a Weekly journal 0f Practical information, art, science, mechanics, Chemistry, and manufactures

NEW YORK, AUGUST 28, 1875.

IMPROVED FEED WATER HEATER AND PURIFIER.

To the use of impure feed water, there is little doubt but that a large proportion of the constantly recurring boiler explosions may be attributed. The history of those catastro phes which have laappened on the steamboats plying upon Western rivers shows that the majority have taken place when the streams were high and filled with impurities, which last, of ten mingled with grease or oil, were allowed to enter the boiler with the feed. It is very questionable whether exhaust steam, charged as it is with lubricating matter from the cylinder, should be permitted to come in contact with the feed water, since the grease, mingling with the impuri ties held in the water, may easily form an insoluble substance which, settling on the bottom of the boiler, may cause the burning out of the sheets, with the attendant dangers thereupon, or at best, with certain kinds of water, may establish foaming in the genera tor, likewise perilous. In the annexed engravis Berrym represented the Bory and purif ter heater and purifier, an invention which has been in successful use for some time both in this country and in Europe. It was patented as long ago as 1872, by Mr. R. Berryman, of Hartford, Conn.; and since that date many changes have been made and improvements added, until the manufacturers think they have about ex. they have about ex.
hausted all means for hausted all means for addition ment.

The illustration represents the device at. tached to an engine, showing all the connections. A portion of the shell of the heater is broken away in order to exhibit the shape and position of the tubes These last are made in the form of an inverted U , and their lower ends are set in a tube sheet of cast
iron varying from two to three inches in thickness. The shell is composed of boile plate, strongly put together and capable of sustaining as high a pressure as that to which any steam boilermay be subjected. The tubes are seamless and made of drawn brass or copper. Their shape prevents any alteration by contraction or expansion of the metal, and the mode in which they are set in the sheet renders it impossible for them to work loose.
A is the exhaust pipe of the engine, through which the steam enters the V-shaped tubes in the heater, circulates through them, and finally is conducted off by the pipe, B. The steam can then be utilized for warming a building or shop, or for any other purpose, the same as if it had not been directed out of its course. The area of the tubes is, in every case, at least twenty.five per cent greater than that of the exhaust pipe, so that no back pressure on the engine is produced by them. The chamber, C, is divided by a steamtight partition, and the pipe from the blowcock, D, extends through this partition into the water space around the tubes. The feed water pipe, from the pump, injector, or hydrant, is connected at E near the bottom of the heater, and the eduction pipe, which conducts water to the boiler, is shown at F. A safety valve is added to guard against excessive pressure within the shell.
It is well known that the large majority of substances which form impurities in feed water will separate and deposit themselves when the temperature of the water is raised to 186° Fah. and therce to boiling: provided, however, that sufficient time is allowed for this to take place, that the water is permitted to remain quiet, and that it is kept under pressure. All of these conditions, it is claimed, are carried
out in the Berryman heater. The capacity of the chamber is so regulated that it contains sufficient water to keep up a constant supply to the boiler for full thirty minutes. This supply being retained at 210° Fah., and under boiler pressure, allows ample time for the impurities to separate and deposit at the bottom of the heater, whence they are removed by occasionally opening the blow-out cock. There is always about $100^{\circ} \mathrm{Fah}$. difference between the temperature of the water at the top and that of the water at the bottom of the heater, so that the sediment, falling into comparatively cool water; is not solidified, and therefore, being kept in solution is easily blown out

Wilhelm Bauer

There died the other day an inventor who was not entirely nknown in engineering circles in this country. We speak of Wilhelm Bauer, the German submarine engineer, who exired lately at Munich, at the age of fifty-three. In him the now united Germany, for whose cause he fought in his ounger days, has lost one of her most gifted inventors, who will now, when he is dead, receive that recognition which h trove hard during his life to deserve, but which the world was slow to accord. Wilhelm Bauer was the son of a Bava was slow to arior, and baw at Dillengen, near Augsburg. His education was only of a limited description and he was at an ear ly age apprenticed to a turner. But this oc cupation did not suit his ardent tempera ment and desire for distinction, and he en. tered the Bavarian artillery at the age of sixteen. Here he had the opportunity of ac quiring a knowledge quiring a knowledge of mathematics,which he was ever eager to extend. On the futile war of independence of Schleswig-Holstei against Denmark breaking out in 1849 Bauer was animated by a disinterested en thusiasm forthe cause of the duchies, and was one of tie first to enter the collecting Schleswig-Holstein army as volunteer During the short peri ods of respite in tha struggle he was abl struggle, he was able studies. It is said studies. It is sai that in his leisure hours he was fond o watching on the coast of the Baltic the gambols of the seal, how they rose to the sur
face and as quickly face and as quickly
disappeared, and that their play gave rise to the idea of building a ship which, seal-like would rise and sink and which could be navigated under th water. After grea pains and exertions

The water, being taken in at the bottom and removed a the top of the apparatus, is entirely free from agitation and as it is pumped through the tubes with simply a check valve between it and the boiler, the same pressure acts upon it as upon the contents of the latter
We are enabled to glean some idea of the practical work ing of the invention from a large number of commendatory letters from users of the same, submitted to us by the manufacturer. One writer says: "The feed water, delivered to our boilers in its purity, has not only kept them clean but has entirely removed all of the old scale which incrusted the flues." Another gives a highly favorable report after testing the apparatus very thoroughly on board a Mississippi steamboat. From one letter we learn that the heater main tains the water at a uniform temperature of 206°, and a new boiler connected with it six months ago is yet perfectly free from scale. Still another writer notes a saving of one third of his fuel, another states that hard lime water is rendered as soft as rain water; and thus we might continue giving extracts from dozens of similar testimonials, received from both English and American users, all agreeing in the same excelnt results.
The reader interested can, however, obtain full particulars by addressing the manufacturer, Mr. I. B. Davis, Hartford Conn.

To destroy chinch bugs, put old pieces of rag or carpet in the crotches of the trees attacked. When the worms spin as they will, in the rags, throw the latter in scalding water The bugs can thus be killed by wholesale

Bauer constructed a model realizing his idea, and this soon found such favor that he was able, by means of a subscrip tion raised among the officers and soldiers of the armies of the duchies, to build a small ship according to his plan. Accompanied by two sailors he undertook ten submarin trips with the most favorable results; but as the ship had been constructed on the most economical principles, Bauer's funds being limited, it sprung a leak during the tenth trial trip, and sank to the bottom of the Baltic. This happened on the 1st of February, 1851, at nine o'clock in the morning The anxiety of the multitude waiting for the reappearance of the vessel may be imagined, but it is impossible even to picture the terrible position in which Bauer and his companions found themselves. During fully six hours they re mained in the almost hermetically sealed compartment of the ship, which was filled with compressed air and into which the water could not enter. Fortunately a happy idea struck Bauer in this emergency. He thought that if he were to suddenly open an exit to the great quantity of compressed air, it would rush out with great force. After the necessary preparations he placed one of the sailors close to the small hatch, closed tightly with glass. At the proper moment Bauer opened the hatch and the three were forced upwards, like, as Bauer expressed it, so many corks of champagne bot tles, arriving safely at the surface of the water. This was at half-past three in the afternoon. The ship which he had named Fire Diver (Brandtaucher), and which was destined to serve as submarine fire ship, was of course lost; but gen eral attention was drawn to the young inventor, and King Louis of Bavaria, as well as Prince Albert of England, pa-
tronized him, so that he was able to build a new model, which was inspected by the Emperor of Austria. It was the intention to utilize the invention practically in the Austrian navy; but the project had to be abandoned for the want of money experienced at that time by Austria. When, during the Crimean war, the English and French fleets invested Cronstadt, Bauer was invited by the Grand Duke Constantine to come at once to Russia and construct a ship which could be employed against besiegers. The ship was finished just when peace was concluded; but Bauer undertook 120 submarine trips with it. A large pecuniary compensation had been accorded to him; but as he did not comply with the demands of Russi an officials, he was exposed to many intrigues, and had almost to fly from Russia under the protection of the Bavarian ambassador. He repeatedly resided in London, and settled finally at Munich, where he continued his studies undisturbed. His name came again pruminently before the public when he effected the raising of the Ludwig, sunk in the Lake of Constance. He earned a lasting name and honors
by this feat, but at the same time contracted a severe afficby this feat, but at the same time contracted a severe affic-
tion of the gout, which grew worse with time. Paralysed tion of the gout, which grew worse with time. Paralysed
and deprived of speech, he spent his days in a chair, but his mind, notwithstanding bodily infirmities, was as fresh a ever. He subsisted on a pension granted him by King Louis, until death released him from his sufferings.-Engineering

Srientific gmmericam.

MUNN \& CO., $\overline{\text { Editors }}$ and Proprietors.

 pUBhished weexiy $4 T$NO. 87 PARK ROW, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS.

One copy, one year, postage included.. 160
One copy, $181 \times$

Ten coples, one year, eaoh 8270 , postage included | . .827 |
| :---: |
| 20 |
| 20 |

CTS By the new law, postage is payable in advance by the pablishers, an he subscriber then recelves the paper free of casarge.
Notr.-Persons subscribing will please to give their foull names, and Post
ofice and State address, plainly written, and also state at which tme the Wish their subscriptions to commence, otherwise the paper whil be sent from the recelpt of the order. When requested, the numbers can be supplied from January 1st, when the volume commenced. In case of changing resi dence, state former address, as well as give the new one. No changes can be made unless the former address is given

Volume ixxiil., No. 9. [New Series. 1 Thirtieth Year.
NEW YORK, SATURDAY, AUGUST 28, 1875.

the english patent bill.

The new Patent Bill, which lately passed the House of Lords, was withdrawn in the House of Commons, and has failed therefore to become a law. A great mass of petitions were presented against it, but none in its favor. The genera object of the proposed law was, as we have heretofore inti-
mated, to curtail and ultimately to abolish the granting of mated, to curtail and ultimately to abolish the granting of
patents in England. The intended change appears to have patents in England. The intended change appears to have
roused the strongest opposition among the scientific and working people of England, but was favored by the aristocracy.
The failure of the new bill leaves the present law in force, The failure of the new bill leaves the present law in force,
with all its excellent provisions for the granting and holding of patents by American citizens and other foreigners. Among the provisions are the following:
Any person may apply for, obtain, and hold an English patent for a period of fourteen years; the patent remains good during this period, if the fees are paid, whether the patentee works the invention or not; he is at liberty to do as without his consent.

Models are not required; but full drawings and specifica tion must be furnished by the applicant.
The government grants a patent to every applicant, wheth or the invention be new or old; no official preliminary examination as to novelty is made, but the applicant is expected to make his own examinations, all previous patents being printed and accessible.
If the applicant takes out a patent for an old invention, one that is already publicly known, or has been previously patented in England, such patent will be worthless, as it will not be sustained by the English courts. But if the in vention is new in England, the patent will be liberally con trued and sustained by the courts.
The British patent covers England, Scotland, Wales, Ireand, and the Channel Islands, or a population of about forty millions of the most intelligent people in the world.
The business connected with the obtaining of English patents is easily transacted, while the postal and commercial facilities now existing between the United States and Great Britain are such that an American patentee experiences little more trouble in introducing and profiting from his English patent than from his home patent.
Nearly all inventions that are worth patenting in this coun try are equally valuable in England.
Circulars containing further information concerning En glish patents, their cost, etc., can be had, free of charge, a the office of the Scientific American.

THE IRRIGATION WORKS OF INDIA.

Among the more remarkable engineering undertakings of he last quarter of a century, remarkable for their bold con ception and sometimes for their blundering execution, must be numbered the irrigation works of India. And since the
Indian governmert has announced the intention of devoting to the extension of such works, during the next fifteen years, the enormous sum of a hundred million dollars, it becomes a matter of no slight interest to know both what has been done and what is proposed to be done in this direction.
The conditions, climatic and otherwise, which make neces sary the expenditure of millions to correct the unkindnesses of Nature, are happily but little known in this land of abun dant and timely rains. It is to be hoped that they never wil ee experienced; though it must be confessed that, in some of the more fertile parts of the land, the drift of climatic chang parts of the world, once fertile and densely peopled, now de parts of the world, once fertile and densely peopled, now de
serted and desolate. Ages ago, when Northern Africa was serted and desolate. Ages ago, when Northern Africa was
swarming with thrifty people, when Asia Minor harbored unnumbered paradises, when Persia was the garden of the world, their people would have scorned the idea that thei lands could ever become the prey of drought and famine
But such has been their fate. So in Northwestern and in But such has been their fate. So in Northwestern and in
North Central India, many seats of ancient power and civilization have become untilled and tenantless through ihe fail ure of genial showers ; and large areas, as in the lower hal of the Punjaub and the adjoining territory of Scinde are scarcely habitable, except along the rivers, where irrigation is possible. To a less but still serious extent, the upper valley of the Ganges, a large portion of Central India, and the east coast of the Madras Presidency are made to suffer from a scanty and somewhat precarious rainfall, and are even liable to witness famine following hard upon drought, except where irrigation has made them partially independ except where irrig
ent of local rains.
it of local rains.
It about forty years since the British conquerors of India began to take a constructive interest in the reclaiming of th formerly fertile parts of the country by means of irrigation works, first by the restoration of ancient works which had fallen into decay.
From an early period the lowlands along the Indus and its five branches-which give name to the Punjaub-were saved, from the desiccation which befel the plains away from the river, by means of wells and inundation canals leading off from the natural water courses. These works were shallow trenches, unskilfully planned and rudely executed from five to seventy miles in length, and fed by the surplu water of the rivers when swollen by the melted snow of the
Himalayas. At a relatively early period, many of these Himalayas. At a relatively early period, many of these
canals were restored, deepened, and improved under British management, to the great advantage of the surrounding country. For the further alleviation of the same region, a much more ambitious series of irrigation works has been undertaken, of which more will be said further on
The earliest work of the sort undertaken by the English was planned and executed by Sir Arthur Cotton, of the Madras Engineers. In the southeastern quarter of Madras, the rainfall, though double that of the Punjaub and Scinde, has long been slight and precarious. Various means were adopted by the native rulers to store up water against the time of need, chiefly by means of reservoirs locally known as tanks. Many of these tanks have fallen into ruin, still as many as 43,000 remain, with 30,000 miles of embankment and 300,000 separate masonry works. The same presidency contains also the most ancient specimens of a more ambi tious class of irrigation works, consisting of extensive sys tems of canals, fed from reservoirs formed by the damming of large rivers. The first great work of Sir Arthur Cotton was the restoration of one of these systems, by means of
which fertility had once been given to the lower valley of the Cauvery river.
In consequence of the gradual erosion of the bed of one division of the Cauvery, the stream which fed the irrigation ruin of the been almost, deprived of its water, and was seri ously threatened. By means of an immense dam or annicut the water was set back into the old channel, the canals were
supplied once more, and the irrigation of Tanjore was restored. Thousands of acres of previous waste were brought under tillage, and the productiveness of the whole territory was much increased. The value of the land was doubled, the annual profits of the cultivators were increased by near$\$ 500,000$, and the government land revenue was increased $\$ 350,000$ a year, all by an improvement which cost only $\$ 400,000$.
So successful and beneficial was this work that Colonel Cotton was enabled to undertake a similar but more extensive operation for the improvement of the lower valley of the Godavery. This was the construction of a dam across the river, two and a half miles long, one hundred and thirty feet broad at the base, and twelve feet high. The dam was faced with heavy masonry, filled in with earth, and protected by an apron of massy stones extending seventy or eighty eet down the stream. A vast system of canals, adapted both to irrigation and commerce, is fed from above the dam. Altogether there are between 800 and 900 miles of artificial channel from which water is supplied to ground otherwise channel from which water is supplied to ground otherwise
barren, and 50,000 boats and rafts are employed in conveybarren, and 50,000 boats and rafts are employed in convey-
ing the produce to market. When the works are finished, ing the produce to market. When the works are finished,
$1,000,000$ acres will have been brought under cultivation. $1,000,000$ acres will have been brought under cultivation.
So far the works have cost somewhat more than $\$ 3,000,000$; So far the works have cost somewhat more than $\$ 3,000,000$
but this sum has been repaid more than twice over by the but this sum has been repaid more than twice over by the
increased public revenue. Similar though not so remunerative works have been executed for the irrigation of the delta of the Kistna.
While these works were in progress, the engineers of Bengal were employed in reopening and extending the Western Jumna Canal, giving life and verdure to 350,000 acres. In 1848 was begun the Ganges Canal, with a main channel 348 miles long, primary branches of 306 miles, and minor distributaries aggregating more than 3,000 miles. The area over which it diffuses irrigation is 320 miles long by about 50 miles wide. Its cost was $\$ 7,000,000$.
In the naturally rich and formerly populous region of the Punjaub, as already noted, a renewal of life and fertility is being effected by the Baree Doab. This canal leaves the Ravee-one of the five rivers-where it issues from the Him alayas, and, passing the famous city of Umritser, strikes cross the desert, and will eventually rejoin the Ravee after course of 140 miles. On its way, it throws off branches ight and left, the length of which gives the whole work exclusive of minor distributaries) a length of 357 miles. The area expected to be irrigated is 650,000 acres.
In the adjoining province of Scinde are also large tracts of once productive and well peopled country, now a desert, whose productiveness might be restored by the improvement of the old and the construction of new irrigation canals. It is therefore proposed to re-water the country-the valley of the Lower Indus-by means of four systems of canals: an a Lower Indus-by means of four systems of canals: an or later, converting hundreds of miles of waste land into fertile fields.
Many otherirrigation schemes are in various stages of de velopment in India, some of great magnitude. Among these may be mentioned the operations recently begun for turning astward a portion of the waters of the Sutlej, to restore to its ancient condition an immense area, once richly produc tive, but on which the desert has lately been fast encroaching. Still more important are the works which have been going on for several years in Orissa, to compel the rivers Brahminuy and Mahanuddy to fertilize the deltas which their inundations have heretofore periodically devastated-works on which $\$ 6,000,000$ have already been expended
Though not always wisely planned or economically execu ted, the irrigation works of India have been, even in a com mercial sense, paying investments. Some of them have been extremely remunerative, yielding to the governmen xchequer, in water rates, increased rent of land, and other evenues, a liberal percentage on the capital invested in them. For example, the Cauvery canals are reputed to pay $23 \frac{1}{2}$ per cent on their cost, the Godavery works 45 per cent, the Kistna 16 per cent, the Western Jumna 30 per cent. In or dinary years the Ganges Canal, which was unnecessarily costly, pays barely 3 per cent; but in the rainless autumn of 1860, it was the means of saving grain crops enough to keep alive more than a million people, who must otherwise, if left othemselves, have perished from hunger; thus saving to the State not only that number of lives, but the necessity f a proportionate remission of rents and a vast expenditure for the relief of insolvent tenants. The Baree Doab, in the construction of which some stupendous blunders were made pays 5 per cent. The unfinished Orissa works have not yet begun to be remunerative. Still, as a possible preventive of he horrors of a famine such as scourged the district in 1866, the vast sum thus far expended cannot be said to be an unprofitable investment.

IS EDUCATION FOR CULTURE OR FOR USE?

The interests of education and of educational institution will occupy a large share of attention during these summer months. And while the universal commendation, by friends and interested parties, of cood, bad, and indifferent alike, which conveys the false impression that there is not an ineflicient school or instructor in the land, is a topic worthy of serious consideration, we pass it to notice the question as to the real object of education.
Many of our best educators sneer at the idea of making education commercial-at looking to the practical in its pursuit; and in our highest educational circles, these things are considered beneath the dignity of a real student. This idea has been so eloquently and beautifully expressed by President Capen, of Tufts College, in his recent inaugural address,
to make. On the "Purpose of the American University," he says: "First of all it purposes culture, pure and simple, and this, too, for its own sake. All other objects are sunk from view. It assumes that learning is the highest and noblest of temporal pursuits, that it is even removed from the common range of temporalities, and linked by a mysterious process to the ineffable and eternal. Hence, it aims to present learning in the guise of a fair and beautiful maiden to whom youths are invited to pay their court, as to one who will hold sweet and delightful converse with them and never deceive them or lead them astray." With no purpose or desire of raising a personal issue, we use this simply as a fair exponent of the views now held by those highest in authority and influence in the field of education.
and influence in the field of education.
Culture, we admit, is indispensable; but is the real object and end of culture for its own sake? Is it not rather for some greater good it will gain for self and for others? If we
strive for the pure and simple culture, with "all other obstrive for the pure and simple culture, with "all other objects sunk from view," wherein is the individual or the world benefited? What is culture, thus limited, but unproductive capital, and why is not this as unwise in intellectual as in political economy? A horse trainer exercises his young horse regularly and judiciously; but does he do it simply to make a trained horse of his beast? Does he not rather do it because he knows a well trained horse will be of more service to him than an ill or untrained horse? Gymnastic exercises tend to the development of physical strength, but do we consider him remarkably wise who has the ultimate end in we consider him remarkably wise who has the ultimate end in
view simply to gain the organic strength? And does not view simply to gain the organic strength? And does not
thislimitedidea of culture make it mere intellectual gymnasthislimitedidea of culture make it mere intellectual gymnas-
tics? If one is more brilliant and instructive in conversation, tics? If one is more brilliant and instructive in conversation,
stronger for any work in which he may be engaged, a more stronger for any work in which he may be engaged, a more
efficient and better friend, neighbor, or citizen, his culture has its use. But genuine culture may still exist if it accomplish none of these things. The possessor of it may be honored in the training school, but on his entrance into active life, he is staggered by the question: "What can you do?" and may fail to answer it all his future life. He is like the good gymnast who would insist that he is qualified for any manual or physical employment because he possesses strong and well developed muscles.
The shortsighted policy of giving attention to nothing that has not an immediate and remunerative money value-the penny wise and pound foolish policy-and that which can be influenced by no higher consideration than a pecuniary one, we most heartily despise. But if its end and aim and the final result are not beneficial in some way, we are forced to urge the unpopular and vulgar query: What is the use-cui bono? Most Science has practical value because it tends to enrich and benefit mankind. Some is called pure science, and is fascinating to its disciples for the very reason that it is "removed from the common range of temporalities," and is entirely uncontaminated with anything of a practical nature. A learned Professor of Zoölogy in a famous institution not a thousand miles from New York, at the close of an exhaustive lecture on some of the cranial nerves, gave a good illustration by saying he could not tell, as he had no interest in knowing their use, and suggested that a physician had to do with such questions. Such topics as these contribute to general culture in its purity, and it is said by the really wise (!) that none but the worldlywise and shortsighted would interdict them. Many questions of interest to the student arise in the
progress of public scientific undertakings, as State geologiprogress of public scientific undertakings, as State geologi-
cal and natural history surveys, which do not directly ben efit the people who authorize these surveys. And in one of our Western States, the legislators had the wonderful providence to direct their State Geologist to exclude theories from his report, and to record only facts. We can hardly conceive of any question connected with the laws of Nature which must not be, either at present or ultimately, of benefit to mankind in one way or another; but if it could be shown that such exists, we ask, in all candor, why not leave it, and give the attention to such investigations as have other re pure culture?

There may be something defective in the notions of those who desire only the practical in education; and on the other hand, there may be a little error in the ideas of those who ridicule this course. One seeking the purely practical may be unsymmetrical, or a one idea man, from studying only what he wants to use; while by the opposite course he may be a bookworm, or, in his efforts to embrace the whole field of learning for the sake of culture, be necessarily a mere smatterer in all. If the age of Methusaleh were ours, it might be reasonable to expect proficiency in an extended range of subjects; but in our short lives, we can reasonably look for the result by pursuing the line of study that is most congenial. In other lines one labors at a disadvantage which is as un wise in intellectual as in physical pursuits. We can see no good reason why that division of intellectual labor, which is not as wise as a similar division of physical labor. There is not as wise as a similar division of physical labor. There
is no great wisdom in working at a disadvantage, either with the hand or the head, when this can be avoided. The toil we hate is the more fatiguing and less improving in one case as well as in the other. And since the opportunities for research on any one subject are unlimited, and a thorough knowledge of one necessitates a general knowledge, at least, of all allied subjects, who shall say that just as much culture and breadth of metal power cannot be acquired by pursuing only those studies which bear directly on one's chosen object of parsuit? A blacksmith or farmer has no need of resorting to gymnastics to gain strength and skill for his productive work; and cannot a student gair the requisite strength
t? The mental stimulus which accompanies work in the direction of one's interests tends to greater success in this way
than can be gained, under ordinary circumstances, when the attention is called to topics which suggest no definite object besides that of general culture. If culture is the first and highest object, it would seem consistent with this view to make those studies, which are considered most conducive t_{0} culture, compulsory in the curriculum, regardless of any prac tical benefit. But, instead of this, there is a marked and growing disposition to increase the ratio of elective to re quired studies in the graduating courses of our best colleges. Unless the student is guilty of the unmanly practice of choosing a study simply because it will gain for him the choosing a study simply because it will gain for him the
highest "mark" with the least possible effort, he is likely highest " mark" with the least possible effort, he is likely
to enter with more zest upon chosen work, in which he has a to enter with more zest upon chosen work, in which he has a
definite object, than when he has no clearly defined purpose in view. For instance, one will study more closely-and hence gain from it greater culture-something he intends to teach, to use in conversation, for the platform or the press, or to put to some other definite use ; and his interest and mental activity will be excited, as a rule, just in proportion to his estimate of the practical benefit resulting from it in the future, to himself or to others. The reason why so many are graduated from our institutions of leaining, with comparatively little or no knowledge of the subject over which they have passed, is doubtless that, having no definite object for study, 'aside from the name of being a graduate, the results of general culture are too visionary and uncertain to afford stimulus to sustained and successful efforts. Hence we claim that, since all are by nature averse to labor, every stimulus that is laudable should be furnished to aid the stud ent to the largest endeavors. A favored few may find suffi cient incentive in the mere desire to know; but even in this case, mental activity and success will be increased if, in addi tion to this praiseworthy desire, there is also a clear percep tion of some beneficial result which will follow the fact of knowing.
Is it strictly correct to assume that learning is the highes and noblest of all temporal pursuits? If, to make it thus, it must be removed from temporalities, and linked to the ineff able and eternal, it would seem to be no more a temporal pur suit than heart culture, and is not the latter higher and no bler than head culture? There seems to be a natural order of development in the objects which, at different periods, have been held in highest esteem by mankind: from muscular power, through wealth, to intellectual attainments: and we
trust the time may dawn ere long, when one with the highest and purest motives, other things being equal, will be looked pon as having attained a higher and nobler object of pursuit than physical strength, wealth, or mental culture.
The idea of presenting learning in the guise of a fair and beautiful maiden to whom youths are invited to pay their court, and with whom they may hold sweet and delightful his is for a very beautiful and attractroated and innocen pleasure-seeking-a sort of butterfly existence? There is pleasure in gymnastics or physical culture, so there is in mental culture; but if either is sought simply for the pleas ure it affords, why is the seeker of mere pleasure in thi particular way so much more exalted than the pleasure It probably will way?
It probably will not be denied in theory, however much it may be in practice, that the highest ideal of life is that " n o man liveth to himself," and that he is noblest of all who does most for others. The best servant is the greatest. With this truth accepted, it is evident that the primary ob ject of education, and of all effort, is to qualify one's self for the greatest and most effective service to mankind, and to succeed in the performance of this service. This will neces sarily bring all desirable secondary objects with it

SPIRIT RIFLE PRACTICE.

The papers contain an account of a so-called elaborate in vestigation of a materialized spirit, which recently took place in St. Louis, Mo. The medium was one W. C. Clark, who pretends that he has a band of thirty-two disembodied spirits about him, some of which he can materialize by the odic or mesmeric force in him. During this materialization, th medium was tied up in a closet, and the room darkened when, after a little while, a curtain was withdrawn, expos ing a part of the interior of the closet, in which then th ghost or materialized spirit was seen. As it was suspected
that, in this case, the same kind of deception was employed as in the Katie King affair, namely, that a real person o flesh and blood acted the rôle of the spirit, it was suggested that a crucial test would be to fire at the spirit with a loaded musket, as a real spirit could not be hurt by such an experi ment. Mr. Clark having asserted that his materialized spirits were no deceptions, but real spirits. and could stand such a test, he rece
challenge:
St. Lours, Aug. 4, 1875.
Mr. Clark : Dear Sir :-Having attended a séance given by you and having seen the wonderful materializations, I will give you fifty dollars to produce one face at the aperture, if you will let me, or any person I may name, fire a shot at it with a rifle. If it is a spirit
face it cannot hurt it, and it will satisfy me it is not you with a mask face it cannot hurt it, and it will satisfy me it is not you with a mask
on your face. My conditions are that you will disrobe yourself and put on clothes I shall produce, and permit me to fasten you to the bottom of the cabinet. Yours, respectfully, Henry Timkens. This was accepted by Mr. Clark. On the appointed evening, August 8, he was divested of all clothing, and other clothes brought by Mr. Timkens were put on him; he was tied down to the bottom of the cabinet by ropes passed hrough holes; a black curtain covered a window at which the ghost was to appear; the window was located on one placed within reach of Mr. Clark. The cabinet was closed ${ }^{\text {sects. }}$
and the lights turned down; and after a period of pain ful stillness, the medium asked the audience to sing, an they did so with a will. After they had finished several songs, a loud knocking was heard, which slowly became more gentle, and then ceased. After three quarters of an hour, during which nothing happened but an occasiona spasmodic knock, a painful cry was heard in the cabinet, th black curtain was withdrawn, and a face appeared at the win dow. It was that of a girl with blue eyes and brown hair The face was instantly seen by all present, and is described as having fixed features and other characteristics of a mask "Fire," said the voice of Mr. Clark in the cabinet; and Mr. Timkens, who had before pointed his rifle at the center of the window, pulled the trigger, and the ball passed through the face and lodged in the back partition of the cabinet: while the face remained at the window unmoved for about while the face remained at the window unmoved for about
minute longer, when it was concealed by the black curtain which was drawn over the opening.
The account is very minute in details about the inspec tion of the cabinet, and the ropes with which the medium was tied ; and it especially reports all which the latter said concerning his fatigue and the emanations from his own spirit and the other spirits he controls; but no means appear to have been taken to get hold of the mask, which was doubtless the thing used.
The same parties (the Holmes') who exhibited the Katie King materialization in Philadelphia were recently exposed in Brooklyn, where a company of spiritualists themselves found out the deception practised by masks, which were ex hibited before a curtained window, as at St. Louis. Such a mask, of course, would not be hurt much by a ball; but mask, of course, would not be hurt much by a ball; but
there are other more scientific and refined methods of practis ing these deceptions, such as optical contrivances, which can be made to give images which are perfectly visible and total ly intangible.
Any one who has seen the perfect illusions produced by the stereopticon, which is nothing but an improved magic lantern, or with the megascope, by which the perfect image of solid bodies may be thrown on smoke, vapor, or dust, can understand that the so-called materialization trick can be easily performed by such means. Such an image, falling on a black curtain, is invisible; but on a white translucent smoke, its resemblance to a real body is such that it is next to impossible to distinguish it, except by an investigation during the exhibition of the image, the investigator placing his head in the opening, and looking around to see where the machine is, from which the light forming the image proceeds Persons unacquainted with these and similar resources of physical science, which are increased in number and im proved almost daily, are of course utterly incompetent to investigate the means by which tricks of this kind are prac tised; and their conclusions as to the absence of any decep tion are of no account whatsoever. The above is only one of many illustrations of cases where the nature of the decep tion remains undiscovered, simply from the deficiency of knowledge and acuteness of those witnessing the perform-

THE KEELY MOTOR DECEPTION.

Most of the newspapers in Philadelphia, the home of the pretended New Motor, have refrained from any condemna tion of the Deception. The Public Record is, however, notable exception. The proprietors of that journal, which by the way is one of the most widely crrculated dailies in the country, have put themselves to considerable trouble in collecting information, which has been presented to their readers in a series of able and exhaustive editorials. The effect of these articles is to place the grossness of the Deception in such a strong light that its aiders and abettors will to say the least, be rendered uncomfortable. These people confess to having obtained large amounts of money, paid by credulous persons who were made to believe in the verity of the thing. The principals are doubtless liable to indictmen and trial for obtaining money under false pretenses, and it will not be very surprising if some of the victims move in he matter before long.
It appears from the researches of the editor of the Record that the attempts to procure patents on the Keely motor have failed. In all doubtful cases, the Patent Office has the right to require the applicant to produce a working mode or machine; and this was required of Keely, but he could not bring forward the model, and had to abandon his case. But this did not prevent extensive commercial dealings by the Keely people. The Record states that the Patent Office books exhibit " no fewer than thirty-four documents rela ting to the transfer of interests in the following named in ventions: "Independent fly wheel," "hydro pneumatic pul sating vacuo engine," " globe motor," "dissipating engine multiplicator, or generator," " automatic water lift." Th first assignment is dated July 11, 1871, and the last Febru ary 15, 1875. Eighteen different parties have been engaged during this time in buying or selling interests in this inven tion, and this does not include the subscribers to the stock.

Common coal oil is an excellent mosquito bar. Drop a little on a piece of cotton, squeeze as dry as possible, and sub over the exposed portions of the body. The smell of the oil disappears in about five minutes, and no mosquito will aligh upon the anointed places. This is said to be better than pen nyroyal essence for the same purpose.

Do not kill the toads. In Paris, they are sold at fifty cents dozen, in order to protect vineyards and gardens from insects. A toad will swallow the biggest kind of a tomato

THE BRITISH ARCTIC EXPEDITION

led to many important results which have been duly chron- in this year, he was ordered home to take command of the We have so recently given to our readers full accounts of icled in our columns, to Australia and the Indian and South arctic expedition. just sailed from England that no recapitulation is necessary in describing the enpitalation on this and the following page. The first is a portrait of the commander, Captain George Strong Nares, of the Alert, the leading vessel of the expedition. He entered the Royal Navy in 1845, having gained the annual naval cadetship given as a prize of merit to the boys of the Royal Naval School at New Cross. He served in the Canopus, in the Channel squadron, until 1848, when he joined the Havannah, and served three years in her on the Australian station. Having returned with his vessel to England, he was appointed mate of the Resolute, employed in the arctic expedition of 1852, under Sir Edward Belcher. With this ship he passed two winters in the ice. Upon the return of that expedition, he became gunnery lieutenant of the Glatton, an ironclad vessel of immense armament. He afterwards held a similar post in the Conqueror, under Admiral Sir Hastings Yelverton. When the present system of training naval cadets was instituted, Lieutenant Nares was placed in charge of those on board the Britannia, under the late Captain R. Harris. He held this appointent till promoted in 1854 to this appoint With that rank the rank of commander. With that rank he served in the Boscawen training ship at Southampton, and in the Salamander and the Newport, surveying vessels. In the Newport, Commander Nares made a survey of the Gulf of Suez and of the entrance to the Suez Canal. He had made himself known to the public and to the profession as author of an excellent treatise on seamanship, including the fitting and rigging of ships, sailing, management of boats, etc. In December, 1869, Commander Nares was promoted to be captain, but retained command, in the Shearwater of the Mediterranean surver. This he left in 1873 iterranean surver to when appointed to ger in her voyage of scientific investigation
round the world. Captain Nares took the round the world. Captain Nares took the
Challenger, whose voyage of discovery has

CAPTAIN G. S. NARES.
the principal apparatus and appliances most of which are new inventions, the result of experience gained in previous expe ditions. The list is as follows:

1. Ice crusher, with leather handle, 5 fee 6 inches long; 2, ice gouge, 8 feet long; 3 , ice chisel ; 4, ice point; 5, ice drag; 6, pick ax, weighing 6 lbs. 14 ozs.: 6A, ice ax weighing 8 lbs.; 7, snow knife (in case) 8 , blasting tin; 9 , ice anchor, kept in fou sizes; 10, dispatch tin, in different sizes fitting one within another; 11, water bottle with leather mouth and cup; 12, pemmican hatchet; 13, harpoon; 14, harpoon gun, the harpoon dotted in position; 15, rum can harpoon dotted in position, 15, rum can, knapsack, to be fitted over the shoulder by knapsack, to be fitted over the shoulder by
a strap; 17, snow shoe; 18, small sledge of a strap; 17 , snow shoe; 18 , small sledge of
four snow shoes lashed together; 19 , whale four snow shoes lashed together; 19, whale
boat, 25 feet long; a, row lock, b, catch for boat, 25 feet long; a, row lock, b, catch fo
main sheet; 20 , ice boat, 20 feet long; 21 punt, 12 feet long; 22, cooking apparatus, into which fits (23) the stew pan, and inside this fits (24) the kettle; 25, ladle for the same; 26, tent for eight men; 27, front o the tent; 28, back of the tent; 29, duffle sleeping bag. Most of these articles explain themselves, but special mention may be made of the ice tent (26), which is shown pitched, ready for use. It accommodates pight men the officer lying furthest in th eight lying hads and heals, with the the mer lhe h ands with the cook for the nest day ner the is his duty to make fast; and he lies her because it devolves on him to get up in the morning and prepare breakfast in advance of the rising of his comrades. It is the privilege of the man who has come off duty as cook to lie next the officer. The sleeping equipment for use in this tent consists of various strata. Next the ice is an india rubber sheet, covered with a thick robe of soft felting; on this the men lie in their sleeping bags of the same material, inside which they get, " all standing," for there is no undressing on sledge journess; and ove all there is anther duffe robe ing utensils (22.23, 24, 25) pack into very

small dimensions, the fuel used being stearine, spirits of petroleum is directed on to the surface of the burning coal wine, or tallow. The harpoon gun $(13,14)$ will be fastened on a swivel at the bow of a whale boat. Its length is four feet, and it is made of the finest steel. The gun, though single-barreled, has two nipples to the lock, to avoid the chance of a cap missing fire.
While traveling with the sledges, each man will be supplied with a water bottle, resembling an ordinary spirit flask in shape, but with the mouth and cup covered with a leather coating for the purpose of protecting the mouth from cold contact with the metal. The bottles will be replenished from the condensers, and the water will be kept in a fluid state from being carried in the bosom. The sledges will also carry a supply of rum of extra quality; but this will only be used in cases of emergency, as it has been ascertained that the best antidote against the polar temperature is not pirit, but oleaginous food, of which pemmican is a highly nutritious and concentrated form.
Our next illustration (Fig. 3) shows the form of sleigh specially designed for this expedition. It is intended to accommodate two officers and eight men, and to carry provisions for a journey of seven weeks. Above the sleigh are shown ($1,2,3$) a gage, chisel, and hooks for catting through the ice.
Fig. 4 shows (1) the substantial sleigh intended to convey provisions, etc., to the depots to be established along the route. No. 2 is an ice drill, No. 3 a snow knife, No. 4 a grapnel or drag, No. 5 a senow shoe or skate, and drag, No. 5 a smow shoe or skate, and
No. 6 an ice anchor. In this engraving is also shown an ice saw and the manner of manipulating it.
Our next engraving (Fig. 5) exhibits
sailing sleigh, intended for use when the wind is favorable; and the rigging is clearly shown. If these sleighs ever attain any such speed as is common on the Hudson river with ice boats, a very careful lookout will be necessary to prevent officers and men being engulfed in the fissures in the ice.
Each sledge will carry its cooking apparatus, shown in our sixth and last engraving. Where more is required, the apparatus will be of two kinds, one being formed entirely of metal, and the other being of wood, with an inner and outer

Fig. 5.-SAILING SLEIGH.
sheathing of tin, and having a receptacle on the top for condensing snow, which thus ensures a constant supply of potable water. The cooking stoves are circular, the heat being obtained by burning either spirit or stearine; and by an adjustment of saucepans, one upon the top of another, both pemmican and preserved potato or other condiment can be cooked at the same time. The whole is protected from the weather by an envelope of thick woolen cloth.

A New Lighting:and Heating Gas. It would appear as if a practical success has been attained in the processinvented by Mr. T. S. C. Lowe, of Norrented by Mr. His method consists in producing, from anthracite and the decomposition of steam, a gas of very high heating power, and then enriching this by means of crude petroleum when the gas is to be used for illuminating purposes. The anthracite is charged in a small cupola of, say, $3 \frac{1}{2}$ feet in diameter, the bed of coal being kept from 3 to 4 feet deep. When fairly ignited, the base is closed, and superheated steam is admitted through tweers a short distance above the grate bars; the steam in contact with the burning coal is decomposed, and the gas produced is a mixture of hydrogen and carbonic oxide. The cost at which this excellent heating gas is produced is very small indeed, and its application in metallurgical processes and for domestic use offers many important advantages. Of course it is in this state entirely unsuited ρ illuminating purposes. To enrich it, a small jet of crude

This promising improvement in gas-making has passed the stage of mere experiment, and appears to have entered that of practical success. Warned by the fate of several naphtha and petroleum processes brought out with many promises and small performance, the inventor of this process and his friends determined to thoroughly test this invention on a practical scale before giving it publicity. They erected their first gas works at Phœnixville, Pa., a place of some 10,000 inhabitants, and have since put it in operation at several small towns. It is, we understand, successfully working at each of these places, at Phœnixville having now, for eigh teen months, lighted the town to the general satisfaction. The cold of the past two winters has affected this gas no more than, if as much as, ordinary coal gas, and, conse quently, the fixedness of this product appears to be fully established.
To demonstrate the adaptability of the system to the light ing of large cities, works were established by arrangement with the Utica Gas Light Company, and we are informed that, for the past three months, the city of Utica has been lighted exclusively with gas made by this process; and we understand the Gas Light Company is so well satisfied with the results that it proposes to adopt it permanently. Not the least item of saving effected by this process is in labor. But two men-who are common laborers-are employed at the Utica works, and their time is but partially occupied the addition of one more would suffice for a production of four times the present supply. The cost of the gas in the holder is claimed to be not over one half that by the old method, while the quality of the light is very satisfactory.Engineering and Mining Journal.

Transits of Venus behind the Sun
The observations of the transit of Venus made in various parts of the world last December have adduced, among other important ḑata, one fact both novel and unexpected. This
while the edges of the sun and planet were apparently overlapped, the black disk of the latter not merely stood out in but th contrast on the white disk of the solar photosphere, on the reddish whe the black disk har when the black radus on the surrounded with a thin luminous halo, supposed to be due to the refraction of solar light in the atmosphere of Venus The practical object in which the observation of the phenomenon may result is the rendering possible of observations of transits of Venus when the planet passes behind, as well as when it crosses before, the sun. For if the very weak reddish light of the chromosphere, which forms the corona about the sun, contrasts sensibly with the black of the planet in conjunc tion, the brilliancy of the planet in op position and in full phase will affor position a it is true that even a greatert coneter of Vis true tha the apparent diameter of Venus is near y six times less in opposition than in conjunction, bus is certainly sufficien to render the planet visible as it crosses the chromosphere, and this even when a purtion of the solar disk comes into the field of the telescope. The accura cy of the data obtained by these obser vations would be about six times less than that of observations similar to those of last December, owing to the greatly increased distance of the plane from the earth in the former case. But for the same reason, the passages be hind would be more frequent, for they take place for oppositions six times fur ther from the orbital node This fre ther from the orbital node. This fre quency, M. Phippe Breten (to whom the credit of the foregoing suggestion

Fig. 4.-ARCTIC TOOLS, ETC.
is that, with the powerful glasses with which the observers were provided, the disk of Venus appeared clearly defined in black upon the chromosphere which surrounds the sun and second contact and also between the third and fourth, mediately in the urine.

Its alleged advantages over all other antiseptics are : First, that it is far more powerful and effective in smaller quantities; and secondly, that it is, in all void of irritant action upon the living tissues. It is not caustic nor corrosive in any quantity, and never produces in-
flammation. In large quantities it may be irritant and pain ful, but yet rarely surpasses a stimulant effect, while it ap pears to be quite neutral in the very small quantities which are yet thoroughly effective; thirdly, it is said to reach and prevent processes of decomposition which are beyond the reach of all other antiseptics or anti-ferments. These processes are of two kinds, namely, vital, or those in whic duced by yeast and many of those which occur in putrefac duced by yeast and many of those which occur in putrefac-
tion; and chemical, or those which occur independent of vition; and chemical, or those which occur independent of vi-
tality, as the production of the volatile oils in mustard and tality, as the production of the volatile oils in mustard and
bitter almonds, the effect of diastase, etc. Now, while car bitter almonds, the effect of diastase, etc. Now, while car-
bolic acid and other anti-ferments are azymotic, or completebolic acid and other anti-ferments are azymotic, or complete
ly arrest or prevent fermentations of the first kind, they are powerless with the chemical processes. Salicylic acid is said to be more effective with the vital ferments, and equally ef fective with the chemical.
Fourthly, in quantities said to be thoroughly effective, it is entirely odorless, and tasteless, and harmless, whilst it has no poisonous effect in any reasonable quantity.
It prevents or arrests the souring of worts, washes, and beers of the brewers, and prevents or arrests the putrefactive agencies which are so troublesome and destructive to the glue manufacturers; and these and similar trades have thus
far seemed to be its principal consumers. Separate portions far seemed to be its principal consumers. Separate portions
of fresh milk were set aside to become sour; one to which 0.04 of fresh milk were set aside to become sour ; one to which 0.04
per cent of salicylic acid was added soured thirty-six hours later than the other. Urine thus protected was on the third day still clear, and free from ammoniacal odor.
Professor Thiersch, of Leipsic, used it upon contused and incised wounds, and in operations, with excellent general results, destroying the fetid odor of cancerous surfaces and
pyæmic ulcerations. To such uses this writer would add pyæmic ulcerations. To such uses this writer would add
the suggestion that, for washing out the cavities of the abdomen and chest ifter those operations which tend so strongly to septicemia, solutions of salicylic acid would seem to offer very great advantages, should it prove to be as bland and unirritating as it is stated to be, and yet so effective.
Most of these statements are summed up from the periodical literature of continental Europe during the past six months, little having appeared upon the subject in Great
Britain, or in this country, and nothing having been done with it so far as known in either country.
If the medical art is to keep pace with the progress of the physical sciences, physicians cannot afford to pass by such articles as salicylic and benzoic acids when offered by chemistry, without investigating their effects upon disease, even though not one out of ten should repay the labor of investigation; for it is certainly in this direction of research that those abnormal vital processes which so far may be modified, but not stopped.
The phenols, especially the so called carbolic and cresylic acids (phenol and cresol), were, and must always remain to be, most important additions to this class of agents, surpass-
ing in power all that had been previously tried. And if now ing in power all that had been previously tried. And if now
salicylic acid shall prove more potent than the phenols, the further gain will be very great, and the research will again lead up toward future discoreries of still greater power."

Coturegumuffice.

On a Mechanical Theory of Cosmical Motion.

To the Editor of the Scientific American:

As all attempts hitherto made to frame a satisfactory mechanical theory of the motion of cosmical bodies have resulted in total failure, and as the constancy of motive energy, as well as the aberration of light, show that both the ether and dense bodies are relatively unaffected by the movements of the latter, a reconsideration of the condition of both is demanded. The problem, it is plain, is to find a non-resisting physical cause of balanced motion, the idea of action at a distance being dispensed with. It is fully conceded, from the very fact of our previous inability to explain such motion, that some great and uncommon assumptions are necessary;
upon.
As a matter of fact, we observe in Nature the resolution of all cosmical bodies into systems of couples, in which each one of the couple moves in the inverse ratio of mass and distance round the axis of revolution, the force of motion being as the sum of the masses, and inversely as the distance of each from the axis. Such axis may form one of another couple, as in that of planet and satellite revolving round the sun. We are thus furnished by Nature with whatever fixed units we choose to agree upon as giving the relation of
masses, distances, and force of motion, such designated units masses, distances, and force of motion, such designated units being physical constants. The whole Universe being composed of cosmical couples also argues physical connection. physical theory should be its power to consistently explain all the phenomena which it can ever be expected to cover, the greatness of the assumption not detracting from its value, providing that its rejection leads to inconsistencies and incompatibility with known facts and principles. In this case, also, it should, upon strict dynamical principles, be observed in Nature. The following, I undertake to show, answers these requirements:
All ponderable matter is the condensation of an elastic other, the mutual conversion into each other being continuous.
Of course, this transmutation is identified with a physical gies being equivalent in alternate change. Indeed, the opin
ion now generally entertained by the highest authorities in
Science is that dense matter is, in some way, "a knot o Science is that dense matter is, in some way, "a knot or
coagulation of the ether." The amount of gross matter is, coagulation of the ether." The amount of gross matter is lude dissolation, persistent. This, howeviding condensa tion is equal. The continuity of transmutation finds an analogy in physiological action, in which matter, assimilated, takes on the constituted quality of the body of which it forms a part, having received it from the matter emitted. We know from the laws of light that the ether permeates all dense matter, and that it is denser in dense bodies than in he fluids. Also that force does not exist apart from matter; nd still that all forces (except gravity) are convertible, their activity constantly equable, and exhibiting, throughout their most rapid transformations, a mechanical equivalence. The minimum limit of time occupied by molecular movement may parallel the time occupied in molecular transmutation; for we can set no possible limits to either. The mutual conno known law of Nature, and the totality of transmutation may be practically infinitesimal as regards time, the ether supposed to bein a condition of indifferent equilibrium towards he constitutive forces of matter, and the constant changes in Nature being due to such transmutation.
I look upon the ether as continuous, as shown by its non etention of heat, but principally because I am unwilling to consider the isolation and repulsion of every atom as consti uting the dynamic bond of the Universe. As a matter of fact, no part of the Universe can be isolated from the rest, and we are therefore more than justified in affirming that the all-permeating ether resists all breach of continuity; besides, we have the advantage of only applying mathematical quan tities to substance. Now, it is evident that we can have per fectly unconstrained motion and absolute material continuity, we assume translatory motion to be a progressive mutual mutation of forces, and in no other way. The only resist ance thus offered by the ether is towards a break in its con tinuity, and therefore its condensation into gross matter pro duces a tension within itself, the stress being directed towards the center of the condensed mass. The same ten-
sion is constantly becoming loosened, however, by the condensed matter becoming rarified in the return transmutation into ether. A moving body of constant mass is thus substan ially a moving equable strain in the ether.
All motion of translation will necessarily be as enforced by a stress in the ether, bodies being non-resistent in free would be no motion originated. Nor yet could there be stable motionless equilibrium, if but one mass would move for the motion of all would be towards the balance of stresses. The ethereal strains will thus necessarily be, by theory as by fact, towards each particle taken by itself, and he centers of dense masses taken as wholes, giving any bod n which the particles are free to move a tendency to assume
the spherical form; but if supposed alone in space, without any tendency to move as a whole. With two bodies the case is different. The mutual tensions produced in the ether by the respective masses cause a compression towards each other, the force of which is greater as the distance is less. But if at any time lateral impulsion, sufficient to overcome the tension, be admitted, the strain being constant and the impulse temporary, they ultimately become equilibrated and form a constant couple, revolving round the center where both bodies balance according to the simple principle of leverage. As tension or pressure, when meeting with insufficient resistance, acts dynamically, and statically when rehe ether equal and opposite, the condensing pressure of the ether, which is physically the centripetal force, enforces
approach in bodies free to move; but an angular motion, approach in bodies free to move; but an angular motion,
when the stains are equilibrated, offers a constant resistance without expenditure in work, by the loosening tensions being equal in amount to those formed, and they become merely a line of connection, along which each body acts reciprocally as driver and follower. Any number of bodies, then, each of which creates a tension in the medium connecting them, and yet offers no resistance to the constant ethereal pressure, will all move until the tensions are equilibrated; if towards each other, with accelerated motion; and if resolved into couples, will continue in such coupled motions-a conservative sys tem of parallel forces.
Although there is nothing positively known respecting the origin of cosmic systems, it appears most likely that they develope from vast vortices produced in a nebulous mass: elec trical action giving the first mechanical impulse, from which they ultimately settle down into static systems of moving bodies: as the dust in the whirlwind, produced by electrical force, settles at length in the place where gravity gives it
position. The observed variations from the general plane of balanced motionser variations from the general plane o system, would seem to show that mechanical action has not been alone operative; possibly the same force which primari ly evolved the nebulæ from the ether, impressing the conditions of motion and position. That the molecular condition of bodies, as altered by a transmutation in the correlated forces, will modify the conditions of mass motion, while the gravitation tensions which are towards the center of bodies remain constant, conflicts with neither theory nor observa tion. The disintegration, direction, or eccentric orbit of a comet is no more inconsistent with the balanced mass mo-
tion of dense bodies, in the system of which it forms a part, than a gunpowder explosion, so long as it moves to or from a center of force. The mechanical conditions of a conserva tive system, as a final result from theory, is that it forms one vast couple, unchangeable by any local interaction of its com-
potent parts the greater masses, by their greater moments
of inertia, deviating, in general, least from the plane and circular curve of coupled motion.
All bodies, by thus stressing the ether, enforce motion in all others; and as all move unresistingly, it follows that the enforcement to motion of all at a like distance, by the same stress, will be the same whatever the masses enforced: the power, however, being always directly as the masses enforc ng. The energy of tension is therefore invariable, whatver diversity there may be in the number of bodies enforced to move, or additional motion produced by the disintegration of a body itself. Nor can intervening bodies cut off the effect, being themselves unresistingly enforced, and adding their own nforcement. Theory and observation thus coincide.
The intensity of stress in the ether necessarily bears a definite relation to the cube of the distance, being greater as the condensed mass is greater, and manifesting itself inde pendently of time. The motive force thereby induced is therefore as the joint mass of a couple. And as the force of motion is as the time of moving squared, so the time squared will diminish as the cube of any assignable distance, render ing the amount of motive force during one revolution for any equal couple invariable, however far apart. Thusever mass of matter in the Universe, equal to one cubic mile of the average density of the earth, enforces a motion in all others and would enforce a motion of its own particles, if disintegrat d, sufficient to produce revolution round a sphere of ether of ne mileradius in about 173 minutes: the space being divided among the disintegrated fragments, and multiplied by the ditional bodies.
It will be evident that, with this mode of conceiving of the ther and ponderable matter, there is nothing that conflicts with the mode of action of the radiant forces. The etherea medium by resisting equably all breach of continuity, is sub stantially an isotropic solid, and all particles of gross matter, centers of spheres of tension. Waves of vibration will thus naturally run transversal to the direction of propaga tion to all distances. All possible loss of radiant kinetic energy, by friction in interstellar space, may become potential in the transmutation of ether into dense matter. For the struct ural qualities of the various elements will, in the return ransmutation into ether, impress upon it their characteristic motions, which will travel onwards until their energy is ab sorbed by ethereal friction, or taken up by the similar clements of other ponderablematter. The radiant forces poss essing a well defined amount of mechanical energy would seem to necessitate the constitutive qualities of every portion to be constantly modifying the constitutive qualities of each other ; although only material atoms in indifferent equilibrium as to motion, as on a photographic plate, or bodies of similar constitution, may palpably manifest it. Optical phenomena show the ether to be in a condition of indifferent equilibrium as to form of motion; and it is not unreasonable to look upon it as being so in regard to constitutive charge. Electro-magnetic induction and polarity appear more intelligible in the light of the stressed connection of every particle of matter light of the stressed connection of every particle of matter,
with the equal and opposite flow within the stress of tight ning and loosening tensions. As there can be no translatory motion in the ether, save in those portions condensing, constant of aberration necessarily follows. But as the modes of change into ether are as various as the constitution and conditions of ponderable matter, we may have an infiite diversity in the lengths, directions, and velocities of thereal vibrations.
Should the above theory meet with general acceptance, not only will the dispute between the advocates of action at a distance and those of action by contact have become ended, but a necessary Creative Power, in constant activity, will be een to be consistent with. laws of evolution through a per istent physical force: views hitherto deemed irreconcileable
Philadelphia, Pa.
William Denotan.

The Grasshopper Plagu

To the Editor of the Scientific American:
In your issue of July 7 there is a paragraph in relation tc the late invasion of grasshoppers; it contains a suggestion hat said invasion may prove a blessing instead of a curse.
The phenomenon of a now variety of grass springing up in the localities lately infested with these insects is not as surprising as one may be led to suppose. A fact not gener ally known, but nevertheless quite worthy of attention, is that about three quarters of the newly born grasshoppers die while changing their skin, from the effects of cool rains, heavy winds, or otherwise; these, together with the excre ments or detritus of the grasshoppers, are the very best rements or detritus of the grasshoppers, are the very best re-
invigorator of withered or exhausted grass roots; conseinvigorator of withered or exhausted grass roots; conse-
quently the extraordinary growth of luxuriant grass can be quently the extraordinary growth of luxuriant grass can be
attributed to the nourishing deposits made by these insects. attributed to the nourishing deposits made by these insects. article is the same variety as that which came under my observation in Southern Russia, under the same circumstances, but I should be very much surprised if it were not. That which I examined grew in spots where no grass suitable for pasture had been previously known to grow; it was tender and very sweet, so much so that 6 per cent saccharin matter was extracted from it. It was of a bright emerald green, and cattle ate it with avidity; it was called by the inhabitants solodycia or sweet grass. It continued to grow for 3 or 4 years, decreasing in richness each season, until it became coarse, insipid, and dry, and totally unfit for grazing. And more wonderful still, it was the facsimile of the grass which formerly grew in these places. I therefore conclude that both grasses, the rich and the poor, come from the same
roots, and not from seeds of another country brought by grasshoppers. The grass losing its richness is explained by the exhaustion of the soil, which is replenished by the grasshopper manure
New York eity.
G. Presper Zaleski. New York eity.

AUGERS.

Continuing our series of extracts from Mr. E. II. Knight's Continuing our series of extracts from Mr. E. I. Knight's
Mechanical Dictionary,"* we give below a number of illustrations, together with descriptions of various forms of boring tools. Augers are nade in numerous forms, including hollow augers, annular augers, taper augers, augers with secondary borers, reamers, or countersinks, or having expansive, cutters.
L Hommedieu's auger, Fig. 1, has two pods, two cutting

Fig. 1.

Fig. 2

lips, a central screw, and a twisted shank. It is, on a smaller scale, like Stephenson's Rocket engine, the type of its class. The form of anger which in England is called the American pattern was patented by Shetter, in 1831. (See Fig. 2.) It has a spiral blade around a cylindrical core, and was long a favorite. It probably offers more impediment to the discharge of ${ }^{\star}$ the chips than does the shank made from a flat blade twisted into a spiral. Some auger shanks have an increased t wist as they recede from the point; this gives a greater freedom of discharge by increasing the caliber of the canal as the chips ascend.
In Cook's auger (Fig. 3) the cutting lips commence at the point, and extend therefrom nearly at right angles, unti about half way from the center to the outer point, and the ${ }_{n}$ curve upward and forward, giving a nearly semicircular form to the out er portion of the lips, which are curved in the horizontal and vertical planes.

Kasson'sauger(Fig. 4) permits the

Couk's Aurer.

Kinsun's

Hollow Auger.
cormation o vutting lips at any point on the length of the spiral, by cutting off the twist at any point in a plane ver ical, or nearly so, to the axis of the auger, and then sharp ening its edges. The front surfaces of the twist are con cave, and the rear convex.
The slotting auger (Fig. 5) cuts laterally, the work being fed against its side. It is used in wood mortising and slot ting machines. The twist is formed into a number of chisel shaped lips rising from the edge of the twist, and presenting sharp edges in the direction of the bore of the auger, so that the wood may be cut laterally if pushed against the in strument after the hole has been bored to a sufficient depth for the proposed mortise or slot. If the auger or bit be held in the rapidly revolving arbor of a mortising or boring machine, the riortise may be cut at full depth at one opera tion, by moving the wood laterally against the auger. Th corners of the mortise are afterwards cut out by a chisel.
Hollow augers are used for forming tenons on the ends of spokes, bedstead rails, chair rounds and legs, table legs, and many other articles. The tool shown in Fig. 6 is adjustable for boring holes of different sizes. The rotary disk has ec centric slots acting upon pins inserted into the backs of sl ding cutter heads, so that they are driven out or in simulta neously, and fastened by a jam nut, which holds them in the required adjustment

Fig. 7.

J. B. Ford \& Co. Ne

Fig. 7 has cross handles like an auger. The cutting rod is so attached as to project within the opening, and the size
of the tenon is regulated by the adjustment of the angular rest. The tool has the usual auger handles, in which respect it differs from most of its class.
Annular augers cut an annular groove, leaving land on the inside and outside of the channel. The example (Fig. 8) is adapted for boring cylindrical blocks out of a board tube is a cylindrical plug with a central point. On the re

Fig. 8. Fig. 9. duced shank of the plug is a spi-

 extended, except when pressure is applied to the tool in boring. is appledto cutters on the ond tube (Fig. 9) make an annular groove and leave a core of wood groove and leave a core of wood
in the center, the chips being

An mular Aıger.
withdrawn continuously by the spiral blade on the tube. The cutting lips start at the periphery of the bit, and ex tend towardsthe center in concave lines, till they terminate at the inner portion of the tube, where their direction approaches a line parallel with the axis of the auger. In a subsequent form a number of tubes are arranged concentrical y, so as to cut concentric annular grooves simultaneously and produce a nest of cylinders out of the same stick or board.
Yet another form is found in the tool (Fig. 10) sometimes known as a button tool. It has an upright center standard, with a fine feeding screw on the lower end. The cutter is attached to a ra ial arm, and is adjustabl so as to describe the diam eter required for the hole. The cutter is fed to its work by the thread on the standard, and the chips are ejected by the curved neck. Taper augers (Fig. 11) are used for reaming out bungholes, making butter prints, etc. The center bit bores a hole, and is succeeded by the taper reamer, which has a throat for the chips, cutthrough from the edge of the bit on on the to the opposite the stock The bunghole the stock. The bunghole reamer (Fig. 12) has a ta pering pod, and a cutting lip on one side; the lower end is closed to receive the

Among the other uses of augers may be mentioned that of felling trees in the Mammoth Grove, Calaveras county, Cali

Fig. 17.
 fornia. The "Big Tree," a it was called, contained 500, 000 feet of inch lumber. It was felled by five men working 22 days, making $112 \frac{1}{2}$ days' labo to fell one tree. This tree measured 92 feet in circumfe rence at the base. It was no rence at the base. It was no bored down with long pum bored down with long pump augers, and the wood remain ing between the holes was cut of with chisels on the end of long sticks. Fig. 18 is a faucet with an attached auger, by which the

necessary hole is made in the head of the cask. Fig. 19 represents a device to be attached to the shank of an auger to
 limit the penetration. The ex ample has a pair of bars, se cured by temper screws to the spiral shank, so as to form gage of depth.
Another form has a telescopic tube attached to the shank, larger in diameter than the worm, and adjusted as to length by means of two temper screws whose ends bear against the spi ral shaft.
Fig. 20 is for making tenons of a given length on the ends of spokes, etc., and it is adapted for hollow augers. The rear of the stock has a thread traversed by an adjustable screw, which, by contact with the end of the stick, determines the depth of the hole and consequently the length of enon to be cut. A jam nut secures the adjustment

New Burn mixture

Take the best white glue (extra) 15 ozs. Break it into mall pieces, add to it 2 pints cold water, and allow it to become soft. Then melt it on a water bath, add to it 2 fluid ozs. glycerin and 6 drachms carbolic acid, and continue the heat on the water bath until a glossy, tough skin begins to form over the surface in the intervals of stirring. The mixture may be used at once, after the glue is melted and the glycerin and carbolic acid are added; but when time allows, it is advisable to get rid of a little more of the water, lows, it the proper point is reached. On cooling, this mixture
until hardens to an elastic mass, covered with a shining parchmentlikeskin, and may be kept for any time. When using it, it is placed for a few minutes on the water bath until sufficiently liquid for application (it should be quite fluid). Should it at any time require too high a heat to become fluid, this may be corrected by adding a littlewater. It is applied by means of a broad brush,and forms in about two minutes a shining, mooth, flexible, and nearly transparent skin. It may be kept for any time, without spoiling, in delf or earthen dishes or pots turned upside down.-American Journal of Pharmacy.

SPAYTH'S RAFTER SCALE AND BEVEL GAGE.
The annexed engravings represent an attachment to car penters' bevel squares, whereby the blade of the same can be adjusted and set to any desired angle. The device consists of a quadrant divided on its face into the degrees of a quarter circle, and attached to the square stock by means of a stationary linge..

The construction of the hinge and of the plate, detached, is shown in Fig. 2, from which it will be seen that the point of intersection of all the divisions on the plate and the tongue varies according to the number of degrees of the angle indicated between them. It will also be observed that a row of fractions is added just inside the outer of fractions is added just inside the outer carpenter to set the bevel square to any decarpenter to set the bevel square to
sired inclination or pitch of a roof.

By means of this implement the inventor By means of this implement the inventor
has been enabled to compute a series of tahas been enabled to compute a series of ta-
bulated rafter scales, giving the exact length bulated rafter scales, giving the exact length
of rafter required in any building from 4 to 40 feet in width for nine different pitches of roof. These tables are published in convenient form and, with the quadrantbevel gage, will doubtless prove valuable aids to carpenters and builders generally.
For further particulars address Mr. W. O. Spayth, Tiffin, Ohio.

New Plan for Propelling Canal Boats. A novel method of propelling canal boats has lately been introduced in Belgium, as follows: The towpath is laid with a single rail, weighing some 16 lbs . to the yard, and fixed on traverses a little more than three feet apart. The locomotive has four wheels, two of which are placed directly along the axis of the vehicle, one in advance of the other, and the others one at either side. The first pair are directing and the second driving wheels. The directing wheels are grooved and fit the rail; the others have rubber tyres, which give purchase on the macadamized road, and which press thereon to the extent of 0.07 lbs . to the square inch. By means of a simple mechanism, the i of a simple mechanism, the weight of the ming or directing whels at will. In the forving or directing wheels at will. In the former case the maximum, and in the latter the minimum, of adherence is obtained, to suit the conditions of a loaded or an empty boat. There is but a single road, with rotary engines provided at to round the sharpest curves with ease, and to avoid the fresuitable distances. Each locomotive tows one boat; and when quent danger of collision incident to crowded localities. a meeting takes place of two traveling in opposite directions, the engines change boats and retrace their paths. The locomotives weigh four tuns each, and travel about three miles an hour, with full boats carrying a cargo of 150 tuns each.

THE HERCULES SCREW PROPELLER.

The annexed engraving represents a new form of screw propeller, so attached to the vessel as to serve the double

purpose of a means of propulsion and a rudder. The wheel may be obtained separate from the rudder attachment when desired. It is claimed that the peculiar curve and shape of the blades causes the water to leave themin a spiral column at the hub. The spread of the water is thus prevented, and the force of propulsion, according to the inventor, is concentrated directly back of and within the diameter of the wheel. The combined wheel and rudder attachment is intended to obviate the resistance offered by the usual form of rudder to the free passage of the water from the screw, causing a loss, it is estimated, of from eight to ten per cent of the motive power.
The axis of the propeller is hung in bearings in a stout metal frame, which is pivoted to the sternpost of the vessel
or to outriggers on the same, and is so connected with th tiller as to be readily swung to the right or the left thereby The propeller shaft projects out through the stern post, and is attached to the propeller axis by a flexible coupling joint, A, which consists of two jaws upon the shaft, circular on their face. Similar jaws are affixed to the propeller, and all are united by joint pins to hold them in place. The joint is made of cast steel and is. very strong in construction. For canal and harbor navigation, this invention furnishes a quick and powerful steering apparatus by which boats are enabled
would be easy; while, the sides being constructed of india rubber, a heavy sea would not crack it to splinters against the ship's side, as in the case of an ordinary ship's boat. The main cylinder is hollow, for the purpose of holding oars, sails, and provisions, and the bulwarks are of netting and canvas fixed to iron stanchions.

An Enameled Iron Celling.

A ceiling made of thin plates of iron, and enameled, has in its place in the central refreshment room of the South Kensington Museum, London, and is probably the first experiment of the designed to resist all dirt and impurities in cident to a public room where food is eaten by an average of 10,000 persons a weet The walls and columns are of majolica, the floor is paved, and the ceilings are of iron enameled. The whole gives an impression of perfect cleanliness, and every part might be washed down by a fire engine weekly, if necessary.
The manufacturing part of this ceiling was done at Birmingham by the Enameled Iron Company, the whole enameled plates being sent from Birmingham, and painted with charming and vigorous arabesques by the artist, Mr. James Gamble. The work is highly effective and the experiment success ful. In cases where it is necessary to keep a ceiling clean and to wash it frequently, this material promises to answer perfectly, and the artistic work will last for centuries, as the design is burnt into the enamel.

The New Paris Opera House.] To raise the temperature with sufficient rapidity before the commencement of a performance, and to provide for a renewal of air at the rate of nearly $3,000,000$ cubic feet per hour, fourteen hot water and hot air furnaces are employed. They consume ten tuns of coal per diem. To carry off the vitiated air, the upward draft created by the central luster is utilized through several large conduits communicating with different parts of the house, while fresh air is admitparts of the house, while fresh air is admit-
ted through openings measuring from 26 to ted through openings measuring from 26 to 32 square yards. The footlights are arranged to burn upside down, the flame be ing drawn downwards through sheltering ing drawn downwar

JONES IMPROVED BLIND STOP.

The annexed engraving represents a rew form of blind stop, the object of which is to retain the slats of the blind in any position in which they may be adjusted. The advantages of the device are that it prevents the rattling of the slats by the wind, and enables them to be kept with the pitch

upward, and thus clean; and being on theinside, it prevents the slats being opened from the exterior, serving in this res. pect as a protection to the window.
The slat rod is connected to the rod, A, which has several notches near its lower end. Rod, A, passes through slots in a box in which there is a spring catch operated by the thumb piece, B. Said catch engages in the notches of the rod, and so locks it at various points of elevation. The wire, C, serves to connect the panel with the one above, so that the slats of both may be controlled by the single device.
Patented through the Scientific American Patent Agency, February 2, 1875. For further particulars regarding price, also relative to sale of rights, etc., address the inventor, Mr John D. Jones, P. O. Box 523, Omaha, Neb.

THE ANT-EATER FAMILY.

The ant-eater is a remarkable animal of the old genus myrmecophaga, and of the edentate or toothless order. The hind feet are plantigrade, and armed with large claws ben inward, so that the animal walks on the extreme edge of the foot. This arrangement is a wise provision of Nature for preserving the claws from damage, they being used for tearing down the ant hills and unearthing the insects on which the animal chiefly feeds. The South American variety is a hairy creature, sometimes called the ant bear (myromecophaga jubata); it is about four feet long, and has a bushy tail of two and a half feet more, and its hight at the shoulder is about three feet three inches. The tongue of the ant-eater is re markable; it can be darted from the mouth to a length of eighteen inches, and is thus very effective in picking up its food, very effective in picking up its food, re sembling in this respect the tongue of th chameleon
We publish herewith an engraving of the scaly ant-eater, commonly found in Africa and Asia. This specimen is known as the pangolin, and its scaly covering is formidable, being hard enough to turn a musket ball. When it is alarmed, and cannot reach its hole in the ground, it rolls it self up like a ball, throwing up the sharp edges of its scales, and then the animals which usually attack it are glad to let it alone.
Sir Emerson Tennent, while in Ceylon, kept two of these creatures alive at one time, and says: "One was a gentle and af fime, and says: "One was a gentle and af fectionate creature, which, after wander-
ing over the house in search of ants, would ing over the house in search of ants, would
a.tract attention to its wants by climbling up my knee, and laying hold of my leg by its tail. It seized ants by extending its long, glutinous tongue along their track."
Still another kind is found in Africa, it is called the phata gin. In the hot countries where all these species have their habitat, the ants are very troublesome, and destroy much property, and animals that are capable of getting rid of them in such numbers are viewed by some eastern races with superstitious awe.

A Human Analysis.

Dr. Lancaster, of London, recently analyzed a man, and presented the results of his investigation in palpable form to his audience during a late chemical lecture. The body operated upon weighed 158.4 lbs . The lecturer exhibited upon the platform 23.1 lbs . carbon, $2 \cdot 2 \mathrm{lbs}$. lime, 22.3 ozs. phosphorus, and about 1 oz. each sodium, iron, potassium, mag nesium, and silicon. He apologized for not exhibiting 5,595 cubic feet of oxygen, weighing $121 \mathrm{lbs} ., 105,900$ cubic feet
of hydrogen, weighing 15.4 Jbs ., and 52 cubic feet of nitroof hydrogen, weighing 15.4 Jbs., and 52 cubic feet of nitro-
gen, likewise obtained from the body, on account of their gen, likewise obtained from the body, on account of their
great bulk. All of these elements combine into the following: 121 lbs. water, 16.5 lbs . gelatin, 132 lbs fat, 8.8 lbs . fibrin and albumen, 77 lbs. phosphate of lime and other mineral substances.

Action of Sulphuric Acid on Lead and its Alloys.

 Few metals are able to resist the action of hot oil of vitriol, lead being, of all the common metals, the least acted upon by this acid. The addition of some metals assists lead to withstand the attacks of sulphuric acid, while others render it a more easy victim. The careful experiments of A. Bauer, which were published recently in the Berichte der Deutscher Chemischen Gesellschaft, cannot fail to be of practical value to manufacturers and others.Several alloys were prepared by fusing pure lead with other metals, the exact composition being determined by analysis. These alloys were rolled out into plates of equal thickness, and heated in a suitable: apparatus with sulphuric acid of $66^{\circ} \mathrm{B}$., the temperature at which a reaction took place being carefully observed. The apparatus consisted of a flask secured in position a little above the bottom of an air bath, the sides of which were formed by a glass cylinder A thermometer, reaching down to the acid in the flask, showed its temperature. In every experiment an equal weight of alloy and an equal volume of acid were employed. The results were as follows

1. Pure lead: A strip of pure lead weighing 3 grains was heated in $3 \frac{1}{2}$ cubic inches sulphuric acid of 66° B. At about 347° Fah., a considerable evolution of gas took place, which was stronger at $374^{\circ} \mathrm{Fah}$. At 446° or 464° Fah., all the lead was at once converted into sulphate of lead, which dissolved in the sulphuric acid. At this sudden decomposition, sulphurous acid and hydrogen appeared, and sulphur separated.
2. Alloys of lead and bismuth: (a) With 10 per cent of bismuth. The action began at 302° Fah., and continued, slowly and quietly, up to 374° Fah., at which temperature all the metal was destroyed. (b) With 4 per cent of bis muth. The decomposition followed more rapidly than with the 10 per cent alloy, and was finished at 266° to 284° Fah (c) With $0 \cdot 73$ per cent of bismuth. The decomposition followed, suddenly and completely, at $320^{\circ} \mathrm{Fah}$.
3 Alloys of lead and antimony: (a) With 10 per cent of antimony. This alloy decomposed slowly and steadily; a strong action began at 374° Fah., and ended at 446° to 464° Fah. (b) With 5 per cent antimony. This alloy also dissolved slowly. A more violent action began at 356° to 374° Fah., and the end was at 428° to 437° Fah. (c) With 1 per cent antimony. Here too the decomposition is slow, but a
considerable evolution of gas takes place at 482° Fah., and the action is ended at 536° Fah.
3. Alloy of lead and arsenic: Containing 10 per cent arsenic. This alloy acts very like the 10 per cent antimony alloy. The action is slower, and ends at 464° Fah.
4. Alloy of lead with 1 per cent copper: This acts very similarly to the 1 per cent antimony alloy; a strong reaction begins at 482° Fah., and all the metal is dissolved at 536 Fah.
5. A
6. Alloys of lead and platinum: (a) With 10 per cen
platinum. The decomposition is slow and incomplete, an
and the eggs from which they spring having been laid in the previous autumn in numbers, near each other, large familie r societies speedily spin a commodious tent, represented in the engraving, in which they are sheltered from sun and rain. At first a number of leaves are inclosed in the web and on these the young larvæ feed. These are soon con sumed. The tent is then enlarged, and more leaves covere in. When all these are consumed, they flit to a new region, where they spin a new web. This, repeated by multitude of families all over the tree, leaves it utterly consumed, and nnihilates all chance of the smallest crop. In the month of July the larva passes into the chrysali state in its web, the head being down wards. The perfect insect comes out in August. After coupling, the female lay her eggs in numbers in the bifurcation of he branches. The young larvæ are hatched n the month of September. They the helter under a slight envelope of silk, when they pass the winter in a state of tor pidity, out of which they awake in the month of May, to follow the course of lif above indicated. This species feeds on th apple, the thorn, and sometimes on the ser vice tree; rarely, if ever, on anything else he larra, when young, at the beginnin f May, is yellowish white, covered with mall blackish points ; the head and plate o he first segment are blackish brown. Whe is adult, at the end of June, it is velve y gray, with two dorsal rows of deep black quadrangular spots. The head, the plate f the first segment, and the true legs ar dull black. The perfect insect has the up per wings entirely pure white, without an inge of leaden hue, and with about twen ty-four small black spots. The lowe

THE SCALY ANT-EATER

ends at 536° Fah. (b) With 2 per cent of platinum. The decomposition is sudden and complete, between 500° and 536° Fah.
7. Alloy of lead and tin with 10 per cent tin: This alloy 392° Fah.
These experiments show that the addition of a little anti mony or copper renders the alloy more able to resist sul phuric acid, while bismuth has a decidedly injurious effect

THE COBWEB APPLE MOTH.

The little moth represented in the accompanying engra ving is very injurious to our apple trees. As is often the case ts size bears no proportion to its destructive powers. Th iparis chrysorrhea, for example, which is a moderately larg

bombyx, is generally thought a very bad inmate in an or chard, and on the continent its hurtful propensities are so well known, and the means of counteracting them so simple, hat municipalities and powers have given it renown, by en acting decrees for its extermination and putting a price upon the heads of its members : and yet, destructive as it is, it is othing to this tiny yponomeuta. The liparis strips the ranch on which the brood has been established-nay, many banches may be wholly defoliated, but the whole tree is rarely entirely stripped, whereas the yponomeuta spares no-
thing; it invades the whole tree, and leaves it as bare as if thing; it invades the whole tree, and leaves it as bare as if
fire or the locust had passed over it. One thing only it leaves behind it, as it were in charity or contempt, namely, a white eil wrapped round the tree, as if to conceal its nakedness. It looks like a forgotten skeleton enveloped in spiders' webs.
This is the work of the caterpillars. Hatched in the pre
vious winter, they revive in the months of May and June,
wings are blackish. The figures are slightly enlarged. No satisfactory remedy has been found for this scourge. Scorch ing the nests with blazing torches and sweeping them away with stiff brooms have been suggested; but the suggestions are neither very practical nor efficient.-The Garden

The Magnetization of Gas Spectra

Some very curious experiments have recently been laid before the French Academy of Sciences by M. Chautard, re lative to the influence of a powerful magnet upon the spectra of gases contained in Geissler tubes and illuminated by mean f the electric current. In all simple bodies of the chlorin amily, and in the gaseous or volatile compounds derived therefrom which thus far have been examined, the action of the magnet is immediate, and manifests itself, not merely by change of color in the tube, but by an increased brillianc of the spectral lines, which become doubled. The bodie thus far submitted to investigation, besides chlorine, which behave similarly include bromine, iodine, the chloride, bro mide and fluoride of silicium, the fluoride of boron, hydro chloric acid, chloride of antimony and of bismuth, bichlorid of mercury, and the protochloride and bichloride of tin
The lights of sulphur and of selenium become extinguished he instant the magnet is excited, and the same is the cas with that of the tubes containing chlorine, bromine, and iodin when the tension of the coil is suitable. The feeble bril liancy of the oxygen illumination is not sensibly modified or is that of carbon compounds, such as carbonic acid, car onic oxide,etc. The fine bands of the nitrogen spectrum are not changed,except in the red and yellow portion. These colors become almost completely extinguished, or at least ar replaced by a flat uniform tint, in which all traces of lines disappear. The lines in the more refrangible region re main intact.
The hydrogen lines keep sensibly their normal appearance, but by employing a sufficiently powerful magnet, at th moment of excitation a very brilliant yellow line appears, which is due to sodium, doubtless obtained from the sur rounding glass. This line vanishes as if by magic when the current is interrupted, to reappear again, however, fo some time, as often as the electric flow is established Eventually it loses intensity, and it becomes necessary to allow the tube several minutes of repose before the line can gain be caused to appear. It shows itself also in nitroge ubes, and in those containing carbonic and hydrochloric acid.
The protochloride of tin, crystallized and dry, but bihy rated, offers remarkable phenomena of dissociation unde he magnetic influence. Normally the spectrum is pale, and shows a few of the green chlorine lines; but as soon as the magnet is excited, two characteristic bands of hydrogen, the red and the blue, appear, which remain as long as the mag. netization exists, and return with the same indefinitely. M Chautard attributes this to the momentary separation of the lements of the water of the salt, due to the considerable esistance opposed to the passage of the induced current dur ing the magnetization.
M. Chautard's investigations are still in progress, and doubt ess further novel and interesting results remain to be ad duced. The phenomena noted are remarkable, and will at tract the close attention of chemists and physicists generally

At Columbia, Tenn., recently, the boller of a steam thresher suddenly exploded, killing three and wounding seven persons who were working the machine. It is stated that one piece of the boiler fell at a distance of three miles from the scene of the disaster; but this requires confirma tion. The cause of the explosion was the usual one-care tion.
lessness.

Printing Photographs by Machinery.
The name of M. Despaquis has for several months past been associated with earnest efforts made, not unsuccessful ly, to hasten the advent of the time when the production of photographs at the printing press may be effected with a degree of celerity rivaling the production of typographic works at the platen printing machine.
Like, we believe, all typographic machines in which ra pidity is a desideratum, the printing surface in this proces is curved; but unlike the typographic processes, the " surface " in this case is that of a flexible endless band, which passes over two rollers.
Before describing the press and its mode of action, we shall explain the construction of the flexible printing band. A web of flax or hemp (not of cotton or wool) is faced with bichromated gelatin, on the surface of which the light has been allowed to act through the negative, and this it is which becomes the printing band. But a certain method of procedure is requisite in the preparation of this gelatined linen. A single pellicle of gelatin is treated by itself under the negative, and when exposed to light it is sponged on the surface with cold water containing a little glycerin, which retains the surface in a state of moisture, and thus prevents it from becoming insoluble during the operation which follows. This latter consists in laying down the cloth referred to upon the back of the pellicle thus treated, and sa turating it thoroughly with bichromated albumen, in conse quence of which, after it has been exposed to light, no water can penetrate the film or, at any rate, act upon the linen in such a way as to cause it to swell or become altered. - The albumen is applied by means of pouring it of the linen, by which the albumen, linen, and original pelli cle of gelatin, which bears the impression ible we sing the back to the light the entire body of the band is ren sing the back to the light, the entire body of the band is ren-
dered insoluble, except on the extreme surface already ex posed under the negative, and upon which the light has now no more action, owing to its being still moist with the glycerin.
This forms the flexible printing surface, and it is, impossible not to admire the ingenuity displayed in its production We now arrive at the press in which this endless printing band is to be utilized. The following is a view of the press in elevation:

In the above, b a represent two rullers or drums, to one of which is attached a handle, d, for the purpose of rotating it. Over these rollers passes a cloth either of ordinary maprinting pellicle just described. Three rollers, at $h h$, serve printing pellicle just described. Three rollers, at $h h$, serve to moisten the printing surface in the same way as a lithographic printer moistens the surface of his stone by a wet
sponge, while a series of other rollers, shown at $i i$, serve to sponge, while a series of other rollers, shown at $i i$, serve to
ink the surface wherever the moisture absorbed admits of the ink adhering. At e is an adjusting screw, by which the large rollers are separated to such an extent as to insure the printing band being retained in a tight state.
A third roller, f, is placed so as to act against c, and produce the pressure of the paper, g, against the printing cloth. On this roller turns an endless cloth, k, in flax or zinc, which passes over a second movable roller, l, which serves to stretch it more or less. Connected with the roller, m, is the paper, in a band, which unrolls by the action of the two large rollers, f and c.
It is, of course, necessary that the ends of the printing cloth should be united by sewing-not forming a thick seam, but so as to pass smoothly between the two cylinders.-British Journal of Photography.

THE AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE

The regular annual meeting of the above named association convened at Detroit. Mich., on the 11th of August. Hon. C. J. Walker, of Detroit, delivered an address of welcome, to which Professor Hilgard, as President of the Association, made a suitable response. Up to the time of writing the members have been engaged in organizing details, so that, with the exception of the speech made by the retiring President, Dr. Le Conte, a brief resumé of which is given below we defer publication, of our usual abstracts of papers of interest read, until our next issue.
Dr. Le Conte's address dealt with the evidences of evoluion, and he endeavored to show that, while change of species may be admitted in creation, there still is reconcilable evidence of intelligence and design. He discussed the strict relation of natural history or biology to that great mass of learning and influence which is commonly called theology and to that smaller mass of belief and action which is called religion; and in reference thereto stated that it will be neces sary to separate the essential truths of religion from the ac andies of tradition, usage, and, most of all, organizations and interpretations, which have in the lapse of time gathered around the primitive or revealed truth. In conclusion, the gion has been beneficial Scholastic interpretations founded
upon imperfect knowledge, or no knowledge but mere gues have been replaced by sound criticism of the texts and their
exegesis, in accordance with the times and circumstances for exegesis, in accordance wit
which they were written.

The Most Powerful War Vessel in the World.
The British ironclad Inflexible is now about one fourth completed, work having been begun upon her in February 1874. Unless the progress of invention results in the proecting of a still more formidable engine of marine warfar before the Inflexible is launched, she will possess the thick est armor, the heaviest guns, the largest displacement in uns, the most machinery in the world, and probably prove more expensive than any other war vessel hitherto construc ed. She will have engines for steering, for loading guns or hoisting shot and shell, for ventilation, for moving tur rets, for lowering boats, and for turning the capstan as well s for propulsion. The vessel is little more than a floating astle, rectangular above water, 100 feet long, by 75 feet in idtb, and protected by 24 inches total thickness of iron The two turrets which are placed within the citadel ar ormed of iron of a single thickness of 18 inches, and withi ach of them are two 80 -tun guns, which can be trained to point of the compass.
The main engines work up to 8,000 indicated horse power he vessel is placed at $2,605,000$ dollars.

Centennial Notes.
Egypt is to makean exceptionally fine display at the cen ennial. The Viceroy's Commissioner has arrived in this country, and is pushing preparations vigorously. Egypt acts conjunction with Germany.
The General Transatlantic Steamship Company offer re duced rates to freight and passengers coming from France to the Centennial.
Application has been made by the Royal Academy to the English Government for the latter to defray the cost of transporting works of art for exhibition in the Centennial. The request was favorably received, and is now under conderation.
Mr. John Jay recently gave his views regarding the Centennial in an extended letter to the Tribune. He advocates the division of spaceinto national and State plots. Such a plan, hethinks, would do much to develope that international rivalry to which the Vienna Exposition chiefly owed itssuccess, while it would be less expensive to the Centennial Commission. He also advocates international scientific discussion upon a list of subjects to be selected by the Smithsonian Institute, congresses of scientific men being summoned from all parts of the world for the purpose, and national vessels being sent to transport them. Mr. Jay also suggests a congress which shall decide upon an international patent system which will give to an inventor in one country protection throughout the world.

A Brilliant Light

Fill a small vessel of earthenware or metal with perectly dry saltpeter or niter, press down a cavity into its surface, and in this cavity place a piece of phosphorus; gnite this, and the heat given off melts a sufficient quantity of the niter to evoive oxygen enough to combine with the phosphorus, and the effect is to produce the most magnificent white light which chemistry can afford. - Photographic Nevos.

DECISIONS OF THE COURTS.
United States Circuit Court---District of Massachusetts.
atent shade fixture.-stemart hartshorn $v s$ james f. almy et al.
[In equity-Before Shepley, J.-Decided April, 1875 .

 Was u
the ot
apple
the ac

hat patent.
In boththe Hartshorn and the Almy roller the pawl and ratchet are so ar-
rangedthat the one will engage with the other at any ponnt or hight of the

 ${ }_{\text {IS }}^{\text {S. }}$
J. D. L. Lay.. for complainant.

Supreme Court of the United States.

United States Circuit Cour New York.
> abramam busising.

[In equity-Before Woodruff, C. J.-January, 1875.]

 When a patentee claims and recovers, not only the actual gains and proits
 Made and sold the machine with the inclaental and consequental rigli
(o use ite the complainants had obtained an interlocutory degree for an ac-
Where

 $2=2=2=2$

United States Circuit Court---Southern District of New York. frederic A. yursherdt vi. robert werner.
In equity.-Before Blatchford, J. ; June, 1875.]

zecent Gatritan and foretign equents.

Improved Fire Escape Ladder.

David Sanford, Ashton, Ill.-This invention is an improvement upon the fire escape ladder for which same inventor obtained letters patent dated January 19, 1875. The lower section of the square
hollow ladder is connected to the frame by means of a gimbal coupling. By means of chains and windlasses, the ladder may be raised and lowered, and there are devices for holding it in any desired poition. Swiveled brace bars are added to give a firm support, and may be easily turned out of the way.

Improved Boot or Shoe
Wm. Meyer and Henry Freiburg, Quincy, Ill.-The invention conists in a boot or shoe having a wooden heel and shank with attached continuous insole, the latter being provided with flaps bent over
and secured to the under sides of the wooden shank.

Improved Bale Tie.

A. A. Szabo, Houston, Tex.-The invention consists in an improved bale tie block having a laterally open side slot from whose gether with cramping grooves, whereby the band can be tightened on the bale with great facility and without liability to slip.

Improved Harvester Knife Sharpener.
G. V. Phelps, Newark, Ohio.-The invention consists in combining, with a rotary grinder, a traveling pin in front, a guide on table,

帾
Improved Boring and Mortising Machine.
Henry Neamann, Central City, Col. Ter.-The invention consists
of a sliding support for a tool slide, contrived to be shifted around of a sliding support for a tool slide, contrived to be shifted around
on its sliding base, in combination with feed racks on both sides, whereby the mortising tool may be fed up to both ends of the mortise. The invention also consists in a portable boring and mortis-
ing machine, having rollers for shifting it along the timber easily, and provided with clamps and screws for attaching it to the latter.

Improved Chair Base.
William T. Doremus, New York city.-This chair base is so conently put together by the buyer. By means of suitable devices the legs will be held firmly in place, even when made of narrower timber than the breadth of the leg sockets. When a person leans back in the chair, he brings into play the elasticity of two rubber blocks,
an arm, and a long bolt. Several holes are formed in the arm to rean arm, and a long bolt. Several holes are formed in the arm to re-
ceive the bolt, so that the springs may be adjusted nearer to or farther from the bolt, which is the axis of motion to adjust the tension or strength of the springs to the weight of the person who will ordinarily use the chair.

Improved Chair Base.
William T. Doremus, New York city.-This invention consists in plates made with a central socket to receive a pivot, and with angular half sockets to receive the legs, and provided with pins and
screw holes for securing said legs in place. The legs are made in two parts, jointed to each other by tapering tongues and grooves.
Hollow pins are cast in the angles of the half sockets of the plates, Hollow pins are cast in the angles of the half sockets of the plates, and clamping the plates to each other and to the legs.

> Improved Lamp.

Joshua B. Godwin, Washington, N. C.-This is a taper tube, placed in a lamp burner parallel to, and in connection with, the ordinaiy in a lam
wick tub.
tained.

Improved Reversible Plow Point.
Marcus M. Bowers, Richmond, Va., assignor to himself and John
P. Schemerhorn, of same place.-This is a detachable and reversible plow point, made with lips upon the upper and lower edges of the
sides of its shank, whether said shank be made tapering or with parallel sides. Improved Sash Holder.
Patrick Mullane, Davenport, Iowa.-In the edge of the sash is an angular notch, the lower inclined side of which forms a smaller angle with the horizontal line than the upper side, the inclination of
the said lower side being not enough to bind a fastening roller the said lower side being not enough to bind a fastening roller
against the casing when the window is being raised. The incliaation of the upper side of the notch is such as to wedge the roller be-
tween it and the casing, so as to hold the sash fastened in any posi tion. The weight of the roller is such that the said roller will rest upon the lower side of the notch while the sash is being raised and upon the lower side of the notch while the sash is being raised and a
lowered. When the sash has been raised to the desired point, a lowered. When the sash has been raised to the desired point, a
glight pull upon a cord will raise the roller into the upper part of the notch.

Improved Hose Spanner.
John Burke, Newburyport, Mass.-The Jaws of a hose spanner are
provided with slots at some distance back from the ends thereof in provided with slots at some distance back from the ends thereof in
order to be enabled to obtain a closer bite and to be adapted to hose order to be enabled to obtain a closer
of any size. Improved Stove Pipe Joint
George D. Umland, Osceola Mills, Wis.-The object of this invention is to render the pipes of stoves and other heating furnaces less
dangerous than they now are, and to make them so that they candangerous than they now are, and to make them so that they can-
not work or be pulled apart when once put together; and it consists in spiral beads or grooves made to fit each other, so that the two parts may be put together by revolving either one.

Improved Butter Preserving Firkin.
John Wilhelm, Orrville, Ohio.-This is a butter firkin so con-
structed as to adapt it for receiving brine or pickle, which, by surrounding the butter on all sides, will prevent its becoming rancid

Improved Cooling Apparatus for Rooms. William Braeunlich, New York city.-Within a tank is placed a
coiled pipe, the upper end of which passes out through the upper part of the tank, and is led into the room to be cooled. The lower
end of the pipe passes out through the bottom, and is connected end of the pipe passes out through the bottom, and is connected
with a force blast rotary blower. In the center of the tank and coil is placed a cylindrical tank. The space around the coil is then filled with any freezing mixture which will cool the current of air passing through the coil, so that when introduced into a room it may
reduce the temperature of the same. The inner tank is provided reduce the temperature of the same. The inner tank
with a cover, so that it may be used as a refrigerator.

Improved Trileaf Scales.

Lucius H. Crane and Albert A. Miner, Brattleboro', Vt.-This is an improvement in measuring scales of trihedral form, used in drawing and in dividing spaces into equal proportions; and it consists in making the leaves detachable, and so that they, or any one
of them, may be drawn out from a common central core to elongate the scale.

Improved Car Coupling.

William H. Bodenhamer, Xenia, Kan.-This invention consists of
the coupling pin, fixed in a guide above the drawhead, to work up the coupling pin, fixed in a guide above the drawhead, to work up
and down, and also fixed in the end of a spring for lifting. The spring is extended rearward along the drawhead, to which it is connected. Under the spring, between the coupling pin and the point Where the spring is fastened, is a setting and tripping dog on a crank enter, and then let fall, for self-coupling, when the link strikes the

Improved Photographic Vignetting Machine sition of a serrated vignette between the sitter and the camera instrument, and, by means of a frame or other support, suspending the name of the sitter or other written or printed name or words from the camera as that occupied by the sitter.

Improved Gas Fitters, Lamp.
Joseph D. Galloway, Philadelphia, Pa.-This invention consists of a gas fitter's lamp that is provided with a hollow handle, forming the blowpipe, in connection with a flexible tube, swiveled thereto.
The white lead box is screwed on the wick tube of the lamp, forming thereby the cap of the same.

Improved Apparatus for Measuring Distances.

 Francis Weldon, Mominabad, Deccan, India.-This invention pro ceeds on the principle of first dividing into equal parts a straigh line, and then selecting a point at right angles to that line and at the didistance as to enable the observer to see distinctly each o visions being thus distinctly visible, a scale is made by setting up, a the point of observation and at right angles to the range line, a bar having a pointer hinged to it. This limb, when aligned on each ofthe divisions of the rangeline in succession, will exhibit a distinct movement, the registering of which is effected by an indicator and guide rod. The instrument is used as follows: Place the bar on a tripod and a support or other convenient rest, and from it measure the length of base for which the instrument may have been graduated. At that distance set up a staff to mark the exact spot at which an angle of ninety degrees is subtended by the instrument and the
object whose distance is to be ascertained. This can be done with an optical square reflecting tole ascertained. This can be done with On this staff direct the fore and back sightsof the bar, align the fore and back sights of the limb on the distant object, and the distance indicated by the index rod oa the graduated scale of the bar will be the distance of the object from the staff.

Improved Planoforte Case.
Harrison J. Baker, Chicago, Ill.-This is a cover for the key boa \downarrow for square pianos, which is contrived to be opened independently of the top cover of the case. Instead of coming forward to the fron rest, so as to expose the key board cover and other front portions of the top of the piano to view.

Improved Feed Cutter.
Thomas Webb, Elyria, Ohio.-This invention has for its object to were were granted to same inventor August 5, 1873, 80 as to make it run
steadier and with less friction, to enable it to be readily adjusted to cut the feed finer or coarser, and to enable it to hold the materia more firmly while being cut, and thus prevent any of the said mate rial from being drawn out uncut. When the machine is at work, a
hand nut is screwed up with only sufficient force to hold the feed gearing in gear, so that, should any hard substance get into the feed
box and be fed forward, a lever can be instantly thrown down to throw the feed gearing out of gear, and thus prevent the machin from being broken.

Improved Lock for Doors
William Unverzagt, Memphis, Tenn., assignor to himself and I A. Chase, of same plaç.-The drawing out of a slide piece changes the position of all the tumblers, so that their recessed extensions form a bar to the tongue pieces of the bolt, and render the opening
of the same impossible, except by setting all the tumblers to the of the same impossible, except by setting all the tumblers to the
exact position by means of a graduated key, which brings the tumbler extensions so far back that they enter on the openings of the bolt immediately between the tongues of the same.
Improved Machinery for Raising and Transferring Hides from Vats.
William Coupe, South Attleborough, Mass.-The machine may be
un from one tier of vats to another, or to any desired place. Two run from one tiier of vats to another, or to any desired place. Two nected. They may be raised and lowered by turning screws. To each of the cross heads are attached chains and hooks of galvanized ends of other bars, to which the hides are attached by hooks in the ordicary way. In using the machine, the green hides are hooked upon the upper bars. The machine is then run to the vat in which
the pack is to be placed, and the gearing is operated to turn the screws and lower the cross heads. As the lower bars enter th tanning liquor, the hooks are detached, leaving all the bars and the
hides in the liquor. To transfer hides from one vat to another, the c:oss heads are lowered, the hooks are hooked upon the ends of the c.oss heads are lowesed, the hooks are hooked upon the ends of the
bars, and the cross heads are again raised, bringing with them the bars and the hides. The machine is then moved upon the stationary or temporary track to the other vat, and the bars and hides are lowored into it in the manner before described.

mproved Liquid Mixer.

John B. Meyers, New Orleans, La.-This invention consists of a main mixing vessel or vat, with a revolving paddle or stirrer wheel arranged therein, in connection with the strainer vessels throug Which the liquids pass before entering the vat. Large quantities of time, while being also strained from any coarser impurities on the

Improved Double-Acting Pump.

Charles Gordon, Savannah, Ga.-Each stroke of the double piston
orces the water in the cylinder section at one side of the same forces the water in the cylinder section at one side of the same pipe, and to the delivery pipe, while the vacuum formed in the other cylinder section draws the water through the suction pipe Whin check valve into the same, to be forced on the return strok
of the piston to the delivery pipe, while the other section is filled with water through the opposite suction pipe

Improved Damper Mechanism tor Planofortes.

Edward Porter, New York city.-The object of this invention is t enable the dampers of the bass strings of a piano to be raised and
held suspended without raising the dampers from the other stringsthat is, the strings of the upper part of the scale-by means of the
ordinary damper or loud pedal mechanism. The invention consists in the strip attached to the forward upper part of the lifter rail, and extending beneath the forward part of the damper levers of tw
octaves, more or less, of the bass strings; and in the combination of the spring with the damper pedal spring, and with the strip attache to the lifter rail. Improved Padiock.
Henry S. Lockwood, South Norwalk, Conn.-The wards of the key correspond to the recesses of tumblers, so that, on the intro duction of the same, all the tumblers are engaged and thrown back.
The spear-shaped heads of the same are thereby released from the The spear-shaped heads of the same are thereby released from the
projeoting end of a projection of a sliding ring, admitting the slid ing of the ring for opening the lock. When a false key is introforced back with the opposite hooks of their spear heads against the honk-shaped end of a guard arm, so that the obstructing action o at least one tumbler prevents the opening of the lock. For attach-
ing the lock, no key is necessary, as the mere turning of the ring with the staple.

Improved Peg-Cutting Machine.
Jeremiah F. Smith, Keokuk, Iowa.-The cutters are applied a the outer ends of two forward extending arms, which spread in the
shape of a V from their common rear part, one being straight other being curved in upward direction. The stright arm is used for cutting out the heel of the shoe, while the lower curved arm re-
ciprocates forward and backward, and is passed easily along the ole edge for cutting the pegs, being guided along the upper thy potecting casing. The pegs are rapidly and neatly cut off by the

Improved
Improved Hot-Water Heating Apparatus. Ernest F. Wackwitz, New York city.-The heating pipes in the
heater are made flat and thin, so that they afford larger surface in proportion to capacity than round pipes do. By practical tests, it roportion to capacity than round pipes do. By practical tests,
it urface, with less than half the quantity of water that is containe in round pipes giving the same surface. A cross pipe is arranged on
the top of a vertical overflow pipewith both ends open, and inclined little to the horizon. The highest end discharges into the air hile the lower one returns into a funnel, from which a pipe lead down in the heater nearly to the bottom, for returning the wate hich may be forced up out of the overflow pipe by expansion while the steam will have freedom to escape.

Improved Burglar Alarm

Samuel Searight, Pettisville, Ohio.-This invention consists of the ombination of bells, revolver, and other alarm devices with suita e mechanisms that set them in motion when their cord co
tion with the doors and windows is stretched or interrupted.

Improved Dental Plugger
Candidus Bilharz, Pittsylvania C. H., Va.-Upon one side of the nner surface of the cavity of the head is formed a cam, which, as a od and head are revolved, strikes against the end of a lever an arns it upon its pivot so as to draw the holder and point inward holder and the point are thrown out to give the blow by the elasticity of a spring.
William Read, St. Cloud, Minn,-This Engine.
winder to cyntil the crank has passed the centerssufflciently to be acted on
to with good effect. The two heads of the cylinder are connected to gether by rods outside of the cylinder, so that, as the one follow the piston, the other will be returned to the end of the cylinder, out of the way of the piston. They are worked by a cam on the crank
shaft, and stops are provided to fall in behind and hold them against the back action of the steam, to relieve the cam by which they are perated from such pressure.

Improved Plow

Oliver P. Sanford, Dadeville, Ala., assignor to himself and Jaco Henry, same place.-The rear end of the plow beam is curved down ward. The plow standard is made of a bar of iron bent into U o receive the rear end of the beam between them. The pitch of plow and the position of the handles may be readily adjusted as re uired. The plow plate rests upon the forward low plate and through the space between the arms of the standrd, below the rear end of the beam, so that the said plow plate may be raised and lowered by loosening the nut. The bolt also passes
through a washer, the lower edge of which is bent inward to enter otches in the standard, to prevent the plow from slipping down ward.

Improved Grain Tally

Aden K. Munson, Marysville, Kan.-In the ends of a box are ormed openings to receive the measures, which are made of a sin
le piece of sheet metal. To the upper part of the ends of the box is secured the striker, the lower edge of which is notehed to reccive bars, and which is secured to the box by bolts that pass through ransverse slots in the said striker, so that it may be conveniently
owered or raised to strike off the measure more or less closely, as may be desired.

Improved Neck-Tie Fastener
James H. Harrington, Providence, R. I.-This invention consists ound the shank of a collar stud or the thread fastening a butto and hold thereon by a spring. The fingers are so attached to the tie that it may hang down below the fingers to afford access to
them for readily connecting them to the button, and, after the finhem for readily connecting them to the button, and, after the finthem for
gers are
collar.
lmproved Corn Planter and Cultivator.
Philip S. Starnes, Pink Hill, Mo., assignor to Darnall \& Womacks, hat both the dropping slides may be operated at the same time he arched bar is made in three parts, so that it can be expanded or ntracted to correspond with the adjustment of the plow beams. In the middle part is pivoted another bar, also made in three parts, so that the bar can be expanded or contracted to correspond with the
djustment of the first bar. By this construction, the plow beams will be held in their proper relative positions, and at the same time may be moved laterally or vertically in guiding them.

Improved Door for Grain Cars.
Frederick J. Kimball, Philadelphia, Pa.-This invention consists the arrangement of a swinging bar, a pivoted latch for locking is secured and also adapted to be opened outward.

Improved Press.

Jacob P. Kefauver, Madisonville, Tenn.-This consists in the combination, with follower levers, of arms having pulleys, ropes,
and a windlass having two drums. One set of ropes, for pulling up the levers to press the bale, work on one drum, and other rope ork on the other drum for pulling the follower back, the latte Improved wind
Improved Windmill and Watering Apparatus. Ezra Richardson and Porter Harkness, New Rutland, Ill.-The
wheel has rigid vanes, and is mounted on a vertical shaft, which carries a tail vane at its upper end, which is free to turn on carries a tail vane at its upper end, which is free to turn on
the shaft. This vane has arms ; and on the outer end of the upper the shaft. This vane has arms ; and on the outer end of the upper
one another vane is pivoted, so as to be held up to the wind by a
weight. When the vane is forced down, the wheel and the tail weight. When the vane is forced down, the wheel and the tail vane will be turned into the same plane, and the wheel will be held
by the tail vane with its edge to the wind. The weight is raised by by the tail vane with its edge to the wind. The weight is raised by
heavy winds to relieve and regulate the wheel. When a trough is heavy winds to relieve and regulate the wheel. When a trough is
empty, the weight will open the valve; and when it is filled, the weight of the water will close it, and thus
water as it is required, and without waste

Improved window Frame

Elias Roth, New Oxford, Pa.-This invention is ar improvement Elias Roth, New Oxford, Pa.-This invention is at instruction described in patent No. 157,224. In that case the side of the casing is recessed opposite the lower sash to receive
a strip, which is removable. When the strip has been detached, the ower sash may be readily taken out, and after that the upper sash. The improvement relates to forming an opening in the casing at the upper end of the recess for the removable strip, whereby the
removal of the latter is facilitated.

Suminess aud tersoull

The Charve for Inertion under this head is 81 a Line.

 Adreas Austurn Black, 37 Prark Row, New Tork.

 elgha tamps. Balley frarel $\& \mathrm{Co}$. Pltteburvh, Pa Almost every newspaper man in American as
 gay that not one ever reeelver and unfard or diston

 Entire Stock of Tools of af Foundry and Machine

57 Gold St., New York.
Second Hand Steam Engines, Pumps, and Iron-
Working Machinery. Catalogues free. E. E. Roberts,

 proved), 2 to 8 H.P. L. G. Skinner, Erie, Pa.
$\$ 17$ Foot Lathes. Geo. F. Shedd, Waltham, Ms. A Self-Acting Trap, to rid out all Rat and Ani-
mal Creation. Agents wanted. No trouble to sell. For
Traps, \&cc, address John Dildine, Limestoneville, Mon-

 For best Bolt cutter, at greatl| reducea prices,
 \&c., address L. V. Emery Wheel Co., Weissport, Pa.
American Metaline Co., 61 Warren St., N.Y. City.
Small Tools and Gear Wheels

 Cenuine Concord Axles-Brown,Fisherville, N.H.
Temples and Oilcans. Draper, Hopedale, Mass.

痋dest tharis

L. K. Y. will find directions for lacquering brass on p. 283, vol. 31. The Minotti battery is de-
scribed on p. 26, vol. 32.-H. M. will find a full deseription of artesian well boring tools on p. 54 ,vol. 33.-A. F. H. will find a recipe for aquarium ce-
ment on, p. 202, vol. 28.-W. R. will find a recipe for ment on p. 202, vol. 8 .-W. R. wn p. 253 , vol. 30 .-J W. C. P. will find directions for casehardening iron on p. 202, vol. 31.-J. B. will find a description of
paper boats on p. 163, vol. 27.-C. B. H. can calculate the power of his engine by the rules given on p. 33, vol. 33.-L. M. S. will find directions for making an æolian harp on p. 330, vol. 26.-D. O. will
find a recipe for filling for walnut wood on p. 315 , find a recipe for filling for walnut wood on p. 315,
vol. 30 ,-P. V. J. will find a recipe for cement for vol. 30.-P. V. J. will find a recipe for cement for
gas bags on p. 395, vol. 32.-W. B. will find directions for making Pharoah's serpents on p. 315, vol.
32.-R. R. W. will find a full description of the Car ré ice machine on p. 82, vol. 33. Salicylic acid is described on p. 96, vol. 33.-E. R. \& W. Will find a
recipe for copying ink on p. 123, vol. $32 .-$ L. K. L. recipe for copying ink on p. 123, vol. $32 .-L$. K. 22.-W. B. H. can destroy ants by sprinkling sal
plentifully over their holes.-P. C. H. will find precipe for indelible ink on p 112, , ol. 27. -A. C. H.
reill find that the congtruction of a windmill is will find that the construction of a windmill is
fully described on p. 241, vol. 32. There is nogovernment foolish enough to offer a premium for a perpetual motion.-A. O. will find formulas for
engine fly wheels on p. 251, vol. 32.-H. E. H. will (1) C. M. asks: Why does the sun shine in (1) C. M. asks: Why does the sun shine in
at the north door in latitude of a house $40^{\circ} \mathrm{N}$. in the summer? It seems to indicate that the sun is
further north than 40°, though the sun never comes furthernorth of theequator than about 23.5° A. Were the earth so poised in space that the sun
were vertical at the equator throughout the year, were vertical at the equator throughout the year,
it would, of course, rise exactly in the east, and this is what the sun does do on March 21 and September 23 , when it shines vertically at the equa-
tor. As the earth's inclination from a perpel tor. As the earth's inclination from a perpendi-
cular to the plane of its orbit is the same through out the the plane of its orbit is the same through alternately north causing unequal day and night, the sun shines vertically at the equator it shine obliquely, more or less, according to the latitude toward either pole; and the moment that it devishine beyond the north pole, as in our summer, or beyond the south pole, as in our winter. When the sun's declination is $23^{\circ} 28^{\prime}$ north of the equator, as at the summer solstice, it, of course, rises 23°
28^{\prime} north of an east direction, and then will shine in at a north door for a portion of the mornin the heavens, it reaches those points where it will be south of an east course in the morning, and
south of a west course in the evening. At the north pole, at the summer solstice, and for $23^{\circ} 28$ this side of the pole, the sun will shine directly intoa north door at midnight; and at the exact
pole it will, at that hour, occupy a position in the sky $23^{\circ} 28^{\prime}$ above the horizon.
(2) A. E. P. asks: Will a three horse engine give power enough to run a small planing
machine to plane boards about one foot wide? A. It may not run the machine at full speed, but it will probably answer quite well.
(3) G. B. says: The pump on our boiler suddenly stopped working, without any apparent
cause. It cannot be made to force water into the boiler in any amount, though it will pump when there is no pressure. The water is merely forced
both ways between the cistern and pump valves both ways between the cistern and pump valves,
The packing around the plunger is perfectly tight The valves have been refitted and well ground into their seats. Every part is in as good repair as a machinist experienced in making engines and
pumps can make it. Where can be the defect? A. As you stake the case, it is indeed a mystery But if the pump continues running when turned on to the boiler with the cylinder full of water
and still does not deliver any water, it is resona ble to suppose that there is a leak. You can try the ex
sively.
(4) J. P. asks: Can Idraw water through a $1 / 2$ inch lead pipe, out of a well, over a hill, to my and the rise from bottom of well to top of the hill 25 feet, and the fall from the top of hill to the house about 35 feet? A. Yes, if you make provihighest part of the pipe You must also be ver particular to lay the pipe without kinks and bends, and with easy \mathbf{c}
curve it at all.
(5) T. C. H. asks: I have had an argument
as to the value of a glass gage on a boiler. My friend claims that a gage glass is more liable to get stopped up than gage cocks, and therefore is
useless and not reliable. He also claims that the useless and not reliable. He also claims that the
glass is not of any value in detecting the foaming er foams is by carrying water over into the cylinder. I claim that the glass is the best. A man in charge of a boiler is not supposed to rely on the look of the water in the glass to determine the
water line in boiler, unless he is sure that the openings of the tube are free from stoppage. I is as easy to try your glass as your gage cocks.
say also that, if the piston has a large clearance might carry a great amount of water in the cylin der without its being detected. Which is right A. A glass gage is a very useful appendage to a
boiler, and it is as easy to tell whether it is in working order as to determine the same for a gage cock. For several reasons, if it is necessary to
make a choice between a glass gage and gage
generally better to take the latter. When a boil
foams, it is frequently indicated in the glass gage, though the gage cocks give a more certain test Glass gages are frequently fitted up in such manner that foaming can readily be detected. A
boiler containing clean fresh water may foam, if
badly proportioned, or if the fire is violently boiler co
badly p
forced.
(6) G. W. H. asks: Will it increase or de crease the power of an engine to raise numerou pyramids on the face of the piston head, so as to
increase its surface? A. There would be no change as far as the effective area of the piston is oncerned.
(7) J. A. B. asks: Do you know of a seed called bird pepper? If so, can you tell me any acquainted with it under that name. It may b capsicum annuum or piper nigrum.
(8) B. T. asks: What are the names of the explosive agents that explode at a very low temperature, and what are the degrees of heat,
respectively, at which they explode? A. There are many compounds known to chemists whic of boilingwater: but owing to their properties of undergoing spontaneous decomposition, as well a instantaneous explosion from the slightest cause such as friction or contact with metals,etc.,they are exceedingly dangerous to handle. Gun cotto might answer your purpose, but as regards th it has been in some instances dried ete to differ it has been in some instances dried at a temper
ture of 90° to 100° without any dangerous conse quences, while it has been found to ignite at 43° In one instance a small magazine of guncotton situated in the Bois de Vincennes, Paris, was ex
ploded by the sun's rays.
(9) A. L. K. says: The water in my cistern smells as though it were putrid. How can I render it pure and odorless? A. Place several bushe
of animal charcoal in the bottom of the well. (10) J. N. says: For the past six months my hair has been continually falling off. Ho can I remedy it? A. Try the following: Iodin crushed small) $1 / 2$ drachm, olive oil (Iukewarm) til solution is complete. It may be scented with little essential oil of almonds or lemons; but it is better without it. Most of the other oils cause the gradual decomposition of the hair. It has
been very highly recommended as a hair oil for daily use, in partial loss of hair and baldness, also daily use, in partial loss of hair and
(11) O. W. B. asks: What can I put in with hard? A. Try alittle sulphate of lime (plaster of
(12) W. H. W. asks: Is it possible to de colorize a solution of copper and ammonia and
still retain the copper in solution? A. Salts of copper, except in very dilute solutions, always re veal their presence by their characteristic blue or luish green color; and in the presence of an ex lute solutions, is of a strong, deep blue. In the presence of ammonia, therefore, the solution of
the salts of copper cannot be rendered colorless. (13) C. W. asks: By what process is crude coal tar refined and made into a paint? It is used placed in large low iron stills, and heated to about 176° to 212° Fah. for the purpose of distilling of the lighter hydrocarbons along with the ammoniacal water the tar may contain. After about 3 hours, the residue, consisting of the refined coa draw, or coal tar asphalt as it is sometimes called,
dreans of a tap in the lower part of he still.
(14) W. V. W. asks: What is the philoso phy of death by sunstroke? A. Coup de soleil o
sunstroke isthus mentioned by Tanner:"Cauzes In its perfect form, it is met with only in the trop ics. It has been noticed that those attacked hay often been affected for a few days previously with suppression of perspiration. The nightshavebeen
sleepless, while attacks of vertigo and a sense of weariness while attacks of vertigo and a sense of
been complained of. Such men too,may have been irregular in theirhabits; while perhaps they have also been indulging freely in a sure to an almost vertical sun for two or thre days previous to the seizure. Symptoms : These are generally faintness, thirst, great heat, and dry ness of the skin, with prostration. As the disease
advances, the heart's action becomes violent, th man can scarcely be roused, the face gets pallid and perhaps an attack of vomiting ushers in the on very insidlously. A man will be seen to be
listless and stupid; but he makes no complaint listless and stupid; but he makes no complaint
beyond saying that his head feels a little queer. Yetin twelve hours he may be dead. Dr. Morehead agrees with those observers who refer the
phenomena of sunstroke to depressed function of the cerebro-spinal and sympathetic nervous systems. The three most urgent things to be per formed in treatment are: Cooling the body,removrespiratory action.
(15) T. G. says: The inside of a store was painted with guaranteed pure white lead and pur raw linseed oil. All the white and light colored ocher. Why is this? A. The trouble is probably due to the
materials.
(16) J. R. asks: I. In making plaster fig ures I use gelatinmolds,made of glue. In summer the gelatin melts and I cannot work. How can
prevent this? Will tannic acid be of any use? prevent this?
No. Melt the gelatin in a small quantity of water is formed; add glycerin in the same quantity by
ture and allow the excess of water to evaporate
It may then be poured on a marble slab or in it may then be poured on a marble slab or in
mold, and allowed to harden. The above, we think, will answer your purpose. 2. How can I melt pure rubber and make it into molds? A. Pure but if melted by application of heat, it suffers
partial decomposition, and does not gain in solidipartial decomposition, and does not gain in solidi-
ty. Caoutchouc dissolves in naphtha by heat and y. Caoutchouc dissolves in naphtha by heat and
agitation. This is accomplished over a water and agitation
sand bat
vessels.
(17) J. M. H. says: Recently a frightful striking a lightning rod breaking it in two, an melting the metal, which ran down in drops. The housewas somewhat damaged, pieces of the second floor being torn out and scattered over the room.
The rod was only about three feet in the ground. The rod was only about three feet in the ground the earth. Am I right? A. If the rod had been in proper connection with the ground, the current would doubtless bave passed into the earth with out damage to the building. See p. 386, vol. 32.
(18) J. R. asks: 1. Under what conditions will common coal gas become a liquid? A. The
requisites are a sufficiently low temperature and an adequate pressure. 2. What is the process o distilling coal oil or crude petroleum, and how ar the lighter constituents collected? A. The crude callons each, and submitted to a gradually increas ing heat, the vapors being passed through a worm immersed in cold water. At first, there comes over a very light, mobile, and volatile liquid, ex-
ceedingly inflammable. As the operation pro ceedingly inflammable. As the operation pro
ceeds, the product is tested from time to time; and when the specific gravity corresponds to about 90° Baumés bydrometer, the receiver is changed, an ard, is again repeated. The receivers are change several times, or until, at a high temperature, par affin and illuminating gas constitute the bulk of the products of the distillation. At the end of th has been greater or less, a thick tarry matter, or porous coke. The products of the distillation ar commonly classified as follows: Those product whose densities are below 90° Baumé are terme gasolin; those between 70° and 80°, naphtha; from
60° to 70°, benzine ; those between 40° and 60° 60° to 70°, benzine ; those between 40° and 60°
kerosene; and finally theheavier products, fit onl kerosene; and finally the heavier produ
or lubricating purposes, and paraffin.
(19) C. T. V. says: Please publish direc We know of no reliable compound for this pur We know of no reliable compound for this pur
pose; but you might try the Belgian recipe. It is: ron filings 1,000 parts, borax 500 parts, resinous oil of any kind 50 parts, sal ammoniac 75 parts. Pul
verize completely and mix; heat the rings to a cherry red, powder the parts with the mixture,and
(20) T. H. asks: 1. Of what lenses are the most improved opera or field glasses composed, attainable in those of moderate size? The com mon telescope or spy glass is obtainable, of convenconvenient to use being difficult to hold steadi without a rest, and it taxes the eyes more tha a field glass. Is there any portable instrumen having a power of 15 or 20 diameters? A. Al ciple of the Galilean telescope, that is, with a con vex object glass and a concave eyepiece. In the better class of instruments, all the glasse a made with two lenses (crown and flint); and if the eyepieces are not achromatic, those are known as six-glass (three in each tube). Sometimes the ob ject glasses and eyepieces are each triple achroma tic, having three linses in each, in which case th marked. In the best opera and field glasses, the power rarely exceeds 6 , and is seldom more than 5 For a power of 15 to 20 diameters, you can get no
thing that will be as good or as cheap as a tele cope
(21) M. H. V. says: I have just made a re rigerator, filled in on all sides with charcoal er, with 4 holes 3inches squarethrough the part tion. We put in 20 to 30 lbs. ice, and yet m
butter, milk, etc., sours almost as though ther were no ice in the refrigerator. There is a dis charge pipe for waste water, 1 inch in diameter, running down from the ice box, which is of zinc
What is the trouble? A. We would suggest th removal, in part, of the partition. Also place in one corner a quantity of caustic lime, in such a po reach it, and see that the box is closed as tightly a
(22) Bicycle.-You can probably buy good
(23) M. E. J. asks: 1. Who was the first The whoinvented the self-rake on a reaper? A. reaper appears in an English patent granted to Mr. Gladstone in 1806. 2. Who invented the first
reaper? A. The first account of a machine to reap grain appears to be given by Pliny the Elder irst patent for a reaping m, in A. D. 23. And th Englarid to Joseph Boyce, July 4, 1799, and in the United States to Richard French and J. T. Haw kins, May 17, 1803.
(24) J. C. C. asks: 1. Are metad roofs supe ior to lightning rods as a means of protection to with the ground properly, by means of severa tout rods of copper or iron, which should als have connection with alt the interior metal work
of the building, this method will afford excellent protection to the property. 2. In what manne
and how should the connection be made with the
earth? A. It will be necessary for you to erect metallic rods, extending five or six feet above the highest points of the roof, tipped with some metal not readily oxidized, and also having a suffi-
ciently large surface connection with the metallic roof to avoid the melting of the sheet metal in case of a heavy discharge. In the construction
of some of our large public buildings, this simple yet efficient method of protection from lightning has been employed, differing from the above only in the respect that the ground connections are made directly with the main water and gas service
pipes of the city. 3. In an article on protection pipes of the city. 3. In an article on protection
from lightning, to which reference was made by you a few weeks since, you say the extremities of lightning rods "should be put in connection with ticle, a little further on, you say that "water and moist earth, which are so frequently recommended as terminals for lighting rods, are among the poorest of conductors." Is not this a contradiction? A. It is true that both water and moist earth are,
in comparison with the metals, very poor conducin comparison with the metals, very poor conduc-
tors of electricity, but it is equally true that the resistance of any conductor is inversely as its sectional area; hence the necessity of a large terminal contact surface with the earth. From the above facts it is obvious that, if the earth connection be sufficiently extended, the resistan
(25) C. Z. M. says : I am building a small engine with link motion. Where is the proper
place to ret the radius of the link from? A. The place to yet the radius of t
center of the engine shaft.
(26) G. S. W. says: I have a Wardian case not prosper in it ; they mold, rot aoything else will not prosper in it; they mold, rot, and die away.
New shoots come up, but they in tura are killed otir long before maturity. When I open my case,
there is a very musty smell. What is wrong? A. there is a very musty smell. What is wrong? A.
The moisture which falls on the inside of your The moisture which falls on the inside of your
glass probably falls upon your plants, and kills case must be left open an hour or two every day, case must be left open an hour or two every day,
to prevent this. Also bore some holes in the bottom of your case, to afford drainage
(27) O. W. I. says: I made a mixture of 1
oz. nitric acid and 4 ozs. muriatic acid and then put in a $\$ 2.50$ piece of gold; and when it was all cut and dissolved, I put in 2 ozs. sulphate of potash m 1 pint rain water. It will not precipitate the
gold. I then dissolved $11 / 2$ ozs. sulphate of potash, gold. I then dissolved $11 / 2$ ozs. sulphate of potash,
and it makes no impression in it. What shall I do to recover the gold? A. Evaporate your solution nearly to dryness in order to expel as much of the
free acid as possible, and redissolve in pure water Then add to the liquid a strongsolution of sulphate precipitate forms. Allow the precipitate to subprecipitate forms. Allow the precipitate to sub-
side, and then filter, and thoroughly wash the pre cipitate on the filter with water. Allow the filter paper with its contents to dry, and then place it together with a small quantity of borax in a Hessian crucible, and fuse. By the above me
will obtain the gold ir. a very pure state.
will obtain the yold ir a very pure state.
What is used for charging a battery somposed of two zinc plates and one copper plat
(28) E. K. asks: How can I obtain the silver out of old broken black lead crucibles? A.
Pulverize the crucible and digest it in nitric acid Pulverize the crucible and digest it in nitric acid
for several hours. Decant off the clear liquid and add to it muriatic acid until no further precipitate add to it muriatic acid until no further precipitate
forms. Allow to settle and agan decant the clear liquid, wash the precipitate several times with
clean water, dry, and fuse in a small crucible with clean water, dry, and fuse in a sin
quantity of carbonate of soda.
(29) W. T. P. asks: What
(29) W. T. P. asks: What kind of gas are toy rubber balloons inflated with? How is it gen-
erated? A. The gas is hydrogen; it is obtained by acting upon small pieces of zinc with dilute oil of
(30) J. S. \& Co. ask: What amount of power is required to run a grindstone 5 feet in diameter by 8 inches face at 300 revolutions per min-
ute, for grinding plowshares? A. Use a steam enute, for grinding plowshares? A. Use a steam en-
gine with cylinder of 6 inches diameter and 8 gine with cylinder of 6 inches diameter and 8
inches stroke, cutting off at $3 / 4$, with a steam pressinches stroke, cutting
ure of 60 lbs. per inch.
(31) D. P. H. asks: 1. If two locomotives are on a level track one mile long, and No. 1 is fired up, No. 2 being filled with water up to the
second gage cock, with valves open to go ahead second gage cock, with valves open to go ahead
while it is getting towed backward, and at the end of the mile the engines are uncoupled: will No. 2 have any pressure in boiler? A. If the slide valve
were held firmly to its face, there would undoubtwere held firmly to its face, there would undoubt-
edly be a pressure pumped into the boiler equal to edly be a pressure pumped into the boiler equal to
about 40 per cent of that of the steam ; but as the slide valves of locomotives are not held to the cyl-
inder faces save by a light spring, and sometimes are without even that, the valve would lift, and the air from the cylinder would flow in and out of
the steam chest. There would undoubtedly, however, be a slight air pressure in the boiler under the conditions named. 2. Will there be enough to
carry it back to starting point? A. No. carry it back to starting point? A. N
(32) L. C. S. asks : Are not portable fire
xtinguishers filled with water and effervescent extinguishers filled with water and effervescent
matter, and have they to be re-charged when the charge is exhausted? A. Yes.
(33) E. says: I differ with you as to the advisability of conducting lightning rods into wells. held your opinions, and down the well went his
rod. Our water, which had always been noted for its purity, became after this at times unpleasant in taste. It seemed as if we had opened into a mine-
ral spring of nauseous fluid. One suggested foul air; another, dead rats. The well was pumped dry and examined, but the trouble remained undiscovered. For a while again, good water; then
a repetition of a sulphur spring, to our great ana repetition of a sulphur spring, to our great an-
noyance, and so it went on for years. One day, after a violent thunderstorm, our eyes were opened
to the difficulty by the sudden change in the taste of the water. Then out came our rod from the
well,and since then the old well has regained its reputation for pure tasteless water "fit for the gods." (34) W. C. B. asks : 1. How much power i equired to drive a pair of millstones, to grind 8 bushels of fine meal per hour, the runners to be 20
inches thick and 42 inches in diameter ? A. About $41 / 2$ horse power. 2. How much power is required to drive a 20 inc
(35) H. R. asks: 1. I have a boat, 15 feet ong by 4 feet beam by 2 feet depth. She is built to cut the water easily. The engine is 2 inche bore by 4 inches stroke. The horizontal boiler 16 inches diameter, and has twe is 25 inches long by 16 inches diameter, and has twelve 12 inch flues and the heat runs from the front end to the back flues into a smoke box fixed on the front end, and escapes into the chimney. The firebox is 25 inches long and 14 inches high. I cannot make the boiler larger. Is the engine large enough to run the boat? A. The power of your engine depends on the pressure of steam used, but your cylinder is
too small in any case. 2.Is the boiler large enough to run the engine? A. The booler is too small for the engine or the boat. 3. How thick ought the heads and shell of the boiler to be to stand safely a pressure of 100 lbs ., and how thick to stand 150
lbs.? A. To stand the pressures you libs.? A. To stand the pressures you name, make
the shell of the boiler $3 / 8$ and the heads $\frac{3}{16}$ inch, if of steel, or the shcll $\frac{3}{16}$ and the heăds $\frac{1}{16}$ inch, if
of wrought iron. 4 . 1 if what pitch should the propeller be to give the highest speed that can be got with so small an engine? A.
Propeller for the size of your engme should be about 16 inches in dmameter and of 20 inches pitch; but for the boat, it should be 18 inches in diameter
and from 2 to $21 / 2$ feet pitch. 5 . Will enough heat? A. Yes, if you maintain a good
draft. 6 . How fast will she run? ascert. 6. How fast will she run? A. This is best as used on large boilers, show 100 lbs . pressure in my little boiler just as well as on a large one? A.
Yes. 8. If the boiler (25×16) should noi have enough steaming capacity, please give the proper The boiler should have 25 feet of heating surf A. the shell being $1^{\frac{3}{6}}$ and the heads $\frac{5}{5}$ inch thick. Can you tell me of a good book on the proportions of a steam engina? A. Bourne's "Handbook of
the Steam Engine." 10. W:ll good boiler iron an swer to make the boiler? A. Yes.
(36) E. B. W. says: I am exceedingly an noyed by the flies eating the ink lines of my drawings. Can anything be put into the ink to
prevent their depredations? A. Not that we know of. They are ravenous for it.
(37) F. W. H. asks: What amount of aniwhat jught to be the temperature of an incubator? A. The temperature of the incubator should be about 106° Fah., which will impart to the egg
(38) ${ }^{\circ}$ Fah., the proper heat.
(38) G. S. B.-The !size, shape, and length of the steam ports, the amount of condensation, and many other considerations affect the initial save actual test,of ascertaining this initial velocity; and an actual test,under any particular conditions would not be sufficiently accurate for general ap
(39) Constant Reader.-We have not heard of any reward offered of $\$ 50,000$ or other sum for plan for the removal of oil from marble
(40) T. S. asks: Is there any way of making
sue paper airtight without adding materially to is weight? A. We do not know of any.
(41) A. B. asks: 1. What is the dispersive power, respectively, of Chance's flint and crown
glass? A. The dispersive power of flint glass being 0.043 , that of crown glass is 0.0246 . 2. What form is generally used for convex lenses for achromatic telescope objectives, plano-convex or double
convex? A. The best telescopic objectives are made by combining a double convex lens of crown glass with a concavo-convex lens of flint glass.
(42) E. A. B. asks: I took a semi-concentrabottle, and added $\frac{1}{10}$ part of No. 1 gelatin to 1
part of solution, and boiled these ingredients unpart of solution, and theiled these ingredients una dark room I poured this on a glass plate, dried it, and exposed to light with a photograph under it. I wetted it in cold water. Result after repeate
trials was that the plate was rough, due, I think, to the formation of crystals of bichroma, of potash There was no sign of an impression. What was the matter? A. You should allow the gelatin bichromate to cool, and filter it before attempting to use it. In exposing the prepared paper in the printing frame, the photographic negative (on glass) should be on the top, that is, between the
paper and the light, and with that side of the plate paper and the light, and with that side of the plate
which contains the picture pressed tightly against the paper. On removing the paper from the frame, it should immediately be placed in a large
quantity of clean, cold water, in a dark place, and quantity of clean, cold water, in a dark place
allowed to remain immersed for some time.
(43) A. W. W. says : 1. I hear a great many complains of water from galvanized iron and zinc fect has it on the system? A. The use of zinc or galvanized iron for this purpose is not wholly
without objection. The presence, in the water, of without objection. The presence, in the water, of
any appreciable quantity of soluble sulphates, chlorides, or free acids, is apt to corrode and partially dissolve the metal. Salts of zinc act upon the animal system in much the same manner as verdigris or corrosive sublimate, although not so violently. 2. How would a cooler lined with ordinary tached to the lower part, placed in the cooler to keep the ice from breaking the bottom, answer?
A. Earthenware will answer the purpose admira A. Earthenware will answer the purpose admira-
biy, but by far the best arrangement for this purpose is composed of a deep, porcelain-lined iron
pot, having an iron or nickel plated faucet near its base. The vessel is placed in a box of any desired shape, leaving a'space of two or three inches
between the pot and the inside of the box space is packed closely with good dry charcoal, in
spen the powder, and sealed around the top by molding or therwise. The lid of this wa titing iron cap, and over this is one of wood, hav
ng between it and the iron cap a piece of clean elting.
(44) L. K. Y. asks: How can I make gutta In what country is aluminum minedand worked A. See p. 91, vol. 32.
(45) S. V. P. asks: Does hydrogen gas be
have exactly like air in the matter of giving out heat by compression and taking it back by expan sion? A. Yes.
(46) F. D. says: I am making two tin cylin nders for use in learning to swim, connected by a
trap passing under the chin; they are slightl conical in front, in order to overcome the resist ance of the water. The object is to keep the chin legs free play. How long ought they to be? A es long.
(47) J. F. asks: 1. Can an hydraulic press A. Yes. 2. Can air be compressed by hydraulic pressure until it will attain an expansive force of
$10,00 \mathrm{lbs}$. per square inch?
A. Yes. 3. Can all the results of the Keely motor trick be attained by such an apparatus with compressed air
Yes, all of which we have seen an account.
(48) M. V. O. asks: Does a fan blower r quire more power to drive it when the discharge o blast pipe is open, than when it is closed wholly or
in part? If so, how do you account for it? A The action is just the same as that which occurs on partialiy closing the discharge valve of a pump. If the same speed of pump or blower be maintained, the resistance is increased.
(49) G. S. R. says: Your account of the aphas provoked a great deal of discussion. Some
hat contend that it would appear to be about a six nch square dot, and others that it would be like a dot about half an inch square. You say the bull' half an inch square held at a distance of some three yardsfrom the eye. Please explain. A.The remark did not refer to relative, but to actual
size, that is, the bull's eye looked exactly the same size as the dot.
(50) R. asks: What are rotary steam boil ers? In what respect do they differ from ordi-
nary boilers? A. We do not know anything about this class of boiler, unless you refer to the kind in which onlya s
ted at a time.
(51) B. K. D. asks: If a person should suc ceed in perfecting a simple water elevator which
would work automatically, with no apparatus to would work automatically, with no apparatus to
get out of order, and with no expense excepting the price of the necessary length of pipe and of a simple attachment (costing probably $\$ 2.50$), is it probable that such an elevator would have a great
demand? I have been successful on a small scale, drawing water freely 6 feet from source of supply, by a simple device. Would the probabilitie larger scale? All of the elevators of which I larger scale? All of the elevators of which I am
aware depend upon some mechanical force or power; butI need no power other than that contained in air and water. A. As we understand it you propose to do work without incurring any ex pense for the necessary power. You can judge of
the demand such an invention would create by reading about Mr. Keely's experience
(52) W. H. B. asks: If a man in the car of a pump, the pipe running through the bottom of the car, would the balloon be drawn downwards?
(53) C. B. A. asks : Can isinglass be dissolved in water? I got a piece such as is used in
stove doors, and put it in a cup and kept it on the stove 36 hours, but it did not dissolve. A. You used mica. You will have no trouble in dissolving isinglass.
What keeps the ball against the jet of water in the fountains shown in some stores? A. As soon as the ball gets much over to one side, it fills, and
descends on to the jet of water in the conical base of the apparatus.
(54) A. H. M. asks: What lubricant is best for high pressure horizontal engine cylinders? A. There are a number of oils in the market
which are well spoken of and recommended for use in cylinders; but we imagine that none of
them are superior to sperm oil in any particular except that of first cost.
(55) B. F. R. says: I have a theory in regard to the manner in which Nature affected the
crystallization of the diamond. It is generally conceded that it could not have been done by fu-
sion; might it not have been from solution? sion; might it not have been from solution? Do you not think there may possibly be a solven
for carbon in some of the uncombined forms A. The diamond has probably proceeded, like min eral coal and oil, from the slow decomposition of regetable material, or even from animal matters, either source affording the requisite carbon; but it has been formed under those conditions as to heat that has produced the metamorphism of arquartz veins, since it is found exclusively in gold regions, or in the sands derived from gold rocks. The schists that were altered at the time
may have previously been shales impregnated hydrocarburets) 'of organic origin. Chancourtoi bserves that the formation from a hydrocarbu etted vapor or gas is analogous to that of sulphu from hydrosulphuretted emanations. In the oxidrogen becomes oxidized, and only a part of the sulphur changes to sulphurous acid, the rest re maining as sulphur. So in the humid oxidation of a carburetted hydrogen, the hydrogen is oxidized, part of the carbon becomes carbonic acid, and the
rest remains as carbon and may form crystallized rest remai
diamond.
(56) J. A. B. asks: By what process is the distillation of glycerin effected? A. The mothe iquor is first concentrated by evaporation, th being removed from time to time. When the fluid is sufficiently concentrated, ascertained by the boiling point having risen to $240^{\circ} \mathrm{Fah}$, it is trans erred to the still, and the glycerin distilled off by means of superheated steam carried into the stil 580° Fab as otherwise partial decomposition o the glycerin will take place. The distillate is next concentrated, and brought to the consistence of sirup in a vacuum pan.
(57) N. S. W. says: 1. I have an electric battery which fails to work. I have increased the
strength of the liquid of sulphuric acid so as to destroy the platinum plate, and still the magne vould not vibrate, and no current is perceived in the coil. What is the difficulty? A. The connec at fault. In arranging the apparatus for use, you should follow the directions to be found, generally, glued on the iener side of the lid of the case containing the coin. See that the ends of the connect ing wires are free from all rust, also that the con re perfectly clean. 2. I wish to make a stee magnet of thin plates. Ought the plates be bolte ogether, without insulation between them? They are joined without insulation. 3 Should it
be charged after being clamped together, or should each rersed? A. Separately. Join like poles together . I hold that the strongest point of attraction in magnet is the center of armature between th co por pos. Am I right? A. The g ch force is developed at the poles. 5. Suppose
body of irn were surrounded with a coil of cop per wire, slightly excited, would a magnet attract
it more readily or not? A. It would. 6. In the it more readily or not? A. It would. 6. In the
electric light, where two carbon points are used, electric light, where two carbon points are used,
are two charcoal points in effect the same? A. yas carbons.
(58) J. D. asks: What can I use to thor oughly cleanse freshly made cider of all sedimen through a clean linen bag containing some anima charcoal.
(59) S. asks: Can an ice boat travel faster han the wind? A. Ice boats very frequently travel at a
drives them.
(60) L. C. C. asks: 1. What is the size and location of the heaviest gun in the world? A. We
believe the largest has a bore of 20 inches. 2. What is the size and weight of ball carried by the large Weigh the $1,080 \mathrm{lbs}$
(61) M. A. G. says, in reply to A. K., who
asked as to building a rain water cistern : One asked as to building a rain water cistern: On It is to have the water as it comes into the cister
conducted to the bottom. is entirely changed when it rains. When the fres water simply pours in at the top, it immediatel runs otr and all the mass of stagnant water re
mains undisturbed, and soon becomes impure.
(62) J. J. says, in reply to J. G. G., who more seed than the first: Clover blossoms requlre to be fertilized by some agency outside of them selves. Bumble bees are the chief means em
ployed, and butterflies and other insects to some extent. Honey bees do not trouble the red clover As very few bumble bees live through the winter, they are not numerous in the early part of the
season; consequently but few blossoms are fertilzed. If the fore part of the season is wet, there will be but few bees or other insects in the latte part, and but very little seed in the second crop of and I do not recollect seeing a single bumble be We may leave our clover seed alone this fall, and save ourselves work. J. G. G. may set it down as
a rule that, when bumble bees are plentiful, there will be plenty of clover seed, and vice versa.
(63) J. C. says, in reply to T. M. C., who asks what is the best remedy to prevent unpleas Sprinkle pulverized alum in your boots once or twice a week for two or three weeks,

Minerals, etc.-Specimens have been re ceived from the following correspondents, and examined, with the results stated:
J. R.-The filaments in motion were specimens of the anguillula aceti, a vinegar eel. They can be
found in almost all vinegars.-R. F. W.-It is iron pyrites. In 100 parts of the mineral, $53: 3$ are sul phur, and $46^{\circ} 7$ are iron. - J. M.-It is a deposit of charged with lime and forming $\mathrm{Ca} \mathrm{Co}_{3}$, which is deposited as in the specimen sent. We cannotform any opinion of the soil over which the water runs, save that it contains a large percentage of lime.-I. R. M.-Box received; but there was no bug in it.- \mathbf{O}. P.-It is trap rock.
The fine brilliant particlesare piecesof hornblende -W. K.-Your specimens arrived in very poor
eondition. We should call them phytocorislineola ris. The history of the insect is yet imperfect. It and July. It has been found in Maine, New York, North Carolina, Pennsylvania, and Missouri. The great increase of these and other noxious insects may fairly be attributed to the exterminating war which has wantonly been waged upon our insecteating birds, and we may expect the evil to inprotected, or left undisturbed to multiply and follow their natural habits.-J. H. P.-It is hematite. It contains no nickel. The teoth sent, being very imperfect and broken, cannot be named or classified. The bone has been sent to a distinguished naturalist for examination.-G. W. H.-No. 4 only
was received. It is hematite.-J. L.-Send us a sample of the water you complain of-R J. \& S . They consist of quartz rock and iron pyrites.-J MoC.-Send small samples by mail, marked legibly with name.-S. H.-It is marcasite, or white iron pyrites.-M. J. D.-We will shortly answer your
questions in full.-A.A.J.-lt is quartz, containing questions in full.-A.A. J.-It is quartz, containing iron pyrites and a small amount of chalcopyrite--
E. P. C.-It is coal of a very poor quality, containE. P. C. - It is coal of a very poor quality, H.F. L.-It is iron pyrites mixed with carbonaceous matter.-S. K. B.-We cannot make a complete analysis. The specimen is hematite, an ore of iron containing, when pure, nearly 7 FC per cent
of iron.-F. C.-It is iron pyrites.-O. D. B.-It is a limestone containing mica, talc, and iron.-F. \& B. It consists chiefly of the double sulphate of nickel ganic matter.-N. V.C.-It appears to be a poor variety of elaterite. It contains a large percentage of sand and clay. We do not consider the sample to be of much value.
J. L. asks: How can I best convey sawdust from a sawmill to a fire 300 feet distant?-E. M. says: In Europe a paste or cream is used to remove the beard from the face, without the use of scap or razor. How is this cream made?-A. A.
asks: What sort of varnish is used on the sounding boards of guitars? Are the sounding boards made of heart or sap pine, or both? What is used for dyeing wood black for finger boards, bridges,

COMMUNICATIONS RECEIVED.

 The Editor of the ScIENTIFIC American acoriginal papers and contributions upon the follow ing subjects:On Terrestrial Magnetism. By W. E. S On the Altitude of Storm Clouds. By J. M.S. On the Heavy Rains. N.B.G. On the Keely Motor. By A. A., and by J. T. On Motive Power without Fuel. By S. On Geometry. By E. C.
On Mental Science. By F. H.
On Using Steam Expansively.
On Using Steam Expansively. By F. C
Also nquiries and answers from the following:
R. K.-N. J. T.-F. Q.-N. W.-R. B. S.-J. F. S.-
C. M. - M. V. - C. K.-E. T. - T. Y. J. H. - L. W. T.

HINTS TO CORRESPONDENTS.
Correspondents whose inquiries fail to appear may conclude that, for good reasons, the Editor declines them. The address of the writer should always be given.
Enquiries relating to patents, or to the patentability of inventions, assignments, etc., will not be
published here. All such questions, when initials only are given, are thrown into the waste basket, as it would fill half of our paper to print them all; but we generally take pleasure in answering briefly by mail, if the writer'sadaress is given. Hundreds of inquirios analogous to the following are sent: "Who sells dynamite? Who sells ma-
chinery for drying corn meal, etc.? Who sells snow spectacles? Who sells cheap telescopes? Who buys kaolin?" All such personal inquirles are printed, as will be observed, in the column of "Business and Personal," which is specially set apart for that purpose, subject to the charge mentioned at the head of that oolumn. Almost any desired information can in this way be expe ditiously obtained

OFFICIAL.
INDEX OF INVENTIONS
Letcers Fatent of Granted in the Week ending July 27,1875,

AND EACH BEARING THAT DATB

[Those marked (r) are retsoued patents.] Alr brake and car starter. H. Moschowitz Alarm, burglar, C. H. Williams. Ant-destroying apparatus,
Auger. earth, J. E. Hall..
Bag, traveling. W. Roeme

Bales, sample patch for cotton, S. Sulli
Barrel heads, making. w. w. Trevor Barrel heads, makin
Base ball, J. Giblin.
Basket for newspapers, De Barry \& Lundqvist
Battery, galvanic, J. Kidder........
Bayonet scabbard, T. W. Rounds.
Bayone tact bara, Rou
Bee hive, W. Vanwider.
Bell, alarm, I. H. Abell.............
Boiler, rotary bleaching. H. Loring Boiler, steam, C. E. Emery.
Boneblack, etc.. revivifying, J. Gandolfo.,
13oot-burnishing tool, J. w. Carver Bottles, applying wire caps to, A. De Mestre Bridge, metallic truss, J. Valleley..
Broom machine. corn, Blood and T Broom machine. corn, Blood and Topping
Brush, rotary hair. Nutsford and Clasgow Buckle, harness, I. L. Landis..
Button, C. H. Goodwin......... Button, C. H. Good win...........................
Button for wearing apparel, H. C. Griggs.

Calculator, A. C. Wellman Car coupling, J. H. Acton Car spring, rallway, J. E. Woottenen Cars, motor for railway, G. E. Cliver.
Carbureters, air supply to. J. M. Cayc Carding machine, J. F. Foss....
Carriage, child's, R. W. Caldwe Carriage curtain fixture, Knight and Ripple Chair, folding rocking, G. McAlee
Chair, nursery, J. F. Downing.... Chairs, foot rest for, T. A. Johnse Chairs, etc., spring bottom for, T. Noonan
Charcoal heater and cooler, J. Gandolfo. Charcoal heater and cooler, J. Gandol Churn. reciprocating, D. R.
Cigar machine, R. Appleby
Cigar mold, s. Simonson.
Cistern cover, S. Hafter
Clasp for uniting cloth
Clasp for uniting cloth for Japanning, B. Atha
Clothes dryer, H. Winter.
Clothes pin, U. D. Minills
Clothes pin, G. Topping
Clothes wringer, Bunn
Coal vase, w. S. Potwin and Ronan.
Cocounut, paring, Smith and Maltby..
Cooler, milk, o H. Willard.............
Corn cutter, green, T. Witmer.....
Corn sheller, C. D. and E. D. Read
Corn stalk cutter. J. N. Hill..
Cot, folding, O. E. Lord...
Cotton cleaner, J. Wright..................
Cotton Jack, M. J. Walsh (r)
Crank motion, C. E. Whipple
Cultivator, w. Weaver ..
Cultivator, G. Wilkinson
Cultivator, G. Wilkinson...........
Curtain cord fastener, L. Knudson
Dental plugger, A. J. Polk.
Dish, covered, W. E. Hawkins
Dish-washing machine, H. H. Hall.
Disinfecting slop jars, C. F. Parker
Doll heads, etc., making, E. S. Judg
Egg beater, w. Redheffer
Elevator, grain, C. W. Mills
Faucet, Newman and Kneal.
Fence, farm, Rush and Yarbroug
Fire arm, breech-loading, J. P. Pi
Fire arm, revolving, R. White......
Fires, apparatus for extinguishing, E. Harrls. Floor, fireproof.L. P. Rogers. .
Fork, horse hay, T. M. Edward
Fork, spiral hay, A. Shellenberge
Fountain and lawn sprinkler, R. Brusie (r)
Fruit dryer, portable, J. W. Faulkn
Frutt jar, stevens and Lumley....
Fruit Jar, Stevens and Lumley.....
Frutt loosener, drled, H. J. White
Fruit press, I. W. Heysinger
Furnace, cupola, J. Blakeney
Furnace grate, G. R. Moore...
Furnace grate, G. R. Moore....
Furnace, hot afr, T. Langstrat
Gage, blas, J. A. Hamilton
Gas from petroleum, making, Wren et al. (r)
Gas-heating retort,
Gas making. W. H. Spencer
Gas retort mouth piece, P. Munzinger
Gas stove, pocket, T. W. Houhin
Glucose, manufacture of, W. Garto
Glucose, manufacture of, W. Garton
Cold from sand, separating, T. W. Irwin.
Grate, J. E. Baum
Halls, preventing
Halcers, clamp for, F. F. Drink house..
Handkerchief holder, H. G. Mackinney
Harrow, J. S. Beaze
Harrow, L. Study.
Harrow, rotary, w.....................
Harrow bulky, D. F. Shaw
Harrow sulky, D. F. Shaw
Harvester, J. P. Manny.

Hook, snap, E. Kempshall......
Hose power, portable, co Rober
Hosing, A. J. Morse
Hose coupling, A. J. M
Hose coupling, A. Work
Jewelry pin, I. B. Abrahams
E. Carpenter (r)

Journal bearing composition, Lathrop \& Weber
Knife and tape line combined, G . s . Hastings......
Knob shanks, metal, J. P. A
Lamp chimney, W. H. Barnard
Lamp stove, E. H. Huch.........................
Lantern for trapping insects, B. F. McQueen
Lap board, H. G. Stepp........
Latch, reversible, G. Moore.
Letter, reversibe, G. Moore........
Lock, H. S. Shepardson......
Lock, hasp, J. Lachler
Locomotive smoke stack, N..........
Log turner, C. P. McWane
Loom shuttle box, H. Wyman
Mangle, J. Johnson....................
Marking wheel, F. M. Truworthy.
Medical mask, H. M. Rowley................
Meridian, apparatus for finding, H. C. Pearso
Metal timber hangers, bending, J. Flynn.
Metals, refining, E. P. Hudson.......
Millstone dress machine, C. A. Smith...
Millstones, etc., adjusting, s. Whitaker
Milstones, etc., a a
Miter box, P. \& N. H. Joh
Mop wringer, M. Regan.
Mowing machine, .J. P. Mann
Nail, socket, T. C. Richards.
Needle blanks, machine for swaging, P.
Needles, polishing eyes of. P. M. Beers
Needles, poinshing eyes of. P. M. B
Nut lock, J. M. Ken
Oiler, G. F. Dutton.
Ore and stone crusher
Pan, frying, A. Malin.
Pan, frying, A. Malin......
Paper bag, W. Oesterlein.
Paper, water marking, M. Mathews........
Photographic prints, washing, o. Dubois.
Pin pool marking board, G. H. Decker...
Pins, machine for assorting, J. D. Shelton
Pins, machine for assorting, J. D. She
PItman, J. F. Thomas.................
Planing cutter head G J. Shimer
Planing cutter heaa, G.
Plow, J. Middeditoh...
Plow, gang, E. A. Beer
Plow, sulky, B. Slusser (r),...............
Plow, compositlon metal, G. K. Srotth (r).
Pot bollng, Hennaman \& Shaw..................

DESIGNS PATENTED.
8,495.-STEam Pump. etc.-D. A. Burr, Philadelphia, Pa
8,496.-GLAss VEssel.-E. Finney, Philadelphia, Pa.
8,496.-GLAss ERssEL.-E. Finney, Philadelphia,
8,497.-CTGAR Box- F. Haehnel et al., New Orlean
8,498.-ToY BANK.-J. Hall, Watertown, Mass.
8,499 to 8,523.-CARPETS.-O. Heningke, N. Utrecht,N.
8,542 to $8,527$. -CARPERS.-H. Horan, East Orange, N.
8,528.-CARPETS.-L. G. Malkin, New York city
8,529 to 8,534.-OIL Clote.-C. T. Meyer, Bergen,
8,535 to 8,545 -CARPETs.-E. S. Ney, Dracut, Mass.
8,546 to $8,519 .-$ CARPETS.
\qquad

CANADIAN PATENTS.

Libt of Patents Granted in Canada July 24 to $31,1875$.

5,017.-J. Prentice, New York city, U. S. Cigar mold

 July 24, 1875.5,018.-A. G. Haskell, North Andover. Mass., U. s. Lifepreserving bed. July $24,1875$.
5,019.-W. L. Pawleson, San Francisco, Cal., U. S
Smoke consumer. July 5,019-W. L. Pawe July 24,1875 .
Smoke consumer. Jrintil., U. S
$5,020 .-$ E. Heley, Dublin, Ireland. Pring machine. July 24, 1875 .
$5,021$. T. Herron, Ottawa. Ont., et al: Churn. July 5,021.-T. Herron, Ottawa. Ont., et al. Churn. July
24, 1875.
$5,022 .-$ S. Spicer, Goderich, Mich., U. S. Hame lock 5,022.-s. spice

$$
\begin{aligned}
& \text { 5.023.-D. R. Proctor, Gloucester, Mass., U. S. Spark } \\
& \text { arrester. July 24, 1875. } \\
& 5,024 .- \text { S. M. Barré, Montreal, P. Q. Ironing board and }
\end{aligned}
$$

$$
\begin{aligned}
& \text {,024-S. M. Barré, Montreal, P. Q. Ironing board and } \\
& \text { stretcher. July } 24,1875 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { stretcher. July 24, 1875. } \\
& \text { 5,025.-J. Fensem, Toronto, Ont. Hydraulic elevator. } \\
& \text { July } 24,1875 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { July } 24,1875 . \\
& 5,026 .- \text { s. T. W }
\end{aligned}
$$

$$
\begin{aligned}
& \text { July } 24, \text {, } 875 \text {. } \\
& \text { 5,026.-. T. Waggoner, Mattson, Mich., U. S. Folding } \\
& \text { table. July } 27,1875 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { table. July } 27,1875 \text {. } \\
& \text { 5,027.-C. G. . Smpson, Montreal, P. Q. Railway car } \\
& \text { wheel. July } 27,1875 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { wheel. July 27, 1875., o } \\
& 5,028 .-F \text {. Dodge at al., }
\end{aligned}
$$

$$
\begin{aligned}
& 5,028 .- \text { F. Dodge et al., } \\
& \text { chine. July } 30,1855 . \\
& \text {,,029.-H. }{ }^{\text {Rogers, }} \text { Eure }
\end{aligned}
$$

$$
\begin{aligned}
& 1875 . \\
& 5.030 .- \\
& \text { July }
\end{aligned}
$$

$$
\begin{aligned}
& 5,030-\mathrm{A} . \mathrm{S} . \\
& \text { July } 30,1875 . \\
& 5,031 .- \text { D. M. M }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Jusi. - D. M. McPherson, Lancaster, Ont. Cheese hoop. } \\
& \text { 5uly } \\
& \text { Jusy 30, 1875. } \\
& 5,032 . \text { J. Stubbs, Mount Pleasant. Iowa, U. S. Road }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5,032.-J. Stubbs, Moun } \\
& \text { scraper. July } 30,1875 . \\
& 5,033 .-A . \text { S. Hopson et }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5,033.-A. S. Hopson et al., Plainview, Minn., U. S. } \\
& \text { Vehicle spring equalizer. July } 0 \text {, } 1875 \text {. } \\
& \text { 5034.-C. E. Riker. Rochelle Park, N }
\end{aligned}
$$

$$
\begin{aligned}
& \text {,034.-C. L. Riker, Rochelle Park, N } \\
& \text { for excluding cold. July } 30,1875 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5,035.- T. F. Gordon et al., Rouseville, Pa.. U. S. Pro- } \\
& \text { cess for decolorizing and refining petroleum. July } 30 \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1875. } \\
& \text { 5,036.-L. A. Dodge, Keeseville, N. Y., U. S. Nail feed- } \\
& \text { ing device. July } 30, \text {, } 875 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5,037.-A. T. Jones, Clinton } \\
& \text { Ing process. July } 30,1875 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { ing process. July 30, 1875. } \\
& ;, \text { Os8.-J. RItby, Montreal, P. Q. Gas from petroleum. } \\
& \text { July 31, 1875. }
\end{aligned}
$$

caduertisements.

Inside Page - - - - - - \quad 15 cents a line.
Engravings may head advertisements at the 8 ame rate per line, by measurement, as the letter press. Adverearly as Friday morning to appear in next $\imath s s u e$.

RATM
\qquad

$\mathrm{F}_{\text {Planing and Moulding Mill, with }}^{\text {OR SALeam Pow Yard, }}$

ghantic

August 28, 1875.1
UPRIGHT SHAPING MACHINE.

P. BHAISDEII \& CO.. Manufacturers of the Blaisder, Mass Patent
Other first-class Mechanic

CLARK \& COMPANY'S SELF-COILING, REVOLVING SteelShutters Fire and Burglar Proof Wood Shutters

INDIA RUBBER

STEEL CASTINGS.

Model Engines.

 EW PATENT CAR FOR INCLINED PrANESS,

STEAM PUMP,
 Hubbara \& Aller.
 Pulleys,Shafting and Hanger a specialty.
A DVERTISERS WHO DEEIRE TO REACH COUN

MAGNETS-Permanent Steel Magnets

Hoticic Jaquitiony

PLANING \& MATCHING, TENONING,RESAWING,SHAPING

Machinists' Tools;
Planing \& Matching

WHIPPLE'S
Patent Door Knob.

Planing \& Matching,

wardwell patent,
FOR CUTTING STONE INTO VARIOUS SIZES AND DIM
STEAM STONE CUTTER CO., RUTLAND, VT. SOLE PROPRIETORS AND MANUFACTURERS.
$\$ 50$ to $\$ 10,000 \begin{gathered}\text { Has been } \\ \text { Prvilicese } \\ \text { Invested } \\ \text { and }\end{gathered}$
 W ITHERBY, RUGG \& RICHARDSON, Manand Grovaturers of Woodmorth Planing, Tongueng Tenon Machines, Mortising. Moulding. and Re-Saw
Machines, and Wood-Working Machinery
Saneralls, 26

EAGLE FOOT LATHES

 The TOLI-GATE! Prize Pietrere enifoe An

 L. FEUCHTWANGRR \& CO, Chemists, man

 Patented 1888-1874 BOLT CUTTERS

 Wood \& LIght Machine Co., Worcester, Mass. make all kinds of Iron Working Machinery.

 $G_{\text {Bottles, }}^{\text {LASS }}$ MOULDS, for Fruit Jars, Lamps

MACHINERY

iron a wood working machinery
Cold Rolled Shafting.
 GEORGE PLACE,
MPORTANT FOR AIL CORPORATO TMPORTANT FOR ALL CORPORATIONS AND

ITIIII't+J wrough

$\mathrm{T}_{\text {Te }} \mathrm{HE}$ Union Iron Mills, Pittsburgh, Pa

An deutfdo Erfinder.

[^0]
COINNTITC OICAN

Circulation larger than that of all the weekly and monthly publications devoted to Science, Manufactures, Mechanics, Inventions, and Engineering combined, published on this Continent; therefore its value as an advertising medium cannot be over-estimated. It goes into all the machine and workshops in the country, and is taken at the principal libraries and readA business man wants something more than to see his advertisement in a printed newspaper. He wants circulation. If it is worth 25 cents per line to advertise in a paper of three thousand circulation, it is worth $\$ 3.75$ per business known, to the annexed rates:
 Business and Personal, 1.00 a line Insertion. Engravings may head advertisements at the same rate
per line, by measurement, as the letter press. Advertisements must be received at the publication office as If you wish anything in the mechanical line, advertise If you have patents or machinery to sell, advertise in the ScIENTIFIC AMERICAN.

Munn \& Co., 37 Park Row, New York
 $M_{c}^{\text {oumsing }}$ Lawrence Scientific School, HARVARD UNIVERSITY. THIS School provides a four years' course in
Or Mingineering Engileadng tothe degree of CVII Fngineer,

 NEW YORK STATE FAIR. RAILROAD TRANSPORTATION.

 erty rree. ENTRIES CLOSE AUGUST 28,
With the exception of Entries of Frults and

Mimu \& Co's Paterit Offices.

Established 1846,

The Oldest Agency for Soliciting Patents in the United States.
TWENT P-EIGHI YEARS EXPERIENOA.
MORE PATENTS have been secured througb the world.
They employ as their assistants a corps of the most axdraftsmen that cas be found, many of whom wayters, and ected from the ranks of the Patent Office
SIXTY THOUSAND inventors have availed themselves of Munn \& Co.'s services in
MUNN \& CO., in connection with the publication of the Soientifio Amerioan, continue to examine inventions confer with inventors, prepare drawings, specifications, and assignments, attend to filing applications in tho Patent Office paying the government fees, and watch each case step by
step while pending before the examiner. This is step while pending before the examiner. This is done
through their branch office,corner F and 7 th Streets, Washngton. They also prepare and file caveats, procure desion patents, trademarks, and reissues, attend to rejected cases (prepared by the inventor or other attorneys), procure copyrights, attend to interferences give written opinions on matters of infringement, furnish copies of patents: in fact attend to every branch of patent busingss Doth in this and n foreign countries.
Patents obtained in Canada, England, France, Belgium Germany, Russia, Prussia, Spain, Portugal, the British
Dolonies, and all other countries where patents are granted. ${ }_{A}$ special notice is made in the Solentifio Anerioas ot all inventions patented through this Agency, with the name and residence of the patentee. Patents are often
sold, in part or whole, to persons attracted to the invention by such notice.
A pamphiet of 110 pages contalning the laws and fall a pertaininor obtaining United States patents, also a circular each country, time granted, etc., sent froe. Address MUNN \& CO.
Pablishers SCIENTIFIO AMERIOAN, 3y Park Row, N. Y.
Bravor Offioz-
Geabington D. 0.

What they say ill Enrope.

Diamond Solid Rmery Wheds.

iron and steel

 DROP FORGING.
MOTHS ExTERMINATED: IU 1 IN In FURNITURE

THE BEST INJECTOR
For Locomotive and Stationary Bo
FRIEDMANN'S PATENT.
Over 15,000 Now in Use Here and in Europe

NATHAN \& DRE YFUS, Sole Manufacturers,
ES Send for Catalogue. Liberty St., New York.
R OGERS' TANNATE OF SODA BOILER
RU SCALE PREVENTIVE. JOS. GODAGERS R CO.
Madison, Ind.
tation.
Send
for book on Boiler Incrus:

Niagara SteamPumpWorks Restabusgre 1862, CHARLES B. HARDICK,
23 Adamsstre

DITCHING and EXCAVATION.

Portland Cement,

HARTFORD

STEAM BOILER
Inspection \& Insuranco COMPANY。

[PO[Didgs

\qquad

COVFRING

R10 (ive

SCIENTIFIC AMERICAN,
THE MOST POPULAR SCIENTIFIC PAPER IN THE WORLD. THIRTIETH YEAR.
VOLUME XXXIII.-NEW SERIES The publishers of the SCIENTIFIC AMERICAN beg to announce that on the third day of July
1875 , a new volume commenced. It will cont!nue 18t, a new volume commenced. I will contnue
to be the aim of the publishers to render the contents of the new volume more attractive and use ful than any of its predecessors.

To the Mechanic and Manufacturer. No person engaged in any of the mechanical pur-
suits should think of doing without the SCIENTIFIC AMERICAN. Every number contains from six to ten engravings of new machines and inventions which cannot be found in any other publication.
The SCIENTIFIC AMERICAN is devote The SCIENTIFIC AMERICAN is devoted to th interests of Popular Science, the Mechanic Arts,
Manufactures, Inventions, Agriculture,Commerce and the industrial pursuits generally; and it is val uable and instructive not only in the Workshop and Manufactory, but also in the Household, the Li-
orary, and the Reading Room. orary, and the Reading Room.
One copy, one year (postage included) $\$ 3.20$
One copy, six months (postage included) \ldots. $\begin{array}{lll}\text { One copy, six months (postage incluced).... } & 1.60 \\ \text { One copy, three months (postageincluded).. } & 1.00\end{array}$ One copy of Scientifle American for one year, and one copy of engraving, "Men
of Progress"............................
year, and one copy of "Science Record"

Remit by postal order, draft, or express.
Address all letters and make all Post Office or ders and drafts payable to

[^0]: Diefe große und thätige ©laffe unfrer Be, bolferung madjen wir befonders barauf
 binbung mit ZBcffington und ben europiiidden Sauptfädten, bejondere Bortbcile zur Erlan: gung bon ine unt ausiändifden Watenten bietet.
 Seder ©rfinder, gleidubiel welduer Mationali tät angehörig, if burd bie liberalen ßatentge fezse ber Bereinigten Staaten zum ßatentidut für ©rfindungen beredtigt. Unfre Firma if bereit, geftützt auf 26 jährige Erfahrung, Deutide Erfinder jeder ふeit zu berathen und zu mäßigen ßreijen rajd und pünftlid ßatente zu erlangen Die Dentidje Section if in ben Saunben fäbiger ocutid)er Sngenieure, welde in be Dffice perfönlid mit Erfindern berfegren merben.
 Det "Scientife American" wird in feinen Epalten bie bebeutenderen Erfindungen be procalen.
 ©orrefpnomz erbeten und prompt beant soortet. Pamphletp in Deutidict Sprade wer ben auf Berlangen franco zugciandt

 Morefifire
 z\&um \& EO.,
 ${ }_{9}$ Bcientific American" Patent Agentus
 87 5ate iowo

