
a Weekly journal 0f practical information, art, science, mechanics, Chemistry, and manufactures.

 [NEW SkRIEs.) ${ }^{26 .]}$ Postage prepaid. | THE GRAND CENTRAL RAILWAY DEPOT. | ashes. The farmers have fled out of the ash-covered country |
| :---: | :--- | planted in a richly manured soil and in warm, sheltered poof the depot at 42 d street, New York city, built for the ac- by the scoria; but with what chance of saving their live geners, if we except 8 . augusta, which frequently attains a

THE GRAND CENTRAL DEPOT, NEW YORK CITY.
commodation of the New York Central and Hudson River,
New Yock does not appear. To and appearance, the present erup
Narlem, and New York and New Haven Rail-
tion seems likely to become a calamitous event for Iceland.' ways. As we have already fulls described this remarkable ways. As we have already fully described this remarkable structure, there is no need to do more than recapitulate its proportions, which are 652 feet in length and 199 feet 2 inches in width. The roof is supported on 32 semicircular trusses, which are spaced 20 feet 4 inches between centers, extend ing from a point 2 feet below the rails to an elevation of 04 feet from the springing line to the extrados of the arch. Each truss has at its foot two tie rods $2 \frac{1}{4}$ inches in diameter, with a turn buckle at the nid-length. The pitch of the roof is formed loy rafters secured to the top chord of the arch The trusses weigh about forty tuns each, and were raised in sections by means of a movable staging 80 feet high, 160 feet long, and 30 feet wide, moving on ways, and shifted along step by step as the work of raising the trusses progressed. About $8,000,000 \mathrm{lbs}$. of iron were used in the struc ture, $10,000,000$ bricks, and 20,000 barrels of cement.
The car house is lighted through three skylights extending over the entire length of the roof-one on the center, double pitched, and a single one on each side of the center, and having altogether 80,000 square feet of glass-nearly two acres. The north end is closed by an iron front, the south end by the building containing the principal offices of the companits.
The roof covers nearly three acres, the station itself about four acres. The station has separate tracks for the trains of each company, besides those for the Fourth avenue horse cars, which run into and to and from this station, which was opened for traffic October 7, 1871. The gas burners of the building are lighted at night by electricity, 25,000 feet of electric wire being used, and 20,000 feet of gas pipe. The 144 steam radiators are heated 'y 15 miles of steam pipe The roof is ventilated by six lines of ventilating slats, 6 feet high and 8 inches wide, with Z-shaped intervals between the slats.

Great Volcanic Eruption in Iceland

Mr. Magnusson, of Cambridge, England, says :-"On March 29th, the fall of the ashes was so excessive that it covered the eastern country sides, Jökuldal especially, with a coat six inches at its thickest; and all that day, altnough it was bright and sunny, the people spent in absolute pitch darkness. Fountains and rivulets were dammed by the ashes, and every mountain stream, always of a crystalline purity in Eastern Iceland, where there are neither glaciers nor moraine, ran dark and muddy between banks covered with drifts of

A BEAUTIFUL PALM TREE.

The plant shown in our engraving is one of the most grace. ful members of the class, and diserves to become popular in
hight of from 30 to 40 feet. treated as a warm conservatory plant. Both the last named plants are chiefly remarkable for their fine foliage; but some of the smaller growing kinds, as s. ovata and the even more beautiful s. regince, are well known flowering plants, generally grown in a warm conservatory or in a humid plant stove. These species will, however, both grow and flower well in warm, sheltered positions out-of doors, and form striking objects massed along with musas, ${ }_{\text {p }}$ palms, and the larger arads. Our illustration gives an ex cellent idea of the noble port assumed by a well grown spe cimen of strelitzia Nicolai, which is common as a half-hardy foliage plant in many continental gardens.

Railway Specd on Horseback.

A fifty mile riding match lately came off at San Francisco, Cal. between two noted riders, Mowrey and Smith. The Alta says: It was a contest, as advertised, for $\$ 1,000$ a side, with the conditions that each man should have ten horses, and be compelled to change horses, or mount and dismount, in each mile.
Both men were of a tallish, slender build, well adapted to long hours on horseback. Of the two, Mowrey exhibited greater strength and activity, and as an expert in the mode of mounting and dismounting is by far Smith's superior. An evidence of this was clearly perceptible in the fact that he gained on an average not less than two seconds at every change. His style was that of throwing himself from the saddle by a spring from his seat, and in mounting to spring from the ground, assisted by the horn of the saddle and catch his seat while the horse was frequently under full headway. Added to this, he was greatly assisted by having a helper on horseback, who invariably accompanied him on the start and outcome by checking and starting his horse, while Mowrey had only to jump on and off. On the other hand, Smith had little or no assistance, except the equipage of his saddle, which was brought into requisition in a man. ner that showed conclusively his appreciation of its desirable assistance.

Mowrey came in a quarter of a mile ahead in 2 hours, 2 minutes, $36 \frac{1}{2}$ seconds, Smith being 16 seconds behind. The quickest mile wes made in 2.04 minutes, the slowest in 3015 minutes.

A GOOD welding composition is made of boras fused with one sixteenth its weight of sal ammoniac, cooled, pulverized, and combined with an equal weight of quick lime. The compound is sprinkled on the red hot iron, and the latter re placed in the fire.

Yrimutific gemmerian.

MUNN \& CO., Editors and Proprietors. PUBLISHED WEEXIY AT
NO. 37 PARK ROW, NEW YORK

O. D. MUNN.
A. H. BEACB

TERM8.
One copy, one year, postage included......
en coples, one year, each 82 70, postage included
ter coples, same rate each, postage included.
cor By the new law, postage is payable in advance by the pabilishers, and the subscriber then receives the paper free of cnarge.
Notr. - Persons sabscribing will please to glve their full names, and Post Offlce and State address, plainly written, and also state at which time they Wish thetr subscriptions to commence, otherwise the paper will be sent from
the recelpt of the order. When requested, the numbers can be supplied from Jannary 1st, when the volume commenced. In case of changing reat dence, state former address, as well as give the new one. No changes can be made unless the former address is glven.

VOLUME XXXII., No. 26. [New Series. 1 Thirtieth Year.
NEW YORK, SATURDAY, JUNE 26, 1875.

the end of another volume

The present issue of this paper closes the first half of the year. Next week we shall commence a new volume.
Some persons to whom the Scientific American was not previously known concluded six months ago to try it, and to them we say: Now, after receiving 26 numbers costing $\$ 1.60$ how do you like it? We hope that none are disappointed We hope that every one feels that he has had a full equiva lent for his money. And we hope that all who are satisfied that they have had their money's worth will evince their sat isfaction by remitting $\$ 3.20$ for th9 coming year, or $\$ 1.60$ for the next six months.
Clubs may be formed on the usual terms, and the same reduction will be made on a number of names as offered in last January. To all persons who wish to keep apace with the progress of the age, the Scientific American is indispensable. No other publication contains the variety of valuable reading, and instead of forty-five thousand-our present actual weekly circulation-we think the publication deserves the subscription of one hundred thousand. What say our friends? Shall we have it? It is for them to answer.
Remit, by registered letter, draft, or postal order, to
MUNN \& CO.,
Publishers Scientific American,
37 Park Row, New York city

THE KEELY MOTOR DECEPTION

During the past year and a half, we have had occasion, several times, to allude to this latest contrivance, the chief purpose of which appears to be the wriggling of money out of silly people, numbers of whom are found to invest in it-just as they do in lottery tickets-expecting or hoping to win a prize.
The thing was started over two years ago, when it was given out that one Keely, of Philadelphia, Pa., had made a marvelous discovery, namely, a new motive power, in which an enormous force was generated without expense, without the employment of fuel, fire, electricity, chemicals, or other agency; in short, a veritable perpetual motion. The only apparatus involved was a few strong metallic clyne,
taining air, into which water was admitted, when, presto, a cold vapor was instantly produced, having a force of 30,000 lbs. per square inch, more or less, capable of useful application in the driving of all kinds of mechanism. Thus were the days of steam and its costly fuels numbered, and the value of coal property diminished; while settled principles of Science, demonstrated by Joule, Faraday, and orher emi nent worthies, were toppled over as by an earthquake. In one of our comments we designated the Keely Motor a
one of the perpetual motion deceptions, by which the owners claim to generate a great force out of nothing. We stated that "once in a while they have a juggling exhibition of the thing for the purpose of selling stock. Keely or one of his confederates is the operating juggler. The power ' generator' is a combination of small tubes or cylinder3, communicating by pipes. First they run water through, then air, to prove that there is nothing within, and tha; the show is 'honest.' Then Keely turns a faucet, and ' now yoa see it.' The pressure gage goes up. He turns again, and 'now you don't' see it. The gage falls.'
Transparens as this deception is, it is a serious fact that it has been indirectly countenanced by numbers of intelligent persons; and the implied sanction they have given to it has led many less informed individuals to stake money for its shares.
In the Scientific American for May 2, 1874, we devoted $t_{\text {wo }}$ columns to an account of one of the Keely performances like that above described, and mentioned the names of C. H. Haswell, W. W. Wood, U. S. N., S. Parish, Joseph Patten, and other engineers and mechanics who were present, and lent their names to its support. Professor Haswell wrote quite an ingenious report in its favor. A force of $10,400 \mathrm{lbs}$. to the inch was by him certified to have been developed on that occasion. It was then given out that a new apparatus, of still greater power, was in course of construction, to be finished within a few weeks, which would be still more conclusive and satisfactory in its results; that until this new apparatus was ready, and the patents, then in progress, were secured, the matter was not to be fully explained.
Since that time the new apparatus has been completed, several private exhibitions have been given, and the interested parties are now, it seems, desirous of bringing the "great discovery" fully before the public. We judge that this is the case, because they have lately communicated wuch information to various members of the press.
We take the following, as a sample, from the New York Times of June 11, 1875:

n Correspondent.]

Philadelphia, Thursday, June 10, 1875.
"The mechanical and scientific world has been greatly excited of late by the discovery of a new motive power by a Mr. John W. Keely, of this city. The lately discovered motor is generated, as the gentleman claims, from cold water and air, and evolves into a vapor more powerful than steam, and considerably more economical. It is proposed by this ne w in vention to revolutionize the world, and turn machisery turvy. Steam will be a thing of the pall the needs of man for the uses to which steam is now applied Just what this vapor is, and how it is made, the discoverer refuses to make plain, or divulge his hidden secret, until he has letters patent taken out in all the countries of the world which issue patent rights. This service alonewill cost about $\$ 30,000$, and will not be completed until three or four monthshence. Mr. Keely is very reticent on the subject of his discovery, and referred your correspondent to his attorney, Charles B. Collier, Esq. The latter gentleman said that a private view of the working of the motor had been made on the 10 th of November, 1874, before a number of capitalists, and that only three weeks since another exhibition had been given before a number of gentlemen from the New England States. These latter were so well pleased with the modus operandi, and believed so firmly in the ultimate supersedure of steam by the new porer, that they formed a stock company, purchased the patent right for the six New England States, and paid $\$ 80,000$ cash immediately for their share in the invention, and are
ready to forward $\$ 200,000$ more as soon as called upon. They ready to forward $\$ 200,000$ more as soon as called upon. They eady to manufacture the engines and necessary apparatus as soon as the proper patents are secured.

HISTORY OF THE DISCOVERY
Mr. Keely alleges that the discovery of this power was purely accidental. Up to within a short time he was a poor man, but, having a wonderful degree of natural mechanica skill, he devoted all his time for the past fourteen years to xperiments with water with the view of procuring a mo tive power from it. He was engaged upon an idea of his
own regarding the force of columns of water one day, when he a cidentally discovered the vapor he has harnessed. He studied the subject, ascertained how it was generated, learned its power, and thenceforth applied himself solely to the perfection of this idea, working night and day, for a num ber of years, until his efforts were crowned with success. The apparatus by which this power is made is termed a generator" or " multiplicator," and the vapor is then passed engine, where it drives the pistons and sets the engine in motion. The "generator" is about three feet high, made of Austrian gun metal, in one solid piece, and will hold about ten or twelve gallons of water. It is four or five inches
thick, and made to stand the very heavy pressure of 20,000 to 30,000 pounds of vapor to the square inch. The inside is composed of a number of cylindrical chambers, connected by pipes, and furnished with cocks and valves. The "reservoir" is about six inches in diameter and forty inches long, nd is connected with the "generator" by a pipe which. is of about one eighth of an inch. Connected with both " geneof about one eighth of an inch. Connected with both" gene-
rator" and "receiver" is a "standpipe" of brass, about two and a half inches in diameter and three feet high, having a spherical chamber at the bottom, made in two parts,
by flanges, and connected to the pipe uniting the "generator" and "reservoir." The vapor generated in the multiplicator is conveyed to the reserv jir, which contains numer.
ous pipes, and from there, by a " feedpipe," to the engine The engine is of peculiar construction; but the inventor claims that the vapor can be attached to any ordinary engine now in use, with very slight alteration. Sceam could not pass through the connecting pipes which are used on this apparatus, since the bore is only about the dimensions of a knitting needle. "In five seconds," said Mr. Keely, "I can supply 2,000 pounds of vapor to the square inch,and enough to run a train of ten cars from Philadelphia to New York and return.'
With a Keely " motor" attached to a steamer, the voyage of the world can be made without coal.
Mr. Keely says that the first public exhibition will be upon the Pennsylvania Railroad, when he purposes to take a train from this city to New York and return. The cost of the apparatus will range from $\$ 500$ to $\$ 2,500$, according to the size and finish desired.
It is evident, from the character of the gentlemen who are inter 3 sted in the "Keely Motor Company," and the amount of money they h ave advanced, that they regard this' in vention as the wonder of the nineteenth century. About four millions of dollars are already involved in the success of this new invention.
The gentlemen interested in the schems in New York are Messrs. E. T. Throop, Charles G. Francklyn, Charles Lamson, Sergeant \& Cuttingworth, W. D. Hatch, William W Wright, W. B. Meeker, J. J. Smith, A. H. Elliott, John M Williams, and J. S. Andrews.'
The foregoing presents the most recent statements con cerning the new motor, as derived from the parties themselves. We will now add a brief "official account" of the actual working of the device, at the great trial mentioned above, made November 10, 1874, as certified by Mr. Collier, the company's counsel and reporter, and published by him in pamphlet form at that time, for the information of the stockholders.
'A short tube, carrying upon its end a reaction wheel or 'Barker's mill,' having two arms of about two and a half inches long each. was screwed upon the reservoir, and, at 9:03 P. M., was put into rotation at a very high velocity, by the manipulation of two cocks. At $9: 05 \mathrm{P}$. M., the reaction wheel was removed, and connection applied to a small beam engine, which was rotated at 400 revolutions. At 9:08 P.M., the reaction wheel was again rotated until 9:09 P. M." The machinery was then stopped, and the gaseous fluid allowed to escape against a candle flame and blow it out. At $9: 15$, the engine was run again for a few turns. "At $9: 17 \mathrm{P}$. M., the reaction wheel was run again, and at $9: 20$, the experiments being concluded, the multiplicator was taken apart and inspected by those present. There was no heat perceptible in any part of the apparatus."
The dimensions of the "small beam engine" are not given. It is stated by the learned counsel to have been of "peculiar construction, not susceptible of brief description." Judging from the Barker wheel, with $2 \frac{2}{2}$ inch arms this " beam engine" was probably about the size of a dollar toy engine. These remarkable pieces of machinery were, according to this report, run for a minute or two at a time, at various intervals, extending over an entire period of 15 minutes. There was no heat and no noise save that of running water when the ear was placed against the multiplicator.
Th

The report, after giving the foregoing facts in regard to actual performances, summarizes the results, which we condense as follows: 1. The invention produced a series of gaseous expulsions of $2,000 \mathrm{lbs}$. per square inch. 2. The force was almost instantly produced. 3. It moved instantly through a distance of 12 feet. 4. It was attended with no noise. 5, 6. Nothing was nor could have been introduced into the apparatus to produce the force. 7. No heat, electricity, or galvanic action was discernible, except that electric sparks were observed in the spur gearing of the engine, caused by friction. 8. Hydrant water, 26 lbs. to the inch, was admitted. 9. The water was drawn off unchanged after the performance. 10. The vapor had no smell or taste, and did not burn. 11. The interior of the apparatus was found to contain no residuum or substance other than air and water. 12, 13. The operations were conducted by gas light. Every faclity for the closest investigation was offered to the persons present.
The counsel then adds that the object of his report is not to make known the precise nature of Mr. Keely's invention, " nor will this be done until the specifications, drawings, models, etc., now in progress, necessary for the procuration abroad and in this country of letters patent, are completed and deposited.'
Following the counsel's signature to this report is a certifcate by Wm. Boekel, Mechanician, Wm. H. R'therford, Chief Engineer, U. S. N., and J. Snowdon Bell, to the effect that they were present, that the report of the facts is correct; and the conclusions of Mr. Collier, given in the summary, they say " we fully endorse, as being, in our judgment, the correct conclusions." A certificate from B. Howard Rand, M. D., Professor of Chemistry in Jefferson Medical College, is then given; the Professor says he has read Collier's report, and certifies that the " absence of heat, electricity, or galvanic action as resultants, together with the negative qualities of the produced gas or vapor, lead me to the conclusion that the result, alleged to have been produced, was by some agency or power not known at present to chemists."
The opportunities for the acquisition of knowledge by this Jefferson College Professor seem to have been very limited. We have given above the latest accounts of this latest attempt to impose upon the credulity of the public, as written by the parties themselves and backed by their willing as
sistants. The deceptions of the whole scheme are so transparent that it hardly seems credible that persons of sane minds can be found who are willing to invest. Never theless, we hear from a reliable source that quite a number of well known business men have invested money in the scheme, andin one instance we were told so by the party shimself. He had paid five thousand dollars down, and fully himself. He had paid five thousand dollars down, and fully
believed the thing to be a great discovery, and expected to believed the thing to be a great discovery, and expected to
realize a large fortune from his investment. On all other subjects this gentleman was rational and intelligent; but in respect to the Keely motor he was badly hallucinated. He was present at the trial above referred to, saw $2,000 \mathrm{lbs}$. the gage, and came away perfectly satisfied.
The question is asked: How could so great a pressure as 2,000 or 10,000 lbs. per square inch be produced, allowing that it really was exhibited as stated? We think that any ingenious mechanic, by means of a hydraulic jack and a small pipe, could readily produce and exhibit such a pressure and could, by turning a faucet, drive a whirligig for the
space of sixty seconds, or from $9: 08 \mathrm{P}$. M. to $9: 09 \mathrm{P}$. M., as space of sixty seconds, or from $9: 0$
the learned counsel gravely reports.
the learned counsel gravely reports.
Keely, it will be noticed, talks ab
Keely, it will be noticed, talks about his studies regarding the force of coilumns of water, and describes the use of water pressure in his "generator,"" "multiplicator,"
etc. Well, now, Keely might, if he wanted to, get up an honest show of air pressure by arranging a series of short water tubes so as to concentrate the combined weight of their water against air confined in a suitable chamber. Allowing, for example, that he had ten communicating water tubes, each holding a cubic foot or 62 lbs . of water, he might, by turning a faucet, fill the tubes from the hydrant, and con centrate 620 lbs . weight on the confined air, which, if con ducted to a gage, would indicate 620 lbs . pressure; this air might drive a small wheel from 9:08 P. M. to $9: 09 \mathrm{P}$. M.; it would moreover be a cold vapor, without smell nor taste; it would blow out a candle, but not burn; there would be no noise except that of running water; there would be no residuum save air and water; no heat, electricity, or chemical action would be involved.
A curious arrangement of water and air tubes, in which, by turning faucets, the water weights are concentrated. producing pressure, was illustrated and described in the Scientific American of April 4, 1868, page 212. It was patented by James R. Cole, of Tennessee, December 10, 1867, as a water James R. Cole, of Tennessee, December 10, 1867, as a water
elevator. It might be bad for Keely, if he should prove to elevator. It might be bad for
be an infringer of this patent.
There is also a patented arrangement of mercurial tubes for concentrating the weight of mercury and air columns in an analagous manner. We allude to Quinn's patent steam gage, 1866. It is possible that Professor Rand, Professor Has well, Chief Engineer Rutherford, U. S. N. Chief Engineer Wood, U. S. N., and other advocates of the Keely uotor, are not acquainted with these devices.
One of the strangest develnpments connected with the Keely motor is the implicit faith which many gentlemen, in this community, of tried experience and business capability, have given to the enterprise. They have gielded not only faith but their money. We can account for this only by supposing that they mistake mere pressure for motive power But mere pressure is not motive power, it is simply a result ant of motive power. A very slight motive power, if suff ciently long continued and properly applied, may produce the greatest pressure. A weight of only a single pound, hung upon the excremity of a suitable lever, is sufficient to produce a pressure, at the opposite end of the lever, of 10,000 lbs., or more, to the square inch. To persons not familiar with the laws of mechanics (and this, we think, is probably the situation of most of the Keely investors), the exhibition of a gage, showing $10,000 \mathrm{lbs}$. pressure, migh $\grave{\imath}$ readily be re garded as proof positive of an enormous power behind the gage : whereas the actual power, concealed from view, migh ve only a weight of one pound.
In cases of this kind, when a body is lifted or a pressure produced, the inquirer should take pains to ascertain what the extent of the original moving power or weight is. If this precaution be taken, the falsity of motors like Keely's may be at once detected. In the example of Keely, the certificate of Collier shows that a hydrant force of 264 lbs . to the inch is always required to run the machine. This force, if applied to a common wheel or engine, would produce a considerable amount of constant mechanical power. But the moving force is nearly all wasted in Keely's device, for he is only able to drive a toy engine for a minute or two at a time. This does not look much like driving a train of cars from Philadelphia o New York, or crossing the ocean without the consump tion of coal.

THE BASTIE PATENT GLASS.

We publish on another page an account of some recent ex periments with this novel material, together with the in ventor's account of the process as contained in his patent, from which we also give a drawing of one of his furnaces. The apparatus consists of a chamber for heating the glass very hot; and while in this condition, it is quickly plunged into a hot tempering bath of oil, wax, resin, tar, or pitch. This seems to be a simple and easily executed process, which f practically effectual, ought not to increase the expense of he glass but very little. The owners of the patent claim hat 5 per cent above the ordinary cost of glass will cover the expenses of the improvement. On this point, we shall hope ere long, to have further information.
It would appear that Professor Egleston, of Columbia College in this city, who has been employed by the patentee to show up the merits of the new glass in public, and who during the two months that he has been engaged, made any
personal experiments with the simple process itself. All
that ne has done is to exhibit glass, brought from France, furnished by the patentee, testing them with samples of common glass picked up in the shops here. Whether the patent glass tried by Professor Egleston was in part treatmened, as glass sometimes or consisted only of com mon glass, subsequently treated by the new process alone, the experimentor was unable to say. The statements of the the experimentor was unable to say. The statements of the proving common glass, on a commercial scale, have yet to be demonstrated.
The patentee's agents in this country deny that the alleged invention of Mr . Pieper, mentioned in an item in our paper of June 12, had the effect to arrest the negotiations for the sale of Bastie's patent in Germany. On the ontrary, they inform us that the sale of Bastie's pro
he German glass makers was concluded on May 9th.

a NEW FORM OF PATENT LITIGATION

In a recent article, commenting upon the relative number of patent litigations in England, where they grant a patent o every applicant, without official examination, and in his country, where we reject over five thousand applicant for patents yearly, and employ a standing force of five hundred officials to examine, or assist the examiners, we showed
that in England, out of thirty thousand law cases yearly, only eight were patent litigations. We further intimate hat a very large amount of patent litigation, of a character wholly unknown in England, was carried on here, and was itigations bunct the P atent such as re-examinations, appeals to the Board of Examiners, interferences, appeals to the Commissioner in person, appeals from the Commissioner to the District Court, etc.
A new wrinkle in this sort of litigations, and a new direc ion for appeals, has lately appeared, which seems to indicate that the time has come when Congress should, by the adop tion of wise legislation, put an end to this whole business of Patent Office quarreling.
Among otherduties of the Secretary of the Interior, he is required to sign all patents after they are prepared, passed and approved by the Commissioner of Patents.
On a recent occasion, when the Commissioner, after a long and full argument of the matter before him, had decided the ase of Prescott cs. Edison, in favor of Prescott, ordering a patent to issue in the joint names, the defendant applied to
the Secretary of the Interior and petitioned him not to sign or issue the patent. The subject of controversy was a tele graph apparatus. The Secretary granted the request, and decided to hear the argument. This was on the 20th of March, 1875, and no decision has been as yet reached. Mean time the contending parties have marshalled their lega forces before the Secretary, consisting of six of our mos and and expensive lawyers, have argued and rearg th subject, for the Secretary's consideration. If one dissatis fied applicant may thus occupy the Secretary's time, all applicants ought to have the same privilege. If the Secretar may nullify one legitimate decision of the Commissioner Patents, he may nullify all
The money costs of this one litigation before the Commis sioner and the Secretary are stated to have reached, at the said, is an interested party on the one side, and the Wester nion Telegraph Company on the other. Jay is doing all he an to injure the Western Union Company by running dow its stock and inflating the stock of a rival company, of which e owns the control.
This case is a little more prominent and has been more exensive than many that are litigated at the Patent Office. But it is notorious that a very large proportion of the time of the Patent Office officials is devoted, in one way or an other, to these litigations, which, in the aggregate, involve
great expense, but would become obsolete, as they are in great expense, but would become obsolete, as they are in
England, if we were to adopt the English system of permit ing the applicant to make his own examination if he so de sires, but confining the duty of the Patent Office to the prompt issue of a patent to every applicant whose papers re presented in proper form.
It is alleged by the advocates of the American system hat, if our official examinations and Patent Office wrangles were abolished, then the courts would be overwhelmed with patent litigations. But the experience of other nations shows hat no such result would ensue. In England, as before stated, they have only eight patent litigations before the courts per annum; while in France, Belgium, and other countries, where no official examination and no Patent Office itigations take place, the number of patent cases brought before the courts is very small.

COMMERCIAL SPONGES

It is sad to consider how much we lose in every walk of ife through lack of a little observation. There are few stonemasons who, like Hugh Miller, are led to become noted geologists by noting and studying the beautiful fossils in the anes they chisel. A butcher may cut up beeves and pork ers by the hundreds, or a fisherman spend a long life on the
shore, without noticing the most obvious points of interest shore, without noticing the most obvious points of interest
and instruction in the physical structure of his victims; and only when a naturalist calls his attention to the beautiful adaptations, which have before passed unnoticed, will he hav his interest profoundly excited, which may ever after give him a new motive and zest in his work. The most of us will use sponges in an indefinite variety of ways, all our lives, without even once stopping to think how they were formed
whether they are plants, animals, or neither, or what are The ording and habits.
The ordinary sponges of commerce, which we use so exensively, have but little resemblance to animals or plants, and belong to a class of organic bodies concerning the affini ies and proper classification of which there has been much doubt. And this doubt has led naturalists to apply the ques tion-begging appellation of zoöphytes, or plant animals, to these and similar organisms. They are now generally con sidered members of the animal kingdom. The parts we use re the mere skeletons, composed of a kind of horny sub stance. The animal itself is a soft, jelly-like, amorphous mass, which fills up all the intercellular spaces, lines the tu bular canals, and forms a jet black or sometimes a dark pur plish skin on the outside, covering the whole skeleton, ex cepting the larger openings, which project beyond its general surface. In this form the sponge exists in the water, and out of its native element, is hard and glistening on the out side, and very strongly resembles a piece of liver.
The mode of life in this low order of existence, which is regarded as a compound animal, is very simple, and we wouid be disposed to call it extremely uneventful. Sponges row, by a kind of lichen-like root, to some forsign objec n the sea floor, and never move from their position; they have no power to contract or expand their body as a whole or any part of it: and they are quite insensible to every sort of irritation. Their only power seems to be that of absorb ng large quantities of water, which they again yield up on ressure without any injury to their texture. The water which permeates their whole mass, and maintains a constan circulation through it, keeps the skeleton soft and elastic brings to the animals the air and food on which they subsist and carries away waste matter from the body.
On examination of a sponge skeleton, it will be seen that the porous surface is finer and of closer texture than the in erior, that there are large apertures scattered indiscrimi ately over the surface, and between these are much fine penings, covering the complete outer surface of the sponge The latter are called pores, and serve as channels of entranc to the water, which, after circulating through the body by means of the tortuous and branching canals which make up its inner skeleton, passes out at the larger openings. These chimney-like apertures are called oscula, but the name is a misnomer, for they are, in reality, vents. They vary in num ber in the different species, and are sometimes reduced to a ingle one. By what force the water is made to circulate hrough the sponge mass is not definitely known. Some have ttributed it to vibratile ciliæ, planted within the porous ca als which, by their motion, create a circulation in the water Others ascribe it to the principle of osmosis, by which mem branes of all animals, and many other porous substances transmit fluids and gases according to their density and pow r to act on the transmitting substance.
When obtained for commercial purposes, the animal mat er can be removed by soaking it a long time in salt water and then-after it is rotted by this means-rinsing it out This leaves the horny skeletons just as we use them.
The finest sponges of commerce come from the Mediterra nean sea. Our best bath sponges are doubtless from this 10 ality, but the coarser sponges we see most commonly are largely from the coast of Florida or the Bahama Islands, Sponges are found abundantly in tropical waters generally and perhaps nowhere more abundant than in the seas of the Australian islands. They gradually decrease in numbers to wards the colder latitudes till they become entirely extiuct. They vary much in shape. Some are beautifully shaped like vase, others are semi-cylindrical, others nearly flat like an open fan; some are branched like the cpened fingers of a hand, and are called glove sponges, and in others these branches seem to be reduced to only one, which is shaped somewhat like a club. These different shapes may belong to one species, and the differences are due, so far as known, o the fact that the first mentioned are found in deep water and they grade, in the order described, up to the last, which grow in much shallower water
Sponges are not confined to recent seas, though the com mercial ones are not known to have existed earlier, because the keratose matter furnishes hardly favorable conditions for petrifaction. In the oölite and chalk formations, sponges containing flinty spicules were very abundant; and in most of the earlior formations, large sponges containing calca. reous spicules abounded. These very closely resemble corals, and have been mistaken for them by some of our best geologists. The spiculæ or needle-shaped particles, which are often microscopic in size, are not thrown in without order, but are arranged to support the skeleton. The horny sponges do not secrete or deposit spicules, but these are sometimes found within the skeleton in broken and disordered form, which shows they were taken in from without.
There is an elastic sponge, as it is called, that is somewhat largely used now as a substitute for curled hair in stuffing beds, cushions, car seats, etc., but this is an entirely different thing from the sponge of commerce. Before it was ased for this purpose, it was a worthless sea grass, growing abundantly among corals in rather shallow water.

Terrible Earthquake in South America.

It is reported that an appalling earthquake has lately taken place on the Venezuelan frontier of New Grenada. The destruction was severest in the Valley of Cucuta, in the province of Pamplona, latitude $7^{\circ} 30^{\prime}$ N., longitude $7 \boldsymbol{2}^{\circ} 10^{\prime}$ W. It is said that 16,000 lives are lost by the calamity.

A PUTTY of starch and chloride of zinc hardens quickly, and asts, as a stopper of holes in metals, for months.

A NEW REGISTERING THERMOMETER.

This new apparatus, represented in our engraving, is designed to measure and register the temperature of ocean depths, of deep borings, or other inaccessible places, or of any locality at any desired time. It is composed of a mercurial thermometer, curved in inverted V shape, and fixed on a scale graduated to Fahrenheit degrees. The cylindrical tube which contains the mercury is slightly bent at the zero point. The instrument is connected with a clock, on the lower portion of the dial of which is a supplementary hand pointing to the numbers 1 to 12 . By placing this pointer at any determined number, when that hour is reached the clockwork causes the thermometer to revolve one revolution. The effect of this is to break the mercurial column at the bent portion at 0°, and turn it into the other leg of the tube, where it remains, its hight indicating the temperature at the time for which the dial was previously set.
This will be more clearly understood This will be more clearly understood
from the illustration. The figure on the from the illustration. The figure on the
left shows the apparatus set to indicate left shows the apparatus set to indicate
the temperature at 11 o'clock, the time of the temperature at 11 o'clock, the time of
setting being 10:45. On the arrival of the setting being $10: 45$. On the arrival of the
hour, the thermometer turns as shown by the arrows in the second figure; and the mercury, passing out into the other leg, remainsat the point it then marked on the scale.

THE BASTIE TOUGHENED GLASS.

We recently witnessed a number of interesting experiments upon the Bastie toughened or tempered glass, exhibited by Professor Thomas Egleston, of the School of Mines of Columbia College, in the presence of an audience composed mainly of the glass merchants of this city. Professor Egleston has been investigating the properties of the new material for two months past; but his experiments, though tending to show the remarkable strength of the glass, have given him no information as to the correctness of the process by which the article is prepared. The mechanical apparatus alleged to be used in the process is given in the annexed engraving from the patent drawings.

We summarize Professor Egleston's experiments briefly as follows:
(1). Impact of elongated rounded end steel balls entirely inelastic, with plates secured horizontally: (a) Weight of ball, 2 oz. Best English plate glass, $\frac{1}{1} \frac{1}{8}$ inch thick, broke at fall from hight of 15 inches. Bastie glass of equal thickness broke at fall from 4 feet 6 inches. (b) Four oz. ball. Ordinary glass broke at fall from hight. of 1 foot. Bastie glass
broke at fall from hight of 3 feet 6 inches. (c) One lb. ball. Ordinary glass broke at fall from hight of 13 inches. Bastie glass broke at fall from hight of 3 feet. The thicknesses of glass broke at fall from hight of 3 feet. The thicknesses of
the glass varied in these several experiments, but in each one the Bastie and the common glass were identical. (d) Plate glass inclined at about 45°; a low quality glass, such as used in conservatories, was employed. Two oz. ball. Unprepared glass broke at fall of 4 feet. Bastie glass, after withstanding 36 shocks at one point, ruptured with a 9 feet fall. (e) Eight oz. ball. Common glass, $\frac{1}{2}$ inch thick, broke with a fall of 3 feet 9 inches. Bastie glass, $\frac{1}{4}$ inch thick, broke with a fall of 7 feet.
(2). Weight applied at end of a strip, 3 inches wide and $\frac{3}{16}$ inch thick, secured in a vise. Common glass broke at $16 \frac{1}{2}$ lbs. Bastie glass broke at 46 lbs. Power was applied at a distance of 6 inches from vise.
(3). Weight applied at middle. This experiment
(tack of necessary weights. A strip failed owing to lack of necessary weights. A strip of Bastie glass, same size as the foregoing, however, withstood 180 lbs . and gave no signs of rupture.
(4) Heat. Lamp chimneys prepared were heated over Bunsen burners to very high temperatures without rupture. Plates and saucers were simiwithout rupture. Plates and saucers were sint-
larly treated. A plate of prepared glass, about 1 larly treated. A plate of prepared glass, about 1
foot square, was subjected to a blowpipe flame of foot square, was subjected to a blowpipe flame of
$1,500^{\circ}$ Fah. for about 8 minutes. Ordinary glass broke in 7 seconds. The outer edges of the Bastie plate, for a distance of an inch or more, were cool. The spot touched by the flame became barely red hot. On cooling, the plate cracked just at the heated point, and five minutes later it disaggregated throughout its entire area.

Water suddenly thrown on a heated prepared plate saused the latter to break. Itappears that, when the glass is cooled quickly at the rate of 300° or $400^{\circ} \mathrm{Fah}$. at a time, it breaks; but when the operation is conducted slowly, at intervals of 50°, rupture does not occur.
Referring to experiment 1: The force required to break the glass is best expressed in foot lbs. In better tests than those quoted, Professor Egleston found that ordinary glass broke at $1 \cdot 6$ foot lbs. Bastie glass bore 3 foot lbs., nearly double. Using a 1 lb . knife-edge weight, $\frac{1}{2}$ inch Bastie glass broke at 17 foot lbs. From experiment d, it will be noted that constant hammering on one spot is without effect. With reference to experiment 2, according to Professor Egleston, the glass has supported as high as 60 lbs. Experiment 3 has been conducted with a knife-edge bearing on the glass, when
as high as 200 lbs . has been applied. A remarkable feature of the glass is its rupture, which is a general disaggregation of the entire piece. As the weight falls, a metallic resonance is heard ; but on breaking, there is a dull crush, utterly unlike the sound caused by fracturing common glass. The rupture takes place everywhere apparently, in perpendicular
and horizontal planes, a cleavage, in fact, very much resem bling that of trap rock. The fragments, moreover, are destitute of sharp edges. The hand may be plunged in a vessel full of them, or they may be rubbed between the palms, with impunity.
It is claimed that there is no difficulty in polishing the

REGISTERING THERMOMETER.

without boiling. For this purpose I find oils and grease, wax, resin, and tar or pitch suitable. Having settled these conditions, I have devised the process or practical method of operating, and suitable furnaces, which will hereafter be described.
In carrying out the process, it is necessary that the glass to be tempered should be raised to a very high temperature. The hotter it is, the less is the risk of breaking the glass, and the greater is the shrinkage or condensation. Hence the advantage, and of ten the necessity, of heating the glass to the point of softening, which is attended by the difficulties that glass in the soft condition gets readily out of shape, so that it must be plunged almost without touching it, and that, in plunging the hot glass into a heated combustible liquid, the latter is apt to take fire and cannot easily be extinguished, so that time and material are lost. These difficulties I have overcome by placing the tempering bath in immediate communication with the heating oven, and covering it, so as to prevent access of air. The oven being charged with the arricles to be tempered, these are pushed or caused to slide into the adjoining bath without handling them, and the liquid of the bath, having no supply of external air, is not liable to inflame. In order that the shape of the tempered articles may not be affected particularly forflat glass, the floor of the oven is made to cant, so that, when the glass is heattals and other articles exhibited. It may be etched with \mid ed on it, it is turned to a sloping position, and the glass slides hydrofluoric acid or engraved with the sand blast, without into the bath along a surface therein arranged at the same slope becoming impaired in point of strength. It cannot be cut as that of the oven floor. Small articles may be heated on the with the diamond, as the removal of a part of a piece determines the immediate rupture of the whole; so that window panes and like articles will have to be prepared in the first instance of the proper size. It may be used for photographic negatives; and finally it has, it is said, withstood for several days the action of a cupel furnace at white heat. Windo v panes of this glass, it is alleged, will be almost as much protection to buildings as iron shutters; since they would shut off the oxygen until the window frames became entirely consumed. The cost of the process is stated to be about 5 per cent additional to that of ordinary glass, so the holders of the patent affirm.
The following is from the specification of the patent as granted in this country December 15, 1874.
" To all whom it may concern:
Be it known that I, François Barthelemy Alfred Boyer de a Bastie, of Paris, France, have invented a new process of tempering flat and shaped glass, and furnaces and machinery to be employed therefor, of which the following is a specifiation:
This invention relates to a process of tempering glass and glass articles so as to render them less fragile, and to the construction and arrangement of furnaces for effecting the said process.
As the fragility of glass results from the weakness of the cohesion of its molecules, it may be expected that, by forcing the molecules closer together, and rendering the mass more compact, the strength and solidity of the material should be increased. edge of the bath and immersed by a slight push. The clear ness of the glass may be affected by the dust of the furnace flame, which is apt to settle on glass and chill its surface. I avoid this by heating the glass in a muffle, to which the flame has no access, being applied externally. Moreover, the shock of the fall of glass into the bath is prevented by fixing therein a sheet of wire gauze or asbestos fabric, or providing a bed of sand or other like material for the glass to fall on."
The patent drawings contain three figures, one of which we give, and explain briefly as follows:
The sheets of glass are placed in a preparatory oven, and thence, one by one, pushed into the oven, A, by an opening, shown in black. On reaching the requisite temperature, the glass is carried upon table, B, which is normally horizontal though shown in a position for sliding the sheet off. C is the bath of oil, heated by a separate furnace, and so covered as not to be affected by heated gases proceeding from the furnace. A rocking table, E , is supported on a frame moved by a lever and shaft. This is placed in the position shown, and the table, B, is tilted by means of a lever, when the plate of glass slides off on to table, E, and so into the bath. Table, B, is then returned to its horizontal position, and another plate pushed upon it The sheet in the bath is removed as follows: The table, E, and rocking frame are raised; and by suitable mechanism, the table is separated from the rocising frame to such an extent that the buffer of wire gauze on the frame and end of the latter are brought below the level of the table, which is
held up by a latch. The plate is then withdrawn by a rake into the chamber, D, whence it is removed with others, when the chamber, being full, is lifted out of the bath.
The claims made by the patentee are as follows:

1. "The process herein described for tempering glass consisting in the immersion of the hot glass in a bath of oils, grease, wax, or resinous or bituminous substances, the boiling temperature of which is above the boiling point of water.
2. In combination with the oven for heating and the bath for plunging, communicating with each other, the rocking table, e, substantially as and for the purpose specified.
3. In combination with the heating oven and plunging bath, the tables, e and 19 , substantially

BASTIF'S APPARATUS FOR TOUGHENING GLASS.

I have found that this cannot be effected by compression, ${ }^{\text {as }}$ and for the purpose specified. even when applied to the material in a fluid or soft condition. I have, therefore, applied to glass a system of tempering, such as is usually applied to steel, and I will now describe the process and apparatus for this purpose.
Fused glass dropped into water becomes greatly contracted, but, being shapeless, only objects of curiosity can be produced in this way. The sudden cooling in the water puts the
glass into a state of unstable equilibrium in its constitution, glass into a state of unstable equilibrium in its constitution,
so that the least shock causes it to break, as in the case of Prince Rupert's drops.
My object is to invert the result, to diminish, or even to remove, the extreme fragility of glass, by tempering it by immersion in a liquid. In attaining this object two essential conditions have to be determined: First, the point at which glass can be tempered without being put out of shape. I have found this to be when it is just at the heat where softness or malleability begins, the molecules being then capable of closing suddenly together, condensing the material, when it is plunged in a liquid at a considerably lower temperature.

Also, glass, when it is thin, may be tempered at red heat, even before becoming soft. Secondly the liquid to be employed for the immersion of the glass is
to be such as can be heated much higher than water and for the purpose specified. ication before two subscribing witnesses. ways at hand in case of danger. or ivy poison.

4. In combination with the heating oven and plunging. bath, the rocking table, e, and the receiver, g, substantially as

In testimony whereof I have signed my name to this speci-
F. B. A. Royer De la Bastie."

A Life-Preserving Fillow.

A new life-preserving device, which seems to be both simple and practical, has recently been introduced in the Glasgow and Montreal line of emigration steamers. It consists of two pillows of prepared cork wood, with an upper padding of hair covered with mattress tick. The pillows are attached to each other in such a manner that, when about to be used, they can be placed one on the back and the other on the chest and tied, the head and shoulders thus being kept above water. The device has been tested and has been found capable of supporting the heaviest men breast high. The pillows are utilized as articles of bedding, so that they are al-

Sweet orl rubbed on the skin is said to be a sure antidote

GIGANTIC FERRY SYSTEM

Mr. Evan Leigh is another inventor who comes forward to solve the problem of making the passage from England to France rapid and comfortable. He proposes to build vessels large enough to carry three passenger and one freight trains each, as shown in our Fig. 2, so that passengers need not leave their seats at the port of embarkation or of arrival. To enable trains to go on board such vessels, a pontoon of great size would be necessary, and the descent to it would be necessarily very gradual, lest the train acquire sufficient mo mentum to work damage or destruction to the ship.
The steamer is proposed to be 500 feet long and 90 feet wide amidships, as it is hoped that this great length will prevent pitching, while it is also expected that the corresponding breadth of beam will overcome the tendency to
roll, which, in the narrowsided vessels, presents an almost insuperable difficulty to the performance of a direct passage. As will be seen
from Fig. 2, showing a from Fig. 2, showing a trans-
verse section of the boat, she verse section of the boat, she
is almost flat-bottomed, and her dimensions have been so calculated that she will only draw six feet of water when loaded. The chief inconvenience which such a boat might suffer in a gale is that the force of the wind, falling upon the immense surface presented by the broadside presented by the broadside
(as the tops of her bulwarks (as the tops of her bulwarks
stand about 25 feet out of stand about 25 feet out of
the sea), might, to some extent, interfefe with the steering. To render the ste aring of the vessel all the more efficient under this difficulty, own patents by fixing a rud-

THE MOTIVE FORCE OF LIGHT.

In our number of the Scientific American for June 19, we gave engravings of the remarkable rotary instruments of Dr. Crookes, which are put in operation by the mechanical power of light, given off by a candle, lamp, the sun, or other source of illumination. The following summary and comments upon the marvelous discovery of Dr. Crookes we find in a recent number of the New York Times:
At a meeting of the Royal Society of Great Britain a few weeks ago, Mr. William Crookes, F.R.S., who had previously communicated some interesting facts on this subject, read a paper which may give rise to much more important discov eries, perhaps, than any contribution to celestial mechanics since the law of gravitation was demonstrated by Newton. fect.

LEIGH'S CHANNEL FERRY. THE BOAT AT SEA,-Fig. 1

 own patents by fixing a rud-contain no appreciable amount of latent moisture, the theory of Professor Reynolds was, of course, exploded. The final result was that light is now acknowledged for the first time as one of the mechanical forces, and such eminent men as Professors Stokes and Huxley, Dr. Carpenter, Mr. Norman Lockyer, and others, agree that the demonstration was per
Another point of importance is that the force which light delivers is not like the force of gravitation, but differs from it in several essential respects. One of these is that, while gravitation attracts and gives a centripetal impulse, the force of light is centrifugal, and repels or pushes away the objects on which it is delivered. Thus the black side of the disk is pushed from the sun, and the orrery of Mr. Crookes is kept in constant rotation so long as the light waves dash them selves against the black surface and drive it before them. Shut out the light by cover ing the machine with a hat, and the rotation instantly stops, to be renewed again the moment the obstruction the moment the obstruction
is taken away and the light readmitted. A green or blue screen diminishes the force of the rotation. Yellow or red glass quickens it into a much more lively activity. If a cloud passes over the face of the sun while this little or rery is working at full speed, its movements are checked and somewhat slower; but the moment the sun is visible again the mechanism responds with alacrity, and its revolu tions are as swift as ever. Mr. Crookes is well known as the man to whom Science owes the discovery of the metal thallium, and the com der at each end of the keel, so connecting them together that one cannot move without the other moving in the opposite
direction. Each rudder is also provided with a valve to diminish its area when required, which valves are so arranged that when one is open the other is shut, in order to balance the rudders to a nicety. Moreover, Mr. Leigh proposes to fit his boat with a pair of engines of 5,000 horse power capacity; each of these engines will drive the paddles independently of the other, so as to use the latter for steering the vessel independently of the rudder, by giving out more steam to one pair than the other, and so on. The boat is to carry a steering house at each end of the upper promenade. These arrangements leave the steersman the option of steering by steam or by helm, or by both together. The steering houses contain each three cabins, one for the captain, another for the steersman, and the third for the mate. The boat will not carry masts, spars, or riggings of any kind, in order to prevent top heaviness, and her capacity is measured at 8,000 tuns. Mr. Leigh, instead of employing the usual paddle wheel, introduces a paddle of his own contrivance, in the hope of saving power; the paddle wheels are 18 feet broad and 24 feet in diameter, with floats 21 inches deep, which are fastened to a cast iron cy lindrical shell forming the wheel. The boat is to be pro pelled by inside paddles, so that the sides may be free from external projections. Four sets of rails are laid on the lower boat deck; three of these sets of rails are intended to carry the goods traffic, while the fourth is set apart for the pas senger train, which alone takes its locomotive on board. The platform is raised on each side of the outer rails to a conve nient hight for getting into the carriages; and sets of sa loons, waitirg, and refresh ment rooms, affording accom modation for 1,000 persons, are fitted, on one side in the En glish and on the other in the French styles. Referring to French styles. Referring to
Fig. 1, which represents the Fig. 1, which represents th ferry boat at sea, the upper decks are seen connected by galleries at each end, thus forming a promenade of 350 yards length round the vessel; and underneath the first and second class saloons, those of the third class are fitted up.
Whin the boat enters the dock, the sliding doors at each end of the vessel are opened, and, by a self- acting process, the lines of the rails on the vessel become at once closely connected with the corresponding set on the inclined bridge; and while the steamer is awaiting the arrival of the passenger train, goods trains are run on board. As soon as the mail steams on to the boat, the gates are closed, the brakes ap plied to all the cars, and the vessel sails out of the dock. Arrived at her destination, and as soon as a similar connection with the main lines has been effected, the mail train steams out at the other end of the vessel under the top promenade of the ferry boat on to the existing lines of railway.

EIGH'S CHANNEL FERRY. MIDSHIP SECTION.-Fig. 2

plete establishment of its atomic weight. He has also in vented the radiometer. But the little orrery we have de vented the radiometer. But the little orrery we have de-
scribed above is a much more remarkable contrivance. It scribed above is a much more remarkable contrivance. It
contains the promise of further discoveries. It will perhaps raise its inventor to the front rank among the explorers of physical science. In this simple little machine, one of th most occult forces of Nature is for the first time revealed to the eye of man. "In it," says the authority from which the foregoing facts are chiefly taken, "we see the subtlest of imponderables set like a willing slave to turn a wheel; while tiny as that wheel is in these experiments, we must remember that light pervades it, flashing perpetually from countless centers like our own sun, across the infinite ether; and less centers like our own sun, across the infinite ether; and
it may be fairly imagined that the interplanetary ether re it may be fairly imagined that the interplanetary ether re
sembles the vacuum in the bulb, so that the condition of sembles the vacuum in the bulb, so that the condition of
these revolving disks is, perhaps, much the same as that of the planets in space. Strange, indeed, are the thoughts which must be started by this revelation that light, pouring upon bodies freed from atmospheric friction, is in itself an active and mighty force. That so remarkable a discovery solves at once the mystery of the comet's tail-which is al ways seen to be driven violent ly away from its natural line upon approaching the sun-is, we believe, affirmed by more than one high astronomical authority. But may it not also have something to do with the axial motion of the planets? May it not have something to do with the maintenance of centrifugal force, balancing, as it were, that of gravitation? Can it be for nothing in the celestial universe that this potency and stress of light sweeps from center to circumference of each system, exercising a power which, in its totality, must be something prodigious? It seems not impossible that our mathematicians, calculating from the small surface of these disks the motive force of sunlight, may soon tell us pretty accurately what is the aggregate power which the lu-
with life. They revolve around their commonaxis just as the
planets revolve about the sun in the orrery. What is the planets revolve about the sun in the orrery. What is the motive force in this beautiful experiment? It is not heat. For, as before observed, the heat rays can be sifted out by the alum screen without stopping the rotation of the machine. The atmosphere and its changes have nothing to do with producing the motion. Professor Osborne Reynolds somg time ago suggested that the disks revolved because there was a a latent moisture in them which, being evaporated in the experiment, gave a resilient impulse to the little orrery. To refute this theory, and, at the same time, to show that the sole motive force engaged in driving the orrery was the luminous rays of the sun, Mr. Crookes exhibited a machine made wholly of platinum which had been heated to redness while under continuous and absolute exhaustion. The disks being mude of platinum, instead of pith as before, revolved as obediently as the disks of pith; inasmuch as they could
minous rays of the sun command; and nothing of this, by the law of forces, can be really wasted. 'Let there be light, and there was light ' seems to derive a new majesty of meaning from the discovery which shows us this subtle something, no mere undulation nor ' mode of motion,' but a living force as well as the illumination of all life. It does appear as if a marvelous expansion of knowledge is about to open in these delicate experiments.
But there are no limits to the ingenious conjeetures which may be advanced. To pursue theme would be unprofitable in the present state of our knowledge. What is certain is that a great cosmic force has been discovered and submitted to experiment and investigation. Bat how long this force will be before it finds its Kepler and its Newton, the future will show. "Why in the ranks of our American astronomers should we not look for the expected teacher to rise up?" Sir William Herschel. in his "Lectures on Astronomy," gives
quantity-increase the head or decrease the leakage. If the supply is lessened, the quantity accumulated is diminished. If the supply is stopped, the pipe is discharged in time by leakage alone.
The conditions of the thunder cloud are somewhat analagous. It is always charged to some extent. It may not be sufficient to produce disruptire discharge or lightning. may occur once, and it may occur over a thousand times. We have known such to happen as often as once per second for an hour or more. How very rapid, then, is this flow and accumulation, into the cloud, of electricity from the regions of rarefied air, which the cloud reaches on account of its great elevation
The earth, with its outer conductor of rarefled air, resembles an immense Leyden jar of almost incomprehensible dimensions, the earth itself being the inner conductor and the heavier strata of air, directly in contact with the earth, serv ing as the dialectric. The outer conductor is continually being charged, and this source of electrical accumulation is due to the effects of the sun's rays upon the earth. Moisture is evaporated, every particleof which produces its quan tity of electricity. When the winds are set in motion, the friction thereof produces its share. Wherever this dialec tric is thinnest or interposes least resistance, there accumulation takes place in greater quantity. The dialectric is made thinner by the thunder cloud. Through the agency of the cloud, the two conductors are brought nearer together, and this accumulation finds vent or relief in disruptive charges called lightning. As soon as these thander clouds assume favorable form or begin to develope themselves, their elec tricity gathers in greater quantity in this part of the outer conductor, also on the surface of the earth directly beneath.
The hight of thunder clouds is estimated as extending from seven to fifteen miles above the level of the sea.
Theorigin of thunderstorms is believed to be due to the expansion and rarefaction of the atmosphere. When heate by the sun's rays, it expands and forms a current upward, The hot air coming in contact with the cooler air above, de position takes place in form of fog or cloud, and, when suffciently condensed, falling drops of rain are the consequence The vapor or cloud of a thunderstorm, as viewed in the neighborhood of the mountains in Penasylvania, appears to be far above the latter, that is, the lower portions of the cloud are far above the mountain tops. In Central Mexico the lower portions of these clouds seem to rest or come in contact with the mountains. From observations, I am led to believe that the lower portions of a thunder cloud are from two to three miles above the level of the sea. The tops or higher portions, when observed from these mountains or from a hight of two and a half miles, appear as high as when seen from an ordinary or lower position. That the upper and lighter portions of thunder clouds extend ver high is admitted by every intelligent observer. If it be tru that the upper portions are about ten miles above the surfac of the earth, they extend far into the regions of rarefied air and thus afford means for the enormous accumulation of elec tricity with which they are charged.
We have every reason to believe that, in cases of frequen and heavy discharges, the cloud extends to a very grea hight. One of the most violent storms ever witnessed by the writer passed over this city on the evening of July 4, 1872. It commenced about nine o'clock in the evening the rain falling in torrents for about an hour, flooding street and filling cellars with water. The electric discharges during the greater portion of this time occurred as often a once per second. It was reported that there were over a解 No person was injured by lightning, so far as known, no was there serious damage to property, except that resulting from the immense rainfall.
It is believed that this thunder cloud, in order that c. rcum stances should favor so many and such violent electrical dis charges, must have extended to a very great hight; and the large amount of moisture, in the shape of drops of rain be tween the cloud and the earth, assisted immensely by reduPhiladelphia, Pa.

David Brooks.

A Use for Bedbug.

To the Editor of the Scientifc American

A correspondent in a recent number of your journal asks if there is any use for bedbugs. This reminds me of an accidental experiment I once made and had almost forgotten.
If nice fat bedbugs are placed in a saturated solution nitrate of potash in water, and exposed to the air for sever al days in an open vessel, there will be no apparent chang in the bugs; but there will be in the odor, for now it is a delicate and delicious as before it was rank and disgusting. No doubt the odorous principle could be easily separated perhaps by digesting with alcohol or ether; and if neatly bottled and labeled, it would yield a large profit to practical perfumers.
The odor is unlike that of any other perfume I have ever smelt, and no one would suspect its low origin. This is on use for the cimex; there may be others.
C. K.

Cincinnati, Ohio

Velocipede Race.-The inter-university bicycle race,be tween Oxford and Cambridge, England, rook place this yea on the ruad from St. Albans to Oxford, a distance of fifty two miles. It was won by Hon. Keith Falconer, of Cam bridge, in four hours, nine minutes, and twenty-four seconds with a fifty inch wheel machine. The average speed of the

Dr. Schnauss has directed attention to the fact that certain minerals are quite sensitive to the action of light. To many of our readers this may seem quite surprising, although some cases of this kind have long been known to mineralogists. Strangely enough this property extends to the very hard minerals, and reaches its maximum in the very hardest of all minerals, the diamond. According to Dr. Fight, unde ertain circumstapces the colored diamond is as sensitive to light as chloride of silver. The ancients knew that certain colored precious stones gradually grew paler in the sun light, and that this was very distinctly the case with the beautiful grass green chrysoprase. They said that, when worn for ong time set in a ring or pin, it finally lost a greater part of its besutiful color; and that this could be recovered by wrap ping it up in a cloth soaked in wine and keeping it in a cellar. The latter is evidently one of the numerous phantasies of that age, but the former statement is a fact. Even the much harder, transparent, dark green emerald is also influonced by light in time, as the author found to his sorrow in the case of an emerald ring, which he had worn seven years. The diamond, however, exhibits the most interestin henomena under this influence. If colored diamonds are highly heated, the color disappears more or less completely and in most cases permanently. Sometimes, the color is merely changed by ignition, and the original color may be restored by the influence of the sun's light. A diamond merchant named Martin exposed a diamond to a very high temperature, in order to destroy its brownish color, but the stone became of a permanent rose red. Coster treated an other diamond in the sameway, and that too turned rose red but the most remarkable part was that this color was only permanent in the dark, and disappeared in 4 or 5 minutes if exposed to the sun's light, the stone acquiring a weak brow color. This change also took place in a room where the ight was by no means bright. Another diamond, of a dirty yellow color, was ignited in a current of hydrogen in a por elain tube and allowed to cool there. The color disappear ed, but not the luster. If this specimen were exposed to dif used light for 6 or 7 minutes, its original yellow color re turned. The experiment was repeated in this way, the stone being heated in chlorine gas at as strong a heat as could be obtained by saturating tbe gas used with benzol vapor; it was farther heated at a lower temperature in a mercur bath, the diamond being wrapped in platinum foil. Each time the color disappeared and remained absent in the dark but as soon as the stone was exposed for a few minutes to dif used daylight, it regained its yellow color.
These phenomena are thought by Dr. Schnauss to be re ated to that of phosphorescence. In addition to the cases mentioned by him, we would recall the fact, usually stated in text books on mineralogy, that a variety of topaz from Brazil, when heated, assumes a pink or red hue resemblin that of the Balas ruby.

s. H. Mead, Jr.

We regret exceedingly to not? the death of Mr. Samuel H. Mead, Jr., of this city, a young inventor and scientist of nauch promise. After patenting a number of improvement in fire arms, Mr. Mead, some four years ago, devised a safet explosive bullet, which invention he subsequently combined with one of like character patented by General Meigs. The Mead-Meigs shell, as the combination is termed, is a breech loading metallic cartridge with a hollow explosive bullet containing fine gunpowder. On penetrating flesh or on striking any hard substance, the bullet explodes, tearing the object to pieces. The missile has been used in hunting in the West, and it was Mr. Mead's design to use it in shooting sharks off Martha's Vineyard.
Mr. Mead was an excellent astronomer and optician, and was indirectly known to the readers of this journal through his articles on astronomical subjects, and through his re plies to queries of that nature, which we frequently referred to him for opinion and answer. Just before his death, he was bringing to completion a novel device whereby the re coil of a Gatling gun could be utilized so that the reloading would be effected automatically after every discharge, so long as the cartridge receptacle was kept filled. The de ceased was but twenty-seven years of age.

Completion of the New Atlantle Telegraph Cable.
After many delays and much expenditure of money, the cable of the United States Direct Submarine Telegraph Company was completed on June 9. It will be remembered that the splendid new ship Faraday, built expressly for the service, left the Thames more than 12 months ago to la the section between Rye Beach, N. H., and Nova Scotia. Th company have leased two wires, belonging to the Franklin Telegraph Company, from Rye Beach to New York, and have opened an office at 16 Broad street in this city, where usiness will shortly be commenced.
The cable from Ireland to Nova Scotia was laid to within 00 miles of the latter country; but owing to unfavorable weather and the Faraday leaking badly, it had to be cut and the end attached to a buoy. Its construction was fully deecribed on page 40 of our current volume. It is the fifth cable now in use in the atlantic service, and its con tract price ($\$ 6,055,000$) will enable the company, it is claimed to make a moderate tariff of charges, and reduce the rate throughout the country. A speed of twenty words per min ute is anticipated.

To cut glass to any shape without a diamond, hold it quite evel under water, and, with a pair of strong scissors, elip it away by smadl bits from the edges

ELECTRO-METALLORGY.

The deposition of metals in the process of electrometal urgy is of two kinds, electroplating and electrotyping. When our object is to coat a metal with a thin metallic film of some other metal, the object to be coated is immersed in a solution of some salt of the metal to be deposited. A current is passed from the bath to the object, so as to decompose the salt and d?posit the metallic portion of it on the object,which is a negative electrode.

electrotyping.

The art of copying seals, types, medals, etc., by the galvanic current in metal, more especially copper, is called electrotyping. An impression is first taken in gutca percha, wax, fusible metal, or other substance which takes, when heated, a sharp impression. While the impression is still sof t , a wire is inserted into the side of $i t$. It is then corered with plumbago to give it conductivity, a camel hair brush being used for this purpose. The wire is then at tached to the zinc pole of a weakly charged Daniell's cell and the copper plate is attached by a wire to the copper pole of the cell. When the impression and the copper plate are dipped into a strong solution of the sulphate of copper, they act as the - and + electrodes. The copper of the solution begins to deposit itself on the impression, first at the blackeaded surface in the vicinity of the connecting wire; then it gradually creeps over the whole conducting surface. After a day or two,the impression is taken out; and the copper de posited on it, which has now formed a tolerably strong plate, can be easily removed by inserting the point of a knife be ween the impression and the edge of the plate. On the ide of this plate, next the matrix, there is a perfect copy o the original seal.

electroplating

The very useful art of coating the baser metals with sil ver by the galvanic current is called electroplating. The oretically it is very simple, but it requires very considerable experience and skill to make a successful application of it Articles that are electroplated are generally made of brass, bronze, or copper. When tin, steel, iron, zinc, or lead i lectroplated, it must be first electro-coppered, as silver des not adhere to the bare surfaces of these metals. Great care is taken in cleaning the articles previous to electroplat ing, for any surface impurity would spoil the success of the operation. They are first boiled in caustic potash, to remove dry adhering grease; they are then immersed in dilute nitric acid, to dissolve any rust or oxide that may be formed on the surface; and they are finally secured with fine sand. Before being put in the silvering bath, they are wash 0 d with nitrat of mercury, which leaves a thin film of mercury on them, nd this acts as a cement between the article and the silver.
The bath wherein the electroplating takes place is a large rough of eartheaware or other non-conducting substance t contains a weak solution of cyanide of silver in cyanide o potassium (water 100 parts; cyanide of potassium, 10 parts cyauide of silver, 1 part). A plate of silver forms the + electrode; and the articles to be plated, hung by pieces of wire to a metal rod lying across the trough, constitute the electrode. When the plate is connected with the copper or + pole of a one or more celled gal vanic battery, according to the strength required, and the rod is joined with the zinc or - pole, chemical decomposition immediately ensues in the bath, the silver of the cyanide begins to deposit itself on the suspended objects, and the cyanogen, liberated at the plate dissolves it,reforming the cyanide of silver. According, then as the solution is weakened by the loss of the metal going t form the electro coating, it is strengthened by the cyanide of silver formed at the plate. The thickness of the plating de pends on the time of the immersion. The electric current thus acts as the carrier of the metal of the plate to the objects immersed. When the plated articles are taken from the bath, they appear dull and white; the dullness is first re moved by a small circular brush of brass wire driven by lathe, and the final polish is given by burnishing.

Electrogilding.

The operation of electrogilding very closely resembles tha of electroplating. The solutions are always alkaline, and usually consist of the cyanide or chloride of the metal, dis solved in an alkaline cyanide. To prepare the gold bath, two ounces of fine gold are dissolved in aqua regia; and the solution is evaporated till it has the consistence of syrup Water is then added, together with two ounces of cyanide of potassium, and the mixture is boiled. The quantities name give about twelve gallons of solution.
The negative electrode consists of the article to be gilded. The positive electrode is a plate of fine gold, which constitutes a soluble electrode, and serves to keep the solution a a constant strength. In order that the gilding may be well done, the bath must be maintained, during the operation, a temperature of from 140° to 160° Fahrenheit.

The accompanying engraving represents a form of apparatu hich is very frequently employed. The poles of the batter are connected with two metallic rods resting on the top
the cistern which contains the bath The articles to be gilded are hung from the negative pole or rod. From the positive rod is hung a plate of gold, whose size should be proportional to the total surface of the articles which form the neive electrode.
The same arrangement of the battery and the cistern for holding the bath is applicable for electrotyping and electroplating as well as electrogilding.

GENERAL DIRECTIONS
The success or failure of the electrotype process depends ery much on the preparation of the copper solution, and on he strength of the battery. A perfectly saturated solution is not so well adapted for the purpose as such a solution diuted with one fourth part of water. To prevent it from becoming too weak by the deposition of metallic copper, some rystals of the sulphate are added during the process. The strength of the battery, in relation to the strength of the soution, causes the metals to be deposited either as a black powder, in a crystalline form, or as a flexible plate. The metals are deposited as a black powder when the current of lectricity is so strong that hydrogen is evolved from the negative plate in the decomposition cell. The crystalline tate occurs when there is no evolution of gas, and no tendency thereto. The regular deposit takes place when the electric current is stronger in relation to the solution than in the last case, but is not sufficiently strong to cause the evolution of gas.
There are various methods of preparing the solution for lectroplating and of dissolving the silver, but the cheapest nd best is to dissolve the silver in a solution of cyanide of potassium, by the action of a voltaic battery. Dissolve $1 \frac{1}{4}$ ounces of cyanide of potassium in 1 gallon of water; place one of two flat porous vessels in this solution to within half an inch of the mouth, and fill them to the same bight with he solution; in these porous vessels, place small plates or sheets of copper, and connect them with a zinc terminal of a battery; in the large solution place a sheet or sheets of silver onnected with the positive pole of the battery. This ar rangement being made at night, and the power employed being five Daniell's cells, the zincs seven inches long by seven in circumference, it will be found in the morning that the soution is ready for use. The strength of the solution recommended is that of one ounce of silver to the gallon. An unce and a half of silver to one square foot of surface gives an excellent plating. A few drops of bisulphate of carbon confer peculiar qualities upon the silver.

nickel-plating.

Nickel-plating is now very extensively carried on for the covering of articles hitherto plated with silver. Nickel is ery easily deposited, and may be prepared for this purpose y dissolving it in nitric acid, then adding cyanide of potas ium to precipitate the metal; after which the precipitate is washed and dissolved by the addition of more cyanide of potassium. Or the nitrate solution may be precipitated by carbonate of potash; this should be well washed, and then disolved in cyanide of potassium; a proportion of carbonate of potash will be in the solution, which is not found to be detrimental. The sulphate of nickel is also a soluble salt, and he metal is reduced more readily from it than from the itrate. It is preferable to use the solution as strong as pos ible. Nickel forms a compound with the cyanide of potassum on boiling the oxide in a solution of that salt, which takes up a considerable quantity. The acetate of nickel is asily formed, by adding pyroligneous acid to the oxide of nickel,but it is a bad solution for obtaining reguline or pure metal. The chloride of nickel is formed by dissolving the metal in muriatic acid. It forms a fine green colored salt,and a very excellent one for nickel plating. It may be used with nickel positive pole, with one or two Daniell cells.

A bsence of Mind.

We heartily concur with the Philadelphia Ledger in its as sertion that among the bad habits, which are usually classed with the minor faults of mankind, is that of absence of mind Says the writer: "We have all laughed at the awkward blunders of the absent-minded, their irrelevant remarks, heir ludicrous mistakes, their forgetfulness of the ordinary proprieties of life. Often, however, serious results ensu hrough these seemingly trivial oversights; property is wast ed, friends estranged, losses incurred, health and even lif sacrificed. In times of strong excitement or peril of an kind, nothing is sn valuable as presence of mind. It is no exactly courage, or fortitude, or sagacity, or judgment, but rather the calm and well poised ability to marshal all these orces into action just where and when they are most needed How many lives have been saved and disasters averted b his simple endowment! How much of the heroism which we delight to honor may be traced to this potent source It is precisely this attribute of which the absent minded man is destitute. Whatever be his knowledge, or wisdom, o skill, however excellent his motives and intentions, how ever great his powers and capacities, he has not that contro over them that ensures the rightful action of each in its own time and place. He is continually off guard, surprised, con fused, unprepared. His mind may be of the finest order but it is not at its post of command, and hi
It is not only in times of emorgency that
It is not only in times of emergency that this presence of mind is essential. Every hour of our lives must depend ap on it for value and efficiency. If a man would be a prosper ous farmer, a skillful mechanic. or a successful merchant: i he would be a kind neighbor, a faithful friend or a loya citizen: if he would be a good and true husband, or father or brother: his mind must be present in each of these rela tions, not absent. It must assume its rightful dignity of com mand over each phase of his life in turn, and not become
absorbed in one to the exclusion of the rest, nor flutter in every chance wind. This is the chief cause of absent-mind edness. The thoughts are suffered to linger about some favorite topic or to wander aimlessly, and of course the mat ter in hand cannot be thoroughly performed. If we canno or do not direct our whole attention to the object on which we are engaged and banish all others, we cannot do justica to it or to our own powers. It is the mixing up of different things and the confusion of mind thus created that are largely responsible for much of the inferior work in the world, nd many of its failures and disappointments.
Much of this absence of mind might be avoided if concen ration of thought upon one subject at a time were made prominent part of education. Children should be accustom ed to think earnestly for short periods, and then to dismiss the subject wholly from their minds. Weariness, listless less, and half-hearted attention should always be prevented. It is far better for a child to play with his whole soul than to study with but a fragment of it. If he be thus trained in his youth, if work and play and study, each in their turn, absorb him utterly for the time, there will be but little danger of his growing up to be an absent-minded man. Those in mature life who have unfortunately acquired this pernicious habit may, by a similar process of self-culture, gradually overcome it. No one who indulges in it can make the most of his powers in any direction or give out to the world his full value; and certainly no one in our present varied and complex civilization can fulfil his manifold relations in life unless he resolutely bring all the powers of his mind to bear upon each one of them in its own appointed season."

Discoveries.

Discoveries in Science are the result either of experiment, of thought, or of chance. An experimental discovery is usually the result of a well planned attack upon some fortress f Dame Nature-every step, every sap, and every battery of Dame Nature-every step, every sap, and every battery
being well considered and faithfully followed; or it results from the attacking force perceiving indications of some sunken mine, or unknown treasure, and following it up with care and determination. Davy's discovery of the safety lamp is an example of the first kind. Something was want-ed-its requirements were well defined; Nature was asked to supply those wants and requirements, and she was forced, by experiment and enquiry, to reply. Faraday's discovery magneto electricity was of the second kind. He was en gaged in solving a difficult and intricate problem; something attracted his attention, he followed it up, traced it out, and was rewarded with the discovery of what ought to be univers. ally called Faradaism.
A discovery the result of pare thought must be bared on experience. An experiment sets

-"thatinward eye

a-working. The imagination is brought into play. Thought pictures something that should be, and observation finds out that it is. Graham's discovery of dialysis, and of the occulsion of hydrogen by iron, was of this character. So have been the innumerable additions made to organic chemistry by Liebig and his followers. So have been the strides made in the theory of energy by Mayer, Joule, Thomson, Clausius, and others. Experiment has set the ball rolling, thought has kept it going, aud imagination has said: "If I only diect it in such a path I am sure to alight on some treasure, r it is sure to bring me to the goal I seek.'
Discoveries cannot be said to be the simple result of pure chance. Newton and the apple are said to have led to the discovery of gravitation; but the apple was only the means to direct the thoughts of the philosopher in a certain channel, which certainly led to success; but he had been pre viously pondering and weighing innumerable other channels and courses. Galvani and the frog are saidto have led to the chance discovery of voltaic electricity; but the frog may have orked its legs on the professor's balcony, or skipped into the physicist's laboratory with the energy of a ballet dancer, before it would have led to the disoovery of current electricity unless there had been a trained mind to watch its antics, to follow up its peculiarities, and to ferret out its indications.
Daguerre's discovery of the influence of the vapor of mer cury upon sensitive plates of silver is another which is in cluded among chance discoveries. He.had been experiment ing on silver plates rendered sensitive by iodine, and had, af ter exposure, put them in a cupboard full of chemicals. To his surprise he found, after a time, pictures develope them elves on the plates, attributing the effect to some chemical He removed the chemicals one by one, until all had been re moved. The effect, however, continued. He then found an unknown and forgotten flask of mercury, which gave ou ts vapor, and thus produced the effect observed-and thi was the origin of the daguerreotype process. But this wa not purely the result of chance. It was the previous training and previous experience which arranged the conditions tha ed to the discovery, and which enabled the mind to seize up on those very facts which resulted in success. Training and xperience are therefore essential in seizing upon abnorma indications of Nature, as they are in comprehending and ap preciatiog her laws and applying them effectively to practice -Telegraphic Journal.

The Steam Magnet.-M. Donato Tommasi states that, if current of steam at a pressure of 5 to 6 atmospheres is passed trough a copper tabe of 0.08 to 0.12 inch diameter, and coiled sirally around an iron cylinder, the latter is magnetized so effectually that an iron needle, placed at the distance of som inch or two from the steam magnet, is strongly attracted, and emains magnetic as long as the steam is allowed to pas through the copper tube.

IMPROVED HAND CART.

The ordinary hand cart is open to two objections: first, the impossibility of loading from the rear on account of the disposition of the vehicle to tilt; and second, the inconvenience of loading at the side, owing to the wheel being in the way. Both of these difficulties, it is claimed, are over come in the invention illustrated in the an. nexed engravings, which consists in an arrangement of the bed so that it slides back and forth at the will of the operator.
A is a frame attached to the axle of the oart and further supported by the braced standards shown, which rest on the ground when the cart is stationary. On the top side of the frame are secured the metal runners, B, upon which clips, C, having eyes, and attached to the bottom of the vebicle body, fit. These clip eyes are loose upon the runners, so that the body can be moved forward from the axle, as shown in Fig. 1, to allow of loading without the interference of the wheel. When the loading is finished. the body is pushed back and balanced over the axle, as shown in Fig. 2.
It will be seen that the standards give the body a firm support when the same is pulled forward. The inventor suggests that, as there is no establishment in this country which makes a specialty of hand cart making, a profitable trade might be monopolized under his patent

The inventor, Mr. Joseph M. Jones, desires to dispose of his right for two thirds of the United States; for further particulars regarding which offer, etc., he may be addressed at Paris, Bourbon county, Ky.
Patented through the Scientific American Patent Agency, May 11, 1875.

Feeding Marine Boilers.

The use of a second boiler for the purpose of providing a supply of fresh water to keep up the feed to the main boilers of ships fitted with compounded engines, is becoming very general. Various contrivances have been adopted also with the view to utilize the working power of the steam of this second boiler by passing it through the engines before allowing it to go to the condensers. The Societa Nazionale of Naples have adopted the following plan in the engines fitted by them to the ships of the Italian navy: The small boiler is vertical, with a number of transverse tubes of very simple arrangement. These boilers are easily cleaned by loosing a joint and removing the outer shell, which leaves all the parts in contact with water and steam exposed. These boilers are also used for other purposes, such as working pumps and winches, and are not always in use for their primary purpose.

DUNN'S IMPROVED VINE RAKE.

The invention illustrated herewith is an implement for pulling sweet potato or other vines off from the ridges preparatory to the digging and plowing of the ground. It consists of a supporting plow beam provided with lever handles of the usual construction, and having, in place of the plow stock and share, a fork or rake made with two forward curved teeth. This is rigidly secured to the beam by a central eye bolt and rear braces.

The rake is drawn by a pair of animals, one walking on each side of the ridge to be cleared. The beam is placed directly over the top of said ridge, with the teeth on the sides of the drill, at base of the vines. As the team advances, the teeth pass under the vines and tear them loose from th ground, carrying them along unitil the rake becomes full. The implement is then pulled back and raised clear of the gathered vines, and again started to clear another section of the field.
Patented through the Scientific American Patent Agency, April 20, 1875. For further particulars address the in ventor, Mr. Joseph W. Dunn, P. O. Box 8, Corpus Christi, Texas.

The odorless Broller.

This consists of a gridiron of the usual kind, fitted within case of tin, so arranged that, when placed over the fire of an ordinary stove or range, the smoke and odors of the cook ing operation, instead of escaping into the kitchen apartment are drawn into the fire and go up chimney. We are using

JONES HAND CART

his improvement in our household, and therefore speak from experience when we say that it operates with success, prevents all escape of smoke and odors, and, by concentra ting the heat upon and around the meat, insures, we think, better cooking. Housekeepers will highly appreciate this invention. Maker and patentee, Joseph Mansfield, Jeffer son, Wis.

SMITH'S STEAM SENTINEL.

An English inventor has recently produced a combined safety valve and whistle, which cannot be tampered with, and is, as will be seen from our engraving, an efficient and simple device. The safety valve is conical, and is kept in

place by a spiral spring, whicia is carefully adjusted to the required pressure. The lifting of the valve is at once made known by the sounding of the whistle.

Consumption.
At a recent meeting of the New York Academy of Medi cine, the pathology and etiology of pulmonary phthisis, in relation to its prevention and early treatment, was described. The discussion was opened by Dr. Leaming, who gare an The discussion was opened by
abstract of Dr. Hudson's paper

Dr. W. H. Draper said that phthisis in its early stage was one of the most unsatisfactory diseases that we had to deal with. The recent patholngical views were only of in direct benefit in guiding us. Laennec held that phthisis was always tuberculosis; but Dr. Addison, in 1846, declared that inflammation was the object of destruction in every form of phthisis, and at that time his views were coincided with by some of the French pathologists. If phthisis, said Dr. Dra per, is inflammatory in its nature, rest is and must be one of the most importan ends to attain in its treatment, and any action, exercise, or anything which tend to increase the pulmonary circulation, of necessity is contraindicated. Dr. Roberts, f London, and Dr. McCree, of Belfast, have followed this out with good resul:s in strapping the chest, and thus keeping it o a great extentin a quiescent state
Those who ignore the element of in flammation in the disease consider rest prejudicial. In respect to climatic influ ence, there can be but little advantage gained beyond allowing the patient to live out of doors a great part of the time. Pa tients, however, frequently derive more benefit from a residence in the Northwes than they do from more southerly latitudes. Phthisis as a disease is most common in the tropics, and decreases in fre quency toward the extreme north or the extreme south. Elevated regions have also a beneficial effect, and in mountain ous sections phthisis is relatively un known.
Dr. John C. Peters did not think that phthisis should be considered as an in flammation, though it might provoke it He was strongly eonvinced of its dyscra ic nature.
Dr. Sullivan was of the opinion that the subject of defective ventilation had a most important bearing on the production of phthisis, and brought forward different facts to substantiate his views.
Dr. Willard Parker coincided in the views of Dr. Sullivan in respect to ventiation, and thought deficient sunlight also most important factor to consider in re ference to the etiology of the disease H was strongly opposed to the plan of rest for consumptives in the beginning of the disease. The cases that do best are hose that spend most of their time in outdoor exercise. He cited different cases in which the disease had made decided progress, and which were thoroughly cured by a life of ac tivity outdoors.
Dr. Hubbard said that the same climate did not suit all patients; some patients do exceedingly well in Santa Barbara, where the thermometer does not vary more than ten degrees the year round; while others, who are not benefited there, improve by moving sixty or seventy miles inland.

HARRINGTON'S IMPROVED GUN SIGHT

The invention herewith illustrated is a globe or peep sight which may be adjusted so as to present either a coarse or fine sight as desired. It can be attached to any gun, and is claimed to insure accuracy in shooting.
A is a slotted standard suitably hinged to the barrel and held upright by the spring, B. C is an adjustable slideheld in any desired position by the spring, D, engaging in notches on the standard. This slide is provided with a sight hole. E is another slide adapted to move in guides on the slide, C and pierced with a number of holes of different sizes, as

shown. By raising the siide, E, the shide, C , can be used as a coarse sight, and by lowering the former a finer sight is obtained. The finest sight hole that can be seen through may be used, and generally the size of the orifice may be easily changed to suit differing conditions of weather, whether right, overcast, or dark.
Patented February 25, 1873. For further particulars address the inventor, Mr. Munson W. Harrington, York Center, Iowa county, Iowa.

Glycerin paste for office use may be prepared by dissolving 1 oz . gum arabic and 2 drachms glycerin, in 3 ozs . boiling water

sWimming.

Mr. Paul Boyton's feat of crossing the English Channel by the aid of a life-preserving dress tends to prove the value of a knowledge of how to swim almost as much as it does the efficacy of the invention tested. While the dress afforded buoyancy to his person, the wearer, through his expertness as a swimmer, knew just how to use his members so as to aid in his propulsion, with the least expenditure of power. 'The season is now at hand when the water becomes sufficiently warm to allow of bathing at almost any hour of the day, and hence the present is an excellent time, for those who contemplate acquiring this very necessary part of the knowledge of self-protection, to begin.

The manner of swimming properly is as follows: Supposing the bather to be in the water, he throws himself forward on his stomach, his whole body being only just covered by the water and no more; his hands are brought up under the chin, knuckles upward and with the first fingers touching each other : the
whole palm is slightly contracted so as to form a concave surface, and the fin gers are pressed closely together. The legs are drawn up as short and as near the body as possible; the breath is fully inhaled; then the stroke is made; thehands and feet are both darted forth to their fullest stretch at the same moment; the former are still kept close to each other, and the balls of the toes are made to touch, in which position they remain unmoved till the whole stroke is finished. The hands, fully extended, are then separated and moved round, each describing part of a circle till they are opposite the shoulders, and then the stroke is finished. But observe that which is of most consequence; the exhalation of the breath begins with the stroke, and is slowly continued as long as the striking lasts; indeed, the quantity of breath determines how long the stroke will be, for it is taken only once at every stroke. It is very measuredly given out by a good swimmer, and all the time he is breathing forth he brings his hands round, making the lungs and the hands work and cease working together. The legs all the while, after the first rapid kick, remain stretched out rigidly, with the heels quite close to the water surface; thus a flat position is secured, which greatly conduces to speed.

The hands are only slightly propulsive; their chief use is to act as a cutwater, cleaving the way for the body, but, much more, to prolong the impetus given by the legs, and to eke it out to the utmost. The breath acts as float to the whole, and cannot be too carefully husbanded and proportioned to the long sweep of the arms. A swimming stroke resembles that of an oar in its perfection; for it is quick forward, evenly pulled out, and the recovery for a new stroke is rapid; and on these two things, namely, lying truly horizontal just under the surface of the water, and proper treatment of the breath, the art of swimming depends.
In entering the water head foremost, or "taking a header," as it is called, the water should be struck by the forehead bone, just below the hair-the hands having first cloven the water, as shown in the illustration. The angle which the body should form with the water should be less than half a right angle, or from thirty-five to forty degrees, as shown in the diving figure in the annexed engraving, selected from the Art Journal. Then recove ry upwards is rapid, and the appearance of the whole graceful. Adepts have brought this branch of the art to such perfection that they can jump into less than two feet of wa ter without touching the bottom.

In fresh water a strong swimmer will move fully five feet and a half at every stroke without great exertion. How many strokes he will make in a minute must depend on his breathing capacity; twenty-five to twenty-six would probably be the average. This will give fifty-eight yards per minute, or just two miles an hour; and we should think, to accomplish that pace without distress would be a fair criterion of a good
swimmer. At racing pace the strokes are much more rapid, exceeding fifty per minute; and the highest speed that seems attainable is thus eighty-eight yards, or exactly three miles an hour.

Mastodon for Yale College.

Professor Marsh has secured, for the Peabody Museum of Yale College, the skeleton of a large mastodon, exhumed by Mr. A. Mitchell on his grounds at Otisville, seventy-five miles from New York and within a mile and a half of the Erie railroad. The bones were found on and in clay, beneath a
out her young, which are soon able to obtain their own living, being strong and hardy.

The British Telegraphs

From the annual report of the Post Office Department of Great Britain, just rendered to Parliament, we gather that the total receipts for telegraph service for the year ending March 31, 1875, was $\$ 5,600,000$, and the expenditures for the same, $\$ 5,965,300$, showing a net loss of $\$ 365,300$. The Chan cellor of the Exchequer, referring to the telegraphs, in his speech on the budget, took a rather gloomy view of what h termed a remarka ble experiment, and held the results up before the House as a warning not to en er into any othe kind of busines which could bette be carried on by pri vate enterprise. H said: " Undoubted y the telegraph ser vice has not yet been brought into remunerative condition. We are not as et paying our way dare contributing very litt'e towar the interest on the debt incurred fo the purchase."
The telegraphs of Great Britain have already cost tha overnment abou $\$ 60,000,000$, and here are claims stil pending which will mount to severa millions more. Eve y year the deficien y has been enor mous, to say no thing of the loss o interest upon so vas a sum. This latter tem alone, at the low rate of $3 \frac{1}{2}$ per cent, amounts $\$ 2,100,000$ yearly. At the prevailing rate of interest in thi country, 7 per cent, this loss would, of course. be twice as great. All of this has to be met, and there is but one way to meet it-by increased taxation. In this manner the burden of affording telegraphic facilities at less than cost, to the one per cent of the population whose business necessitate their use, falls upon the ninety-nine per cent who do no use the telegraph at all.-Journal of the Telegraph.

How Inventions are Made

The life of George Stephenson proves that, notwithstand ing the novelty and great importance of his improvements in steam transit, he did not discover these improvements. He steam transit, he did not discover these improvements. He
did not discover that a floating embankment woul 1 carry a
railway across Chat Moss, neither did h discover that the friction between the wheels of a locomotive and the rails would enable a train to be drawn by tractive power alone. Everything connected with his history shows that all his improvements were founded on a method of reasoning from principles, and generally inductively; to say that he "discovered "our railway system, according to the ordinary construction of the term, would be to detract from his hard and well earned reputation, and place him among a class of fortunate schemers who can claim no place in the history of legitimate engineering.
Count Rumford did not by chance develope the philosophy of forces upon which we may say the whole science of dynamics now rests he set out, upon a methodical plan, to de monstrate conceptions that were already ma tured in his mind, and to verify principles which he had assumed by inductive reason ing.
The greater part of really great and sub stantial improvements which have performed any considerable part in developing moder mechanical engineering have come through this course of first dealing with primar principles, instead of groping about blindly after mechanical expedients; and present cir cumstances point to a time not far distant when chance discovery will quite disappear -Engineering.

THE SAND GROUSE

great; and the toes are connected by a membrane, enabling the birds to run rapidly on loose sand. Their plumage is variegated, brown, gray, and ocherous yellow being predominant. Though the birds associate in pairs, they are of ten met with in flocks, and they are striking objects on the wing, being beautifully marked. Their flesh is, strange to ay, coarse and flavorless.
The hen lays her eggs in a hole in the sand, and hatches

Mastic for Iron and other Materiale

The following is the composition invented by M. I. Macha bee, which is said to preserve iron from rust, and also to be applicable to other materials, such as stone or wood, used in conjunction with iron or other metal, in the formation of re servoirs or other works : Virgin wax, 100 parts; Gallipoli,125; Norwegian pitch, 200; grease, 100; bitumen of Judea, 100 gutta perchs, 235 ; red lead, 120 ; and white lead, 20 , all
of which, says the inventor, have their special value. The materials are mixed in a boiler in the order in which they are given, the gutta percha being cut up in small pieces, or rasped. The mixture must be well stirred at each addition, and, when homogeneous, is poured into molds, and looks like chocolate. When used for preserving iron from rust, it is melted and laid on with a brush; but for stopping holes, etc., it must be in a pasty state. It may also be used as a glue to fix a piece of metal over a hole. For certain purposes, such as stopping holes in large vertical metal sur faces, the composition is slightly varied, the Gallipoli being reduced to 115 , the bitumen to 90 , and the red lead to 100 , while 40 parts of gum copal are added next to the gutta percha.
The United States steamer Swatara lately arrived at this port from Australia, with the instruments and apparatus used by the American astronomers during the late transit of Venus observations.
Among the curious animals brought home by the offlcers are a sarcophilus ursinus, or Tasmanian devil. This hideous creature is said to be the only living specimen in this country, and it will probably be sent to Central Park for exhibition. In appearance it has some resemblance to the Amerioan raccoon. It is carnivorous, and in its wild state principally lives upon birds, rats, and other smaller animals. Although partially tamed, it is deemed necessary to keep the creature confined on deck.
There is also on board a wombat or Tasmanian hog, which lives upon vegetable matter. Several kangaroos, with walloly and two beautiful Gordon setters, were also noticed playing upon the deck of the S watara; while a number of love birds and parrots, and a Sultana bird, were caged in different portions of the vessel. A fine collection of Australian ferns has been made by several officers connected with the expedihas
tion.

DECISIONS OF THE COURTS. Unt United St

Supreme Court of the United Statos.

NEW BOOKS AND PUBLICATIONS.

the mosaic account of Crbation, the mibacle of to-daf or New Wittesses to the Oneness of Geneeis and Soience. By
Charles B. Warring. New York city : J. B. Schermorhorn \& Co., Charles B. Warri
14 Broad street.
sclentific students who attempt the task which Mr. Warring has imposed apon himself must be oareful not to underrate ets magnitude, and must pre
pare for vigorous attacks from both classes of polemics. The author, tin the pork now before us, has assembled a a arges number of co'ncldental similarl
 although his zeal has Indued him to clalm as proofs some polnts which are
rather fanciful and far--fetched, the book will repay any one who will read it attentively; for it contatins much laborious thought and many ovldeences o
eareful study, and shows that the aubhor has not too hastly tyrown hlmself Into the arena of combat. But the battle fs not likely to be onded for some time; and we are not yet able to pronounce whether elther slde, the theolo-
glans or the sceptios, or the \because. harmonits", (to coln a word to describe the mosi recent writerss, , are likely to secure even a temperary victory.
History
History of the Unired STATrs of America. IUustrated. Sup-
plied to subscribers only, in parts at 25 cents each. New York
plied to subscribers only, in parts at 25 cents e
city : Caseell, Pettor, and Galpin, 598 Broadway.
This is another of the many series of finely illustrated otandard works
which have galned for the above named pubilshers an envilabler reputation,

The Artizan's Guide and Everybodr's Assistant, embracing noarly Four Thousand New and Valuable Receipts, Tables, etc.
By R. Moore. Priee, in cloth binding, $\$ 2.00$; morocoo, $\$ 3.0$. By R. Moore. Priee, in cloth binding, $\$ 2.00$; morocco, $\$ 3.00$.
Rouse's Point, N. Y.: Jobn Lovell \& Sons. Montreal, P. Q.: The Lovell Printing and Publishing Company. New York city: John Wiley \& Son, 15 A stor Place.
A coplous selectlon of tnstructlons for using various Industrial and do-
mestic processes, well arranged and edited. The articles are classifed by mestcic processes, well arranged and editted. The artlcles are classifed by
the trades for use in which they are designed, and so form, in many cases, DIoEst or ter
digest of the United States Patevis for paving and roofing Compositions to January 1, 1875 , and English Paving Composi-
tions to January 1, 1874. By L. W. Sinsabaugh, United States Patent Offce, Washington, D. C. Price \$10.
Mr. Sinsabaugh adds another to a very valuabbe series, which we hope wne engaged in operations Involving the use of patented articles, whether as inventors, manufacturers, or merchants, such books are indispensable;
and the high price necessitated by the labor of complligg them and their and the high price necessitated by the labor of compliling them and their
unated clruulation 18 more than repald by the Landiness and faclltt of refer ence which they afford.
Tre Jounnal of Education, devoted to Educational Interests, Science, Literature, and Art. Yearly Subscription, $\$ 8.50:$ single
copies, 25 conts each. Broklyn, N. Y. 185 Montague street. There has been a great opportunity for eatablishnng a nlgh class perio There has been a great opportuntty for establishng a high class perlod-
Cal devoted to educational subjects. The lavishness with which provision for education has beee mand by yall our states has log beneen matterer for con.
gratulation and pride; while the lllterateness of many of the senior puphis causes us to wonder how so much money can be spent to produce so poor eesult. The fallure is undoubtedly due to imperfect and unmethodical
ceaching; and the sclence of mparting Instructlon needs to be carefully and teaching; and the sclence of imparting ingtruction needs to be carefully and
studiously learnt. To this end, alterature of the woole subject 18 needed; and the magazine now before us is a long step towards supplyling it. It well written and edited, and 18 altogether a credtable pubication.
New York City Directory. Volume LXXXIX, for the Year
ending May 1, 1876. Price $\$$ \$6. New York city: Tue Trow City ending May 1, 1876. Price \$6. New York city: Tue Trow City
Directory Company, 11 University place. The organization for complling this indispensable book should, after 89
vears' labor, be tolorably complete; and we are already (June il) in recelpt years' labor. be tolorably complete; and we are already (June 11 in in recelpt
of a handsomely printed volume, contalinng a correct Hist of all persons doof a handsomely printed volume, containng a correct 1 Ist of all persons do-
tng businines or occupy ing houses in New \mathbf{Y} Orks citt, Including the many changes Which took place as usual early in the month of May. The names in the Directory are t,468 more in number than those of last year, and the tncrease of the population within the 12 months may be estrmated at 22,000 . The
whole value of such a work consists in Its accuracy; and we feel bound to estify to the care bestowed on its compllationand its consequent value as Woroughly rustworthy book of reterece
Wilson's Business Dirgctory or New York City. Volume
XXVIII. Price $\$ 2.50$. New York city XXVIII. Price $\$ 2.50$. New York city : The Trow City Direc-
tory Company, 11 University place We have here a very compendious clace.
nen of our clty, arranged under the heads of thon the frms and business nen or our city, arranged ander the heads of thelr respective professions
and trades. Commerclal travelers, advertisers, and others wishling to obatan complete ilists or persons occupled In any particular calling, will and this NEW Complete.
a New Table of Extended Multiplication. Devised by George A. McLane, of Chicago, III.

This is something of a mat ematical curiosity. It is intended to take the place of Crelle's " "Tables of Calculation,"', now generally used In Ife Insur. and ofices for adjusting premluma, etc. The new table enables an accountan
divine a result fnvolving igures up to 10,00 almost at a glance. Fo
 greatly HIIthten labor. The author may be addressed, care of Amertcan
Express Compan, chicago, IIt.
rariff Revision, a Reply to the Proceedings of the Philadelphia Drug Exchange on the Proposed Rovision of Tariff. By Danie C. Robbins. New York elty : Thitchener and Gastaeter, 14 an 16 Vesey street.
An abib
nopoly.
on the Duplictit of the Principal star of $N u$ Scorpionis By S. W. Burnham. Reprinted from the Royal Astronomical Society's Monthly Notices.
Mr. Burnham 18 eontinulng his valuable labors on the double stars, and
he paper now before us is a report of an Interesting investigation of one the most remarkable of the btnary heavenly bodies. KEW Arches: Advantages ang Disadrantages of Different Meth-
ods of Construction. By G. W. Hyde, C. E. Price 50 cents New York city : D. Van Nostrand, 23 Murray and 27 Warren streets.
ngineering stanse in an interesting and somewhat dimeur branch of ngrineering sclence. It lis issued in Mr. Van Nostrand's excellent Sclenc

Improved Earth Auger.
Andraw M. Hanna, Kosclusko, Miss.-A cylinder, made of heary are curved into spiral form, and each of which makes about half a turn. To the rear edge of each blade is hinged a valve, which shuts down against the other cutter, so that the earth contained in the cylinder is rigldyly attached a bail. The shaft is attached to the bail and to the cross bar, and is made in sections, the lower end of and fit upon the squared upper end of each lower section. The inanerlocked ends of the shaft sections are secured together by a bolt,
tin, or key, so that the cylinder can be ralised and lowered by the pin, oft
shatt.

Improved Ironitig Board.
Henry Clay Green, Oshkosh, wis,, assignor of one half his right to John H. Gettman, of same place.-This ironing board has, at its upper end, a self-adjusting neck wire, and at the lower end a spring rurned back, it gives the side of the shirt or other garment a strain and draws it tight over the board in a proper position for ironing The shirt or garment being confined at the top of the board by the epring, which adjusts itself to the neck, any required degree of tension may be given.

improved Hot Air Furnace.

William O. Crocker, Turner's Falls, Mass.-The cover of the base is provided with two rows of holes, communicating, respectively with the space between the outer casing and a jacket, and the pace between said jacket and the combustion chamber. The jacke is perforated by means of a coaical punch, so that conical caps pro
ject over the opening, which receives the air and cuts it up into numerous jets, and throws it in contact with the radiating comustion chamber. The air which enters inside the jaoket passes rhe top rim of the fire pot is provided with a series of perforations, so as to enable an indirect draft to take place by causing the products of combustion to pass through the top rim, down the rear side of the fire pot, under the partition plates, up the front side of the ment is to cause the heate

Indoproved Harvester.
Frederic F. White, Stacyvile,
Iowa.- To the shaft are attached two chain wheels, around which pass two endless chains, which
pass down along the upper sides of inclined bars, around chain whe down along the upper sides of inclined bars, around chain
wheoled at the lower ends of said inclined bars and pulleys pivoted to hangers connected with the framework of the machine. To the endless chains are attached cross bars, to the inner ends of which are pivoted the ends of the rakes. By suitable construction, as the rack bars are moved rearward, the rakes will be raised into a position at right angles with the cross bars; and as
the rack bars are moved forward the rakes will be lowered into the rack bars are moved forward the rakes will be lowered into line with the cross bars. The rakes ure lowered at the proper time to sweep the grain from the platform up an inclined apron and into a receiver, and raised and held up while moving back to the outer

Improved Single Rall Rallvay Car.
Chandler McWayne, Colfax, Cal.-Upon the upper ends of posts are crossheads running longitudinally with the track, and baving the rails. The rails are supported midway between the posts by arched braces. To the sides of the posts are attached flat bars for the horizontal wheels to bear against. The car body is made with a deep longitudinal recess extending up from the middle part of the bottom of the car, so that the main weight of the car and load may be below the rail. The trucks, to which the wheels are pivoted,
are pivoted in the upper part of the recess in the car body. The passengers and load of the car occupy the compartments in the sides, below the level of the rails. In the upper part of the car fody, directly above the rall, is formed another compartment, the car, so that, by moving the said floor toward one side or the other, the weight of the passengers or load in said compartment may serve as a counterpoise for balancing the car.

Improved Automatic Gate.
Hiram Krom, Dartford, Wis.-This improved gate is constructed in duplicate and aligned parts, rigidly connected to and turning upon a central pivot post, to which weighted cords are attached.
The latches are so connected together as to operate simultaneously.

Improved stirrup.

Joseph B. Waggoner, Athens, Ill.-The bottom turns horizontally on its ends in a yoke, which is pivoted to a suspending yoke whic is swiveled to a suspending strap, so that it can turn in a vertical adjust itself to the foot, so as to allow the latter to slip out without bus
Automatic Car Brake.
F. L. Kirtley, Cleburne, Texas.-This invention consists in improving automatic car brakes by connecting the brake lever with
sliding dra whar, so that, as soon as the engine slows up, the draw ar is forced back by contact with that of the next adjacent car and the brake shoes applied to the wheels. The drawbar or buf fer is jointed so that the shoes may remain aloof from the wheels

Improved Extensible Safety Bridge.

William Campbell, Floyd C. F., Va.-This invention consists of a sories of bars arranged crosswise of the car loosely on rods, which nected to the car for supporting them. The loose bars are linked ogether at the ends to limit the extent to which they may be sepa rated; and the outermost bar of each platform is contrived to ouppe with the corresponding bar of another oar. A practica from one car to the other when the cars are in motion, or the plat form may be permanently connected at the middle in one part only for two cars, and be connected and disconnected with a carat ane or both ends.
Improved Compound for Scouring White Goods. Moritz Mayer, 271 East 10th Street, New York city.-This inven-
ion is an improved compound for cleaning and dressing white kid tion is an improved compound for cleaning and dressing white kid sloves and shoes of morocco, sheep, satin, cloth, and similar whit rabrics, so as to restore their original glaze and whiteness. Th ompound consists of a mixture of French chaik and salts of sorre in water, under an adition or a swail quanid oxalic aclo an the articles to be cleaned giving them one or more coats, a required, each coat being exposed to the open air for drying. The inventor claims that any soiled or discolored parts, ink spots, etc., will be completely cleaned without hardening or injuring the
fabric, which retatns its original pliability, and is restored by the abric, which retatns its original pliability, and is restored by the ressing to its former whiteness and luster.

Improved Excavator.

John S. Whitescarver and Wilimem C. Whitescarver, Pontiac, IU.By suitable construction, by operating a lever, the point of the plow may be ralsed and lowered, to cause it to run shallower or eeper in the ground. By other devices, a frame may be moved out
nd in to tighten or slacken an endless apron. The machine may位 adjusted to carry the earth up a high grade or even discharg It into a wasion, and the inner end of the carrier may be readily ad usted to, and held securely at, any destred hightfrom the ground or receive the earth from the plow.

Improved Rallway Track Closer.
Isaac N . Haines, Pomeroy, Pa.-This invention consists of blocks of suitable size, which extéd with their top parts over the rails, and slide in base shoes by the action of lever and double crank con-
nections, so as to put the blooks simultaneously on or off the track.

Improved Extensible Ladder.

Edward Clark, New York city.-To the lower part of the side bars of the upper section are pivoted bars, which, when the said
upper section is extended, overlap the upper parts of the side bars of the lower section, and are secured by bolts and nuts. This contruction makes the joints between the sections the strongest part posed of sliding sections, are as follows: To the side bars of the ower section are pivoted two buttons, the lower ends of which are notched to flt upon the rear upper corners of the steps to support the sections. This construction allows a pawl to be thrown back, and cords to be detached from pulleys, allowing the pulley shaft to used for hoisting purposes.

Improved Refrigerator Car.
Richard Armiger, Baltimore, Md-This invention consists in making the ice and provision chambers entirely distunct and airtight, so that the moisture from the provisions and in the provision he provisions being perfecty dry as well as cold. In this state they eep their freshness and flavor during a travel over great distances.

Improved Ore Concentrator.
James V. Pomeroy, Boulder, Col. Ter.-This invension consists of a series of ore pans or troughs, which are placed in detach$i_{\text {imparted by concussions with suitable actuating mechanism. The }}$ pans are connected by one of the sides being of suitable inclination, and overlapping the edge of the adjoining pan, for facilitating the the motion of the freme.

Busiutss aud wersoual.
Charge for Insertion under this head is $\$ 1$ a Line. HoadleyPortable Engines. R. H. Allen \& Co., For Sale-Large lot second hand machinists,
Fools, cheap. Send for 1st. I. H. Shearman, 45 Cortant street, New York.
Mieroscopes, from 50 cts. to $\$ 500$, for Scientifc neestigation and home amusement. Magnifylig Glasses,
3py Glasses, Telescopes, and Leneses. Price List free. Small Gray iron castings made to order. Hotch-
kiss $\&$ Ball Foundrymen, west Meriden Conn. "Book-Keeping Simplifed."-The Double-entry, Fs cts. Sent postpaid. Catalogue free. D. D. B. Wage
$\&$ co., Puulishers, 42 Walnut St., Philadelphia, Pa. Wood Planers-Five 2d.'. Hd Wood Planers for
Sale cheap $; 12 \mathrm{H}$ H'd $30 \mathrm{H} . \mathrm{P}$. Boller. Wm. M. Hawes, Fall River, Mass.
Rare Chance-Complete set Sci. Am. for Sale.-
E. b. Gillman, Dansville, LIv. Co., N. Y.

For Sale-Mo. cleveiand, Ohio.

Soap Stone Packing, in large or small quantities Moss Agates, Petrifled Bones, Wood, Sh ther curiosittes, will be sent C. O. D. by S. H. Wr We can commend Messrs. Geo. P. Rowell \& Co., ton to advertise in papers beyond their immediate vicinIty, at the tirm have business relations with the press
throughout the whole country.-[Quincy (Ill.) Whig.] A competent Civil Engineer, experienced in the
construction of Water Works, Reservolrs, Da ins, \&c., de $=$
Scale in Boilers Removed-No pay till the work hiladelphia, Pa.
Small Engines and Boilers. $\$ 25$ to $\$ 50$ each. AdFor Sale-One second hand Horizontal
20 in. 43 In . stroke, Puppet Valves, Stevens
Cut-off Fly Wheel. 14 ft . by 26 in., face turned. Also, one second
hand do.. 12 in. $x 16 \mathrm{in}$., Slide Valves, Variable Cut-off.
Fly Wheel, 8 ft diam., 12 in . face. Clute Brothers \& Fly Wheel, 8 ft. diam., 12 in . face. Clute Brothers \&
Co., Schenectady, N. Hotchkiss \& Ball, West Meriden, Conn., Founn royalty any Patented articles of merit.
Wanted-T.S sell a half interest in a large, well
established busine3s, secured by original patents.. c. H. Kirkpatrick, Lafayette, Ind.
See N.F. Burnham's Turbine Water Wheel ad-
vertisement, next week, on page Diamonds and Carbon turned and shaped for
Scientific purposes; also, Glaziers' Dlamonds manufacScientitc purposes; also, Glaziers' Dlamonds manufac-
tured and reset by J. Dickinson, 64 Nassau Street, N. Y. 2nd Hand Engines and Boilers for Sale
Prices. Address Junius Harris, Titusville, Pa.
Pres. Adaress
The "Lehigh" Emery Wheel. A new pateitit.
Address Lehigh Valley Emery Wheel Co., Welssport, Pa. Steam and Water Gauge and Gauge Cocks Com-
oned, requiring only two holes in the Boller, used by all bined, requiring only two holes in the Boiler, used by all
oiler makers who have seen it , $\$ 15$. Hillard \& Holland,
57 Gold St., New York.
A Valuable Patent of Cast Iron for Sale or on
royalty. Box 54, Westchester, Westchester Co., N. Y. For Blind Fastenings, Securely locking Blinds, op and bottom, preventing sagging, warping, and rater Co., N. Y.
Rubber and Oak Tanned Leather Belting:-
Greene, Tweed \& Co., 18 Park Place, New York. Pipe and Bolt Threading Machines. Prices from
$\$ 80$ up. Address Empire Manufacturing Company, 48
Gold Street, New York.
Johnson's Universal Lathe Chuck. Medal award-
ed by the Franklin Institute for "durability, frmness, ed by the Franklin Institute for "durability, firmness, Works, Lambertvile. N. J.
For best Bolt Cutter, at greatly reduced prices,
address H. B. Brown \& Co., 25 Whitney Avenue, New Haven Conn.
Havent Headors (both power and foot) and Power
Bommers a speclalty. Forsaith \& Co., Manchester, N.H. Hydrant Hose Pipes and Screws, extra quality,
very low. Send for prices. Bailey, Farrell \& Co., Plttsvery low.
burgh, Pa.

Amerioan Metaline Co., 61 Warren St., N.Y. City.

 Grindstones, 2,000 tunsstock. Mitchell,Phila., Pa 8mall Tools and Gear Wheels for Models. Listiree. Goodnow \& Wightman, 23 Cornhlll. Boston. Mass. Peck's Patent Drop Press. Still the best in use.
Address Milo Peck, New Haven, Conn. The "Scientific American" Offlice, New York, Is
atted with the Miniature Electrie Telegraph. By touching iltile buttons on the desks of the managers signals are sen
to persons in the various departments of the establishment. Chap and effective. Splendid for shops, otilises,
dwenilngs. Works for any distance. Price $\$ 6$. With good Battery. F. C. Beach \& Co., 246 Canal St., New York.
Makers. Send for free illustratea Catalogue. Hotchkiss Air Spring Forge Hammer, best in the
market. Prices low. D. Frishie \& Co.. New Eaven. Ct. For Solid Wrought-iron Beams, etc., see adver-
tisement. Address Union Iron Mills, Pittsburgh, Pa. for Shograph, \&c.
Silining Ring of a Superior Quality-Whitins-
Spinning Ring Co., Whitnnsille, Mase. All Fruit-can Tools, Ferracute W k's,Bridgton,N. J. For best Presses, Dies, and Fruit Can Tools, Blise
\& Williams, cor. of Plymouth and Jay, Brooklyn, Bi. Y. Mechanical Expert in Patent Cases. T.D. Stetson,
23 Murrav St. . New York. For Solid Emery Wheels and Machinery, send to
the Union Stone Co., Boston, Mass., for circular. Faught's Parent Round Braided Belting- The
Best thing out Manufactured only by C. W. Arys,
son \& Hydraulic Pressee and Jacks, new and seoond
nand. Latnes and Macnncry for Polishing and Buffing
Metals. E. Lyon. 470 Өrand Street New York.
The Lester Oil Co., 183 Water St., N. Y., Exclusive
Manufacturers of the renowned Synovia? Lubrtcating oil. The most perfect a
For 13, 15,16 and 18 inch Swing Engine Lathes,
sddress Star Tool Co., Providence, Rn I.

Three Second Hand Norrns Locomotives, 16 tung
each ; 4t. 8×1 inches gauge, for sale by N. O \& C. R. F.
 For Tri-nitroglycerrn, Mica Blasting Powder Electric Batteries, , lectrtic Fruses, Explocerss. Gutta Per seven years' experience at Ho
M. Mowbray, North Adams,
Genuine Concord Axles-Brown,Fisherville,N.H
Temples and Oilcans. Draper, Hopedale, Mass. Price only $\$ 3.50 .-$ The Tom Thumb Electrac
Telegraph. A compact workting Telegraph A pparatus, Telegraph. A compact workling Telegraph Apparatuas
Cor sending messages, making magnets the electric light glving alarms, and various other purposes. Can be put in
operation by any lad. Includes battery, key, and wires Neatly packed and sent to all parts of the world on recet
of price. F. C. Beach \& Co ., 246 Canal St., New York. Machinery Wanted-Edging, Milling, and other
Gun Machines wanted, new or second hand. Address E. Single, Double and Triple Tenoning Machines
superior construction. Martin Buck, Letanon, N. H .

Hhdick Whuriss

S. W. \& Co. will find a recipe for black fin
h on German silver instruments on p. 283, vol 31 -W . H. S. will find a recipe for fine olacking on p. 283, vol. 31.-J. G. will find a recipe for hai stimulant on p. 363, vol. 31.-R. can ćlean his rusty
guns by using the method described on p. 209, vol guns by using the method described on p. 299, vol
$31 .-A . C . C$. can stereotype by the paper proces 31.-A. C. C. can stereotype by the paper process
as described on p. 363 , vol. 30 - J. B. J. can cement marble to granite by using the preparation de
scribed on p. 251 , vol. 31.-J. B., Jr., will find a scribed on p. 23 , vol. W. H. H. can preserve eggs by the process de-
scribed on p. 219, vol. 31.-F. W. A. can mend cracks in cast iron stoves with the cement de-
scribed on p. 409 , vol. 31.-J. C. J. will find direc scribed on p. 409, vol. 31.-J. C. J. will find direc
tions for making picture canvases on p. 75, vol. -H. L. W. and others will find a description of the production of gelatin relief plates on p. 2\%2, vol. 32.-W.S. H. will fnd directions for gilding with
leaf on p. 347, vol. 31.-W. B. can bronze iron arti cles by the method described on p. 283, vol.31.-J. K. A. will find a recipe for a depilatory on p. 362,
vol. 32 , and for indelible ink on p. 111, vol. $2 \pi .-J$ vol. 32, and for indelible ink on p. The, vol. 2\%.--
Mc3. should consult Bourne "On the Screw Pro peller
(1) L. J. asks: What composition can I ap ply to an irregularly shaped brick wall, so as to
protect the mortar effectually from the effects of the vinegar generated in apple pomace? A. Coa th tar.
(2) J. H. S. asks: What will remove so called indelible ink from linen without injury to silver may be removed by rubbing the spot with a
little cyanide of potassium; but it is well to cauion those who use this latter salt for this purpose as it is a dangerous corrosive poison and should be
handled with the greatest care, always avoiding handled with the greatest care, always avoidin
any possibility of its getting into an open cut.
(3) A.T. asks: Which is the best externa oating with which to paint a cask in which soda water is to be charged and kept for six or seven
months? The coating should prevent the escape months? The coating should prevent the escape
of carbonic acid gas. A. The carbonic acid would of carbonic acid gas. A. The carbonic acid would
make its escape through any such coating on a
(4) A. B. S. says: Along the Mississippi river, where the water is used for drinking pur
poses, it is the custom to draw twenty or thirty gallons, which is put into a large earthen vessel, and stirred up with the water to clarify it and throw down the sediment, which it does effectual-
ly. How does it act? A. The sulphuric acid of the alum unites with the lime held in solution in the water, and forms an insoluble salt which pre purities with it.
(5) H. E. N. asks: Where can I find a de scription of Pettenkofar's method for ostimatin the carbonic acid and ammonia in the air? A
Consult Angus Smith's work entitled "Air and
(6) W. W. F. asks: 1. What is the gravity of a body which weighs 900 lbs . at the earth's sur face, at the distance of 3 miles in the air? A book of its weight. Please give a simple rule to work
this. A. The question is solved by the equation: this. The question is solved by the equation
$(\mathrm{K}+h)^{2}$ he hight required, g^{\prime} its intensity at sea level, $\mathrm{R}=$ adius of the earth, $h=$ the hight desired. If $g=3$ $\frac{(t 000+1656)^{2}}{(4000)^{2}}$, and $g^{\prime}=16$ feet, which is one balf its lue at sea level.
(7) R. asks: Will an ordinary gas meter re ister more without the gas being lighted than if like? A party connected with one of the gas companies of New York has been appealed to, and he states as the result of experiments that about 4 per cent more gas passes through the burners when unlighted than when lighted. Is this correct? A
The difference in rate is due to the difference in The difference in rate is due to the difference in
density and temperature of the unlighted gas and the products of combustion
(8) M. W. M. asks: What is the simplest can I make one? A. Place side by side two accurbe covered with muslin and kept constantly moist by means of a string or small wick which dips in-
to a reservoir of water below. Evaporation takes
pends upon the dryness of the air; and by the pends upon the dryness of the air; and by the
coldness thus produced, the mercury in the thermometer is correspondingly depressed. By com-
paring the difference between the two thermomeparing the difference between the two thermometers, and referring to a published
(9) J. W. D. E. asks: Is there any kind of cement or other substance that would render a wooden vessel impervious to air and water under a pressure of from 2 to 4 a.tmosyherea? A. You
failed to state for whai purpose the cask is intend ailed to state for whai purpose the cask is,
ed to be used, or the nature of its oontents, wheth er tiquid or gaseous, or the conditions of temperaure. It is biously necesary that an be recom mended.
(10) W. P. K. asks: 1. Can borax be used (10) W. P. K. asks : 1. Can borax be used
or toning photo prints in lieu of gold? A. Borax for toning photo prints in lieu of gold ? A. Borax
has been used with chloride of gold, in place of carbonate of soda. 2. What can cheaply replace gold chloride? A. The old process of sulphur toning is sometimes employed for cheap prints ears a close resemblance to that produced by the gold bath, it renders the picture less permanent. he process of sulphur toning consists in adding to he fixing bath of hyposulphite of soda, on imcid, which renders the bath opalescent. This is ue to the liberation of sulphur in a very fine divided condition.
What can be used in a small blast lamp furnace Alcohol.
How can I mount a thin glass electrical wheel so that it shall run truly, the center hole being small? . Place at each side of the plate a small thick
disk of hard rubber, fastened securely to the axle, and having between it and the plate a thin washer of soft rubber, the same size as the disk.
(11) J. H. asks: 1. How can I distinguish an mitation from a real diamond? A. In the case o by attacking them: but in the case of various other imitations, it would be necessary to resort to other measures, such as specific gravity,
ference of refrangibility of light, etc. 2. Woul fuoric acid act on a real stone? A. Hydrofluor cid is withoutaction on the diamond
(12) C. F. G. asks: What is the best kind iron for electro-magnet cores? A. Swedish (13) W. O. asks: Will a lightning rod be built runsition to mye of barn, boxed up? built an addition to my barn on the side where
the rod formerly went down on the outside, leaving the rod where it was, and boxirg it. A. If the rod was safe before, it is so now. The main thing is to make a good ground connection. It should terminate in earth constantly
or three long lateral branches
(F4) L. \& D. say: 1. We have a telegraph ne $5 / 2$ of a mile in length, of No. 11 galvanized iron No. 23 , copper covered. How many cups of $41 / 2 \times$ nches Callaud must we use? A. Twelve cells. What is the most suitable battery to use on 70 feet
of copper circuit f, r an electric bell, and how many cells? A. Six cells of Léclanché. 3. What many cells? A. Six cells of Leclanche. 3. What A. Two cells of Callaud.
(15) J. M. says: I tried the recipe given by ranic battery for plating. I making a cheap gal and sheet iron for plates. What kind of wire should I use? Will it succeed? A. Use copper and zinc plates instead of iron. This will answer
best for plating. You will find instructions for best for plating. You will find instructions for
gold, silver, and nickel plating in recent back numbers.
(16) E W . P. asks: 1 . In making electro-
magnets, is the wire wound on the cores in a continuous coil, like cotton on a spool, or is each layer wound separate and the ends afterwards joined toether? A. In a continuous coil. 2. In the Tom a septum of paperaround the zinc plate? A. Yes. 3. How large a battery would it take to drive an electric engine for a small boat 3 feet long? A. About 150 of Bunson's large sized cells.

1. Does the term squaring the circle mean tinding a square of the same area as the given circle?
A. Yes. 2. Why will not the square root of the A. Yes. 2. Why will not the square root of the square of equal area? A. It will; but how do you sure your oircle?
(17) B. S. F. asks : 1. How can I make iron oft for making electro-magnets? A. Anneal it.
d. Can steel be made softer than iron? A. No.
(18) B. B. asks: Please give me directions or making a small galvanic battery. A. Take a glass tumbler, and place in the bottom a sheet of tending out of the tumbler. Cover the copper with blue vitriol, and suspend a sheet of zinc near the top. Fill the tumbler with water. Connect the zinc and copper together for 48 hours and the
battery will be ready for use.
(19) H. S. J. says: In your issue of April , hucinswer to the question. How \mathbf{M}. to "add a little Blyttersulphate of quinine to it, to pre vent molding." What is Blatter sulphate of qui-
nine, and in what does it differ from the officinal nine, and in what does it differ from the officinal
sulphate? A.The term Blatter sulphate of quinine sulphate ? A.The term Bliltter sulphate of quinine
probably refers to the bisulphate, which crystalprobably refers to the bisulphate, which crystal-
lizes in thin plates, and not to the normal sulphate hich forms silky needles.
(20) G. C. M. asks: How can I purify fat oils? I have aitered them and obtained them in a I an at a loss how to rid them of their color, but mell. A. Try the addition of a very small quan tity of iodate of calcium, and allow to stand 24
heurs or more beforefltoring.
(21) G. W. H. says: 1. I want to light gas electricity. What size and A.Of the size of pin and half an inch long. 2.I want to make an elec tro-magnet to lift a small weight. What sized wire and how much, shall I wind on it? A.Seventy-five
(22), W. J. T. says: I have just finished the construction of a Rhumkorff coil; it gives a severe
shock but no spark unless the ends of the second shock but no spark unless the ends of the second
ary wire are almost touching, when a minute spark ary wire are almost touching, when a minute spark
is perceptible; and the increase of battery powe does not increase the length of spark. The coil is constructed as follows: Primary wire, No. 16,cop per, about 150 feet, cotton covered. Secondar wire, 7,000 feet No. 24 American gage, copper, no covered, but wound so that a paraffined cotton between the same size as the wire is interposed is insulated from the succoeedingone, by two thiok nesses of paraffined paper, care being taken that at the ends of the coll, the wires did not slip ove the insulating paper and so come in contact. Th in diameter and 10 inches anged iron wire, with paraffin and introduced in the primary wire The condenser has 60 sheets tin foil, 5×11 inches, laid between paraffined paper 7×11, and properly connected with the two parts of the circuit break er. What is the trouble? Probably the frst though that would occur to you would be that the con
denser was either improperly made or improperly connected with the primary wire; but that is no the case, as the same condenser works well with another what finer, but no longer. A. Use No. 40 wire for the secondary coil.
(23) A. W. asks: Is a quantity of friction electricity as intense as a similar quantity of
voltaic electricity? A. Yes, very much more
(24) A. R. says: 1. A Russian claims t glass is filled with a percil of charcoal, the air exhqusted, and the tube hermetically sealed. A moderate current of electricity is then passed through the charcoal from an ordinary electro magnetic machine, causing it to glow with a very
brilliant, but at the same time soft, light. It is brilliant, but at the same time soft, light. It stated that the charcoal lasts for an indelinit that two hundred of these lights can be easil maintained by a single machine. Does such an apparatus require two carbon points slightly sepa rated, or is the carbon in one piece, filling the tub as described? A. Two carbon pencils are used
One isattached to one pole of the machine, and the One isattached to one pole of the machine, and the other to the other. 2. What is meant by the singl machine? A. A single maohine means simply one
machine. No such results as claimed can be at

tained

(25) G. J. W. asks: How can I dye kid plied either by immersion or by brushing over the surface. The latter method is more ordinarily practised.
(20) W. B. asks: What is suitable for stain ing a brick wall cherry red, so that it will bold its
color? A. It is the practice to paint such walls. Clay can be so stained by oxide of iron, but not the finished brick.
(27) E. E. M. says: I have a work on electricity which tells me that a hollow coil of wire, through which a current of electricity is passing, will draw in an iron bar. I have been trying to
make such a coil, but have failed. Will you give make such a coil, but have failed. Will you give
me the proper directions? A. Take a small rod of me the proper directions ? A. Take a small rod of
wood 4 inches long, and fasten at each end a disk wood 4 inches long, and fasten at each end a dis of wood 2 inches in diameter. Wind copper wire
covered with ootton in close spirals, over the rod and between the two disks, filling the entire space Then remove the coil and you have the helix. Now connect the two ends of the wire of the helix'
with the poles of a battery of two large Bunsen's with the poles of a battery of two large Bunsen's
cells, and the coil will attract a small iron bar to its cells,and
center.
(28) J. G. 'J. says: 1. I wish to bring stream of water from a reservoir, in a 1 lnch pipe down a hill and across a level to the bottom of the hill. The fall is 100 feet. How high will it throw the water at the foot of the hill? A. If your pipe
is smooth inside, has no sudden bends, and is not too long, and you place at its lower end a corica too long, and you place at its lower end a conica
jet of small aperture, you may tbrow it half the hight of the fall, or a little more 2. How hig would it throw water if the length of the pipe were 600 feet? A. For such a distance you will need a pipe of larger diameter, otherwise you may not throw the water up more than 20 feet or there abouts. 3. How much pressure will there be on the square inch under 60 feet head and 100 fee
head respectively? A. At 60 feet 26 lbs., at 100 feet 43 lbs., provided the water is at rest; whe running, the pressure becomes much less, and the depends on the velocity of the flow aud the dis tance from reservoir.
(29) W. P. D. asks: How can I calculate the amount of air in a given quantity of water, a at the moderate temperature of 65° Fah. and 3 inches barometric pressure (1 ll lbs . to the square
inch) contains 0.042 volumes of air, or a little inch) contains 0.042 volumes of air, or a little will contain $721 / 2$ cubic inches of air. But the air differs from the ordınary air in that, while the lat ter consists of 4 parts of nitrogen to 1 of oxygen, the air contained in the water consists of 1 part descgen to 2 of oxygen. When the temperatur the pro ds, the water dissolves more air; at $50^{\circ} \mathrm{Fah}$. or 6 per cent. When the temperature ascends, th air is driven out: while, when the pressure in creases, the volume of air contained is exactly prheres or 30 lbs. pressure, water will dissolve 8 per cent
cent, ete.
(30) B. B. asks: What is the proper quantity of soda and tartaric acid to be used to a pound
of tlour? A. Use 2 scruples bicarbonate of soda of tlour ? A. Use 2 scruples bic
and $41 / 2$ drachms cream of tartar.
(31) J. H. C. asks: How can I amalgamate nickel and mercury? The nickel melts at a ver high heat and the other is fluid at common tem perature and is very volatile at a high heat. A
Nickel does not form an amalgam with mercury.
(32) A. S. L. asks: 1. How can I make ni trate of silver (for photography) out of good
coin silver? A. Dissolve the coin in pure nitric acid and evaporate the solution to dryness. Ignite the residue until all of the nitrate of copper is decomposed. The residue is next to be exhausted with pure water, and the solution filtered and left to cryst ilize. These crystals should be redissolved in distilled watcr and re-crystallized. 2. How can I make gold solution (for the toning bath) out of coin gold ? A. Place the coin in any convenien
vessel, and pour over it a little nitric acid mixed two and one balf times its weight of hydrochloric acid and three times its weight of water; digest a a gentle heat, but do not boil the aeid, or much of the chlorine will be driven off in the form of gas. At the expiration of a few hours add a fresh por-
tion of nitrc-sydrochloric acid, the sameas at first. tion of nitrc-jydrochloric acid, the same as at first Continue this until the coin is completely disy, so as not to disturb any sediment of chloride of silver at the bottom of the vessel. Next, dilute largely with distilled water, and add a filtered aqueous solution of common sulphate of iron (parts to 1 of gold). Collect the precipitated gold
which is now free from copper, and dissolve in which is now free from copper, and dissolve in aqua regia as
a water bath.
(33) H. L. N. asts; How can I best remove nk spots from writing paper, so as not to injure it? A. Wash with a camel's hair brush dipped alternately in oxalic acid and cyanide of potassium.
(34) L. F. B. says, as to the hight at which tree has to be cut so that its top will strike a given point on the ground: Square the hight of Divide the difference of thesesquares by twice the hight of tree, and the quotient will be the hight rom the ground where the tree has to be cut. Exto the tree 20 feet; then $60^{2}=3,600,20^{2}=400$, differ-

Minerals, etc.-Specimens have been received from the following correspondents, and examined, with the results stated:
We have received a handsome stereoscopic picnare made by Mr. E. H. Train, photographer, Her, of was sent by Charles Rumley, Esq.-A specimen of alena has been received, inclosed by a minera supposed to be kaolin. It was, in fact, sulphate of barytes or heavy spar.-N. J.-It is clay, with some carbonaceous matter and a trace of oxide of iron. -P. F. T.-It is spiegeleisen, a kind of cast iron containing a large parcentage of manganese and
used in makiog Bessemer steel.-J. A. T.-No. 1 is hematite coated with crystals of ferruginous G. B. -It is mispickel, and consists of arsenic 46 per cent, sulphur 20 per cent, andiron 34 per cent. It possihly contains some cobalt, but the samples iously been found to determine this. It has preansly been found at Franconia, Jackson, and cate of lime, magnesia, iron, and manganese. The percentage of iron is not large enough to make it aluable as an ore.-R. T. P.-It is a mixture of sa portion of a large octohedral crystal of iron pyrites.-C.H. W. Jr.-Itis white crystaline lime-tone.-G.W.B.-There was rot sufficient for complete analysis, but there was found to be some chloride of sodium or salt, some sulphate of iron,
and oxide of iron.-F. H. McK.-It is a mixture of and oxide of iron.-F. H. Mck.--It is a mixture of from rockx underlying the coal.

COMMUNICATIONS RECEIVED.

The Editor of the SCirntific Amerrcan ac-
knowledges, with much pleasure, the receipt of ornowledges, with much pleasure, the receipt of orginal papers and contributions upon the following ubjects:
On Decay of Teeth. By E. D. P
On the Mouths of the Mississippi. By O. P. S. On Lightning. By D. B
On Powder Mill Explosions. By C. H. H On Fire Escapes. By L. K. Y. On the Scientific American. By D. B. On the Iron Horse. By F. H. R On the Potato Bug. By T. A. On the Fireless Locomotive. By F. G. W Also enquiries and answers from the following. E. H. S.-T. J. F.-A. L. P.-J. B. J.-M. R.-C.C.J.

- H. C. T.-J. S. B.-W. C. B.-A. E. Z.-A. L. F. W. H. G.-H. K. - W. H. L
C. \& N.-J. P. H. - E. M. B.

HINTS TO CORRESPONDENTS.
Correspondents whose inquiries fall to appear
hould repeat them. If not then published, they should repeat them. If not then published, they clines them. The address of the writer should always be given.
Enquiries relating to patents, or to the patentablity of inventions, assignments, etc., will not be published here. All such questions, when initials it would All half of our paper to print them all; but we generally take pleasure in answering briefly by mail, if the writer's address is given.
Hundreds of enauiries analogous to the following are sent: "Who furnishos information as to water wheels? Who makes the most accurate water me-
per? Who buys sumac? Who makes mercury air
tumps? Who sells the best blower for using with a
cupola?" All such personal inquiries are printed,
as will be observed, in the eolumn of "Business as will be observed, in the eolumn of "Business
and Personal." whioh is specially ser apart for that purpose, subject to the charge mentioned at the head of that column. Almost any desired infor
[OFFICIAL.]

INDEX OF INVENTIONS

Letters Patent of the United States were
May 25, 1875
AND EACH BEARING THAT DATE [Those marked (r) are relssued patents. 1

Addressing machine, H. H. Herr
Advertising device, C. W. Reed.. Alarm, burgler, F. H. Hunter
Apple parer, E. L.
Axle box, F. Kelser

Baby tender and crib comb Bale tie, J. M. Goldsmith

Bale tie, J. N. Smith....
Bale tie, cotton, J. W........ Bilp ..
Barrel making machine, J. A. Zoller.
Bed bottom, W. Wood.....................
Bed bottom, invaild, Obborn and Kendrick
Bed bottom, spring, E. Ó. Bennett.
Bed bottom, spring, E...P. Carter....
Bedstead fastening, w. H. Elliot
Bell pull, C. Clay.
Bill tile, c. Davis.
Bird cage mat, A. B. Hendryx
Bolts, rounding ends of, J. Nelso
Boot and shoe, laced, P. Plant Box making machine, J. Kisor. Brewing, E. H. Wiegand. Bridge, iron, J. B. Eads (r)........
Bronzing machine, w. J. Barber
Bucket, dinner, F, Bucket, dinner, F. E. Helnig..
Buckle or fastener, Lockwood
Bullets, swaging, W. D. Hillis
Burner, argand, gas, E. R. Wakker
Burner, vapor, Brown and Wakkin
Burner, vapor, Brown and Watkin
Burner, gas, F. II. McGeorge....
atter-coloring compound, J. C. Roric Butter package, H. W. Campbell
Car axle box, A. A. Freeman (r) Car brake, J. Y. Smith .
Car coupling, W. H. Ada
ar coupling, W. H. Ada
Car coupling, P. Brown
Car coupling, Conner and Fritz
Car coupling, L. W. Powls ...
Car-coupling link, J. M. Clem
Car doors, operating, D. R. Hart.
Carpet stretcher, A. D. Williams
Carriage, child's, w. Wuerz
Carriage curtain fastesing, C. P. Ketterer
Carriage jack, R. Eldridge.
Carrlage jack, \boldsymbol{F}. E. Nittenge
Cartridge box, G. E. Bringman...
Cnair, pivot, J. Lemman..
Chair, tilting, J. M. Waters...........
Chairs, etc., bottom for, C. D. Flynt

Clrcult closer, electrical, L. L.
Clothes pounder, W. H. Castle
Coal hod, J. B. Driscole...................
Copper bottom for kettles, A. Cumming
Corset, L. H. Foy (r)...
Corset, C. L. Olmstead.
Cotton seed huller, F. Streuby
Cup. berry, D. W. Kniflin.
Cylinder cam, M. J. Carney
Dental flask, w. C. Tracy
Dental mirror, T. Cogswell.........................
Desk, folding seat, U. Smith..
Drill, steam engine, J. Brandon..
Drill valve movement, D. Kenned
Drying sized fabrics, w. H. Palmer, Jr Eaves trough hanger, J. F. and L. H
Elevator, hydraulic, T. Stebins (r).. Engine governor, steam, A. Kendall. Engine, por table steam, L. Sweet.
Engine, steam, C. W. Hermance.. Engine, rotary, o. Burnett.........
Engine, traction, W. H. Milliken. Engine fre kindler, F. Beanfatt. Engine oscillating valve, W. Haddock
Fan, helical cone suction, J. White.. Fans, mounting, G. Brueck.........
Fanning apparatus, P. J. Bender Fanning apparatus, Ping and Uderitz
Fare register, Rumming and Felly plate, J. Y. Sitton..
Fence, farm.
Fence, iron, M. G. Freeman
Fence, post, E. Powell...
Ferro-manganese, making, A. Jullien.
Fire arm, breech loading w.
Fire arm, breech-loading, O. M. Robinso Fire place, J. F. Merrill.
Fire plug, water motor
 Fracture box, C. Westerkamp.
Furnace, ineating and ventllat Furnace, metallurgic, T. D. Morgan...
Game and other boards, c. F. Morgan Game board, Gourn and Vermilye.... Gas apparatus, Smith and Goldthorp. Gas purifer, G. H. Wells
Gas purifer center valve, R. Briggs. Gas retort, W. Smith.....
Gate, farm, w. H. Pratt

Gate, sliding, J. P. McMur

Generator, sectional steam, G. H.
Glassware, making, w. C.
Glove fastening, S. W. Glenn
Grain binder, J. H. Whitney
Grain tally, S A. Hazelton..
Harvester rake, J. H. Mears (r
Harvester rake, C. Wheeler, J
Harvester rake, J. H. Whitney
Heddle frame, E,
Heddle frame, E. S. Pike....
Hook, mousing, Johnsen \& A
Inking apparatus for hand stamps, D. A. Edsal
Inkstand, S. Darling (r).........
Jack, lifting, Fayette \& Meeker

Jib hand. C. W. Clements..

ting etc., C. Wheeler, Jr.
Key fastener, H. Stretcher
Kiln, charcoal, w. Sparrow
Label holder, C. F. Barker..............
Ladder, extensible fire, J. M. Birchler.............
Ladder, extensible fre, Covel, Chace, \&eaver.
Lamp chimney, o. D. Warfield..................

L
L
L
L

Lathe planing attachment, A. Hoffrman..
Liquids, filtering, T. R. Sinclaire
ock for bags, etc., G. Bernhel
Lock, permutation, E. Grah.
Loom harness frame, Casey, Auel, \& Johnson
oom harness motion,
Loom shutcle, J. Rigby............
Lubricator, C. E. Holt.
Mall bag fastener.
Mail bag fastener. R. Lee..........................
Meats, preserving, w. C. Marshall, (r).....6,451
M1lking tube, S. A. Smith.
Mill, feed, O. B. Knapp............................. Molding machine, Peet, Poland, \& Willis Motion for machtnery,
Motor, J. G. Peterson.
Mowing machine, Wheeler \& Case
Music leaf turner, Cohen \& Dietz.......
Musical keys, trimming of, M. Pratt, Nall blanks, making, T. T. Wood Net, fy, L. B. \& G. W. Lee
Organ attachment, reed.

Overalls, S. Deutsch........................
Oxide of zinc, making white, J. G. Trotter
Packing for pistons, steam, C.
Packing machine, A. Ralphl, (r)
Palnting machine, w. W. Marsh
Palnting machine, w. w. Marsh
Pantaloons, shaping, J. Kraft........
Pantaloons, shaping, Viets \& Shaw
Paper pulp engine, F. A. Cushman...............
Paper pulp-grinding cylinder, c. J. Bradbury.
Paper rulling machine, w. O. Hickok.
Pavement, wood, Filbert \& Hoffma
lanoforte, upright, B. E. Colley.
Pipes, joint for lead, A. B. Goodal
Plane iron, J. J. Ralya (r)....
Planing machine, c. B. Beall
Planing machine, c. R. Patters
Planter, cotton seed, J. Dana,
Planter, potato and seed, w. H. Whitman..
Plow, wheel, Keys and De Mier
Plows, row gage for, W. E. Stanley
Pocket book fastening, L. Messer...
Press, cotton, T. D. Power.
Press, hydraulic, C. Peper.
Printer's galley, , H. H. Mc williams
Propeller, steering, W. F. Zoehe.
Pump, D. J. Gorton...............
Punching machine, C. A. Corman
Punching machine, C. A. Corman
Quicksilver, saving, J. W. Varney
Radiator, steam, G. B. Riggins.
Rallway head stop mechanism, R. W. Hunton
Rallway rammer head, M. A. J. Wimp
Rallway switch, street, G. T. Jacobs
Rallway switch, street, G. T. Jacobs
Rallway tunnel ventilation, J. Dixon
Refrigerating apparatus, G. H. Chinnock.. Regulator with safety valve, pressure,Ball \& Fitts
Rulber hand, R. I. Patterson..........
Saddle spring, C. H. Harris....
Safe, etc., fir proof, W. A.
Sails, reeffing. I. Solomon ...
Sash holder, w. B. Blackman
Sash holder, R. R. Calkins...
Saw-illing machine, wilson \& Noble..
Scaffold, W. Burge..........................
eat, school, B. Allen....
seat, school, I. N. Pierce................
Sewing machine, G. S. \& A. L. Darling
ewing machine rufller . J. D. Sourwine
Sewing machine table hinge, H. B. Kelpe
Sheet metal, die for forming, H. Martyn.
hingling bracket, A. P. Fletcher... Shrt, J. C. Dunham.
hovel, coal, J. D. T
Shutter bower, etc., G. F. S. \& C. Zimmerman..............

Sign, illuminating, C. H. Sea
Skirt supporter. M. P. Bray.
leighs, thill coupling for, C. H. Johnson
Soap, impalpable. J. P. Brsan..
Spark arrester, locomotive, A. Berney..
pinning machine spindle, Rabbeth et al. (I
pool holder, C. T. Cleaveland.
Stamp-Inking app.ratus. D. A. Edsa
Starch lubricant, M. E. Rob7nson..
Stave Jointer, J. J. Ralya (r).
Steamer and boiler, C. Busch.
Stench trap drain screw, W. A. Butler.
Stocking supporter clasp, E. L. Howar
Stone extracting tool, N. R. Cheadle..
tone, waterproof artificial, McMurtri
Stool, camp, N. R. Alle
Stove, G. W. Herrick.
tove grate, H. P. Ohm
tove implement, L . s .
Stove, heating, A. Brown (r)
Stove, magazine, w. Doyle...
Stove, magazine heating, G. H
Strainer, milk, J. W. Bra
Stra d cutter, B. Belcher........
Street sweeper, O. W. Kellog
Suffng box, A. J.My Mers
Sugar, manufacture of hard, E. Langen
wing, S. McClevey...
table, folding, G. H. Williams......
Table silde, extension, G. B. Ly
Thill coupling, \mathbf{C}. G. Gardiner.
Thill coupling, c. O. Gardiner
Thill coupling, G. G. Larkin (
Thill coupling, G. G. Larkin (
Thill coupling, S. J. Wiser....
Toy, J. B. Safford.
Toy gun, W. H. Martin

designs patented.

8,338--Burial Casket.-F. A. Field, Everett, Mass.

 8,340-GASE PANEL.-M. D. Jones, Boston, Mass.8.340.-VASE Border.-M. D. Jones, Boston, Mass. 3,341.-Vase Panel.-M. D. Jones, Boston, Mass.
$8,3+2 .-$ Telegraphi Key.-C. W. Lewis, Chicago, ill 8,333.-Ornamextal Star.-W.Martin, Philadelphia,Pa.
s,34t to 8,351 -Carpets.-J. M. Christic, Kidderminster. England.
8,352 to 8,354.-Backs of Lounges.-G. Hartzell, Phila
8,355.-Neck Tiz.-R. R. Parker. Indiznapolis, Ind.
8,356.-Lasip Posts.-W. Tweeddale, Brooklyn, N. Y.
SCHEDULE OF PATENT FEES.

On issuing each original Patent.
On appeal to Examiners-位-Chief.........
On appeal to Commissioner of Patents. On application for Reissuc
On Hiling a Disclaimer..........................
On an application for Design (3ঝ years) On application for Design (7 years).
Un application for Design (14 years)

CANADIAN PATENTS.

List of Patents Granted in Canada
May 19 to June 4, 1875.

4,554.-P. W. Hart, Camden, N. Y.. U. S. Lathe ma

 chine. May 19,1875 4,755,-A.19965.

$4,756 .-\mathrm{A}$.

$\xrightarrow{\text { 4,758. }}$
May 19, 1875.
$4.759 .-$ J. Alkman, North Norwich, ont. Secret lever
hinge. May 19,1875 .
h, $760 .-$ M. Lesser,
Rsi. paring fish for market. May 19, 11575.
4,762.-G. W. Howell, Covington, Ky., U. s. Elbow machine. May 19, 1875.

 June 4,1875 .
, 76. - H. L.
4.46.-H. L. Smith, Westminster, England. Single rall
rallway. June 4.1875 . 4,767.-I. Frechette et a
shank pleces. June 4,1875 . 4,768.-L. J. J. Atwood , Waterbury, Conn., U. s. Fireside
burner. June 4, 1875. burner. June 4, 1875.
t,769.-G. M. Mowray,
blasting powder. June 4, 1875. blastling powder. June 4, 1875.
4,700.-J. Struthers, Alma, Ont.
4,710.-.
4,77..
4
and feed ,772.-T. E. Webber, Pittston, Me., U. S. Harness lug
 frames. June 4, 1875 .
f,7t. - . Nicholson, Jr., Pittssurgh, Pa., U. s. Glass furnace.
4,775 . $-W \mathrm{Wm}$. Ascough, 4, , Buffalo, , boat. June 4. 1 1875.
4, Ths.-T. T . Blake, Pittsburgh, Pa., U. s. Making
 4,778.-P. B. Hennessy, Hamilton, ont. Time lock. June 4, 1875.
4,779.-G. Henry, Lennoxville, P. Q. Boller feed regu lator. June 4, 1875.
cator. June 4. 1175.
4, wooustock, ont. Me . Susand, Berlin, ont., et al. Saw mill dog. June 4, 1875.
$4,782 .-\mathrm{H}$. Hagen
concrete. June 4, 1875 .
June Orllla, Ont. Elastlc wooden seat.

June 4, 1875.
$4,785 .-$ E. Drapa
game. June 4 , 18750, Ont. Mascal notrocor an
4,786.-Wm. M. Levde, Newport, Minn., U. S., et al.
Thrashng machine. June 4,1875 .
Thrashng machine. June 4, 1875.
$4,87 .-W \mathrm{~m}$.
P. Yeoman, Waukegan, ill, U. s. Ear
 June 4. 1875.
4,789.-L. J.
birner. J. Atwood, Waterbury, Conn., U. S. Lamp
bist5.
s, 290. - D. A. A. McDonell, Charlottenburg, ont. Bob
sielgh. Mas 27, 875 .

The Best Paper! Try It!

The SCIENTIFIC AMERICAN is the cheapest and best illustrated weekly
 ages and several hundred engravings. Thousands of volum for binding and refercnce. Triee practical reci pes are well worth preserved times
the subscrintion price. Perms, $\$ 3.20$ a year by mail, including postage.
May be had of all News Dealers.

Patents obtained on the best terms. Models of new inventions and sketches examined, and advice free. All patents are pubilished in the Sci-
entific American the week they issue. Send for Pamphlet, 110 pages, containing laws and full direc tions forobtaining Patents. Address
MIUNN \& CO.,

MUNN \& CO.,
37 Park Row, New Yor
[Branch Office, cor. F and 7th Streets, Wasbington, D. C.

0 1 Te

\begin{tabular}{|c|c|c|c|c|c|}
\hline ILLUSTRATION. \& \begin{tabular}{l}
Garden at Carclew, England
Gas burner for he.....
heating, Ehret.
245 \\
 Gas lighting, De Guinon's system
\end{tabular} \& \& \[
\begin{aligned}
\& \text { ar (*) refer } \\
\& \text { cies. }
\end{aligned}
\] \& \& Cold snaps the origin of \\
\hline A \& Che \& Roofing, sheet iron, Scott;.......... \({ }^{5} 3\) Runaway horses, checking. \& \& \& \[
\dot{\mathrm{rim}}{ }_{2 \pi 9}^{121}
\] \\
\hline \& \& \& \& 159 \& \\
\hline Alexandra, the \& Glass, tougiening, Bastie s process \({ }^{\text {not }}\) \& \& \& \& \\
\hline \& \& un and Shaw's..... 146 \& \& \& \\
\hline A \& \& \& \& \& Con \\
\hline Awning, Stonel \& \& \& \& \& \\
\hline \& \& \& \& \& \\
\hline \& \& \& 8 \& 疗 \& \({ }_{85}^{75}\) \\
\hline \& Grubbing machine \& \& Alconol, the \& \& \\
\hline \& Gun \& Saw. band, re-sawing, First and \& Alexandra, \& \& \\
\hline \& \& \[
\begin{aligned}
\& \text { Prybibl } \\
\& \hline \text { Prel }
\end{aligned}
\] \& Alkail, testing................iiii) 10 \& \({ }_{\text {Brains. }}^{\text {Brains, smalil....................... }{ }^{56}}{ }^{56}\) \& 5 \\
\hline Barrelhead joint \& \& \& Alloys of platinum and iron....... \({ }^{\text {34 }}\) \& Brain the not the sole organ of \& \\
\hline Barrel heads, machine for dress- \& ed Burmese family, the.. 119 \& \& Aluminum, extracting........(49), 91 \& Brass and phosphor bronze in roil- \& Cotton man utacturiily in the \({ }^{\text {South }}\) \\
\hline Barrel lieads, machine for turning; \& \& Screw, a variable \& American Institute, metaiineat the 112 \& Brass, scrap....................... \({ }^{100}{ }_{66}\) \& Cotton press, beit-geared.......... \({ }_{358}^{196}\) \\
\hline Holmes', \({ }_{\text {Barrel }}\) hooos, machine for bending, \& Hand char \& Sc \& American Institute, rotary eagine ests 148
\(\qquad\) \& \& \\
\hline Holine \& He \& \& \& \& Couplings, power..................: 3 \% \({ }^{390}\) \\
\hline \& \& \& Americans, \& \& \\
\hline Baring mac \& \& Shade attachment for plows, 22 \& An \& \& \\
\hline Batteries, galvanic, arrangement \& \[
\left\lvert\, \begin{aligned}
\& \text { Ho } \\
\& \text { Ho }
\end{aligned}\right.
\] \& Sharpen! \& Animals, the voices of..................117 117 \& Bridge constraction, improved....*25\% \& \\
\hline laatery, \& \& Shears, fron-cuting, Stevens'...................303 \& \& Bridge, the East river............. \(20^{7}\)
Bridge, the Roval Albert........ \& \\
\hline Begonia, the \& Hydrant, Lehman's................. 388 \& Sheave, Smith's....... \& \(43,59,74,90^{*}, 106,123,133^{2}, 154^{*}\), \& Bridging the Niagara river. \& \\
\hline Bessemer saloon steamer, the con-
trolling gear...................... \& 1 \& Rear \& \begin{tabular}{l}
\(170,188^{*}, 202,218,252,2,7,232{ }^{*}\), \\
-298*, 314, 330, 347, 362, 378, 395, 409
\end{tabular} \& \begin{tabular}{l}
Britannia meta \\
Broiler, the odorless \(\qquad\) (i) 106
\end{tabular} \& Curve, the tractrix. \\
\hline Bessemer steamer, the oscillating \& \& \& \& \& \\
\hline Bessemer \& \& Shingle machine, rotary, Evarts' 271 \& \& \& \\
\hline Bill tile, \& \& \({ }_{\text {coum }}\) pouch \& \& Bucket ear.......333 \& \\
\hline \& In \& Silkworm, diseases of the \(\ldots \ldots . .370\) \& \& \& \\
\hline \& \& Skein setting machine, Union
Foundery \& \& \& \\
\hline Blower, applied to \& \& Slanghtering cattle, new mode of 242 \& \& Butter,artificial, the latest process 233 \& Death, the hour of. \({ }^{85}\) \\
\hline \& \& \& \& \& \\
\hline er, \& K \& \& \& \& \\
\hline \& \& \& Arctic expedition, British.......... 359 \& \& \\
\hline Bottle, \& Key fastener, Eldridge's.......... 36 \& Sp \& Arctic exp \& \& \\
\hline Bottle \& \& \& \& \& \\
\hline Bourse, \& \& Sponge \& \& Cam, drawing a heart........*(56) \({ }^{283}\) \& \\
\hline \& Kagu, the Kustralian............... 247 \& \& \& \& Diamond, Haws in the............. \({ }^{1450}\) \\
\hline Bridge, \& \& \& Arsenic in copper mines........... 147 \& \& 34 \\
\hline \[
\begin{aligned}
\& \text { Hiel } \\
\& \text { dye }
\end{aligned}
\] \& \& \& Astronomical discoveries in in iziti:. \(5^{7}\) \& Canal \& Die tap, mproved................... \({ }^{*}{ }^{666}\) \\
\hline Brush \& amp, hydro-electric, and extin- \& Steam trap, automatic, Jenkins'.. 163 \& Astronomical discoveries, recent. 324 \& Canal navigation, improvement in \({ }^{49}\) \& Diphtheria......................... 103 \\
\hline \({ }_{\text {Bryano }}\) \& \& \& \& \& \\
\hline \& \& \& \& \& \\
\hline \& Life. preserving mat \& \& \& \& \\
\hline c \& Lighthouse at Karqui \& \& Axle box, improved \(\ldots\)............ 1366 \& \& Diseases, preventible.............; \({ }^{311}\) \\
\hline \& Light, Riche and \& Summer house, destign for a, Fox \({ }^{\text {s/ }}\), 295
Sun the, at different seasons of \& Ax les, hollow botts and............ \({ }^{117}\) (13 \& \& \\
\hline Car and carriage springs. \& ing bolt, Tiff \& \& \& Car axles and coupl.ngs \(\qquad\) \({ }^{+} 328\) \& \\
\hline Car, charlot street, \& \& \& \& \& Docks, tubular ilioting...........: 51 \\
\hline Car seat, Wellman's \& Lounge, camp, Camp Lounge Co. 's 102 \& Swimming bath, St. \& Bacteria, what are \(\qquad\) 195 \& Carbonic actd, liquetied..........i8) 91 \& Dog. jumber.......................* 258 \\
\hline Cartridge belt, Hayd \& Low water indicator,Hopkins'.... 310
Lumber dogs, Beckwith's....... 258 \& \& \& \& Draft tongue for reapers and \\
\hline Cattle, hrighland.: \& \& T \& \& \& \\
\hline Cattle, lowland \& \& \& \& \& \\
\hline Chimuey cowl, \& \& \& Balloon ascent, the fatail.........**59 \& Car wheel fitting.................. 55 \& Dr \\
\hline Clock ai \& M \& ermica \& Ballooning, deadly \& els, doubtitui.........55, *360 \& \\
\hline Coffer dam, Walsh's. \& fac uring \& \& Balloons, something about. 3 344 \& Car wheels, mileage of............... 56 \& eing feathers...............(11) 43 \\
\hline \[
\begin{aligned}
\& \text { Color, the in } \\
\& \text { ton on }
\end{aligned}
\] \& Mining, hilliside, in Colorado...... 35 \& Temperatur \& Barrel hop \& \& Dyeing wood red.............(17) 154 \\
\hline Condensed \& M \& coal. \& Batteries, arrangement of.......131 \& Cattie, the Breton.............* 151 \& Dyeing wool blue3ii 155, 216 \\
\hline Conservator \& \& Thermo \& Battery, a cheap \& \& \\
\hline Coots sto \& M \& \& Batter \& Cement for boiler patchese..... (29) 331 \& \\
\hline Coupling, \& \& \& \({ }^{\text {Batt }}\) \& Cement for broked glass......(63) 379 \& Ear, cleansing the \({ }^{3} 30\) \\
\hline \& \& \& Batery contacts, faut \& Cement for tas bags..........(ii) 345 \& \\
\hline Crane \& \& \& Battery for plating. \& Cement for marble and alabaster. 34 \& Earthuake in south America.... 401 \\
\hline Crystalilization, instantaneous....
Cylinders, placing in line.......
52 \& \& \& Batery, the callaud....(4) 27, (10) 314 \& Cement for millstones.........(10) 123 \& \\
\hline \& getation of the white...... 2 s \& \& Batcery, the Grenet..........(46) 219 \& Cementing cloth to paper.....(17) 43 \& \\
\hline \& \& \& \& \& \\
\hline \& \& \& Battery, th \& Centennial,
machinery atilish agricuitural

a \&

\hline \& \& \& \& Centennial exhibition for isī6, the 356 \&

\hline \& \& U \& \& C \& 1

\hline Distill \& , the culd \& \& \& \& Etectrical coloreashasows....isij 30

\hline \& Oysters, the cultivation of.....17, 33 \& \& Begonia, the cut-leaved............. ${ }^{*} 199$

Belts and crowned pulleys....(41) \& | Centennial, foreign exhlititors at the |
| :--- |
| e. | \&

\hline cks, tubular floating, \& \mathbf{P} \& \& \& \& ${ }_{\text {El }}$

\hline stan the little s................... 31 \& \& \& Belts, joming...................... ${ }^{57}$ \& Centennial. the, agricuitural dis. \&

\hline ngue for \& \& 8t \& Betts, mending machine........... 20 \& \& Electric earthbatteries............. 61

\hline \& \& otation at sath street... ${ }^{\text {and }}$ \& \& artificial fuels.........(16) 267 \&

\hline E \& \& \& \& Charcoal, temperature of ignition \& \%

\hline \& Pipe joint, Valentine's \& \& \& Chemicai nome nclatiure............ 36 \& ${ }_{\text {Ele }}$

\hline \& Planer, surface, Bentel \& Co.' 8 .. \& Underground railway,
city.-Vladuct and
station \& \& \& Fec

\hline Elect ricity, the sources of $\ldots \ldots{ }^{404}$ \& \& \& \& \& ${ }_{\text {Elec }}$

\hline Dronier's ${ }_{\text {den }}$ \& Porcelain manuactur \& \& \& \&

\hline \& \& \& \& \&

\hline Engine, automatic \& Potato planter, Mewborne's...... ${ }^{54}$ \& Valve motion, engine. Brandon ${ }^{\text {a }}$ \& \& Chlorate of potash.............(155)
Chlorlde of lime.
10,
90 \& Electrogilding. coil......... ${ }^{\text {E }}$ \% ${ }^{405}$

\hline \& \& \& \& \& 109

\hline F \& \& \mathbf{w} \& \& \&

\hline \& 10 \& \& Bleaching powder \& 9 \& Etec

\hline \& \& Walk and road cleaner,McKinley's
Washing machine, Taylor's......
310 \& Bleaching with br
Bind slat holder, \& Cinclnnati exposition, the coming 337 \& Electroplating on china.......... ${ }^{65}$
Electroplating on flowers....ii
280

\hline \& \& Water wneel governor, Walsh's.: ${ }^{294}$ \& Blower, rotary pr \& \&

\hline rey, channel, Leigh' \& \& \& \& \& ${ }_{\text {Ele }}$

\hline \& Pump, rotary, iagley a \& \& \& \&

\hline \& \& Wheel-fnishing machine, Webb's ${ }^{660}$ \& \& \&

\hline roof house, plan for a. \& \& \& Bue, washing................̈. \& \&

\hline decoy, Huard and Dun \& \& \& \& \& 2

\hline ant, the. \& \& \& singular cause ${ }^{\text {and....... }}$ \& \&

\hline Ing machine , ,liackford's \& \& \& \& \&

\hline ce cup, elastic, Hawley's
nts for buildings. mova \& \& ht's. \& Boiler reand engines, management ${ }^{\text {a }}$ \& \&

\hline \& \& Wrench and bolt cutter, combined, \& \& \&

\hline \& \& \& \& \&

\hline
\end{tabular}

 Ether, mêthyic................(4) (4)
Ether pessure, physical forces
are modes of Et are modes of ...t.....

Fat, a new \ldots, ${ }^{24}$ Fenale voers. Fence pickets, machinc for mak:

 Ferrys sistem, a gigantic

 Fire arms, facts about Fireless railway system in Eng ${ }_{\text {, }}$

Fishes, Miammoth
Fish in in astern
Fishing, counfortab

Filing machinn...
Fying machine,
Fiy, tie mis sion of

Fluorescence in Fog iun, the... Fot Fos, observatio

 Gas from sewer efuse
Gas fron vegetale
Gas ititer
 Genius vs. capital.
Getatin, colorig.
Geographicar elev Geographic ${ }^{\text {can }}$....................... ${ }^{293}$ of 22 Get nomena of.
Get ap, when to

Gass for chemica. anaiysis.......
Glass, hardeming
Glass stoppers, to remove tight.
Glass, the Bastie patent
Glass , the Bastie tomanened:
Glisss, the durability of
Glass, tougnen
Glass, winduw,
Gue, jiquï
Guae
Glue, rice
Gine...

Gold and silver plating........(26) ${ }^{(36)}$
doin iluaideriz

Grasshopper inveutions wanted.. 369 Grasshoppers, prairie chickens and 257 Grasshopper, he

 Grate bar, improveved...

Greennouses, f Grinding toons. Grit wanted..

Grit wanted. 10 , the
Grubbing maclin

	${ }_{\text {a }}$
	rem,
ate	
mentit	Toied
	Teameminim
ded	
	Tidee
ceide	
Seuar iciseat	
mam	
iotediemmid	
demaf en	
	rrume onumams:
den	
Sele	Tuna
com	
Sole	
	amedi
abime	
Eex eixim	
边	Nome
dinan	\cdots
mang abius	
atame	
and	weize
indimsor	
mampaimitioi	
dex	

caduettisements．

Eureka Portable Engine．
Complet with nitures． Borse

 the world．Send for Catalogue to JAMES G．WILBON，Manager，

 BLAKE＇S PATENT

量路Stone and Ore Breaker

 PUNCHING SEs．${ }^{\text {Fot }}$ | For the the |
| :---: |
| Mit |
| Mid |
| pod |

 D $\mathrm{ITCHINGA} A N D$ DRAINAGE MACHINRS

 Model Engines．
 casting
 $\xrightarrow{\text { A }}$ ＂BUSINESS on the PACIFIC COAST．＂

 Man

枟至酸 Eor prityourale ana ctren

Przionset． MANUFACTURERS AS WHLL AS
PATENT RIGHTS，

 Bradley＇s Cushioned Hammer

FIRE PROOF SHUTTERS．

CLARK \＆CO＇S SELF－COILING ROLLING STEEL SHOTTERS（Burglar Proof），For store ng Wood Shutters for Stores and Dwelliggs．Thousands are in dally use，and are acknowledged the best thutters in

 OTHE Mafety Hoising
Machinery． otis， Bros．\＆co

Patrit
Planing \＆Matching

 Barnes＇Foot－power
Saws and Lathe

 Box 2044．

 NIAGARA STEAM PUMP，

 ulleys，Shafting and Hangers a Epacialty．
PIERCE WELL AUGER

BLAKES STEAM PU NPS
 LO F．BLAKE MFGCO．79 \＆\＆LIBERTYST．N．
 CAUSEWAY \＆FRIEND STS．BOSTON．

TENTH INDVSTRIAL EXBIBITION， Mechanics＇Institute of San Francisco．

 WORCESTER FREE INSTITUTE．

 seand for Price Llat and cir－
Herrman $\&$ HERCEEL－ RODE M＇F

MAGNETS－Permanent Steel Magnets

AGENTS WANTED． Men or women．$\$ 3$ a weck．Proof
furmished．Businoes pleasantand nonor－
abble with no risks．A 16 page cirner

IMPROVED MACHINERY for STAVE
 MACHINERY． IRON \＆WOOD WORKING MACHINERY OF EVERY DESCRIPTION．
Cold Rolled Shafting．
 GEORGEPLACE $\mathcal{C} 0$

 sample of work．Pamphet and

Catalogue for 1875，

gantly flainhed，with cireular，by mail，for 25 conts，
R．L．FLETCEER， 11 Chambers St．，Now York．
 TRADEMERIR

gatertisements.
per line, by measurement, as the letter press. Adearly as Friday morning to appear in next issue.
For

Cold ROLLED SHAPTING

 Woiruip
 Med
Todd \& Rafterty Machine Co. Mantuctirbrg or

Trow's

N.Y.CITY DIRECTORI

Vol. Lxxxix.,

May Ist, 1876,
Is PUBLISHED, $\stackrel{\text { And can be ob }}{\text { application at }}$
the companys office, No. 11 University Place,

New York City

The Standard-Best Stock-Finest Finish. D. ARTHUR BROWR \& CO., Fisherville, N.H. TO PATENTEES AND MANUFACYUGRERS.-

MPORTANT FOR ALL LARGE CORPO-

THE Union Iron Mills, Pittsburgh, Pa.

 rnegie Brothera \& Co., Unlon Iron Mills, Plttsburgh.Pa

 RICHARDSON, MERIAM \& CO.

RSBESTOS

ABBESTOS ROOFTRGG, adapted for steep or flat roofs in all

 PORTLAND CEMENT Steam Super-Heaters,

Set under boilers, or in separate furnace, will supply Dry Steam or sny requred HENRY W. BULKLETY, 88 Liberty St., New fuel. York.

 WRAN Wilson's Business Directory of $\underset{\text { Brs-1876. }}{\text { New }}$ York City,

 xatavazaw min and , mid
Portland Cement.

Machinists' Tools.

 Lo

CHASE'S
Pipe-Cutting and Threading

Machine.

Mma \& Co.'s Patent Oficices.

Established 1846.

The Oldest Agency for Soliciting Patents in the United States.
TWEN 1 P-EIGHI FEARS EXPERIENOL.
MORE PATENTS have been eecured througb this agency, at home and abroad, than through any other it
the world.
They employ as their assistants a corps of the most axperienced men as examiners, specification writers, and draftamen that ean be tound, many of who
ected from the ranks of the Patent Office.
SIXTY THOUSAND OID
SIXT Y THE USAND inventors have avalled ventions, and procuring their patents.
MUNN $\& C O$., in connection with the publioation of the Sorintifio Amerioan, continue to examine inventions sasignments,attend ω fling applications in tho Patent Office paying the government fees, and watch each case step by step while pending before the examiner. This is don through their branch office,corner F and 7th 8 treets, Wash
ngton. They also prepare and file caveata, ngton. They also prepare and flle caveats, procure deslga
patenta, trademarks, and rissues. attend to rejected casee prepared by the inventor or other attorneys), procure copy
ightes, attend righte, attend to interferences give written opinions on
matters of in ringement, furdiah coples of patents: in fsot attend to every branch of patent businges Doth in this and n foreign countries.
Patents obtained in Canada, England, France, Belgtom Germany, Russia, Pruseia, Spain, Portugah, the Britiob Dolonies, and all other countries where patenta an sranted.
all inventions patonted through this Agency with the name and residence of the patentee. Patents are often sold, in fart or whole, to persons attracted to the invention by such notice.
A pamphet of 110 pages, contalning the laws and foll dt rections for obtalning Onited Ststes patenta, also a circular pech country, time granted, etco, sent free. Addrese MUNN \& CO.
PabHishers SCIENTIFIC AMERICAN,

Niagara SteamPump Works Established 1862. 23 A d a HARDICK, R3 Adams stree
BROKKIN, N.
THE SIXTH Cincinnati

Industrial
Exposition Opers for the reception of goods August 2, 1875.
Opens to the public September 8th, and continues

16
 $G R A N D$ DEPARTMENTS,

Machinery Tested and Fully Reported upon.
send for rules and premlum 1 st , and
for space.
FRANK MILLWARD, Sec'y.

Address JOHN A. nOEBLING S SONS, Manufactur-
ers, Trenton. HFb renton N .
Weneel and ope
Send for Circular.

Improved Foot Lathes.

Dest. Many readers of this paper have
Cataiogenerfee
Just the articles for Artisansor Amateins. PERFECT

NEWSPAPER FILE.

Thne Koch Parent Fule, for preserving newspapers,

Excelsior Do Your Own Printing

THE BEST INJECTOR

 FRIEDMANNS PATATENT. Over 15,000 Now in Use Here and in Europe NATHAN \& DREYFUS, Sole Manufacturers, B Sand is' PATENT UNIVERSAL ECCENB TRIC MILLSS-For grinding Bonee, orese Sand, old

Mill Furnishing Worlxs

 HARTFORD

STEAM BOILER

Inspection \& Insurance COMPANY.

$\begin{array}{lll}\text { Lun, } & \text { V. } P^{\prime} \mathrm{t} & \text { J. M. }\end{array}$

COVERING

Steel Tribe Gleaner.

SCIENTIFIC AMERICAN, the yost popular scientific paper IN THE WORLD.

THIRTIETH YEAR.

VOLUMR XXX $\bar{\Pi}$-NEW SERIRS

The publishers of the SCIENTIFIC AMERICAN beg to announce that on the second day of January to be the aim of the publishers to render the contents of the new volume more attractive and use ful than any of its predecessors.

To the Mechanic and Manufacturer No persou engaged in any of the mechanical purAmERICAN. Every number contains from six to te engravings of new machines and inventions which cannot be found in any other publication.
The SCIENTIFIC AMERICAN is devoted to th interests of Popular Science, the Mechanic Arts, Manufactures, Inventions, Agriculture,Commerce and the industrial pursuits generally; and it is va Manufactory, but also in the Household, the $L \mathbf{L}$ orary, and the Reading Room. TERMS.
One copy, one year (postage included). $\$ 3.20$
1.60 $\begin{array}{lll}\text { One copy, six months (postage included).... } & 1.60 \\ \text { One copy, three months (postageincluded).. } & 1.00\end{array}$ One copy of Scientiflc American for one
year, and one copy of engraving, "Men
year, and one copy of engraving, "Men of Progress"............................... 10.
for 1875 ... cop
Remit by postal order, draft, or express. ders and drafte payable to

MUNN \& CO. 37 PARK ROW, NEW YORK

