

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.
 C

THE EIGHTY-TUN GUNS. \quad by a gigantic apparatus, as depicted in our engraving, and |external diameter, 2 feet at the muzzle and about 6 feet at We have on several occasions mentioned the Fraser sys- shrunk on to the gun, that is, it is heated red hot and put the breech. Internally the bore measures 27 feet, and in its tem of ordnance, which is now adopted in England forartillery \quad on in its place, its shrinkage in cooling binding it on the gun \quad present state will just admit a projectile $14 \frac{1}{2}$ inches in thickof all sizes. The innermost part of the tube is made of steel of the finest quality, and the gun is then built up of wrought iron. The construction of the largest weapons by this means is a Cyclopean labor, and a steam hammer and anvil of unprecedented size have recently been erected at Woolwich for the purpose. The trunnions of the largest guns, each of which weighs eighty-one tuns when finished, are made in a with tremendous force ness. It is, however, proposed to enlarge this bore, after th | It will seem in our engraving, that borings of unusual | proper caliber has been found by experiments, and it is not |
| ---: | :--- |
| magnitude are cut away by the boring bar. The thickness of | unlikely that the gun will eventually have a bore of 16 | magnitude are cut away by the boring bar. The thickness of

the excised pieces shows that a tool of excellent form and of the excised pieces shows that a tool of excellent form and of
most tenacious material is at work.
The news of the completion of the large gun has arrived. piece with a wrought iron coil; this coil is then bored out $\left.\right|_{\text {the dimensions of the finished weapon are: Length } 33 \text { feet, }}$ as the shot travels along the gun, commencing with nothing in the powder chamber and leaving the muzzle with a twist of 1 in 35 . The shot will therefore turn scarcely once on its axis inside the gun, but this has been proved ample to give

it the necessary rotation to the end of its journey. The weight of the gun is a trifle over eighty-one tuns; but it is to be known in the service as the 80 -tun gun. It has been constructed of eight separate wrought iron coils, fitted and shrunk one into the other on the Fraser system.
The projectiles with which it will be proved correspond in size, but not in shape, with the shot and shell with which it will be fired on service. They have been cast in the shell foundery of the Royal Laboratory, and are great bolts of solid iron, each weighing 1,300 lbs. They are flat-headed, and filled with a great number of studs to fit the grooves of the rifling. Special rammers, sponges, and other apparatus have been provided for the proof of the gun, a truck has been constructed to carry the shot, with a special contrivance for lifting it to the mouth of the gun, and the government manufacturers of gunpowder have even provided a special powder. The powder, in its way, is as remarkable as the gun. Each grain of it is a cube an inch and a half in diameter, and the cartridge, which will be 250 lbs . of this powder, will be a large bolster, about the size of an ordinary man. It is proposed to increase the powder charge, if necessary, to 300 lbs.; but this, like the caliber of the gun and the weight of the shot, will abide the result of experiments.

Srixutific gmmeriant

MUNN \& CO., Editors and Proprietors. PUBLISHED FYEKLY AT
NO. BY PARK ROW. NEW YORK

O. D. MUNN.

A. E. BEACH.

TERMS
One copy, one year, postage included...
one copy, six months, postageincluded.
Clubrates.
Ten copies, one year, each $\$ 270$, postage included..
Over ten copies, same rate each, postage included

By the new law, postage is payable in advance

the subscriber then receives the paper free of charge
VOLUME XXXIII., No. 16. 「New Series. 1 Thirtieth Year
NEW YORK, SATURDAY, OCTOBER 16, 1875.

THE FALL RIVER STRIKE.

During the middle of last summer, the proprietors of the great cotton mills at Fall River, Mass., finding that they had a large accumulation of stock on hand, and seeing that through the general depression of values and reigning dullness in trade, it would be impossible to continue operations as heretofore, notified their working people that either a reduction of wages must be made or the mills would have to stop. The proposed reduction amounted to one ninth the price then paid for piece work. The operatives in answer declined to agree to such retrenchments, but, not wishing to precipitate any open contlict with their employers, compro-
mised matters by taking a " vacation." The mills accordmised matters by taking a " vacation." The mills accord-
ingly ceased work, and the employees have waited in idleness for the arrival of better times The vacation has now expired. The prices of the large quantities of goods woven before have not advanced,nor does there seem any likelihood of their so doing, while a loss of a million dollars is estimated to have accrued to the city of Fall River through the cessa tion of work. The mill owners not only, therefore, are un able to go back to old wages, but several declare heav, losses, and advocate closing of the factories for a still longer period.

The workmen, toward the close of their vacation, during which time they or the majority of them had drawn support from the unions, began to realize that,by their self-enforced idleness, they had actually lost a greater proportion of their wages than would have been the case had they accepted the reduced pay. They further saw that winter was approaching, and that the union funds were getting low, and consequently the three classes of which they were composed, the weavers. the carders, and the spinners, met together to set tle on some rate of wages at which they would agree to re turn to work.

But when the workmen came to the factories and announced their intention of coming back to work, the em ployers, to their astonishment, not only deslined to pay more than the reduced wages, but produced an agreement for the workman to sign preliminary to being hired, which provides: 1, that he will not belong to, or be influenced by the action of, any association which assumes to govern the rights of any person to labor for whom and for what he pleases, and 2 , that, in case of his desiring to leave employment, he will give ten days' notice. In connection with this, we may mention that there is already a law in Massachusetts which holds manufacturers liable in case of the discharge of an employee without notice, except for incs pacity or misconduct The operatives regarded the proposed $\begin{gathered}\text { g greement as a great in }\end{gathered}$ justice, and made riotous demonstrations At one time troops were under arms, threats to burn the mills were freely circu lated, and strong police reinforcements were sent to Fall River from Boston. The number of operatives involved, from 12,000 to 15,000 people, added to the gravity of the crisis.
The whole difficulty hinged on the trade union question. By the discordant element which, it appears, rules in these societies, the idleness of the summer was precipitated, and by them the recent difficulties were fomented, since all acounts agree in stating that hundreds of men were ready and willing to accept the terms of the employers, but were withheld by sheer menace and personal intimidation. That for any manufacturer to refuse to employ union men is a harsh proceeding, we cannot agree. Such is already the rule in some of our largest iron and steel working establishments, and no one is injured thereby.
While we hope that the law will be vigorously enforced against all rioters, we cannot but feel a genuine sympathy for the workmen who have allowed themselves to be led into the difficulty. Their losses will be heavy and severe and their chances of bettering themselves are palpably hopeless, for it is asserted that mills closed or mills working less, for it is asserted that mills closed or mins working
make little difference to the proprietors during the presen state of trade ,and while such large stocks are already on hand.
The strike is now over, and all, or very nearly all, the mills have their full complements of workers, who have accepted employment under the conditions above noted. The 15,000 laborers whotook part in the uprising have, through their two months " vacation," lost over a million of dollars. Such are the results of the strike.
mending a fifteen-inch shaft at sea,
An excellent piece of mechanical work was recently accom
lished aboard the steamer Ethiopia, of the Anchor line, in plished aboard the steamer Ethiopia, of the Anchor line, in

he course of that vessel's last voyage to this port. After a heavy gale, and when 1,500 miles from Queenstown, the 15 nch propeller shaft broke in a diagonal fracture. Owing to the confined space of the alley through which the shaft runs, was very difficult to get at the break, and utterly imposs ble to use cranes or tackles for handling the immense weight How the work was accomplished is represented in the an nexed engraving (drawn on a scale of $\frac{8}{4}$ of an inch to 1 foot), in which A is the shaft, and B, the line of fracture. The broken parts were raised by a jackscrew, the edge
moothed, and a four inch hole bored through the opposing portions, and into the aperture a bolt, C, was tightly fitted. Four steel drivers, D, four inches long and one and a quarter inches broad, and three quarters of an inch thick, were sunk into the shaft, flush with its surface, just across the line of fracture, serving to bind the parts more closely together. Large clamps, E, were then bolted on the shaft, holding th steel drivers in place, binding the whole together tightly A still worse difficulty presented itself in the springing or bending of the shaft. Three men, with all the power they could get out of a jackscrew, were not able to reduce tia part, which was bent more than a quarter of an incn. So badly bent was the length of shaft behind the break that it wa found impossible to coupie them together as before, the faces of the coupling refusing to coincide, as shown in Fig 2 , by about 24 inches. The shaft, therefore, had to be bolted in this position; and as the old holes, Nos $1,2,3,4,5$ and in Fig 3, in the couplings would not correspond one in Hy. 8 , , 78 , 9 , thre inch in diameter and five inch through, had to be bored. Two of the bearings and plum hrough, had to be bored. Two of the bearings and plum
mer blocks under the shaft were broken, and a new support mer blocks under the shaft were broken, and a new support
had to be devised. The work was carried on night and day and to be devised. The work was carried on night and
and after eight and a half days, the job was complete.
To Chief Engineer Murray, of the Ethiopia, through whose skill and ingenuity the very difficult operation was accom plished, the credit of the same is due. So thoroughly wa the work done that it has been deemed safe to dispatch the essel on her return trip to Glasgow wit hout any materia alterations in the shaft and its fastening.

A DISASTROUS CYCLONE.

One of the most disastrous storms that has ever visited our oast recently swept over a portion of Texas and South western Louisiana, destroying hundreds of lives and an im mense amount of property. The hurricane took its rise in the Bahama Islands, and, crossing the Gulf of Mexico in a para bolic track, struck the Texan coast, curved back, and finall merged from the Gulf at Key West, and passed off to th east in the direction of the Gulf Stream. The city of Indi nola, situated about 120 miles southwest of Galveston and built on a sandy waste which slopes slightly to the water' edge, was almost totally destroyed, but five houses being left standing. In Matagorda, forty miles eastward, four houses only now remain. Velasco in Brazoria county was utterly swept away. San Bernard was completely submerged by the tremendous floods. The towns of Cedar Lake and Saliena were washed away with all their inhabitants. Mor gan's Flat met a like fate. Of Lynchburg and San Jacinto but little remains; and in Galveston, enormous damages, though less than those inflicted on the other towns, were caused by the floods, which rolled over the island on which the city is located. The total loss of life is unknown, and doubtless will so remain; but the lowest estimates place it trom three to four hundred persons
Little has been positively determined regarding the cause of these cyclones. From actual observation, it appears that they may originate wherever a lower stratum of warm, mois air is rapidly elevated above the sea level. In this mois air an immense mechanical power is stored up; and when condensation caused by its elevation occurs, its moist vapo turns into rain, hail, or snow, and an influx of air from all sides rushes in to fill the partial vacuum thus formed. It has been proved that this influx toward a central regioni immediately followed by the formation of a whirl, the sub sequent development of which is due to further supplies of moist air. The cyclone then moves towards the quarter in which, for the longest time, the warmest and moistest ai has been rising and producing the heaviest cloud and rain fall, and its tendency as a whole is to travel away from the equator: hence the parabolic course so plainly shown in the recent case. Applying known theories to the circumstances of the latter, there is no difficulty in accounting for the storm. The weather reports published, for the two days preceding that on which the fury of the cyclone broke upon Indianola, show warm rainy weather in the Gulf and a prevalence o strong northerly and northeasterly winds on the south At lantic seaboard. Hurricanes have repeatedly been known to originate in Florida when a cold wind from the north has swept into the warm, moist air there prevalent, and this one is without doubt due to the same cause. The cold air elevated the warm atmosphere; and probably other circumstancesis be ing favorable, the cyclone was generated and took the cours already specified. The Signal Bureau reports that the low est barometer noted was 28.99 inches, with the maximum velocity of wind of 86 miles per hour, at the same period The terrible effect of the hurricane may be judged from the fact that the prairies south of Indianola are literally strew with thousands of drowned cattle, deposited by the subsid ence of the floods which swept them away. Several ligh coasting steamers have also been found ten miles inland, left high and dry by the receding waters.

THE POSTAL LAWS--AMENDMENTS NEEDED.

Owing to increase of postage on newspapers and other ransient matter by the enactment of a change in our postal laws at the end of our last Congress, it is no longer feasible for publishers to advertise their publications by mailing and prepaying postage on copies of their papers as specimens, and sending them to non-subscribers
Last autumn we mailed several tuns in weight of the ScI entific American to persons throughout the country, ca which we paid over $\$ 5,000$ postage. The circulation of the same number this year would cost for postage $\$ 7,500$. W have concluded not to print an edition for gratuitous circula thion thear, in consequence of this increase of posta charges.

The Post'Office Department, in consequence, loses $\$ 5,000$ which it would have received but for the change in the rate This is but a small item, to be sure, to so large a department as the General Post Office, but be it remembered that this loss is from only one concern, while there are probably others who will do the same to a greater or less extent which in the aggregate is likely to reduce the Post Office rev enue very largely. It is hoped that, on the convening of ou next Congress, one of its first acts will be to amend the pos tal law, so that the tax upon publishers and the public sha not be more oppressive than it was under the old law.

Newspaper and other publishers should commence early to agitate a reform in this matter. It will not do to take a retrograde step in the matter of cheap postage. Persons who have been in the habit of advertising in our usual special edition, referred to, are advised to avail themselves of the advertising pages of our regular edition to announce their fall business. The circulation of the Scientific American has never been so large at this season of the year as now, by several thousands. The number of regular subscribers at this time exceeds that of last year by over four thousand, making an aggregate issue of not less than 44,000 every week, and it frequently reaches as high as 50,000 .

CONSERVATISM VERSUS PROGRESS

Extreme opposing parties of conservatives and progressists are found in the field of Science, as well as in politics and religion. Their continual strife is mutually beneficial, each serving as a check on the other. Without conservatism, the world would certainly rush into all kinds of new theories, such as those in which men of a progressive turn of mind are very apt to indulge; while without men of progress and are very apt to indulge; while without men of progress and
improvement, the world would stand still, and no advance improvement, the world would stand still, and no advance
would be possible. It is doubtful which of the two would be the more deplorable state of society
History abounds with records of this strife between conservatism and progress: but in no field has the latter been so successful as in that of Science, for the simple reason that its triumphs, which are only to be achieved by the labor of research, are based on positive facts, which no opposition of conservatism can upset ; and the benefit of this opposition consists only in the prevention of a too rash acceptance of theories, before they are su
We will take a few illustrations from the fields of astronomy and geology, and remind the reader that there was a time when the whole human race considered our earth to be flat, and to consist of three connected continents--Europe, Asia, and Africa-with some jslands in the inland seas, and many others surrounding the continents, all being situated in a boundless ocean, the limits of which were unknown, and their investigation seriously dreaded. The ancient astronomers who anneunced the rotundity of the earth were not believed, especially when contradicted by the theological priests, who then, as well as later, arrogated to themselves the enforcement of any peculiar doctrines which best suited their self-interest. But ultimately progressive Science prevailed, and conservative theology had to acknowledge that it had been in the wrong.

Next came the doctrine of the motion of the earth. The history of the persecution of the great Galileo is of so com paratively recent a date that, looking at the progress of the present day, it is almost incredible that only two centuries ago the everlasting and important truth of the earth's mo tion was denied, and condemned as ungodly, by the whole Christian priesthood, Protestant as well as Roman Catholic But notwithstanding that this good man was compelled when weakened by age and persecution, to swear to the falsehoods of the priests, the truth has been demonstrated and progressive Science was again victorious over conserva tive theology.
Afterwards-toward the end of the eighteenth and beginning of the zineteenth century-came the doctrine of th great antiquity of the earth; while the accumulating evidences of its existence for millions of years, gathered by the then young science of geology. compolled all clear-minded and well informed persons to reject the popular idea, which we inherited from the Mosaic theology, that the whole earth was scarcely 6,000 years old, and was made in six days. As the evidence of the rocks proved that millions upon millions of years have elapsed during its transformation from a highly heated globe to its present condition, the better informed theologians did not combat the scientific conclusion; but the less informed priests, not worthy of the name of theologians, attempted some show of resistance to this phase of progress. But the time of persecution had passed, and priestly influ ence had been curtailed; so that this opposition was comparatively feeble, and utterly unable to stay the diffusion of the truth.
Still the idea that at least the human race was only about 6,000 years old was adhered to, and theologians made a kind of armistice, surrendering the theory of the six days of cre ation, and admitting the possibility of a creation and devel opment lasting for millions of years, while still maintainin that 6,000 years was the antiquity of the human race. Un fortunately for them, about fifty years ago facts commenced to accumulate, proving that man has existed at least 100,000 years. The discovery that a glacial epoch took place at this time, and the relation of this grand and important event to the human race, and the accumulating proofs of man's exist. ence immediately after, and even perhaps during or befor the glacial period, are sufficient to settle this point; and society no longer heeds the opinions of any theologians who deny these demonstrated facts.
But the most serious blow to Jewish and Christian ortho dox conservatism is the modern theory concerning the primi
ive condition of man. All the geological records found ten show, more and more, that the first existing men, instea of having fallen from a perfect condition, had improved from the lowest state, and that the first man was a perfect savage, such as we find nowadays in some of the isolated islands of the Australian archipelago, where, for want of conflict, there was no cause for progress, the inferior men not being exterminated by the superior, a destructive process to which much human improvement is due. Progressive Science teaches that the modern civilized and enlightened society has slowly been developed from a primitive savage and ignorant condition.
The final strife of the present day, closely allied to the last nentioned theory of the continual improvement of mankind, is the evolution theory, now carried to its furthest extent. It scribes the origin of man not only to an inferior human race, but to still lower types, now extinguished: nay, even ascribes the origin of all living beings to a single original type or even cell. It does not teach that man descends from a monkey, as the enemies of progress falsely accuse the evo lutionists of maintaining, but that man is closely allied to the whole animal creation, as proved by comparative anato my, by embryology, by the geological record, and even by psychological and ontological researches, and studies of the mind and instinct of animals, coming thus to the conclusion that the past man may have as well been evolved from a lower prototype as have been created out of dirt. Human pride is doctring generally at the bottom of ends ina the proof of man's origin ancer but ong ends, in a certain sense, to abate his arrogance, but on the plished in a short period of time, if in the beginning he prang from a condition so low.

the fair of the american institute

To any one unconversant with machinery, we can readily magine that the performances of an apparatus which throws out bundles of

KINDEING WOOD
neatly tied, at the rate of 400 per hour, must be a source of considerable astonishment; and hence the expression of won der, which comes over the face of the throng which is constantly gathered about the machine, while amusing to conemplate, is quite to be expected. To gather an idea of this curious device, the reader must imagine four horizontal bars rranged as spokes, placed equidistant about a rotating hub. Each bar has at its extremity a circular vertical frame, of a depth equal to the length of a stick of kindling wood. In
each frame or cylinder works a follower, moving outward. each frame or cylinder works a follower, moving outward
An immense hopper filled with the sticks is provided with three openings, at each of which a boy is stationed. Boy No. 1 fills the frame nearest him loosely with wood. The bars then rotate so as to bring that frame opposite boy No. 2, whose business it is to pack in more sticks, so as to make the bundle a little tighter; then boy No. 3, when the same frame reaches him, shoves in the little sticks which complete and wedge the bundle tight. Of course, as fast as one frame de parts from each operator another takes its place, and the oprations above described are repeated. After leaving boy No. 3, the frame comes opposite a rod controlled by mechan m from the center, whish pushes the bundle out of th frame and between a pair of vertical semi-circular jaws which
come together, tightly compressing the bundle. Then a piece of annealed iron wire is led from a reel through a pair of mall vertical clamps, and pushed from underneath up into he jaws, the inner periphery of which it follows, thus en circling the bundle. The end comes back to the clamp, be ween which a central piece then rises, grasps the wire, twists ff. the now tied bundle out of the opening jaws, and takes its place to undergo the same fastening. The machine is really study for the mechanic. One gear wheel in particular which communicates motion to the frame bars and at the ame time operates the knife cam and the wire-twisting de ice, is a remarkable example of adaptive ingenuity. Th nventor, Mr. F. Myers of this city, tells us that the appara us easily accomplishes the work of fifteen boys, and runs o inarily at the rate of 4,000 bundles per day of ten hours. Another novel machine is one for

MAKING WIRE FENCE,

n inexpensive and excellent form of enclosure, which de serves to be popular among farmers. The wire, led from a eries of reels, is brought up and under two sets of vertical hammers, the latter actuated, one set at a time, by cam me chanism. The uprights which support the wire are of wood and are laid, one at a time, on the projections of endless bands, which carry them under the wire and beneath th hammers. Under the first row of hammers are guides which conduct copper staples, one at a time, over each in tersection of wire and post. Then the first hammers fall and drive the staples partially $1 n$, and the second hammers, as the insertion. There are six wires, and the pickets are four feet in length. The fence can be made with 15 or 30 pick ets to the rod, and is usually formed in sections of ten rods ach. It appears to be very strong. It is portable, and can be rolled and secured as easily as so much carpet. Farmers who use it might thus readily, on moving from one residence to another, take up their fences and transport them with their other farm appurtenances. Mr. A. C. Betts is the in ventor, and he says that the machine will make 400 rods of fence per day.
an electrical copying machine,
he invention of Mr. T. A. Edison, the well known electri- hole
cian, is a novelty in apparatus of this description. A small battery of considerable intensity transmits its current to a pair of miniature electro-magnets mounted on the end of a pointed metal rod, which serves as a writing instrument The magnets cause the rotation of a bit of iron, the motion of which is regulated by a minute fly wheel, and the result of the rapid interruption of the current is a series of sparks from the end of the instrument, which penetrate the paper written upon, and so convert the latter into a stencil plate of the characters inscribed. It only remains to put clean paper under that marked, and pass a roller charged with a prepared ink over the latter, to make as many copies of the writing as is desired, the ink passing through the holes made by the passage of the spark.
We have had sewing machines without number, buttonhole and knitting machines of all descriptions, but now something entirely new is added to the mechanical part of the sewing room in the shape of
a darning machine
Imagine, ye mothers of large families, who ruefully con emplate dilapidated socks by the dozen, after the week's washing, with visions of strained eyes and tired backs float ing across your minds : imagine a little apparatus infinitely more simple than the sewing machine, which repairs the hugest darn in much less time than we can describe the ope ration, and far more neatly than you can do it with all your years of practice. This is what it is. Two small plates, one stationary and the other movable, are placed one above the other. The faces are corrugated, and between them the "holy" portion of the stocking is laid. Twelve long eye pointed needles are arranged side by side in a frame, which last is carried forward so that the needles penetrate oppo site edges of the hole, passing in the corrugations between the plates. Hinged just in front of the plate is an upright bar, and on this is a crosspiece carrying twelve knobs. The yarn is secured to an end knob, and then, with a bit of fla wire, pushed through the needle eyes. Then the loop be tween each needle is caught by the hand and hooked over the opposite knob, so that each needle carries really two threads. Now the needles are carried back to their first position, and in so doing, they draw the threads, which slip off the knobs through the edges of the fabric. A little push forwar again brings the sharp rear edges of the needle eye agains the threads, cutting all at once. This is repeated until the darn is finished, and beautifully finished it is. The inven tor is Mr. O. S. Hosmer of Boston, and we predict for him the blessings of the entire feminine community. The cost of the machine is butten dollars.

A NEW ELECTRIC MOTOR
he invention of Mr. C. A. Hussey of this city, is at work driving a sewing machine. The engine, which is quite small is operated by five Bunsen cells, and its movements are con trolled by a simple device by connecting or disconnecting greater or less number of elements. The machine is driven at the rate of 560 stitches per minute. Mr. Hussey's engin combines several new and excellent improvements, mention of which lack of space just at present compels us to defer to another issue.

SCIENTIFIC AND PRACTICAL INFORMATION.

MERICAN COMPETITION

United States hardware producers do not seem inclined to imit their competition with English manufacturers either in this country or in foreign markets by offering American made goods. When these cannot be sold in England at a good pro fit, current action of individual firms seem to point to the probability of United States makers starting manufactorie upon our own shores. Messrs. Hussey, Binns, and Co., of Pittsburgh, have during the past twelve months been making -but only since last spring been selling-what they term a " plain black solid cast steel shovel." Their patent consists mainly in combining the iron straps with the pan of the shovel when the steel is run into the mold. Shaping and shearing, and even hardening, is done mostly underthe drop hammer, to the exclusion of all but a minimum of manual labor. The result is a good tool produced at a cost that leaves a profit with which even American manufacturers ought to be satisfied; but large as these profits are, they will be increased when the existing facilities of the makers are supplemented by a 24 -pot Siemens furnace which is being laid down. On behalf of Messrs. Hussey, inquiries are now being made in our own hardware districts by a gentleman who has recently come to England. His report will determine the American firm whether they shall start a works in England, or offer here their process upon royalty or purchase. The inquiries are conclusive that the process can be carried on in this country at a cost greatly under that entailed in the States; and that both throughout the export and also the home market the common iron and iron-steeled goods are giving way before those made wholly of steel. The Americans have furnished our agriculturists with some excellent orks, and their axes are unrivaled; yet the English makers of edge tools keep mostly well employed. If under these circumstances, our transatlantic cousins will, at an equally moderate price, put into the hands of our navvies, our miners, and our farm laborers a shovel which shall be equally good, they have our best wishes for their success in every legitimate effort which on this side they may put forth. The Engineer.
internal parasites of the house fly
A correspondent of Nature writes that he saw a small, de. repit house fly making its way across a sheet of paper, when hree minute, active animals, apparently beetles, tumbled hid they were light brown in color and resembled phides in shape, and were of about the size of a medium pin hole.

IMPROVED ICE-MAKING MACHINE.

The following is an explanation of the mode of working this machine, which will be readily understood on referring to the illustration: The refrigerator, A, a copper tubular vessel, is charged with the requisite supply of liquid ether, which, by the action of the vacuum pump, B, is evaporated, drawn away in the form of vapor, and passed into the cop per tubular condenser, C, where, under a slight pressure and by the aid of a stream of water, it is again reduced to its liquid state, and then returned through the ether meter, D, to the refrigerator, A, to be re-evaporated. Thus the D , to the refrigerator, A, to be re-evaporated. Thus the
same ether is used continuously, with inappreciable loss. same ether is used continuo
The ether meter, D, regulates The ether meter, D , regulates
the flow of the liquid ether to the flow of the liquid ether to
the refrigerator, rendering the machine self-acting. The hand pump, F, and condenser, G, in connection with it, are valuable in economizing ether to the utmost degree, as without them much would be blown into the air and wasted. No machine is complete without these adjuncts. To utilize the cold produced by the evaporation of the ether for the purpose of making ice, an uncongelable liquid, such as very strong brine, is forced by the pump, E, through the tubes of the refrigerator, A, parting with its heat to the ether vapor on its passage, and leaving that vessel at a temperature many degrees below freezing point, to be used in the freezing tanks as dethe freezing tanks as described bolow. For the manufacture of pure transparent ice in large blocks the machine is provided with a large tank -or several tanks, according to the size of machine-which is filled with the pure water to be frozen. In this tank a number of hollow metal cells or slabs are fitted, and connected to each other and to the refrigerator of the ma-

With the marked predilection that has sprung up in Switzerland, both among the companies and the public, in favo
of two-storied cars for branch line service, the federal in pectors for railways have set themselves to the task of studying this question, and the design of a four-wheeled standard gage car, of which we annex engravings, is the result of these studies. Twelve cars on this plan are now building at the Swiss railway carriage and wagon works Neuhausen, Fribourg, and Bern
As will be seen, the cars are constructed on the so-called As will be seen, the cars are constructed on the so-called central passage all along the train, such as has been stipu-
lated by the new regulations. The staircases admit of very |ceedings in disputed cases.
tained, but in addition the vessel is more easily steered, and there is little or no vibration felt, while it is next to impossible to foul the screw. Another and, in one sense, most mportant fact was also discovered while the Bruiser was at sea, namely, that when pitching in heavy seas the engine ribut as smoothly as in fine weather, the cause being at holds a quantity of water which offers sufficient resistance holds a quantity of water which offers sufficient resistance
to the motion of the propeller to prevent the engines racing.

International Patent Laws.
Mr. Lloyd Wise argues in favor of the following, among other points, as a basis for an international patent law :
" Every application for letters patent should undergo examination, limited to the questions whether the specifications are clear and whether the inven. tion is open to objection as being contrary to morality or wanting in novelty, regard being had to prior publications in the patent office.
Should the result of the examination as to novelty be unfavorable, the applicant should be nevertheless entitled to ob tain his patent, subject to the insertion in his specification of an acknowledgment of the existence of the prior matter found and pointed out by the patent office officials, with patent offce officials, with clear statement of what he nev rtheless claims.
Patents should be refused only in cases of fraud or where the invention is contrary to morality. Other points should be left to be adjudicated upon by the courts only, in case the validity of the patent should come into question.
There should be no publication of any report or opinion of the examining authorities as respects any application for a patent, saving reports of pro-
the refrigerator at a temperature of from 14° to 20° Fah., is ready access to the upper story without interfering in the the refrigerator at a temperature of from 14 to 20 Fab., is continually circulated, causing the pure water in the tank to congeal on each of their surfaces until a sufficient thickness of ice has been obtained, when the blocks are readily removed by a very simple arrangement. To make perfectly clear ice, it is imperative that the fixed air contained in the water be allowed to escape freely during the freezing process, and to attain this end the tank is fitted with moving arms or agitators, which are caused to move slowly up and from our engraving, and therefore we need say little about down or to and fro between the cells in the pure water, keeping it constantly agitated, and so facilitating the expulsion of the air. By this process perfectly transparent ice is produced in any quantity and in any climate, in blocks about 4 feet x feet, and 4 inches to 12 inches thick It is found that after attaining thickness of 4 inches, the ice doe not form so quickly, and therefore the production of the machines is somewhat less when the thickness of the blocks is increased; but this is overcome and the efficiency of the machine maintained by a simple arrangement, by which two blocks are frozen together after a thickness of 4 inches to 6 inches has been attain ed, and a block of transparent ice 8 or 12 inches thick is produced in half the time required by any other process.

TWO-STORY RAILWAY CARS

Since April 1,1873, there has been in force a new federal law, concern ing the building and working of all railways on S wiss territory. The extent of working railways in the Confederation at present amounts to about 1,000 English miles, while about one half this length is at the present time either building or con cessioned. There are no State rail ways in Switzerland, the lines hav ing been promoted mainly by priva ing berrise and aided in by privat enterprise, and aided, in many cases by governmental, or rather cantonal, subventions. Most of the new lines will open up shorter routes towards the International Gothard line now in course of construction, and these are therefore being made, like the rest of the Swiss lines, of the standard gage, namely, 4 feet $8 \frac{1}{2}$ inches. The Swiss are now also building meter ($39 \cdot 3$ inches) gage lines, a width which has been found amply sufficient in many parts of this country for local traffic.

TWO-STORY RAILROAD CARS FOR SWISS BRANCH LINES.

Thus on the one hand applicants who had been anticipated would be saved the useless expenditure they might incur if left in ignorance of the fact; and on the other hand, they could not become sufferers by reason of any erroneous judg. ment of the examining authorities. Moreover, the publi would be amply protected by having all the facts (and fact only) placed in juxtaposition before them in the specifica tion
Where the examining authorities have the power of re fusing an application for a patent o the ground of want of novelty, there must always be considerable risk of injustice to the inventor, there being in many instances scope for divers ty of opinion. Nor is the difficulty obviated by providing means of ap peal. Appeals are somewhat costly consequently, in a pecuniary sense might may in the long run prevail over right.
Moreover, where the power of refusal obtains, as in the United States, there results a widespread idea that a patent once granted is practically indefeasible. Of course, people wel acquainted with the law know bet ter, but I am for the moment speak ing of members of the outside public who may nevertheless have interest at stake.
Now I think the plan above proposed, while securing justice alike to the inventor and the public, would not be liable to such misinterpreta tion.
Provisional protection should be granted for twelve months at a nom inal cost, to allow time, not only for perfecting the invention, so that it may be properly and fully described in the complete specification, but also for obtaining, if needful, the coöp eration of capitalists."

The Oll Diagometer.

 Professor Palmieri has discovered a new instrument which he calls The carriages are very solidly constructed, and weigh diagometer, and which is constructed for the rapid examina empty 10 tuns, equivalent to 3 cwt . per passenger, while tion of oils and textures by means of electricity. What the they cost $\$ 2,250$ a piece, making $\$ 34$ per seat.
Griffths': Propeller.

The trials of the British iron steamer Bruiser, with a cas ing over the propeller, on Mr. Griffiths' plan, have yielded very satisfactory results. Not only is an increased speed obapparatus will do, ProfessorPalmieri details thus: 1. It wil show the quality of olive oil. 2. It will distinguish olive oil from seed oil. 3. It will indicate whether olive oil, although of the best appearance, has been mixed with seed oil. 4. It will show the quality of seed oils. 5. Finally, it will indi cate the presence of cotton in silken or woolen textures.

LIQUID CARBONIC ACID AS A MOTOR

In the search for cheap motive power, to which inventors of all classes are more or less giving their attention, the utilization of carbonic acid gas has been suggested, and practised to some extent,notably in the propulsion of submarine movable torpedoes. The Lay torpedo, of which some time ago we published a description, was driven and steered by this gas, compressed into a liquid state. The advantages offered as compared with compressed air, are that,by the use of the liquid, a much larger quantity of motive power can be stored in the same space, allowing the employment of smaller and thicker vessels; and of the gases that may be liquefied, car bonic acid can be prepared most cheaply and readily. Ther are two methods by which carbonic acid gas may be reduced to a liquid state first by the aid of the pressure of the a a iquid state, first, by the ga as it is evolved; secondly, by mechanical compression. Th frst process necessitates the repeated charging of a reser voir, producing a series of condensations; but in each charg ing a large quantity of gas is lost, since all that does not condense must be blown off in order that the generator may be refilled. The apparatus is simple but troublesome to work.
By the second method, which is in every way preferable the gas is compressed, into a receiver immersed in a cooling mixture, by a condensing pump. This plan is that adopted by the United States Torpedo Station, at Newport,R. I., fo the generation of the large amount of liquid (some 700 lbs.) needed to fill the flasks of the Lay torpedo. The apparatus used, while in principle very similar to that employed in the manufacture of soda water, is especially adapted to the work of producing the gas under very heavy adapted to the work of producing the gas under very heavy
pressures by many novel and important alterations. Its conpressures by many novel and important alterations. Its con-
struction will be understood from the annexed engraving, struction will be understood from the annexed engraving,
which, with the facts given herewith, we extract from a which, with the facts given herewith, we extract from a
paper prepared by Mr. Walter N. Hill, S. B., chemist of the

Torpedo Station, and published under the auspices of the Ordnance Department of the Navy.
There are two generators, \mathbf{A}, so that while one is in action the other may be emptied and recharged. These are of cast iron,and receive the marble dust and water. The wheel, E, servesto rotate an agitator within the cylinder. The sulphuric acid is contained in the smaller vessels, B, and ad mitted to the generators by valves operated by levers, a. C simply contain water for washing the gas. The acid admitted from B, acts upon the marble dust and generate carbonic acid gas, which passes up the lead pipe, b, to th cross, c. To this last are attached a pressure gage, d, and a ube leading to B, serving to equalize the pressure in that essel. To the lower branch of the cross is attached a pipe which extends to the bottom of vessel,C, through the water of which the gas bubbles up, and finally is led away by ipe, e, to the receiver G. In this receptacle a supply of gas is kept, from which the pump can draft for a short time, if for any reasons both generators should be out of action. Also, if priming occurs, the material carried over remains in the vessel and can easily be removed. The gage, f, marks the pressure of the gas which the pump is taking.
From the receiving vessel, the gas traverses a coil of lead pipe, H, which is surrounded by ice water, thence goes hrough an empty vessel, I, which catches any foreign matter carried over, and finally escapes by the pipe, i, to the pump. The latter resembles in form the Burleigh air compressor The steam cylinder, J, is 15×7 inches, and there are two com oressing cylinders, $k k$, of steel, each $2 \frac{1}{2}$ inches in diame ter by 10 inches stroke, provided with steel pistons in which are small steel valves opening inwards. The rods are driven by connecting rods and cranks from the crank shaft of the team cylinder, and the gas cylinders are well jacketed, as shown broken away at K. The gas enters the bottoms of
the cylinders; and as the valves in the pistons close on the
up stroke, the gas above is compressed and forced into the composition boxes, l. Thence it passes to an oil drip box, m and thence by heavy pipes to the receivers, M, which are sur rounded by freezing mixture, the drainage from which is carried to the coil, H.
One of the most important features of the apparatus is the supplying of the gas at high pressure, averaging 100 lbs . per quare inch, to the pump. If the gas were drawn from the enerator at atmospheric pressure, it would have to be com pressed to $\frac{1}{40}$ its bulk to average 600 lbs ., the pressure of iquefaction; but if taken at 100 lbs . only to $\frac{1}{16}$. In addition, the strain on the pump is greatly diminished.
It is estimated that the cost of gas made by the machine described, under favorable conditions, will not be sreater than 15 cents a lb. This mode of preparing the liquid is not vailable on board ship, nor is it suitable to localities wher ce is not attainable
Mr. Hill has,however, devised another improvement, where in the use of ice and salt is done away with, and a more uniform cooling of the receivers obtained. By means of an air compressor, air is compressed into a strong tank a 70 to 80 lbs. per square inch. This is used to drive the pump. By a simple arrangement, the exhaust from the driving cylinder of the latter is used to keep the flask, re ceiving the compressed gas, cold, the vessel being placed in sea water, which may easily be reduced in temperature below 32° Fah
Liquid carbonic acid has a tension, at -4° Fah., of $322 \cdot 5$ pounds per square inch, and at $94^{\circ} \mathrm{Fah}$. of $1,200 \mathrm{lbs}$. Under ordinary circumstances,the highest temperature above mentioned may be attained, and the correspording pressure reached, so that the proper construction of vessels for con taining it is a matter of considerable moment. After ex perimenting, the flasks found most satisfactory were those made of fine sheet steel (0.045 inch thick) in successive layers,

four being commonly employed. The sheets are wrapped so as to break joints around a cylinder, and the last one or shell is lapped and riveted. Then all are made into a solid cylinder by means of pure tin, which is melted and worked in from the inside with the aid of gas blowpipes. The heads are made of cup-shaped pieces of steel, placed one within the other and sweated together with tin. The length of the flasks vary from 7 to 4 feet, and the diameters are 12 inches along the body and $13 \frac{1}{4}$ inches at the heads. One flask which was tested to destruction gave way under a pres sure of $3,136 \mathrm{lbs}$. per square inch. The total strains borne are calculated as follows: At $1,200 \mathrm{lbs}$., longitudina strain, $19 \cdot 104 \mathrm{lbs}$.; tangential strain, $38,800 \mathrm{lbs}$. At 1,36 lbs., 'longitudinal strain, 21,731 lbs.; tangential strain 44,152 lbs.

Very probably it will yet be found that liquid carbonic acid will receive many applications as a source of motiv power. It has only to be made cheaply, and it will be extensively used.

The Palace Hotel

Visitors to San Francisco will hereafter be struck with new and conspicuous feature in the face of the young gian town. Seven stories high, with a base of 96,250 square feet, at the corner of Market and New Montgomery streets, now looms up the Palace Hotel. Its huge brick walls are ribbed from top to bottom with tiers of bay windows, and spotted like the sides of an ironclad with bolt heads that clinch the great rods running over and under and through and through the building, making it a kind of Cyclopean open work iron safe, filled in and lined with fireproof brick, where all treasure of human life and limb should be secure against fire or earthquake while the Peninsula stands. It is, indeed, to this element of security that we would draw. special attention, while so many buildings are going up today in our great cities, which are a disgrace in flimsy and tawdry pretension, and a danger in their inflammable and carelessly thrown together materials.

The whole work of constructing this hotel was done by the day's work and not by the piece, and so done carefully and well. Seventy-one partition walls of brick run from the foundation up through the roof, and two feet above it, and the roof is of tin. There are four artesian wells, two in each outer court, with a tested capacity of 28,000 gallons of water per hour. Under the center court is a 630,000 gallon reservoir, with walls of brick and cement five feet thick and buttressed. On the roof are seven tanks of boiler iron, with an aggregate capacity of 128,000 gallons. Seven steam pumps force this water through the whole house by a system of arteries and mains, with 392 outlets in the corridors, provided in each case with three inch hose, from 10 to 100 feet in length, with nozzles. Under the sidewalks without the building, there are eight four inch fire mains connecting with the city water, by means of which the city engines can, if found necessary at any time, force water into the hotel mains.
In every room and passage there is an automatic fire alarm, by which any extraordinary heat will be instantly and noisily known at the central office of the hotel; and six watchmen will patrol day and night every part of the structure, and touch, half hour by half hour, at seventy-nine stations, which will report by electricity and fix the place and time of a dereliction of duty
Through the heart of the hotel from top to bottom runs a fire brick tunnel, within which is a solid brick and iron staircase opening on each floor. In five like tunnels are five ele vators, run by hydraulic power, besides six additional stairways from garret to basement. Wood is avoided where possible. In the construction of kitchen, oven room, bakery, store rooms, steam pump room, water heating room, coal vaults, ash vaults and shafts, and corridors, wood is supplanted by asphaltum and marble, iron beams, and brick arches. If the Palace Hotel can burn, the lessons of Chicago and Boston are lost, and all human precaution is vain against fire in this year of our Lord eighteen hundred and seventyfive.
Architect J. P. Gaynor was instructed by the owners to travel and study the best hotels elsewhere before submitting his plans for the Palace Hotel, and Warren Leland-mine host of the old New York Metropolitan Hotel, of the Leland family,famous as hotel keepers-was appointed lessee of the house, and manager of all things. The sunning and ventilation of the 755 rooms for guests are excellent, every room opening on the open light, having a fire place, and a separate flue of four by eight inches running clear through to the roof. Every second room has a bath room attached, most rooms are twenty feet square, and none of a less size than sixteen by sixteen feet. Two thousand and forty-two ventilating tubes open outward on the roof of the hotel.
Three great cañons or courts, cut down from roof to base, air and lighten the mountain building. The center court measures 144 by 84 feet, is covered with glass, made brilliant by the lights of the pillared verandahs surrounding it, floor above floor; with a tropical garden, fountains, statues, an instrumental band of music in the evenings, and a circular carriage drive fifty-four feet in diameter. Opening upon this "garden floor" there is an "arcade promenade," four yards wide, with a show window looking on the promenade from each of the stores under the hotel. Letter tubes, pneumatic dispatch tubes, and electric bells knit all this miniature Palais Royal and the hotel into one body of wonderful life
Ministering to the 1,200 guests that can be accomodated are four clerks, two book keepers, a French head cook who s a brilliant particular star in his profession, five assistant cooks of rising name, and three specialists-namely, a chief confectioner from Milan, a chier baker from Vienna, and
"Muffin Tom" from New York, an old negro the fame of wose egg muffins and corn bread has made him the aristo rat of his race for the last half century from Charleston to Long Branch. The 150 waiters are to be negroes also. Forty chambermaids and a host of Chinese will see that the bed nd bed linen are white and fresh. This is the kind of hotel e keep in San Francisco
From China and India and Japan a stream of invalids and visitors pours yearly in upon this city, the great sanitarium of the future for the languid oriental world. From th slands of the peaceful sea, from our own east and north from Spanish America, a great host shall make a Babe of the Palace Hotel, whose builders have not been con founded. Its white towering walls, dotted with the gilded ron bolts that bind the great rods of the building together shall be familiar to strange eyes from far lands. The sic down easter shall abandon his nutmegs of wood and satisf his soul with the grapes and the oranges of our State; yel w aristocrats from Siam and tawny revolutionists from Bogota shall join hands and pass the sirup over the steam g triumphs of Muffin Tom
We have seven big world wonders now: the Bay of San rancisco, the Central Pacific Railroad, the Big Trees, th Bonanza, Yosemite, the Geysers, the Palace Hotel-and As sessor Rosener.-Overland Monthly.

\author{

sientific courtship.

 Young Molly met Christopher down by the farm,
 With his analysis And his catalysis And his dialysis. He came down to woo the e came down to sue there to fill all her soul with
 0 ! Science, 'tis thus that a fair maid you win,
 With parthenogene And alterogenesis
 And other such things
 For Love, he has wings
 And with him he bring
 In the ears of fair maidens to din.
 Young Christopher came with his finest brochure On trilobites And troglodytes, Theodolites
 And he said, my dear, these are yours,
 Yes, they're yours. Love may come and love may go, Science endures.
 The heart is a stubborn thing,
 And conical in shape
 From our ancestral ape.
 t drives the blood to Molly's cheeks,
 he opens her ruby lips and speaks
 Her mitral valve plays
 the wildest of way
 Gives her an idea
 By the way that it acts; And, accepting the facts, the partner of his scientific hom
 Journal of Applied Chemistry.}

Coxrespandence.

Steam Boiler Phenomena

To the Editor of the Scientific American

In your article on this subject on page 193 of your curren olume, you give a very interesting account of the result of injecting water into overheated boilers. The account is more valuable than usual, for the conditions seem to have been you observe, they seem to be contradictory, I believe they an be explained
In calore, vis-in heat is force or energy This has been for many years my maxim; and from this point, I will endeavor to explain the two phenomena.
In the first case, the boiler was absolutely dry, and heated to from 600° to $1,000^{\circ}$ Fah., the steam pressure being 0. Water was injected, and the pressure suddenly rose to 190 lbs. per square inch. The conditions are then as follows An unknown quantity of water is brought in contact with an unknown quantity of iron heated to from 600° to $1,000^{\circ}$ Fah. If, now, the arrangement of the injection pipe and pump were such that 1 lb . water injected at the first stroke would come in contact with 9 lbs . iron heated to 600° Fah. the water would absorb the heat and cool the iron. The resultant temperature would be $300^{\circ} \mathrm{Fah}$. As each square foot of the iron in such boilers weighs about 12 lbs., and as the water injected by the first stroke may, and usually would, come in contact with a much larger surface than 1 square foot to each lb . of water injected, it is evident that the water would be heated to a higher degree of temperature, and steam of a higher pressure would be formed. If the quantity of water injected is small, and the heated surface with which it comes in contact large, an enormous pressure can be suddenly cre ated in a confined space. If, on the other hand, the quantity of water is large, and the surface of the iron with which it comes in contact small, the water will be heated less; and, if heated below the boiling point, no steam is formed, as the
limit of the capacity of the water to absorb heat is not reached. If, therefore, the first boiler were set so that the injected water could spread over a large surface, a sudden and high pressure would be the result; and if set so that the
water could come in contact with a small quantity of iron, that is, lower at the end at which the water is injected, very little pressure would be produced, and the heat in the iron would be gradually absorbed by the water without any in jurious results.
In the second case, the conditions were similar, and "an ndependent pump was at hand, and was put on with a full supply of feed. The steam rose to 20 lbs. by the gage, and as suddenly fell, the steam gage indicating a complete or partial vacuum." Reasoning from numerous practical experiments, I conclude that, at the first stroke of the pump, uantity of water was driven over sufficient surface to hea he same suddenly, and thus produce the steam pressure icated by hal cted a jected quan and bilu prod las it beuld than and boiler were lower (as it should be) than the other end and the feed pipe entered the end of the boiler some distance
above the plate, a full supply of water would produce this above
result.
fif

If Leat be force, a boiler heated to $1,000^{\circ}$ Fah. contains an mmense quantity of stored-up energy; and a quantity o water less than one tenth in weight of the heated iron wil decome the agent through which this energy is exerted, by absorbing the heat and being changed from a cohesive fluid to an expanding gas, and thus exert an enormous and (if suddenly liberated) dangerous force. When. however the same quantity of heated iron is brought in contact with a much larger quantity of water, the great capacity of water for heat compared with that of the iron (12 to 100) will ab sorb the heat without producing even steam.
Experiments of the above kind should never be attempted, as it is criminal to thus risk life and property; the fires should have been hauled in both cases, and the boilers grad ually cooled.
Boston, Mas
Joseph A. Miller.

The Keely Gas.

To the Editor of the Scientific American:
In the communication headed "The Keely Gas," the au hor is laboring under some mistakes. I will endeavor to correct his statements.
He states: "It is well known that the molecules of all substances increase or decrease in size in proportion to the specific gravity of the substance, the lighter substance con taining the larger molecules." I need hardly say that, if this were true, and were known to be true, it would at once dispose of the atomic theory.
As for his experimental proof: If (as I suspect) he uses oi as being lighter than water, I am not at all surprised at hi result; for the adhesion of oil to a smooth surface is fa greater than that of water; so that, on pouring on the oil, it would immediately flow to the glass and cause overflow of the contents. Your correspondent may try the experimen of filling two equal and similar glass vessels with oil and water respectively. He will find that he will be enabled to add more water than oil before overflow. Let him, however use absolute alcohol (specific gravity 0.8), and he will find that, to two similar glassfuls of water, he will be able to add more alcohol than water before overflow.
In the case of heavy liquids, the heavier the liquid, the greater the volume which may be added without altering the apparent volume. Let him try mercury, aud the result will be he same as if he had added an equal volume of water.
In his last paragraph he says: "For it is plain that it would be impossible for the larger atoms of molecules of the cold vapor to pass between the smaller molecules of metal.' However, unfortunately for this conclusion, it is known that bydrogen penetrates iron, that the products of combustion in a stove pass through the iron casing, and that gold is per vious to water.
I do not intend this to be in any way a defence of the Keely
W. B. M.

Hoboken, N. J.

A Water Motor

At the Sulzbach Altenwald Colliery, near Saarbrucken Prussia, machinery has been established for the transmis sion of power from a steam engine at the surface, by a col umn of water circulating under pressure, the circumstance of the case not admitting of the establishment of a direct acting steam pump under ground. The mine is sunk 306 yards below the surface. The piston rod of the high pres sure engine above is connected with the pressure plungers, each of which plungers is connected with the underground engine by a tube filled with water. The last mentioned engine consists of four pressure pumps arranged in pairs, and betweeu each pair is placed the working plunger of one of the mine pumps. When the engine on the surface acts, the power is transmitted by one pressure plunger through one water tube to a pair of pressure pumps under ground, and thence to one working plunger, which either aspirates or forces air, according to its position. The opposite pair of pumps and connections work conversely. The water is forced into an air vessel, and thence through the rising main 303 yards in hight, in one lift to the surface. On the change of stroke, the water in the cylinder of the pressure pump rises in the second water tube and follows the retiring pressure plunger at the surface, the power supplied by the descent of water in one column being sufficient, with the exception of a slight allowance for friction, to effect its return in the other If the cataract pauses of the engine at the surface are not too long, the discharge is practically continuous. The Engineer ing and Mining Journal, from whose translation of the German description we condense the above, adds that, at the Phœnix mine in Cornwall, England, an arrangement of simi
lar description, consisting of a plunger attached to the main pumping engine, connected by a length of tube with a water pumping engine, connected shaft, has been at work for the pressure engin
last ten years

PRACTICAL MECHANISM.
 by Joshua rose.
 ntubri XXXIII

bORING TOOLS FOR LATHE WORK.
Boring tools for use on lathe work require to be shaped with greater exactitude than any other lathe tools, for the reason that they are slighter in body in proportion to the duty required of them than any other; and as a rule, the cutting edges standing further out from the tool post or clamp, the body of the tool is more subject to spring from the strain of the cut. It is obvious that, if the hole to be bured out is a long one, the cutting edge of the tool will become dull is a long one, the cutting edge of the end of the hole as compared to what it was at the commencement (a remark which, of course, applies to all tools); but in tools, stout in proportion to the duty required of them, and held close in to the tool post, the effect of the slight wear of the cutting edge, due to a finishing cut, is not practically appreciable. In the case of a boring tool, however, the distance of the cutting edge from the tool post renders the slightest variation in the cutting capability of the tool sufficient to affect the work, as may be experienced by boring out a hole half of its length, and then merely exerting a pressure on the body of the tool, as near the entrance of the hole as possible, with the fingers, when the size of the last half of the hole will be found to have varied according to the direction in which the pressure was placed. As a result of this extreme sensitiveness to spring, the tool is apt to spring away from the cut as the boring proceeds, thus leaving the hole smaller at the back than at the front end. To remedy this defect, several very fine finishing cuts may be taken ; but a better plan is to so shape the tool that its spring will be in a direction the least liable to affect the size of the bore of the work.
The pressure on the cutting edge of a tool acts in two directions, the one vertical, the other lateral. The downward pressure remains at all times the same; the lateral pressure varies according to the direction of the plane of the cutting edge of the tool to the line or direction in which the tool travels: the general direction of the pressure being at a right angle to the general direction of the plane of the cutting edge. For example, the lateral pressure, and hence the spring of the various tools, shown in Fig. 143, will be in each case in the direction denoted by the dotted lines. D is a section of a piece of metal requiring the three inside

Fiq. 14.3

collars to be cut out; A, B, and C are variously shaped boring tools, from which it will be seen that A would leave the cut in proportion as it suffered from spring, which would increase as the tool edge became dull, and that the cut forms a wedge, tending to force the tool towards the center of the work. B would neither spring into nor away from the cut, but would simply require more power to feed it as the edge became dulled; while C would have a tendency to run into the cut in proportion as it springs ; and as the tool edge became dull, it would force the tool point deeper and deeper into the cut until something gave way. Now, in addition to this consideration of spring, we have the relative keenness of the tools, it being obvious at a glance that (indepen dent of any top rake or lip) C is the keenest, and A the leas keen tool; and since wrought iron requires the keenest, cast iron a medium, and brass the least keen tool, it follows that we may accept, as a rule, C for wrought iron, B for cast iron, and A for brass work. To this rule there are, how ever, variations to be made to suit exceptional cases, such for instance as when a hole terminates in solid metal and has a flat bottom, in which case the tool, B (slightly modi fied towards the form of tool, C), must be employed. Or suppose a hole in cast iron to be, as is often the case, very hard at and near the surface of the metal. Tool, A, would commence cutting the hard surface and, becoming dull, would spring away from the cut in spite, of all that could be done to prevent it; while tool, B, would commence to cut both the hard and the soft metal together, the cutting edge wearing rapidly a way where it came into contact with the hard surface of the metal; and these conditions would, in both cases, continue during the whole operation of boring, rendering it difficult and tardy. But if the tool, C, were employed, the point of the tool would commence cutting the soft part of the metal first, and would undermine the hard surface, and (from the pressure) break it instead of cutting it away, as shown in Fig. 144, in which A represents a piece of metal to be bored, the bore being hard to the depth of the dotted lines, B. C is the tool shown as it would commence to cut, and also as it would operate while in full ope ration. After the hard surface is removed, tool B, in Fig. 143, may be employed to finish the boring, the point being ground a little more rounded. The objection to tool, C , in

Fig. 143, for employment upon cast iron or brass, is that, in consequence of its excessive keenness, it is liable to jar or chatter. Tool, B, in Fig. 143, may be given top rake and employed to cut out a square corner, or it may, if not ground too keen, be used upon brass; but it is liable, in such case, too keen, be used upon brass; but it is liable, in such case,
to jar or chatter, unless the top face is ground away. Here, to jar or chatter, unless the top face is ground away. Here,
then, we come to the consideration of top rake, that is, the then, we come to the consideration of top rake, that is, the
shape of the top face of the tool, our previous remarks hav-

Fig.14.

ing had no reference to that part of the subject. The application of top rake or lip to a boring tool lessens the strain due to severing the metal; by presenting a keener cutting edge, it lessens the tendency to lateral spring, and increases that to vertical spring, and is beneficial in all cases in which it can be employed. Upon wrought iron and steel it is indispensable ; upon cast it may be employed to a limited degree ; and upon brass it is inadmissible by reason of its caus ing the tool to either jar or chatter. In Fig. 145, B represents a section of the work, No. 1 represents a boring tool with top rake, for wrought iron, and No. 2 a tool without top rake, for brass work, which may be also used for cast iron when the tool stands a long way out from the tool post or clamp, under which circumstances it is liable to jar or chatter. A tool for use on wrought iron should have the same amount of top rake, no matter how far it stands out from the tool post; whereas one for use on cast iron or brass requires to be the less keen the further it stands out from the tool post. To take a very smooth cut on brass work, the top face of the tool, shown at 2 in Fig. 146, must be ground off, as denoted by the dotted line.
We have now to consider the most desirable shape for the corner of the cutting edge. A positively sharp corner, unless for a special purpose, is very undesirable, because the extreme point soon wears away, leaving the cutting qualification of the tool almost destroyed, and because it leaves the work rough, and can only be em ployed with a very fine feed. It may be accepted as a gene ral rule that; for roughing cuts, the corner should be suffi ciently rounded to give strength to the tool point; while, in finishing cuts, the point may be made as round as possi ble without causing the tool to jar or chatter. Now, since the tendency of the tool to jar or chatter depends upon four points, namely, the distance it stands out from the tool post the amount of top rake, the acuteness or keenness of th

general outline of the tool, and the shape of the cutting co
ner, it will readily be perceived that considerable judgmen
is required to determine the most desirable form for any particular conditions, and that it is only by understanding the principles governing the conditions that a tool to suit them may be at once formed. In Fig. 146 will be found the various forms of boring tools for ordinary use. No. 1 is for use when the conditions admit of a heavy cut on wrought iron. No. 2 is for use on wrought iron when the tool stands so far from the tool post as to be necessarily subject to spring. No. 3 is to cut out a square corner at the bottom of a hole in wrought iron. No. 4 is for taking out a heavy cut in cast iron. No. 5 is for taking out a finishing cut in cast iron when the tool is proportionally stout, and hence not liable to spring or chatter: the point being flat, the cutting be. ing performed by the front corner, and the back part being adjusted to merely scrape. No. 6 is for use on cast iron under conditions in which the tool is liable to jar or spring. No. 7 is for taking out heavy cuts in brass when the conditions are favorable. No. 8 is for brass work, either roughing out or finishing, when the tool stands far out from the tool post, or is slight in proportion to its duty. No. 9 is for taking out a sharp corner in brass work. No. 10 is an end view of No. 7, and No. 11 an end view of Nos. 8 and 9 . The tools for wrought iron will answer equally well for steel or for copper. An inspection of all these tools will disclose that the tool point is more rounded for favorable conditions, that is, when the body of the tool is stout, and the cutting edge is not held far out from the tool post; that, to prevent jarring, the point of the tool is made less round, which is done to reduce the cutting surface of the tool edge (since it is apparent that, with a given depth of cut, the round pointed tool will present the most cutting edge to the cut); and that, to further prevent jarring or chattering, the leading part of the cutting edge is ground at an angle; while, as another precaution against that evil, the general form of the tool is varied from that of tool, C, in Fig. 143, towards that of tool, A, in the same figure; while for brass work, no top rake or lip is employed, but the toolis beveled off to suit those cases in which it is liable to excessive spring. It is obvious that the feed may be coarser for a round-nosed than for a more acute tool,and that, the rounder the nose, the smoother the cut (with the same rate of feed) will be.
All boring tools for heavy duty may be hardened right out, that is, not tempered at all, while those slight in form at the cutting edges should be tempered to a straw color.
The side faces of the tool marked A, in both views of Fig. 147, may be beveled just sufficiently to well clear the feed of

Fig. 147.

the cut when used on wrought and cast iron, and ground fur ther back, that is, with more angle, for use on brass, especially if there is a tendency to jar or chatter. The straighter, however, these side faces can be kept, the better the cutting edges are supported by the metal behind them, and the longer they will stand without regrinding. When boring light brass work, it is well to hold a brush near the entrance of the hole, to prevent the turnings from flying about the shop; while cutting tools for outside brass work may have a split leather washer forced over the body near the cutting end for the same purpose. After a piece of brass or cast iron work has been bored and taken out of the lathe, and is found on trial to fit a little too tight, it may, if it is difficult found on trial to fit a little too tight, it may, if it is difficult
to chuck it true again, be eased by a half round scraper, as to chuck it true again, be eased by a half round scraper, as
follows: Take an old half round smooth file and grind the edges at an angle, as shown in Fig. 148, B forming the cutting edge. Then rechuck the work in the lathe as nearly

Fig 748.

true as possible, and revolve the work at such a speed that the scraper will cut at about 380 feet per minute; then apply the scraper by hand in the position shown in Fig. 149, A A
 representing the work revolving in the direction denoted by the arrow, and B the scra. per shown in section. If the flat face and the beveled edge of the scraper is ground true and even, and care is taken in using it to take out the metal only where required, this tool will perform excellent duty and cut very smoothly. It may be also used to advantage to ease out by hand the narrow places of a hole that is oval, or the small end of one that is taper and requires to be made parallel. The smoothness of its work is much improved by smoothing its edge upon an oilstone. Here it may be well to state that the application of an oilstone to the cutting edges of a boring tool increases its tendency to chatter; if, therefore, a hole requires to be made unusually smooth, the tool must be given less top rake and may then be oilstoned. In many cases a tool may be prevented from chattering by holding it with the fingers as near the entrance of the hole as possible.

IMPROVED TIRE-UPSETTING MACHINE.
We illustrate herewith a new machine for upsetting or shortening wagon tires or iron bars. It may be operated by one man, and is so constructed as to be capable of doing the heqviest work without denger of breakace or strain in part. It is quite simple and may be secured on any conv nient support.
The stand, which may be of wood or iron, has on each side iron straps, which support the stationary head, A, and guide the hinged head, B. The stationary head is also attached to the end of the stand, and both heads are placed across the bars. C, Fig. 2, is a flange on each head, against which the adjusting blocks, D , are placed. E and F, Fig. 1, are griping jaws, pi voted one on each head, and provided with leve handles. Said jaws are connected by a jointed bar, G, so that by operating jaw, E, the powe is applied to the jaw, F. The last mentioned jaw strikes the tire, H, first, griping the same; and the power being continued, the jaw, E, seizes and the also. The tire being in a heated state, is firmly held between the jaws by the operator, firmly held between the jaws by the operator,
so that it can have no longitudinal motion. With so that it can have no longitudinal motion. With
his left hand, the operator then grasps the cam lever, I, and forces the movable jaw and head to ward the other jaw. This causes the jointed bar G, to turn outward on its hinge, and completes the operation of upsetting the tire. J is the anvil, which is fastened between the jaws, and on which the tire rests. As soon as the cam le ver is applied, the lever of the griping jaw, E , may be released, so that the right hand of the operator is at liberty to use a hammer in order to press down the tire in case it bends upwards from the anvil, as might occur when the tire is a light one, or to apply both hands on the cam lever, so obtaining a better purchase for upsep ting a heavy tire. The back movement of the movable jaw and head is produced by the spring, K.

Patented through the Scientific American Pa tent Agency, March 10, 1874, by M. Schou. For further particulars address Messrs. Combs \& Bawden, sole manufacturers, Freehold, N. J.

HENNAMAN AND SHAW'S BOILING POT

The accompanying illustration represents a new cooking utensil for boiling, so constructed that two kinds of vegetables, etc., may be cooked in it at once, without mixing. Housekeepers who find it necessary to economize space on their rauges or cooking stoves, or to whom it is an object to facilitate their culinaryoperations, will doubtless appreciate the advantages offered. An ordinary iron pot forms the outer vessel. Inside is set a perforated holder, A, in which the articles to be cooked are placed. On each side of the holde

is a vertical flanged groove, and in said grooves is held a detachable perforated diaphragm, B. On top of the latter is hinged a semicircular cover, C. Two kinds of vegetables may easily be prepared, one on each side of the diaphragm, and by turning the cover, C, successively over each side, and holding it with the hand, the separate chambers may be emptied without mingling their contents. The two compartments are easily thrown into one by removing the diaphragm.
In cases where a large amount of cooking is done, it is proposed to make the vessel, A, rectangular, and to divide it into several compartments, by a number of diaphragms
Patented July 27,1875 , to Messrs. William H. Hennaman and William F. Shaw, Jr. For further information address the last mentioned inventor, 19 South Chester street, Baltimore, Md.

Scientific Apparatus Exhibition
The British government intends to have an exhibition of scientific apparatus, to be held at South Kensington, London, in 1876, the present arrangements being that it is to be opened on April 1. The Committee of Council on Education, Science, and Art Department have just issued a kind of syllabus, indicating the articles that will be admissible. The exhibits are to include such instruments and apparatus as
are employed for scientific research, experiment, and pupil teaching. It is also intended to include matters that will illustrate the progress of Science and its technical applica tions, with others of a more special kind, but of general interest and value. In cases where original apparatus, etc., can-
fair probability of their being undertaken) the attention of engineers will ere long be directed to the determination of the simplest and strongest methods of erecting such structures. Iron, in most cases, will be the material employed for the supports of the raised track, so that we may expect that all the various modes of building hollow columns of that metal, now in existence, will be subject to careful scrutiny, and perhaps to actual tests for strength, etc. The invention which we illustrate, in the annexed engravings, belongs to the above catego ry, and therefore possesses a timely interest. It is a new segmental metallic column which is both simple and strong, and offers exceptional facilities for splicing. A perspective view is given in Fig 1, and transverse sections in Figs. 2 and 3. The ides of the column consist of four or more pias dues These flanges as shown in Fi , ar ase are hicker at their outer portions than at their base Their inner sides are straight and outer sides be veled. When two of the segments are brought to gether to form a column, wedge-shaped blocks, B are placed between the beveled sides of the flanges, so as to hold the segments a suitable distance apart. Headed screw bolts, C, are then passed outward through the blocks, between the flanges, and through clamps, D, Fig. 2, which fit over and entirely cover the flanges on the outside. By screwing up the nuts, the wedges, B, are drawn in between the segments so as to force them apart and thus cause the clamps, D, to grasp the sides of the flanges holding them very firmly together in tar n order onal made as short as possible, while the clamps may either be constructed the full length of the co umn, or in short sections like the wedges. By properly clamping over the main body of the co lumn, one of the segments may be removed, when the structure is in position in a bridge or building, so that the interior of the column may be painted as often as is necessary.
Splices may very easily be made by allowing he clamps to extend from ten to twelve inches beyond one set of segments in order to grasp the flanges of another set. The clamps are rolled

SCHOU'S TIRE-UPSETTING MACHINE.

mitted. In certain cases apparatus may be arranged in such successive order that the steps of scientific investigation may be readily followed. A valuable provision will be that of, as far as found practicable, systematically explaining and illustrating the use of the apparatus, etc. The committee appeal to those institutions or individuals who possess instruments, etc., of historic interest to lend them. The entire exhibition will consist of eighteen sections, embracing arithmetic, geometry' measurement, kinematics, statics, dynamics, molecular physics, sound, light, heat, magnetism, electricity, astronomy, applied mechanics, chemistry, meteorology, geography, geology and mining, mineralogy, crystalography, etc., and biology. Instruments representing each of these subjects will be shown. The committee selected to carry out the object of the exhibition embraces some of the most eminent men in each department above named, the en gineering branch being specially well represented.

IMPROVED METALLIC COLUMN.
What with the extension of one elevated railway already

in existence, and the construction of new ones in New York city (these projects being most favored just now as the solu tions of the rapid transit problem, and hence there being a
and the wedges are castings. In putting a column together the wedges are all attached to the clamps with nuts slack, then slipped lengthwise over the flanges, when the nuts are finally tightened
Patented August 31, 1875. For further particulars address the inventor, Mr. Charles H. Leidy, Norristown, Pa.

THE GRANGE FARM MILL.
To save one tenth of all the grain used on a farm or in a

stable is no small economy; but the inventor of the device illustrated herewith believes that such saving may be effected through the use of a simple and well made mill (properly actuated by horse, wind, water, or some other cheap power that is everywhere available) for grinding the corn, oats, barley, and other cereals fed to the cattle and horses. Such a mill, suitable for all such purposes, he claims to have produced. Its form and construction will readily be comprehended from the illustration, rendering detailed description unnecessary. It is strong and compact, and is provided with a conveniently located driving pulley, to which the power is applied. The grinding plates are self-sharpenthe power is applied. The grinding plates are self-sharpen-
ing and will last a long time, costing but little to replace ing and will last

when worn out

The inventor adds that any one having any kind of power at his command will find the mill a good source of income, if the machine be used for grinding wheat for oth ers. Any one owning a horse which is idle a portion of the time might thus utilize the animal for light and profitable labor.
Patented through the Scientific American Patent Agency For further information and for mills, address Mr. H. H. Swift, Millbrook, N. Y.

THE GREAT SPOTTED IRIS.
The family of iridacea are renowned for their graceful beauty, from the wild iris, commonly called blue flag (fleur de luce, fleur de Louis, the armorial device of the kings of France since Louis VII.'s time) to the great spotted iris, of which we herewith give an engraving. The iris versicolor is a widely distributed plant, its flowers (on stems sometimes 3 feet high) being visible in damp places in early summer
the root of this plant is diuretic and cathartic, and is pre the root of this plant is diuretic and cathartic, and is pre pared for medical purposes by some pharmacists. There is in Illinollowish or reddish. The well known orris root of the drug stores is the product of i. Florentina, i. pallida, and i. Germanica, which grow wild in Eu rope.
Iris susiana, the mourning iris, as it is sometimes called, has flowers very large in size, dotted, and striped with purple on a gray ground. In northern climates it needs to be protected in winter. Being one of the very finest of the genus, it will well repay the amateur for his care and attention; and it is readily hybridized, many varieties having been produced which are only locally known and have never been classified by botanists. Another kind well worth attention is the iris Persica, the blossom of which is of a pearly white hue, exhaling a very delicate perfume. This latter is well adapted for indoor growth.

Our engraving shows an unusually fine specimen of i. susiana, grown in the gardens of the Arch. bishop of Canterbury, England; but the blossom is three times as large as we have represented it. The best way to grow these beautiful flowers is in a large isolated bed, oval or circular in outline. The soil should be rich and open in texture, and well drained, for the sake of a few of the more delicate species; most of the kinds grow freely enough in stiff, coldish soil. The plants vary in size from i. pallida and i. ochroleuca, 3 or 4 feet high, down to some not 6 inches high, as i. cristata. They vary strikingly in color and markings too, so that an attraction of no mean order is a well planted and well arranged mass of irises alone. A few of the finer lilies, however, may be placed among them with good effect ; and round the margins, in early spring, bulbous flowers may be dotted.

Rokitansky's Farewell Address.

On the 16th of July the distinguished anatomist and pathologist Rokitansky delivered, in the University of Vienna, his valedictory address before retiring from the professorship. It is a vigorous and thoughtful production, rich with the wisdom of wide experience. He entitles it his "Legacy to his Scholars." Various questions of the day are touched upon. One of his warnings is against admission of woman to equality with man; another, against an excess of competition in life; and a more urgent one, against modern individualism, which shows itself in the ruthless pursuit of personal objects, and in the readiness with which the ethics of the day excuse all
manner of wrong-doing, out of a misplaced sympathy, or a belief that nothing is in itself bad.-Medical and Surgical Reporter.

CUPRESSUS NUTKAENSIS.

The northwestern shores of this continent, especially in

CONES AND LEAVES OF CUPRESSUS NUTKAENSIS. the vicinity of Nootka Sound, Observatory Inlet, and the Island of Sitka, are the exclusive habitat of this remarkable species of cypress. When the late Dr. Fischer first saw it, he noted it down as a thujopsis, so much does it resemble that genus in habit and foliage. Later authors, however, prominent among whom is Mr. Gordon, have determined that the tree is most properly classed among the cupressinece,
in the sub-order chamoccyparis, which is distinguished from cupressus proper by having only two seeds under each scale of the cone, whereas the true cupressus has several. In St. Petersburgh the young plants have been raised in the open air, a sufficient indication of their hardiness. Under favorable conditions, the tree attains in its native habitats a hight of 80 to 100 feet, with a bole of over 4 feet in diameter, perfectly straight, and covered with a smooth, soft, dark colored bark. The branches spread very much, and are sub-divided into a vast number of smaller pendent ramifications, which in old trees are thickly covered with a highly aromatic resin ous exudation. The leaves, in shape, arrangement, and
undergrowth to those who have never been in tropical rerions. This plant is not difficult to grow to perfection if it is treated liberally, and care taken to prevent the plants geting a check at any time, which is almost certain to arres the development of the leaves before they have attained their full size; and no satisfactory growth is made after that The roots should be shaken out carefully about the beginning of March, and the largest selected and potted, two, three, four, or more in a pot, according to the size of the bulbs and the variety. Large single roots of c. esculentum will sometimes require a 12 or 14 inch pot at the first; while the little argyrites, when grown for neat specimens, will only want a 3 or 4 inch pot for a number of its little bulbs at the first shift The pots should first sot too deopl and a consill crocked, but not too do thirds light turfy loam, one of well roted leaf mold and cow dung, and a consider or common clean river sand, according as the loam is light or heavy, will suit them well. The bottom layer of soil may be made moderately firm with the fingers; but, on the whole, they should be rather loosely potted, seeing that long fleshy roots, that give massive leaves and not flowers, are what should be encouraged. After potting, they should be plunged in a bottom heat of about 75°, to begin with, in a stove or warm pit, and very slightly watered at first -or, indeed, not at all for a time. if the bulbs have been dried off during the winter, in which case they are exceedingly apt to rot off as soon as committed to the moist soil again. The roots will grow faster than the leaves at first; but when the first leaves do appear, the plants may be copiously watered, for, though the caladium is not an aquatic, it delights in abundance of moisture. As regards top heat, a ge neral and moist stove temperature will suit them well, according to the season of the year, and they must be kept in a good light, not far from the glass, and subjected to a free circulation of warm air, and shaded carefully on sunny days with thin canvas.
In potting, see that the roots are not disturbed in the least; only remove the crocks. Pot carefully, leaving plenty of room for watering, and restore the plants to their former quarters, until they have got established, when they may be moved into the plant stove or house where they are to be displayed during the summer. Here they must not be neg lected, or be allowed to become dry or shaded; they must have room, light, and air, and frequent waterings with weak liquid manure. With this treatment they will grow apace. Any flowers they throw up must be pinched out at an early stage, faded leaves cut off, and everything done to keep up and prolong a vigorous growth until the plants show a natural disposition to go to rest in autumn.

THE, FLAMINGO PLANT.

At a recent exhibition of the Royal Botanic So ciety, a vigorous specimen of the flamingo plant, anthurium scherzerianum, bearing four remarkable large spathes, was exhibited. Our illustration sketched at the time when it was exhibited, will give our readers some idea of the appearance of this large-spathed variety, which, for healthy luxuriance, we have never seen exceeded. The broad flat spathes were fully 5 inches in lacth and 41 inches in breadth, and attracted much atten tion. In color these spathes were not so brilliant as those

THE FLAMINGO PLANT
of some of the other varieties exhibited on that occasion; but perhaps spathes produced under more favorable circumstances, as regards weather, may be brighter. Like all other cultivated plants raised from seed, this anthurium is very variable in color: and this variety is now augmented by the variable in color: and this variety is now
introduction of a whitish-spathed kind.

ATMOSPHERIC MACHINERY

The various inventions below described, selected from Knight's "New Mechanical Dictionary," published by Messrs. J. B. Ford \& Co., of this city, have been grouped together as devices in which the atmosphere is, by some means, brought into employment In one case it is used as means bor it is as with steam, adding to its expansive force, and so through quite a variety of interesting instances.

Calles' aero-dynamic wheel
This is a curious invention, by which compressed air is Fig. 1.

Calles' Aëro-hydro-dynamic Wheel.
made to transmit the power. It consists mainly of a wheel, Fig. 1, fitted with buckets, similar to those in any ordinary water wheel and completely immersed in a tank filled with water. The wheel carries a toothed inner rim which works a pinion on the transmission shaft. The air is introduced under the bottom of the wheel, through a curved pipe. The air thus blown into the buckets has naturally a tendency to Fig. 2.

Cabell's Atmospheric Alarm-Whistle
gain the surface of the water with a force equivalent to the weight of displaced water, and this upward tendency causes the rotation of the wheel, and at the same time brings back the discharged buckets successively before the pipe orifice n a practical test of thisinvention, it was found that 83 per cent of the power of the $9 \frac{1}{2}$ horse power blowing engine was thus transmitted to the wheel, and this through a pipe 510 feet long having 14 elbows.

CABELL's atmospheric alarm whistle, epresented in Fig. 2, is used as a nautical alarm to warn ships from shoals or dangerous costs It wound by the alternasts. It air partially filled with water, and oscillates by the Fig. 3.

Hague's Atmospheric Hammer.
motion of the vessel, assisted by other power, if nevessa ry. The motion may be made to work an air pump to
 ncrease the energy of the blast, or its effectiveness may be aug mented by gas, genera ted by chemical mean chamber D has ai hamber, D, has ai paces, $b b^{\prime}$,communica ting by valve, $c c^{\prime}$, on each side of the dividing plate, a, with the blast whistle, J. $d d^{\prime}$ are vacuum whistles, which act alternately as the chamber sways in one direction and the other, supplying air to that side of the chamber which is abandoned by the water. The funnel, G, is the means of supplying the chamber, D , with water.

HAGUE'S ATMOSPHERIC HAMMER,
shown in Fig. 3, is so constructed that the helve of the ham mer is raised by the pressure of the atmosphere beneath piston above the helve, the air being exhausted from above the piston by means of a pump. The hammer falls by its

Fig. 5.

own weight when air is admitted above the piston. This last is done automatically on the piston reaching the end of its up stroke. An

AIR CUSHION FOR PIPES

is represented in Fig. 4. The object is to avoid the jar Fig. 6.

which occurs when a column of water in motion is suddenly arrested. As a means of imprisoning the air which is gradually absorbed in the water, and thus allowing the latter to contract and expand when the jar comes, a ball of india

Warsop's Aesro-Steam Engine. Eoiler
rubber is inserted in the pipe. The sack or ball is placed in enlargement of the pipe and so gaged as not to stop the ow. A continuous tube, of the same material and containing air, is also arranged in the water pipe.
aERO-STEAM BOILERS.
Bennett's aero-steam boiler, which is represented in Fig 5 , is so constructed that an incoming charge of air is con ucted to the furnace and made the means of maintaining combustion under pressure. The furnace is airtight, and the volatile results pass through the steam boiler, are washed

and pass fully saturated to the cylinder. The expansive pow er of combined heated air and steam is, therefore, used to drive the piston. a is the outer shell of the boiler. b is a cylinder fornning the fire box and ash pit, placed therein and entirely surrounded by water. The tube, c, is connected to a blower, and has two branches, one, d, admitting air to the fire box, the other, e, to the ash pit. $f f$ are dampers in each branch. The smoke and heated air escape by the passage, g, which is covered with a valve, h, so that the gases, etc. are compelled to pass through water, thus becoming washed k is the pipe leading to the engine. l is the feed water pipe m is the fuel pipe, having a hopper, n, and closed by valves, o and p. When the ence is ato two air into the furnace both and below the fuel force stroke, which, having no vent to escape but at the valve, h, accumulates in the furnace until its pressure somewhat ex ceeds that of the steam upon the valve, h, when the latter is lifted and, the hot air, as before described, mixes with the steam.
Tanger's steam generator is represented in Fig. 6. The air is injected into the pipes D and I, by means of a force pump, and, after being heated while passing through the convolutions of the

Fig. 9.

pipes, F and J , is forced into the boiler by nipples, as shown
at K .
Warsop's aero-steam boiler, shown in Fig. 7, is started by steam in the ordinary manner. A single-acting air pump, worked from the crank shaft, com presses air to a little more than the boiler pressure. The air then passes through a long circuit of straight and coiled pipe, which traverses the exhaust conduit, makes several spiral coils in the chimney, then descends at one side of the fire box, is exposed to the full fire, and finally passes by a valved opening into the boiler at the bottom of the water space. The air escapes into the water through perforations in the pipe.

Fig. 8 represents

OSTLER'S ANEMOMETER,
an instrument intended to measure the force of the wind, and hence one of the most necessary aids to the meteorologist. The device is considered to be one of the most perfect yet invented, as it not only denotes changes in the force and velocity of the wind, but keeps a record of the same. The essential part is a plate, having its face constantly presented to the wind, by a set of vanes, at right angles to it. The force of the wind on the plate causes it to move an arm carrying a pencil, which makes a mark on a sheet of paper especially ruled for the purpose, having separate compartments for registering the force and duration of the wind, and a third to show the amount of rain. The paper is slowly moved by clockwork. The pencil approaches or recedes from the edge of the paper, as the wind varies in force while a similar pencil attachment, to an arm connected by a spiral worm and nut to the guide vanes above mentioned, re gisters the direction of the wind in the center compartment The rain gage is attached to a bent lever, also carrying a pencil, which is drawn toward the center of the paper as the gage becomes filled with water, thus indicating the amoun of rain. When the gage is completely full, it tilts, empties itself, and the record commences afresh

THE AETHRIOSCOPE

is another meteorological instrument, and is designed for measuring the degrees of cold arising from exposure under different conditions of the sky. As represented in Fig. 9, a highly polished metallic cup or concave mirror is placed upon a pedestal, and a differential thermometer is arranged within it, so that one of the bulbs of the thermometer shal be exactly in one focus of the mirror. The other bulb, being not in either focas, is not affected by the pulsations, the effects of which on the cup are concentrated upon the first
bulb, the air in which being suddenly contracted upon its bulb, the air in which boing suddenly contracted upon its
exposure to a clear sky, the liquid in that branch of the stem exposure to a clear sky, the liquid in that branch of the stem
is caused to rise. The cup is kept covered with a metal plate, except at the moments of observation.

Alarming spread of Trichinosis.

The Transactions of the Indiana State Medical Society 1875, contain a report on trichinosis, by Dr. George Sutton, of Aurora, Ind., which contains the following alarming ob servations:
From microscopic examination of pork killed in South eastern Indiana, we have found from three to sixteen pe cent of the hogs affected with trichina, the number of hogs diseased varying greatly in different localities.

That over five millions of hogs are slaughtered and packed in the Western States, not including those which are put up for family use by the farmers: that if four per cent of this pork is diseased, which we believe to be a low estimate, we have two hundred and twenty one thousand four
hundred and eighty-four diseased hogs put annually upon the market; or, at an average of two hundred pounds to the hog, forty-four millions two hundred and ninety-six thousand eight hundred pounds of diseased meat, every ounce of which, under favorable circumstances, is capable of producing disease.
"That from the cases of trichinosis that came under our observation, and the post mortem examinations, and the effects upon the dog that was fed on the diseased meat, we have come to the conclusion that ninety per cent of disease proentiritis, or as a diarrhœa or dysentery, and not more than ten per cent as the fully developed form of trichinosis, in which the muscular system becomes affected.

That as diarrhoea, dysentery, and enteritis rank high as causes of mortality in the United States, these diseases causing thirty-onethousand one hundred and fifty-three deaths in 1870, as shown by the last census reports: and as we have seen that a large amount of trichinous pork, capable of producing these diseases, is among the principal articles of food in our country: we think it more than probable that trichinæ diseases than has been recognized by the profession.
" That it is highly probable that, when the fact becomes more generally known that so large a percentage of pork is 3 warming with trichinæ, capable of producing disease, it may have an effect upon the use of this meat, and consequentl affect the sale, to some estent, of one of the principal article of commerce in the West.'

Pr. Messrs. Volney W. Mason \& Co., Providence, R. I., have been regular advertisers in the Scientific American for a number of years. In a business letter from them a few days ago, they make the following unsolicited statement: "Our advertising in the Scientific American has been most profitable of any, owing to its circulation among the best class of American manufacturers and mechanics, as well as manufacturers in other countries. In a recent trip to Europe, the writer found it was taken regularly and referred to, for improvements abroad

Dr. Wm. Hunt,in the Philadelphia Medical Times, says:
'A man recently walked into my office with a freedom that uggested nothing about eyes, and said: "Are you Dr. Hunt? have never had a good look at you, and wish to see you. am here on business, and am going away to-night. I owe ou much, and will never forget you; bnt may be you can o something more for me. Do you remember $\mathrm{S}-$-. of Il inois, upon whose eyes you operated at Wills Hospital in 1858?" I said, "Certainly I do." "Well," said he, " I am the man." Now, I am not going to relate here an ordinary case of successful cataract operation ; but the history is this S. was the son of a farmer; was fourteen years old when he was brought to Wills. He was practically blind from birth There is some discrepancy in statement as to the early con dition of his eyes; but, at all events, he had no recollection of ever having seen. He was healthy in other respects ; had never been to a school for the blind, but was bright, as people usually are who have to feel their way through the world. Dense white capsular cataracts occupied the pupils of both yes. There was great nystagmus or oscillation of the eye balls. The boy was etherized, and I performed extraction making the corneal incisions with a lance-shaped knife, and removing the cataracts with the fine hooks and forceps of the eye case.
The bodies of the lenses, if there had ever been any,were absorbed, as the opaque
The boy did well, the wounds healing nicely: but when we exposed him to light we found that we had a veritable Casper Hauser to observe! He was a grand confirmation o touch being the master sense, and the only one by which w originally establish our relations with the external world. He could have given a direct answer to the question of Molyneux to Locke: " Whether a blind man who has learned the difference between a cube and a sphere by the touch can on being suddenly restored to sight, distinguish between hem by the aid of the newly acquired sense only?" Lock answered, theoretically: No! S. answered, practically and decidedly : No! He obtained no knowledge at first, by the eyes, of shapes, distances, sizes, extension, or consistence of
objects; of color, of course, he had no idea. Everything, objects; of color, of course, he had no idea. Everything, distant or near, appeared to be striking against him, or to be within him. Restrain his arms and hands, and he stumbled about worse, if anything, than before he was operated upon. acouragement would cause him to move with care, but he painful than plasaid. In fact, his sensations wemise of he operation. He had to learn as a babe learns, who, it early life, grasps with equal confidence for the moon or it mother's breast Its early days are occupied with a constan automatic struggle in correcting, by the touch, the deceit o he eye. By-and-byexperience settles the question, and it soon gives up its vain endeavors.
The nystagmus in \mathbf{S}. continued, and doubtless added to his confusion of vision. In this condition his father took
him home. I heard of him now and then as making some him home. I heard of him now and then as making some good progress, and then lost all knowledge of him. And now, on the 3 d day of December, 1874, he walks into my of fice. His sight is good for all ordinary purposes; the nystag mus is gone, he distinguishes shapes, sizes, distances, and color without difficulty. He told me he was a long time in earning how to see, and
Dear me! when will people be satisfied? I said in the be ginning of this note that he wanted me, if possible, to do omething more for him. Well, he said he was in winter a herder on the prairie, and he now could not see a horse more
than half a mile off, and he would like some far-reaching glasses so as to be able to take in six hundred head of cattl at once!"

Usefal Recipes for the Shop, the Household, and the Farm.
In washing calicoes in which the colors are not fast, be careful not to boil them; but wash in the usual way with soap, and rinse in hard water. For dark colored goods, ad little salt to the water; for light, a little vinegar.
In tempering long taps, to keep them straight, take a bucke of clean water and stir it around with a stick or hamme handle until a center is formed; then plunge the tap,already heated, endwise in the center, allowing it to cool before tak ingit out of the water.
The following is a simple but sure way to tell good from bad eggs: Put them in water enough to cover them. Al hat lay flat, as they would on a smooth surface out of water, are good. Those of which the big end rises are bad. The vessel used should have a smooth, level bottom In cases of a sudden jar, knock, or jam of the hand or fingers, immediately after the blow press the injured part with the uninjured hand, say between the thumb and fore inger, and gradually let up on it. It will nearly always re move the pain, and generally any swelling, that might occu under the circumstances.
In making whiffletrees, they will be stronger if the fron side of the whiffletree is nearest the heart timber and the back side toward the bark; they will retain their shape rain of the wood

DECISIONS OF THE COURTS

United States Circuit Court.---Southern District of New York.

wes
aus
art
ate

pate
pate
dete

dex
of
nef
mpr
mpt

United States Circuit Court---Western District of Pent court--w w
Pennsylvania.

NEW BOOKS AND PUBLICATIONS

xploration of the Colorado River of the West and its Tributaries, Explored in 1869. 1870, 1871, 1852, under the Direction of the Smithsonian Institution. Washington, D. C.: Gov-
ernment Printing Office. our national geography which has yet been made. The exploring party,
under the direction of Professor J w. Powell, have done their laborious under the direction of Professor J. W. Powell, have done their laborious
but interesting work with thoroughness; and the narrative, kept in the form of a diary, is written with care and minuteness, and in a facile and agreeable style. The illustrations are striking, the grandeur of the subjects being the Grand Cañon'" belng a most successful plece of drawing. We should be giad to hear that this book, which has been printed by direction of Congress an be obtained by the pubic at a moderate price.
manual of Metallurgy. By William Henry Greenwood,F.c.s. Associate of the Royal School of Mines, etc. Volume II. Illu G. P. Putnam's Sons, Fourth avenue and 23 d street

This volume completes a very excellent treatise, on a subject which has not hitherto been dealt with in a popular manner, the first part of which has readybeen noticed in these colums. We cor lenters, and stadenta.
Uckwood's Directory of the Paper Manufacturers in the United States and Canada, and of Dealers in Paper and Paper
Materials, Wholesale Stationers, and Publishers in the Principal Cities, for 1875-1876. Price $\$ 5.00$. New York city: Howard Lockwood, Stationers' Exchange, 74 Duane street.
This is a trustworthy and well compiled manual of the personality of the he expenditure of much labor. Mr. Lock wood is also the publisher of the ' Paper Trade Journal,'’ issued fortnightly, at $\$ 2.50$ per annum, and of the
" American Stationer," another semi-monthly publication, price $\$ 2.00$, and othertrade publications. These and other issues from the same establishment are largely patronized by the trade to whom they are addressed, and have a high reputation for their useful and correct information.
he Semi-Tropical, a Monthly Journal, devoted to Southern AgriVolume, Horticulture, and Immigration. Terms $\$ 3.00$ a year Volume I, No. 1. Jacksonville, Fla.: Charles W. Blew. A creditable commencement of a serial of much local interest, which we

Inventions Patented in England by Americ
[Compiled from the Commissioners of Patents, Journal.]
From July 3 to September 26, 1875, inclusive. From July 3 to September
Anchor.-J. S. Williams, Riverton, N. J. Brake, etc.-J. Y. Smith (Pittsburgh, Pa.), London, England.
CARPET Loom, CARPET Loom, etc.-E. B. Blyelow, Boston, Mass.
Cinder Sifter.-J. Sutton, Islip, N. Y. Circuit Closer.-D. Rousseau, New York city Cleaning Fabrics, etc.-G. F. Blake, Boston, Mass.
Cuting Paper, etc.-A. Campbell, Brooklyn, N. Y. CUtTing Paper, etc.-A. Campben, Brooklyn, N. Y.
CUTting PAper, etc--S. D. Tucker, New York city.
Cotiting Screw Tafs, etc.-H. E. Boyd, Pittsburgh, P Electric Signal.-D. Rousseau, New York city
Explosives, etc.-C. F. W. E. Ditmar, Mass. Fare Register.-W. H. Hornum et al., New York city.
Fire-Lighter.-J. D. Husbands, Jr., St. Louis, Mo. FIre-Lighter.-J. D. Husbands, Jr., St. Louls, Mo.
Folding Paper, etc.-C. Cambers,
HARVEI., Philadelpha, Par Pitman.-G. W. Harrison, Lansing, Mich. Harvester Pitman.-G. W. Harrison, L
Hoe.-M. Johnson et al., Lockport, N. Y. Liquid Meter.-H. S. Maxim, Brooklyn, N. Liquid Meter.-H. S. Maxim, Brooklyn, N. Y.
Making Friting, etc.-L. W. Whipple. New York city. Measuring Rolls of Cloth.-S. C. Talcott, Ashtabula. Ohio.
Operating Proprllers, Etc.-G. R. Moore, Westford, Mass.
Piled Fabric Loom.-E. B. Bigelow, Boston, Mass. Pnevmatic Brake.-H. F. Knapp, New Yorkcity.
Preserving Froit, etc.-K. H. Loomis (of New York city), London,Eng RAILWAY Ticket, ETC.-J. H. Ross, Buffalo, N. Y. (Two patents.) Rolling Mill.-I. Hahn, Pittsburgh, Pa. Rolling Mill.-- Mahn, - Winding Machine.- A.

Execent Gmerican and foreign Zatents.

Improved Press.

Charles S. Swan, Tamaroa, Ill.-In this invention, the follower is arranged in a horizontal case, and worked by the toggle-jointed bars and drums, as in other presses now made. A vertical beater case
and beater compress the hay, etc., to a considerable extent before it is acted upon by the press, so as to increase the efficiency of the press ; and to raise it, an extension of the shaft by which the drums are worked is arranged above the sweep, with a drum on it carrying a block at the periphery, to which a rope is attached. This block oy lugs or projections, fitted in grooves in it, so arranged as to hold it on, while allowing it to slide freely. This block is held, when the
beater is to be raised, by a pawl and catch. The pawl is pivoted to the drum, so as to swing around and allow the block to escape when it is released by the catch, and it is returned to and engaged with the catch by the spring. The catch is raised to release the pawl by
pressing under a stationary cam in the crosstree above. The shaft se mounted in a step or socket in the top of the sweep, so that it can rest while the drums are kept in motion for working the follower. A yoke holds it out of gear. The lower portion of the beater case is
provided with a removable front, and arranged on pivots so as to provided with a removable front, and arranged on pivots so as to swing forward when
the horizontal case.

mproved Tunneling Machine.

Olney B. Dowd, New York city.-This machine is designed mainly for tunneling under the beds of rivers, where the material is soft indrical case, with a head at the front end, out of which projects at the center a revolving shaft carrying a cutting and scraping arm, which breaks and cuts down the earth, and forces it into the case through an opening at the bottom of the head. The shaft carrying the arm is hollow, and the arm is also hollow and suitably perforout through the shaft. There is a pipe discharging through the head at the top for watering the earth in that way, to render it sufficiently fluid to be forced out through pipes. In the bottom of the case is an oblique opening, through which a large tube may be projected to sink a hole below the line of the tunnel by working
through the tube to sink a boulder or other solid object out of the case. The case is to be forced along as fast as the earth is removed in advance of it, and it is to be followed up by the wall of the tungresses, keeping the rear open end packed with the wall of the tunnel, and so as to exclude water and mud or silt from settling into
the case. There is a pipe for discharging the silt, etc., by hydraulic

Improved Tuning Pin for Pianofortes.

Julius M. Branig, New York city.-The object of this invention is
to enable the tuning pins of a pianoforte or other instrument to be to enable the tuning pins of a pianoforte or other instrument to be firmly secured in place in such a way that theymay be detached and
again inserted without loosening them or injuring their screw threads. The invention consists in an open bushing, made of brass or other metal softer than the tuning pins, and a wedge, in combination with the plate and the tuning pins. The holes in the iron plate or frame of the pianoforte are made larger than the pins, and ing is made open at one side, and of such a size that its edges will not quite meet around the pin. A wedge is driven into a notch in the plateat the outer side of the bushing. The wedge forces the
middle part of the bushing inward against the pin, so that the bushing may always bear against the pin in at least three points, so as to support it firmly. The soft metal bushing enables the pin to be putin and taken out
firmly in the plate.

Improved Cotton Planter.
James B. Onan, Pecan Point, Ark.-The dropping cylinder is
formed of two short cylindrical vessels, made open at one end and formed of two short cylindrical vessels, made open at one end and
closed at the other. They are placed upon the shaft with their open ends toward each other, and are connected together so as to be at such a distanceapart as to leave sufficient space for the seed to pass out in the desired quantity. To the opener is attached a short
chain, which passes back through the furrow directly beneath the discharge opening of the cylinder, so as to spread the seed along the drill as it is discharged from said cylinder.

> Improved Car Coupling.

Archibald Smith, Omaha, Neb.-The invention consists of a drawhead divided by a central vertical partition into separate cavities, to one of which a wedge-shaped link bar is secured by pivot pin and
spring, while to the adjoining cavity with tapering mouth a wedgeshaped and spring-cushioned friction plate is applied. The latter is retained by a lever pin that binds into step-shaped recesses at the
back of the friction plate, to hold the same in coupled and uncoupled position. The lever pin is adjusted by a slotted top guide and set screw into fixed position to secure the lever pin and link bar rigidly in position. The entering coupling bar carries the lever pin
into vertical position and strikes against the rear part of the friction into vertical position and strikes against the rear part of the friction
plate, so as to cause the swinging in and sliding back of the same into the cavity, producing the dropping of the lever pin into the that of the friction plate.
lmproved Sulky Plow.
Eli W. Russell, Ashley, Mo.-By suitable construction, by pressing
the upper end of the lever downward the plow will be swung to the rearward to withde le by the same movement, it will be raised from the ground. The
upper end of thelever, when lowered, is caught and held by a spring upper end of thelever, when lowered, is caught and held by a spring catch, so as to support the plow above the ground for any required
length of time, for convenience in passing to and from the field and length of time, for c
from place to place.

Improved Heel Plate.
George Dunlop, Williamsburgh, N. Y.-This is an improved plate for attachment to the heels of gaiters and other boots and shoes, which shall be so constructed that
it wears, to keep the heel straight.

Improved Oil Stoves.

Frederick Gates, Frankfort, N. Y.-The case that incloses the lamp and its chmney is made rectangular in form, and is closed by a dorr made or perforated sheet metal, to allow air to pass through
it. To the inner surface of the case is secured a hollow deflector, to deflect the air and cause it to pass down into the lamp, and then up into the cones of the lamp burners. A portion of the air passes through the cavity of the deflector and is projected against the
lamp chimney. In the top of the case are formed boiler holes to receive the cooking vessels. Between the boiler holes are attached deflectors, which are made V-shaped to divide the current of heated air. Plates attached to the top plate project down a little below
air holes, so that the heated air, after passing up to the boiler holes, air holes, so that the heated air, after passing up to the boiler holes,
must descend a little before it can escape through the air holes, so must descend a little before it can escape through the air holes, so
that there will always be a stratum of hot air in the upper part of the case. When the stove is to be used for baking or roasting pur-
the the case. When the stove is to be used for baking or roasting purvided short feet to raise it a little above the salis top which are made
case the grate is surrounded by a box, the walls double to prevent the too rapid radiation of heat, and which is provided with suitable devices for maintaining a circulation
The same inventor has also devised another oil stove, so constructed as to prevent the oil from becoming heated. The upper
compartment of the lamp is open at the tep, and is partially filled compartment of the lamp is open at the thp, and is partially filled protect the oil chamber from heat. The entire lamp is inclosed with a case, open at both ends, and upon the upper edge of which
is placed a plate, in the middle part of which is formed a hole to reis placed a plate, in the middle part of which is formed a hole to receive the vessel in which the cooking is to be done. In the lower part of the case is formed a ring of openings to admit air to support combustion. Into the case, just above the top of the lamp, is
fitted a hollow ring, which acts as a deflector to cause the air to fitted a hollow ring, which acts as a deflector to cause the air to
pass down through the outer part of a plate, while another portion of the air will pass through the holes in a lower plate of the ring, and will be projected against, and will rise around, the chimney,
and will thus become heated, and will carry up the heat to assist in and will thus
the cooking.

mproved Log Turner

Henry Knowlton, Otter Lake, Mich.-This is a device for turning logs upon the sawmill carriage in such a way as to save the carriage
from jar. In using the device, a shaft is turned to raise a lever into rom jar. In using the device, a shaft is turned to raise a lever into an erect position, with its straight edge against the flat side of the log. A bar is then drawn over the top of the log, and its hook is
driven into said log. The shaft is then turned in the other direc driven into said log. The shart is then turned in the other direc-
tion, which draws the le ver back, turning the log. The log is then pushed back upon the head block and secured.

Improved Fireplace Grate
John Bawden, Freehold, N. J.-A fireplace basket of the usual shape is cast at its grate-supporting bottom part with a longitudinal
connecting bar. The bar is provided with a central semicircular supporting part, that extends toward the rear of the fireplace, for preventing the grate from tilting toward the rear of the fireplace. A front lip of the grate rests on an inside projecting shoulder of the the grate, the contact of the lips mar be interrupted, and the grate be shaken from one side to the other for dropping the ashes.

Improved Burial Case.
David W. Hunt, San Francisco, Cal.-This coffin is furnished upon its bottom with cel
beneath the body.
improved Spring Power Regulator
Orrin Collier, Sacramento, Cal.-A brake lever has a forked end for pressing against a band wheel, each side of the face in which is
the groove for the band. The lever between its forks contains a the groove for the band. The lever between its forks contains a spring for bearing with an elastic pressure. The lever has an elbow,
which is pivoted to the frame, and an arm extends nearly Which is pivoted to the frame, and an arm extends nearly down to
the floor, and terminates in a foot piece, located so that the operthe floor, and terminates in a foot piece, located so that the oper-
ator may conveniently rest the foot on it. Under the foot piece a spring is attached to it, and arranged so that by pressing on the spring is attached flever and presses the brake on the wheel, and slows the motion or stops it
it is allowed to acc.

Improved Machine for Making split Keys.

willard H. Fox, New Haven, Conn.-This invention comprises pushers and formers, in combination with bending dies of peculiar double, with the usual ring at the bow by being pushed through the dies edgeways. The invention also comprises a contrivance whereby a number of pushers and dies, together with cutters for cutting long stri
in one machine

Process of Coloring Enameled Photographs. William W. Williams, Houston, Tex.-This process of coloring
enemeled photographs consists in first pasting on a glass plate, coated with dry lavers af and a transparen photograph, then backing it with layers of transparent paper, and then laying colors thereon in the usual manner

Improved Boot.
Harry Hall, Pontiac, Mich., assignor to himself and Henry H. Wil suitable material, are inserted beneath supporters, between the suitable material, are inserted beneath supporters, between the
rows of stitching and the seam, and are secured, when made of steel, at their upper and lower ends by rivets, the said wires being of such a length as to extend from the top of the boot leg to a little below the top of the counter.
mproved Glass Monument.
Anselm Pfeiffer, New York city.-This is an improved monument which may be ornamented to any desired extent, and which may also be used as a receptacle for flowers, wreaths, and other tokens
of remembrance placed upon the grave, to protect them from the wood, or stone frame work.

Improved Washing Machine.
Thomas McGuire Morris, Wabash, Ind., assignor to himself and Freeman Alger, same place.-In this machine, the oscillating rub-
ber will adjust itself to the thickness of the clothes to be operated upon. It may be operated either with or without a cover, and wil
allow the stationary rubber to be removed for convenience in allow the stationary rubber to be removed for convenience in
cleaning the suds box. There is a semicircular bottom for the suds box, formed of detachable blocks with a corrugated rubbing
surface.

Improved Trucks for Moving and Carrying Rails, etc Charles W. Carter, Terre Haute, Ind., assignor to himself an
eorge W. Travis, Cape Girardeau, Mo.-In using the truck, it is backed up to the object to be carried, and a bar is raised until hook est against the side of the object, and at the same time a rod is rawn upward, so that the hook may pass over and take hold of the said obiect. The bar is then lowered, which raises the load abov truck.
The same inventor has also patented another truck, for picking pand carrying car axles provided with wheels, railroad rails, bars, drop over the axle, and a handle is lowered, which raises the
o drop wheels of the car axle, away a handle is lowered, which raises the
the ground, and allows the axl to be conveniently transported wherever desired. In the sam way, bent lever jaws are opened and lowered to grasp and pick up railroad rail or other object to be carried.

,s Carriage.

Henry C. Moody, Oswego, N. Y.-This invention consists in atcarriage. The rod preserves the desired form of the curtains, pre venting their edges turning up or wrinkling. and enables them to be neatly and expeditiously folded and secured to the top.

Improved Refrigerator.

Henry H. Barnes, Brooklyn, N. Y.-This invention consists of a refrigerator with an ice receptacle and a series of milk and butter therein that the cold air can circulate around the sides and bottom therein that the cold a

Improved Planking Clamp.
James Hastings, Elizabethport, N. J.-In using the clamp for planking a vessel, the plank is placed upon the ribs in its prope
place. Hooks are then secured to the rib in such a position that the orward end of a screw may rest against the outer side of th plank. The screw is then turned forward to force the plank against the ribs, which brings its outer edge opposite the forward end of another screw. The screw is then turned forward to force the in ner edge of the plank close up against the edge of the preceding plank, and the said plank is then spiked to the ribs. When the sec-
ond screw is operated to force the plank edgewise against the edge of the preceding plank, a grooved bar moves with the plank and slides upon a crosshead, and thus prevents the first screw from be ing strained or bent.

improved Car coupling.

Henry C. Hervey and George H. Abrams, Athens, N. Y.-When the cars are run together. the entering link pushes a dog back and passes it, when the said dog instantly drops through the link, and the cars are coupled. With this construction also, when the car are coupled, the forward edge of the dog rests against a solid shoul-
der of the bumper head, both above and below the link, so as to have a firm support. In the upper part of the cavity of the sumpe head is secured a spring, the forward part of which is slotted to receive the dog, and its forward ends are bent upward, so as to serve
as guides to the link in passing to ite place in said bumper head.

Combined Cistern Valve and Overflow Pipe.
Bernard McGrann and John Solis, New York city.-A socket which is secured in the bottom of the cistern, serves as a seat for the valve, and has a bar to serve as a guide for the valve stem. The vent the water from rising any higher in the cistern than the upper end of the said hollow valve stem.

Improved Chimney Cowl

Emanuel Cole, New York city.-This cowl is made of sheet metal nd is secured, by a chimney connecting tube and cap piece, rigidly equal distance from each other in diametrical direction from th end of the chimney tube, and form, with the straight top and bot-
tom plates, a number of channels, that taper toward the communicating apertures around the end of the chimney tube. The wind passes readily along the radiating channels from whatever direction the same may come, and then across the chimney tube to the diapassage of the wind, and creates also, by the cross draft, a supple passage of the wind, and creates also, by the cross draft, a supple
mentary draft in the chimney, and thereby the escape of the smok mentary draft in the chimney, and thereby the escape of the smoke
with the wind. A central diaphragm is attached above the chimney tube to conduct any entering rain sidewise to be collected at
the bottom of the chamber, and discharge through an exit spout to the outside.

Improved Boiler Cleaner.
Thomas O. Kemp, Beamsville, Canada.-This is a combination with boiler and superposed reservoir, of pipes provided with stop the other more deeply down into said water. The water level may vary to any ordinary extent and the desired effect still be maintained, namely, a current drawing from the surface of the water.

lmproved Scaffold Clamp.

William C. Fellows, Toledo, Ohio, assignor to himself and Charles to clamp the block fast. The roller is applied by means af a bol hich connects the two ends of the yoke. The clamp binds bette because of the more free movement of the roller along the block whan the sliding bolt; and, by reason of the curves of the block

Improved Square.

William H. Walker, Charleston, S. C.-The wood pieces of the head re connected to the tongue by bolts which move in slots around parts thereof are pivoted together. Braces are pivoted to the aux iliary head, and the wood head is also fastened to them. This ar-
rangement makes a more accurate instrument than when the two
 parts of the head are pivoted to the tongue separately. The head
auxiliary is arranged in the groove of the principal head, into which the braces and the tongue fold.

Improved Clasp for Ladfes, Dress Supporter.
Egerton A. Bliss, Jersey City, N. J.-The clasp is made of a douchain is held, are held at their crossing by a band, and then turne inwardly to form reversed hooks, the inwardly bent clamping ends being in the same plane with the shank. The hook is fastened in
the lady's belt or girdle, and connected with the clasp by a chain, the lady's belt or girdle, and connected with the clasp by a chain, the dress being li
secured therein.

Improved Paper Bag Holder

George H. Cleveland, Camden, Me.-To a plate of heavy brass is attached a pointed rod, of such a length as to be capable of holding hundred paper bags. A plate of spring brass is swiveled to the or bring its lower end into such a position as to receive a pointed rod. In using the device the lower end of the plate is sprung off the point of the rod, and is turned to one side, so as to leave the rod free. The bags or wrapping paper are then placed upon the rod, a
few at a time, until the whole hundred have been placed upon it, by forcing the said rod through the said bags as near their edge as will old them securely, and so near the edge that each bag may be torn hofd them securely, and so near the edge that eas and without injuring the bag for use.
off

Tusiness and zersonai.

 The Charoe for Insertion under this nead is $\$ 1$ a Lune.Hoadley Portable Engines. R. H. Allen \& Co.
 For Sale, cheap-One 60 H.P. Boiler, 40 Engine
and Boilers. Address Junius Harris, Tlustulle, Pa. For the best and cheapest breech-loading Mili-
tary, Sporting, and Target Rifies, apply to Whitney Arms tary, Sporting, and
Co., New Haven, Conn.
25 per cent. saving in fuel, or an equal amount of
extra power guaranteed, by applying the R . s . Condenser.
 Double-cut, self-feed, noiseless Ratchet Drill-
Right for sale. H. C. English, Wilmington, Del. Sand Papering Machine Wanted-One adapted to
smoothing Wooden Shade Rollers. Address G. G. Hardy, East Newark, N. J. J.
85,000 invested
 Geo. P. Rowell $\&$ Co.. 41 Park Row, New York,are,
without doubt, the leading Advertising Agents of the Unt ted States, and, therefore, of the world. They have, by
the free, liberal and set well directed use of money,buit hemselves up in the esteem of the leading ppubishers and advertisers of the continent, and by an unusual energy
have succeeded in perfecting in every detain a business
that -[Memphis Appeal.] Prie only $\$ 8.50$ - The Tom Thumb Electrict Tel-
egraph. A compact working Telegraph Appartas
 giving alarms, and various other purposes. Can be put in
operation by any lad. Includes batery, key, and wires
 Small Tools and Gear Wheels for Models. List
ree. Goodnow \& WIghtman, 23 Cornhill, Boston, Mass. Peck's Patent Drop Press. Still the best in use
Address onlo Peck, New Haven, Conn. Fors Solili Emery Whents and and Machinery, send to
the union stone Co., Boston, Mass, for crrcular. All Fruit-can Tools, Ferracute W'ks, Bridgton,N.J. Anydraulic Presses and Jacks, new and second
hand. Lathes and Machinery for Pollshing and Buffing hand. Lathes and Machinery for Polishing and
Metals. E. Lyon, 470 Grand Street, New York.
Temples and Oilcans. Draper, Hopedale, Mass. Spinning Rings of a Superior Quality-Whitins-
ville Spinning Ring Co., Whitinsville, Mass. For best Presses, Dies, and Fruit Can 'Tools, Biiss
\& Williams, cor. of Plymouth and Jay, Brooklyn, N. Y. For Solid Wrought-iron Beams, etc., see adver-
tisement. Address Union Iron Mills, Pittsburgh, Pa., for lithograph, \&
For Sale-One. Heald-Sisco Pump; one Waters
Feed-Water Heater. Box 3329, New York. Diamond Tools-J. Dickinson, 64 Nassau St., N.Y. Steam Pumps 1 to 8 . Injectors. Steam Traps
Snd Damper Regulators on trial. Send for Circular. A. G. Brooks, 422 Vine Street, Philadelphia, Pa.
For Sale-Numerous Second Hand Machinist Tools. Catalogues sent. F. Weiler, 23 Chambers St.,N.Y.
Wanted-To buy a good patent or patentable J. H. Hessin, 144 Superior St, Clescription and Blake's Belt Studs are the best fastening for
Leather or Rubber Belts. Greene, Tweed $\&$ Co.,18 Park
Place, New York.
Magic Lanterns and Stereopticons of all sizes and
prices. Views illustrating every subject for Parlor prices. Views illustrating every subject for Parlor
Amusement and Public Exhibitions. Pays well on small
investments, 72 Page Catalogue free. McAllister, 49 Nassau St., New York.
For Sale-Second Hand Wood Working Machin-
ery. D. J. Lattlmore, 31st \& Chestnut St., Philla., Pa. Testing Machine for Bar Iron-Will test section
of 12 square inches. For sale by Denmead \& Son, Baltimore, Md.
Wanted-One 2 spindle Edging Machine. Ad-
dress, with description and price, P. O. Box 2258, New
Enterprise M'f'g Co., Philadelphia, Pa., Patented
Hardware Manufacturers and Iron Founders. Small gray iron castings, warranted soft and smooth, made to
order, and patented articles of merit manufactured on order, an
oyalty.
Steam and Water Gauge and Gauge Cocks Com-
bined, requiring only two holes in the Boiler, used by all boiler makers who have seen It, \$15. Hillard \& Holland, Amateurs and Artizans, see advertisement, page
221. Fleetwood Scroll Saw,Trump Bro's, Manufacturers, Wilmington, Del.
Electric Burglar Alarms and Private House An-
nunctators; Call, Servants' \& Stable Bells; Cheap Teleg.
The Baxter Engine-A 48 Page Pamphlet, con-
taining detall drawings of all parts and full particulars, now ready, and will pe
18 Park Place, New York.
Brass Gear Wheels, for Models, \&c., on hand and
made to order, by D. Gllbert \& Son, 212 Chester St., PhilHotchkiss \& Ball, West Meriden, Conn., Foun-
drymen and Workers of Sheet Metal. Will manufacture drymen and Workers of Sheet Metal. Will manufacture
on royalty Patented articles of merit in their line. Small
Gray Iron Castings made to order.
Water, Gas, and Steam Goods-New Catalogue
packed with first order of goods, or mailed on receeipt of For Sale-Large lot second hand Machinists'
Tools, cheap. Send for list. I. H. Shearman. 45 Cort-
andt street, New York.
The "SCientific American" Office, New York, is
fitted with the Miniature Electric Telegraph. By touching little buttons on the desks of the managers, signals
are sent $t s$ persons in the various departments of the establishment. Cheap and effective. Splendid for shops, offices, dwellings. Works for any distance. Price $\$ 6$,
with good Battery. F. C. Beach \& Co., 246 Canal St., New Tork, Makers. Send for free fllustrated Catalogue Walrus Leather Wheels for polishing all M
Greene, Tweed \& Co., 18 Park Place, New York. For best Bolt Cutter, at greatly reduced
address H. B. Brown \& Co., New Eaven Conn. "Lehigh"-For informationabout Emery, Wheels
\&c., address L. v. Emery Wheel Co., Welssport, Pa.
American Metaline Co., 61 Warren St., N.Y. City.
Genuine Concord Axles-Brown,Fisherville,N.H.
 Beat ting out-Manufactured only by C. W. W. Arny, 148
North 3 St... Philadelphta. Pa.
Send for Circular. Barry Capping Machine for Canning Establish-
nents. T. R. Bailey \& Vall, Lockport, N. Y. For 13, 15,16 and 18 inch Swing Engine Lathes,
adrress Star Tool Co., Providence, R. I.

A. K. will find a description of wire rope
transportation on p. 370, vol. 31.-R. J . will find a recipe for mica varnish on p. 241 , vol. 32 -J. will find directions for preserving shingles on p
123, vol. $33 .-\mathrm{F}$. D. R. will find that an inoxidizab.e white metal is described on p. 119, vol. 33 .
(1) U. N. O. says: 1. I have used a past or glue that is used by the various express compa
nies, that is excellent for all purposes such as a nies, that is excellent for all purposes such as at
taching labels, etc. It is a dry brownish powder and is prepared for use by pouring hot water on
it it looks like pulverized gum arabic. Can you it; it looks like pulverized gum arabic. Can you
tell me what it is? A. We are unable from your indefnitie edescription to tell of what it is com-
posed. If you consider posed. If you consider it to be gum arabic $\left(\mathrm{C}_{12}\right.$
$\left.\mathrm{H}_{11} \mathrm{O}_{11}\right)$, test it as follows: A solution of it in $\mathrm{H}_{11} \mathrm{O}_{11}$), test it as follows: A solution of it in wa-
ter is precipitated, by alcohol and by ether, white floculli, or, if dilute, in the form of a milky turbidity. If boiled with dilute sulphuric acid, it is gradualy converted into dextrin, and then into
a fermentable variety of sugar. recipe for good paste for labels, that will set quickly and stand exposure to weather. A. Dispint spirit of wine, adding about 1 oz. clear turpentine. Then take equal parts of isinglass and parchment glue ; and having beaten the isinglass into small bits, and reduced the glue to the same state, pour the solution of the gums upon them, and melt the whole in a vessel well covered, avoid-
ing as great a heat as that of boiling water. When ng as great a heat as that of boung waeor. linen cloth, and thea put it again over the fire. This preagration may be best managed by hanging the
vessel in boiling water, which will prevent the matter burring on the surface of the vessel, and the spirit of wine from taking fire.
(2) R. S. S. asks: Can you give me an account of the process of making ferro-manganese?
A. You will find an article describing the process A. You will find an article describing the process
in the Journal of the Franklin Institute for May, in the
1874
(3)
(3) G. G. asks: What will remove the tar nish fom pred goods that have turned dark,
probably from the action of gas? A. Steep the plated ware in soap yye for 2 h hours; then cover
it over with whiting, wet with vinegar so that it it over with whiting, wet with vinegar, so that it it
may stict well upon it and dry it by the fire by may stick well upon it and dry it by the fire: by
thus drying, the whiting is removed from the crevthus drying, the whiting is removed from the crev-
ices without the least difficulty. Rub off the whitien without the least difficulty. Rub off the whi
ting and pass over it with dry bran; the silver ting and pass over it with
will look exceedingly bright.
(4) J. G. W. asks: 1 . Will galvanized iron
ubing in a boied well be durable? tubing in a bored well be durable? Would the
water from such a well be wholesome? A. The use of galvanized iron pipes for family water supply is not desirable. For a short pump, if the
water is pure, water is pure, and the precaution is taken not to
use water that has stood long in the pipes, perhape no bad effects would result. But there have been repeated examples of poisoning from the use of galvanized iron conducting pipes. In a case at
Portsmouth, N. H, a family of four persons were thus poisoned, and Dr. Jackson found four grains of oxide of z inc in the water. In another case, near Boston, where the house was piped with gal-
vanized iron pipes, one of the young members of vanized iron pipes, one of the young members of
the family died and, a post mortem examination revealed the presence of oxide of zinc in the tributed to the use of the Deave was made by heating and dipping the iron pipes in melted zinc.
(5) E. M. K. asks: Why does water shorten arope? A. We were under the impression that
wetting a rope exposed to strain causes it to stretch.
(6)S.S. says: A. says that there is no power required to raise water to the pump, that
the atmosphere does part of the pumping. B. says it requires just as much power to raise water 1 foot below the pump as it does to force the water
1 foot above the pump.
B. contends that in 1 foot, above the pump. B. contends that, in our
case, the pump being 21 feet above the water, it requires the atmosphere in the pump to be reduced to about 51 bs. to the square inch in order to let the
water flow in ; and he also contends that, to do this, water flow in; and he also contends that,to do this,
he has to add 10 bs additional weight or power to he has to add 10 los. additional weight or power to
his plunger to reduce the air. Which is right? his plunger to reduce the air. Which is right?
A. B., certainly; if the pressure of the air forces A. B., eertainly; if the pressure of the air
the water into the pump barrel, that pressure
(7) J. S. G. asks: Can we, by continued ob-
ervation, see the whole surface of the moon, or servation, see the whole surface of the moon, of
do we always see only the one half? do we always see only the one half? A. We only
see one half for reason that the moon turns once on itsaxis in the time of making a revolution in on itsaxit.
its orbit.
(8) W. S. S. asks: What is your method of
getting the foundation bolts of an engine in the getting the foundation bolts of an engite in the
proper place, supposing we have our center line proper place, supposing we have our center line
on the bed plate template all rikht? What is the best mode of getting a right angle line from that,
so that the back box will be in its right place when it is over the foundation bolts? A. Make holes in the template corresponding to those in the bed plate, and put in the holding down bolts, with packing blocks under the top nuts, making the distance from bottom of template to top of packing blocks equal to thickness of bed plate at boit
holes. Then arrange the template in position holes. Then arrange the template in position, and
level it, placing it so that the under side is where the bottom of the bed plate is to be. Proceed to
build the foundation, first anchoring the bolts at
the bottom, and building them into the masoonry, he bottom, and building them into the masonry,
ns the work proceeds, In this way when the work is done, you will have the bolts firmly se
(9) A. D. B. asks: What internal atmo nary linseed oil barrel, holding about 40 gallons?
A Wethink nary linseed oin bayre, , afely use a prossure of 10 or
A. We think you can saf
12 lbs per square inch. Perhaps some of our read 12 lbs. per square inch. Perhaps some of our read
ers have data in relation to the matter, which they ers have da
(10) H. L. says: Please tell me the num er of square inches bearing surface of the ordinary screw propeller, such as isin use on the Eri canal? A. To determine the surface of a pro
peller, form its development or view of the blade if flatened down on a plane surface. Then it area can be found by the rules for irregular fig ures. Any calculation of the probable slip of a new form of propeller will be of very little value (11) W. P. says : A friend claims that it is mpossible that salt water, taken from the ocean,
can be made fit for drinking by working it by steam through a filtering bag, or some other way so as so take the salt taste from it. Is this for drinking by evaporating it, and condensing the
steam. Nearly all ocean steamers are fitted with steam. Nearly all ocean
fresh water condensers.
(12) J. C. M. says: 1 . I propose to build a boat, 20 feet over aill, 18 feet keel, 18 inches beam,
15 inches deep, of 14 inch selected pine 0 o eae, 15 inches deep, of 14 inch selected pine. On each
side will be a smaller airtight boat, 10 feet long side will be a smaller airtight boat, 10 feet long, 6
inches beam, 4 inches deep, connected by iron arms inches beam, 4 inches deep, connected by iron arms
$1 / 4 \times 1$ inch, 4 feet long, to the main boat. which is $14 \times 1 \mathrm{inch}, 4$ feet long, to the main boat. which is
for one person, decked over and containing 8 watertight compartments, with the cock pit amidships. I have an engine 134 inches stroker11/2 inches
bore, tested to 600 lbs. per inch. Would it run the boat, and at what speed? A. Yould it run tile an hour. 2. What dimensions of wheel and ho much steam should I use? A. Wheel 18 inches in a coil of gas pipe in a drum of sheet iron answe fora boiler, and how small should it be?
think you will have difficulty with this arrangement. 4. Could I use gas made from zinc and blue vitriol for fuel, and would I need a retort? A. W. advise you to design your boiler for the use of
coal or charcoal. (13) C. S. apys: 1 . I am running a portable engine, and drawing water from a well slightly
impregnated with salt. Will it injure the boiler? A. It will form scale in the boiler. steamers use salt water? A. Ocean steamers are ordinarily fitted with surface condensers, for the purpose of supplying as far as possible fresh water to the boilers.
(14) R. C. P. says: I have a large upright
boiler that leaks badly; leakage is caused by scale. It think it is becoming loose and falling on the crown sheet; bui the flues stand so close that $1 t$ is
impossible to get a scraper through them. Will impossible to get a scraper through them. Will
anything dissolve it, so that it could be washed out with a hose? A. On hauling the fire at night let let
and the water remain in the boiler until morning, or
untilit is quite cool. Then run it out and wasi out the boiler, in all parts inaccessible by hand, with a stream of water from a hose. By repeat ng this operation several times, at intervals of few days, you may succeed in removing the scal
Possibly, however, you may find it necessary use some preparation, such as tannate of soda the feed water. These remarks will also serve as an answer to G. S., who sent us a small package of scale, which seems to be mostly composed of mud. (15) J. A asks: With two steam gages, one pipe, some 200 yards distant from boiler, both gages being on a level, should there be any difference in the indications? A. The pressure would
be less in the more remote gage on account of the pressure required to give the steam motion, and e losses from radiation and condensation
(16) M. F. P. says: Iam making a boiler of 6 inch wrought iron pipe of three sections each, 18 nches long, with 6 inch flues in each. I connect
them at top and bottom to a three-sided casting with a core of 1 inch square, which gives a good circulation at the top and bottom, each with the other, and I I enclose gllt threeinan iron jacket,con-
nected at the top with the smoke bonnet and nected at the top mith the smoke bonnet and
stack; the grate is 15 inches in diameter; theheat soes up through the flues and the space around th cylinders. Is it a good plan, and will it drive
cylinder $3 x 5$ at 40 lbs. A A steam dome is also place on the top for superheating the steam. A. The idea strikes us quite favorably. We would
glad to have an account of your experience.
(17) S. W. asks: 1. What proportions of copper and zinc make the strongest brass? A. Take, by weight, 25 parts copper, 2 of zina, and
4120 tin 41/2 of tin. 2. What can I use as a flux for brass,
to make it flow freely, and cast smooth and solid to make it flow freely, and cast smooth and solid
small articles?
A. Melt the copper first, then add small articles? A. Melt the copper first, then ada
the tin, using a mixture of potash and soda as a flux ; add the zinc last.
(18) C. W. says: Does the cone form of the tread of the car wheel produce oscillation of
the car? A. The oscllation is due to irregularities the car? A. The oscllation is due to irregularities
in the track, and to the fact that there is necessarily some play between the tracks and the flanges of the wheels. The most successful preventives of oscillation seem to be close coupling of cars, weight of cars and trucks, an increase of the numer of wheels for a truck, and the use of an improved
trucks.
(19) R. M.says: 1 . I have a hand power jig saw, that Iturn by a crank. I can sa whard 2 inch some when done for half a day at a time. CanI
use some motor besides steam? A. An air or gas
engine would answer your purpose. 2. engine would answer your purpose. 2. I have
thought that, if a tank were buiit 30 feet above the earth, to hold 100 barrels of water, and the wate came down through a tube to a small water wheel, a pump pumping some of it back into the tank,
power enough could be realized to drive the saw. power enough could be realized to drive the saw
Would this do? A. The water project is too near Would this do? A. The water project is too near
y of the nature of a power creator to be dul.
(20) C. S. asks: Is there to be a canal only discussed, as yet. Is there any paint made that is better and as
heap as white lead and oil, for the outside of houses? A. We would be obliged to decide upo the claims of a number of rival manufacturers, to
answer this question; and we do not care to make answer this question; and we do nns
such a distinction in these columns
Do you think the engineer's trade a good trade tolearn? A. The trade which has numbered in it ranks such men as Watt, Rankine, Brunel, and host of others whom the world delights to honor (21) F H D
(21) F. H. D. asks: Why is not towing canal boatsin trains practised on the Erie canal? A. It
s not advisable, principally on account of the arge number of locks.
(22) C. S. asks: What is a proper descrip-
tion to be given in a deed of a piece of land, as

A (state how determined) running thence south thence in a northeasterly direction in a straight line to a point distant easterly in a straight line 00 feet from the middle point of the line running southerly from the point or place of beginning,
thencein a northwesterly direction in a straight to the point or place of beginning.
(23) S. T. J. says: Vapor of ammonia has in it needs practical improvement? A So far we know, the ammonia engine has been pretty well worked out in principle, and it only requires You will ind matters of detail and construction. theory and description of such engines in Dr. Bar Report on the Paris Exp
(24) M. C. K. asks: Is there any more heat in steam at a high pressure than at a low pressure? the temperature, at the rate of $0 \cdot 305$ of a unit for h degree Fah.
(25) S. E. S. asks: 1. What is the metal composition used in making small toy engine cyl-
inders? a. We believe it is a kind of type metal composed of lead and antimony. 2. Will solder, used for soldering tin, do for soldering sheet iron
also? A. No. Use a solder composed of equal parts of copper and zine.
(26) A. B. W. asks: 1. How are electrogilding and silvering done? A.For gilding, see No. 28 on this page. Silver solution is prepared with least trouble by dissolving cyanide of potassium
in water $(3 / 4$ oz. to the pint , a add adding the silver by the battery prucess. This is done by placing a solution silver and a porous cup in the cyanide solution; the silver is then connected to the posi-
tive pole of a battery, and an iron or copper rod, placed in the porous cup, is connected with the
negative pole. The porous cup also contains negative pole. The porous cup also contains
some of the cyanide solution. When a deposit besome of the cyanide solution. When a deposit be-
gins to form on the metal in the cup, the solution is of the right strength. One or two Daniell cells reduce lution. Work at a temperature of about 60° or 70° Fab. 2. How is silvering on glass done, to make
mirrors? A. Bottger gives the following method mirrors? A. Bottger gives the following method
for silvering on glass: Nitrate of silver is disfor silvering on glass: Nitrate of silver is dis-
solved in distilled water, and ammonia added to the solution till the precipitate first thrown down is almost entirely redisso.ved. The solution is filtered and diluted so that about $\frac{1}{10}$ of a quart con-
tains 1543 grains nitrate of silver. Next, 30.86 grains nitrate of silver is dissolved in a little water and poured into about a quart of boiling water 25.6 grains Rochelle salt is added, and the mixture
boiled a short time, till the precipitate contained necomesgray, and it is then filtered hot. The caustic podata, thoroughly cleaned with nitric acid, vessel and covered a quarter or half an a inch deep with equal volumes of the two solutions. In an hour the reduction will be complete. The plates are then wascient coating of silver is obtained. When a sufficient coating of silver is obtained. When
the silvered surfaces are dry, they may be cautiously polished with the palm of the hand. If the silver is only required as a coating of th ; back
surface, this polishing is, of course, superfluous. In this case, also, the operation may be shortened by heating the solutions to about 58° Fah. before mixing. The silver may then be varnished over
as a protection. When prepared, the solution wil. a month in a dark place.
(27) E. J. W. says: Will steam, when exhausted into a cistern through a number of small degree of heat than it does when exhausted through a straight pipe into the cistern, and why

צ゙risutific Gumrican.
A. Theprincipal difference will be that, in the first
A. The principal difference will be that, in the firs
oase, the steam will be condensed more rapidy : so that, using the same size of pipe and stea pressure in each case, the water will be heated the oost, in a given time, in the first case
(28) H. C. F. asks: 1. How can I make a so lution for plating with a battery out of old gold rings? A. Add one volume of nitric to three o muriatic acid and dissolve the rings in the men
struum so formed. When this has been done, drive off any free acid that may remain by gently heat ing the whole. No yellow powder should resul from the operation; if it does, a drop or two mor of acid must be added to redissolve it. The solu ion should then be much diluted, and cyanide of potassium added as long as any precipitate i formed. Separate this from the liquid, wash, and tion is ready for use. About half an ounce the precipitate to a gallon of the cyanide (water and cyanide) is a good working strength. On Smee cell is sulficient to cause the deposit. The solution should be heated to about $130^{\circ} \mathrm{Fah}$., and pure fine gold is needed for the anode. By properly regulating the battery power and heat, the color of the gold may be considerably modified
As cyanide of potassium is a deadly poison, to much care cannot be exercised in handling it. 2 Can I plate articles that have been nickel-plate with such a solution? A. Yes. 3. Would 5 cells Daniell's battery be sufficient? A. Five cells o Daniell's battery would probably cause the evolution of gas, which is to be carefully av
cell in good condition would do well.
(29) S. A. TT. says: In an old building in who has been at work on a machine composed o evers, without springs or weights, for years. He is very eccentric, lives alone, and no person knows who he is or whence he came. The mach!ne is nearly all composed of wood; it is completed,and has been running for weeks. He is now building ne very much larger, from which he intends de any one, and there is nothing about the machine hidden from view. I understand that the man has been working at this problem for 40 years. When I say "he has a machine which supplies its own power," I say what my eyes tell me. I am no eliever in perpetual motion; but what is this? A This is the old story that we haveheard so often scribing just such wonderful inventions and en dorsed by the most wonderful names, but they do not seem to have much effect upon our views, and we are constrained to think that, while your eyes may be all right, you did not use them as judicious ly as
(30) C. W. P. says: I have two iron tanks in the top of my house, holding 125 barrels each poses. What is the best paint or composition to coat them with to keep them from rusting? White lead will not do. A. Trautwein says: "White lead applied directly to the iron requires incesant renewal, and probably exerts a corrosive ef fect. It may, however, be applied over the more luad is said to be very durable, when pure A instance is recorded of pump rods, in a well 200 feet deep, near London, which, having first bee thus painted, were in use for 45 years, and at the expiration of that time their weight was found to be precisely the same as when new; thus showing that rust had not affected them." A slate paint is Iron, well cleaned and washed with hot linsee oil, will sometimes be thus preserved from rust ing.
(31) N. G. W. says, in commenting on M. can be moved up a given incline on a small wheeled truck with less power than would be necessary to move the same load up the same incline on a larg Wheeled truck : Let $\mathrm{P}=$ power, $W=$ weight, $\mathrm{R}=\mathrm{r}$ a E C G $a=$ angle made by line of traction, D C, with road=FEC. E is the center of moments. Th

power, P, acts to raise the weight, W, over the point, P ; the weight, W , resists the action. FE E,
the lever arm of $\mathrm{P}=\mathrm{R}$ sin. a. G , the lever arm of $\mathrm{W}=\mathrm{R}$ cos. b. Writing out the equation by moments, we have PR $\sin . a=W R \cos . b$, or (reducing) we have $\mathrm{P} \sin . a=\mathrm{W}$ cos. b, that is, the power multiplied by the sine of the angle made by the line of traction with the road is equal to the weight multiplied by cos. angle of inclination of the road. The angle, a, varies inversely as R: increases, as is shown in the figure. The sine of an angle varies directly as the angle, consequently, as a increases, sin. a increases. Resuming the last equation: Considering the weight constant and the angle of inclination of the road also, it would follow,to in up the diameter of the wheel is diminished, less power given incline.
Minerals, etc.-Specimens have been receivedfrom the following correspondents,and examined, with the results stated
J. N. D.-Both are argillaceous shale, containing
E. McD.-No. 1 contains iron and manganese,along
with silver and alumina. No. 2 is galena with a
small percentage of iron. Itis not arsenical. No. small percentage of iroc. Itis not arsenical. No.
3 is plumbago with silex and lime. No. 4 is silica and alumina, iron in small amount, and lime.-J. H. P.-The smaller piece contains galena, pyrite,
tale and quartzite. The larger is galena in lime ale and quartzite. The larger is galena in lime
tone rock.-E. W. W.-No. 1 is iron pyrites which has lost a part of its sulphur and been partly converted into oxide of iron. No. 2 is excellent iron re. It contains neither black lead nor quicksil-ver.-H. L. C.-They are of two kinds. The glossy ind is quartz, the waxy variety is chalcedony. Campa Bay, Fla., has long been celebrated for the re. No. 2 is willemite No. 3 is mica schist, aining a small amount of red hematite. No. 4 is alamine. No. 5 is strontianite. No. 6 is calamine
C. H. P.-It is probably a siliceous scoria, its ensity being only $2 \cdot 14$. Besides silex, of which it mostly composed, it containsiron, lime, and car onaceous matter.-J.J. F.'s specimen, supposed lay contains sllica, alumina lime, iron (as sequi oxide), magnesia, potash, and traces of soda. The above ingredients are arranged in order of the oounts as existing in the specimens sent.-W.H. .-We find none of the precious metals present. It is a deposit of carbonate of lime and magnesia pon quartz. It contains about 10 per cent of ses These curious fossils vary in size and form; some re small, delicate, transparent like amber; others are opaque, and from ten to twelve inches in ith in They ares and countries, and giving rise to nuch speculation as to their real character.-C.B K.'s and D. M.S.'s minerals did not come to hand
A. M. D. - No. 1 is a handsome chrysolite which A. M. D. - Noriky variety of fibrous serpentine. No. 2 is ornblende. No. 3 is beryl.-J. L.-The water has been examined. It has taken up alumina, lime, nd organic matter. The latter is to be dreaded; nd it would be saier to boil the water before oft) are varieties of shale rend 4 (both hard and oft) are varieties of shale rock containing an
mount of oxide of iron. By fluxing, No. 1 give amount of oxide of iron. By fluxing, No. 1 gives
black slag. They are not entitled to the name of ron ores. The paints are ochers of inferior qual y. No. 5 is impure iron alum.-A. B. P.-The two bottles labeled No. 1 and those marked Nos. 2 nd 3 contain lime and slumina with organic mat
ters. In No. 3 , the two latter substances are in onsiderable quantity, and there is likewise pres nt a large percentage of iron.

COMMUNICATIONS RECEIVED.

The Editor of the Scientific American ac riginal papers and contributions upon the followg subjects:
On Large and Small Wagon Wheels. By M.G. P. On a New Explosive. By E. G. A.
On Steam Boiler Phenomena. B
On State Laws regarding Patents. By \mathbf{W}. \mathbf{w}.
Also inquiries and answers from the following:
A. G.-J. W. D.-P.S.-C. L.-D. F.-A. L.-J. B.
F.J.C.-J. R. N.-A. W.-E. J. N.-S.M.S.

HINTS TO CORRESPONDENTS. Correspondents whose inquiries fail to appear
should repeat them. If not then published, they may conclude that, for good reasons, the Edito declines them.
Enquiries relating to patents, or to the patentability of inventions, assignments, etc., will not be published here. All such questions, wheninitials only are given, are thrown into the waste basket, as it would flll half of our paper to print them all; but we generally takepleasure in answe
by mail, if the writer's address is given.
by mail, if the writer's address is given.
Hundreds of inquiriesanalogous to the following re sent: "Whose is the best process of making gas from petroleum? Who publishes working drawings of steam engines? Whose is the best steam iphon valve? Whose is the best machine for r ducing sand and small gravel to a fine powder? All such personal inquiriesare pristes, as and Per sonal," which is specially set apart for that pur pose, subject to the chargementioned at the head of that column. Almost any desired informatio
can in this way be expeditiously obtained.

「OFFICFAL. 1
INDEX OF INVENTIONS Letters Fatent of the United states were Granted in the Week ending September 14, 1875.

AND EACH BEARING THAT DATE

Alarm, burglar, J. B. Allen....
Alphabet exhibitor, B. B. Wha
Auger, earth, J. P. Summers.
Awnings, frame for hinged, ,...... Syk
Baby walker, Nickerson and Tripp
Baby walker, Nickerson and Tripp.
Barrels, device for pitching, G. Mey
Bedstead, sofa, R. S. McEntire....
Blind stop, w. Wright............
Boats. propelling canal, A. Bugbee

Boot heels, making, S. W. Bald
Boot-pegging stand, A. Stone..
Boot-pegging stand, A. Stone
Boots, insole for, C. F. Hill.
Boots, lasting, R. C. Lambert.
Bottle stopper fastening, W. H. Bate..............
Bottle stoppers, bending wire, C. De Quillfeldt.
Bottle stoppers, bending wire, C. De
Brick machine, Wilson and Smithso
1urner
Jurner, gas, T,
Burner, lamp,

Capstan. A. Russell....... Car brake, steam, Taylor and McCamish ar couping, w. R. Hunter.. Car coupling, G. Wernimon
Carpet beater and cleaner.,
Carriage bows, forming ends of, c. Rento Carriage step, E. A. Cooper Carriage step, E. A. Coope
C. Gilbert
Cartridge-loading device, w. Noyes. Casting mold boards, J. Oliver (r) asting mold boards, chill for, J. Oliv
Cement, hydraulic, C. F. Dunderdale. Chair, reclining, G. Hunzinger (r)...
Chimney soot arrester, M. Brinkerho Chuck, planer, J. C. Mulberry
churn, J. W. McClure Clay. etc., pulverizing, J. K. Caldwell. lothes clamp, G. W. Kniffen lothes dryer, M. N. Lovell. lothes dryer, C. Schifferle
Clothes dryer, J. Sutton.
Cock, stop, O. T. Earle.
offln, Richey and McDougal
Colliar and muff, comblned, C. Stattman ondery plant, R. A. Willde
ondenser, H. W. Bulkley.
Cotton gin, 0 . W. Massey.
rozing and leveling tool, steel and Rea rozing and leveling toois
Curtain fixture, L. H. Gan
Dental fillings, preparing, R. S. Williams Dinner box, J. s. Davis.
Ditching machine, F. Taylor
Dip pipes, rotary valve for,
Dip pipes, rotary valve for, w...........
Dip pipes, movable, w. Farmer Dovetalling machine, C. P. Baile. Dray, three-wheeled, J. w. Minor.......
Drills, manufacturing twist, c. B. Hunt Drills, manufacturing twist, C. B. Hun
rills. tripod for rock,. . C. Githens....
Egg batter, desiccating, w. O.
Eggs. preserving J K. Boone....
Engine, rotary. Stream and Miller.
Explosive compound, C. Dittmar (r)
are register, A. F. Jon
Fare register, \mathbf{w}. Miller.
Fare register, J. Sangste
arrier's tool, M. Baltes
Fats, etc., separating constituents of, T. M. Fel
Feed water regulator, C. M. Brid
Fire arms, elastic butt plate for, H. A. Silver
Fire extinguisher, Hart and Dillon-
Fishing lines, sinker for, E P Pitcher
ishing lines, sinker for, E. Pitcher.
Fishing, spoon nook for
Flower pot, C. J. Sands
Furnace door casing, H. F. Hayden.............
Furanae for destroying insects, W. F. Woolsey
Furnace, iron and steel, w
Furnabe, hot air, H. D. Fre
arnace, hot alr, N. T.
Game apparatus, J. J. Weber
Game counter, C. E. Hackley.
Gas governor, W. E. D. Showley
Generator, steam, R. H. Thom..
Glassware, manufacture of, J. C. Gill.
Grain dryer, J. Soute
Grate, J. Habermehl
Harness, rosette, Ulirich \& H
Harrow, wheel, J. S. Snively
Harrow, wheel, J.
Harvester, J. Gore
Hat bodies, formin
Heat regulator, W. S. Hill....
Heating drum, Munson \& Dick.......
Hoisting apparatus, N. W. Hoffman
Hook for hanging pitctures, C. Richards.
Horse detaching apparatus, J. W. Glove
Horse detaching apparatus, J. W. Glover
Horses, toe weight for, w. H. Abbott
Horses, toe weight for,
Hose and pipe coupling, H. G. Koehler
Hydrant, J. Fleming.
Hydrocarbons, burn
Ice pick, M. Cowles
Key fastener, J. Knight
Lamp support, wagon, Boudren \& Johnson
Lantern, A. M. Duburn...............
Lard dryer and cooler, G. Bogen, J
athe, universal turning, Koch \& Muelle
Leg, artisicial, J. O'Brien...
Line fastener, w. Haddock
Line fastener, W. Haddock
iquid measure, G. W. Ald
Liquors, forcing, J. F. Bennett
ock, combination, H. C. Hove
Locomotives witn water, supplying, H. Howe.
L......
Loom shuttle, A. Epindie, Logan \& Thomson.
Lounge, invalid, A. Shiels....
Lubricating compound, B. F. Bartlett.
Mains, preventing tar in, D. H. Fox
Measure, liquid, G. W. Aldrich.....
Measure, liquid, G. W. Aldri
Meat cutter, I. I. Degroat....
Meat in cutting, holding, w. Tetle
Medical composition, L. P. Brand
Mill, smut, Richmond, Ryan, and McGill.
Nail extractor, I. N. Burdick.
Nipple, rubber, A. M. Knapp
Nipple, rubber, A. M. Knapp
Ore crusher and amalgamator, C. Bralds
Ore feeder, C. P. Stanford
Painting cloth
Paper box, C. A. Young....
Paper box machine, G. L. Tu
Paper, machine for cutting roll,Cohen \& Frank
Paper pulp from palm, making, J. P. Herron..
Pen holder, E. Barberot...
Pen, ruling, J. R. Gisburn.
Picker staff check, Stevenso
Pictures, etc., hanging. H.D. Pope...
Pipe cutter, F. I. Maule.
Planer chuck, J. C. Mulberry.
Planing machine cutter holder, w. B. Sm \quad h
Planter, corn, J. K
Plow, I. Freeman
Plow, M. Ormond
Pocket book lock, Hanau \& Bendit......
Press, cotton and hay, W. H. Burgess.

cadertisements.

Valuable Practical

SCIENTIFIC BOOKS.

Pocket Book of Useful Tables and Formule for
Marine Engineers. By Frank Proctor. Pocket Book
forin Treatise on Steam Boilers: their Strength, Con-
 The Science of Railway Construction. By Sir R
 Elementary Treatise on Steam and the Steam En-
cine, , Statitonary and Portable. By
D. Kinnear Clark The Workman's Manual of Engineering Drawing. Elementary Treatise on the Combustion of Coal and the Prevention of Smoke, Chemically and Practil
cally Considered. By C. Wye william. 12 mol .. 81.50 Engineers' and Mechanics' Tables, contaning

 HENRY CAREY BAIRD \& CO

 $S_{\text {Superior, and cheaper than the Improved desiged }}^{\text {TEAM ROAD }}$

TE IMPROVED SLIDE VALVE for Steam

PATENT SCROLL SAWS.
 $\mathrm{E}^{\text {NDLESS WATER POWER OF EBB AND FLOW. }}$

Cotton Seed Huller.

The PORTER-ALLEN ENGINE.

Our Boiler and Pipe Covering Save 25 PER CEN'T.
isbestos felting com
ASBESTHAS

PATENT CLARK \& COMPANY'S PATENT SELF-COILING, REVOLVING STEEL SHUTTERS

 NIAGARA STEAM PUMP

 SLLE MANUFACTBRRIS,
ENGINES AND BILERS, Pulleys,Shafting and Hanger
 W ITHERBY, RUGG \& RICHARDSON, Man-

 TRADE ENE KNINE

 Send for Price List and Cir-

FOOT LATHES, FOOT DRILL PRESSES, IRON MILLS TO GRIND No. 602 w. Fifth St., Cincinn

$$
\text { Send for circulars. } \mathbf{6 0 .} \text {. Fift }
$$

 $\frac{8,000 \text { in Use! }}{\text { 8, }}$ 8,000in Use STEAM PUMPS

 IMPROVED MACHIN ERY for STAVE

MACHINERY.

 IRON \& WOOD WOREING MACHINERY OF EVERY DESCRIPTION.
Cold Rolled Shafting.

 HAN GERS, PULLEYS, COUPLINGS, BELTING, \&1. GEORGE PLACE, EAGLE FOOT LATHES Planing \& Matching,

$\underset{\text { Shave novel device } f}{\text { Shang }}$ Have novel device for changing
length of stroke while in mootion
 Wood \& Light Machine ${ }^{2}$ Worcester, Mass.
Manfactures of all kind of
Iron Working Ma chinery Shafting, Pulleys, \&c. Machinexy.
No. 348 BROADWAY, NEW YORE.
VINEGAR. HOW MADE IN 10

Bigelow Engine, The Cheapest and Best Portable
EEgnine ofrered to the Public.
Prie

Price of Stationary Engines: | Prrce of Station |
| :--- |
| 4. |
| 4 Horge |

MAGNETS-Permanent Steei Magnets

Saldertisuments,
Back Page
Inside Page
Pa Engravings may head advertisements at the same rate perline, by measurement, as the letter press Ad-
vertisements must be received at publicationoflce as early as Friday morning to appear in next issue.

THOMAS'S FLUID TANNATE OF SODA-

$\mathrm{e}^{\text {d }} \mathrm{C}$

PORTLAND CEMENT

PAINTER'S MANUAL.

 PORTABLE GUA STATIONARY
\qquad TING. PULLEYS AND HANGERS POOLE \& HUNT. HAIR-FELT----HAIR-FELT. BOILERS \& PIPES.

The Standard-Best Stock-Finest Finish. MaNOFAOTURED ONLY by D. ARTHUR BROWN \& 00 , Fisherville, N.H.
W. C. DUYCKINCK,

Railway, Machinists' and En${ }_{50}$ gineers' Supplies,
P. O. Box 4101 . TO DYERS AND MANUFACTURERS.

MIREROPE

 Whieels and Rope
CARPENTER'S MANUAL.
 $\frac{\text { EESSE HANEY \& Co.: } 119 \text { Nabsau St., N. }}{}$ EmeryWheels $\sim T A W[T E) A$ EmeryGrinders

RICHARDSON, MERIAM \& CC
Tnd Manufacturerso the iteest Improved Patent Daniels'

wrabouse. im Libertvo street Nam York. MANVF MOUNT VERNON, OHIO

Bradley's Cushioned Hammer

PURE EMERY!

$\bar{B}^{\text {ogardus' Patent universal bccen-- DITCHING and EXCAVATION }}$

HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY.
 J. B. Punco, See.
abtord

WHIPPLE'S
Patent Door Knob.

> THE BEST INJECTOR
> For Locomotive and stationary Boliors.
> Over 15,000 Now in Use Here and in Europe
NATHAN \& DREV FUS, Sole Manufacturers,
R OGERS' TANNATE OF SODA BOILER
$\begin{aligned} & \text { R. SGALE PREVENTIVE. JOS. GODA ROGERS \& CO., } \\ & \text { Madison, Ind. } \\ & \text { tation. }\end{aligned}$

> MPORTANT FOR ALL CORPORATIONS AND Time DF'G CONCERNS.-Buerk's Watchman'
> $\begin{aligned} & \text { for circular. } \\ & \text { O. Box } 979 \text {, Boston, Manas. } \\ & \text { Bt mhaeuser }\end{aligned}$

> BOOTSFOMCE BLAST BLOWER FIRST' PREMIUM AWARDED AT PARIS \&VIENNA. THOUSANDS IN USE BOTH IN THIS COUNTRY \& EUROPE. SPEED ONLYIOOTO250 REV. PER MIN. SAVES HALF ${ }_{\text {the }}$ POWER ${ }_{\text {used ey }}$ FAN. P.H.\&F.M.RODTS MFRS.CONNERSVILLE IND. S.S.TOWNSEND 3I.LIBERTY ST.N.Y.GENEAGT.

Machinists ${ }^{\prime}$ Tools.

Excelsior Do Your Own Printing Portable
Printing
Printing
 BusinnessMen dotheir printing and
advertising, save money and increase trade. Amateur Printing. delight
fulpagtime for spare hours. BO YS
have great fun and make money fast Printing have great fun and make money fast SHINothnef on imporo st lien or mang

IIIII'A+J WROUGHT

 BEAMS \& GIRDERSTHE Union Iron Mills, Pittsburgh, Pa

 BLAKE'S PATENT Stone and Ore Breaker
 ColD ROLLED

MillFurnishingWorks

Steel Tube Cleaner.

 Non-COMbDSTILLE STEAM Boiler \& PIP Cov~3RTMC

Mma \& Co.s Patent Oficces.

Established 1846,

The Oldest Agency $\overline{\text { for }}$ Soliciting Patents in the United States.
TWENI P-ELGHT FEARS' EXPERIENOA.
MORE PATENTS $\overline{\text { have }}$ been seoured through his agency, at home and abroed, ther other in They employ as thetr assistants a corps of the most ar perienced men as axaminers, specification writers, and draftemen that can be found, many of whom have been as cted from the ranks of the Patent Offloc.
SIXTY THOUSAND inventors have avallec entlons, and MUNN \& $\mathrm{CO}_{\text {, in }}$ in connection with th
soiremtipio Amritions, continue to pablication of the onfer with inventors, prepare drawings, specifications, an ssignments,attend to flling applications in tho Patent Offlice paying the government fees, and watch each case step b hrough their branch office,oorner F and 7 7t Strets is done ngton. They aoo patente, trademarks, and retssues, attend to rejocted case (prepared by the inventor or other attorneys), procure oopy matters of infringement, furnial copies of patents: in fac attend to every branch of patent business Doth in this and n Sorelgn countries.
Patents obtained in Canada, England, France, Belgium Germany, Russia, Prussia, Spata, Portugal, the British granted.
Persons desiring any patent issued from 1836 to Novem ber 26,1867 , can be supplied with official copies at a rea-
sonable cost, the price depending upon the extent of drawonable cost, the price depending upon the extent of draw ags and length of specifications.
Any patont and specifications, may be had by remitting to thie office ${ }^{1}$. A copy of the claims of any patent issued since 1836 will be furnished for $\$ 1$.
When ordering copies, please to remit for the same a
 date of patent.
 all inventions patented through this Agency, with the ald, in past or whole to persons attracted to the invent by such nottce.
A pamphlet of 110 pages, containing the laws and fall directions for obtaining United States patents, also a oirroula pertanding exolusively to Forelgn Patenta, stating coat for Δ ddrean MUNN \& OO..
Publishers SCIENTIFIC AMERICAS
37 Park Row, N. Y.
rner F and 7th streets

(a)

SCIENTIFIC AMERICAN, THE MOST POPULAR SCIENTIFIC PAPEB II THE WORLD. THIRTIETH YEAR.
VOLUME XXXIII-NEW SERIRS. The publishers of the SCIENTIFIC AMERICAN beg to announce that on the third day of July
1875, a new volume commenced. It will continue to be the aim of the publishers to render the con tents of the new volume more attractive and use ul than any of its predecessors.

To the Mechanic and Manufacturer. No person ungaged in any of the mechanical puramprican. Every number contains from six to te engravings of new machines and inventions whic cannot be found in any other publication. The sch poplar scicice, ise devoted to the Manufactures, Inventions, Agriculture Commerce and the industrial pursuits generally; and it is va uable and instructive not only in the Workshop and Manufactory, but also in the Household, the Li. Trary, and the readig Rem.
TERIS.
One copy, one year (postage included)....... $\$ 3.20$ One copy, three months (postageincluded).. 1.00 One copy of Scientiflc american for one year, and one copy of engraving, "Men One copy of Scientific American for one

year, and one copy of "Science Record"
for 1875...........................
.20

Address all letters and make all Post Office or ders and drafte payable to

MUNNN \& CO.

