harness frames, f. A rocking frame,
a, at the top of the loom, provided at its a, at the top of the loom, provided at its
opposite ends with cross or griff knives or opposite ends with cross or griff knives or bars, b, engages the hooked wires selected
by the pins of the pattern chains, and raises the harness frames necessary to produce the pattern. Plain and fancy twills, spots, satin checks, etc., may thus be produced.

Formation of Uitramarine during the

 Incineration of Bread." I do not find any note of the fact that, at a certain stage in the incincration (burning) of bread, the beautiful ultramarine blue is formed. This occurs under circumstances which I have not yet sufficiently studied to enable me to reproduce it with certainty; but if the heat be raised to very bright redness, or be prolonged after complete incineration of the bread, the blue passes into a beautiful turquoise color, then becomes green, then passes on into a rusty color, and finally comes out as a pale fawn colored lining to the botryoidal mass of ash. This is not further affected, even by a prolonged white heat. The tints are so sug. gestive of the presence of copper that only by very careful examination did I satisfy myself of the absence of that metal; and I find that the colors occur in the purest and finest bread, as well as in inferior samples. I should be grateful if other analysts would favor me with any observations which they may have made upon this point, and I hope soon to be in a position to sub and for myself some further account.
"It is curious that copper should appear in all the text books as one of the agents ordinarily used for adulterating bread, and
the question arises whether the supposed use of copper may not sometimes have been erroneously inforred from the oc currence in bread ash of these beautiful colors."-James Ed munds, M. D. , in Chemical News

What is Life?

At the recent session of the American Dental Convention, in the course of some remarks upon microscopic investiga tion, Dr. Atkinson said: "We shall never know anything about life until we go to the bottom of the matter of function. There is a substratum denominated 'atom,' which is the least manifertation of life that we know of. Atoms are

- Pablished in numbers by Messrs. Hurd \& Hoaghton, New York city.
endowed with life-they can't be killed. We have been told that the molecular life of our food is killed. A state misa like that is either a lapsus linguce, or it shows an utte facture molecules; plasma is an aggregation of molecules Something must die that something else may live throughout the range of organic life. We have crystalline life, and be low that granular life, molecular life, and atomic life. A crystal is regularly arranged granules that are regularly ar ranged molecules that are regularly arranged atoms.
"The doctrine of inorganic or azoic existence will not do in his day. If we wish to know the origin of life, we must
board. As it was raining at the time, I wa?ked under the ee of the smoke pipe, on the hurricane deck, when immeditely I thought I heard, from the midst of the gloom, ealls for help. To reassure myself, I called the man on watch to listen, when a man's voice could be heard, though not what he said. I immediately had a boat lowered, and with two firemen and two seamen, went in search of the poor fellow, fol owing the direction of the sound of the voice After about fifteen minutes' pull apainst wind and tide I came up with wo mon in a piff who had ben dumped orerbeard from sloop thad sloop that had capsized about for miles up the bay away from us. One of the men was in the greatest distress about his brother, who, at the time of the accident, was asleep in the cabin of the vessel. He and the man with him had returned in the skiff and called his brother, but got no answer, and they concluded to go away from the vessel and trust to the skiff to procure help. I took them aboard of the Saugus; but not feeling satisfied about the fate of the other brother, I went to the forward part of our dock and listened. To my great satisfacion, I heard the indistinct calls of someone in distress, and immediately got the men into the boat again and pulled for the voice. After three quarters of an hour, or perhaps more, we rescued him from the bottom of his sloop, which had turned turtle. He was very cold and wet. He was in the cabin when his brother called his name, but could not make him cognizant of the fact. When wa started the last time, the brother I had taken on board asked as a favor to be allowed to go with us, and I told him to get into the boat. The meeting of these two poor fellows was traly affecting, each thinking that the other was dead. I took the party aboard the Sangus and had a fire made to Cry their clothes and warm tbem; the men meanwhile pro vided them with dry working clothes. Now it seemed al most providential, for I was just going to turn in, but thought I would take a look around before doing so.'

Occluded Hydrogen in Explosive Antimony.

When the officinal chloride of antimony, made according to tbe directions of the German pharmacopœia, is decomposed by a single cell of a Bunsen battery with a resistance of about 800 feet of copper wire (the positive electrode b ing formed of a massive piece of cast antimony, and the ne gative electrode of one or more fine platinum wires), in three or four days the platinum wires will be covered with a me tallic film with a silver laster. The slightest scratch, or spark from an induction machine, will caus it to explode with a loud noise and flash, and the evolution of a great quantity of white vapors. This was first observed by Gore, and it was supposed that the film consisted entirely of pure antimony in a pecu liar allotropic state. Some years ago Pro fessor Böttger proved experimentally that the apparently metallic film on the platinum wire did not, by auy means, consist of pure antimony, but beside antimony there was in it no inconsiderable quantity of chloride of antimony, which could be proven by throwing a little distilled water on the disruptured mass while glowing; a copious white precipitate of basic chloride of antimony was formed, which could not occur if the said film consisted only of metallic antimony.

The most recent observation of Professor Böttger on this remarkable electrolytic product is the discovery therein of occluded hy drogen, possessed of the same reducing pro perties as that contained in Graham's alloy of palladium and hydrogenium. If a platinum wire, freshly coated with the so called explosive antimony, is placed for ten or fif teen minutes in a very white aqueous solu tion of ferricyanide of potassium, the lat ter will be partially converted into ferrocy anide of potassium, a property which che mically pure antimony, free from arsenic does not possess.

Since the liquor stibii chloratis consists, as we know, of a solution of chloride of antimony in hydrochloric acid, we should ex pect that, in addition to metallic antimony, gaseous hydrogen would be evolved at the cathode during electrolysis. This, how ever, is not the case, as not the sligbtest trace of liberated hydrogen can be detected at the negative platinum electrode. Tha the chlorine liberated in a nascent state a
zation, and that brings it to a point where freezing begins and that is crystallization. When we haveinvestigated deep enough, we shall be prepared to understand the processe and they will be as plain as the freezing of water."

Mr. George Walter Roche, naval engineer on the Saugus, writing from Pensacola Bay, Florida, under date of Decem ber 17, says: "Last night we had a thunder and lightning storm, and afterwards a heavy blow from the N. E. It rained or a while furiously. About a quarter of 1 i o'clock I thought I would look out avd see what sort of a night we
were to have, and then retire. This, of course, was on
the positive electrode should unite with the metallic anti mony acting as anode, dissolving it, shows nothing contrary to theory; but that the electro-negative cblorine should ap pearat the negative electrode at the same time that the me tal is deposited, and unite with it without yielding a trace of hydrogen in gaseous form, is so very striking a phenome non, opposed to all theory, that it seems desirable to see thermetallic chlorides subjected to similar electrolytic tests in this direction.

EqG spoons get tarnished by the sulphur in the egg unit ing with the silver. This tarnish is a sulpharet of silver and may be removed by rubbing with wet salt or ammonia

NEW BOORS AND PUBLICATIONS.

Tei Invention of Prinvinge. By T. L. De Vinne. Part I. To
be Published in Five Parts, price $\$ 1$ each. New York city: be Published in Five Parts, price $\$ 1$ each. New York city: Francis Hart \& Co., 14 College Place.
Here is a book which even the most advanced bibiomaniac can certainly
and no fault with. It is really a curious and beautiful fittation of old style typography in every detail, this belng the author's peculiar fancy, in order
that the appearance of the book might be in harmony with tis tit.e and the that the appearance of the book might be in harmony with its titee and the
quaint lore of its contents. We have a faint suspicion, too, that the volume has no typographical errors in it. The author by no mesns asserts that fact;
but we have met with no printer's mistakes in the part of the work now bebut we have met with no printer's mistakes in the part of the work now be-
fore us. We have not the slightest doubt, nowever, but that some errors fore us. We have not the slightest doubt, nowever, but that some errors
have escaped us, and would in fact baffe the scrutiny of the keenest eyes,
for have escaped us, and would in fact baffe the scrutiny of the keenest eyes,
for the reason that every known attempt which has hitherto been made
to produce a perfect booik has signally falled. Not that almost perto produce a perfect book has signally failed. Not that aimost per-
fect books do not exist; in fact, we presume that some editions of the
Bible, printed by the Universities or br the Quenn's printers in EcgBible, printed by the Unlversities or br the Queen's printers in Ecg-
land, are as near perfection as human work can arrive; but these have been corrected and recorrected, in edition after edition, for decades,
We know of two instances where attempts were made to produce perfect spectmens of book typography. The first was that of Dom. Jo.
Souza, a Portuguese nobleman, who literally lavished money in order to print an absolutely perfect edition of Os Lusiadas, by Camoens,
Assisted by Dldot, and by a large gathering of sillled talent, Souza had the bejond all doubt that evergthing was absolutsly correct. But when the coples came from the press, after all an error was found-the letrers in the
word Lustano had become mlsplaced. The type had, as is very commonly the case, been drawn out in the passage through the machine, and the pressman, with that sublime indiference to sense which is pecullar to his
race, and which revels in returning dropped type upside down (as we kuow race, and which revels in returning dropped type upside down (as we kuow,
to our wee sly exasperation), had mixed the characters around to pease h1s somewhat erratic fancy. The second case, and it was one in whith even
greater care was taken, was that of an edition of the classics publishe by the celebrated Foulises of Glasgow. Six experienced proof readers were employed, who devoted hours to the reading of each page. After each leaf
was thought to be perfest, it was posted in the ball of the University, with was thought to be perfest, it was postod in the ball of the University, with who could discover an error. Each page was suffered to remain two weeks in the place where it had been posted before the work was printed, and the printers thought that they had attained the object for which they had been
striving. When the work was isaued, it was discovered that several error striving. When the work was lssued, it was discovered that several errors
had been committed, one of which was in the first une of the frst page There are other instances. Which a little research will quickly reveal, all
showing that the "best laid plans of mice and men,", as Burns sings, "' gang aft agley." We remember now that Sir Sterndale Bennett, the
celeorated English composer, not long since deceased, worked for years at the editing of Bach's rassion Mustc, and supposed his work perfect when it was pubished; and then he discovered. to his dismay, an error in the second
chord of the very first bar of the immortal composition. The title of the volume is the "Invention of Yrinting;" and it is a complete storehouse of curious lore regarding the rise of the " "art preservative." The iflue-
trations are coplous and fine; and the author, Mr. T. L. De Viane, of the firm of サrancis Hart \& Co., to whom the credtr of the excellence of the typography is due, writes in a pleasant, readable way, sure to enilst popu-
rar interest.
magnetism and Electricity. By Frederick Guthrie, Profeseor of Pbysics at the Royal School of Mines, London, England. Price 1.50. New York city : G. P. Putnam's Son, Fourth Aveuu street
The literature of electrical science certa'nly keeps pace with the discor-
ertes; and as the practical applications of electricity become more an more numerous. the demand for books on the subject spreads with rapid-
tity. Mr. Guthrie's claims to labor in this wide fild are based upon experimental knowiedge and aptitude for teaching; and he has now given the worid a resums of some courses of lectures dellvered by him at the institu-
tion of which be is a professor. The book gives a proper and, we may add, an unusual amount of attention to frictional electrictty, a branch of the sclence which is not yet fully explored, having been ecllpsed by the brilliancy or recent discoveries in the fleld of galvanime. We are able to award
Mr. Guthrie the highest commendation for the clearaess, accuracy, and Mr. Gictical value of his treatise, which is published in Messrs. Putnam'

The American Architect and Building News, a Weekly Jou nal of Constructive and Decorative Art. Subscription price, \$
a year, in advance. Boston, Mass.: James R. Osgood \& Co., 131 a year, in advanc
Franklin street.
We are glad to see that a new architectural journal, edited and printed in a manner worthy of the subject, commenced on January 1 of this year.
Weabrogate nothing of its excellence in saying thatit has much resemblance We the Building Never, of London; and we are able to pay it the compliment
of saying that, like that very successful journal, it is edited by men of of saying that, like that very successful journal, it is edited by men of
thorough practical knowledge and high artistict tastes, united with a proper
sense of the dignity and tinportance of their prose sense of the dignity and inportance of their profession. It also has it paper, by the photo-1thographic process. We wish Messrs Osgood \& Co.
a continued success in their new enterprise. The American State and American Statesmen. By William
Giles Dix. Price \$1 50. Boston, Ma3s.: Estes $\&$ Lauriat, 301 Giles Dix. Price $\$ 150$. Boston, Ma3s.: Estes \& Lauriat, 301 Washington street
This book is a valuable contribution to our political itterature, which needs at once pruning and puriffing. Although our pages are flled with
mat;ers which we and our readers consider more important than the inpolttcs, we are glad to be able to commend a stincere, vigorous, and able champlon of truth and Justice, two abstract qualities which are, perhaps in
danger of becoming merely abstractions. A wide diffusion of the author's danger of becoming merely abstractions. A wide diffuston or the author's
spirtt and enthustasm would do much to remedy many evils in our bods spirit and enthustasm would do much to remedy many
poltic, which are in danger of becoming insupportable.
The Principles of Coal Mining. By J. H. Colling, F.G.S., Au hor of Handoook to the Mineralogy of Cornwall and Devon, Cornwall and Devon. With 139 Illustrations. Price 75 cents New York city: G. P. Putaam's Sons, Fourth Avenue and 23 d street.
This ilttle book is an excellent treatise on a subject of which ilttle is
kncwn except by those immediate'y connected with coal mines. The kncwn except by those immediate'y connected with coal mines. The
writing is at once concise and explanatory, and it is the work of an unques-
tionable authority. It forms one number of Messrs. Putnamis Elementary

sclence series

Iron Steamshios, with Essay upon the Weakness of Larg Strong. By a Seaman. Price \$75 cents. New York city : D Van Nostrand, 23 Nurray and 27 Warren streets.
This treatise is a collection of ideas as to the weak points of iron ships,
many of which are new and original. It is free from technicailty, and con many of which are new and original. It is free from technicailty, and con-
taing some iateresting information. It is the work of Mr. S. P. Grittin.
The Methodist Almanac. Cincinnati, Ohio: Hitchcock \& Wal den, 190 West Fourth street.

[^0]Hanging Doors, eto.-T. Morton, New York city
Mixing Soap, eto.-F. M. Weller, New York city.
Sooving Hides, rico.-c. Rose, New York city.
Sswing M Mobine, xto.-s. w. Wardwell, Jr., St. Louis, Mo Srwing Maoinine.-J. Folk, Brooflyn, N. Y.
Sewing Maciine.-J. Ketth, Rhode Island.

NEW MECHANICAL AND ENGINEERING INVENTIONS. improved mitering machine.
Robert A. Williams. Galion, \mathbf{O}.-In this device there is a squar frame having guide flanges for supporting the moldings, sai frame for mitering. A tiay an placing the molangs on the frame, and has a guide recess for the introduction of angles of the frame and frame-setting device, both of which last are adjustable so as to admit of the accurate mitering and setting of the moldings.
improved rotary engine
Thomas Swinburn. Charleston, W. Va.-In this rotary engine, the cylinder is provided with a concentric groove arranged obliquely in ics end, and the piston works from a fixed center concentric with said groove. Drawings are necessary to convey a clear idea of the
working parts; but the general arrangement is both novel and apparently practical

IMPROVED CAR AXLE.
George W. Miltimore, Janesville. Wis.-This invention consists of a steel ring, which is plyced on the stationary axle in frost of the journal box of the revolviog outer axle, and retained thereon by a
stationary sleeve of the pedestal box. A double clamping ring wationary sleeve of the pedestal box. A double clamping ring
with spring-acted interior ring, revolves with the sleeve, by a con necting diaphragm secured on the sleeve. The diaphragm creates an oil chamber around the end of the journal box, and excludes impurities. The oil is supplied by grooves of the stationary sleeve and the steel ring from an annular oil reservoir of the pedesta oox, which is again connected by an inclined channel with a cavity
into which the oil is filled through a top hole, closed by a conica into which the oil is filled through a top hole, closed by a conical
spring plug, sliding on the vertical pin connecting the axle and pring plug,
improved sewing machine.
Josiah Glinesand Noel W. Stiles, Postville, Iowa.-This invention onsists in devices for giving circular motion to the shuitle withou connected to the verticalls-moving race, so as to move up to the osition for guiding the shuttle properiy, when the nose is to ente he loop, and it has a notch to mesh whin a sationary needle-backing plate. The shuttle carrier has a point guard, projecting for-
ward of the point of the shuttle, to prevent the thread from throw g over the latter when it reverses at the back part of its course and the shuttle is contrived for the thread to pass out at the rea end for the same purpose.
improved cloth shearing machine.
Isaac L. Holmes, Saco, Me.-This inventor now improves certain parts of a cloth-shearing machine for which a patent was granted
o him March 16, 1875. An automatic contrivance is added whereby the revolving cutters are stopped by a seam when it approaches the cutters, and are again automatically set in motion after the seam has passed the cutters, to preveat the seam from being unduly
cut. An elastic disk is also provided in the fricion clutch, by hich the rotary cutters are started and stopped.
improved horse power or derrick for drilling wells.
Gecrge A. Newman,Crowder, Neb., assignor to himself and Jame L. Newman, Chicago, Ill.-Tbis is an improved hollow revolvin mechanical devices, so constructed as to operate the auger and raise it without stopping the horse or changing his direction, to
operate and rotate a drill, and to guide the tube and hammer when operate and rotate a drill, and to guide the tube and hammer whe
anking a drive well. nking a drive well.
IMPROVED MACHINE FOR SHEARING BOILER PLATES. Ebenezer Fisher, Kincardine, Cinada.-This device consists of
tationary and a movable shear for clipping boiler plates, Th stationary and a movable shear for clipping boiler plates. The
tationary shear is arranged in a plane so inclined to the movable hear that the edge of the plate, being cut, is beveled suitably fo plate lies flat or horizontally on the stationary cutter. The cam hich works the lever of the morable cutter is contrived to allow the cutter to remain as long as possible when raised, to facilitate the adjusting of the plate.

IMPROVED TREADLE.
Carl Brandtner, Reading, Pa.-This is a centrally pivoted and lat erally swinging treadle, that is connected by a rigidly attached rod
nd crank rod with the crank shaft of the fly wheel, the crank shaft and crank rod with the crank shaft of the fly wheel, the crank shaf mparting, by friction wheels, motion to the driving sbaft. The in
ventor claims that rocking of the treadle on its pivots may be readily kept up without fatigue for any length of time, as it re
quires bardly any effort.
improved car replacer
Jesse F. Bridge, Warwick, Mass, and Arthur R. Blakeslee, Bir ingham, Conn.-This improved switch is so constructed as to ena ever desired, upon a temporary or permanent section of track, an again replaced upon the main track. It may be easily and quickly put down and taken up without disturbing the rails or interfering
with the traffic of the road. It is an arrangement of forked and with the traffic of the road. It is an arrangement of forked and grooved blocks attached to the rails in connection with a bridge,
the mode of adjustment dependiog upon the circumstances under which it is used.

NEW CHEMICAL AND MISCELLANEOUS INVENTIONS.

improved fishing tackle.
Julio T. Buel, Whitehal, N. Y.-All fishermen are already unde olarge a debt of gratitude to Mr. Buel, that we hardiy see how the which form the subjects of the two new patents below described Mr. Buel, than whom, we believe, no more ardent disciple of ol that ingenious substitute for bait which neither pickerel nor blue ish, nor any other water cannibal is able to distinguish from the mall fry which form its food. How many million fish bave falle victims to its glittering allurements, or how many unfortunate minnows have been spared the torture of impaling, it is impossible to
estimate; but Mr. Buel is determined to show that he has not by ny means exhausted all the capabilities of his invention, and there which will doubtless meet with general welcome. The first is a new deviee whereby two fish may be caught on the sameline, and the and a smaller space taken up by the same. A ∇-shaped wire spring frame has snap hooks at the ends, to whioh separate hooks with spooss are applitame are spread out, and the legs of the frame are
locked by the snap hooks after flshing to take up less space. In the
second patent we find a reliable adjustable device for attaching minnows or other bait of different size, and also for applying a many additional hooks as may be required for the size of the bait without the use of thread, gimp, or gut strings. It consists of a spring hook that is attached to a sliding wire ferrule, and adjusted gang of two or more hooks, according to the size of the bait, is em gang of two or more hooks, according to the size of the bait, is em-
ployed and connected by means of a central wire extension with ployed and connected by means of a central wire extension wok
snap engaging an eye at the shank of the next adjoining hook improved water trap supply and ventilation. John H. Morrell, New Fork city.-Mr. Morrell has recently pat ented a large number of useful inventions of the same general nature as the present one, with several of which our readers are
familiar through the illustrated descriptions published in back ssues of this journal. The object of the device now patented is t improve on one heretofore patented by Mr. Morrell (October 5, through the pipes; also, to provide for the water supply, and also the ventilation of the traps and their adjuncts when the orifice of the supply pipe mentioned in said patent is obstructed by ice, or
even when water cannot be obtained from the roof or ea ves of the even when water cannot be obtained from the roof or eaves of the
building, or when from any cause it is desirable not to use such bullding, or when from any cause it is desirable not to use suce
water. It consists in the combination, with the reservoir B (see engraving on page 335, volume XXXIII). of an additional water water pipe, or extending through the interior of the whole lengt of the same, applied to said pipe.

NEW AGRICULTURAL INVENTIONS.

IMPROVED HAY LOADER.
John A. Bower, Eureka, Kas.-This is an improved machine for hay wagon. The wheels, turned by the advance of the machine, ac uate an endless belt, teetb on which take the hay from the gather ing rake. By means of the belt the bay is raised up and discharged in the wagon. Suitable devices are added to hold the teeth of the athering rake out of action when requirsa.

IMPROVED HAND CORN PLANTER.
Milton Pollock Noel, St. Cloud, Minn.-Tbis improved corn planter so constructed that the operator can operate it and plant the cor rapidly as he can walk over the ground with a cane. The new eature consists in applying a loop to serve in conjunction with the in connection with the jointed handle. An flustrated description of this device was published on page 86 of our current volume.
improved churn.
James L. Sprague, Hermon, N. Y.-This invention consists of piral or propeller shaped pacies on a horizontal shaft, pitche bination with an air inlet at each end and an outlet at the middle Whereby the paddles draw air in at each end and eject it at the
center after acting on the cream, thus increasing the efficiency of enter after acting on the cream, thus increasing the efficiency of he air, which is an element of considerable importance in the churning process. The operation is.further facilitated by the inplaced in the angles formed by the flat top and vertical sides; and these corser piece
prevent the clogging
 of the cream in those angles, a difficulty
which is common in which is common in churns of this form
In the engraving, A is the horizontal cream box, baving a round
bottom and flat top B is the paddle shaft
C are the paddles, D D the air inlets, and E the outlet, F F being the corner pieces in the angles. The illustration clearly shows the ougbly efficient for all the purposes above described. For furthe particulars, addiess the inventor as above.

improved colter.

Andrew Muir, Sparta, Ill.-The invention is an improvement in hat class of rotary colters to be adjusted and to plow beams b ustment higher or lower, or at different points along the beam. The colter has its bearings in a plate which is provided with paralel vertical slots, whose opposite edges are notched to engage wit

NEW WOODWORRING AND HOUSE AND CARRIAGE BUILDING INVENTIONS.
improved bolt for window fastening, etc.
Herbert Seymour, Brooklyn, N. Y.-This is a.simple bolt having a pin at right angles to its end. A slot in the keeper permits of the passage through of the pin, and when the bolt is turied, the pin,
taking against the solid part of the keeper, prevents its slipping oat.

IMPROVED SASH HOLDER AND FASTENER.
Joseph R. Payson, Cbicago, Ill.-The object of the first of these two inventions is to improve the construction of the sash sup
porter, patented to the same inventor November 5, 1867. The in ention consists in forming upon the back of the frictio : plate thin projecrion, inclined at an angle of 40° or thereabout, which enters an elongated slot in the box, where it bears upon and trav-
erses a roller pivoted in the box, its single point of begring upon erses a roller pivoted in the box, its single point of bebring upon
the face of the roller being below the center of axis of the roller, the face of the roller being below the center of axis of the roller, The which means the movements of the sash are made smon in its
The upper end an elongated slot, in which the roller is pivoted, the sid b sides cut away, and at its lower end a bed for the spring, with sides cut away,
decrease its width and weight. A thumb screw is inserted in the upper end of the box, with the point of the screw working upo he inclined surface of arecess formed in the friction plate, in orde irection, and to fore the adge the nd outw ind upon the foce of the roller, thus wedging the friction plata tightly. The same is ventor has also patented a new fastene or the meeting rails of sashes, in which the operation of turnin he arm in fastening the window will draw the lower sash up or the upper sash down, should they not be fully closed, without its being lock
improved mode of dressing enameled moldings Albert C. White, Brooklyn, N. Y.-For the purpose of cutting off the moldings from their connecting wood base or backing in a rapid, and for dispensing with the hand planing and sandpapering, this invention passes the moldings through the planer by placing them
a bed piece with corresponding grooves and of equal lengfh an Fidth, and feeding them to the cutter set to the exact thickness of rood required to be cut

catitus aud sersmut.

 The Charge for Insertion under this head is One Dollar a Line. If the Notices exceed Four LineDollar and a Half per Line will be charged.

Alden Engine, 3cyl.Com. Balance Piston,doubles
power of Steam! Clirculars free, Farrelly Alden, Pittsb'h. "Wrinkles and Recipes", II the best practical
Handbook for Mechancics and Entineers. Hundreds of valuable trade suggestions, prepared expressly by celebrated experts and by correspondents of the "Sclentilic American." 250 pages. Elegantly bound and illus-
trated. A isplendid Christmas gitt for workmen and
 For Sale-A good manufacturing business, se-
cured by Patent. Address H. P . Van Eps, Peoria, Ill. Wanted-Tools, Patterns, \&ec, of small Machine
Shop and Foundry. Must e tin good conditlon, and cheap. Shop and Foundry. Must be in good condition, and chea,
Give parttculars. Nevil whitesides, Mt. Vernon
 develope one of the most promising patents ever
duced. Address Lock Box 2244 , New Haven, Conn.
Our new catalogge of drawing materiala, कill be be
sent on recelpt of 10c. Add. Keuffel $\&$ Esser. . New Y York. Wanted-Second hand Milling Machine, heavy.
Send accurate de eription, with price, to Page \& Lockwood, West Meriden, Conn,
Patent Rights for Sale--Small articles and cheap
for entre Right. Address Key Box 9 , spartanburg, s.C. I Wish to correspond with Manufacturers of GutCard made of that material. Marshall M. Smith, Green-
top, schuyler Coo., Missouri. Latest and Best Books on Steam Engineering.
CIrculars free. F. Keppy, Bridgeport, Conn. For Sale-Two Brick Machines, "Sargent" Pat-
ent-in use one year. Apply 27 So. Charles St., Batt..Md. Wanted Situations, by tho. Enalishenen, Pattern
Maker and Blackemith, both competent morkmen. Box
Shafring, Fable or clamp Pulless, best style
Hangers, 5 to 8 cts. per Ib. S.E.E Aarthan, Worcester.Ms. Small Steam Yachts, Yacht and Stationary En
gines, Shatting, \&c. s. E. Harthan, Worcester, Ms. Wanted-For Casd, soon-2and hand Fooring Ma-
chine. Must te modern, strong, large rolls and chean. chine. Must en modern, strong, 1arge rolis, and cheap.
send full deseription and price to C. A. Walker, Ken-

 Sy L. W. Rice, Greenfield, Mass
 Roth's Saw File Guide, 1 iluntrated in this paper
Jan. 1,1876 , is manufactured by E. Roth \& Bro., New For price of steam Yacht Machinern, from a
Row Boat to an Ocean-golng Steamer, send to to lute Brothers \& Co., Schenectaay, N. Y.
Patentofice Reports for Sale-R. D. Cooke, 32
New Church St., New York. Centennial Scroll Sow, \$2.50. The best for ama-
teurs. J. J. Green, Boonton, N. J. Claimants wanted for weestern land that has been
sold for taxes. Land Patents procured, J. Vance Lewws,
隹 late of the Gov't Land offlce, Attornes-at-Law, Wash
Wanted-A Bone Crusher, suitable for crushing
bones szze of nut coal. A stamp mill preferred. P. 0 . Box 3389, Boston.

 Wanted-One Heavy Drop,with 6001b. Hammer,
and one Facing Machine. Addrezs P. O. Box 2258, New

 Steel Castings, from one lib. .to five thousand lbs.
Invaluable where great strength and durabillty are re. Invaluable where great strength and durabilty are re-
quired. Send for Circular. Pittsburgh steel Casting Use Yocom's Split-Pulleys on all Shafting, same
appearance, strenth and price as an mished whol- Puleess, Shatting Works, Drinh
second St., Phlladelpha, Pa.

 Manufacturers! Send for illustrated catalogue
of Best Beet Pulleys made. A. B. Coor $\&$ Coc., Erre, Pa. Fine Castings and Machinery, 96 John St., N. Y. Shingles and Heading Sawing Machine. See ad-
vertisement of Trevor $\&$ Co

 Small Engines. N. Twiss, New Haven, Conn. The Original Skiner Portable EEgine (Im-
proved), 2 to 8 H.P. L.
L. G. Skinner, Erre, Pa.

Patent Scroll and Band Saws, best and cheapest
nuse. Cordesman, Egan © Co.. Clncinnati, ohlo. For best and cheapest Surface Planers and Uni--
versal Wood Worreers, address Bentel, Margedar $; \pm$ Coo., H. milton. Ohto.
Solid EmeryV Ulcanite Whels-The Original Solid
Emery Whell-other kinds imitations and Inferior. CauEmery Wheel-other kinas mitations and inferior. cau-
tion-Our name ts stapped in tull on all our best thand-
ard Belting, Packling, and Hose. Buy that only. The best 1 s the cheapest. New York Belting and Packing
Companv, 37 and 88 Park Row. New York.

Water, Gas and Steam Goodd-Send eight stamps
or Catalogue, contatannin over 40 illustrations, to Balley,

For best Presses, Dies, and Fruit Can Tools, Bliss
\&i Willame, cor. of Mlymouth and Jay, Brooklyn, N. Y.

For Solid Wrought-iron Beams, ete, see adver
tisement. Address Unlon Iron Milla, PIttsuargh, Pa. or ithograph \&c.
Hothkusise \& Ball, Meriden, Conn., Foundrymen to order, Job work solielted.
Peck's
Patent Drop Press. Still the best in use Address Mill Peck, New Haven, Conn.
All Fruit-can Tools,Ferracute W'ks, Bridgeton,N.J. American Metaline Co., 61 Warren St., N.Y. City. For Solid Emery Wheels and Machinery, send
the Union Stone Co., Boston, Mass., for clrcular. Hydraulco Preseses and Jacks, new and second
aand. Lathes and Machinery for Pollsting and Buflng and. Latere and Machinery for Polishng and Bumng
Metalis. E. Lyon, 770 Crand street, New York. Sininning Rings of a Superior Quality-Whitins-
ville spinning RIIng Coo., Whitungrille, Mass. For best Bolt Cutter, at greatily reduced prices,
Udress H.

B. Brown Co., New Iaven Conn. | $\begin{array}{l}\text { Diamond Tools-J. Dickinnon, } 64 \text { Nassau St., N.Y. } \\ \text { Temples and Oilcans. Draper, Hopedale, Mass. }\end{array}$ |
| :--- |

W. W. W.'s queries would, with the an papermaker papermaker--J. F. D. will find that the polishing
material described on p. 57 , vol. 34 , will do well fo cleaning silver.-H. J. P. will find an illustrated
description of a freezing process on p. 82 , vol. 33 . description of a freezing process on $p .82$, vol. 33. We have never heard of one being used for con-
densing in a steam engine, - R. and others will find machine on p. 351, vol. 29.-M. L. H. will find dir ections for cleaning nickel-plated suufaces and
brass on p . 57 , vol. 34.-W. F.W. will find directions for tanning sheepskins with the wool on on p. 233 vol. 26.-J. H. can fasten metals to wood with the preparation described on p. 287, rol. 34. See an-
swer to W. F. W., above, as to swan skins.-G. P. A. can calculate the speed of pulleys by the rul
given on pp. 26 , 73 , vol. 25 .-R. G. O. will find a re cipe for liquid glue on p. 90, vol. $32 .-$ L. J. C. is in
formed that his method of lacing beltsis very old - C. H. will find good directions for browning gun barrels on p. 11, vol. 32. Directions for casebardening gun work are given in this issue.-D. H. will
find on p. 234, vol. 30 , full directions for making recipe for a cement for glass on p. 379, vol. 31 .-G P. will find a description of phosphor bronze on p.
315, vol. 30.-C. E. F. Till find directions for annealing lamp chimneys on p.42, vol. 26.-E. L. will fin directions for making erasive soap on p. 181, vol 31.-R. Will find full information as to burning
coal dust on p. 379, vol. 31.-E. C. W. will find dirsctions for setting the eccentrics of a locomotive on p. 212, vol. 32.-P. T. N. Will flnd directions for
making vinegar on p. 68 , vol. 29.-T. E. M. will find a good recipe for aquarium cement on p. 43, vol 33.-C. W. J. will find directions for making patent
leather on p. 122, vol. 27.-J. W. T. will find an answer to his query as to a ball dropping through th tions for making phosphor bronze on p. 315 , vo 30.-H. E. B. will find directions for soldering cast iron on p. 251, vol. 28.-R. T. will find directions
for polishing marble on p. 283, vol. $30 .-$ H. B. Jr will find a recipe for artificial meerschaum on p. 193, vol. 26.-H. F. W. Will find directions for re
moving tattoo marks from the skin on p. 331 rol moving tattoo marks from the skin on p. 331, vol ty as to the distance at which an object is visible o p. 20, vol. 34.-M. T. will find,on p. 119, vol. 30, a recipe for restoring rancid butter.-A. F. will flnd
directions for polishing precious stones on p. 138, directions for polishing precious stones on p. 138,
vol. 30.-E. B. A. will find direetions for soldering of all kinds on p. 251, vol. 28.-R. J. will find a de scription of mica on p. 88, vol. 25.-J. C. W. win
ind a recipe for indelible ink on p.112, vol. $27 .-$ F find a recipe for indelible ink on p.112, vol. 27.-F.
C. will find particulars of the New York State canal boat award on p. 81, vol. 30.-J. C. will find
directions for washing fiannel and other woolen fabrics on p. 267, vol. 30.-F. W. will find a recip for harness blacking on p. 218, vol. 28.-R. J.C will find a description of M. Coignet's artificial
stone on p. 124, vol. 22.-R. T. can coat his pills with sugar by the process described on p. 59, vol plaster of Paris on p. 399, vol. 29.-J. N. will fin particulars as to the lifting power of hydrogen on p. 74, vol. 31.-F. O. can cement whalebone to wood
with the preparation described on p. 90 , vol. 30 .R. F. will find a formula for the proportions of safety valve on p. 107, vol. 31.-W. T. will find dir small animals on p. 350, vol. 30 .-M. N. will find a recipe for preparing muriate of ammonia for inha-
lation on p. 315, vol. 31.-S. T. will find a description of the process for condensing milk on p. 343 vol. 30.-N. J. will find formulæ relating to the trength and thickness of boilers on p. 155, vol. 32

- N. K.R. will find directions for making an æolian harp on p. 330, vol 26. Imitation meeruchaum described on p. 193, vol. 26.-M. B. T. and other are informed that the pretensions of the mineral rod men are humbug.
(1) W. S. asks: How can I gild white metal
without a battery? A. Take 8 parts gold and part mercury; make the gold into thin plates and put them in the mercury while the latter is boil ng. Dissolve $1 / 2 \mathrm{oz}$. of this mixture in 1 oz . nitromixture, when the article is clean, with a soft brush. Rinse and dry in sawdust, and polish with
(2) F. H. D. asks: Why is it that a stee shod sled will draw harder on bare ground than a sled shod with iron? A. Some kinds of cast iro become, by friction and wear, casehardened to a high degree: and sled shoes made of it acqu
(3) H. M. asks: In plating small article enough to give a shock? A. No. A single cell is sufficient.
(4) L. M. asks: How can I find the area of sector of an ellipse, namely, that part of an el
lipse inclosed by the arc and two radius vectors,
whe the angle subtended by the two radii

and B E be the semi-axes of the ellipse, and B A
the sector. Draw an arc, D F G, with B D as a radius, and through A and C draw lines parallel to B E. Join the points, F and G, in which these
lines cut the circulararc, with the center, B. The BD : B E: : $\left\{\begin{array}{c}\text { area of } \\ \text { circular } \\ \text { sector B FG }\end{array}\right\}:\left\{\begin{array}{c}\text { area of } \\ \text { elliptical } \\ \text { sector B A C. }\end{array}\right\}$
(5) W. E. P. asks: 1. Upon what does the stability of magnetism in a horseshoe magnet de
pend? A. The purity of the steel. 2. How should magnet be tempered? A. As hard as possible 3. Is the power of a compound magnet of 4 parts, each of equal magnetic strength when separate,
equal to four times the power of one part? A. Yes.
(6) H. K. F. says: I am trying to heat a wire of about the size of Stubs' No. 70 by electricity, but so far have not succeeded. I have an or dinary smee battery, but the zinc is not amalgamated, and so far I have only used copper wir
Will you be kind enough to tell me how to pro A. Use the large sized Bunsen battery.
(7) E. K. M. says : 1. Please give me direc tions for putting up an electric bell, to be opera-
ted by an ordinary eight day clock, that the bel may sound the hours to correspond with the striking of the clock. The bell is to be placed about 100 feet distant from the clock. Will the Meiding er battery answer my purpose? A. The Meiding-
er, Daniel, gravity, or Léclanché batterv wiil aner, Daniel, gravity, or Léclanché batterv wiil an-
swer. 2. Will a copper wire, wound closely with swer. 2. Will a copper wire, wound closely with
cotton yarn and then coated with beeswax, be an insulated wire suitable for the apparatus? A. No 24 copper wire 100 feet long would answer. It ing of cotton thread is sufficient.
(8) G. C. H. says: I intend to put up a tele-
graph line of about one half mile in length, and graph line of about one half mile in length, and
would like to know how much battery (Daniel) cells) it would take with one wire and a ground re urn. A. Twelve cells.
(9) C. F. S. says: I do not think I have a correct conception of the meaning of the expresergy at the surface of the negative metal, or is the power of the battery to overcome resistance Are the numbers used, in connection with it, pro be definitely and independently expressed in obms? A. The electromotive force of a galvanic element is the power it possesses of overcoming
resistance. This force is proportional to the num ber of cells in a battery conrected up in series +-+-+- , etc. The unit of electromotiv resistance is called an ohm after the German scientist $O \mathrm{hm}$. The electromotive force of a Daniel cell is about equal to a volt, and may be practically regarded as a unit of force.
(10) G. H. C. says: I have made a magnet and put upon it 1,050 feet of cotton-covered magnet wire No. 32. I connected it with a battery that is used to run a telegraph with fewer coils and
coarser wire than mine. My magnet will not lift a shingle nail. What is the cause? A. For lifting purput 100 feet in la ha
(11) J. W. C. asks: What are the lowest, a suspended copper wire? What is the mean vel ocity of electricity through a buried wire, an overh 3 ad telegraph wire, and the Atlantic cable, re ty, but differs with the circumstances under which it travels, the size of the wire, length of the wire and distance of the wire from the ground. The vegraph wires varies from 15,060 to 75,000 miles per second. On the Atlantic cable, for about two tenths of a second after contact is made with the battery, no effect is perceptible on the opposit side of the ocean. After four tenths of a secon the received current is about 7 per cent of the current will reach about half its final strength, and after about three seconds its full strength.
(12) E. T. D. asks: How many cells would thread, hot enough to light a lamp? A. A dozen Grove cells would heat such a wire red hot. 2. How would I make an electric lamp lighter? A.
You cannot light lamps with electricity unless the Fick is surrounded with gas.
(13) E. W. P. says: 1. I wish to make a very small telegraph sounder to put into a watch case. The coils cannot be over an inch long nor
more than $3 / 8$ in diameter; with whatsize of wire more than $3 / 8$ in diameter; with whatsize of wire
shall I wind them? A. No. 28. 2. On an open circuit telegraph line, can an operator at one of the line, as in the closed circuit plan? A. Yes. 3. In
running a small electro-motor, wound with coarse wire, which will work best, a quantity or intensity
battery? A. A quantity battery. 4. What is the battery? A. A quantity battery. 4. What is the
effect if the zinc platein a Callaud battery becomes partly coated with a copper deposit? A. The current is weakened. 5. Is there any way that a house telegraph, baving 5 or 6 instruments in the
circuit, could be worked on the open circuit with one battery? A. Yes.
(14) A. S. G. asks: On p. 19 of your cur rent volume is an extract from the Journal of the
Telegraph, headed "The New Force." In the secTelegraph, headed "The New Force." In the sec-
ond paragraph occurs the following: "Upon an insulated table, place an ordinary Morse key and
an electro-magnet, the coils of which are so wound that no magnetism is produced in its cores
by the passage of an electric current." How an electro-magnet can be such without magnetism is beyond my comprehension, and how coils can be
wound so as to neutralize each other I do not wound so as to neutralize each other I do not
know. Can you explain? A. If the two helices are so joined that the current traverses one in an pposite direction from the other, no magnetism
will be developed. 2. Is the cadmium armature attracted by the peculiar magnet, and what office thing more is said of it? A. The so-called etheric hing more is said of it? A. The so-called etherio
force accumulates upon the cadmium. A softiron armature upon an ordinary sounder is as good as anything else to observe this extra current, or "etheric force," with.
(15) L. F. A.asks: What is the best methut in two oxen in warm weather? A. Make frame of $11 / 2$ by 4 inches uprights, set edgewise cover it on the exterior with narrow tongued an grooved boards, and in the interior with narrow rough boards with the edges neatly fitted togethe frame with drysawdust. A covered top is better than doors on the side; have the doors double in thickness and also filled in with sawdust. Have a slight opening for ventilation, protected with fine
gauze wire cloth, and a small pipe for drainage. If your meat box had been placed under your ic ouse, it would have been better.
(16) J. S. M. asks: What size of opening does it require to keep life in 100 men , supposing
them to be shut up in a close room? A.Supposing the ooom to be large, a much greater openirg would be required at the top than if placed at the bottom, as the carbonic acid gas, which would arcumulate by being thrown from the lungs of th occupants of the room, is heavier than the atmosphere, and would rest upon the floor. The mos would be that in which an opening would be pro vided at the floor and another at the ceiling, and n thiscase the size of the openings might be a he minimum, the fresh airentering at top and be ing discharged at the bottom, except where the emperature may be so much increased as to in duce a currentin the contrary direction. An au the atmosphere is about 22 per cent, but after it has visited the lungs it is reduced to 16 per cent There is, therefore, a loss of about 30 per cent of the oxygen of the air at each respiration; and the pening should be large enough to renew abou $1 / 3$ of the air conalued in the room in every 5 sec hould be will depend upon the velocity of the current entering, whether forced by mechanica ment.
(17) E. B. G. asks: How much water should be evaporated in a room 14 feet square, to keep it the air should be entirely saturated with water Fevers are sometimes generated in consequence of too humid state of the atmosphere. An English fleet on a West Indian station by keeping his lowe decks dry with stoves in the summer season. vessel holding about 2 gallons of water placed in the air chamber of the furnace would give you (18) B. (18) A. B. asks: Is there any kind of acid raph battery to keep it from freezin? graph battery to keep it
(19) T. W. C. asks: 1. For two engines by 12 inches, and an upright boiler 8 feet high by 50 feet long by 18 feet wide by $31 / 2$ feet deep, what steam and water pipes do I require? The inspec tors do not allow upright bollers on steamboat ere, as the law forbids them. Will a boiler 31/2 feet in diameter and 10 feet long, with return flue, the steam pipe $21 /$ or 3 inches in diameter and the feed pipe from $11 / 4$ to $1 / 2 /$ inches. We think the boiler will answer. We would like to see the sec tion of the law that forbids the use of vertica boilers. The only thing that we can find in the revised regulations, bearing on the subject, is th fter allow the use of donkes boilers of the hert cal tubular kind on steamers navigating the wa ers flowing into the Gulf of Mexico." It is possi ble that we may have overlooked some other paraand in relation to the matter; and if so,we would
(20) W. E. S. says: I have been trying a periment in burning coal dust. The first week in October I carefully weighed all the coal burn in 62 hours, when using only the natural draft. The amiount used was $3,118 \mathrm{lbs}$. of Lehigh nut coal which, at $\$ 7$ per tun, would costabout $\$ 9.75$; steam averaged 45 lbs. to the inch. The second week in inember I weighed the coal dust used, and then ours to heat 4 stories of the shop with 1,000 feet 3 inch pipe. I used the exhaust all the time for
heating. The amount of dust burned was 5,239 bs. at $\$ 2$ per tun. Steam pressure averaged 50 lbs
to the inch. The boiler is horizontal, with 24
three inch iron tubes; and itis 10 feet in length by 3 feet in diameter,and well bricked up. Steam pipes, etc., are well covered with asbestos. When burning coaldust, I use a blower running about 3,000 revolutions per minute. About half an hour before shutting down (at 4 o'clock in the afternoon) I rake over my fire and get a good solid bed of fire
on the grate: when I stop, I cover lightly with fresh dust, and shut all drafts, and at 6 o'clock the next morning I have from 30 to 40 lbs . steam; and then all I have to do is start the blower, and in half an hour I can have a good fire and plenty of
steam. A. You make a very favorable showiug steam. A. You make a very faverable showiug.
If you can contrive to measure the amount of water evaporated in a given time with each kind of this, we would be glad to parison. If you
know the result
(21) C. H. A. says: After reading Mr. Edi-
son's experiments on the " etheric force," I tried his method of producing it with a printer: and found that, by forcing the press up against the type wheel (first cutting out the main battery) and breaking the circuit between the instrument and
battery on the negative wire, it would cause a most beautiful and intense spark, and give a ver heavy shock. I find that, on connecting it with the stove, as Mr. Edison did, it produces similar ef fects, giving off a spark when touched by a metallic substance. I am more interested in the pheno menon of the shock, as Mr. Edison says nothing about it. Iam somewhat inclined to believe that city; and it being somewhat new to me, I write to ask if this mode of producing electricity to give a shock is new to electricians? A. The so called "etheric force" is nothing more than the extra or induced currents which are produce when the battery circuit is opened and closed; some facts connected with it, however, led to well acquainted with this method of producing shocks.
(22) A. F. O. asks: What must I do with he fluid of the Grenet battery after it is played out? Can it by dilution, or by the addition of away? A. Throw it away.
(23) R. asks: 1. I have a pair of polished skates, recently nickel plated, and I find on
using them that the nickel begins to flake off. Can I prevent this in any way? Can I have the plating removed from the whole skate or any part skates replated with more care
(24) C. H. N. says: You state that the earth received its motion during its formation, and you running half a mile after the steam is shut of That being true, is it not the cause of the remark able difference between the age of man in the days of the deluge and at the present time? The earth must in olden times have revolved faster and
made the days and nights shorter. A. The period made the days and nights shorter. A. The period age of the earth. Millions upon millions of cenage of the earth. Mindions upon miluions of cenries went on duringthe different periods of change, as revealed by geological researches, until at last, some 150,000 or 200,000 years ago, man appeared. The oldest records of man go only back some 4,000
to 6,000 years; but we know that during this time to 6,000 years; but we know that during this time an appreciable fraction of a the reported age of the patriarchs, we must consider that, at a time when people had no chronology nor almanacs, they did not count the years as correctly as we do, and could not know themselves how old they were. We may add to this the ven-
eration in which the oldest people were held, eration in which the oldest people were held, and so they probably made themselves out to be and so they probably made ther
older than they really were.
(25) B. B.asks: Will it damage flax straw for manufacturing purposes to thrash it with a Yes, it very nearly spoils it. Treading out the Yes, it very nearly spoils it. Treading out the
seed with animals is better, but the rollers are the seed
best.
(26) A. D. says: It is generally conceded that the orbit of the earth is not necessarily a which has an obliquity of $23^{\circ} 28^{\prime}$ to the plane orbit, sun's equator, probably at one period had a still greater obliquity, which would extend the warmer zones into higher latitudes. And again, the orbit of the earth will eventually become circular, equator; and the intimation that the orbit of the earth is gradually assuming a circular form, if true, would be the best evidence that this change Is now in progress. Then the poles of the earth with the sun vertical over the equator only, and there would be nochange of seasons. Are these pathwsy of the earth in her vearls revolution with the inclination of her axis on the ecliptic this inclination may change, while the pathway plane in which she moves remains essentially the ame. Some astronomers have supposed that, at some time in the far future, the inclination will
become less and the intensity of the seasons diminish, and at last disappear. But this time is so temote that the earth will then have cooled, and the internal heat have become so dissipated that the interior of. the earth's crust will no more poswill be unfit for vegetation, and consequently also for animal life. The earth will then be as the moon
(27) W. H. S. says: You state that the
moon rotates on its axis and in its orbit in the moon rotates on its axis and in its orbit in the
same time. What is that time? A. 27 days, 7 hours,
(28) T. P. M. asks: 1. Will zinc do instead copper as a plate for a ground wire connection long. 2. What size of plate is necessary for a line one quarter of a mile long? A. For a line of that length you will get better results by using a
return wire. Plates four or five feet square will answer if it is not desirable to run an additional
(29)
(29) M. M. asks: How many feet of common illuminating gas made from coal can I compress in an iron tank or gas holder of 50 cubic feet he inch ? A. About 333 feet.
(30) R. K. asks: How can I tell how many ibs. weight are necessary to produce a given velo ity, as described in Z. D.'s query as to the tension a cord over a pulley? A.To calculate the weigh istance in which it is to be attained and make the proper substitutions in the formulas below. I will be easy for any one to see what assumption is necessary for the tension of $1,550 \mathrm{lbs}$., and the for mulas also show how different values can be ob ained, and yet be correct. Our readers wil he same observe, further, th he same that are employed for calculations con that the case proposed by Z. D. is similar to prob ems that are solved with the above apparatus. Let $x=$ weight required to give the weight of 1,000
bs. a velocity of 10 feet per second. $\mathrm{S}=$ distance in feet in which this velocity is acquired. $t=$ tim n seconds in which this velocity is acquired. $g=$
acceleration due to gravity. $f=$ acceleration due the weight. Then $f=g \times \frac{x-1000}{x+1000} ; \mathrm{S}=\frac{50}{f}$; and
=10. This also answers M. B.
(31) A. H. T. asks: 1. How is the heat calA. See p. 123 (14), vol. 33. 2. Why is it that ther is such a great loss of power by compressing air to high densities? A. The principal source of ess, in general, is due to the fact that the power given out by allowing the air to expand as much logarithms hold good in calculating the mean ogarithms hold goolin calculating the mea to represent the initial and terminal pressuresas a ight-angled triangle, and calculate the area of it ? A. The formula with hyperbolic logarithms is oniy applicable in case the temperature of the air in
the cylinder is constant throughout the stroke. (32) J. G. B. asks: At what rate is the w er falling over Niagara Falls wearing the rock ock being detached in large masses from time to time. It is estimated, however, that, for long pe riods, the average wearing away has been about
(3) Z .
(33) Z. D. says: In reply to my query as to tension of a cord over a pulley, you give the an-
swer $1,550 \mathrm{lbs}$. A mathematician answers me that the tension of the cord is exactly the same, namey, $4,000 \mathrm{lbs}$. , whether the weight is raised at the niform velocity of 10 feet per second or whethe sion is above $1,000 \mathrm{lbs}$. when the first pull is given, before the welght attains its uniform speed. Ah other gives as his answer a number somewhat over
1,300 lbs. By what method did you find that 1,550 bs.? A. Our answer was possibly misleading, from the fact that all the data upon which it de the cord, required to give the weight a velocity 10 feet a second, can have an inflnite number of values, subject to the following conditions: 1 . must be greater than $1,000 \mathrm{lbs}$. 2. The time and distance in which the weight attains the required velocity must be less and greater, respectively, falling fime and distance in which a heavy bod falling freely under the influence of gravity woul acquires the given velocity, it will continue to move uniformly with that velocity, under a te ion of $1,000 \mathrm{lbs}$., if there is no friction or othe prejudicial resistance. See answer to R. K., on this page.
(34) G. B. K. says, in reply to T. D., who asks how to obtain the index of an engine lathe. when two given gears are in place, you can easily construct a table that will show you just what hread any two gears will cause the lathe to cut. Then place 12 in the space, A, in the diagram be
low : Stud.

$\left.\begin{array}{l}63: 56:: A: C \\ 63: 70:: A: E\end{array}\right\} \quad$ (direct proportion). $\left.\begin{array}{l}70: 63:: \mathrm{A}: \mathrm{D}\end{array}\right\} \quad$ (inverse proportion). which it is useless to flll,as only your 63 gear is du good mathematician to flll out the table
(35) J. H. says, in reply to D. C. B.'s query
as to his hydraulic ram difficulty: The air, be-
coming exhausted in the air chamber, prevent the water from entering the chamber, when the
impetus valve closes, and the result of the work ing is only closes, and the result of the workAll well regulated rams he the valve in closiog. casting (a head of the opening to the air chamber) a small screw, called the sniffle. It is made taper is so adjusted as, when put in, to allow of water escaping when the impetus valve closes. Upon the reaction of said valve,a portion of air is drawn n through the screw, which passes upward to the isk valve, opening to the air chamber, and at the ext pulsation of the ram the air is passed to th hamber, thus keeping the chamber fully replenhe lively click, which he describes, when working ell. Care must be taken not to allow the wate oback upon the sniffle, or the ram will again ease to work well.
(36) J. W. writes us from Switzerland tha e has tried to produce electricity there by shuf ling the feet over the carpet, but without success, he has often done it in this country, but it will no wants us to corroborate the fact that electica parks can be produced as mentioned, in this coun ry. In reply we state thatin this city, in winter in well warmed, dry houses, strong electrica parks may be produced by walking on or rubbing the feet on the carpet. Loud snaps are produced
by touching another person with the finger by touching another person with the finger
while a common home amusement for the young Whilea common home amusement for the young
folks is to light the gas by electricity, by rubbing the feet on carpet and then touching the open zas burner with the finger. In Europe the climat is more moist, and hence probably the phenome non is unknown there. Possibly in a well warmed house on a very cold day, upon a rug in front of a
good coal fire, our correspondent could produce oood coal fre, our correspondent co
(37) J. B. J. says, in answer to C. E. B.' uery as to a force on an inclined plane: Le $W=$ weight ($=112$ lbs. in this case), $A=$ angle be wheen plane and horizon $\left(=30^{\circ}-\right), w=$ force with Which. W presses against the plane, $\quad \mathrm{L}=$ force
pressing in the direction of the plane. Then $\mathrm{F}=$ sin . $\mathrm{A}=112 \times 0.5=56 \mathrm{lbs} . ~ w=\mathrm{W} \cos . \mathrm{A}=112 \times 0.8660$ (38)
(38) J. B. J. says, in answer to J. A. R. Who desires to know the contents of a cylinder part, $r=$ radius of ends: $l=$ length of cylindrica depth of liquid, $x=$ area of immersed cross sec tion of cylinder, $\mathbf{C}=$ contents of cylindrical part, Then $\mathrm{C}=x \times l=l x$. Then $c=\pi h^{2}(r-1 / k) \quad \mathrm{C}+c$ content required. If the above dimensions ar in feet, multiply the result by $7 \cdot 4762$, which will reduce it to gallons. Compute content for every foot (and fractional part) of depth, and arrange a able, when the contents will be see nat a glance. The comuntation may be made for half the tank
(39) S. W.G.says, in reply to J. G. S.'s query or a remedy for cracked fingers: Into equa alicylic acid, shake until well mixed, in the same manner asglycerin.
(40) C. C. says, in reply to W. T. W.'s rick work away at sides and top, and 2 feet back end, regardless of the water line. Deet a let brick touch the boiler except at front and on dome. Excavate not less than four feet unde he whole length, leaving the mud drum (if ther bone) exposed to the heat. Set the grates 4 fee rom the lowest part of the shells. Build a bridg wall 10 inches (just enough to hold the fuel) above
hegrates. With coal for fuel, you will soone hink of disposing of 0 boiler insted to the three you now have. You can get all the team you want without skillful fring, constan hard work, and waste of fuel, if you burn you uelinstead of sending it up chimney. The abov escribed radical cbange in setting of steam boil ers was made with excellent results. My boile while I increased the production of the mills, th uel bills are less than before
(41) J. S. F. says, in reply to C. B. H.'s speed : Unless she be drawing a heavy her full running with a very light pressure, she cannot attain her full speed with the throttle wide open of the exhaust nozzle and high state of expansion of the steam, which cause her to choke when
more than a certain quantity of steam is admitted more than a certain quantity of steam is admitted
to the cylinder at each stroke of the piston. To o the cylinder should be regulated by the position of ihe reverse lever, or, to state it more properly,

Minerals, mtc.-Specimens have been re ceived from the following correspondents, anc examined, with the results stated:
J. S. B.-It is granular quartz.-D. R. MeM.-The hickness can be told by examination of the out thickness of these sandstone strata is several thousand feet. Your chance of getting water is
slight. No. 1 is iron pyrites. No. 2 is steatite. No. 3 is indigo carmine.-A.M.-You are correct in taking it to be a sandstone containing a hydrocar bon of an asphaltic nature. The bituminous ferent.-S. N. F.-It consists chiefiy of lead, with mall percentage of alloy.-P. L. S.-It is with W. M. N.-It is one of the alloys of tin and lead, the former being in preponderance.-G.F.P.-It is a
piect of furnace slag.-J.A.H.-It contains no ura piece of furnace slag.-J.A.H.-It contains no ura
nium. -R. P.-The base of the composition is hard rubber.-J. H. E.-It is iron pyrites.-C. T. A.-It
contains no silver, but scales of mica.-The
men in box marked "Washburn" is graphite in men in ock mark -H. M.-No. 1 is mica is quartz. No.
quartz rock
is serpentine. No. 3 is iron prrites.-S. W. M.2is serpentine. No. 3 is iron pyrites.-S. W. M.tioned in the recipe, and there is no reason why it should not act well. Try again.
W. C. S. says: The following is a geomet ical nut for some of your readers to a crack: The
pace enclosed by 3 circles contains an acre. Re-

quired the radius of the circles.-P. A. K. asks ut it into practical use?-J. D. says: I have aluable mare, 8 years old, which has been but lit e worked. Last summer she had the thrush in her fore feet, but was soon cured, and her fee
ooked well and were free from contraction. ommenced driving her this winter; and her fee were at once inflamed, and quite sore for a day o two. She flinches when she puts her frog on any
thing hard. What can I do for her?

COMMUNICATIONS RECEIVED.

The Editor of the Scientific American ac original papers and contributionsupon the follow lng subjects:
On Working Men at the Centennial. By M. M.
On Spiritualism. By J. A. C.
On Pulling and Pushing. By R. B. S.
On the Moon. By C. J.L. C.
On Safe Savings. By -
On a Remarkable Machine. By C.E.F
On Magnetic Attraction. By A. A.A.
On the Oldest Inhabitant. By N. V.C.
On Momentum. By J. A
On the New Nebular Theory. By C. E.M.
also inquiries and answers from the following:
I. H.-M. M.-P. S.-G. A. R.-T.-L. O.-W. Y J
Matity
HINTS TO CORRESPONDENTS.
Correspondents whose inquiries fail to appear should repeat them. If not then published, they declines them. The address of the writer should
ating to patents, or to the patenta bility of inventions, assignments, etc., will not b published here. All such questions, when initial oly are git full half of our toper to waste baske it would fill half of our paper to print them all by mail, if the writer's address is given.
Hundreds of inquiries analogous to the followin are sent: "Who makes the best dynamometers Where can three inch objectives for telescopes be purposes? Where isthere a firm that undertake well-boring? Where are there any works where ore can be smelted? Where can ry? Who sells machinery for making frictio matches? Who sells alarm clocks? Who make tocks, to secure the feet of restive horses, while being shod? Who makes diving apparatus?" Al such personal inquiries are printed, as will be obwhich is specially set apart for that purpose, sub column. Dlmost any desired information can in this way be expeditiously obtained
[OFFICIAL.]
INDEX OF INVENTIONS
Letters Patent of the United States were

Granted in the Week Ending

January 11, 1876.
AND EACH BEARING THAT DATE.

Bot thanks. manurature or, J. Browning.

 Bolt, self-actIng door. E. Fetge.Book holder, C. N. Brown.... Boot heel support, M. D. Stratt.. Bottles with aerated liquids, illing, J. Ed wards. Bow and arrow, J. B. Cleaveland.....
Brick machine, E. R. \& W. E. Gard. Bridge, ilft, s. Swartz

Buckle, E. Young........
Burner, pas, w. C. Wren
Burner, lamp, J. Segondy
Burner, lamp, J. Segondy
Burner, night, w. P. Newhall (r).
Burners, gas regulator for, C. G. \&
Butter package, A. J. Beil..
Butter package, V. A. Fenne
Butter worker, W. H. Lilly.
Butter worker, w. H. Lilly.

Can nozzle, L. B. Foss
Can, oll. A. J. Bell...
Car axle box, E. Sikes
Car coupling, P. C. Murray
Car, grain, J. E. White.
Car, stock, J. A. Wood..
Car venullatcr, C. H. Winchell
Cars, door for grain, L. F. Frazee.
Carbureter, Barbarin \& Roberts...
Carbureter, т. Meredith.
Card. playing, J. H. Black.......
Carpet stretcher, O. D. Carilsle
Carriage, chilld 's, Conant \& Holman
Carrlage dayh frame foot dite, M. Seward.
Cartridge-loading implement, C. J. Stod
Caster, furnture, c. Brinton......................
Casting, metals, machine for, J. B. McCune
Cnair, J. H. Mabbett.
Chair,
spring titing, A
Chair, spring tilting, A. B. Stevens. .
Chandeller fric ion clutch, c. T. Bruen
Chimney bolder, E. W. Briggs.
Churn, J. L. Sprag e
Clder, etc., making, J. Matthews
Clasp, N. H. Bruce.
Clevis, J. Schoffeld...-.....
Clothes dryer, D. Masters
Coflins. met $\# 111 \mathrm{c}$ corner for, P. Brally Comb, J. T. O'Donoghue. Corkscrew. W. Engelsdorif
Corn sheller, A. Borneman Corn sheller, W. S. Reeder
Corset, L. C. Warner....
Crushing machine lifting cam, M. Cock
Curtain Exture, s. Vreeland.
Deffector, hot air, M. T. Forsyth, sr. Dental antsthetic applicat w. Banker Dental flask, A. J. Jordan.. Desk friction joint, H. H. Erarts. Igger, potato, P. M. Bawtinhimer Disinfecting apparatus, w. H. Hut Doors, sheave for sllding, C. H. W Dredging machine, J. C. Osgood (i) Driling machine, metal. W. Sellers aves trough hanger. F. M. Burdoin Edger, gank, L. S. Hogeboom
Engine governor, Hall and Whittemo
Engines, foot valve for, Sherman \& Pe e Equalizer, horse power, o. Woodworth.
Eyelet, L. C. Curran
Faucet, T. Bingham.
Faucet, measuring, Blackerby \& Noland
Fence, wire plcket, J. a. Morris
Fifthwheel, T. F. Bryan..
Fire arm, breech-loading,
Fre esc, breech-loading, A. C. Falvre
Fire extinguisher and escape wood \& Leonard.
Flower pot bracket, J. G. Folsom.
rork, carving, J. Geiard...
Frutt drier, A. J. Reynold
urnace heating, s. Smith
Furnaces, supplying air to, H. Heckel..
Furniture leg s, rubber tip, Stocksda
Galley supporter, w. S. B. King.
Galley supporter, W. S. B.
Gas, making, G. Olney
Gas purifier, centrifagal, P. Swee
Glass, engraving on, E. O'Nefl...
Gla ss, antique colored. J. Baker.
Glue pot, C. s. Comins.
Grain, band for binding, D. Olmsted Grain binder, W. R. Baker..................... Gralu conveyer dights, making , H. I. Chase et raln header, Myers \& Irwin Harness, breast and neck strap, Murray et al. Harness bearing hook
Harrow, J. B. Okey.
Harvester, P. Kline
Harvester. M. L. Parrett
Garvester rake, T. H. B
Hat and coat book,
Hay rack, E. E. Gold
eater, flat iron, R. M. Merrill
ook, snap, B. B. Bullwinkle
Horse power, C. Roberts,
Horse power equalizer 0. Woodworth.
Horseshoe nalls, finishing, E. W. Kelly.
Hydrant, G. C. Bailey...
Hyanant, G. Shelley
ydrant, G. Shelley
inkstandand paper welgnt, H. Lee
key for locka, falinz, J. M. Spriag.
Knituing machines, wheels \&or, W.

Trunk, H. Vogler (r)......................
Trunke. corner clamp for, w. L. Mowry
Tubes and crinders Tunneles, submarine, J. F. Jones..
Umbrella supporter, E. M. Arnold
Valve, air brake, G. Westing house,
Veht for tubular wheels, J. J. T. Whipple
Venicle top prop block, A. Butterfield
Wash bench, folding, c. H. Bangs.
Wanhng machine, W. W. Hubbell.
Washing machine, J. D. Towe
Washing machine fire box, w. Kletn.
Watch escapement, M. Petersen.......
Watchman's detector, G. A. Schultz.
Water, etc., compressing air for raising, Water closets, ventilating, E. Estmond Water wheels, turbine, McCormick et al.. 172,140, Water wheel, turbine, H. Waters
Weather strip, G. A. Herrick......
Well pippng, etc.. inserting, F. Spe
Wells, machine for boring and walling, c. Stoug
Wheel, metainc, s. Vreeland
Wheetree, E. Ely............................
Wind power, T. C. Guthery.....
Wind wheel, J. Weimer.
Wire, pointing, H. A. william
Wood, kyanizing, D. W. Hunt (r...........
Wood syaper safety guard, T. \mathbf{H}. Wood.
Wood-spiltting machine, F. Rand.
Wrench, E. T. Barlow.
Wrench, O. B. North
Wrench, pine, J. Browning
Wrench, plpe, w. Crumble
Yoke, neck, A. G. Coo
Yokes, neck, E. Ely... designs patented.
s,889.-Type.-G. G. Bailey, Jr., et al., Boston, Mass.
$890 .-$ STAND LAMPs.-N. L. Bradley, West Mertden
8.891, 8,892 .-TYPE.-J. M. Conner, Greenville, N. J.
8.893.-TYPR.-J. M. Conner, Greenville, N. J.
899.-TYPE.-H. H. Delacrotx, Pniladelphia, Pa

8,895.-Neoklace.-F. Dimier, New York city.
8.896. 8,897.-TYPe.-H. Ihlen burg, Philadelphia, Pa.
$8,899 .-$ CANIster.-S. Rosenblatt, New York city.

8,893-CANIBTER.-S. Rosenblatt, New York cit
8,899.-CARPEs.-T. J. Stearns, Boston, Mass.
.901, 8,902.-Embroidery.-E. Crisand, New Haven, C

8CHEDULE OF PATENT FEES.
On each Caveat.......
On each Trade mark.
On lssuing each original Patent.
On appeal to Examiners-in-Chief.........
On appeal to Commissioner of Patents.
On appeal to Commisisioner of
On fllinga Disclaimer
on an application for Design ($3 \nless$ years)
On application for Design (7 years)
CANADIAN PATENTS
List of Patents Granted in Canada January 10, 1873.
$571 .-\mathrm{P}$.
10,1876 .
10, 1876.
s.52- W. F. Lamb et al., Wilbraham,
keeptng game board. Jan. 10, 1876
keeptng game board. Jan. 10, 1876. 573.-E. J. Duaff el
board. Jan. 10, 1876.
,574.-A. E. Edholm, Lake Clty, Minn
extingulsher for lamps. Jan. 10,1876 .
parting resonance tow Haven, Conn., U. S., et al. Im parting resonance to metallic alluys. Jan. $10,1876$.
s.576.-H. W. Hutching, Livermore Falls, Me., T. s. Box-making machine, ete. Jan. 10, 18 is.
5, 77.-J. R. McPherson, Jersey City, N. J., U. s. Stock car. Jan. 10, 1876.
578.-s. B. Morrell
Sis8.-S. B. Morrell, Kenosha, W18.,
Ironing board, etc. Jan. 10, 1876.
Ironing board, etc. Jan. 10, 1876.
5,579 -w. E. Sa wyer, New York city,
autographic telegraph. Jan. 10, 1878
autographc telegraph. Jan. 1, 1876 .
Jan. 10, 1876.
or claw bar. Jan. 10, 1876 .
5,582.-J. B. Atwood,
nut. Jan. 10, 1875.
niss.-P. De La Neuville, Thompsonville, Conn., U. S.
Water fllter and purifler. Jan.

aduertisements.

Back Page-:-:-: 81.00 a line.
luside Page
-
Engravings may head advertisements at the same rate
per line, by measurement, as the etter press. Adver per line, by measurement, as the letter press. Adver
tisements must be received at publication office as
early as Friday morning to appear in next

TEEL NAME STAMPS-Post pal dfor 15 c . per letter.
STERL STAMP W OREB,
2is Chapel St . New Haven, Ct.
"The Gothic Furnace plactd in my house

FINETOOIS

LOVEJYY, SON

PBPRER R

FOOT LATHES.
A $\begin{gathered}\text { SLOW ROTARY MOTION CONVERTED }\end{gathered}$

 Best Mill spindles and Steps, Shafting, Pulleys \& Hangers. Address T. B. Woon $\&$ Co., Chamersburgh, Pa.
WHIPPLE'S
Patent Door Knob

satricos Record is
 pages, published an
nually, about the 15th of January. Hlustra-
 $w=E$

the follo | $\begin{array}{c}\text { ding yea } \\ \text { one } \\ \text { Progres }\end{array}$ |
| :---: |

AGRICULTURE,
RURAL ANDEOSEHOLD ECONOMY,
MATERAA MEDIGA. THERAPEUTICS,' HYGIENE, NATURAL HITTORY AND ZLOLOGY,
METEOROLOGY, TERRESTRIAL PHYISICS,
GEOGRAPHY GETRONOMYD MINERALOGY,
ASTRONOMY'
BIUGDEAPHY NECROLOG Every person who desires to be well informed concern-
 All the preceding volumes of SCIENCE RECORD ave volumes, 1872, 1873. 1874, 1875, and 1876 . MUNN \& CO., PUBLISherg,

87 Part Row,
New Yozly city

Stone Channeling Quarrying Machine,

WARDWELL PATENT, FOR CUTTING STONE INTO VARIOUS SIZES
AND DIMENSIONS IN ALL KINDS OF QUARRIES.
STEAM STONE CUTTER CO., RUTLAND, VT
FOREIGN PATENTS
THE CENTENNIAL. There is no doubt that our Centennial Exposi-
dion will attract to our shores multitudes of reproeentative people from all parts of the world, and improvements to introduce into their own manufacture.
An unusual opportunity will be offered for selllag to these people such foreign patents as have respective countries from which these visitors come. At the reduced prices for which patents are obtrained abroad, our people will lose a chance not
likely to occur again, if they do not avail themlikely to occur again, if they do not avail themtrons in foreign countries at once, so as to have their patents ready to negotiate the coming sumper.
For cost of patents in the different countries and
the conditions on which they are granted, send for the conditions on which they are granted, send for
pamphlet containing full information. pamphlet containing full Address
MON \& CO.,
branch Office, cor. F and th Sta.,
Washington, D. C.
W OME-MADE TELESCOPES. -Directions for

RICHARDSON, MERIAM \& CO., Patent Dandifies

OPIUM =

Notice.

$\mathbf{W}_{\text {veror }}^{A}$

[^1]PATENT CLARK \& COMPANY'S
PATENT SELF-COILING, REVOLVING STEEL SHUTTERS

 Planing \& Matching,
 Planing and Matching

OTIS'

 Machinery. OTIS, BROS.WAY, NEW YORE.

The HOADLEY
PORTABLE STEAM ENGINE

The baster magnetic engine and
 PUNCHING

P. BIAISDEII \& CO.
 STEEL CASTINGS.

COMPRESSED AIR MOTIVE POWER -FO

 Agency at 40 John St., New Boris.
Hubbard \& All er,
sole MANUFACTURERs Sole ManuFacturers,
ENGINES AND BOILERS, Pulleys, Shafting and Hanger Specialty
The Myers Portable Enyine,t.5.6.5.5p., some
 day at home. Agents wanted. Outfit and
$\$ 12 \begin{aligned} & \text { a day } \\ & \text { terms free. }\end{aligned}$ TRUE \& CO.. Augusta, MaIne.
BraKES PATENT

 boxing, at the low price of
3 Horse Power........ $\$ 25200$
$41 /$
 JAS. LEFFEL \& CO.,
 VINEGAR Ho Ho MADE IN

 Bollinger's Patent Turpin WATER WHEELS Mill Machinery.

 eagle foot lathes,

Horse Shoe Nails.

C Cord, of the GEARING. By Prof. C. W. Mac-

 DO YOU Male or female. Send Four ad-
 Amateur Workers in

FANCY WOODS

Can po supplied writ the following Hard and Rate

Geo. W. Read \& Co.,
 $\$ 250$

STEAMMUMMS. FIRST PRIZES, VIENNA, PARIS, NEW YORK, mam is IeeCount's Patent +1.
 Friction Pulleys. For connecting shafting and gearing. BEAN'S PATENT
CLUTCH 18 the most effective know, and 18 furnished
 strike three blows to one of en q fine ur using ordinary clutch
Hoisting machinery, uponapplicating

 PATENT DOUBLE ECCENTRIC CORNICE BRAKE

MACHINERY.

IRON \& WOOD WORKING MACHINERY OF EVERY DESCRIPTION.
Cold Rolled Shafting.
HANGERS, PULLEYS, COUPLINGS, BELTING,
GEORGE PLACE

Machinists' Tools Many ? Co's. Patent Offices.

cistablished 1846.

Che Oldest Agency for ${ }^{\text {Soliciting Patents }}$ in the United States.

TWENTY-NINE YEARS EXPERIENCE.
MORE PATENTS have been secured through this agency, at home and abroad, than through any other in he world.
They employ as their assistants a corps of the most ex draftsmen that can be found, many of whom have been se lected from the ranks of the Patent Office.
SIXTY THO SAND inventors have availed themselves of Mun \& Co.'s services in examining their in MUN N \& CO in connection with.
Scientific american, continue to the publication of the confer with inventors, prepare drawings, specifications. and assignments,attend to filing applications in the Patent Office, paying the government fees, and watch each case step by step while pending before the examiner. This is done through their branch office, corner F and fth streets, Wash ington. They also prepare and file caveats, procure design (prepared by the inventor or other attorneys), procure copyrights, attend to interferences, give written opinions on matters of infringement, furnish copies of patents, and, in fact, attend to every branch of patent business both in this and in foreign countries.
0 invention and residence of the through this. Agency, with the name art or whole, to persons attracted to the invention by such notice.
Patents
Germany, Patents obtained in Canada, England, France, Belgium,
Germany, Russia, Prussia, Spain, Portugal, the British Colonies, and all other countries where patents are
granted at prices greatly reduced from former rates. Send or pamphlet pertaining specially to foreign patents which states the cost, time granted, and the requirement for each

Copies of Patents.
Persons desiring any patent issued from 1886 to No em bor 26. 1867, can be supplied with official copies at a ra lags and length of specifications. lags and length of and an can.
mme the Patent Office commenced print, 1867, at whin and specifications, may be had by remitting to this office 81 . A copy of the claims of any patent issued alice 1886 wll
e furnished tor ${ }^{81}$
When ordering copies, please to remit for the same ae
above, and state name of patentee, tile of invention, and
A pamphlet containing the aws and full directions for obtaining United States patents sent free. A handsomely many engravings and tables important to evert patentee and mechanic, and is a useful handbook of reference for erarybody. Price 25 cents, mailed free. Adaresa DUNN \& TO.
Publishers SCIENTIFIC AMERICAN en nor Opyoz-Oorner F and 7 th Stree Manor Opyioz

Aductisemencs，

An Unpreceaented Success． Thousands Already Sold．

Wrimkles and Reciipes

thorities，the most valuable Handbook e
Engineers and Mechanics of every clas
Contains the CREAM of the Practical Mechanism Series by Joshua Rose，which has appeared during the past on mechanical operations by distingulshed experts－Hun－ dreds of knotty points in Mechanics and Engineering
fully explained in terms that every one can understand． No high mathematics or intricate formulæ．Recipes of
all kinds for industrial processes，for cements，for mak－ all kinds for industrial processes，for cements，for mak－
ng simple instruments，etc．Hints for farmers and for housekeepers．The whole is a collection of the very best practical hints and suggestlons which，for several
years，have been sent to the Scirntiric Amprican by its correspondents and contributors，together with an Price 81．50，post paid． pages．Large pocket－book size．
Wrinkles and
year \＄4．20．
$\begin{array}{ll}\begin{array}{l}\text { Address } \\ \text { P．O．Box } 772 .\end{array} & \text { H．N．MUNN，Publisher，} \\ \text { 3y Park Row，New }\end{array}$

Cold Rotiled SHAFTING

AMERICAN Journal of Science，
devoted to
Chemistry，Physics，Geology，Mineralog
Natural History，astronomy， Meteorology，etc．
PUBLIBHED MONTHLY，AND MA KiNG Two Volumis
YEAR OF OVER 450 PAGES EACH．
Editors and Proprietors：J．D．DANA，B．Silliman
and
E． S ．DANA

 prepald p pistage．
Address．
DANA \＆SILLIMAN，New Haven，ct．
TMPROVEMENT IN THE MANUFACTURE OF WHISKY．－A gentleman，Who has just taken out a
patent for the above the Unded States，would be blad
to meet wwh a party or conpany who would either put

Diamonds 多Carbon Shaped or Crude，furnished and set for Boring Rocks，
Dressing M11 Burrs，Emerr Wheels，Grindstones，Hard
Dis

RUREKA LATHE， $\boldsymbol{\$ 9 . 0 0}$ ．

TITIII $++」$ WROUGHT BEAMS \＆GIRDERS
 T The UNION IRON MILLS，Pittsburgh，Pa．－ mode or manupacturng g，are entirely a avoided．We are pre． pare to fornigh all sizes at terms as favorable as can be obtained elsewhere \＆Co．，Union Iron Mms，Fitsburgh，
 FOR CHARLIE＇S PRESENT Get the TOM THUMB TELEGRAPH，put up in neat little boxes containing working sounder，telegraph ap－ paratus，battery，key，wires，and chemicals，complete， ready for operation．Price $\$ 3.50$ ，with full directions Can be seen in practical operation at the＂Sclentifl American＇，oflce， 37 Park Row；at Packard＇s Business College，805 Broadway；and many other places．Besides telegraphing，many beautifur experiments can be made， such as the magnetic curves，electric 11ght，Hfting such as the magnetic curves，electric 11 lght ，lifting welghts，making compasses，magnetizing knives，elec－ tro－plating，\＆c．F．C．BEACH \＆CO．，makers， 246 Canal St．，near Center St．，New York． ro－plating，\＆c．F．C．BEACH \＆ Canal St．，near Center St．，New York．
 NEWSPAPER FILE．

The NILES ENGINE．
 manm

Niles Tool Works， Hamilton，Ohio． HARTFORD
STEAM BOILER
Inspection \＆Insurance COMPANY．
W．B．Frankill，v．Prest．J．I．ALLEI，Pres＇t

Schlenker＇s Stationary
Revolving－Die Bolt Cutters， HOWARD IRON WORKS， buFfalo， $\mathbf{N} . \mathbf{Y}^{2}$

Niagara SteamPumpWorks Establibied 1862. Ebtabliserd 1862.
HARLES B．HARDICK， 23 Adams Stree

IRON PIANTPRS，

BUILDERS

Todd \＆Rafferty MachineCo．
MANG FACTURRS OF

Send for book on Boller Incrustadison，Ind．

管
 er．． 4

\＄5 a year by mail，post－paid．Send 10 cents for Specimen Copy TO ILLUSTRATE AND DESCRIBE the many interesting themes and objects presented in the Great Centrnnlal International Exposition
of 1876，and also to meet the wants of that large or 1876，and also to meet the wants of that large
class of readers who desire an increased supply class of readers who desire an increased supply
of Scientific Information，particularly of the of Scientifle Information，particularly of the
more Technical and Detailed character，we shal issue a special pubiication，entitled the SCI－ ENTIFIC AMERICAN SUPPLEMENT，to be printed weekly during the Centennial year of 1876，and，perhaps，permanently thereafter．Each number will have sixteen large quarto pages， issued weekly，printed in the best style，uniform
with the SCIENTIFIC AMERICAN，but sepa－ with the sciy paged．
TheSCIENTIFIC AMERICAN SUPPLEMENT TheSCIENTIFIC AMERICAN SUPPLEMENT International Exposition，will embrace a very Fide range of contents，covering the most recen and valuable papers by eminent writers in ALL
THE PRINCIPAL DEPARTMENTS OF SCIENCE AND USEFULENOWLEDGE，to wit：
－ing
 of Working Iron，Steel，Lead，Copper，Gold，Silver
and the Varlous Metals，mith engraving of New
Aparatua，New Intormation，etc． 2．Amechanics and Engineering．－The
 3．－Electricity，Light，Heat，Sound．

 4．－A rchitecture．－Examples or the best New
Str ctures，with detalls and drawinga．
nd 10 cents for Specimen Copy． Technology．－New and Useful Invention
and DIscoverties relating to THE ARTS；Improve－
mensilichotograhy Printing New Implementes
New Machinery，New Processes，New Recipes，Im

6．－Agriculture，Botany，and Horticul ture．－New and Useful Information in all branchea
 ing Facts in rela
with engravings．
7．－Rural and Household Economy．－
The Latest Information concerning Bullding Mate The Latest Information concerning Bullding Mate－
rlatis，New Tand Valuable Recipes，and dreat varle－
ty of Miscellaneous Information pertaining to Ru－ ral and Household affairs－with engravings． Ru
8．－Materia Medica，Theraveutics Hygiene．－Exhibiting the progress of Medica
Sclence in various branches ；New Medicinal pre sarateion，New He Heal
peresting Information
9．－Natural Fistory and Zoology．－The LatestInvestiga tions．Diseoveries，and most Inter－
esting Information in this department of Science． 10 \＆11．－Meteorology，Terrestria Phymics，Geography．－Accounts of Interest Ing Atmospherlc and Terrestrial Phenomena，Tra
vels，Exploratio ns and Dlscoveries，etc．
12．－Geology and Mineralogy．－TheLates and most Interesting Geological Investigations
and Reports，and New Discoveries．
13．－Astronomy．－Recent Interesting Discover ies and Information，with Reports of Astronomical
Phenomeaz，Progress，New Instruments，etc．
TERMS：－Scientific American Supple three months， 8 year，post－paid， 85.00 ；halp year， 82.50

${ }^{\text {bigur }} \boldsymbol{T}$

Mill FurnishingWorks

THE BEST INJECTOR

 Ovor 15，000 Now In Uso Horo and in Europo

 THE HEALD \＆SISCO Patent Centrifugal Pumps．

Portiand Cement，

 TMPORTANT FOR ALI CORORATITONS AND

COVERTMC
 wITH＂AIR SPACE＂ITPROVEMENT

CIGNIEIC OICAN

For 1876.

The Most Popular Scientific Paper in the World．
Thirty－First Year
Only $\$ 3.20$ a year including Postage．
THE SCIENTIFIC AMERICAN，now in its 31st year，enjoys the widest circulation of any weekly newspaper of the kind in the world．A new vol－
ume commenced January 1,1876 ．Published week－ ume commenced January 1,1876 ．Published week－
ig．Now is the time to subscribe and to form ly．No
clubs．
clubs．
THE CONTENTS OF THE SCIENTIFIC AMERICAN embrace the latest and most interesting informa－ tion pertaining to the Industrial，Mechanical，and Scientiffc progress of the world；Descriptions， with beautiful Engravings，of New Inventions， New Implements，New Processes，and Improved Industries of all kinds；Useful Notes，Recipes， Suggestions and Advice，by Practical he variou
Workingmen and Employers，in all the variou
$\underset{\text { EVERY }}{\text { arts．}}$ NUMBER contains sixteen large quarto
pages，elegantly printed and illustrated with many engravings．The year＇s issue contains 832 large pages，equal to four thousand book pages，at a cost， including postage，of anly
Engineers，Mechanics，Telegraphers，Inventors Manufacturers，Chemists，Photographers，Physi－ of all Professions，will find the SCIENTIFIC AMERICAN most useful and valuable．Its pages teem with interesting subjects for thought，study， and conversation，and are an unfailing source o new and instructive information．As an Instruc has no equal．It is promotive of knowledge and progress in every community where it circulates， It should have a prominent place in every House－ hold，Reading－Room，and Library．
10 Specimen copies sent，prepaid，on receipt of
TERMS OF SUBSCRIPTIONS．．．－POSTAGE ne copy Sciontifal by One copy Scientific American，one year．．．．$\$ 3.20$
One copy Scientific American，siz months．． 1.60 One copy Scientiffc American，three months 1.00 ne copy Scientific American and one copy
Scientific A merican Supplement，both
Scientific American Supplement，both
for one year，post－paid．．．．．．．．．．．．．．． 7.00
50
䒴耍e make a liberal discountand give advan tageous premiums to those who form Clubs o procure Subscriptions．A beautifully illuminated subscription List，also Prospectus and Rates，sen

MUNN \＆ CO ．

[^0]: Inventions Patented in England by Americans.
 [Compiled from the Commissioners of Patents' Journal]
 Yrom December 31 to January 6, 1876, inclusive.
 Axle box, ext.-J. N. Smith, Jersey City, N. J.
 Car Weric.-R. N. Allen et al., Hudson, N. Y.
 Cigar-Making Machinfry.-C. m. Mann, Chicago, in.
 Exe.Cup.-P. J. Stephens, New York city.
 Flooking Clote-H. N. Slater, Massachuset

[^1]: ## 10

