
\bar{A} a Weekly Journal 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES
$\underset{\substack{\text { Vol. XXXIII.-No. 8.] } \\ \text { [NEWSERIES.] }}}{\text {. }}$ NEW YORK, AUGUST 21, 1875.

HeLl gate improvement. During the last twelve months, the work of excavating the rock which forms the great obstruction to entering the East River by way of Long Island Sound has been progressing steadily, but very progressing scount of an unwise delay on the 0 af Conwise delay on the part of Congress in furnishing the necessary funds. The interest on the money already expended on this important operation amounts to a large sum annually, and hindering the progress of the work, by only doling small sums in a niggardly and parsimonious manner, is surely unwise, and ultimately will be expensive. However, the carrying out of the work, under the able superintendence of General Newton, leaves little to be desired; and as pubic interest in the matter has been in no way diminished by the delay, a short de scription of the work will be acceptable to. our readers.
The large central shaft, shown in our larger illustration, has been sunk at the extreme edge of Hallett's Point, the rocks of which are bare at low water. The hole is 32 feet deep, and is sur. rounded by a coffer rounded by a coffer dam, on the parapet of which persons are shown walking. From this shaft, ten headings or tunnels radiate, under the rock which it is proposed to remove, and these are connected by galleries, circular in form and concentric with the center of the shaft. From these headings and galleries, twentyeight smaller headings have been driven, and have been driven, and altogether the immense area of twentytwo and a half acres have been undermined, a mile and a half of tunneling having been executed.
To perform this labor in safety, of course the superincumbent rock must be in no danger of falling; and to ascertain its thickness all over the area, soundings at a distance of one foot only from each or her each other have been that is to be the rock that is to be removed. Twenty-two thousand times has the lead beensunk in this work; and in places where shale was met with, the sounding instrument was driven through to the bed rock by boring.
The consumption of blasting materials has been very large. Ni-tro-glycerin has been tro-glycerin has been
much used, but latierly vulcan powder, ly vulcan powder,
made by mixing 30

THE HELL GATE SUBMARINE OPERATIONG
parts nitro-glycerin with 70 parts gunpowder, has been employed. Explosives equivalent to $100,000 \mathrm{lbs}$. nitroglycerin have already been consumed. For the final burst which is to rend asunder all the columns and walls of rock between the tunnels, and let the roof fall, 40,000 lbs. nitro-glycerin, it is said, will be required.
It is expected that the work will be completed, and the channel open to vessels drawing 26 feet of water, by August 1, 1876.

Remarkable Effects of arctic Cold on Man. Lieutenant Payer, the Austrian arctic explorer, has been laying some of the re sults of his explorations before the Geographical Society of Vienna. Referring to the infiuence of extreme cold on the human organism, he related that on March 14, 1874, he and his companions made a sledge journey over the Semiklar glacier, in order to make obser vations of Francis Joseph Land. On that day the cold marked 58° Fah. below zero Notwithstanding this intense cold, M. Payer and a Tyrolese went out before sunrise to make observations and sketch.
The sunrise was magnificent; the sun appeared surrounded, as it does at a high degree of cold, by small suns, and its light appeared more dazzling from the contrast with the extreme cold.
The travelers were obliged to pour rum down their throats so as not to touch the edge of the metal cups, which would have been as dangerous as if they as dangerous as if they had been red hot; bu the rum had lost allits
strength and liquidity, strength and liquidity and was as flat and thick as oil.
It was impossible to smoke either cigars or tobacco in short pipes, for very soon nothing but a piece of ice re mained in the mouth.
The metal of the in struments was just like red hot iron to the touch, as were some lockets, which some of the travelers, rome of cally, but impromanti cally, but imprudently, continued to wear nex the skin.
M. Payer says that so great an amount of cold paralyzes the will, and that, under its influence, men, from the unsteadiness of their gait, their stammering talk, and the slowness of their mental opera tions, seem as if they were intoxicated. Another effect of cold
is a tormenting thirst, which is due to the evaporation of the moisture of the body
It is unwholesome to use snow to quench the thirst; i brings on inflammation of the throat, palate, and tongue Besides, enough can never be taken to quench the thirst, as a temperature of $35 \frac{1}{2}^{\circ}$ to 58° below zero Fah. makes it taste like molten metal. Snow eaters in the North are considered as feeble and effeminate, in the same way as is an opium eate in the East.

The group of travelers who traversed the snow fields were surrounded by thick vapors formed by the emanations from their bodies, which became condensed, notwithstanding the furs in which the travelers were enveloped. These vapors fell to the ground, with a slight noise, frozen into the form of small crystals, and rendered the atmosphere thick, impen. etrable, and dark.
Notwithstanding the humidity of the air, a disagreeable sensation of dryness was felt.
Every sound diffused itself to a very long distance, an or dinary conversation could be heard at a hundred paces off, while the report of guns from the tops of high mountains could scarcely be heard. M. Payer explains this phenomenon by the large quantity of moisture in the arctic atmosphere. Meat could be chopped, and mercury used in the shape of balls.

Both smcll and taste become greatly enfeebled in these lat itudes; strength gives way under the paralyzing influence of the cold : the eyes involuntarily close and become frozen.
When locomotion stops, the sole of the foot becomes insen sible.

It is somewhat curious that the beard does freeze; but this is explained from the air expired, falling, being immediately transformed into snow. The cold causes dark heards to become lighter; the secretion of the eyes and nose always increases, while the formation of the perspiration altogethe ceases.
The only possible protection against the cold is to be very warmly clothed, and to endeavor as much as possible to prevent the condensation of the atmosphere, while the much vaunted plans of anointing and blackening the body are pro nounced to have no real value

grientifir ${ }^{\text {G/ mmericam. }}$

MUNN \& CO., Editors and Proprietors. PUBLISHED WEEILIT AT
NO. 37 PARK ROW. NEW YORK.
o. D. MUNN.
A. ह. BEACH.

TERMS.
One copy, one year, postage included... 160
One copy, six months, postage included........... ClubRatos: Ten coples, one year, each 8270 , postage included.................................. $\mathbf{2 8}$
Over ten coples, same rate each, postage included............ CF By the new law, postage is payable in advance
ent abseriber then recelves the paper free of cnarge.
Notr.-Persons subscribing will please to give their fall names, and Post
Office and State address, plainly written, and also state at which time they 1sh their subscriptions to commence, otherwise the paper will be sent from the recelpt of the order. When requested, the numbers can be supplied ence, state former address, as well as give the new one. No changes cas be made unless the former address is given.

VOLUME XXXIII., No. 8. [New Series. 1 Thirtieth Fear.
NEW YORK, SATURDAY, AUGUST 21, 1875.

Contents.

THE USES OF NATURE.

Nature has kindly filled the world with attractions which are rich enough to suit the tastes of the most fastidious, and varied enough to gratify the wishes and supply the wants of all. These were made for those who need them and would be benefited by them; and it is but justice to such to protest against the practices of those who monopolize the places of popular resort, and uses them only for the sake of personal gain.
At Niagara, for instance, not one of Nature's wonders, that is capable of being concealed can begin to attract attention,
before man's cupidity closes it from view, or obstructs the
way to it and says: "You can't see Nature's exhibition way to it and says: "You can't see Nature's exhibition til you pay me for it." So at Natural Bridge, a grasping indi vidual has buiit a high, close fence around all the places hat command a good view of that grand structure, and he must be paid before the benevolence of the God of Nature can be enjoyed. At every eligible locality on the sea beach at mineral springs, on mountain peaks, hotels are erected and the appearance of the place is modernized till men have destroyed, as far as in them lies, the primitive beauty and wild grandeur of Nature. But the places are made attractive and con
All these instructive and ennobling works of Nature are so manifestly designed for the free benefit of all that no man can appropriate them to private use, to the exclusion of thers, without doing a gross injustice to the rest of man kind. The spirit that leads men to such perversion of the gifts of Nature would prompt them to shut up, if thes could, he sun which dispenses light, warmth, and vitality to rich and poor alike, the gorgeous beauty of the sunset, the lowers, and the fields, the grandeur of the ocean and its tributaries; and dole them out, by careful measure, only to those who would pay the price which selfishness and avarice had set upon them. We can look upon and enjoy a neigh bor's finely proportioned horse, the skillful architecture of his house, the taste displayed in beautifying his grounds, his rich and waving fields of grain and grass, his trees laden with foliage and fruit, and he never thinks of charging us or the delicious pleasure we have received. He would con ider it an insult if we should offer to pay him. But by hi wn skill and toil he has afforded us happiness, and there fore benefit, and would have the right, if the disposition prompted, to receive pay for the benefit given. But what right has any man to extort money from those who enjoy the free beauties of Nature, when he has expended nothing to make those beauties, and when the enjoyment which they ive to others does not harm or discommode him? What is abomination in the sight of God and man?
In most pleasing contrast to the devices of those grasping oneymakers at Nature's expense, appear the park, eums, horticultural and botanical gardens, where Nature, by
the skillful and painstaking hand of benevolence, is displayed in all her beauty and instructiveness. And do not those who thus adorn and cultivate Nature to instruct and bless mankind, receive, after all, the richest reward-the most lucrative pay? Is not Shaw, of St. Louis, worthy of all honor for generously opening, free to one and all, and keeping in order a enormous private expense, his gardens, rich in the vegetation of all climes? Will not the great American Museum of Natural History, in the Central Park, when completed, be one of the grandest benevolent institutions ever established It is doubtless true that the lamented Agassiz, by his enthu siasm in studying and teaching Nature, and by cy ure and profit of those who spend their vacations at some of the attractive summer haunts. And if any one could justly demand pay for enhancing the delights which Nature af fords, it would be he. But instead of that, he spent his fortune and his vigorous life in building up one of the randest museums in the world, and has thrown open its doors free to every one, whether he wish to spend a pleasan hour or to study for years. And when, on one occasion, he was offered a rare opportunity to make a small fortune, he replied: " Gentlemen, I have no time to make money.
It is possible for an enterprise to pay a large dividend, and yet return but little money to its originator; and it would be well if the world could learn that money is not the only thing worth living and laboring for. It is too true that, by the great majority of mankind, the money maker, if he succeeds, is envied and respected more than he who gives his and beauty to his fellow men. This is emphatically a utili tarian age. Its all-absorbing question is: " Does it pay?" And while this, in its broad sense, is one of the wisest que ries a responsible being can make, in its restricted sense i is one of the most shortsighted. One collecting natural his ory specimens is always sure to attract, more or less, the attention of the curious; and their first questions will be "A Ar you hunting for gold?" and: "Can you make much at
that business?" And on being answered in the negative that business?" And on being answered in the negative
(which is correct only with their conceptions), there is always which is correct only with their conceptions), there is alway absorbed in deep thought, and-probally for the first time in his life-is seriously moralizing; and the substance of his cogitations, when plainly interpreted, is just about this " That man must be a fool to spend so much time, and work so hard, for nothing but pieces of broken rock, and insects, and shells, and flowers, just what we should expect a chil to be pleased with." Just in point here is an amusing story
told of Professor Agassiz. While driving along the road one day, he saw a choice natural history specimen; and calling boy to hold his horse, he was off, over the fences, through the fields, and into the bushes to capture it. A man passing asked the youth whose horse he was holding. "I don't know," said the lad, "only he is a crazy Dutchman who has of out of sight after a butterfly.
Most of the great scientific achievements of the world have been simply labors of love; and many a scientist ha made an invention or a discovery that would bring him a for tune if he were to patent it; but he declines to use it for ny other purpose than to advance the cause of Science The world is made richer and happier, and his sufficient re ard is the consciousness of the good done, and the credit doing it.

THE UNITED STATES COMMISSION ON BOILER EXPLOSIONS.
The death of the late distinguished Professor Winlock has left vacant the chairmanship of the Commission on Steam Boiler Explosions. This vacancy will probably be filled by the appointment of President F. A. P. Barnard, LL.D., of Columbia College, New York city. The previous announcement of the appointment was premature, but it has now been made by the Secretary of the Treasury, and is expected to have been confirmed by the Secretary of the Navy, who, with the former, constitutes the appointing power. President Barnard has long been known as one of the ablest and most distinguished of those few scientific men who have iways ben in in the practical application of Sci will here ha no, practically useful, that could be offered. practically useful, that could be offered
The country is to be congratulated that the two cabinet officers making this appointment, Messrs. Bristow and Robeon, have made so ex cellent a choice. We know of no man in our own country or in Europe better fitted by scientific attainments, by an acknowledged position among the leading men of his class, by official position, age, and experience, for this position. Those of the readers of the Scientific American who desire to know something of the methods by which scientific knowledge can be made practically available may find pleasure and profit in the study of Dr. Barnard's report " On the Machinery and the Industrial Processes Illustrated at the Paris Exhibition of 1867."
The Commission now consists of President F. A. P. Barnard: Columbia College, Chairman; Professor R. H. Thuston, Stevens Institute of Technology: Mpssrs. C. W. Cope land (New York city), J. R. Robinson (Boston), and I. Holmes (Mount Vernon, Ohio)
The commissioners are at work, and we shall hope that much good may be done by them in the dissipation of some of the superstitions beclouding the subject in the minds of many, even among professional and practical engineers, in spreading abroad a knowledge of already ascertained facts, and in the acquirement of some additional knowledge. In the latter direction, they can be probably effectively aided by other men of Science, and by such experienced practical men as are numbered by hundreds among our readers.

QUEER CATTLE.

This is a prolific year for insect pests, and among those that have thriven remarkably well are the aphides, or plant ice. In some parts of New England, we have seen the foliage of fruit and other trees almost completely destroyed by them, to the great injury if not the total ruin of the fruit and we have been told that in other localities the orchards have a sere and yellow look as though scorched by fire. Un oll a bunch of the curled-up leaves, and, if they are not wholly dead and dry, you will find the inner under sides of he leaves swarming with lice.
They are insignificant looking creatures, yet they are among the most interesting and most extraordinary of insects. The injuries caused by them are enormous, and their natural history is remarkable in the highest degree. Their generic name aphis describes their character; it is from a Greek word, signifying to exhaust. In their wingless state, thei ppearance is familiar to every one who has ever had any hing to do with plants. Their bodies are short, oval, soft, and are furnished at the hinder end with two tubes for the passage of a sweet fluid secreted from the stomach. (It is his honey dew, as it is called, which causes certain ants t domesticate them, as we do cattle.) Their heads are small and armed with a long, tubular, three-jointed beak, by means which they attach themselves to succulent leaves and other parts of plants, and suck out their juices. Their eye are globular; their antennæ long and tapering; their leg slender and long; their feet two-jointed. The males and emales are winged, and also the last brood of asexual in dividuals: but the early summer brood are usually wingless. The difference between the different broods is perhaps their most striking characteristic, illustrating as it does that nomalous system of generation, known as parthenogenesis, bserved among a few species of insects and also in the jelly ish. By Steenstrup the phenomenon is called "alternatio f generations." In ordinary generation the offspring re embles the parent: in this extraordinary mode there is series or circle of individuals, with one or more unlike form always ccming between like forms. Among plant lice, the series begins in the fall by the paring of male and female in dividuals. The males die: the females also, after laying heir eggs, which are hatched as soon as sap begins to flow in early spring. This brood is sexless and, in the great majority of cases, wingless. Though with undeveloped sexual organs, these individuals are capable of reproducing their kind by a sort of budding process. Contrary to the rule among insects their second generation is viviparous: the young lice are brought forth alive, and may be either winged or wingless or both. The third generation resembles the second, the fourth resembles the third, and so on, the number of succes ive broods of the sort having no certain limit, but depend ng, so far as known, entirely upon the temperature and th supply of food. According to Kyber, a colony of aphis dianth continued to propagate ior four years, in a warm room, with-
out the intervention of males. On the setting in of cold out the intervention of males. On the setting in of cold weather, however, or in some cases on the failure of nourish ment, the weather being still warm, true males and female are produced, the females always wingless, the males sometimes with, sometimes without, wings. It is by the paring of these perfectly sexed individuals that the series begins. The advantage of this method of propagation is thought rapid multiplication of individuals. It is certain that they
are enormously prolific. In five generations, according to the calculation of Réaumur, the progeny of one aphis wil amount to six thousand millions ; and Duval obtained eleven generations in seven months, when the approach of cold weather killed his specimens. Though individually weak, their capacity for rapid multiplication under favorable con ditions makes them a' formidable enemy to vegatation.
If it were not for certain other insects, which prey upon the plant lice and keep down their numbers, they would soon make agriculture impossible. Chief among the lice eaters
to whom we are so much indebted are the larvæ of the little to whom we are so much indebted are the larve of the little
spotted lady bugs (cuccinella); and all children should be taught to treat them gently, when they say the nursery rhyme; Lady bug! lady bug! fly away home.
In this connection we may observe that children also some times enter the list of lice enemies unwittingly, when they gather from young sumac bushes and other succulent plants the juicy swellings which they call "may apples." These hollow warts are produced by the strings of plant lice, and their interiors will usually be] found full of a mealy substance t
the lice.
he lice. .
Reference has been made to the honey-like secretion of plant lice and the fondness of ants for it. One of the first indications of the colonizing of a plant by these parasites is the druble column of ants that will be seen running up and
down the stem: those ascending lank and eager, those dedown the stem : those ascending lank and eager, those descending full-bellied and lazy. The lice remain on excellent terms with the ants, and seem to enjoy the caresses by which the latter provoke the excretion of the coveted honey. In return, the ants busily drive away the insect enemies of the lice, clear away their cast-off skins, and sometimes build mud walls around, or earthen domes over, the lice, to monopolize or protect them. The ants have also been seen to colonize the lice on the roots of plants, carefully fetching the larve home and planting them in little herds, bestowing upon them the same care and attention that they show their own offspring, carrying them to places of safety when they are disturbed and when they migrate: treating them in short as we do our cattle,and reaping a similar reward, as the sweet fluid so abundantly supplied by the lice forms the chief nutriment of their keepers. No reports have been received of any society for the prevention of cruelty.etc.,among the ants, probably because the formic cattle keepers treat their stock kindly without compulsion.
The injuries caused by plant lice are mainly such as naturally follow the withdrawal of sap from roots, stems, or leaves before it can contribute to the nourishment of the plant. If the root is first attacked, the whole plant puts on a sickly appearance, and soon dies from exhaustion. When the leaves are attacked, they curl up; cease to grow, and, if the lice are sufficiently numerous, perish and drop off prematurely. In other cases tumors are produced on the leaves or stems, similar to oak galls. There are about thirty species of aphides known in this country.

CONSTANCY OF THE OCEAN LEVEL.

The upheavals and depressions of the earth's crust were already recognized by the philosophers of antiquity. Aristotle found it necessary to correct some philosophers of his day, who imagined that the surface of the ocean was becoming lower by the gradual drying-up of the water. He says: ' Only those of narrow views and small experience attribute local changes to an overthrowing of the whole globe. In support of their view, they bring forward the drying-up of seas and the existence of land where formerly it was not; and give authentic facts, from which, however, they deduce false conclusions. It is true that certain spots, heretofore covered with water, now form portions of the continent; but the contrary is also the case, and any one who studiously examines the facts will find that the sea has invaded and submerged several parts. Such is the explanation of Deuca lion's flood, the ravages of which were more especially felt in Greece, and which, among other provinces, was most terribly felt in ancient Hellas, at that time inhabited by the Selles, and by the people named Greeks, but now called the Hellenes.
So far Aristotle. His theory evidently was that the amount of water in the ocean, and therefore the level of its surface, is constant, but that the land is ascending in one spot and descending in another. The latter is most forcibly illustrated by the historical accounts of the Straits of Gibraltar, which are evidently, as well as the British Channel a conquest by the ocean over the gradually sinking land. Avienus quotes a measurement, on the authority of Dæmon of Amphipolis, which (reduced to our unit, the mile) makes the width of the Straits at the narrowest place not quite three miles. Then he quotes a subsequent measurement, made by Euctemon of Athens,. who found it four miles. Next we find that Scymmes of Chiomeasured it, in the year 143 before our era, and found it 13 miles at the Atlantic outlet, between Spartel and Trafalgar, which now is 26 miles in width. Turanius Gracilis, about 50 years before our era, gives the width of the narrowest place, from Mellaria in Spain to Cape Blanco in Africa, as $4 \frac{1}{2}$ miles. Strabo gives the greatest breadth as nearly 7 miles, while Pliny, who had been in Spain and had visited the Strait, gives it at $7 \frac{1}{2}$ miles for the narrowest part, and about 10 miles for the widest part. Bishop Victor measured the distance in the year of our era 500 , and found it to be 12 miles; while the present Spanish measurement is 14 miles.
Besides the evidence of a gradual widening and probable sinking of the land of both shores, we find the positive evidence of the sinking in the account of Avienus, who speaks dence of the sinking in the account of Avienus, who speaks
of the two wooded isles in mid-channel, on which were built of the two wooded isles in mid-channel, on which were built
a temple and altars in honor of Hercules. These were the
celebrated Pillars of Hercules of the ancient authors. The
Carthaginians " were obliged to build flat-bottomed vessels, Carthaginians " were obliged to build flat-bottomed vessels,
so as to be able to sail over the shallow water of the Straits, so as to be able to sail over the shallow water of the Straits,
according to Avienus, who also says that Hannibal had re ported that there was " a bottomless and boundless sea far ther to the west," which, as it corresponds to the Atlantic Ocean, puts the locality intended to be described beyond doubt.
Pliny visited the Straits, and speaks of a low lying island, overed with wild olives, and upon which were the remains of the Temple of Hercules. Pomponius Mela, a Spaniard, living several centuries later, and to whom these regions were very familiar, describes the Straits as a channel broken by a number of small islands. At present they have all disappeared, and the largest ships sail freely over every portion these waters.
In 1728, there happened a very low tide, and on this occasion the remains of the famous Temple of Hercules were distinctly seen in the oceanic part of the Strait, and some souvenirs were even obtained for rroservation
Ignacio Lopez de Ayla mentions, in his " History of Gibraltar," that the sea covers the greater part of the land on which stood the ancient city of Mellaria. In the bay of Gibraltar, the sea has engulfed a part of Carteia and Algesiras. Nine miles west of Tarifa was the city of Belon, at the shore of the Strait; and this is now engulfed, while the Lastly Colonel James, in his "Hist
Lastly Colonel James, in his "History of the Straits of Hercules,', mentions that during an earthquake, the site of Cales disappeared, together with the small islands opposite the city of Bactes, near Tarifa; and a rock named "La Perle, once an island, sank, and is now covered with more than 12 eet of water at low tide.
The gradual sinking in this neighborhood is balanced by upheavals in other regions: which are very marked, well established by observation, and carefully measured in the northern part of Sweden and Norway, where the sea, especially the northern part of the Baltic, appears to retire from year to year, and leaves villages, formerly situated at the hore, a few miles inland. The Azores are rising, so is the island of Santorin, and the island of Julia. The former sea port of Aigues Mortes is now nine miles from the shore; while the celebrated Temple of Serapis, at Puzzuoli, for many centuries engulfed, is now uncovered, and is visite by travelers and tourists.

experimental steam boiler explosions.

The work of the United States Commission on the causes lsewhere explained) interrupted by the death of the late chairman, has been recently fasumed.
The Commission have two stations, one at Pittsburgh and the other at Sandy Hook, at each of which area considerable number of steam boilers which are to be devoted to the various purposes comprehended in the programme of investigation. Some experiments were recently made at Sandy Hook, and o:hers are to be made later in the season at Pittsburgh. As
the Commission have been informed by counsel that they the Commission have been informed by counsel that they
may be held legally responsible for any injury which may happen to visitors during their their experiments, they per mit no spectators to be present, and reporters are compelled to obtain their information as best they can. The members reserve the details of their experiments for their official reort, but we are able to present to our readers-some inter ing particulars respecting the later work at Sandy Hook.
The work in hand was a series of experiments on the overheating of boilers, arising from low water The Committee on the Sandy Hook station have had preparations for the summer work going on for some weeks. On July 9 the committee, Mr. Copeland and Professor Thurston, commenced the work of comparison of instruments, and of preparation of details preliminary to this special investigation, and on Saturday, July 11, had completed their task. On the following Tuesday, July 13, the Commission met at Sandy Hook, and experiments were at once commenced, and occupied two days. The boiler experimented upon was a plain cylinder boiler, set in brickwork in the usual manner. In ach experiment, the boiler was filled with water, a flre started, and, when the fire was in good order and the steam at the right point, all water was blown out; the boiler was allowed to become heated to the desired temperature, as indicated by a pyrometer inserted within it, and, at the proper moment, the feed water was introduced by a force pump. It was only on the second day that this severe usage produced the destruction of the boiler. At each occasion, on the intro duction of the water, the steam pressure jumped up suddeny, the safety valve opened, and, the water still continuing o enter, the boiler pressure dropped almost as rapidly as it had risen, and the boiler cooled down on each occasion (except the last) without apparent injury, and without having ven started a seam, although the metal had been red hot. The last experiment resulted in the explosion of the boiler and the destruction of its setting, and interrupted the work. The succession of phenomena was precisely as already described; but the temperature of the boiler was higher, probably a bright red on the bottom, and the pressure of steam was about 60 lbs. when the explosion occurred. It had fallen Themat from the maximum, attained the moment before. These experiments iilustrate the facts which we have often presented to the readers of the Scientific American, in our remarks upon the method by which low water in team boilers becomes an element of danger. When the oiler is strong, of good tough iron, and not too seriously verheated, it may not be exploded on the introduction o water. But there is invariably a development of steam im-
mediately upon the entrance of the feed water, producing a weigh pressure which will be directly in proportion to the tained for overheated, and the excess of temperature auto the prom the suddenness of this rise will be proportional heat into the water first entering. This rise may be so sudden and so great that the safety valve cannot relieve the pressure promptly, in which case the boiler, if not very strong, may be exploded. Again, the plates, if heated to a red heat, lose a large proportion of their strength; and the boiler, thus weakened, may explode at the ordinary or a lower pressure. Still another conspiring cause of injury may be the sudden and irregular contraction, causing strains which assist even a low pressure to produce explosion.
The débris on the Sandy Hook Station is now cleared away, and, before our remarks meet the eyes of our readers, we presume that the Commission will have completed this interesting series of experiments. Engineers have long been desirous of knowing where the limit between imminent danger and comparative safety is to be found in cases of low water, and we hope that these experiments, which are on a large scale, und are more nearly illustrative of the conditions of ordinary practice than those made, forty years ago, by the Committee of the Franklin Institute, may go far toward determining that limit. Still, that point becoming known, we shall not advise those of our readers who handle steam boilers to carry their water low in the conviction that they can keep within the dead line.

sCIENTIFIC and PRACTICAL INFORMATION

oxgen an antidote for phosphorus poisoning.
MM. Threinesse and Casse have found that injections of oxygen into the veins neutralize the toxic effect of phosphous. The gas must be pure, and free from all admixture with air, and must be introduced very slowly. The precise apparatus used is not described; and it appears that the quantity of gas required is very large,several cubic feet being administered to an animal weighing twenty pounds. The re sults, however, were in every way successful.

the nitrification of arable earth

Recent experiments of MM. Boussingault and Schloesing are of considerable importance with reference to the theories of fertilization of soils and the utilization of manures, since they bring to light a number of interesting facts, which are summarized in the following conclusions: 1. Arable earth does not become nitrified at the expense of the nitrogen gas in the atmosphere. Agriculture has nothing to expect, from
that source, which will tend to the profit of the crops. 2. that source, which will tend to the profit of the crops. 2. The theory of a nitrification resulting from the combination
of nitrogen gas and oxygen, in the presence of matters rich of nitrogen gas and oxygen, in the presence of matters rich noted, is no longer sustainable. 3. The source of nitrogen of nitrates formed in the soil should be considered, in the absence of positive proof to the contrary, as reposing only in the nitrified organic matters combined with the mineral elements of the soil. 4. Nitrates in decomposing in the soil, under the influence of a reducing atmosphere, yield but a small fraction of their nitrogen, under the form of ammonia retained by the earth by virtue of its absorbing power. The balance of the nitrogen of the nitric acid returns to a gaseous state , and thus becomes lost to the crops.

THE DISCOVERY OF PROTOSULPHIDE OF CARBON

It is generally well known that, chemically, oxygen and sulphur greatly resemble each other. The sulphide of car bon,however, analogous in properties and composition to car-
bonic acid, has hitherto been considered the sole sulphuretted bonic acid, has hitherto been considered the sole sulphuretted compound of carbon, there being nothing recognized corres-
ponding to carbonic oxide to the sulphur series. M. Sidot ponding to carbonic oxide to the sulphur series. M. Sidot has recently made the important discovery of protosulphide of carbon, which compound he obtains by subjecting bisulphide of carbon to sunlight, when the liquid undergoes a profound decomposition. Half of the sulphur separates to be again dissolved in the bisulphide not yet altered, and at the same time a black powder is precipitated,which is the protosulphide sought for. This, washed and purified, is destitute of taste or odor, and is absolutely insoluble in neutral solvents. Acids act upon it,giving rise to more or less complex products. The author proposes to undertake a series of ex tended investigations into the properties of the new body. tempered boracic acid.
Tempered glass submitted to the polariscope exhibits centers, having a kind of activity under the light, but which disappear when the glass is annealed. According to M. de Luynes, boracic acid, cast and submitted to hardening, acts like glass, with the difference,however, that the peculiar property above noted is not dispelled on annealing. When submitted to moist air, a small lens of the acid undergoes curious internal modifications, resulting in two cones, disposed apex to apex, being formed within, which offer the most varying accidents of shape. M. de Luynes suggests that an analagous swelling may take place in other vitreous sub stances, and points out that certain geological phenomena may be traced to such cause.

expected resignation of the commissioner of patents.

The New York Tribune states that Commissioner Thacher is about to resign the office, and is to be succeeded by R. Holland Duell, Esq., of Courtlandt county, N. Y., formerly a Member of Congress. Mr. Duell is a gentleman of ability and varied attainments, possessing rare capabilities for the administration of Patent Office affairs. He ought to make a good Commissioner, and we think he will

THE ST, LOUIS BRIDGE
We give herewith a perspective view of the west abut ment, and about two sevenths of the shore span of the stuber for periods of several months at a time in perfect . The idea of tor of the magnitude and beauty of this remarkable work plication to refrigerator cars, of which several, construc may be side of therred by comparing them with the figures on the some time past been used as a means of transporting wester ing with his back against one of the small piers, with arms folded surveging the father of waters a he rushes past the city is only heut as high as two and only about as high as two and a hal courses of the granite masonry of the pier, and he stands about 40 feet below the carriage way of the bridge. Seventy feet above him the iron horse is seen with its cloud of smoke emerging from the sandstone arcade which surmounts the five stone arches that carry the viaduct over the St . Louis wharf. The railway tracks are below the carriage way and foot walks, and the steam trains in no manner interfere with the local traffic of St. Louis, as the bridge is connected with a tunnel und $t r$ the city.
The towers, which terminate the bridge proper at each end of the structure, contain elevators and stairways for the convenience of pedestrians on the wharfs on both sides of the river.
The St. Louis bridge will be found, if compared with other great bridges of the world, to surpass them all in several important particulars. In the massiveness of its masonry and the depth of its foundations, it stands alone. One of its channal piers and one abutment pier stand on the mar abutmer pier 100 feet below the ble rock over 100 feet below the river's surface. In the length of
its spans there is nothing equal its spans there is nothing equal
to it in existence, except in suspento it in existence, except in suspen sion bridges. Its two shore spans are 500 feet each in the clear. and are built of masonry, and the middle one is 520 feet.
In capacity it far excels all others yet constructed or designed. The Brooklyn suspension bridge, one of the remarkable works of the age, with its 1,600 feet span, is only designed to accommodate local traffic, and will not possess cal rains The suspension bridge rains. The suppen bridge Hudson, at the Highlands, is only Hudson, at the Highlands, is only calculated to carry one railway track across the river on its grand span of 1,600 feet; but the business that will be borne across the Mississippi by the St. Louis bridge will greatly surpass that of any other. Already thirteen impor tant lines of railway, says Engineering, are preparing to throw their traffic across its arches; and above their trains, on a wide street now rolls the domestic com srett, now the largest inland in America One the ide in America. One of the wides St Lous is exted by it di rectly across the Mississippi, thus connecting, by a common high way, two of the most prosperous and fertile States in the Union, Illinois and Missouri.

The Fisher Refrigerator

We have to acknowledge the receipt of a very finely construc ted refrigerator, forwarded to us by the inventor, Mr. J. Hyde Fisher, of Chicago, Ill. It is the tangible result of three excellent devices, patents for which were obtained through the Scientific American Patent Agency, and which together render the re- a large stock of fish, in order to keep the same over consider- pair of wheels and internal cranks, was placed on a line frigerator one of the best both in principle and construction able lengths of time, the system has proved itself emifiently with 30 per cent incline. Five Bunsen elements supplied the principe have ever examined. The first patent covers the suitable, since it has already been successfully adopted in force, and a weight of 25 lbs., with cord, passed round the axles. latter at the sop cold air the the cities. These last mentioned receptacles have been, and we thewheels merely slid on the rails in position, but when the cold air from the ice chamber entering the cooling room at are informed will in future be, built under thedirect supervi is a con that at which the warm air escapes. There sion of the inventor.
解 ther patented additions are a very ingenious latch for the Mr. H. C. Van Schaack, Jr., of 991 Michigan avenue, Chicawhen the door is closed, no cold air is so constructed that, go, Ill., who may be addressed there for further informawhen the door is closed, no cold air can escape from the re- $\left\lvert\, \begin{aligned} & \text { go, } \\ & \text { tion. }\end{aligned}\right.$

SMITH'S IMPROVED BALE TIE

The invention illustrated herewith is a new tie designed to secure the wires used for binding hay bales. The usual mode of fastening these wires is wasteful, since about a foot on each end is employed to twist together and tuck under, so that, of the number of bands usual on each bale, fully six feet remain unutilized. Again, considerable wire is lost by cutting the bands rather than wasting the time necessary to untwist them. The present device is intended to prevent this waste, by using no more wire than is just necessary to secure the simple fastening, and, at the same time, to afford the latter of such a form as may be quickly and easily loosened

The invention consists of a double hooked piece, A, Fig. 2. having V-shaped jaws, into which the wire (size from 10 to 14) is secured. Small loops are first made on the ends of the wire, and these are slipped over the hooks while the bale is still in the press. The expansion of the bale, on its removal, draws the bands tight, and the jaw of the coupling is so constructed as to prevent the wire slippfing. The ends of the wire are turned under the standing part so as to be out of the way, and are not liable to catch in transporting the bale. To unfasten the tie, it is only necessary to seize the ends of the wire with pincers and bend them back, when they will readily slip from the holes. Fig. 1 shows the bands in place on the bale.
For further particulars address the inventor, Mr. Isaac T Smith, 1,532 Main street, Richmond, Va.

KORTING'S STEAM JET BILGE PUMP.

The application of an ejector to throw the water out of a ship's hold is an expensive way to attain this purpose. For the amount of steam necessary for working an ejector is found to be ten to fifteen times the amount used to do the same work loy a donkeypump, or by the ordinary bilge pump in connection with the large engines. But on the other hand, it is an ascertained fact that such ejectors may be relied upon as to their never-failing surety in working, and in this respect they are most decidedly superior to most pumps in use. All those parts that oftentimes proved to be fatal to the prompt application of ordinary pumps in case of need are unnecessary for these ejectors.

In the annexed engraving a section of Körting's steam jet oilge pump is shown, the arrangement being so very simple that it hardly requires any explanation. The steam coming from the boiler enters through a nozzle, a, and forces the bilge water, after having passed the suction filter, b, through ${ }^{*}$ he diverging tube, c, whence it is discharged into the sea by means of a pipe through an opening in the ship's side. The arrows indicate the directions of steam and water.

The Currant and Raspberry Moths.

A correspondent of the English Mechanic writes as follows:
" A destructive pest among the fruit bushes is the abraxis grossulariata, known under the name of the gooseberrs caterpillar, the magpie, or the currant moth. This moth and its caterpillar are shown in Fig. 1, and will, doubtless, be easily recognized when it is mentioned that the wings are whitish with black markings, and a few yellow blotches or
stripes here and there; the caterpillar is yellow and black. The larvo of this moth spin the leaves together in the autumn and winter, in position ready to devour the leaves as soon as they appear in spring. The remedy for this is to remove all the dead leaves from the bush in winter and burn them, or else dig, close handy, a hole at least two feet deep, into which you may rake the fallen leaves, and then remove

from underneath the bush about two inches of the top soil, putting it on the leaves in the hole, and then filling up with the soil previously removed. Tan and decayed manure, with a dusting of lime, may then be put under the bush, and the resulf will be found satisfactory, in freedom from early attacks of the pest, and a good crop of fruit. If, however, the bush should become infested with larvo hatched from eggs deposited by the moth which has arrived at the perfect stage on some neighbor's domain, the best remedy is a dusting with powder of white hellebore, which is easily laid on and with powder of white hellebore, which is easily laid on and
under the leaves by means of a muslin bag. Like most of the other garden pirates, this insect can be exterminated, as the other garden pirates, this insect can be exterminated, as
far as one's garden is concerned, by a little energy at the proper time.
Another insect, lampronia capitella, also attacks currants. This moth is the raspberry grub, and is shown in various stages in Fig. 2. It is a pretty little moth, and its larva is unmistakable, being a bright red. If, on examining the young buds or shoots of the raspberry canes, we find a larva of l. rubiella on slitting open a bud or shoot, it will be tolerably correct to conclude that all the buds which appear to be in a similar condition are occupied by one of these destructive little pests. It will be sufficient if a sharp pinch is administered to the bud between finger and thumb, because that method has the merit of leaving the shoot to assist in elaborating the sap. The buds thus affected will not yield fruit:

but by carefully destroying all the larvæ, we take a good many steps towards obtaining a crop in the next season. Like the rose fly and the sesia on the currants, it is impossible te detect the presence of the enemy till the mischief has been done-the egg being placed in position during the preceding autumn, its presence becoming manifest only by the effects. A very good way of forestalling these and similar pests is to top dress the ground in early autumn with soot, and to
dust that pungent substance freely about the fruit quarters, over leaves and everything. It is unsightly and unpleasant, but it seems to keep off a host of insects, and it is valuable as manure."

JOINING UP CELLS OF BATTERIES

The little instrument, of which the following is a descrip tion, may be useful to some of our amateur electricians. It
 is a switch for joining-up cells for quantity or intensity by one movement. The engraving shows one for two cells, but it could be made for any limited number.
To the four binding screws are attached the wires from the cells, the line wires being fastened to the outer screws. The connections on the switch are marked in single dotted lines: the double lines represent those under the wooden slab on which the switch turns. When it is moved to the right, it joins the cells for intensity, and vice vers \hat{a}. The small circles are brass knobs (tipped with platinum, if preferred). The rest explains itself. It may be of use on the lecture table.-A. Trotter.

PICRIC ACID dyes leather a good yellow without any mordant; it must be used in very dilute solution and not warmer han 70° Fah. Anilin blue modifies this color to a fine green.

THE ELECTROSTATIC OR INDUCTION COIL It has been proved by experiments that the quantity of electricity traversing the secondary wire of an induction coil is the same whether the current is produced by the closing or by the opening of the primary circuit. The difference be tween the two currents, in respect to their electromotive force, is, bowever, very marked, that of the opening current being far greater than that of the closing one, although, as above stated, the actual quantity of electricity is the same in both cases. The reason of this is that, when the primary or battery circuit is closed, it is opposed by the extra or self induced current, and hence the former requires a certain length of time to attain its full force. When, however, the primary circuit is broken, the extra current is in the same direction, and therefore does not delay the action to the same extent as in the first instance. The primary current disap pears almost instantaneously, or at all events in much less time than is required for it to attain its full strength. The duretion if the induced to atta its full strength. The with the tio or in with the time occupied in the charging or discharging of the primary wire by the battery current. As the same quantity of electricity is produced in the secondary wire in each case, it is obvious that it must necessarily pass through the circuit in a shorter time at the breaking than at the closing of the primary circuit, and thus its potential or electro-motive force must be correspondingly greater.

The most striking example of this action is afforded by th lectro-magneticinduction coils of Ritchie, Ruhmkorff, Ladd, and others, which are now made to produce the most powerful electrostatic effects, far surpassing those of the frictional electric machine.
The discovery of the electrostatic properties of the induced or secondary current was made by Professor C. G. Page, of Salem, Mass., who (in 1836) published the first account of an induction apparatus, consisting of a primary coil with a sec ondary coil wound upon it, of many times its own length. Professor Page was also the originator of the automatic circuit breaker, and of the devices for rendering the same adjustable. Ruhmkorff, of Paris, constructed in 1851 the coils which bear his name. By careful insulation of the secondar wire he succeeded in producing sparks of nearly one inch in length, capable of charging a Leyden jar with great rapidity. length, capable of charging a Leyden jar with great rapidity.
Ritchie, of Boston, in 1857, vastly improved the induction Ritchie, of Boston, in 1857, vastly improved the induction
coil, and ị successive instruments obtained sparks of $6,10 \frac{1}{2}$, coil, and in successive instruments obtained sparks of $6,10 \frac{1}{2}$,
and $12 \frac{1}{4}$ inches. The cause of the superiority in Ritchie's and 121 inches. The cause of the superiority in Ritchie's
coils is due chiefly to an improved method of winding the coils is due chiefly to an improved method of winding the
fine wire coil, by which it has been found possible to use with success a wire of several hundred thousand feet in length, while the limit in the instruments as constructed by Ruhmkorff was about ten theusand feet. Fig. 1 shows the external appearance of one of Ritchie's medium sized coils, giving a spark of nine or ten inches in length.
The chief parts of this apparatus are the primary and secondary coils, an interrupter to the primary circuit, and the condenser. In the instrument shown in Fig. 1, about 68,000 feet of silk-covered wire, 0012 of an inch in diameter, is wound upon the exterior coil. The primary or inducing coil consists of about two hundred feet of copper wire, one seventh of an inch in diameter (No.9), the ends of which terminate in binding screws upon the base. A heavy glass bell, seen at the top of the coil, insulates the primary from the second ary circuit, its foot being turned outwards by a flange as wide as the thickness of the coil. The induction coil, for more perfect insulation, is also encased in thick gutta percha. The ends of this coil are carried by gutta-percha-covered conductors to the two glass insulating stands, seen at the rear of the instrument, where they end in sliding rods, point ed with platinum at one end, and having balls of brass at the other. The interrupter devised by Mr. Ritchie consists of a toothed wheel, which raises a spring hammer, the blows of which fall upon an anvil, breaking contact between two heavy pieces of platinum. The European induction coils are usually provided with an automatic circuit breaker, but comparative trials have shown that there is an advantage in varying the rapidity of the interruptions, according to the varying the rapiaity of the interruptions, according to the requisite, for the complete charge and discharge of the soft iron wires which form the core, longer than the automatic circuit breaker allows.
The object of the condenser is to destroy by induction the greater part of the force of the extra current, which would otherwise materially diminish the power of the apparatus. In the instrument shown in the figures, the condenser consists of 144 square feet of tin foil, divided into three sections (two of 50 and one of 40 feet), carefully insulated by triple folds of oiled silk and placed within the base of the instru-
ment. The battery force needed to operate this instrument consists of two or three large-sized Bunsen cells.
Fig. 2 shows the internal construction of one of the large horizontal coils of recent construction, arranged upon Ritchie's plan, which has been adopted with slight modifications by the leading instrument makers of every country. C is the core, consisting of a bundle of soft iron wires. This is separated, by a thin layer of some suitable insulating material, from the primary coil, which usually consists of two or more layers, contained in the space, P P. The two coils are Fig. 2.

build on paper than to accomplish the practical part. You may think that this project emanates from the mind of a lunatic; however, a great many more absurd propositions have not only been advanced, but have been worked out with material results.
The following is a specification for a bridge that can be constructed for railroad or other purposes, over a body of unfathomable water, from one to five hundred miles in length: 'j he bridge is to consist of a submerged pontoon (made in sections) of sufficient carrying capacity to sustai the weight of the roadway or superstructure, and is to be so constructed that, should one section become damaged, it can be repaired or replaced without in any manner disturbing the other portions or the bridge. The pontoons are to be anchored where pos sible, and where impossible, steam power is to be used for holding the structure in position and to counteract the force of the wind. The superstruc ture or roadway is to be made of light but substan tial material, and can be elevated from ten to sixty feet above the surface of the water as circumstances
may require. It can be made so as to be opened at
separated by two heavy glass tubes, B B, closed at the outer ends. while their open ends meet in the middle of the coil.
$\mathrm{D} D$ is a hard rubber bobbin, the tubular portion of which is thinnest in the middle and thickest near the ends, as shown in the figure. A great number of thin insulating disks, $d d$, of which only a few are shown in the figure, divide the bobbin into compartments, the wire being wound up in flat spirals, two or more of these occupying the space between municate with each other, so that the secondary wire is continuous from end to end. The coating of silk and varnish upon the wire affords sufficient insulation between the convolutions in each compartment, and the disks prevent the sparks from striking through between the compartments. The coil may thus be said, as it were, to be insulated wholesale and retail, and the separation from each other of the different parts is complete. In regard to the external insulation, less is required in the compartments in the middle of the coil, where the tension is smallest, and there is the least danger of the electricity breaking through into the primary coil. The greatest tension is found in the compartments nearest the two ends of the coil, which is the reason why the tube is made thinnest in the middle and thickest at the ends, Another reason is that the thickness at the ends lessens the induc
coil.
The largest induction coil yet made is that of the Royal Polytechnic Institute, of London. The length of this coil is 9 feet 10 inches, diameter 2 feet, weight 15 cwt ., including 477 lbs. of hard rubber. The core is 5 feet long, and 4 inches in diameter, of No. 16 iron wire. The primary coil consists
of $145 \mathrm{lbs} .=3,770$ yards, of No. 13 wire. The secondary coil of 145 lbs = $=3$, ,770 yards, of No. 13 wire. The secondary coil
consists of 150 miles of wire, weighing 606 lbs., and having consists of 150 miles of wire, weighing 606 lbs., and having
a resistance of 33,560 ohms. The condenser is in six parts, each containing 125 square feet of tin foil. With five large Bunsen cells, the spark is 12 inches in length, and with 50 cells this has been increased to 29 inches.
The induction coil constructed by Ritchie for the Stevens Institute of Technology, at Hoboken, N. J., has a primary coil consisting of 195 feet of No. 6 wire. The secondary coil is over 50 miles in length, of No. 36 wire. The core is composed of a bundle of No. 20 iron wires, wrapped in oil silk and cloth. With three large bichromate cells, this coiled has given sparks 21 inches in length, capable of piercing through solid glass three inches in thickness.

arrespunfence.

The Colorado Potato Bug.
 To the Editor of the Scientific American:

In a letter in your paper, on page 52 of your current volume, on the Colorado p.tato beetle, by Thomas A. Cotchett I discover the writer's want of knowledge of the habits of this insect pest; with which if he were better acquainted, he would readily admit that his plan, so far as driving this pest from our land, would be a perfect failure. The potato beetle does not depend upon the potato or on any one vegetable for its food, but will feed and thrive equally well upon the tomato and the thistle, and on various weeds which are as numerous as the insect pest itself. From the experience
of the past three years in the ravages of this beetle, I will say that the following is so far the easiest and most practical way of avoiding injury and saving labor and the potato crops.

1. Let each farmer plant a small patch of potatoes quite early, on which the beetles will readily gather; and let there be vigilance and thoroughness in capturing all of the early or first crop of bugs, either by hand or by the use of Pari green. This done, large fields may be then planted without
their being molested by the bugs, to any extent that will their being molested by the bugs, to any extent that will
injure the crop. This mode is being universally adopted in injure the crop. This mode is being universally adopted in
the West, where we have suffered severely for the past few years.

When our much dreaded pest gets his foot upon England's shore, our friend in London can practice his theory; but we in this land cannot be induced to try it , to the evident detriment of a large portion of planters.
Grand Rapids, Mich.
C. J. Dietrich.

A New system of Bridge Bullding.
To the Editor of the Scientific American:
Being a constant reader of your valuable paper, I have respondents, you state that, in replying to some of your cor
may require. It can be made so as to be opened at any navigable point, from one to two miles in length (using
steam power), in fifteen minutes, or opened and closed in steam power), in fifteen minutes, or opened and closed in
thirty minutes
Joseph SLusser. - 47 , West Water street, Cincinnati, Ohio.

The Tides in the Gulf of Mexico.

Fo the Editor of the Scientific American:

I have noticed in all the Gulf ports of Louisiana, Florida, and Texas, the very small rise and fall of the tide. In some of them there is but one flood and one ebb tide in each 24 hours, the high water occurring when the moon crossed the upper meridian, and the low water 12 hours later. In other parts, a full tide occurred when the moon crossed the upper meridian, falling off to mean low water in six or seven hours, and a half tide occurred when the moon passed the opposite meridian. The influence of the wind very much
affects the rise, fall, direction, and velocity of the currents. affects the rise, fall, direction, and velocity of the currents.
It would seem that, from the shape and apparent condition of things, there would be a natural current running up the western shore, following the northern shore around and down the'eastern shore; yet,according to my little experience, such is not the case. The reasons why, I should think, the currents would run as I mentioned are probable and natucarre
ral.
Th
The trade winds are the cause. The northeast and south east trade winds form their average line of contact at about two or three degrees north of the equator, and their united orce forms the equatorial current, which is forced along the orthern shore of South America, through the Caribbean Sea, until it strikes the westerd land and is turned northward up into the Gulf of Mexico, carrying a temperature of about
80°, which accounts for the high temperature of the Gulf 80°, which accounts for the high temperature of the Gulf
Stream. After passing the Campeachy banks, the current turns easterly, running between Caba and the Bahama banks on one side and the Florida reef on the other, forming the starting point of the Gulf Stream which passes out through the Straits of Florida with considerable velocity, and joins again the waters of the Atlantic Ocean, following the line of soundings on our coast and passing along the southern edge of the banks of Newfoundland; whence its course is nearly east, and its velocity and temperature are very much reduced, the latter being 10° or 12° lower. After passing the banks, this stream is joined by a natural current from the north. The two currents join and run in a southeasterly direction, until near the coast of Africa, and are then
known as the Guinea current. It draws down towards Cape De Verde, whence the current runs more easterly, and again feels the effect of the northeast trade winds, which
again accelerate the motion and keep up the grand circle. again accelerate the motion and keep up the grand circle.
This is my crude idea and opinion in regard to the causes of the Gulf Stream, and these conclusions I have arrived at a
In regard to the Gulf of Mexico, there is a remarkable feature in that gulf, which is worth some study and experiment. It is said to be possible to keep the sea from breaking by pouring on oil. In some parts of the Gulf of Mexico the oil is supplied. From Ship Island westward, have often sailed through large patches of this oil down to the Campeachy banks, and down the coast of Texas to the
Rio Grande river. In passing through these oil spots, the surface is comparatively smooth, and the strong petroleum like smell will tell you in the night of the presence of the oil, although you cannot see it. Now it seems to me that underlying this part of the Gulf, there must be tremendous oil deposits, which, in some places, have broken through and risen to the surface in quantities for years. For on the coast of Texas, at Brazes, Santiago, Padre Island, and Deckrose Point, there is to be found what the Texans call "sea wax," it washes ashore on the beaches in considerable quan ities, and I have picked up large quantities at various times. It resembles pitch, and is found among the sand in pieces, ome of them as large as a man's hand. It will float, melt nd burn as well as pitch, and has the same petroleum-lik smell as the oil patches. I have no doubt in my own mind
about the sea wax being formed by the sun's shining on this vast mirror, extracting the gases and leaving the residue in the condition in which it is found. In the course of time rifts ashore on the coast of Texas
Stratford, Conn.
Truman Hotcheiss.
Equal parts of American potash and pearlash, 2 ounces oach to about 1 quart water, give a good, oak stain. Use be too deep.

The Phonometer.
A new system of fog signaling at sea has recently been invented in England by Captain W. E. Harris, by which vessels in thick weather are enabled to make known to others their whereabouts, and thus materially to decrease the dan ger of collision. Although signals from fog horns, bells, o steam whistles may be perfectly audible, the condition of the atmosphere is very frequently such as to render it impossible to determine correctly the quarter whence the sound comes. If, however, the people on the meeting vessels are informed by the peculiar nature of the signals, of the course each is steering, the question of keeping clear is very greatly simpli fied. The apparatus, to which the name of phunomoter ha been given, consists, says the London Times, of the mechan ism of a clock placed in a horizontal position under a special dial. The seconds are arranged near the outer circumfer ence of. the dial, which is about eight inches in diameter while the hour and minute dial is about two inches in diame ter, and is placed on the lower part, where the seconds dial of watch is usually sunk. There are four seconds hands placed t right angles to each other and radiating from the center of he main dial. Outside the seconds circle are marked five lack segments, with intervals between them. One segment , oonds in length, and the other four five onds each, with intervals of three seconds. Outside the glass which protects the dial, and pivoted at its center, is brass segment plate, soarranged as to obscure those segments on the dial not required for immediate use, and thus to prevent error in signaling. Around the dial and outside it is a fat ring of metal about two inches broad, on which all the points of the compass are marked.
The apparatus is placed on a stand with the upper part of the dial toward the head of the ship, the stand being fixed on the bridge just by the steam whistle, so that both are un er the direct control of the officer in command. In using he phonometer, the compass ring, or dumb card, as Cap ain Harris terms it, which is a very important feature of he instrument, is moved round until the true point on which he ship is sailing is in line with the ship's head, all the true points of the horizon being thus indicated. These point being accurately known, it follows that all steamers in each other's ricinity fitted with the phonometer will have the true quadrants of the compass distinctly and concordantly repre sented. The steam whistle or fog horn is the important ad unct of the phonometer, and it is the duration of each whis tle or blast and their number that indicate the course of the ship. The black segment covering ten seconds of space is a measure of ten seconds of time, the other segments ndicating periods of different duration; and a whistle of ten sconds' duration indicates that the vessel is steering within he quadrant from north to east quarter north.
Assuming this to be the course of the vessel, the brass overing segment would exclude all the other black seg ments, and the officer would wait until one of the fou seconds hands entered that segment. He would start the whistle and hold it on during the time the hand traverse hat segment, and shut off steam the moment the hand reached the end of that segment. This operation must be repeated at intervals during the continuance of the fog.
Another ship coming within sound would at once know the ourse of the first, and would indicate her tack in like man ner. Following out Captain Hurris's code, two blasts eaoh of five seconds' duration, with an interval of three seconds, epresents from east to south quarter east. Three blasts of imilar duration and intervals represent from south to west uarter south, while four blasts of the same length and space dicate from west to north quarter west. The special ob ect of the four seconds hands is to enable the operator to eply readily to the signals from other ships, which could ot be done if the revolution of a single hand had to be wait ed for. By the peculiar construction of the dial, the neces sity of counting the seconds when signaling is entirely obvi ted.

Process of Gilding.
Place in a plate leaf gold, add a little honey, stir the two substances carefully together with a glass stopper, the lower end of which is very flat. Throw the resulting paste into a glass of water mised with a little alcohol; wash it and leave it to settle. Decant the liquid and wash the deposit again. Repeat the same operation until the result is a fine, pure, and brilliant powder of gold. This powder, mixed with common alt and powdered cream of tartar, and stirred up in water, erves for gilding.
As another method of gilding, Boutet Mouvel gives the following: Dissolve in aqua regia one grain of fine gold, previously rolled out very thin, in a porcelain capsule heated on the sand bath and concentrated till it is the color of ox blood. Add a pint of distilled water, hot, in which have been dissolved 4 grains of white cyanide of potassium. Stir with a glass rod, and filter the liquid through unsized paper. To gild with this liquid, it is heated a little above lukewarmness, and the articles to be gilt are immersed in it and sup. ported upon a piece of very clean zinc.
G. R. McK. says: "I have been a subscriber to the ScIentific American for several years. I take a dozen other papers and periodicals, but derive more pleasure and benefit. from the
bined."
J. J. H. says: " I owe half my income to the informa tion I obtained from the Scientific American."

A NEW hygrometer consists of strips of paper dipped in a cobalt salt solution containing common salt and gumarabic Indry weather, it is blue,and in wet, rose red

PRACTICAL MECHANISM
 by Joshua rose.

Number XPIX.

DRILLING in the lathe.

We have next to consider drilling tools as they are em ployed in the lathe. For boring very small holes, as in cen ter drilling, it is usual and advisable to revolve the drill and use the dead centerand its gear as a feed motion. For small lathes, a small chuck (shown in Fig. 114) is provided. The lat surfaces of such work as may require to be drilled are placed against the face, A A, and a small conical recess, denoted by the dotted lines, is cut in the center of the chuck to relieve the point of the drill when it emerges through the work.
It is obvious that, as a lathe possesses no facilities for chucking work upon the tail stock, work which requires

chucking, or is too heavy to be beld conveniently in the band, can only be drilled in the lathe by being chucked and revolved, the drill remaining stationary, and fitted into the socket in the tail stock spindle, or else suspended by being held by the work at the cutting end and by the dead center at the other end, and prevented from revolving by the aid of a drilling rest or a wrench. If the work revolves, it must of course be set to run true; and since the setting involves more work than would be required to hold it upon a drilling machine table, it follows that the lathe is only resorted to for drilling purposes in cases in which it is imperative to use it. These instances may beclassified as follows

1. Those in which very straight and true holes are required, and in which the point of ingress and egress may be centerpunched, in which cases (the back center of the lathe being placed in the centerpunch mark, and the point of the drill in the other) the drilling is sure to be true,
2. Those in which the work, being very long, can be got into the lathe in consequence of the movable tail stock, when it could not be got into the drilling machine.
3 Those in which, there being turning to be done besides the boring or drilling, the whole may be performed in the lathe.
3. Those in which the holes require to be very true, the work being chucked in the lathe.
The class first mentioned refers to small and light work only, and requires no comment, save that the work should be slowly revolved on the lathe center while the drilling is progressing, so that the work will not drill out of true in consequence of its weight. The second will be treated of under the heading of the cone plate, or cone chuck, as it is sometimes termed; and the third (which usually comprises the fourth) we will proceed to discuss.
The spindle in the tail stocks of lathes are usually pre vented from revolving by having a narrow groove along them, into which a small lug, stationary with, and projecting through, the bearing of thie spindle, fits. If, therefore, a heavy strain, tending to twist the socket (as would be the case if a drill of a comparatively large size were held by it), is placed upon it, the groove, from its comparatively small wearing surface, soon gets worn as well as the lug, and the edge of the groove bulges, causing the socket to bind in its guide. Tail stock spindles are not, in fact, usually designed to perform such heavy duty; hence it is an error to assign it to them, unless, as is the case in some special lathes, the tail stock spindles, and hence their bearings, are made square to suit the spindles to carry drills for heavy duty. But drills above a half inch in diameter should be held by a center in the shank end of the drill, into which the back or dead cen ter of the lathe may fit: the drill, if a round one, being held by a lathe dog fastened to it and resting against a piece of metal fastened in the tool post of the lathe, thus relieving the tail stock spindle of the torsional pressure. If the shank of the drill is square, a wrench may be substituted for the dog or carrier.

half round bits.

* For drilling or boring holes very true and parallel in the lathe, the half round bit shown in Fig. 115 is unsurpassed.
The cutting edge, A, is made by backing off the end, as denoted by the space between the lower end of the tool and the dotted line, B , and performing its duty along the radius, as cenoted by the dotted line in the end and top views.
It is only necessary to start the half round bit true, to insure its boring a hole of any depth, true, parallel, and very smooth. To start it, the face of the work should, if circumstances permit, be made true; this is not, however, positively necossary. A recess, true and of the same diameter as the bit, should be turned in the work, the bit then being placed in position, and the dead center employed to feed it to its duty; which (if the end of the bit is square, if a flat place be filed upon it, or any other method of holding it suff ciently tight be employed) may be made as heavy as the belt will drive. So simple, positive, and effective is the ope mation of this bit that (beyond starting it true and using it a
a moderate cutting speed, with oil for wrought iron and steel) no further instructions need be given for its use. It is made as follows

Forge it as near to the required size as possible, leaving stuff sufficient to true it up, and from square steel, if it is obtainable. Disregard the question of the cost of material, which, in a tool of this kind, does not represent six per cent of the cost of the finished tool; whereas the difference in of the cost of the finished tool; whereas the difference in
quality is as three to one. In order to turn the cutting end quality is as three to one. In order to turn the cutting end
between the lathe centers, so as to have the center at the shank end quite true with the turned pair, it must be forged at the end to more than half the diameter, so as to leave sufficient metal to receive the center hole and countersink whereon to turn it. The shank end should be forged square, and should, when center drilled, have a deep countersink. The cutting end must be turned true and smooth, being quite pa rallel, if to be used for parallel holes, and of the desired taper for taper holes. For parallel holes, all the cutting is performed by the end face, A; but in taperholes, the side edges, C, of the top face also perform cutting duty, and hence the necessity of having the turned end of an exact thickness of half a diameter. After turning, and before re moving it from the lathe, a tool having a point should be fastened in the slide rest, its point being made to bear light ly against the turned face, close to one of the edges, C ; and the rest should then be passed along so that the point will scribe a line true with the center upon which the tool has
been turned, which line will form a guide for filing the top face down to make the tool of the required thickness of one half of its diameter. The edge, A, should be perfectly square with the side or diametrical edges, C C. The circum. ference of the turned part should have the turning marks effaced with a very smooth file, by diawfiling the work lengthwise, care being taken to remove an even quantity all over. The rake of the tool, as denoted at the dotted line, B, should not be greater in proportion than is there shown. This tool should be tempered to a straw color and em loyed at a cutting speed of about 15 feet per minute, and d at a coarse feed by hand. For use on parallel holes, n part should be ground save the end face; whereas, in the ase of taper ones, the top face may be ground, taking as ittle off as will answer the purpose. It should be borne in mind that, as the steel expands (and therefore becomes large in diameter) by the process of hardening, the necessary al lowance, which is about the one hundredth of an inch pe inch of diameter, should he made when turning it in the lathe Tools of this description, which have a turned part to uide them, or those which depend upon the trueness of thei outline or cutting edges to make them perform their duty nd which are apt, in the process of bardening, to get out of rue (for all steel alters more or less during the operation of hardening), may be made true after the hardeuing or temper ing by a process to be described in our future remarks on eamers, since it applies more directly to those tools than to alf round bits.
To enlarge holes and true them out, the flat drill shown

in Fig. 116 is employed. It is an ordinary drill made out of flat steel, having pieces of hard wood fastened to the cutting end, A being the steel, and B B the pieces of wood, held on by screws. When the drill has entered the hole, far enough to make it of the diameter of the drill, the pieces of wood enter and fit the hole, steadying the drill and tending to keep it true. It is necessary, however, to true out the hole at the outer end before inserting the drill; for if the drill enters out of true, it will get worse as the work proceeds. The drill is fed to its duty by the back lathe center, placed in the center pon whici the drill has been turned up.
The pieces of wood should be affixed before the drill is turned up, and so trued up with the drill, which should then
be lightly drawfiled on the sides; and the cutting end, having the necessary rake filed upon it, should be tempered to a straw color, the pieces of wood being, of course, temporarily removed. For use on conical holes, the sides must be made of the requisite cone, and the cutting speed in that ase reduced (in consequence of the broad cutting surface) to bout 10 feet per minute. (This speed will also serve in bobour 10 bith) (uch a dill is ring conical pol cause it will perform its duty very rapidly and maintain its standard size; and it requires but little skill in handling. It is more applicable, however, to cast iron than to any other metal. After the outer end of the hole has been turned true, and of the required size to receive the drill, and when the latter is inserted for operation, it is an excellent plan to fasten a piece of metal, such as a lathe tool, into the tool post, and adjust the rest so that the end of the tool has light contact with the drill, so as to steady it. The lathe should be started, and the tool end wound in by the screw of the rest, until, the drill being true, the tool end just touches it, as in Fig. 117.

The dotted lines denote the hole in the work and the drill point; A represents the work, B the drill, and C the tool end, fastened in the lathe rest, and having its end beveled so as to have contact with the drill as close to the entrance of the hole as possible, in which position it is the most effective. In all cases, when a drill is used in the lathe and remains sta tionary while the work revolves, this steadying implemen should be employed, since it operates greatly to correct any tendency of the drill to spring out of true.
To hold flat drilis, or those having square ends, and pre vent them from revolving, a hook may be employed, eithe the front end of the drill immediately behind the wood or at the other end near the dead center, the shape of the

hook being as in Fig. 118. A A is the hook, and B the drill shown in section, and in the position in which it is held by the hook when in operation. The end, C, of the hook may be made to fit and be held by the tool post, or it may be made ong enough to rest against the lathe rest saddle. It is as well to start the drill true with the guide, C, shown in Fig. 17, and, when the drill has entered, say to its full diameter for a quarter or three eighths of an inch in depth, to take out the guide from the tool post and insert the hook in its place, keeping it as near to the outer end of the hole as prac ticable.

Electric Fall Machines.

These are for demonstrating the laws of falling bodies. In ne arrangement,a brass ball is hung by a thread some hight bove the ground. Under it, at distance $=1$, are two metallic balls connected with the poles of an electric machine; they re so far apart that a spark cannot pass between them, but f the suspended ball drop between them a spark will pass urther down, at distance $=4$, then $=9$, etc., are simila pairs of balls. The thread of the suspended ball being burnt, the latter falls between the successive pairs, giving passage at each pair to the current, and simultaneously the park in another part of the circuit strikes a revolving soot blackened drum,making a mark. The distances between suc cessive marks are found to be equal. In a second arrange ment, there are two cylindrical conductors, insulated and vertical, with a metallic ball suspended between them at the top, hardly filling the interval, and sufficient to enable a sark to pass between the cylinders, which are connected with the poles of an induction (secondary) coil. One of the cylinders has a coating of soot-blackened paper. The thread is burnt, and the ball falls; sparks are made to pass at regular intervals of time, by means of clockwork, interrupting the battery current. Each spark leaves its mark on the blackened surface; and thus are shown the spaces passed over in equal times.-M. Waldner.

The silk Harvest of the World.

According to a report, just published by the Syndicate of he Lyons Union of Silk Merchants, the silk crop of Europe last year was, in round numbers, $9,050,000$ pounds of raw silk, while there were exported from Asia, $11,500,000$ pounds, making upwards of twenty and a half million pounds of raw silk available for European consumption. The countries ncluded in the report are Italy, France (with her dependen cies, (orsica and Algeria) Spain, Greece, the Turkish Fm ire Georcia Peria Chin Th Em ire, Georgia, Persia, Japan, and Clina. The first and the last together supply four fiths of the silk used in Europe. China exported, chiefly from Shanghai, upwards of
$3,000,000$ pounds. The crop of Italy amounted to $6,300,000$ $\mathrm{s}, 000,000$ pounds. The crop of Italy amounted to $6,300,000$
pounds. France supplied $1,600,000$ pounds: Spain, about 310,000 pounds; Greece, less than 30,000 pounds; the Turkish Empire, 1,180,000 pounds; Georgia and Persia, together 880,000 pounds; India (from Calcutta), 535,000 pounds; Japan, something over 1,200,000 pounds.

IMPROVED FLOOR CLAMP. We illustrate herewith an improved floor clamp, which, by a single operation, is tightly secured to the joist while caused push the flooring boards together. By a reverse proceeding, the pressure on the latter is removed and the
joist clamp unfastened simultaneously. The device may be advantageously used for the clamping of doors, sashes, etc. as well as floors. It may be also employed as a lifting jack by placing it endwise on a suitable support.
A is the driving screw, which is rotated so as to cause the clamp, B, to move in or out by means of the bevel gear actua ted by the crank handle shown The screw works in the rea end of the straight piece, C, nut being cut to receive the thread, and the interior being hollowed so as to serve as shield for the screw. D is toothed cam, the shaft of which is provided with a spring which throws the teeth against the side of the joist. The upper extremity of the shaft carries a short arm, and this, by a spring joint, is connected with th catch, E. The object of the spring in the joint last men tioned is to throw the catch in ward, to the position repre sented.

The mode of adjusting the device is slearly shown. On rotating the handle so as to
drive the screw. outward, thus pushing the boards together the rearward motion which the apparatas first takes causes the cam, D , to be partially turned and its teeth to bite against the joist; so that the latter becomes tightly jammed between said cam and the stationary jaw on the opposite side of the bed plate. On reversing the motion of the screw, the straight piece, C, engages with the shoulder of the catch, E , and carries the latter to the rear with it, thus turning the cam shaf and so loosening the same. This continues until the catch strikes the inclined side of the stop, F, which pushes it out of engagement with the piece, C , when the catch is carried back by its springs to its former position
It will be seen from the above that the device has the merit of simplicity both in construction and in operation. It is necessary only to place the apparatus in position and begin turning the handle at once, its automatic attachment and loosening saving the expenditure of time usually devoted to securing the clamp in place.
For further particularsaddress Mr. George William Wood, 3,412 North 19th street, Philadelphia, Pa

IMPROVED SUDDEN GRIP VISE.

The improved form of parallel vise, a perspective and a sectional view of which are given herewith, is adapted to the uses of all classes of mechanics. It posses ses the advantages of rapidity in action and of being able to clasp any sized piece of work within its capacity through the one motion of the hand. It has a self-acting swivel, which allows of its adjustment to any desired position, so that it may be used with the right or left hand with equal facility. The holding mechanism, as will be seen from the following description, is constructed so as to apply the power with great advantage, and the position of the handle is such that, while it is convenient to operate, it is turned out of the way of the workman after the jaws are caused to embrace the work. The various parts are interchangeable, and therefore, in case of injury or loss, easily duplicated ; and finally, the castings and other portions are made with a view to the highest strength and durability.
From Fig. 1 the general appearance of the implement, and the mode of operating the lever which determines the movement of the jaws, will readily be comprehended. The inte rior mechanism is shown in detail in section in Fig. 2. B, in the latter engraving, is the stationary jaw through which the movable jaw, A, the straight part of which is cored out, passes. P is the bed plate, made in two pieces so as to be adjusted into the dovetail formed by the lower portion of the jaw, B. To retain said plate in place, a wedge, W, is driven in between the a neat fit with the jaw base. Above the plate, P and held in front and rear by the lower portions of B is a stel rack plate, H The rar end of this B , is a steel rack plate, H . The rear end of this is secured, and the ent
rising by the screw, N .
The lever handle has cast, on each of the sides of its inner end, a disk. These disks are inserted in a socket in the outer extremity of jaw, A, and held in place by frietion straps, T, which are adjusted to hold said disks loosely or tightly by means of the set screws, S On the inner portion of the disks is a pin, K , which, when the lever is raised as shown, presses down the end of a pivoted bar, J, located inside the hollow jaw. Said bar thus aises the toothed clutch, G, and disengages the teeth of the same from the rack, H. Under these conditions, it will be
seen that, by pulling or pushing on the handle, the jaw, A ay be drawn out or shoved in very easily, and so adjuste cork.
As soon as this last is done, the lever handle is pushed down. The effect is to release the lever, J, and so as to al low clutch, G, to drop, and also to draw a bar, D, which is pivoted to the handle disks, outward; and thus the end o said bar acts as a wedge to push down the toggle joint, E E and so to force the clutch, G, forward, to act against the rack

Brooklyn, N. Y., or Mr. Charles Parker, manufacturer, Me riden, Conn.

English Sugar-Cutting Machinery

It is with sugar as with a great many other articles of com merce: the appearance of the goods, without any refe nce to its intrinsic quality, largely influences the sale. Su ar neatly divided into regular lumps, each one presenting clean, crystalline, and brilliant surface, is certainly more a tractive than a mass of fra ments resembling bits of chalk while the uniformity of th pieces renders its much more convenient. The mode of cutting up the sugar, as prac tised in this country, is to saw the loaf crosswise into slabs, ind then to stab the latter o both sides with a number o spikes, breaking the mass int fragments of varying sizes. A new apparatus, called Burton diamond sugar-cutting machine has lately appeared in England which, according to the Londo Grocer, cuts the loaf into per fect forms with great rapidity The machine, says our contem porary stands above four fee high, is over six feet long, and about three feet wide. At one end, on a sort of platform, a man is engaged in placing the loa of sugar horizontally, with its base pressing against the mid
teeth. As the part, E , of said clutch bears against the bar, R, which is cast with the jaw, A, it is evident that, acting on the bar, R, as an abutment, the extension of the toggle joint tends to carry jaw, A, inward, with great force, and so to grasp the object inserted between the jaws very tightly. As spring, L, acting on the upward turned end of the clutch, G carries the latter to the rear, and so removes it from the rack teeth, and, at the same time, returns the toggle joint to its normal position.
A moment's consideration will show that the tendency of the downward as well as rearward thrust of the toggle join is to raise to the jaws. The screw, N , prevents the raising f the rack by the clutch teeth. The same downward action is also utilized to prevent the swiveling of the vise after the grip is put on. That is to say, as the lower portions of the jaw, B, embrace the bed plate, P, the latter acts as a center of rotation; but when the lever is carried down, the force of the toggle joint jams the above parts together, and prevents motion of the swivel.
The handle, when turned down, it will be noticed, is en irely out of the way of the workman, and is very quickly operated. The apparatus is secured to the bench by the screws, Y. In a later model of the vise than that represent-

HALL'S SUDDEN GRIP VISE.-Fig. 1.

ed, the base of jaw, B, is carried out to the edge of the bed
plate, thus covering the heads of the screws, Y. A gate, in plate, thus covering the heads of the screws, Y. A gate, in
such portion, gives access to the screws, when the vise is turned so that the opening comes over each head in succes sion.
This implement gained the medal of progress and a diFig. 2.

ploma of honor at the Vienna Exposition, such awards beise. It also took the highest premium at the Fair of the ranklin Institute in Philadelphia in 1874
Patented in the United States, Canada, and in the princi pal foreign countries. For further particulars relative to sale of rights, etc., address Mr. Thomas Hall, 411 Fulton street,
le of the machine, where a circular saw, worked by steam power, cuts the loaf into slabs. These, being round, of ourse run by themselves on to a parof are cut into splints ongitudinal knives, between which they to tell, these again or sticks. Much quicker than it takes to the into grooves, fom smaller pair of knife rollers into hundredweight box prepared to receive them. They are now quite ready for service on the table, and, surrounded by a blue paper lining, present an endless variety of sparkling cubes triangles, and diamonds, that can be dropped int the cup at a word to suit the different likings of tea and cof fee drinkers. On each side of the box is placed a receiver, on or the fine pulverized powder that falls from the saw, the ther for a more gritty substance that comes from the knives Both are put into bags to be sent where they meet the frees purchasers. A more minute examination of the cut portion shows plainly enough that, while four sides glisten from the action of the knife, only two bear evidence of the marks of the saw; and such a result being the very reverse of tha produced by the French modus operandi, it must be admitted the new sugar cutter, in point of cleanliness, neatness rapidity, leaves scarcely anything to be desired. Jus nutes, which is at the rate of five hundred cwt. an hour, or three tuns in a working day of twelve hours, without stopping, and say f such a thing was ever known before And the same engine that drives this ma chine can also be employed for grinding pepper, roasting coffee, cleansing rice, etc.

New Style of Telegraph Poles
There has lately been erected at the junc tion of Broadway and 23d street, in this city, an example of a new form of telegraph pole, of iron. It is said to be lighter than a wooden pole of the same hight, stronger, and capable of supporting a greater weight. It is constructed of a number of wrought iron bars, rolled out the entire length of the pole, which bars are placed around light cast iron cores, arranged at proper intervals from each other. The cores have seats or notches to hold the bars in their places to prevent their moving sideways, and the bars also have notches, into which the cores fit to keep them from moving up or down. Around the outside, where each core is placed, a ring or band of wrought iron is tightly fitted, which holds the bars firmly in their places, and thus forms the whole into a light, open, and graceful column. Any number or any size of bars may be used, but it is found that six very light bars of angle iron arranged in this way afford a strength that fully meets that required for a telegraph pole of fifty feet in hight. The cores are large at the base and are made smaller as they approach the top, which gives the column a graceful taper, and the whole is surmounted by a suitable crosshead to hold the arms for the wires. Such a column is very simply constructed and is without a rivet throughout its entire length. No machinery or shop labor is required to put it together, other than the making of the outside rings or bands by an ordinary blacksmith, so that the pole may be ordered in pieces and put together at the point where it is to stand. The column is suitable not only for telegraph poles but for masts for iron ships, derrick masts and booms, stringers for bridges, lamp posts, and a variety of other purposes.

Pour preserves into jars and seal while hot

NEW REAPING AND MOWING MACHINERY.

 We illustrate below some improved reaping and mowing machinery manufactured by Messrs Burgess \& Key, London, England. No agricultural machine has had so much attention devoted to its improvement as the reaper and mowerespecially the iormer. The difficulties under which such machines have frequently to work, coupled with the necessity that exists that the work shall be done in the very best and simplest manner, render it no easy matter to design a proper machine; and each year sees some new improvement brought forward at one or another of the various agricultural fairs. Owing, therefore, to these progressive strides, many excellent machines by various makers are now to be obtained at no very extravagant outlay of cash. Machines of this type are now made more com pact, lighter ạnd stronger, and, morepact, lighter and stronger, and, more-over, the dangerous parts are better over, the dangerous protected and fenced in.
protected and fenced in.
The reaper for home use shown in The reaper for home use shown in
our first illustration is a strong twohorse machine, whose weight has been reduced down to 10 cwt . ; the tyre of the main driving wheel is wrought iron and of extra width, which at once increases the driving bite and better sustains the machine in softground. The fingers, being open at the back, do not clog. The finger beam is made of rolled steel to combine lightness and strength, and the guide cam is so altered and improved as to bring the rakes closer to the ground, so as the better to deal with laid crops. The fingers, which of necessity are exposed to very severe and sudden strâns, are now made of cold blast crucible iron, which is about the strongest description of cast iron to be had.
Our second illustration shows the reaper, in which increased simplicity and the substitution of wrought for cast iron have reduced the weight of the mower from 7 7 cwt. to $6 \frac{1}{c} \mathrm{cwt}$. without reducing the strength, while the repairs bill is also reduced. The second improvement consists in giving the hinge shoe end of the cutter bar a greater space to rise and fall with the undulations of the ground, without disturbing the movement of the main wheel when it sinks in a furrow or in soft land. However carefully rolled, the surface will always present inequalities, therefore any provision to allow for them, such as the above,
is of great importance. The cutter bar is provided with a is of great importance. The cutter bar is provided with a
wheel at each end, and the mechanism for elevating the wheel at each end, and the mechanism for elerating the
knife is so designed that, by means of a compensating tongue and slide box, it is always kept parallel with the ground sur face, and the fingers are thus kept from plowing into the earth. The method of lubrication is so designed that the oil applied to the bearings runs from them to the teeth of the gearing.
Another improvement is in the manner of jointing the knife to the connect ing rod by means of a spring bolt pin. pins, leather, etc., are needed. while pins, learner, ec., are needed; whil any pressure of the thumb on the spring
bolt at once releases the pin. A third bort an once releases the pin. A thir
improvement is in the method of inclin improvement is in the method of inclin-
ing the fingers and recessing them so ing the fingers and recessing them so
that the knife does not become clogged that the knife does not become clogged
with dirt. In this mechanism, the with dirt. In this mechanism, the
crank shaft bracket no: only secures the crank shaft bearings, but also the spindle of the bevel wheel, both bear ings being bushed; and the bushes being the only parts that wear, they are easily and cheaply replaced in time of need. The bracket fences in the gearing and preserves it from dirt.

Paper Plants.

A good deal of interest has been ex

 cited by the recent reports on the pa per-making grass of Algeria, the so called alfa or stipa tenacissima, which covers hurdreds of thousands of acres in that country. But the Agricultural Fa zette of India states that another plant is to be introduced into Algeria, of still greater commercial value. This is the hibiscus esculentus, the use of which as a fibrous plant has long been recognized. The plant, though indigenous to the West Indies, has long been naturalized in India. Its pods produce the common vegetable known as ochro by the English, gomto by the French, chimtomo by the Spanish, and benditeai, in India, where it is so much esteemed for its mucilaginous thickening for soups. The pods are gathered green and pickled like capers. The seeds may be boiled like barley, and the mucilaginous matter they contain is both demulcent and emollient. They have also been recommended demulcent and emollient. They have also been recommendedwhen roasted as a substitute for coffee. A patent has now when taken out in France for making paper from the fiber, been taken out in France for making paper from the fiber,
and for this purpose it is to be introduced into Algeria. The fiber is prepared sololy by mechanical means in a current of water, without any bleaching agent, and the pulp, washed and bleached, is reported to make a strong, handsome paper, equaling that from pure rags. It is celled banda paper.

The Director of the Royal Botanic Gardens in Ceylon has just prepared a statement of the result of the latest investigations into the nature and development of the leaf fungus (hemileia vastatrix), which has for several years so affected the coffee trees of the island. He can report nothing to indicate its probable disappearance, or diminution of its intensity.
Though requiring careful inspection for its detection, he unThough requiring careful inspection for its detection, he unfortunately found it present upon all the coffee trees which he examined. With the help of a microscope, it is found at all times to pervade the greater part of the stem and older leaves in the form of very fine, branching filaments, its effect being apparent in numerous somewhat translucent spots.

BURGESS AND KEY'S MOWER

pores, or reproductive bodies. Some of these spores hav been observed to germinate on the outside of the leaf, pro ducing branched filaments of exceeding tenuity, which grow with marvelous rapidity all over the surface of the leaf, and beyond it to the stems. The ends of some of these fila meuts. too, have been observed to enter the pores of the leaf, and there to form fresh plague spots and fresh crops of spores. It is to be hoped, now that the nature of the malady is better known and more accurately defined, that some effective cure may speedily be found for this disease which is so greatly damaging the Cingalese coffee crop. London Grocer.

Diseovery of Another Grove of Great Trees in

 California.This grove is situated in a basin at the head waters of the san Lorenzo and Boulder creeks. One of the trees eclipses all that have been discovered on the Pacific coast. Its cir cumference, as high as a man can reach, standing and passing a tape line around, is a fow inches less than 150 feet. This is beyond the measurement of any tree in the Calaveras
Grove. The hight is estimated at 160 feet, and a part of the of filaments, short branches are produced, which emerge
from the pores, and bear the conspicuous orange-colored

BURGESS AND KEY'S REAPER.

which may be observed by holding up one of the leaves against the light. The direct injury so caused to the coffee tree is, however, very slight as compared with the effect pro duced when the fungus attacks the young leaves, causing them to fall prematurely. As the presence of the fungous filaments in such abundance on the outer surface of the tree is amply sufficient to account for phenomena, which it was at first thought were attributable to a poisoning of the juices of the tree, by an absorption of the fungous matter through its roots, that idea must be abandoned, and the disease consid ered as external, except when it appears within the tissue of
the young leaves. Subsequently, from these enclosed masses the young leaves. Subsequently, from these enclosed masses
of filaments, short branches are produced, which emerge consequence, retards combustion. that the needed invention must be one in the shape of a fur nace in which the light materials may be burned in this compressed form. Western settlers have anticipated the idea by twisting straw and hay into ropes and burning the same during the long months of past winters, after the grass same durng the ling months of past winters, after the grass
hopper devastations had deprived them of the necessary hopper devastations had deprived them of the necessary
means wherewith to procure wood for their households. But theans wherewith to procure wood for their households. Bu the prairie grass ropes, though burning slower than the loose hay, are still consumed too rapidly to be of much ad vantage where a steady heat is required.
Whether a newinvention which has recently appeared is to be the means of solving this important question, we ar not prepared positively to state; bu so far as the construction and principle of the same extend, it seems to be a valuable and ingenious device. It consists of a box of stove sheet iron, in which is a heavy press follower which by simple mechanism can be moved up and down, and thus arranged to maintain a steady pressure upon the hay or similar material placed in the fire chamber. A feeder allows of the supply of fuel being kept constant, and there is apparatus for adjusting the grate relatively to the follower, accord ing to the quantity of material placed between them.
It will be readily understood that when the pressure is upon the fuel, the flame cannot act upon the mass either at top or bottom. Combustion, says the inventor (Mr. Alexander Ham ilton, of Cresco, Iowa) can go on onl around the sides to which the heat and air have access; so that the consump tion of fuel is very slow, and can be asily graduated by the draft supplied. It is further said tha one hundred pounds of hay or straw per day will be sufficien to feed the stove during the coldest weather, and that six or even tuns of the material will suffice for an entire winter If the invention substantiates in practice the advantages foreshadowed, it will serve at least as a step in advance foward a most important utilization of a now wasted material, and at the same time it will accomplish such progress cer tainly in a mode much simpler than that involved in the majority of straw-burning furnaces now extant.

New Inoxidizable white Metal.

According to M. Marlié, an inoxidizable white metal may be made of iron 10 parts, nickel 35 parts, brass 25 parts, tin 20 parts, and zinc 10 parts. The alloy is cast parts, cut in pieces, and the latter are tempered at white heat in a mixture of sulphuric acid 60 parts, 1 nitric acid 10 parts, muriatic acid 5 parts, and water 25 parts.
An obdurate screw may sometimes be drawn by applying a piece of red hot iron to the head for a minute or two, and immediately using the screw driver.

Russian Metal Industries.

While Russia will not through her government contribute to the Centennial, for reasons about which there are so many contradictory rumors that it is difficult to assign any as the truth, there is a fair probaility that through private enter prise her industries will make a display which will, in a measure at least, typify her enormous natural resources. In the United States, little is known concerning industrial progress in Russia, other perhaps than that the advancement of the same must necessarily have been rapid, in view of a great cifty years
empire to-day existing where, one hundred and fift y ago, there was little more than a nation of barbarians. From ago, there was little more than a nation of barbarians. From
the death of Peter the Great in 1725, Russian manufactures have steadily pushed onward, until now in several branches have steadily pushed onward, until now in several branches
they enter into competition with those of far older countries.
In some districts the manufacture of cutlery and hardware forms the sole occupation of the entire male population. A kind of two-bladed pocket knife is made, at the rate of 10,000 dozen per year, and sold at the annual Fair of Nijni Novgo-
rod. Locks and trunks manufactured in the Pavlovo dis rod. Locks and trunks manufactured in the Pavlovo dis
trict find their way all over Asia. Some thirty or forty set trict find their way all over Asia. Some thirty or forty set
tlements in the Pavlovo district make nothing but knives, scissors, swords, and various edge tools. There are two large firms which employ 600 men each. The raw materials are English steel and a native product obtained from the government works on the Ural River. A large portion of the Semenoff district is engaged in the manufacture of fishing tackle and metal bolting cloth for mills,and 40,000 scythes per year are made at the Artinsky works in the Zlatoust district of the Ural. The Russian edge tools differ from those of Eng lish make in many respects. The common spade, for in stance, is made chiefly of wood and simply tipped with iron it is of small size, rounded at the edge, and has a plain curved handle. The ax is much larger than those of western man ufacture. In the hand of a Rassian workman, it is used for all kinds of carpenter's work. Itanswers as a plane, and as a hammer; even as a saw, for the last very useful tool is rarely employed by the Russian mechanic. He can wield th ax more easily, and cut through thick logs of wood with incredible precision and rapidity

Russian iron is now largely employed in the cut nail manufacture, a growing industry carried on near Moscow. Sile sian and Swedish irons are made into telegraph wires. The manufacture of iron holds a very important position, al though the quantity produced is insufficient to supply the demand; besides, Russia is unable to compete in the cheape qualities of that metal, owing to the expensive process of using wood fuel in its manufacture, coal being rarely used. Sheet iron is produced to a great degree in large private es tablishments; but steel-making is yet in its infancy, the metal being made almost entirely by one or two government founderies; it is applied chiefly to the manufacture of cannon. Breech-loaders, introduced by the Americans and ufactured also by government works.
Colonel Amosoff, of the Zlatoust Government Works in the Ural, has discovered, it is sa:d, the secret of the ancient Damascus steel. The Russian imitation is a particular mod ification of cast steel of peculiar crystallization, which las character betrays itself through corrosion by acids (the pro
cess of bringing out figures on steel) by acting more violent ly between the interstices of the structure than elsewhere thus tracing out the arrangement of the crystals. The sword blades are made to pass a test, being bent double and back again several times. A well tempered saber of Damascus steel will readily sever bars of iron and the most flims kerchief as it floats in the air.
Samovars are a leading article of the Russian metal trade These are a kind of tubular boilers, with little charcoal fur naces, and are used for making tea. The material is copper which is almost exclusively used among the well-to-do class es for cooking utensils. Tin ware, hollow cast iron vessels, and pewter are little employed. The peasants still eat with wooden spoons and bowls
Harness fittings of European pattern are made, but in very limited quantities, those used upon Russian harness being of different construction. Horseshoes are produced by hand at the rate of $30,000,000$ per year. Bell-making is car ried on with especial success, the bells being remarkable for the immense size and richness of tone. This is one of the ancient industries of the country.
It may be said, writes a correspondent of the Ironmonger, to whose exhaustive letter we are indebted for the main facts most part attainad a high degree of excellence; but many of them are enormously dear. The interests of the immense mass of the Russian people who consume are thus sacrificed to increase the wealth of the comparatively small class who manufacture. But it must be remembered that the greater number of iron-manufacturing consumers were only a few years ago in a state of serfdom.

Patented Car Improvements

The mechanical requirements of railroads are a perpetual stimulus to invention. An unceasing demand exists for new or improved devices. The two great essentials of safety and economy are never so perfectly realized as to satisfy either the road managers or the public. The burden of nearly all for consulcation is how to remedy existing defects by the use of better mothods and appliances. This, with the inhe rent capacity of railways for development, offers an inviting field to inventors, which they have not been slow to cultivate The consequence is that a multitude of inventions are
pressed upon the attention of railroad men, some of whick pressed upon the attention of railroad men, some of which
are intrinsically good and meritorious, while the vastly great-
r number are absolutely worthless. But so long as inven tors persist in patenting the products of their ingenuity, rail roads must pay for the right to use them, or not use them at
all. A discrimination must also be made, in order to select all. A discrimination must also be made, in order to select
such as are really valuable; and this can be done in no other such as are really valuable; and this can be done in no other way than by careful experimental testing, uninfluenced by the interests or claims of patentees.
The discussions of the Car Builders' Association at its las and previous meetings evince a sensitiveness on the part of ome of the members in regard to the use of patented devices, which is not calculated to secure the advantages to be de ived from them. The impression seems to prevail with some that such devices are not only inadmissible as legiti mate topics of discussion, but that the many needed improve ments in the construction of cars must be provided, as far as possible, without paying tribute to inventors. Now this would unquestionably be a very good thing for the roads, if it were at all practicable. There is, however, a very serious obstacle in the way of carrying out such a programme. In ventors, as a class, are no exception to the general run of humanity. They are quite willing to receive remuneration for the time and money they expend in getting up good and useful contrivances for making cars run easily and comfortably. If they have anything to sell which is salable, they do oot blush to name a price; and they would just as soon mak livelihood out of railroad earnings as in any other way. It purely a business transaction between buyer and seller In this view of the case, it is evident that no very valuabl ikely to be discovered and applied independently of patents and patentees. It would, therefore, seem to be right and and patentees. It would, therefore, seem to be right and be freely discussed by car builders at their yearly and month y meetings, as the only way of ascertaining what is worthy of being adopted. Any practicable plan for better ventila tion, any radical improvement in drawing and buffing attach ments, brakes, framing, coupling, etc., must work a saving in expenditure, or augment the comfort and safety of passen gers to a degree which will more than justify the cost of th right to use, or else such improvements are hardly worth right

We are aware that there is a difficulty attending the dis cussion of the merits of rival inventions, or, indeed, any pa ented invention having relation to cars. If this, that, or he other device is approved or condemned, a suspicion is ap to be aroused that undue influences have been brought to
bear, that somebody's ax is being ground, or somebody's ortune made or unmade, while others, equally worthy or un worthy, do not get what is their due. It is hardly possible that entirely disinterested action can be secured in such cases; but action of some sort cannot very well be evaded It is obviously not the business of the Car Builders' Associa tion to make or unmake the fortunes of inventors, or to dis criminate between rival claims, except on the score of actua merit; but it is certainly bound to recognize inventions, and pass upon their respective merits, so far as the interests of railways within the limits of the car departments are affect ed thereby.-National Car Builder.

American Ordnance.

The low estimate placed by Europeans upon cast iron as a gun metal has not been fully concurred in by American officers, who have made it a subject of investigation and care ful experiment for many years. Since 1840 a steady progress has been made in the improvement of its qualities, and the experiments of Wade and Rodman in this direction are well known. There can be no doubt that the American gun iro is the strongest and best casi iron made in the world. The ng thenacity of the metal of the 15 - inch guare inch, an in some cases reached $40,000 \mathrm{lbs}$. The iron is smelted in small charcoal furnaces with cold or moderately warn blast and from pure rich soft limonites. The crude pigs are sub jected to one and sometimes two preliminary meltings in an air furnace with sand bottom. The guns for the army ar ast hollow, and cooled from the interior by a water core, while those for the navy, with the exception of the 15 -inch re cast solid. A wood fire is kept up in the pit for severa days during the cooling. The water core is at length re
moved, and water is circulated in the naked bore until th moved, and water is circulated in the naked bore until the
gun is quite cold. The initial tension thus produced is coniderable, though in very rare cases excessive. The degree f tension is determined by cutting off an annulus from the sinking head or muzzle and planing a radial cut. Just be ore the cut has passed through the annulus, the ring snaps, and the amount of gape gives the relative tension. Guns which do
The only gun in the United States service upon which much reliance has been hitherto placed, and which is capable of really heavy work, is the 15 -inch smooth bore. There are innumerable smaller guns mounted along the sea coast, but
they are each considered as a locum tenens awaiting a heavier armament. While the 15 inch smooth bore is very far in erior to a 10 inch rifle in range and in penetrating powe against heavy armor,it is by no means an insignificant weapon. This gun was designed in 1867 and 1868 to fire a maximum of 50 lbs . of powder and a 350 lb . shell, but its present charge service she 400 lbs , of a maximum of 120 lbs., and with the heavier charge is about 1,700 feet, with the lighte about 1,590 feet, while the corresponding pressures, as re corded by a Rodman interual gage, are $21,000 \mathrm{lbs}$. respec ively
 improvement in the means of contrelling the action of the
powder. Experiments upon gunpowder have been very numerous and thorough in the United States indeed we ma say that that country is not behind any other nation in thi respect. From the experiences gained, the experimenting committees have settled quite definitely for the present the gunpowder which will be used, and with the results ob tained they appear quite satisfied. We are not at present in a position to publish the exact details respecting the powder recently adopted into the service, but we may state in general terms that the new powder is a large pellet consisting of two truncated hexagonal pyramids, base to base. They are pressed into this form between bronze plates which contain cavities, corresponding to the truncated pyramids, arranged in honeycomb fashion. The powder comes out in large sheets, which are easily broken up into pellets. There is nothing in his particular form of pellet, except that it is the most con venient for making, easily and cheaply, a powder which fulfils he following conditions

1. The grains must be of sensibly uniform size and shape
2. They must be homogeneous in respect to density; no only must the density of each and every grain be the same but there must be no hard and soft portions in any single 3rain.
3. The ratio of surface to mass should be as small as practicable
4. All angles should be as obtuse as possible

This shape of grain apparently fulfils the foregoing re quirements better than any other which has been devised excepting possibly the prismatic, to which, however, it ap ears to be equal, and is certainly cheaper and more con enient to manufacture. It is called the hexagonal powder nd its most satisfactory features are very low pressures with good velocities and remarkable uniformity of action In the 15 -inch gun the variations of pressure are not worth mentioning, and under the constant pressures of $15,000 \mathrm{lbs}$. or even $20,000 \mathrm{lbs}$., the endurance of these guns would be practically indefinite. The Rodman internal gage for re cording pressures is exclusively used in the United States, where it is much preferred to Noble's crusher. The latter indeed, appears to be strongly condemned among the artillery officers of the United States, although they are fully alive to the imperfections of the former. The gage ordinarily used consists of the well known cutter placed in a cylindrical consists of the well known cutter placed in a cylindrica
steel box, the piston rod being exposed by a hole in the cover The whole is tied to the bottom of the cartridge bag, and buried in the powder. It is usually left in the bore afte the discharge, or drops in the sand a yard or two from the muzzle. Sometimes the external gage is used in connection with it, and, notwithstanding the prevailing belief to the con rary, the two gages show a very reasonable agreement.
In consequence of the increased powder charges employed buffers have been introdnced into the American carriages, or the fifteen inch gun with 100 lbs . of powder is very lively on its carriage. For some years a pair of cylinders fixed to the front end of the chassis have been employed they are a little less than 8 feet long and 13 inches diameter, and the recoil pulls out the piston rods compressing the ai in the cylinders. They work very well, but are bulky and costly, and experiments are being made with hydraulic buf fers, similar to those in use in this country.
The instruments for recording velocities in use in the United States are the Schultz and Boulengé's chronographs, he one most frequently employed being the former. This (the Schultz) instrument has been almost abandoned in Europ but in America it is supposed to have failed here through want of skill in its use, for when well handled it is a ver uperior instrument. United States' artillery officers have ecome so thoroughly accustomed to it that they generally prefer it, though the Boulengé and Benton chronographs are often used for " rough and ready" work - Engineering.

Useful Recipes for the Shop, the Household,

W and the Farm.
[We desire to state that the recipes which are given here with, as well as those which have appeared in our columns rom time to time, are not vouched for by us as absolutel correct, since it is manifestly impossible for us to submit all
or even a fraction of them to the test of personal experience. or even a fraction of them to the test of personal experience.
They are selected, however, with much care from a wide and eliable range of sources, both domestic and foreign. Many re kindly furnished us by correspondents, and such we ar especially gratified to receive. In this connection, we beg gain to remind our readers that our columns are always open to them for the publication of such results of their own ob ervation and experience as they may be pleased to communi cate. We cannot repeat old facts, nor present trivial ones, but there is hardly a person who may read these lines who cannot send some hint or suggestion, sure to be new and valuable to some one else. Never mind the writing or the pelling; send us the bare facts, and thus pay off the mora spelling; send us the bare facts, and thus pay off the moral
debt owing to those who have already contributed their debt owing to those who have already contributed their
knowledge for your benefit. We intend this column of ecipes especially for such saggestions; and if every one of ur subscribers will but contribute one good fact a year, volume of this paper will contain 45,000 recipes and valua ble suggestions, not obtainable in books or from any other source.-Eds.]
Yellow stains commonly called iron mold are removed rom linen by hydrochloric acid or hot solution of oxalic acid. Wash well in warm water afterward.
To fasten emery to leather, boil glue very thin, add a little milk, raise the pile of the leather, and put on the glue with the brush. Then sprinkle on the emery, and let it cool.
To preserve soap grease, fill a cask half full of good strong ye and drop all refuse grease therein Stir up the mixture ye and drop

The best fattening material for chickensis said to be Indian meal and milk.
A remedy for caterpillars, which is used on a large scale in France, consists in a solution (1 part in 500) of sulphide of potassium, sprinkled on the tree by means of a band syringe. The best and most durable insulation for electric wires is to tin them and cover with purerubber
Javelle water, used for turning white the dirtiest linen, and removing stains, is composed of bicarbonate of soda 4 lbs ., chloride of lime 1 lb . Put the soda into a kettle over the fire, add 1 gallon of boiling water, let it boil from ten to fifteen minutes, then stir in the chloride of lime, avoiding lumps. Use when cool. This is good for removing fruit tains from white underwear
Biborate of soda dissolved in water, used as a lotion, will remove prickly heat.
The average yield of corn cobs is 762 parts of carbonate of potash in 1,000 parts of the cobs, which is nearly twice as much as is furnished by the best specimens of wood. The corn crop of this country will supply $15,400,000,000$ lbs. cobs, from which $115,500,000$ lbs. of potash might be made.
The way they boil rice in India is as follows: Into a saucepan of 2 quarts of water, when boiling,throw a tablespoonful of salt: then put in 1 pint rice, previously well washed in cold water. Let it boil 20 minutes, throw out in a colender, drain, and put back in the saucepan, which should be der, drain, and put back in the saucep.
stood near the fire for several minutes.
Save the corn cobs for kindlings, especially if wood is not going to be plentiful neat winter. To prepare them melt; together 60 parts resin and 40 parts tar. Dip in the cobs, and dry on sheet metal heated to about the temperature of boiling water.
Equal weights of acetate of lime and of chloride of calcium, dissolved in twice their weight of hot water, is a fireproofing misture for fabrics.
The ammoniacal solution of oxide of nickel will dissolve silk; that of copper dissolves cotton also.

THE CHEMICAL FIRE-FLY.

by professor c. w. wright.

Of all the elements, there is none which presents such a diversity of forms as phosphorus, and not one that presents such a variety of properties which are so apparently contra dictory. The number of allotropic forms assumed by this element, and the peculiar part which it plays in the condi tions essential to the manifestation of sensation and intelli gence, together with the fatal effects which often result from its introduction into the system, give it an interest not exceeded by that of any other form of matter whatever. A distinguished professor of this city, who was in his day a most attractive teacher, maintained that the chief element of successin a lecturer consisted in the power to address the eye, experimentally when possible, and by a well drawn admit of physical demonstration. In other words, he contended that nothing should be left to the imagination of the student. There can be no doubt that a single, well selected experiment, skillfully executed, is more instructive than an hour's talk without illustration. Phosphorus may be se lected as a means of illustrating the two methods of pre senting a subject. Thus, the average text book informs the reader that phosphorus is luminous in the dark, or, in other words, phosphoresces when exposed to the air; and this is
about all that is stated in reference to a property of this eleabout all that is stated in reference to a property of this ele-
ment, which is the most important of any connected with it. Upon this property, or one closely allied to it, is the poisonous quality of this agent based. Destroy this power of phosphorescence, and this element is no longer a deadly poison, either when swallowed, or by the action upon the bones of the upper and lower jaw. The phosphorescence of this element is accompanied by the development of ozone, and any substance which has the power of destroying ozone wil arrest the luminosity of phosphorus, and, what is of still greater importance, destroy its poisonous action. In fact,
phosphorus is not of itself a poison, but the ozone which it phosphorus is not of itself a poison, but the ozone which it
has the power of developing out of the oxygen of the air is the sole cause of the fatal results which follow its introduc tion into the system. This I have repeatedly demonstratid by experiments on the lower animals; and in two cases of accidental poisoning in human beings, the same facts have been proven. This is a subject, however, that properly belongs to the medical profession, and I will simply state that ten or fif teen drops of spirits of turpentine, mixed with an ounce or two dote to elementary phosphorus, or any substance, such as the tips of matches or certain rat poisons, with which it may be incorporated. Other volatile oils, such as sassafras, may be employed when turpentine is not at hand. It is not every specimen of turpentine that will prove antidotal to phos phorus. Any substance that has the power to instantly de stroy the luminosity of this body will prove effectual as an antidote; and the only assurance we have of the efficienc of any agent is to test it beforehand.

Phosphorus is, then, not of itself capable of producing in flammation of any tissues of the body; but ozone, which it has the power of evolving from the oxygen of the air, is the cause of all the local mischief which results from its contac with certain parts of the body. Theds its way into the circulation, we do not doubt, but these a C istinet from its local ac tion.

To prepare the chemical fire-fly, by which some of th
trated, select a two ounce phial which has been well an nealed, and introduce into it sweet or almond oil, till the
bottom is covered to the depth of half an inch (lard will answer, if nothing better can be procured), and to this add fifteen or twenty grains of phosphorus, and then cork it loosely. After this, place the phial in a pan of cold water, and set it on a stove or other warm surface till the phosphorus melts, then shake the phial till the oil has dissolved as much of it as it is capable of holding in solution. Three or four That quantity of oil will not dissolve the whole of the phosphorus, which is not desirable. The cork must not be a closely fitting one, but must be forced into the phial so as to closely fitting one, but must be forced into the phial so as to
nearly prevent the escape of the oil when inverted. It is best to give the cork more of a conical shape than those in use by druggists. When experimenting, the phial must be warmed about as hot as the hand can bear, and slightly agi tated or inverted, taking care, when doing this, to have the cork well secured; it may afterwards be loosened a little.
Whtn the cork is properly adjusted, which can be easily accomplished by a little practice, the whole interior wil light up every few seconds, in rhythmical succession, and con tinue to do so for hours, provided the proper temperature is maintained. At the conclusion of the experiment, the apparaius should be put away in a dark place, and a tightly fitting cork-introduced into the phial. A number of these phials, properly adjusted in a darkened room at different points, and several set swinging by means of strings suspended from the ceiling, produce a singular and weird impression, that grows upon the observer the longer the experiment i observed; and after a time it is difficult to divest oneself of
the idea that the light is evolved by a living, moving crea ture. For impressiveness, there is no experiment in chem istry that makes such an enduring image upon the observer Of course every precaution should be taken to avoid breaking the apparatus or spilling the oil. No damage, however need be apprehended provided the directions are strictly fol lowed. In experimenting with phosphorus, the inexperi enced should always be provided with a large vessel of water in which a few drops of turpentine have been diffused. When burning phosphorus has been extinguished by this water, there is little or no danger of its re-ignition, which is very apt to occur when it is extinguished in the ordinary way. The phosphorescence of this element, when a solution it is spilled upon any object, as well as its disagreeabl dor, are instantly destroyed by a small quantity of turpenne suspended in water
Under no circumstances should children or careless per ons be permitted to experiment with phosphorus; not tha it is anything like as dangerous as coal oil and many othe rticles handled daily, but there is no substance that so com pletely demoralizes the understanding, in case of an acci dent, as this.
The glow-worm may be imitated by transmitting bubbles f air through glass tubes containing the phosphorized oil. In fact, there is no end to the number and variety of ex periments that can be devised by a person of inventive

The phosphorescence of the fire-fly and glow-worm is du to slow combustion or oxidation; and the phenomenon is ar rested in them, as it is in phosphorus, by placing them in a egative gas, such as nitrogen, for example. Phosphores nee is not always, however, the result of oxidation. Thi fact can be demonstrated by exposing the diamond to direct
sunlight for a few minutes, and then transferring it to a dark sunlight for a few minutes, and then transferring it to a dark
ened room, when it will emit a beautiful light for severa econds.
The phosphoresence of the fire-fly is not due to the slow combustion of phosphorus, nor is it an amatory display nn he part of that insect. The species are perpetuated under different circumstances, and in the daytime. The fire-fly is carnivorous insect, and the object of the illumin
If the ear bects, which are quickly devoure t the moment of illumination, a slight hissing noise will be perceived, produced by a sudden rushof air into the phial, in onsequence of the partial exhalation (one fifth) of the air in he phial, by the abstraction of oxygen, which unites with the hosphorus. This fact is instructive. It demonstrates to us, a striking manner, that a vessel which may be imper ious to a liquid may permit the entrance or exit of a gas or vapor; and it accounts for the decomposition of spirits, onserves, extracts, etc., that are put up in vessels that are supposed to be hermetically sealed, simply because they do Louisville, Ky.

Progress of Flying Machinery.

A new steering balioon by Smitter is being exhibited suspended in the middle of the Alcazar in Paris. The meas rement is only 6,000 cubic feet, but the balloon is so light that, when filied with pure hydrogen, it must float. A con iderable sum of money has been invested in it, and grea bility has been displayed in the construction. Although no practicable result in open air may be hoped for, it is a wonder ul piece of clockwork. In connection with this subject, it is stated that, for several months past, a firm of engineers have been experimenting privately at the Crystal Palace with an aerial steamer of a novel and promising character, weighing 160 lbs. Experiments are stated to have proved the ca pability of two vertical screws, each 12 feet diameter, to uel, a weight of 120 lbs.; the steam engine, with water an lbs. The power exerted by it is equal to two and a half horses. The communication of motion is given by a vertical axis emanating from the car.-Nature.

gatent Gmoritay and foretgn gatenty.

Improved Dumping Car

Benjamin Slusser, Sidney, Ohio.-This invention makes a considerable change in the frame of a dumping car or wagon, so that the
contents may be discharged with little expenditure of manual force, and yet with great facility, the tail board being made to open automatically.

Improved Firth wheel.

Jacob Hodge, Springfield, Ill.-The fifth wheel is a circular iron disk, the face of which is slightly convexed, and which has lugs formed upon its sides to receive the clips, by which it is firmly se-
cured to the axle. In the center of the disk is formed a hole to ceive the hub on the circular disk of the head block. The lower side of the head block has a circular recess to fit upon the fifth wheel, the face of which is slightly convex, so as to bring the bearing toward the center. Upon the head block is a transverse rib, upon which rests a spring. Upon the rear side of the head block are formed two flanges, and an arm or projection, having
slight flanges formed upon its side edges to form a soat for the slight flanges formed upon its side edges to form a soat for the reach, the forward end of which abuts against the rib of said head
block. The connection between the reach, head block, fifth wheel, and axle is strengthened by two metal straps.

Improved Gas Generator

James C. Mitchell, Lancaster, N. H.-This invention relates to certain improvements in the manufacture of illuminating gas, de-
signed to utilize any kind of fuel for the production of the gas, and applicable to limited manufacture, as for private families, etc. It consists in a retort placed within a furnace, or a common stove if desired, and having an airtight door of peculiar construction, and a communication direct with the furnace, by means of which con-
struction the gaseous contents of the retort may be drawn into the struction the gaseous contents of the retort may be drawn into the
furnace and burned, when the airtight door is to be opened for drawing and recharging the retort. It also consists in the combination with the feed pipe to the gas holder of a ball valve to prevent back pressure.

Improved Cotton Chopper.
Wm. D. Evans, Society Hill, S. C.-The invention consists in a rotary chopper having intervaled sets of knives on two drums arso to chop out two rows simultaneously.

Improved Egg Tester.

Wm. W. Wilson, Parkville, Mo.-The invention consists in an egg tester consisting of a case in whose center is placed a lamp, and in
whose side is a horizontal tube having an egg-holding cap at the whose side
outer end.

Improved Gang Plow.

A. Schrader, Walla Walla City, Wash. Ter.-The invention relates to that class of gang plows whose frames are supported on swiveled castor wheels so as to regulate the depth of furrow, and consists in an improvement by which the front and rear wheels are simultane-
ously graduated by the driver, so as to determine the exact depth ously graduated by the driver, so as to determine th
of furrow required.
Improved Post Hole Borer.

Improved Post Hole Borer.
Obadiah Love, Saxenburg, Pa.-The object of the invention is to expedite and diminish the cost of post-hole digging by making the the soil to crumble and discharge itself.

Improved Automatic Car Coupler.
F. W. Nash and S. S. Kirk, Washingtoo, D. C.-This coupler is adjustable to any car. and couples with any other coupler, by simply bringing the cars in contact. It can be uncoupled from side, top, or platform of car, avoiding the necessity of the attendant ever going
between cars. It is claimed to combine simplicity, utility, durability, strength, and cheapness. For further particulars, apply to S. S. ty, strength, and cheapne
Kirk, Washington, D. C.
lmproved Vehicle Tongue Support.
George W. Burnside, Prairieburg, Iowa.-By suitable construction, when the draft is applied, the downward pressure of a chain upon a
pulley raises the tongue, and supports it, so as to relieve the horses' pulley raises the tongue, and supports it, so as to relieve the horses
necks from its weight, and hold it raised so long as the draft strain is continued.

Improved Foot Treadle.
Daniel E. Lillis, Lockport, N. Y.-The invention relates to the onstruction of swinging foot treadles for sewing machines and
others, in which an adjustable foot plate is bolted on to the hanging bar, for shifting forward and backward on the bar to balance the feet relatively to the pivot. Ribs are cast on the edges of the foot plate, in combination with the notched hangers, to assist the bindng screw

Improved Lamp Fount.
Edward Brown, New York city.-The lamp fount is provided with thin circular outwardly and downwardly projecting flange around n inner conical cavity, a space being left between the flange and body of the fount to receive the fastening screw of a b
Improved Bessemer Converter.
Almon S. Dunning, Joliet, Ill.-The invention consists of a conor flattened shape. By the removal of the projecting angle or curved convexity, the sectional area of outlet is greatly increased, and consequently the force and velocity of the blast diminished. Thus any metal rolling up will fall back. The invention states that he has made about twenty thousand tuns of steel under this im provement, and with not one fourth the usual overflow.

Improved Harrow.

Joseph Rioth, Mount Sterling, Ill.-The harrow frame is made in two parts. Each part consists of three or more parallel bars, conapart, as may be desired. The outer ends of the outer bars of each part have rings secured to them. To the draft bar are attached five staples. Two draft chains. the forward ends of which are hooked into two of the staples, are equally distant from the center of the draft bar. The chains are passed through forward rings, and are hooked into rear rings, or are turned back upon themselves and ooked nto their row may be folded together, so that it may be drawn upon its side in passing to and from the field.

Improved Blind Stop.

Charles E. Steller, Milwaukee, Wis.-This consists of a plate of metal, arranged between the inner edge of one of the stiles of the as a cam button on one or more slats, so as to oscillate a little. It he butcon against the plate, the latter will bith it that, by turning slats, so as to hold them by friction in any position in which they may be set. It was fully described and illustrated on page 70 , cur-

mproved Combined Grave, Coffin, and Monument. Leland M. Speers and Abraham Clark, Newberry, S. C.-This
device is so constructed as to prevent the escape of odors and the entrance of water, while allowing the features of the dead to be viewed whenever desired. The invention consists in a combined grave, coffin, and monument, formed of the recessed lower part, the grooved cover made thicker at its head end, and having an opening formed through it, in which is comented a glass plate and the cover
 Lurning a roa，a cord will be wound upon the said rod，and the slat
 Withdrawing the pawl from the ratchet wis．

Improved stove Grate．
Jonathan Moore，Jr．，Brooklyn，N．Y．，asisignor to J．L．Mott Iron Worss，New York city．－This is combination of a laterally shalk－ ing and aumping bottom section，provided with chlinker－breaking
points，with the stationary
top section also having breaking points

Improved Smoking Pipe

Carl J．Jonasson，Warren，Pa．－In this smoking pipe the stem may be readily folded down to the bowl，so as to occupy a small space in being cleaned．The stem is hinged by ball and socket joint and connecting link．

Improved Flower Pot．
Joe Sephus Johnson，Somerville，Tenn．－This is an earthen flower pot consisting of body，hollow base，and perforated partition，all
made up in one piece．With this construction the earth will be made up in one piece．With this construction the earth will be
kept properly and uniformly moist，and will not be soaked or leached，as it is liable to be when the plants are watered by pouring
water upon the earth in the flower pot．
Combined Cigar Tip Cutter and watch Charm． Emil F．W．Eisenmann，New York city．－The invention consists of The stem end of the cutter is guided in the barrel in such a manner that，in pressing on the same，the cutter is carried down between the rims and cuts off the tip．
improved Sced Planter and Fertilizer Disiributor． David F．Balentine，Mount Gallagher，S．C．－An arm projects into such a position that it may be struck by pins attached to a wheel． In the bottom is an opening for the seed to escape，which opening may be partially covered to regulate the amount of seed discharged
by a plate．To the hopper is attached a narrow bar，the rear edge by a plate．To the hopper is attached a narrow bar，the rear edge
of which projects into the said hopper，and has saw teeth formed which to hold of the said hopper，and has saw teeth form and cause them to pass out through the opening in said bottom． By this construction the bottom will be constantly moving up and
down，keeping the seed or fertilizer in the lower part of the hopper down，keeping the seed or fertilizer in the low

Improved Egg Box．

William H．Holdam，Crab Orchard，Ky．－The device consists of a box，haviLg detachable egg holders，provided with subjacent spacing

Improved Vehicle Wheel

Sobieski L．Bond，Columbia，S．C．－A nut sorews on the outer part of the hub，against keys under the spokes，to wedge them out for sides of the spokes，to wedge the latter firmly in the mortises of the hub．There is a wedge between the ends of the felly，and a screw for drawing it up to fill up the opening made by wedging out the
spokes and tightening the felly．The wheel can thus be tightened up as often as required merely by turning the screws with proper wren often．

Improved Stove．
James L．Robarts，Brunswick，Ga．－This invention consists of a heat around directly under the pots in a continuous stream so as to heat them more，and quicker，and the other parts of the stove less， than with the common arrangement．It also consists of two open－ ngs in the bottom of the stove，making a passage directly through t for cleaning out the soot

Improved Smelting Furnace．
Henry C．Creal，Cheyenne City，Wyoming Ter．－The ore melting furnaces are located one on each side of a central heating furnace，
and communicate therewith by means of openings in the vertical and communicate therewith by means of openings in the vertical
side walls．The three furnaces，together with the flue aro arranged in the form of the Latin cross．Fire places located directly under the floor communicate directly with central fire place．The ore to be melted is placed on the concave floor of the side furnaces，and the same is melted by the heat from the central furnace and the fire places．The products of combustion from the side furaces pass into the central furnace by means of the openings in its side
walls，and，mingling with the products of combustion in the latter， walls，and，mingling
pass to the chimney．

Improved Jar Lifter．

William W．Brower，New York city．－This is a jar lifter consisting of two rods made adjustable at the point of intersection，and bifur－ fast to the inside of their lower ends．

Improved Chuck for Rock Drills．
Joseph C．Githens，New York oity．－A key is fitted into a groove n the piston rod．The inner edge of the key has a half－round groove piston rod，so that when the key is in place a cylindrical hole will be formed to receive a bit．The key has a swell formed upon the outer side of its middle part，which is notched transversely，to re－ ceive the bend of a U bolt，the arms of which pass through the en－
largement of the piston rod upon the opposite sides of the groove largement of the piston rod upon the opposite sides of the groove
in said piston rod，and have nuts screwed upon their ends．By this construction，the end parts of the key bearing upon the bit and the U bolt grasping the middle part of the key，there will be a slight yield or spring to the key，which will cause it to hold the bit more firmly．

Improved Car Coupling．
Charles E．Ramage，Sherman，Tex．，assignor to himself and Wil－
helm Heyde，of same place．－When the cars come together for coup－ helm Heyde，of same place．－When the cars come together for coup－
ling，the end of the link strikes an arm，which raises the other arm ling，the end of the link strikes an arm，which raises the other arm
and the coupling pin．The link passes into the drawhead beyond and the coupling pin．The link passes into the dine cars are coupled automatically．An angle plate is attached to the front of the car added so that when the car runs off the track，and is partially turned over，the drawhead will be withdrawn from the car．
Improved Device for Regulating Car Ventilators． George W．Birmingham，New York city．－The operating lever is fulcrumed to a supporting bracket．The opposite arm is jointed by lever bears against a brake spring attached to the ventilator frame， and is held by the friction of the same firmly in any position．

improved Airtight Can．

Stephen Joyce，New York city．－The cover is made of two parts
soldered together．In one part a groove is made，in which groove soldered together．In one part a groove is made，in which groove
is a band of rubber which projects outward，and when forced down it is crushed and expanded by its contact with the flaring end of the of the flare are，when the cover has been forced down airtight of the flare are，when the cover has been forced down airtight，
bent over the edge of the cover，so as to securely fasten and keep the cover in place．

Improved Portable Boller
George F．Johnson and Daniel Wilde，Washington，Iowa．－A bar－ George F．Johnson and Daniel wilde，Washington，Iowa．－A bar－ top，and in the center of its bottom is a galvanized iron cylinder． In the lower part of the cylinder is a grate．To the upper end of the cylinder is attached a cover，and in the cover is formed a hole
for the escape of the smoke．The grain or other feed to be cooked for the escape of the smoke．The grain or other feed to be cooked is placed in the barrel around the stove，so that it may receive the full heat of the fire．A conical shield is placed around the cylinde ing in contact with said cylinder．To the shield，a little above its lower end，is attached a perforated fiange，which projects nearl
the sides of the barrel，to keep the clothes up from the bottom．

Improved Fire Place．
William Tweeddale，Brooklyn，N．Y．，assignor to J．L．Mott Iron Works，New York city．－This fire place is composed of a back plate inclined forward at the top，forward and outward at the sides，and provided with an opening to the chimney，and flanges which sup－ port the middle plate and damper．The middle plate is inclined for－
ward at the sides and top，and provided with an opening also to the chimney．The front plate is secured to the middle and back plates．

Improved Pitman．

John R．Taylor，Eagle Point，IIl．－This is an improved pitman con－ nection for connecting the driving power with the sickle bar of mowers，reapers，and harvesters，so constructed as to enable the
en up at the pivoting and working poin

Improved Metal
John Davenport，Stamford，Conn．－The metal cap is made in two parts，and secured by bolts being inserted from the under side of a flange，forming a cornice．The nut is confined by a lug cast on the
inner wall．The upper part overlaps the lower part，so as to pre－ vent the rain from uper part ove

Improved Paddle Wheel．

James Salter，Brooklyn，E．D．，N．Y．－This invention consists of waddles composed of entire plates the whole length and breadth the inner ends connected to the hub．By the tapered form the pad－ dles enter and leave the water much easier and smonther．The in－ vention also consists of the paddles madein two plates，which match at the inner edge with an arm having a groove on opposite sides，in which the plates are confined by a band of metal applied between
the rim and the hub，to fasten them to the arm，while the inner the rim and the hub，to fasten
ends enter mortises in the hub．

Improved Leather Belting．
Charles H．Alexander，Henry W．Alexander，and Edward P．Alex－ nder，Philadelphia，Pa．－It is proposed to cut the hide along the is，the edges formed by so cutting it，outward，and the side edges inward；and for belts too wide to be made by the two pieces so cut， one or more middle pieces are introduced，taken from the center of a side．Thus the firmest texture is placed at the edges of the belt， nd the softer and more yielding texcure in the midie，which makes niddle stretches over the cromn and thus the belt actswith due effect throughout its whole breadth．

Improved Show Case．

William B．Smith，New Yorkcity．－When the door is closed，a cleat inside the bottom strikes the lower edge of a rubber，and turns it up and conflnes it against a rabbet，and thereby excludes all dust from the show case．

Improved Harvester Cutter
Thomas R．Arnold，Knoxborough，N．Y．－In the back of the cut－ er bar is a groove，and on the side of the knives is a lip．This lip rests in the groove，while the knife rests flat on the face of the
cutter bar．The knives are brought in contact with each other on cutter bar．The knives are brought in contact with each other on
the front of the cutter bar．The backs of the knives rest against the the front of the cutter bar．The backs of the knives rest against the
shoulder of the cutter bar，so that the knives are kept rigidly in place．The clamping bar is attached to the cutter bar with screws which pass between each pair of knives．The corners of the knives， having corresponding pieces cut out of each corner，form rearward－
ly opening spaces on each corner edge of the shank．By loosening ly opening spaces on each corner edge of the shank．By loosen
these screws the knives may readily be removed and replaced． Improved Automatic Shut－of Attachment for Water Closets．
James Cavanagh，New York city．－This is an automatic shut－off attachment for water closets，by which the supply of water is instantly interrupted as soon as the hinged cover of the same is re－ access and easy lubrication of the parts，few repairs are rendered necessary．The invention consists of the connection of the stop cock necessary．The invention consists or the conply pipe by a crank lever and adjable rod with the hinged and weighted cover of the bowl，so that the opening of the
same produces the closing of the supply cock，which is provided with a waste pipe and a lubricating pipe attached by a fastening nut the laange
Improved Knock－Down Bureau and Wash Stand． William S．Moses，Lebanon，N．H．－The front rails for the support
of the drawers are divided in two parts longitudinally，and the front portion is permanently attached to the front of the bureau．The ther portion forms part of a removable frame for the support of the drawer．The front sides and back connect by dovetail joints
sliding together vertically，and are locked by the top，which slides sliding together vertically，and are locked by the top，which slides
in the sides，over the back，over and against the front，and is fast－ in the sides，over the back，over and against the fro
ened by cams concealed inside．No joints are visible．

Improved Machine for Catching and Destroying

 Potato Bugs．Ceylon E．Mathewson and Harvey T．Mills，FranklinCorners，Pa．－ The construction is such that，as the machine is drawn forward be－
tween two rows of potatoes，the vines will be drawn into the spaces between guards and side bars，where they will be struck by wings． The blows of the wings knock the bugs against a partition，from which they fall upon a bottom，slide down，and pass out through the

Improved oller．
Henry E．Bohm，Herman Stuhr，and Peter J．Joecken，Cleveland， Ohio．－The bottom plate，top plate，and glass cylinder of the cup are secured by a center bolt，which screws into the cup and also passe through a clamping band and fastens it to the cup
Improved Saw Mill．
William T．Wayne，Conyngham，Pa．－This invention consists of a vertical guide roller，turning in a sliding standard frame，adjusted
by raok，sector pinion，and lever mechanism．The lever is locked by a spring latch to an arc－shaped rack，and adjusted with the sector pinion to the exact position of a horizonal supporting roller by set

Improved Hens Nests．

Julia P．Clement，Williamston，S．C．－A box is divided longitudi－ peak of the roof to the floor．The interior is divided up into nest spaces by boards extendingup to the roof．The hens，when they enter， pass through an end passage，enter a side passage upon the opposite
side from that at which they entered，and take possession of any way than by opening the hinged parts of the roof

Improved Hydraulic Press．
John F．Taylor，Charleston，S．C．－This invention relates to cer－ Join improvements in cotton presses；and it consists in the combi－ tain improvements in cotton presses；and it consists in the combi－ nations wrought metal，which encompass said platen and cross head lengthwise，and constitute of themselves the frame，and receive al the strain of the press，whereby the construction of the press is greatly simplified and rendered capable of standing a much greater
strain than the ordinary cast frames．It also consists of a cushion of woods interposed between the links and the contained platen and cross head．
Improved⿰⿰三丨⿰丨三 1 Sewing Machine Fan Attachment．
Isaac A．Abbot，New Orleans，La．－This invention consists of a standard arranged to fasten on the top of the sewing machine tablea shaft．On the crank of the latter is a long connecting rod extending down to the treadle，with which it is to be detachably connected，so
that the fan attachment can be readily put on and taken off at any that the fan attachment can be readily put on and taken off at any
time，and when on may be worked by the treadle by which the ma－ chine is worked．

Improved Potato Digger．

George W．Haag，Milton，Pa．，assignor to himself and Pembroke Churchill，same place．－The device includes two sets of teetb， which are pressed into the ground and close under the roots by the forward movement of the machine．Said teeth are mounted on endless chains，traveling on horizontally elongated ways．The teeth
are constructed in fluted or grooved transverse section． Improved Lifting Jack．
John B．Fayette and Lorenzo Meeker，Oswego，N．Y．－A tubular standard contains a movable tube of smaller diameter．A pin passes
transversely through the lower part of the tube and the ends ject so as to pass through slots in the standard，so that，by dropping the pin into the proper slots，the tube may be supported at any de－
sired hight．A short rod fits into and slides up and down in the upper part of the tube，and has a head attached to its upper end to receive the object to be raised．To the rod is pivoted a short con－ necting rod，the lower end of which is pivoted to a lever．By suit－
able construction，the rod is lowered by raising the free end of the lever，and is raised by lowering the free end of the said lever．In using the jack，the rod is lowered and the tube is adjusted to the proper position in the standard．The jack is then placed beneath
the object to be raised，and the free end of the lever is lowered till it passes the perpendicular，which raises the object and locks the jack until the lever is again raised．

Improved Wagon Brake．
George S．Garth and William H．Rosser，Mill Hall，Pa．，assignors to
George S．Garth，same place．－This invention relates to te mean George S．Garth，same place．－This invention relates to the means
for connecting the lock or brake bar to the hounds，and guiding it ar connecting the lock or brake bar to the hounds，and guiding it as it is moved up to or away from the wheels．Metal plates are
bolted to the rear hounds for a lock bar to rest upon．The said plates serve as guides to the said lock bar as it is moved forward and
back．To the lock bar is bolted a metal block，which may be made plates serve as guides to the said lock bar as it is moved forward and
back．To the lock bar is bolted a metal block，which may be made
with short slots to receive the bolts，and ismade of the thickness of with short
the plates．

Improved Band Saw Guide．
Lewis K．Young and Charles M．Ferguson，Bridgeport，Conn．－ This is a guide for saws，which will be dur use of glass，dove tailed or set in either wood or metal，to form the wearing surface．

Improved Detachable Seat for Chairs．
William W．St．John，Pisgah，Mo．－This is a seat of a chair，stool，
or settee，strained and made detachable by means of slats．To keep or settee，strained and made detachable by means of slats．To keep the lower），a removable cross bar is applied to one of the slats by a

Improved Gang Plow．
Henry Opp，Belleville，Ill．－By suitable construction，by loosening nuts，the forward ends of the plow beams may be adjusted at any
desired distance apart，and，by loosening a rear bolt，the plow beams desired distance apart，and，by loosening a rear bolt，the plow beams
may be adjusted to take or leave land，as may be desired．The plow beams are made of different lengths，so that the forward plow may always be out of the way of the furrow slice turned by the fol lowing plow．The rear ends of the plow beams may be adjusted to correspond with the adjustment of their forward ends．By opera－
ting a lever，the plows may be raised from the ground and lowered ting a lever，the plows may be raised from the ground and lowered to work at any desired depth．A pawl holds the plows to their work and prevents them from running out when plowing hard ground，
while a chain prevents them from entering the ground too deep when plowing loose．

Improved Straw Cutter．
Cbarles F．Stewart and Milton Stewart，Muncie，Ind．－This is an improved straw cutter with reciprocating feed box．It consists of a revolving cutting knife，in combination with a reciprocating feed
box，that moves the straw forward by a ratchet wheel and pawl con－ nection of the feed rollers with an actuating lever and cams of the supporting main frame．The upper feed roller turns in bearings of
a compressing front gate，and is forced on the straw by springs of a compressing fr
suitable power．

Improved Washing Machine．

Jesse Wise and Peter Lane，Elwood，Ind．－This invention include a device which enables the rubbing cylinder to be oscillated to rub can hold the clothes with one hand while working the cylinder with the other．
Improved Machine for Attaching Stamps and Sealing
Eddy Taylor Thomas，Boston，Mass．－A box－shaped casing，about the size of the envelopes mostly in use，is provided at its front part with a letter－opening device，a moistening device，which consists o a middle sponge holder and upper and lower guide plates：the lowe the same，and moisting the mucilage，and the upper，for moistening the envelope at the place where the stamp is to be affixed．With eac stroke of the lever，a stamp is carried to the moistened place of the envelope and attached thereto，while the pressure of the plate seals the flap．
Improved Device for Attaching Hubs to Axles． Warren E．Pratt，Chesaning，Mich．－The object of this invention is to provide convenient means for fastening the wheels of a vehicle on the axle without the use of screw threads or the ordinary burr or square or polygonal，and fastening on the end thereof a washer，to which is attached a key box，having an orifice to fit the axle，the same being fastened to the axle by means of keys and springs．

Improved Steam Rock Drill．
Joseph C．Githens，New York city．－The steam cylinder moves up
and down in ways in a shield，which is swiveled to the frame work and is strengthened by long bolts passing through lugs formed upo its ends．The bolts are extended upward beyond the upper end of the shield，and to their up per ends are attached the ends of a cross bar，to the center of which is swiveled the reed screw，which passe through a screw hole in a lug，formed upon the rear part of the up inder may the cylinder，so that，by turning the said screw，the cyl and moved up when the hole has been sunk to the required depth．

 The Charge for Insertion under this nead is $\$ 1$ a Line.Hoadley Portable Engines. R. H. Allen \& Co.
New York, Sole Agents of this best of ail patterns.
 For Sale-Portable Engines, second hand, 30,12,
8,5 Horse Power. Stationary Engloes, Bollers, all sizes. A. C. Tully \& Co.. 55 Dey St., New York.

Edward Wernigk-Please send
Osterheld $\&$ Eickmeyer, Yonkers, N, Y
Wanted-A gentleman capable of assuming the
entire management of the American Engineer. Address American Engineer, Baltimore, Md.
Amercan Enginer, Barumore, Ma.
B. K. . . Ievator-Send description to C. H.
Smath, Madison, Ind.
Wanted-2nd hand Matcher. C. Devilbiss, Shells-
burg, Iowa. Moulder Wanted-Must be fully competent to
take charge of Foundry for general machinery castingstake charge or oundry for seneral machinery castings-
mosti engine end mill work. Refenences. requirea.
Apply to P. o. Box 89, Galt, ontario, Canada. During the past seven years, we have been adver-
tising constantly, and at times very largely, for Messrs.

 trons, they are fair with publishers. Such frms succeed
bestin ine end, as Messrs. Rowell \& Co. have fully dem-
Dentran

 One Run Feed Stones,
Co., Manchester, N. H .
Miscellaneous Machinery, 2'd hand, for Sale:
No. 4 Bluke steam Pump, 8220 ; No. 2 Earle steam Pump,
sion

 In., 88 each. Add
Manchester, N. H.
Bolt Headers (both power and foot) and Power
Hammers a specialty. Forsaith \& Co., Manchester,N.H. Entire Stock of Tools of a Foundry and Machine
Shop or sale. List sent on application. Address P. 0. Box 2132, New York City.
A responsible American Firm, having a Branch
ofite in London, would aceept the European Agency for omtce in London, would accept the European Agency for
saleable mechanteal articles. Address Machinery, Box
262, New York Post ofifice. 2620, New York Post Office.
$\$ 17$ Foot Lathes. Geo. F. Shedd, Waltham, Ms. A Self-Acting Trap, to rid out all Rat and Ani-
mal Creation. Agents wanted. No trouble to eell. For

Traps, \&c., ad tour Co., Pa.

Scale in Boilers Removed-No pay till the work
Is one. Send for 34 page pamphlet. George W . Lord,
Philadelphial
1, 2, \& 3 H.P. Engines. Geo.F.Shedd, Waltham,Ms. For Sale, at Great Bargains-One 18×36 second
hand Green's Patent Automatic Cut. Off Engine also one
 and Paterson, N. J.
For Sale-Large lot second hand Machinists'
Tools, cheap. Send for Hist. I. H. Shearmana, 55 CortFoot Lathes-Wm. E. Lewis, Cleveland, Ohio.

 For Tri-nitroglycernn, Mice Blasting Powder,
Frictional Electrrcc Batteries, Electric Fuses, Exploders Guta Percha Insulated Leading wires, etc., etc., etc.
 Wrought Iron Pipe-For water, gas, or steam.
Prices low. Send for list. Balley, Farrell \& Co., Pitts-
Hotchkiss \& Ball, West Meriden, Conn., Foun-
drymen and Workers of Sheet Metal. Will manufacture on royalty any Patented articles of merit.
 "Leligh"-For informationabout Emery Wheels
"c., address L. V. Emery Wheel Co., Weisport, Pa.
American Metaline Co., 61 Warren St., N.Y. City. American Metaline Co., 61 Warren St., N.Y. City.
Smail Tools and Gear Wheels for Moels. Lisl
cree. Gooodnow w Wigtman. 23 Cornhnll. Boston, Mase. Peck's Paten Drop Press. Still the best in use.
Addreses M110 Peck. New Haven Conn Faught's Patent Round Braded Belting-The
Jeat thing out-Manuactured onls by C. W. Arny, $301 \pm$ 103 Cherry St., Puladelpha. Pa. Send for Circular.
Three Second Hand Norrns Lueomotives, 18 tuns ach; 4 ft. 8% Inches
o., New Orleang. La
Genune Concord Δx les-Brown,Fisherville,N.H. Temples and Oilcans. Draper, Hopedale, Mass.
 Cor sending messages, makıng magnets the electric light

 For 13, 15, 16 and 18 inch Swing Engine Lathes,
address star Tool Co., Providence, R. I. Spinning Rings of a supernor Quality-Whiting-
चille spinning RIng Co., whitnsylue, Mase. For best Presses, Dies, and Fruit Can Tools, Bis
Willisma, cor. of Plymouth and Jay, Brokklyn, N.
Y . For Solid Wrought-iron Beams, etc., see adver-
ofsement. Address Union Iron Mills, Plttsburgh, Pa. for Itthograph, \&.
 For Solid Emery, Whells and Machinery, send to
 Small Gray ion cosstings made to Yorder. Hotch-
kiss \& Ball, Founarymen, West Meriden. Conn. Reciprocity! War ted: Machinery to hull, clean
and pollsh soo or 400 ib ce per hour in the best possible ntyle. state full partic ars to to L. Lindemann, Wallua,
sin Barry Capping Machine for Canning Establish-
ments. T. R. Balley \& Vanl. The "Scientific American" Ofice, New Fork, is litted euttone on the deesko of the managarap signalis are esint
to persons in the varlous departments of the establishto persons in the various departments of the establish-
ment. Cheap and eftective. splendid for shops, oftices,
dent iwelinge, Works for any distance. Price 86. With good
\%andes (Buxties
O. K. will find descriptions of wire rope
transportation on p. 370, vol. 31.-H. D. will find transportation on p. 370, vol. 31 .-H. D. Will find
formulas for calculating the friction of water in formulas for calculating the friction of water in
pipes on p. 48, vol. 29.- J. D. will find full instruc-
tion vol. 31 , and p. $\mathrm{lo6}$, vol. $32 .-\mathrm{J}$. will find direction
ving for getting rid of flesh worms on p. 2333 , vol. $31 .-$
H. W. should consult a physician.-C. F. . find a recipe for birdlime on p. 347, vol. 28.-G. P. D. will find a recipe for blue black ink on p. 42 , vol. 33.-P. Q. D. Will find a description of a panta-
grapon on pp. 99, 779, vol. 28.-M.
ret w. will find directions for filling walnut wood on p. 315, vol. 30

- B. w. will find directions for grinding and polist ing glass specula on p. 276, vol. 30.-C. D. A. can nog glass specula on p.246, vol. 30.-C. D. A. can
mold ruber by the process described on p. 283,
vol vol. 29.-L. G. G. will find a recipe for filling for
freproof safes on p. 75, vol. 32.-A. M. can preserve specimens of fruit by the process described
on p.42, vol. 33.-C. G. C. will find a description of the phosphorus lamp on p. 10, vol. 27.-J. O. R. will find directions for making potato starch on p. 315,
vol. 31.-H. T. W. will find a recipe fur a cement for glass on p. 379, vol. 31.-G. W. I. will find directions for obtaining sulphur from the ore on p.
295, vol. $31-$ J. H. L. will find directions for ce
 will find directions for polishing walnut on p. 315,
vol. $30 .-G$. S. can make mica varnish by follow ing the directious on p. 241, vol. 32.-J. E. W
 sult the " Text Book of Metals," by Bloxam.- E .
A. R. will find a fulldescription of the motion of a crank on p. 112, vol. 31.-J. J. R. can cement leatbe t. 119, vol. 28.-H. G. M. will find directions for tempering small steel articles on p. 235 , vol. $32 .-\mathrm{E}$. B. L. wiil find a recipe for fine blacking on p. 45 ,
vol. 31 . The proper length of a spring can be vol. 3. The proper length of a spring can be
properly settled by experiment ony. E . J. can clean silver articles by the method described o p. 129. Vol. 28.-N. N. . B. should consulta physician.
J. L. .
Will find! full directions for hardening files on p. 212, vol. 26.-J. T. T. will find a recipe for bronzing on brass on p, 283, vol.31--C.A. P.G
will find a recipe for pomade on p. 37 ? vol. 32 . (1) R. B. asks: Can you tell me how to take
broken glass stoppers out of bottles?
A. Warm the neck of the bottle in a gas itlame.
(2) C. H. asks: How can I make bone black suitable for sugar refiners' use? A. In the prepa-
ration of bone black, the bones are first boiled in water to remove all the adhering grease (which is
otherwise utilized)
methoa, exhausting them of all grease, etc., by
means of bisulphide of carbon. The bones are
then tbrown into a large retort and subjected to destructive distillation. At first there passes over a alarge quantity of a a etit gaseous matter, accom-
panied by a considerable quantity of carbonate panied by a considerable quantity of carbonate
of ammonia, and other volatile alkalies, formed on the type of ammonia. These gases and sublimates the ammonia and other salts accompanying the gas; after which the latter is conducted into the fnrnace and burned beneath the retort. As the dis-
tillation proceeds, a quantity of tarry matter and oil comes over. After the operation is finished,th residue remaining in the retort constitutes the an
imal charcoal. The washing apparatus may con-
.
 pipes pass a tightly fitting cup through wimn whic -the one leading immedi ately from the retort-passes down below the surface of the water. The gas, in its passage from the
retort, is thus caused to bubble up through the retort, is thus caused to bubble up through the
water, and thence it is conveyed by the second pipe into the furnace, where it is burned. Th until it becomes nearly saturated with the salts it should then be drawn off through faucets ar ranged in the side of the tank, and the salts crys talized out by evaporation, dried, and preparec
for market. The tar and oily water remaining in for market. The tar and oily water remaining in
the tank, which are used for the preparation of the tank, which are used for the preparation
lamp black, may be drawn ofr in like manner.
(3) T. B. asks: Is it best to go to college and perfect oneself in architectural science, o enter an office at once, after graduating at a
academy? There is a special course of architec ture laid out at the college. A. Enter as a student into the office of an architect of large practice wheretaere is an extensivelibrary of architectura and scientific works.
(4) T. P. asks: What is the cause of the fetid smell of perspiration, and is there any permanent cure for it? A. Do not try to preven
perspiration. It is one of the requirements of healthy body. Closing up the pores of the skin by
the use of certain washes or powders to prevent excessive perspiration is a dangerous experiment The perspiratory glan the integument bein most abundant on the anterior portions of the
oody. They consist each of a slendertube, abou ${ }^{\frac{1}{0} 0}$ of an inch in diameter, lined with glandula epithelium, which penetrates nearly through the entire thickness of the skin, and terminates below that of the ceruminous glands of the ear. Thes glands are very abundant in some parts. On the posterior portion of the trunk, the cheeks, and the skin of the thigh and leg, there are, according to Krause, about 500 to the square inch : on the ante rior part of the trunk, the forehead, the fore arm
and the back of the hand and foot square inch: and on the sole of the foot and palm of the hand about 2,700 in the same space. The whole number of perspiratory glands is not less less than $2,300,000$, and the length of each tubular coil, when unraveled, about $\frac{1}{15}$ of an inch. The entire length must be not less than 153,000 inches or about two miles and a half. The fluid derived
from this extensive apparatus is the perspiration. from this extensive apparatus is the perspiration
It is a clear, colorless, watery liquid, with a dis of sodium 2.23 , chloride potassium 0.24 , sulphate of soda and potassa 0.01 salts of organic acids with soda and potassa 2.02 Total. 1,000-00."-Dalton.
(5) F. L. B.-The soheme which you suging the Centennial year, is theoretically good but such meetings have been proposed before, and
whenever they have been held they have resulted in no practical beneff.
(6) O. W. I. says:I have a galvanic battery of my own construction; and as I do not under stand the process of putcing inin runuing order, composed of two zinc plates and one copper plate to be used. A. Use 1 part oil of vitriol and 1
(\%) W. N. W. asks: How can muslin b made waterproof without materially changin its ocor, or injuring its pliability? A. Wea know
of nothing that will satisfactorily answer all your of nothing tha
requirements.
(8) S. \& C. say: We raised from the grave a few weeks ago the body of a man who had been
buried 15 years in a well cemented metalic fin; and on removing the iron plate over the glass corpse) twoliving common bouse flies. The body was in a good state of preservation, and there was
of course no opening in the coffin to admit the fies. How did they get in? A. We can give no explanation.
(9) O. R. says: It is claimed that a spark
will cause gunpowder to explode, but that a flame will not. I claim that, by blowing a flame on it The action we eithe exploded. Which is right? The action of either a fame or spark upon gunpow
der is to cause a slight decomposition of the salt peter, and at the same time to ignite the combustibee carbon and sulphur,which
of the oxygen of the saltpeter
(10) N. \& G. ask: Is there such a thing as a magnetic rod, needle, or compass that will be at perties of these metals yet remain to be discovered Tha so-called divining rod has never existed. It
(11) J. D. W. asks: 1. Is it true that th
riction of a wheel or shaftdoes not increase with
velocity, but only with pressure ? A. Yes. 2. In
dynamometer, in which weight and speed are
power of a machine, if a spring were substituted
for the weight, would not an increase of velocity affect the spring more? A. No. 3. Will a spira spring be contorted or twisted more if if runsat a high than at a low speed? A. Yes. 4. Will a
spring of steel or brass, working in steam of ordispring of steel or brass, working in steam of ordi-
aray heat, lose its elasticity? A. Yes, in course of nary he
time.
(12) Y. E. says : 1 . I have built an engine,
by 3 inches, and I want a light and strong boiler 11/2 by 3 inches, and I want a light and strong boile or 1. . Weula a piece of
say 2 feet long, do to make a plain cylinder boile of? A. Such a boiler as you speak of might answer, but you would not obtain very good results.
How can I make a furnace around it? A. The 2. How can I make a furnace around it? A. The
boiler must be set either in brick or some other bilier must be set either in brick or some othe Would suterial, with the furnace beneath. would such an engine and boiler be large enoug
o propel a boat with stern wheel, said boat to be argeenough to accommodate 4 or 5 persons? A. You do not give sufficient data. 4. Are ports $1, x$
$1 / 2$ inch largeenough for a $11 /$ by 3 engine? A.The $1 / 2$ inch largeenough for 111 by 3 engine? A.Th ports will answer,
them a litte larger
(13) J. G. L. says: I had an anvil of cast ron, 7 inches wide, 12 inches long, and 10 inche high, and tried to put a chilled face on it. The harden, remaining as soft as common iron what was the cause of it? A. It was due to the qualit of the iron.
(14) C. T. A. says : 1 . If air is taken at at mospheric pressure and at any given temperature, nch, what would be the rature The following formulas are applicable to suc cases, provided there is no loss of heat by radia air before compression; $t=$ absolute temperature of air after compression ; $\mathrm{V}=$ volume of air betore
compression; $v=$ volume of air after compression ompression; $v=$ volume of air after compression ure of air after compression. Then $\frac{t}{\mathrm{~T}}=\left(\frac{\mathrm{V}}{v}\right)$ $\left.\left(\frac{p}{\mathrm{p}}\right)^{0}\right)^{\circ}$

This equation can be most readily solved

$\cos \left(\frac{V}{v}\right)=029 x \cos \binom{p}{p}$
(15) H. C J. asks: 1 Will water comin with force through a large pipe have power to mpty a waste water chamber at lower end o mall tube placed concentrically with the large ne ? A. Yes, uncer certain conahions. That is, must be graduated to the length of the small pipe. . Would the effect be assisted by making perfor jets of water and force out air or water? A. No
(16) J. L. asks: What is the best work on
sawmills? A. There is no work that we know of sawmills? A. There is no work that we know of
devoted entirely to sawmill management. Any tandard work on millwork will assist you, so abled to build
(17) J. C. L. says: I wish to color a shingle am assured, the shingles will slate. If I paint it, moisture that is drawn up by capillary attractio between the shingles will be prevented from es caping by the paint. Is there any wash, of the
proper color and not more expensive than white lead paint, that will not be washed off by rain,and yet will allow the water absorbed by the shingle shingles and can be colored any tint you desire by mixing dry color with it.
lankets to turn black? It whin I keep woole lead. A. The prack? It pained with whit necessary to preserve the purity of white paint But in your case the discoloration may arise from dinary waste gas, either from a gas pipe or an or closet with white zinc, will the dificulty be reme died? A. It is not likely that it will.
(18) G.W. asks: Is there a substance which will intercept magnetic force when placed be (19) G.R.McK. says: 1.1 wish to face a mi dam, 20 feet high, above and below with rough ube of iron or brick through which the wate will pass to the wheel. The abutment of the walls are to be 1 foot thick. How thick should the abut ments be at the base to withstand the pressure of
the earth between them? A. Six feet
2. Would ime water answer to lay the stone in, and the A. No ; cement should be used in the wall. (20) L. W. H. asks: Will a double belt owhat proportion? A. Yes, other things being (21) J. S. says: I have a large hollow apple ree which has been filled with large black ants for the last three or four years. How can I get rid of them? A. Try the application to the inside o
the tree of a weak solution of chloride of lime This may be applied expeditiously by means of arge syringe
(22) E. R. K. says: In a recent issue, you give a formula for calculating the solidity of the
frustum of a pyramid. Will the same formula pply to the calculation of earth excavation: pendicular distance between, will the formula fo the frustum of a pyramid give a correct result f not, what method must be employed? A. It will only answer for special cases. Generall them fully explained in any rood Youtise the mensuration of earthwork on theatise

Minerals, etc.-Specimens have been received from the following correspo
A. J. H.-Package labelled No. 1 contained a quantity of fine sandstone, a crystal of carbonate quanity, arlcite, and a specimen of marcasite or
of lime,
white iron pyrites. They are of little value. Packwhite iron pyrites. They are nf little value. Pack-
age No. 2 has not been received.-M. J. D. - No. 1 is mica schist in sandstone. No. 2 is principally magnetite. No. 3 is agate imbedded in quartz.
Nc. 4 is quartz. No. 5 is hematite. No. 6 is horn blende and mica. No. 7 is aragonite. No. 8 is fine white sandstone. No. 9 is sandstone. No. 10 is a variety of light colored shale. No. 11 is dark limestone. No. 12 is decomposed slate. No. 13 is sand-
stone. The Indian arrowhead is of flint.-S. D. M. tone. The Indian arrowhead is of flint.-S. D. M. -Your communication in regard to formations on specimens of coal sent by you will be answered
in full shortly.-J. W. C.-These insects are not in full shortly.-J. W. C.-These insects are not
described in our works on entomology. We would require more of them for further investigation, as
these were few in number and much mutilated.N. B. W.-No. 1 does not contain silver ; it consists chiefly of galena. No. 2 is principally marcasite No. 3 is baric sulphate. No. 4. The amount of al umina is too large for it to rank with other analy
ses of kaolin. No. 5 is sulphide of iron.-G. B.McE -They are of no value. The bright metallic ap pearance is due to mica.
E. P. says: I have a surveyor's steel chain he links of which are not soldered or brazed. Ca you inform me of the simplest method by whic and polish the sections of walnuts to can 1 colo and polish the

COMMUNICATIONS RECEIVED.

The Editor of the Scientific American ac nowledges, with much pleasure, the receipt of
original papers and contributions upon the follow ng subjects:
On Apparitions. By J.
On Hammocks. By J. M. C
On Vegetable Sponges. By w. H. C
On Collegiate Races. By C.
On Mining Cables. By C. T.S.
On Mining Cables. By C.T.S.
On the Science of Geometry. By F. $\dot{\text { G. C }}$ On Modern Science. By H. B. C.
On Death by Stashoper Plague S. J. P.
Also inquiries and answers from the following
G. P.-N C. Ir N. N

HINTS TO CORRESPONDENTS. Correspondents whose inquiries fail to appear hould repeat them. If not then published, they may conclude that, for good reasons, the Editor declines them. T
Enquiries relating to patents, or to the patentapublished here. All such questions, when initials only are given, are thrown into the waste basket, as it would fill half of our paper to print them all; but we generally take pleasure in answering brielly by mail, if the writer's address is given.
re sent: "Who sells aneroid barometers? Wha sells steel, hard enough to cut glass? Who manufactures the so-called fish guano? Who publishes books on aeronautics?" All such personal in quiries are printed, as will be observed, in the col y set apart for that purpose, subject to the special y set apart for that purpose, subject to the charge ny desired information can in this way be expe ditiously obtained.

OFFICIAL.
INDEX OF INVENTIONS
hetters Fatent of the United states wer
Granted in the Week ending July 20, 1875
AND EACH BEARING THAT DATE [Those marked (r) are retssued patents.]

Air ship, steerable, F. W.
Alarm, burglar, S. Searigh
Alarm, burglar, S. Seari
Alarm, burglar, Silva, M
Anvil, E. Hodgdon...
Anvil, E. Hodgdon......
Barrel head, H. M. Smith
Barrel head, H. M. Smith
Bed lounge, w. H. L. Gabb
Bell, door, H. A. Dierkes (r)
Blower, rotary, T. S. Disston
Bobbin winder, J. Dornan........................
Boiler for portable engines, J. Enright.
Boiler for ranges, J. A. Gibson.........
Boiler for ranges, J. A. Gibson.............
Boiler feed heater, etc., J. A. . O. Overend
Bolt work for doors, Nay
Bosom form, E. Leetch.
Box dressing machine, J. W. Bowers.
Brake shoe, W. Robinson, Jr...........
Bridle bit, Lockard \& Agen
Bridle bit, W. A. Pierson.
luuckle, w. H. Wrilliamson
Butter pall, J. F. Crawford. .
Butter worker, M. Hutchinso
Butter worker, M. Hutchinso
Calendar, T. J. Thorp..
Candy spinner, s. B Hyme
Car coupling, Hien \& Koch.
Car coupling, L. E. Musick.
Car coupling, L. E. Musick
Car coupling, F. W. Nash...
Car coupling, F. W.N
Car stock, J. R. McPherson. Car blind and screen, W. H.
Carbureter, J. A. Pierce... Carding machine, J. \& J. Dobson
Carpet sweeper, J. J. Hatlinger.
Carriage, child's, W. Stewart, (r)
 165,887
165588
165688 Chisel for stone cutting Chlorine, manufacture of, H . Deacon. . Churn rotary, T. Landt... Cligar box, W. Ellis. Clock calendar, L. L. Kellogg. Clothes dryer, J. P. Hill. Coothes line reel, A. Thomps
Cod, U. D. Alexander. Cock, stop, T. Holland. Commode or stand, F. Mahler. Corn sheller, E. C. Morgan....
Cracker machine, J. W. A. Cracker machine, J. W. \& A. Ruger...
Crackers, device for glazing, D. Foers Cribs, etc., screen supporter for, H. B. Fairban Curtain roller, P. W. Phillips.
Cutter head, S. P. Randolph. Cyclophore, R. C. Gwathmey. Dental forceps, N. A. Durham
Dental plugger, C. Bllharz Dental plugger, c. Bilan.
Dial, sun, W, H. McCoy.
Door, w. . . Hurd (r)..........
Door check, J. H. McClymonds
Dredgiog box, Goodwin \& Ive
Drill, expansion, M. C. Bullock.....
Drilling machine; rook, J. W. Moye Dryer for paint, O. Russell.
Egg tester, Hencker
Egg tester, Henckler \& Troegele
Engine, governor, H. s. Maxim..........
Engine lubricator, steam, M. L. Waring
Engine, rotary, W. Weyhe
Engines, starriage for portable, c. M. Miller Engines, valve and gearing for steam, J.A.Princ Fare register, w. H. Hornum... Felly plate, T. Beatty
Fences, making tabs for wire, Doolittle \& Ellis. Fences, tightening wire, P. S. Crawford (r) Fire arm, breech-loading, A. F. W. Tinner Fire escape, A. J. Culbertson............ .
Fishing and similar floats. w. T. Quinn.. Floor, lint room, J. N. Stitt............. Furnace grate, S. J. La Rae..
Furnace, hot air, C. B. Chace. Furnace, steam boiler, C. D. Smith Gage, taper, C. B. Hunt............
Gas and water regulator, A. L. Smith. Gas, apwaratus for purffying, o. Braun...........
Gas machines, pressure blower for, J. H. Bean Gas retorts, supplying oil to,F. H. Eichbaum Gases, apparatus for hydrating, . Gate, farm, A. Callahan........ Gate, farm, silller \& Hillison
Gems, setting,. .
Grain tally, w. Schnebly
Graining roller, w. H. Burns
Hand rest, accountant's, W. D. Sloan
Harrow, Chamberlain \& Seiple.
Harrow, w. H. Parlin
Hay knife, R. Kellogg
Hay loader, E. R. Whitne
heater, etc., ,
Heater for rollers, etc., T. s. Wiles.............
Hemp and flax machine, Herschaft \& Lawrenc
Hose spanner, J. Burk
ce hook, D. C. Wood
Ice pick and can opener, combined, T. Hagerty................. Injector, G. H. Little ack, lifting, D. Cllley
surnal bearngs, heat indicator for, s. Alley Kiln, brick, J. G. Eberhart Knife, hay, R. Kellogg.
Lamp, J. B. Godwin.
Lamp car, F. Rhind.
eather dressing, J. Miller
Leather,manufacturing,G. Herri
Leather, tanning, G. W. Hatch.
Leather, tanning, G. W. Hatch
Lever, safety pinion, G.
Lime kiln, A. B. Weeks
ime fastener, Brown \& Peer
iquid mixer, J. B. Meyers...
Lock, time, J. Sargent.....
Loom shuttle, N. J. Willis.
Loomst, wire heddle for, D. C.
ubricator, Richter and Merkel..
Lubricator, steam engine, M. L. Waring
Lubricator, steam engine, J. Wheelock
Mantel, iron, T. F. Baker
hetal bending machine, E.
Milk strainer, F. L. Oliver.
fill, flour, A. Lenz..
Mill, rolling, I. Hahn............... Molding machine, Frank and Spire Melding machine, A. S. Gear
Motor, hydraulic, A. Schmid
Motor, hydraulic, A. Schmid
Nail plate feeder, L. Soule...
Newspaper forms, etc., impos
Ore stamp feeder, J. Tullock (r).....
Oven for firing pottery, T. M. Minto Padlock, H . s. Lock wood.....
Paper barrel and box, B. Rhodes
Paper collar machine, C. H. Denison.
Paper stock, grinding, J. M. Burghard
Pavement, wood, H. M. Stow.
Paving block, Von Versen and Bickel
Peg cutting machine, J. F. Smith.
Pen and pencil case, J. U. Gerow.
Pen and pencil case, J. U. G
Photometer, o. Schuette...
Piano, joiner's, J. Look.....
Picture frame, A. D. Judd.
Pioture holder, stereoscopic, J. D. Rice
Pipe stem, H. C. Fritz
Pipe stem, H. C. Fritz...........
Pipes, forming sockets on, H. B. Camp.

Plane, bench, C. Bridges..
Plane, bench, H. Shog
Planter, corn, G. w. Shepherd
Plow, w. K. Allen............
Plow, J. R. Sample.
Plow, o. P. Sanford.......
Plow, G. and T. Wiard...
Plow, gang, E. P. Pulliam
Plow, gang, E. P. Pulliam..................
Plow point, reversible, M. M. Bowers.
Pocket book, C. Arms....
Pocket book safety attach
Press, hydraulic, J. F. Taylor. T. Potter
Printers' leads, cutting, J. A. T. Overend
Printing pataes, numbering, T. Richards
Printing press, rotary, c. Kahler........
Pulley for shafting, loose. C. H. Mellor
Pump, double acting. C. Gordon .
Punch, conductor's, Nye and Zap
Railway, elevated, J. G. Wilson
Railway rail chair. R. C. Ludlow.
Range, portable, Cox and Hopkin
Ranges, boiler for, J. A. Gibson........
Refrigerator, ice cream, G. D. Adam..
Refrigerator, show case, J. H. Hoffman
Register and ventilator, H. N. Creamer
Register, ventilating, H. Fritz

Roor, metallic, E. Watson.
Rule, registering board, w.... M. Bullock........
Sad Iron, Harris and O'Neil. Sad iron, Harris and O'Neill.
Sand holder. P. Mullane
Sash holder O. Rock
Saw, drag, H. H. Miller

Scraper, rotary road, J. W. Wils
Screw driver, W. F. Patterson...
Sewing machine, J. Carter
Sewing machine, c. S. Cushman............
Sewing machine, A. F. Johnson (r)
Sewing machine, A. F. Johnson (r).....
Shaftig, loose pulley for, C. H. Mellor.
Sheet iron barrel, C. M. Wyvell..........
Shingling gage, C. Schneider..............................
Sketching and phonographic case, T. J. Phillips.
setching and phonographic
Slate, school, C. H. Meigs, J_{7}
Spark arrester, J. Dubois.

spoke-tenoning machine, w. H. Von Behre Stone-cutting, chisel for, C. C. Simpson.

Stove pipe joint, G. D. Umland.
Stove polish, J. M. Watson.
Straincr, milk, F. L. Olive
Table, ironing, E. S. Heath
Table, froning, J. N. Wunderlich
Telegraph, transmitter for music, E. Gray
Thermoneter, G. Gano....
Ticket stamp, L. J. Blades
Tile, illuminating, T. Hyatt

oool, T. Hagerty.

Tree protector, R. F . Williliams
Trunks, etc., fastening, J. Hall.
T-squares to boards, attaching,
Valve gear, reversible, N. E. Nas
Valve rellef, G. H. Clemens
Vessel for removing foul wa
Vessel for removing foul water, H. H. Voged
Wagon jack, J. Sawyer..
Wagon rack, J. F. Cass.
Washing machine, T. A. Irick
Washing machine, M. Loughran
Washing machine, P. Markley..
Washing machine, o. v. Roe Watch, M. G. Cole.
Watch escapement, J. R. Hopkins
Watch, stem-winding, J. D. Brez
Watches, barrel arbor for, J. R. Hopkins
Watchmaker's box, P. H. Wheeler...
Watchmaker's eyeglass, M. W. Wiard. Water meter, W. Helme
Windmill, E. Dewald.....
Wood, preserving, L S. Robbins
Wrench, R. S. Battles...
Wrench, pipe, L. Gilynn
Tringe beam,
Yarn to set the twist, treating, D. Wright
DESIGNS PATENTED.

 490.-Gas Burner.-M. Stewart, Philadelphia, Pa. 491.-K Nob Shanks.-A. E. Young, Boston, Mass.
 8,491--KNOB SEANES.-A. E. Young, Boston, Ma 3,492.-CENTER PIEEE.-H. Berger, New York city
 SCHEDULE OF PATENT FEES.

CANADIAN PATENTS.

libt of Patents Granted in Canada

July 14 to $24,1875$.

982.-E. S. Winche drill. July 14, 1875.

, 983. -W. Moore, Pelham, Ont. Plow cleaner. Jul
14, 1875.
,984.-C. W. Mills, Montclair, N. J., U. S. Self-dis-
charger for grain vessels.s. July 14, i675.
4.,955.-W. Mathewson, Brooklin, ont. Oscillating washing and wringing machine. July $15,1875$.
,986.-R. Dick,
July 15, 1875 .
Jyly 15, 1875.
,987.-C. M. Murch. CIncInnati, Ohio, U. s. Lamp re
flector. July 15, 1875 .
988.-H. Carter, Aylmer, Ont. Carpet stretcher. July
15, 1875.

15, 1875.
989.-M. C. C. Church, Pa
Ing stove. July 15. 1875

esting to the general philosopher, and an Art of infi-
nite nite importance to the Chemist, Mineralogist, Metal-
lurgist, Geologist, Agriculturist, Engineer (Mining, lurgist, Geologist, Agriculturist, Engineer (Mining
Civil, and Military), \&c., \&c. By WM. AlEXNDE Clivil, and Military), \&c., \&c. By Wm. Alexander
Ross. Crown 4to, cloth. 346 pp., 4 colored plates and numerous engravings. Price $\$ 15.00$.
PROCEEDINGS OF THE ASSOCIATIO ROCEEDINGS OF THE ASSOCIATION of Municipal and Sanitary Engineers and Surveyors. Volume 1
1873-4. Edted by Lewr AnGELI. 8vo, cloth. Price E. $\$ 4.25$ F. N. SPON, 446 Broome Street, N. \mathbf{Y}

Model Steam Engines,

Steam Cranes.	
tal Engine	$\begin{aligned} & \text { Ped } \\ & \text { Pad } \\ & \text { Stad } \end{aligned}$
En	
	Minature
${ }_{\text {coil }}^{\text {cie }}$	
emad	
dion and	

STEAM BOILERS.

 BOURNE.-Recent Improvements in the Steam Engine, betng a, Supplement to the "Catechism of the
Steam E Eagine.,
By John Bourne. New edition. $\$ 1.50$ BOURNE.-A Treatise on the Steam Engine, in it
 Hair

Scerve.-A Treatise on the Screw Propeller, Screw vessels, and Screw Engines, as adapted for Prur
poseso of Peace and war. illusirated new edtion
By John Bourne. 1 vol. BU JGH.-A New Work on Modern Marine Engi
 BURGH.-Modern Compound Engines; ; being
Supplement t]
Modern Marine Engineering.,

BURGH.-A Practical Treatise on the Condensa-
tion of Steam. By N. P. Burgh. Royal 8vo., illustra-
ted. London, 1871..........................10.00 MURGH.- Practical Rules for the Proportions o
Modern Engines and Botlers for Land and Marine Pur PROCTOR.-A Pocket-Book of Useful Tables and
Formulx for Marine Engineers. By Yrank Proctor Pocket-book from London, 1874 . By Y rank Procto The above, or any of
at the puovication prices.
 Our new and enarged CATALOGUE OF PRACTICAL
AND SCIENTIIIC BOOKAT-96 pages, 8vo.-sent free to Strength of Materials. Chemical Analysis, etc.; ;also, one on Stean and the Steam Engine, as well as a a catalugue oo
a Coice Colleetion or Practical, Sclentinc and Economic
Books, with prices, sent free upon application. HENRY CAREY BAIRD \& CO

406 WALNUT STREET, Philadelph

 N OTES OF A VISITT TO COAL AND IRON
 W ANTED-A situation as Superintendent

Send for Pamphiet an
Improved work. all kinded oild Stiel Cutters for
mad to order, and warrander
my the to
b. C. MACHINERY CO. COM PIANOFORTE IRON PLATES A SPECCALTY.-

First Class Taps,

 ENGINES AND BONLRRS, a Specialty.
F OR SALE, or Exchange for LAND-A Valua-

A DVERTISERS WHO DESIRE TO REACH COUN
cheapest manner by using one or more sections of Kel
logg's Great Newpyer Lists. Apply to

[^0]FIRE PROOF SHUTTERS.

CLARK \& CO's SELF-COILING ROLLING STEEL SHUTTERS (Burglar Proor), For Store Fronts and Rear WIndows, require no machinery or balance welgnts, and can be appiled to any opening; also Roll-
ng Wood Shuters for Stores and Dwelliggs. Thousands are in dally use, and are acknowledged the beest shutters tin the world. Send for Catalogue to AMES G. WILSON, Manager, London, Parrs, Vienna, and Berin.

BENTEL, MAREEDANT \& CO. HAMILTON, OHIO.

Land and marine ergines and boilers

Barnes' Foot-power Scroll Sa ws and Lathe
antre REvoLution in)

Machinist's Tools. Chacking Late beg, Boring Maenines. and other tools
 Civil R MECHANICALEEGINEERING a

AGENTS WANTED.
 card on which
costs but oneceli
F. REED.

DUNCHING

 DROP PRESSES. $\frac{\text { Mid }}{\text { M }}$ John Cooper Engine M'f g Co MANVATHORR OF FIRsT CLAASS STATIONARY E

Catalogue for 1875, Foot LATHES, FREEE. ap ind Black kath's's, Model Maker's, and Carver's Tools an
fine Hardware. wilkinson, \& co., Boston. Mass
A. J.
 IM PROVED MACHINERY for STAVE

IRON WORKS,

Machinists' Tools, PATET T
Planing \& Matching
 WHIPPLE'S
Patent Door Knob.

 Bradley's Cushioned Hammer
 OTISY Mafkiy hoisting

 S WAKER SASH BALANCE-SUPERSEDE Todd \& Rafterty Machine Co

Water Whells.

Bigolor Engine, The Cheapest and Best Portable
Engine offreed to the Public.

Planing \& Matching,

Improved FOOT LATHES Screw Lathe

$\$ 50$ to $\$ 10,000$ Has been invested in stock
W itherby rugg \& Richardson, Man

 $A^{\text {GENCY FOR }}$ J. THE SALE OF PATENTS-Addres

The Fire on the Frearth

TO ELECTRO-PLATERS
B in sets or , inte micals, AND MATERIALS,
EAGLE FOOT LATHES,

 HInchnery IM Horove sties tor matn

Excelsiop Do Your 0 Wn Printing

The fact that this barting nas 7 per pent great

BLAKE'S PATENT Stone and Ore Breaker
 SIIHNCIL DIES Bror cuttng pusines

Γ He Onion Iron Mills, Pittsburgh, Pa

SCIENTME BRACAN

Circulation larger than that of all the weekly and monthly publications de voted to Science, Manufactures, Me chanics, Inventions, and Engineering combined, published on this Continent: therefore its value as an advertising medium cannot be over-estimated. It goes into all the machine and workshops in the ing romm in the United States and Europe.
A business man wants something more than to see hts advertisement in a printed newspaper. He wants circculation. If it is worth 25 cents per line to advertise tn a pa-
per of three thousand circulation, it is worth $\$ 3$ s. 75 per
 We invite the attention of those whowl
business known, to the annexed rates:
Back Page, - - \$1.00 a line

Buncas may head adse 100 and
Engravings may head advertisements at the same rate
per line, by measurement, as the letter press. Advertisements must be received at the publication office as early as Friday morntng to appear in next issue.

Sourintifio Amprioan.
Munn \& Co., 37 Park Row, New York.
 $\mathrm{F}_{\text {business }}^{\mathrm{OR} \text {, with the toils and mach well established }}$

The Standard-Best Stock-Finest Finish. D. ARTHUR BROWN \& CO, Fisherville, N.

MTREMOR

 "ETTMIV CMMNI EmeryWhees savitite EmeyGindars

Mma \& Co.'s Patant Offices.

Established 1846.

The Oldest Agency for Soliciting Patents in the United States.
TWENI Y-EIGHI FEARS EXPERIENOL.
MORE PATENTS have been eecured througb this agency, at home and abrosd, than through any other in the world.
They employ as their assistants a corps of the most experienced men as examiners, specification writers, and
drattsmen that can be found, many of whom have been seected from the ranks of the Patent Office.
SIXTY THOUSAND inventors have avalled
themselves of Munn \& Co's services in exsminning their inthemselves of Munn \& Co.'s services in axamining their inventions, and procuring their patents.
MUNN \& CO., in connection with the publication of the confer with inventors, continue to examine inventions assignments,attend to fliling applications in tho Patent Office paying the government fees and watch step while pending before the examiner. This is done through their branch office,corner F and 7th Streeta, Washngton. They also prepare and file caveata, procure design patents, trademarks, and reissues. attend to rejected cases (prepared by the inventor or other attorneys), procure copyrights, attend to interferences give written opinions on matters of infringement, furdieh copies of patents: in fact n foreign countries.
Patents obtained in Canada, England, France, Belglum Cermany, Russia, Prussia, Spain, Portuga, the British
golonies, and all other countries where patents aro granted.
A special notice is made in the Solimentifo ammrioar of all inventions patonted through this Agency, with the
name and residence of the patentee. Patents are often name and residence of the patentee. Patents are orten by such notice.
A pamphlet of 110 pages, containing the laws and fall directions for obtaining Onited States patenta, also a circular pertaining excuusively to Forelgn Patents, stating cost for each country, time grantoc, eto., sent free. Addrees MIUNN \& CO.,
37 Park Row, N. Y.

GOU,OUS FFtit OF ITMMBFR SAWED

500 Patent Saw Pits.

ROOTS' FORCE BLAST BLOWER.

FIRST PREMIUM
AWARDED
AT
PARIS AND VIENNA.
SPEED ONLY 100 TO 250 REV. PER M. SAVES haLf THE POWER REQUIRED FOR FAN.
P. H. \& F. M. ROOTS, Manuf'rs, CONNERSVILLE, IND.
S. S. TOWNSEND, Gen'I Ag't, 31 Liberty St., NEW YORK.

RE-DUPLICATION.

STRONG TISSUE PAPER.

MOTIT EXTERMINATED!

IIUIIN In FURNITURE,

THE BEST INJECTOR For Locomotive and stationary Bo
Over 15, Fomotivin in
OVer 15,000 Now in Use Fere and in Rurope

R ogers' tannate of soda boiler

DITCHING and EXCAVATION.

 $\frac{1}{\text { Portland Cement. }}$ Prom the bett Londond Cement

HARTFORD

STEAM BOILER
Inspection \& Insurance COMPANY.
 J. B. Prisc, Sel.
Hatrord. Conn

EUREKA LATHE, - - $\$ 9$; with Foot Power or Pulleys, $\$ 15$.
For Turning, Scroll and Circular Sawing, Boring, Drilling, Grinding, Polishing,
or any other purpose for which a Lathe is intended. Sultuable for Mr ohanics, Manufacturers, Dintists, Jewelers, or any one desifing a
ve inches in diang sixteen inches long, and ters. Arranged to work a jlg-saw from face

POPE BROS., M'frs, 45 High Streat,

TO INVENTORS

 AND MANUFACTURERS

TRON PI,ANERS

N EW PATENT CAR FOR INCLINED PLANES,

L. FEVCHTWANGER \& CO., Chemists, man-

Steam Super-Fieaters,

PVrometers, $\begin{aligned} & \text { For anowing heat of } \\ & \text { Orens, , fot that plpes }\end{aligned}$

Mill FurnishingWorks

Machinists ${ }^{\prime}$ Tools.

Steel THE Tube Cleaner.

 NON-COMBUSTIBLE STEAM BOILER \& PTPE
COVERING

MOSNY (4)

SCIENTIFIC AMERICAN, tir hobt poptlar scientific paper in the world. THIRTIETH YEAR.
VOLUME XXXIII.-NEW SERIES. The publishers of the SCIENTIFIC AMERICAN beg to announce that on the third day of Juls 1875, a new volume commenced. It will continue to be the aim of the publishers to render the con-
teats of the new volume more attractive and usetents of the new volume more attractive and
ful than any of its predecessors.

To the Mechanic and Manufacturer.
No person enguged in any of the mechanical purAmerican. Every number contains from six to ten engravings of new machines and inventions which cannot be found in any other publication.
The SCIENTIFIC AMERICAN is devoted to the interests of Popular Science, the Mechanic Arts, Manufactures, Inventions, Agriculture,Commerce,
and the industrial pursuits generally; and it is valuable and instructive not only in the Workshop and Manufactory, but also in the Household, the Liorary, and the Reading Room.
One copy, one year (postage included)....... $\$ 3.20$ One copy, six months (postage included).... 1.60 One copy, three months (postageinclude ${ }^{\text {ane }}$.. 1. year, and one copy of engraving, " Men
of Progress".............................. 10.00
One copy of Scientiflc Ameriean for one
year, and one copy of "science Record"
for $1875 . ~$
5.20
Remit by postal order, draft, or express or
Address all letters and make all Post Cflice or-
ders and drafts payable to
MUNNN \& CO.
THE "Scientific American", is prinled wit

[^0]: 00
 Blind Stile Mortising and Boring Machine will mortise
 two Blind Striles an once for Fixed Slats, it ail kinds of
 wood, regardeess of kno

 MAGNETS-Permanent Steel Magnets

