

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

IMPROVED DEODORIZING EXCAVATING APPARATUS.
We devote our initial page this week to engravings of an improved apparatus for removing any kind of thick, semiliquid material, or fluids heavily laden with solid obstructions, from vaults or excavations. The widest application such a machine necessarily finds is in the cleaning of cesspools, and similar receptacles for refuse, for which work it is remarkably well adapted in construction. The device, as represented in Fig. 1, consists of a pump which raises the material and forces it into the tank. The air at the same material and forces it into the tank. The air at the same shown at the front part of the truck, and is there deprived of all noxious emana tions by percolation through a suitable chemical solution. In this last respect the apparatus differs from thers, in which the deodorization is ac complished by forc ng the air through burning charcoal; and mong the advanta hus claimed to realized, besid to be more complete the complete re moval of foul smells is the obviation o parks from the fur ace, which a strong blast might throw upon and thus endan ger adjacent build ings.
The essential fea tures of the system ie in the construction of the pump. Thi consists first of a bar rel, mounted on truck and provided with handles fided with ience in transporta tion, and second, of a simple pump cylinder placed at right angles theret, and contain ing a piston operated by the lever shown in
the hands of the
figure. To each end of tie barrel is connected a section of \mid from their own gravity they move forward to the mouth of hose, by means of a simple and effective form of coupling. The pipe which leads from the vault is secured to the more elevated end of the barrel when the latter is placed for working, so that the natural tendency of the material is to flow directly into the pump. The other hose of course leads from the pump to the vat in which the refuse is carted away.
In all apparatus designed for pumping out the contents of cesspools, etc., the main difficulty encountered is to construct the valves so that they will allow of the passage of solid substances as large as the pump barrel will admit, and at the same time remain tight for fluids: and this without becoming choked so as to render necessary the repeated dis memberment of the machine in order to clear them. In tan neries, where similar material is dealt with, the old boot leg valve has long been employed; but to this the objection is urged that gravel or small solids are lisble to fall betwee the sides of the valve and the barrel, and so ultimately to prevent the opening of the valve. To obviate this trouble the novel form of valve represented in Fig. 2 has been de vised, and to this it is desired especially to direcf the atten tion of the reader. It consists of a section of strong rubber tube, A, inserted into the barrel, B, for some distance from the end. This done, the lower edge of the tube at the end is brought up against the upper and opposite edge, and the two thicknesses of rubber are fastened together and to the inner periphery of the barrel. A metal strengthening plate is added to the valve, and to this is hinged the spoon-shaped piece, C.
From this construction it will be seen that the action of the pump must draw the material under the tube and between it and the barrel, and further that any solid capable f being pushed between these surfaces will easily pas of being pushed between these surfaces wircing back on the valve, acts on the inside of the tube, B, pressing the same tightly against the entire periphery of the barrel. The ob. ject of the metal piece, C, is to receive the compact of hard substances and thus shield the rubber tube. The inventors inform us that,no matter how large the object which, at th
the second or outlet valve.
The inventors have exhibited to us huge stones and ob structions which it would appear must prove a stoppage to any pump, but which, they affirm, were easily drawn through

The apparatus is now on exhibition at the American Institute Fair in this city, where it may be inspected. Patented A. W. Johnson and H. A. Nettleton, June 15, 1875. For further information address the manufacturers, Messrs Mathewman \& Johnson, New Haven, Conn

Joints in Carpentry.

Professor Rankine sums up the principles, which should e adhered to in designing joints and fastenings in carpen ry, concisely as follows: 1 . To cut the joints and arrange he fastenings so as to weaken the pieces of timber they connect as little as possible. 2, To place each abutting sur face in joint as nearly as possible perpendicularly to the pressure which it has to transmit. 3. To proportion the area of ach surface to the pressure which it has to bear, so that he timber may be safe against injury under the heaviest oad which occurs in practice; and to form and fit every pair of such surfaces accurately, in order to distribute the stress uniformly. 4. To proportion the fastenings so that they
end of the up stroke of the pump, may remain caught be tween the outside of the tube and the inside of the barrel, struction on the down stroke will be forced around the ob to render the valve perfectly tight
render the valve perfectly tight
One of these valves is placed at the inlet orifice and the other at the outlet, each opening in the same direction, so that the up stroke of the pump which opens the inlet closes the outlet, and vice versa. No material passes through the piston, and only liquid matter comes in contact with that
portion; sand, gravel, stones, etc., being heavier, fall to the portion; sand, gravel, stones, etc., being heavier, fall to the
may be of equal strength with the pieces which they connect 5. To place the fastenings in each piece of timber so that here shall be sufficient resistance to the giving way of the joint by the fastenings shearing or crushing their way through the timber.

The Sinking of the Vanguard.

One of the finest vessels in the British navy, the Van uard, was recently sunk by her consort, the Iron Duke, through an accidental collision during a fog. The Vanguard, it seems, was leading, and, suddenly sighting a large mer hantman ahead, in accordance with the usual rules of th oad ported her helm In so doing she pre ented her broadside to the Iron Duke, which though rtndered invi. sible by the fog, wa closely following. Be fore the Vanguar could get out of th way, the Iron Duk rashed into her Both vessels wer. Both armored, and heavily pecially built for ram ming. The result was that the Iron Duke's prow cut into her con sort's broadside as i it were so much paper The strict discipline o the man-of-war avert ed what probably would have been, in merchant passenge vessel, a fearful los of life, as, in the ver short time which in short time which in tervened between th hock and the sinkin of the ship, the entir crew of 450 men wa safely removed in the boats.
The vessel cost, it is said, $\$ 2,500,000$, and this loss is still fur ther increased by al the personal propert of the crew sinkiv
with the ship. The casualty furnishes, however, an expen sive but nevertheless valuable experiment as to the power of the ram. The Vanguard is the first modern ironclad pon which the capabilities of this terrible weapon hav been tested. Even the very heavy armor proved no protec tion to the blow delivered at the moderate speed of five knots per hour. The effect of impact, had the ironclad been driven at double or treble that speed, as she might be, can be imagined.
The Vanguard was well provided with compartments, bu these, though airtight, and hence buoyant when sealed were, at the time of the accident, not all closed. To those that were shut. the fact of the ship's remaining above wate as long as she did (one hour) is due

Dr. Leverett Bradley.

Dr. Leverett Bradley died recently in Jersey City, N. J., in the 77th year of his age.
For a number of years past Dr. Bradley has been well known as an electrician of considerable ability ; but he is best nnown from the invention, which he patented in 1865, fo winding helices with uncovered wire. In 1859 he secured patent for an automatic telegraph apparatus, with which, on a short circuit, he succeeded in recording about 15,000 words per hour, but he was unable to practically work the apparatus on a telegraphic line of ordinary length.
In 1873, he obtained a patent for an apparatus for electric easurement, being a combination of a tangent galvanome er and rheostat, which proved very successful, and is now being much used in colleges and other institutions of learn ing as a means of instruction and experiment

Professor Samuel D. Tillman, LL.D.

The death of Professor Tillman, which occurred on the 4th of September last, will be deplored not only by the members of the American Institute, with which society be has been dentified for many years, but by scientific men throughout he country. Few men have attained so wide a knowledge f every branch of mechanical, scientific, and general learn ing; and few have worked more earnestly in behalf of the
mechanic and the inventor, and toward the furtherance of scientific progress. Professor Tillman was a native of Utica, New York, and was born in 1803; he graduated at Union College, and subsequently studied law. About twenty years ago, he came to New York and devoted himself to scientific and literary pursuits. Becoming a member of the American Institute, he was elected corresponding secretary and also chairman of the Polytechnic Club, which positions he held at the time of his death. He edited the transactions of the Institute, published annually, and also wrote several essays, principally on musical and chemical subjects, which exhibited marked ability and originality of thought.

MUNN \& CO., Editors and Proprietors PUBLISHED WEEEILY ATP NO. PAg PARK ROW, NEW YORK

THE RELATIONSHIPS OF NATIVE AMERICANS.

There has been so much wild guesswork indulged in, with regard to the origin and racial affinites of the natives of this part of the world, that any new attempt to determine who they were or where they came from is more apt to be received with derision than with over credulity. History tradition, and archæology have been appealed to, in turn and all together, to settle the question, but it has refused to be settled. Now the younger science of comparative philology essays the task, with, let us hope, a better promise of suc cess.
The task is an emormous one, since all the dialects of America must first be compared with each other, then collectively with all the dialects of the old world, particularly with the little known dialects of the old world of antiquity
Unfortunately the task is too generally complicated with irrelevant questions of migration, points of origrinal disper sion, routes, etc., questions which there can be little hope of answering save for the most recent of national origins and movements It lies with geology-nothistory or philologyto tell where man originated, and when. In course of time may be,traces of man's earliest migrations will be discovered but for a long time, probably, the data for determining the order of his conquest of the earth must remain hidden unde soil and sea. Certainly every attempt to account for the peo pling of America by migrations along existing routes must be obviously absurd, since the evidences of man's presence here point to an age anterior to the gengraphical conditions by which those routes came into existence. Whether the new world was first settled from the old, the old from the new, or both from some continent now submerged, there is as yet no ovidence for deciding. We doubt the possibility
comparatively modern races whose names appear in the songs and traditions of the early history.
Still,comparative philology has done much toward making out the affinities of existing races in both worlds with those that preceded them at the dawn of the historical period; and the linguistic connection between the native races of America and those of the eastern hemisphere seem to be far closer han has been supposed of late.
Señor Lopez, who has given much time to the study of the languages of South America, goes so far as to assert, in his Races Aryennes du Péron,that the descendants of the Incas still speak an undeveloped Aryan tongue; and that their an cestors must have come from the same stock which fur nished the great inflected languages of India and Europe, our own among them. He finds their language-the Quichua still spoken over a large part of Ecuador, Peru, Bolivia, and the Argentine Republic--full of Aryan roots, though it re mains at a pre-Aryan grammatical stage, the agglutinative. His inference is that,before the grammatical forms of Aryan speech had been developed, there had been a separation of the people speaking the yet undeveloped tongue, the por tion represented by the ancient Peruvians failing-as all non-Aryan races have done-to carry on their linguistic changes to the inflected stage.
The author of the latest comparative study of the dialects of America, Robert Ellis, is quite willing to grant that the Aryans were akin to the ancient Peruvians (all languages pointing more or less clearly to a single original source), but not that they were next of kin. "The American nations, considered as a whole." he says (Pধruxia Scythica, page 3, and the Iberian and Turanian nations on the shores of the Aryans in this respect." In other words the Quichua lan guage is a highly developed representative of the American family of languages, and these as a whole are more nearly related to the Iberian and Turanian languages than to the Aryan. Indeed the Americans, the Iberians, and the Turanians aryan. Indeed the Amerim as branches of one race--Rask's "Scy thians."
Evidence of the close relationship of the Quichua languag with the other dialects of America is found in their numerals Comparing them again with the numerals of Africa, Asia, and Europe, the nearest parallels are found among the Turanians (Tungusians, Samoyeds, Turks, Chinese, Siamese, Malays, etc.), and the Iberians (Circassians, Georgians, Basques, etc.) The Aryan and Semitic parallels are more remote. "The Quichua numerals," says Mr. Ellis, "plainly connect the
ancient Peruvians with he nations of the old world, their ancient Peruvians cially those of the yellow race."
The same is learned from a comparison of the personal pronouns of these different peeples; and similar testimony is borne by the parallels existing in American and Turanian languages between the forms of words for man,woman, head, hair eye, nose, mouth, tongue, ear, hand, foot, bone, blood, sun, moon, star, sky, day, night, tree, stone, egg, bind, fish, ant, etc., words sure to be found in every language, however
primitive, and of such common use that they are little likely primitive, and of such common use that they are little likely
to be lost or changed in course of centuries. The inference drawn from a comparison of this class of words, as found in dialects of every race and every part of the world, is that the ancestors of the Iberians, the Turanians, and the Americans were more closely united to each other, by race and speech, than either of them were to the Aryans, the Semites, or the Negroes. In other words any tribe of Indians is more directly related to the Chinese than these are to the Hindoos: more nearly rela
neighbors.
Supported as it is by much evidence drawn from the stores of archæology, architecture, national customs, etc., this testimony of comparative philology seems worthy of a good deal of credit. If future researches sustain it, our fast decaying Indians might boast-if they were able to appreciate he honor-of family ties of no mean order: with Etruria of old; with the mighty Empire of Gengis Khan in Marco Polo's
day: with China and the rising empire of Japan in our own day: with China and the rising empire of Japan in our own times.

AMATEUR ENGINEERING.

An effect of the widening use of steam machinery is that it tends to raise up a multitude of men who-trusting rather o that familiarity which breeds contempt than to the practical knowledge of the nature and properties of steam which
every trustworthy engineer must have-are ever willing, if not eager, to step into the engineer's berth. They have seen an engine run, day in and day out. Perhaps they have helped occasionally to run one. At any rate, they have worked about an engine a good deal; and as the engineer does not impress them as a man of remarkable ability, they do not see why anybody cannot do as well as he. At least, they re confident that they can, and, in case of emergency, are When the emergency arises, employers are too apt to give such amateur engineers a chance to try their hand. The actual engineer is called off suddenly, is sick, or otherwise kept from his post. Somebody must take his place or every body must stop work. What shall be done?
Dick is handy. Not a regular engineer, to be sure, still a bright fellow who knows an engine well enough to keep it unning if all goes right; and the particular engine, the engineer says, is in such good condition that it will almost un itself. So Dick is called in and the gap is filled. Some imes the engineer is away longer than was anticipated sometimes he never comes back. Dick has done well so far he has gained some experience in caring for the engine; and if he is willing and modest in his charges-on course, he
won't expect a full fledged engineer's pay at first-his sud den promotion is likely to be a permanent one. He may turn out equal to every emergency : then, again, he may not.
It is not long since a case of the kind resulted, in our bar bor, in the blowing-up of a crowded ferry boat. There was a terrible list of killed and wounded; and Dick (an illiterate negro) was returned to his proper place as dtck hand or fire man. It was criminal, in the first place, to let him step out of it.

But a few weeks since an English manufactory was blown up, killing several workmen. The regular engineer was absent, sick; and the substitute, who succeeded in making such a mess with things, was one of the workmen, promoted for the occasion on the strength of his pretended ability to run an engine-ability gained from observation, apparently, since his engineering education was but the slightest, and his practice as limited as it was disastrous.
With characteristic deference to the rights of property, the coroner's jury in this case modestly suggested that, in fature, the proprietors of the works would do well not to trust their boilers with any one in whose capacity they had not perfect confidence
In a leading family paper we saw, the other day, a well written story, telling "How Tom became an Engineer," Tom was of the genus loafer: specific habitat, a country railway station. The hight of his ambition was to run an engine. A commonplace lad would have gone to work in a locomotive shop, or, more modestly, would have begun by shoveling coal as fireman. Not so Tom. He was to be engineer or nothing. So he loafed about the station, watch ing his opportunity. His time came with a smash-up on the road, a relief train called for, and no engineer at hand. Of course Tom volunteered, was accepted, and performed his task with the élan of all great geniuses. Equally of course he was thereupon made master of an engine, and speedily rose to be president of as many railways as if his name had been 'I'om Scott.
The moral of the story is plain, and very encouraging to all boys given to loafing about railway stations. It is sig nificant, too, of a prevalent belief that the art of managing an engine comes, like Dogberry's reading and writing-by nature. Such a belief, however covert, cannot prevail to any extent without frequent occasion for putting it into practice. With regard to the entrusting of boilers to incom petent amateurs, we have evidence for believing it far too common. The wouder is that more explosions do not occur and the risk of serious accident from this source is likely to continue just so long as presumption and general smartness are allowed to take the place, even temporarily, of technical skill gained through patient and studious apprenticeship.
Steam is a clever giant, an obliging servant; but, like al giants, it will not stand fooling, and is obedient only when under the hand of a master.

TEASPOONFULS.

Everybody knows that cookery book recipes are rarely exact. They say what they do not mean, and do not say what they do; and in the majority of cases, leave no smal amount to be interpolated or understood by the wisdom of the user. To them is to be ascribed such standards of measure as the teacupful, and the teaspoonful or tablespoon ful; and occasionally the exasperating pennyworth or hand ful. So long as the cookery originators keep these stand ards to themselves-esven if they must, in their multitu ards to themselves-even if they must, in their multitu-
dinous publications, inflict them on the unfortunate house wife-we shall not complain, because we are used to it; but is it not about time that some one's voice was lifted up in condemnation of the tablespoon and teaspoon being measure n physicians' prescriptions? Will some M.D. give us his dea of a teaspoonful? "A drachm," he will probably in form us. Then why not write drachm on the prescription Because every one has teaspoons, and few have drachm measures, perhaps? See how absurd this is. We took cc casion recently to ask a large silver ware dealer how many sizes of teaspoons were made. He could not answer us definitely, but he supposed more than a dozen. He showed us four teaspoons, of which one was fully twice the size of the other. One held fully a drachm and a half, the other per haps two thirds of a drachm. These variations were in easpoons known as teaspoons to the trade. When we con ider that every thing smaller than a tablespoon, from a moderate sized dessert to the smallest coffee or berry spoon, is known to the average housewife as a teaspoon, th hances of still further variations are greatly increased Again, the sizes of the spoons follow closely the prevailing ashions. At present, the style is large; fifteen years ago, it went to the other extreme. Consequently, a recipe in an old book which talks about teaspoonfuls is certainly unrelia ble now.
A manslaughter case came before a coroner's jury in Eng and recently, on this very point. The prescription gave irections to give a child a teaspoonful of a drug of which small quantity would not ordinarily be deadly. A big tea poonful, probably half as much again as was contemplated by the prescriber, was administered, and the child died. Tl jury took these facts into consideration, and found a verdic accordingly, which absolved the person who followed the directions of the prescription from blame.
It is a very easy thing to abolish this arbitrary standard since a simple and very excellent substitute is found in apothecaries marking the sides of their phials in drachms, etc., as they now do theirglass measures. This might easily be done by projections on the glass, made during the shap ing of the bottle. Then the patient can have the exac a mount given to him in a teaspoon of any kind, shape, size or paitern.

PROPORTIONS OF BOILERS

A common question, among the many that are sent to us, is as follows: " What are the dimensions of a boiler suitable for an engine of a given horse power?" It is impossible to answer this question generally, from the fact that the economy of engines of different design varies so greatly. Thus, while a large engine of the most approved form may produce an indicated horse power with a consumption of 15 lbs . of steam per hour, it is not uncommon to see engines which require many times this amount. When the amount of steam required, however, is known, it is possible to give approzimate figures for the dimensions of a boiler that will evapo rate this amount of water, and an approximate estimate can also be made of the quantity of steam which will be required for any particular style of engine. We propose, in this article to consider these questions in detail, and give plain rules, which will doubtless be of interest to very many of our readers. The data upon which these rules have been constructed are taken from the most reliable records at our command, and give the results of average performance, so that very good bollers will do much better than is indicated by the rules, and some few will fall below this standard. This, however, is to be expected from any general rules for cases of this nature.
A. Dimensions suitable for a boiler which is required to have a given evaporation
(a) To ascertain the grate surface, in square feet: Divide the number of pounds of water to be evaporated per hour, from and at 212°, by 75 , for cylinder boilers; by 77 , for flue boilers ; by 78, for tubular boilers; by 80, for locomotive and vertical boilers.
Evaporation " from and at 212^{*} ", siцnifies evaporation at Evaporation "from and at 2 and of 212°. This is assumed as a convenient standard, since in practice the pressures at which evaporation takes place and the temperatures of the feed water are quite variable. Two tables are appended, by the aid of which the necessary re-
ductions can readily be made. The second table is taken ductions can readily be made. 'The second table is taken
from Professor Rankine's "Treatise on the Steam Engine." from Professor Rankine's "Treatise on the Steam Engin

Pressure	$\xrightarrow{\text { Temperature }}$ Fanrenheit.	Pressure by gage.	Temperature Fahrenlheit.
0	212°	110	$344{ }^{\circ}$
10	239°	120	$350{ }^{\circ}$
20	$250{ }^{\circ}$	130	$356{ }^{\circ}$
30	274	140	$361{ }^{\circ}$
40	287°	150	$366{ }^{\circ}$
00	$298{ }^{\circ}$	160	370°
(6)	307°	170	375°
80	$316{ }^{\circ}$	180	379°
80	324°	190	$384{ }^{\circ}$
90	$331{ }^{\circ}$	200	388°
100	$338{ }^{\circ}$		

TABLE II.-FACTORS OF EVAPORATION.

	Temperature of the feed water.										
of the steam.	: ${ }^{5}$										
2120.	$1 \cdot 191$	$1 \cdot 171$	1.15	$1 \cdot 13$	$1 \cdot 11$	110	1.08	1.06	. 44		2
$230 \cdot$	$1 \cdot 211$	1181	1.16	$1 \cdot 14$	$1 \cdot 12$	1.10	$1 \cdot 03$	1.06	1.04	1.0	1
2484.......	1201	1.18	1116	$1 \cdot 14$	$1 \cdot 13$	1.11	1.09	1.07	$1 \cdot 0$	1.0	1.
266°	$1 \cdot 21$	$1 \cdot 19$	1 H	. 15	13	$1 \cdot 1$	$1 \cdot 0$	1.07			
2840	$1 \cdot 11$	1201	1.18	1.16	$1 \cdot 14$	$1 \cdot 12$	$1 \cdot 10$	1.08	1.06	1.0	4
3020	1921	$1 \% 01$	1.18	$1 \cdot 16$	1.14	$1 \cdot 12$	$1 \cdot 11$	$1 \cdot 09$	1.0		
:20.	$1 \cdot 221$	$1 \cdot 91$	1119	$1 \cdot 18$	$1 \cdot 15$	1.13	1.11	1.09	1.07		
\%358	12:3 1	$1 \cdot 21$	119	$1 \cdot 17$	$1 \cdot 15$	114	$1 \cdot 12$	1111	1.08	1.6	
336	$1 \cdot 31$	$1 \cdot 221$	$1 \cdot 20$	113	$1 \cdot 16$	1.14	$1 \cdot 12$	$1 \cdot 10$	1.08	1.0	
$374 \cdot$	1241	$1 \% 1$	120	$1 \cdot 18$	1.17	115	$1 \cdot 13$	$1 \cdot 11$	1.09	$1 \cdot 0$	
	1.24	1×31	1 1\%1	$1 \cdot 19$	$1 \cdot 17$	115	113	$1 \cdot 11$			
	125	1×3	1×2	120		1.16	1.14		$1 \cdot 10$	1.0	81.0

T'he following examples will illustrate the use of thes tables
If a boiler evaporates $8 \frac{1 b s}{}$. of water per lb . of coal, the steam pressure being 150 lbs ., and the temperature of the fuel water 120°, what is the equivalent evaporation from and at 212° ? The temperature of the steam is 366°. According to table II., the factor of evaporation is about $1 \cdot 15$ (u-ing the temperature of steam and feed water in the table, nearest to from 212° is 1.15 times $8 \frac{1}{2}$, or about $9 \frac{8}{10} \mathrm{lbs}$. of water per lb . from of coal.

Suppose that a cylinder boiler is to be proportioned for an evaporation of 500 lbs . of water per hour, at a pressure of 75 lbs. , the temperature of the feed water being 80°. The equivalent evaporation will be $1 \cdot 17$ times 500 , or 585 lbs . and the grate surface 585 divided by 75 , or $7 \frac{8}{10}$ square feet.
(b) To ascertain the heating surface in square feet: Multi ply the grate surface by 11 , for cylinder boilers; by 17 , for thue borlers; by 30 , for tubular, locomotive, and vertical boilers.
(c) To ascertain the cross section of flues or tubes in square feet: Multiply the grate surface by $0 \cdot 134$. This is an aver age value for good practice, and it can be varied betw limits of $0 \cdot 125$ and $0 \cdot 143$, as may be most convenien
(d) To ascertain the length of boiler: Cylinder boilers should be from 10 to 12 times the diameter; flue boilers, from 5 to 6 times the diameter; tubular boilers, and shells of locomotive and vertical boilers, from 3 to $3 \frac{1}{2}$ times the diameter
There is very great variation from these figures in prac tice; but the numbers given above represent the most gene ral limits, so far as they can conveniently be classified. There are some other proportions which are of interest, such as area over bridge wall, and size of chimney. These may be given in a future article treating of the setting of boilers. B. To ascertain the quantity of water that must be evapo rated to supply an engine of a given horse power
[In determining this quantity, the computations are made for small engines, such as were considered in the article on "The Power of Small Engines," page 33 of our current
volume; and in the use of the term "horse power," the effective power that can be exerted to produce useful work, and from which the power required to overcome the fr
of the engine has been deducted, is to be understoud.] Multiply the number expressing the horse power of the iven engine by the amount of water required per hour for one horse power, as given in the accompanying table:

Pressure or steam in gage.	Pounds of water per horse power per hour.	Pressure of steam in gage.	Pounds of water per horse power per hour
10	118	60	75
15	111	70	71
20	105	80	68
25	100	90	65
30	93	100	63
40	84	120	61
50	79	150	58

The following example calls for the application of all the oregoing rules
What are the dimensions of a tubular boiler for an engine that is to develop $4 \frac{1}{2}$ horse power, with a steam pres sure of 100 lbs ., the temperature of the feed water being 160° ?

The equivalent evaporation required pes horse power per hour is $1 \cdot 1$ times 63 , or $69 \frac{3}{10} \mathrm{lbs}$. The total equivalent evaporation is $4 \frac{1}{2}$ times $69 \frac{3}{10}$, or about 312 lbs . Hence the rate surface, being the quotient arising from dividing 312 by 78, is 4 square feet. The heating surface is 30 times 4 r 120 square feet.
The cross section of the tubes should be about 0.536 square feet (4 times $0 \cdot 134$), or it should vary between the limit.
$0.5(4$ times $0 \cdot 125)$ and $0.572(4$ times $0 \cdot 143)$ square feet.

SUSPENDED ANIMATION AS A PRESERVING AGENT.

Among the many experiments which have been made in order to discover some way of preserving fresh meat for an indefinite period of time, none have as yet been conducted, so far as we are aware, with the object of finding out how to keep the flesh other than in a dead state, to preserve, in other words, the living animal itself. A rather anomalous suggestion, the reader may say to himself, for will not the mere presence of life answer that end: Certainly, we reply if the animal be fed and cared for, and that is not the question. The problem we set out with is: How can we box up an ox, for example, in the narrowest space, strike him into the hold of a vessel, pile other boxes of oxen on top of him like bales of goods, nail down the hatches, and transport like bales of goods, nail down the hatches, and transpor
our bovine cargo for a hundred days' voyage, and at the expiration of that time take out our animals, kill them, an proceed to eat them up.
In all original investigations, there is but one source for answers to our questions, and that is Mother Nature. What hints, then, will that venerable dame accord, which seem to bear on our subject.and through which at some time perhaps a clue may be found leading to a solution? Three: first, the power which some animals have of rendering their natural prey utterly insensible for an indefinite period; second, the peculiar effect of cold on some of the lower animals, which reduces them to a state not death, nor yet the ordinary to pidity caused by low temperature in other otganisms; third ibernation. We propose to consider, briefly, each in turn.
There abounds in this country a peculiar species of wasp koown as the "digger." The male insect does no work, bu the female does the double duty of bearing offspring and providing for its wants. She begins by boring a hole in a clay bank, in order to form a nest, and then sets out on hunt for the peculiar spider or other insect which forms her atural prey. Pouncing upon her victim, she pricks it very ently with her formidable sting. No sooner is the wound made than the assailed insect falls paralyzed; even the great tarantula succumbs as quickly as the tiniest spider. Seizing the apparently inanimate body, the digger flies off to her nest, therein deposits it, and, renewing her hunt, captures ictim after victim, until a sufficient supply is secured to feed one of her larvæ to maturity. Then she deposits he egg amorg the bodies, seals up the nest, sets to work on new hole and a new hunt, and thus she continues until he tock of eggs is exhausted. In course of time the larve oft white maggots, appear; but before they are ready to form cocoons, several weeks must elapse, during which time thei nourishment must be fresh meat. It has doubtless already been divined how beautifully Nature provides for this want,
for were the captured insects shut up in the nest dead, they for were the captured insects shut up in the nest dead, they would speedily putrefy and be unfit for their purpose. Kep natural condition indefinitely, or until eaten by the maggot and this is the effect of the digger's sting. The wasp admin isters a hypodermic injection of something-some virus, per haps, which paralyzes the brain and its sensory ganglia, while the spinal system remains awake. Nature suggests to as a definite question to be put to her, through the chemist and physiologist, namely : What substance, injected hypoder ically into the veins of an ox or sheep will reduce mal to the state of the digger's prey? What will produc complete anæsthesia, to last as long as we choose, withou
causing death or injury? causing death or injury?
To pass to the second
To pass to the second hint: Dr. Grusselbake, Professor of Chemistry in the University of Upsala, Sweden, has suc ceeded, we are told by a foreign scientific contemporary, in so treating a little serpent, by cold, that the reptile, to all appearances, becomes dead, and as stiff and as rigid as
stone. By rubbing it, however, with some stimulating substance, the reptile revives and becomes as lively as when captured over ten years ago. Now, this is not the effect of ibernation, for, as will be seen bolow, there is an entire absence of irritability -nor yet is it identical with the tor-
pidity produced by cold. It is a state difficult to explain, and is the same as that of several species of fish which, if completely congealed, die; but yet, when frozen stifi, pos sess sufficient vital action in the circulatory organs to ensure their revivification when thawed in warm water. What the condition is remains to be seen; and such an examination would lead us to tue thought of whether there is not a point at which the higher animals may be brought to the same state. If there is, then can it be attained by the skillful use of chemical freezing mixtures in lieu of ice: Or, if an ox cannot thus be reduced, can he be rendered actually torpid by cold:

Lastly, we have to deal with the phenomenon of hiberna tion, or that peculiar lethargy into which certain animal fall, principally during winter. During this period no nutri ment is required; the blood-making processes cease; respi ration is very nearly or entirely suspended; the heart beat regularly, but the circulation is very slow; the blood, from the absence of respiration, is entirely venous. The muscu lar irritability of the left ventricie, highly increased, how ever, permits it to contract under the weak stimulus of the non-oxygenated blood: and it is this exaltation of a single vital property which preserves the animal life. Sensation and volition are quiescent. Respiration is, however, quickly excited by irritating the animal, and the call of hunger and the warmth of returning warm weather will cause a cessa tion of the lethargy. Hibernation is, however, not due to cold, since the tenrec, a nocturnal insectivorous mammal passes three of the hottest months in the year in that condi tion; and the hedgehog, the dormouse, and the bat hiberhate regularly every twe ty-four hours. The influence of cold is due only to its tendency to produce sleep, to which state of the body hibernation is closely allied, differing only in degree. Most animals lay up a store of fat under the skin, which is slowly absorbed during the lethargy.
Whether it is open to discovery to find a way of making brutes hibernate, when that state is not peculiar to them, is question difficult to consider in view of the little that is known regarding the trance condition in any organized being. It is a wise law of Nature which provides for the animal in easons when its food is hard to oltain, or is absent alto ether: and it is perhaps akin to that merciful interposition of insensibility which relieves the human being at instants of acute suffering
Perhaps, some day, some one will find solutiens to the ques ions suggested above. Perhaps we shall transport not merely living brutes, but living men. Imagine a military transport hip, with the soldiers stored in tiers with the beef and pork barrels. Perhaps Poe's sarcastic prediction, that the time will come when, sick of the turmoils and troubles of life in he nineteenth century, we will step across the street to our physician, and have our animation suspended, say for a hun red years or so, waking up in a new era, will, at some future period, be realized. 'There was a story once of an ancient German being found frozen in the snows of the arctic regions ; and, on being thawed, his life returned. Another apocryphal yarn engendered the item in the papers that a live mastodon, preserved in the ice of Siberia since primeval days, had melted out and was roaming the wilder ess of that country. Will these be realized? Edmond bout's desiccated man with the broken ear and Poe's re ived mummy, are fancies absurd enough; but if we eve succeed in suspending sensation and volition at will in the animals next below us in the scale of creation, it is but a ste

SCIENTIFIC AND PRACTICAL INFORMATION

bees in the united states.

The California Agriculturist says: There are two million bee hives in the United States. Every hive yields, on an average, a little over twenty-two pounds of honey. The verage price at which honey is sold is twenty-five cents a pound; so that, after paying their own board, the bees pre ent us with a revenue of $\$ 8,000,000$. To reckon in anothe way, they make a cleargift of over a pound of pure boney overy man, woman, and child in the vast domain of the United States. Over twenty-three and one third million pounds of wax are made and given to us by these industri ous workers. The keeping of bees is one of the most pro fitable investments that our people can make of their money The profits arising on the sale of surplus honey averag rom fifty to two hundred per cent on the capital invested. cement for teeth.
A recipe for a new kind of cement for plugging hollow teeth is published by Ostermeier, as follows: 7 parts burnt lime and 16 parts glacial phosphoric acid are mixed together and pressed into the cavity, which has already been careful ly dried.
photographic diagnois
Dr. Ultzmann, teacher at the University of Vienna, lately read a paper before the Medical Society of Lower Austria, n the " Use of Photography in Medical Studies." He mentioned, on the authority of Dr. Vogel, that an eruption of mall pox had been made evident by photography twentyour hours before it actually came out. Although no one could as yet observe anything on the skin of the patient, he negative plate showed stains on the face which perfectly resembled the variolous exanthem, and twenty-four hours afterward the eruption became clearly evident.

THE California orange crop of last season, received at San rancisco, was the largest ever produced in the State and mounted to $5,280,000$, principally grown in Los Avgelos ket are over $10,000,000$, of which $5,000,000$ are ingorted from Tahiti and Mexico

UNIVERSAL FIELD INSTRUMENT The instrument illustrated in our engravings, designed by Mr. R. Jahns, and manufactured by Messrs. Smith and Hän soh, of Berlin,Germany, is intended for the solution of all prob lems on the field in surveying and leveling; horizontal and lems on the field in surveying and leveling;
vertical points being fixed at one observation, vertical points being fixed at one observation
and recorded on any desired scale, upon an and recorded on any desired scale, upon an
index plate. In addition to the instrument index plate. In addition to the instrument
itself, shown in Figs. 2 and 3, a plane table itself, shown in Figs. 2 and 3, a plane table
and signal staff are necessary. Two marks, z and y, are placed on the staff, the distance apart depending upon the scale to which the indications on the instrument are to be made

The construction is based on the two follow ing equations: $\mathrm{C}: c=\mathrm{E}: e$, and $\mathrm{H}: h=\mathrm{E}: e$ The values of these letters will be under stood by reference to Fig. 1. In this figure a^{1} represents the indications on the plane ta ble of a point, $a ; x$ is the horizontal projection of a point, y, the position of which is the of a point, y, the position of which is the distance, H, above $x^{1} ; c$ is a length in the
instrument itself; C the distance between and y on the staff, as already mentioned A and y on the staff, as already mentioned. A specialty in the instrument is that the verti cal portion, shown in Fig. 1 by $i b$, is, when
the instrument is adjusted for the points, z the instrument is adjusted for the points, z
and y, always parallel to that line, therefore and y, always parallel to that line, therefore an extension, d, of $i b$, corresponds to x^{1} in the extension of $z h$. The hight, H, represented in the instrument by h, can either be read from a scale or measured off.
To adjust the instrument it must first be set horizontally on the plane table by means of the screws, A and B (Fig. 2), the levels, E and E^{1}, being used for this purpese, the small screw, A, carrying a point at the end, being run out until the point at the end enters the table, and round this the instrument can be turned. The vertical frame, S S, is then shift ed to the end of the bar, X, and until the small slide, v, is out of contact with the inner surface of F and K. The slide, V, car ries upon it, connected by a small lever, K, the constant length piece, c, of the instrument, and which is formed of a steel plate. If P, Fig. 1, represents the point of which
the horizontal and vertical positions are to be ascertained, the staff is placed vertically over this point. The screw, G, Fig. 2, is then turned until the guides, F and K , are quite closed, that is, until the steel edges, with which the guides are provided, are in contact. The telescope is mounted on F in such a manner that its optical axis is parallel to the steel edge. By manipulating the coarse and fine screws, N and N^{1}, the bars, F and K , and with them the te lescope, are raised until the cross wires coincide with the point, y, in which case the steel straight edge forms the upper side, $a i$, of the angle, D , and the base of angle, A , Fig. 1. Before and after each observation, the horizontality of the instrument should be verified by the spirit levels. By means of the screw, G, the telescope is set to the point, z, and in this position the steel straight edge and the optical axis coincide with the upper side of the angle, A, Fig. 1, while the straight, K , has retained its former position. By these operations the angles, D and A, are measured

Fig. 1

The frame, S S, is then run back, until the small steel plate, i, and the lever, R (which is always kept against it by means of a light spring, as shown in Fig. 3), come in contact with the straight edges. Care must be taken, in order to secure accurate results, that the pieces, i and R , only touch the steel edges, but are not pressed against them. When in this position the frame, $S S$, is clamped to the guide bar x this position the frame, S S, is clamped to the guide bar, x, by means of the set screw, V. On reference to Fig. 3, it will be seen that the lever, R, is extended in front of the frame,
$S S$, and a similar extension forms a part of the slide, V, S S, and a similar extension forms a part of the slide, V, and the ends of both these pieces have a line marked across them horizontally. When fixed, as before mentioned, a fine adjustment for the frame, SS, cau be made by means of a micrometer, U , and by this adjustment the lines on the ends of the pieces, R and V , can be brought into coincidence. Then the upper edge of $\mathrm{X} r$ will represent the position of the point, b, Fig. 1, and the lower edge of i, that of point, i, in Fig. 1, corresponding to the points, z and y. The instrument may now be checked for its horizontal adjustment ; and if this be found correct, the head, P , of the spring pointer may be depressed, and will make a mark on the paper upon the plane table. The hight of the point, y is found by means of the vernier, t, on the vertical scale of S S, In ascertaining the hight of a point, two cases may b. dered: either the hight above a given datum line has to be ascertained, or the hight of a point above the common horizon has to be found

JAHN'S UNIVERSAL SURVEYING INSTRUMENT.-Fig. 2

In the first case it is only necessary to read the hight upon |responding with the figures 6.75 . By this adjustment the e scale after each observation. To illustrate the second instrument is set to the required scale, and hights of points we will take an example. Let the hight of the fixed point recorded are read off without any calculation. The figure be 386.75 feet; the scale on theinstrument has to be adjusted $\quad 3$ (of the quantity 386.75) is added to the readings so long as as follows. The staff has to be placed over the fixed point $|$| the hights exceed 300 feet. |
| :--- | :--- |

In ascertaining the differences in hight be tween two stations, it is necessary to ascertain the hight of the horizon of the instrument on the scale, Y. To do this, the steel edges of F and K are brought into contact, and these edge are adjusted horizontally by means of the spi rit levels on the telescope, Fig. 2. The stee edge, F , is then lifted, and the scales on th frame, S S, are used as already explained ; and when i is in contact with the steel edge, K , the reading on the scale gives the horizon of the axis of the instrument. In measuring dif ferences of hight with reference to a point al ready given, the situation plan is attached to the plane table, and the instrument is place n the plan in such a manner that the point d is exactly over the given point a point, d, scope is then set to given point, a. The tele to y, the frame, $\mathbf{S} \mathbf{S}$, is shifted with its point P , over the corresponding point on the plan, the slide, V , with the piece, i, is set in contac with the steel edge, K, and the hight can then be read off the scale, Y Y.
Special advantages are claimed for this in strument in preparing geological surveys, as by the same observation hights and distances can be recorded; and when a sufficient number of theso have been laid down, strata lines can be piotted upon the field. For making transverse sections, it also affords special facilities, as the vertical hights, $y^{1} y^{2}$, are indicated on the ta be in horizontal distancescorespon th el distances, thus avoiding the necessit of readings from the scale. The hights can afterwards be measured and written upon their espective lines.
If employed as an ordinary leveling instru ment, no plane table is necessary, and it may bo screwed upon a tripod and adjusted in th ordinary manner. The arrangement is such as has been already described, that any desired on the ground, and the situation of this point is recorded by scales can be employed, the conditions regulating the em
the instrument as described, and marked on the paper by P the frame, SS, being fixed to the guide bar, X. The scale shown in Fig. 3 are then sbifted by means of the screw, L,

until, by using the scale, Z (for fifths and tenths), the read ing 6.75 appears. The revolving scale, W , is then turned until the figure 8 appears adjacent to the scale, z, and coinciding with the bottom line of the division on the scale cor
ployment of these scales being as follows: 1, the distance apart of the marks on the staff, and 2 , the distance between the upper edge of the lever, V , and the bottom edge of the plate, i, when R is in such a position that the mark in fron lines with the fixed mark on the slide, V . In the ratio e $\mathrm{E}=c: \mathrm{C}$ the various parts may be adjusted to suit differ ent conditions: but it is advisable, to insure accuracy, to keep C as large as possible, because the greater the angle of sight the more certainty there is of accurate measurement. The most commonly used scales are supplied with the instru ment, and the subjoined table gives the corresponding distances between the marks on the staff:

Scale.	Length of Constant (millimeter $=0: 39$ inch).	Distance apart of Signal Marks on Staff in meters (meter $=39^{-3}$ inches).
1: 200	15	3
1: 200	25	5
1: 500	10	5
1. 500	5	2.5
1: 1000	5	5
1: 2000	2.5	5

In changing the scales, all parts already described, which are connected with the slide, V , must be changed, and a new cale inserted in the frame, S
Both of the signal marks on the staff are adjustable, and are keptin the desired position by means of set screws. The degree of accuracy obtained with this instrument is stated to be quite sufficient for all practical purposes; and if the observer works with care, remarkable precision is obtained. The greatest source of error is caused by wear of the piece, c but this can be corrected by making allowance for the same in the distance between the marks on the staff.

Wind Instruments.

Dr. Burg, a French physician, has published a little book in which he endeavors to controvert, by reference to his own observations and personal experience, the notion commonly entertained that the use of wind instruments is injurious to individuals characterized by pectoral weakness. He remarks " Many philanthropists, on seeing our young military musi cians wield enormous wind instruments, have sorrowed over the few years the poor fellows have to live. Well, they are mistaken. All the men whose business it is to try the wind instruments made at the various factories before sending them off for sale are, without exception, free from pulmonary affections. I have known many who on entering on this call ing were very delicate, and who, nevertheless, though their duty obliged them to blow for hours together, enjoyed per fect health after a certain time. I am myself an instance of this. My mother died of consumption,eight children of hers fell victims to the same disease, and only three of us sur-vive-and we all three play wind instruments. The day is not far distant, perhaps, when physicians will have recourse to our dreaded art in order to conquer pulmonary diseases."

Bats are said to be inveterate enemies to mosquitoes. A gentleman in New Albany, Ind., it is said, keeps a bat in his bedroom during the season, to protect him from these pests

NEW TIDE AND RIVER GAGES.

The study of the variations of level of the ocean, and also of the rises and falls of rivers, canals, and streams, is an important adjunct of meteorological science, and is constantly followed in all countries in which regular observations of the weather and like natural phenomena have been established. We represent in the annexed engra vings, for which we are indebted to $L a N a$ ture, two new registering devices, one termed the maregraph, designed for tide measurements, the other the fluviograph, intended ments, the other the fluviograph, intended for similar examination of river and canal
levels. levels.
The maregraph (Fig. 1) is operated by an endless cord which connects with a float loendless cord which connects with a float 1o-
cated in a suitable reservoir, into which the cated in a suitable reservoir, into which the
sea water enters. The changes of level of the water are registered on a large horizontal cylinder which is rotated by clock mechanism once in 24 hours. The cylinder is covered with a sheet of paper, changed fortnightly or monthly, and which is divided into longitudinal divisions, giving, on a reduced scale, the hights of the tides in meters and centimeters. A carriage, mounted on rollers upon a steel rule above the cylinder, carries a pencil, which is pressed anst cil, spring. The carriage communicates by an endless cord with a small grooved wheel mounted on the shaft of the larger wheel
which receives the motion of the float prewiously referred to.
On a third wheel, of medium diameter, is wonnd a cord, which is drawn by a weight in an opposite direction to that of the cord of the float. When, therefore, the float rises, the effect of the weight is to remove the shaft so as to take up the slack of the cord so that the latter is always kept taut. The pencil carriage is similarly actuated, and traces on the cylinder a mark of which the extremity is the maximum hight of the water. If the level is constant, the carriage remains motionless, and the pencil traces on the cylinder a line parallel to the transverse divisions

THE FLUVIOGRAPH.-Fig. 2
A dial placed above the mechanism shows the hour, and at the same time serves to regulate the changing of the pa- tu
per, and to indicate the moment at which the apparatus should be started on its daily motion. An electric indicator serves to give warning of any desired level being reached by the water. The indicator is movable, and is set on a spe cial rod on the rule at the point corresponding to the hight of water to be denoted. When the carriage, on reaching that

THE MAREGRAPH.-Fig. 1 sound a bell.
The fluviograph (Fig. 2) is more compact in form than the instrument just described, owing to the cylinder being placed horizontally. By mechanism very similar to that of the mare raph, it registers, on marked paper, variations of level of th water, which, on a canal, may be used to indicate the passa ges of boats through locks. It also has an electric attach ment for indicating certain levels, and also may be used as a watchman's time detector, by locking the door of the case and causing the watchman to press a button which makes a mark on the paper on certan divisions corresponding to the hours shown by the clock above. This apparatus has been successfully tested. It doubtless would prove valuable as a means of showing coming floods, and giving timely warning of the same.

IMPROVED FRICTION METER.
A friction meter and oil tester has recently been invented by Mr. Napier. This is a very delicate and accurate instru-

ment for ascertaining the lubricating properties of any ma terial. The illustration above shows the general arrange ment of these machines. The block, A, is pressed against the periphery of the wheel by an arm, C, which is a segment of a roller, balanced and pivoted on the short arm of the bell crank, D D, the long end of which is connected by a link to the lever, F , which has a weight, E , on the outer end of it; and a chain connects the friction block, A, to a spring ba lance. The wheel is to be made to turn to the right at an desired velocity of circumference by means of a band from lathe or otherwise, when the friction of the whee on the friction block will tend to carry the latter along with the friction block will tend to carry the latter along with the
former; but it is prevented from doing so by the chain to former; but it is prevented from doing so by the chain to
the spring balance, whichindicates the amount of the tendency of the block to move along the wheel, or, in other words the total amount of friction on the rubbing surface.
In the best work, slates are secured by copper nails. Iron nails dipped in boiled oil to prevent their corroding may be used. The nails should have large heads, thin and flat, so that they may not prevent the slates from lying close. Every slateshould be secured with two nails; and in fastening, care should be taken not to bend or strain the slates, or they will crack and fly under sudden changes of temperature

CAPTAIN WEBB'S GREAT SWIMMING FEAT.

We have already chronicled Captain Webb's second at empt to swim across the British Channel, which was suc essful, being probably the greatest feat ever accomplished y a swimmer; and we publish herewith a portrait of the ero, and a chart showing the course of both attem The following facts are taken from Th Field:

On the first occasion, when Webb left the ater (see chart), he had been swimming hours, 38 minutes, and 30 seconds, and had gone over $13 \frac{1}{2}$ miles of ground, and had been arried $9 \frac{8}{4}$ miles to the eastward of his cours by the N. E. stream. On his successful voy ge, he started 34 hours before high water which gavehim $1 \frac{8}{4}$ hours of the S. W. stream wherein he made $1 \frac{1}{2}$ miles of westing ; $5 \frac{1}{8}$ hours N. E. stream caused him to make 8 miles easting; $7 \frac{1}{2}$ hours S.W. stream took him $2 \frac{1}{2}$ miles to the westward of his course and 7 hours N.E. stream drifted him $7 \frac{1}{4}$ mile to the eastward. It will thus be seen that he occupied three tides, in addition to $1 \frac{8}{4}$ hour S.W. stream at starting, and about $\frac{8}{4}$ hour slack water at the finish under Calais pier which protected him from the $\mathrm{S} . \mathrm{W}$. stream hen just beginning to ebb. His point of ning was 211 miles distant and f dil 201 miles. ground swum over was $39 \frac{1}{2}$ miles. Boy , ins sures in 1 hour 33 minutes 9 miles of ground in 1 hur 10 minutes long r than Webb took to swim 10 miles further As a performance of pluck and endurance Boyton's is completely put in the shade b Webb's, though, on the score of utility, both may be placed on a par, as Boyton's suits ar too expensive and require too much stowag oom to come into general use, while swim mers of Webb's physique and courage wil ever be rarce aves. Boyton took repeated rests on the occa sion of his firsteattempt, although only 15 hours in the water hile Webb hardly rested at all, in fact never for more than minute or two at a time, and that only while treading wate o take refreshment.

CAPTAIN MATTHEW WEBB
Captain Webb is eminently a salt water swimmer. He progressed with a slow and steady breast stroke, on an ave. rage of twenty to the minute throughout, which would wake him take about twenty-six thousand strokes during the $21 \frac{8}{4}$ hours. He possesses marvelous power in the legs and loins, while at the end of each stroke the soles of his feet emerg out of water. In fact, he altogether swims very high in the water, and his style would delight an Eton swimming master. The most extraordinary part of the feat is that the swimmer never complained of want of blood circulation

CHART OF CAPTAIN WEBB'S COURSE
even at the last, after 21 hours immersion, but only of drow siness from want of sleep and fatigue from prolonged ex
ertion. As regards immunity from cold, we think the well-: rubbed-in porpoise oil was not without good effect, as the sailors who helped him into the carriage on Calais Sands described him as feeling like a lump of cold tallow, and they themselves got lubricated with the remains of the oil Whether his heart and physique are in any way specially adapted to stand such long immersions can only be ascertained by יnedical examination.
Matthew Webb was born at Irongate, Shropshire, England, on January 19, 1848, and was therefore just over twenty-seven years and seven months of age when he started. He is 5 en years and seven months of age when he started. He is 5
feet 8 inches high, measures 43 inches round the chest, and weighs about 203 lbs. He learnt to swim at seven years of age. In 1870 he dived under a ship--whereon he was rated -in the Suez Canal, and cleared a foul hawser. On April 23, 1873, when serving on board the Cunard steamer Russia he leapt overboard to save the life of a hand who had fallen from aloft while the watch was taking in second reef int opsails, the ship being then running free under all press of steam and canvas. Of course it was a long time before she could be brought hoad to wind and a boat lowered. However, Webb was saved with difficulty, after having been upwards of half an hour in the water, although he failed to rescue his shipmate, who was probably stunned, and sank at once. A subscription of $\$ 500$ was collected for him on board, and he received three medals. When he first went to Dover to train for the present event, he successfully swam out to the N. E. Varne Buoy-mure than half way acrossby way of a feeler. The only things he suffered from, after his recent great feat, were an excoriated neck from constant ly turning his head to protect a weak eve from the waves, and inflamed eyes from the salt.
In his training Captain Webb wisely took long and steady exercise in preference to sharp work. Being naturally a quiet and moderate liver, this came more easily to him, and very long walks, alternated with a three or four hours' swim, were the chief order of the day. In fact, when he dived, h was anything but a highly trained athlete in the usual ac ceptation of the term.

Wharespaticmict.

What is the Electric Force?

To the Editor of the Scientific American
In continuing the explanation of my views on this subject, commenced by me on page 196 of your current volume, allow me to say
In the point of sound force, we have accurately deter mined the number of vibrations of matter per second necessary to the production of acertain sound; in that of light force, we have approximately estimated the number of vibritions, waves, or molecular motions per second necessary to the production of the various colors. In the point of heat force, we have determined that it exists in a certain violent molecular motion; and in the point of electric force, we
have determined that it also exists in a certain molecular have determined that it also exists in a certain molecular
motion. And I may here mention, as being one of the strongest proofs, the fact that a current transmitted through a bar of iron will not disturb it, the fact that a cur rent transmitted around it will not disturb it, and the fact that a current transmitted simultaneously through it and which wild cause it to twist in a very appres fore sisted of molecular motion. If we were in possession of no other proof that the idea of a fluid flowing through an elec tric wire is a myth, we might easily be assured of it by the fact that molecular motion alone is the necessary condition of all other forces. This motion, heyond doubt, varies in intensity and form in different forces, but that it is the one condition of force there can be no doubt: and that the only difference between the forces is the difference between mole cular actions may be accepted as a truism. To my mind the force of attraction of gravitation, and perhaps the more re markable orbital motions of the planets, are forces to which the electric force bears no comparison. The electric force in fact, is no more mysterious than is and a bell is rung in by the molecular transmission over or through the bell wire of the force applied at the cord, does not one realize that he is as veritably, as wonderfully, and by a sim ilar molecular motion, transmitting that signal as though he were transmitting it by applying a battery to a telegraph wire and thus setting the atomic particles in motion? Can not one realize that, if there are bells at different places upon
a long wire, the nearest bell will ring first and the most dis tant last? But no one would speak of a subtle fluid a the cause of the ringing, although there is just as much sub tle fluid passing over the bell wire as there is when a tele graph operator in New York makes a signal in Chicago by applying the ba distant places.
As in this force, so in electricity, nothing flows through the wire. There is, in fact, the most striking analogy between the molecular transmission of electricity and the and more rigid the lever, the larger and firmer the belt, the larger the tube for water or air, the better the transmission of the forces applied. The larger the conducting wire, the more perfect the transmission of the electric force: becaus the larger conductor we have, the more perfect must be the
molecular motion.
We are now brought to consideration of one of the mos important facts bearing upon the question of molecular mo tion and the theory of a subtle fluid. The force of the elec tric eurrent is as the square of the distance or length of the
conductor. A battery is a constant generator of electric
force. These are our premises, and itt is not difficult to unforce. These are our premises, and i.t is not difficult to un-
derstand that if, as according to the subtle tluid theory, a wire have a certain capacity to hold that fluid, just as a tube has a certain capacity to hold a liquid, it cannot matter what the resist of the wire may be. It is welle of the diametric amount of metal. Tberefore, in considering the electri3 force as a fluid, we are bound to consider the wire as voir for that fluid. Now an immense quantity of electricity passes over a very small wire in a certain period of time
and a wire $\frac{7}{8}$ of an inch in diameter, the battery being and a wire $\frac{1}{8}$ of an inch in diameter, the battery being o
proper dimensions, will charge a condenser up to a certain point in one half the time that a wire of less diameter, composed of $\frac{1}{2}$ the diametric amount of metal will charge it, and in one fourth the time that a wire composed of one fourth the diametric amount of metal will charge it; but the small est wire will charge it to its full capacity as well as the longest wire, merely requiring more time in proportion. There fore, if a battery be attached tor a wire 100 miles in length, the subtle fluid theory would, as soon as the battery should have sufficiently charged the wire, make it necessar that the strength of the electric force in the 100 mile
wire should be as great as though the wire were but a mile or a few feet, even, in length. This statement caunot be or a few feet,

Very far from this, however, is the case. We may hav our battery upon the wire for any length of time, and w shall find that the force of the electric current still varies a the square of the length of the wire. This, alone, utterly
disproves the theory that, in transmitting a signal by tele graph, the wire is charged by a subtle fluid, and proves be yond doubt that the action of the battery is to impart a cer ain force to the atomic particles of the conducter, which act each in turn, upon the next and the next, losing force in ach successive action, just as we behold every day in the operation of all the forces surrounding us, as, for instance the ripples occasioned by the dropping of a pebble into a still pond, widening and widening and decreasing in force and intensity as the square of the distance. In the molecula action, there must be a loss of force every time one atomi particle imparts the electric force to another. This we know is the case. According to the subtle fluid theory, this could not be the case
Again, if we can prove, as in the case of light, that one transparent substance will transmit certain rays of light and not others, we prove that the transmission of the light force
is due to molecular action, that the light force itself, in fact is due to molecular action, that the light force itself, in fact,
is a cortain molecular action. This will be conceded; and I is a certain molecular action. This will be conceded; and I
suppose I need not at this point endeavor to prove that such uppose I need not at this point endeavor to prove that such
is the case, as the facts have been set forth by students in this line of science, among them Professor Tyndall, in fa weightier terms than I am able to command. The one and only deduction to be made from the results attained is that certain atomic conditions are necessary to the transmission of certain forces, and that certain substances are incapable of assuming the atomic conditions necessary to the transmission of certain forces. The same general law holds good in re pect of the electric force
Without entering into all details of the subject, it may be asserted that the very fact that one metal is a better conduc or of electricity than another proves conclusively that th propagation of the electric force is dependent upon the atom c structure of the metals; that as its propagation is depend ont upon this atomic structure, the propagation of the elec ric force is by the atomic or molecular action of the metals and that as this is true, so the electric force is a certain mole cular action. The conductivity of the metals is expressed by their resistance, the metal offering the least resistance to the propagation of the electric force being the best conduc or. Thus with the resistance of silver expressed as 107 he resistance of quicksilver is 5,550 , the latter metal, which almost without tenuity of the atomic particles, being the poorer conductor, as would inevitably be the case under the molecular theory, and so would not be the case upon any ther hypothesis. There are other causes, however, for th difference in the conductivity of different metals. Heat, w know, is a violent molecular motion. The electric force, be ing or consisting of a certain molecular action, should there ore be disturbed by the molecular action which constitute heat; and we find that the resistance of a metal to the pro pagation of the electric force is increased by increase of tem perature in the metal. The violence of the molecular ac tion which is the electric force must be apparent to any one who witnesses the wonderful deflagrating effects of that orce. Intense, we know, is the molecular action which con titutes heat; and it is a remarkable fact, as pointed out by Forbes, that the order of the metals as regards their cnn ductivity for heat is the same as their order in conductivity f the electric force
I will conclude the present article with one more argumen in proof of the assertion that electricity is nothing more no less than a certain condition of the atomic particles of mat-
The majority of the readers of the Scientific Americai have doubtless witnessed the discharge of electricity from duction coil. They have beheld the brilliant sparks, an very many are cognizant of the fact that every spark is particle of the metal of the discharging point heated to tha state necessary to the production of the light witnessed The electric light is not something which has passed ove or through the wire, or something partaking of the natur many metals which may compose the wire, but it is con fined in kind to the properties of the metal composing the
discharging point. Thus of platinum, silver, iron, copper,o which the discharging points may be composed, each gives its own peculiar light, no matter of what metal the greater length of the conducting wire may be composed: as, for in stance, we may transmit the electric force through a hundred miles of copper or iron wire, and finally, when we get the discharge, it passes through a film of platinum ${ }_{1} \frac{1}{\pi} \overline{0} \sigma$ of an inch in thickness: but we get the same result in the kind of light produced as though the whole of the wire were platinum. Yet the electric force is the same no matter of what the conductor raay be composed ; and no reasoning can account for the projection of a flaming atom of matter from the discharging points, oftentimes with force sufficient to penetrate a piece of glass several inches in thickness, be ond the theory of intense molecular action.
The simple fact that the electric light which we witness is composed of the atomic particles of the conductor, heated to the state in which we observe them, and projected or follow ing from the mass of the conductor, from one electrode to another (atomic particles which we know never have passed through the conducting wire, but have existed at and are wearing off from the terminal alone), proves beyond doub that nothing that we witness in electrical phenomena ha passed over the conducting wire in the sense of a current that as this force is manifested at the distant end of the con ductor in the shape of projected atomic particles of matter it is clear that the electric force is a certain intensely activ condition of the molecules of matter, which activity is se p by the violent action of acids upon metals or chemicals by heat, or by friction, and transferred from one atom to an other with inconcei vable rapidity; and that as no heat can exist except by combustion or by friction (unless imparted heat, which is itself sustained by combustion or friction) the voltaic arc, the most intense heat, which is not sustaine by combustion bat exists in all its intensity in a vacuum, can only be the result of friction; and inasmuch as the mas of the metal is not subjected to friction, the friction can only xist in a violent action of the atomic particles of the metal. Knowledge is of two kinds, positive and negative, namely that which we know is, and that which we know must be because it can be nothing else. It is more by the negative than by the positive reasoning that we can determine the nature of electricity. Deschanel, recognizing the crudities of the electric fluid theories, said of the positive and nega ve currents. "It is conceivable that the two ectricities, instead of being two kinds of matter, may be two kinds of ootion, or in some other way may be opposite states of on and the same substance." The reasoning by which we es tablish the verity of this conception is both positive and negative, and the reasoning of analogy.
Washington, D. C

on.

To the Editor of the Scientific American:

On August 28, a terrific explosion took place at the works of the Milburn Wagon Company at this place, under the following circumstances: The shop is cleared of shavings by a system of pipes and pneumatic fans. The magazine as located in the boiler room, and was about 25×10 feet and 28 feet high. Near the top of the magazine was a 20 nch sleet iron pipe leading into the main chimney stack, and immediately under it was a second one, similar in a respects. These were used to take the fine dust out of the magazine. Six feet below them were four 12 inch pipes eading in to the furnaces, and entering under the grate bars, These had valves to them, and were mostly kept closed The works were running at the time of the occurrence; and a fire had just been put in, and the door closed, when it " kicked," as the term is, and an explosion took place in the magazine, which completely wrecked the boiler room and magazine, tearing the roof off and blowing the wall down Fortunately no one was injured.
This should be a warning to wood workers not to have direct communication between shaving magazines and fur naces, if fans are used, as few understand the explosiv ature of the fine dust from woodworking machines.
Toledo, Ohio.
'j oledo.
[We are exceedingly obliged for this note. We have often seen miniature explosions of the kind described by our corespondent, but have very seldom seen an account of one
so violent. Our correspondent is deserving of great credit for the clear explanation which he has given.-EDs]

The Solar Chronometer.

To the Editor of the Scientific American:
It may be interesting to your American readers to know that the solar chronometer illustrated in your issue of Sepember 11 was invented by one of their number.
In 1868 I invented the sameinstrument, though in a slight y different form, and applied for a patent. The claim was rejected on the ground that the invention was not new. The "equation curve," which I constructed, was identical with the one illustrated, and was constructed as follows: A meridian is assumed as the axis of abscissas, and the equator as the axis of ordinates, theirintersection being the origin of the curve. The sine of the sun's longitude is the abscissa and the equation of time is the ordinate for the corresponding point of the curve. The plus and minus signs to the equation of time project the curve on opposites of the axif of abscissas: but as the ordinates for two opposite points, in wo opposite quadrants of longitude, are not equal, the curve is not symmetrical, though it is nearly so. Instead of read ing the time on the meridian line, as in the ordinary dial, the ime is read on the curve, at a point indicated by the declination of the san shining through the lens. The reading,
being commenced at any point, is followed in retrograde or der, from the right and over to the left, the curve being com pleted in one year. The time thus read is equated time. But all the elements that go to make up the equation of time are not considered in the construction of the curve, so the time is not strictly equated. though it is nearly so.
Moreover, the curve is not constant in its form; so that a dial, being made for one date, is not correct for a subsequent date, the error accumulating with time. This results from the fact that the equation of time depends on two elements, that have a relative motion with each other. That depending on the eccentricity of the earth's orbit runs forward in regard to longitude, while that depending on the obliquity of the earth's orbit with the earth's axis follows the line of equinox backwards in regard to longitude, these elements forming a complete revolution with regard to each other in about twenty thousand years or more. But as one of these elements has two zero points, or places where the equation of time is 0 , and the other has four such points, and as in the course of one revolution each zero point of each element comes to or coincides with each zero point of the other element, we have eight oscillations of the equation of time in one of the revolutions, that is to say, in about 250 years the dial above referred to will have accumulated error to the amount of about thirty-four minutes of time.
Ferrysburg, Mich.
h. C. Pearsons.

Ancient Human Remains in Texas

To the Editor of the Scientific American:
Some eight miles distant from this place, while digging a well at a depth of thirty-six feet, a quantity of human bones were found. They were imbedded in a yellowish dry dust, which presented the appearance of decomposed bones and flesh. On digging further down, the bed was found to be twenty feet thick, bones occurring at intervals through the whole depth. Just below this stratum, and fifty-six feet from the surface, water was found in soft quicksand. The parties, not desiring to drink water from such a well, sunk another, about eighty yards distant from the first, with precisely similar discoveries. At thirty-six feet deep were found the bones they continued for twenty feet, and then water was found in the quicksand.
A thigh bone, a breast bone (half petrified), a jaw bone (with one tooth still in it) and a foot with all the bones complete, lying in position to show that they had not been disturbed since the flesh was decomposed, were found and taken out, also fragments of broken earthenware, without inscription or pictures.
The thirty-six feet of earth first gone through were clay and sand ; and the position is on a hill, estimated to be 400 or 500 feet above the sea.
Whence came this tremendous deposit, and to what age did the bones belong? By what means were they so engulfed?

Hantsville, Walker county, Texas. W. T.Robrnson.

The Supply of Gutta Percha.

To the Editor of the Scientific American :
I wish to call your attention to an item in your issue of July 3, which states that " gutta percha and india rubber are brought hither chiefly from Brazil and Columbia." For the past eighteen years, nearly all the gutta percha coming to this country has passed through our house ; and instead of its being " brought here chiefly from Brazil and Columbia," not a particle has ever come from those sources. In fact the only region of production thus far discovered is the East India Islands, in the immediate vicinity of Singapore.
Gutta percha is wholly unlike rubber, the former being non-elastic as compared with rubber; although it is very plastic, and is readily worked into a variety of forms by means of hot water or steam. The principal uses to which gutta percha has been put, of late years, is for insulating telegraph cables, and for cementing. The total consump sion of the United States is now comparatively insignificant, England quite monopolizing the cable business.
India rubber, on the contrary is collected in localities all around the globe.between the tropics, the best quality being found along the Amazon river and its tributaries. Brazil annually produces about $14,000,000 \mathrm{lbs}$. and the Central American States, Africa, and the East Indies together about $15,000,000 \mathrm{lbs}$. The consumption is about equally divided between the United States and Furope.
Bost in, Mass.
George A. Alden.

Repairing the Independence Bell.

To the Editor of the Scientific American:
I think that I can suggest an improvement upon the method of Mr. Charles Smith, described in the Scientific Americ in of September 11. I would follow his suggestions in cutting out the piece represented by the dotted lines. Then I would mold the bell with the side to be repaired upwards, placing under the cavity a piece of material that would not fuse at any heat that the job might require.
I would arrange a large receptacle or cavity in the sand a the mouth of the bell, for a large amount of surplus molten metal to fill. I would melt an abundant quantity of bell metal, as nearly similar in composition to that which the bell is composed of (the proportions can be ascertained by analysis). I would build on to the bell (around the cavity to be filled) with some infusible material, like plumbago, so that the metal could be cast above the surface, say half an inch or more. I would arrange material at the mouth of the bell, so as to close the channel and stop the flow of molten metal a little below the lower edge of the bell. I would fuse the metal, and heat it to a very high degree, then pour the
cavity full of molten metal, keeping a steady flow out until the sides of the recess were seen to be in a molten state then I would instantly close the channel and stop the flow, when a perfect union would be made.
The recess could be superheated with a gas blowpipe flame, and the molten metal poured into it. Then the surplus metal could be removed, and the bell peal forth as clearly as in 1776.
I had a piece united to a broken press in the same manner, and it is a perfect union, with all the strength of solid cast ron, as it was before the break
Beaver Falls, Pa.
J. E. Fmerson.

A New Small steam Boiler.

To the Editor of the Scientific American:
For the benefit of amateur steamboat builders, I send a drawing of a boiler that has given the utmost satisfaction, being cheap and strong:

A is a lamp, with burners enough to heat the whole length of the boiler, which is of copper. The outer cover is of tin and half an inch space should be left all round, between the boiler and the cover, to make a draft, which will find its exit through smoke pipe, B. C is a steam drum surmounted by a safety valve, and D the steam pipe. The oil or spirits in the lamp can be protected from heat by coating the upper urface of the lamp with plaster of Paris.
For an engine 1 inch by 1 inch, the boiler should be 9 nches long. and 4 inches wide
A. M. Binfo. Scarborough, N. Y.

Repairing the independence Bell

To the Editor of the Scientific American:
There is another way to mend the independence bell, of which Mr. Cbarles Smith speaks in your issue of September 11

I saw in a foundery a cast iron wheel, laying on its side the rim of which was broken in cooling; the ends were apart about $\frac{1}{4}$ inch. It was mended by placing a fire tile on the inside and on the outside of the rim, over the fracture. Sand was banked around the tiles, and a space made for pouring in hot metal; at the bottom was a small hole to allow the metal to run out. When all was ready, the pouring of hot metal through the fracture began, and continued a short time until the broken ends began to melt; the small hole at the bottom was then closed, and the fracture was filled On examination, the joint proved good. Perhaps the bell can be repaired in the same way
Dayton, Ohio.
J. H. B.

Effect of Magnetism on Watches.

To the Editor of the Scientific American:
A few weeks ago my watch, for the first time in ten years efused to go. Up to then, it had kept correct time, and was then in good repair, having been recently cleaned When it first began to stop I would start it by the key, and it would sometimes run a day : but finally it stopped entirely had it carefully examined by an expert, who, although he could find no cause, failed to make it run even for an hour. I am running at my works a powerful magneto electric machine for depositing copper; and having noticed that I could magnetize a piece of soft iron at a distance of at least six feet from the machine, so that it would lift and support the weight of a large nail, I became impressed with the idea that some of the steel parts of my watch had become permanently magnetized ; so I made a watch repairer take it apart Having some fine soft iron filings, I dipped the balance wheel, escapement wheel, lever, and hair spring into the fil ings; and each piece raised up at least one half its own weigh of the filings, showing all the polar characteristics of the particles.
I have read of watches being spoiled by magnets, but had no idea that it was unsafe to go into a room containing magnet.
The watchmaker thought he might "brush it off" for about a dollar: I let him brush on it three days as a lesson in magnetism, and then told him that nothing short of heating it red hot would demagnetize it. He put in new parts, including a new mainspring, which was also infected, and watch now runs as well as ever
496 Cherry street, New York city.
I. B. Fuller.

Terrestrial Magnetism.
To the Editor of the Scientific American:
In an article entitled "Terrestrial Magnetism" on page 164 of our current volume, I notice a statement which may mislead, and beg leave to correct it. That the earth is no a great magnet, but that the phenomena of the magnetic needle are due to the electric earth currents which flow at right angles to the earth's axes." These two statements are contradictory "The earth is a great magnet, and th
phenomena of the magnetic needle," etc., is the way it ought to have been put. For all our most recent knowledge tends to confirm Ampère's theory that a magnet is merely a closed circuit of electric currents acting parallel and in same direction, and not necessarily a mass of iron, nickel, or cobalt. So that the earth, being surrounded by such currents, is as much a magnet as the magnetic needle. I. B. M
Hoboken, N. J.

or the Scientific American.
 number II.

Deduction of a formula for the production, in hanks and lbs., of any weighted roller, the diameter of roller and it revolutions per minute being known.
Let $D=$ diameter of roller in inches
Let $R=$ number of revolutions per minute.
Let $\mathrm{S}=$ decimal hank of sliver per lb .
Then: $3 \cdot 1416 \mathrm{D}=$ production in inches per revolation
$3 \cdot 1416 \mathrm{I}$ R $=$
minute.
$60 \times 3 \cdot 1416 \mathrm{D} R=188 \cdot 496 \mathrm{D} \mathrm{R}=$ production in inc es per hour.
The hank measures 30,240 inches :
$\frac{188 \cdot 496 \mathrm{D} \mathrm{K}}{30.240}=$
of hank per hour ; and for different times,
$0.03739 \mathrm{D} \mathrm{R}=$ hanks per 6 hours' work.
$0.04363 \mathrm{D} \mathrm{R}=$
$0.04986 \mathrm{D} \mathrm{R}=$
0.05600 D R=
0.06233 D R=

Application of the formula:
Suppose a drawing frame, whose front roll is $1 \frac{8}{8}$ inches in ciameter, makes 275 revolutions per minute: required the number of hanks produced in 8 hours of efficient work?
The 8 hour formula is 0.04986 D R .
Substituting their values for D and R, $0.04986 \times 1.375 \times 275$ $=18.85$ hanks of sliver produced in 8 hours of efficient work, and to find the number of pounds that should be produced, of hank sliver, under conditions specified :

$\frac{0.04986 \times 1 \cdot 375 \times 275}{0 \cdot 125}=\frac{1885}{0 \cdot 125}=150-8$ thas.

of $\frac{1}{8}$ hank sliver produced in 8 hours' work under conditions specified.
The formula may be used to indicate the number of revolutions required to produce any required length or weight of any desired sliver. Take for example the 8 hour formula and suppose that
$\mathrm{D}=1 \frac{\mathrm{~g}}{8}$ inches ($=1 \cdot 375$)
$\mathrm{S}=\frac{1}{8}$ hank per lb. $(=0.125)$.
$\mathrm{S}=\frac{1}{8}$ hank per
Time $=8$ hours.
R to be ascertained by formula.
Length 18.85 hanks ; then, by substitution, we have $0.04986 \times 1.375 \times \mathrm{R}=18.85$, and $0.06855 \mathrm{R}=18.85$, and

$$
\mathrm{R}=\frac{18.85}{0.06855}=
$$

o produce 18.85 hanks in 8 hours.
Again: Suppose the same conditions, but that 150.8 lbs . of $\frac{1}{8}$ hank sliver are required, instead of 18.85 hanks as above; then $\frac{0.04986 \times 1.375 \times \mathrm{R}}{0.125}=150.8 \mathrm{lbs}$. , and $0.06855 \mathrm{R}=150.8$ $\times 0.125=18.85$, whence $R=\frac{18.85}{0.06855}=275$ revolutions re. quired.
Again: To show a convenient application of the formula, suppose that the calendar rolls of a finishing lap machine are 8 inches in diameter, and that $1,500 \mathrm{lbs}$. of lap, weighing lb. per yard, are wanted in 8 hours' work. To find the number of revolutions of calendar roll required:
The decimal hank of the lap will be (for 呆 lb. per yard) 001587, so that
$\mathbf{S}=0.001587$,
$\mathrm{D}=8$,
$\mathrm{R}=$ to be ascertained by formula.
By applying these values to the 8 hour formula, we have $0 \cdot 04986 \times 8 \times \mathrm{R}$
$\frac{0.001587}{}=1,500$, and $0.39888 \mathrm{R}=1,500 \times 0.001587$ -
$2 \cdot 3805$; whence $\mathrm{R}=\frac{2 \cdot 3805}{0 \cdot 001587}=5 \cdot 967+$ revolutions of calendar roll required, say, 6 revolutions per minute.

Proof by another method:

1, $2-12$ inches per foot
1, 2, 14-840 yards per hank $0 \cdot 001587$ hank per lb.

Revolutions per minute, 6-1. Inches diameter of roll, 8-4. Ratio, $\left\{\begin{array}{l}3 \cdot 1416-0.4488 \\ 0.2244 .0 .0748 \\ 0\end{array}\right.$ Minutes per hour, $60-1$ Hours' work, 8.

$\frac{4 \times 0.0748 \times 8}{0.001587}=1,508 \mathrm{lbs}$. lap, 㝵 lb . per yard made in 8 hours,

 he roll being 8 inches in diameter, and making 6 revolutions per minute. Forwards.The largest reflecting telescope at the Paris Observatory is completed, although it will not be brought into use for two or three months. The equilibrium of the tube is perfect, and it can be directed with the utmost facility on any part of the heavens, although it weighs about six tuns.

A comparative trial of the relative advantages of dynamite, gun cotton, and gunpowder was recently made at the railway tunnel works under Clifton Down, England, with the esult of showing that dynamite is much saperior to either gun cotton or gunpowder.

IMPROVED ELLIPSOGRAPH
We illustrate herewith a new and useful instrument for raftsmen, by means of which any figure, from a circle to a very flat ellipse, can be accurately and quickly described. At A are parallel rods, carrying a carriage, B, through which passes the main axis, C, to which is fastened the drawing arm, passes the main axis, C , to which is fastened the drawing arm,
D , with a head for the pencil or pen point, secured by a D , with a head for the pencil or pe
binding screw. The head slides to any desired point on the arm, and is likewise secured by a binding screw. The crank arm, E, passes through the head of the main axis, and also, by a set screw, may be secured in any position. The crosshead, F, fits the crank arm, and carries the parallel motion rods, G, which are secured to steady pins on the frame There are center points by which the machine is set over any desired line upon which the ellipse is to be drawn.
It operates as follows: The center points are placed upon the minor axis the pen point is set at the extremity of the major axis, and fastened. The arm, D, is then turned to the mino axis, or 90°, and the pen point is set at its extremity, by means of the arm and by sliding the carriage upon the parallel rods. The crank arm is then clamped. By turning the crank, the point will describe the desired ellipse. It carries the pen at right angles to the drawing bar, so that i will draw an ink line as well as pencil line.
Samples of the work of this ma chine, which have been transmitted for our inspection, show that the fig. ures are perfectly drawn

For further particulars address
Messrs. Wi L. Bramhall and W. W. Johnson, 607 Seventh; the mouth of which may then be closed as above directed street, Washington, D. C.

IMPROVED RAILWAY TIE.

The invention illustrated herewith is a new iron railway crosstie, intended to replace the wooden tie usually employed. It is claimed to offer the advantages of permanence and indestructibility, and therefore to be much more economical than wood, the renewal of which, owing to its rapid deterioration, is a constant and large source of expense. A perspective view of the track secured in the tie is shown in Fig. 1, and a sectional view of the device is given in Fig. 2 The body of the tie is made of a rolled iron girder of T cross section. It is proposed to cut the girders as they come from the rolls, while hot, and to stamp the lugs, A, at the same handling. It will be seen from Fig. 2 that these lugs, A, overlap the inner base flange of the rail, while the out side flanges are retained by the adjustable clamps, B. The tapering plates or wedges, C, pass under, and are guided and held by the bent lugs, D, and, by being driven in ward, are tightened against clamps, B. The wedges are serrated on one edge, to preven their tendency to work out through jolts and jars. In order to protect the tie against the weather, while still warm the are immersed in a bath of melted asphal or other weatherproof substance.

The device shows strength, and apparent y is neither difficult nor costly to manufac ture. It would probably resist wear, and is as easily laid as a wooden tie.

Patented through the Scientific American Patent Agency, May 11, 1875. For further information address the inventor, Mr. Henry Reese,209 W. Pratt street, Baltimore, Ma.

The Weather Glass.

In compliance with the repeated request of some of our me teorologically inclined correspondents, we publish below instructions for the construction of the so-called chemical barometer or weather glass. The utility of this little instru ment is based upon the varying solubility of certain salts under different atmospheric conditions of pressure, humidity, and temperature, and the employment of a menstruum of such a density that the siightest increase or decrease of the same will cause the newly formed crystals to rise or sink in the liquid. The instrument generally consists of a tube from ten or twelve inches long, and from three quarters to one inch in diameter. It is closed at the lower end, and, after the solution has been poured in, the upper end is drawn out, by means of a spirit lamp or blowpipe, until the tube is hermetically sealed. When cooled, the point is broken off in such a maner that minute hole is left, which suffict in the tube and thernal a tube and the external atmosphere. Another arrangemen consists of a large test tube with a piece of bladder or caout chouc tied over the mouth, and a small pinhole made through this covering; this arrangement, however, is not so satisfac tory as the first, as the covering does not last very long The solution may be made as follows: Take pure nitrate of potash (saltpeter) and chloride of ammonium (sal ammoniac) each 1 part, camphor 4 parts, strong alcohol 70 parts, dis

Fig. 1

Fig. 2

Reese's railway tie
and the whole allowed to cool very slowly.
The indications that this little instrument gives are of thi nature: If the atmosphere be dry and the weather promis ing, the solid matter will be found resting on the bottom of the tube, the supernatant liquid being perfectly clear; but on the approach of rain or wind, the solid matter will gradually rise, and small crystals of stellar formation will be found floating in the otherwise pellucid liquid. On the approach of strong winds, flakes of feather-like form will sometimes appear on the surface of the liquid; this often occurs several hours before the actual breaking out of the storm. In cold white stars constantly floating in it. The instruments are pretty ornaments, and their indications are al ways interes ug and instructive.

FLEURY'S EUREKA WEATHERSTRIP
The invention illustrated herewith is an improved wea

therstrip, which"may be adjusted to suit any depression worn
illed water 50 parts. Shake the alcohol and water well together, and dissolve in it the saltpeter and sal ammoniac, hen, after having reduced the camphor by triturating it in a mortar with a few drops of the dilute spirit, add it to the rest f the solution, and the solution, and heat gently over a water bath until com-
in the door sill. It consists of flexible tubing, A, Fig. 2, made of rubber, felt,or similar material, through which runs metal rod, B, the object of which is to keep the tubing in position. Metal fastenings, C, have a hook at one end which fits around the rod, and an eye at the other end, by which they are secured by screws or other simple means to the bot tom of the door, as represented in Fig. 1. The strip, by bending, may be fitted to any depression in the sill, so as entirely to fill up the opening between the sil and door when the latter is shut, thus preventing the ingress of either wind or water.
The door, by its weight, on being shut, draws the rubber against the threshold, and on opening the drag ging of the rubber across the threshhold is prevented. The iron rod is made just the length of the door. The rubber tubing extendsover one inch a each end, and rests against the casing. The device is quite durable, is neat in appearance, and may be manufac tured at a small cost
Patented July 27, 1875. For further particulars relative to sale of rights o of entire patent, address the inventor, Mr. Frank Fleury, Springfield, Ill.

Ah Chu and his Salt

B. writes as follows:
'Where is your salt, Ah Chu ?' said I. Ah Chu had invited me to dine a his mess, to celebrate a Chinese festi val, and, barring the chopsticks and some national dishes, which I did no some national dishes, which I did no venture upon, a capital dinnerit was Ah Chu and his messmates were work
ing on a sugar plantation below New ing on a sugar plantation below New Orleans. Ah Chu passed a bottle with a quill fitted in the cork. 'Vinegar? said I. 'No; here is the vinegar,' said he, passing me bottle exactly like the first. 'Me thought you asky for salt.' 'Salt it was,' said I. 'Well,' said Ah Chu, 'tha is the salt me gave you first." And sure enough it was; sal dissolved in water and used in a fluid state. 'So,' says Ah Chu, ' table salt is served in Cbina.'
'For convenience of application, and exactness with which he seasoning can be regulated, give me liquid salt."

A Model Locomotive

An ingenious mechanical curiosity has recently been shown us by its maker, Mr. Joseph Butcher, of 43 Center street this city. It is a miniature locomotive and tender, containing every portion found in the full sized machine, perfectly proportioned capable of carrying a steam pressure of 75 lbs. to the square inch, and of running at high rate of speed. An alcohol lamp, which by its heat, generates an alcohol steam, which, in turn, is ignited under the boiler, heats the latter, which is supplied with water by feed pumps, perfect in everyvalve and connection. No less than 230 separate pieces enter into the construction of the cab alone. The model is admirable in mechanical execution, and strange to say, is its maker's first effort at me chanical work, and has occupied his leisur hours, outside his regular trade of ornamen tal painting, for the past three years. The engine shows remarkable skill both in design and handiwork, and evinces the great patience and native mechanical genius of its construc tor, who first made the tools he used in con structing his machine

Velocity--Effects of its Increase and

Mr. F. J. Bramwell, C. E.,in a paper read at weather the liquid is rendered milky by the multitude of the recent meeting of the British Association, said

Gravity can put into our frames a velocity in one second amounting to 20 miles an hour without injury, there fore it is reasonable to suppose that that velocity may be taken out at the rate of two and a quarter miles pe second with even less risk of injury; and if we want a proof of this, one might instance a swing at a fair. Take the cas of a swing 30 feet long, rising to the horizontal at each vibration; when the swing is at the lowest point, it ha a velocity of 45 feet per second, or 30 miles; one know it will make this half vibration and will reach its high est point in less than $1 \frac{8}{4}$ seconds, so that a speed of 30 miles an hour is taken out at the rate of nearly 17 mile per second instead of the two and a quarter miles of the pas senger train.
Another instance of rapid reduction of velocity without injury occurs in colliery winding. The Rosebridge Colliery in the neighborhood of Wigan, is nearly half a mile, actu ally 806 yards deep; the winding is done under the minute or at an average rate of thirty miles an hour; but this in cludes the stopping and the starting; the maximum pace is equal to 58 miles an hour,and this 58 miles an hour is brough to rest in from 180 to 200 yards. There is thus, therefore abundant evidence that the powers of brakes may be carrie yet further than they have been without fear of injury to railway passengers from the sudden checking of momentum so long as the brakes are properly applied.

THE CRESTED BLACK KITE.

The gardens of the Zoölogical Society, London, recently received specimens of a very rare Indian kite (the baza loreceived specimens of a very rare Indian kite (the baza lo-
photes of Cuvier). This bird had never been seen alive in photes of Cuvier). This bird had never been seen alive in
England, and even in India is so sparsely distributed that England, and even in India is so sparsely distributed that
Mr. Allan Hume, in his "Rough Notes on Indian Ornithology," states that he has never procured a specimen. Though nowhere common, it appears to have an extended range, being known in Ceylon, on the east coast of India, as well as in Lower Bengal, Assam, and British Burmah. Jerdon, in tish Burmah. Jerdon, in
his " Birds of India," histes that it is certainly states that it is certainly
very rare towards the very rare towards the
south, but that it is occasouth, but that it is occa-
sionally killed at Calcutsionally killed at Calcut-
ta, and is more frequently ta, and is more frequently
found in the lower Eastern Hinualayas. It appears to be very insectivorous in its habits, and keeps to the forests and well wooded districts, taking only shor flights. In its conformation it appears more nearly al lied to the honey buzzard (pernis), of which a crested species exists in India than to any of the other accipitrine birds. The plu mage of the bird is re markably handsome. Th upper portions, including the long slender crest, th thighs, and the under tail and wing coverts, are glossy green black. Th outer webs of the wing feathers-those that are alone visible when the wing is closed-are deep chestnut. The scapula feathers form a scapula feather but but ous but broken white wing band. The under parts of the
bird are chiefly white, with five or six broad bars bird are chiefly white, with five or six broad bars of deep
chestnut. The crest is generally carried in a drooping posicbestnut. The crest is generally carried in a drooping posi-
tion, buc the bird has the power of erecting it perpendicularly. In length the crested kite varies from thirteen to fourteen inches, the extent of its wing being thirty. The weight is about eight ounces. We regret to have to announce the death of all the three specimens almost immediately after they had been sketched.

THE FLORAKIN.

The florakin or lesser bustard (otis tetrax) is found on the plains in many parts of India, and is common in France; in the former country it is esteemed a most de licious bird for the table The male bird, when in full plumage, is very handsome, being most beautifully marked; but the hen is much plainer, as is thecase with nearly all female birds. They are to be found in pairs, and are very shy and wary, and hardly ever take to the wing if they can avoid doing so Wherever florakin are found, sand grouse (pterocles bicinctus), of which we gave an illustration and description on page 407, Vol. XXXII., may be seen. The florakin resembles the large bustard (otis tarda) in his form and color, but is only 17 inches long. The head is reddish brown. the neck of the male being black, with a narrow white border above and below. The upper parts are mot tled with the same colurs, but with finer and more delicate lines. In the barren districts of Brittany (France), known as leslandes, these birds may be seen in considerable num bers; and as the flesh is good eating, and may probably be improved by culture, it is somewhat remarkable that no at tempts have been made to domesticate them.

The exportation of American refined sugar to this side is maintained with unrelaxed energy, and consequently displaces a given quantity of stoved sugar which would be or dinarily supplied from the warehouses of the British refiners. The totalimports since this new and unexpected quarter for
supplies was opened have embraced 7,000 tuns. It reflects no credit upon America, either as regards the act itself or the get-up of the article which she produces. All but the inexperienced, or not over-particular judges of quality and condition, pronounce the cut sugar as shockingly indifferent; and if it is to be viewed as a specimen of the best lump which the Yankee refiner can turn out, and their country

the crested black kite.

The Oldest Fair in the world.
In this season of industrial fairs, when Chicago, Cincinna ti, Newark, New York, and other cities, are all vieing with each other in the production of the finest exhibit of the practical results of the labors of American mechanics and inventors, it is interesting to note that. in a far distant quar ter of the globe, another great fair has been in progress which, in point of magni tude, probably equals al of the yearly expositionsin the United States com bined. The great fair of Nijni-Novgorod, in Rus sia, has quite recently closed its annual displayan exhibition which has been repeated every yea for the past four centuries and the merchants and pro ducers of Siberia, of Per sia, of China, and of Tarta ry have met the manufac turers of Western Russia exchanged their raw pro duce for the manufactured goods of St. Petersburgh Moscow, and the west, and separatedforanothertwelv month. The Fair, in fact, is a vast market, a temporary city, which began with the interchange of commodities between barbarians four hundred years ago at a lo cation some eighty miles distant from Nijni Novgo od. After an existence o two centuries, during which period it absorbed into it se.f minor markets until it became the principal ex change of the en pire, th fair was removed to its pre sent site. Under the rule of Peter the Great, the gor ernment assumed its direc
men are pleased to use, we must frankly assert that we pity |tion, which authority is still retained

No first class family grocer in London-no, nor any folk in decent society-would look at the American loaf sugar as it now comes to hand; and in case our statement should be read by those who, from the nature of their retail trade, find it an article more suitable to sell than that cbopped from bright English titlers, we simply ask them, as they do their friends and customers, to compare and judge for themselves. We need not be in suspense as to the ver dict, for we are sure it will be in favor of the British manufacturer, who, in defiance of envious detractors, is still the refiner par excellence, albeit his functions in that respect have now almost entirely ceased. Unless checkmated by some

American Refined sugar.

THE FLORAKIN OR LESSER BUSTARD.
deliberate or accidental means, the English market will in time be so inundated with sugar of inferior quality, from France and America, that finest loaf and other sugar will eventually become things of the past.-London Grocer.
[If the above statement is correct, if American refined ugars are really inferior to the English article, it behoves our refiners to call upon inventors to study out new methods of refining, by which the best products can be realized at th lowest cost.-EDs.]

The fluidity of the Berlin iron, from which the finest and arpest, although not strongest, castings are made, is at tributed to the presence of arsenic in the iron.

Unlike the colossal and magnificent structures of iron and stone which we erect as the receptacles for our exhibited productions, the buildings of Nijni Novgorod bear a close semblance to the labyrinth of streets and houses which together, make up a Turkish bazaar. There is a broad open market place, rectangular in form, on which are constructed twelve rows of buildings, each some two stories in hight having broad verandahs to shelter the passers from sun and rain. These form parallel streets, some of which are nearly 120 feet in width. At the ends of the principal street, which is the broadest, are the government house and the cathedral on the sides are shops and a chapel, near which are two high towers, the raing lowering of flags on which denote the open which denote the opening or closing of the fair. One side of the buildings rests on the river Volga; the other three are surrounded by a horseshoe - shaped moat, kept filled with water at an elevation o some eighteen fee above the river, as a precaution against fire. The edifices are built on iron stanchions in the majority of cases and all that can be re moved are taken awa the close of the fai A large number of buildings, however, re main, and with remark able strength with stand the great yearly inundation of the river which submerges the whole locality, leaving only the tallest struc tures projecting above the waters, like a mini ature Venice. It is strange contrast; a bus town of 150,000 inhabitants, replete with $200 \mathrm{c}_{\mathrm{s}}$ of every de scription, from American wagons to Persian rugs, existing for about six weeks; and then, a few months later, nothin but a dreary waste of water fills its place. Although the number of visitors at any one time may not exceed 150,000 it is estimated that fully a million people come and go while the fair is in progress, and the value of goods which have actually changed hands during the fair just closed is com puted at $\$ 120,00 C, 000$.
The governor of the province supervises the management aided by a committee chosen by the participants in the fair The committee controls all government property, renting the same at a low rate. There are some curious regulation
as regards oxhibitors, or rather sellers-for people come to
sell then and there for cash-which are worth noting. For sell then and there for cash-which aro worth noting. For
instance, each row of buildings is deroted to some especial instance, each row of buildings is devoted to some especial
kind of goods, and merchants, thus compelled to crowd together, are encouraged to compete with each other. To pre vent monopolies and over-speculation, no merchant is permitted to hire more than three consecutive shops, nor can he occupy more than one shop unless they adjoin each other. No imposts or duties are levied, and the shops are usually let to the first comer, the government asking no other gain than the small rents, which together amount to but about $\$ 120,000$ a year. At the last fair. for this sum 6,086 shops were rented
The contents of the markets are, of course, wonderfully heterogeneous. Machines bearing to us well known names of American firms are side by side with the curious products of Indian and Persian looms. There are furs and skins from Siberia, teas brought overland from China, cutlery from Sheffield, flax, wheat, the importations of the great houses of Moscow and St. Petersburg, and Russian iron, besides thousands of articles representing the chief industries of every nation on earth. There are usually immense amounts of iron, stored on a sandy island in the middle of tho only covered with water at certain seasons, but which not only covered with water at certain seasons, but which
changes its shape every year. It is said that the quantity of changes its shape every year. It is said that the quantity of
iron collected here, in bars and sheets, aggregates 90,000 iron collected here, in bars and sheets, aggregates 90,000
tuns, valued at over $\$ 10,000,000$. In quality it is said to be tuns, valued at over $\$ 10,000,000$. In quality it is said to be
better than Lowmoor, and equal to the best Swedish. A better than Lowmoor, and equal to the best
tramway runs the whole length of the island.
It is difficult to believe that not only are all these vast stores filled and emptied in six weeks, but that the storehouses themselves are removed and that their sills are corered in spring by ten or twelve feet of water. On the occasion of the recent visit of the Duke of Edinburgh to the fair, the iron owners gave an entertainment in his honor, in a huge pavilion constructed entirely of their stock. The were built of bar iron (the bars being laid crosswise over each other, with the ends projecting) and surmounted by battlements, which were represented by iron buckets. The body of the castie was 100 feetlong by 50 feet wide, and was made of sheet iron. Iron buckets and baskets, turned over, made very handsome ornaments around the arches of the doors and windows. The whole structure was completed in three days and three nights.

Common Sense in the Sick Room.

In a lecture delivered at the Bellevue Hospital Medical College, in this city, by A. B. Crosby, M. D., he says: There are certain elements of hygiene which it is very important that we should observe-whether the sick room contains a
surgical or medical case-if we would reasonably expect to surgical or medical case-if we would reasonably expect to
obtain the best possible results from treatment. In the first piace the

temperature

should ordinarily range from 65° to 70° Fah., and this should not be a mere matter of guess work, but should be ascertained by the thermometer. If the temperature is permitted to average much higher than this,all febrile disturbances will very likely be aggravated; and if the average is much lower, the patient in ordinary cases runs some risk of getting a chill, although very many times he may remain with safety in a room having a lower temperature, providing he is furnished with a plentiful supply of blankets.

furniture of the room

The room which is selected for a sick room should be as far removed as possible from those ordinarily occupied by the family, in order that the patient may have the benefit of perfect quiet. It should be large, airy, and well lighted, and, if possible, should have a sunny exposure.
The wall of the sick room is a pretty important matter to the patient. If it is covered with one of those dreadfully variegated papers, which, alas! are regarded as ornamental, any disease in which there is abnormal exaltation of the brain, that it is a source of great annoyance, and may even be positively injurious. For. as his eyes run over these
pictures, he will fancy that he sees images of various kinds, pictures, he will fancy that he sees images of various kinds,
such as angels and demons alternating; indeed these figures will assume every conceivable form, and he becomes thor oughly worried in the attempt to disentangle the confusion.
The paper covering the wall should have a uniform, neutral tint, such as a light green, a delicate buff, or a very delicate slate color, a light green, perhaps, is as agreeable to the eyes as any color that can be selected, and it rests the eyes
with a refreshing monotony. Such a uniform tint tends to healthy stupidity, and this leads to repose. The floor of the apartment should engage your attention.
The model sick room should never be carpeted, but ordinarily should have a hard wood floor, and this should be oiled and varnished. Upon such a floor may be spread as many pieces of carpeting, rugs, and mats as are desirable. These may be placed in front of the bed, over the parts which the nurse traverses while performing his or her duties at the doors, etc. Each morning, these can be quietly slid along the floor, taken out, and be thoroughly shaken and
aired. After they are removed, the floor can be wiped off aired. After they are removed, the floor can be wiped off
with a damp cloth or soft brush, and when dry, the rugs, stc., may be replaced.
The windows should also engage your attention. These should be so arranged as to admit abundance of light. Light
is a normal stimulus to the human body, and we have no good health without it; you cannot grow healthy cabbages
in a dark cellar, nor can you any more easily cure invalids
without the influence of sunlight. There are some acute without the influence of sunlight. There are some acute
diseases, during the progress of which it may be necessary to temper the light, but it should never be entirely shut out, for if you do you remove from the body one of its importan natural stimuli.
The windows should never be surrounded by tapestry or
ecorations of any kind that are made of woolen stuff plain white shade is all that is requisite to temper the light and cut off outside objects from the patient's view, and the window frame should be free from lambrequins, hangings, etc., which
disease

ventilation.

A healthy person requires two thousand cubic feet of breathing space, and the sick person under the same circum stances should have at least three or four thousand cubic feet. Then,again, the sick man should have the air changed twice as frequently as the man in health.
Ventilation requires the introduction and diffusion of an abundance of pure air at short intervals, and a correspond ing removal of the air vitiated by respiration. The mo ment of air in the sick room should be imperceptible.
If the sick room is ventilated by a fireplace, we should always open a window at the top. If the room, on the contrary, is heated by a register, a window should always be raised at the bottom, since the hot air rises to the top of the room, creates a plenum, and so forces the air out at the bot tom. There are three points to be observed in regard to the sick room.
Note, first, whether there is any perceptible odor, on en tering the apartment from the open air; if so, ventilation is imperfect.
Maike sure, in the second place, that there is a free inle and outlet for the air.
And, thirdly, place an open mouthed bottle by the side of he bed at night. In the morning, before there is any opening of doors or windows, or any movements about the room, pour a little clear lime water into the bottle and shake it If the air in the bottle is pure, the lime water will remain clear; but if otherwise, it will become milky in appearance showing carbonic acid in the air, which has united with th lime, forming a white precipitate of the carbonate of lime.

rebparation of gruel.

A man, simply because he is sick, is not to be starved, nor, on the other hand, can a man who is sick, as a rule, take such articles of food as a well man would be likely to take It may be doubtful whether a man, when first taken sick, sould take a large quantity of food, but one of the articles which he may have is Indian gruel, if not made too strong. If, however, you give permission that the patient may have gruel to take, unless you give special directions as to how
it shall be made, you will very commonly find that the nurse has prepared a fair specimen of Indian pudding, and has been administering that for gruel.
In making Indian gruel there should be no more than a dessert or table spoonful of the meal to a quart of water; and this should be boiled for a long time, keeping the quantity of water good throughout the entire boiling process.
Prepared in this manner, it may be made decidedly salt, nd then administered to the patient during the first few days of his sickness.

use of milk.

There is one article of diet which all persons may take under all conditions, and that is milk
There are those who say they cannot take milk, that it makes them bilious, etc.; but that is not true. A person who is sick may take milk with the greatest possible advan tage, because it contains, in a form easy of assimilation, all he elements essential for maintaining nutrition. It is the atural aliment of the young animal, and certainly answer good purpose for the old animal, provided it is used proerly. New milk, I do not hesitate to say, may be taken, as ar as disease is concerned, in any and every condition. Per aps it will require the addition of lime water, if marked acidity of the stomach is present; and perhaps a little gentian may be requisite to stimulate the stomach somewhat; and it may be necessary to give it in small quantities and repeat it often; but ice cold milk can be put into a very irritable stomach, if given in small quantities and at short intervals, with the happiest effects. We have now come to believe, contrary to the teaching of our fathers, that cold water,even ice cold water, is a most beneficial drink, and therefore per mitour patients to have it as often as they may wish, provided too much is not taken at one time.

Now tea, which is a wholesome beverage, and, withal contributes somewhat to scandal, is very comforting, espe cially to a sick woman, and may be given without harm, if it is sufficiently diluted with milk. When maae very weak

- just strong enough to give a flavor-well supplied with -just strong enough to give a flavor-well supplied with of nourishment in a very palatable form.

beef tea.

If, however, you willmake beef tea according to the di ections I now give you, it will be found to be a most ser iceable article among the dietetics of the sick room.
Take a pound of the very best beef that can be obtained in the market-the butcher will tell you that any kind of a piece answers to make beef tea of, but that is not true-cut
it into small pieces the size of the end of the thumb, place it into small pieces the size of the end of the thumb, place ish upon the back part of the range or stove, where the water will gradually get warmer and warmer, but will no reach the boiling point. Let it stand and simmer in thi
manner two hours. Then bring it forward, and boil over a quick fire twenty minutes, and immediately after pour the fuid from the beef, at the same time allowing the little par icles which become detached to flow off with it. Now, if there is any fat in the tea, it is well that it should be re moved, for the reason that the bile and pancreatic secretion may be unable to emulsify it, and it may do more harm than good. If you wish to be very precise upon this point, the tea can be set aside, and when perfectly cold all the fat can be removed from the surface in a flake; or the fat may be taken up by dropping a piece of flannel upon it as it floats upon the surface of the warm tea
It is not a good plan to strain the liquor, because this proCess will remove more or less of the little particles of beef, which are very essential to the value of the tea. It may now be salted, and given hot or cold, as the patient may wish and it may be given as soon as the pulse indicates any dimi and it may be given as soon as the pulse indicates any dimi-
nution in the force of the heart's action. What becomes of nution in the force of the heart's action. What becomes of
this article of diet when taken into the stomach? The advothis article of diet when taken into the stomach? The advo-
cates of the worthlessness and non-essentiality of beef tea cates of the worthlessness and non-essentiality of beef tea
would answer that it makes but little difference. I believe however, that it is mostly taken up by the gastric veins, and, a all events, that it is exceedingly palatable and nutritious, and does do something more than simply warm the stomach and make the patient happy for a short time.
In case the patient's stomach is very irritable, so that arge quantities of any substance cannot be borne, you may esort tg beef extract for nourishment.
The proper method of making this article is to take a pound of the best beef, cut it into small pieces, and place it n a good sized open mouthed bottle-a pickle jar is perhaps as convenient as any. Cork the bottle loosely, and then se it into a kettle of water, which is to be kept hoiling for two hours. If the bottle is now removed, it will be found tha it contains a considerable quantity of fluid, which may be turned off, and the beef subjected to slight pressure to re move still more.
In this fluid we have a concentrated article of nourishment and it may be given, after it has been seasoned, either pur or diluted, according to the condition of the stomach. Bee extract is not nearly so palatable an article of food as rich beef tea, made in the manner described.

Electro-Harmonic System or Nuitiple Transmission.

During the past two weeks, Mr. Elisha Gray of Chicago Ill., has been exhibiting his electro-harmonic apparatus in he Western Union Building, in this city. More than a yea ince we published an article descriptive of this curious dis overy, so far as it had been developed at that time. Since the Mr. Gray has devoted the greater part of his time to the per ection of the apparatus, and has already succeeded in pro ducing some very remarkable results. Mr. Gray's earlier ex periments disclosed the fact that composite tones were as easily transmitted over a wire as single notes, and from this discovery he developed a system of multiple transmission, ounded on this principle. The apparatus was tested exper imentally on a wire between Boston and New York, on Sep tember 11, with very satisfactory results. Four separate com munications were simultaneously transmitted from Boston, nd copied from four sounders by a like number of receivin perators in New York. In the main the signals were per ectly received on all the instruments, the only apparent de fect being a tendency to shorten them somewhat, a difficult which can doubtless be overcome by a suitable modification f the transmitting apparatus.
The principle of the apparatus is a very simple one. The depression of each key sets a self- vibrating electrotome in operation, which is adjusted or tuned to vibrate at a cer tain rate, differing from that of any of the others, when un der the influence of the electro-magnet controlled by its cor responding key. These several sets of electrical vibration are transmitted through the circuit without interfering with each other, in the same manner that almost any num er of different sets of sound waves may pass through the ir without mingling. At the receiving station, each instru ent is so adjusted as to respond to its own special sets of aves or vibrations without regard to others. By breaking and closing the circuit upon the transmitting electrotome, so
as to form telegraphic signals, these are transmitted and as to form telegraphic signals, these are transmit
taken up by the corresponding receiving apparatus.
It is not easy to fix a limit to the number of different com munications that may be carried on over the same wire sim ultaneously, either in the same or opposite directions. The marked success which attended the operation of the princi ple through two hundred and forty miles of line, on Septem ber 11, seems to promise results in the future of the greates value.-Journal of the Telegraph.

The Harmonic-Electric Telegraph

The harmonic-electric telegraph in vention (now commonly known as the telephone) of Mr. Elisha Gray, of Cleveland is nndoubtedly destined to prove a very useful and impor tant one. On Friday of last week we saw four despatches ansmitted simultaneously from Boston to this city, on ge fhe Western Union wires. It is believed, and with good reason, that at least sixteen messages can by this invention be transmitted simultaneously over a single wire. Mr Gray has made a discovery and invention which will be like y eventually to revolutionize the present Morse telegraph ystem.-The Telegrapher.

The recent storm in the Gulf of Mexico was the fierces known in that vicinity for several years. At Galveston Texas, it raged with great violence for three days, and the 000. At Indianola, Texas, it is stated, 300 lives were lost.

the farr of the american institute.

New electric engine.

A new electric engine, adapted to pumping water through house or to any other light domestic work, is located among the housekeeping articles, and is well worth careful examination. Its construction is novel in many respects, One set of electric magnets is disposed in the direction of their length about an interior rotating cylinder or wheel. The other magnets are arranged in the interior of the stationary case, so that the construction is that of a number of horseshoe magnets, each having one stationary and one movable leg. The long faces of the magnets are serrated to the depth of $\frac{1}{8}$ inch, the indentations of the wheel magnets fitting into those of the case magnets. This, the inventor ells us, has been found, while increasing the area of the faces in contact twofold, largely at the same time to aug ment the power. The coils are wound lengthwise about the bars, and the yoke of the horseshoe is made directly beyond
the outside coil, instead of at the further extremities of the the outside coil, instead of at the further extremities of the
bars, as is usually the case; so that a large portion of the bars, as is usually the case; so that a large portion of the metal core protrudes beyond the yoke. This arrangement, we are informed, has also been found to increase the power as high as 1.00 per cent. In a future issue we shall describe another electric machine exhibited by Mr. Charles A. Hussey and we shall probably refer to the machine under discussion in detail, and with reference to the new principles claimed to be involved, noting here only the facts given us. Of these the most remarkable are the large capacity of the machine (which contains a 5 inch magnet wheel and weighs but 15 pounds), 8,000 foot pounds per minute, and the statement that a 4 -cup battery, costing for materials expended $\$ 1.12$, in connection with this apparatus drove a
Howe sewing machine at 500 stitches per minute for 60 hours Howe sewing
Builders, owners, and tenants of city houses will doubtless view with interest a

NEW SXSTEM OF PLASTERING
which is claimed to prevent the sudden and disastrous downfall of ceilings, so frequently occasioned by defects in the water pipes and consequent leakage or overflow. The in used in ordinary work by the combination of fibro-linnes used in ordinary work by the combination of fibro-ligneous
sheets with a cement composed of lime, sand, and plaster. The sheets are of a fabric resembling coarse bagging which The sheets are of a fabric resembling coarse bagging which is secured to the lathing, and the cement is supplied in the
ordinary way. A hard finish coating completes the work.

A NEW FORM OF HAIR HEADER

is exhibited, which is an improvement on the similar apparatus shown at last year's fair. It consists of a vertical oscillating metal plate,the lower edge of which is provided with a rubber facing. Beneath is a horizontal vibrating plate having a rubber surface directly under the edge of the ver tical plate. The tangled combings of long hair are placed between these moving portions; and by the rubber,engaging, when rubbed along contrary to the grain of or to the direction of the asperities on the hair,the " knotted and combined
locks" are caused to part and separate. This hair header is locks" are caused to part and separate. This hair header is
called " magnetic," for no reason that we can perceive called "magnetic," for no reason that we can perceive
other than that given by the old lady who admired the noun other than that given by the old lady who admired the
" Mesopotamia," "it was such a nice, comforting word."

AN AID FOR GOING UP STAIRS.
Here is something for the denizen of the aerial flat, an invention supposed to bounce him up from one stair to another until he reaches the top of the flight, before he knows it. Each stair has a hinged lid and under each lid are some strong coiled springs. The inventor fails to say anything about the effect of his springs when a person runs down the steps. The idea suggests itself that an inexperienced user might try to go down two steps at a time, in which case his
momentum would probably compress the spring sufficiently momentum would probably compress the spring sufficiently
to jump him back three steps, and thus, by a kind of algebraic addition, he would find himself slowly retrograding in in spite of his efforts to advance. There is food for sombre reflection in those spring stairs

NEW HYDRAULIC MOTOR
for sewing machines is exhibited, which is easily attached to the table of the apparatus and which is driven by the ordinary head of water in the service pipes. It consists simply of a winged wheel placed horizontally and enclosed in a case. Motion is governed by the treadle, and speed, of course, regulated by the water cock.
another novelty in motor
is a peculiar compression engine, driven by hot air, now in operation in the machine department. It consists of two other simply for compression. The latter has a water jacket, and both cylinders have pistons, or more properly, plungers. The piston of the compression cylinder passes through packing at the top of the same, but below fits loosely in the bore, so that the air compressed is at liberty to pass up around the piston, and to enter a connecting passage, which leads it into the power cylinder, where it is heated and expanded, and so lifts the piston. As the two pistons are set on cranks 180° apart, the down stroke of the power piston corresponds to
the up stroke of the compression piston, so that the air, which the up stroke of the compression piston, so that the air, which
just before has been expanded, is now returned to be recompressed and again used. Thus the air is merely shifted from one cylinder to the other, and its cooling or heating is quickly accomplished through its being exposed to the action of the cold water or the fire in thin annular sheets. The
machine (1 horse power), we are told, burns very little fuel, one scuttleful answering for an entire day. Tha expenditure of oil is also very small. This seems to be a very simple apparatus, and one well adapted for a large number of
light uses. It is almost entirely free from the disagreeable
noise usually incident to caloric engines. noise usually incident to caloric engines. We notice a new
machine for polishing molding.
which seems to perform very good work. It has an adjustable table, carrying horizontal rubber rollers, which grasp the strip of molding and present it to the action of a reciprocating polisher. This last is a composition of fine emery, which is made in a plastic state and applied to a piece of molding similar to that to be polished. The result when the composition is hard is a perfect matrix, into which every indentation or projection of the molding fits. The cast is then mounted in a box and rubbed to and fro on the molding, as the latter, as already explained, is carried beneath it. The advantage gained is the increased sharpness and accuracy of
the edges, and the thorough polishing of the whole work, a proceeding of some difficulty by the ordinary use of sand paper.
A new convenience for housekeepers is a combination hitchen safe,
in which places are provided for a multiplicity of articles which generally go astray about the kitchen. Besides, it of fers to the cook the same advantages as the prescription counter does to the druggist. There are drawers for the
sugar, spices, and similar staple ingredients, a hinged dough sugar, spices, and similar staple ingredients, a hinged dough board in the front, a convenient receptacle for flour or meal in the top (with a hopper below, fitted with a valve so that
exactly as much flour as is needed may be measured off), exactly as much flour as is needed may be measured off), the thousand little things needed in culinary operations.

new anti-friction metal

has appeared, which, we suppose, is intended to rival the material which raised such a breeze among the fair officials last year. It differs, however, in that, instead of being in serted in the bearings, the bearings themselves are made of it. No machinery fitted with the substance is running as
yet at the fair. The basis, according to the circulars, is yet at the fair. The basis, according to the circulars, is
black lead, which is another point of difference from its older competitor into the composition of which black lead en ters very slightly, and in many cases not at all.
 Water Pipes.
At a recent visit to the National Tube Works Company at McKeesport, Pa., we witnessed the operation of making lapwelded tubes of such a size and quality as to call for notice.
The company makes these seamless tubes or pipes of any size up to fourteen inches diameter. And as every length is tested by hydraulic pressure before leaving the works, their strength and quality is fully guaranteed. They have been found admirably adapted to carrying water for the hy-
draulicmines of California, Nevada, and other Western States, draulic mines of California, Nevada, and other Western States 14 inches. The company has just completed an order for the Virginia City and Gold Hill Water Company, of Nevada, of seven miles of 10 inch pipe, the most extensive order for a large size that, we believe, has ever been given in this more durable and are also less expensive than the riveted pipes; but the company applies a patent enamel to them that, it is claimed, makes them almost indestructible, and indeed, the company is willing to guarantee their durability
for any length of time. The appended reports by Dr. S. for any length of time. The appended reports by Dr. S.
Dana Hayes, Massachusetts States Assayer and Chemist, and Professor Otto Wuth, of Pittsburgh, Pa., fully establish the claims of this pipe to durability. We commend it not only to our gas and water companies, but also to our mine owners and others who have to use or convey impure water, such, pipes would make excellent screen shafts for our coal break ers, and the enamel would doubtless be of great advantage for coating the exposed iron work about the mines.
In bringing the matter to the consideration of "those whom it may concern," we believe we are doing consumers as well as manufacturers a service.

REPORTS.
" I have recently made a series of tests of your enameled pipe, for the purpose of ascertaining its value as a service
pipe for conveying water and other fluids, and now submit pipe for conveying water and other fluids, and no
"Portions of the enameled covering itself were first removed from several pieces and submitted to chemical analy-
ses, to determine the presence of deleterious substances; but
the results of these analyses are entirely negative, as there is the results of these analyses are entirely negative, as there is
nothing of this kind present. The pipe is made of wrought nothing of this kind present. The pipe is made of wrought
iron, covered. inside and outside, with an elastic, enamellike material that does not contain any unwholesome or obiectionable ingredients.
"Its durability was
"Its durability was then tested by exposing different
pieces of the pipe to the solvent action of hard, soft, and sea pieces of the pipe to the solvent action of hard, soft, and sea
waters, alco ool, and other fluids. for many days, and finally waters, alconol, and other fluids. for many days, and finally
those fluids were boiled in the pipe for several hours in each those fluids were boiled in the pipe for several hours in each possible, in a comparatively short time, the effect produced very complete, and I am quite surprised at the durability and power of resistance of the enamel covering, determined in this way. It has not failed in any trial with natural waters in my laboratory, and it has withstood the action of boiling corrosive fluids for a longer time than specimens of
other water pipes now in common use. "I commenced this investigation with
ur enameled pipe, but the severe tests which I have emyour enameled pipe, but the severe tests which I have emdurability, these being the properties of most importance in water pipe.

State Assayer and Chemist, Massachusetts."
I have made a complete series of tests in order to ascertain the quality of your patent enameled pipe, and found
that the enamel, covering perfectly both the inside and the that the enamel, covering perfectly both the inside and the
outside of the wrought iron pipe, is not 'in the least affected
by the action of alkalies, acids, salts of any composition, al cohol-in facts, any liquids which in practice are apt to be conveyed through the pipe. The enamen if it did it would deleterious su bstance whatever, and even it it did it would
not make any difference, as not a trace of it will become solu not make any difference, as not a trace of it will fecome solu
ble. Pipe so enameled is especially adapted for water and
gas.
O. Wuth."

Yankee Electrical Spread Eagleism.
At the annual meeting of the British Association for the Advancement of Science, held at Bristol, on the 25th of Au gust last, Sir John Hawkshaw, F. R. S., the newly elected President of the Association, as usual, delivered an address. In the course of this address he took occasion to rtview the history of the invention and progress of the electric telegraph This portion of his speech is as perfect a specimen of the in sular egotism for which his countrymen are noted as w have seen for some time. He completely ignores, in this connection, the discoveries and inventions made by Ameri cans, merely incidentally referring, in a foot note, to the date of the first patent of Professor Morse, issued in October 1837. With this exception no mention is made of any Amer ican; and so far as can be learned from his address, nothing has ever been done in this country for the development of electrical science or of the telegraph.
In view of the fact that the first practical telegraph line of any extent was built and operated in this country by Mr Harrison Gray Dyar, in 1826, on Long Island, in this State over which dispatches were actually transmitted, and that most of the more important telegraphic inventions and im provements have been made here, and by Americans, this omission is discreditable either to the speaker's fairness or to his intelligence. While we have no disposition to withhold from the many eminent electricians and telegraphicinventor of Great Britain the credit which is due them, we are certain y not willing to allow such a slight as that which Presiden Hawkshaw has shown to go unnoticed or unrebuked.
It is in this country that most of the useful improvement and new adaptations of the telegraph have been made, and their telegraphs are worked upon American systems.
The comparatively slow and inefficient needle telegraph of William Fothergill Cooke, not "Wheatstone and Cooke," as President ilawkshaw has it, has been generally superseded, even in England, by the Morse system, and this is supple mented to some extent by the printing telegraph of Profess or Hughes, an American, which is also very extensively used on the continent of Furope. The duplex system of Mr Stearns, an American, is also being generally adopted on the English and Continental lines. The automatic system of Professor Wheatstone, which is highly praised, is known to be as much behind the American automatic system of Mr Little, in successful operation in this country, as is the needle telegraph behind the Morse and printing telegraphs. The fire alarm telegraph system is the invention of Messrs Farmer and Channing, both Americans; the quadruplex has been made practical by Americans; all the printing telegraph instruments which have proved of any value are the ex clusive inventions of Americans; the quotation telegraph systems; the automatic fire telegraph system, by which in stant notice is given of the commencement of fires, which has proved of great importance and value, is the invention of an American; the district telegraph system, by which an American; the district telegraph system, by which
messages can be summoned, policemen called, etc., has been messages can be summoned, policemen called, etc., has been
invented and perfected by Americans; and the harmonic elecinvented and perfected by Americans; and the harmonic elec
tric system, by which not merely four, but there is every reason to believe at least sixteen communications can be sim ultaneously transmitted through a single wire, is the inven tion of Mr. Elisha Gray, of Chicago, also an American.
Some of the first electricians of the world are also Ameri cans. Professor Henry, of the Smithsonian Institute at Washington, an American, invented the intensity electro magnet, by which the transmission of telegraphic signals on long circuits became practicable. Messrs. Farmer, Channing, House, Page. the latter the inventor of the so-called Ruhmare Americans; but these are coolly ignored by the orator, who has never heard of any achievements in electrical sci ence except those of certain British scientists whom he names, save by a few Germans, to whom he grudgingly ac cords some small credit
In no other country has telegraphy acquired such perfec tion in actual use or been so universally adopted and used by the people as in the United States and Canadas. More ac tual business is transmitted daily on a single circuit by two operators in this country than by four operators on two circuits on the English lines. Business is dribbled over the English lines slowly by means of needle telegraphs or by Morse registers, the use of which is universal there but ex ceptional here; and the automatic telegraph of Wheatstone gives a speed of seventy to eighty words per minute in ac tual business against 1,200 to 1,500 words per minute by the American automatic svstem. Only in cable telegraphy can any practical superiority be shown on the part of British electricians and telegraphers, and this arises from the fact that in the United States we have had no loı.g submarine cables to operate. We consider it quite probable, however that if the speed of transmission is hereafter materially in creased over such lines it will be through American inven tions, and had the cable telegraphs of the world centered in New York, as they have in London, we believe that our electri cians would, before this time, have devised some method of transmitting through long submarine cables more than seventeen words per minute."-The Telegrapher.
If Sir John's address savors of egotism, nothing of the sort can be charged upon the The Telegrapher. The native mo desty of the Yankee is proverbial, and the above prettily il lustrates his method of practice.

DECISIONS OF THE COURTS.
United States Circuit Court---Northern District of

 ㄴ․․․ $==$

中etent a merian and foretg eatents.

improved Tram Stick

John R. Byer, Attica, Mich., assignor to himself and Arthur H. John R. Byer, Attica, Mich., assignor to himself and Arthur H.
Fish, same place.-The object is to improve the means for "tramming" the spindies and stones of grinding mills, and the device con-
ists in a tram stick having an adjustable lever, to the end of which ists in a tram stick having an adjustable lever, to the end of which
lever the "quill" is attached, and to the other end of which lever lever the "quill" is att
is an adjusting screw.

Improved Hose coupling.
Mark M. Lewis, New York city, assignor to himself and Albert C. Aubery, same place.-This is a hinged two-part tubular coupling,
provided with flanges, grove, and rabbet, to enable it to be used provided with flanges, grove, and rabbet, to enable ing.

Improved Railroad Gate.
John H. Eberhart, Sumter, S. C.- This invention consists of a pair
of sliding gates meetiag together at the middle of the way, which of sliding gates meetisg together at the middle of the way, which
are coupled on each side by a bell crank and rods. There is a slide to be moved by the locomotive to open the gate when the locomotive approaches it, and to be closed by the rear car when the train passes away.

Improved Printing Press.
Calvert B. Cottrell, Westerly, R. I.-This relates to a graduated
can aud segmental lever, which take the cylinder while in full can aud segmental lever, which take the cylinder while in full speed from the bed, which is also in full speed, and stop it, while the bed continues its motion at full speed. They stop the cylinder, while the bed runs on, and without losing any time whatever on
account of the stopping of the cylinder. Air springs are provided whose cylinders are on each end of the bed, while their stationary pistons are in corresponding positions on each end of the frame. These springs take up the momentum that is transferred thereto
by the bed at each stoppage, and then retransfer the same at the by the bed at each stoppage, and then retransfer the same at the
start of the bed on its return in the opposite direction, thus allowstart of the bed on its return in the opposite direction, the be run much faster

Improved Car Starter.
Anthony A. Jones, Utica, N. Y., assignor to himself and Julius F
Chesebrough, same place.-This invention relates to the mode of Chesebrough, same place--This invention relates to the mode of
connecting the foot rod which projects up through the platform of the car with the pawl, rod, and lever which operate the ratchet wheel mounted on the front axle. When the driver applies his foot
to the plate on the rod, the horizontal arm of an elbow lever is deto the plate on the rod, the horizontal arm of an elbow lever is de-
pressed, thereby causing another rod to carry one or the other of the pawls into engagement with the rat that the pressure is thence this engagement, other devices act so that the pressure
forth appied directly to the lever so long as it continues.

Improved Suspension Book Rack.
Frederick F. Hill, Essex, Conn.-This is an improved folding rack
for books and ornaments, to be hung against a wall, so constructed that the shelves may be adjusted and secured at any desired distance apart.

Improved wet and Dry Ore Crusher
Henry Bolthoff, Central City, Col. Ter., assignor to himself and
Charles F. Hendrie, same place.-A hollow cylinder revolves upon Charles F. Hendrie, same place.-A hollow cylinder revolves upon
truck wheels placed in a frame. The motive power is applied to truck wheels placed in a trame. The motive power is applied to
one of the truck wheel shafts, driving the mill by friction of the truck wheels on the periphery of the two heads, which are conrim, and are protected from wear on the inner side by liners. For proper packing between them and at the ends, each stave having projecting ribs to hel, hold the packing and stiffen the stave.
Through the center of the cylinder, which is open, is placed a hollow pipe. Through this is fed the ore and water, the pipe having openBalls ot cast iron are placed inside, and by the motion of the cylinder the ore and balls are brought into contact, and the crushing is
done by concussion and abrasion ; and when the ore is sufficiently done by concussion and abrasion; and when the ore is sufficiently
fine to float, it rises to the top of the water and passes out in the form of pulp through registers on either side near the center into hoppers fastened to the stands; thence it passes in pipes to the
amalgamating coppers, as used with stamps. For dry crushing, of amalgamating coppers, as used with stamps. For dry crushing, of
course the ore, instead of discharging at the centers, discharges around the periphery through interstices between each stave, which are made much narrower than the wet mill stave, to give
more discharging capacity, and are so shaped on the inside as to more discharging capacity, and are so shaped on the inside as to
form corrugations, thus preventing packing of ore and balls, and form corrugations, thus pr
thus aiding free discharge.

Improved Traveling Can.
Antoine Alexis Gervais, Paris, France, assignor to A. Gervais \& Co., same place.-This relates to field cans in which are a cham
having a fire grate or basket, an air channel, and a draft flue.

Improved Corn Sheller.
Hiram C. Creekmore and John W. McMillan, Salado, Tex.-This a combination, with an inclined box, open on one side, of a cylin
der or roller, to which saws and strips or bars are applied as means whereby the husks are stripped from the ears of corn, and the kernels removed as the ear passes through the box.

Improved Buckle Loop.
Frederick A. Neider, Madison, Ind.-This relates to an improved
loop and buckle for carriage back stays and curtains, and consists of a flanged buckle-fastening plate tacked to the curtain or back stay, in connection with a sliding box fastened by the flanges and held in position by the buckles.

Improved Ventilator Cap.
Henry A. Gouge, New York city.-The base of the cap is secured
to the upper end of the ventilgtor flue. The body of the cap is to the upper end of the ventilator flue. The body of the cap is
made of the same shape as the lower part, but larger, and is so arranged that its lower part may overlap the upper end of the lower part. The part is connected with, and supported from, the base part by bars. To the bars are secured the deflector, which is made in the form of two low pyramids, placed base to base. To the upper edge of the base part is attached the edge of a plate, which projects downward and outward until in line with the lower edge of
the body, at which point it is bent inward and upward at an acute the body, at which point it is bent inward and upward at an acute
angle, thus forming an angular cornice around the top of the base. It is claimed that, no matter from what direction the wind blows, it not only cannot enter the flue, but actually induces an upward draft through the flue.

Improved Detachable Link for Chains.

Charles H. Gillingham and Albert L. Gillingham, Griggsville, Ill.quickly attached and detached, to lengthen and shorten the chain or to replace a broken or worn link with a new one. The invention
consists in the body and a crosshead key, secured to each other deconsists in the bod
tachably by a pin.
Improved Waterproofing Compound for Leather. .James Clunan, Brooklyn, N. Y.-This is a compound of paraffin tallow, and resin, which are melted together, and with which the

Charles L. Noe, Bergen Point, N. J.-A master wheel, with two
half circular cogrims in different planes, is arranged in combinahalf circular cog rims in different planes, is arranged in combina-
tion with a train for turnidg a screw for working a traverse guide. In the train there are two pinions for transmitting the motion from the master wheel alternately in different directions, one taking it from one of the cog rims and the other taking it from the other
rim. One of these pinions transmits the motion direct, while the
other transmits it through the first pinion, so that one causes the other transmits it through the first pinion, so that one causes the
screw to turn one way and the other turns it the other way, this producing a continuous traverse of the guide forward and backward. The invention is applicable for bobbin winders for sewing machines, reels for fishing rods, and other spool or bobbin winding
apparatus. apparatus.
mproved Sad Iron.
Henry R. Robbins, Baltimore, Md.-This invention consists in a simple and ingenious device for the attachment of a handle to a sad iron, whereby it can be readily and easily detached from one iron and attached to
a number of irons.

Improved Steam Rock Drill.

Joseph C. Githens, New York city.-In describing this invention, essential part of the apparatus was omitted, owing to an error in the printed copy of the letters patent: The valve-shifting piston is made with hollow ends, a solid center and side ports, and is provided with a sliding band, made with ports at a greater distance
apart longitudinally than the small holes or ports in combination apart longitudinally than the small holes or ports in combination
with the cap of the steam chest, the sliding valve, the ports openwith the cap of the steam chest, the
ing into the cylinder, and the piston.

Improved Screw Propeller.
Lewis C. Cary and George F. Cary, Portland, Me.-This is a compropeller. The protecting rim is constructed of a flat band, an of a band, and the stiffening rim. The object of the bands is to make the ring watertight and buoyant.

Improved sleeve Button.
Jacob G. Missimer, Trenton, N. J.-The shank is bent at right angles to form a foot. In the outer side of the foot is formed a wide of the foot. The end of the bar and the foot are pushed through the button hole, which allows the shank to pass into the said button
hole. The bar is then pushed forward and locked by a spring catch. To detach the ibutton, a finger is inserted beneath the cuff, and the bar is pushed back, and the foot and bar are drawn out of the button hole.

Improved Gang Plow

David A. Manuel, Napa, Cal.-The crank axle of the rear supporting wheel swings in a sleeve of the main beam. Both supporting
wheels are applied by their crank axles in such a manner to the wheels are applied by their crank axles in such a manner to the
main beam toat they run parallel to the line of draft. Two plows main beam tat they run parallel to the line of draft. Two plows
are firmly attached by clips to the main beam between the supportare firmly attached by clips to the main beam between the supportin forward or backward direction on a screw sleeve, producin thereby the raising or lowering of the rear wheel by the swinging of the crank axle in the socket sleeve of the main beam, and the the rear shaft, and lowers or raises thereby the crank axle and wheels, so as to regulate the working of the plows. The direction
of the draft beam may, by adjuating nuts and brace, be changed slightly from the line of draft, and thereby the plows thrown to or from the land, as desired. The pole is secured into a tongue socke of the draft beam, and set at the front end to such hight that the weight is taken off from the horses' necks.

Improved Cultivator Frame
William M. Coston, Quitman, Mo.-This cultivator frame is so ing the rear part of the frame wholly unobstructed, so that the ma chine can be used as a riding or walking cultivator, as desired.

Improved Electro-Magnetic Engine.

Charles A. Hussey, New York city.-This is an improved electrochinery, by which the induction currents of the magnets and spark at the commutator are entirely avoided, and a more perfect utiliza the of the battery current is produced. The essential features are ranged in alternating position, so that the pole ends of one face the intermediate space between the pole ends of the other; the outer stationary magnets having widening pole ends of T shape at right angles to the arms; the central revolving magnet provided with widening pole ends of double T shape at right angles to the radial arms of the same, and the stationary and revolving magnets having larger than the distance between two adjoining pole extremities, so as to lap on the pole ends across the intermediate space.

Improved Paper Pulp Engine.
Alvin Gardner, Windsor, Canada.- A box of six sides has a tapering recess or well formed in its middle part, into which is fitted a ering recess oring ring. In grooves in the face of the tapering ring are se-
taper cured knives, which are set at an angle. In the cavity of the tapering ring is placed a beveled wheel, to the face of which are at-
tached other inclined knives. To the top of the wheel is attached tached other inclined knives. To the top of the wheel is atached
a scraper, by which the pulp is pushed outward toward the walls of a scraper, by which the pulp is pushed outward toward the walls of
the box. In using the engine, the wheel is raised, the rags to be cut are placed beneath it in the cavity of the ring, and the wheel is lowered upon them. As the wheel is revolved the rags are cut by the knives, the inclination of the said knives preventing the cut from being made short, and tending to produce a pulp with a longer fiber. The inclination of the arms tends to draw the pulp down
through the wheel. The scraper enables the engine to be run more through the wheel. The scraper enables the engine to be run more
slowly, while at the same time producing a proper circulation of the slowly,
pulp.

Improved BiIge water valve for Ships
Joseph W. Hughes, Newburyport, Mass.-Stops are arranged be tween the timbers to hold the water in the bilge, and self-closing
valves are applied to the stops to open and let the water in freely when the ship's sides rise, and close and retain it when they fall.

Improved Shutter Worker.
Jacob D. Hughson, Prairie City, Ill.-The invention consists of an with its second joint arranged below the stop and above the sill, and connected by a link with a T-shaped lever. Said lever at one end is pivoted to the sill, and at the other is connected to the lower end
of the blind, all in such manner that the blind can be opened aud of the blind, all in such manner that the blind can be opened and closed readily by merely swinging the first mentioned lever for-
ward and backward. There are stops on a stop plate combined with this lever, so as to hold it for fastening the blind open with thised.
clol

Fertilizer Distributer, Planter, and Cultivator. Bolivar Scofield, Cartersville, Ga.-To the sand board and sway bar, between the frames, is secured a box, from which two spouts lead down nearly to the ground, the forward spout being intended to conduct the fertilizer to the ground, and the rear spout to con-
duct the seed to the ground. The front and rear sides of the box duct the seed to the ground. The front and rear sides of the box
have semicircular notches formed in them to receive barrels dehave semicircular notches formed in them to receive barrels de
signed to distribute guano or other fine fertilizer, and to distribute signed to distribute guano or other partially covered to regulate the
seed. Holes in the barrels may be discharge, and the said barrels are rotated by suitable mechanism, plows to work at any desired depth in the gronnd, or can raise them entirely away from the ground, as may be desired, and a harrow can be raised from the ground by and with the opening plow. The harrow removes lumps, clods, and rubbish, the opening plow opens in the furrow through the spout close in the rear of the plow, the fertilizer is covered, and the furrow is partially flled by the cover ing plows. The seed is then deposited through the spout, and covered by a weighted plate.

Improved Bee Hive

Samuel Hixson, West Newton, Pa.-This is a box hive having a moth trap in connection with the bee entrance. The bee entranc is on the under side of the removable trap, which is grooved on its
under edge. The entrance of the moth miller is resisted by the bees, and she is driven to take refuge in one of the grooves, wher The worms that hatch from the eggs are easily kept from the be entrance, and go the other way to gain an entrance to the hive, and, reaching the ends of the grooves, they drop off and fall to the ground.
mproved Colter Attachment.
John S. Johnson, Rockford, Ill.-This consists of devices to attach a revolving colter so that it can be readily adjusted as to hight, to the width of the furrow, and to

Improved Locomotive Engine。
Thomas T. V. Smith, Yarmouth, N. S.-This is a modification of fre box, to enable broad gage boilers with wide fire boxes to be rea dily and cheaply altered to the narrow gage, and to admit the use of large locomotives on much narrower gages and cheaper rail roads than is now practicable. It is proposed to do away with th ordinary truck in front, supporting the engine by the driving wheels, which are placed so far forward as to clear the fire bex, an o introduce a second outside frame running back to the rear of th ender, resting in front on the inner frame, andworte ng upon which the engine forms the front truck and the tender the hind ruck. One feature in the invention is that the overhanging weigh of the fire box rests on the outside frame, being free to work horizontally, to allow for the lateral play in passing curves.

mproved Mechanical Movement

Philip Bellinger, Paoli, Ind.-The invention consists of atternate y acting handle levers and treadles, which are applied to a double rank shaft with balance whel, an also to a seatizing attachment The urning in pivoted bearings, with an equalizing atachment. Th

Improved Raftsman's Boot Cals.
Rufus D. Guilford, St. Charles, Mich.-This calk is formed from ectangular pieces of sheet steel, struck up in suitable dies, where by its corners are bent down to form spu
boot or shoe sole by means of a screw.

Improved Rubber Drawers for Invalids.
Maria Bradley, New York city, N. Y.-This invention consists in Maria Bradiey, New York city, N. Y.- a body open at the sides,
rubser invalids, formed of a and a tube formed integral with the drawers. The tube is made of such a length that it can be led from the invalid to a vessel placed
at the side or beneath the bed, to receive the urine as it flows out at the side or bene.
through said tube.

Improveu stop Mution for Steam Engines.
Thomas Evans, South Manchester, Conn.-This consists of an aux iliary steam cylinder, connected with the main steam pipe, and provided with a weighted valve, and a piston whose rod is connected
with the cross head and an air valve of the condenser for interrupting the action of the main steam cylinder on the opening of the cylinder valve.

Improved Packing for Stuffing Boxes. Richard Greenalch, Greenbush, assignor to himself and William packing cut in long pieces shaped transversely to pack around the rod and fill the space between the rod and the box nicely, so that they receive the pressure of the gland in their lengthwise direction instead of crosswise, as commonly arranged.

Improved Chain Pump.

William Wehres, Evansville, Ind.-This fits to the barrel, and is also readily repaired by unscrewing the swivel connection with the chain. It is made of rubber and attached to a central bolt, to be thereon the bolt and swivel turning readily in a swivel at the other end of the bucket. The pump barrel has a longitudinal water drop

 Hoadley Portable Engines．R．H．Allen \＆Co．， Hotchkiss Air Spring Forge Hammer，vest in themarket．Prices low． D ．Frisbie $\&$ Co．New faven．Ct． The best Varnishes made in the United States，
or，for that matter，in the world，are those of Hyatt \＆ Co．，New York．They use only，the thorest materials，
nat he product never fatils to Patent for Sale of a Bottle Faucet．A Wanted－To communicate with a party who has
 t．，Chicago，Ill．
25 per cent extra power in steam engines，or an
equal saving in fuel，guarantced ly applying the I ． S ．
Condenser．T．Sault；Con．Eng＇r，Gen＇1．Agt．，N．Hav．，Ct． Without reflecting upon other Advertising Agen－
cies，we may say that Geo．P．Rowell \＆Co．，No． 41 Park cies，we may say that Geo．P．Rowell \＆Co．，No． 41 Park
Row．New York，are deserving of success，and have Row．New York，are deserving of success，and have
achieved success．They do business on true business prin－
ciples，pay on demand all that they agree to pay，and com－ bine untiring energy with promptness，system，and care fulness in details．From a small beginning they now
stand head and front aboveall competitors．－－Iron World and Manufacturer，Pittsburgh，Pa．］
For Sale－Second Hand Wood Working Machin－
ery．D．J．Lattimore，31st \＆Chestnut St．．，Phila ．，Pa． Testing Machine for Bar Iron－Will test section
of 12 square inches．For sale by Denmead \＆Son，Balti－
more，Md．
For Sale－F．N．Hathaway＇s Patent Combination
Watch Key，patented May 25，1875．For further informa－ tion．inquire of Frank N，
Avenue，Springfield，Mass
Wanted－A Power or Steam Suction Pump， 16 to
20 inch cylinder．Address P．O．Box 3396，Boston，Mass． inch cylinder．Address P．O．Box 3396，Boston，Mass
Small Engines．N．Twiss，New Haven，Conn． $\underset{\text { Fmall，easily manufactured article．Pater Every hight to a }}{\text { Fousewife }}$ Wanted－One 2 spindle Edging Machine．Ad－
dress，with description and price，P．O．Box 2i58，New Enterprise M＇f＇g Co．，Philadelphia，Pa，Patented
Hardware Manufacturers and Iron founders．Small gray iron castings，warranted soft and smooth，made to
order，and patented articles of merit manufactured on Boult＇s Paneling，Moulding and Dovetailing Ma－
hine is a complete success．Send for pamphlet and sam－ chine is a complete success．Send for pamphlet and sam－
ple of work．B．C．Mach＇y Co．，Battle Creek，Mich． For best and cheapest Surtace Planers an 1 Uni－
versal Wood W orkers，address Bentel．Margedar \＆Co． ton，Ohio
The Baxter Engine－A 48 Page Pamphlet，con－
taining detail drawings of all parts and full particulars， now ready，and will be mailed gratis．W．D．Russell，
18 Park Place，New York． Double－Entry Book－Keeping Simplified．The
most successful Book on the subject ever published most successful Book on the subject ever published．
Cloth，\＄1．Boards， 75 cts．Sent post paid．Catalogue free．
D．B．Wıggener \＆Co．， 424 Walnut St．Philadelphia，Pa． A Self－Acting Trap，to rid out all Rat and Ani mal Creation．Agents wanted．No trouble to sell．For

Brass Gear Wheels，for Models，\＆c．，on hand and
made to order．by D．Gilbert \＆Son， 212 Chester St．．．Phil－ Hotchkiss \＆Ball，West Meriden，Conn．，Foun－
drymen and Workers of Sheet Metal．Will manufacture on royalty Patented articles of merit in their line．Small Gray Iron Castings made to order． Gray Iron Castings made to order．
Scroll Sawyers－If you want the best Jig Saw
Blades，Iget them made by A．Coats， 108 Hester St．，N．Y． Water，Gas，and Steam Goods－New Catalogue
packed with first order of goods，or mailed on receipt of Price－only
Telegraph．A
$\$ 3.50 .-$ The
compact working Tom Thelegraph
Apparatus， or sending messages，making magnets the electric light， giving alarms，and vartous other purposes．Can be put in
operation by any lad．Includes battery，key，and wires． operation by any lad．Includes battery，key，and wires． For Sale－Large lot second hand Machinists＇
Tools，cheap．Send for list．I．H．Shearman． 45 Cort－ For best Bolt Cutter，at greatly reduced p
address H．B．Brown \＆Co．，New Eaven Conn．
＂Lehigh＂一－For informationabout Emery Wheels
\＆c．，address L．V．Emery Wheel Co．．Weissport，Pa． American Metaline Co．， 61 Warren St．，N．Y．City． Small Tools and Gear Wheels for Models．List
tree．Goodnow \＆Wightman， 23 Cornhtll，Boston．Mass． Peck＇s Patent Drop Press．Still the best in use．
address Millo Peck，New Haven Conn For Solid Emery Wheels and Machinery，send
the Union Stone Co．，Boston，Mass．，for circular． Genuine Concord Δz les－Brown，Fisherville，N．H． All Fruit－can Tools，Ferracute W k＇s，Bridgton，N．J． Faught＇s Patent Round Braided Belting－The
Beat thing out－Manufactured only by C．W．Arny，
North 3d St． Hydraulic Presses and Jacks，new and second
band．Lathes and Machinery for Pollshing and Buffing Barry Capping Machine for Canning Establish－ The＂Scientific American＂Office，New York，is
atted with the Mintature Electric Telegraph．By touching Ittle buttons on the desks of the managers signals are es ent
to persons in the various departmants of the establsh． ment．Cheap and effective．Splendtld for siopop，offlices，
dwellings．Works for any distance．Price $\$$ ．With good dwelinggs．Works for any distance．Price 86．With good
Battery．F．C．Beach \＆Co．，246 Canal St．．New vork．
Makers．send for free Illustratea Catalogue．

Temples and Oilcans．Draper，Hopedale，Mars

For 13，15， 16 and 18 inch Swing Engine Lathes，
address Star Tool Co．．Providence，R．I． Spinning Rings of a Superior Quality－Whitine－
ville Spinning Ring Co．，whitinsville．Mass． For best Presses，Dies，and Fruit Can Tools，Bliss
\＆Willams cor．of Plymouth and Jay，Brooklyn，N．Y． For Solid Wrought－iron Beams，etc．，see adver－
uisement．Address Union Iron Mills，Pittsburgh，Pa．for Ithograph，\＆c

4uturex Muries

W．T．A．will find a description of rosin oil
on p． 266 ，vol． 31 －L．H．．．．and G．B．T．will find formulas for safety valves on p． 330 ，vol． $32 .-$ H．J． C．will find a rule for ascertaining the increase of temperature of air by compression on p．133，vol
33．－A．E．B．can silver looking glass by the proces 33．－A．E．B．can silver looking glass by the process
given on p．23，vol． 30 ．－L．M．P．F．will find directions
for for waterproofing paper on p．146，vol．31．－A．M． will find a recipe for a fine boot blacking on p．283，
vol．31．－M．P．will find directions for bronzing brass castings on p． 283 ，vol． 31 Il－C．C．H．will find
bind directions for annealing lamp chimneys on p．42，
oro．26．－C．H．F．will find directions for ol．26．－C．H．F．will find directions for phot graphing on wood ind full directions for molding
$187,188 .-$ B．C．will find full rubber on p．283，vol．29．－H．P．D．will find direc tions for making a a poishing starch on p．203，vol． 31．－G．M．P．can repair rubber hose by the method
described on p．203，vol． $30-$ G．A．P．can japan described on p．203，vol． $30 .-$－．A．A．P．can japan
small iron articles by the process described on p 20，vol．26．－W．W．．McF．can rid his house of ants S．will find that a gold lacquer for brass is de－
scribed on, ．362，yol 30－A．．A will find a recipe tor marine glue on p． 43 ，vol． 3 ．Fish glue is de scribed on p．408，vol． $24 .-$ B．F．will find direction for gilding picture frames on p．347，vol．31．－R．B．
R．will find a formula for ascertaining the power of R．will find a formula for ascertaining the power of
a windmill on p．241，vol．32．－E．R，A．．H．，and lowers on p．266，vol．31．－E．C．L．Jr．will find description of the process of cutting gears on
screw－cutting lathes on p．187，vol．29．－W．S．H． will find directions for putting gold lacquer on tin on p．139，vol． 32
（1）G．B．R．asks：If the electricity gener
ated in a Rhumkorff coil were changed into elec tro－motive force，would there be a greateramount han was developed in the battery used to run the ould not．
（2）F．G．asks：1．In a copper and zinc bat tery，should a wire be attached to each of the
plates，and the ends of the wires be connected；or should the wire leading from the copper plate be de connected to the copper and an－ other to the zinc．2．How is the circuit made？
A．The circuit is made by connecting the two A．The circuit is made by connecting the two
wires together．3．When 1 part oil of vitriol to 10 or 12 parts water isused，how lony is it before such
battery is ready for use？A．The battery will be ready for use as soon as it is set up．4．If the
zinc weighs 1 lb ，how much should the copper plate weigh？A．A thin sheet of copper will an－
swer．5．Can the copper plate in a battery be ased a second time？A．Yes
（3）F．G．S．asks：How long will a well empered compass needle retain magnetism？A． It would dependupon the quality of the steel and
the care with wlich it was used．It is impossible the care with which it was used．It is impossible
to state the time without knowledge of the facts． （4）S．W．says：My battery jars are cov－
ered witha coating that breaks off and crumbles ered with a coating that breaks off and crumbles
easily．It is white in the gravity batteries，and Sue in the Daniell．What are the cause and the emedy？A．The white deposit is sulphate of
zinc；cause of its formation is that the solution saturated．Remedy，dilute the solution with wa－ ter．By panting or greasing the top of the ja
the tendency to creep over will be removed．
（5）A．E．P．asks： 1 I propose laying a tel egraph line，汭 a mile long，with No． 23 wire．How many cells of Callaud＇s battery would it require to run it，the wre in the magnet being No． 21 ？A．
Twelve． 2 ．Would it be better for that distance Twelve．Would it be better for that distance
to use finer wire on the magnets？A．Yes．3． to use finer wire on the magnets？A．Yes． 3 ．
What size would be best，and how much should be neach magnet，there being only two so
hecircuit？A．Use 500 turns of No． 28 ．
（6）A．W．C．asks：What is the process of
deodorizing alcohol？A．Spirit of wine，brandy， ralcohol distilled over soap lose their empyren matic odors and tastes completely．At about 215° Fah．the soap retains neither alcohol nor wood
spirit．The soap employed should contain no po－ tassa；it must be a hard or soda soap，and ough to be cumpletely free from fatty acids or fiuid otherwise it may render the product rancid an soda has satisfied all the conditions in practice If this soap be employed，it will be better to ad a little soda during the first distillation．Thirt） three pounds of soap is enough for 100 gallons of
empyreumatic brandy．Attwood＇s patent alcohol is deodorized by distillation over permanganate of a
（7）J．A．asks：1．How much（length or weight tine wire is absolutely necessary for a ma－
chine to give a shock that can be sustained com－
 Yes．
（8）L．K．Y．asks：How is wood naphtha ，In what way is perchlorid Dissolve pure protoxide of iron in dilute muria ic acid，and erystallize the salt out by evapora ron？A．Dissolve pure iron or its oxides in nitrí acid until it will dissolve no more；filter the solu The residue should be redissolved in hot wate and the so＇ution again filtered and evaporated as before，in order to remove any basic salt that
may have formed，and as much of the superflu－ as nitric acid as possible．
What do you mean by a primary coil and a se
ondary coil？A．See p．115，vol． 33.
（9）W．E．E．asks：What cement or putty
exposed to the sun＇s heat，cold，etc．？A．The form
you have adopted for the joint is not very favora－ you have adopted for the joint is not very favoral
ble for retaining the packing；a better form would be that of a plain buatt joint，and this would be still better if provided with a firm blade between to receive the packing of each slab alone，inde－ pendent of the adjacent one．We know of no ce
ment that will answer your purpose so well as one ment that will answer your purpose so well as one
formed in great part of asbestos．Of ccurse the composition of the best of these，such as have been proved of value in practice，is not divulge by their proprietors．We understand，however
（10）H． ollows：I affirm that to make an inside chaser from a hub to chase a right hand inside thread
correctly，a left hand hub must be used，or，in other words，a right hand hub will make a left hand inside chaser．I do not affirm that the thread cannot be cut with either；but，that the thread may have the correct pitch，the left hand hub For complete Am I right or wrong？A．Right For complete ex
（11）I．H M．Jr．asks：How can I prin from a plate of bichromated glue（acted on by a photographic negative）on common paper，with
printer＇s ink？
A．Coat evenly a class plate with printer＇s ink？A．Coat evenly a glass plate with a
strong solution of gelatin in water，and when dry， strong soution of gelatin in water，and when dry，
flow over this a filtered solution of tichromate of potassa in water．Expose this to strong sunlight or a short time．Repeat this operation－with get times until a good background of insoluble gela in bichromate is obtained．Then prepare the plate in a darkened room as at first，and expose under the negative as in solar printing；an expe
sure，with a good light，for from fifteen to twent minutes is usually sufficient On removing th negative，place the bichromate plate immediatel in a large quantity of clean cold water in a dar place，and allow it to remain immersed severa hours．The water should be changed in the mea ime，in ordert taat all the unchanged gelatin b chromate should be completely dissolved．Th
film may then be removed from the glass plate dried，and mounted on a slab of lead or zinc fo printing．
（12）A．B．C．asks：How can I toughen tain a good sharp edge for cut ing make them re tain a bo A．If you us any of the best and othe tool steel，and leave them hardened right out without drawing the temper at all，your grave will stand and cut well．
（13）F．H．of Berlin，Germany，asks：Which electromagnets will be the strongest of these
wo：One has one coil of thick wire，and the other has two or more coils of thin wire wound around ．The sizes of the magnets as well as the weigh －the copper in the wires are supposed to be the ame in tooth cases，as well as the current used for
nagnetizing．A．Probably the single coil of thic wire．It would depend，however，upon the re
istance of the wire and battery when the istance of the wire and batiery．we the re
istance of the wire and battery are equal，the naximum magnetic effect is secured．
（14）L．N．B．asks：1．How can I nickel plate bars of iron 3x1／2inches？A．Various solu
tions for rickel plating have been suggested，hut perhaps one of the best．at least one highty re－
commended，is that containing the double salt of commended，is that containing the double salt of
nickel and ammonium．This is prepared by dis－ rickel and ammonium．This is prepared by dis solving 1 part by weight of sulphate of ammon er to make a saturated solution，a little more wa ter being added afterwards to prevent any ten dency to crystallize．Considerable trouble is usual y experienced by the amateur in his efforts to ob－ tain a good deposit．The principal difficulty，how－
ever，consists in the manarement of the operation， and the necessity of employing a proper anode which is rather hard to obtain．The anode should resent a surface in excess，if anything，of tha must be carefully regulated to the work required． Unless this is done the deposit is apt to contain gas
which is always evolved in greater or less quanti－ ties with the deposition of nickel，and this is liabl to make the deposit porous or flaky．A good plan until a slight coating is obtained，after which single Smee cell，of proportions depending on the size of the object to be coated，should be used to complete the operation．It is well，also，to keep
the solution alkaline by adding a little ammoni fo soumion alkaline by adding a little ammonia
rom to time．2．What battery is the best for such purposes？
（15）V．C．asks：How must I proceed to re－ pair the soldered parts of double－barreled gune，
using no tools but the copper bit？A．Clean the parts to be soldered，and apply to them muciatic parts，and solder in the usual way with fine solder （16）G．A．says：In your paper on the slide an engine，when just beginning to take staam should have its exhaust port about two third open．In looking at our valve and the ports in steam chest，I find that ours is not more than one fourth open．The engine makes a groaning noise When loaded or partly so．What had I better do to ease it a little？Would it be best to lengthen
the valve？A．Your valve should be lengthened At least $1 / 4$ inch more lap should be edded to each end：this involves the necessity of a new eccen ric to increase the valve travel，which should not be less in your case than $31 / 2$ inches．
（17）L．says：I have a lathe，the spindle which revolves in a very soft and fusible alloy，
As the bearing has worn out of true，I wish to cast a new one．What is a good alloy？A．Yo
cannot do better than use the best grade o Babbitt metal；or mix and use the following Zinc 17 parts，copper 1 part，antimony $11 / 2$ parts．
（18）H．S．asks：What is the pressure o noving at 5 miles per hour？A．The pressur will vary with the depth，and may be best asce tained by making a piece of board a foot square and suspending it like a swinging sign in the rive current．A cord attached to opposite points of it er your query
（19）G．H．W．asks：Please give me the proper size of propeller，engine，and boiler for
boat 36 feet long， 6 feet wide，drawing $11 / 2$ or 2 feet of water．I want the boat to go at a speed of miles an hour．A．Most builders would hesitate to guarantee such a speed for so small a boat，at rice．
（20）E．P．Says：In your issue of August you say：＂I Iee boats very frequently trave aster than the wind that drives them．＂I，with would give us the facts or philosonhy on which his statement is founded．In our view，it is plai that，if a boat moves faster than the air aroun it，its sails must displace the air in front of them． Now where does it get the force to do this？The rooposition thata moving body whichgets and re ir can do this，involving as it does the corollary that the pressure of the air in front of the sails is greater than the pressure behind them，appears to us to be an absurd idea which we cannot for moment believe that you would entertain．A．
Thisice boat question has been frequently dis Thisice boat question has been frequently dis－
cussed in our columns，and explanations give with diagrams showing the lines of the forces an why theboat moves faster than the wind．Our Consu any of them are unable by a study of the theory to satisfy themselves of the fact，we advise them to construct an ice boat this winter and try the ex periment practically．They will find that，with
properly constructed machine skifully ste n a wind moving say thirty miles an hour，the can travel from forty to fifty miles an hour， more，according to the state of the ice．If pre－ vented from experimenting，let them read the
New York daily papers which in winter contain New York daily papers which in winter contain
reequent accounts of ice boat regattas on the Hud on river，giving the velocity of the wind and the eased speed of the boats over the wind
（21）J．M．G．asks：How can we Texas fa mers destroy thecountlessswarms of rabbits which vearly destroy our growing crops of wheat，an
make sad havocamong our garden stuff？A．En close a space with wire netting，leaving room for the rabbits to enter，and bait it with carrots．In he winter，large
pot by this means．
（22）J．E．P．a－ks：Do you kıow of any preparation to cover a rough laid brick wall with in place of mastic？A．To stucco a rough brick
wall，make a mortar consisting of 1 part lime to parts sand ；add water and work it up thoroughly． But to make reliable work，the lime and san nust be of the best，and properly prepared befor eing mixed．Take a good fresh stone lime；sla just sufficient to make a fine dry powder and n paste．Throw this powder against a $1 / 4 \mathrm{inch}$ mes
wire screen ；what passes through is fit for use，th emainder should be rejected．The sand must be of the sharpest，screened to a uniformity of size and washed thoroughly clean of all mud and dirt
Clean the wall of all loose dirt，mortar，etc．，wit a stiff broom．Then apply the mortar in two coats；the first a roagh coat to bring the wall to a
air surs on the secend and the second a finishing coat．Put Also，put in a little cream water color，to as to st with the stuce The wal should be protected op by a projecting roof．
（23）J．．V．H．says：I find that the lead pipe
carrying off water from my bath and washstands carrying off water from my bath and washstand
is becoming clogged up．Can you tell me of remedy？A．Pour a little strong ammonia down he pipe
（24）F．L．says：1．I have an engire 3×6 dines，and intend to run a propeller 30 inches in A．A tubular boiler 28 inches diameter by 4 feet igh would probably be large enough．2．I have nawning for a boat．How can I make it water－
roof？A．Cover it first with a solution of soap
（25）E．G．A．says：I am continually seeing nents to the effect that，during a th torm，the electricity passed down the lightning he case？Does not the electricity pass from the arth up the rod and neutralize the electricity of he cloud overhead？If not，why not put a bal
on the upper end of the rod and point the lower for has not experiment demonstrated that electri－ ity will flow off a point with more rapidity than otf a round surface，and the reverse in passing on
if this be not the case，what is the necessity of placing ballson the posts of an electrical machin and points on the ends of the spokes of an ele rical wheel？A．It is conventionally assume hat the current always passes from positively to its direction depends altogether upon which is th positive and which the negative body．As a mat
ter of fact，the atmosphere is usualy positive re atively to the earth；but it is evident that the a tion of the clouds upon each other，under the in fuence of different currents of air，may result in the conditions are favpabite they then act induc tively on the earth，the positive cloud inducing a negative charge in the portion directly under its
influence and the negative cloud a positivecharge If a rod is present or the degree of electrification is sufficiently great，a discharge takes place fro
in the other. It is not correct, therefore, to say that the discharge is always in the same direction
when referring to any one rod. Points receive and give off charges more readily than surfaces do. It is in consequence of this fact that round surfaces are used with the electrical machine, and points with lightning rods, the object being an accumu in the other.
(26) J. W. S. asks: How can I render paste board uninflammable? A. Soak your pasteboard sun.
(27) E. G. A. asks : 1. Have there ever been any experiments made to ascertain the relative size of the atoms of various substances? Respect-
ing the constitution, shape, size, and absolute weight of elementary atoms, chemists know no-
thing; but they have proved that the atoms of hything; but they have proved that the atoms of hydrogen are lighter than those of any other element,
and they have discovered how many times heavier each elementary atom is than an atom of hydrogen. Thus, we know bow many times heavier an atom of carbon is than an atom of hy drogen; and the so-called atomic weight of carbon is a statement of its atomic ratio. 2. Do all atoms weigh the same. or do they vary in different substances?
For example, does one arom of aluminum weigh For example, does one atom of aluminum weigh
the same as one atom of platinum? A. They vary; hydrogen being 1 , aluminum is $2 i^{\circ} \cdot 18$, and pla tinum 19788 .
What do the best authorities decide is the cause of gravitation? A. It is an inherent property of every particle of matter in the universe to attract every other particle, with a force the mass of the attracting particle and inversely to the square of the distance betwe inversely to the square of the distance between
them. A satisfactory hypothesis has never been offered in explanation of the cause of this universal attractability of matter.
(28) B. asks: Can earth and calcareous and, containing from 10 to 30 per cent of sulphur be separated by any other method than the Sicilian kiln or calcaroni? If so, where can I find the process? A. Consult Wagner's "Chemical Tech-
nology," pp. 194 to 199. See also p.296, vol. 31 of the nology," pp. 194 to 199. See also p.296, vol. 31 of the
SCIENTIFIC AMERICAN.
(29) S L L
(29) S. L. L. says: I have been trying to obtain oxygen gas from water by means of sul-
phuric acid and chloride of lime. I knew that the sulphuric acid would unite with the lime, setting gen of the water, would, I thought, permit the oxygen to pass through a capillary tube, and be shown by the application of flame. I saw the gas rise in the tube: but it would not affect the flame when a match was applied. What was the reason? A. Your reaction simply gives you sulphate of
lime and chlorine water. Under the existing circumstances, the chlorine does not attack the hydrogen.
(30) G. L. asks: What is oxphosphate of What is the process of condensing See p. 343, vol. 30 .
(31) C. P. W. says : I. What is the green
substance that is formed when unbrowned coffeo is put into the white of an egg? A. It is a comis put into the white of an egg? A. It is a com-
pound resembling tannate of gelatin. 2. In Youmans' "Chemistry," it is stated that tea arrests transformation; in a work entitled "Foods," it is stated that tea hastens transformation. Which is correct? A. The best series of experiments on this peared to exercise an important influence in re tarding the waste of the tissues of the body.
(32) T. F. H. says: I have a set of silver articles with black wooden handles which have turned brown in color by being buried in a damp
bank vault. What can I use to stain the handles black and restore the polish? The wood is very hard, I presume ebony. A. Dip the handles in a boiling solution of weak caustic alkali, to dissolve all the grease; dry, and apply a solution of nitrate
of silver. It will be necessary, often, to apply two or more coats of the nitrate of silver.
(33) J. E. asks: Is there any perceptible shrinkage in gas in consequence of the gasometer pit leaking and being renewed with water? In
other words, does fresh water require to be saturated to a certain degree with gas before the gas holder will rise, a portion of gas being absorbed
every time more water is added? A. There will every time more water is added? A. There will
be a slight absorption of the gas by the water. be a slight absorption of the gas by the water.
The two principal ingredients of coal gas are hyThe two principal ingredients of coal gas are 1 cubic inch of water absorbs 0.0015 cubic inch of hydrogen, and $0 \cdot 03.3$
cubic inch of marsh gas. There will be no stoppage in the rising of the gas holder on account of this slight absorption.
(34) A. S. asks: What wiil remove mud
spots from heavy black silk? A. Tue safest plan spots rom heavy black silk? A.
is to wash carefully with good soap
(35) G. A. F. asks: 1. Is cow or horse manure better for lettuce, beets, cucumbers, etc., genized. 2.In what kind of soilshould musk melons be raised? A. A rich sandy soil.
I recently purchased a fine specimen of cala-
mine, purporting to come from Arizona. Does mine, purporting to come from Arizona. Does
that territory contain that mineral? A. Ic so, it must be in a new locality as yet unknown to mineralogists in the East.
(36) C. L. asks: What are the methods of obtaining the silicious and aluminous etbers? I believe they were discovered some few years ago (6
or 7) by Mr. Theophile Zchweskofski. A. Di-
 by adding alcohol gradually to chloride of silicon. A powerful reaction occurs: hydrochlorio acid is evolved in abundance, and a colorless liquid is obinst evolves hydrochloric acid; but the boiling
point rises rapidly until it reaches 330° Fah., at
which temperature pure dibasic silicate of ethyl distils over. It is a limpid liquid, of a pleasant ethereal odor, and a hot taste resembling that of
pepper. It is combustible, and burns with a flame pepper. It is combustible, and burns with a tame
of dazzling whiteness, depositing pulverulent silica. The composition of this body is remarkable, pound, $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Si}_{2} \mathrm{O}_{8}$: favoring the hypothesis of the tetratomic character of silicon, with an atomic weight of $\mathrm{Si}=28$. Thisether is not miscible with water, but is decomposed by it, with the separation C_{4} gelatinous hy H 號 $\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}, \mathrm{SiO}_{2}\right)$ is a second ether, containing only half the quantity of oxide of ethyl that is present
in the foregoing compound. It may be procured with chloride of silicon, and distilling. The dibasic silicate is formed at the same time, and the first portions of the distillate consist entirely of this compound ; but by degrees the boiling point pecomes higher, and when it reaches 660° Fah. the cate of ethyl is, in fact, transformed into the mo nobasic silicate by the action of the water presen in the dilute alcohol, occasioning the decomposition of the dibasic silicate into the monosilicate, while alcohol is set free. If more water be added, a viscous compound is obtained, which, according to Ebelman, contains a third ether, with twice as much silicic acid as the foregoing one. Aluminic
ether or aluminum ethyl, Dr. Cossa states, can be prepared by causing aluminum to act upon stannethyl. For further particulars of processes. consult Wurtz' Dictionnaire du Chemie, vol. 1, p.1,352.
(37) J. E. L. says: I have an article of pearlash containing 14 ner cent of phosphate of
potash. What will be the most economical process for separating it from the carbonate? I desire to get a perfectly pure carbonate, and to utilize the phosp bate. A. It cannot be done cheaply ble bodies into an insoluble, and then reconvert it nto the original condition.
(38) H. R. P. asks: What effect does chocoproperly prepared, is considered by physicians a a very wholesome and nutricious substance.
(39) J. H. M. asks: Can ammonia be distilled or obtained from common sea weed? A. Ammonia can be obtained by distillation, in closed vessels, of organic matters coutaining nitrogen. A large amount is obtained from the refuse product of the distillation of cual for the manufacture of gas. Among the products are water and a con-
siderable quantity of carbonate and hydrosulphate of ammonia; the ammoniacal salts become dissolved in the water, and constitute the ammoniacal liquor of the gas works: this liquor is saturated
with sulphuric or hydrochioric acid, and thus the sulphate or muriate of ammonia of commerce

Minerals, etc.-Specimens have been re ceived from the following correspondents,and examined, with the results stated
G. W. H.-No. 1 is impure limestone. No. 2 is argillaceous shale colored by red oxide of iron (the
blue portions by carbonate of blue portions by carbonate of copper in traces).
In some pieces the amount of iron is considerable. In some pieces the amount of iron is considerable. No. 3 is the same but with less iron.-J. M. H.You had better consult the druggist from whom
you obtained the pills.-J.R.- No. 1 is sulphide of lead with silex. It has been fused previously. Of No. 2 the part insoluble in acid is silex: the remainder is composed principally of iron with some alumina. No. 3isquartz and sulphide of iron. No.
4 did not arrive. No. 5 is sulphide of iron partly 4 did not arrive. No. 5 is sulphide of iron partly
altered to oxide. - B. F.-No. 1 is chlorite rock. altered to oxide.-B. F.-No. 1 is chlorite rock.
No. 2 is quartz rock. No. 3 is steatite rock with quartz vein. No. 4 is talcose schist. No. 5 is taland decomith talc. No. 5 is quartz with chlorite rock. No. 8 did not arrive. No. 9 is a jaspery quartz. No. 10 is quartz rock with traces of iron and manganese. Although some of these specimens bave the appearance of gold bearing rocks, the fact could be ascertained only by assay on a
considerable quantity of ore.-G. P. L. R.-No. 1 is decomposed granite. No. 2 is white porcelain clay -A. W. D.-It is hornblende, containing silica, alumina, lime, magnesia, and iron, but is not of value.-J. B. - It is milk quartz and is not valua-ble.-A. J. G.-Gold is not present.-G. H. C.-It is pyrites.-P. H. L. and J. I.-It is iron pyrites, of
little value.-C. R. T.-It owes its peculiar character to a large percentage of red oxide of iron.-A. T. H.-It is a variety of granite rock, and may be used in building.

COMMUNICATIONS RECEIVED

The Editor of the Scientific American acoriginal papers and contributions upon the following subjects:
On Cotton Mathematics. By H. V.
On a Power Manual. By A.S.R.
On Astronomical Calculations. By S. D.S. On Heating Churches. By J. I. S.
On Wagon Wheels. By P. K. W., and by G. A
G. Jr.
On th

On the Keely Motor. By F. W. J
On Electric Force. By F.S. P.
Also inquiries and answers from the following:
HINTS TO CORRESPONDENTS.
Correspondents whose inquiries fail to appear
should repeat them. If not then publisheã, they may conclude that, for good reasons, the Editor declines them. The address of the writer should always be given.
Eqquiries relating to patents, or to the patentability of inventions, assignments, etc., will not be
published here. Al such questions, when initials only are given, are thrown into the waste basket,
as it would fill half of our paper to print them all; by mail, if the writer's address is given.
Hundreds of inquiries analogous to the following
are sent: "Who sells the best washing machine ? are sent : "Who sells the best washing machine ?
Whose is the best cross-cut saw? Why do not Whose is the best cross-cut saw? Why do not
makers of magic lanterns advertise in the Scienmakers of magic lanterns advertise in the Scien-
TIFIC AmERICAN? Is there a really fireproof and burglar-proof iron safe? What does a Rhumkorff coil, capable of giving a 12 -inch spark, cost?" All such personal inquiriesare printed, as will be observed. in the column of "Business and Personal," which is specially set apart for that purpose, subject to the charge mentioned at the head of that column. Almost any desired infor
can in this way be expeditiously obtained.
[OFFICIAL.
INDEX OF INVENTIONS
Letsers Fatent of the United States wo
Granted in the Week ending
September 7, 1875.
AND EACK BEARING THAT DATE.

Air engine, A. K. Rider.........
Alarm, burglar, w. A. Parker.
Amalgamator, C. H. Aaro
Auger. earth, W. Low..........
Barrel bung, w. E. White...
Barrels, lining oil, A. Rieder
Battery, galvanic, B. F.
B $\in 11$ door, F. G. Daniels.
Billiard table, C. Joergens
Billiard table cushion, H. W. Collender.
Blasting, cartridge case for, P. A. Olive
Blasting, cartridge case for, P. A. Oliver.
Roats, hinged mast for, Davenport \& Porte
Roats, hinged mast for, Davenport \& Port
Boiler, cast iron sectional, J. F. Daniels.
Boiler plates, punching, J. Morgan
Boiler, steam, J. H. Wilkinson
Boiler, steam, J. H. Wilkinson.
Boiler. water tube. J. D. Pierce.
Bolt and rivet machine, J. C.
Book, copy, E. F. Goodman
Book, copy,
Boot, H. Hall.
Bottle est
Bottle stooper, F. Haury.
Boxes, machine for trimm
Burial case, D. W. Hunt....
Burner, vapor, C. H. Prentis
Burner, vapor, C. H. Pre
Butter mold, P. Shaw...
Butter worker, P. Shaw
Can opener, W. D. Skidm
Car coupling, E. Lewis
Car plating, A. Smith..
G. M. Brill...
Car replacer, O. J. Wi. Brilliams
Car. street. J. Stepheason
Carbureter, D. L. Westcot

..............$~$
$. . .167, \ldots 05$.
....

Cartridge case for blasting,
Cattle stall, Marsh \& Bell..
Check rower, L. J. Odell..
Chuck, planing, G. V. Seav
Churn, J. F. Coee.......
Cistern cut-off, T. B. Harrison....
Clasp, dress supporter, E. A. Bliss
Cloth-scouring machine, C. Franke
Cock, stop, C. Franke..
Cock, sto, C. . F. Murdocki............
Coffn screw. W. M. Smith..
Compass, mariner's, G. Iles...
Coover, feed, Fisher \& Wickk
Cork for stoppers. preparing, C. H. Frash
Corn dropper, check row, J. W. Fawkes
Corn-shelling implemen
Cotton sweep, M. Call..
Cultivator, M. McNitt...................................

Die stock, V. J. Reece...........
Door check, w. Vanderventer.
Drill, ratchet, H. C. English..
Easel, parlor, E. G. Chormann
Eaves trough hanger, J. P. Abbo
Egg stand and boiler. Woods \&
Eggs, batter of, w. O
Eges, batter of, W. O. Stoddard...
Elevators, automatic brake for, H.
Engine, direct acting, J.
Engine, steam, H. Davey.... ...
Engraving machine, R. W. Johnso
Eraser, india rubber. R.
Fence post, G. W. Hatch
File, Carr \& Wilcox.......
Filter, submerged, J w.
Filter, submerged, J. w. Lef
Fire kindler, D. Frankfoder.
Fire place grate, J. Baw....
Fire plug. J. A. Stacey....
Fruit dryer, Lowman and Creps
Fruit jar. J. H. Cowl ...
Furnace, F. P. Dimpfel.
Funace He Smith.
Furnace, locomotive boller, iv. F. Grassler.
Furnaces, feeding air to, W. J.
Furnaces, feeding air to, W. J. 0 'Neal.
Gas, making heating, J. M
Gas light globe, T. Trude
Gas light globe, T. Trudeau
Gas main dip pipe, P. Munzing
Gas regulator, J. Adams..
Gas
Gas stove, J. J. West (r).
Gate, Redmond and Rhodes.
Gems, setting, H.
Gems, setting, H. G. Mackinne
Glass monument. A. Pfeiffer
Glazier's diamonds, P. Sinszz...................
Grann-cleaning machine, G. E. Throop (r)
Gran-cleaning machine,
Grate bar. E. N. Schmitz.
Grindstones, forming artiificial, G. Hart..
Gunpowder, Mile, J. F. Knox
Harness saddle
Harrow, J. b. Greene
Harrow, J. B. Greene...
Harvester, J. S. Fowler....
Hat and cap, Isidor and Hein
Hat and cap, Isidor and Hein............
Hat-pressing machine, M. A. Cuming.
Hat-stretching machine, R. Eickemey
Hat-stretching machine, R. Eickem
Hats, stiffening, R. Eickemeyer...
Hinge, A, H. Isham.
(ou

Hinge, D. Skidmore.........
Hook, snap, H. C. Goodrich.
Horse power, O. O. Storle : Horse power, O. O. Storle © r$)$.
Ice cutting machine. J. Schate Ironing apparatus, H. E. Smith................
Keys, machine for making split, w. H. Fo Knit goods, etc., , niting, H. A. A. Blanchard.
Knitting stockings, etc., Polle and Keisker Knitting stockings, etc., Polle and Keisker
Lamps, funnel for filling, iI. H. V. Lilley... Lamps, funnel for filling, i.
Land roller. E. H. Adams.
Lightning rod, W. H. Span
Lightning rod, W.
Link, w. A. Iagals
Locomotive boiler fu
Locomotive boiler furnace, W. rassler. Loom for weaving matting, S. Kuh.
Loom shuttle binder, J. H. Moore Loom stop motion, B. F. Arnoord.....
Looms, take up pawl for, S. S. Waike
 Metallic vessel. E. T. Cove
Mill, grinding, G. Selsor... Mirror, toilet. H. Palmieri. Muff, head, I. B. Kleinert. Muff, head, I. B. Kleinert..............
Music leaf turner, F. G. Johnson......
Nail cutting machine, W, Wickershan Nail cutting machine, w.
Napkin holder, C. Rowlan
Neck tie, A P D.
Neck tie, A. P. Daminon
Nozzles, joint for hydra
Nut lock, J. G. Perry.
Oar lock, G. H. Hurd.

Organ reed boards, Λ. W. Wilcox (r)......6,69\%,Ovals, machin for cutting. J. E. Howardet al.,

P_{P}^{P}
Pavement, Abbott and Cranford
Peat machine, C. H. Williams
Penholder, D. M. Soners...................
Photographs, coloring, W. W. Williams....
Pianoforte, G. C. Manner....
Planing chuck, G. V. Seaver
Planter, corn, E. E. Matthews
Planter, cotcon, J. B. Onan...
Plow, side hinl, R. I. I. Knanp.....
Plow, sulky, E. W. Russell....
Portfolio stand, D. J. Steen....
Power regulator, spring, o. Coll
Propeller for vessels, F. Jacob
Propeller for ressels, F. Jacob.
Propelling machine
Propelling machine, J. J. Flack....
Propelling mechanism, L. W. McKenuey....
Pump valve. T. Maguire........
Pumps, strainer for, L. Blass.
Purifier, flour and middiings, A. M. Comstock
Railroad rail joint, S . H. Witmer.
Railroad rail joint, S. H. Witm
Railroad switch, C. C. Coats...
Railway, elevated, W. Harrison..................
Railway signal, detonating, F. Hickman.
Rake, horse hay, Downing \& Van Cam
Rake, horse hay, Downing \& Van Ca
Rake, horse hay, J. Hollingsworth.
Rattan, treating, \mathbf{C}. Newman.......
Refrigerator, H. H. Barnes
Refrigerator, H. G. Gleyre
Register, hot air, E. Gleyre Tuttle....................
Register, hot air, E. A. Tuttle...........
Rein holder, Porter, Ha wes, \& Page...
Respirator and inhaler, J. Carrick....
Respirator and innal.
Roller \& barrow, A. P. Allen...
Sad iron heater, G. W. Cottingh
Roller \& harrow, A. P. Allen.............
Sad ron heater, G. W. Cottingham
Salt, deposits from tubes in, w. C. Hallida
Salt, deposits from tu
Sash pulley, J. Smith
Sash pulley, J. Smith....................
Saw mill head block, Dilger \& Dunn
Saw mill head block, Dilger \& Dunn
Sawing machine, Pease \& wintacre.
Sawing machine, Pease \&
Scaffold, L. W. Swafford.
Sealmetallic,
Sealmetallic, F. C. Hamilton.
Separator, rrain, L. C. Royer
Sewers and sinks, emptying,
Sewers and sinks, emptying, R. Boeklen..
Sewers, manhole cover for. D. H.
Sewing cabinet, A. Tostevin........
Sewing machine, w.

Sheet metal, corruagariň, W. B. \& O. P. Scaif
Shoe pegs, making, F. D. Ballou....
Shoe pegs, making, F. D. Bullou.....
Shoemakers, cutter wheel, Metc,.J.
Soldering machine, L. P. Merriam
Sole channeling macline, L. Gooddu.
Sole, T. Ramsden.
Spinning ring, w.
Spanning ring, W. .Jenc.
Spoke socket, A. Clist.
Spoke tenoning macline
Soke tenoning maching
Square, W. H. Walker.
Stove, gas J. J. West

Stove, heating, Raymond \& Campbell.
Stove heating, , T. White..........
Stove polishing machine, P. H. Walsh
Table, ironing, Hughes and Lockard..
Table slide, extension, Maxwell \& Peas
Table, sidide, extension, Maxwell \& Peaster.........
Tar from seaweed, obtaining, w. H. Ruddick...
Tar from seaweed, obtainin
Thill coupling, F. Chapman
Thill coupling, F. Chap
Ticket case, I. White...
Ticket case, I. White...........
Ticket reel, A. stephenson...
Tile, illuminating, T. Hyatt
Tile, illuminating, T.
Trap, fly, R. Nutting.
Then
Trap, hog, w. Deatherage..........
Tunneling machine,o. B. Dowa...
Tunneling machine, O. B. Dowd.....
Umbrella tip cup, F. S. Brown...
Undergarment, s: T. Converse...
Valve, balanced, G. Mossop.....
Valve, balanced, G. Mossop....
Wagon, dumping, P. \& J. Heil
When
Wagon, dumping, P. \& J.
wagon seat, l . B. Conover
Wagon spring, M. Feigel.
Wagon sear, s. B. Conoter........
Wagon spring, M. Feige.......
Washing machine, D. Warnock..
Washing machine, I. Warnock.....
Watch regulator, R. S. Mersho on.
Watch regulator, T. .. Mersion
Wells, shutting off water from, J. P. Gordon..
Whe
Wells, shutting off water from, J. P. Gordon.....
Wheat steamer and equalizer, Sims \& Hosick.....
Whip socket, H. Fowler..........
Windmill, S. M. Abbott..............
Whip socket, H. Fowler.......
Windmill, s. M. Abbott......
Window screen, J. E. Chase..
designs patentied.
8,594 and 8,595.-CARPets--T. Barclay, Lowell, Mass.
8,596 .-Plated Baxd.-R. Christesen, W. Meriden, Con
8,594.-PLATED BAND.-R. Christesen, W. Meriden, Conn
8,597.-Cofree Miles.-J. Girard, New Britain, Conn.

Pa
Pa

8,644.-Types.-H. Ihlenburg. Philadelphia, Pa. 8,645.-Boa.-G H. Prindle, Philadelphia. Pa. 8,646.-Trimming.-G. H. Prindle, Philadelphia, Pa.	
SCHEDULE OF PATENT FEES.Of each Caveat................................... 8	
mark	
On filing each apmication for a Patent (17 years)..... 8	
On appeal to Eximiners-In-Chief.	
application for Ret	
On Hlling a Disclaimer......................	
CANADIAN PATENTS	
List of Patents Granted in Canada September 8 to 14, 1875.	
5,147.-J. Hall, Toronto, Ont. Revolving reel bake ovens. Sept. 8, 1875 .	
5,148.-G. H. Jones, Rose, N. Y., U. S. Mold for casting turbines. Sept. 8, $18 \pi 5$.	
5,149.-R. Wheeler, Bell Ewart, Ont. Extension stove leg Sept 8,1875	
5,150.-P. S. Laurent et al., Sherbrooke, P. Q. Stove heater. Sept. 8, 1875.	
5,151 - W. A. McClintock, Pittstield, III., U. S. seed drill. Sept. 8, 1875.	
5,152.-C. Hood, Hartiord, Conn., U. S. (ombined ladder and wash bench. Sept.8. 1875 .	
5,153.-C. Bueckh, Toronto, Ont. Filer and bristle combing machine. Sept. s, 1875.	
5,154.-J. H. Sheldon, Chicago, Ill., U. S. Illuminating gas. Sept. 8, 1875.	
§,155.-G. H. Thompson. Oneida, Ont., et cel. 1)evice to prevent horses from jumping over fences. Sept. 10, 1875°	
5.156.-J. D. Mann, Kentville, N. S. Snow plow. Sept10, 1875.	
5,157.-J. Guest, Jr., Merrickville, Ont. Churn power. Sept. 10, 1875.	
5,158.-R. Gilchriest, Louisville, Ky., U. S. Extension ladder. Sept. 10, 1875.	
5,159.-J. Edgar, New York city, U. S. Coal shovel. Sept. 10, 1875.	
5,160.-J. W. Mann, Woudhouse, Ont. Seed sower, Sept. 10, 1875	
5.161.-F. M. Gardner, Hornellsville, N. Y., U. S. Lifting attachment for sloovels and forks. Sept. $10,1875$.	
5,162.-C. B. Long, Worcester, Mass., U. S. Machine for crimping leather. Sept. 10, 1875.	
5,163 - W. D. Ewart. Chicago, H1., U. S. Drive chain. Sept. 10, 1875.	
5,164.-L. Glynn, Cambridgeport, Mass., U. S. Pipe wrench. Sept. 10, 1875.	
$5,165 .-$ H. W. White. Oskaloosa, Iowa, U. S. Guitar head. Sept. 10, 1875.	
5,166.5,167.-H. W. White, Oskaloosa, Iowa, U. S. Chin rests for fiolins. Sept. 10. 1875.	
5,168.-A. Manbré, Penge, England. Process of extracting sugar, etc. Sept. 10, 1875.	
5,169.-J. Commins, Charleston, S. C., U. S. Composition for kindling fires. Sept. 10, 1875.	
5,170.-A. F. Skidmore et al., Litchfleld, Minn., U. S. Machine for cutting hoops. Sept. 10, 1875.	
5,171.-I. C. Richardson, Nashua. N. H., U. S. Steam heating apparatus. Sept. 10, 1875.	
5.172.-E. B. White, Arkona, Ont. Barrel and circular box. Sept. 10, 1875.	
5, 173.-H. Wanby, Toronto, Ont. Stone pipe stone mold. Sept. 13, 1875.	
5,174.-E. Biddle, Carlin, Nevada, U. S. Hydraulic jack. Sept. 14, 1875.	
5,175.-J. Rice, Black Brook, N. B. Roller hoisting apparatus. Sept. 14, 1875.	
5, 176.-J. Regan, Ottawa, Ont. Framings and molds to make wells, drains, etc. Sept. 14, 1875.	
5,177.--J. B. Clark, Plantsville, Coun., U. S. Dies for heading and squaring bolts. Sept. 14, 1875.	

Saluattyemant

Back Page Inside Page
 81.00 a line. $\boldsymbol{y} 5$ cents a lino.
 Engravings may head advertizements at the same rate per line, by measurement, as the letter press. Adver. tisements must be received at publication office at

 STEEL CASTINGS.

TO ELECTROPLATERS, JFGELERS,

 Hublind
 a Specialty.
 Foot Lathes.
$\mathbf{W}^{\text {ITHERBY, RUGG } \& \text { Richardson, Man- }}$

ROOFING!

ROOFING!

SAMPLES, ALSO 100 PAGE BOOK OF TESTIMONIALS, FREE,

N. Y. SLATE ROOFING COMPANY,

8 Cedar St.,New York. 49 South Front St., Philadelphia, Pa. 12 Central Wharf, Boston, Mass.
84 Park Place, Newark, N.

For Grinding Bricks, and hard material. Send for Pamphlet to Denmead \& Son, - Ealtimore, Md.
 Scroll Saw

Prsisidit Mequinary

PLANING \& MATCHING, MOULDING, MORTISING,
TENONINGRESAWING,SHAPING

Simple, Durable, and Economical.
 No.
,

STEAMPUMPS

> PATENT

Planing \& Matching

8,000 in Use ! Blake's STEAM PUMPS

NEW BOOKS.

 ing the Determination of Cast shad ows and IsometricProjection, each Chapter being fol owed by numerou
 Water-Supply.-The Present Practice of Sinking and
 Dry Rot. A Treatise on the Origin, Progress, Pre-

 446 Broome Stret, New'York HAIR-FELT----HAIR-FELT. BOILERS \& PIPES.

MACHINERY.

IRON \& WOOD WORKING MACHINERY OF EVERY DESCRIPTION.
Cold Rolled Shafting.
 EAGLE FOOT LATHES,
 SELLLNG RAPIDLY.
 $\mathbf{A}^{\text {GENTS WANTED- } 940 \text { a Week and Expenses, }}$ Planing \& Matching,

 BOLT CUTTERS. Dies open and closes and Bolt
thown
One patternt holds fally.

 Wood \& LIght Machine Co., worcester, Mass.
make all knds or trin Working Machinery. ROSE BUDS IN WINTER.
 See our

P. BLATSDEFII \& CO.,

Machinists' Tools,

(1) ES Mafety hoisting

NO. 348 BROADWAY. NEW, BROSE. © CO.

AGENTS WANTED.

John Cooper Engine M'f g Co.

RICHARDSON, MERIAM \& CC.,
 MACHINTST'S TNOULS

 BOOKWALTER ENGINE
 Governor, Pump, \&c. C , with shipping
boxing, at the low price of
3 Horse Power....... $\$ 25200$
(1) ${ }^{41 / 2}$ " " " JAS. LEFFEL \& CO. erty St., New York City Model Engines. Castings
 Parts of Models. All kinds of Small Tools and Materi-
allus. IMPROVED MACHINERY for STAVE

 LOTHPTICED EIVRRY WHEELS
Made and introduced by inexperienced men, have resulted in failure, dissatisfac
tion and distrust of $a l l$ Emery

Mnun \& Co.'s Patent Ofices.

Established 1846.

The Oldest Agency for Soliciting Patents in the United States.

TWENI Y-EIGHT FEARS EXPERIENCI.

MORE PATENTS have been seoured through his agency,
he world.
They emp
They employ as their assistants a corps of the most ax
perienced men as examiners, specification writers, an raftsmen that can be found, many of whom have been se cted from the ranks of the Patent Office
SIXTY THOUSAND inventors have avalled Semselves of Munn \& Co's services in examining their in MONN \& CO in connection with
MUNN \& CO., in connection with the publication of the Soikntifio Amerion, continue to examine inventions
onfer with inventors, prepare drawings, specifications, an ssignments,attend to flling applications in the Patent Office paying the government fees, and watch each case step b step while pending before the examiner. This is done through their branch office,corner F and 7th Streets, Wash ngton. They also prepare and file caveats. procure design
patents, trademarks, and reissues, attend to rejected cases (prepared by the inventor or other attorneys), procure copyrights, attend to interferences give written opinions o attend to every branch of patent businass doth in this and n §oreign countries.
Patents obtained in Canada, England, France, Belgium Germany, Russia, Prussis, Spain, Portugal, the British olonies, and all other countries where patenta aro granted.

Copies of Patents.
Persons desiringany patent issued from 1836 to Novem ber 26,1867 , can be supplied with official copies at a rea ngs and length of specifications.
Any patent issued since November 27, 1867, at whicl ime the Patent Office commenced printing the drawing a copy of the claims of any patent issued since 1836 will e furnished for $\$ 1$. When ordering copies, please to remit for the same
bove, and state name of patentee, title of invention, an date of patent.
a special notice is made in the boirentifio amriican of Inventions patonted through this Agency, with the name and ressidence of the patenteo. Patents are ofte sold, in part or w
by such notice.
A pamphlet of 110 pages, containing the aws and fa:i drpertaining exclusively to Foreign Patente, stating coss each country, time granted, etco, sent free. Address MUNN \& $\mathbf{C O}$.
Pablishers scientific amerioan 3y Park Row, N. Y
rner Fand
9in *seone

SCIENTIFIC AMERICAN THE MOST POPULAR SCIENTIFIC PAPEB THIRTIETH YEAR.
VOLUME XXXIII.-NEW SERIIES The publishers of the SCIENTIFIC AMERICA beg to announce that on the third day of July
1875, a new volume commenced. It will cont nue to be the aim of the publishers to render the con tents of the new volume more attractive and use ful than any of its predecessors.

To the Mechanic and Manufacturer No person engaged in any of the mechanical pur American. Every number contains from six to ten engravings of new machines and inventions which cannot be found in any other publication
The SCIENTIFIC AMERICAN is devoted to the interests of Popular Science, the Mechanic Arta Manufactures, 1 and uable and instructivenot only in the Workshop and Manufactory, but also in the Household, the Li orary, and the Reading Room.

TERIS

One copy, one year (postage included). One copy, six months (postage included).... 1.60 One copy, three months (postageincluded).. 1.00
One copy of Scientific American for one year, and one copy of engraving " Men
of Progress"..... 1
One copy of Scientific American for one 10.00 year, and one copy of "Science Record"
Remit by postal order, draft, or express.
Address all letters and make all Post 0 .ffe ofAddress all letters and
ders and drafts payable to

MUNNN \& CO. 3y PARK ROW, NEW YuнK EVGINES\& BOILERS.new \& 2d h’d. perfectcondition. CHE "Scientific American", is printed with
CHAS. ENEUJOHNSON AO.'S INE. Tenth and
Lombard Sts. Philadelpha and 59 Gold St.. New York

