a WeEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTCRES.

mini-No. 14.]	NEW YORK, OCTOBER 21875

IMPROVED LIQUID MIXER

Molasses is usually supplied to the markets in four grades -common, fair, prime, and choice-and to obtain these dif ferent qualities, it is necessary to mix together large amounts of the liquid at a time. The apparatus represented in the engraving is designed to facilitate this operation. It may also be employed in any other cases where the mingling or equalizing of fluids in bulk, as in refineries, distilleries, etc., is required.
The mixing vessel or vat is conveniently located in the ground, or beneath the floor level. At both sides arearranged boxes pro vided with strainers A, through which the liquid escaping from the barrels, which ar rolled, bungs down ward, upon the down ward, upon the top of the boxes, is fil tered. The bottoms o the boxes are incline so that the fluid run to an opening at the inside, and thence in to the vat. Within the latter, and placed lon gitudinally is a stirre wheel, B, which is re volved by suitable power transmitted from the engine, and by means of which the liquid collected is thoroughly mingled When the operation is finished, the wheel is finished, the wheel stopped, and the contents of the vat are
drawn off by the drawn off by the pump, C, operated from the driving shaft, as shown, and through a suction strainer set in a draining box at the bottom of the receptacle.
Large quantities of liquids may thus be handled easily and mixed in a short space of time, while being also strained from an lorse impuri in coarse impuri.ies, i the passage to the mix ing vat.

Patented through the Scientific Ameri can Patent Agency, July 20, 1875. For furcher information address the inventor, Mr. John B. Meyers, 475 Josephine street New Orleans, La.

Prizes for Metallurgical improvements.

The Société d'Encouragemert pour l'Industrie Nationale (offices at P_{r} ri $=$, rue de Rennes, 44) offers a prize of $\$ 600$, to be competed for in 1876, for a process of manufacture of cast steel rails from common ores, containing from 0.50 to 1.50 per cent of phosphoric acid. In 1876 will likewise be accord ed the D'Argenteuil prize of $\$ 2,400$ for the discovery or improvement of the greatest consequence to French industry; and in 1879 the society's own prize, of the same amount for the same object. Other prizes are: (1) $\$ 600$ (in 1976) for a steam engine of from 25 to 100 horse power, burning 1.54 lbs. of coal per horse power per bour, the engine weighing less than 720 lbs., and costing under $\$ 80$ per horse power. (2) $\$ 200$ (in 1878) for a suall motor for domestic purposes. (3) $\$ 400$ (in 1878) for specified improvements in flax and hemp spinning. (4) $\$ 400$ (in 1879) for cotton carding. (5) $\$ 400$ (in 1880) for a file cutting machine. (6) $\$ 400$ (in 1877) for a method of obviating the shock and vibration of heavy machinery such as steam hammers. (7) $\$ 200$ (in 1876) for any useful application of the recently discovered metals-calcium, magnesium, strontium, thallium, etc. (8) $\$ 200$ (in 1876) for a now alloy useful in arts (9) $\$ 400$ (in 1877) for artificial graphite for drawing pencils. (10) $\$ 600$ (in 1877) for the artificial preparation of compact black diamond, for obtaining a pow-

MkYERS' LIQUID mIXER.

 hindering soot from adhering to the walls of chimneys, so nicate that they may be fully cleansed.stones. (11) $\$ 1,200$ (in 1878) for a theory of steel based upon experiment, and heving for its object to better regulate the manufacture of steel. (12) $\$ 200$ (in 1876) for the establishment in France of a workshop for the complete treatment of the ores of nickel, and the preparation of the pure metal, the nickel ores from the Alps, the Pyrenees, and Algeria being at present only treated for smalt, and then sent away to Germany more especially, for the extraction of the nickel. (13) $\$ 200$ (in 1880) for means for the economical production
feet; France and colonies, 43,314; England, 51,776; Ger many, 27,705; Austria, 24,070; Canada, 24,070; Australasia 24,070 ; Sweden, 15,358; Belgium, 15,358; Japan, 16,566 Netherlands, 8,167; Norway, 6,897; Switzerland, 6,646; and Denmark, 5,647

The Treatment of Hydrophobia.
The French Journal des Connaissance Médicales relates that a man, 43 years of age, having been bitten by a mad dog, was cauterized with a red hot iron four hours later. A month passed without any distressing symp toms, but at the end of that time he began to complain of epigas tric and pharyngian constriction, and was Recourse was had to chloral at doses chloral at doses of about sixty grains, in offording in affording a good night's rest; but the third time it remained without effect. The patient experienced great anguish; hi voice was hoarse: he had tetanic contrac tions in the arms neck, and breast, and expressed great fear accompanied with hal lucinations. In the morning he was ut terly discouraged.
They then admin istered sixty grains of bromide of potassium which gave a quie night, with a grea improvement on the following day. An other dose of about seventy-five grain was given with equa success; all convul sive motions had dis appeared
The medicine be ing suppressed, the convulsions began again a week later when bromide wa again administered to the amount of about ainety grains, which completed the cure This remedy is readi ly tried, and we shal

New Allotment of Space at the Centennial The Centennial Directors have abandoned their original idea as to allotting space, which by the way was never form ally adopted, and, for the very convenient arrangement of placing nations across the building and groups of similar ob jects longitudinally, have substituted the far less sensible plan of putting each nation's exhibit promiscuously within a ertain area. The beauty of the first scheme was that, to in spect the display of any one country, the visitor had only to enter the proper side door and walk across the hall, the whole exhibit being in the zone traversed; or, if he desired to examine, say all the cotton machinery of the world, he the building and walk its entire length, in so doing crossin the space of each nation where cotton machinery had been placed. There were plenty of objections to the plan, good as was, which need not be detailed, since the new one has been definitely adopted. The United States now occupy about one fourth of the floor space, and the areas next in point of ize are allotted to England, Germany, and France, the four great nations being grouped together. The other countries are scattered apparently without regard to their geographi cal position. The areas allotted thus far, according to the
new plan, are as follows: United States, $166,351.7$ square

Southern Pacific Railway

Any one, says the Los Angeles Herald, desiring to obtain any idea of the stupendous accomplishments of railroad on gineering should spend a few day at Tehachape Pass, in vesti gating the operations of the Southern Pacific Railroad Com pany. About twenty miles of that road is a succession of cuts, fills, and tunnels. Within this distance there are thirteen tunnels, ranging from 1,100 feet to a few yards in length For the greater portion of the way the road bed is cut hrough solid granite. The elevation is so great from the present terminus of the road, at Caliente, to Tehachape Val ley, that the first mile and a half out of Caliente is attained by laying down eight miles of track. Higher up in the pas the road runs through a tunnel, encircles the hill, and passes few feet above the tunnel. After completely encircling the hill, and going half round again, the track doubles on itsel ike a closely pursued hare, and, after running several miles in the opposite direction, strikes up the cañon. This circling nd doubling is for grade. Once the track crosses the pass, nd this involves the building of a long and very high bridge. We doubt if a more difficult and expensive piece o ongineering was encountered in the building of the Central Pacific over the Sierras than that with which the Southern Pacific is now struggling in Tehachape Pass. Another tre
when completed, will be over a mile and a half in length, and in places over 1,000 feet beneath the surface. Yet the company will accomplish this great work, and run cars througa from San Francisco to Los Angeles, by the 1st of next July. Ali the force that can be used is kept at work on the San Fernando tunnel. In the Tehachape Pass 5,000 men re employed, and the force is being increased at the rate of 1,000 Chinamen per week.

Srientifit emmerian.

MUNN \& CO. Editors and Proprietors
NO. 37 PABLISHED WEEKLI AT
ROW YOR NEW YORK
$\xlongequal{\text { o. D. MUNN. }}$

Clubrates.
Ten copies, one year, each $\$ 2720$, postage included..
Over ten copies, same rate each, postage included.
By the new law, postage is payable in advance by
the subscriber then receives the paper free of charge. Norre.-Persons subscribing will piease to give their full names, and Post
Office and State address, plaininy written, and also state at which time the Office and State address, plainly written. and also state at which t time they
wish their subscriptions to commence, otherwise the paper will be sent from wish their subscriptions to commence, otherwise the paper will be sent fron
the receipt of the order. When requested, the numbers can be supplied the recelpt of the order. When requested, the numbers can be supplied
from January sts, when the volume commenced. In case of changing resi. Irom January ist, whert the volume commencee. In case of changing resi.
dence, state former address. as well as give the new oue. No changes can
be madeupless the formeradress is ivel be made unless the former address is given.
volume xaxili., No. 14. [New Series.] Thirtieth Year.
NEW YORK, SATURDAY, OCTOBER $2,1875$.

A NEW USE FOR CRIMINALS.

Even vermin have their uses, say the pessimists. It is a cheering theory, and one which we should rejoice to see demonstrated, especially with reference to those vermin of so , the criminal classes.
Thus far they certainly have been the reverse of useful. Not only have they been a sorious detriment always, to na tional prosperity through their depredations upon life and property and public peace, but also by their vicious example, and, more effectually still, by the transmission of their vicious traits to after generations.
Our present mode of dealing with them labors under the double disadvantage of being very inefficient and very costly. Every year sees the machinery of justice become more mag.
nificent and burdensome, yet it none the less fails either to nificent and burdensome, yet it none the less fails either to cure or to materially lessen the evil. Indeed the law has often more terrors for the good citizen than for the bad: he has a large bill, of costs to pay at any rate; whereas the ras-
cal who plunders him has everything to win and very little to lose. If he escapes, which is most likely, he gets the to lose. If he escapes, which is most likely, he gets the
booty: if caught, he simply loses for the moment what is no booty: if caught, he simply loses for the moment what is no
use to any one-his liberty.
Is it not time for the well disposed, the innocent, and the lawIs it not time for the well disposed, the innocent, and the law-
abiding to turn the tables and recoup themselves, if possible, for their numerous losses? The ways in which this can be done are as numerous and varied as the varieties of criminal constitution and character.
Just now the authorities of Massachusetts are puzzled to decide what to do with the murderous Pomeroy boy. Hang him! said the court : and the multitude re-echoes the cry. That
is an easy way to to ret rid of him; but will it pay? What is an easy way to get rid of him; but will it pay? What
good will it do to kill him? His death will not atone for the damage he has done, nor will it deter another of like mental and moral perversity from the commission of similar crimes. Then why throw away all the possibilities of use and instruction which his peculiar character affords?

In a case of this sort, vindictiveness is folly. The boy is what he is through conditions of heredity and culture which ought to be investigated. He represents a stage of human
development or atavism which ought to be understood. development or atavism which ought to be understood. What was the antecedent stage, and what will the next one bэ? His character is likely to change with increasing years; what is the direction of that change? Education and moral
training are supposed to have a determining influence upon training are supposed to have a determining influence upon
character; what can they do for him? The boy is a very bundle of scientific problems; why not keep him for investigation? For the solution of many of the problems of culture and civilization, he is worth a dozen ordinary children. He ought not to be thrown away. Make it impossible for him ever to transmit his vicious nature to a future generation, then in vestigate him, and all others like him, for the good of the race.
Appil
Appiy the same principle in a different way to a very different character, say the once famous, now infamons, Colonel
Valentine Baker, late of the British Army : a man of years and high standing, whose irrepressible impulses led him to make criminal assault upon an unprotected fellow traveler. He has lost his place in the army and in society; he has been
fined and nominally imprisoned ; but his impulses remain fined and nowinally imprisoned; but his impulses remain unaitered, and his example-punishment and all-seems to
provoke others to similar deeds rather than to deter them for his unusual offense has been since repeated by several. And when he returns to the world, his term of idle imprisonment ended, he will be simply what he was at first, lacking the restraining influence of his rank and possibilities of use. fulness.
This may be justice, but it is not good policy. What was needed in his case was cliefly the extirpation of the cause of his uncontrollable passion-which any sur ${ }_{8}$ eon could have done in a few minutes-io destroy the only element of dan ger in his character.
In a rude state of society, the usef ulness of a public offender is necessarily measured by his power to do rude work, in the quarry, the mine, or the like. We have arrived at a ters can easily be put to more profitable uses; though we should by no means personally object to the employment of the more able-bodisd criminals in that way, especially in the coal mines. Instead of manufacturing for such needful service a degraded and largely criminal class-a provess which any one can see in operation by visiting a coal-cracke among the Pennsylvanian mountains, where swarms of ins
bred children spend their days at hard labor under the most debasing influences-it would be infinitely better to have the work done by ready made criminals, drafted from the country at large. It would be a saving of virtue, and possibly in the cost of coals. But there are still better uses to which the majority of criminals can be put.
Among the most important problems of civilization are
hose relating to health and disease. Of very few human those relating to health and disease. Of very fow human maladies can it be said that we know their causes, ganism, or a satisfactory mode of treating them. As little do we know how to prevent or avoid them. Yet of what vi tal importance is such knowledge to the well being of socie-
ty! The limited positive knowledge which Science has acquired of the ills which flesh is heir to has been gained through ob servation complicated by a thousand unknown conditions, through experiments upon unoffending animals, and by dis-
section of deac. During the middle ages, the last mentioned source of knowledge was barred. Every scholar knows what sudden and immense advances men made in anatomy and physiology, and in the healing arts which rest on them,
when students began to draw their knowledge of man's phys when students began to draw their knowledge of man's phys ical frame directly from human subjects, and not indirectly might be iectly from the study of animals. A simiaradvance the action of disease be directly studied in human subjects over which the observer should have absolute control.
Our suggestion would therefore be that such a portion of the criminals convicted from day to day, as might be found vailable, should be turned over to boards of surgeons and physicians, duly appointed, under whom they might be use or the investigation of sanitary problems, for the good of
humanity.
For example, men convicted of capital crimes, instead being uselessly hanged, might be employed in the study of diseases usually fatal, or of other diseases whose effects in their various stages would need to be studied anatomically. Especially atrocious murderers might be reserved for cases involving vivisection. Criminals of lower grades could be utilized in the study of diseases of minor severity, according to their physical adaptation and the nature of their crime Having their subjects under absolute control from the inception of a disease to its termination, the investigator could not fail in time to arrive at certain knowledge both as to its prevention and mitigation, if not its cure. Medicine is full of problems whose solution might be greatly hastened by such means.
The same
The same may be said of other departments of social sci. ence. How far, for example, is the criminal diathesis cura ble, and under what conditions? What is the comparative influence of the different sorts of mental and moral training How can the taint of hereditary crime be averted? How are the various grades of criminality affected by surgical operaof hereditary crime impossible? And how far may the subjects of such treatment be safely allowed at large?
Bat the field of investigation is limitless. The possible dreat
nal enemies, even to the taking of life, is unquestioned. To attempt it by means of punishment has proved unavailing and costly. It is time that a different plan be tried. Sup pose we sink the idea of retribution-if need be, of reforma tion also-and seek to make all human vermin first harmless, then useful, either by their productive labor or by their sub. jective contributions to human knowledge for the protection of health and the saving of life.
As for its deterrent effect, such a passionless, unvindic tive, business-like treatment of all violaters of the common weal certainly could not be less efficient than the jumble of uncertainty, vengeance, sofmess, retribution, sentimentality and uselessness, which constitutes our present judicial and correctional systems. We are disposed to thiuk that the possibility of being madea subject for the study of small pox, cholera, typhoid fever, or even a bout at measles or the mumps, would restrain a pickpocket or a burglar quite as ef ficiently as the chance of a few weeks on the Island, or a few months at Sing Sing. At least the knowledge gained by means of him and others like him would go far to recompense society for all it might suffer from his depredations.

HOW FAR WILL BODIES SINK IN THE OCEAN?
The of ten repeated inquiries which we receive, as to the depth in the ccean at which heavy bodies will float, prove the great prevalence of the error that water is so compressible as to become at certain great depths considerably heavier, by its own superincumbent weight. The fact is that, on the contrary, water is one of the least compressible bodies, so that, under a pressure of $7,200 \mathrm{lbs}$. per square inch, corres. ponding to a depth of 16,800 feet, or 3 miles, its bulk is only diminished from 1,000 to 978 parts, and its weight or specific gravity increased from 1.000 to $1 \cdot 022$. At double this pres. sure, or $33,600 \mathrm{lls}$. per square inch, at 6 miles in depth, the compression is double that amount.
Oerstedt of Copenhagen, who in 1819 discovered the relation between electricity and magnetism, a discovery which was the first step in the invention of the modern telegraph, was the first who practically demonstrated and measured the amount of compressibility of water and other liquids, by means of an apparatus still named after him. It consists of a small hydraulic press, of which the piston is pressed powerfully down by means of a screw, so as readily to produce pressures of $500,1,000$, and even 5,000 and more pounds per square inch. The walls, being of extremely strong glass, give opportunity to observe the instruments of measurement enclosed. Experiments with this apparatus show data which may be tabulated thus:
table of the depth and corresponding pressure and density under the ocean's surface.

$\begin{aligned} & \text { Depth } \\ & \text { below } \\ & \text { surface. } \end{aligned}$	Pressure of water column in lbs.	$\begin{array}{\|c} \text { Pressure of } \\ \text { Water column } \\ \text { in atmospheres. } \end{array}$	$\begin{aligned} & \text { Density } \\ & \text { of the } \\ & \text { water. } \end{aligned}$	$\begin{aligned} & \text { huik of } \\ & \text { equal werghti } \\ & \text { of watro. } \end{aligned}$
0	0	0	0.0000	$1 \cdot 000000$
32 feet	15	1	$0 \cdot 0990$	$1 \cdot 000048$
160 "	75	5	0.9997	$1 \cdot 00023$
1,000 "	750	50	09977°	10023
$\frac{1}{2}$ mile	1200	80	09963	$1 \cdot 0037$
1 "	2400	160	09926	$1 \cdot 0074$
$1 \frac{1}{2}$ miles	3600	240	0.9892	1.0111
2 "	500	320	0.9854	1.0148
3 "	7200	480	0.9782	1.0222
4 ،	9600	640	0.9718	$1 \cdot 0296$
5 "	12000	800	09652	1036
6 "	144000	960	0.9578	1.044

It will be seen from this table, of which the data are per. fectly reliable, having been verified over and over again by various experimenters, that when water is submitted to a pressure of $144,000 \mathrm{lbs}$. to the square inch, corresponding to a depth of 6 miles, a bulk of 1,000 cubic inches will only be compressed to a space of 957 cubic inches, and the specific gravity increased to $1 \cdot 044$, water being 1000 .
Therefore, if a body be capable of floaring at such a depth, it must satisfy two conditions: 1. Its specific gravity must be between $1 \cdot 000$ and $1 \cdot 044$. If the specific gravity is not more than 1.000 , it will not sink at all; and if it be 1.044 ot above, it will sink to any bottom less than 6 miles deep. 2. The sinking body must be less compressible than water; if it is more compressible, it will grow comparatively heavier all the time it is descending. and can never find a stratum of the same weight, in which it might float in equilibrium. Now all the bodies known to be less compressible than water are much heavier than the limit given; such are stones, nuetals, etc.; and the amount of their compressibility, as compared with that of water, is still problematic. But they will o deep all sink to the very bottom of an ocean, be it ever ty surpasses that to the bodies of which the specific gravrange under discussion, they are all very compressible the kinds of wood, when submitted to great pressure, so that all pores are filled, attain the specific gravity of the primitive wood fiber, the lignin, of which the specific gravity is $1 \cdot 400$; and they will thus sink to the very bottom, like water-logged wood. So it is with all similar substances; and the theory that there is a certain depth in which all or many bodies may float in the ocean must be modified to a statement that there are various depths at which certain various bodies may be kept floating; but that the cases are extremely rare, exceptional, and perhaps only temporary, so that all bodies will finally either sink or float. In the latter case, the destructive power of the elements will soon dispose of them; in the former they are usually preserved, as is seen in observing the structure of the diatoms, those delicate beings the details of which serve now to test our best microscopes, and which the depth of the ocean has preserved, in the mud deposited there, for thousands of years.

THE PROPOSED RAILWAY TUNNEL UNDER THE ENGLISH CHANNEL.

The preliminary arrangements for the commencement of this great work are progressing favorably, and there appear to be good prospects for its execution under the combined auspices of the English and French governments. Preliminary surveys of the best routes have been made by eminent engineers, who have become satisfied thereupon that no es
pëcial difficulties are likely to be encountered. The length of the tunnel will be about twenty two miles.
The subject came up for discussion recently before the British Association, when Sir John Hawkshawí; who is one of the engineers of the work proposed, gave a variety of in teresting particulars:
The channel waters, he said, were a mere fish pond. They were only 180 feet deep. Borings have be an made to a depth of 600 feet on each side of the Channel, and also in the Channel bottom at many points on the line, and it has been experimentally ascertained that the tunnel would pass through a chalk formation for nearly the whole distance. The tunnel would be 230 feet below the bottom of the Chiatinel ; and with this large amount of material existing between the bed of the tuturel and the ocean above, there was little danger of any trouble from the ingress of water.
Some people seemed to assume that the tuntel would be so badly ventilated that nobody would dare to go into it. When the tunnel came to be constructed the great difficulty would be to get in and out of it. There would be a vast number of workmen and an enormous amount of building material to be carried in and out. There would be a drift way tunnel; and in order to facilitate the men and the material going in and out, it would be desirable to put on each side of the tunnel a pneumatic tube-in fact, they would be almost essential for the mere construction of the tunnel When the tunnel was finished, he would suggest that these tubes remain. All that was necessary would be to make apertures on one side of the tunnel, and by pumping the air which flowed in at each end of the tubes into the tunnel the ventilation would be practically easy and not very expensive. He had been silent as to this point because engineers were generally silent about works until they were executed. When the work was accomplished, the way in which it was executed would be patent to everybody.

SCIENCE PUGNACIOUS

The battle ground of Science" has hitherto been but a metaphor. Not that Science has not waged conflicts, and won victories: that, indeed, is her constant course against error and superstition: but such warfare has been of mind to mind, not hand to hand, and Science, exemplifying truth, prevails, as truth against falsehood always will. For once in history, however, Science has had a genuine battle ground, and a genuine combat. Not the antagonism of two
learned pundits, who wax wrathful, and resort to personal. learned pundits, who wax wrathful, and resort to personal-
ities, and hurl jaw-pulverizing epithets across a debating ities, and hurl jaw-pulverizing epithets across a debating
room at each other; but a "square" fight, between Science, as exemplified by the Hayden surveying party, and Error, or stupidity, or dirt, or any other antithesis, in the form of a band of thie ving redskins. And Science prevailed as usual, and got herself out of a bad scrape.
The army of Science consisted of seven men, commanded by Geographer Gardner. The army of Error, etc, numbered several times as mauy souls. Science was peaceably cracking stones, and chasing butterflies, and pulling up plants and measuring lines. She had some of her latest devised
firearms along. firearms which could shoot several times to firearms along. firearms which could shoot several times to
Error's once, but they had nothing to do with the stoneError's once, but they had nothing to do with the stone-
cracking, etc.; they were auxiliary to the theodolites and the hammers. Error met Science smilingly, and requested fire water and plug tobacco. Science had a large store of valuable information to impart about these delusive materials, but no fire water, save such as was improved by the presence of pickled toads, and not even a chew of the nicotian weed. Error departed disgusted and opened fire as soon as Science's back was turned. Then came hot work; if Science stood still, starvation and thirst would result; to proceed was to face the enemy in rocky and precipitous cañons. It was voted to press on. Science exhibited splen. did marksmanship at 1,000 yards, with redskins for bullseyes. Twenty-four hours' continuous running fire followed, Error being dislodged from every stronghold as fast as gained, until, finally, open country was reached ; and Error, having no more rocks to hide among, ran away, minus seve ral of her numbers.
It was a good fight. bravely fought, and as bravely won, ayainst heavy odds. The world will benetit by the contemplation of the valor of the scientist, in defense of his country, his flag, and his-specimens.

GAS FROM NIGHT SOIL AND DEAD ANIMALS. Some time ago an improved method of making illumina ting gas from night soil and dead animals was invented by A. Sinderman, of Breslau, Germany, and was very favorably reported upon by a committee selected by the authorities of that city. Subsequently the system has been putinto practice under the supervision of the Director of Gas Works, Professor Troschel, who submitted it to a scrupulous examination in regard to quality of the gas produced and the cost of production. Recently the results have been published, and they are mainly as follows:

1. The quantity of gas obtained from a certain mass of material is considerably less than that obtained from an equal quantity of coal; so much so that, to obtain the same quantity of gas, the works required would have to be of double the dimensions sufficient for the coal
2. The expense of production is, contrary to the expecta-
ion of the inventor and the report of the committee, double hat of making gas from coal.
3. The method is objectionable. Ten per cent of the ma erial used for gas-making must be heated in ninety per cen of water; and the aqueous vapors of this ninety per cent of water must be condensed in an enormous cooling apparatus. 4. When making gas from such materiai, the fuel must be bought; while when making gas from coal, forty-five pe cent of the coke obtained is abundantly sufficient for fuel.
5, The enormous amount of various impurities, such as nitrogen, sulphur, and phosphorus, and their compounds, such as ammonia, sulphuretted hydrogen, and phosphoretted hydrogen, are present in this gas in much larger quantity than in ceal gas; and the purification of the same requires, by reason of this abundance, arrangements of so complex a nature as to become utterly impracticable in working on a arge scale.
It is proved thus that the utilization of these materi as for the purpose of illumination is not as profitable a transforming them into fertilizers of the seil.

LIGHTNING RODS.

To the Editnr of the Scientific American:
In the issue of the Scientific American dated September 18, in an article on lightning rods, you say, in speaking of the terminal: "This terminal may consist of an iron wa tor pipe, **** or a very considerable extension of the rod into wet or damp earth; or a trench filled with iron ore or charcoal may be made available."
Now, I have a lightning rod on my house, the end of which was inserted to the depth of six feet in the earth upon the southerly side of it, at the time the rod was put up. Would the earth be sufficiently damp (the house is on a hill) at that depth? In the country, but few dwellings would be likely thave iron water pipes with which to connect lightnin to have iron water pipes with whic
rods; there are none in this vicinity.
In the
In the sentence quoted, you say: "Or a trench, filled with ron ore or charcoal, may be made available;" and, in the concluding sentence of the article: " We repeat, the golden rule for safety is to have the bottom of the rod placed in connection with a large mass of conducting material in the ground.'
Now, the query is : How large should the trench be that is filled with iron ore, to afford protection to the building? Scrap cast or wrought iron, I suppose, will do as well (as ore is not found on Long Island), or charcoal, which is easily obtained. Definite information is wanted as to quantity.
Glen Cove, L. I.
Isaf Coles.
Reply.-A test with the galvanometer would doubtless show that our correspondent's lightning rod is unsafe-that ts bottom is sealed up or insulated so that the bulk of an ordinary discharge of lightning would be more likely to go through the dwelling than through the rod. Situated as his house is, the earth would ordinarily be dry, and a length of six feet of rod, say $\frac{8}{4}$ inch square, in the ground, furnishes less than one square foot of conducting surface, which is insufficient as a terminal.
This correspondent, and also several others, request definite information as to the quantity of conducting material that the rod terminal should have in order to ensure safety. This can only be measurably determined by a test in each case, with the galvanometer, because the requirements vary with almost every building and with the hygroscopic condition of the ground. But an approximately safe rule has been suggested by Mı. David Brooks, the electrician, of Philadel phia. which is to the effect that, in dry soils, the terminal of the lightning rod (which may be composed of any of the conducting materials mentioned by our correspondent) should have a conducting surface, in contact with the ground, equal
in area to that of the roof surface of the building. For example: If the roof surface is 30×40 feet, or 1,200 square feet, then the rod terminal should have 1,200 square feet of conducting surface in contact with the earth. Now this is only a suggestion of Mr. Brooks, intended for extreme cases of dryness in
of sufety
In our paper of September 11, we gave an account of lightning rod test, made at the instance of Mr. George B. Prescott, Chief Electrician of the Western Union Telegraph Company. In that case the rod was arranged sub stantially like that of our present correspondent, had less than one square foot of conducting surface in the ground, and the galvanometer test showed it to be very unsafe
but the instrument also showed that the rod would be but the instrument also showed that the rod would be
rendered a safe conductor, if put into connection with the rendered a safe conductor, if put into connection with the
house water pipe as a terminal, and this was accordingly re commended. This pipe, of iron, was half a mile long; and allowing it to be one inch in diameter, it presented a conduct ing surface, in contact partly with the earth and partly with water, of not far from 1,200 square feet.
the fair of the american institute.
Owing to the fact that manufacturers throughout the coun try are now busily completing their preparations for the coming Centennial, we have been inclined to the belief that the local fairs held this fall would not receive their usua amount of attention, and hence, in point of novelty and var iety of exbibits, would fall somewhat below the standard hitherto maintained. We have, however, been agreeably disappointed; for, judging from the reports which reach us industrial exhibitions are now in progress, the displays have never been better, and perhaps never so good. It is certain that, in the case of the Fair of the American Institute, the present show is far superior to onv that has been held dur
ing the last five years. It is larger, and the exhibits, as a rule, are more elaborately prepared, while there is a goodly variety of new inventions, well calculated to interest as well s instruct the public.
So far as the interior aspect of the building is concerned, there are not many changes from last year, to note. The general arrangement is about the same, and a better and more refined taste has evidently been exercised on the deco ration. We note with pleasure the al olition of the Fourth of-July festoons which were a standing menace of conflagra tion to the dry wooden arches from which they hung. In place of this, a neatly painted strip of canvas has been car ried around the building, so as to resemble a gallery. with very good effect. A number of large paintings, representing scenes in different sections of the country, very fairly exe cuted, are suspended in frames in front of the imitation gal lery rail, and agreeably break its monotony. The old pic tures on the main arches remain as hitherto; and as there have been no further attempts made toward ornamentation, it will be seen that the same, as it should be, is very simple and in no wise detracts from the display of articles on the floor.
It is difficult, at the time we write, to form any fair idea of the future contents of the machinery department, owing o many of the exhibits not yet having arrived. The most remarkable features are the

FOUR DRIVING ENGINES

These consist of an 80 horse power Wheelock, 14×42 60 horse power Wright, 16×36; a 60 horse power Hamp son \& Whitehill, same dimensions, and a 60 horse powe Harris-Corliss, 14×36. In the Wheelock machine we not veral improvements, tending to simplify the working parts. The dash pots have been raised above the floor, and there is new and ingenious form of cylinder oil cup, into one por tion of which the steam condenses, and then, flowing in the shape of water into a larger portion, lifts the oil to prope hight for entering the cylinder. The Wright engine has new way of attaching the governor to the cut off valve. In stead of the governor acting directly on the valve, it merely determines the fall or closing of the same by controlling a lug, which throws a spring catch off a cam. The cam is actuated by the engine itself, and the catch connects with the valve. It is of course impossible to convey a very clear idea of this or other devices in the brief terms here neces sary, but, the attention of the reader being directed to the novel features, he may perhaps find it interesting and profit able to examine for himself. In

machine tools,

he machinery department will have an unusually fine display-to which, in our future reports, we shall take casion to allude in detail. Woodworking machinery is also well represented. We notice several portable engines for farm use, and one especially, of English make (Ransome Sims, \& Head, Ipswich), which has a furnace fitted to burn straw and similar fuel. Two heavy drop hammers are in position, and there is a prospect of a good show of pumps. Any further comment on the contents of this departmen must, for the reason already given, be reserved for the future.

the main bullding

About the most prominent object on the main floor is a Jardine organ, a fine instrument of very powerful tone. Ad vantage is taken of that well known experiment in physics the hydrostatic paradox, to drive the bellows. Water is pumped up into a barrel on the roof, and thence it descends through a two inch pipe, a distance of 50 feet, moving a pis ton 4 inches in diameter over an 8 inch stroke. Near the organ, the visitor will find a handsomely built cottage or summer house, covered entirely inside and out with wood pa pering. This last is merely thin sheets or veneers of wood attached to paper and applied to the wall in the same man ner as paper hangings. The effect is that of solid planks, or of fine inlaid work. Almost every kind of wood is em ployed, and the results, when several varieties are con rasted, are very striking and elegant.
There is another house in the fair, made entirely of pack ages of Hecker's flour. It encloses an area large enough for the exhibitor to manipulate his cooking utensils over gas stoves, and use up his building materialin the manufactur of excellent griddle cakes and waffles, which are freely dis ributed to visitors. This is a practical way of showing up rticles of food, which, to our minds, is far better than oading people down with circulars setting forth long sched les of "advantages." Why do not the other "cereal" xhibitors follow the same plan?
The fair is especially rich this year in

HOUSEKEEPING ARTICLES,

fact which will ensure its popularity. There is an ingen ious grindstone which may be adapted to hold a polishing wheel for plate, for knives, or for stair rods, and will save world of hard rubbing. The stone is horizontal and has eveled edges (adapting it excellently for sharpening mow ng machine knives), and its spindle is surrounded by a spir al into which a pawl, on a traveling slide actuated by a spring treadle, engages. The pawl on its downward motion only acts upon the thread, and thus rotatesthe stone very swiftly The silver plate manufacturers as usual show several cases of fine ware; and the china dealers have a remarkably large exhibit, including some specimens, from celebrated European factories, which will greatly interest lovers of rare porce lain. The visitor will find a table covered with pails, dishes, owls, in fact every kind of vessel, made from paper. Thes are very light and strong, and for many uses will be preferred
to tin or wood.

CARILLON MACHINES.

Most of our readers have heard church bells play tunes. At one period such an arrangement was very common, and on the Continent of Europe the system is brought to considerable perfection; but in England it is only within a recent period that the employment of machinery for the production of airs from church bells has become popular.
As the method of producing tunes from church bells is but little understood, it will be well to preface our description of the machine we illustrate by a few words of expla nation.

Church bells are caused to sound in two ways-either, that is to say, by swinging them, and so causing the clappers to strike them; or by the aid of hammers of various weights, according to the size of the bell, caused to rise and suf fered to fall on the bell. Peals
are rung by hand, the bells beare rung by hand, the bells be-
ing swung; clocks alwaysstrike the bell with a hammer, the bell being at rest. The ham mer is raised by a wire, which pulls down the hammer tail, the wire being worked by a lever, the end of which is caught by a cam on a revolving barrel in the clock below. It is obvious that if a number of bells are all fitted with ham mers, and the number of cams is sufficiently great, and the cams are properly arranged that a tune can be played by a mere multiplication of the de vice by which a clock is made to strike the hours on a single bell.
The carillon machine embod ies this arrangement, only, in stead of cams, a number of short pins are set in a revolving barrel, and these pins catch the toes of levers connected by wires with the hammer tails in the bell chamber above. The pins are set or pricked in pre cisely in the same way as the little points in the barrel of a musical box. If our readers will bear the musical box in mind, and fancy that the whole is enormously enlarged, and that the toes of the levers take the place of the springs, the arrangement will be quite clear. Such is the old fashioned, or, as we may term it, positive carillon machine: and its defects are very serious.
The hammer, after it has fal len, can only be lifted by the rotation of the barrel ; and as the time of dropping the bammer depends entirely on the rotation of the barrel, it is obvious that the barrel can only revolve at a slow speed, and much time is lost in lifting the hammer. The result is that a rapid musical passage cannot
possibly be performed. Another result is that, when the possibly be performed. Another result is that, when the small bells, the high notes, come to be played, the barrel meets with less resistance, and revolves faster than when it has to deal with the deep notes and large bells. It follows that the air is played out of time.
These difficulties are overcome by the invention of Messrs. Gillett and Bland illustrated in the engraving-which explains a principle, and not details. This principle we may call negative. The hammers are always kept raised, and are only allowed to drop by the agency of the musical barrel. The instant they fall they are lifted again; and so long as the lifting is accomplished quickly enough, the time of lifting has nothing to do with the production of the air. That is determined solely by the musical barrel, which, being relieved of the work of lifting, has little or no strain on it, can be made small and light, and will always revolve at the same rate, and so insure that the tune shall be played in perfect time. It also follows that the most rapid passages can be played with the greatest ease and precision.
The second engraving is intended to show the gear for working one hammer. It must be multiplied in proportion to the number of hammers, but the parts are all repetitions of each other. It will be understood that this engraving does not show details, but simply illustrates a principle.
The musical barrel, B, is set with pins in the usual way. A is a cam wheel of very peculiar construction, operating a lever, C, by what is, to all intents and purposes, a new mechanical motion, the peculiarity of which is that, however fast the cam wheel revolves, the tripping of the lever is avoided. In all cases the outer end must be lifted to its full hight before the swinging piece, D, quits the cam. The little spring roller, E , directs the tail, D , of the lever into the cam space, and when there it is prevented from coming out again by a very simple and elegant little device, by which certainty of action is secured. At the other end of the lever, C , is a trip lever, F . This lever is pulled toward C by a spring, and whenever C is thrown up by the cam wheel, F seizes it and holds it up; but the wire to the bell hammer in the tower above it is secured to the eye, G, so that, when D
is lifted, the eye, G, being pulled down, the hammer is lifted The pins in the musical barrel, B, come against a step in F and as they pass by, they push F outwards and release C which immediately drops, and with it the hammer, so that the instant a pin passes the step, F, a note is sounded. But the moment D drops, it engages with A, which last revolves at a very high speed, and D is incontinently flung up again, and the hammer raised, and raised it remains until the nex pin, B, passes the step on F, and again a note is struck. It will be seen, therefore, that, if we may use the phrase, B has nothing to do but let off traps set continually by A; and so long as A sets the traps fast enough, B will let them off
chine is to play thirty-one tunes-a fresh tune for every day in the month-on seventeen bells weighing altogether about thirty tuns, and wi 1 also have barrels for changes similar to ringing a peal, and an ivory key board, the same as a pianoforte, attached to the machine, so that any musician can play tunes upon the bells with the fingers as easily as playing a pianoforte or organ. Taken altogether, this will be the largest work of the kind in the United Kingdom, and will cost over $\$ 35,000$.

Mound Explorations.
Dr. W. W. Ranney, of Lansing, Iowa, communicates to the Journal, of that place, an interesting account of an examination, recently made by himself and other parties, of an ancient mound in Union City township, Iowa.
The mound is not in the form of the burial mounds or tumuli, butforms a circle, the circumference of which is 700 feet. The ridge or elevation averages about 25 feet in width, leaving a circularinclosure 210 feet in diameter. The hight of the ridge or mound is about three or four feet from the three or four feet from the surface of the ground. On opening it, pieces of broken pottery, made of a bluish clay and partially pulverized mus sel shells, were discovered stones, showing evidence of having been used for hearths or supports for the earthen vessels while being used for cooking food; collections of fish scales, bones of buffalo deer, badger, bear, fish, and birds; but no evidence of hu man bones. The long or mar ow bones of all animals wer found broken or split, sup ound broken or split, sup posed to have been done fo the purpose of extracting the marrow for food, which cir cumstance is also noted in th Kfokenmöddings, or kitchen middens, of Denmark. One peculiarity noticed was that in different localities the or namentation of the pottery was dissimilar. For instance, all found on one spot was or namented with horizontal cir cular rings; all found in an other place was ornamented with zigzag lines, and at an other, near by, they had th same zigzag lines with dots in the angles. This was account

GILLETT AND BLAND'S CARILLON MACHINE.

in correct time But A revolves so fast and acts so power for by the fully that it makes nothing of even a 3 cwt. hammer, much ticular method of ornamentation, by which they recognized less the little ones; and thus is obtained a facility of execu- their property. These vessels were quite capacious, the dition heretofore unknown in carillon machinery. We venture ameter of one having been fourteen inches at the mouth. to think that our readers will agree with us that such a carillon machine as we illustrate is about as ingenious a combination of mechanism as is to be met with in the range of the arts.
Our large engraving shows a machine on this principle recently put up in the parish church at Shoreditch, London, by Messrs. Gillett and Bland. This plays fourteen tunes on twelve bells-one of the finest peals in London, the tenor weighing no less than 34 cwt. Two barrels are used, which can be changed by hand. The peal ranges from CC to G. Fig. 2.

There are twenty-four levers, two to each bell, to insure facility in playing rapid passages without driving the cam barrel too fast. The motive power is supplied by a weight of 9 ewt., allowed to fall 72 feet, and wound up every twen ty-four hours. The performance of the machine leaves noth ing to be desired.
The corporation of Manchester have decided upon having great clock and carillon for their magnificent new town hall. The clock is to strike the hours upon a bell of seven tuns, and to chime the four quarters on eight bells, the time to be shown upon four 16 feet illuminated dials. An automatic gas apparatus will be fitted to the clock for turning the gas up and down, and so constructed as to suit all seasons with the Royal Observatory at Greenwich. The carillon ma-

About one and three quarter inches below the mouth they abruptly widened out six inches all around, making the largest diameter twenty-six inches. The bottoms had been rounded in such a manner that they never tipped over; bu let them be set down as they might, they oscillated till they inally, when still, sat in an upright position. For the pur pose of handling, the vessels were provided with handles on wo opposite sides.
Besides the beforementioned articles, copper ornaments, one inch wide at the base and one and a half inches from base to apex, were found, the form being the same as a per forated flat iron, as if to attach some additional ornament or a string to fasten in the ear
The conclusion was that the mound was once the habita tion of a community of families; that huts or wigwams were built in a circle, and the piles of burnt stone unearthed re presented a hearth in a hut, on which the pottery sat while cooking, and around each of which a separate family warmed and fed themselves, and that each family had a separate distinct mark on their vessels by which they were known from their neighbors in the next hut or wigwam.
The central inclosure was used for their games, dancing, and pleasure, and perhaps, in case of attack from wild beasts or their fellow men, as a place for the aged, the young, and the women to flee to while the warriors met their encroachments outside the circle of dwellings. Forty rods south were found some 83 burial mounds or tumuli, out of which wer procured parts of human skeletons.

Preserving Photo Sensitive Paper.
Prepare a number of sheets of cheap blotting paper by immersing them in a solution of bicarbonate of soda and let ting them dry. These may be used over and over again. Then sensitise as much paper as is likely to be wanted du ring the next three or four weeks, interleave it with the lotting paper, and place the whole under a weight.
Sensitive paper thus treated may be preserved ready for se for a long time

RATS detest chloride of lime and coal tar

DEEP SEA SOUNDING BY PIANOFORTE WIRE.

 The use of pano wire for deep sea sounding was first suc cessfully carried out by the celebrated physicist and electri cian, Sir William Thomson, to whom belongs the merit of its introduction.Since that first attempt, the pianoforte wire has done ex cellent service on submarine cable expeditions in various parts of the world ; among other places, across the Atlantic, across the Pacific-where Captain Belknap, U.S N., found depths exceeding 500 fathoms-and in South American wa ters, from Cuba to the River Plate.
The sounding apparatus, as it is now finished and sen out by Mr. White, of Glasgow, Scotland, and as it is has been used by the steamer Faraday on the Direct United States (Messrs. Siemens') Cable expedition, is represented in the accompanying engra ving, which we extract from Engineer ing. It consists of a large light drum, A of galvanized sheet iron, on which the wire is carefully coiled. The free end of this wire terminates in a stout galvanized iron ring, b, and to this ring the sinker, c, is attached by a hemp line, d, several fa thoms long. The interposition of the line between the wire and sinker pre vents the wire from reaching the bottom, and the ring is heavy enough to keep the wire tight-thus kinking of the wire is avoided. The circumference of the drum is one fathom, and an indicator, is fixed is one fathom, and an indicator, e, is fixe to the axle to indicate the number of re volutions of the drum. A slight correc tion, due to the thickness of wire on th drum, has therefore only to be applied to the indicated number of turns in order to
give the amount of wire paid out, or depth give the amount of wirepaid
of the sounding in fathoms.

In order to stop the drum immediately on the sinker reaching the bottom, the brake, F F, is employed. It consists of a friction cord attached at one end to the framework of the apparatus, and passing over a secondary groove on the circumference of the drum, A, the other end being weighted at g. By means of this break the increased pull on the wire, due to the amount of it paid out, is to be more than counteracted, so that the drum will revolve by a pull on the wire due to something less than the weight of the sinker. For, in this case, when the sinker is supported by the bottom, there will be a friction on the drum, bringing it to rest. The weights, g, have, therefore, to be applied gradually, as the wire runs out. The rule adopted in practice is to apply resistance, always exceeding by 10 lbs. the weight of the wire out. Then, the sinker being 34 lbs., we have 24 lbs . weight left for the moving force. This is amply sufficient to give a very rapid descent, so that in the course of half an hour the bottom will be reached at a depth of 2,000 or $£, 000$ fathoms. The person in charge watches a counter (the indicator, e), and for every 250 fa thoms (that is, every 250 turns of the wheel) he adds such weight to the brake cord as shall add 3 lbs. to the force with which the sounding wheel resists the pgress of the wire That makes 12 lbs . added to the brake resistance for ever 1,000 fathoms of wire run out. The weight of every 1,000 fathoms of wire in air is $14 \frac{1}{2}$ lbs.
In water, therefore, the weight is about 12 lbs ; so that if the weight is added at the rate indicated, the rule will be fulfilled. So it is arranged that, when the 34 lbs. weight reaches, the bottom, instead of there being a pull, or a mo ving force of 24 lbs . on the wire, tending to draw it through the water, there will suddenly come to be a resistance of 10 lbs. against the motion. A turn or two and the drum comes
to rest. The instantaneous perception of the bottom, even at so great a depth as 4,000 fathoms, when this rule is fol lowed, is very remarkable. The sounding apparatus is best fixed so as to project beyond the bow or stern taffrail. In order to take a sounding, the drum, A, is run out to the end of the rails, H H, where it admits of the sinker dropping sheer into the sea. The sinker is then gently lowered by turning the handle of the drum until it touches the water, when the indicator is set at zero. Everything being ready and the ship at rest, the handles of the drum are then unshipped, the check pawl of the drum is unlocked, and the wire runs rapidly out. When bottom is reached, the indicator is read off, and the hauling up is set about at once. The wire is first supported from the framework by a yarn stop.

WHITE'S DEEP SEA SOUNDING APPARATUS. ship.

Breaking of a Fire Ladder.

By the breaking of a patent fireman's ladder machine in his city, during a recent drill of the fire department, three men lost thsir lives. The machine consists of a combination of ladders, which, by the turning of winches, are quickly levated to an angular or perpendicular position, the ladders liding out one beyond the other. The unfortunate men were on the upper ladder, ninety feet from the ground, when one of the lower ladders gave way, and they were precipitated to the pavement. Cause-bad material and bad workman-

Dletetic Effects of Water.
Certain experiments made by a French savan, with the view of ascertaining how far the phosphate of lime in bone may be replaced by other phosphates, have been used by Mr. W. J. Cooper to illustrate how profoundly the bodies of animals are influenced by the waters they drink. This is an aspect of the water question which will be new to most people; but there is no doubt that the composition of the body is materially influenced by the mineral constituents of the fluids we habitually drink. The active effects of several mineral waters upon the functions are well known; it is not so generally known that arer for rally known that water from artesian wells, so pure from organic pollution, sometimes contains sulphate of magnesia and other salts to such a degree as to be positively injurious. On the other hand, in some districts in Holland where there is only rain water to be obtained for drinking purposes, softening and distortion of the bones are frequent. That, as shown by the experiments referrad to by Mr. Cooper, the use of natural waters may tend to alter the structure of our bodies, introduces another element into the much vexed question as to the proper source whence to draw the supplies of potable water for towns, by showing that the inorganic impuriper, or is beld by a couple of men with canvas or leather cies of water are of more importance to health than they protection for their hands. The drum is then run inboard have been usually considered; while it lends support to the again, and the wire is led orer circumference of the caster pulley, I, then passed over the auxiliary hauling-in pulley, K , so as to make $\frac{8}{4}$ or $1 \frac{8}{4}$ turns before it is coiled on the drum. The tube in the end of the sinker, if fitted with a valve door, brings up a specimen of the bottom. As the wire comes in, it may be partially dried by rubbing it with a piece of canvas; and as it is being coiled on the drum, to preerve it from rusting it is drenched occasionally with oil. When not in use the drum is kept in a bath of oil. It was formerly the custom to apply a solution of caustic soda in the same way, but the oil has superseded it.
This is the complete apparatus for deep sea sounding, but a simpler affair will suffice for soundings of even $1,000 \mathrm{fa}$ thoms, and especially for Hying soundings from telegraph or mail steamers approaching land. With the wire three men an do the work in a small fraction of the time; the sounding is surer, for the wire goes down very sheer; and difficult ma nœuvering of the ship in rougb tides, to keep her over the ine, is a voided during hauling in, because the lateral friction of the wire to its passage through the water is so small compared to that of the hempen line. A sounding in $2,500 \mathrm{fa}$ homs, which would engage several men and a donkey en gine, require very alert handling of the ship, and occupy
from four to five hours, can now be done by three men in the space of about forty minutes.
opinion that the same conditions have something to do with the goitre and other glandular affections endemic over cer tain regions.

ENGINEERING IN NEW ZEALAND.

We publish herewith a view of a bridge, designed by Mr. . Millar, of Dunedin, New Zealand, to carry the Otago Great Northern Trunk Railway over the Waitaki, a river of great width, and liable to considerable variation in depth of water. The bridge consists of 28 bays, each of 132 feet rom center to center of piers. On one side an extra span of 45 feet leads the general road traffic upon the bridge, as shown, the rail level being on the top, and the road level at he bottom, of the Warren girders, which compose the long structure. The river, which is, in times of low water, reduced so much in volume that the bed is exposed in banks of shingle, as shown in the engraving, is greatly flooded at the season when the snow melts from the mountains, and passes down in torrents. At such times the width of the river is increased to a mile, and the water rises to a level within 5 feet of the level of the bridge.

Hair should never be put in mortar until a few days before the material is used, as the lime will soon destroy

BRIDGE OVER THE WAITAKI NEW ZEALAND.

Nitro-Giycerin Explosives.

Nitro-glycerin is the most powerful explosive in use. In difficult blasting, where very violent effects are required, it surpasses all others. In spite of the many accidents that have occurred with it, it has been found to be so valuable that its use has steadily and largely increased.
Its liquid form is a disadvantage, except under favorable circumstances, as when made at the place where it is to be employed. It, however, forms the essential ingredient in a number of solid mixtures, which will be taken up farther on. When used in blasting or similar work, it is usually put in tin cans or cartrid se cases.
Since nitro-glycerin is so readily detonated, it has the advantage of not requiring strong confinement. Even when freely exposed, it will exert violent effects, such as breaking masses of rock or blocks of iron. So, in blasting, it requires but little tamping. Loose sand or water is entirely sufficient.
The relative force of nitro-glycerin is not easily estimated, since the effect produced depends greatly on the circumstances. Thus, a charge of nitro-glycerin in wet sand or any soft material will exercise but a slight effect, while the same charge will shatter many tuns of the hardest rock In the former case much more sand would be thrown out by a slower explosion, which would gradually move it, than by the sudden violent shock of the nitro-glycerin, which would only compress the material immediately about it. But in the hard rock, the sudden explosion is much more effect ive than the same amount of force more slowly applied. Roughly, it may be said that nitro glycerin is eight times as powerful as gunpowder, weight for weight.
Products of decomposition: On explosion, nitro-glycerin is resolved entirely into the gases carbonic anhydride, water, nitrogen, and oxygen, the last named appearing only in small quantity. If explosion is imperfectly accomplished, oxides of nitrogen are formed, and the total quantity of gas is lessened. If fully exploded, no disagreeable or poisonous gases are given off.

NITRO-GLYCERIN PREPARATIONS

The explosive preparations containing nitro-glycerın will be taken up in this place, since they are but forms in which nitro-glycerin itself is presented for use. Their explosive power is derived from the nitro-glycerin in them; so that they are not explosive mixtures in the sense in which that term has been employed in these pages.
In all of them nitro-glycerin is present as nitro-glycerin, but it is mixed with some absorbent substance or vehicle. In this way a solid or semi-solid substance is obtained, which is much more convenient and safer to use than the liquid itself.

dynamite.

In dynamite, the absorbent is usually a natural silicious earth. Deposits of this silicious earth are found in many places, notably in Hanover. From the Hanover earth, the riginal dynamite was made. This silicious earth, or Kieselguhr, is a fine white powder, composed of the skeletons of microscopic animals (infusoria). It has a high absorptive power, being capable of taking up from two to three times its weight of nitro-glycerin without becoming pasty.
Artificially prepared silica has been proposed by the writer as a substitute for the natural earth, and has been used at Newport with good results. This silica is prepared by precipitating it from a solution of sodium silicate (waterglass) by sulphuric acid, washing, and drying. Its absorbent power is a little less than that of the natural earth, but it retains the nitro-glycerin very well.
The process of making dynamite is very simple. The ni-tro-glycerin is mixed with the dry, fine powder in a leaden vessel with wooden spatulas.
Dynamite has a brown color, and resembles in appearance moist brown sugar. It usually contains from sixty to sev-enty-five per cent of nitro-glycerin. In this country, dynamite is made and sold under the name of giant powder.
The explosive properties of dynamite are those of the nitro-glycerin contained in it, as the absorbent is an inert body. It freezes at the same temperature as its nitro glycerin, to a white mass. If solidly frozen, it cannot be fired; but if loose and pulverulent, it can be exploded, although with diminished violence. It can be thawed by placing the vessel containing it in hot water.
The keeping qualities of dynamite are those of the nitro. glycerin it is made from. It is safer because it avoids the liquid condition, and from its softness it will bear blows much better. Exudation must be guarded against. Therefore, it must not contain too much nitro-glycerin, especially if it is liable to be exposed to comparatively high temperatures, which tend to make the nitro-glycerin more fluid, and cotsequently less easily retained.
The firing point of dynamite is the same as of its nitro-glycerin. If flame is applied to it, it takes fire and burns with a strong flame, leaving a residue of silica. It is not sensitive to friction or moderate percussion.
Mode of firing: Dynamite is fired by a fulminate fuse. Gunpowder will fire it, but not with certainty, and the effect obtained is much less than when the stronger agent is employed.
Use and relative force: Dynamite is the best of the nitroglycerin preparations, and is indeed the best form in which nitro-glycerin can be used. It has earned a good reputation for safety, in spite of the horror usually excited by nitroglycerin, or anything connected with it. It contains more of the explosive agent than the other nitro-glycerin preparations, and is therefore stronger. Safer than the liquid nitroglycerin, from its mechanical condition, it is not complicated by the admixture of substances which may exercise injurious offeets.

It is used for blasting and other purposes instead of nitroIt is used for blasting and other purposes instead of nitro-
lycerin. It is now extensively employed in mining and quarrying with excellent results, and its use is constantly increasing. Much more effective than powder, it is practically safer, since it is not liable to explosion by sparks or flames. Carelessness is therefore less likely to be followed by accident. For military purposes, also, it is largely employed. The explosive force of dynamite is, of course, that of the nitro-glycerin contained in it. If it contains seventy-five per cent, its comparative force may then be approximately stated at six times that of gunpowder, weight for weight.

$$
\text { dynamite no. } 2 .
$$

Dynamite proper contains only nitro-glycerin and the sili cious absorbent. Mixtures containing other substances are sometimes included under the same name. The true dynamite is often called dynamite No. 1, and the others dynam ite No. 2, etc., or receive fanciful names. All these mixtures contain less nitro-glycerin than the No. 1, so that they cos less per pound, but of course they are proportionately less powerful. Possibly they may sometimes be of use.
The following are varieties of No. 2 dynamite made in England, according to the report of the Select Committee of House of Commons on explosive substances, June 26, 1874 Nitrate of soda

cent.	
69.00	Nitrate of potash.
7.00	Paraffin.
4.00	Charcoal.
20.00	Nitro-glycerin

Per cent.	
\cdots	7100

Paraffin.
Charcoal or coal dust
Nitro-glycerin.
Charcoal

It is hard t That they are cee any advanage in these mixtures excep the great violence of the larger amount of nitro-glycerin is not needed, and yet wanted. It is improbable that any useful effect is obtained from any other ingredient than the nitro-glycerin. Those containing deliquescent salts (nitrate of soda, for example) are objectionable from their liability to exudation. All o them will be injured by water, which dissolves the salts which are the principal ingredients.
It is easy to see that the number of such mixtures that might be made is very great, for almost any dry salt or powder may be taken as an absorbent.* No special value would attach to any of them. The only requisites would be that the absorbents should not exert any injurious action, and that no more nitro-glycerin should be present than could be perfectly retained at the highest temperature that would probably be experienced.
Many of these mixtures have been proposed and made, but it is undesirable at the present time to touch upon more than a few of the most prominent, which will serve as examples.

LITHOFRACTEUR.
Lithofracteur

Nitro-glycerin.	$\begin{gathered} \text { Per cent. } \\ \ldots . .52: 00 \end{gathered}$
Infusorial earth.	. 3000
Coal.	$12 \cdot 0$
Soda saltpeter.	$4 \cdot 00$
Sulphur.	2•00-100

Sometimes, instead of the sodium nitrate, the potassium or barium salt is used, and variations made in the quantity of nitro-glycerin present. Like all the nitro-glycerin preparations, lithofracteur has no necessarily definite composition, being merely a mixture made according to the caprice of the manufacturers, as shown by experiments with lithofracteur in England by a special committee. Experiments in 1872 with a lithofracteur containing 66.7 per cent of nitro-glycerin showed great liability to exudation. In 1873 the manufacturers submitted another sample of 47.5 per cent, which, facturers submitted another sample of $47 \cdot 5$ per cen
This preparation is made by Krebs Brothers \& Co., in Col ogne, and has been used to some extent in Europe. It is claimed by the makers that the other substances (coal, saltpeter, and sulphur), mixed with the nitro-glycerin, increase the quantity of gas delivered, and, therefore, the explosive force. This is not, however, correct. Nitro-glycerin is so sudden in its explosion that nothing can be added to it from the slower burning of any of the other combustible ingredients, which are present in comparatively small amount, and in bad proportions. Neither does the presence of these substances add anything to the safety of the mixture. They tend to
Lithofracteur must be regarded as inierior to dynamit proper, especially for military purposes. It is much more liable to exudation
The mixtures known in this country as giant powder No. 2, rend-rock, etc, and those already spoken of under the head of dynamite No. 2, are similar to lithof racteur; but in them the silicious earth is generally omitted.
dualin.
Dualin is a mixture made by Carl Dittmar, a Prussian, of nitro-glycerin, sawdust, and saltpeter, in about the propor tions:

	Percen
Nitro-glycerin.	
Fine sawdust..	
Saltpeter..	

10000 (Trauzl.)

This preparation is also inferior to dynamite. The saw dust and saltpeter have much less absorptive power than the ilicious earth, and retain the nitro-glycerin comparativel feebly. Its firing point is said to be considerably lower than that of dynamite. Also, its lower specific gravity is a draw back.-Professor Hill's' "Notes."

PRACTICAL MECHANISM

by joshea rose

Number XXXII.

boring bars and tools

A very important consideration with reference to boring bars is the position which the cutters should occupy towards the head or the body of the bar. We have already been over he same ground with reference to parting or grooving tools for lathe work, cutting tools for planing work, and cutter for cutting out holes of a large diameter in boiler plates; but there are so many principles involved in the shape and hold ing position of cutting tools, so many variations, and so many astances in which the reasons for the adoption or variation f a principle are not obvious, that it is of vital importance to specify, in the case of each tool, its precise shape and position of application, together with the reasons therefor the field of application being so extensive that the memory can hardly be relied upon.
A careful survey of all the tools thus far treated upon will disclose that, in each case wherein the cutting edge tands in advanc 3 (in the direction in which the tool is moving or, if the work move, in the direction of the metal to be cut of the fulcrum upon which the tool is held, the springing of the tool causes it to dig into the work, deepening the cut and in most cases causing the tool point or cutting edge to break; while in every instance this defect has been cured (upon tools liable to spring) by so bending or placing the tool that the fulcrum upon which it was held stood in ad vance of the cutting edge; and these rules are so universa that it may be said that pushing a tool renders it liable to spring into the work, and pulling it or dragging it enables it to take a greater cut and to spring away from excessive duty; and thus the latter prevents breakage and excessive spring, because, when the spring deepens the cut, it increas es proportionally the causes of the spring, and creates a contention between the strength of the tool and the driving power of the machine, resulting in a victory for the one or the other, unless the work itself should give way, either by springing away from the tool and bending, or forcing it from lathe centers or from the clamps which hold it
For instance, in Fig. 135, is shown A, a boring bar; B B

is the sliding head; C C is the bore of the cylinder, and 1 , 2, and 3 are tools in the positions shown. D D D are projections in the bore of the cylinder, causing an excessive amount of duty to be placed upon the cutters, as sometimes occurs when a cut of medium depth has been started. Such a cut increases on one side of the bore of the work until, becoming excessive, it causes the bar to tremble and the cutters to chatter. In such a case, tool and position No. 1 would not be relieved of any duty, though it spring to a considerable degree; because the bar would spring in the direction denoted by the dotted line and arrow, E, while the spring of the tool itself would be in the direction of the dotted line, F. The tendency of the spring of the bar is to force the tool deeper into the cut instead of relieving it while the tendency of the spring of the tool will scarcely af fect the depth of the cut. Tool and position No. 2 would cause the bar to spring in the direction of the dotted lineand arrow, G, and the tool itself to spring in the direction of H, the spring of the bar being in a direction to increase, and that of the tool to diminish, the cut. Tool and position No. 3 would, however, place the spring of the bar in a direction which would scarcely affect the depth of the cut, while the spring of the tool itself would be in a direction to give decided relief by springing away from its excessive duty. It must be borne in mind that even a stout bar of medium length will spring considerably from an ordinary roughing out cut, though the latter be of an equal depth all round the bore and from end to end of the work. Position No. 3, in Fig. 135, then, is decidedly preferable for the roughing-ou cuts. In the finishing cuts, which should be very light ones, neither the bar nor the tool are so much affected by spring ing; but even here position No. 3 maintains its superiority, because, the tool being pulled, it operates somewhat as a scraper(though it may be as keen in shape as the other tools), and hence it cuts more smoothly. It possesses, it is true, the defect that the distance from the cutting point stands fur ther out from the holding clamp, and the tool is hence more apt to spring ; and in cases where the diameter of the sliding
head is much less than that of the hole $t J$ be bored, this defect may possess importance, and then position No. 2 may be preferable; but it is an error to employ a bar of small diam. eter compared to that of the work.
To obtain the very best and most rapid result, there should be but little space between the sliding head and the bore of the work; the bar itself should be as stout as is practicable, leaving the sliding head of sufficient strength: and if the bar revolves in journals, these should be of large diameter and with ample facilities for taking up both the diametrical and end play of the boxes, since the one steadies the bar while it is performing boring duty, and the other while it is facing off end faces, as for cylinder cover joints. The feed of a boring bar, which is slight in comparison to its duty, will range at from 30 to 40 revolutions to an inch of travel; while that of a stout bar, held in large and closely fitting journals, may be about 20 revolutions per inch of tool travel for roughing-out cuts, and 4 revolutions per inch of travel for finishing cuts, which may be made to leave the work very smooth indeed.
The tools employed for the roughing cuts should not have a broad cutting surface, and should have a little front rake, as shown in Fig. 136, A being the cutting corner. For the

Ereg. 736.

finishing cuts, the same tool may be employed, the end be ing ground to have a broad level cutting surface along the edge, B, as shown in Fig. 137. These tools should be made

of the best quality of steel, and hardened right out, that is to say, not tempered at all.

The lip or top rake must, in case the bar should tremble during the finishing cut, be ground off, leaving the face level; and if, from the bar being too slight for its duty, it should still either chatter or jar, it will pay best to reduce the revolutions per minute of the bar, keeping the feed as coarse as possible, which will give the best results in a given time. In cases where, from the excessive length and smallness of the bar, it is difficult to prevent it from springing, the cutters must be made as in Fig. 138, having no lip, and but a

small amount of cutting surface; and the corner, A, should be beveled off as shown. Under these conditions, the tool is the least likely to chatter or to spring into the cut, especially if held in position No. 3, in Fig. 135; for a tool which would jar violently in position No. 1, would cut smoothly and well if held in position No. 3.
The shape of the cutting corner of a cutter depends en tirely upon the position of its clearance or rake. If the edge forming the diameter has no clearance upon it, the cutting being performed by the end edges, the cutter may be lef, with a square, slightly rounded, or beveled corner: but if the cutcer have slearance on its outside or diametrical edge, as shown on the cutters in Fig. 135, the cutting corner should be beveled or rounded off, otherwise it will jar in taking a roughing cut, and chatter in taking a moderate cut. The principle is that beveling off the front edge of the cutter, as shown in Fig. 138, tends greatly to counteract a disposi tion to either jarring or chattering, especially as applied to brass work.

The only other precaution which can be taken to prevent, in exceptional cases, the spring of a boring bar is to provide a bearing at each end of the work, as, for instance, by bolt ing to the end of the work four iron plates, the ends being hollowed to fit the bar, and being so adjusted as to barely touch it; so that, while the bar will not be sprung by the plates, yet, if it tends to spring out of true, it will be prevented from doing so by contact with the hollow ends of the plates, which latter should have a wide bearing and be kept well lubricated
It sometimes happens that, from play in the journals of the machine, or from other causes, a boring bar will jar or chatter at the commencement of a bore, and will gradually cease to do so as the cut proceeds and the cutter gets a broad er bearing upon the work. Especially is this liable to occur in using cutters having no clearance on the diametrical edge because, so soon as such a cutter has entered the bore for a
short distance, the diametrical edge (fitting closely to the bore) acts as a guide to steady the cutter. If, however, the cutter has such clearance, the only perceptible reason is that the chattering ceases as soon as the cutting edge of the tool or cutter has lost its fiberous edges. The natural remedy for this would appear to be to apply the oilstone; this, however, will either have no effect or make matters worse. It is, indeed, a far better plan to take the tool (after grinding) and rub the cutting edge into a piece of soft wood, and to apply oil to the tool during its first two or three cutting revolutions. The application of oil will often remedy a slight existing chattering of a boring bar, but it is an expedient to be avoided, if possible, since the diameter or bore cut with oil will vary from that cut dry, the latter being a trifle the larger.
The considerations, therefore, which determine the shape of a cutter to be employed are as follows. Cutters for use on a certain and unvarying size of bore should have no clearance on the diametrical edges, the cutting being performed by the end edge oniy. Cutters intended to be adjusted to suit bores of varying diameter should have clearance on the end and on the diametrical edges. For use on brass work, the cutting crown should be rounded off, and there should be no lip given to the cutting edge. For wrought iron, the cutter should be lipped, and oil or soapy water should be supplied to it during the operation. A slight lip should be given to cutters for use on cast iron, unless, from slightness in the bar or other causes, there is a tendency to jarring, in which case no lip or front rake should be given
small boring bars.
In boring work chucked and revolved in the lathe, such, for instance, as axle boxes for locomotives, the boring shown in Fig. 130 is an excellent tool. A represents a cutter head, which slides along, at a close working fit, upon the bar, D D, apd is provided with the cutters, B B B, which are

fastened into slots provided in the head, A, by the keys shown. The bar, D D, has a thread cut upon part of its length, the remainder being plain, to fit the sliding head. One end is squared to receive a wrench, which, resting against the bed of the lathe, prevents the bar from revolving
pon the lathe center, F F , by which the bar is held in the lathe. G G G are plain washers, provided to make up the distance between the thread and plain part of the bar, in cases where the sliding head, A , requires considerable lateral movement, there being more or fewer washers employed according to the distance along which the sliding head is required to move. The edges of these washers are chamfered off to prevent them from burring easil. To feed the cutters, the nut, H , is screwed up with a wrench
The cutter head, A, is provided in its bore with two feathers, which slide in grooves provided in the bar, D D, thus preventing the head from revolving upon the bar. It is obvious that this bar will, in consequence of its rigidity, take out a much heavier cut than would be possible with any boring tool, and furthermore that, there being four cutters, they can be fed up four times as fast as would be possible with a single tool or cutter. Care must, bowever, be exersed to so set the cutters that they will all project true ra ally, so that the depth of cut taken by each will be equal, faster faster than if one cutter only were employed. For use on jecting feather, fitting into a groove provided in the head to receive it, as shown in Fig. 140, which shows the boring bar and head, the nuts and wash-

Flo IAO.
ers being removed. A A A the bar, C C the sliding head, and D D D D the keys which fasten the cutters in the head. The cutters should be fitted to their places, and each marked to its place; so that, if the keyways should vary a little in their radius from the center of the bar, they will nevertheless be true when in use, if always placed
in the slot in which they were turned up when made. By itting in several sets of cutters and turning them up to standard sizes, correctness in the size of bore may be at all mes insured, and the feeding may be performed very fas ndeed.

BORING TOOL HOLDERS

For use on holes too small to admit of a bar having a sli ding head, which are usually bored with a slide rest tool, a oring tool holder may be employed to great advantage Such an appliance is shown in Fig. 141, A representing a
round bar shaped at the end, B, to fit into the tool post of the slide rest, and having a groove across the diameter of the end, C D, to receive a short tool. The slotand tool may be
either square or V -shaped, the tool being locked by a wedge It is obvious that, instead of shaping the end, B, as shown the bar may be held (if the slide rest head is provided with clamp instead of a tool post) by two diametrically opposite flat faces. For use in holes of from two to eight inches bore such an appliance is invaluable, especially if the hole to be bored is of unusual depth; because the bar may be made very stout in proportion to the size of the hole, and will, therefore, stand a depth of cut and a rate of feed totally impracticable with an ordinary boring tool, and will not spring away towards the back end of the hole, as boring
figy. It,

tools are apt to do. Furthermore, the cutting tools, being small, are easily forged, ground up, and renewed when worn out; and the bar maintains its original length, which may be made to suit the depth of hole required to be bored: while a boring tool becomes shorter each time it requires reforg. ing.
The shape of the cutting tool may be as shown at D, Fig. 141, or such other as the nature of the duty may require. For truing out broad recesses in large work, the slot in the end, C D, may be made large enough to receive two tools, one to turn the inside and the other the outside of the recess.
For use upon holes of a large bore, or upon outside work, in which the tool requires to stand out far from the slide rest, the tool holder shown in Fig. 142 should be employed,

e tool box, A A, being long enough to receive two of the set screws, B.

The Value of Vivisection.

While the practice of vivisection cannot be defended when the torture is inflicted on lower animals, simply to exhibit truths already fully settled and demonstrated, its utility in original investigation cannot be contradicted. This is amply proved by the results to which it has lead. In summing up the benefits to practical medicine accruing from vivisection, in a speech recently delivered before the British Medical Association, the president of that body, Sir Robert Christison, noted among others the following:
By means of the most extended series of vivisection on record, Orfila placed toxicology on a scientific basis, and gave to the world a knowledge of the action of poisons which has been directly instrumental in saving thousands of lives. To experimentation on animals as to the nutritive value of non nitrogenous substances, the goodly fellowship of anti-vivisectionists who have a tendency to gout or gravel owe the accurate dietetic treatment of their ailments. Sir Robert himself discovered through vivisections the mode in which oxalic acid poisons, and the means of counteracting its effects determined the rapidity of action of prussic acid; ascertained by experiment, first upon himself and subsequently upon animals, the physiological and toxic effects of Calabar bean, now largely and usefully employed in medicine; in an important medico-legal case he established the guilt of the accused by proving upon animals the fatal action of laburnum bark, the substance administered, the effects of which had not pre viously been investigated.

To Sportsmen and Hunters.

The editor of the Forest and Stream announces the estab lishment of a most interesting exhibition at the Centennial Exposition, to be held in Philadelphia next vear, wher he intends to show a genuine camp in the forest, with a runnirg stream-shelter tents, a veritable Indian birch wig wam, canoes, etc., etc. Every department will be complete, and genuine Indians and trappers have already been en gaged to superintend each one. Anything that comes within the province of his interesting journal will be welcome to a place, whether old relics or new inventions, things useful or ornamental, boats, guns, rods, dog collars, camp utensils, life preservers, bear traps, snow shoes, lariats, wigwams, buckskin suits, wampum belts, portable stoves, Indian scalps, pel's and horns, jack lamps, moccasins, tents, rubber goods, stable furniture, rare birds and animals, fruits and plants, trolling tackle, bats and balls, billiard tables, aqua riums, and cartridge belts.

Recently, off Wicklow, Ireland, the British ironclad Iron Duke ran into and sunk the ironclad Vanguard. Cause og. Both ships were of 6,000 tuns burden, plated with 6 inch iron, and carried 14 guns each. No lives were lost.

Improved adding pencil

We illustrate herowith an ingenious and quite useful in vention, the object of which is to facilitate the labor of accountants in adding up long columns of figures. It is a miniature calculating machine, which performs its work with unfailing accuracy and without requiring any thought on the part of the operator, other than that involved in noting that a pointer points to the proper figure to be added. In shape it resembles a pencil, bein. ted.
As shown in the hand in the engraving, the device has a metal case which is provided with a longitudinal slot. Within the case, represented in section in Fig. 2 , is a cylinder, A, grooved spirally, and having figures, marked beside the grooves. ranging from 1 to 700 , this last number being considered as probably as large as any one column of figures in a ledger will aggregate. In the groove, which serves as a guide, is an indicator, B. Below the cy linder is a pinion, C , the teeth of which enter similar teeth on the lower edge of the cylinder, so that when the pinion is turned the cylinder rotates within the case. The pointer of the pencil is connected, inside the case, with a rack, D, upon which is an in dicator, E, working in a separate slot and ranging along a scale marked with the di gits. The teeth of the rack engage with a wheel attached to the pinion when the rack is pushed up, but not when the rack is forced down by the reaction of the spiral spring within the cylinder.
In adding a column of figures, the operator presses the point upon the first number until a corresponding number is noted by the digit indicator, E ; thus, in the engraving, the point is pressing on 5 , and the indicator shows the same number. This, of course, involves the pushing up of the rack and the turning of the pinion, the revolution of the cylinder, and the consequent guiding of the indicator, B , a short distance up the spiral groove, said distance being in proportion to the total length of the spiral groove, as 5 to 700 . The operator then raises his point, the spring forces the rack back, without turning the cylinder, so that the digit indicator returns to 0 , while the upper indicator remains at 5 . The next figure, 6, in the column is touched, and the digit indicator is carried to 6 , the upper indicator is carried forward as before, but starts from its present location, namely, 5 , so that at the end of its movement it will have traversed a total distance of 11 , denoted by the numbers placed on the cylinder. This operation is repeated for every figure of the column ; and when all have been touched, their sum is shown by the position of the indicator, B. By turning the piece, F , and rotating the cylinder in the opposite direction, the indicator, B , is now carried back to zero, ready to begin a new column; or if there be any number to carry from one column to another, instead of being set back to zero, it is adjusted to that number, so that that is added in, as it should be, with the nest sum.
It will be seen that there is simply no possibility of error in the operation, unless the user deliberately sets the digit indicator, E , to the wrong number. A litile practice will enable him to cause that indicator, however, to stop at the right figure almost instantly, so that the column will be cast up nearly as quickly as he can touch the separate figures and, as claimed by the inventor, much quicker than the average arithmetician can perform the same mentally. Hiter rupe motion may computation is no annoyance, ad. ine in conversacion. Or ma column, attend to other matters, and resume it after any
period of time. So long as the pencil is not altered in the period of time. So long as the pencil is not
interval, the resul s will be absolutely correct.
interval, the resul s will be absolutely correct.
Patent pending through the Scientific American Patent Agency to Messrs. Marshall M. Smith and Fletcher W. Potts, of Verdi, Washoe county, Nevada. Patents are also being secured in foreign countries. For exclusive right for United States, State rights, and other particulars, the inven tors may be ać dressed as above stated.

Changing salt water to fresh

A simple device is described in Les Mondes for changing sea water into drinkable water, which deserves to be widely known, and which might be the means of saving an immense

amount of suffering to people wrecked at sea. The necessary portions could easily be got together before abandoning a ship and taking to a raft. The engraving given herewith, pre pared from the description, will render the latter more clear. A shallow box, A, is made, 14 feet long. 2 feet broad, and about 6 inches deep. The sides are an inch or more thick and well caulked. Into this, salt water is poured to an inch in depth, and glass, B, is laid over the top at an inclination of an inch and a half. A channel, C, is added below the lower
edge of the glass. Window sashes, such as are used for 1 ly correct, and one cause, and that perhaps the most prolific cabin windows or skylights, will answer the purpose as well of boiler explosions, the false gage, is rendered impossible. as sheets of glass, care being taken to cut a way the framing, The usual method of testing gages, by means of the test so as to make wood and glass, on the underside, level.

The device is exposed to the sun, and the effect of the rays is to evaporate the water, which condenses on the under		
side of the glass, flows down into the channel, and is caught	wht	ge and pump, is reliable only so far as the test gag self is free from error; it is not an absolute trial of the in ument under examination, as is claimed to be the case hen the novel device, represented in the annexed engravings, is employed. The principle of the invention is simply that of the safety valve. It is. in fact, a valve which, weight ed to a given pressure, lifts when that pressure is applied; being connected with the gage, that latter should indicate the same pressure; if it does not, the amoun of error is obvious.

The apparatus, which is shown taken apart in Fig. 2, consists of a brass base, provided with a pipe, A, to be connected to a pump. At B is a hardened steel valve and seat, the latter having knife edges for the valve to rest upon, and being made ex actly one square inch in area. There is a guide stem on the seat to enter a hole in the valve and so guide the same; and the rer and so guide the same; and the water pipe, A, it whil be noticed by the di rection of the dotted lines, has its aperture directly under the valve. The valva, when in place, makes a tight joint with the knife edges, and the pressure beneatia is confined until it exactly balances the combined weight of the valve, yoke, C (which rests by a pointed projection upon the valve), and any extra weight which may be suspended from the lower hook of the yoke.
The mode of operation will be better un derstood from Fig. 1, which represents the weighted yoke in place, and at the same time the test pump and test gage, which may be purchased from the manufacturers below named, with the test valve. D is the pump, in the reservoir of which water is poured; and by turning the screw, pressure is caused beneath the valve and also in the test gage, E, and in the gage under examination, which is applied at F. The pieces of iron, etc., attached to the lower end of the yoke are previously weighed, so that the valve must lift and the water escape by the overflow pipe, G, the moment such known weight is exceeded by the water pressure. The limit, therefore, cannot be overstepped, and hence the gage under examination and at the same time the test gage should each indicate a pressure equal to the weight atlached to the yoke, plus, as before stated, the weights of yoke and valve

The device is simple, easily operated, and reliable. It is old for $\$ 18$.
Patented to Edwin A. Wood, through the Scientific Amer ican Patent Agency, September 22, 1874. For further in ican Patent Agency, September 22,1874 . For further in.
formation, address the manufacturers, the Utica Steam Gage Company, Utica, N Y.

New Steel Works.

The new Edgar Thomson Steel Works at Pittsburgh, Pa. were duly opened on September 4, in the presence of several hundred invited guests. The latest improvements are intro duced throughout the establishment. For example, red hot ingots of steel, weighing a tun, are transferred from the truck to the rolls by one man. The great saving in manual labor and the superior excellence of the metal produced will enable this concern to distance all foreign competition. One of the tests of the steel at these works is to fix one end of a railroad rail, and by means of a wheel at the other end twist the rail twice, which is done without fracture of the rail.

Remarkable Swimming.-A girl of fourteen, named Beck with, daughter of the champion swimmer of England, recently swam from London Bridge to Greenwich, a distance of over five miles, in one hour and eight minutes. This is believed to be the fastest swimming on record.

Mortality among Elephants. We learn from the Rangoon Burmah Mail, a file of which has just reached this office, of a large mortality among elephants in that district; and a more serious loss of the same kind has been experienced by the Moulmein foresters, on the Thoungyeen side. The Mail states the value of each
elephant is from 800 rupees to 1,500 rupees ($\$ 400$ to $\$ 750$) and that the loss to their people in the aggregate is very considerable, greatly enhancing the price of these useful animals, and increasing the difficulty and cost of bringing timber to market.

KNIGHT'S IMPROVED HEALTH LIFT.

Physical culture, in moderation, is unquestionably bene

ficial; but physical culture in excess is as certainly banefu and injurious to the system. The present tendency is to ward the extreme; and, as exemplified in the repeated fail ures of overtrained athletes at the moment of trial, the ro sults reached are exactly the reverse of those sought. The reason is undoubtedly to be found in the mistaken theory which impels the development of only those muscles which are to be used in the contest-a theory which neglects the equally important truth that, after all, the human body is but a beautifully organized machine, and, like every other piece of mechanism, its ulcimate strength, as a whole, is only equal to the strength in its weakest part. If, therefore we create an abnormal growth of arm muscles for rowing,
or for leg muscles for walking, we do so at the expense of some other part of the machinery, usually the nerve centers. We accelerate the circulation of the blood in the vessels of he chest until the walls of the veins and arteries become hinned and diseased through distension, and the applicaion of undue strain determines their rupture. It would be xactly the same if we were to seek to strengthen an engine by taking away all the metal about the steam conduits until he walls of the same were as thin as paper, and putting it on the connecting rod and crank. The moment a heavy load was put on the machine, an increased strain would biceak the pipes, and everything would stop. The kind of exercise needed is that which will strengthen all parts of the body equally, producing a uniformly strong structure. Such exercise would be rational, beneficial, and health-giving, re sulting in permanent good effects, and not, as is now too frequently the case, in permanent bad ones.
Whether or not such benefit is to be gained from what is known as the lifting system, we are not, from personal know ledge, prepared to state. That the lift exercise is growing in favor is undeniable, and we may add that we have known a number of persons who have derived much good there from. The inventor of the machines illustrated herewith, says, in regard to the value of lifting: "I state what I have proved; for in my practice of Swedish movements (applied exercise), I was compelled to devise some way to cultivate the strength and endurance of certain kinds of patients, without at the same time disproportionately taxing their nervous energies. My machine (in use six years in my of fice) does it better than auything else known to me; and feel able to say that if oarsmen-soi disant, or professionals feel able to say that if oarsmen-soi disant, or professionals
-would carefully cultivate the nerve centers by lifting in a prescribed manner everyday, they would accomplish more, and with less waste, than without the machine.'
The appearance and construction of the machine referred to will be understood from the engravings. Fig. 1 represents the apparatus arranged for complete spring and dead weight combined, with a maximum resistance of from 600 to 1,200 lbs. ; and Fig. 2 is the family machine, constructed with spring alone, having a resistance of from 300 to 600 lbs.

The table legs are supported upon springs, in order to give elasticity to the lift when raising a dead weight from the floor. A slutted tubular socket is attached to the under side of the table, and guides an interior tubular piston that is connected with a yoke sliding on the outside of the socket tube, and resting on a collar at the lower end of the same. A second pin connects the lower part of the sliding piston with a slotted and weighted tube which slides between the socket tube and piston, and which may be adjusted higher or lower on the latter, so that the weighted tube may be raised at any desired moment of lifting the piston. The joke carres a powerful spiral spring which is compressed by raising he handle, and also side arms, having vertical rods and mall side handles. The intermediate tube carries on its base collar a number of detachable weights which allow not only of the adjustment of the apparatus to any degree of spring and dead weight action combined, (but also by the higher or lower setting of the weighted tube) the raising of
the weight at any desired moment after the spring has been partly compressed.
A well q raduated strain is thus obtained, which proceeds from a minimum to a maximum, and thence goes back to the minimum, requiring no considerable effort to over come the constant or fixed resistance, but admitting, by a gradually increasing exercise, a regular training and deve lopment of the muscles.
The machine is very handsomely constructed, and forms a neat and ornamental piece of furniture. Its employment is especially recommended to persons of sedentary habits and those suffering from chronic diseases
Patented through the Scientific American Patent Agency May 11, 1875

For further particulars address the inventor Dr W. H Knight, g 1 Pleasant street, Worcester Mass.

A MODEL VILLA.

We have remarked of late a growing tendency on the part of architects and builders to abandon the stiff and ungainly models of rural architecture, and substitute therefor much more tasteful and ornate designs. There are few buildings so severely ugly as those of the conventional types so common in New Englatd towns. We mean, first, the squar box, the perfectly cubical shape of which is relieved only by a little cupola perched mathematically in the middle of the roof, looking as useless as it is out of place ; second, the in numerable attempts to duplicate the Athenian Parthenon, by

adding a series of ponderous and palpably wooden pillars to the front of the building, and thus darkening, by the over hanging roof, all the front windows of the upper stories; and lastly, the aspiring efforts to rival the modern French construction by imitating the iron and stone mansards and lofty towers, in wood and on a much reduced scale, too fre quently in entire incongruity with all the surroundings. In constructing larger country dwellings, the same models, enlarged, have been kept in view, so that it is no uncommon sight to find the villa, standing in the midst of its score of acres, duplicated in the cottage, cramped in a twenty-five foot lot, or the cottage repeated on a magnified scale in the more pretentious residence.
So many excellent plans have been published for country homes that we are led to believe that a genuine taste has been awakened for a really rural style of architecture. A city house, with its lofty staircases and its general construc tion carried skyward, remains a city house, to all intents and purposes, no matter if planted in a wilderness. It suggests cramped space and narrow limits, and not that carelessness as regards the area covered over, which is the distinctive feature of the country dwelling. Let the reader compare the illustration of the beautiful villa, given herewith, with any of the perky, stiff, tall structures which sprang up like mushrooms when the taste for French design became first prevalent here. The edifice is low and broad, suggestive of ample halls and large, cool, airy rooms. It is irregular in shape, as if it were planned for the convenience of the occupants-ad justing itself to their needs, and not at all suggestive of that hermit crab peculiarity of many people who fix on a residence and then adjust themselves to it. There are broad windows shaded by tasteful porches, the heavy effect of which is re lieved by the delicate half. Moorish tracery of their supports, and lastly, there are the piazzas, which fill out the details of the bare walls. Add tasteful painting, in a couple of cool shades of brown, for example, and the embowering westeria
or other vines which trail over doors and windows, and a or other vines which trail over doors and windows, an
dwelling is made which is in itself a picture of comfort. dwelling is made which is in itself a picture of comfort. It is such architecture as this that we hope to see replace the designs so long prevalent. Taste, or rather the gratification of it, is not necessarily expensive; for it costs no more -perhaps not so much-to erect either a cottage or a vila which shalt be graceful and pleasing in appearance, than to mentation, or even the severely plain edifices which, to our minds, serve only by their contrast to enhance the beauty of Nature's handiwork.
It would be an excellent plan, we think, for persons con templating building to have models of their houses constructed in paper or thin wood. Few people can obtain a perfect idea of the aspect of any proposed edifice from the architect's drawings. Engineers very frequently adopt this plan in building bridges and similar structures; and in theaters, the scenic artist always submits pasteboard models of elaborate set scenes to the manager and playwright before nary to the construction of a machine-as indeed it is to al most every structure, except a building-and why architects should not also furnish an embodiment of their designs in the same manner has always seemed to us rather anomalous.

BRITISH ASSOCIATION NOTES.

propelling ships by wave motion

Mr . Beauchamp Tower read a paper on "A Machine for Obtaining Motive Power from the Motion of a Ship among Waves." The machine consists in principle of a weight
supported on a spring, so that it can oscillate on the spring supported on a spring, so that it can oscillate on the spring
through a considerable range in a vertical line. The scale of the spring, and consequently the natural period of oscil lation of the weight, can be varied at will. When it is so adjusted that it synchronises with the waves, the oscillations become very violent, and a large amount of power can be obtained from them. In practice, the springs consist of highly compressed air pressing on the rims of hydro-pneumatic cylinders, and the arrangement is such that the vessel containing the compressed air forms the moving weight. The author exhibited a design of a machine for working an auxiliary propeller of a sailing ship of 1,800 tuns displacement.
The moving weight in this case is 200 tuns, and he showed The moving weight in this case is 200 tuns, and he showed by calculation that it would give a bout
long swell met with in the tropical calms, 260 horse power in average ocean waves, and more than 600 horse power in a heavy head sea. The space occupied by the machine compares favorably with a steam engine of the same power.
The author exhibited a model of the machine, which recently, in a moderate sea, had yielded power at the rate of $1 \frac{1}{2}$ horse power per tun of moving weight

wave motion

Professor Guthrie read a paper on the measurement of wave motion. He said his endeavor in various inquiries was to determine the rate of wave progress. The rate at which the wave moved along depended very little indeed upon the hight of the wave, nothing at all upon the breadth of the wave, nothing upon the density of specific gravity of the liquid, but almost entirely upon the wave length-that was, the distance from crest to crest. The learned f rofessor demonstrated by means of experiments that, in circular troughs, the smaller the diameter the more rapid was the pulsation, and that the rate in different sized troughs varied inversely as the square root of the diameter. It was also found that
in a circular trough a wave $39 \cdot 4$ inches in length traveled in a circular trough a wave
in one minute over 270 feet.
undergroind temperature committee.
Professor Everett presented the report of the Underground

Temperature Committee. He said the committee had been Temperature Committee. He said the committee had been
in existence for eight years, and during that time had been engaged in trying to determine the rate of increase of temperature of the rock as they went deeper into the ground
The observations had generally been The observations had generally been made by means o artesian wells and mines, and he gave interesting particular of investigations recently made in the St. Gothard tunnel at Chiswick, and at Swinderly, near Lincoln. Mr. Galloway mining engineer, narrated the result of some observations in mines in regard to the temperature, and Professor Everet said he did not think that in old mines, where good ventila tion had been obtained for many years, any reliable dat with reference to the temperature of the rock could be ob tained without boring to a very great extent.

THE ATMOSPHERE AND SOUND

Professor Osborne Reynolds read a paper on the refrac tion of sound by the acmosphere, and related the effect o experiments which he had recently made, with a view of hrowing light on the subject. He had confirmed his hy othesis that, when sound proceeded in a direction contrary that of the wind, it was not destroyed or stopped by the wind, but that it was lifted, and that at sufficiently high levations it could be heard at as great distances as in othe irections, or as when there was no wind. An upward di minution of temperature had been proved by M. Glaishers balloon ascents, and he showed,'by experiments with the sounds of firing of rockets and guns, that the upward variaion of temperature had a great effect on the distance at which sounas could be heard. By other observations he found that, when the sky was cloudy and there was no dew, the sound could invariably be heard much farther with than against the wind; but that, when the sky was clear and there was a heavy dew, the sound could be heard as far against a light wind as with it. Professor Everett remarked that Professo Reynolds had given the most important contribution to the subject that had been given for very many years.

Sun spots and atmospheric forces,

Professor Barrett read a paper prevared by Mr. T. Moffat on the apparent connection between sun spots, atmospherie zone, rain, and force of wind. The author stated that from 850 to 1869 he discovered that the maximum and minimum of atmospheric ozone occurred in cycles of years. He had compared the number of new groups of sun spots, in each year of these cycles, with the quantity of ozone, and the re sults showed that in each cycle of maximum of ozone there was an increase in the number of new groups of sun spots. He also showed that there is an increase in the quantity of rain and the force of wind with the maximum quantity of ozone and sun spots, and a decrease in these with the mini mum of ozone and sun spots.
constitution of the sun.
Professor Balfour Stewart, in an address on this subject, said : Several new metals have been added to the list of those previously detected in the solar atmosphere, and it is now certain that the vapors of hydrogen, potassium, sodium, rubidium, barium, strontium, calcium, magnesium, aluminum, iron, manganese, chromium, cobalt, nickel, titanium, lead copper, cadmium, zinc, uranium, cerium, vanadium, and pal ladium occur in our luminary
If we have learned to be independent of total eclipses as far as the lower portions of the solar atmosphere are con cerned, it must be confessed that as yet the upper portionsthe outworks of the sun-can only be successfully approached on these rare and precious occasions. Thanks to the various government expeditions despatched by Great Britain, by the United States, and by several Continental nations-thanks, also, to the exertions of Lord Lindsay and other astronomer We are in the

In the first p

In the first place, we are now absolutely certain that a arge part of this appendage unmistakably belongs to our luminary, and in the next place, we know that it consists, in part at least, of an ignited gas giving a peculiar spectrum, which we have not yet been able to identify with that of any known element. The temptation is great to associate this spectrum with the presence of something lighter than hydrogen, of the nature of which we are yet totally ignorant.
A peculiar physical structure of the corona has likewise been suspected. On the whole, we may say that this is the ast known, while it is perhaps the most interesting, region investigation.
the trials of screw steamships.
Mr. William Denny (Dumbarton) read a paper on "The Trials of Screw Steamships." A considerable part of his paper was taken up in proving the fallacy of the cube the he hoped there would soon be an end. The system of progressive trials exploded this idea, and if the late Professor Rankine had had the advantage of progressive trialshis work would have been more valuable. In making progressive trials, perfect accuracy should be obtained, and they would be worthless if they fell below Admiralty standard, which
the majority of private trials, he was sorry to say, did almost the majority of private trials, he was sorry to say,did almost invariably. A perfectly calm day was necessary, as the
wind told enormously on the slow speed. The great aim was to equalize the development of power on the two runs. They would gain literally nothing from single model trials. Mr. Thorneycroft (Chiswick) having observed that, in a ship with a very large surface,the resistance increased in a slower
ratio than in a bluff vessel, Professor Kennedy said that shipbuilders had not at present got anything like so far to
adopting progressive trials as Mr. Denny seemed to hav gone. But one thing they might at least look for was tolera bly complete results. They continually had to work at re sults which looked very complete, and had a great many figures in them, but frequently happened to leave out one or wo matters which were absolutely essential to coming to anything like conclusions from them. It was very easy in deed, on a trial ship, with a moderate amount of care, to ge to know a great deal of the commoner particulars, which, i put together and collated, would help them to come to some thing like a conclusion. They wanted especially particular of the size of the vessel, her general form, the exact draft and the exact speed. Mr. W. Smith (London) agreed with Professor Kennedy in his remarks. He said that the very systematic mode of setting about to deceive had been to thoroughly followed, and had been a practice quite recog zed in connection with steamship builders,marine engineer nd even the persons associated with them. It was impossi be to conceive of anything more fallacious than the record at had been sent to the British Association on this matter Mr. Denny heartily agreed with what Professor Kennedy and Mr. Smith had said, and added that he had seen glaringly careless trials, which were as bad as dishonest trials.
the steering of screw steamers.
In a paper read before the mechanical section of the Bri tish Association, Professor Osborne Reynolds says: 1. Tha when the screw is going ahead, the steamer will turn as if she were going ahead, although she may have stern way on 2. That when the screw is going reversed, the rudder will act as if the vessel were going astern, although she may bf moving ahead. 3. That the more rapidly the boat is mov ing in the opposite direction to that in which the screw is act gh to drive it, the more nearly will the two effects on the rudderneutralize each other, and the less powerful will be its action. In reference to the effect of the screw to turn the action. In reference to the effect of the screw to turn the
boat independently of the rudder, the author states the following law: 4. That, when not breaking the surface, the screw has no considerable tendency to turn the ship as long as the rudder is straight. On the subject of racing, the au hor stated that his experiments had enabled him to establish he following laws: 5. That when the screw is frothing the water, or only partially immersed, it will have a tendency to turn the stern in the opposite direction to that in which the tips of the lower blades are moving. 6. That when the boat is going ahead, its effects will be easily counteracted by the rudder; but when starting suddenly either forward o backward, at first the effect of the screw will be greater than that of the rudder, and the sbip will go accordingly. 7. That if, when the boat is going fast ahead, the screw is reversed at first it almost destroys the action of the rudder, what little effect it has being in the reverse direction to that in which it usually acts. If then the screw draws air or breaks the surface, it will exert a powerful influence to turn the ship.

New Photo Dry Process.

M. E. Quiquerez furnishes the details of his rapid dry pro cess, which, he claims, combines the quality of results be longing to the albumen processes with a sensitiveness hitherto unapproached. The plates first receive a preliminary coating of albumen (one in forty) to be filtered immediately before use. M. Quiquerez insists upon the use of ammonia rather than acetic acid for preserving the albumen from decomposition, as the acid causes the growth of a species of fungus which destroys the clearness of the liquid. Any good commercial collodion may be used, but one containing a large proportion of bromide is to be preferred. The silver bath consists of: Nitrate of silver 40 to 50 grains, glacial acetic acid, $2 \frac{1}{2}$ to 10 minims, according to tem-perature, rai water 1 oz ., to be saturated with iodide of silver. The plate is allowed to remain in the bath at least four or five minutes, after which it is well washed, first in rain and then in ordinary water, until the whole of the free silver is re moved. The preservative, in which the novelty of the pro cess lies, is as follows:
Solution No. 1.-Roasted and finely ground coffee, 3 ? ozs. ; Caramel, $1 \frac{1}{2}$ ozs. ; boiling rain water, 40 ozs.
Solution No. 2.-Gum arabic, 1 oz . ; albumen (beaten and decanted), 1 oz ; pyrogallic acid, 120 grains; cold rain water, 26 ozs.

When No. 1 has become cold, it is filtered and added to No. 2, the whole being well agitated, when it is ready for use. M. Quiquerez attributes the great sensitiveness of this process to the large quantity of pyrogallic acid employed, the albumen, though present in very small proportion, giving great solidity to the sensitive film. The gum and caramel lessen a slight tendency to harshness noticeable with coffee and albumen alone, and also render the film more permeable during development. The pyrogallic acid facilitates the action of the alkaline developer. The preservative is applied in the usual way by pouring it on and off the plate (previ ously well drained) three or four times.
The development is performed in a dish, by means of a plain solution of carbonate of ammonia, the plate being plunged direct into the developer without previous washing. If the exposure has been well timed, the details will ke
brought out without further treatment, when the film is carebrought out without further treatment, when the film is care-
fully washed and intensified with pyro and silver. If, on the contrary, the exposure has been too short, the development must be continued by means of the ordinary alkaline pyro developer. An eighty-grain solution of sulphocyanide of ammonium is recommended for fixing, as it does not destroy the half tones. The color of the image is a rich red brown : but for those who prefer a black tone, M. Quiquerez recommends the use of chloride of gold.

New Theory or the Resistances of Ships and other
Moving Booties in Water. ${ }^{1}$ ue following is an abstract of the address of Mr. W. Froude, C.E., F.R.S., as president of section G (Mechanical Science), British Association
"I propose," he said, "to treat of certain of the fundamental principles which govern the behavior of fluid, and this with special reference to the resistance of ships. By the term "resistance" I mean the opposing force which a ship experiences in its progress through the water. Consider propulsion of ships, or, in other words, in overcoming the resistance of ships, Itrust you will look favorably on an attempt to elucidate the causes of this resistance. It is true that improved results in shipbuilding have been obtained through accumulated experience; but it unfortunately happens that many of the theories, by which this experience is
commonly interpreted, are interwoven with fundamental falcommonly interpreted, are interwoven with fundamental fal-
lacies, which, passing for principles, lead to mischievous relacies, which, passing for principles, lead to mischievous re-
sults when again applied beyond the limits of actual experience. The resistance experienced by ships is but a branch of the general question of the forces which act on a body moving through a fluid, and has within a comparatively recent period been placed in an entirely new light by what is commonly called the theory of stream lines. The theory as a whole involves mathematics of the highest order, reaching alike beyond my ken and my purpose; but I believe that, so far it concerns the resistance of ships, it can be sufficiently understood without the help of technical mathematics; and I will endeavor to explain the course which I have myself found most conducive to its easy apprehension. It is con venient to consider first the case of a completely submerged body moving in a straight line with uniform speed through an unlimited ocean of fluid. A fish in deep water, a submarine motive turpedo, a sounding lead while descending through water, if moving at uniform speed, are all examples of the case I am dealing with. It is a common but erron-
eous belief that a body thus moving experiences resistance eous belief that a body thus moving experiences resistance to its on ward motion by an increase of pressure on its head supposed that the entire head end of the body has to keep exerting pressure to drive the fluid out of the way, to force a passage for the body, and that the entire tail end has to a keep on exerting a kind of suction on the fluid to induce it to close in again--that there is, in fact, what is termed plus pressure throughout the head end of the body and minus pressure or partial vacuum throughout the tail end. This is not so: the resistance to the progress of the body is not due to these causes. The theory of stream lines discloses to us the startling but true proposition that a submerged body, if moving at a uniform speed through a perfect fluid, would encounter no resistance whatever. By a perfect fluid I mean
a fluid which is free from viscosity, or quasi-solidity, and in a fluid which is free from viscosity, or quasi-solidity, and in
which no friction iscaused by the sliding of the particles of the fluid past one another, or past the surface of the body The property which I describe as 'quasi-solidity ' must no be confused with that which persons have in their mind when they use the term 'solid water.' When people in this sense speak of water as being 'solid,' they refer to the sensation of solidity experienced on striking the water sur face with the hand, or to the reaction encountered by au oar blade or propeller. What I mean by 'quasi-solidity' is the
sort of stiffness which is conspicuous in tar or liquid mud ; sort of stiffness which is conspicuous in tar or liquid mud;
and this property undoubtedly exists in water, though in a very small degree. But the sensation of solid reaction which is encountered by the hand or the oar blade is not in any way
due to this property, but to the inertia of the water. It is due to this property, but to the inertia of the water. It is
in effect this inertia which is erroneously termed solidity; and this inertia is possessed by the perfect fluid, with which we are going to deal, as fully as by water. Nevertheless it is true, as I am presently going to show you, that the per fect fluid would offer no resistance to a submerged body moving through it at a steady speed.
It will be seen that the apparent contradiction in terms which I have just advanced is cleared up by the circumstance that in the one case we are dealing with steady motion, and in the other case with the initiation of motion. In the case of a completely submerged body in the midst of an
ocean of perfect fluid, unlimited in every direction, I need ocean of perfect fluid, unlimited in every direction, I need
hardly argue that it is immaterial whether we consider the hardly argue that it is immaterial whether we consider the
body as moving uniformly through the ocean of fluid, or the ocean of fluid as moving uniformly past the body. The proposition that the motion of a body through a perfect fluid is unresisted, or, what is the same thing, that the motion of a of a perfect fluid past a body has no tendency to push it in the direction in which the fluid is flowing, is a novel one to many persons; and to such it must seem extremely startling. It arises from a general principle of fluid motion, which I shall presently put before you in detail-namely, that to cause
a perfect fluid to change its condition of flow in any manner whatever, and ultimately to return to its original condition of flow, does not require, nay does not admit of, the expendiof flow, does not require, nay does not admit of, the expendi-
ture of any power, whether the fluid be caused to flow in a curved path, as it must do in order to get round a stationary body which stands in its way, or to flow with altered speed as it must do in order to get through the local construction of a channel which the presence of the stationary body practically creates. Power, it may indeed be said, is first expend-
ed, and force exerted to communicate certain motions to the id, and force exerted to communicate certain motions to the
fluid; but that same power will ultimately be given back, and the force counterbalanced, when the fluid yields up the motion which has been communicated to it, and returns to its original condition." He illustrated this portion of his address with several interesting experiments, in one of which he was assisted by Sir William Thomson, showing that, if a chain be set rotating at a very high velocity over a pulley, the
centrifugal forces did not tend to disturb the path of the run-
ning chain, and that a stream of fluid in a tortuous flexible ning chain, and that a stream of fluid in a tortuous flexible
pipe would behave in a strictly antagonistic manner. He pipe would behave in a strictly antagonistic manner. He
also introduced an experiment to show that, in a pipe of varying diameter the experiment to show that, in a pipereater in the wider part. He then pointed out that the causes of resist. ance to the motion of a ship through the water are: First surface friction; secondly, mutual friction of the particles of water (and this is only practically felt when there are fea tures sufficiently abrupt to cause eddies); and thirdly, wave genesis; and that these are the only causes of resistance He also showed that a ship at the surface experiences no re sistance in addition to that due to surface friction and the action of eddies, except that due to the waves she makes. He then said: "I have done my best to make this clear; bu there is an idea that there exists a form of resistance, something expressed by the term ' direct head resistance', which is independent of the abovementioned causes. This idea is so largely prevalent, of such long standing, and a first sight so plausible, that I am anxious not to leave any misunderstanding on that point. The notion of head resist ance, in the ordinary sense of the word, or the notion of any opposing force due to the inertia of the water on the area of the ship's way, a force acted upon and measured by the area of midship section, is, from beginning to end, an entire de lusion. No such force acts at all, or can act. No doubt, if two ships are of precisely similar design, the area of midship section may be used as a measure of the resistance, because it is a measure of the sizo of the ship; and if the ships were similar in every respect, so also would the length of the bow sprit, or the hight of the mast, be a measure of resistance and for just the same reason. But it is an utter mistake to suppose that any part of a ship's resistance is a direct effect
of the inertia of the water which has to be displaced from of the inertia of the water which has to be displaced from
the area of the ship's way. Indirectly the inertia causes re the area of the ship's way. Indirectly the inertia causes re to it makes waves. But to a submerged body, or to the sub merged portion of a ship traveling beneath rigid ice, no re sistance whatever will be caused by the inertia of the wate which is pushed aside. And this means that, if we compar wo such submerged bodies, or two such submerged portions of ships traveling beneath the ice, as long as they are both of sufficiently easy shape not to cause eddies, the one which will make the least resistance is the one which has the leas skiu surface, though it has twice or thrice the area of mid ship section of the other. The resistance of a ship, then pactically consists of three items-namely, surface friction ddy resistance, and wave resistance. Of these the firs amed is, at least in the case of large ships, much the larg est item. In the Grayhound, a bluff ship of 1,100 tuns, only 170 feet long, and having a thick stem and sternposts, thus making considerable eddy resistance, and at 10 knots visibly making large waves, the surface friction was 58 per cent of the whole resistance at the speed; and there can be no doub that, with the long iron ships now built, it must be a fa greater proportion than that. Moreover, the Grayhound wa a coppered ship; and most of the work of our iron ships has to be done when they are rather foul, which necessarily in creases the surface friction item. The second item of resist ance-namely, the formation of eddies-is, I believe, imper ceptible to ships as finely formed as most moderniron steam hips. Thick square shaped stems and sternposts are the most fruitful source of this kind of resistance. The third tem is wave resistance. On this point, the stream lin heory rather suggests tendencies than supplies quantitative in which the waves originate, the laws nature of the force in which the waves originate, the laws of such wave com binations are so very intricate that they do not enable us to predict what waves will actually be formed under any given condition. In order to reduce wave resistance, we should make the ships very long. On the other hand, to reduce the surface friction we should make her comparatively short, so as to diminish the surface of wettedskin. Thus, as common ly happens in such problems, we are endeavoring to reconcile conflicting methoas of improvements; and to work out the problem in any given case, we require to know actual quan tities.
We have sufficient general data from which the skin re sistance can be determined by simple calculation; but the
data for determining wave resistance must be obtained from direct experiments upon different forms to ascertain its valu for each form. Such experiments should be directed to de termine the wave resistance of all varieties of water line cross section, and proportion of length, breadth, and depth, so as to give the comparative result for each. An exhaustive series of such experiments could not be tried with full sized ships ; but I trust that the experiments I am now carrying out with models for the Admiralty are gradually accumulat ing the data required on this branch of the subject. I wish, in conclusion, to insist again, with the greatest urgency, on the hopeless futility of any attempt to theorize on goodnesso which ships, except under the strong and entirely new ligh which the doctrine of stream lines throws on it. It is, I re-
peat, a simple fact that the whole framework of thought, by which the search for improved forms is commonly directed, consist of ideas which; if the doctrine of stream lines is true,
are absolutely delusive and misleading. And real improvements are not seldom attributed to the guidance of those very ideas which I am characterizing as delusive, while in reality they are the fruit of painstaking, but incorrectly rationalized, experience. I am but insisting on views which the highest mathematicians of the day have established irrefutably; and my work has been to appreciate and adopt these views when plausibility of the unsound views against which I am con tending: but it is for the very reason that they are so plausi-
ble that it is necessary to protest against them so earnestly and I hope that, in protesting thus, I shall not be regarded as dogmatic. In truth, it is a process of scepticism, not of dog matism ; for I do not profess to direct any one how to find his way straight to the form of least resistance. For the pre sent we can but feel our way cautiously towards it by care ful trials, using only the improved idea which the stream line theory supplies, as safeguards against attributing thi or that result to irrelevant or, rather, non-existing causes.

Remarkable Shower of tce---Perils of Rocky Mountain Railway Traveling.

At Potter station, on the Union Pacific Railroad, recently, a train was just pulling out from the station when a storm commenced, and in ten seconds there was such a fury of ail and wind that the engineer deemed it best to stop th ocomotive. The hailstones were simply great chunks of ice, many of them threeand four inches in diameter, and of all shapes-squares, cones, cubes, etc. The first stone that struck the train broke a window, and the flying glass severely injured a lady on the face, making a deep cut. Five minutes afterward there was not a whole light of glass on the south side of the train, the whole length of it. The win dows in the Pullman cars were of French plate three eighth of an inch thick, and double. The hail broke both thick esses, and tore the curtains into shreds. The wooden shut ers, too, were smashed, and many of the mirrors wer broken. The decklights on the top of the cars were also
demolished. The dome of the engine was dented as if it had demolishtd. The dome of the engine was dented as if it had been pounded with a heavy weight, and the woodwork on the south side of the cars was plowed as if some one had struck it all over with sliding blows from a hammer. Dur ing the continuance of this terrific fusillade, which lasted fully twenty minutes, the excitement and fear among the passengers ran very high. Several ladies fainted, and on ady, Mrs. Earle, wife of the superintendent of the Moun ain division of the road, went into spasms, from which she did not recover for over an hour after the cessation of th storm. Several persons sitting on the south side of the car were more or less injured about the head and face.
As soon as the storm abated a little, the matting in th ars was hung up in front of the windows, and the train noved ahead, the drifted hailstones proving an obstacle fo some miles. At the next station, strips of tin were pro cured and fasted over the windows the entire length of thd train. The cars have been run into shop for repairs, an he damage will amount, it is estimated, to several thousand dollars.-Denver News.

Zecent Gmerican and fortign æatents.

Improved Screw-Pegging Machine

A. C. McKnight, Philadelphia, Pa.-This invention consists of sev ening together of sole and upper of boot or shoe may be greatly facilitated. These new features, both separately and in the aggre sate, will materially contribute to the cheaper manufacture of boots and shoes, while the pegging is done thoroughly and in

Improved Machine for stiffening Hats
Granville B. Fuller, Middletown, N. Y.-The hats are dipped into tiffening in a tank, and are placed upon blocks, to which a rapi rotary motion is then given to throw out the surplus stifening. Th hats are given a heavy or a light stiffening by v
of the stiffening solution contained in the tank.

Improved K nock-Down Bedstead.
S. Moses, Lebanon, N.H-This
Whably locking the end boards and standards of the method of de portions of a bedstead by hooks on the lower end board and screw at the top, by which the parts may be readily separated for packing
and be put together without the aid of skilled labor.

Improved Wrench

Peter Samuel, New York city.-A movable jaw is first adjusted relatively to the stationary jaw, to embrace the nut between them. relatively to the stationary yaw, to embrace the nut between them.
The effect of pressure applied to the handle is to cause it to advance the movable jasw and clamp the nut tightly. The increase of press-
ure increases the closeness of such contact, so that abrasion of the ure increases the closeness of such contact, so that abrasion of the
nut is impossiole. When the handle is turned, a cam will act on an nut is impossiole. When the handle is turned, a cam will act on an
arm, and thus on the movable jaw; and when turned in the oppoarm, and thus on the movable jaw; and when turned in the oppo-
site direction, another cam acts similarly, so that the wrench may site direction, another cam acts similarly, so that the wrench may
be operated to screw nuts on or off the bolts. A spring moves the ja waway from the side of the nut; at once the action of the handle
ceases, so that the wrench may be reaily removed from the nut.

Combined Spark Arrester and stove Register. Thomas R. Freeman and Perine Y. Jones, Ripnn, Wis.-The body which is formed a groove to receive a plate of wire gauze, by which which is formed a groove to receive a plate of wire gauze, by which
the escape of any sparks through the openings of the register is
wholly prevented. The plate can be readily removed when worn and replaced with a new one, and does not interfere with the opera-
tion of the register.

Improved Beer Refrigerator.

John N. Bohart, Denison, Texas.-This consists of a skid for supporting the barrel, an ice box arranged above the latter, and an outer case or cover. It was ilustrated and
current volume of the ScIENTIFIC AMERICAN.

Improved Brush.

Moritz Leiner, New York city.-This consists of a brush having Me twisted wire which secures the bristles fastened over the block of the brush, the invention applying only to brushes which have
blocks of wood or metal or other suitable material, and of sections of twisted or braided wire and bristles.

Improved Toy Store。

Elias Durlach, New York city.-This consists in a toy grocery
store, made of sheet metal, and provided with the detachable sign store, made of sheet metal, and provided with the detachable sign and ornament, shelves, drawers, boxes, or
counter, and pivoted detachable chandeliers.

Improved Grain Drill Tooth.

George L. Ives, Galesburg, Mich., assignor to himself and Henry L. Keith, same place - This is a tooth for grain drill tubes, consisting rear cavity running through both, and passing out on a rearward curve near the bottom.
mproved Animal Trap.
Ebenezer Oliver, New York city.-The body of the trap is made
with an offset, formed by bending back the upper part of the front with an offset, formed by bending back the upper part of the front
wire of the frame. A wire is secured to the frame of the body and wire of the frame. A wire is secured to the frame of the body and
carries a spring, one end of which is secured to the body, and its other end is secured to the door. The door is provided with upright
wires at a little distance from the side wires of its frame. The door is made a little narrower than the opening, and in the space thus eft is placed a wire, secured to the bottom and to the front wire of the body of the trap. Rings pass around the side wires of the door
frame and around the wires last mentioned. When the trap is sprung, the rings slide down upon the wires and fasten the door securely, so that no tffort of the animal can open it

Improved Car Coupling.

Peter Harper, Marshall, Texas.-The drawbar has an upwardly extending hook part, and a coupling link, which is passed through
a slot of the bar, and raised for coupling with the approaching drawbar by a forked lever, operated by an intermediate lever rod connection from the platform. The link is retained, raised by a hook arm of the buffer rod engaging the connecting lever mecbanism, and is released by the concussion of the cars, dropping forward
over the drawbar of the adjoining car. A fulcrumed lever with over the drawbar of the adjoining car. A fulcrumed lever with
forked lower part engages the hook arm of the buffer rod, and adforked lower part engages the hook arm of the buffer rod, and ad-
mits the direct lowering of the link independentiy of the buffer roo. Improved Windmill.
Chesley Gates, Locust Grove, Mo-A small wind wheel for regu-
ating the speed of the large one is arranged where it is subject to ating the speed of the large one is arranged where it is subject to
the varying wind, and has a cord attached to its hub and connected to a brake lever, so as to pull it against the wheel with more or less force, according to the aci
by an adjustable weight.

Improved Gra
John T. Lynam, Louisville, Ky.-Around the bearings for the wheel shaft are formed circular projections, upon which rest the edges of a curved plate, the outer part of which projects outward, attached arms, which control and regulate the equal movement of he circular plate. A cross bar is moved to adjust the plate to regulate the amount of seed dropped. An arm is provided with an index that points to division marks upon the side of the bar to indicate the amount of seed the machine will drop to an acre when the plate is adjusted in any particular position.

Improved Screw-Cutting Die.
tetson, New Bedford, Mass.-In this imp
George R. Stetson, New Bedford, Mass.-In this improvement the chasers are fitted in sockets of a solid die, tapered so that they are held by a binding screw at one side of each. Two of the chasers are
provided with an adjusting screw to set them up toward the others become worn away.
Improved Crown Bar for Steam Boilers. James McPhail, Ellis, Kan.-This invention is an improvement mployment of a detachable lock bar, having lugs on its ends, in connection with a crown bar composed of two parallel parts. The lock bar aids in preserving the parallelism of the bars, and strength-
ens and braces the same. It also prevents the bolts being thrown ens and braces the same. It also prevents the bolts being thrown
out of vertical parallelism with the bars by reason of the warping out of vertical para
of the crown sheet.

Improved Wrench

John H. Morrissey, Indianapolis, Ind.-The invention consists of
wheel wrench having a central socket part, with diametrically wheel wrench having a central socket part, with diametrically hub hand, to be applied to the nut for unscrewing the same, and in

Improved Picture Nail

Owen W. Taft, 221 Pearl Street, New York city.-This consists of a ornamental head made of two cups of sheet metal, one being permanently attached, and the other detachable. The cups are or-
namented with spiral ribs, which also form screw threads, by which the detachable part is connected to the permanently attached part. The cup, which is permanently attached to the nail, is fastened by filing it around the shank by solder. William McCray, Black Oak, Mo.-Wings are used upon eachsiae
of the central bar. The forward ends of the wings are connected by bars. The rear ends of the wings are connected by bars secured
to their upper sides. To and between the rear ends of the bars and the rear braces are secured the outer ends of the two bars, in which several holes are formed to receive the bolts by which they are
secured to the plate, so that the wiogs may be expanded or consecured to the plate, so that the wiogs may be expanded or con-
tracted to make a wider or narrower cut, as m ε ye desired. The upon their forward cdge.

Improved Hose Spanner and Key

 Andrew J. Barnard, Camden, N. J.-By this implement, a hos stopcock of the same opened. The handle is made of a double supved or S-shaped form. At one end, and csat in one opiece therecurve
with, are arranged recessed with, are arranged recessed prongs, which fit in a semicircle around
and, by their recessed parts, on the lug of the hose coupling. The and, by their recessed parts, on the lug of the hose coupling. The
coupling is first screwed on by hand, and then drawn tightly by coupling is first screwed on by hand, and then drawn tightly by
applying the prongs. A key at the other ends of the handie serve applying the prongs. A key at the other ends of the handle serve
to turn the water on or off by being applied to the stopcock of the water pipe. A tapering lug, forming an extension of the key serves for lifting the lid of
and the water turned on.

Improved Car Wheel Lubricator
John Woodville, Washington, Ind.-The car wheel has an oi
chamber arranged between its spokes or arms. chamber arranged between its spokes or arms. As the wheel re
volves, oil will slide down the back wall and turn into the passage volves, oil will slide down the back wall and turn into the passage
but if more falls than is required, the superfluity falls back, the col ar and washer in the hub preventing its escape

Improved Rotary Eogine

Jacob W. Vanarder and George F. Savage, Utsaladdy, Wash. Ter.This invention is an improvement in the class of rotary engines a fixed cam; and it relates to cutting out the middle portion of the pistons and fitting them together in such a manner that space is
mproved Device for Hanging Pictures, Mirrors, etc Harvey D. Pope, Dayton, Ohio.-Theobject of this invention is to rovide a device for adjustably hanging pictures, mirrors, etc., so as at which they are hung, and the different quarters whe hights light proceeds. It consists of a frame to be attached to the wall to which the picture or mirror is fastened upon both sides by links which are long enough to give the desired adjustment. The
lower part of the icture is hinged to a hollow bar which slides inlower part of the picture is hinged to a hollow bar which slides inside a hollow pendent bar or case attached at the top to the frame,
and provided upon one of its inner sides with ratchet teeth or and provided upon one of its inner sides with ratchet teeth or
notches. Inside the inner bar is a rod or wire attached co a spring pawl at the top, and a thumb latch below, by pressing upon which raised or lowered, the links serving to control the different inclinations to the wall.

Improved Bovetailing Machine

Charles P. Baile, New Windsor, Md.-This invention relates to revolving cutter is moved against the boards to be cut so as to produce, by a single movement, the reciprocally fitting tenons and riage moving in horizontal guides, the said carriage being actuated by a treadle, cord, and spring, and the guides in which it is con by a treadie, cord, and spring, and the guides in which
tained being supported upon a vertically adjustable bed.

Improved Insole for Boots and Shoes.
Charles F. Hill, Baltimore, Md.-The object of this invention is to increase the flexibility of thesoles of boots and shoes, and it consists the same at the bend of the sole

Patent Heating and Ventilating stove
Marius C. C. Church, Parkersburg, W. Va.-This invention relates to certain improvements in heating stoves, and it consists in a detachable fire pot back, having flanged sides that slide vertically into
guide ways in the outer casing. It also consists in the particula guide ways in the outer casing. It also consists in the particular
construction of the smoke flue ascending vertically from the stove and having partition plates attached therero, in combination with a detachable cover above the heating chamber, so constructed as to leave an annular outlet for the heated air, which, passing up in columns adjacent to said pipe, heats the room better by affording a more perfect convection. This invention is claimed to be a valuable improvement; but our readers can form their own opinions

Improved Plow.

J. Freeman, Corpus Christi, Texas.-This invention contemplate an improvement in the present mode of securing the share and bolt both to serve as a fastening of the parts aad a brace to the whole structure.

Improved Signal Lantern
George J. Cave, Elizabeth, N. J.-Two glass tubes, made of differ-
ent colors and of the same diameter, are placed end to end, and are ent colors and of the same diameter, are placed end to end, and are connected together and kept in place upon each other. The lower
tube is secured to a base ring, to which is rigidly attached a handle, so that the glasses can be conveniently raised by grasping and raisabove the case. A nother spring catch receives the base ring when the glass tubes have been raised sufficiently to display the lower
tube. By this construction, by operating a handle, the upper or the lower catch may be drawn out, or both catches may be drawn out at the same time. To the base ring are attached three spring rods,
which pass up along the sides of the colored glass tubes, and which which pass up along the sides of the colored glass tubes, and which
when the said glass tubes are fully raised, rest against the uppe part of the globe, and prevent the said glass tubes from shaking par. A shade, made in telescopic parts, is secured to the cap of the lantern, and extends downward so far as to cover the upper glass tube when the tubes are fully raise
from shining through said upper tube.
Improved Method of Scouring and Polishing Rice Philip R. Lachicotte, Waccamaw (Georgetown P. O), S. C., as of scouring and Lachicotte and Sons, of same place.-Thisis a metho of scouring and polishing rice by applying friction surfaces to
previously hulled article commixed with the ash of rice chaff.

Improved Railroad Rail Joint.
Joseph C. Wright, Monocacy Station, Pa.-This invention consists of an inside spring plate for the flange, and an outside spring for the of it, from the end, to take off the weight of the wheel, or a portion hammering due to the springing down of the rails when the whed passes over the ends. It also consists in the form of the plates, and
arrangements for fastening them in position, whereby they are arrangements for fastening the
secured without bolts or screws.

Improved oil Can
John Askwith, Chicago, Ill.-This is an attachment to the bottom the can, so contrived that the drip escaping from the nozzle o It also consists of a nozzle for pouring out the drip, so contrive with the attachment that it serves for a handle to use in pouring,
and of a nozzle so combined with the drip attachment and the nozand of a nozzle so combined with the drip attachment and the noz-
zle for pouring out of the can that the drip may be poured out to zle for pouring out of the can that the drip may be poured out to
gether with the contents of the can or through the same nozzle. Improved CuItivator Teeth.
John Flynn, Monches, Wis.-The invention consists in the combi ation of the spring and its wheel with the tooth, having a concavit set screw, whereby the wheel can be adjusted in such manner as to cause the tooth to yield more or less readily, as required in differ ent soils.

Machine for Making Crimping Tacks, Awls, Etc
Henry A. Williams, West Medway, Mass.-This invention relat to roller die machinery for shaping shoemakers' awls, also crimping tacks; and it consists, first, of notches in the surface of the roller of the dies, for clearance, the object being to utilize the holding ack tendency of the notches on the metal expelled from the side in the form ofins, to counteract the longitudinal strain which the the invention consists of feed mechanism, in combination with de ollers contrived to auiomatically feed a long rod forward betwee the die rollers, hold it until the dies gripe it, and, after the blank formed, draw the rod back to the cutters, and then leave it an lide back to take hold for feeding again. Third, it consists of ripers contrived to seize the rod as soon as the dies have performe new hold, and while the cutters detach the rolled piece; back fourt new hold, and while the cutters detach the rolled piece; and, fourth
it consists of the rollers contrived for shifting laterally along the feed mechanism, and provided with mechanism for so shifting them to utilize one feed for all the different dies of a set of rolls having different sizes or forms for different articles.

improved Automatic Gate

William W. McKay, Ossian, Iowa.-This gate is so constructed that it may be readily opened by a person in a vehicle or upon horse back, and again closed after the said vehicle or horse has passed
through. The only operation is slightly pushing upon levers before through. The only operation is slightly pushing upon levers berore
and after passage, whicn, through the medium of counterpoises, and after passage, which, through the medium of co

Improved Hat.

Charles Sinclair, New York city.-The inver tion consists of a lower position, the wire ends being attached in sitable mane o the sweat band of the hat. The head is thereby kept cool and comfortable, as no pressure of the hat is exerted on the forehead o ack of the head.

Improved Stamp-Mill Feeder.
John Walker, Sonora, Cal.-This invention relates to an improved eeder for stamp mills, which is operated in combination with the tamp, and so constructed that a uniform and continuous feed of iosary hopper, directing gage piee and discharge apron, the disk tionary hopper, directing gage piece, and discharge apron, the disk
being rotated by pulley, rope, and weight connection of its shaf with a pivoted lever and conical collar of the stamp shaft.

Improved Vebicle Top.

Jerome B. Relyea, Hicksville, assignor to himself and Lewis E Brewster, Bryan, Ohio.-The case of the device is concaved upo its inner side to fit upon the rear bow of a buggy top. In the mid-
dle part of the concaved plate is formed a slotto receive the rubber de part of the concaved plate is formed a slot to receive the rubbe block, the inner edge of which is designed to rest against the bow
to which the device is attached. Upon the outer sides of the conwhich the device is attached. Upon the outer sides of the con houlders for the rubber block to rest against, to prevent the said ubber block from falling out.

Improved Cloth Measure Register.
James Brown, Jr., Matteawan. N. Y.-This is an improved machine for attachment to a store counter, to register the number of yards, of cloth or any other flexible material sold by the yard, measured off, so that the clerk can always know exactly how many
yards he has measured, and "will not be under the necessity of re neasuring the goods one or more times, should the purchaser per st in talking to him."

Improved Farm Fence.

Andrew Miller, Guntersville, Ala.-This improvement in fence onsists of one of the upper boards of the panel extended a little while at the lower part the corners drop alongside of stop cleat nailed on the posts. Cleats are on the middle portion, which, at
the same time, drop down on the top of a stake on the opposite the same time, drop down on the top of a stake on the opposit side to the stop block, which effectually holds the panel upright, and at the same time allowsit to be lifted off the posts readily. The posts are driven into the
being small and light.

Improved Champagne Freezer

Charles H. Ludwig, New York city.-A frame is applied to the cooler in a fixed or detachable manner, as desired. A central ver tical rod is revolved in cross bearings at the top part of a frame by
gearing operated by a crank handle, the rod beiog provided at the gearing operated by a crank handle, the rod beiog provided at the
lower end with a fixed cross piece, to which jaws, that are fitted to the necks of champagne or other botties, are hinged. A clamp bol nd screw nut connects the hinged jaws, and admits their rigid at achment to the bottle for being revolved by the rod, and thereb uickly acted upon by the ice in the ice receptacle. Any beverage be made in quick and convenient manner. Information regarding territorial or shop rights, purchase of machines, etc., may be had
by addressing Ludwig and Battin, No. 50 East 26th street, Nev by addressi
York city.

mproved Spring Power

Valentine Moeslein, Waterloo, III.-This invention is a contriv nce of double but independent springs in a spring power appa
ratus, so that both work together to drive one and the same train and each can be wound up independent of the other, whereby on may be wound up when the other is partly run out, and vice versa making a regular and uniform continuous power.
David I. Stagg, New York city.-This folding school-desk is so constructed that when the desk board is folded down, its upper edge will not project above the desk back. Bars are ar

Improved Manufacture of Horseshoes.

Alfred B. Seymour, Jersey City, N. J.-This is a process of making horseshoes by rolling stoel bars with a V-shaped flange, then notch ing said flange transversely, and finaly bending the blank into
orseshoe shape, whereby the calks are brought closer together he toe. Improved Chuck
Edward S. Perot and Harry C. Beitenman, Philadelphia, Pa.There is a ring under the wheel, having iaclines to ride upand down studs in the bottom of the groove for the wheel, and a shank ex tending out through the shell of the chuck, for turning it. The slo bifting the stud to one end of the slot, the ring will push the whee noifting the stud to one end of the slot, the ring winl push the wheel allow the wheel to move back out of gear, thereby causing the jaws to work in the manner of a universal chuck. A stop lug locks the
ring when raised up the inclives, to hold the wheel in gear by filling ing when raised up the inclines, to hold the wheel in gear by filling the slot out of which the shank projects.

Improved Center Board.

Joseph L. Dickenson, Hempstead, N. Y.-This is an improved method of hanging center boards, which will enable the cente board to be shipped and unshipped while the vessel is floating in th ter board bolt. The center board trunk has a hole bored into bu not through its timbers. There is a bolt, shorter than said hole, an a superimposed ptug of wocd to be driven into the aperture.

Wusimess aud tersona

 The Charoe for Ineertion under thes nead $\& \$ 1 a$ LuneHoadley Portable Engines. R. H. Allen $\& C$ Hotchkligs Air Spring Forge Hammer, vest un the the
market. Prices low. D. Frisbie \& Co. New Gaven. Ct. Amateurs and Artizans, see advertisement, page,
Wa. Fleetwood Scroll Saw, Trump Bro's, Manufacturers, wilmington, Del.
For Sale, cheap-One 60 H.P. Boiler, 40 Engines
and Boilers. Address Junius Harris, Titusille, Pas Circulars Addressed-Very complete lists of a
rades. H. Welsh, 6 Gold St., New York, up stairs. Wanted-To engage the serviese of a Practical
Man to travel and sell Engines, Boilers, Saw Mills, MaMan to travel and sell Engines, Boiliers, Saw Mills, Ma.
Chinery, and Machintsts sapplies. Adress, with refer-
ences. Beall Engine and Boller works. Steam Engines-20. per cent. extra opower, or an
equal saving infuel guaranteed.by applying the Res. Con denser. T. sault, Constl'g Eng r, Gen. Agt.,N.Haven,Ct. We call the attention of those interested to the
advertisement of Hyatt \& Co.s Varnishes, eli.ew here in this issuc. The goods are stan
appoint those who use them.

The N.Y. Plow Co.. 55 Beekman st.- Works, New rk, N.J. Agricultural Implements and Iron Castings.

 Says the Muscatine (Iowa) Courier: "We have done and are still doing business with quite a nomber of \& Co give us more business than any other. Furnishinga large amount of advertising, and paying promptly, has put this house at the very head of Agencies, and has New York Agency wanted for Machinery \& Sup-
plies. Best of References. J.J.Bockèe,Jr.,P.O.Box 5007. The merits of Morton's Brass and Copper Sash See advertisement, page 221
An experienced traveling Salesman, who has few
equals, is open for something worth $\$ 2,000$ a year. Adeduals, is open for something wo
dress Box 14, Clear Lake, Iowa.
Wanted-One 2 spindle Edging Machine. Ad-
dress, with description and price, P. O. Box 2258 , New Bargaing in Cotton and Woolen Machinery, New
or Second Hanit. J.J.Bockee,JJ., 20 Cortlandt St., N. Y. Scientific Books-Send stamp for Complete Cata-
ogue. E. \& F. N. Spon, 446 Broome Street, New York. Enterprise M'f'g Co., Philadelphia, Pa., Patented
Hardware Manufacturers and Iron F'ounders. Small gray tron castings, warranted soft and smooth, made to
order, and patented articles of merit manufactured on royalty.
A New and Novel Article of Merit-Agents
Wanted. Also, Partner to operate Can adian Patent. I. Sure cure for Slipping, Belts-Su thon's patent
Pulley Cover is warranted to do double the work before the belt will slip. See Sci. Am. June 21st, 1873 , P. 339.
Circulars free. J. W. Sutton, 95 Liberty St., New York. Something New-Door and Bell Plates-Letters
Engraved on Glass. For Beauty and Durability it cannot Engraved on Glass. For Beauty and Durability it cannot
be excelled. Send for Price List. P. O. Box 443, W. J. be excelled. Send for
Pettis, Providence, R.
The Baxter Engine-A 48 Page Pamphlet, con-
taining detail drawings of all parts and full particulars. now ready, and will be
18 Park Place, New York.
Double-Entry Book-Keeping Simplified. The
most successtul Book on the subject ever published most successtul Book on the subject ever published. A Self-Acting Trap, to rid out all Rat and AniA Self-Acting Trap, to rid out all Rat and Ani-
mal Cration. Agents wanted. No trouble to sell. For
Traps, \&c., address John Dildine, Limestoneville, MonBrass Gear Wheels, for Models, \&c., on hand and
made to order, by D. Gilbert \& Son, 212 Chester St. Philmade to order, by D. Gilbert \& Son, 212 Chester St... Phil-
adelph:a, Pa. (List free.) Light manufacturing soiicited $\underset{\text { drymen and Workers of Sheet Metal. Wen, Wonn.. Foun manufacture }}{\text { Hot }}$ on royalty Patented articles of merit
Gray Iron Castings made to order.
Hand Fire Engines, Lift and Force Pumps for fire
and all other purposes. Addresss Rumsey \& Co., Seneca and all other purposes. Address Rumsey \& Co., Seneca
Falls, N. Y.. U. S. A.
Drop Press, 3,000 to 4,000 lbs. Send description Drop Press, 3,000 to 4,000 lbs. Send description
and lowest price to Kittredge Cornice and Ornament
Company, Salem, ohio. Electric Burglar Alarms and Private House An-
nunciators; Call, Servants' $\&$ Stable Bells; Cheap Teleg. Steam and Water Gauge and Gauge Cocks Com-
bined, requiring only two holes in the Boiler, used by all boiler makers who have seen it, \$15. Hillard \& Holland, 62 Gold St., New York.
Scroll Sawyers-If you want the best Jig Saw
Blades, Iget them made by A. Coats, 108 Hester St., N. Y:: Water, Gas, and Steam Goods-New Catalogue
packed with first order of goods, or mailed on receipt of Price only \$3.50.-The Tom Thumb
Telegraph. Aleatric
A compact working Telegraph Apparatus, for sending messages, making magnets the eiectric light, glving alarms, and various other purposes. Can be put ins
operation by any lad. Includes battery, key, and wires. Neatly packed and sent to all parts of the world on recetpt
of pritce. F. C. Beach \& Co. 246 Canal St.. New York. For Sale-Large lot second hand Machinists,
Tools, cheap. Send for list. I. H. Shearman. 45 CortFor Tri-nitroglycerın, Mica Blasting Powder,
Erictional Electric Batteries, Electric Fuses, Exploders, Gutta Percha Insulated Leading Wires, etc.. etc., etc..
result of seven years' experience at Hoosac Tunnel. For best Bolt Cutter, at greatly reduced prices,
address H. B. Brown \& Co., New Haven Conn. "Lehigh"-For informationaboutEmery Wheels
$\& c$., address L. V. Emery Wheel Co., Weissport, Pa. American Metaline Co., 61 Warren St., N.Y. City Small Tools and Gear Wheels for Models. List
tree. Goodnow \& Wightman, 23 Cornhtll. Boston. Mass. Peek's Patent Drop Press. Still the best in use.
Address Milo Peck, New Haven Conn For Solid Emery Wheels and Machinery, send to
the Unton Stone Co., Boston, Mass., for circular.

Genuine Concord Δx les-Brown,Fisherville,N.H. All Fruit-can Tools, Ferracute W l's,Bridgton,N.J. Faught's Patent Round Bratided. Belting-The
Sesat thny out-Manuractured only by C. W. Arny, 148
 Hydraulic Presses and Jacks, new and second
and. Latnes and Machinery for Pollshng and Bufing Metals. E Lyon 470 orand Streer New York.
Barry Capping Machine for Canning Establish-
The "Scientific American" Ofice, New York, is Ittlie euttone on the deesks of the managerers signnalis are sent
to persons in the varlous departments of the establish-
 Battery. F. C. Beach ${ }^{\star}$ Co.. 246 Canal St.
Vakers.
send tor free lllustratea Catalogue.
Temples and Oilcans. Draper, Hopedaie, Mass. For $133,15,16$ and 18 inch Swing Engine Lathes,
जdiress Star Tool Co... Providence, R. I. Spinning Rings of a Superior Quality-
filie spinning Ring Co.,
whitungrille, Mass. For best Presses, Dies, and Fruit Can Tools, Bliss

* Willame cor. of Plymouth and Jay, Brooklyn, N. X .

G. J. E. will find directions for making rub ber hand stamps on p. 156, vol. 21.-H. F. G. (size o
boiler), H. P. T. (cut-off of engine), and S. M. horse power of a water wheel) do not send suffcient data.-I. H. can cement meerschaum by the
process described on p. 202, vol. 47 .-W. I. S. will find that his queries as to magnetic variation are
answered on p. 164, vol. 33.-T. J. W. will find a description of the polyspherical ship on p. 100 , vol. not sour on p. 219, vol. 30.-B. J. B. will find an answer to the cannon and car question on p. 273 vol.
32. -F . H. will find a recipe for bronzing on iron astings on p.283, vol. 30.-M. A. will find a recip for black paint for iron fencing on p. 379, vol. 31.on p. 11, vol. 31.-B. W. D. will find directions for constructing a windmill on p. 241, vol. 32.-M.H.K. is referred to p. 319, vol. 32, for a means of getting
rid of ants. Constructing a sundial is described on p. 409, vol. 29.-W. P. K. will find directions fo freeing sulphuric acid from water on p. 111, vol.
29.-E. T. can bleach beeswax by the method described on p. 299, vol 31.-S. A. R. will find direc-
tions for making a filter on p. 251 , vol. 31.-G. V. can temper springs by the process deseribed on
p. 363, vol. $32 .-$ S. L. will find directions for waterproofing cloth on p. 347, vol. 31. For a book on
the lathe, try "The Lathe and its Uses."-A. D., D. McG., A. C. D.,and R. F. H. will find a full expla-
nation of the mystery of an ice boat traveling nation of the mystery of an ice boat traveling
faster than the wind on p. 176, vol. 28.-H. S. S will find a method of ascertaining the amount water carried over in steam on p. 257, vol. 31.-A.
K. will find a recipe for a cement for filling burr tones on p. 251, vol. 31.-J. A. will find directions for making malieable iron castings on p. 138, vol. 29.-D. I.S. ean drive away cockroaches by the
method described on p. 315, vol. 32.-W. M. H. will ind a recipe for yellow lacquer on tin on p. 139,
vol. $32 .-$ T C. P. will find directions for preservin eggs on p. 219, vol. 31. - H. L. S. will tind direction for manufacturing aluminum on pp. 99, 116, vol.
2.-H. G. S. will find an answer to his query as to 2.-H. G.S. will find an answer to his query as to
he growth of the beard on p. 362, vol. 32 .-A. K. will find the desired information as to the phyl
oxera on p.48, vol. 33.-S. A.'T. will find direction for extracting glycerin on p. 202, vol. 31. Consult physicianas to the feet troubles.-T. B. will find directions for making bleaching salts (chloride of
lime) on p. 91, vol. 32.-V. L. Jr. and A. J. P. will ind directions for silvering without a battery on
299, vol. 31.-F. M. E. will find an anawer to p. 299, vol. 31.-F. M. E. will find an answer to all his queries as to lightning rods on p. 145. vol. 31.-
A. E. G. will find a recipe for paraffin varnish on p. 91. vol. 31. Ants may be destroyed by the method described on p. 319, vol. 32.-J. B. M. can pre-
vent rust on iron by the method given on p. 283 , vent ru
vol. 31.
(1) J. N. Jr. asks: In regard to the firebe any thicker for a large sized safe, or does 5 ine filling offer the same protection in a large as well
as in a small size? A. The same thickness for both as in a small siz
(2) I. L. asks: Wbat is the name of the fastest steamboat in the world, and what is her
best time? A. We think about 25 miles an hour est time? A. We think about 25 miles an hour
has been made on the North river, and this is the has been made on the North river, and this is the
fastest time. Perbaps some of our readers may tes that will be of interest.
(3) T. H. W. says: Please give me through your valuable paper a rule by which I can exactly
calculate the departure of a curve from a tancent the radius and tangent being given, at right angles to each other. A. You want the equation of the curve, which you can obtain from a treatise on
analytical geometry, for any of the common curves. In case you do not know the nature of The curve, it must be determined by experiment. The equation of the circle, referred to its center,
R being the radius, and x, y, the co-ordinates, is x^{2}
(4) 1
(4) (G. L. B. asks: Have I a right to make any patented article for myself? A. No.

1. Does a rifle ball leave the gun before one feels the recoll? A. No. 2. Wila the recoil make any difference with the shooting? A. Yes.
(5) D. C. asks: Why does iron not always being harder and closer in fiber in some places than in others.
(6) C. P. A. says: 1 . I have in mind t
uild a small boat, 40 feet long and 13 feet wide What size of engine would it take to runit? A.
Use an engine of 12 or 15 horse power. 2 . Does boiler iron have to be stamped on every plate with the breaking strain and the maker's name ?
A. The law in regard to stamping boiler plates is A. The law in regard to stamping boiler plates is
as follows: "And be it further enacted: That every such plate of boiler iron or steel, made for use in the construction of steamboat boilers, shal be distinctly and permanently stamped by the manufacturer thereof, and, if practicable, in suc places that the marks shall be left visible whe such plate shall be worked into boilers, with factured, and the number of pounds tensile train it will bear to the square inch." This re fers to plate subject to a tensile strain How are rubber stamps made? vol. 31.
(7) R. B. asks: Can water be pumped from (8) H. D. M. asks: Can you give us a first ournal boxes? making Babbitt metal for buyin th metal from a reliable manufacturer. We can re commend the use of cast iron bo
sonal experience and observation.
What is the best style of clutch now known fo connecting two lines of shafting, to throw them in friction clutch the most satisfactory.
(9) J. O. asks: Can I own and run a steam river and on Long Island Sound, without gettin
ran a license? I do not wish to carry passengers for hire. A. You must obtain a license. Apply to the inspector in your district. The
$\$ 25$; captain, $\$ 10$; engineer, $\$ 5$.
(10) H. H. says: 1. Following the subjoined directions, I attempted some electro-plating: "Take a $\$ 2.50$ piece of gold and put in a mixture
of 1 oz. nitric and 4 ozs muriatic acid (in glass vesof 102 . nitric and 4 ozs. muriatic acid (in glass ves-
sel only) : wheas it is all cut, dissolve $1 / 2$ oz. sulphate of only): whed it is all cut, dissolve $1 / 2$ oz. sulphat
of potash in 1 pint pure rain water, and mix with the gold solution, stirring well; then let it stand and the gold will be thrown down; then pour of the acid fluid, and wash the gold with two or thre waters, or until no acid is tasted on touching the tongue to the gold. Now dissolve 1 oz cyanure of potassium in 1 pint pure rain water, to whic add the gold, and it is ready for use. Clean the a whiting and a brush; if there are cracks, it may be necessary to putthe article in a solution of caustic potash ; suspend it in the cyanuret of gold solutio with a small strip of zinc about the width of common knitting needle." With the exception of
using some fully 18 carat gold for the $\$ 2.50$ gold using some fully 18 carat gold for the $\$ 2.50$ gold piece, I followed directions, but the result was not
satisfactory. The deposit was about the color of and very similar in appearance and feel to German silver. What was the cause? How can I, in some simple manner, touch up by electro-plating with gold such things as parts of watch movement etc. ? A. A defective colored gilding may be im proved by the help of the following mixture: parts nitrate of potash, $11 / 2$ alum, $11 / 2$ sulphate o
zinc, $11 / 2$ common salt. These ingredients into a small quantity of water, to form a sort of paste, which is put on the articles to be colored; they are then placed upon an iron plate over a clea fire, so that they will attain nearly a black heat,
when they are suddenly plunged into cold water; when they are suddenly plunged into co
this gives them a beautiful high color.
(11) W. B. H asks: How can I fiod the re ative conductivity of different substances? A.
You can find them tabulated in De la Rive's work on electricity, and in several others. The process of working them out is somewhat complicated, curately.
(12) L J. W. says: I have tried to electro plate with a battery of 2 zincs and a carbon in diure sulphuric acid, but I cannot get a good de posit etther on metal or a wax mold, the wax mold being well rubbed with pure graphite. The zincs are 3 inches $x 6 \times 1 / 2$, and the carbon is of the same size. The deposit on the metal is in spots, and brittle, altogether unlike the nature of copper.
Please tell me what is the matter. A. Your trouble migbt arise from several causes. Perhaps your sclution is too strong. The best solution is
made of 3 parts saturated solution of sulphate of copper and 1 part or sulphuric ter. Perbaps your anode is too large. Try snaller one. Pertaps your cathode and anode are too near together; try then farther apart; that is,
(13) L. S. Y. asks: What chemicals and metals are used in the Hill battery? A. Sulpha and zinc and copper the metals.
(14) A. B. C. asks: 1. How will I procee to finish up ash doors and frames in oil polish, afrial is used, and how many coats are necessary to produce a good job? A.The flneness of the polish depends in a great measure upon the care with which the filling may be rubbed down ; the rub-
bing is indispensable, in fact, to a good finish. For the best work, put on three coats of shellac; after the first coat is hard, rub it down with No. 1 sandwith No. $1 / 2$ sandpaper, and after the third coat,
the same. Then put on one or two coats of beeswax dissolved in spirits of turpentine and oil, in some cases thrce coats. For polished panels, put on three coats of hard flowing varnish, each of the first two coats to stand two or three days until hard, and then be rubbed with rottenstone,the thin coat to be rubbed with cotton batting and flour. 2
I have a brick foundation, penciled, and it is ruined from mold. How can I prevent the mold from affecting the paint? A. The mold is caused
from dampness, and this arises either from a close confined position of the wail, or from water rising
in the body of the wall from the ground. The in the body of the wall from the ground. The ess.
(15) M. H. T. \& Co. say : In our business we have orders for hooks. etc., that are to withstand please giveus youridea of the amount an engin with four drive wheels can lift, dead weight, with ingle purchase? A. About $8,000 \mathrm{lbs}$. on an ave age, taking the adhesion at $\frac{1}{5}$ of the weight on the driving wheels.
(16) C. F. asks: I. What is the percentage of phosphorus in phospborus oil? A. Twelve rains phosphorus are put into 1 oz . almond oil. About 4 grains phosphorusare taken up by the oil.
2. What medical action has it? A. Solutions of 2. What medical action has it? A. Solutions of
phosphorus have been used in small quantities to allay excessive oxidation of the animal tissues powerful irritant poison
Can corrosive sublimate be made by precipita ion of mercurial nitrate by muriate of soda? A. No ; the precipitat
mercury (calomel)
(17) G. says: 1. I have a boiler carrying 70 ibs. to the square inch with a $3 / 4$ safety valve at-
tached. What would be the pressure on said tached. What would be the pressure on said
valve? Will I have any greater pressure on a valve? Will I have any greater pressure on a
inch safety valy e with the same pressure of steam? A.Pressure on $3 / 4$ valve $=70 \times(3 / 3,2 \times 0 \cdot 7854$; pressur
n 3 inch $=70 \times(3)^{2} \times 0.7854$, hene the pressure in th者e is 16 times as great as that on the first. 2. Please give me a rule for finding horse
powers of boilers. A. We do not know of any powers of boilers. A. We do not kno
standard for the horse power of a boiler.
(18) P. asks: 1. Can gold leaf be applied to glass without the use of oils? A. Gold size is used for this purpose. 2. How can I transfer wood cut oc steel engraving to glass, so that I can
apply colors to the back, and let them strike rough? A. Sce p. 123, vol. 30 .
(19) G. F. K. asks : 1. Thave built an engine 144 borex3 inches stroke, with a fly wheel weighing 12 lbs. Would a copper boiler 20 inches high x 1
inches diameter, with 4 flues two inches in diame ter, heated with 4 lamps, making 60 lbs. steam, run said engine at the rate of 600 revolutions per min te? A. If the lamps are very powerful, we think it may answer. It will have to be forced, however Please state the thickness the boiler shell shoul . A. Макe
(20) C. H. says: I have a 1 inch iron pipe,
80 feetlong, to bring water from a spring. The 80 feet long, to bring water from a spring. The
fall is 8 or 10 feet, and the water runs out 3 feet fall is 8 or 10 feet, and the water runs out 3 feet
above the ground. I cannot get the pipe to run ull of water ; it will not run more thill it. What he remedy? A. Probably the pipe has hig points, where air collects.
(21) H N. B. says:Iam running a circular saw, with an idle pulley in a horizontal frame binged, and working a few inches from the saw pix inches. I apply just sufficient weight on the frame to keep the belt from slipping; it worn moothly and well and almost noiselessly. On The proprietor contends that I am wearing the belt on the outer surface and otherwise injuring it by
applsing the weicht. Is he right? A. The plan apply ing the weirht. Is he right? A. The plan you have adopted is a very good manner of apply-
ing a tight tener. It would probably be somewhat more efficient if you stretched the belt a litt tigbter; but from your account of the manner
which it operates, there seems to be little reaso or makicg any change.
(22) L. M. says : I say that, if a train of cars be inclined outward if the locomotive draws, and inward if it pushes from behind. My friend says a both cases the road must incline inward. Who right? A. Your friend.
(23) I. D. C. asks: 1. vill a balloon m de in the form of a sphere or a spheroid carry as much ear-shaped, the gas atd all other things being equal? A. Yes. 2. Is cas of a high illuminating power the best for balloons? A. The lightest gas
is the best, hence that having the best illuminating qualities is by no means the bestfor a balloon. 3 . How can I determine the weight which a balloon of a given size will ascend with when filled with
coal gas? A. See p. 64 , vol. 32 . (24) L. B. S. asks: How can I make a small battery for plating and other purposes? A. Put a copper plate in a glass vessel 8 inches deep, and pend a piece of zine near the top. Connect insulated copper wire to copper plate and another to zinc. Fillthe vessel with water.
(25) I. O. T. asks: 1. Please give me a rule for finding how much and whatsize of wire I must graphic line. A. Use the purest copper obtainabelays equal to the resistance of the rest of the circuit, including that of the battery; this gives the best result when the line is well insulated. There is no simple formula for fixing upon the case whatever; but for local and short circuits, Nos. 18 to 23 are con
generally used of a weber is a very fair workingstrength for main ing circuits. All the necessary data for ascertainand iron wire will be found in J.T. Sprague's work on "Electricity, its Theory, Sources, and ApplicaI have been making an induction coil, 7×3 inches, center bundle of wires is 1 inch in diameter; primary coil is of No. 14 wire, about 90 feet long; sec-
ondary coil is of No． 36 silk covered wire， 5,000 feet of it being used．I can detect a very slight current is not passing；should thisbe？The shock is far from strong．What is wrong？What ought more to the secondary coil，and a good condenser A．It would be difficult to tell exactly what is Wroag with your coil without inspecting it；prop erly constructed， mile of secondary wire is a fair average for ordi nary coils，but this varies with the manner of wind ing and the degree of insulation．3．My condense is made of tissue tinfoil and paper of a thicknes of 400 leaves to the inch；it is made like an inter leaved book．It contains 45 square feet，and is
well connected with the primary coil：but no additional effect．What is wron？t Your condenser is properly made，and should add mate rially to the effect if rightly connected to the pri－ mary circuit．Sprague＇s book，above referred to， gives much useful informaticn in regard to the
（26）L．W．asks：Which is the best book on ualitative analysis？A．Fresenius is a standar （27）F．B．asks：How can I make a silver bath，for electro－plating？A．Dissolve123 ozs．cy－
anide of potassium in 100 gallons of water；getone or t wo flat porous vessels，and place them in thi solution to within half an inch of the mouth，an these porous vessels place small plates or sheets of ron or copper，and connect them with the zinc terminal of a battery；in the large solution place sheet of silver connected with the copper termi nal of the battery．This arrangement being made Bunsen＇s batteries or four Daniell＇s，the solution will be ready for use in the morning．A small quantity of solution for silvering may be made up rom this description．A half ounce of silver t the gallon will do very well．A small quantity may be prepared in an hour．
（28）A．A．H．asks：1．How can I plate sil－ er without a battery？A．For silver plating on copper，use nitrate of silver and common salt，
each 20 grains；cream of tartar， $31 / 2$ drachms．Mix． Moisten with cold water and rub on the article to be plated．2．Can I make a solution by cutting silver
（29）N．S．W．asks：I．What is the office of p． 115 ，vol． 33 ？A．The object of the core of iro p．115，vol．33？A．The object of the core of iron
wires is to increase the inductive effect．2．Where is the connection with the conductors？A．The primary wires are attached to the binding screws at the right of the instrumont．3．What is the necessity of insulated wire if the coilis divided by insulators？A．The wire must be insulated，other
wise the current would leap across from one turn to another．If you will read the article carefully you will see the object of the secondary coil． If a battery current is connected with the coil what is the necessity of the current breaker？A． it is by alternately breaking and making contact with the battery that the secondary effects are produced．A constant current through the pri secondary．5．If the copper wire beimmersed in a solution of shellac，is that insulation sufficient for a coil？A．A shellac covering might answer， but silk would be better
（30）F．C．says：How can I deodorize a benzole or carbolic acid．
（31）L．P．S．says：In your issue of August 28 （in answer to M．V．O．，who asks：Does a fan
blower require more power to drive it when the discharge pipe is open than when it is ciosed？）You answer：＂The action is the same as in partially closing the discharge valve of a pump．If the
same speed is maintained，the resistance is in－ creased．＂This is contrary to experimental re sults．If M．V．O．will make his fan belt sufficient－ y slack to reduce the speed of his fan one quar－ ter or one third，by slipping，when the valve is open，he will ind，on shutting the value，the fan
will immediately resume its full speed．This，I think，is due to the changing of the course of the forward to a rotary motion，which takes consider－ able power；but when no air passes through the fan，that which is inclosed within it，after having received its initial momentum，keeps it up with－ out any additional power except to overcome the friction on the inside of the air jacket．I have often tried this，and always found it to take more We think you are quite right，when the gate is en－ tirely closed．As to the effect when partially closed，we would like to hear from readers who have made experiments．We are glad you bave called attention to the matter，for we always de－ sire to give correct information，and in our an－ swer to M．V．O．We had in min
（32）K．asks：Is there a more speedy meth－ stroying the fiber）than by steeping in pure water for months：a method，hy the way，tried by me without success？A．Steep the leaf in a little strong lime water for a short time；spraying the
leaf with water will then remove all but the fibers．
（33）J．G．E．asks：Is there any way of ma－ king cloth impervious to dust？A．Cloths that have been rendered impervious to moisture are likewise impervious to dust．Pass the cloth
through a weak solution of glue and alum；and after passing it between the rollers of an ordinary wringer to remove the superfluous moisture，dry it．first in the air and then in a warm room．
（34）V．L．C．asks：How can I make plaste casts for stereotyping，so that they will not crac
when put into heated metal？A．After the er cast has hardened，it should be placed in a ho oven in order to drive off all the superfluous mois ture．Plates prepared in this way do not crack．
（35）G．C．says：1．My counter is badly cor oded by the action of soda water，and fountain have to be tinned every 3 years．Is there any rem－
dey for this common annoyance？A．You fail t to state of what material your counter is composed If of wood or marble，we would suggest the us of a glass plate．Porcelain or slate topped coun uent contact with carbonic acid water． 2 Would a small quantity of soda put in the water before harging prevent the mischief？A．No．
（36）Z．asks：Please explain the electric ac tion in the automatic railway signal in use upon
he Boston and Albany Railways．A．The action is produced by the opening and closing of an ele ric circuit by the movements of the cars upon th rails，and causes the movement of an armature at
tached to an electromagnet，which strikes a bell．
（37）F．M．W．asks：What is the process for clarifying and purifying lard，grease，and tal－
low？A．They are subjected to the action of rge cylindrical iron from below in sum an a manner as to cause a con－
frant stant agitation of the melted contents．The con－ densed steam，being heavier than the grease，falls
to the bottom of the cylinder，carrying with it the to the bottom of the cylinder，carrying with it the
greater part of the impurities，and is drawn off by sreater part
suitable taps．
（38）W．H．B．says：In your last issue you oil to prevent the hair from falling out．Will it not discolor the hair and skin ？A．Yes ；but al
nost inappreciably，and for a short time only The color is not permanent．
（39）J．T．a：ks：Is any portion of the hu－ ntooth ivory？A．No．
（40）G．W．S．asks：1．What is soluble or water glass？A．Water glass is a variety of glass
ontaining a large proportion of alkaline flux． is quite soluble in boiling water．2．Would it an－ swer for making a smooth hard finish on wooden
handles，and give a polished surface？A．Water landles．and give a polished surface？A．Water
llass might answer the purpose；but it is an efllor escent substance，and would finally become con－ What is put in glue size to give it body？A． ittle flour and litharge are sometimes used．
（41）C．A．B．asks：What can soft sand tone be saturated with to make it impervious（or
early sol to water？Coal tar would do but for
and the color．A．A solution of alum，glue，and lith ge has been used for this purpose．
（42）S．A．T．asks：What will prevent the Clip the ends frequently
What makes Limburger cheese have such a ver r？A．It＇s putrescence．
（43）L．I．asks：Please give me an analysi or crude petroleum．A．Crude petroleum varie Baumé．It is a mixture of a great number of hy drocarbons，compounds of carbon and hydrogen， the average proportion of the two elements being： Carbon 85，hydrogen 15 ．These hydrocarbons dif－ fer from each other in volatility．Some are so vo
latile as to evaporate rapidly at ordinary tempera latile as to evaporate rapidly at ordinary tempera－
tures，others require a temperature of 700° to 800° ＇ah．to vaporize them．
（44）G．B．asks：What is a good alloy，re the following：Tin 41／2 lbs．，bismuth，antimony the following：Tin 4
and lead，each $1 / 2 \mathrm{lb}$ ．
（45）C．H．S．asks：How can I cover twine it will keep its shape？A．The process employed in manufacturing long lengths of lead pipe might advantageously be used for this purpose．In this the lead，in a molten condition，is forced by hy－ draulic pressure through a die，through the cen－ for the bore，passes．By a little alteration of the for the bore，passes．By a little alteration of the for the mandril，and decrease the size of the die． （46）F．C．W．says：G．G．F．can remove piece of cloth．
（47）M．W．W．says，in reply to numerou queries as to the size of axle spindles；The almost ranges，of the large spindles，especially in common freight and farm wagons．This may not arise from the difference in the spindles，and probably does not，but from other causes．In practice，the mall sized spindles are usually solid iron，and the Thindies are turned，and the boxes bored to it． ter forger spindle is about twice the diame－ inch solid iron spindle corresponds to a 3 inch thim－ ble skein，as it is termed，which is usually a cast iron thimble fitted on to a wooden axle，not turned and with the boxes nol turned．the fit being much looser than in the case of the solid iron spindle． This may have some effect，bat I think the real retaining its set without springing，senerally as long as it lasts；while it is probably rare to find solid iron axles that are not more or less sprung． when of course they run hard．This seems still more reasonable when it is considered that solid iron spindles（when the load is carried on springs， dom give any trouble．There is also some dife ence in weight in favor of the wooden axle，though hardly enough to justify the decided preference
manifested for it．
（48）E．D．R．says，in answer to J．A．B．，who asks if there is a seed called bird pepper：The capsicum annuum，or cayenne pepper，and can be procured in almost any drug store under the name of bird pepper；mocking birds are extremely ond of them when fresh，and eat of them freely hence the vulgar name．The best are the Africia ird peppers，and are the same as used for making
Minerals，etc．－Specimens have been re eived from the following correspondents，and amined，with the results stated
D．D．W．－No gold or silver is present．There is
trace of arsenic．The specimen is shale inclosin yellow powder consisting principally of silica ron，lime，alumina，and potash．－M．C．S．－It is smoky quartz，of little or no value．－C．C．P．－It is
marcasite．－W．W．J．－It is a variety of soft white clay．－A．J．H．－Your specimens have not been xamine them．－R．L＇s specimen has not been re eived．－No name．－A fine speeimen of varlegated

COMMUNICATIONS RECEIVED．
The Editor of the SCIENTIFIC American ac－ riginal papers and contributions upon the follow ing subjects ：
On Squaring the Circle．By E．C．
On Rapid Transit．By J．H．McH．
On Rapid Transit．By J．H．McH．
On the Weather．By W．B．
aso inquiries and answers from the following：
A．A．A．－L．H．D－W．M．R．－J．D．D．－J．J．M．
R．
F．D．－A．G．－F．，J．S．－G．B．－G．W．－F．K．－C．D．

HINTS TO CORRESPONDENTS．
Correspondents whose inquiries fail to appear
hould repeat them．If not then published，they may conclude that，for good reasons，the Editor declines them．The address of the writer should Enquas be given．
Enquiries relating to patents，or to the patenta－ bility of inventions，assignments，etc．，will not be
published here．All such questions，wheninitials only are given，are thrown into the waste basket as it would fill half of our paper to print them all but we generally take pleasure in answering briefly by mail，if the writer＇s address is given．
Hundreds of inquiries and Hundreds of inquiries analogous to the following are sent：＂Who sells an elficient rice－hulling ma is the best dog power，for churning and othe light work？Whose is the best rack press for ex pressing seed oil ？＂All such personal inquiries of＂Busivess and Personal，＂which is specially apart for that purpose，subject to the charg mentioned at the head of that column．Almost peditiously obtained．

OFFICIAL．

INDEX OF INVENTIONS

Letters Fatent of the United States wer

 Granted in the Week ending August 31，1875，
AND EACH BEARING THAT DATE

 ［Thosemarked（ r ）are relssued patents．Air and fluid regulator，B．Bates．．．．．．．．．．．．．．
Auger，earth，D．L．Newcomb．．．．．．．．．
Barrels，etc．，chamfering，J．Green wood．
Barress，etc．，trussing，Naylor \＆Green wood
Battery，galvanic，
Bed sofa，A．Spiegel
Bee hive，S．Hixson．
Berth，swinging，B．W．Brow
Bird cage，J．L．Fisher
Boat，collapsible，E．L．
Boat，life，L．F F．
Boat，life，L．F．Frazee．．．．．．．．．
Boiler，sectional，B．T．Babbitt
Boiler tubes，securing，J．E．Jerrold
Boilers，bushing tubes of，H．Dusch
Bolt．door，H．J．Iles．
Bolting chest，Swisher \＆Campbell．
Bone black revivifier，J．Gandolfo
Book rack，suspension，F．F．Hiill．
Boot calk，rattman＇s，
Boot calk，raftman＇s，R．D．Guilford．．．．．．．．．
Bottle，toilet powder，williams \＆Hillhouse．
Bridle bit，S．H．Holm．
Buckle－making machine，H．C．Hicko
Burner，vapor，c．E．Ball．
Can，sheet metal，J．Herge
Cars，hrake，pning soldering，©．H．Perkins
Car bumper，Griffith \＆Patterson．
Car coupling
Car coupling，N．N．Spafford．
Car loor，grain，David \＆Wi．．．．ing．
Car starter，A．A．Jones．．．．．．．．．．
Carstarter，and brak
Car trock，W．W．Ke
Car truck，C．B．Banola
Carbureter，т．H．Harrington
Card，direction，A．E．Thurber
Carpet sweeper，G，s．Gladding
Carriage jack，A． \mathbb{K} ．Field．
Carriage jack，A，W．Field．．．
China，etc．，ornamenting，，，M．Adams．，
Chnck for holding eccentries，W．B．Smit
Churn oap，w．Manee．
Clgarmachine，W．E．
Cigar maker＇s paste box，M．Wilhelm
Cistern valve and overflow pipe，McGrann et al．
Clamp，jotner＇s

Clothes ine fastener，H．Moss．

Colter attachment， I ，．s．Moss．．Jonsto Column，metallic，C．H．Leidy．．．

Congealer or condenser，w．H．H．Mallory Corn marker，W，F．Senter
Corn sheller，J．S．Foster．．．
Counters to lasts，fitting，L．Coté
Cultivator frame，w．M．Costôn．．．．．．．．．．．．：．．．．．．．167， 1630 ．
Dental plates，making of，F．\＆G．G．Hickman．
Dental plugger，G．Rehfuss．
Dental plugger，E．T．Starr
amonds in holders，fitting，J．W．Branch．
ie stock，J．J．Grant．
igger，potatn，W．E．
Diger，potato，D．Botsford
Dor spring，L．A．Warne
Door spring，L．A．Warner．
rawers，rubber，M．Brade
Drawers，rubber，M．Bradley ．．．．．
Driling machine，rock，C．Ferroux．
yeing and printing，Sellon \＆Pinkne
Engine governor，steam，Corbett \＆Campbeli
ngine，locomotive，T．T．V．Smith
Engine，rotary，A．B．Vandemart
Engine，rotary，A，B．Yandemark．．．．．．．．．．．．．
Engine，indicator，stean．J．W．Thortipson．
tingine，stap motion T．
Rngine，stap motion，
Enveliopes，making ，
Equalizer，draft，Hunt \＆Butterfield Fabric，felt，H．J．and W．D．Dav
Fence barb，wire，J．Haish．
ence post，A．Y．McDonald
Fertilizer distributer，etc．，B．Scofield．．
Fire arm，，breech－－oading，W．H．Baker．
Fire arm adjustable trigger，H．Watkey
Fire arm adjustable t
Fire escape，S．Konz．
Flask，molding，Bunnell and Hosley．．．．．．．．．．．
Folding and perforating machine，W．Daniels
olding and perforating ma
Furna｀e，B．T．Babbitt．．．
Furnace door，E．H．Ashcroft．．．
Furnace grate bar，E．M．Erdm

Fus jets，projector for，J．W．Naramore．．．．．．．．．
Gold，silver，etc．，cleaning，
Grass seeds，gather in
Grate bar，T．Cain．．
Gun，adjustable rest for，R．T．T．H
Harness hame，J．P．Clopt
Hammer，claw．i．W．．Park
Harrow，w．S．Rowland．．．
Harvester dropper，J．Bahruth．
Heater，，team，J．F．McKick
Hedde frame．E．S．Pike．
Hitching post，T：Ma⿱亠䒑口uire．
Hitching post，T：Mayuire．．．
Hoe，weeving，A．S．Dunhäm
Hosé coupling，M．M．Lèw
Hydrocarbons，burning，J．Nelson．．．．．．．．
Ice machines，cleaning，W．H．H．Mallory．
Inhaler，nasal，Yates and Treat．
ey r，nasal，Yates and T
Knifo－scouring machine，c．G．S．Singer．
Kitting machine and fabric，F．Turns．
Knob rose，J．Moore．．．．．．．．．．．．．．．．．．．．．．．
Lamp，J．Mayer．．．．．．．．．．．．．．
Lamp attachment，L．Tobey
Lamp，miner＇s，Eynon and Cook
Lamp socket．W．N．Weeden．．．
Lantern，T．B．Osborne．．．．．．．．．．．．．
Lasts，fitting counters to，L．Cote．
Leather，coating，H．Martyn
Leather，coating，H．Martyn．．．．．．．．
Lid lifter，T．B．Carpenter．
Locomotives，pet cock for，F．A．Casey．．．．．．．．．．
Log turner，H．Kno titon．．．．．．．．．．．．．．．．．．
Loom for weaving piled fabrics，E．B．Bigelow．
Loom shuttle motion
Loom for weaving piled fabrics， E ．
Loom shuttle motion，C．I．Kane．．．
Maize，treating，L．Chiozaa．．．．．．．．．．．．．．．．．．．．．
Manures，distributing liquid，E．H．Cumming
Mechanical mov
Molding flask，Bunnel and Hosley．
Moldings，machine for making rope，H．Glanz．．．．．．
Mop and brush holder，C．B．Clark
Motion，converting，J．M．Wilkinson．
Mocion，conv，Fürst．
Muft head，H．
Neck tie retainer，G．
Net，landing，C．F．N
Oil cup，J．Graham．
Ore sizing machine，D．Nevin．．．．．．．．．．．．．．．．
Overalls，G．R．Eager．．．．．．．．．．．167，315，6， 7 ，
Packing for stuating boxes，R．Greenalch．．．
Paper，carbon，A．B．Simonds．．．．．．．．．．．．
Paper collars，etc，cutting，C．H．Denison．
Paper
Paper cutter and perforator，W．Daniels．
Paper，safety，J．W．Casilear．．．．．．．．．．．．．．
Paper vessel，E．Waters（r）．．．
Pasteboard，making，B．F．Fiel
Pier，cast iron．J．F．Hume．．．．．
Pillow case frame，T F Walter
Pin，diaper，E．H．Gaylord．．．．．．．．．．．．．．．．．．．．
Pipes fron frost，protecting，A．N．Rankin
Pipes fro n frost，protectin
Plane，bench，L．L．Davis．
Planter，corn，S．Wright．．
Planter，corn，S．Wright．．．．．．
Planter，hand，D．W．Hughes．
Planter，seed，F．O．Wenell．
Planter，seed，F．O．Wenell．
Plow，sulky，R．R．Fenner．．
Press，baling，D．o＇Connor
Press，baling，D． 0 ＇Connor．．．．．．．．．．．．．．．．．
Press，combination cotton，J．F．Taylor
Prest
Press，combination cotton，J．F．Taylor
Press，hydraulic adjustable，M．Stannard．
Printing machine，block，F．Walton ．．．．．．．．．．．
Printing，preparing plates for，A．F．Eckhardt．
Printing press，C．B．Co
Printing press．W．F．W
Pruning imple
Pump，H．Tyler．
Pump，chain，w．Wehres．．．
Pump，rotary，o．H．Whitn
Radiators valve for steam
Radiators，valve for steam，w．C．Baker．．．．
Railway rail joint fastening，P．F．\＆E A
Ralway ralijoint fastening，
Rallway switch，c．P．Deyoe．．．
Rattan measuring machine，N．
Refiectors，C．M．Murch ．．．．．．．．．．．．．．．．．．．167，187，
Register，heating and ventilating，J．
Saw mill head block，G．M．Pelton
Shaft coupling，D．L．Newc
Shaft tip，S．H．Raymond．
Sheave，P．Kavanagh

Snutter，fireproof，Pierce \＆Smith
Shutter worker，J．D．Hughson．
Sifter，ash，w．Baumann．．．．．．．．．．．．．．．．．．．．．
Sign and order slate，combined，，s．S．Gold．
Soap，transparent advertising，s．Strunz（r）
Soap，transparent advertising，s．Strunz（r）．．．．．．
solder，apparatus tor meling，J．P．Hays．．．．．．

Spinning machinery. etc., O' Donnell Sponge and pulp fabric, J. L. Kendall Spooling and doubling, wild \& Hey.

 Spooling and guiding,Still, E. D. Loveridge Stock-counting machine, Jeans \& Baile Stone-dressing machine, W. H. Thompso Stove, magazine, J. A.
Stoves, oil, F. Gates. Stoves, oil, F. Gates...
Stoves, fuel cut off for Stoves, fuel cut off for mag
Straw cutter, W. H. Hall....
Table, extension
Table, extension, F. Goliduach
Telegraph apparatus, automatic, o. Heikel
Thermometer, J. Gall.
Thlll coupling, J. J. . Johnston
Tobacco cutter, Adams \& Blon
Tobacco cutter, Adams \& Bl
Tool handle, W. E. Schwin.
Trucks, rail and axle, C. W.
Trunk, J. W. Krepps.....
Tyre tightening machine, J. Champlin Uterine supp rter, J. S. Shannon
Valve, check. H. G. Johnson... vehicle, c. J. Walser
Warpe body corner iron, N. L. Holmes
Warp beam, O. D. Lombard
Watch case tool, C
Warch mainspring attachment, M. Wheeler Whiftletree and neck \& \&an Hoorde Whiftletree and neck yoke, G. W. Eddy
Whip socket, D. A. Kelsey. Wind power, A. Lowe... Window screen, A. A. Carter......... Wire cloth, painting, C. H.

DESIGNS PATENTED.
8.588.-Inkstand.-B. Brower, New York city.
$8,554 .-$ Sile Fabrig. \rightarrow. Coignet, New York city 8,585, -GLass Diss. - G. E. Hatch, East Cambridge, Ms 8,586 to 8,539.-CARPETS.-A. Heald. Philad
8,590.-CARPET.-W. Kerr, Philadelphia, Pa 8,592.-Cassimeres.-W. B. Weeden, Providence, R.

SCHEDULE OF PATENT FEES.
On each Caveat.......
on each Trade mark...................................
On 1s8ung eacn or.ginal Patent...
On appeal to Commissioner of Patent
On filling a Disclatmer.
On an application for Design (3% years) On application for Destgn (7 years).

CANADIAN PATENTS. Ligt of Paten'fs Granted in Canada September 4 to 7, 1875.

5,123.--H. S. Pomeroy, New Haven, Conn.
5,121.-W. E. Andrew, New York city, U. S. Separating 5.125.-A. W. Richards. Indi
bulating cot. Sept. 4, 1885.
$5,126 .-\mathrm{G}$. Campbell
$5,126 .-G$. Campbell et al., Toronto, Ont. Fireproof
shutter. Sept. 41875 .
$5,12 i-$ A. Weir, Wellesley, Ont. Spinning wheel. Se
5,128.-G. S. Walker,
chine. Sept. 4. 1875.
$5,129 .-\mathrm{W} . \mathrm{Ba} / \mathrm{l}$
Sept 4, 1875 .
5,181.-J. Buechner, St. Paul, Minn., U. S. P1cture ex-
hibitor. Sept. 4, 1875. hibitor. Sept. 4, 1875.
chanical motor. Sept. 4,1874 .
5,133.-O. Noack, Baltimore, M
chine. Sent. 4,1875 .
$5,134 .-$ G. J. Shmer, Miton, Pa., U. s. Cutter head.
S.p.t. 1875.
$5,135$. J. Armor, Hamilton City, Ont. Hose coupling. Sept. 4, 1875.
5,136.-G. H. Steadman, Hopwell Cape, N. B. Railway snow shoveller. Sept. 7, 1875.
5,137.-E. May, Montreal, P. Q. Elastic motor. Sept. 5, 138.-J. S. Wetherell, New Market, Ont. Combined
luggage box. Sept. 7,1875 . $5,13.1$-G. R. Eager, Bostoa, Mass., U. S. Blouse, over all, or pantaloon garment
$5,140 .-$ C. J. Addy et al., Boston,
trimming machine. Sept. 7,187

5,143.-J. Russell, New York city, U. S. Horse shoe
machine. Sept 7
5,144.-P. K. Dealy. St. John, N. B. Locomotive ash
5,145. -L. C. Whiting, East Saginaw, Mich., U. S. Planoforte pedal attachment. Sept. 7, 1875.
5.146.-J. D. Smediey, Syracuse, N. Y., U. S. Chambe

Adtertisements.

CLARK \& COMPANY'S

PATENT SELF-COILING, REVOLVING STEEL SHUTTERS

VINEGAR. How MADE ${ }^{\text {MI }} 10$

A GOOD WORK.

FOOT LATHES, Foot drill presses, iron milis to grind

FINTTOOLS

W

$\mathrm{F}^{\text {OR SALE, CHEAP-A Walker Lightning Mill, }}$
 Bituminous Coals for Fondary Facins, Aply to
Manufacturers of Turbine Water Wheels,

 ${ }^{\text {Bitem }}$ $\overline{\text { Fog }}$
MAGNETS-Permanent Steel Magnets

PATENT RTGHT FOR SALE

$\underset{\substack{\text { Portale } \\ \text { Mngine. }}}{\text { SHAPLEI }}$ Complete Power.
BEST AND CHEAPEST. Send for Descriptive Circ
lar with Price List. R. W. WILDE,

THE BASTET
 TRADR RNE NTME.

 send for Price List and cir-
cular
HRRRMAN \& HERCHELRODE M'F'G. Co.,

Planing \& Matching

 A. N. KELLOG

8,000 in Use! Blake's
EAM PUMPS

MACHINERY.
IRON \& WOOD WORKING MACHINERY OF EVFRY DESCRIPTION.
Cold Rolled Shafting.
HANGERS, PULLEYS, COUPLINGS, BELTING, \&o
tc. Send for Illustrated Catalogue and Price List. GEORGE PLACE

EAGLE FOOT LATHES,

A GENTS WANTED-S40 a Week and Expenses,

Planing \& Matching,

Bigelow Engine The Cheapest and Best Portable
Engine offereat to the Public.

Simple, Dilnahle, and tronomical Call or send for Circular. State Agents wanted L. BASTET,

GO\% Broadway, N. Y.

BLAKE'S PATENT
 \qquad Stone and Ore Breaker
 (urdale safety hoistina Machinery. No. 348 broadwat. NEW YRORE.

agents wanted

IT PAY! IT PAYS!

WHAT PAYS! Fead \& see
Every business man admitst henecessity of advertising, so dolng. But tit is not all whe odvertise that do preadvan
tageously, and in the most effective manner, to derive the greatest benefit for their money. As a rule, it is the best
economy to advertise what one has to fell or wishes to purchase, in papers having the largest circulation among
that class of nersons likely to be interested in the article.
Parties hoving Mander Parties having Manufacturing Establishments to sell or
ease, or who wish Estimates made for Constructing
Bridges, Dams, Irou Buildings, Furnaces He Bridges, Dams, Irou Buildings, Furnaces, Heating Appa-
ratus, Steam Engines,. Boilers, Wood and Iron Worbing ratus, Steam Engines, Boilers, Wood and Iron Working
Machinery, Agricultural Implements, or Contracts for
Engineering Works of all kinds, will find that it Engineering Works of all kinds, will ind that it pays to
advertise in the Scientiric American. The value of the SCIENTIFIC AMERICAN as an adver-
tising medium cannot be over-estimated. It goes into all tising medium cannot be over-estimated. It goes into all
the machine and workshops in the country, and is taken
at the principal libraries and reading rooms in the United at the principal libra
A businness man wants something more than to see his
advertisementin a printed newspaper. He wants circu-
ation. If it is worth 25 cents per paper of three thousand circulation, it is worth $\$ 3.75$ per
ine to advertise in ine to advertise in one of forty-five thousand.
We invite the attention of those who wish to make their usiness known, to theannexed rates:
Back Page,
Inside Page, 81.00 a line
.75 a line
$\left.\begin{array}{c}\text { Inside Page, - } \\ \text { Business and Personal, } \\ \text { 1.00 a } \\ \text { a line }\end{array}\right\}$ Insermtion.
Engravings may head advertisements at the same rate
per line, by measurement, as the letter press. Advertisements must be received at the publication office as
early as Friday morning to appear in nest issue. arly as Friday morning to appor
Ir lit in the Scientrific Amarican.
If one has a patent or machinery to sell, advertise in the Scientific Amisicin. $\underset{3 y \text { Park Row, New York. }}{\text { Munn }}$

Engine, Spindle, \& Cylinder Oil. E. H. KeLLoga,
17Cedarst..N. Y..Manufacures the best. Established 58 . Knife sharisherer, Cant opener,

Water Wheels.
 teed made. ranting frou

 $\mathbf{W}^{\mathrm{ANTED}-A}$ Practical Machinist and Dratits-

John Cooper Engine M'f g Co.

Bradley's Cushioned Hammer

 IMPROVED MACHINERY OF STAVE

REYNOLDS \& COST,

mery Wheds \sim TANITTE A EneryGindars

$\mathrm{B}^{\text {ogardus' patent universal eccen }}$

HARTFORD
STEAM BOILER
Inspection \& Insurance

COMPANY

WHIPPLE'S
Patent Door Knob.

Todd \& Rafterty Machine Co.

DITCHING and EXCAVATION

THE BEST INJECTOR

over 15,000 Now in Use Here and in Europe
 NATHAN \& DREYFUS, olie Nantacturers
O ogers' tannate of soda boile

Portland Cement.

I Mortant for all lorporations and

Mill FurnishingWorks

 Niagara
W. C. DUYCKINCK, Railway, Machinists' and En gineers' Supplies,

The Standard-Best Stock-Finest Finish. D. ARTHURBROWN \& CO., Fisherville, N. H
 Catalogue for 1875,

 Machinists' Tools.

IRON PLANERS,

1 The Union Irou Mills. Pittsburgh, Pa_{T} tour improved Wrought-Iron Beams and GArders (pat
tented, In which the compound weld between the ste

Steel Tube Cleaner.

Mman \& Co.'s Pateant Ofices.

Established 1846.

The Oldest Agency for Soliciting Patents in the United States.
twenty-elahi $\overline{\text { YEARS EXPERIENOA. }}$
MORE PATENTS have Deen seoured through his agency, at home and abroad. than throu They employ as their assistants a corps of the most ex perienced men as examiners. specification writers, and cted from the can be found, many of whom have been se cted from the ranks of the Patent Office.
themselves of Munn \& Co.'s services in examining their in and procuring their patents.
MUNN \& CO.. in connection with the pablication of the serentifio amerioan, continue to examine invention ssigg with inventors, prepare drawings, speoifications, and saying ents,attend to fling applications in the Patent Oflice tep while government fees, and watch each case step by hrough their branch office,corner F and 7 th Streets, Wosh ngton. They also prepare and file caveats, procure design patents, trademarks, and reissues, attend to relected case (prepared by the inventor or other attorneys). procure copy matters of infringement, furvish copies of patents: in fac attend to every branch of patent business Doth in this and in foreign countries,

Cende England, France, Belgium Germany, Russia, Pruss a, Spain, Portugai, the British
Folonies. and all other countries where patents art ranted. Copies of Patents.
Persons desiring any patent issuued from 1836 to Novem ber 26,1867 , can be supplied with official copies at a rea sonable cost, the price depending upon the extent of dra
ngs and length of specifications. gs and length or specications,
Any patent issued since November 27, 1867, at whic
time the Patent Office commenced printing the and specifications, may be had by remitting to this office \&1 A copy of the claims of any patent issued since 1836 will be furnished for $\$ 1$.
When ordering copies, please to remit for the same as dove, and state name of patentee, title of invention, an ate of patent.
a specian notice is made in the Soiremtigo Amerions of all inventions patented through this Agency, with the
asme and residence of the patentee. Patents are ofter sold, in fart or whole, to persons attracted to the invention by auch notice.
Δ pacpue or ito pages. containing the laws and fall $\alpha-$
 tach country, tme granted, etc., sent free Addrees MUNN \& CO.
Pablehers SCIENTIFIC AMERIOAN
branot Offom-Corner Park Row, N. Y.

(2)
 \section*{OF 7 TH}

SCIENTIFIC AMERICAN, THE MOST POPULAR BCIENTIFIC PAPER THIRTIETH YEAR.
VOLUME XXXIII.-NEW SFRIRS The publishers of the SCIENTIFIC AMERICA The publishers of the
beg to announce that on the third day of Juls oo be the aim of the publishers to render the con tents of the new volume more attractive and use ful than any of its predecan

To the Mechanic and Manufacturer No persou unguged in any of the mechanical pur american. Eving number contains from six to te engravings of new machines and inventions whic The SCIENTIFIC AMERICAN is devo The SCIEN Poplar AMERICAN is devoted to the Manufactures, Inventions, Agriculture,Commerce and the industrial pursuits generally; and it is val uable and instructive not only in the Workshop an Manufactory, but also in the Household, the Li orary, and the reang toom. TERMMS.
One copy, one year (postage included)....... $\$ 3.20$ One copy, three months (postage included).. 1.60 One copy of Scientific American for one
year, and one copy of engraving, "Men
of Progress"........................ 10.00
One copy of Scientific American for one
for 1875 5.20
Address all letters and make all Post Office or
ders and drafte payable to
MUNNN \& CO.

