
a WeEkly Jourial 0f practical information, art, scievce, mechanics, chemistry, and manufactures.

THE VIRGINIA DITCHER.

Some writer has said that drainage is to the earth what 'breath is to man. Good drains are earth's lungs. Science and experience have demonstrated, beyond intelligent dis pute, that the producing capacity of the earth, not to mention its healthfulness, is largely in proportion to its ability to receive Nature's nourishment, namely, heat, air, and moisture, and to expel the poisonous secretions left within the earth.
The intelligent farmer should as soon expect health to his hody and vigor to his mind with congested lungs, as life-
by the bracket, B, in the forward part of which is a pinion which engages with the rack, (. Λ worm gear, meshing with the pinion, is actuated by a rod which extends to the rear and terminates in the hand wheel, D,so that, by turning this hand wheel, the bracket pinion may be rotated on the rack; and thus the forward end of the frame, A, upon which the ditching wheel is suspended, is raised or lowered as desired. The rack, as well as the driver's seat, is supported on the forward axle. Suspended in bearings in the frame is the cutting wheel, E. This consists simply of the strong, circular, sharp-edged steel flanges, of such width apart and depth
piles regularly, convenient for refilling the ditch or removal. The construction and mode of adjusting the shoe, E, shoulp be particularly noted, for herein, it is claimed, lies the sim ple and effective mechanism that renders rotary ditching practicable and very economical. The adjustable shoe and plow effectually prevent the machine from clogging; the pivoted plow, resting on the sliding shoe, is readily raised or lowered and thus any temporary excess of earth or unexpected impe diment can be removed or relieved, or any deficiency in cut ting promptly made up. The pitch of the shoe is adjusted by the set screw, I, by means of which its upper or lower

RANDOLPH'S VIRGINIA DITCHER.

giving power in his acres when clogged, soddened, or even of . ueavy soil. Even the lightest soils lack porosity. Respiration, then, must be set down, by the farmer who would be successful in the largest sense, as being absolutely as essential to his acres as to himself
Nor is the capacity to receive Nature's gifts (air, heat, and moisture), which drainage secures, the limit of its advantages. That the richest of natural soils, when undrained, will not compare with much inferior soil when drained, all intelligent persons know; but the utility and wonderful economy of the drainage system is best illustrated when fertilizers come to be used. The drained land receives and retains, almost without loss, the fructifying qualities of fertilizers; while, from obvious causes, the undrained land receives slowly, wastefully, and always coldly, the expensive helps to its productiveness. The best of fertilizers, used on undrained soil, will yield but a temporary benefit; while much poorer land, drained and fertilized, will be almost inexhaustible.
We devote the initial page of this issue to the representation of a new and simple apparatus, which, for the slow, costly, and uncertain ditching process of the past, substitutes the certain, cheap, and reliable labor of machinery. It is the invention of ex-Governor (now United States Senator) Theodore F. Randolph, of Morristown, N. J. It is fully covered by patents, both in this country and abroad, taken out through the Scientific American Patent Agency. The machines are of two constructions, one having three traction wheels, as shown in the engraving, Fig.1, and the other baving four traction wheels, differing only from the first in its adaptability to side hill cutting or use on very uneven ground. Fig. 2 represents all that is material to be shown in the latter, the four-wheeled ditcher.
Turning to Fig. 1-the three traction wheel machine-we describe as follows: A is the supporting frame, which rests n the rear on the following wheel, and is held up in front
of cut as is desired. When the frame is lowered, these cut into the ground, dividing it, and forming the perpendicular sides of a ditch. Directly in rear of the wheel, and between the flanges, is a steel-pointed shoe, F, the forward edge of which makes a horizontal cut, generally, on a line with the lower edge of the flange.

The shape of the ditch is thus defined on sides and bottom ; and the earth, loosened at all points, is carried up, by the revolution of the ditching wheel and between the flanges, until it reaches the chute on the forward upward portion of the machine, out of which it passes to the ground, whereon it
extremity is drawn from or set toward the rim of the ditching wheel. Provision is thus made for the different strata of soil, frequently found under a common surface. The hand wheel, J, is simply a belt tightener. The cutters, K, on the lower end of the front post relieve the work of the ditcher somewhat, and can be made to give almost double width to the ditch, without widening the flanges. Knives of proper strength are also arranged for the rear post, by which sloping sides are made in ditching, when required.
The machine can be used for digging narrow and deep tile ditches, or open and broad ones. They vary in size and capacity, and require animal power from two horses, necessary to draw an apparatus weighing 1,500 lbs., to six horses, pull ing a machine of 2,500 lbs. weight, and fitted for work in the stiffest soils. The machine does not undertake to dig stumps, or to remove stones larger than the capacity of the flanges.
From reports of practical trials, we learn, the machines cut perfectly smooth ditches, of any depth and of any width desired, the power to work them being increased in a diminished proportion to their larger size and capacity. The usefulness of the machine is not confined to ditching. As an fulness of the machine is not confined to ditching. As an excavator, it shows considerable capacity; the machines of
six horse power dig from 250 to 300 lineal feet a minute, ten inches wide, and three or four inches thick. This will be found to be equal to $5,000 \mathrm{lbs}$. solid earth, and nearly two cubic yards, per minute. As a road maker, for pipe trenches, railway embankments, underground telegraph wires, and the like, it would seem to be of much utility. A machine is now being constructed, we understand, for digging irrigating canals in Texas. The agents suggest that, as a single ma chine will do the work of many farms, the club system would be the best in purchasing, thus making the cost to each person comparatively small.
Full particulars can be had by addressing Randolph Bro thers, agents, 111 Broadway, New York city.

צrientific glmericau.

MUNN \& CO., Editors and Proprietors. PUBLISBED WLRELT AT
NO. 37 PARK ROW, NEW YORK.
o. d. yons. A. E. beAce.

TERMS.
One copp, one yerr, porese incliaded.....
One copy, dix monthe porice incladed...
O17Dreters
Ten coples, one yent, enot 82 20, poriage included............................... 27 go
 Nors. - Perrens subecribling will piease or cantso.
omice and state eddrem, plainly mitton, and aleo utate at manich and Poot Office and Btate eddrew, pladnly writton, and also atate at which time they the recelpt of the order. When requested, the numbere can be sapplied from Janarry tut, when the rolume commenced. In case of changing roea dence. atate former eddrese, so well so give the new one. No changes can be mede anlese the former addrese it extren.

VOLUME XXXII., No. 22. [New Series, 1 Thirtieth Yoer.
NEW YORE, SATURDAY, MAY 29, 1875.

A WANT.

Many ingenious experiments have been made to determine how long, on the average, it takes a man to receive a mental impression and respond to it by some simple action. As might have been predicted, some men feel and think much more promptly than others. It is also found that the same man's mental and nervous actions are not the same at all times; the quicknees of the response varies, too, with the nature of the signal, and with the practice the observer has had in noting the same or similar phenomena.
Δ series of corresponding investigations of the rate at which the human mind acts in bulk is also very much needed. In them it would be not the mental action of individuale, but of classes, that would be studied: how long it takes the various grades or classes of men to receive a new idea; how long it is before the idea is generally accepted by the class and carried into practice; and what are the relative periods required for the acceptance of different sorts of ideas by differont classes.
The investigation would have to be made historically, by such a man as Francis Galton or Herbert Spencer, assisted by specialists in the several departments of human progress, who would compile tables of the great discoveries in their special fields, setting opposite to each discovery of important fact or principle the time required for the several stages of its progress to general acceptance. One table, for example, would record the wore important discoveries in Science, gioing the date of euch, the date of its endorsement by some prominent man of Science, then the time elapsing before it was accepted generally by the leaders of that particular department of Science, the time when the scientific world at large received it, the date of its adoption by men of culture, by practical men, and lastly by ecclesiastics. Other tables would mark in like manner the advance of human thought along other lines of progress, so that a comparative statement could be drawn up, showing the relative rapidities of different sorts of intellectual movements in different classes of society.
That such a scheme could not at once be carried out, with any degree of perfection or completeness, is no argument against it. It is true that only a very few scientitic and other disnoveries have yet permented all dasses; nevertheless the very gaps in the tables would be instructive, as
eridences of the hollowness of the pretended culture of
many respectable classes, and the impenetrability of other classes to large congeries of truths. Even approximate tables
would be immensely valuable ; they would save such a world of anxiety !
For example, a man makes, after jears of patient study an important discovery-say in optics. He hastens to lay an important discovery-say in optics. He hastens to lay the world will be as glad to receive as he is to publish the new truth. But somehow the world does not see it. Most likely, if the discovery be of prime importance, it will be disputed with the intensest vigor by the very men who ought to welcome it. In such a case, our unfortunately fortunate student would have simply to turn to his table book to learn that, on the average, it takes so many months for a dis covery of the kind to be accepted by some acknowledged master of the science of optics; so many years before it
commands the assent of opticians generally; so many decades before it is incorporated into advanced optical teaching, and so reaches the world of general culture, and so on Then he would be able to possess his soul in patience knowing how useless it is to expect the thoughts of the world to transcend their usual capacity for speed.
Possibly there are men, like Dr. Draper, who have learned from long experience-at least in their special departments -pretty much all that such tables would teach them; bu for younger men and men of more hasty temperaments, they would be exceedingly useful. And they would be not with out their uses to other than discoverers. The editor of a sci entific paper has frequent need of the information they would furnish to keep him from undue impatience with the slowness of men to receive intelligence and act upon it
A vital truth is added to the world's too limited stock, changing, perhaps, the entire aspect of a science. He take pains to have it promptly and explicitly set before his read edly called to the truth and its bearings; yet year after yea he will see them serenely teaching the old, it may be explod ed, theory, as the last addition to men's knowledge in tha department: A, B, C, and the rest of the alphabet standing for classes of honest and supposedly intelligent humanity, requiring respectively one, five, ten, fifty years, or more to learn anything. If our afficted editor really appreciated the natural sluggishness of class intelligence, and could estituate the probable period required for the ancubation of different ideas in different orders of men-as the suggested table would enable him to do-would he chafe so at the p
ence of error, or the halting progress of knowledge?
ence of ent
Personally, we often feel the need of just such specific knowledge of the varying rates of speed at which intelli gence becomes incorporated in the mental furnishing of va rious classes of men. Then, when we should see some scientific dortrine atrociously misstated by some " leader" in literature, metaphysics, or theology, the knowledge that it requires on the average 80 many years, or 80 many genera tions, for a clear conception of any new scientific thought to penetrate that particular body of men, would reconcile us to its slow illumination in that particularinstance. We should say-not that the misdoer was a knave or a fool, but merely
that it was too soon to expect anything better in that quarter. We should not be surprised even to learn that a sensa tion was caused in certain circles by the bold assertion that the world is not fiat; or to hear that a like effect was
produced in theological circles where one of the most liberal produced in theological circles where one of the most liberal to sey the death Dean Stanley did the other day, in a sermon on epochs demanded by scientific observation are incompatible with the 6,000 years of the Mosaic chronology, and the six days of the Mosaic creation," implying that geology is righ and Genesis wrong. And we might possibly be pationt a still another infiction, upon confiding readers, of the mythi cal Three Buttes of the solar spectrum by one who professed to present the latest scientific aspect of "Chemical Radiation" ly.
""There are three spectra," says the writer: who quotes
Dr. Draper as an authority in solar matters, but has not yet heard of his most important discoveries: "there are three spectra, one of which, the thermal, takes action upon al kinds of matter; another of which, the luminous, acts onl upon a certain special form of nerve matter; while a third the chemical, produces changes in certain compounds;" an the usual figure is given, showing "the Intensities of the Forces of the Spectrum.
It would be a comfort to know just how long we can reasonably pxpect such popularizers of Science to continue in ignorance of what Dr. Draper has done to demonstrate the utter absence of any such triple division of the sunbeam bow long it will probably take them to discover that re light is as capable of producing chemical effect as vicle light, and that in all probability the yellow rays seem mos luminous simply because they act most energetically upon
carbon compounds, such as compose the retina; but in the carbon comprounds, such as compose the retina; but in the
absence of the investigation we have suggested, such consolation is denied us. And there are such a multitude of similar cases ! Therefore, we assure whoever shall prepare one copy. We will take it for personal use.

a praotical core for vagrancy.

When Count Rumford became the friend of the King and wirtual ruler of Bavaria, be found the country swarming with beggars. In the large towns, beggary was an organized imposture, insolent, clamorous, persistent. The raral dis
tricts were overrun with tramps of all ages and every na-
tionality, who levied contributions, robbed, and tyrannized everywhere: and not only their impudence and clamorous importunity were boundlees, to use the Count's own words, but they had recourse to the most diabolical arts and the nost horrible crimes in the prosecution of their infamous trade. All the regular machinery for the repression of ragrancy was unarailing. The people were disheartened. Industry was well nigh paralyzed by the parasitic multitude, and the honest peasantry had become so corrupted by bad example that they would leave their work in the fields to beg of travelers on the highway. Beggary had become so common and customary that it no longer seemed shameful or nfamous.
Yet the whole system fell in a day when attacked by the Count's resolute will and sterling sense. His remedy was work, fairly rewarded, so presented as to make industry sattractive as possible, but rigorously insisted on. His plans for housing, feeding, and employing the beggar class were quietly perfected; then, on the first day of January, 790, every beggar was arrested and set to work.
The law was: No idleness, no begging, no dirt or debauchery; but work for all, good food, kind treatment, and instruction in the ways of honest living. In one day the plague of beggary was stopped. And it was not long before the majority learned to prefer the comfort, decency, and respectability of honest industry to their former squalor, idleness, debauchery, and crime. And the experiment paid inancially.
Count Rumford's report of the experiment, written after it had been five years in operation, shows that it had not only banished beggary and effected an entire change in the manners, habits, and appearauce of the class which had been so abandoned and degraded, but that it had made them self-supporting. The saving effected in cutting off a great source of crime was begond estimation.
In evary part of the Eastern and Middle States, especially within walking distance of our chief cities, an order of bings is growing up the precise counterpart of that which he Count found in Bavaria. The tramp is every where-male, emale, limp, lazy, insolent. Every country road swarms with them, and the country people begin to look upon them as an inevitable infiction, less dangerous when fed and sheltered than when hungry and at large. Refuse them ood, and your hen roost pars the penalty. Deny them a bed in the barn, and they set it on fire. They travel in gangs and disperse to forage, levying contributions right and left. Their vagrant life suits them; and miserable as they seom to be, no proffer of honest wages for honest work will induce them to leave the road. Every season their number increases, and competition only increases their audacity. Unless the evil is differently dealt with, it will soon become as intolerale as it was in Bavaria.
No method of treatment involving large preliminary outay for workshops, concert of action,or central authority can be looked for here; we need not one but ten thousand Rumfords. Every town must apply its own remedies: nevertheless it would not be hard to devise a plan by which the whole system of tramping could be as quickly broken up as it was in Bavaria, and that without taking the tramps from the roads they love so dearly.
Any town can inaugurate the plan by enacting and enforcng a regulation to this effect: Fix the penalty for begginghat is, professional begging-at ten days' labor on the highways for each offease; there is no danger of a failing demand for that sort of labor for the next fifty years. Give to every citizen the power to make arrests in cases of vagrancy; and for every ten days' labor by the party so arrested, credit he person making the arrest with five days toward the working out of his road tax. For his labor,give the tramp decent board and lodging, and from ten to fifty cents a day as wages, according to his efficiency. Let such a law be rigorously executed, and in a little while we should have better oads and fewer tramps.
The honest seekers for work would suffer less under such a system than they do now, when they are apt to be con founded with professional beggars, who are always in search of a job-somewhere else. If seriously in need of work and money, the temporary tramp would simply have to apply to the road master, who would never be without employment to give and fifty cents a day to pay for it. The work hunter would not be long in acquiring enough to pay his way fucther or to support himself until he found work in the neighborood. Farmers and others in want of help would soon learn to resort to the road gangs to pick their men. the volunteers being free to engage themselves at any time, those under arrest when their ten days were up. The professionals would more or less quickly learn to prefer free labor at high rates to enforced work on the roads at low rates; in the meantime. highways improved at small cost to the residents. It is safe to predict that any community adopting such a plan would soon have better roads or fewer beggars-possibly both.

THE WBECE OF THE SCHILLER

A terrible marine disaster occurred on May 7,oft the Scilly Islands, near the English coast. The Schiller, a new and magnificent steamsbip belonging to the Eagle line, was entirely wrecked. The ship was on her voyage from New York to Hamburgh, and was endeavoring to reach Plymouth, England, in the midst of a thick fog, which, for 'hree days, had prevented observations. The captain probably mistook his position, and at ten o'clock at night the vessel struck on Retarrière reef, while under almost full steam headway. A strong gale and heavy sea speedily caused her to drift broad side on the rocks, the waves sweeping her decks, and finally
with passengers who had ascended the rigging for safety. But two of the boats reached shore; and out of three hundred and eighty-five people on board, but forty-three were saved. Ordinary life preservers, it appears, were on board; and after the shock, every woman was secured in one. It is curious to note, however, that, despite this precaution, all, with one exception, were drowned.
It is impossible to suggest any means of safety which could be provided, which would preserve life under such circumstances as these, in the midst of a raging sea; but we are not without hope that some inventor will yet devise a life preserver capable of meeting all emergencies. The apparatus must be such as to support the person entirely independently of his own exertions; it must prevent his becoming drowned by constant submersions by the waves breaking over his head; it must be capable of easy application, and over his head; it must be capable of easy application, and
be as self-adjusting as an old coat. There must be but be as self-adjusting as an old coat. There must be but
one way of getting into it, and that perfectly obvious under one way of getting into it, and that perfectly obvious under
extreme excitement; and to sum up all, it must possess the element of simplicity to such a degree that a thoroughly frightened woman cannot by any possibility mistake what it is for, and what to do with it.
The Shiller had eight boats, and seven watertight compartments. Her length was 375 feet, beam, 40 feet, and tunnage, 3,000. Her engines were of 3,000 indicated horse was $\$ 800,000$,

A SUCCESS FOR THE FISHERY COMMISSION.

" Never see'd nuthin like it,Sir ; I've been a settin' nets on this'ere river for more'n ten year, and there aint been no
time when North River shad was as many as they are now. They're as plentiful as porgies, and we can't getnothin for'em Why we used to getour two dollars or a dollar an' a half a piece for them in the early spring; but now-why there's an old woman a sellin' em out of a keg for twenty-five cents a pair. It's ruincus. this is: them fishery fellers have just busted the business; I might jes' as well sell the nets, and take ter mackrel fishin'." Thus remarked a Washington mar ket fish dealer to us the other day, after we had requested his opinion on the sudden increase in the shad catch, which over 30,000 fish taken already this spring denoted. "Them fishery fellers," in other words the State Fishery Commis sion, had stocked the river anew, broken up the fish famine, and filled the Hudson with finer and better shad than have been seen in it for years. The use of nets extending clear across the stream, which now, we believe, is forbid den by law, had resulted in practical depopulation; for the fish were completely barred out of the head waters where they were wont to spawn. Gradually they di minished until Ncrth River shad became a dainty far beyond the reach of the average pocket.
Three or four years ago, Science, under the guise of Mr Seth (ireen and his assistants, set to work to make ur the de ficiency. Five million young fish were placed in the Hudson and its tributaries, and the result we are now gathering. This is a grand success for the pisciculturists, and the people will appreciate it. We trust that it is but the precursor of other palpable proofs of the possibility of enlarging our supply of finny food; for an increased popular interest, which wil thus be engendered, is sure to be followed by substantial contributions through which the labors of the fish culturists can be aided and their value further augmented.

design patents and trade marks.

The importance, to manufacturers, merchants, and others, of securing protection for the use of emblems, vignettes, or names on their goods, whether of domestic manufacture or imported, does not seem to be sufficiently appreciated. Trade marks are granted to any person or firm domiciled in the Cnited States, or any firm or corporation residing in any foreign country where similar privileges are extended to citizens of the United States, and extend for 30 years. A great many agents of foreign manufacturers, reciding in our large cities, have availed themselves of the simple provision of our law by securing trade marks on imported goods. But our own manufacturers do not seem to be alive to the importance of availing themselves of that protection, afforded under our patent laws.
The "centennial" year is approaching, and we should think that any manufacturer would do well to secure a trade mark on the word as applied to a great variety of articles, such as hats, caps, collars, shirts, shoes, knives, inkstands, stoves, ranges, etc.
The above remarks apply with equal force to all persons who neglect to take patents on any new and original designs for busts, statues, stove plates, picture frames, crockery, cutlery, stoves, or any other ornamental articles. Patent are also granted on any new and original design for the printing of woolen, silk, cotton, or other fabrics, any new and original impression, ornament, pattern, print, or picture, to be printed, painted, cast, or otherwise placed on or worked into any article of manufacture. Design patents afford protection for different periods (three and a half, seven, or fourteen years) as the party applying may elect, and the
cost varies accordingly. cost varies accordingly.
For information on the securing of trade mariks and design patents, address the publishers of this paper, who wil
be pleased to impart, free of charge, all necessary advice.

THE NEW INTERNATIONAL POSTAL RATES.

On and after July 1, uniform postal rates will be collected on mail matter sent between the United States and Germany, Austria, Hungary, Belgium, Denmark, Egypt. Spain, Great

Britain, Greece, Italy, Luxemburgh, Norway, Holland, Portugal, Roumania, Russia, Servia, Sweden, Switzerland, and Turkey. After January 1, 1876, France is also to be included in the union.
These new rates have been established by treaty between the different powers, and offer in some cases great reductions on the charges now existing, while in others the tariff is in creased. To all the above countries, the tax for letters, paid or unpaid, per half ounce, is ten cents; postal cards, two cents each; newspapers under four ounces, two cents; other printed matter, samples, etc., two cents per two ounces or fraction. The registration fee on any letter is fixed at eight cents. For letters, these rates are less than the present to Spain, Egypt, Greece, Portugal, Russia, and Turkey; to other countries, with the exception of Italy, Norway, Holland, and Roumania, they are increased. The newspaper postage is largely reduced in every case, excepting in that of Great Britain, to which country it remains practically the same The postal card rate is an innovation, and the fact that missive may soon be sent from San Francisco to Constantino ple for two cents is certainly a remarkable indication of

progres

The public will be greatly the gainers in thus having fixed and reduced rate of postage, to nearly all the civilized countries,substituted for the numerous and different charge now in existence.

SUCCESSFUL TRANSPLANTATION OF BONE.

speaking of surgical operations in a late issue, we said that attempts had been made to substitute healthy for dis eased bones by a sort of grafting process, but they had fallen short of complete success.
A peculiarly interesting, because completely successful, operation of the sort is reported in a recent German medical journal. The patient was a young officer, twenty-four years of age. In 18i0, he received a gunshot wound which re sulted in a false joint in the middile of the right ulna-the large bone of the fore arm. The functions of the limb were seriously impaired, notwithstanding the smaller bone, the radius, was uninjured. 'To relieve the deformity, the fuls joint was laid bare, and the cartilaginous ends of the bone, together with the false ligament, were removed by strong cissors. Then the upper part of the ulna was sawn half throngh,about two inches above the end of the bone, and the upper piece, with its enclosing sheath-the periosteum, by which the nutrition of the bone is effected-was split off with hammer and chisel, leaving, however, a small bridge of the pericsteum to keep the bone alive. The detached bone was neatly fitted into the place of the false joint; the fatty and neatly fitted into the place of the false joint; the fatty and
indurated soft parts were divided so as to set up an inflamindurated soft parts were divided so as to set up an inflam-
matory reaction; the bleeding was checked by a stream of matory reaction; the bleeding was checked by a stream o
carbolized water, the wound closed by sutures, and a fenes trated plaster of Paris bandage applied. A single splinter of dead bone subsequently came away. The patient made a perfect recovery, regaining such full use of his arm that he was appointed to a regiment.

OUR NATIONAL UNIVERSITY OF TEGHNOLOGY.

The late Hon. J. C. Osyood, to whom we owe the can redge and other useful inventions, became an inventor, it is said, through his lively sense of the ridiculous. He was in an upholstcring establishment one day, where he saw a number of people at work picking and curling horsehair. The systematic waste of time and labor involved in the oper ation seemed to him so ridiculously absurd that he laughed heartily, rushed out of the shop, and-so the story runsinvented a picking and curling machine which "produced a revolution in that branch of industry." Having tasted the weets of invention, he went on to more serious achieve
Volumes of similar incidents might be compiled from the experience of inventors in this country. There is scarcely an ndustry which has not been more than once revolutionized by means of labor-saving inventions: scarcely an inventor whose inventive genius has not been awakence by some seemingly trifling circumstance, some happy thought, and fterwards developed by creative exercise.
'The rationale of such occurrences is worth inquiring into Why do such things happen so îrequently here, so seldom in other countries?
It was a Frenchman who said it was to be expected that a Yankee would be sharp at a bargain. It was dinned into his ears from earliest infancy; the burden of his mother's lulla by was: "Buy low, baby!" Still more, according to the face tious Englishman, is it $t \supset$ be expected that a Yankee will in vent. It is born in him. While the baby lies in his cradle he invents an improvement on it,and says to himself: "When I'm a little bigger, I'll take out a patent!"
Seriously, there is more in the idea than the Englishman gave himself credit for. The great incentive to inventionn incentive which has made us a nation of inventors-i the possibility of taking out a patent easily and cheaply. Every American knows that, for an almost nominal sumwhich might be further reduced to the country's advantage -the Patent Office will give him a certificate of exclusive courts will protect him in making as much money out of it as he can during the term of seventeen years. He knows that there is no more profitable investment for capital than a good patent; no way by which a man without capital can command capital so surely as by a good invention; no property more productive than a good patent; no way by which brains will bring to the possessor a greater portion of this world's
goods than through invention; no means of self culture so goods than through invention; no means of self.culture so
effective or so sure to have its good results so promptly re-
cognized by the world. Conse zuently the country swarms
with inventors, each doing his best to make life easier and richer to every inhabitant of the land. The inducements which the government holds out to men of ideas have thu made the Patent Office practically a National University of Science and Art, with millions of students. Its functionsare those of a true university, to encourage study, to examineand certify results, irrespective of the age, sex, or nationality of the applicant; and its degrees are such as practical men covet.
Wh
Where our literary institutions graduate hundreds, our Na tional University graduates thousands. Its degrees cover the widest possible range of merit, yet their worth is not exceeded by the degrees of Harvard or Yale. Notwithstanding the multitudes of unimportant patents issued, the multitude of patents which, for one cause or another, are never practically developed, the average value of a patent to the possessor and to the country at large is greater than the average value of a farm. We owe this enormous addition to national wealth, not so much to national genius for invention, as to the fact that inventions are encouraged by a liberal sys. tem of granting patents, and a spirit of great liberality in their interpretation by the courts.
The opinion prevails in some circles that the inventor, like the poet, is born, not made; that great inventions are, like great poems, the fruit of inspiration; and that the inventor needs none of the inducements and favorable conditions re quired for less creative work. Nothing could be wider from the cruth. Invention is an art to be acquired by persistent effort, just as any other art is: the fact that men differ in na tural capacity for such work no more proving the art unacquirable than similar diversity in capacity for other arts proves them to be altogether innate. And though many striking inventions have been made, like Goodyear's, through accident, and by men whose attention had never before been directed that way, still, as a rule, such accidents are few, and happen only to men on the watch for them, men so accus. tomed to regard all thingsas open to improvement that they are ready at all times to follow up the slightest clue to a new process or application.
To any writer who wishes to cultivate a new and profitable field, we could not suggest a more promising one than the interior history of inventions and inventors, to discover the process by which great inventions and great inventors have cen developed. Their beginnings and failures would be peculiarly instructive. For of many a man, known to the world only as a successful inventor, the Patent Office has records of a slow development from weak and insignificant beginnings. often in an entirely different field from that wherein he has achieved his successes. Time after time he has come ap to the great university for a degree, only-to use a bit of scholastic slang-to be plucked. Not unfrequently men begin so low even as to attempt a perpetual motion, in utter ignorance of all mechanical principles, and by study and experiments work themselves up to an honorable stand. ing, sometimes becoming public benefactors of no mean order.
Where patents are less freely given,such developments are impossible. Heavy fees and unfavorable conditions discourage every effort; the poor man-and most inventors are poor to start with-cannot patent his invention if he makes one: without a patent it is useless to him; so, though he has the crude idea, or has the natural capacity for great inventions, he never makes any, and the world loses what might be of inestimable value.

A New Cause ot'Trichinæ in Pork.

Some new cases of deaths, due to the eating of pork infested with trichina, which are being quoted in Western jeurnals, should be the means of directing public attention anew to the horrible disease of swine, called trichinosis, and to the fact that, when once the parasite attacks a human being, the result is prolonged suffering and, in a muliplicity of instances, death. The worm existing in the pork literally bores its way out of the stomach and into the muscles.
It has lately been found that swine may become infested with trichinæ through eating carrion, or even decayed vegetable substances. This is a point worth consideration by farmers who incline to the belief that dead chickens, putrid swill, or any other filth about the place is legitimate food for the pig. The animal is not dainty in his tastes, and will lunch off his dead relatives with infinite gusto; but it is the poorest economy to permit him to assume the rolle of scavenger. No milk dealer will allow his cows to eat garlic if he can help it, though the brutes are crazily fond of the odoriferous weed; and there is certainly more reason for the farmer to see that his porkers have no access to unclean food. In the one case, if precaution be neglected, the taste of the milk is affected; in the other the entire flesh is rendered poison ous and dongerous food.

The Coming Cincinnati Exposition.

Ir will be seen, from an advertisement in another column, that the sixth Grand Industrial Exposition held in Cincinnai is to be open for the reception of goods on August 2 next. An important feature in this Fair is the thoroughness, accuracy, and honesty with which the tests of machinery are conducted, in contrast to the irregular and unreliable manner in which the same have been carried through of late in some ther well known exhibitions. A large number of valuable prizes are offered, and excellent opportunities will be afforded for the exhibition of goods. Applications for space should be made at once. The Fair opens to the public on Septem.
ber 2. and closes October 9 .

IMPROVED WALK AND ROAD CLEANER

In large pleasure grounds, such as the Central Park in this city, or in extensive country seats, the labor of keeping the walks and roads clean and free from weeds is both arduous and constant, requiring the employment frequeritly of large number of men. A new machine has lately been de vised for this purpose, which, drawn by a horse and guided by one man, does the work far more effectually and expeditiously. It is the invention of Mr. Robert McKinley, a prac ical gardener of Hyde Park, N. Y., and its construction and capabilities will be understood from the annexed illustration. A is the hoe, which flares forward so as to work close up against the edges of the walk, cutting the same square and lean. This is hung to the for ward axle, and is also suitably jointed to a lever B, by means of which it can be depressed to cut to any required depth, or raised out of action altogether. Following in rear of the hoe is rotating rake, which may be also lowered or raised through jointed bars connectng with the hand lever, D. The rake is provided at one end with a pinion which is revolved g a pear whel which, in turn a gear by the cog, wheel rotated by the cog wheel ne of the main wheels of the apparatus, said main wheels being loose on the axle. The teeth of the rake are kept clear by the comb, E. Lastly, in rear of the machine is a gathering rake, F, which may be governed by the lever, G.
The hoe, A, serves to cut out the weeds, after which the ground is raked and the weeds shaken clear of earth by the evolving appliance. Lastly, the gatherer collects the refuse and deposits the same at proper points according to the will of the operator. By replacing the hoe with another of different form, the machine may be utilized for cultivating and other purposes of the farm
The invention is manifestly a labor-saving one, and is of timely importance just at present. For further particulars the inventor may be addressed as above.

THE MERRIMAN LIFE-PRESERVING DRESS

We recently published an account of Captain Boyton's aring attempt to swim from Dover to Boulogne, in the lifepreserving dress invented in 1869 by C. S preserving ditho Merriman. Altoun the advencurer did no complete his task, a journey of probably 30 miles, lasting 15 hours, must be considered a triumph for the inventor, as well as a proof of Captain Boyton's courage and endurance Our illustration gives a clear idea of the manner of using the invention, which cer tainly seems to be a comfortable and pleasan mode of traveling by sea. Under full sail with the paddle for steering apparatus, the royager seems to be as safe on the crest o in the trough of the waves as he would be a boat, and the reclining position is much ins weari less ing. The steamer Rambler convoyed him across the channel, and he was much ap plauded when he landed from that vessel in Boulogne harbor

The Philadelphia Exhibition

In little more than twelve months the la gest exhibition building that the world has yet seen will be opened at Philadelphia. We have already published some descriptive par ticulars of the huge structure now springin p in one of the principal centers of Ameri an commerce The most recent advice from the States the the the womonthe will be actively ill the circulars of the British Commission have been issued by Mr. Cunliffe Owen, and appli cations for space must at once be sent in. It is not too early, then, to consider what the project really means, and we can assure ou readers that the subject deserves their bes attention. Although the exhibition is, afte all, to be nominally provincial, and govern ment aid is withheld, it cannot be denied that the magnitude of the undertaking will really confer on it the dignity of enterprise. So far, therefore, the Philadel phia Exhibition cannot well be regarded as inferior in its scope to that of Paris in 1867,or of Vienna in 1873. Many engineers and ma nufacturers of Great Britain will therefore contemplate the sending of their productions to the other side of the Atlantic. Our pur pose now is to urge upon these gentlemen the importance of considering very carefully what they are abou
dea.
In plain English, international or provincial exhibitions are
simply great bazaars, in which space is taken and to which goods are sent, either to effect sales, or to serve as advertise ments. The latter scheme has been so thoroughly carried out, indeed, that instances have occurred in which manufac turers have agreed for space, and exhibited nothing after al but dozens of photographs of their wares, and cases of the medals which they had previously obtained elsewhere. The Philadelphia Exhibition will prove no exception to the gene ral rule. It will constitute a gigantic bazaar, in which a good

ral rule. It will oonstitute a figantic bazaar, in whicha good trade may or may not be done, aceording to to cricumstances.

America. On woolen goods, for example, a tax of fifty cents a pound, and 40 per cent $a d$ valorem, must be paid before they can be taken out of bond. Under such conditions, what possible value can accrue to our Leeds or Huddersfield houses by exhibiting in the United States? As regards iron, again, it is obvious, in the first place, that we can show nothing which America cannot produce equally well, albeit at a much reater cost; and the idea of establishing any trade in iron with the States as a result of exhibiting iron in 1876 is sim. ply absurd. The duty on machinery is just as prohibitive, and the value of the machinery which we send to the States now would certainly not be augmented by a single dollar if every engineer in the United Kingdom exhibited at Philadel phia. It may be urged, perhaps, that at all events, roods ent for exhibition would be ad mitted and sold duty fres in so far would paty free, and no. Thi is pay for the send ing. This is a mistake. Goods sent to the States for exhibition will be virtually in bond in Fairmount Park, and the exhibitor can carry them back to England without paying duty; but if he sells anything for use in the States, the custom house officers will demand and must obtain the tax before it will be sutfer to before it building. In the fact that a prohibitive American tariff intercepts the course of trade be

McKINLEY'S WALK AND ROAD CLEANER

But the question arises here: Is what England is likely to receive, in return for her trouble, worth having? In one word, will it be a good speculation to exhibit at Philadelphia in 1876? We call spades spades, it will be seen, and have no fear of shocking our readers when we state that the work of exhibiting in the present day has become a speculation which can only be justifiable when it affords a fair prospect of proving remunerative. Let us take this consideration as the basis of our reasoning regarding the propriety of exhi biting at Philadelphia, and we venture to think it can easily beshown that no exhibition has ever existed which holds out so little promise of being serviceable to English manufacturers. The principal things we have to sell as a nation are coal, iron, machinery, and woolen and cotton goods. It is not likely, for obvious reasons, that any English coal owner will do at Philadelphia as continental coal owners did

CAPTAIN BOYTON IN MID-CHANNEL.
at Vienna, and exhibit trophies of mineral fuel, so that we may dismiss coal from our list at once. All the remaining articles are so heavily burthened by import duties that it is vain to expect that we can trade successfully in them with
wween the two countries lies the reason for which we assert that English exhibitors can secure no possible benefit of any kind by sending their productions to Pbiladelphia.
We are not singular in holding this opinion. The weavers of Kidderminster have determined that they will send no carpets for exhibition. The implement makers of Birmingham will keep their goods at home. The leading agricultural engineers have already held a meeting, to discuss the propriety of exhibiting in 1876. After careful discussion, the following resolution, nioved by Mr. James Howard, Bedford, and seconded by Mr. Shuttleworth, Lincoln, was unanimously passed: "That, looking to the prohibitory dutiesfrom 30 to 40 per cent-imposed by the United States upon English agricultural machinery, the Association of Agricul. tual Engineers recommends its members to hold aloof from the Philadelphia Exhibition, considering the imposition of prohibitory duties to be out of harmony with the objects of international exhibitions." Members of nearly the whole of the great firms, and many of the smaller ones, were present, and the feeling was that no good could accrue to the English makers from exnibiting, although it would unquestionably be of advantage to American makers to have our best specimens of agriculturing engineering displayed before their eves.
The fact that the United States pin their faith on protection, both in theory and practice, renders it impossible that exhibiting at Philadelphia could repay English exhibitors. A nation which carefully excludes the wares of other countries has no right to expect those whom she treats as trade foes to send their choicest productions to her for inspection.
There is yet another reason why English. men should hesitate before taking part as exhibitors in the Philadelphia enterprise. Apparently the matter may be regarded as of little importance, but it really deserves very careful consideration. Up to the present moment all experience goes to show that the Americans are unable to carry out with success the organization of an exhibition. The questionable transactions which disgraced the administrative department of the American section of the Vienna Exhibition are, no doubt, more or less familiar to all our readers. Scarcely a "fair" can be held in the States : hat is not attended with some more or less unworthy squabble among officials, exhibit ors, or both. Have we any reason to expect that everything will be done in Fairmount I'ark during the summer of 1876 with a strict regard for the best interests of British exhib itors? The Cnited States have availed themselves of their opportunity to show that they can do without us. The chance of manifesting a reciprocity of feeling on this point is now afforded to British manufacturers. We trust they will not suffer the occasion to slip. They will have truth and justice on their side if they say to the people of America You will not buy from us; why should we trouble ourselves to show you what we have to sell? Of course, it may be said that this is a very selfish and illiberal policy. Those talk in this way are ignorant of the true character of such exhibitions, and practical men, whether engineers or journalists, must deal with things as they are, not as they are believed to be by amiable enthusiasts.-The Engineer.

IMPROVED BOILER FEED REGULATOR.

Messrs. Bede \& Co. ,of Verviers, Belgium, have recently introduced a new device for automatically controlling the sup ply of water to a steam boiler, which, they claim, insures a uniform hight of water in the boiler, thus avoiding danger of explosion and diminished pressure from too sudden or over feeding. It consists, principally, in the water cistern over feeding. It consists, principally, in the water communicates with the boiler through check valve B , which communicates with the boiler through che
M , and stop vaive, O , and it is fed by the pipe, C , M , and stop vaive, O , and it is fed by the pipe, C ,
through the valve, K . When the water in cistern, through the valve, K. When the water in cistern,
B, rises so as lift the smaller float, $\mathrm{E}^{\prime \prime}$, the extension lever, E^{\prime}, is moved so as to disengage the larger float, D, which has previously been held down by the lever, E ; and the float, D , lifting the lever, E, actuates the bell crank, J, to open steam valve, L. The entrance of the steam at L closes the valve, K, shutting off the water supply.
Equal pressure is thus established in the receptacle, B, and the steam boiler, and the water may hen pass through the valves, $M, 0$, into the latter. The vaive, O, is regulated by the boiler float, P, so as to be opened or closed, to maintain a uniform hight of the water in the boiler. The smaller float of the receptacle, $\mathrm{E}^{\prime \prime}$, follows the falling water, and strikes a pin or stop at the lower end of its guide rod when the receptacle is nearly empty. The weight of the small releases the large float, D, which presses on the link, J, closes the valve, L, and opens the water supply valve, K, and an exit valve, Q. The steam escapes hrough the valve, Q, into the reservoir, where it is condensed, while the water fills the receptacle, B, through valve, K. The supply is thus kept continuous tbrough the alternate action of the apparatus, which is also provided with a registering device, indicating how often the receptacle is emptied and filled, and consequently what amount of water has been used. By comparison with the quantity of fuel consumed, a simple and reliable test of the operation of the boiler and engine is afforded, the control of the engine by the attendant is facilitated, and economy in the use of fuel necessarily follows. The regulator was exhibited et the Vienna Exposition in 1873, and received a premium medal at the Paris Exposition in 1867. A number of these appliances are in use in Europe.

HIGHT OF WAVES.

J. W. Black, in a recent letter in Nature, says: 'Dr. Scoresby's observations in the North Atlantic record 24 feet, 30 feet, the highest 43 feet, and the mean 18 feet in westerly gales; and the frigate Novara, 20 to 30 feet off the Cape Promontory. French observers in the Bay of Biscay state a hight of wave of 36 feet; Capt. Wilkes, U.S.N., writes of 32 feet in the Pacific, and Sir J. Ross of 22 feet in the South Atlantic. Hights of waves in N.W. gales off the Cape of Good Hope were computed at 40 feet, those off Cape Horn at 32 feet, in the Mediterranean Sea at 14 feet 10 inches, and in the German Ocfan at $13+$ feet; but in British waters they are only found to average 8 to 9 feet. The velocity of ocean storm waves was ob erved by Dr Scoresly in the North Atlantic to be about 32 miles per hour; Capt. Wilkes ecorded it at $26_{2}^{\frac{1}{2}}$ miles in the Pacific, and French sailors in the Bay of Biscay at 60 miles an
hour. Dr. Scoresby has estimated the distance between or breadth of his Atlantic storm waves at about 600 feet from crest to crest, which is only about half of that stated in the letter, and with a proportion of only ${ }_{2}{ }_{20}{ }^{1}$ for hight to breadth. Dr. Scoresby states that his waves of 30 feet in hight move at the rate of 32 miles per hour.
The accompanying diagram is constructed according to Dr . Scoresby's scale of measurements, 600 feet breadth, 30 feet hight, and 220 feet vessel, with rates of wind, wave, and vessel ; and from it one may ponder on what small dimensions these terrific-looking waves are constructed, and that a ship after all looks only like a cork or chip on the great seas."

MOTIVE POWER FROM WAVES.

Λt a recent meeting of the Institution of Naval Architects a paper was read by Mr. 3 Tower, on a method of ob taining motive power from wave inquiry his inquiry originated wit Mr. Deverell, whose proposi tion was to suspend a heavy weight on board a ship by means of springs, and to ob tain motive power by the oscillation of this weigh through a distance not ex ceeding the hight of the waves.
It however appeared to Mr Tower that, since the centrifu gal force of wave motion in a gal force of wave motion in a
vertical direction is alternate vertical direction is alternate-
ly added to and subtracted ly added to and subtracted
from the force of gravity from the force of gravity,
thereby causing a virtual va. thereby causing a virtual va
iation of the intensity of tha

force, the question might be broadly stated as follows Supposing the force of gravity to vary in intensity at regu lar intervals, that 1 s , to become alternately greater and less maximum anount, what is the best meight oscillating under the influence of these variations? For example, sup posing the force of gravity to be for three seconds one fifth greater, and for the next three seconds one fifth less, thanits

BEDE'S FEED WATER REGULATOR.
natural intensity, and suppose that we have a weight of five tuns suspended by a spring, with an infinitely open scale, so that the spring will continue to exert a uniform upward force of five tuns, no matter how far the weight moves up and down, it is clear that, during the three seconds' interval, during which gravity is one fifth more than its normal intensity, the five tun weight will virtually weigh six tuns, and
will thus exceed the upward force of the spring by a downward force of one tun; in the same way, when the force of gravity is one fifth less, the weight will only weigh four tuns, and the spring will then exert an unbalanced upward force of one tun. Now, as energy or power is defined as force moving through distance, it is clear that the quantity of energy or power to be obtained by this system will depend on the distance through which this weight is caused to move during each successive variation of gravity. Thus, supposing that during the plus interval it moves downward through one foot, and during the minus interval it moves upward through one foot, it is clear that during each of these intervals it will exert a force of one tun moved through one foot, that is, one foot tun; but if, instead of one foot, it moves through ten feet, it will exert ten times the power

that if, ten foot tuns:or if moved through one hundred feet, it would exert one hundred toot tuns during each interval of hree seconds.
The first experiments Mr. Tower made, with a model apparatus constructed on these principles, showed him that the est arrangement would be to put a weight on the end of a evolving arm, whereby the sentrifugal force of the wave otion might be utilized as well as the rising and falling motion.
The diagram shows the position of the vessel and of its revolving arm at all parts of a wave; the arrows show the direction of the centrifugal force of the wave motion according to the generally received theory. This force is upwards at the crests, downwards in the hollows, and horizontal midway between the crests and hollows. If the weirhted arm is compelled to assume successive angular positions, so that it is always at right angles to the force, it is evident that the force will be continually acting to cause the arm to rotate. It is easy to see how the work is taken out of the waves; for when the vessel is descending, the weight is performing the upper half of its revolution, and is consequently exerting an upward centrifugal force; and when the vessel is ascending, the centrifugal force is pushing down and resisting the vessel's ascent, so that the revolving weight affords a resistance against which the vessel can push just as if it were a fixed point in space. The shaft of the revolving weight can be made to turn a screw in the stern of the vessel by means of a proper system of gearing; and by a delicate arrangement of electric brakes and hydraulic accumulators, Mr. Tower proposes to regulats the revolving arm so as always to keep it at right angles to the centrifugal force of the waves.

New Asphalt Paving.

A specimen of street paving has just been laid in Glasgow, the material employed being the rock asphalt which is obtained in the Val de Travers, near Neufchatel, in Switzerland. During last autumn several portions of wood paving, on the same system, were done in Glasgow by a London company; and as they were well executed, they seemed to give very general satisfaction. Profiting, apparently, by the experience gained by witnessing the system of wood paving in operation, the Scottish Val de Travers Paving Company determined upon attempting something similar.

According to this system, a foundation is first formed of Portland cement concrete, about 9 inches in depth, and on this the paving proper is laid. The rock asphalte from the Val de Travers, the material employed in the paving, contains about 12 or 13 per cent of bitumen, and the remainder of the rock consists almost entirely of hard imestone, through which the bitumen is very uniformly diffused. This material is first broken into pieces of convenient size in a crushing mill, and is subsequently put into a disintegrator, in which it is reduced to a very fine state of division. When it has been treated in this way, the asphalt is thrown into a revolving cylinder, in which it is subjected to a temperature of about $260^{\circ} \mathrm{Fah}$., which brings it almost to a pulverulent condition. While it is in the state of hot powder it is filled into cast iron molds, in which it is pressed and made to assume the form of bricks, about nine inches long by four inches broad and two inches in thickness. The tendency of ts particles to cohere is very great at that temperature. The cast iron molds are so formed that the bricks cast in them have a chamfer or bevel about half an inch broad imparted to them, all round what is intended to become the upper surface: and thus, when the bricks are placed in the causeway, they are separated above by a series of grooves, by means of which an excellent bite is secured for the feet of the horses passing over it. When the cement concrete, forming the substratum, is sufficiently well set. the asphalt bricks are laid in a manner somewhat similar to that of ordinary causewaying with dressed granite or whinstone setts. Instead of bedding them in sand, however, they are laid in a thin stratum of liquid rock asphalt just as ordinary bricks are laid in mortar, bottom, sides, and ends all being coated with the agglutinating mate rial. The bricks are placed about a quarter of an inch apart, and the space thus le ft is filled in with a hot liquid, which consists of Trinidad pitch and crude shale oil, and which long remains very tough and elastic in addition to which it most effectually prevents any water from passing through water from p
the pavement.
the pavement.
The portion of roadway executed in Glasgow in the above manner seems to give satisfac tion, and will apparently be very durable. Of course there is no actua! information avail.
able regarding the durability of the particular specimen of paving under notice; but the experience gained from the Rue Bergère, in Paris, which was laid in 1865 with Val de Traverse asphalt, is quite sufficient on the point in question. After having been in use for fifteen years, a portion of it was lifted in 1869, when it was observed that its thickness had only been reduced from two inches to one and three eighth inches: but while it had diminished in thickness only five eighths of an inch in fifteen years, it had undergone consid erable compression, inasmuch as the actual loss in weight was not more than five per cent. The special feature of the new paving in Glasgow is the almost absolute immunity from slipping which horses enjoy when passing over it.

Cortespondence.

Invention of a New Numerical System

To the Editor of the Scientific American:
In our common decimal system, distinct characters are given to the numbers from one to ten; and it is very well known that, instcad of ten, any other number-for instance, eight, or twelve, or sixteen, or even two-may be selected for a base. Such systems have actually been calculated, but they have not come into use: the advantages not being sufficient to counterbalance the inconvenience of changing one system into another

The subject may be treated, however, in quite a different manner. There is no necessity for taking any base at all, and the numbers may be made to progress in their own na tural succession; or, to expressit in other words, every number, even one, may be made to serve as a base for a certain time. This can be accomplished as follows
Instead of dividing off the original units in sections of ten, as in our common numerical system, we divide them in the natural succession of the numbers themselves, first one, then two, then three, etc., and for each division we make a mark in the second column. If, in the first column, a rest should remain, such rest can never be greater than the number of marks in the second column, because if the rest were one greater, a new mark would be made in the second column.
There is no necessity at present for going through the whole process, which would require a great deal of whe and many diagrams. It has taken me nearly tony years to construct the first twenty numbers. Suffice it to say that the final result is very simple, and can be read
The whole theory is based upon the fact that the rest in any column can never be greater than the numher of marks in the next column. If the marks in the second, third, and all following columns, and all the rests, are divided in the same way, that is, in the natural succession of the numbers one, two, threc, and so forth, the numbers will appear in a very simple form, each consisting of a base and a rest ; this rest, however, is sometimes naught.
Of course there must be certain characters for the numbers, and the characters of our common numerical system are neither suitable nor sufficient; there must be twenty new characters instead of ten. Hence we have either to invent new characters or use the common letters. The first would require new types for printing, which is too expensive, hence we use letters.
Let the first twenty letters, excluding j, represent the first twenty numbers, so that a stands for $1, b$ stands for 2 , etc., until u stands for 20 ; and let one of the last letters, for instance, x, stand for 0 . Let us write these numbers in the following triangular shape:

$$
\begin{array}{rrrrrr}
& & & & n 20 \\
& & & & o 14 & t 19 \\
& & & i 9 & n 13 & s 18 \\
& & e 5 & h 8 & m 12 & r 1 \% \\
& b 2 & d 4 & g 7 & l 11 & \boxed{16} \\
. c 0 & a 1 & c 3 & f 6 & k 10 & p 15
\end{array}
$$

These letters and numbers mean
x stands for $0, a$ stands for $1, b$ stands for : , etc.
It will be seen that the vowels e, i, n, n stand at the head of their columns; if the letter j were used, this order would be disturbed.
These letters and numbers are to be used as follows
Naught with the rest naught equals naught, equals x

One	،	"	naught	"	one	"	"
One	"	"	one	"	two	"	b
Two	π	"	naught	"	three	"	c
Two	\checkmark	"	one	"	four	.	d
'Two	"	"	two	"	five	"	e
Three	'	،	naught	"	six		J
Three	-	"	one	،	seven	"	g
Three	'	،	two	"	eight	،	h
Three	.	"	three	"	nine	،	i
Four	"	'	naught	"	ten	'	k
Four	$\stackrel{ }{ }$	-	one	"	eleven	"	l
Four	:	.	two	\cdots	twelve	"	m
Four	'	"	three	.	thirteen	"	n
Four	\cdots	"	four	"	fourteen	-	0
Five	،	،	naught	"	fifteen	،	p
Five	"	'6	one	"	sixteen	"	q
Five	"	"	two	"	seventeen		r
Five	-'	'	three	"	eighteen	"	
Five	*	:	four	"	nineteen	،	t
Five	"	"	five	"	twenty	،	u

of a base and a rest. After 20, the progress of the numbers is very easily seen, and may be stated as follows:

Six with the rest naught equals twenty-one, equals $f x$						
Six	"	'	one	"	twenty-two	" fa
Six	"	"	two	"	twenty-three	"fb
Six	"	"	three	"	twenty four	" f c
Six	"	"	four	"	twenty-five	" fl]
Six	"	"	five	"	twenty-six	" ${ }^{\prime \prime}$
Six	"	"	six	'	twenty seven	" ${ }^{\prime} j^{\prime}$
Seven	*	"	naught	'،	twenty eight	" $\mathrm{gr} \times$
Seven	"	"	one	"	twenty-nine	" 9 g
Seven	"	"		"	thirty	" $g b$
Seven	${ }^{6}$	"	three	"	thirty-one	$\cdots \mathrm{gc}$
Seven	:	"	four	،	thirty-two	" gd
Seven	،			"	thirty-three	* ge
Seven	"			"	thirty-four	" $!f$
Seven	\cdot		seven	-	thirty-five	" ${ }^{\text {a }}$ g

The general rule for writing these numbers is: The second part is to be increased until it equals the first part, and then the first part is to be increased by one.
This table shows the construction of the numbers from 0 359026206.

$x=0$	$q=16$	$y^{\prime \prime} d=3:$
$a=1$	$r=1 i^{\circ}$	$!\ell \in=33$
$b=2$	$8=18$	$g f=34$
$\overline{c=3}$	$t=19$	$g q=35$
$d=4$	$u=20$	
$e=5$	$f x=21$,
$\overline{t=6}$	$f a=22$	$\cdots u=230$
$g=:$	$f b=23$	f fr $x=231$
$h=8$	$f t=24$	
$i=9$	$f t=25$	-
$i=10$	$f \epsilon=26$	
$l=11$.	$t^{\prime} f=27^{\prime}$	$\because u \cdot u \quad u=26795$
$m=12$	$g x=28$	
$n=13$	$g a=29$	
$o=14$	$g b=30$	
$\bar{p}=15$!	$g c=31$	и u u u u u
		$f \times x \times r$

Room 30, 33 School street, Boston, Mass.

An Invention Wanted-aifive Thousand Dollars Reward offered.

To the Editor of the Scientific American:
Believing that the horse has served his time before the treet car, and that American ingenuity should allow him to retire before our ('entennial anniversary, by inventing some improved motor for street passenger railways, we offer five thousand dollars reward to any person or persons who will invent, perfect, and present to this company any satisfactory device that will propel our cars and can be used on the streets of Philadelphia, provided it is acceptable to this company and its control placed exclusively with us.
R. W. Flower, Jr., President.

West End Passenger Railway Company of Philadelphia No. 206 South Fourth Street, Philadelphia. May 7th, 187%

Useful Rectpes for the Shop, the Household,

and the Farm.
In using Paris green to exterminate the potato bugs, the poison should be mixed with the cheapest grade of flour, ne pound of green to ten of Hour. A good way of applying it to the plants is to take an old 2 quart tin fruit can, melt off the top, and put in a wooden head in which insert a broom handle. Bore a hole in the head, also, to pour the powder in, and then punch the bottom full of holes about the size of No. 6 shot. Walk alongside the rows, when the rines are wet with dew or rain, and make one shoot at each hill.
In some parts of the country, there have been large numbers of the orchard or tent caterpillars which have left their rings of eggs on the young twigs. If these are now cut off with a clipping pole, it will prevent in every instance a arge nest of caterpillars, and be much more easily done than fter the latter have grown.
Equal proportions of turpentine, linseed oil, and vinegar, thoroughly applied and then rubbed with flannel, is an ex ellent furniture polish.
Tin can be removed from copper vessels very thoroughly immersing the objects in a solution of blue vitriol.
The fierman washerwomen use a mixture of 2 ozs. turpen tine and 1 oz . spirits of ammonia well mixed together This is put into a bucket of warm water, in which $\frac{1}{2} \mathrm{lb}$. soap has been dissolved. The clothes are immersed for twenty-four hours and then washed. The cleansing is said to be greatly quickened, and two or three rinsings in cold water remove the turpentine smell.
Five parts of sifted whiting mixed with a solution of one part glue, together with a little Venice turpentine to obviate the brittleness, makes a good plastic material which may be kneaded into figures or any desired shape. It should be kept warm while being worked. It becomes as hard as tone when dry.
Artificial malachite which is susceptible to a fine polish is made by precipitating a solution of sulphate of copper in the cold by carbonate of soda or of potash. The precipitate which is voluminous, should be allowed first to cohere, and then dried and washed.
Water containing about seven grains of salt in each pint,
is, when used continuously, a poison to the weaker forms of , when used continuously, a poison to the weaker forms of

The alloy popularly known as oroide, from which a large number of cheap watches, chains, and trinkets are now manufactured, is made of pure copper 100 parts, tin 17 parts, magnesia 16 parts, sal ammoniac $\frac{1}{2}$ part, quicklime $\frac{1}{8}$ part, tartar of commerce 9 parts. The copper is first melted, then the magnesia, sal ammoniac, lime, and tartar in powder are added little by little and briskly stirred for half an hour The tin is lastly mixed in in grains until all is fused. The crucible is covered, and the fusion maintained for 35 minutes when the dross is skimmed off and the alloy is ready for use
A simple way of preparing paper for bank checks, bills etc., so that no writing can be erased without leaving plain ly visible marks, is to pass the sheets through a solution of gallic acid. One milligram ($0 \cdot 01543$ of a grain) is dissolved in as much pure distilled water as will fill an ordinary sou plate to a moderate depth
Sandarac varnish is the best material for mending plaster models. Saturate the broisen surfaces thoroughly, pres them well together, and allow them to dry.
Silver ware may be kept bright and clean by coating the rticles (warmed) with a solution of collodion diluted with alcohol
Dampmess will cause honey to become thin and watery.

The Suet Butter Manufacture.

In spite of the prejudice which exists against suct butter, it is a fact that the manufacture has of late made great pro gress; and the quantity of the material now consumed is certainly now larger than ever before. We illustrated the mode of making the butter many months ago. The process then described is the same as now practised in this city and other places, under the original patent granted to M. Hippo yte Mége.
There is a large factory in Hamilton, (anada, from which some 2,000 lbs. per week of imitation butter are shipped to all parts of the world. Another and still larger establish ment in Boston, Mass., turns out a very great product. In many cases, it is said, this butter finds its way directly to the butter producing districts of New York and New Jersey, and then is sent to market as genuine spring butter. It is cer tain that immense quantities of the oleomargarin are sold by dealers as true butter, and that the profits of the trade are very large. We see it noted in a daily contemporary that the suet compound is in use in some of the principal hotels and restaurantsin this city, and that the frequenters of these places have as yet not discovered the fact. We do not pre tend to the skill of the professional butter taster; but we have no difficulty in instantly recognizing the artificial compound. We may add that, not long ago, we discovered it on the table of one of our New York hotels; and after satisf ying ourselves as to its identity, we taxed the proprietor with its use. He strenuously denied the charge; but at a subsequent meal, we found the "ox butter" (as the Harvard students have named t) replaced by "cow butter."

We do not mean to say that the oleomargarin is unsavory or unwholesome. On the contrary, it is made with the utmost nicety from the cleanest of materials. Neither is it unpleas ant in any marked degree to the palate, nor to the stomach It certainly is infinitely better than the abomination sold by grocers under the generic name of "cooking butter." Still most persons have a prejudice against suet butter, and that feeling, so far from being weakened, has been strengthened by the knowledge that the reprehensible practice of selling the imitation as the genuine is so widely practised. If the material were advertised and sold uniformly for what it is and on its merits, we have no doubt but that the prejudice against it would in a great measure subside. For shipping to hot climates, it is, no doubt, far better than the butter usually sent to southern ports.

Parliamentary Signal Light.

The gas signal light on the clock tower of the Houses of Parliament is now shown from its new position, 30 feet high er than formerly. The new lantern is constructed to run in and out of a loophole in the roof of the tower-similarly to a ship's gun-so that during the daytime nothing is seen of it, and it is now no disfigurement to the appearance of the tower. The illuminating power is a Wigham's patent gas light, as used for lighthouses, and at present is shown naked, no lenses being used. The light is only visible while the House of Commons is actually sitting. Immediately on an adjournment, the light is extinguished. This liyht is fully described on page 403, volume NXVIII, and page 40 , vol ume XXIX.

New Indication of Death.
Is the patient really dead or not? is at times a very anxious question. A medical practitioner of Cremona proposes a simple method by which the question may be answered with certainty. It is to inject a drop of ammonia beneath he skin, when, if death be present, no effect, or next to none, s produced; but if there be life, then a red spot appears at he place of the injection. A test so easily applied as this should removed all apprehension of being buried alive.

Electric science occupies a place of no mean importance in the new opera house in Paris. A special room is set apart as a battery room, in which 360 Bunsen's cells, arranged in sets of 60 on rough plate glass tables, are manipulated to pass a current to any part of the stage, so as to direct the electric light upon any point of the scenery. The sunlight and startling effects produced by French scenists are really beautiful. The rainbow in the opera of Mosé in Egitto is wonderful.

This shows that every number may be supposed to consist |vegetation.

SIDEBOARD REFRIGERATORS

The season for refrigerators being at hand, persons about to purchase will be interested in knowing what is new in this line. The last improvement we have seen is in the form of a sideboard, as shown in our engraving, made by Mr. Alex. M. Lesley, No. 226 West 23 d street, New York city.

As all the refrigerators thus far brought out are only adapted to the kitchen or the hall, the handsomest of them having no claim to any beauty, and much less deserving to be called ornamental, it was for a long time the desire of many housewives to have a refrigerator that would not disgrace a dining room. 'To Mr. Lesley belongs the credit of having brought out such a refrigerator, in the exterior form of a sideboard, and therefore called the "Sideboard Refri gerator." It is constructed in the most tasteful style, of solid wood-oak and black walnut-and, as the engraving solid wood-oak and black walnut-and, as the engraving
suffiently shows, is a decidedly ornamental piece of furniture, well adapted for even the most stylish dining room.

It is scarcely necessary to sum up the advantages of having the refrigerator in the dining room instead of in the kitchen. 1st. It is less under the control of the servants, which may be of some importance, especially when wines and delicacies are preserved in it. 2d. It is out of the heat of the kitchen. 3d. It is not exposed to the unavoidable flavors of the kitchen, which may affect certain delicate articles of food. 4th. If a refrigerator diffuses some coolness around it, especially on being opened, it is better that the dining room should have the benefit of it than the kitchen.
In regard to the interior arrangement of these elegant sideboard refrigerators, they are the same as those of Mr. Les ley previously described by us, and this arrangement has been proved very satisfactory in all respecus. The water proceeding from the melting of the ice is stored in a separate tank, and can be drawn off for drinking purposes, while the water of condensation, always tainted with the odors of the meats and fruits preserved, is drawn off by a separate channel. This elegant appliance costs about double one of the plain kitchen or so called Zero refrigerators, which has been described in these columns.

Prize offered by the King of the Belgians

A recent Landon Gazette contains a translation of docu ments which have been received at the Foreign Office respecting the $\$ 5,000$ prize whirh the King of the Belgians proposes to a ward annually for the best work on a subject of national interest. His Majesty explains hisdesignin a letter to M Delcour, the Minister of the Interior, who, in conjunction with the king himself, is to choose the jury of seven members-namely, three Belgians and four foreigners-the president to be a Belgian. The first award is to be made in 1878 for the best work on the national history of Belgium the second in 1879, for the best work on architecture; the third in 1880, for the best work on the development of the commercial relations of Belgium; and the fourth in 1881,fo the best scheme of harbor improvements on low and sandy coasts like those of Belgium. The first three competitions will be limited to Belgian subjects, but the fourth will be open to foreigners. In each succeeding four years, there will be three restricted and one open competitions. At King Leopold's wish, regulations have been drawn up and published by the Minister of the Interior.

The New Twenty Cent Coin.
Dr. Linderman, director of the mint, has selected the de sign for the new twenty cent silver piece. The obverse wil bear a sitting figure of Liberty with the word "Liberty" inscribed on the shield, the whole surrounded by thirteen stars. Beneath the figure is the date. On the reverse is an eagle with the words " Twenty cents." The edge of the coin will be perfectly smooth in order to distinguish it from the twenty-five cent piece.

A Bolling Lake

Mr. J. Sturge favors Iron with the following: "A discovery of some interest has been made in the Island of Dominica, West Indies. Drs.Freeland and Nicholls, CaptainGardner,and Mr. Watt, exploring the steep and forest-covered mountain behind the town of Rosseau, came upon a boiling lake about

3,500 feet above the sea level, and two miles in circumfernce. When the wind cleared a way, for a momen t,the clouds of sulphurous steam with which the lake was covered, a mound of water was seen, ten feet higher than the general evel, and caused by ebullition. The margin of the lake consisted of beds of sulphur, and its overflowing found exit by a waterfall of great hight.

ARRANGEMENT OF GALVANIC BATTERIES.

The arrangement of the elements into batieries varies according to the purpose they have to strve. A maximum mag. netic effect may be obtained from a given number of elements, if they be so arranged that the resistance in the battery is equal to the resistance in the closing wire. A given number of elements can be combined in very different man ners. For instance, eight elements can be arranged in four different ways, as shown in Figs. 1, 2, 3, and 4. Which one of these combinations should be selected, in a given case, depends upon the resistance to conduction of the circuit. That combination must be taken, the resistance of which is near est to that of the given circuit.
In Fig. 1, the elements are connected, one after another into a battery containing eight successive pairs of plates, and the current has to pass in succession through each of the eight elements.

Fig. 2 represents the reverse, all the zinc cylinders being connected together to form one zinc pole, and all the copper cylinders connected together toform one copper pole, the whole forming a single element of eightfold surface. In this case, the
elements are connected side by side for the production of the elements are connected side by side for the production of the
largest quantity of current through a circuit of the least re sistance. In the former case, the elements were connected for the purpose of producing the greatest quantity of cur rent through a circuit of the most resistance.
Between these two cases, there are the two others, represented by Figs. 3 and 4. In Fig. 3, the four elements, 1, 2, 3 , and 4 , one after another, are connected as one battery, as are also the elements $5,6,7$, and 8 . The corresponding poles of both batteries are connected with each other, and hence this battery represents a voltaic pile of four pairs of plates, of which each has double the surface of the pair of plate shown in Fig. 1.

Fig. 3.

Fig. 4.

on which each two ments, $1,2-3,4-5,6-7,8$, form a battery of two pairs of plates, whose surface is four times as large as in the pairs of plates shown in Fig. 1. Supposing the resistance of an element to be 4 ohms, the resistance of battery shown in Fig. 1 would be 32 ohms; in Fig. 3, 8 ohms; in Fig. 4, 2 ohms, and in Fig. 2, 0.5 of an ohm. Considering the different combipation of the 8 elements represented, it is seen that, as the pile is shortened, it becomes broad in the same proportion; and hence, by making the pile one half as long and twice as broad, the resistance is reduced to one fourth of its former amount.
Now, in determining which combination of the above elements would be the most suitable for any given circuit, reference must be had to the resistance of the circuit; and if the greatest magnetic effect was desired upon each, the res!stance of the closing wire, including the electromagnet, must exactly equal the resistance of the battery.

PSYCHO EXPOSED.

An exhibition is now being held in the Egyptian Hall, Lon don, England, of which an automaton, called Psycho, until recently, formed a part. The figure performed many curious tricks, solving mathematical problems, and playing cards with great skill and accuracy.

Psycho is an oriental person ge, sitting on a box some thre s high, anle himself bout tweniy inches in hirht, bout on a coss colind placed on a glass cylinder to show that there is no connec tion with the stage under the table. The movements were of course, caused and governed by a secret force, but the me hod of communication with the figure defied detection for a long time. Mr. Maskelyne the inventor, allowed any one o inspect the figure. One ight a military gentleman mong others, sent up his car for that purpose. He exam ined the glass pedestal and ther parts, but could see othing of any mechanical con rivance. Subsequently, how ver, the mystery was solved by Mr. W. H Coffin. son of Dr . W. Coffin, an America dentist in London, Mr. Maske lyne being unwilling to sub mit his figure to the test proposed. The solution is that Psycho is worked by the con densation and diminution of the column of air in the glas cylinder on the top of which he sits. Beneath the carpet a the bottom of the cylinder is a perforated plate of zinc, con nected with the operator behind the scenes, who, at his will may increase or decrease the column of air, the figure mov ing one way or another in accordance with the pressure pu upon it. The conjuror was at first disposed to deny the ex planation, but Mr. Coffin told the audience that it could eas ly be tested by Mr. Maskelyne allowing him to put a news paper between the figure and the cylinder. This the conju ror declined to do, and then followed great applause, when it became recognized that Psycho, as a mystery, had passed away.

London Fires.

The actual number of fires in London in 1833, as returned, was 458 . The population then was $1,710,059$. This gives one fire to every 3,734 persons. Last year the fires were $1,-$ 573 , in a population of $3,400,701$, or at the rate of one fire to every 2,162 persons. The population of London in 1874 was not quite double that of 1833 , but the fires last year were more than three times as numerous as at the earlier date. Had the fires simply increased in the ratio as the population, the number last year would have been 911 instead of 1,573 . The actual excess, therefore, is fully 72 per cent. A further investigation of data shows that this disproportionate growth of the London fires is a persistent phenomenon during a considerable series of years.
Reverting to the simple question of fires, apart from the success achieved in extinguishing them, there is a remaakable fact pervading the statistics-namely, that fires have a endency to outstrip the population.
The frequency of fires in London far exceeds anything known in ordinary country towns. Moreover, we have the statistics of London itself, showing that, when it had half its present population, it had less than one third its present number of fires. The conclusion which appears warranted is this-that a population distributed over a number of sepaate towns is less liable to outbreaks of fire than the same population brought together within the compass of one population brought together within the compass of one
town. In order to explain this social phenomenon, we may town. In order to explain this social phenomenon, we may
allude to the greater density of population in large towns allude to the greater density of population in large towns
as compared with small ones, though, on the other hand, this very density would seem to afford means of protection by rendering it less likely for a fire to pass beyond the incipient stage without being detected. On the whole, we are warranted in concluding that there are circumstances connected with the furnishing of houses. the storage of goods in ware houses and elsenhere, and the general hurry and pressure of metropolitan life, which inrolve contingencies more favorable to the occurrence of fires than are likely to be found in many country towns. The fact that fires increase more rapidly than the population creates a danger in large and growing communities lest the arrangements for extin guishing fire should not keep pace with the real necessity There is also the circumstance that large cities have large buildings, so that fires in such localities are likely to be not only numerous but extensive. Examples of this kind are not wanting in London, and the peril is increased by the enormous hight to which buildings are carried where the ground s costly.-The Engir.eer.

Electric " armored" cables are to be experimented with on board the torpedo school ship Vernon at Portsmouth England, in connection with torpedoes laid down for barbor defense. Should these invulnerable cables prove a success as a means of connecting torpedoes with the shore, the value of these machines for defensive purposes will be considerably increased.

IMPROVED HUB BORER
The greatest strain which a wagon is subjected to falls upon the wheels; hence it is at such portions that the best and nicest workmanship is required in order to insure the maximum of strength, close fit, and durability. The first boxes ever put into wagon hubs were placed in holes which fitted at one end, but which, at the other extremity, were large enough to admit being set over to one side, the interve ning space being filled with wedges. This was and is, at best, but a clumsy operation, for the work is certainly inaccurate and at a part just where accuracy is required; but despit the knowledge of the fact, carriage makers, in many cases till cling to the antiquated me
thod, though for what reason, while machinery, which accom plishes the labor far better, is extant, it is difficult to explain.
We present, in the annexed engravings, a rear view, Fig. 1. and a front view, Fig. 2, of $n \in \mathbf{w}$ device for boring hubs, for which a large number of imporant advantages are claimed The hole is made perfectly true with the rim of the wheel, and of he right size and shape for the box, it being possible to cut out deeper at the spokes or at any ther part, so that the box can be caused to bind at any desired place. The machine reuires noadjustment for differ ent sized wheels. The knife is the same for one sized hole as for another, the size and taper being regulated entirely by setting the shaft out of the center or on an angle. This obviates the trouble of setting he knife more than once for each wheel. The latter is hanled but once, and does not eave the machine until the box s fitted. The hole for the nut is cut true with the box aperture, so that the nut will go on
after the box is driven as well as it will before, while it cannot rub the wood, and so cause the axle to heat.
From the engravings, it will be seen that the machine is of that class in which the wheel is turned while the cutting is done by a bit, A, Fig. 2. placed on the end of a mandrel The latter can be quickly set at any angle or for any size de sired, the size of hole and degree of taper being regulated by the thumbscrews, B, in the side of the box The bearin is placed near the spokes and within the limits of the hub, so that the weight of the wheel is carried without any cramp ing or sideways pressure.
The feed is actuated by an arm, C, which projects under the inner ring of the bearing, and which merely pushes the feed nut, D, around and does not cramp when put on a ta

per. The feed nut is closed over a projection on the end of the block in which the shaft runs; so that when placed on a angle, there is no tendency to cross the thread of the screw The irregular motion, which is inseparable from a machine which makes a taper hole, occurs, it is stated, only at the point where the arm touches the feed nut, and is simply a liding back and forth of the former as the wheel is turned
In operation, the wheel is fastened to the face plate by the gripes, E, and caused to run true by the set screws, F, which connect the face plate with the outside ring of the bearing The hole for the taper part of the box is cut, then the hola or the shoulder at the back, and, lastly, the hole for the nut at the front. This completes the work with the exception of driving the box.
The machine is, in fact, a small and complete lathe, in which the wheel and tyre serve as a balance wheel. It is guaranteed to be capable of boring an ordinary set of wheels in less than one hour, and we are informed that it has performed that work inside of twenty minutes. Its weight is about 50 pounds. It is durable, one firm having bored some 2,000 sets of wheels with a single machine. The use of
wedges it obviously dispenses with a ltogether, and thus in ures the tight working of the wheel.
Patented January j, 1874. For furiher particulars and ma chines, address H. W. Pell \& Co., Rome, N. Y., or Wilcox Bros. \& ('o., Adrian, Mich., or any dealer in carriage hardware

cleaning Photo Plates.

Dissolve 1 ll . potash in 2 quarts water: pour it into an earthenware dish or tray. Introduce each glass separately into the liquid, taking care to prevent air bubbles. The plates are allowed to remain at least twenty-four hours in this solution; they are then taken out one by one, placed
M. Lostal, railway contractor, of Ferminy, has communicated to the Society of Mineral Industry, at St. Etienne, France, the results of his observations on the effect of lime in preserving wood, and his method of applying it. He piles the planks in a tank, and puts over all a layer of quicklime which is gradually slaked with water. Timber for mines equires about a week to become thoroughly impregnated, nd other wood more or less time, according to its thickness. The wood acquires remarkable consistence and hardness, and it is said, will never rot. Wood has been prepared in this manner for several mines, so that the plan will shortly be: ested on a considerable scale: Beechwood has been prepare ${ }^{3}$ in this way for hammers and other tools for several iron vorks, and it is said to become s hard as oak without losir g its elasticity or toughness, and last much longer than wl en it has long bern known that wood in lime or mortar is preserved from decay, but no systematic plan for its preservation has until now been attempted.

I Million Dollar Hammer. A German paper informs us that the famous steel works of Frederick Krupp, of Essen, are about to receive a very important addition to their machinery. The largest steam hammer n use at these works, at the resent time, is one capable of working a mass of steel 50 turs in weight, and erected at a cost of $\$ 560,000$. It is now in contemplation to build a new steam hammer capable of beating up a mass of steel of double the weight, namely, 100 tuns. The new machine, it is estimated will cost $\$ 1,000,000$, and will
ABBOTT'S LITTLE GIANT HUB BORER
under a tap, and well scrubbed with a cocoanut fiber brush until all the old collodion and varnish disappear. They are en plunged into another dish containing a solution of three wiped dry with towels. On no account must they be left to dry spontaneously, or they will become stained. Before the plates are used they required to be cleaned with a solution of rottenstone into which a few drops of ammonia have been introduced

SMITH'S BLIND SLAT HOLDER.

After a blind has been exposed to the weather for some little time, it is very rarely thereafter that the slats can be made to stay in any required position. They may be closed by turning them up, or partially opened by turning them down all the way; but they will not rest squarely across the opening so as to admit a breeze, or remain slightly tilted o as to ward off the sun's rays, unless adjusted and fastned in place by temporary wedges.
Mr. Ira H. Smith, of Topeka, Kansas, has devised a very simple little attachment, which anylody can affix to a blind, and which appears effectually to overcome the above diffi culty. It consists of a piece of curved wire, pivoted to the hifting bar, at A, in the annexed engraving, and passing down through a staple on the frame of the blind. Around the shank of the staple is a coiled spring which is covered with a neat cap, the effect of the spring being to push the

atter outward, and so bind the wire between the cap and taple. A sectional view of this arrangement is shown at B. The blind slats may be set in any position, and are held by the wire.
Patented April 21, 1874. For further particuiars regard ing agencies for selling, etc., address the inventor as above.
e the most powerful in the world; and it may be exp cted that the size and weight of the German artillery will be enormously increased, as the new steam hammer will permit the working-up of larger masses of metal than, up to the present time, has been thought to be possible by scientific engineers.

smith's Improved sheave.

'The principal advantage in the improved sheave illustrated herewith lies in the pin having secured to it a cylindrical core, which is of sufficient size to bear against several of the

friction rollers arranged within the disk. This distributes the strain over a larger surface, rendering the operation easier, and subjecting the parts to much less wear than is the case in the ordinary arrangement of a small pin, which may readily fall in between two of the rollers and so crush the same.

The construction of the device is represented both in per spective, Fig. 1, and section, Fig. 2. At A are the friction rollers, and at B the cylindrical core above referred to. The pin which passes through the latter is square in section, and is thus prevented from turning in the block while it is confined in the strap, in such a manner as firmly to secure the ends. The sheave, we are informed, cannot run against the side of the block and wear away the same. It is a strong and durable device, one of considerable merit, and especial. ly adapted for marine use
For further particulars address E. B. Smith \& Co., Pat chogue, N. Y.

an ornamental govid.

The exceedingly graceful plant which is shown in our il Iustration is a miniature gourd, the seeds of which were brought from Afica to Europe by Sir Samuel Baker, who states that the plant, when in a wild condition, corers dwarf trees and shrubs with its slender climbing shoots, which are loaded at every joint with pretty little fruits, which, in a young state, are bright green, striped and spotted with white; but which, when ripe, change to scarlet, a color which sets of the white spots and pencilings to increased advantage. The fruits, as will be seen, are borne in clusters of about three or four together. The foliage, being of a distinct shade of green, renders the plant effective, even when not in fruit. It has been grown in a melon house, in which it quickly covered a large trellis, and became loaded with fruits which, were it not for their white marblings, might easily be mistaken for those of solanum capsicastrum. Some of the African tribes use the long slender shoots of this gourd for garlands and head dresses, purposes for which its halitit of growth eminent ly fits it. Long festoons of it, laden with fruit, might be usefully employed for garnishing stands on the dinner table, or the sprays of crimson fruit might be allowed to hang naturally and gracefully from the margins of orna mental vases. (iourds of this description, says a correspondent of the English Garden, wel leserve more attention than they have hither to had.

Fog.

Angus Smith gives an account of a remark able fog observed at Reikjavik, in Iceland. It appears that, on a bright afternoon in July, 'as soon as we left the house, a cloud came down a street from southwards, and some one aid ' ' Let us cross out of the way of the dust looked more carefully, and finding the cloud moving very slowly on the ground, concluded that it vas smoke from a chimney, but smoke mixed with larger particles than we generally see. Gradually it came to us; there was no mell, but a distinct chill.
Perceiving that it was a fog, Dr. Smith ascended a rising ground, and saw the fog rising out of the small lake behind the town, and rolling into the streets very slowly. A simila for rose from the sea, and rolled also into the town. Hence it appeared that the wind had nothing 10 do with the matter, but that both fogs rolled because they were too heavy to re main suspended. The peculiarity of the fog was in the size of its particles, larger than an the author had ever before seen, and which h estimates at from $\frac{1}{40 \bar{\sigma}}$ to $\frac{10}{50 \sigma}$ of an inch in diameter, in the flatness with which it fell on the ground, and in its lumbering mode of rolling whence all observers at first took it for dust. The author found that the particles were per fectly spherical, and not hollow, but concrete throughout. "They all tended downwards they were falling, evidently; it was a fallin dew, or a slight incipient rain, rapidly disap pearing into the earth." Dr. Smith adds: "It seemed evident to me that, to make a distinction absolute between fog, rain, and dew, was a waste of words. There is a broad observable distinction, but no narrow line, and we cannot tell the end or beginning of either.
Examining the common opinion of the vesicular nature of clouds and mists, he declares that it "rests on a foundation too weak to be worth much attention." A vague notion that the globules of fog are analogous to soap bubbles seems to lie at the foundation. Dr. Smith has repeated the experi ments of Saussure, but without meeting with any signs o vesicularity. "Indeed." he remarks, in summing up, " see no reason for going far for a mode of keeping clouds up Times without number I bave observed, on calm summe evenings, a cloud of smoke from a steamboat funnel lying for miles in length at a hight very little different from tha of the funnel out of which it jssued. times I have found the smell of a cigar used k_{y} At othe fully a quarter of a mile off, over the road, at about the same hight as his moutl, nothing being visible. In these cases, have we anything to look to but the size of the particles They are so small that their resistance to the atmosphere is diminished to its utmost, as the resistance of the air is in creased so much, in proportion to the weight, that they can not fall rapidly.

Curiosities or Ebullition.

1)r. T. L. ©'hipson, in the Chemical Neres, says that water strongly acidified with hydrochloric acid, and containing a small quantity of benzole, was found to enter into violent ebullition every sixty seconds; after a while the boiling ceased completely, and then recommenced suddenly ever thirty seconds for some time. The flask still being kept over the spirit lamp, the periods between quiescence and violen ebullition dropped to twenty, ten, and finally to eight se conds, at which interval the phenomenon continued for some considerable time. The temperature of the vapor in the Hask was 214° Fah., in the liquid 218°, during the whole time of the experiment.

When methyl alcohol was added to the above mixture of water, hydrochloric acid, and benzole, and the flask placed
over a spirit lamp, no ebullition at all occurred for a very long space of time, and then it took place very suddenly and continued.

Ballooning Experiments.

Captain H. B. Dight recently ascended in his balloon Fairy from Wolverhampton, to illustrate the action of his steering apparatus prior to his experimental trip across the English Channel, for which he announces he has arranged with the British government. The ascent occasioned much interest, and drew together many thousands of spectators.
the bouquet, which not only serves to set off the rosebud to the best advantage, but also contrasts well with the foliage previously used. If it were a necessity that hardy plants be employed in making up such bouquets, some well selected leaves from thalictrum minus would prove such an efficient substitute for the maidenhir that ninety-nine people out of hundred would regard it as a fern, and not as a leaf from flowering plant. Those who do not possess means for growing adiantum cuneatum are strongly recommended to cultivate the hardy thalictrum, which does best in a calca reous or magnesian soil.

COTTAGE HORTICULTURE.

The SELECTION OF OUTDOOR PLANTS. The choice of flowering plants, suitable for culture in the limited space usually available for the above purpose, is comparatively limited, because of the many qualifications requisite to each plant: for instance, its hight, the length of its blooming period, and the color of its bloom. For if the flowers in a bed are of irregular hight, part of the bloom must be hid. If the arrangement of the color of the bloom is inharmonious, the effect will be anything but pleasing to the eye; and the more of the plants which are in bloom at the same time, the worse the bed will look. To those possessing a hothouse, greenhouse, or forcing beds, in which a succession of plants may be reared to supply each bed with plants so soon as the old ones have ceased to flower, hyacinths, crocuses, tulips, snowdrops, and lent lilies may be followed by verbenas, stocks, asters, etc., and thus a continuous blooming bed may be secured; but with a proper selection of plants and ordinary care in their culture, three plants (scarlet geraniums, yellow calceolarias, and the deep blue lobelias) will give us the best attainable arrangement of color and of hight, and will at the same time produce a flower garden from spring time till the frosts of winter cut hem off which qualifications are not combined in any other plants.
In selecting the plants, choose those whose leaves are of a deep green, and in all cases those which are short and bushy and have no bloom upon them. If, howerer, they are in bloom, cut off the flowers before planting, which will only delay the blooming a few days, and will greatly strengthen the plant. If the plants have been reared in a greenhouseor under frames, keep them a few days before setting them in the beds, placing them out of doors in the daytime, and taking them in at night, in order to make them hardy and prevent them from suffering from the cool night air. If the plants are placed in a cold frame, either before or after being planted in the beds, be careful to lift the frame during a great part of the daytime, otherwise the sweat which gathers on the inside of the glass will fall upon the plants and infallibly kill them by what is called damping off.

planting.

BRYANOPSIS LACINIOSA.
balloon and steering machinery fell in a neighboring meadow after Captain Dight had been in great jeopardy.

A SPRING BUTTON HOLE BOUQUET.

The tasteful arrangement of a small bouquet of choice flowers, shown in the annexed engraving, is made up of a leaf of lily of the valley at the back, upon which lies one spray of that flower mixed with four or five very small pieces of maidenhair fern. These portions of a frond are so arranged that they break the hard outline of the leaf behind them,

d also tone down its bright grcen by their glaucous shade of color. In front of these is placed a fine thickly petalled bud of climbing Devoniensis rose. This, of course, hasbecn properly wired, and slightly blown open. The base of the bud is concealed by two well chosen leaves from a fairy rose,

The bright scarlet horseshoe or fish geranium, and not the pink, should be selected, and planted ten inches apart in the center of the bed. Next come the calceolarias, about ten nches from the geraniums and about ten inches apart, and then the lobelias, about six inches apart, surrounding the calceolarias. All these plants will bloom together and continuously, the geraniums growing tallest and the lobelias shortest; hence we shall not only have a true arrangement of the prismatic colors, but all the flowers will be visible from almost any point of view. The effect may be considerably hightened by planting a standard perpetual rosebush in the center of the beds; but in such case, let the standards be of various hights and the colors to a pattern if the beds are arranged to a pattern, as should be the case. For a red rose, John Hopper is one of the very best. For a yellow one, Gloire de Dijon is very superior. In the absence of roses, a white lily may be planted in each bed. If there are border beds, white lilies, or any of the broad-leaved, red, or variegated plants, will form a pleasing contrast.
pROPAGATING.
To propagate geraniums and calceolarias, do not let the plants flower too soon; but pinch off the first appearing bloom and pinch out the eyes of all straggling branches, which will immediately throw out side shoots, thus forming bushy and shapeable plants, besides very healthy ond strong ones. Give preference to those plants which have their branches close to the surface of the soil. A strict at tention to these rules is indispensable to obtaining a fine and freely blossoming plant.

To DISCOVER insects.
If the leaves of the plant turn reddish or yellow, or if they curl up, a close inspection will generally disclose that the plants are infested with a very small green insect, or else with the red spider, either of which must be destroyed. For this purpose, scald some common tobacco with water until the latter is colored to a yellow, and when cold sprinkle the leaves of the plants with it; but a better plan is to pass the stems and leaves of the plants between the fingers, and to then shake the plant and well water the bed immediately af terward. The latter operation destroys a large proportion of the insects shaken from the plant. This latter method is the only infallible one.

It sometimes happens that the fertilizer used to enrich the soil will germinate insects which destroy or impair the roots of the plants; the indications of such being the case are that the leaves will turn red or yellow, and will flag or droop during the warmer portions of the day. If this occurs while the plants are in pots, an effectual remedy is to let the mold the pots get so dry that the leaves of the plant commence to droop; then place the hand over the surface of the mold,
letting the stem of the plant pass between the fingers; then letting the stem of the plant pass between the fingers; then
turn the flower pot upside down, and slap the bottom of the pot with the other hand. After one or two such blows, the pot may be lifted off without disturbing the mold from the roots of the plant, and the insects. will be found on either the outside of the mold or on the sides of the flower pot. Af ter removing them, the pot may be replaced, and the plant watered. If, however, the flower beds are infested with in sects, the soil should be allowed to get comparatively dry and a piece of carrot, parsnip, or tarnip placed upon the surface as a bait and covered over with two or three cabbage leaves. An inspection early in the morning will discover the insects around the bait.
pegging down creeping plants.
'I'o propagate lobelias and verbenas, the first bloom should be picked off, and the branches, as they extend, should be pegged down closely to the surface of the mold. The branches will then take root as they lengthen; and by thus drawing a large amount of sustenance from the soil, they will bloom very freely and cover a large space. A verbena may thus be made to cover a square yard, and a lobelia a
square foot, of ground. When a plant is permitted to bloom, square foot, of ground. When a plant is permitted to bloom,
the growth of its branches is very seriously retarded. For example, a balsam, or lady's slipper, as it is commonly termed, kept free from bloom and continuously repotted (as the roots extend) into a larger pot, may, under favorable cir cumstances, be grown as large as a good-sized gooseberry or currant bush. Asters and stocks require transplanting from the seed bed so soon as the plant has six leaves, to another bed, placing them about six inches apart: then when the are large enough to set into the beds, they should be well watered both before and after removal.

transplanting.

The object of transplanting is to check the growth of the top, and to extend the growth of the roots of the plant, thus enabling
As soon as the plants in the seed bed have four leaves, the weakly ones should be removed to give room to the healthy ones, otherwise the abundance of leaves will draw the plants up, causing them to grow tall, slender, and weakly. Before removing them, however, it is well to water the bed, so that those removed can be drawn from the earth without disturb ing the soil around those remaining.
Flowers require a light soil, to obtain which sand may be mired with heavy soil. Sufficient ammonia to just taint the water will be found an excellent means of promoting the growth of the plants; soapsuds will also have the same effect. Watering should take place in the morning during the spring, and at night during the summer months; for the reason that, in the spring, the nights are apt to be cold, and
the watering would nake the soil still colder; and in the summer the water evaporates very quickly from the soil if applied during the day. Water which has been exposed to the open air should be used, and not that drawn from a hydrant or a well; and if after watering, the surface of the soil becomes caked, it should be disturbed with a rake,or the growth of the plants will be seriously impeded. The water should beapplied in as fine spray as possible, and in no case poured upon the plants. All plan's should be planted deep
ly into the soil, which should be pressed moderately firmly ly into the soil, which s
to and around the roots.
potting plants.
Themold for potting should be light and loamy, the fertilizing material used being well decayed. If the soil is rich of itself, it is better to be either very sparing with the fertilizer or to dispense with it altogether. In the bottom of the pot, place several small broken pieces of crockery or
similar material to assist the drainage; and in setting the plant, be careful to keep it well down in the pot and to press the mold moderately around the roots. The surface of the mold should be about half an inch below the level of the top of the flower pot. Slips should be planted close to the sides of the pot, and in small pots.
When a plant becomes pot-bound, that is, when the roots have become matted around the sides and bottom of the pot, the plant, so soon as it has ceased blooming, should be repotted in a larger pot. It is not necessary to remove any of themold from the roots, but simply to fill in the space in the larger pot with new and rich mold.
Plants kept in the windows should be turned every morning, or the light,striking on one side only, will draw the plant to that side so that all its branches and leaves will turn towards the window. The water in the saucers should never be applied to the plants. In cutting slips of any plant, all ways choose the youngest branches; and cut off the slip at the junction of a joint or leaf, since the roots shoot more readily from such joints. If you follow these directions and put sufficient sulphate of ammonia to just taint the water applied to your plants, you may cultivate with succe
most any plant, even though you are an entire novice.

Ashes and Iron for Flowers.

The observation of practical and experimental gardeners seems to confirm the fact that, to procure brilliant colors in
flowers, it is necessary to supply the soil with an abundance flowers, it is necessary to supply the soil with an abundance
of ferraginous constituents and silica. The latter supplies
material (says S. E. Todd, in one of our foreign exchanges) which is of vast inportance in the production of that brilliancy of the petals and the dark green luster of the leaves. Then, if potash be added, or the ground be dressed round about the growing flow \in rs with unleached wood ashes, an increased brilliancy will appear in every petal and leaf.
Any person who cultivates only a few flowers in pots, or etween grassy lawns, or on spacious parterres, may readily atisfy himself of the exceedingly useful part the foregoing materials play in the production of beautiful flowers. Even
white flowers, or roses that have petals nearly white, will white flowers, or roses that have petals nearly white, will
be greatly improved in brilliancy by providing iron saud, and unleached ashes for the roots of growing plants. Ferruginous material may be applied to the soil where flowers are growing, or where they are to grow, by procuring a supply of oxide of iron, in the form of the dark colored scales that fall from the heated bars of iron when the metal is hammered by the blacksmitls.
Iron turnings and iron filings, which may be obtained or a trifle at most machine shops, should be worked into the soil near flowers; and in a few years it will be perceived that all the minute fragments will have been dissolved, thus furnishing the choicest material for painting the gayest colrs of the flower garden. When there is an excess of vegetable mold in a Hower bed, and a deficiency of silica or sand, the flowers will never be so rich in color, nor so brilliant, as they would be were a liberal dressing of sand, or sandy loam, worked down into the bed, where the growing roots could reach it. If wood ashes can be obtained readily, et a dressing be spread over the surface of the ground, about half an inch deep, and be raked in.
A dressing of quickime will be found excellent for flowrs of every description. It is also of eminent importance to improve the fertility of the soil where flowers are growng , in order to bave mature, plump, ripe seed. Let the foregoing materials be spread around the flowers, and raked in at any convenient period of the year. When soil is prepared for flowers in pots, let some sand, some oxide of iron, and ashes be mingled thoroughly with the leaf mold.

gCEENTIFIC AND PRACTICAL INFORMATION.

testing tinned plates for lead

M. Fordas recently communicated to the French Academy of Sciences the following simple method of determining the presence of lead in tin vessels employed for packing articles of food. The metal to be tested is first touched with nitric acid, and then heated, when the acid evaporates. If lead be contained, stannic acid and nitrate of lead remain. Iodide of potassium is then applied, forming yellow iodide of lead; while the stannic acid is white. The yellow stain, therefore indicates lead, the white, tin.

new tests of steel.

MM. Trève and Duvassier have lately conducted extended nvestigations into the nature of steels, and their coercitive force. Fifteen bars of steel, divided into five series of three each and differently carbonized, each received a peculiar temper. They were then magnetized to saturation, and their
magnetic force determined by the method of deviations. A bar containing 0.950 per cent of carbon and tempered in cold water gave a maximum deviation, represented by 47. Another bar, with a similar percentage of carbon, but tempered in boiling water, gave 44. A third bar, with a like percentge, but tempered in oil, at 50° Fab., gave 43. The influence of the tempering liquid is here evident
The effect of the propertion of carbon contained in differnt bars was also very marked. Thus a bar containing 0.950 per cent gave a maximum of 47 ; another, with 0.250 per cent, gave but 13. By describing the curves of variations for the
different series of bars, the influence of the carbon and of the tempering liquid becomes clearly apparent. It is a remarkable fact that the curves of elasticity and the magnetic curves of the bars are closely similar, the carbon appearing grease its magnetic capacity

ALLOYS OF PLANOM AND IRON
M. H. Sainte-Claire Deville says: On analyzing platin ridium, iron and platinum are united in the state of oxides ntimately mixed. If this matter is treated with a current of hydrogen, oxide of iridium is reduced at common tempeatures from 392° to $1,112^{\circ} \mathrm{Fah}$. The metals are then al oyed; for if digested with hydrochloric acid, a few bubbles
only of hydrogen escape, and very little iron is dissolved only of hydrogen escape, and very little iron is dissolved,
even when it exists in the alloy to the extent of 10 per cent. even when it exists in the alloy to the extent of 10 per cent.
Iron and iridium are thus capable of combining at low temperatures, and the same is probably the case with iron and platinum. Under these conditions, the alloy is evidently not homogeneous. Breithaupt admits tue existence of platinum res containing 14 to 19 per cent of iron. Berzelius, only per cent, and M. Debray and the author have never found more than 12. Platinum may be freed from iron by cupellation in chlorine gas. If heated from $2,192^{\circ}$ to $2,782^{\circ}$ Fah. in this gas, it is volatilized in the form of brilliant crystals and deposited in all the hot parts of the apparatus

The utilization of the sewage of Paris on the plains of Gennevilliers, containing an area of 800 acres of light sandy soil, is now being practically carried out. A large sewer is now being constructed to carry away the sewage from the
main sewer at Clichy-sur-Seine. The new sewer will be of 5 feet 6 inches internal diameter, and about $\ell, 150$ yards in length; and when completed, half the sewage of Paris wil be utilized.

The manufacture of paper barrels, boxes, and similar ves sels, for use in place of those generally made of wood, is rap. idy increasing, seven patents and an equal number of fac tories for producing the articles being now in operation, all in the Western States.
In the first of these patents, the paper used in the fabrication is prepared principally from straw, and is pressed, several sheets at a time, into a firm, compact sheet, which when dry becomes tougher than wood. The sheet is then bent into cylindrical form,and its opposing edges, which are prevously cut into dovetails, fitted together. Double pointed nails are drawn through the dovetailed ends from the outside of the barrel, and are clinched upon the inner surface of a strip of wood placed vertically along the inside of the joint. The heads are of wood, fitted into the ends with a flange resting against the edge, and are secured by nails driven through the sides of the barrel. Hoops of wood or iron are added to protect the latter from abrasion or wear, and the paper is thoroughly waterproofed.
Another mode of making the barrels is to form them directly from the paper pulp, the latter being taken from the cylinder of the wet paper machine and carried around an expanded cylinder until it becomes of the requisite thickness. The cylinder is then contracted and removed, leaving the barrel all formed and ready for passage between two rollers. These are so arranged that one presses on the in side and the other on the outside of the barrel, moving the ratter between them, and at the same time compressing and hardening the paper. The vessel is then a jointless cylin der, and nothing remains but to insert the heads and secure the hoops in place.
Securing the heads in paper barrels appears to be a diffcult portion of the manufacture, and there are two patents on this especial point. In one the invention consists in fast oning manilla or other strong paper around the head so as to form a flexible edge. This, after the head is inserted, is crimped so as to line the rim of the barrel, over which it is bent and secured by hoops.
The second inventor proposes either to press one head into shape from paper pulp, at the time when the barrel is formed about the cylinder, or else to make the heads separate and turn up their edges around the peripheries. This turned-up portion serves the same purpose as the flexible paper in the case just described, but differs in construction, being riveted tothe cask through iron hoops.
Another plan for making barrels differs essentially from those already described, in that each barrel is formed of $t w o$ cylinders instead of but one. One cylinder is placed inside the other, so as to serve as a lining, and, being shorter, to form shoulders on which the heads are rested. Thick paper is interposed between the cylinders, and all are pasted firm ly together. The interposing paper is carried up above the rim and folded over the edges. Paper packages for lard, butter, and similar materials are composed of sheets glued together and pressed into shape in dies. This is done while the paper and glue are still moist, and a slieet of muslin, placed under the substance in the concave die, prevent cracking or tearing at the joints.

A Large Mass of Native Copper.

A few days since, a mass of native copper, said to be the largest ever discovered, was brought from Lake Superior to St. Louis, Mo. The mass is heart-shaped, and weighs 6, 0001 bs ., exceeding nearly double the weight of the famous copper boulder which was transported many years ago from the same region to the Smithsonian Institute. The new specimen exhibits the pure copper to the eye, and contains 98 per cent of the metal. It was taken out from an ancient digging, sixteen and a half feet below the surface, by a Mr . Davis, who had spent 25 years in copper mining. The mass, when found, had evidently been detached from its bed by the ancient miners. A number of pieces of copper were found besides the mass, weighing from 1 oz . to 17 lbs . which were evidently clippings by the old miners. Stone hammers weighing from ten to thirty pounds have been found in cart loads, several specimens of which were broughtaway with the copper.
These were the primitive tools with which these ancient miners had to do their work, and are found either perfect or broken from use, and the fragments are found scattered through the débris. It has been computed that t wo hundred of these old miners with their rude methods could barely be equivalent to two of the skilled miners of the present day. Who, and to what race they belonged, and at what time these people flourished, is not satisfactorily lnown, and can only be the subject of conjecture. The only plausible asonly be the subject of conjecture. The only plausible as-
sumption is that they belonged to the ancient mound builders, and worked in metals, anterior to the Indian races, as evidences of their occupancy were seen by the early Jesuit explorers, and specimens which they clipped from the copper rocks are found scattered over the whole continent.

Cement for Marble and Alabanter. - Mix 12 parts of Portland cement, 6 parts of slaked lime, 6 parts of fine sand, and 1 part of infusorial earth, and make up into a thick paste with silicate of soda. The object to be cemented does not require to be heated. It sets in twenty-four hours, and the fracture cannot be readily found.

The results of the experiments for testing the proportion of carbonic acid in the air, made during the first ascension of the Zenith, show that, at the altitude of 2,260 feet, the volumes of carbonic acid contained in 10,000 volumes of air are 2•40; at 3,200 feet, 3.00.

THE ORIGIN OF COLD SNAPS

One of Agassiz's oft-repeated expressions was: "Facts are stupid things unless they are made to teach some principle." While true Science consists chiefly in the discovery of laws and principles, these can be gained only by an abundant collation and a careful study of undoubted facts. Whether it was Nature's plan to make us study out the laws which govern them, we cannot say; but that a frequent observation of certain facts of meteorology has been forced upon us by the rigors of the past winter, none will deny. And while we are just recovering from the shivering and freezing which these entailed, it may not be uninteresting or unprofitable to consider briefly the meteoric principles upon which cold produced.
The sun is the cause of all motion, from the wind, the rain fall, and the Niagara cascade to the muscular exertions of beast and man. And anomalous as it may seem, it is also the indirect cause of cold. The very heat that warms us so gratefully during these spring days melts the frozen matter and evaporates the water. Changes from solid to liquid, and from liquid to vapor, require an enormous amount of heat, which, being taken from the sun's rays, leaves the air damp and chilly. Thus the change from cold weather to warm is less sudden and enervating; and by a reversion of the same principle, the cold of fall is more gradual in its approach. Though this principle will produce a greater amount of cold than we are apt to suppose, it will not account for the cold snaps which drive us to the fire and into our furs and wrappings during the winter.

In a recentarticle in the Scifentific: American, on laws of storms, it was shown that our storms are monstrous whirlwinds covering half a continent, in which the wind, blowing from all directions towards a central point, escapes by rushing upwards, and thus diminishes atmospheric pressure. To compensate for this rise of air, there must be a descent somewhere else. As the air rises into the upper regions, it gives off into space the heat it abstracted from the earth, and its increans, similar causes its return to the surface. Observato, have enabled Professor Loomis to show that, in regions of high barometer, the winds blow outwards in all directions. High barometer is often constant for days, and a week or more together, in one locality; and there the thermometer is low for about the same length of time. He attributes this to downward currents, at the center of high barometer, from the cold upper regions, and believes they are made up of air from the upward currents of low barometric centers. From this, he concludes that our sudden and long spells of extreme cold are not due to currents from a northern latitude, but to these downward currents. There seems one difficulty in his theory here. He has shown that the storm center advances at a rate varying from 228 to 1,280 miles per day; and if air from this came down and produced a region of high barometer, from which the winds diverge in all directions, we would expect the high barometric center to accompany the storm center at about the same velocity; but instead, it sometimes remains stationary for weeks.
The Professor admits that, during the cold spells of December, 1872, and January 1873, northerly winds did prevail but he considers these as attending high barometer, according to laws already established, and that north winds alone would not be a sufficient cause of the suddenness and magni tude of the thermal depression observed. In substantiation of his views, he cites a storm which came up from the Gulf of Mexico, choosing a southern storm so that he could find observations taken to the north of it. This reached the northern coast of Lake Ontario in three days, and on the last day, in northern Florida, the thermometer was lower than it had been on either of the preceding days at Knox ville, Nashville, Cincinnati,Louisville, and Memphis. This indicates that the cold did not come from the north or north west, but must have descended from colder regins above The same phenomenon prevails in the far north, even in the coldest regions ever visited by man. At Melville Island, during a strong wind, the barometer fell to $29 \cdot 10$, and in four days it had risen to 30.75 , the highest point reached during the year. During the same time the thermometer fell from -5° to -43°, the lowest temperature observed during theyear. At Van Rensselaer Harbor, the same point was iliustrated. At Jakutsk, Siberia, latitude 62, the mea temperature of January is- 44° Fah. ; but on January 21,1838 place on the earth's surface where the mean temperature of the coldest month is much below that of Jakutsk. And if the temperature suddenly falls 32° below the mean in the coldest part of the earth, the conclusion seems almost inevitable that the cold must come from the upper regions. The distinguished investigator concludes: "If this is the true explanation of periods of unusual cold in Siberia, a similar phenomenon in the United States is doubtless to be explained in like manner.

The suddenness of thermometric changes also points with equal conclusiveness in the same direction. When, in restricted localities, the thermometer falls 18° or 20° in an hour, or, in thunderstorms, 5° or 10^{c} in a few minutes, we are apparently shut up to the conclusion that the cold cannot be borne from the distant north, but must be due to a down rush of cold air.
Professor Loomis makes his conclusions appear quite clear and reasonable; yet at the late meeting of the Academy of Sciences, at Washington, they excited considerable discussion. Professor Ferrel, of the Coast Survey, who is in vestigating the laws of cyclones,and Dr. Woeikof, of Russia announced as their opinion, based on recent researches, that
descending air would produce heat instead of cold, because
of the increased atmospheric pressureto which it is exposed as it approaches the earth.
The increase of pressure would diminish the air's capacity for heat, and this would be given off to the surrounding air at the rate of one degree for every 325 feet of descent. This objection seems hardly conclusive, for we have no adequat means of measuring the temperature of the air in the regions rom which it descends. It may lose one degree of heat fo every 32.5 feet of descent, and still be much colder than air
at the earth's surface. Dr. Woeikof gives the hight of thermometer at several places of different elevations, which goes to show that low places are as cold as high ones. Later he says, cold may be generated on the spot by simple radiation. This statement seems so weaken the force of his pre vious observations; for evidently the greatest radiation would occur in the highest regions, for there is less to obstruc it, and of course this would make the elevated revions cold est,as Loomis claims. The Russian scientist denies that cold snaps are caused-except in a few cases of special local con ditions, or in thunderstorms-by cold air descending, bu rather by winds from the vicinity of the meteoric poles H attributes the sudden low temperature to which the Atlantic coast is subjected to the fact that the Appalachian Moun tains are not high enough to break off the currents from the neteoric pole to the northwest of these mountains.
If this theory is correct, we may conclude that the cold ir from the meteoric pole, somewhere to the west of Hudson's Bay, sweeping across the unobstructing lakes and prairies, is the cause of the notoriously variable temperature of ('hicago.
As doctors in the same line of scientific invertigation so widely disagree, our only resource is to await future de velopments for a satisfactory settlement of the question.
S. H. 'I'.

New Snow Spectacles.

Mr. William White Cooper, oculist, London, has devised a new kind of spectacles to prevent snow blindness. It is white of the snow in the polar regions is most harmful to the sight; to meet this difficulty, spectacles of green tinted glass, surrounded by gauze, have been proposed. These will, however, fail in practice, as the glass part of the spec tacles is liable to get dim and cloudy, while the gauze and the wire, by means of which the spectacles are fastened be the human skin in an arctic climate become soing made of red-hot wire. Mr. Cooper's snow spectacles have neithe glass nor iron in their composition, for they are made of ehonite, and are tied on to the head by a velvet cord. They resemble somewhat two half walnut shells fastened ove he eyes. Their great peculiarity, however, is that the wear er sees through a simple slit in front of the pupil of the eye in order that the wearer can get a side view of objects. These glasses will also prove useful to travelers by railway, nasmuch as they keep out the glare of the sun, and prerent the admission of dust into the eye. To engine drivers, therefore, they would be invaluable, especially when ex posed during sleet, snowstorms, or very windy weathe They are also very agreeable when reading at night by lamp or gas light.

A New LifeBoat.

There has just been exhibited to the brethren of the Hull Trinity House, and to the principal ship owners of the port new patent lifeboat, patented by Messrs. Anderson an Burkinshaw, of Burlington Quay, and it is by them termed
the "Reversible Lifeboat." As its name implies, it is top the "Reversible Lifeboat." As its name implies, it is top
and bottom both alike; and if in launching, before it touches the water, it should, by the rolling of the vessel or any other cause, turn over, thereare thwarts and seats running around the side just the same as there would have been had the boat gone in the other way up. Whichever side the lifeflaps takes the water, when she is once afloat, a couple tom of the boat, and there is provision for drawing a furthe looring out, which will rast upon strong beams The boat receives its buoyancy from a massive belt of cork, which is encased in canvas, and runs from stem to stern on each side and forty separate airtight tanks, ten on each side of both the upper and lower parts of the boat. Still further buoyancy is obtained by large tanks at each end of the loat, but it is intended to use these latter compartments as storerooms for provisions, spirits, nedicines, etc., the whole supply being protected from danigge by either rain or sea water On each side of the belt of cork outside the boat there ar numerous life lines, which will hang in the water, so that ny one falling overboard on leaving a vessel may readil gain the boat and hoist themselves on board.

Burning Iron.

A Berlin experimenter has demonstrated the combustibili ty of iron in a peculiar manner. He takes a straight ba magnet of some power, and sprinkles iron filings on one of its poles. These filings arrange themselves in accordance with the lines of magnetic force; and however closely the may appear to be placed, of course no two of the metallic filaments are parallel, and consequently, a certain amount of air is enclosed as in a metallic sponge. The flame of any or divided iron, and it continues to burn brilliantly for some time, the combustion being, apparently, as natural and eas s that of any ordinary substance. If the experimenter with imagnet to and fro while burning, a magnificent rain of fire is said to be produced.
 said to be produced.

DECISIONS OF THE COURTS.

United States Circuit Court--District of Massachusetts.

 b | it |
| :--- |
| th |

$$
5
$$

 \begin{tabular}{l}1 l

a

a

a

an

in

\hline
\end{tabular}

 $\square==\mathrm{E}=\mathrm{m}=$
United States Circuit Court, Eastern District of ennsylvania.
[In equity.-Before McKennan, Cir. J.-Decided April, 1875.]
McKennan, Circuit J.:

 ?

Improved Apparatus for Operating and Lockin
Smith H. Finch, care H. Moore, 7 Park Place, New York city. The levers for locking and levers for moving the switches or sig-
nals are made to work from one side to the other side of a frame and lock and unlock the switches and signals thereby, locking bars provided with two shoulders each eatching and holding the levers. These locking bars have at each end a portion turned at a right angle, and through which portions are pivot bolts, upon which the
bars turn. These angular portions have each a slot in their extreme bars turn. These angular portions have each a slot in their extreme
ends, which engage with latches which work in slots through the rame confined by joint pins. The latches are connected togethe with. The inner ends of the latches are curved and slotted much like the end of a wrench, and receive a staple on the levers, and hereby hold the lever in a locked position, while the bars are locked by other latches, which are thrown into the slots in the angular
portions. When the other lever is unlocked, the switch or signal portions. When t
levers are locked.

Improved Hand Corn Planter

John W. Cleland, Nevada, Mo.-In using the planter the handle is grasped by the hand, and, by pressing downward with the outer part of the hand, a lever will be operated to force the slide back
into the seed box; then, by relaxing the grasp of the hand, the slide will be forced forward by springs, dropping the seeds into the spac between the boards. The plates are then forced into the ground rearward. This movement separates the plates and allows the seed to drop into the ground. The planter is thenraised from the ground and, as it is being carried forward to the place for the next hill, the hand is again relaxed, and the seed for the next bill is dropped into the space provided. The principal advantage of the device is that but one hand is required for its manipulation

Improved Horse Collar.

Thomas Cheal, St. Paul, Minn.-This is a wooden horse collar, con sisting of two back pieces hinged at top, front pieces beveled to broader back piece carries the trace away from the shoulder, so a not to bruise the same. The collar is stronger and better fitting than the common kind of collars in use, and may, with suitable iro

Improved Detachable Ash Pan for Stoves

Albert T. Bleyley, Conception, Mo.-A perforated bottom an drawer extends under the entire stove, in addition to the ordinary
stove grate, so that the coals which drop from the stove grate will stove grate, so that the coals which drop from the stove grate wil drawer. When the grated bottom and drawer are intended only for the heal th, the hearth is made on a level with the bottom of the

Improved Insertable Sav Tooth.

Erasmus Smith, Norwich, N. Y.-The saw plate and the tooth wedge are provided with openings, arranged with the joint of wedge and plate diagonally, one portion in the wedge and the other in the plate, so as to allow the said wedge to be tightened against or loos ened from the tooth by keys.

Improved Hay and Grain Elevator
Thomas Powell, Stockton, Cal.-Two sections of netting are at
tached to stretchers of wood. The stretchers connect the section tached to stretchers of wood. The stretchers connect the section
together by hooks and eyes, also by a revolving hook, which has crank for turning it by a trip cord, for unlocking the sling. This crank is held fast by a spring catch until it is required to unlock it The sling is spread upon the bed of the wagon to be loaded, wit
the ends so disposed that they can be connected to the derrick hook when the load is to be removed. After the load is removed and laid on the stack the two parts of the sling are unlocked by the trip cord, so as to disconnect and pull out from under the load, and leave it when the derrick chain is hoisted.

mproved Preserve Can Holder.

James Henry Winslow, Lynn, Mass.-This invention consists of a
pair of rubber-lined clamping jaws, with the contrivance for openpair of rubber-lined clamping jaws, with the contrivance for open-
ing and closing them and holding them closed; also, with clamp screws for detachably connecting the clamping jaws to a table or other support. The whole is contrived and adapted for holding
glass fruit jars while screwing the covers on or off and the holder is arranged jars while screwing the covers on or ond and the hold Improved Carrlage Spring
William F. Dusenbury, New York city.-The wooden part of the side bar is made shorter than the space between the cross springs of
the wagon, and to it is secured a steel spring, which is connected with the ends of the cross springs. A rubber block, through which the end of the spring passes, is placed in the hook of the cross spring The ends of the springs and the rubber blocks are then secured to each other by a bolt. The rubber blocks prevent the springs from coming in contact with each other, and thus prevent wear and rattling.

Improved Bottle.

Lewis F. C.Schmidt, Pittsburgh, Pa.-In the packing of glass bo tles for storage or transportation, whether they are filled or empty it is e sential that they be packed snug, and so that they canno move about. To facilitate such packing, the bottle is made long and tapering from the bottom upward, and a which outer surface of the ring is equal to the diameter of the body of the bottle.

Improved Drill for Drilling Metal.

John B. Shaw and Simeon H. Lucas, Chicago, Ill.-This improved drill for drilling holes in metals is so constructed that it may b
used for forming a small and a large hole, that it will not clog, and will enable oil to be introduced to the point of the drill without being wasted upon the chips. In the opposite sides of the inner part of the drill are formed two grooves, the outer parts of the sides of
which, for about half the depth of said grooves, are parallel with which, for about half the depth of said grooves, are parallel with
each other, and with the diameter that passes through their centers. The inner parts of the sides of the grooves incline toward each the grooves causes the chips to break in pieces, and thus prevent the drill from becoming choked. Other grooves conduct oil to the point.

Improved Cultivator.
Frederick W. Tolley, Coxsackie, N. Y.-Through the ends of the curved bars of the frame are passed rods, which are kept apart by tubular washers placed upon and interposed between the curved bars. The latter and washers are pressed together, making the
whole frame firm and strong by nuts screwed upon the ends of the said rods. The draft hook is pivoted to the tongue a little in front of the forward rod. To the draft hook is pivoted a link which, when the cultivator upon the forward rod, and which, when the cultivator is in position for transposition, is hooked upon another hook attached to the tongue. The tongue is pivoted, and,with the frame,is adjustable in slotted guides.

Improved Bee Hive.
George H. Mobley, Nevada, Mo.-The bottom of the honey box is
raised and is narrower than the box, to allow the bees to pass therein and up through suitable spaces.

Improved Car Stopper and starter
Absalom B. Sharp, Plaquemine, La.-The object of this invention
to utilize the power employed to stop a railway car by using the is to utilize the power employed to stop a railway car by using th with a pinion upon the axle of the car wheel by means of a hand ever and crands shaft, the said rack being attached to a franework that compresses a spring to form the brake. The framework is pro-
vided with pawls which may be made to engage, through a cecoul vided with pawls which may be made to engage, through a sccon hand lever, with ratchet wheels upon the car wheels, and the sai po that, after the pawls are opposite side of the axie fasm he rack, pinion, the pressure of the spring is shifted to the opposite side of the car axle, and the car urged forward in the same direction in which it was going previous to applying the brake.

Improved Stereoscopic Print Cutter.
Thomas W. Smillie and Albert Siebert, Washington, D. C.-Thi copic pictures, which are taken in duplicate and reruuire to be separated, trimmed, and reversed in position. It consists of two pairs of dies, intervaled and operated simultaneously by a treadle mechanism, together with holding springs, gages, and means of
djustment. It is found in practice to do its work rapidly, with djustment. It is found in practice to do its work rapidy
reat uniformity, and with but little labor to the operator.

Improved Gate Latch

John L. Giessler, Clinton, Iowa.-This invention relates to an im provement upon the ordinary gate latch which is now so frequently both must be simultaneously operated in order to allow the gate to be opened.

Improved Car Coupling

John Hardey, East Saginaw, Mich.-This consists of a drawhear which is provided with a suitably guided coupling pin, supported in raised position ready for coupling on a sliding plate operated by a
slotted elbow lever, which is pivoted sidewise at suitable hight to the coupling pin, and acted upon by a band spring. The action of the link on the pivoted elbow drops the pin and couples the link and shoulders of the elbow lever bearing thereon.

Improved Mechanism for Operating the Adjusting

 Screws of Rolls.John Sharpless Worth, Coatesville, Pa.-This is an improved spanner, which may be readily re
screws at a time or either singly.
mproved Apparatus

and Illuminating Gas.

John T. B. Bennett, Birmingham, England.-The ovens in which the coking is to be effected are arranged in connection with gas retorts, so that, by means of stop cocksand dampers or valves, compened and closed and controlled. Around the gas retorts is a chan el through which the heated air and products of combustion from the coke ovens may be caused to circulate and heat the said gas
retorts. During the first stage of the coking process, the heated air nd products of combustion from the coke ovens are made to alr sufficiently heated, air is shut off from the said coke ovens. The heat of the coke ovens and their contents then causes the coking process to be continued, the volatile matters given off now being natters are made to pass through the heated gas retorts, which ar charged with gas-producing material, and thus are resolved int permanent illuminating gas, which mixes and passes off with the illuminat
retorts.

Improved Cork Sole for Shoes.
Charles Thackerey, New York city, assignor to Barrows \& Boyd, same place.-The cork is secured in a die-cut box by some adhe sive substance. The unbroken continuity of the box overcomes the objection to free ends-that they work loose-whil
sole, it can be sewn by a machine with great facility.

Improved Cotton Seed Drill.

Henry Steckler, Jr., New Iberia, La.-This invention relates to n improvement in the class of cotton seed planters whose dropping wheel is operated by a bevel gear with a wheel which travels on the round either in front or rear of the seed hopper. The dropping inserted therein, and their ends projecting, to serve as teeth to draw the cotton seed out of the hopper.
Improved Filter Rack.
Moritz Leiner, New York city.-This is a rack to be placed in funnels for filtering liquids into bottles or other vessels. It is adjusta ble as to size, and is made in the form of a hollow inverted trunca-
ted cone, placed in an ordinary funnel, and used with flltering paper placed on the inner side, which leaves a space equal to the the wires of the rack between the paper an? the inne er for the escape of the air containe in the vessel

Improved Wasbing Machine.

Thomas J. McWane, Versailles, Ill.-In this invention, the suds box is hung on trunnions and vibrated by means of a vertical leve
attached to its side. The rubber does not vibrate, but is made ver tically adjustable, to adapt it to rise and fall according to the thickness of the clothes which may be interposed between it and the sud box at any time during the operation of the machine.

Improved Spring Bed Botton:

George L. Shepard, Columbus, Ohio.-Strips of metal form the top, made of spring material, and are bent down inside, so as to af s sprung by straightening out to some extent whe a mode of con necting the strips so bent down within the volute springs by a ring aid in the bent down portions, and secured by cross pieces of wir he trion wit

Improved Cut-off for Shot Boxes.

Herman C. Wey, Hiawatha, Kan.-The discharge valve or cut-off is attached to a verforated hopper bottom, and consists of an oute ube, adjusted by a spout, and an inner to the open and closed pos

Improved Vine Rake.

Joseph W. Dunn, Corpus Christi, Tex.-This invention consists o and braces to a common plow beam. The teeth pass under the ines and tear them loose from the ground, carrying them along until the rake becomes choked or full.

Improved Door Latch

Jonas H. Crane, Schenectady, N. Y.-This door lock is constructed without the use of springs, and consists of a sliding bolt, which is operated by pivoted and horizontal toggle levers, in connection
with a thumb lever acting thereon. The release of the thumb leve carries the toggle levers, by the action of the weight, instantly in a downwara direction, and shoots the bolt forward.

Improved Automatic Fan

Lorenzo D. Stamps, Galveston, Tex.-This consists of powerful clockwork mechanism, arranged in a bracket to be fasten
ceiling and adapted to oscillate a vertically afjustable fan.

May 29, 1875.]

Tusiness and exrsonal.

The Churye tor ineertion under thie head is 81 a Line
Agricultural Implements. Farm Machinery S. Seeds

 . For sale-. Surveyors Transit and Steel Tape
 Hoadley Portabie Steam Engines. Send for Cir
culars to K. H. Alen x Co., New York, Maker and

Thue vest goods. ire the chapapest in the long runn,

 Josenh, Indianainololis, Ind.
"Bhook-Keeping Simplititod", The whole system

 Experienced Engincer, Draughtsman, and Ma-

 See A derertisement.
Dusincoss for sale. I good Manufacturing

 Wooicon Warce Patuint for S.le. memit N. Y.P. O. A Vallualle Patent on Save Mills, just issued; will
American Metaline Co., ti Warren St, N.Y. City. For price of small copper boilers to drive small
scean ennstins, adurss, wil stamp to Goo. Parr, Burfalo. N.
Grinastones, ,2000 tuns stock. Mitchell,Phila,.,Pa. Lathe GearCutters, Wm.P.Hopkkins,Lawrence,Ms.

 Wanted-Machinery for splititing out or riving
Pipe staveses 60 incheses Iong, 3 tos 5 nnches sudc, and $1 / 4$ Pipe staves 60 incles 1 Onk, 3 to 5 Inches wide, and 1 1/4
nen luch nch thick, from White Oak Timber, for the New Orle
market. Address Geo. G. Hughes, Jackson, Tenn. Mills for Flour \& Feed, White Lead, Colors, Ivory
Black, Printing Ink, ©c, Jolin Ross, Williamsburgh, N.Y. Telegraph and Electrical Instruments and Bat-
eries, clieap. M. Λ. Buell, 86 Dank St., Cleveland. 0 . Models for Inventors.-H. B. Morris, Ithaca,N.Y Three Second Hand Norrıs Locomotives, 16 tuns
each; $4 \mathrm{ft} .81 / 2$ inches gauge, for sale by N. O. \& C. R. R. See N. F. Burnham's Turbine water wheel ad-
vertisement, next week, on page 365. 2nd Hand Engines and Boilers for Sale at Low
Prices. Address Junius Harris, Titusville, Pat. Diamonds and Carbon turned and shapied for
Scientific purposes; also, Glaziers' Diamonds manufacThe "Lehigh", Emery Wheel. A new patent.
Addiress Lechigh Valley Emery Whecl Co., Weissport, Pa. Agents. -100 men wanted; ; $\$ 10$ darly, or salary.
selling our new goods. N ovelty Co., 300 Broad way, N.I, Thomas's Fluid Tannate of Soda never fails to
remove scale from any Steam boller; it removes the
 n. iuw Poller, as it has no elfect on Iron; saves 20 times its
cost buth in
fuel and repairs of Boiler; increases steam-
ing capacity of Boiler; Lass been tested in hundreds of
 Pions, and superior to all others. Address orders to
N. Spencer Thomas, Elmira, N. Y. For Tri-nitrobly cernn, Mica Blasting Powder,
Electric Batteries, Electrte ruses, Exploders.Gutta Percha tns:llated Leading Wires, ett., etc., etc., result of
seven years' experience at Hoosac Tunnel, address Geo.
M. Mowbras, North Adams, Mass. Genuinc Concord Axles-Brown,Fisherville,N.H. Price ondy
Telegraph. A
A compact working
Telegraph
Apparatue, lor sending mesanges, making magnets, the electric light,
siving alarms, sind various other purposes. Can be put in giving alarms, sind varlous other purposes. Can be put in
operation ty \ddagger.ay lad. Includes battery, key, and wres. eatiy packed and sent to all parts of the world on recelp.
of price. F. C. Beach \& Co., 246 Canal St., New York.

The "Scientidc Amercan" Ofice, New York, ig persons in the various departments of tigne estate sent

 , thomerraph, \&ac.
Spinning Rings of a a Superior Puaity-Whitns
vile spinning Ring co., whitrostlue, Mases.
 For bess Preses, Dies, and Fruit can Tools, Bliss Mechanical Expert in Patent Cases. T.D.Stetson,

For Solid Emery Wheels and Machinery,
the Union Stone Co., Boston, Mass., for ctrcular.
Faught's Patent Round Braided Belting-The
Best thing out-Manufactured only by C. W. Arny, 301 \& 303 Cherry St., Pbiladelphia, Pa. Send for Circular.
Hydraulic Presses and Jacks, new and second
and. Lathes and Machinery for Polishing and Buffing The Lester Oil Co 183 Water St N. Y Exolusive The Lester Oil Co., 183 Water St., N.Y., Exclusive The most perfect and economical lubricant in existence.
Send for Circular. Tempies and Oilcans. Draper, Hopedale, Mass.

A. L. B. will find a recipe for cement for grindstones on p. 251, vol. 31.-A. K. can temper
millpicks by the process described on p. 202, vol 31.-D. F. B. will find a description of silicate of soda on p. 225, vol. 23.-A. N. can destroy the trunks of trees by the method given on p.219,vol 31.--F. B. will find directions for preparing gun cotton on p. 282, vol. 31.-R. J. can proportion
cone pulleys by the rule given on p. 180 , vol. 26 . (1) A. asks: Can I study chemistry without
(2) F. F. asks: What will whiten a person's
skin? A. We do not know of anytiing that we skin? A. We do not know of a
can recominend for this purpose.
(3) A. S. asks: How can I take wrinkles out and place in a book under pressure
I have a
vered. The silver comes off and leaves quicksil gray color. Can you tell me how to silver it? A The best method would be to detach the case and vaporize the mercury. You had better electro plate the case with silver. See p. 299, vol. 31
(4) L. F. H. asks: In the substsince of the cerebrum, beneath the folding of the gray matter, are various divisions and subdivisions. What spe
cial uses do they perform? A. Consult Dalton's "Physiology"
(5) A. N. W. asks: 1 . What would be the cells? A. $\$ s 0$. 2. To make the above would cast cells? A. $\$ 80$. To make the above would cast
iron cells do as well as earthenware? A. No
Use glass. 3. Would tin answer? A. No. 4.What cheap material will do for inside porous cells? A Clay cells. 5. What are the proper dimensions for a single cell? A. Four inches high by $31 / 2$ wide
6. Is the U the proper shape for the amalgamated zinc? A. W will answer. i. Is 1 plate of platinum
inside the porous cell? inside the porous cell? A. Yes. 8. How is th
zinc fastened to the cell and in the battery? I zinc fastened to the cell and in the battery? Is
zinc joined to zinc, and platinum to platinum, or zinc to platinum? A. The zinc of one cell is
zoined to the platiuum of the next. 9. Can you joined to the platiuum of the next. 9. Can you
recommend any good practical handbook on electricity? A. Yes, Ferguson's.
(6) W. Y. 'T'. asks: I have seen it reported that cryolite has been discovered in Nevala. Is
this so? A. It is probable that, if the report were true, a specimen would have been forwarded to us for examination. We have glauberite, salt
gay-lussite, borax, saltpeter, sulphur, and cryto
(7) S. A. T.
(7) S. A. T. asks: How can I dye the en-
closed sample of yellow leather black? A. Steep the leather for a short time in a strong solution of the leather for a short time in a stron
copperas (sulphate of iron) in water
Please give me a recipe for making stick pomatum, perfumed. A. This pomade is generally composed of mutton suet, but is sometimes
made of hard body, to which is added in summer 1 oz. wax for every lb. body. Lard body can also be used, but the proportion of wax must be in fusible body first. In molding, care must be taken will occur in the center, rendering the sticks liable to break. To perfume, the usual odors are, for 1
lb. pomade, essence bergamot, lavender, thyme, orange peel, of each 1 drachm. Color with an
Please give me a recipe for a waterproof cement with which I can join canvas. A. Place in a wide mouthed bottle a number of pieces of gum rub
ber, and pour over them a quantity of bisulphide of carbon. Close the bottle, and allow it to stand for some time, until the rubber has all gone into
solution; then add to this an equal quantity of solution of rosin (colophony), in spirits of turpen tine. Allow to evaporate in the open air until of He desired consistence
How can I soften brushes which have becom
hard with paint? A. Place them in turpentine or a short time.
india rubber into small pieces, and dissolye it, by
heat and agitation, in 34 parts of naphtha, chloro-
form, or benzine; add to this 65 parts powdered orm, or benzine; add to this 6is parts powdered until the shellac is dissolved, then pour it while hot on metal plates, to form sheets. When used, it
must be heated to 248° Fah., and applied with must be
Can a kettle lined with porcelain be repaired in any way? The lining is burnt. A. It would be necessary to have the whole interior cleaned and
re enameled. See p. 13i, vol. 2π.
(8) C. D. C. asks: What is the effect of buckwheat on the blood? Does it drive the im purity of the blood to the outside, or does it make
the blood more impure and, by reason of excess, ause imp to to any injurious ingredient in buckwheat. It is to be ascribed to the large amounts of butter and fatty matters eaten at the
(9) J. O. A. Y. says: A friend of mine and myself had a dispute as to polar or magnetic attraction. He said the needle of the surveyor's com-
pass in all latitudes pointed to the true north. pass in all latitudes pointed to the true north. I maintain that the needle only points true north
in two places. Which is right? A. The declioain two places. Which of the needle is very different in different places: in some places it is $10^{\circ}, 20^{\circ}, 30^{\circ}$, and eve

varies as much to the eas

(10) L. P. C. asks: 1. Is metallic lead use fil for precipitating quicksilver from a solution of acid be poured into a solution of bichloride of mercury, would it cause the precipitation of an
insoluble salt of mercury, such as sulphate of merinsoluble salt of mercury, such
cury? A. Yes.
(11) H. L. C. asks: 1 . If I make two mag nets, $21 / 2$ inches long with $1 / 2$ inch cores, and wind one with No. 22 wire until it is $1 / 2$ inch deep, and
wind the other to the same depth with No. 14 wire, which will hold the heaviest weight? A.The and use the same length of wire will they more than before? A. No. 3. If two pairs of magnets of the same kind be put in the same cir cuit, will the two pairs hold more than one pair, o
does thc extra length of wire diminish the powe one pair in proportion to what is gained by the other? A. The maximum magnetic effect is pro-
duced when the resistance of the coils of the duced when the resistance of the coils of the
magnet equals that of the battery.
(12) L. R. K. asks: How can I crystalize grass? A. Dry the leaves, steep in a strong solu-
tion of alum for a few minutes, and dry again.
(13) C. P. W. asks: 1. Is it because ele tricity accumulates on the surface of bodies that lightning rods are made flanged, so as to expose
more surface? A. Yes. 2. Are the inclosed spec more surface? A. Yes. 2. Are the inclosed speci-
mens copper pyrites? A. Yes, twin crystals. 3. Please explain why has a man, born in the yea 1800 and now living, not lived in both the eigh centh and nineteenth centuries? A. He has.
(14) S. H. L. says: We have a telegraph ne of galvanized iron wire, about 2,200 feet long jars, $41 / 2 x 7$ inches, would it take to run such a line . Ten.
(15) T. A. J. asks: Why will sulphuric acid placed the bottle in the cellar. It was not ver cold, but the bottle cracked by the acid being rozen into a crystal mass. A. The phenomenon was probable due to the acid in question being quite dilute or very concentrated. If the forme trong oil of vitriol freezes at -15° its freczing, a concentrated sulphuric acid when exposed to emperature of $3 \%^{\circ}$ Fah., crystallizes and remain solid even at a temperature of 45°. When the fuming acid of Nordhausen is exprosed to a low temperature, a crystalline substance separates,
which is a hydrate containing one half as much which is a hydrate containing one half as much water as the common liquid acid

1. I made a battery cell according to the direcA. The wire leading from the plate positive pole f the jar is the positive pole of the battery Can I connect this cell to a Smee cell in silverplat ing, to make more current? A. Yes; connect the positive pole of this battery with the zine of thie
Smee cell. 3. I have a nickel solution; and the mee cell. 3. I have a nickel solution; and thic pated. Is the solution too weat or is the batter plated. Is the solution too weak, or is
too weak? A. Probably the former.
(16) S. asks: Is the so-called aerated bread made light with a gas generated from nitric acid nd marble dust) injurious to health? A. It has found wholesome. It is not as palatable to many ound wholesome. It is
(17) H. M. says : A young man has lately experimented on vulcanized rubber (old shues, e-agents) several substances of different colors send you samples of five of those colors. What do you think about them? A. May not the colors be due to the substances put in, and not to the bodple, the brilliant yellow color on examination proved to be chromate of lead, which certainly
(18) H. B. asks: 1. Are the ashes of coal of reat benefit manure? A. Coal ashes are not of reat beneft as fertilizers. 2. Will they do for A. They are used extensively for this purpose See p. 50, vol. 32 .
(19) F. S. asks: 1. I hear that bichromate in potash added to glue would render it insoluble applied to gelatinous films and exposed to light makes them insoluble. Isit bichromate of potash?
2. Yes. 2. What proportion should be mixed wit ue? A. The plates are flooded evenly with gela bath consisting of an aqueous solution of bichro mate of potash, which combines with the gelatin The film so changed, on exposure to light, is ren dered insoluble.
(20) J. O. B. asks: Which is the better conductor of sound, wood or glass? A. Glass. .
Would glass conduct sound better when resting pon glass? A. Probably. As to your other
(21) L. T. S. asks: Is it as good to soak or boil green timber in hot coal tar as to kiln-dry the imber and then coat it with the same? The timcround. What is the ordinary increase in durability of pine timber when prepared with coal tar? A. The decay of the timber is due to a fermentaion and putrefaction which take place in the sap, and this liquid portion is gotten md of in kiln-drying , and its place occupied in part by the tar. If
retained, it is difficult to prevent the decay from oing on. No definite time is given, authorities
(2,2) F. A. says: You state that wood ashes
re good to scatter over the ground about fruit are good to scatter over the ground about fruit
trees. Would an admixture of coal or coke trees. Would an admixture of coal or coke
ashes be deletcrious? A. The benefit of using wood ashes is due to the large percentage of potwhich they contain; and as this is present only in minute quantities in coal ashes, the
(23) C. S. F. asks: Can you give me a recipe for the cure of moles and freckles? A. Corlose sugar 1 oz., alcohol 2 ozs., rose water 7 ozs. Agitate together till all is dissolved. Apply night and morning.
You state that coffins can be made of papier cannot this preparation be put on wood placed underground or in the water, to prevent rot? A. It has long been used for this purpose.
(24) D. L. B. asks: What is good for stick ing leather together? A. Melt together in an iron pot equal parts of pitch and india rubber.
What kind of cement will do to take a mold rom type, whicl will bear heating to 200° Fah.? Paris.
(2j) J. M. I. asks: 1. How can I procure pure tin from the ordinary block tin? A. Ordi-
nary block tin is nearly pure tin. It may be still further refined by melting and briskly agitating for some time, and afterwards allowing it to remain quiet for scveral hours, first having skimmed
orf any impurities on the surface. 'The upper part off any impurities on the surface. The upper part of the melted metal may then be run our into iron
molds and considered as refined tin, most of the mpurities having been left behind in the lower portions of the pot. 2. Of what is type metal one third or one fourth of its weight of antimony. 3. What alloy melts at the lowest temperature? A. Newton's fusible alloy is composed of 2 parts bismuth, 1 of lead, and 1 of tin, and melts at 201°
Fah., so that it liquefies readily in boiling water.
ks: How can I dissolve silicate of soda in large quantities? A. It may be
readily dissolved by boiling in water for some time.
(27) W. R. G. asks: By what process can oxygen gas be obtained, and put in a tank or ves-
sel so that it can be taken by inhalation? A. Oxygen is obtained for this purpose as described in answer to J . H . L., p . 21 , vol. 3 , the only differcaustic potash to the water in the wash bottle, to remove all traces of chlorine and carbonic acid. In charging the tanks, an ordinary steam gage is attached to the connection; and by means of an
air pump, thegas is forced into the tank until the air pump, thegas is forced into the tank until the gage indicates a pressure of about 24 C lbs. The
screw valve is then closed, and the reservoir is screw valve is
ready for use
ready for use.
(28) G. E. L. asks: What is the lest way to it? A. Use chloroform. (29) C. S. F. asks: Can any fluid be solidi 1. Boila quantity of silicate of soda (water class) in water for some time; allow to settle, and then decant the clear liquid. The addition of some muratic acid to the liquid will convert it immediately into a stiff, hard jelly. This, if thoroughly washed with hot rater, when heated, will resolve
itself into nearly pure white sand, which will itself into nearly pure white sand, which will
(30) F. T. W. asks: What can be done to remove a bad smell from rain water? Λ. Allow it
to be well sunned and aired. Filter through curcoal. Or add sufficient permanganate of potash to impart a permanent red color, raise to boiling sediment.
(31) H. C. says: The pressure gage and the ream valve on my boiler do not agree. The on the lever, while the gage shows but 60 . The safety valve is $\frac{13}{16}$ inch in diameter. I have ex-
amined the gage and find nothing wrong. How can I calculate the proper weight for the valve A. When you have no steam in the boiler, tecure the valve stem to the lever, and attach a spring
balance to the lever just over the center of the valve stem. Then raise the lever slightly, so as to valve stem. Then rais the lever slighty, so as to
get the valve clear of the seat, and note the read ing of the spring balance. Then divide this read ing by the area of the valve in square inches
(0.5184 in your case), and the quotient will be the (0.5184 in your case), and the quotient will be the pressure in lbs. per square inch at which the valve
opens. The attention of all who wish to test their safety valves is invited to this extremely simple and accurate method.

Minerals, etc.-Specimens have been re ceived from the following correspondents,and examined, with the results stated:
J. K.-Your medicine is rhubarb; take as much of it as you please.-V. E. Jr.-Your conclusions, drawn from the tests applied, are not in every
casecorrect; but we have not succeeded in finding the dye.-J. McM.-It is iron pyrites.-G. J. McD.-It is magnetic oxide of iron, quartz colred red by oxide of iron, and chrysocolla or silicate of copper.-M. G. L.-It is a white talc. Use perimenting with this material.-C. s.-The box of minerals sent contains mica, quartz, garnet,and elspar, none of which require assay, and black magnetic oxide of iron.-O. S. C.-It is remarkably ne white talc. It can be used as a lubricant, to extract grease, etc., to mark on cloth (as French halk), and in the manufacture of certain varieties of porcelain.-W. B. L.-It is carbonate of lime, ilver.-J. H. P.-They have the character of \mathbf{c} ment rock of partial purity, and their working ualities would have to be tested by a manufacurer of hydraulic limes.-The bottle of wate forwarded by Mr. Thompson for analysis contained a considerable amount of organic matter and the chlorides and sulphates of lime, magnesia

COMMUNICATIONS REGEIVED.

The Editor of the 8CiENTIFIC American acnowledges, with much pleasure, the receipt of orsubjects
On a Marine Railway. By G. A. F
the Mouths of the Mississippi. By O. P.S On Spiritualism. By L. G. F
On a Meteor. By P.O. H.
Also enquiries and answers from the following.
A. O-C.G. D.Jr.-J. G. B.-D, F. W.-A.J. K.-
N. F.-O.S. T.-R. N. W.-I. A.-F. C. B.-T. N. Y.

HINTS TO CORRESPONDENTS.

Correspondents whose inquiries fail to appear noy conclude that, for good reasons, the Editor declines them. The address of the writer should al-
Ways be given.
Enquiries relating to patents, or to the patentablity of inventions, assignments, etc., will not be published here. Al suob questions, when mitial it would gll half of our paper to print them all; but we generally take pleasure in answering briefly by mail, if the writer's address is given.
Hundreds of enquiries analogous to the following re sent: "Whose is the best fan blower? Who makes induction coils, and what are the prices? What is the price of nitrate of silver in large quantities? Who sells the deodorized bisulphide of
carbon? Who sells the best prindstones? Who makes the best steam engine indicators?" All makes the best steam engine indicators?", All
such personal tnquuries are printed, as will be oberved, in the column of "Business and Persona)," which is specially set apart for that purpose, subect to the charge mentioned at the head of that . Almost any desired informanon can in his way be expeditiously obtamed.
[OFFICIAL.]
INDEX OF INVENTIONS
Letters Patent of the United States were Granted in the week ending April 27, 1875,
AND BACH BEARING THAT DATE [Those marked (r) are retssued patents.]
Alr, etc., cooling, A. Jas..................... Annunclator, self-closing, E. Axthelm, Axale band Hiphtener, D. E. McGarrah.
Bale tle, J. J. Holloman
Bale tie, G. W. Scott .
sale tie, G. W. Scot
Basin strainer, etc.,J. D. Smith.
Bed bottom, spring, E. P. Fowl
sed bottom, spring, E. B. Dodge.
Bed bottom, spring, J. R. Newman...
Bell, revolving chime, w. H. Nichols
sird cage, G. Gunther.
Body loop, R. W. McClelland
oiler inaruatation compound, Moore \& McCloud
Boot insole or former, J. Elam
Boot and shoe stiffener, G. Bolvin.
Bosom board, A. Mallory
Box scraper, G. Meyer.
Bridge, lift, A. J. Post
Broom hanger, J. Cain
rush head, portable, E. J. Merick
Butuh, automatic fly, s. L. Long...
Can, F.D. Brodhead
Can, T. J. M. Jewell.
Car brake,s. G. Howe.
Car coupling, A. Dehuff
Car door, grain, E. Fee ..
Car roof, A. P. Winslow,
Car starter, C. F. Murdock
Carpet sweeper, F. M. Beckfor
Cars and bulldings, ventilating, J. Briggs
Cartridge box, J. Lee......................
Chair. nursery, C. A. Wat.
Churn, M. JIncks

Churn, A. Oot...................
Cigar mold fastentng, S. Slmonson
cigars, bunching, B. H. Meyer......
Cloth-cutting machine, C. F. Harl
Clothes pounder, C. B. \& G. Wr. Hart
Coats, metallic loop for, F. W. Tilton
Comb, band, H. A. Prouty......
Cooler, milk, H. s. Murray
Corset, H. A. chanderyy
Cotton, machine for cleaning, s. D. Keene
Crimping machine, A. Hecht
Cultivator, w. H. Robertson
Cultivator, E . : hhupe
Curry comb, J. H. Barringe
Curtain fixture, E. M. Judd
Curtain fixture, McGadhes \& King
Cutter head, M. Buck.
ing, J.
Darning machine, o. S. Hosmer
Dock and pontoon, floating, Clark \& Stanfleld.
Drill, rock, C. Burletgh
Electroplating, solution for. H. G. Coyle
Elevator, hod, W. Murphy
Elevator, water, A. Brea
Engine, rotary, D. S. Jones
Engine. rotary,
Engine steam, J. M. Marty.............
Engine, steam pumping. C. H. Hudson
Engine valve, compound, W. Wrignt........
Engine valve gear, steam, J. w. Thompaon
Engine valve, steam, G. H. Reynolds...
Engtnes, transmitting power of, T. H.
EngInes, transmitting powe
Equalizer, raft, w. Snow
Escritoire, A. Batchelder
Evaporator for saccharine liquilds, T. Scantin. Faucet, J. G. L. Boettcher......
Fence iron clad, J.
Fire arm, magazine, \mathbf{F}. M. Shinn
Fire arm, revolving, H. H.Hopkins
Frre extinguisher, , H. H. Stainer...
Fire extinguisher, J. B. Van Dyne. Flavk and packing box, T. R. Almond Forging metallic sockets, Fitch \& Shafe Furnace, heating, Rees \& Johns............
Furnace, steann boller, Daw son \& Hughes Furnace governor, hot air
Game board, v. Klobasaa
Gas apparatus, J. D. Cathell
Gas regulator, Potter and Thomas.
Gas regulator, D. Sloan
Gas regulator, D. Sloan.....
Gaseller, extension, E. Russ
Generator, steam, D . Rensha
lass mold, King \& Sperb
Glue joints, making, O. C. Barnes
istributer, J. Walker.
Gun lock, L. L. Hephurn..
Hair-curing device, C. W.
Harventer, J. H. Elward (r)
Hat. J. Cape
Hatchway guard, J. C. Foster
Hay tumbler and
Hay tumbler and rake, Blishop and Sherman
Hitching device for str:aps, C. H.
Holdhack iron, A. Bedfo-d.
Hook and clip, single tree, M. S. Curtise
Hoop-making machine, G. V. Grifflh...
Horse detacher, A. Barker
Hose coupling, T. L. Summers..............
Ice machines, refrigerating tank for, A. Jas. Insect destroyer, W. T. Tongue Jar protector, D. S. Chasehro..........
Jet with metal, inlaying, w. Stephan Kettle, bolling, S. Spoor (r)
Knife, oyster, C. W. Berger
Lampblack apparatus, P. Ne
Lamp collar and filler, J. A.
Lamp extinguisher, M. Waterbury
Lamp, reflector, J. Retterer
Lamp, street, H. Wollington
Lantern handle, T. James.................
Latch for gates. etc., w. D. Skidmore. Lift, safety, H. Λ. Davis
Lime bin, D. G. Ormsby

Locomotive ash pan and damper, w. w. Bcach
Loom stop motion, Greenwood and Templeton
Mat, foot, Wessar and Cornellus..
Measure, IIquid, E. A. Pontifex..
Meat for packing, cutting, w.
Meat, preserving, E. . Duncan
Mechanical movement., J. R. Devor
Mechanical movement, J. A. Newel
Metals with metal, coating, I. Adams,
Millstone dress, Witman and Selbert
Mower, lawn, T. Coldwell
Necktic, J. H. Flelsch.....
Organ keys, blank for, L. K. Fuller.
Packing, piston, J. H. Rolling
Pan, bake, A. Brightma
Pan, dust, F. D. Bliss...
Paper box, W. Wallach
Paper cutter, rotary, c. G. Bledinger
Paper, wetting printing, G. Rosquis
Paper towel, ladies', J. H. Hatch.
Paper tube machine, C. P. and W.
Pencll case, R. B. Currier. .
Paper
Percolator, G. McPhers
Piano stool, T. Miller...
Pipes, clamp for cement, G. C. Nicho
Pipes with cement, lining,
lpes with cement, lining, M. Allen
Plane, carpenter's, E. G. Storke....
Planing maohinc. wood. Hills and Allen..
Planter, hand corn, Ogborn and Kendrick
Planter, seed, F. V. Burgess.
low, gang. E. J. Sprague.
 Pot, tea and coffee, Hutchinson and Fairfield
Power, transmitting motive, R. T, Smith Power, transitider and wine, J. S. Bogle......
Press, clder and
Printer's rolls, varnish for, B. F. Allen
Printing press, J. Hinchclift............ Printer's rolls, varnish for,
Printing press, J. Hinchclif
Printing press, R. M. Hoe. Printing press,
Printing press, R. M. Hoe......
Printing press, plate. R. Neale Propeller, screw,
Pump, M. Cook
Pump valve, R. V. and T. B. Balley. Purifler, middings, S. M. Brua
Purifler, middlings, J. w. Houghtelin Railway, elevated, R. Stone. Rallway ralljoint fastening, G
Rallway switch, H. Cook.... Rake, horse hay, I. E. Taylor.
Refrigerator, E. W. Giddings. Repister, passengor, Towle and Bento...........
Rolling metallic strips, S. R. Wilmot... Roof, metallic, J. C. Wands......
Rooflng composition, B. St. Jea Roofing composition, B. St. Jean
Rooing, metalic, G. Crowl....... Sash fastener, E. K. Breckenridd
Sash fastener. J. S. Wallace Sawing machine, scroll, C. N. and S. N. Trump.
Scaftold clamp, W. C. Fellows.............................. Screw blanks, etc., threading, w. Aik Seeding machine, J. C. Barlow Separator, rain, Lobde
Settee. w. F. Spencer.

Sewing machine, J. Laing... Sewing machine, A. E. Schm

 Sewing machine binder, H. C. JoneShingling bracket, A. Lovetoy shot charger, P. Ziegel.
shutter fastener, H. H.
Shutter rastening, A. D. Judd
Sifter, ash, W. Montgomery...
Sifter, ash, J. sutton..
Sleigh knee, M. Glassbrook
Soldering fron heater, J. S. Hull
Sole fastening, L. Goddu..........
Spark arrester, w. H. RIchardso
Speaking tube, Howard \& Beadle.
Splndle crimping die, H. M. John
splints, making, E. E. Wh
steam trap, J. M. M.
Steering apparatus, P. R. V Stove, heating. C. H. Castle
Stove pipe dampr, W Stnve plpe damper, Wilson \& Rolf
Stove plpe drum, E. W. Prior....
Stove plpe shelf, c. E. Woodruff
\qquad Table and refrigerator, pastry,
Table. ironing, G. H. Thompson. Telegraph, duplex, T. A. Edison. Thill coupling, o. B. Franklif. Thill coupling, M. McDevitt.. Thrashing band cutter, P. A. Sommers Thrashing straw carrier, G. Gen
Ticket clasp, Le Roy \& Hunting.. Tobacco pipe bowls. shaping, Schnelder et al
Tollet water and extract, A. G. Campell. Tollet water and extract, A. G. Camp
Toreh, vapor burning, H. Wellington Trees, device for felling,

Umbrella support, R.J. Welles. Upholstering apparatus, C. F. A. Siercks....
Valve, balance and cut-off, J. W. Thompson. Valve, safety, H. Stevens...............
Vehicle seat lock, Van Horn \& wideman Vehtele spring equalizer, A. \&. Hop
Vehicle wheel hub, J. H. Hyman.... Vehicle umbrella support, A. J. Hood
Vessel, grain-elevating, J. J. Safely. Vessel, grain- elevating,
Vise, bench, P. Rimbold. Wagon body, S. Rowell.. Wagon brake, J. C. Carhar
Wagon brake, I. N. Downs Wagon coupling, R. Bowm
Wagon jack, w. H. Horn.. Washing machine, J. W. Batson
Washing machine, T. Crumbling Washing machine, W. E. Hillson Watch movement, J. H. Flynt....................
Water, coollng and aerating, Weather stip, Burinat \& H. J. A. Windmill, Eggleston \& Phelps Windmill, D. G. Webster. Window shade fix

DESIGNS PATENTED.
 ,286.-GLaseware.-G. E. Hatch, East Cambridge, Mase Louis, Mo.
B,290.-BEER MUG.-J. E. Miller, Pittsburgh, P
 8,293 to 8,297 .-LAMP PosTs -W.Tweeddale, Brook'n,N.Y
8,298 to 8,300 - $\mathrm{BREASTPIN}, \mathrm{ETC.-L.S}. \mathrm{Beals}, \mathrm{ABtoria}, \mathrm{N}$,Y .

 TRADE MLARK REGISTERED.
\qquadSCHEDULE OF PATENT FEESOn each Caveat.

On dilng each application for a Patent (17 years) n Issuing each original Patent.
n appeal to Ezaminers-In-Chief......
On application for Retssue.
on tiling a Disclaimer....
n an application for Design (8......... yeara On application for Design (7 years)...
Un application for Design (14 yearg)

CANADIAN PATENTS
libt of Patents Granted in Carada,
APRIL 22 to $28,1876$.
,665.-C. and L. Gaouetta
Varnish. April $22,1875$.
,666.-J. S. Shailer, Boston, M
ting machine. April 22,1875 . ting machine. April 22,1875 .
4,667.-G. W. Dubulsson, Toms River, N. J., U. S.
Treating jute, etc., for paper making. April 22,1855 . ,668.-Wm. Patteson, Bramly, Ont. Self-acting milking apparatus. Apriles, $11 \mathrm{si}_{5}$

 L. Walker,
 ,673.-M. Wiloon, Strathroy, Ont. Sulky harrow. Aprii
23, 1875.
4.67.-P. R. Cunniugham, Freehold, Pa., I.s. Run-

4,6i6.-J. T. Lockey, Northwich, England. Calcining
and evaporating apparatus. April
4,67i, ,-C. Jewell, Monmouth, M11., U. S. Lutomatic

grain binder. April 27, 1875 .
cis.-B. F. Britton, New York ctty, v. s. Duplex

comb. Aprilitit 1875.

machine. April 27, 1875,
4,680.-T. B. Doolittle, Bridgeport, Conn., v. s. Hand
alarm and regiter.

machine. April 2i, 1875 .
$4,655 .-$ D. P. Corey, Consecon,
adiuster. April $2 \pi, 18 \overline{5}$.

 -
 4,689.-R. Nutting, Wheaton, Ill.,
lantern. April $2 \pi, 1975$.
$4,6 \times 3 .-W$. C. Edge, Newark, N.

 . Semi-tubular
 header. April 22, 1875
699. D. K. West, K

calvertisenents.

Back Page
Inside Page

 81.00 a line.
 75
cents a line
Engravings may head advertisements at the same rate
per line, by measurement, as the letter press. Adver-
per line, by measurement, as the letter press. Adver-
tisements must be veceival at publication offce as
tisements must be veceivcl at publication offlee
early as Friday mornino to appear in next $288 u c$.

TENTH INDUSTRIAL EXHIBITION
Mechanics' Institute of San Francisco.

COWNROLIED

May 29, 1875.1
\$rientific American.

FIRE PROOF SHUTTERS.

CLARK \& CO'S SELF-COILING ROLLING STEEL SHUTTERS (Burglar Proof), For Store ng Wood Shutters for Stores and Dwellings. Thousands are in daily use, and are acknowledged the best shutters in

AMES G. WILSON, Manager
London, Parle, Vienna, and Berlin.

$\mathrm{F}_{\mathrm{ol}}^{\mathrm{OR}} \mathrm{SALE-Ma}$ Woline Shop, for the manufacture

MACHINERY.

iron \& wood working machinery Cold Rolled Shafting.

GEORGE PLACE \& CO.,
SHORT HAND. 150 mord per minute tit

THE SIXTH
Cincinnati
Industrial
Exposition
Opens for the reception of goods August 2 , 1875 . pen untll October 9 thi

16 GR A N D DEPARTMENTS,

Machinery Tested and Fully Reported upon.
\qquad

SHAChInery ol mproved styles for making

 Stone and Ore Breaker
 DUNCHING

(O) BaFETY HoIstiva OTIS, BROS. \& CO No. 348 BROADWAY, NEW YORR.
LLECRO-PLATERS JE ERERS,
 r single, Fith Booke of Instruction for Nickel or Siller
Plating. THOMAS BALL, Manufacturing Electrictan 2:
Planing \& Matching,

1845. The Harrison Portable Mill Machinery. 1875.

FAST GRINDING. SMALL POWER.
 and Bolters, combined or separate; Vertical and ITorizontal Corn Mins,
send stamp for Illustrated Catalogue contnining cut of each desipn nnd price-list.

PATENT
Planing \& Matching and Molding Machines, Gray and Wood's Planers, Be
Onling 8 ain

Water Wheels.

 Mick

A FORTUNE MADE

By a Small Outlay.

 Machinists' Tools,

AGENS WANTED.

 TRADR RNGINR Notseless tn operation-Perfect
In Forkmanhip all light parts
of Cast Steel. Every Engine Indicated, and
Valve corrected to give the high-
est
 semi-portable
market.
Sungine in cular. RODE M'F'G. Co.,
Dayton, ohlo NOTICE FOR BRIDGE CONTRACTORS.

 SHECRLER,
FRARIER,
DODDSLL,
MERELL,
BERRY.

Machinist's Tools.

Cope \& Maxwell M'f'g Co. INDEPENDENT Borler Feti puap

W Ood.Working machinery aEn

 IMPROVED MACHINERY for STAVE

 MAGNETS-Permanent Steel Magnets
 MPORTANT FOR ALL LARGE CORPO-

 REESE'S ADIUSTABLE STENCIL LETTERS

Todd \& Rafterty MachineCo.

NEWSPAPER FILE.

Addree
ho wibies to preserve the
MUN N C \mathbf{N}

Engravinys may head advertisements at the same rate per line, by measurement, as the letter press. Adcortisements must be reccived at pubication ofice early as Friday morning to appear in next issuc.	
Grefnfildd, Mass., May 5, 1875. We have had the Hercules Iron Cutter, which we bought recommendation and gives us entire satigaction. In our opinton. no one who has much ron mand steel on cut by 	
om the best London Mantracturers. For Rale by. Practical Treatise on Cement furnished for 25 cents.	

ASBESTOS MATERIALS ROOFING, SHEATHING, BOLLER FELTING, PAINTS (all colors), ROOFING PAINT

 Patenteo and soie Man iffactaror, $\}$ H. W. JOHNS, 87 Maiden Lane, N. Y.

B
 IRON PIANERS,

Excelsior Do YOur Own Printing

Ni

Mill FurnishingWorks

THE BEST INJECTOR Orer 15,000 Now in Use Here and in Europe

Machinists' Tools.

PORTLAND CEMENT

HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY.

NON-COMBDSTBLLE STEAM BOLIER \& PIPE COVERITIG

Pipe-Cutting and Threading Machine.

To

The Standard-Best Stock-Finest Finish D. ARTHUR BROWN \& CO., FISherville, N.H.

Working Models

For sALE-New and Second

TESTING MACHINE WANTED

THE BEST for RAILROAD purposes now SUPERINTENDENTS of Leatig Rall Slat gradee or Geents' Watches with Stem
Winding and Setting Attachments. Winding and Setting Attachments.
BUY NO MORE CHEAP SWISS WATCHES.
THE NEW ELGIN WATCH, "T.M.AVERY"

The BEST WATOH, for the money, now made in th

 pany, bearlig their Trade Mark, is accom-
panied by a WeDAL, bearing the name
and number of the watch, Guaranteelng and quality.
isf For sale by all Jewelers.
S ECOND HAND GAS WORISS FOR SALE.-

EmeryWheels $\Rightarrow A W[T E) A$ merylondas

VALUE OF PATEMPS,
And How to Obtain Them.
Practical Hints to Inventors.

Ho
 sum of money brings a greater return
than the expense incurred in obtaining a patent, even when the invention is but a
small one. Large inventions are found to pay correspondingly well. The names of Blanchard, Morse, Bigelow, Colt, Erics who have amassed immense fortunes and there are thousands of others who have real ized large sums from their patents.
More than Fifty Thoussnd
vailed themselves of the services of Muwn \& C 0 during the TWENTY-SIX years they have acted a olicitors and Publishers of the SCientific Ameri
an. They stand at the head in this class of busi ness; and their large corps of agcistants, mostly se lected from the ranks of the Patent Office: men capable of rendering the best service to the inventor, aminers in the Patent Office: enables Munn \& Co o do everything appertaining to patents BETTER How 70 O obrain Oatentss his office. A positive answer can only be had by resenting a complete application for a patent to the Commissioner of Patents. An application conSists of a Model, Drawings, Petition, Oath, and fu must also be observed The efforts of the invent to do all this business himself are generally with out success. After great perplexity and delay, he
is usually glad to seek the aid of persons experi enced in patent business, and have all the work done over again. The best plan is to solicit prope adice at the beginning. If the parties consulted are honorable men, the inventor may safely connde
his ideas to them; they will advise whether the im him all the is probably patentable, and will give

How Can 1 best secure My Invention
This is an inquiry which one inventor naturall This is an inquiry which one inventor naturally
ask another, who has had some experience in ob taining patents. His answer generally is as follows, and correct
Construct a neat model, not over a foot in any di-
mension-smaller if possible-and send by mension-smaller if possible-and send by express.
prepaid, addressed to MUNN \& Co., 37 Park how. prepaid, addressed to MUNN \& CO., 37 Park Row,
together with a description of its operation and merits. On receipt thereof, they will examine the charge. Or, if you have not time or the means at hand, to construct a model, make as good a pen and ink sketch of the improvement
as possible and send by mail. An answer as to the as possible and send by mail. An answer as to the
prospect of a patent will be received, usually by prospect of a patent will be received, usually by
return of mail. It is sometimes best to have a earch made at the Patent Office; such a measur.
often saves the cost of an application for a patent. Preliminary Examination.
In order to have such search, make out a written description of the invention, in your own words,
and a pencil, with the fee of $\$ 5$, by mail, addressed to Munn \& Co., 37 Park Row, and in due time you will receive an acknowledgment thereof, followed by a written report in regard to the patentability of your im-
provement. This special search is made with care, among the inodels and patents at Washington, to ascertain whether the improvement presented is

To Make an Application for a Patent. The applicant for a patent should furnish a model ention be a chemical production, he must furnish amples of the ingredients of which his composition consists. These should be securely packed, the in-
entor's name marked on them, and sent by express, prepaid. Small models, from a distance, can often be sent cheaper by mail. The safest way to York, payable to the order of MUNN $\&$ Co. Persons who live in remote parts of the country can usually purchase drafts from their merchants on their New York correspondents.

Foreign Patents.

The population of Great Britain is $31,000,000$; of 000,000 ; Prussia, $40,000,000$, and Russia, $70,000,0040$ Patents may be secured by American citizens in all these countries. Now is the time, when business is dull at home, to take advantage of these immense foreign fields. Mechanical improvements of all
kindsare always in demand in Europe. There will never be a better time than the present to take patents abroad. We have reliable business connections with the principal capitals of Europe. A large share of all the patents secured in forcign
countries by Americans are obtained through our Agency. Address Munn \& Co., 37 Park Row, New york. Cinul atents, furnished fre

> Canadian Patents.

In order to apply for a patent in Canada, the applicant must furnish a working model, showing the operation of the improved parts; the model need. not to exceed eighteen inches on the longest sice.
Send the model, with a description of its merits, by express, or otkerwise, to Munn \& Co., 37 Park Row. Also remit to their order by draft, check, or postal order, the money to pay expenses, which are asfolows: For a five years' patent, $\$ 75$: for a ten years patent, $\$ 95$; for a fifteen years' patent, $\$ 115$. The five and ten years' patents are gra
lege of extension to fifteen years.
Trademarks.
Any persons or firm domiciled
Any persons or firm domiciled in the Uniicd States, or any firm or corporation residing in any
foreign country where similar privileges are exforeign country where similar privileges are ex-
tended to citizens of the United States, may registended to citizens of the United States, may regis-
ter their designs and obtain protection. This is and equally so to forcigners. For fuil particulars, address MUNN \& Co., 3 亿 Park Row, New York.

Design Patents.
Foreign designers and manufacturers, who send oods to this country, may secure patents here upfrom fabricating or selling the same goods in this market.
A patent for a design may be gruanted to any person, whether citizen or alien, for any new and original design for a manufacture, bust, statue, alto re-
lievo, or bas relief, any new and origiual design for the printing of woolen, silk, cotton, or other falres, any new and original impression, ernament cast, or otherwise placed on or worked into any article of manufacture.
Design patents are equally as important to citizens as to foreigners. For full particulars send for
pamphlet to Munv \& Co., 37 Park Row, New York Copies or Patents.
MUNN \mathbb{C} Co. will be happy tosec mventors mperll all cases they may expect an honcst eqnion. For
such consultations, opinions, and advice, no charge is made. Writ.
ink; be brief.
Alt business committed to our care, and all col
sultations, are kepteccret and strictly confidential. In all matters pertaining to patents, such as coning assignments, examinacuring extensions, draw patents, etc., special care and attention is giveu For information, and for pamphlets of instruction and advice, address

MU

PUBLISHERS SCIENTIFIC AMERICAN,
37 Park Row, New York.
OFFICE IN WASHINGTON-Corner F and 7tb
treets, opposite Patent Office
CHE "Scientific American" is printed with
CHAS. ENEU JOHNSN \& C. SI INK. Tenth and
Lombard Sts., Pblladelphla and 59 Gold St., New York

