

A WEEKLY JOURNAL 0F PRACTICAL INF0RMATION, ART, SCIENCE, MECHANICS. CHEMISTRY, AND MANUFACTURES.

NEW YORK, JULY 3, 1875.
$\left[\begin{array}{l}\mathbf{\$ 3 . 2 0} \text { per Annum, } \\ \text { [POSTAGE PREPAID }\end{array}\right.$

HOT DRAFTS FOR STEAM boILER FURNACES.

If cold air be injected into a furnace, it absorbs a large quantiry of heat by its great increase of volume by the heat of the furnace; but if the draft be admitted hot, then it is already expanded to a degree corresponding to its increased temperature, and consequently it abstracts a less quantity of heat from the ignited fuel. A saving of fuel, it is evident, may thus be effected in proportion as the temperature of the air is the complement of that in the furnace, provided such air be warmed by the waste heat of the furnace itself. air be warmed by the The percentage of fuel gained in each case depends on the degree of temperature of the drast as compared with that of the furnace; in other words, for example. if the heat in the fire box be $2,000^{\circ}$, and that of the alimentary air 300°, then a saving of 25 per cent will be realized. These facts underlie the widespread employment of the hot ployment of the hot blast in metallurgical
uperations. It is the operations. It is the object of the inventor, in the device herewith illustrated, to apply the same, by simple arrangements, tothe steam boiler (and in so doing to utilize the heat which is radiated, from the generators as ordinarily set, and so lost, or serves only to render the fire room uncomfortable) to heat the incoming draft. This he does by conducting the air, through suitable compartments, to the boiler setting, and ultimately through orifices under the grate. No modifications of the boiler itself or of the fire box are required, and the system is applicable to any type of generator.
A is the bonnet or outer shell, in the rear upper portion of which is the opening, B, into which the air enters to the chamber formed between said shell and the upper part of the boiler, or the brickwork covering the latter, if the top be arched over. Directly beneath the boiler, in rear of the fire box and in the masonry, are formed transverse flues, C, which open at each end into longitudinal flues, D. These last are simply passages in the bed brickwork at each side, the bottoms of which shelve downward until their outer ends are nearly on a level with the ash pit floor, and finally communi cating with the ash pit, as above stated, by suitable orifice a little below the grate.
It will be seen that the chamber, B, and the flues, C and D are practically one compartment, in which the heat radiated from the boiler, from all sides, is confined by the shell, A. As the air which passes up through the grate traverses the boiler and makes its exit from the chimney in the ordinary way, it is obvious that there will be a constant current en tering at B , and having its course as already described, and that said current, through its contact with a large area of hot surface, must become heated to a considerable degree. It may be further noted that this modification of the setting necessitates no change in the ordinary practice of starting fires, as, while the single door which closes both fire bor and fires, as, while the single door which closes both fire box and ash pit is open, the draft will be taken from the outside as draft is established, and, save for supplying fuel or cleaning, draft is established, and, save for supplying fuel or cleaning,
there is no need of opening the door while steam is up, as there is no need of opening the door while steam is up, as
the fire can be easily governed by a damper on the air supply orifice, B. The immediate result is a cool fire room, since but little heat can be radiated into the apartment.
We are informed that thirty boilers have already been set after the plan of this invention, and the testimonials of sev eral well known concerns using them indicate a saving of one third the fuel previously employed. One firm asserts that it uses $4,000 \mathrm{lbs}$. less of coal per week in a ioiler thus set than in a precisely similar generator, placed directly beside the former, but set in the ordinary manner. Other writers pear witness to a similarly large economy. Judging from the general construction of the invention, its application to the boiler need not be costly, since it consists principally of simple changes in the masonry; while its value to all steam

Abstract

$\mathrm{u}_{\text {sers, }}$ if the testimonials above mentioned may be credited, must necessarily be great. The advantage offered of a cool fire room is likewise of especial importance on sea-going steamers, and particularly so upon ironclads of the Monitor type, where the heat is often extremely oppressive and the ventilation inadequate. The invention, we are informed, may be adapted to locomotives, thus utilizing the large amount of heat which is radiated from the boilers, however well they may be felted and lagged Patented November 11, 1873. Reissue now pending through

pound allowed to cool. In ten or twelve hours, it becomes sufficiently hard to receive a brilliant polish and to scratch the surface of tin or gold. When heated it is plastic, but does not contract on cooling.

A New Use of the Sand Blast.

The producing, upon plated ware or silver, of a lusterless
 has heretofore been accomplished by the use of swiftly roMessrs. Simpson, Hull, \& Co., of Wallingford, Conn, have recently foun that the sand blast performs this stippling work much more rapidly and effectually, and have introduced the necessary apparatus for its employ ment in their large sil ver-plate manufacturing establishment. From Mr W. E. Hawkins, a gen tleman connected with the above concern, we learn that air is com. pressed by the driving engine of the works into an ordinary reservoir, and thence distributed through pipeswhich extend along the front of the workmen's tables: and above the latter is a sand receptacle, V shaped, from which stream of sand falls, and is met by a downward blast from the pipe, which current drives the material in a stream through a small hole in the table, beneath which a receptacle to receive a receptacle to receive
the sand is placed. The the sand is placed. The
workman, whose finger workman, whose fingers are covered with rubbe to protect them, holds the article in the jet and

the scientific American Patent Agency. For furcher particu lars, address the patentee, Mr. Samuel Keyes, Bennington Vt.

Copper Alloy that will Adhere to Glass.
The following alloy of copper will attach itself firmly to surfaces of metal, gliss, or porcelain: Twenty to thirty parts of finely blended copper (made by reduction of oxide of copper with hydrogen or precipitation from solution of its sulphate with zinc) are made into a paste with oil of vitriol. To this seventy parts of mercury are added and well triturated The acid is then washed out with boiling water and the com-

NG under the table, watching it through a pane of glass letint the top of the latter. The operation is necessarily very rapid, as the article has only to be turned so that the blast strikes the required portions, when the work is completed The exposure to the jet, even for an instant, would cut through the Britannia, upon which the plating is afterward deposited. By the interposition of rubber screens of suita ble shape, against which the sand has no abrading effect any fancy patterns or letters are easily imprinted on the sur face, the latter of course being satin-finished, while the spaces protected by the screens are afterwards burnished. The screens or patterns are cut out by girls, of whom numbers are employed for that purpose.

Twisting Iron by Electricity.

The remarkable phenomenon, first observed by Professor Gore, which consists in the very perceptible twisting of a ba of iron by the joint effects of currents of electricity passing longitudinally through and also around such a bar by means of the insulated wire of an enveloping helix, has been further investigated. Subsequent experiments have shown that such twisting may be made to reach fully one quarter of a revolution. It has also been ascertained that both currents are necessary to the development of the phenomena. Either current, when applied separately, simply produces the effects of magnetizing the bar. The direction of the twist is defin itely related to the direction of the current in the helix. In order to produce the fullest effect, the currents must be simultaneous. When they are successive, a perceptible twist re sults in a lesser degree.
Bending Heavy Iron.-It is now possible, by the aid of hy draulic machinery, to bend iron shafts of 12 inches in diameter to any desired shape. Incredible as this statement may seem to some, crank shafts are now so made, instead of by the slow, laborious, and expensive method of forging. The bent shafts are also said to be much betterthan forged ones, from the fact that the fiber of the metal runs in one direction continuously, whereas in forged one it is often across the line strain.

Iron in the Centennial Buildings.-The quantity of iron to be used in the construction of the Centennial buildings will aggregate about 6,000 tuns, of which more than five sixths will be wrought

§rientifir ${ }_{\text {An meriran. }}$

MUNN \& CO., Editors and Proprietors. oblished weekly at
NO. B7 PARK ROW, NEW YORK
O.D. MUNN. A. E. BEACE.

TERMS.
One copp, one year, postage included....
One copy, sis months, postage included..
Clut Ratos:
70, postage included
Ten coples, one year, each 82 70, postage included.
Over ten coptes, same rate each, postage included.
By the new law, postage is payable in advance
esubscriber then recelves the paper free of cnarge.
Norx.-Persons subscribing will please to glve their full name Office and State address, plainly written, and also state at which time they wish their subscriptions to commence, otherwise the paper will be sent from
the recelpt of the order. When requested, the numbers can be suppled the recelpt of the order. When requested, the numbers can be supplied
from January 1st, when the volume commenced. In case of changing restdence, state former address, as well as give the new one. No changes cai

VOLUME XXXIII., No. 1. [New Series. 1 Thirtieth Year.
NEW YORK, SATURDAY, JULY 3, 1875.

CREMATION IN THE HOUSEHOLD

For several weeks past, the daily papers of this city, how ever diverse their views on the currency, the tariff, and the nextelection, have exhibited a delightful unanimity in condemning the method employed in filling in the Harlem flats. Indeed, they have made such an outcry thatat last the Board of Health have shown a little interest in the matter, and have applied disinfectants in some of the worst localities.

Our readers may depend upon it that the nuisance created by using garbage for filling in sunken lands was one of unusual magnitude, as it united all the daily papers in condem nation. As a general thing, when one of the great dailies of this city makes a discovery of local corruption or incompetence, all the other papers hold aloof and have nothing to say about it. It is only when the discovery is one of very great importance that the other papers consent to take part in its discussion and thorough development. For instance, if a contractor, in filling a tract consisting of three or four lots, should skillfully mingle a quantity of gar bage with the indignation at his conduct. It is, of course, a happy circumstance that the daily press is independent enough to endeavor to correct great local abuses, and any thing but pleasant to find that the Board of Health need to be told by the papers that great abuses need correction. It is a reasonable infe rence, from the foregoing, that the Board of Health do not correct similar nuisances when they do not excite public attention; so that probably there are hundreds of lots, all through the city, in which the filling up to grade has been done with a very miscellaneous description of materials. It is pretty evident, also, that contractors, if left to themselves, can scarcely be trusted to make a thorough separation of ashes and garbage, in selecting the materials for grading. So that, as long as ashes and garbage are placed on the sidewalks by families, it is probable that they will be transferred to sunken lots, to form the foundations not only of future residences, but of discomfort, disease, and death. What, then, is to be done? The answer seems obvious. The garbage causes the trouble, and will continue to cause it, as long as it is put out by families for removal; cut off the supply, or allow no
garbage to be deposited on the sidewalks. Such an ordinance can readily be enforced by the inspection of the police; and we believe the Board of Health have ample power to make a regulation of this character. But if the garbage is not car-
ried off, what becomes of it, it will be asked. And this brings ried off, what becomes of it, it will be asked. And this brings
us to the subject indicated by the title of our article. As fast as the garbage is formed, throw it into the fire, and let it be consumed. A famous housekeeper said to us the other day: "My cook burns up everything that is not eaten or given to the poor, so that nothing is put into my ash can except ashes and broken crockery." We had not given much attention to the subject before; but we discovered, by inquiry and experiment, that the statement was perfectly correct, and that it was always easy and often profitable, while it is garbage is concerned, nothing but the ashes of the garbage.

TAINTED MEAT.

Thirty-vine tuns of meat were condemned as unfit fo food in this city during the year 1874; and it is probable that, under the somewhat lax system of inspection which here prevails, this amount was but small compared with that which found its way from the hands of the retailing butchers, principally to the poorer classes. While it is known that certain races of people habitually eat meat in a high state of putrefaction, with impunity so far as immediate deleterious effects are concerned, it is well settled that the individuals are, as a rule, weak and possessed of slight power to resis disease. The weight of authority points to the fact that bad meat, no matter in what form consumed, is productive of illness, the mild symptoms of which are lassitude, headache dullness, indigestion, and loss of appetite; while severe at tacks are characterized by vomiting and typhoidal indica tions.
In a recent English health report, it is asserted that, al though it may be difficult to prove the fact by actual cases, there can be no doubt that unwholesome meat is one cause among many of the poverty of blood and intractable maladies of the poor, who flock to the dispensaries during the hot weather. Especially in summer is it a cause of diarrhœea; and instances are cited of both typhus and typhoid fevers being traced to its effects. In appearance, tainted meat is generally of a pinkish hue and more than ordinarily slippery to the touch; and the fat is very soft and yellow. In advanced stages, the odor is disagreeably apparent. Shrinkage in cooking, often to the extent of twenty-five per cent, is in cooking, often to the
also another indication.
We have little doubt but that a large percentage of the bad meat sold in New York city is due to the filthy state of many of the slaughterhouses. We recently visited two or three representative shambles, located directly in rear of a number of first class dwellings, and in close proximity to a thickly populated tenement district. The odors which we traced to them were foul and sickening, and pervaded the vicinity over a considerable radius, almost constantly. Unless there be absolute cleanliness in such places (which, in fact, should not be allowed to exist near residences of any kind), the putrid emanations are sufficient in themselves to taint the meat kept in them, or even exposed for sale in the neighborhood. A late report of the Medical Officer of the Privy Council of Great Britain especially dwells upon the fact, and also states that even a low temperature will serve as a protection to the meat against contamination
Along the rivers on both sides of this city there are several slaughterhouses which form a standing nuisance as well as a source of danger to the residents of the neighborhood; and why the private interests of their owners should be allowed
to override the considerations of sanitary welfare of the conto override the considerations of sanitary welfare of the con-munity-a fact indicated by the apparently flourishing condition of the establishments, and their permanence, despite re he health plaints-is a question all events, the probable effect of such places, upon the meat prepared in them, is worth serious consideration by the owners of the cattle, as well as by consumers generally. If the latter would take the trouble to find out where their butchers obtained supplies. and would refuse to purchase meat killed in shambles known to be unclean or ill smelling, and if the former would refuse to send stock to such slaughterhouses, remedies both for tainted meat and bad odors would soon be forthcoming.

RIGHTS OF EMPLOYER AND EMPLOYED IN RESPECT TO

In the case of the Evans Paper Collar Patent, reported in nother column of this issue, the Supreme Court of the Uni ed States decides as follows in respect to the rights of em ployers and employees, touching the proprietorship of new inventions:
Where a person has discovered a new and useful principle in a machine, manufacture, or composition of matter, he may employ other persons to assist in carrying out that prin ciple; and if they, in the course of experiments arising from that employment, make discoveries auxiliary to the plan and preconceived design of the employer, such suggested im provements are, in general, to be regarded as the property of the party whodiscovered the original principle, and they may be embodied in his patent as part of his invention. Doub pon that subject cannot be entertained.
But persons employed as much as employers are entitled their own independent inventions: and if the suggestion communicated constitute the whole substance of the im provement, the rule is otherwise, and the patent, if granted the employer, is invalid, because the real invention or dis covery belongs to the person who made the suggestions.

THE KEELY MOTOR DEOEPTION

Newspapers, from all parts of the country, come to us daily, laden with long accounts of the wonderful things tha are to be expected from the astounding Keely motor discov ery, which is to supersede steam power, hot air, electricity gravitation, chemical affinity, and other laws of Nature This is not the first time that the readers of the Scientific Ambrican have seen all these things done-on paper. Nor is it the first time that learned professors, like Rand, expe rienced civil engineers like Haswell, or good practical me chanics like Sergeant, Wood, and Boekel, have been deluded into the support of strange deceptions like Keely's. But these gentlewen have only temporarily lost their common sense on this one subject. It will return to them again in due time.

In fact, there are indications that Professor Haswell is already recovering, and the others, no doubt, will soon fol
low. Only those who invest their money will experience permanent loss.
In our paper for May 2, 1874, in an article on the Keely motor, we printed the following extract from the company's pamphlet:
" The following named gentlemen have witnessed the ex hibition of the above tests, and may be referred to for the correctness of this statement: Charles H. Haswell, civil and marine engineer, New York city, and formerly Engineer-in Chief, U. S. N. ; William W. W. Wood, Chief of Bureau of Steam Engineering, U. S. N., Washington, D. C.; S. Parrish, gas engineer, Jersey City, N. J. ; Joseph Patten, engineer, Elizabeth, N. J.; F. Glocker, machinist, Philadelphia, Pa.; W illiam Boeckel, machinist, Philadelphia, Pa
In connection with the foregoing statement, a professional In connection with the foregoing statement, a professiona
report is given in the pamphlet, by Mr. Haswell, one of the report is given in the pamphlet, by Mr. Haswell, one of the
referees mentioned above. He certifies, as the results of two actual working trials of the invention, as follows:

Mr. Keely developed a cold vapor of a density that enabled it, when admitted to a cylinder having a piston $1 \frac{1}{3}$ inches in diameter, to raise a weight of 150 lbs . suspended from a compound lever, connected as 1 to 42, which, with the weight of the lever and the friction due to the absence of a knifeedge or rotating joint, was fully equal to an energy of 7,800 bs. per square inch.'
Mr. Haswell was, at that time, professionally employed to test and report upon the new motor, and did so, as above reported. But the above is only a small portion of his report, which goes into the other details of the motor, not necessary here to mention, because they are based on statements made to him by the inventor. The portion given above, however, was the result of his personal observations in 1874. Mr. Haswell, having allowed his report of 1874 to stand, together with our comments thereon, without the least objection, for ver a year, before the public, at last begins to see the ab surdity of the matter, and now sends us, June, 1875, the following communication:
To the Editor of the Scientific American:
I am advised that, in the last number of your paper (June 26, 1875), I am referred to as having, with others, endorsed the alleged capacity of the invention of Mr. J. W. Keely, known as the Keely motor.
If you will point out wherein I have ever expressed an opinion of the integrity of the claims of Mr. Keely, of the foundation of which I am wholly uninformed, I shall be interested to learn of it. Respectfully

New York, June 17, 1875.
He also publishes the following, in the New York Sun:

Mr. HASWELL ON THE KEELY MOTOR

To the Editor of the Sun-SIR: In an article in your issue of this morning you imply that I have endorsed the integrity
f the Keely motor. As I am wholly uninformed of the foundation upon which Mr. Keely bases his claims, I hav never expresst d an opinion thereon. I am, respectfully,
June 17, 1875 .
Chas. H. Haswell
The republication above, from Mr. Haswell's certificate will, we presume, give him the information he now desires.

THE SEARCH FOR THE POLE.

The British Polar Expedition has sailed from Portsmouth amid salvos of artillery, cheers from congregated thousands, and other grand displays of official and popular enthusiasm. Until the vessels reach Disco, when Mr. Clement Markham will leave the party and return to England with a report of the prospects and general probabilities of success, as far as can be gathered from appearances at that far northern point, we shall have no tidings; and after that time, until the lapse of the three years allowed to the enterprise, the fortunes, good or bad, of the expedition will likely remain unknown. There is great hope, this time, as to the ultimate success of the attempt. Never before have ships started on any voyage of discovery so completely fitted out with everything which Science could suggest or experience counsel as these two quondam whalers; nor has any previous ex pedition been projected under that rigid military discipline for the lack of which Hall faijed, and which, in the present case, will be maintained by officers already thoroughly conversant with the nature of the task before them, and the causes which have led to its non-accomplishment by their predecessors. The Alert and Discovery are to proceed to Smith's Sound taking the route by which Hall reached the furthest point of north latitude yet attained. It may easily be argued that, if the last mentioned commander, in a vessel wretchedly pre pared for the work, could reach $82^{\circ} 16^{\prime} \mathrm{N}$. latitude, and then be foiled in further attempts to push onward, not through any fault of his ship, but through dissensions in his rew, there is every reasonable probability that the English ships will have no serious obstacles to encounter in steadily advancing until the open sea, which the peculiar glistening haze (seen above the ice mountains by Dr. Kane's mate from the masthead) indicates, is reached. Then three millions of square miles of water, possibly a frozen continent, unvisited by living things from the lower world, save by the birds which are known to emigrate to the northward of any poin ret attained by man, lie open to exploration; and the explorers will doubtless traverse that now unknown region until they reach the end of their journey upon the "spot where the sun's altitude is equal to its declination, and where bear gs must be obtained by reference to time and not to the magnet."
Then what! Science is rather vague in her answer, fo he relies more upon entirely new discoveries being made han upon verifications of advanced theories. Mr. Clemen than upon verifications of advanced theories. Mr. Clement
Markham sums up about all that Science has to expect from
he exploration of the earth's apex, thus: "It may be shown," says he, "that no such extent of unknown area in any part of the world has ever yet failed to yield results of practical as well as purely scientific value; and it may be safely urged that, as the area exists, which is mathematically certain, it is impossible that its examination can fail to add largely to the sum of human knowledge."
In plain terms, the discovery of the pole has reduced itself to a matter in which the curiosity of mankind to know what exists at this ultima thule of the globe, a curiosity augmented by repeated baffling, is probably more the underlying cause of attempts to solve the problem than even the thirst for abstract knowledge. If there had been, or could be, any direct gain by reaching the open Polar Sea, we have little doubt but that it would have been penetrated long ago; for the arctic whalers' extremely powerful vessels, with proportionately strong engines, make their way through the ice with ease to regions, and spend months in localities, which the earlier explorers attained only by immense toil and hardships. If the masters of these ships had found out that more blubber could be got in the Polar Sea than elsewhere, the passage would have been made, and the world would probably have remained in ignorance of the fact, until some one had noted with astonishment the figures denoting latitude, which the captain would, quite as a matter of course, have jotted down in his log.
Curiosity, coupled with a patriotic desire to outdo the previous endeavors of other nations, is the motive of popular attention to the North Pole just at present. The problem once solved, the attainment of the south Pole will be as
eagerly sought after; and there will be scores of attempts to penetrate the barriers of a region so vast that the moon might easily fall into it without affecting, by the impact alone, any portion of the world now known to man

THE HYDROLOGY OF SOUTH AFRICA

Mr. Froude the historian turned statesman, came back last winter from his self-appointed mission to South Africa big with the belief that he had seen the beginnings of an AngloAfrican empire destined to rival our United States in power and prosperity ; and he has just sailed thitherward again, bearing an official commission for the advancement of his scheme of confederation, the one thing needful, he thinks, to ensure the speedy development of the colonies of South Africa into the empire of his dreams.
There is much that is attractive in the thought that the continent so long given over to barbarism is about to be won over to civilization by British pluck and energy: nevertheless the prospect of its successful accomplishment is not nearly so bright as Mr. Froude imagines. Something more than men and money, however plucky and plentiful, is requisite for the up-building of an empire. First of all there must be a favorable physical basis, a fertile country, and a genial climate; and if any climatic changes are going on, they and habitable
Unfortunately these conditions are not well met in South Africa. The drift of its climatic changes (and they are enormous) is in the wrong direction, and the operations of its inhabitants are now, and have long been, of a nature to hasten the natural course of climatic derangement. Already vast areas, recently well wooded, well watered, and of boundless
fertility, have been converted into barren wastes, alternately parched by drought, ravaged by fire, and torn with torrents of untimely rain; and unless the settlers make a radical change in their mode of procedure in clearing the country, its conquest is much more likely to result in a great desert than a great nation.
By those who have followed the travels of Livingston and others through South Central Africa, the great interior basin of the continent will be remembered as a vast region of swamp, lakes, broad rivers, and trackless forests. To the south lies the basin more thelers as a region just emerging Zambesi, described by travelers as a region just emerging
from a condition like that obtaining further north. The rivers have worn their channels deeper through the enclosing rivers have worn their channels deeper through the enclosing
rim of the basin, the swamps are turning into grassy plains, rim of the basin, the swamps are turning into g,
the lakes to swamps or to salt-encrusted " pans."

Still further to the south is the southernmost basin of the continent, enclosed by mountains running parailel to the coast. The central part consists chiefly of rolling prairies with few springs, fewer permanent rivers, and forests gradually diminishing to a final destruction which cannot be long delayed. As a rule rain is infrequent, droughts of common occurrence, and irrigation absolutely necessary for the raising of European grains. Yet within the memory of men still living this bas been a country of lakes and rivers, abundant dry the most of the year, then ran with full banks and dry the most of the year, then ran with full banks an
swarmed with hippopotami and other water-loving animals. And the whole country bears abundant evidence that it is but a little while, geologically speaking, since it was the counterpart of the lake regions traversed by Livingston in
the central basin of the continent. the central basin of the continent.
When Dr. Moffat first entered the country as a missionary, in 1821, the natives had not forgotten the floods of ancien times, the incessant showers which covered the very rocks
with verdure, and the giant trees and forests which flourished on hills and plains now barren and desolate. They boasted of rivers which ran impassable torrents in the days of their forefathers, while the lowing herds walked to their necks in grass; and the ancient river beds, shore lines, and were not exaggerations. Since the missionary work began, streams, which thon
nd water for the irrigation of
Farther west the desiccation of the country is much more extensive and severe, forming the great Kalahari desert, the wastes of Namagualand, and the barren wilds of Bushmanland. Here the drying up of the country has all but reached its limit in degree, though not in area, for the desert steadily encroaches on the habitable land. To some extent, man is not to blame for the climatic changes thus going on. The natural wearing down of the outlets of the basin has drawn verted waters of the lakes, emptied the swamps, and conthan it originally was. But the most disastrous effects have been produced by human agency, by the destruction of the country's arborescent and herbaceous clothing by fire.
When Vasco de Gama first explored the coast four hun dred years ago, he called the country Land of Smoke. How long the burning had been going on it is impossible to tell it has certainly been going on ever since. The dominant native races in South Africa are comparatively recent invaders, and wherever they have gone the forests have disappeared. They are " a nation of levelers," says Mr. James Fox Wilson, who has given the matter much careful study on the spot, and "they are the prime cause of the advancing drought."
The practices of the Bechuanas are especially fatal to the forest growths. They cut down and burn down everything, regardless of scenery or economy, stripping the country where they settle, then moving on to devastate other regions and prepare the way for the encroachments of the desert Wild fires, started for the purpose of clearing the open country of the annual growth of tall grass, play no small part in the work of devastation, killing in dry seasons most of the shrubs and young trees that spring up in wet ones. In Na-
magualand, the same office is performed by the scorching sun, the effect of drought in this case being, as Mr. Wilson points out, an auxiliary cause of drought.
But the spreading of the desert is not confined to the areas beyond the European settlements. There are vast regions, in the basin of the Orange river and in Cape Colony itself, bare of timber and bush, largely in consequence of the pertinacity with which both native and European colonists adhere to the suicidal practice of burning the dry fields in winter that the flocks may find abundant pasturage as soon as spring sets in. In these bare regions, trees are hardly ever to be found, except on the banks of rivers or in high mountain passes, as the fire penetrates into all the ravines where the
most luxuriant vegetation is found, and destroys it. The more denuded of trees and brush wood, and the more arid the land becomes, the smaller the rainfall. "The greater the extent of heated surface over which the partially exhausted clouds have to pass, the more rarefied the vapor contained in them necessarily becomes, and the higher the position which the clouds themselves assume in the atmosphere under the influence of the radiating caloric: consequently the smaller the chance of the descent of any rain on the thirsty soil be neath. And the more the short-sighted colonists and ignorant natives burn the grass and timber, the wider the area of heated surface is made, the further the droughty region extends, the smaller become the fountain supplies, and the ore attenuated the streams, until they finally evaporate and isappear altogether. Thus the evil advances in an increas g ratio, and, unless checked, must advance, and will final y end in the depopulation and entire abandonment of many This evil prophy peopled, fertile, and productive."
This evil prophecy was spoken ten years ago, before the British Association, and the occurrences of the past decad have only tended to confirm it. The progress of South Af rica is plainly toward uninhabitableness. The increasing severity of the droughts, the vast sweep of the forest and field fires, and the sudden and terrible cloud bursts of rain and hail experienced in the settled portions of the colonies are described at length in the work on the "Hydrology of South Africa," prepared by Dr. John Croumbie Brown,formrly colonial botanist at the Cape (and favorably remembered our readers for his successful championship of Darwinism efore the Evangelical Alliance two years ago). In 1869, af ter a long period of exceptionally dry weather, a tract of
country 400 miles long and 150 miles in extreme breadth was swept by fire, destroying fields and forests, farm houses, rain stacks, wild beasts, and domestic animals, and in many instances the families of the settlers.
Smaller yet very extensive fires are of yearly occurrence The effects of such wholesale denudations of the surface ar necessarily widespread and disastrous. The uplands be springs dry up, the streams fail, and the entire economy of Nature is permanently disturbed. Rains that should be distibuted over the entire year fall in a few destructive deluge which wash away the soil and turn the rivers into torrents oaring sometimes fifty feet above their natural level at high water. Details of a number of such storms are reprinted by Dr. Brown from the colonial newspapers. During one of them in Natal, 27 inches of rain are said to have fallen in
two days: the destruction of property was necessarily enor mous, even in a sparsely settled region.
A specimen hailstorm is described by a member of the Transvall Geological Expedition. It occurred at Pieterma ritzburg, Natal, April 18, 1874. Mixed with the hailstones -which averaged from one and a half to two inches in dies in diameter and weighing from four to eight ounces ' On many roofs fully half the tiles were broken, not merely cracked, but very frequently masses went right through into he houses. None have escaped. Fortunately for windows
heavier. Many of the corrugated iron roofs are dented all over and have a pock-marked aspect, while some corrugated iron roofs are completely riddled: the stones went right through as though they had but paper to encounter."
It is proper to bear in mind in this connection that Natal is the garden of South Africa.
During the following November, the newspapers com plained of severe and long-continued drought in all the midland districts of Cape Colony. It was followed by a de luge toward the end of the month. Rivers which had been dry for months were suddenly filled with raging torrents, carrying away bridges to the value of $\$ 1,500,000$. In one case a bridge, built high enough, it was supposed, for any case a bridge, built high enough, it was supposed, for any
flood, was forty-five feet under water, and of course utterly destroyed. Several towns were flooded, and not a few lives were lost.

After reciting at length many incidents in connection with this and similar storms, Dr. Brown remarks that it often happens that, within an hour or two after such torrents of rain have been precipitated, the sky is cloudless and serene and frequently within a month or two all is as arid as before Yet in such a country, and with a people bent on courses calculated to intensify and perpetuate sush climatic evils, Mr. Froude expects to see a great empire grow up
It is but just to Dr. Brown to say that, while fearlessly re cognizing the certain tendency of the climatic changes to make a desert of South Africa, he does not despair of the futare of the colonies, provided the colonists cease to do evil and learn to do well. He strenuously urges upon them the one course which will enable them to hold their ground and possibly recover the advantages they have wasted, name ly, to put a stop to field and forest burning, and then set to work to restcre the forest growths. It is, he admits, a diff

cult and costly undertaking; but it is absolutely necessary.

SCIENTIFIC AND PRACTICAL INFORMATION.

original microscopical researches.
To such of our readers as propose devoting the coming summer vacation to microscopical work, we can suggest th following investigations as offering excellent fields for origi nal research: First, examine the theory suggested by Dr Bastion as to occasional transformations taking place be tween the lowest forms of animal and vegetable life. Con fine some minute vegetable tissue-if showing protoplastic circulation, so much the better-in a live box, and watch with care. Notice if, in process of time, nuclei or any other parts should undergo any such transformations. A $\frac{1}{4}$ inch or $\frac{1}{8}$ inch objective is suited for the purpose. There is abundant opportunity for new work in relation to fungi. Cooke's recently published book on that subject should be well studied, and collections made in the field, enough to go well studied, and collections made in the field, enough to go
over, if possible, the author's ground. The limits of present over, if possible, the author's ground. The limits of present
discovery will soon be recognized, and a line of further pro discovery will soon be recognized, and a line of further pro-
gress can readily be mapped out. There is yet plenty to be gress can readily be mapped out. There is yet plenty to be
discovered about the insects. The foot of a fly, for example, its structure, method of use, properties, exudation, etc. would form an excellent subject of study for a long time The student, if he faithfully perseveres, is pretty certain to hit upon something new. The microscopic changes of the tissues and fluids of the human body, in health and disease also invite research. This requires vast patience, an excellent instrument, and no small degree of skill; but it offer results which, if gained, will well repay expenditure of time and energy.

MORE JAW WRENCHERS.
"Benzanishydroxamic acid" and " anisdibenzhydroxyla mine" are two more chemical absurdities in the way of names recently coined, of course by a German chemist. Can not somebody invent some rational plan for naming and re naming organic substances that will relieve the science from these polysyllabic nightmares? Suppose the chemists begin by agreeing among themselves to limit the baptismal titles of their discoveries, say to four syllables. Or why not use some symbols which might mean any number of prefixes or suffixes, and thus express the idea without inflicting it on the mind through torture of the jaw?

A MOUTHFUL FOR CIGAR SMOKERS.
The products of the combustion of tobacco, if the combus tion were complete, would be carbonic acid, ammonia, and water: in the process of smoking, however, most of the to bacco is distilled rather than burnt,and the products of this dis tillation are quite numerous and complex. Vohl and Euhlen burg, after burning 150 cigars,recognized with distinctness, in he smoke, cyanhydric acid, sulphuretted hydrogen, certai acids of the fatty acid series, namely, formic, acetic, propi nic, butyric, and valerianic: also carbolic acid and creasote yridin, picolin, collidin, and other similar alkaloids. They found also ammonia, nitrogen, oxygen, and small quantities of marsh gas and carbonic oxide.

a living raft

The leaves of the gigantic water lily known as the Victoria Regia, in the Botanic Garden at Ghent, having attained remarkably large size, Mr. Van Hulle, the chief gardener, re cently undertook to determine their buoyant power. On leaf easily supported a child, and did not sink under a man Mr. Van Hulle then heaped bricks over its entire area and found that, before the leaf became submerged, a weight of 761 lbs . was floated.

A Centennial Clergyman.-On the 8th of June last the Trinity Methodist Episcopal Church, at Jersey City, N. J., held a celebration in honor of the one hundredth birth day of the Rev. Henry Boehm. For seventy years or more he has been a preacher. On the occasion of the celebration, when he rose to address the audience, the clearness of his when he rose to address the audience,
faculties was observable hy all present.

IMPROVED THREE-CYLINDER PUMP

We illustrate herewith a simple and novel form of three cylinder pump, the suction of which is continuous, though unaided by an air chamber. Like the rotary pump, its de livery is uniform, but, unlike that machine, it requires n large expenditure of power.
The construction is obvious from the engraving. Three strokes of the piston are caused by one revolution instead of two strokes, as in the double-acting pump, while it is claimed to have the advantage over the latter of being much more free from friction and not to necessitate the stopping and starting of a column of water in the suction pipe at every change of stroke, involving a consequent loss of power. There are, besides, no crooked passages or ports through which the water must be driven; and the construction of the various parts is simple, strong, and lasting. In its smaller sizes, it may readily be worked by hand.
These considerations render the machine useful for railroads, both as a hand pump during the building of lines, and as a permanent power pump for filling tanks where a large volume of water is need ed daily. It is also suitable as a fire pump for mills ; and since its working parts are but little affected by grit, and it is not liable to choke, it may profitably be employed in quarries. By wind wheels, we are informed, it can be worked at a slow speed with the largest results. It is susceptible to a wide utilization in greenhouses, about farms, and, in fact, wherever a powerful suction and force pump is needed.
Further particulars may be obtained by addressing the Chase Machine Company, manufacturers, No. 36 Charlestown street, Boston, Mass.

A Lady Lecturer on Chemistry. Lately, in Aberdeen, Scotland, Miss Charlotte Napier gave a lecture on chemistry, in connection with the Blackfriars Useful Information Society. There was a very numerous attendance; and the lecture, which was illustrated by a variety of experiments, and was of a highly interesting and instructive character, was listened to with the closest attention, an enthusiastic vote of thanks being awarded to the lecturer at the close. Miss Charlotte Napier is a young Aberdonian. Last winter she studied chemistry in Edinburgh, under the direction of Mr. Falconer King, with a view of assisting her father as an agricultural analyst.

RUDIMENTARY EXISTENCE IN FRESH WATER STREAMS
 The marine aquarium and its inhabitants have been thor

 oughly studied by naturalists; but as yet, very little attention has been given to the many beautiful forms of life to be found in rivers and ponds. Mr. James Fullagar, of Canter bury, England, has recently found in a stream near that ancient city a specimen of the lophopus crystallina, and describes it as follows in the pages of Science Gossip." The lophopi are among the largest fresh water polyzoa known. They are about $\frac{3}{16}$ th of an inch in length, and are found attach the the roots in shady dykes of slow-moving wa ter, under thick masses of floating plants; for in their habits they are light-shunning animals, and are always on they are light-shunning animals, and are always on
the under side of aquatic plants. They are very the under side of aquatic plants. They are very
beautiful microscopic objects, and their being per beautiful microscopic objects, and their being per-
fectly transparent renders them most interesting animals for examination, as the formation of their statoblast (f) can be seen in their different stages of growth, from their first appearance as a little swelling (at which stage they are quite colorless) to their perfect forms, when they become detached and fall free in the perigastric space (l), having become gradually colored, the center of a dark brown, and the margin a rich yellow. The process of their propagation by gemmation or budding, by which young ones are added to the existing colony of living polyzoa, can be plainly seen; while the statoblasts (f) are designed to propagate the species in the follow ing spring, and are liberated from the polyzoon a its death, when the transparent sac is decomposed,
and the statoblast escapes and sinks to the bottom and the statobla
of the water."
In our engraving, a is the region of the mouth b, œesophagus; c, stomach; d, intestine; e, muscles f, statoblast ; g, parasitic globes; h, h, mouth ; i, tentacles retracting within cell ; k, outer transparent envelope; l, perigastric space; m, lophophore; n, tentacles excised to show mouth; o, vent; p, hollow globe; r, place where division commences; s low gl
cell.
" $T h$
" The perfect transparency enables us to witness the internal operations of their system. The action of the stomach in the process of digestion can be observed with great clearness. The contents are seen at times to consist of small desmids, and other disk-shaped and globular bodies, together with de cayed vegetable matter, etc. The action of the cilia on the expanded tentacles causes a current of water to set in towards the mouth (a, h, h,), bringing with
it the food required; and if in the vortex thus formed there should be any large and objectionable pieces, they are prevented from entering the mouth by a quick, lashing motion of the tentacle, which rejects and throws them out of the reach of the vortex. The accepted morsel passes direct-

HASKELI'S THREE-CYLINDER PUMP. whence it is expell
The perigastric space (l) is filled with clear fluid, which also extends up the lophophore (m), in which fluid are seen floating numerous particles of very varied forms and sizes, the smallest ascending to the tip of the lophophore (m). By the movement of those bodies, it is evident that there is a constant rotating motion in this transparent fluid, by which these particles are kept in a perpetual whirl, from one part to
the other, and at times with rapidity. No doubt this motion the other, and at times with rapidity. No doubt this motion though not so as to be observia on the interior of the body the lophopus there are a number of globularbodies (g) vary ing in size from the $\frac{1}{20} \overline{0}$ th of an inch in diameter up to the

A FRESH WATER POLYZOON

size of an ordinary volvox globator. These bodies are con sidered to be parasitical, as they do not appear to have any whose interior they occur. This would appear to be the case from the fact that in some colonies not one of them is to be
seen, while in others they are very numerous. In one in stance of a colony under my observation, they were increased in such numbers of all sizes that they entirely filled creased in such numbers of all sizes that they entirely filled the perigastric space (l), forcing the smaller particles up even
into the lophophore (m), and ultimately bursting the whole into the lophophore (m), and ultimately bursting the whole
colony and escaping into the water, when all motion in them colony and escaping into the water, when all motion in them
ceased, and they soon disappeared altogether. When they ceased, and they soon disappeared altogether. When they
are few in number, and of various sizes in the animal, they are few in number, and of various sizes in the animal, they
form a novel and pleasing sight as they are carried up and down by the current before mentioned in the perigastric space.
On being alarmed, the lophopus quickly retracts within the transparent cell (s), and again protrudes when all is quiet, unfolding its beautiful crown of tentacles, in the course of which movement the action of the muscles is plainly seen (e). The expanding of the tentacles, immediately on the protrusion of the polypide from its cell, is one of the most pleasing sights that can be presented to the observer, as the cilia with which they are studded are instantly in full play, passing up on one side of the tentacle from the base to the tip, and down the opposite side, like an endless chain, thereby forming the vortices in the water by which the particles of food are brought to the mouth. Sometimes the colony consists of from six to twelve polypides, and will divide into two, commencing the division at p, and slowly separating down to the point where it is fixed to the plant, etc , each part moving in opposite directions. They then propagate by gemmation or budding."
"I would advise," says Mr. Fullagar, " those lov ers of natural history who possess a microscope and live in a neighborhood where there are shady dykes or a millpond, etc., to search for them when found, they will amply repay the trouble in the pleasure they afford in observing and investigating their wonderful mechanism and marvelous beauty. No pencil can portray nor pen describe them. I have had them under observation for over three months. have seen some of the colonies die out, and have their statoblasts in glass cells, from which I anticipate the pleasure of seeing the young polyzoa emerge in due time.

Stagnation in Business the World Over.
It is poor consolation in adversity to know, says the Commercial Advertiser, that we are not alone in our misery; such as it is, however, our iron manufacturers may take it to themselves. The depression of the iron trade is general throughout the world. Th production of pig iron in Scotland was less in 1874 than in any of the last twenty years. At one time there were only thirty-two furnaces blowing, out of one hundred and thirty wo erected, and the production was $400,0 C 0$ tuns less than in 1870. Russia, notwithstanding its activity in railroad building, imported only $5,221,000 \mathrm{lbs}$. of rails, against 7,119, 000 in 1873. In Prussia the large steel works of Krupp have discharged some thousand workmen, and the Börsig manu factory of engines at Berlin-the most extensive in Germany -has had to protect itself by taking a similar step. Last month the largest Austrian manufactory of engines (Sigl) dispensed with two thousand hands for the reason that it had neither orders nor sufficient working capital. The government, however, in true Austrian fashion, remedied both misfortunes by advancing capical to the works, and by causing some of the railroads to give extensive orders for rolling stock.

A Queer People

During the last season, says the Academy, Mr. Bond, an Indian surveyor, while at work in the Madras Presidency, to the southwest of the Palanc Hills, managed to catch a couple of the wild folk who live in the hill jungles of the Western Ghauts. These people sometimes bring honey, wax, and sandal wood to exchange with the villagers for cloth, rice, tobacco, and betel nut, but they are very shy The man was four feet six inches high; he had a round head, coarse, black, woolly hair, and dark brown skin. The forehead was low and slightly re treating, the lower part of the face projected like the muzzle of a monkey, and the mouth, which was small and oval, with thick lips, protruded about an inch beyond the nose; he had short, bandy legs, a comparatively long body, and arms that extended almost to his knees; the back just above the buttocks was concave, making the stern appear to be much protruded. The hands and fingers were dumpy and always contracted, so that they could not be made to stretch out quite straight and flat; the palms and fingers were covered with thick skin (more especially the tips of the fingers); the nails were small and imperfect, and the feet broad and thick-skinned all over. The woman was the same hight as the man, the color of the skin was of a yel low tint, the hair black, long, and straight, and the features well formed. This quaint folk occasionally eat flesh, but feed chiefly upon roots and honey. They have no fixed dwelling places, but sleep on any convenient spot, generally between two rocks, or in caves near which they happen to be benighted. Worship is paid to certain local divinities of the forest.

LEAD pipe will not do to conduct water to fish ponds. It is ikely to poison the fish

revolving fire bars.

The Revue Industrielle has recently published an illustration and description of a system of revolving fire bars recently introduced into France with good results. As will be seen, it consists simply of a series of straight tubes, placed either singly or coupled together, and pierced with openings of a suitable form. Means are provided by which these tubular bars can be caused to revolve. It will be seen that the tubes rest upon transverse bearers also cylindrical and hollow, and longitudinally they are supported by a cast iron plate fixed under the furnace door, and formed with a projection upon which the tubes take their bearing, either by a groone as in our Fig. 1 and the third design in our Fig. 2, or against a ring, as in the second type, shown in the second design. in our Fig. 2. The bars are turned by means of a key that is
introduced into the end of the bar, which introduced into the end of the bar, which
is fitted with a ferrule having a six-sided aperture

The first application of this system wa made to a 12 horse power boiler, in which the steam was maintained by means of coke dust and slack containing 25 per cent of cinders. This boiler belongs to the Parisian Gas Company, which has a deserved reputation for investigating new and promising inventions. The success their first experiments was so great tha thow some hundreds of these bars are now some the ployed by the gas company, so that the arrangement has passed from the phase o experiment into that of actual and large practice. It is claimed that, by the use o the Schmitz bars, the work of firing is rendered much less difficult, while a thick fire (from 8 inches to 10 inches) can be maintained economically. The draft is regulated for a given consumption of fuel, and the front of the ash pit may be closed, because sufficient air can be admitted through the open ends of the tubes. The inside of these tube is always visible to the fireman, who can at once see when any of the openings are choked. When this takes place he is enabled, by partial ly turning the tube to present a new sur ly tur the fire while he is easily able to face to the fire, while he is easily able to clear those passages which have been
closed. In turning the tubes, the ashes closed. In turning the tubes, the ashes
and other débris are precipitated into the and other débris are precipitated into the
ash pit; and as shown in the second and ash pit; and as shown in the second and
third types of our Fig. 2, thebars are furnished with a spiral projection to assistin breaking up clink ers. etc.
The following are the results of this trial

Water evaporated per pound of coal Water evaporated per hour per square foot of heating surface Coal burnt per hour per square foot' of grate Coal burnt per hour per square foot of heating surface
From trials made with a boiler on the n economy of 26 per cent was claimed for the apparatus, while the fuel employed was of such a nature that it could scarcely have been employed in an ordinary furnace.

A Medical Strike.

A strike among professional men is certainly a novelty; and it has been reserved for Switzerland to produce the same for the astonishment of mankind. In the canton of Glarus, out of 23 licensed physicians, 21 declare that they will perform no more official duties until an efficient sanitary police be established and medical examinations be conducted by a committee of competent men. What a harvest must open before the dazzled gaze of the two disaffected individuals! We can magine the doctors striking against the quacks; but for them to strike in favor of a sanitary police, in favor of a means for preventing the diseases by curing which they make their bread and butter, certainy passes the bounds of reasonable belief. f the doctors of Now f the dow the example of these Swiss brethren for he last mentioned reason, what a vast elief to our stench-sickened citizens would be produced

How to Reduce Telegraph Charges

It is undoubtedly true that nine tenths of the messages offered for transmission, if delivered at any time in from six to twelve hours, would answer their purpose just as well as though delivered within a few minutes. On the other hand some of the messages are valueless unless transmitted and delivered immediately. It has been proposed therefore, to establish a class of express messages, which shall be guaranteed precedence and quick delivery, an extra price being charged for such service; a second class of messages which
do not require especial despatch, to be sent at the convenience of the lines, but within a special time, at say about the present rates; and a third class, to which even less importance is attached, to be sent at a considerable reduction from presentrates.
If telegraph wires were continually occupied in the transmission of despatches, no doubt even lower rates than are nission of despatches, no doubt even lower rates than are paratively, are thus continuously occupied! We cannot see any insuperable obstacle to the introduction of this system, and believe that something like it will eventually be adopted by our telegraph managers.
It has been urged, in opposition to such a system, that the

Ordinary Schmitz
$\begin{array}{cc}\text { Ordinary } & \text { Schmitz } \\ \text { Furnace. } & \text { Bars. }\end{array}$ $\begin{array}{cc}\text { lbs. } & \text { lbs. } \\ 4.678 & 5.563\end{array}$

Fig. 1.-SCHMITZ' REVOLVING FIRE BARS
aws of this State, and probably of most of the States, require messages to be transmitted in the order in which they are received. This argument is just as good against the half-rate night messages, as to which, so far as we know, it has never been raised. It is not in either case a valid objection, for both would be a special contract between the telegraph company and its customers, and therefore not within the scope of the law in regard to telegraphic service.-The Telegrapher.

Ietal Arches.
The above was the title of a paper read last week by the President, Professor Fleeming Jenkin, at the closing meeting
cal than beams, while they were also more beautiful. By way of illustration he referred to the bridge of St. Louis, a Cincinnati, which had a central arch of 520 feet in span. There was no reason why arches of 700 or 800 feet span should not be erected; and in some situations even these great spans would be economical in comparison with a number of smaller openings involving expensive foundations.

Crime the Result of Automalism

A striking analysis of the mental status of the criminal classes, which seems to occupy a middle ground between the theory of morbid impulse of Dr. Hammond and Professo to the automatism of all animals, has re cently been made by Dr. Despine and con firmed by Dr. Thomson, resident surgeon of the General Prison for Scotland.
Dr. Despine arrives, after a thorough search of court records, prison statistics, habits of individuals, and of all other pos sible and available sources of informa tion, at a belief in the entire absence of a moral sense in the criminal class. He says that free will, which in the normal man is only controlled by a sense of duty, in the criminal has no such counterba lance, this sense being wanting. His acts are therefore mentally automatic, the re sult of the strongest instinct, appetite, o passion prevailing at the time. Although intellectually cognisant of the moral stan dards of society, the criminal yields to na tural passion or appetite, unrestrained and unreproached by any feeling of improprie ty. Hence the remarkable sang froid seen in hardened offenders under the most trying circumstances, and the superficial character of any apparent reformation o conversion.

How does a Spider Make its web? Here is a poser put by a writer in $S c i$ ence Gossip, which some of our readers who have watched the habits of spiders may be able to answer: How does a spider makeits web, the lines of which, crossing at the center, are carried, some of them, to the surrounding objects, while other are fastened to an outer circular line, made evidently before the outer circular lines of the woof are formed? Where does the spider place itself when it ejects the lines which form the spokes of the wheel?

Curious Fact.

Friction impedes the progress of the railway train, and yet it is only through friction that it makes any progress. This apparent paradox is explained when we remember that, by reason of the frictional bite of the drivers upon the track, they draw the train. The bearings of the wheel upon the rails are a mere line where they come in contact, iron and iron, yet this slight and almost imperceptible hold is suff cient to movehundreds of tuns of dead weight with the speed of the wind.

A Monument at Sea.
Several years ago the famous obelisk, known as Cleopatra's Needle, was donated by the Egyptian to the British Government, but the latter, although several plans have been prolatter, although several plans have been proposed, has heretofore considered no scheme as
overcoming the engineering difficulties of reovercoming the engineering difficulties of re-
moving the monolith from its present site near Alexandria to the shore, and thence transporting it by sea to England. We learn from the London Times that an attempt is now shortly to be made, and the project which has been adopted is as follows: The obelisk, which is quadrilateral in shape, is first to be changed into a cylinder. This will be done by attaching heavy beams, strongly connected together, to each face, until the desired form is obtained, the work being continued very carefully, and excavations being made, little by little, until the entire shaft, from apex to foundation, is the entire shaft, from apex to foundation, is
enveloped. It will not be difficult then to roll enveloped. It will not be difficult then to roll the monument over a wooden road, laid over
the sand hills which cover the intervening the sand hills which cover the intervening
mile between its present location and the mile
sea.
sea. \quad The wooden envelope, while increasing the mass will, at the same time, be such as to diminish the specific gravity of the whole, so that the great bundle will readily float. To this end, the diameter of the circle formed by a secof the Edinburgh and Leith Engineers' Society. The Pro- |tion of the cylinder will be 20 feet, or 12 feet larger than the fessor began by describing the stresses which occurred in the common masonry arch, illustrating the subject by means of a wooden model of novel construction, in which the arch was rendered flexible. He explained that, in papers by Professor Clark Maxwell, Mr. Bell, and Professor Fuller, of Belfast, methods were given by which the maximum intensity of stress on each part of a metal rib could now be determined with as great accuracy as the stress on the ordinary girders; and the reader of the present paper expressed a strong opinion that the great bridges of the future would be metal arches, which for large spans were essentially more economi-
breadth of the sides of the obelisk. Besides, in order to render the line of flotation horizontal, a diameter exceeding 20 feet will be necessary at the heavier base.
After the monument is launched, it will be towed out of be Mediterranean and into the Thames, to the nearest point to its future site. It will then be beached and rolled to its poition, where it will be erected before removing its coverings. This plan, it is believed, can be carried out very easily and with little expense, while it will be free from the dangers found in transperting the Obelisk of Luxor to Paris, as during its voyage that monument seriously damaged the vessel.

IMPROVED HORSE HAY RAKE.

The invention herewith illustrated consists of a simple and novel apparatus for operating horse hay rakes, by means more secur it claimed, both the rake and the clearer ar more securely and readily adjusted, and at the same time ore easily worked by the driver.
The thills are hinged to the axle, so that the latter, when released from the mechanism below described, is turned in its wheels by the pulling of the horse, the effect of such turn ing being to raise the rake. During the gathering, however, this revolution is prevented by the rod, A, which is bifurcated at its rear end and provided with several holes, so that it can be adjusted to the axle so as to permit the latter to turn rearward more or less, thus throwing the rake nearer to or farther from the ground, as desired. The forward end of rod, A, is pivoted to the hand lever, A, is pivoted to the hand lever,
B, which lever is pivoted in the B, which lever is pivoted in the frame, C. On said frame, but not shown, is a downward-pointing hook, which receives the rod, A, just behind the lever end, which abuts against the hook, thus holding said rod firmly in the position represented in the engraving, and keeping the rake to its work until the rod is released by the driver by a suitable movement of the lever. The rake clearer, D, is lever. The rake clearer, D, is
connected by a forked rod to connected by a forked rod to the lever, and pivoted above the iulcrum of the latter, so that, whenever the lever is actuated for raising the rake, the forked rod will also be moved, and thus the clearer caused to do its work quickly and efficiently.
Patented through the Scientific American Patent Agency March 9, 1875. For further information address the inventor, Mr. Benjamin Mellinger, Mount Pleasant, Westmoreland county, Pa.

IMPROVED NAPPER AND BRUSHER.

The machine herewith illustrated has been especially designed to meet the requirements of manufacturers of hosiery goods. It takes in any width of cloth, from 24 inches down prushes the cloth in a flattened web, works on both sides at once, cleans off the specks, burrs, seeds, etc., raises a nap, restores the pliancy and softness (of which the washing has deprived the goods), and leaves the web in a smooth roll, ready for the cutter. To those who wash and dry in the garment-in which case the brushing is done im. mediately after the cutting-these capabilities of the machine will render it of especial utility.
The brush is arranged to do its work thoroughly, and in order to do this the goods are smoothly and gently stretched, both in length and width, over a roller having a firm and true surface, such surface being so made as to hold the goods in this smooth, stretched shape. To accomplish this, rollers about $5 \frac{1}{2}$ inches in diameter, made of cast iron pipe, are used; the shaft runs clear through, and the headsare shrunk in; the surface is then turned off true, and, with a tool made like a comb, having V -shaped points, the roll is filled with parallel grooves; it is then grooved lengthwise with the same tool. This gives a surface similar to emery, but differing from it in being true, with no chance to come off; it is then given a thin coat of paint to prevent rusting.
For the brush card, clothing is generally used, and the brush rollers are made of wood, so that the clothing can be easily tacked on. Its bearings are attached to long swing arms, which are held in place by spiral springs and adjusted by thumb screws and check nuts, so that the brush can be set parallel with the iron roller. and as close or far from the cloth as required. Its shaft and bearings are so made as to enable the user to turn it end for end in a few moments, the object being to keep the brush wire in working shape.
When a quarter or a seam, caused by basting on the end of another roll, reaches the brush, it should be raised for a moment to prevent injury to it. For this purpose, a handle on the left hand side of the machine is so connected as to raise both brush rollers at once. In case the cloth is brushed just as it comes from the knitting machine, the roll is placed in the bearings direct. The receiving palleys are 5 inches in diameter, 34 inches face, calculated to run about 240 revolutions, the top to turn from the machine, thus giving 800 revolutions to the brushes. As the large pulley that gives motion to the brushes is double-crowned, they can be driven with one open belt passing around all three pulleys, or by two separate belts, open or crossed as the user prefers.
For the take-up, change gears are sent,so that the user can hurry or retard the cloth, as circumstances require.

The spreaders are made with long dowel pins, and can be lengthened by slipping on to said pins anything to fill the space and keep them extended, so that a few spreaders will meet the needs of most mills.
The amount of work that can be passed through the machine and the durability of the brushes depend upon how thoroughly one wishes to brush. One party in Troy, we are informed, is using one brusher for eirht sets of cards, using

MELLINGER'S HORSE HAY RAKE. one, has new clothing made on purpose for it, and is brush ing for eleven sets.
Further particulars may be obtained from the manufac turer, Mr. C. Tompkins, Troy, N. Y.

Death Belts.
Frequently in cases of shipwreck, especially in compara tively smooth water, life belts would furnish a means of temporary safety until boats were got ready on shore. They would have done so in the case of the Northfleet, and in the still more recent instance of the Schiller. But the life belts
must be genuine, and not pretexts for the purpose of figur-

TOMPKINS' NAPPER AND BRUSHER.
ing in advertisements as proofs of the care taken by the own ers for the lives of their passengers. Those found upon the Schiller's victims appear to have been of the latter sort, con sisting, as they did, of a few slabs of cork fastened together and to the person by one or two pieces of tape, and were thus worse than useless to a good swimmer; for it is stated that those who recovered the bodies declare that in very many instances they were found with the head under water and the heels in the air, showing that the belts had really drowned,
instead of supporting, the unfortunates who had trusted t them, by dropping down towards their hips. In this w ay scores of dead bodies were picked up in the water, wearing belts which, if properly constructed, would have saved the life of the wearer.

Printing Telegraph Instruments Duplexed.
Another important step has been successfully taken in duplex telegraphy. The combination printing telegraph instruments, used to a limited extent by the Western Union Company, have been successfully adapted to duplex operation. Two of these instruments, specially arranged for working on the duplex system by Mr. G. M. Phelps, are now in operation, sending and receiving simultaneously on one wire, and the speed at which they are worked is represented as something remarkable. Mr . Gerrett Smith has been engaged for some time past in making the necessary arrangements of circuits, etc., to accomplish this, and it is a complete success. The ease and rapidity with which these new instruments work, and the advantages which hey possess, will be likely to they possess, will be likely to lead to a more extensive use of hem by the Western Union Company. No doubt they can be adapted to quadruplex operation also; and with four im proved combination printers working on one wire, the amount of business which can be transmitted will be likely to astonish not only outsiders, but a large proportion of even experienced telegraphers.
It would be another instance of the changes which time brings about, if the printers, with their old time recommenda tion, " prompt, accurate, and reliable," should once more begraphic purposes.-The Telegrapher.

To Prevent White Paint from Turning Yellow.
Dr. Luedersdorff, of Berlin, in discussing the cause of white paint turning yellow wherever it is excluded from the light, attributes this fault to an inseparable property of linseed oil, and believes that the only cure for it is to substitute some other material for the oil. The value of drying oils for mixing with pigments depends entirely on the property which they have of being converted, by the absorption of oxygen, into a peculiar resin. When entirely dry this resin is the only bond of union, and to it the oil colors owe their stability. During this oxi dation of the oil to a resin and the drying of the paini, especially where there is insufficient air and light, the yellowing takes place.
The author believes that if, instead of waiting for the oil to be gradually converted into a resin, an already formed and colorless resin were employed as binding material, the paint could not change in color. Out of the long list of resins to be chosen from, Luedersdorff selects two, one of which is soluble in alcohol, the other in turpentine; the former is gum sandarac, the latter gum dammar.
When sandarac is employed, it is first carefully picked over, and all pieces of bark or wood thrown out; 7 ozs. of sandarac, 2 ozs . Venice turpentine, and 24 ozs . of alcohol of 90 per cent Tralles, or specific gravity 0.833 , are put in a suitable vessel over a slow fire or spirit lamp, and heated with diligent stirring until it is almost but not quite boiling. If the mixture be kept at this temperature, with frequent stirring, for an hour, the resin will all be dissolved, and the varnish is ready for use as soon as it is cool. The Venice turpentine is necessary to prevent too rapid drying, and more dilute alcohol cannot be employed because sandarac does not dissolve easily in weaker alcohol, and furthermore, the al cohol, by evaporation, would soon become so weak that the resin would be precipitated as a powder. When this is to be mixed with white lead, the latter must first be finely ground in waear and dried arin. It is then rubbed with a er and dried little turpentine on a slab, no more turpentine it to be worked with the muller. One pound of the white lead is then mixed with exactly half a pound of varnish and stirred up for use. It must be applied rapidly because it dries so quickly. If, when dry, the color is wanting in luster, it indicates the use of too much varnish. In such cases the article painted should be rubbed, when perfectly dry, with a woolen cloth to give it a gloss.
Dammar varnish is made by heating 8 oz . gum dammar in 6 oz. oil of turpentine to 60° or $70^{\circ} \mathrm{R}$. (167° to 190° Fah.), stirring diligently and keeping it at this temperature until all
is dissolved, which requires about an hour. The varnish is \mid contemporary scientist who wrote the "Origin of Species," brated botanist who has charge of the Royal Botanical Gardecanted from any impurities and preserved for use. The sec- published a book entitled "The Botanic Garden": the second dens, at Kew, Eng., in an address before the British Associaond coat of paint, when dry, is dead white, and does not take part of which bore the name of "The Loves of the Plants," tion, at its recent meeting at Belfast. Dr. Hooker and Mr. a gloss so easily as the alcoholic paint. To give it a luster, a and was much laughed at for its strange theories and the fan- Darwin examined them very closely, and found that, when a coat of the pure varnish, to which half its weight of oil of tastic manner in which consciousness and volition were attri- fly was caught, it was dissolved in a digestive fluid exactl turpentine has been added, may be applied. It is still bet- buted to specimens of the vegetable kingdom. It was re- like ordinary gastric juice, and the same happened with a ter to apply a coat of sandarac varnish made without alco hol because dammar varnish alone does not possess th hardness of sandarac, and, when the article covered with it is handled much, does not last so long.
These paints are, of course, inferior in elasticity to freshly applied oil paint; but for window frames and closet doors, which do not require much bending, this is a quality easily dispensed with.

ALISM OF PLANTS. served for our day to show, beyond question or cavil, that paralysis of a plant can be produced by external injury, and that the existence of a nervous system in a vegetable cannot be denied; that flowers display their gorgeous hues to attract the insects which convey the impregnating pollen gathered from specimens of the other sex of the same plant; that
flowers can not only digestand assimilate animal matter, but flowers can not only digest and assimilate animal matter, but fertilization.
insects and drop them on the soil for purposes of
We publish herewith engravings of some carnivor
THE ANIMALISM OF PLANTS.
A century ago, Dr. Erasmus Darwin, grandfather of our ous plants, which were described by Dr. Hooker, the cele piece of beef; but when a mineral substance was placed on he leaf, there was no contraction. The fine hair on the lea closed gently on a piece of wet chalk, but soon opened again and rejected it. The experiments also proved that the con traction of the leaf was precisely similar to the contraction of muscle, so that. as Dr. Hooker explained, it is not only proved that the digestion of the plant is like that of animals, but that it has a nervous system, and in fact forms one more liak in the continuity of Nature. As our readers will see by reference to the engraving, these plants are furnished with

GARNIVORDOS PLANTS
which they live. The sarracenia, the large plant on the left caught securely in the jaws. Dr. Pratt says that a few days of of the page, the nepenthes, in the center, and the cephalotus which is immediately below it, have lids which shut down upon their victims. The darlingtonia, shown on the right curlsit leaf around them; the pinguicula, in the right hand bottom corner, shuts isself up and curls its leaves; the dioncaa
on the left, below the sarracenia, also shuts itself upon its on the left, below the sarracenia, also shuts itself upon its prey, and the drosera, in the left hand bottom corner, has an arrangement of fine lines ending with little knobs, which it throws over its prey, and thus secures it.

To Mr. Ellis," says Dr. Hooker, "belongs the credit of divining the purpose of the capture of insects by the dionoca. Bat Rev. Dr. Curtis made out the details of the mechanism, hy ascertaining the seat of the sensitiveness in the leaves and he also pointed cut that the secretion was not a lure exuled before the capture, but a true digestive fluid, poure out, like our own gastric juice, after the ingestion of food.
(For another generation the history of this wonderfu plant stood still; but 1868 an American botanist, Mr. Canby who is happily still engaged in botanical researches, whil staying in the dinnoea districts, studied the habits of the plan pretty carefully, especially the points which Dr. Curtis had made out. I is first idea was that ' the leaf had the power of dissolving animal matter, which was then allowed to flow along the somewhat trough like petiole to the root, thus fur nishing the plant with highly nitrogenous food.' By feeding the leaves with small pieces of beef, he found, however, tha these were completely dissolved and absorbed; the lea opening again with a dry surface, and ready for another meal, though with an appetite somewhat jaded. He found black and finally killing them. Finally, he details the useless struggles of a curculio to escape, as thoroughly establish ing the fact that the fluid already mentioned is actually se creted, and is not the result of the decomposition of the sub stance which the leaf has seized. This curculio, being of r ssolute nature, attempted to eat his way out. 'When dis covered he was still alive, and had made a small hole through the side of the leaf, but was evidently becoming very weak. On opening the leaf, the fluid was found in considerable quantity around him, and was without doubt gradually over coming him. The leaf being again allowed to close upon him, he soon died.'
The foregoing description and illustration appeared in spocial edition of the Scientific American, issued in Decem. ber, 1874, and will be read with interest by all students of natural bistory and lovers of the marvalous in Science

Sir John Lubbock has recently turned his attention to botany with special reference to the same thing, and has re cently published " British Wild Flowers Considered in Relation to Insects," which will undoubtedly throw a great deal of light upon it. Meanwhile in this country no pains have been spared by those competent to investigate; and within the last year or two one lady in particular, Mrs. Mary Treat, of Vineland, N. J., herself both a practical botanist and a charming writer, encouraged in her pursuits by Professor Gray, of Cambridge, Massachusetts, has made diligent search for plants possessing these characteristics, and has patiently watched them through months of experimenting, keeping a diary and giving the information thus gained to the public. Mrs. Treat's latest experience is with bladderwort, which she carefully observed, and found ample proof that the little sacks are traps for water insects which are unsuspectingly drawn in and then consumed. She found that not only small insects were caught, but "innumerable moths, and butterflies two inches across, are held captive until they die-the bright flowers and brilliant, glistening dew luring them on to sure death." Some of these plants she took to the house, "away from atmospheric agitation," and began her experiments, pinning living flies "within a quarter of an inch of the most vigorous leaves; in less than an hour the flies' legs are entangled in the glands. I now take the long-leaved sun dew, which is more common and a more wonderful flytrap than either of the other species, place a struggling fly on a vigorous, healthy leaf; in less than three hours the leaf is folded completely around its victim. I take a bit of raw beef, placing it as nearly as possible on the cen ter of the leaf; in twelve hours it is so enfolded in the leaf as to be completely hidden from view." Mineral substances, bits of chalk, etc., were not at all affected. Next she tried the round-leaved sun dew, whose leares clasped a piece of raw beef in less time.

Killing Gophers.

The gopher is one of the most troublesome pests that the Western farmer has to contend with, and as difficult of extermination as any. Several inquiries have been made of us says The Inter-Ocean, as to the most effective means of disposing of them; and with a view of finding the most approved, we have consulted several farmers who have had extensive and painful experience with them. The plans for removal have been as various as the persons consuited, and have included poisoning, drowning, shooting, trapping, and other methods. But to our minds by far the best plan is that adopted and highly recommended by Dr. W. A. Pratt, of Elgin, Ill., and seems the most simple, least expensive, and most effective
of any. He takes a light steel jaw trap, such as is used for of any. He takes a light steel jaw trap, such as is used for
catching rats, and crooks the catch (that passes over one of the jaws to the pan) a lictle, so as to allow the jaws to come nearer together then they do when set for ordinary purposes. He then sets the trap so that it will go off easily, and plants it bottom upwards over the gopher's hole, bringing the dirt a little around the edges so that the only apparent passage is through the jaws of the trap. The gopher, who generally comes out with some haste, rushes up, hits his head or paws against the pan of the trap, which unfastens it, and he is

persistent trapping in this way will comple vestige of the gophers from a large farm

a new magneto-erectric engine.

In order to investigate the induced currents produced by he application of armatures to horseshoe magnets, Profes W. R. Morse recently constructed the simple apparatu epresented in Fig. 1. This consisted of cylindrical hors
 shoe electromagnets, the wires of which were wound of the iron, so as to form practically straight electromagnets with cores horse shoe in form. A is the coil of the electromagnet and B the induction coil Upon exciting the electromaget, induction currents
arose in the coil of fine wire, B, both at making and breaking the circuit. These currents were measured by a reflecting galvanometer placed in the circuit of the coil, B, and wer compared with those obtained from the same electromagnet by placing a straight armature, C D, upon its poles, and the xciting the electromagnet.
The results of experimen'ing show that a marked increase mounting to nearly 25 per cent in the strength of the induc tion currents, is due to the application of the armature to the poles of the electromagnet. The first induced current after the emoval of the armature, which results from again making he current in the electromagnet, shows the same increased effect, but the following current, resulting from breaking the circuit of the electromagnet, falls to its normal amount. This noteworthy as indicating, according to the author, a cer ain molecular change in the iron due to the application o the armature.
Generally, it also appears that the induction currents, re sulting even from the employment of straight soft iron arm tures which had been carefully deprived of residual mag netism, are more than four times as strong as those obtained by merely slipping the induction coil on and off the limits o the electromagnet; and when electromagnet armatures ar used, the efferts far surpass those obtained by non-magnetic oft iron straight armatures
Based on these facts, a magneto-electric engine of the fol
Fig. 2

lowing construction is suggested by Professor Trowbridge The horseshoe armature is made to revolve around the line, X X, Fig. 2, as an axis. It has been found by experiment that, when a north and south pole are opposed, the induction currents through B and A^{\prime} are in the same direction, and those through \mathbf{B}^{\prime} and \mathbf{A} are also in one direction. By a suit able commutator, the currents circulating through the coils on the stationary magnet can be sent through those on the armature, and vice vers \hat{a}. The residual magnetism in soft iron is sufficient to start the induced currents. Experiments, says the American Journal of Science and Art, are now being made upon the engine.

A Word to Young Mechanics.

" When Tubal Cain began to invent utensils and started to make a din in his forge, I suppose the first idea that struck him-for he must have been very observing in his youthwas that some materials are soft and easily manipulated, while others are of a more obdurate and ungovernable na ture, and consequently require different treatment at the hand of him who would attempt to work them into new forms, so as to mold the shapeless mass to his uses, or engraft order and design upon chaos. With the lesson to be learned from the example of this pioneer of our order in
view, I desire to say a word to young mechanics that would have been valuable to me while in the maze of study in the days in which I was learning a trade.
Every one that ever learned a trade knows that many a time he has been without any clear idea of what he was doing, having merely acted as the machine of a master who was credited with being a No. 1 mechanic and all which that should imply, but who just lacked one thing, and that a very mportant one-he did not understand how to tell another how to do what he could do exceedingly well himself, and, as a general rule, got into a passion because his 'cub' didn't do it just to his mind. Now I could drop a word of advice here to journeymen; but you know, boys, as well as I do, that it is not our place to tell a 'jour.' anything, for fear his dignity might suffer, and ours too in consequence. But my advice to you is simply this: In starting out to learn a trade, make up your mind to learn and study both at the same time. This combination of occupations, it unfortunately happens, is rarely agreeable at fifteen or seventeen years of age, when one has just left school, and all study is looked at as something belonging to bygone days. Ihave been told by many a young man that work was his portion now, and that he didn't have time to study, and besides he was so ired at night that it was out of the question. My reply to those who speak in this way is:
'But you misunderstand me, my young friend. The les sons you need to study now are not taught in schools, colleges, or seminaries. You never see the books you need to apply your mind to now in libraries.'
I lay a piece of wood before the carpenter and say, ' my boy, that is one of your books.' I present a piece of iron to the blacksmith in the same manner, and on through all the branches of mechanism. The carpenter answers
Why, this is only a piece of pine, or of oak, and nothing ore.' The smith will say. 'A bit of iron, and that's all. But here comes the question, 'what do you know of the nature of the wood, or of the iron, and why should you know its nature? True, you may be able to work them after a fashion, and your powers of imitation may enable you to be s good a mechanic as the man who taught you; but you will never thus, in the nature of things, excel, and excellence is what every young man should have in view in any pursuit, or without it you will be termed just what you so often hear of-only a mechanic.
Every mechanic should have as thorough a knowledge of the material he works as has the best chemist in the land; and this cannot be arrived at without close study and atten tion to its every natural feature-strength, power of resist ance, and tension; in short, everything connected with its working or transformation from one condition to another. This knowledge is what is meant when you hear a man poken of as an experienced mechanic."-Paper Trade Jour spok
nal.

emaresymutente.

The Fireless Locomotive

To the Editor of the Scientific American:
The fireless method of using steam is one of those simple affairs which need but little experiment to develop its best esults.
Locomotives of this kind with large tanks will probably prove more economical than those with small tanks. If a tank, 3 feet diameter and 10 feet long, is capable, with one charge, of propelling a car with from 25 to 40 passengers a distance of 8 or 10 miles, a tank of twice this capacity would probably do considerably more than twice the amount of work, owing to the greater body of concentrated power and heat in proportion to the weight and surface of tank. The weight of these tanks may be reduced to a minimum by mak ing them with hemispherical ends.
A tank of this form, 4 feet in diameter and 15 feet long, capable of sustaining a pressure of 360 lbs . per square inch safely, would weigh only about one third as much as an or dinary locomotive boiler. A tank of this size once charged with cold air only, to a pressure of 350 lbs . would propel an ordinary horse car load of passengers about five miles, if I figure correctly; if charged with water and steam at the same pressure, it would probably propel the same load some twenty miles. Notwithstanding this difference in expansive power of the two mediums, condensed air might prove the more economical and satisfactory of the two, especially in localities where ample water power could be obtained for condensing the air into reservoirs for charging the locomotive tanks.
A foreign periodical recently contained an illustrated description of a car propelled by a series of coiled steel springs arranged upon a single shaft beneath the car; but nothing very satisfactory seemed to be developed by this device. At present there seems to be nothing so likely to supersede horses on street railroads as the fireless locomotive or a system of condensed air engines. When the possibilities of both of these systems are fully developed, city transit will be conducted much more cheaply and satisfactorily than it

> now is. Worcester, Mass.

Fire Escapes Wante
To the Editor of the Scientific American:
The French church in which the Holyoke horror occurred was a large wooden building constructed of inflammable pine, with insufficient modes of exit in case of accident. Under such conditions, the best fire department in the world is helpless, and the only possible remedy is to rigidly require such buildings to be properly constructed. The only door by which escape could be made opened inwardly; and as was the case in the accident at a New York church several weeks ago, the frenzied crowd of men, women, and children pressed against it, barring their only way of escape, and became a prey to the raging flames.
There must be a remedy for all this. There must be responsibility somewhere for an arrangement that will crowd seven hundred strong men, timid women, and helpless childreninto a small church with no sufficient means of egress in case of an alarm. The church at South Holyoke is not the first that has been thus destroyed, and with it the lives of many human beings; yet that church, and many another like it, seems to have been constructed with a special view to occasioning a loss of life in the event of a stampede. This large and densely packed congregation were quietly seated in their church at a certain moment; and in twenty minutes thereafter, seventy-five of their number lay dead and dying, trampled under foot, crushed by fatal leaps, or blackened by the flames that rushed upon them. There was not a person in that church who could not, with an uninterrupted passage, have placed himself in security from danger in the space of one minute. If the means of egress had been sufficient to empty the church in five minutes, all would have beed saved.
The estimates for the strength of gallery and floor are
based upon the largest crowds they can hold, and may be calculated with accuracy. Why should not similar estimates and calculations be made in determining the facility for emptying a place for public gathering? Why should not the architect picture to his mind's eye a great audience strug gling for egress, as well as standing or sitting, wedged in together, on the floor and gallery? There is need for the law to control these matters. Provision can be made, and it should be compelled to be. We forbid the building of frame structures in our cities; we maintain, at enormous cost to the public treasury, and by an onerous tax on private property, efficient and skillful fire departments; we cover the perty, efficient and skillful fire departments; we cover the
roofs of our cities with a network of telegraph wires that roofs of our cities with a network of telegraph wires that
summon, at an instant's warning, the distant engine to the scene of a conflagration; we take every public precaution against the destruction of property by fire; yet we take none against the destruction of human life through the same instrumentality. To save some slight expense, an extra flight of stairs, or an extra door ani a few convenient windows, the law permits hu- - dreds of persons to be gathered into a pen from which there is no escape in case of confusion and alarm, to be seated, asit were,over a magazine that may be exploded in an instant.
There is just as much danger of fire in every church and public place as there was in the church at South Holyoke. Drapery and lights in close proximity may be noted anywhere. I: chanced there, as it may in any such place, that the light touched the drapery; that a small stream of flame shot terror into some one's heart; that there was a cry, and, as the contagion of fright increased, a rush for the door. All this may occur in any place where a crowd is gathered; but it is not from every place that, when the rush begins, the crowd can escape. The crowd could not readily pour itself out of the South Holyoke church, nor can a startled crowd so pour itself out of anyone of two thirds of the churches and halls in this country.
Indianapolis, Ind.
L. K. Y.

The Motive Power of Light.

To the Editor of the Scientific American:
I read in your paper an account of Professor Crookes' in strument for proving the motive power of sunlight. In Dick's " Practical Astronomer," chapter 1, you will find a description of a device made for the same purpose thirty years ago.
914 Chestnut street, Philadelphia, Pa.
The following is the description to which our correspondent refers:
[From "The Practical Astronomer," by Thomas L. Dick, LL.D. Pub-
Hished in 1848.] ished in 1848.

Light, though extremely minute, is supposed to have a certain degree of force momentum. In order to prove this, the late ingenious Mr. Mitchell contrived the following experiment: He constructed a small vane in the form of a common weathercock, of a very thin plate of copper, about an inch square, and attached to one of the finest harpsicord wires about ten inches long, and nicely balanced at the other end of the wire by a grain of very small shot. The instrument had also fixed to it in the middle, at right angles to the length of the wire, and in a horizontal direction, a small bit of a very slender sewing needle, about half an inch long, which was made magnetical. In this state the whole instrument might weigh about ten grains. The vane was supported in the manner of the needle in the mariner's compass, so that it could turn with the greatest ease; and to prevent its being affected by the vibrations of the air, it was enclused in a glass case or box. The rays of the sun were then thrown upon the broad part of the vane, or copper plate, from a concave mirror of about two feet diameter, which, passing through the front glass of the box, were collected into the focus of the mirror upon the copper plate. In consequence of this, the plate began to move with a slow motion of about an inch in a second of time, till it had moved through a space of about two inches and a half, when it struck against the back of the box. The mirror being moved, the instrument returned to its former situation; and the rays of the sun being again thrown upon it, it again began to move, and struck against the back of the bos as before. This was repeated three or four times with the same success.
On the above experiment the following calculation has been founded: If we impute the motion produced in this experiment to the impulse of the rays of light, and suppose that the instrument weighed ten grains, and acquired a velocity of one inch in a second, we shall find that the quantity of matter contained in the rays falling upon the instrument in that time amounted to no more than one twelve-hundredthmillionth part of a grain, the velocity of light exceeding the velocity of one inch in a second in the proportion of about $12,000,000,000$ to 1 . The light in this experiment was collected from a surface of about three square feet, which re flected only about half what falls upon it; the quantity of matter contained in the more than the twelve-hundred-millionth part of a grain. But the density of the rays of light at the surface of the sun is the density of the rays of light at the surface of the sun is
greater than that at the earth in the proportion of 45,000 to 1 ; there ought, therefore, to issue from one square foot of the sun's surface, in one second of time, in order to supply the waste by light, $\frac{1}{45000}$ th part of a grain of matter, that is, a little more than two grains a day, or about $4,752,000$ grains, or 670 pounds avoirdupois, nearly, in 6,000 years ; a quantity which would have shortened the sun's diameter no more than about ten feet, if it were formed of the density of water only
If the above experiment be considered as having been ac
curately performed, and if the calculation founded upon it be correct, it appears that there can be no grounds for apprehension that the sun can ever be sensibly diminished by the mmense and incessant radiations proceeding from his body
on the supposition that light is a material emanation. For on the supposition that light is a material emanation. For
the diameter of the sun is no less than 880,000 miles; and the diameter of the sun is no less than 880,000 miles; and
before this diameter could be shortened, by the emission of ight, one English mile, it would require three millions one hundred and sixty-eight thousand years, at the rate now stated; and before it could be shortened ten miles, it would require a period of about thirty-one millions of years. And although the sun were thus actually diminished, it would produce no sensible effect or derangement throughout the planetary system. We have no reason to believe that the system, in its present state and arrangements, was intended to endure for ever ; and before the luminary could be so far reduced, during the revolutions of eternity, as to produce any irregularities in the system, new arrangements and modifications might be introduced by the hand of the All Wise and Omnipotent Creator. Besides, it is not improbable that a system of means is established by which the sun and all the luminaries in the Universe receive back again a portion of the light which they are continually emitting, either from the planets from whose surface it is reflected, or from the millions of stars whose rays are continually traversing the mmense space of creation, or from some other source to us unknown."

our Patent System.

A Defence of our Patent System," and " Our Country's Debt to Patents," are the titles of two essays, written res pectively by Mr. John S. Perry, of Albany, N. Y., and Mr. H. Howson, of Philadelphia, and published under the auspies of the United States Patent Association, in a handy vo lume, by J. R. Osgood \& Co., of Boston, Mass. Mr. Perry's paper is a reply to the speech of Hon. H. B. Sayler, in the House of Representatives, last winter, in support of a bill permitting the free use of any article made under a single
patent, on the payment of a royalty of 10 per cent and the filing of a bond by the user. The object of the measure was the prevention of such monopolies as those controlled by the sewing machine ring and the hat body people; but the provisions advocated, as we remarked in commenting upon them at the time, were objectionable and contrary to public policy for a variety of reasons, which need not here be recapitulat as the bill was not passed.
Mr. Perry does not confine himself to showing up the disadvantages of Mr. Sayler's proposition, but goes further and denies, in toto, the latter gentleman's statements as to the profits made by the various industries involving the manufacture of patented articles; and he fortifies his denials by the testimony of a number of manufacturers and inventors, and by the assertion that the census returns, from which Mr.
Sayler gathered his statistics, are entirely unreliable. There are several points in Mr. Perry's statements as to the profits of the sewing machine people, and those of various other manufacturers, which are open to criticism; but, in the main, his views on the general subject of our patent system are sound and able. He says, very truly, that "a patent law compels the inventor, if he would avail himself of its benefits, to make the inventions known by spreading out a minute description of the same upon the public records of the Office, and, if he would reap pecuniary advantage, to publish them to the world, thereby giving an opportunity for their general adoption. . . In no sense can a patent be considered an injustice to the public, because it takes nothing from them which they had ever before possessed; on the contrary, it gives them something new, some increased facility, some more advantageous method, a cheaper substitute for a rare
and costly article. . . In proportion as the patent system has stimulated and developed inventions among our people, have our mechanical arts risen in importance, until our power in th
world."
Mr. Howson's essay will, without doubt, interest every one vho is himself interested in patents. He deals with the subject in a practical and lucid manner, and his remarks are well worth careful perusal. We give an extract below, and shall present other selections in future issues.
' We constantly hear the word 'patents' from the mouths of the manufacturer and mechanic, the wholesale merchant and retail dealer, and the farmer, and always in connection with something that is novel, or of superior quality, or some Ning that can be obtained at a cheaper rate than usual,
Now and then we hear the word uttered in contemptuous tones by disappointed speculators, jealous manufacturers, men who would invent without being inventors, or by those who would attempt to cure the minor evils always accom panying even the most salutary and beneficent systems of public policy, not by attacking these evils in detail, but by the disorganization of the whole system.
Common as the word is, there are few who are aware how intimately related patents are to our present well-being and comfort, how much we owe to patents in the pasi, how much we have to hope from them in the future, and how intim they are inter woven with our whole social system.

WHat patents have done for u
I propose to show how grateful we ought to be for our patent system, not by any elaborate investigation of different branches of industry, not by any lengthy historical and sta tistical researches, but by confining my remarks to familiar objects within my reach in the room which I now occnpy-a library furnished with the ordinary accessories which a pro essional man requires.
There is a tapestry carpet on the floor, a carpet with a tasty
Thern woven in brilliant on the floor, a carpet with a tast
killed workman could weave by hand two yards per day of a carpet like this, but not equal in quality; and now a single power loom will weave twenty yards per day. 'The carpets, moreover,' to quote the words of a well known authority, ' are more exact in their figures, so that they are perfectly matched, and their surface is smooth and regular. They surpass, indced, in their quality, the best carpets of their kind manufactured in any other part of the world.
To-day these superior carpets can be purchased at half the cost per yard charged for the inferior hand-made carpets of thirty years ago; that is, if we take into account the difference in value of money then and now.
To what shall we attribute this rapid progress in the man ufacture of carpets? To Erastus B. Bigelow, you will say I shall not be detracting from the merits of this great Ameri can inventor in saying, as I believe he himself would say that the rapid progress of this manufacture is due quite as uch to our patent system as to Bigelow's ingenuity.
This accomplished patentee spent years of studious appli ation in the production of his loom. Where wincen tive to this laborious mental task? The reward which our patent system held out to him. Where was the incentive for capitalists to invest money in the manufacture of these carpets on a large scale? The security which patents af forded for the investment. Mr. Bigelow, although the most prominent inventor in this branch of industry, was not the sole contributor to its progress. Crompton and hosts of other patentees, have aided in bringing this manufacture to its present perfection, or rather to its present state of excel lence; for we cannot foresee the end which perfection im plies. We must look for further improvements, based on future patented inventions, providing progress is not ob structed by legislation tending to destroy the motive to in vent. It is safe to say that better carpets may be seen to-day in the cottages of hardworking artisans than were found forty years ago in the housos of the wealthiest citizens; and his is due to the ingenuity called out by the incentive which patents have presented, and continue to present. It is not the wealthy alone who are gainers by our patent sys tem; it is the masses who derive the greatest comforts from Bare.
Before I leave the carpet, let me say that its greater dura styles insured by a cheap patented lining, for differen and that the a dozen or two of patents have been granted, production of which much ingenuity has been expended; for patents for these little devices can be counted by the score." To be continued.

The Inventor's Paradise

"A thousand patents," says a London writer, " are granted every month in the United States for new inventions. This number exceeds the aggregate issue of all the European States, yet the supply does not equal the demand, and the average value of patents is greater in America than in Europe by reason of the vast number of new industrial en terprises and the higher price of manual labor. A hundred thousand dollars is no unusual consideration for a patent right, and some are valued by millions. The annual income from licenses granted on the Blake sole sewing machine is over three hundred thousand dollars, and other patented in ventions are equally profitable. Inventors are encouraged by the moderate government fee of thirty-five dollars, which secures an invention for seventeen years without further payment; the rights of patentees are generally respected by the public; and no national legislator, with a single excep tion, has ventured to propose the abolition of a system which at once secures substantial justice to inventors and proves of incalculable advantage to the nation.

GUTTA PERCHA and india rubber are brought hither chief y from Brazil and Columbia

DECISIONS OF THE COURTS.
 Supreme Court ot the United States.

Zarcent gmerian and furcign zatents.

Myron W. Colwell, Improved Fence Post
mered fence post, Dunlap, Iowa.-This invention consists in a into angular form, and having angular slots fort longitudinally edges, and holes formed in its angular slots formed in its side wire fence, the wires are placed in the angular slots and tightened in the usual way ; for a board fence, the boards are secured to
wire bands, which are passed through the holes and twisted.

Improved Pantaloons Block.
James McCurdy, Lock Haven, Pa.-This invention relates to an James McCurdy, Lock Haven, Pa.-This invention relates to an
improved pantaloons block for forming and ironing pants, and it consists of a forming block made of a front intermediate wedge
and a back part, and provided with a locking bolt at the broader and a back part, and provided with a locking bolt at the broader Improved Horseshoeing Harness.
Isaac P. Pickering, Table Grove, Ill.-This consists in a harness so oonstructed that the foot on which the shoe is to be placed is held up and in proper position by drawing upon a draft strap, thus
avoiding the necessity of holding up the horse's foot in the usual avoiding ther
manner.

Improved Railway Switch.
Minter H. Davidson, Pruntytown, W. Va.-This rail is made with back and forth. The operating lever plays longitudinally through a clip in which are two oblique holes, which the rounded end of the lever enters, and is locked by a pin. A rod connects the lever with
the rail. To change the rail, the locking pin is withdrawn, and the the rail. To change the rail, the locking pin is withdrawn, and the
lever is pulled back from the hole it now occupies, and is turned on lever is pulled back from the hole it now occupies, and is turned on
its fulcrum pin. This, while shifting the rail, brings the end of the lever to the other hole in the clip, intowhich it is pushed and locked rail cannot be change moved until the lever is unlocked and changed to the other hole in the clip, and so on for each change made.

Improved Spring Bed Bottom.
Alva P. Brown, Texas, O.-This invention consists of arched slats
resting at the ends on cross bars, which yield to the end pressure of resting at the ends on cross bars, which yield to the end pressure of the siziantal slats fastened at the middle, and resting at the onds on cross bars supported by coiled springs on the movable rests of the arched slats.

Improved Sand and Gravel Separator.
Nicholas J. Keller, Pittsburgh, Pa.-This invention improves the construction of the sand and gravel separator for which letters pat-
ent were issued to same inventor May 21, 1872. An elevator discharges the sand and gravel upon a concave wire screen. The screen is set at an inclination of fifty degrees, and is agitated from
the driving mechanism of the elevator. Another elevator serves as the driving mechanism of the elevator. Another elevator serves as an endless chain pump to raise water and discharge it through upon into a trough, while the coarser parts slide down the screen board,
and the finer parts of said refuse drop through the holes in the lower and the finerparts of said refuse drop through the holes in the lower part of the said screen board. The lumps of coal and other coarse
refuse drop from the lower end of the screen board into a flat or other suitable receptacle. The sand and finer gravel, that pass they are taken by another elevator, and discharged upon an inclined slide, down which they slide into a convenient receptacle. The elevators last mention
elevator and screen.

Improved Plant Protector

Mrs. Martha E. Slocum, Hornellsville, N. Y.-This is a device by which flowers and other plants may be protected against freezing in cold weather. It consists of a hollow tapering standard placed on legs with side openings and shelves at different hights, on which
the plants are placed to be heated by a lamp under the standard. the pap cross piece supports a covering thrown over the whole prevent escape of heat and moisture.

Improved Door Mat.

Orrin Rice, Adrian, Il.-The invention relates to a mat formed of corn husks or analogous material, and a back plate having screw-

Improved Blank for Corrugated Paper Boxes. Albert L. Jones, Brooklyn, N. Y.-The invention consists in the the size of the designed box, and then creasing the blank across the corrugations, on one or both sides, wherever the blank is to be
turned or bent to form the angles of the box. The blanks thus prepared may be packed or transported from place to place, and form an article of commerce, and allow the boxes or canisters to be mad where they

Improved Portable Lighter.

John A. Watson, Lexington, Miss.-The invention contemplates the introduction to the public of a very simple and useful device
by which a person may quickly strike a light in the dark. It consists in a matchbox having three cells which receive respectively a folding candlestick, a lot of matches, and a spare candle

Improved Washing Machine.
George S. Jones and Benjamin F. Kidd, Russellville, Ky.-This in-
vention relates to certain improvements in washing machines ; and it consists in the peculiar construction of the rollers, which are formed of end plates connected by small detachable metallic rods that are passed through sections of rubber tubing, which series of
rubber-covered rods forms the periphery of the rollers. When the periphery of the roller becomes worn, the rods are turned and a new face of rubber presented to constitute a new periphery for the roller.

Improved Fertilizer Distributor.

Clemon Bailey, Kinston, N. C.-The invention consists in a hand sower consisting of a hopper having a bottom slot, and a crank shaft
having blades and a long tube, whereby the fertilizer or a ground or powdered substance may be discharged close to the bottom of furrow or surface of ground, and with perfect regularity in the
most windy weather.

Improved Washing Machine.
Thomas Addison and James T. Yates, Ellicott City, Md.-This in-
vention relates to certain improvements in washing machines which vention relates to certain improvements in washing machines which the wear and tear of the clothes. It consists of a receptacle for the water, having inside, and resting upon its bottom, a false bottom, upon which are disposed the clothes. Upon the inner sides of the
machine are partitions which form lateral chambers that open into machine are partitions which form lateral chambers that open into
the main compartment both above and below the clothes. Fitting the main compartment both above and below the clothes. Fitting
in this main compartment and moving verticallyin the same, above the clothes, is a large plunger which is pivoted to and operated by a wardly opening valve of large size. As the lever is operated the wardly opening valve of large size. As the lever is operated the
water is forced violently through the clothes, down the false bot-
tom, up the lateral chambers, and falls over the top of the partitions tom, up the lateral chambers, and falls over the top of the partitions
into the main compartment, and through the valve upon the clothes into the main compartment, and through the valve upon the clothes
for a repetition of the same action upon the next stroke of the
lever,

Improved Low Water Indicator. James Harding Brown, Porter's Mils, Wis.-This is an improved
water gage for steam boilers, which is provided with a governor for regulating the supply of water and thus keeping the water always at the same level. It also has an alarm whistle, to give an alarm when the water rises to high water mark or sinks to low water
mark. It is free from gearing upon the inside, and thus is not liamark. It is free from gear
ble to stick or work hard.

Improved Carriage Clip.
Alfred W. Doty, Windham Center, N. Y.-Simple and inexpensive springs may with this arrangement be used, the springs being in some form or other interposed between the bars and the body o
fittings attached thereto. The invention includes an improvemen of the metallic flttings, by making them in malleable iron to econo mize in the cost of them, and consists essentially of the contrivance
of them to be applied or assembled with the other parts without of them to be applied or assembled with the other parts withou special fitting, except in the shaping of the woodwork and the pre-
paring of it as to size, also in the fitting of a few rivets or bolts.
improved Machine for Washing Printers' Rollers. Thomas Muir, Glasgow, Scotland.-This is an improved machine for cleaning, in a rapid and reliable manner, printers' rollers from all adhering ink and other impurities; and it consists of a cylinder that rotates in a trough, with lye or other washing material, trans-
ferring the same by its rotary and simultaneous laterally vibrating ferring the same by its rotary and simultaneous laterally vibrating shaft, and thus may be swung on or off the cleaning cylinder, a required. Fixed to the shaft from below is a lateral plate, whose outer edge assumes a downwardly inclined position on raising the arms from the cylinder, and whose inner edge comes in contact with the same. The arms are held to the cylinder by a notched lever secured to their shaft and resting on a cross bar of the frame-
work of the machine, and these are kept in an upright position by a work of the machine, and these are kept in an upright position by a
hook that drops into a notch in the lever. Perforated water pipes hook that drops into a notch in the lever. Perforated water pipes
are arranged vertically above the rollers to throw a spray of water on them, the drip water being prevented by the inclined plane from running into the lye trough.

Improved Folding Table.
Franklin C. Wheeler, St. Joseph, Mo.-By suitable construction, enabling the four legs to be brought into the same plane, the table top may be turned down against and parallel with the said legs,
folding the table into a very compact form for storage or transfolding the table into a very compact form for storage or transportation.
mproved step Ladder
Henry P. Stichter, Pottsville, Pa.-This ladder has the upper end of its brace legs held by hooks in groove seats of the body, to pre

Improved Log Sled.
Hiram S. Bartlett, Midland, Mich.-Suitable construction allow the runner to adjust itself to uneven ground, while the beam is held
in place by a reach passing from the forward beam to the hind one in place by a reach passing from the forward beam to the hind one
A saddle also strengthens the runner, and renders it less liable to A sadde also
split or break.

Improved Harness Knife.

Alexis Friderick, O'Fallon, Ill.-This invention relates to edge splitting and beveling knives for beveling both edges of a strap;
and it consists of a straight blade fastened obliquely to the guide roller for splitting one edge at a time, so that straps of different widths may be split. It is also provided with two cutting edges, ontrived so that, when one end of the blade is dull, the other ma

Improved Step Ladder
Jacob Blauvelt, Blauveltville, N. Y.-This invention consists o he braces together at the top, so contrived that they will lock whe the braces are adjusted to hold the ladder in the position for use The invention also allows the braces to fold up to the ladder for
storing away, and will lock them in that position. The device further consists and will lock them in that position. Aces to swing up into line, or nearly so, and to lock them in that position, so as to ize said braces for an extension ladder
Improved Apparatus for Capsuling Bottles. Antoine Bosquet, Paris, France.-This invention relates to im necked vessels, the apparatus belonging to that class in which th necessary pressure is applied to the capsule through the medium of water or other fluid acting on an elastic diaphragm or chamber of ndia rubber brought in contact with the capsule.

Improved Lamp Extinguisher
J. O. Soderstrom, Pepin, Wis.-The invention consists in two op-
positely concaved, but differently sized jaws, one folding within th positely concaved, but differently sized jaws, one folding within the
other, a spring arranged in a curve behind and attached to the jaws other, a spring arranged in a curve behind and attached to the jaw
so as to slide them forward, and in arms that move on the inside o so as to slide them forward, and in
jaws in order to spread them apart.

Improved Water Filter.

Charles B. Cooper, Nashville, Tenn.-As the water to be filtered is dmitted into and rises in an upper vessel, it flows through a siphon, impurities from entering the said siphon. The water is further filtered as it flows from the siphon through a sponge and perforated cone on the long arm into an inner cylindrical vessel. Thence the
water passes through a large perforated cone at the bottom into he space between the vessels, rises through the sand and gravel in said space, and overflows into a concave ring through the holes, in essels, percolates through the gravel and charcoal in said space and flows out through the holes in the bottom of the lower vesse nto a receiver placed beneath it.

Improved Harrow
Addison H. Whiteside, Onarga, Ml.-This is a right-angle-shaped tooth, one end of which is let into the harrow frame obliquely to he cross section, and confined by a staple. The latter holds the
ooth perpendicular when the harrow is drawn by one end, and lows it to swing outward and backward obliquely to the line of the beam, and also to the horizon when drawn by the other end
thus combining two different harrowsin one. The staple is secured, so as to be readily detached, by a nut on one of the prongs, which
goes through the beam, to allow of taking out the tooth readily.

Improved Nut Lock.
Horace L. Heaton, Lilly Chapel, assignor of one half his right to
Benjamin F. Roberts, of West Jefferson, O.-This consists of a nut Benjamin F. Roberts, of West Jefferson, \mathbf{O}.-This consists of a nut with a grooved shank, in connection with a double spring entering
into grooves at opposite sides of the shank. Said spring is readily etached for removing or applying the nut by an intermediate piv preading and retaining the same.

Improved Whiffetree
James Harding Brown, Porter's Mills, Wis.-Clevises are placed olts passing through slots in said clevises, so that they may move orward to take up the wear. The rear ends of the clevises projec in the rear of half-round end projections, and have rollers pivoted
or blocks attached to them, which bear against said half-round projections. The whiffetrees are pivoted to the forward part o projections. The whiffetrees are pivoted to the forward part
bow, or are rigidy attached to the upper arm of said cleviseg.

Improved Lumber Dryer.
Philipp Pfeffer, New York city.-This invention relates to an im-
roved apparatus for drying lumber of varying thickness within hort time by the influence of pressure and heat; and it consists in troducing the boards between press plates heated by steam, and provided with a perforated face lining, with connecting grooves at
the inner side, for admitting the escape of the moisture in the

Improved Corn Sheller.

Frelinghuyson H. Hunter, Heltonville, Ind.-The invention is an mprovement in the class of corn shellers having a ribbed surface,
ver which the ears are drawn by hand to free them of the kernels. A chaff box, which is formed of a sheet metal plate, is applied be neath the ribs of the sheller to catch the kernel husks or chaff tha ecomes separated from the cob.
mproved Coffee
Richard Law Bate, Adrian, Mich.-The coffee pot is seated by a bottom extension in the open top of the kettle. A central tube
xtends vertically from a bottom aperture to about the hight of xtends vertically from a bottom aperture to about the hight of perforated bottom for the ground coffee. A detacbable cap is tached to the central tube of the strainer, and serves to thro n the top of the strainer for condensing the steam passing from the kettle through the tube to the strainer. The cendensed steam rops on the coffee, and passes through the perforated bottom of the strainer into the body of the pot below the same

Improved Washing Machine.

Solomon Wells, Brownsville, Ky.-This improvement relates to he combination of a series of vertically adjustable rollers, the jour series of lower fixed rollers supporting the series of adjustabl ollers, and provided with crank mechanism, whereby both serie or sets are rotated together.

Improved Beer Cooler

Wenzel Toepfer, Milwaukee, Wis.-This invention consists of a an baving a hollow and perforated shaft with pipe connections a the ends for receiving cold air from other blowers arranged ove he vat containing the beer on trucks, which are caused, by suitable machinery, to reciprocate the fan and rotate it at the same time, so
s to agitate the beer and cool it by the air delivered from the shaft. A bent tube is mounted on the trucks, with pipe connecons for conducting cold water through the eer or cooling it, the pipe being contrived to mening the botto eer or over it. There is also a new mode of fastening the botto
heets of the vat together by key clamps and a couple of strips of metal fastened together, between which the edges of the bottom pates are wedged by the clamps.

Improved Plow.

Francis R. Bell, Marshall, Texas.-The object of this invention i to furnish plow mold boards to which the black land of Texas, and
other similarsoils, will not adhere, so that a furrow can be turned, owever sticky and waxy the soil may be. The invention consist a wooden mold board for plows, saturated with oil, and provided ith a number of oil-receiving holes or reservoirs in its edges eep it saturated.

Improved Truck for Brick Yards.
Eaward Noonan, La Salle, Ml.-This is an improved truck fo bearing off bricks in a brick yard, so constructed that the shafts may be readily detached from one truck and attached to anothe ithout unhitching the horse from, the said shafts.
Improved Portable Medicated Hot Vapor Bath.
Robert R. Roberts, Hot Springs, Ark.-This is a box which on closes the body of the patient, containing an adjustable seat and
foot rest, and also devices for warming an incoming current of air efore the same reaches the person of the bather.

Improved Miner's Lamp.
James Sawyer, Freeburg, Ill.-The lamp is filled with sponge, ex cept a well in the middle, from which the sponge is held by a spira wire, to allow the wick to extend down into the lamp. The lowe and of the wick tube is funnel-shaped, and the wick is flared ou hereat to the sides of the well, to touch the sponge, so as to draw
he oil held in it. The flame regulator consists of a tubular sleere on the upper end of the wick tube, to slide up and down along the ame, and has a rubber-spring ring to hold it fast. There is a hoo for connecting the lamp to the hat of the miner, and a spring fo
securing it. With this improved lamp, miners can safely burn gasoine and other light products of petroleum,which are much cheaper, and give better light, than the lard oil commonly used.

Improved Hames.
John G. Eberhard, Akron, Ohio.-This invention consists of a new manufacture of hames for harness, the same being a hollow bject being to obtain the requisite size for strength in such materia object being to obtain the re
without too much weight.

Improved Crib.

Henry Buttenberg and William R. Hodges, Memphis, Tenn.-The mprovement relates to the arrangement of a sliding block and a
clamping-screw hook with the slatted front rail of a crib, whereby aid hook may be adjusted toward or from one which is stationary hus adapting the crib for attachment to bedstead rails of irregular orm.
George Bent, Seneca, Kan.-This consists in a drying frame whic will freely revolve with the wind, or may be placed or adjusted to take advantage of the sun in drying clothes. The dryer can readily detached from the post with the clothes furled and carried unde helter in case of storm.

Improved Gas Burner
Coleman D. Payne, Moselle, Mo.-The gas passes through fire hambers and intermediate perforations and passages, so arranged and constructed as to counteract the pressure from the gas
lmproved $1 m p l e m e n t$ for Loading Fire Arms.
Orson D. Phillips, Lisle, N. Y.-This is a gun-loading device for sportsmen, by which muzzle-loading guns may be charged with great rapidity ; and it consists of a muzzle cap, with revolving
cylinder, and a sliding rod, by which the charge is carried into the cylinder, and a sliding rod, by which the charge is carried into the muzzle for being rammed down.

Improved Gas Purifier.

Joseph D. Patton, Trevorton, Pa.-This device consists of one or more scrubbers located outside of a gasometer tank, in connection the tank, for removing condensable matter and cleansing the gas.

Improved Saw Guard

Dwight Graves and Charles O. Howes, North Amherst, Mass.-解 tand on the guard, is serrated and rests upon the piece being sawn for preventing the rising of said piece, and to hold it firmly
in position. When this foot is not required, it can be thrown back n the guard out of the way. Any other suitable devices may be mployed to render the saw guard adjustable as to hight; according to the diameter of the saw or hight of the room.

SHKintes and textoral

ad is $\$ 1$ a Line

 Hoadloy Portable EngInes. R. R. H. Allen \&
New York, Sole A gents of this best of ail patterns.
For Sale Large lot second hand Machinists
Tooos, cheap. Send for Het. I. H. Shearman, 55 Cort.
andt Street New York.
nat street, New Yort
Microseopese, from 50 cts. . $\$ 500$, for Scientific
pvestigation and home amusement. Magnifyng Glasses, spy Glasese, Telescopes, and Lenses. Price List free.
Mcallister, M' C 'g opticlan, 49 Nassau St.. New York.
 Send for pamphlet. Pump \& skelin Co., Belleville, inl. Wanted-Situation as Draushtsman.
rence. Address C. . . Leee Easton. Pa.
The Original Skinner Portable Engine (Im proved), 2tiginal.P. L. G. SkInner, Erie, Pa.
Chemicals for Making Self-Acting Copying PaChemicals for Making Self-Acting Copying Pa For Sale-1 1 new 3 ft. Tron Planer, chuck $\&$ coun-
ershaft, pr. $\$ 225$. Davis $\mathrm{Level} \&$ Tool Co.,Springneld, M To Rent-Machine, Boiler Shop, and Foundry
Machine Shop, built of stone, soxa0. Two Stories and Basem ent; other bulldings proportionately large.

 Wanted-Catalogues of best Paper Making Ma
chinery. Address Lock Box No. 1, Knoxville, E. Tenn Geo. P. Rowell \& Co's Advertising Agency, No,
1 Park Row, New Tork, recelves advertisements for ail the newspapers in the United States, at the lowest cash
rates, furnishning circulars and estimates free.-[Brook-
 Wrought Iron Pipe-For water, gas, or steam
Prices low. Send for list. Balley. Farrell \& Co.,. Pitts
 Woolen and Cotton Machinery of every descrip
tion for Sale. Estimates furnished for erection of Facto. hes of any size. A C. Tully, 55 Dey Street, New York. A Permanent Situation Wanted by an experi
encod Pattern Maker. I . C. Carter, Fort Wayne, Ind. Rights for Sale-Wooden article. 2947, N.Y. P.O
 For the best Animal Trap in the world, address For Sale, or on Rovalty-Two Patents, Station-
ery Artices. Addaress Key Box, Spartenburg, S. C . A Machinist and Draughtsman, acquainted with
Erecting on Gas Works, 15 years' wints employmmant. Letter Carrer 85, Phlladelphata,Pa.
Room and 12 Horse Power to Let. Good ShipMoney made by Consumers of ofteam and Agents,
Mith Fenn's Feed Water Heater and Purifer. Send for Circular. PAmp \& Sketn Co., Belleville, III.
Walrus Leather Wheels for polishing all Metals.
Greene, Tweed $\&$ Co.. 18 Park Place, New York. Small Grayi iron castings made to order.
(iss $\&$ Ball, Foundrymen, West Meriden, Conn. "Book-Keeping Simplitied."-The Double-entry
system briefy and cearly explaned. 75 cts . Sent postpatd. Catalogue free. D. B. Waggener
$\&$ Coo., Pubulishers, 42 A Walnut St., Phlladelpha, Pa.
 Saw Ye the Saw?- $\$ 1,000$ Gold for Hand Sawmill to do same work with no more p.
Coha, 197 Water St., New York.
Moss Agates, Petrified Bones, Wood, Shells, and
othher curiostites, will be sent c. o. D. by s. H. Wright, Scale in Moillers Removed-No pay till the the work
1s olone. Send for 3 page pamphlet. George w. Lord, Hotchkiss $\&$ Ball, West Meriden, Conn., Foun-
drymen and Workers of sheet Metal. Will manufacture Wanted-To sell a half interest in a large, well
established business, secured by original patents. C. H. estabilshed Dusisenss, seeured
Krrkpatrick, La fayette, Ind.
Blake's Belt Studs are the best fastening for
Leather or Rubber Belts. Greene, Tweed \& 8 Co., 18 Park Place, New York.
The Best Wooden Pulley made; fastens without
keys or set screws. Adjustable Dead Pulleys stop hose Keys or sat screws. Adjustable Dead Pulleys stop loose
pulleys and belts when machinery to which they belong

File-cutting Machines. C. Vogel, Fort Lee, N. Grind Winter Wheat-New Process. John Ross,
Wrllamsburgh, N. Dickinson's Patent Shaped Diamond Carbon
Poins and adjustatate holder for working stone, dressing Boult's Paneling, Moulding and Dovetailing Machine 18 a complet
pie of work, B, Mat Pipe and Bolt Threading Maobines. Prices from
s80 up. Address Emple Manuacturing Company,
Gold street Nee
 ed by the Frank tin Institute for ". durabillty, frmness,
and adaptatron to variety of work." Larobertville Iron
Works, Lambertvile, N. J. For best Bolt Cutter, at greatly reduced prices,
addreess H. B. Brown $\&$ Co.,
Hs
Haven conn.
American Metaline Co., 61 Warren St., N.Y. City.
Grindstones, 2,000 tuns stock. Mitchell,Phila.,Pa. Small Tools and Gear Wheels for Models. Lisl
Irree. Goodnow $\$$ Wightman. 23 Cornhlll Boston, Mase. The "Soinentifl American" Office, New York. is
fited wwhth te Mitiature Electric Telertaph. By touching

 Genuine Concord Axles-Brown,FHsherville,N.H. Temples and Onlcans. Draper, Hopedale, Mass. Prioe only 83.50 . The Tom Thumb Hectro Felegraph. A compact workling Telegrapp A pparatuas
Cor sending messages, makning magnets the electric lybht TIng alarms, and varlous other parposes. Can be put in
peration by any lad. Includes battery, kee, and wires. Neatiy packed and sent to all parts of the world on reeelp.
of price. F. C. Beach \& Co. 246 Canal St., New York. Hotohkiss Alr Spring Forge Hammer, vest rut th
 sement. Ad
 All Frult-can Tools, Ferracute W k's, Bridgton,N. J. For best Presses, Dhes, and Frutt Can Tools, Bllss
Willams, cor. of Plymouth and Jay, Brooklyn, N. Y . Mechanical Expert in
For Solide Emery Wheels and Machinery, send to
he Unlon Stone Co., Boston, M Mass, for circuilar. Faught's Patent Round Braided. Belting-The
Best thing out-Manufactured only by C . W. Arny, 301 \& wh Cherry St., Philadelpha, Pa. Send for Circular.
Hydraulic Presses and Jacks,
new and seoond nac. Lathee and Macinery For $13,15,16$ and 18 inch Swing Eng
adress star Tool Co., Providence, R. I.
Machinery Wanted-Edging, Milling, and other
Gun Machines wanted, new or second hand. Address E
Single, Double and Triple Tenoning Machines of
uaprior construction M Martit Buok Peck's Patent Drop Press. Stul the best in use
Address Mllo Peck, New Haven. Conn.

W. F. P. will find an account of the termination of the phylloxera controversy on pp. 242 with iron in it on p. p .203, vol. 29.-W. F . W. will find an answer to his engine query on p. $\quad 321$, vol. 30 --
C. . W. will find a description of silver-plating on . 405 , vol. 32. For plating without a battery, see 299, vol. 31
(1) K. K. C. asks: In what way is mercury used in exterminating bedbugs? A. Take corrosive sublimate 1 drachm, sal ammoniac (chloride
of ammonium) 2 drachms, water 8 ozs. Sprinkle he bedding with the mixture.
(2) F. T. J. asks: How can I handle hot ron without being burned? A. The hands, when wet, can be plunged for a moment in molten iron without injury.
(3) R. W. B. says: 1. I have a quantity of Vinegar made from honey. It has a pure transpa-
rent color, but hasa slightly sweetish taste. What ent color, but hasa slightly sweetish taste. Wha can I put in it to correct that, and give a genuine
sour vinegar taste? A. See answer to H.
H. G., p. 10e, vol. 32. 2. How can I keep moths out of the hives? A. It is very well known that a colony of
bees, under a right system of management has bees, under a right system of management, has
no enemies that it cannot overcome. The secret no enemies that it cannot overcome. The secret
of all successful management is to keep your col. of all successful management is to keep your colonies always strong, and they will always protect
themselves; and the use of hives giving yout the control of every comb enables you always to se-
co cure this end. When an intelligent bee-keeper possesses this power,themoth has no terror for him, since a strong stock is never injured by it.
(4) J. W. E. asks: What varnish is used E. E., of Pa.
(5) J.G. P. asks: How can I harden circu-
lar saws from $\frac{1}{38}$ to to $1 / 3$ of an inch in thickness, and from 3 to 4 inches in diameter, without warping? The saws are used to cut steel and iron. A.
There is no way known to harden any kind of a There is no way known to harden any kind of a
saw without its springing. They may be flattened between two heated blocks when the temper is drawn, whioh will make the most of them nearl they must be straightened by a saw maker.-J. E. ., of Pa.
(6) W. A. M. says: 1 . I am putting in a gage to run over a 4 foot pulley. Will it be practicable machine? A. Such a mill is perfectly practicable if properly built and worked. 2. How many 1 bs. strain will it bear without breaking? A
Your pulleys will be too small for a band saw mill they ought to be b eet in dian forer in maw m , The straln that the saw will bear depends upo the width of the blade. About 50 lbs. to the inc in wiath is a fair rule to work by. 3. How fast will it do to run the pulleys? A. You can run them at
a speed that will drive the saw 9,000 feet per mina speed that will driv
ute. -J. E. E., of Pa.
(7) J. S. P. asks: Will an 8×10 inches engine drive a four foot burr to any advantage? A
With a sufficient pressure of ste swer very well.
(8) E. K. asks: How can I remove coal oil soap will not do it. A. Try steeping them for short time in bisulphide of carbon in a olosed vessel, and then allowing them to remain exposed to
the air until completely deodorized.
(9) F. S. C. asks: 1. What is the difference between methylated ether and simple ether, and
what is the meaning of methylated? A. Methol what is the meaning of methylated? A. Methol
(also called wood spirit, pyroxylic spirit, and methylic alcohol) is a product of the destructive distillation of wood. The acetic acid of the orude
product being saturated with
is obtained by distillation, which, after rectificaLion, constitutes the methylated splrit of com-
meroe. Methylic ether is obtained by the same rocess as ordinary or vinic ether, namely, by disillation of the spirit in contact with sulphuric acid; the only difference being that, in the manu
acture of vinic ether, alcohol is used, while me hol is the spirit used in the manufacture of me bylic ether. 2. What are spirits of wine and pirits of turpentine? A. Spirit of wine is an al cohol, usually obtained from wheat, rye, barley corn, molasses, eto., by fermentation and distilla ton, and derives its name from frrst having bee btaned by distiling wie for its yield of brands
 or spirit of turpentine is obtained by distilling ommon turpentine, a semi-solid resin which flow rom the pinus abies, a species of pine, whe wounded. This resin yields nearly one fourth of its weight of the essential oil, which passes over a
volatile, limpid, very inflammable liquid, of volatile, limpid, very inflammable liquia, or
enetrating, well known balsamic odor. The resi ue in the retort constitutes the common rosin o colophony.
(10) H. S. J. asks: What is the best process of cooling lard in summer, so that it m .
ap? A. Keep it immersed in cold water.
(11) P. S. says: 1. In your issue of Apri 1 find a device for bronzing cast iron, which o not quite understand. It requires a bath o melted chloride of copper and cryolite, to whic hioride of barium is adaed. Does this mean ulte
hese three articles are to be mixed in a melted tate, or are they to be dissolved in water? The recipe is to be taken as written. 2.1 I am
about to reduce some old gold solutions, consistng of cyanide of gold dissolved in oyanide of po tassium. I evaporated it to dryness; can I now melt it in a orucible with borar, to get metalli gold, or does it want to be treated in another way
A. The pure metal may be obtained,in the form o A. The pure metal may be obtained,in the form o a black, fnely yivided powder, from its solutions
by the addition of a flitered aqueous solution oo by the addition of a iltered aqueos se melted, a
common sulphate of iron. If this be mass of the metal with its oharacteristio color ma be obtained in its pure state.
(12) H. B. asks: I have a sign (which I be neve to be z inc) which requires cleaning two or
bree times a week and needs a great deal of rub bing to obtain a good polish and remove stain and fliger marks. How can I clean it? A. Ru he metal over with a strong aqueous solutio
oxyohloride of zinc ; wash, and dry quickly.
(13) G. C. S. says: We are putting in two
boilers, eaoh having two 1613_{2} inch flues. Length boilers is 24 feet. What should be the diame er of smoke stack, in order to insure good draft
a. Make the cross section of the chimney from o $\frac{1}{3}$ the grate surface.
(14) C. E. B. says: 1. In your issue of April , mention is made of too much oil in engine cyt nders being the cause of priming. Can this be so except by the use of an open heater where the in would be forced into the boiler with the feed water, ouusing it to foam? A. No. 2. I built a using a crlinder boiler 10×18 inches. In uslowing, I notice that the water is very dirty and dily, that blown off at bottom being muoh olearer I always supposed that the oil would get into the boiler while making the connection. I exhaust
into the air, and have not noticed any indication into the air, and have not noticed any indication
of priming; but the water appears to foam considof priming; but te water appears to foam consid
crably. Will frequent blowing off remove all the in from the boiler? A. Blow all the wa
(15) D. A. W. asks: In making an arrange nent for heating the water for a bath tub, I un was badly rusted. The water is badly discolored from the rust in the pipes. Is there anything that I can place in the tank, to pass through the pipes, that will cleanse them of rust and stop the discol-
oration of the water? A. Take the pipe down,and ant the interior with coaltar.
(16) J. C. L. says: 1. I have a small mill dry weather, my well has partiand on account of dry weather, ,yy wissour river is 35 feet best the level of the ground at the mill, and nearly 1,000 feet distant. Can I get water from the river by laying a pipe so that the highest point would no be over 25 feet above the river, and terminating a well 50 feet deep? I know that in theory I could A. Much longer siphons are in successful open tion. It would probably be necessary to draw the water from subsiding basins or through filter The siphon should be fitted with a valve at 1 top, to let out the arr which will collect from tim to time. 2. How ought I to start the water Could it be done by means of a jet of steam fro the boilier down the well end of the pipe, on the A. You can use the jet of steam or a small pump start the flow.
(17) G.F. says: The wells in this vicinity stone. One is 84 feet with no sign of water yet. We have struck a number of dry crevices that ar full of wind and are continually blowing off, etc so that you can hear them for rods around. Is this times precedes the finding of oil, etc. You had better follow up the matter
(18) C. W. R. asks: 1. How does the cycloid draer from the ellipse? A. The ellipse is an alge braic curve, and the cycloid a transcendental.
How can the circumference of a oyclid when the major and minor axes are known? The length of a cycloid formed by one revolutio of the generating circle is four times the diame ter of this circle. .3. Is every seotion of a cone an
ellipse except that which is at right angles to its
(19) W. M. asks: At what distance above he rail is the center of gravity of an ordinary box
A. We have fretght car, when empty, situated? A. We hav ut believe that the center of gravity is a little elow the top of the trucks
(20) C. J. M. asks: In running a small boat With a horizontal engine, 156 inches diameter of ize of screw? A. Use a propeller from 15 to 18 nches in diameter. 2. What sized boat would it run? A. The engine would answer for a boa rom 12 to 15 feet in length. 3 . Are two 13×16 inch engines more powerful than a 17×19 at 90 lbs.
pressure? A. With the same mean pressure and pressure? A. With the same mean pressure and
iston speed, the double engine would develope about 15 per cent more indicated power than the ingle one.
(21) A. K. asks: Why is the fly wheel of an pulley next to the pllow block? A. This arrange ment is by no means general; but where it is adopted, it is probably done for convenience in getting at the belt and pulley.
(22) J. K. W. asks: 1. What should be the ize of a chimney large enough for three boiler
with 38 three-inch flues in each? A. Make th himney with a cross section of about $\frac{1}{6}$ the are of the grate surface. 2. What is the comparativ . The hard and soft coal for generating steam ualities of either kind
What length of 3 ply 1 inch hose (horizonta) will a common suction pump suck through, aving also a suction of about 10 feet perpendi cular? A.Though set
(23) W. S. B. says: I have a boiler badly ncrustated, and I am bothered also with hot wate
ipes coated with similar incrustation. Kerosene pplied to the lime on the pipe, will soften it so that it is easily removed. Would there be an anger if I put in the boiler 2 or 3 gallons of th ill, and apply it to the incrustation for the pur pose of soaking loose the scale? A. You can us oil with little fear of anger
(24) E. R. J. asks: Can a knife blade be tempered without being taken from the handle
A. It might be done, but it would be bad for the handle.
(25) J. W. W. C. says. I am making a lath of the following proportions: Pulley. $31 / 4$ inches in iameter at ena, $3 / 2$ inches at of fac Driver, 2 feetn diameter, weighs exactly 50 lb . Crank, 234 inches long, 4/4 inches stroke. What of the pivot, pivot of pitman, and point of foo pressure of the treadle? A. The acrangement is n a great manner a matter of taste, so far as we hat , except that, of course, the movement of tached must be sufficient, without making th moved through by the foot excessive.
(26) W. G. says: I am building a boat eet wide and 40 feet long, to draw inches of wa er. How fast will an enge fet fres, drive this boat on slack water, with a paddle wheel? A. Probably at 3 or 4 miles an hour.
(27) A. R. R. asks: 1. How many cubic feet re contained in a tun of anthracite coal? A. Th as water is 1 , and weighs 62.5 per cubic foot, yo can easily work out the problem. 2. What are it heating qualities compared with those of har wood A.It is assumed in practice that the heating ffrect of 8 oal 1 ations, the heating effect of coal is taken by bulk t that of wood by bulk as 3:1, and by weight as 15 According to Karsten's researches: 100 parts by bu of coal in the reverberatory furnace $=700$ parts b bulk of wood ; 100 paris by weight of coal in th reverberatory furnace=250 parts by weight wood. In boiling operations: 100 volumes of coa $=400$ volumes of wood; 100 pa
$=130 \mathrm{parts}$ by weight of wood

1. I am easily atfected with lead poison. Would rain water kept in an ice cooler lined with zinc be injurious? A. No. 2. I see you recommend (fo use in cisterns) lead pipe lined with tin. What protects the outside of the pipe from poisonin the water? A. In this case it would be
(28) S. E. H. says: A flat bottomed scow is be to the square foot), 11 feet long, $21 / 2$ feet wid and 10 inches high. What number of lbs. will sustain? A. You must calculate the weight the boat, and the amount of water it displaces various drafts. The difference between the weight of the boat and the weight of the displaced water (29) S.
(29) S. C.-The boiler is large enough for average work. Stopping off the opening for the creasing the hight of the chimney will do still more, though it may be as well to exhaust into the chimney. The flue should join the chimney in a gradua
bow.
(30)
(30) S. asks: How many cubic feet of space are required to stow a tun of 2,000 lbs.
wanna chestnut coal? A. From 43 to 48.
(31) S. F. B. asks: How can I project the A. A and appearance of a rainbow upon a screen? having in it a small slit in the form of an are, is placed before the condenser in the position ordinarily occupied by the transparency. The light passing through the slit, from the lantern, is caused to traverse a prism placed immediately before it. The image formed is defined or focussed by the
(32) C. R. says: Please give me an explanation of the following formulx : $\overline{\text { degree Baumé }+134}$
$=$ specific gravity, and $\frac{144}{\text { specific gravity }}-134=$ degree Baumé. I see these used constantly in describing the specific gravity of petroleum, but nobody can explain them to me. A. It is merely an arithmetiexplain them which represents the relation in which the numbers obtained by the purely arbitrary di-
visicns of the Baumé scale stand to the specific visicns of the Baumé scale stand to the specific
gravities. The second is derived from the first in gravities. The second is derived from the first in
the following manner: $\quad 144 \quad=$ specific gravity. $144=$ (specificgree gravity \times degree $+13 \neq$ Baumé) 134)=specific gravity \times. 144-(specific gravity both terms by the specific gravity, $\frac{144}{\text { specific gravity }}$ $-134=$ degree Baumé.
Minerals, etc.-Specimens have been received from the following correspondents, and examined, with the results stated:
F. W. B.-It is Haltica striolata, an insect very injurious to young plants. It is of a polished black color, with a broad, wavy, buff-colored stripe on dish yellow. Its length is considerably less than $\frac{1}{10}$ of an inch. We think the ravages may be prevented by watering the leaves with a solution of lime, a remedy employed in England for this pur-pose.-G. N.K.-The sample sent is pure hydrated red oxide of iron, and might answer for making a cheap red paint. But it is without action on either
tin or lead, and the explanation of the corrosion is to be found by examining the water, and not from these settlings.-J.B.W.-The wood is in the course of that slow change (under water) which would slowly bituminize and mineralize it, and result in the production of a body resembling coal.-G. A. S.-It is silicate of alumina, and is useful for all
the purposes to which a fine, soft, polishing powder can be applied.-E. L. P.-It is neither lead nor silver. It is blende, sulphuret of zinc. Follow up the coal outcrop.-G.E. S.-No. 1 is silex containing clay mixed with oxide of iron. No. 2 is teurmaline. No. 3 is crystallized quartz. - R. A. - It is composed of copper pyrites, iron pyrites, and sulphide of lead.-I. J. W.-It is copper pyrites.-M.
A. H.-It is galena, valuable lead ore.-F. E. P.-It is stibnite, or sulphide of antimony, and contains sulphur 23 per cent and antimony 72 per cent.--H. E. S.-It is co
stoves, etc.

COMMUNICATIONS RECEIVED

 The Editor of the Scientific American acknowledges, with much pleasure, the receipt oforiginal papers and contributionsupon the following subjects :
On Steam Boiler Explosions. By J. W. D. On a Curioas Fact in Flower Growing. By W. H. M.

On a Theory of Dissolution. By w. T. D. On Utilizing Natural Forces. By T. A. On Extracting the Square Root. By E. C.
On Shtp Railways. By J. A. On Ship Railways.
Alsoinquiries and answers from the following:
F. G. H. - H. W. - J. J. - J. McI. - M. W. M. - J.
E. F. N. - R. I. - N. W. T. - A. B. F. - H. R.

HINTS TO CORRESPONDENTS.

 Correspondents whose inquiries fail to appear may conclude that, for good reasons, the Editor declines them. The address of the writer should always be given.Enquiries relating to patents, or to the patentability of inventions, assignments, etc., will not be published here. All such questions, when initials only are given, are thrown into the waste basket,
as it would fill half of our paper to print them all; but we generally take pleasure in answering briefly by mail, if the writer's address is given.
Hundreds of inquiries analogous to the following are sent: "Who sells lathes with engine-turning attachments? Whose is the best dividing engine? Why do not makers of gas-making machines ad-
vertise in the Scientific American?" All such personal inquiries are printed, as will be observed, in the column of "Business and Personal," which is specially set apart for that purpose, subject to the charge mentioned at the head of that column. Almost any desired information can in this way be expeditiously obtained

OFFICIAL.
INDEX OF INVENTIONS
Letters Patent of the United States were Granted in the Week ending June 1, 1875,

Alarm, burglar, J. Andrews.. Anchor, J. S. Williams. Bale tie, J. S. Carson (r)
Baluster, P. J. Hardy Baluster, P. J. Hardy........
Battery, flume, D. F. Hawk Bed bottom, spring, J. Wagner
Bedstead fastening, W. H. Ello Belting, machine, C. A. Jewell. Billiard table, H. W. Collender (r)
Binder, temporary, Peirce et al. Bird cage hook extension V. Balcom Bit stock, D. F. Sutton.
Boilier, wash, W. P. Casperson. W. Prat Bridge, metallic arch, J, B. Eads...

Buckle for suspenders, A. Shenfield (r)...
Burner Burner. gas. W. J. Herriott
Burner, lamp, A. Kimber...
Buther
Butter package, J. C. Tilton..........
Button holes, cutting, J. D. Westgate Car brakes. F. L. Kirtley
Car coupling, B. S. Kearney
Car coupling, J. McNabb....
Car coupling, J. McNabb...
Car coupling, o. L. Taylor
Car houping, automatic, J. Miller..
Car, rend ventilator, J. Amory
Car, refrigerating, R. Armiger.
Car starter, A. H. Smith
Car starter, A. H. Smith.
Car starter, F. Stafford..
Carpet stretcher and tack driver, G. A. Alger.
Carriage top slat iron, F. B. Plumb......
Casting articles of cement, L. A. Tartier Chain links, device for welding, P. H. Standish
Chair, adjustable and reversible, Voth \& Hyst. Chair, folding, J. E. Wakefield Chair, folding, J. A. Ware . Chronometers, etc., regulating, L. Chuck for metal drils, G. M. Pratt...
Churn, re iprocation, Price \& Hoove Churn, re : iprocating, Price \&
Clock, pendulum, V. Himmer.. Clocthes ryyer. w. Bloomer
Clothes cryer, E. S. Heath
Coat patterns, laying out, z. Bauer.
Cocoanut, preparing, A. P. Ashbourne....
Columns, etc., construction of. P.J Hardy Columns, construction of marbl3, P. J. Hardy...
Compasses, mariner's, D. Baker..163, $836,163,83$ Compasses, mariner's, D. Baker...163,836, 163,837, $163,388,163,83,1$
Cooler, beer, A. Koos
Cooler, milk, R. Smith
Coorser, H. G. Emery
Culinary steamer, H. M. Welch
Doll, paper, w. H. H
Drils, chuck for metal, G. M. Prat
Elevator, water, Hoag \& Junkerman....
Emery to metal, applying, S. G. Morris
Engines, injector for steam, G. H. Littl
Exercising apparatus, G. W. Wo
Exhaust, variable, Leseur \& Mood
Fabrics, tentering, w. H. Palmer, Jr
Feather renovator, H. E. Rowe.......
Fence, barbed wrre, Watkios \& Scutt
Fence post, J. E. Warren
Fifth wheel, © B. Wood...
Fire kindler, w. c. Philbrick
Fish hook, E. L. Duniap.
lour dressing machine, G. Smith
Furnace, air-heating, S. W.
Fuses, slo w match for lighting, A. s.
Game apparatus, C. L. Browne
Gas retort, J. c. Tiffany
Grading apparatus, E. Church
Graining roller, A. J. Taplin.
Gun feed case, D. c. Farrington
Hand rail, P. J. Hardy
Harrow, A. Ross.
Harro, corn, J. McCormick
Harvester, S. S. Stultz.
Hat, A. A. Richardson.
Hat fastening, C. R. Blackwood....
Heater and condenser, J. E. Cough Hoe, I. D. Mills....
Hoe, D. and E. Moore
Hold-back, J. V. Phillips.
Horseshoe, C. Hartman
Horseshoe bar roll, H. H. Gillmore
Horseshoe calk die, J. Palme
Horseshoe die, W. Russell.
Horseshoe die, W. Russell....... .. .
Horseshoe bending machine, A. Barto
House, wooden. M. Rogers
Ice, storing and removing, A. Hunt.
Index. C. H. Bradley..
Indicator, station, C. A. Blomquist.
Indicator, station, S. P. Littlefield.
njector. W. P. Patton.
Insect powaer injector, A. Meyer...
Iron and steel, making, J. B. Pearse
Jack, lifting, J. C. Bird...................
Knitted trimming, G. M. Gernshym
Ladder, extensible, W. B. Elliott...
Ladder, extensible,
Lamp, c. McKinnon.
Lathe cutter
Laundry polish, C. L. Holland
Leather work, etc., forming staples, T. K. Reed
Letter and picture block, D. Birmen.....
Letter box, A. Rosenst jerna
Loom for tubular fabrics, J. E. Gillespie.
Loom heddle frame, H. Parsons (r)...
Marble, artificial, Cowman and Barb
Marble for building purposes, P. J. Hardy
Mats. making wooden, J. M. Hall.
Measure and funnel, J. D. Humphrey
Mirror, A. Huber
Mucilage holder, H. т. Cushman
Music holder, sheet, B. J. Beck............
Music recorder, automatic, G. Landrien
Music stand, folding, E. A. White.
Package holder. G. Lewinson.....
Painting, base for, Thielepape and Kroeschell
Paper box, L. A. Kettle.
Paper, planishing, w. E.
Paper pulp wood grinder, J. O. Gregg.
Paper pulp wood grinder, A. M. Zimmer
Pencil attachment, slate, J. Poznanski
Pessary. J. Kean..
Piano attachment. A. Stelnway...164,052, 164,053, Pictures, apparatus for view. E. S. R. Ritchie
Pipes, siopping leaks in, J. B. Peake.... Pipes, stopping leaks in, J. B.
Planter, hand corn, J. Beers. Plow, H. Olson..................
Plow iron, Moore and Curkendall. Plow, reversible, J. McCabe.
Pot scraper, U. Cramer.... Pot scraper, U. Cramer...
Poultry coop, F. M. Blanc Press, cotton, E. Van Winkle.
Press,
Printers' leads, cutting, Haw Printers' leads, cutting, Hawkins and Dodge................... Pump for deep wells, J. T. Whipple (r). Rallroadrall joint, W. M. Spacht Rallroad signal circuit, ett., H.
Rake, horse, J. Pennypacker (r) Rake, horse, J. Pennypacker
Roof, cement, I. Mills, Jr.....

saturtissments.

Back Page Inside Paze Engravings may head advertisements at the same rate per line, by measurement, as the letter press. Adver- tisements must be recelved at pubication oftce as early as Fridaymornino to appear in next issue.
 $\$ 40$ To \$60 A WEEK-Employment for all,

 ADMINISTRATOR'S SALE
 FOOT LATEES.

Foot Drill Presses.

Small Tools of all kinds; also GEAR WHEELS, parts

 Make Emery Wheel Which Give
Great Satisfaction. Great Satisfaction.
Send to-day for Circulars
$\mathrm{F}_{\mathrm{m} \text { SALE, CHEAP-Lathes, Planer, Trip Ham }}^{\text {OR }}$

JULy 3, 1875.]

STEPL STAMPS.

Pr fixidid MACHINERY

PLANING \& MATCHING, TENONING,RESAWING, SHAPING J.A.firnico STEEL CASTINGS.

P. BLAISDELI \& CO.,

 The HOADTEY The HOADLEY

THE JC.HOADLEY GOCLAR LAWRENGE MASS. Wh ALD EVERY MAN HIS OWN LAWYER

 The TOLL-GATE! Prize Picture sent free A

 M ANUAL OF PATENT LAW AND" SALE

 FIRE PROOF

SHUTTERS.
clark \& Co's SElf-coiling rolling steel shutters (Burglar Proof), For store Fronts and Rear windows, require no machnery or balance weights, and can be applied to any openting; also Roil-
ng Wood Shutters for Stores and Dwellligg . Thousands are tin dally use, and are acknowledged the beest shutters in he world. Send for Catalogue to

18 West 26th St., New York, and at

BLAKE'S PATENT

PUNCHING

DITCHING AND DRAINAGE MACHINES

Stone Channeling Quarrying Machine,

WARDWELL PATENT,
FOR CUTTING STONE INTO VARIOUS SIZES QUARRIES.
STEAM STONE CUTTER CO., RUTLAND, VT sole proprietors and manufacturers.
WORCESTER FREE INSTITUTE Wood Working Machinery

 y of stock and workmanship, and at reas
We would take this opportunity to prices

TTONE SANING MACHINERY MERRIMAN'S PATENT. ALSO.HAND AND STEAM DERRICKS \& TRAVELLERS

IMPROVED CENTERING ATTACHMENT

LeCount's, Patent

Bradley's Cushioned Hammer

 OTITS Mafety hoisting No. 348 BROADWAY, NEW YORE. 4 Planing \& Matching,

Machinists' Tools,

 A. S.GEAR. BOSTON,furnishes all KInds of Machi

PATENT
Planing \& Matching
 Model Steam Engines, FROM 50 CTS. UPWARDS, FROM GEORGE PAR
$\underset{\substack{\text { Steam Crane } \\ \text { Circular Saw } \\ \text { Saw }}}{ }$

Uprigatic purposes.

T WIST DRIL GRINDING MACHINES, EX

$\underset{\text { Have novel device }}{\text { Machines }}$

Have machineserice orochanging
length of stroke while in motion

 Patented 1868, 887, , 1874
Wood \& Light Machine Co,
 Iron Working Machinery
Shafting, Pulleys, \&c.
IMPRROVED MACHINERY for STAVE
 SHINchnery oi lmproved sty les for making Sole maker of the wel Eiown hrond in
 I MPORTANT FOR ALL LARGE CORPO

MAGNETS-Permanent Steel Magnets

MACHINERY.

IRON \& WOOD WORKING MACHINERY OF EVERY DESCRIPTION
Cold Rolled Shafting. HANGERS, PULLEYS, COUPLINGS, BELTING, \&c

NIAGARA STEAM PUMP,

VAgency at 40 John st., New York.
Hubbard \& Aller. Sole Manufacturers,
Engines and Bolierb, Pulleys, Shafting and Hangers

Ladies $\begin{gathered}\text { Can make } 85 \text { a day in their own City or Town } \\ \text { Address ELuss M'F }\end{gathered}$ TENTH INDUSTRIAL EXHIBITION, Mechanies' Institute of San Francisco Manufacturers, Mechanics, and others are adyised that
the above EXHIITION Will beopened in san Francisco
on the 17TH DAY OF AUGUST next, and continue open at

SCIENTIFIC AMERICAN, THE MOST POPULAR SCIENTIFIC PAPER IN THE WORLD.
THIRTIETH YEAR.
VOLUME XXXII.-NEW SERIES.
The publishers of the SCIENTIFIC AMERICAN beg to announce that on the second day of Januar 1875 , a new volume commenced. It will continue tents of the new volume more attractive and use ul than any of its predecessors.

To the Mechanic and Manufacturer No persou enguged in any of the mechanical purAmerican. Every number contains from six to ten angravings of new machines and inventions which cannot be found in any other publication.
The SCIENTIFIC AMERICAN is devoted to the nterests of Popular Science, the Mechanic Art Manufactures, andentions, Agriculture,Commerce uable and instructive not only in the Workshop and Manufactory, but also in the Household, the Ij orary, and the Reading Room.

TERMS.
One copy, one year (postage included)....... $\$ 3.20$ $\begin{array}{lll}\text { One copy, six months (postage included).... } & 1.60 \\ \text { One copy, three months (postageincluded).. } & 1.00\end{array}$ One copy of Scientific American for one
of Progress"................................ 10.00
year, and one copy of "Science Record" for 1875
Remit by postal order, draft, or express.
Address all letters and make all Post Gifce or ders and drafts payable to

MUNNN \& CO.

gatuertisements.

 Enorartnos may head advertisements at the same rate
per line, by measurement, as the letter press. Advertisements must be rececived at publication offce as early as Friday morning to appear in next issue.

Diamond Solid Rmery Wheels.

 GTASS OTI CUPS

MSBESTOS
 ASBESTOS ROOFING, ${ }^{\text {adapted }}$ allmates.

 PORTLAND CEMENT/Steam Super - TReaters,

 NEW ERNGINES AT A SACRIFICE.

Corrugated Iron

Mill FurniskingWorks

[^0] Pyrometers, For sow Hins hat of

Portland Cement.

Machinists' Tools.

LOW-PRICED EIERY WHEELS
2

 Coal Mines, cars, perd day, or interest in all ainines
 THE HEALD \& SISCO Patent Centrifugal Pumps.

THE ROOT SAFETY

70 T T 5 5

SAFETY FROM DESTRUCTIVE EXPLOSION UTMOST DURABILITY;
And Greatest Facidit in ECONOMY For For ilustrated, and Repairin
Abendroth \& Root M'f'g Co., GREENPOINT, BROOKLYN, N. Y.

THE BEST INJECTOR
For Locomotive and stationary Boilers.
FRIEDMANN'S PATENT. Over 15,000 Now in Use Here and in Europe
 NATRAN \& DREYFUS, Sole Manufacturers.
EF Send for Catalogue.

Boring and Turning Mills, Radial Drilling Machines, Machine Tools,
 ornta.
Photographs, Circulars and References sent on applica NILES TOOL WORKS,

NEWSPAPER FILE.

HARTFORD
STEAM BOILER
Inspection \& Insurance
COMPANY.

Excelsior Do Your ${ }^{\text {Hown micem }}$

Steel Trube Cleaner.

non-combistible steam boiler \& Pipe

 Wxperimental Mircy Models
DROP FORGING .

Of Every Desoription, at Reasonable Prices.
Thefurll \& Belden Company, Danbury,

Todd \& Rafterty Machine Co.

THE Union Iron Mills, Pittsburgh, Pa.

And How to Obtain Them.
Practical Hints to Inventors.

4ROBABLY no investment of a small
sum of money brings a greater return than the expense incurred in obtaining a patent, even when the invention is but a
small one. Large inventions are found small one. Large inventions are found
to pay correspondingly well. The names to pay correspondingly well. The names
of Blanchard, Morse, Bigelow, Colt, Erics-
son, Howe, McCormick, Hoe, and other who have amassed immense fortunes from their inventions, are well known.
And there are thousands of others who have realzed large sums from their patents.
More than Ftety Thousand availed themselves of the services of MUNN \& CO solicitors and Publishers of the ScIENTIFIC AMERIcan. Thev stand at the head in this class of busi ness; and their large corps of assistants, mostly se
lected from the ranks of the Patent Office: men ca lected from the ranks of the Patent Office: men ca pable of rendering the best service to the inventor
rom fthe experience practically obtained while ex rom fthe experience practically obtained while ex-
aminers in the Patent Office: enables MUNN \& Co to do everything appertaining to patents BETTE row 10 2 tars
 ery letter,describing some invention,which comes to this office. A positive answer can only be had by the Commissioner of Patents. An application consists of a Model, Drawings, Petition, Oath, and full Specification. Various official rules and formalities must also be observed. The efforts of the invento to do all this business himself are generally with-
out success. After great perplexity and delay, he is susually glad to seek the aid of persons experi-
inder perplexity and delay, enced in patent business, and have all the work done over again. The best plan is to solicit proper
advice at the beginning. If the parties consulted are honorable men, the inventor may safely confide his ideas to them; they will advise whether the im provement is probably patentable, and will give
him all the directions needful to protect his right.

How Can I Best Secure My Invention?
This is an inquiry which one inventor naturally This is an inquiry which one inventor naturally
asks another, who has had some experience in obtaining patents. His answer generally is as follows, and correct
Construct a neat model, not over a foot in any di-
mension-smaller if possible-and send by mension-smaller if possible-and send by express,
prepaid, addressed to MUNN \& Co, 37 prepaid, addressed to MunN \& Co., 37 Park Row,
together with a description of its operation and together with a description of its operation and
merits. On receipt thereof, they will examine the invention carefully, and advise you as to its patentability, free of charge. Or, if you have not time, or the means at hand, to construct a model, make as good a pen and ink sketch of the improvement
as possible and send by mail. An answer as to the as possible and send by mail. An answer as to the
prospect of a patent will be received, usually by prospect of a patent will be received, usually by
return of mail. It is sometimes best to have a return of mail. It is sometimes best to have a
search made at the Patent Office; such a measure often saves the cost of an application for a patent.

Preliminary Examination.
In order to have such search, make out a written description of the invention, in your own words,
and a pencil, or pen and ink, sketch. Send these, with the fee of $\$ 5$, by mail, addressed to MUNN \& Co., 37 Park Row, and in due time you will receive an acknowledgment thereof, followed by a written
report in regard to the patentability of your imreport in regard to the patentability of your im-
provement. This special search is made with great care, among the models and patents at Washington, to ascertain whether the improvement presented is patentable.
To Make an Application for a Patent. The applicant for a patent should furnish a model of his invention if susceptible of one, or if the in-
vention be a chemical production, he must furnish samples of the ingredients of which his composition consists. These should be securely packed, the inventor's name marked on them, and sent by ex-
press, prepaid. Small models, from a distance, can often be sent cheaper by mail. The safest way to remit money is by a draft or postal order, on New York, payable to the order of Munn \& Co. Persons who live in remote parts of the country can usually purchase drafts from their merchants on their New York correspondents.

Foreign Patents.

The population of Great Britain is $31,000,000$; of France, $37,000,000$; Belgium, $5,000,000$; Austria, 36 ,
000,000 ; Prussia, $40,000,000$, and Russia, $70,000,000$ 000,000 ; Prussia, $40,000,000$, and Russia, $70,000,000$
Patents may be secured by American citizens in all these countries. Now is the time, when business is dull at home, to take advantage of these immense foreign fields. Mechanical improvements of all kinds are always in demand in Europe. There will never be a better time than the present to take patents abroad. We have reliable business connec-
tions with the principal capitals of Europe large share of all the patents secured in foreign countries by Americans are obtained through our Agency. Address Munn \& Co., 37 Park Row, New York. Circulars with full information on foreign patents, furnished free.

Canadian Patents.
In order to apply for a patent in Canada, the applicant must furnish a working model, showingthe peration of the improved parts; the model need not to exceed eighteen inches on the longest side. express, or otherwise, to Munn \& Co., 37 Park Row. Also remit to their order by draft, check, or postal order, the money to pay expenses, which are as follows: For a five years' patent, \$75: for a ten years
patent, $\$ 95$; for a fifteen years' patent, $\$ 115$. The five and ten years' patents are granted with privi lege of extension to fifteen years.

Trademarks.
Any persons or firm domiciled in the United States, or any firm or corporation residing in any foreign country where similar privileges are extended to citizens of the United States, may regis-
ter their designs and obtain protection. This is ter their designs and obtain protection. This is
very important to manufacturers in this country, and equally so to foreigners. For full particulars address Munn \& Co., 37 Park Row, New York. Design Patents.
Foreign designers and manufacturers, who send goods to this country, may secure patents here up-
on their new patterns, and thus prevent others on their new patterns, and thus prevent others
from fabricating or selling the same goods in thas market
A patent for a design may be granted to any per-
son, whether citizen or alien, for any new inal design for a manufacture, bust, statue, alto relievo, or bas relief, any new and original design for the printing of woolen, silk, cotton, or other fakrics, any new and original impression, ornament ${ }^{1}$ pattern, print, or picture, to be printed, painted, ast, or otherwise placed ticle of manufacture.
zens as to foreigners. For full particulars send for zemphlet to MUNN \& Co., 37 Park Row, New York. Copies of Patents. Muns all cases they may expect an honest opinion. For such consultations, opinions, and advice, no charge is made. Write plain; do not use pencil or pale ink ; be brief.
All business committed to our care, and all conIn all matters pertaining to patents, such as co ducting interferences, procuring extensions, drawing assignments, examinations into the validity of patents, etc., special care and attention is given, For information, and for pamphlets of instruction dress
PUBLISHERS SCIENTIFIC AMERICAN, 37 Park Row, New York.
OFFICE IN WASHINGTON-Corner F and 7th
T HE "Scientific American", Is printed with

[^0]: IRON PIA NVERRS,

