

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.
Vol. XXXII.-No. 20.1
NEW YORK, MAY 15, 1875.

IMPROVED SHEARS FOR CUTTING BAR IRON.
The ordinary method of cutting bar iron or railroad rails is by means of the cold chisel and hammer, a tedious and at best inaccurate operation, involving the labor of three men and no small expenditure of time. It is hardly necessary to point out that an efficient device for the same purpose would possess considerable economical value; and for this reason, in addition to that of its producing superior work, its substitution for hand labor may be urged. The subject of our illustration is a power shears, of the size adapted to cut round iron of all sizes up to two inches. It is also provided with blades to cut flat iron as large as one by four inches, and square iron up to one and one half inches, without alteration. The machine is well adapted for the use of chain or bolt makers, and for general machine shop work. Smaller shears are made for lighte work, and larger ones for cut ting up old rails and scrap cut ting up old rails and scrap for rolling mills. The size herewith represented, which cuts 2 inch iron, weighs only 2,000 lbs., and occupies a space of 3
by 5 feet on the floor. A hand by 5 feet on the floor. A hand machine weighing but 470 lbs. worked by two men, we are informed, has repeatedly cut off rails of seventy-two inches sectional area, requiring 360,000 lbs. pressure.
The pressure required to shear off two inch round iron will average $157,000 \mathrm{lbs}$., and the means whereby so much force is concentrated in so little space, and so much strain resisted by and so much strain resisted by so little weight of cast iron, involves two principles in mechanicalconstraction. The first principle consists in fastening the blades, A, B, and C, of the shears within the circumference, \mathbf{C}^{\prime}, of its bearing of oscillation, in such manner that the largest bar to be cut is placed close to the axis or actual center of the shears. This is claimed to secure the shortest possible unit of leverage for the resistance, and at the same time the resistance or strain on the machine is located so near the center as to allow the iron, which must support said strain, to be distributed in a circle. Second, since the work is intermittent, a fly wheel circle. Second, since the work is intermittent, a fly wheel
may be advantageonsly used. And since the power that may be advantageonsly used. And since
may be accumulated in fly wheels is propormay be accumulated in fly wheels is propor-
tional to the square of the velocity of their tional to the square of the velocity of their
rims, the weights being equal, a good speed to the wheel is the first requisite.

The shears shown has a three feet wheel, weighing 630 lbs ., with eight inches face, running 120 turns a minute. As two inch iron cannot be handled to cut chain links faster than 15 or 18 times a minute, the power of the wheel may be multiplied about 8 times, by such mechanism as will give the shears blade 15 strokes to the wheel's 120 turn 3 .
In this machine the power of the fly wheel is communicated directly to the moving arm of the shears, by means of an eccentric, D, of the shears, by means of an eccentric, D,
on the hub of said wheel, driving a pawl, on the hub of said wheel, driving a pawl,
which engages teeth in a circular arc, E , at which engages teeth in a circular arc, E, at
the outer end of the shear arm, F, thus raisthe outer end of the shear arm, F, thus raising said shear arm one tooth at each revolution of the wheel, an attendant pawl, G, supporting the arm by each tooth as it rises. A stop dog, H , which may be fastened between any two \mid the pawls are thrown out by the stop dog, the lever holds teeth, on arriving beneath the pawls, disengages them, and the shear arm drops back to its normal position, where it i received on a cushion, I, to avoid noise.
Thus, by dividing the angle, through which the shears must move to cut two inch iron, into 8 teeth, and by placing said teeth far enough from center so that each tooth may be thick enough to bear its load with safety, the whole problem,

STEVENS' IRON-CUTTING SHEARS.

rom its face, on which is a circular flange, behind which a collar, J, takes a facial bearing. The moring arm, F, conaining one pair of steel shear blades, B, has its bearing of scillation on the circumference of the flange, and is secured that the blades work in facial contact with the opposite blades, A, C, by means of bolts and the collar. When them out, so that the shears is still, with its mouth open to receive iron, until it is purposelystarted. This may be done by either the hand or foot of the operator. This is a point great value to prevent accidents in cutting rails and other eavy iron, as it allows any desired time to get the bar in lace, and (when started) cutsit off as quickly as those shears do that keep the jaw always in motion.

For bolt and chain makers, a gage is supplied, that regulates the length of the piece cut, with precision. And this gage has a very ingenious mechanism, whereby the very act of pushing the bar against it starts the machine. The notches made in the blades for cutting round iron are so arranged as to cut the smallest iron at the farthest point from center, thus requiring only the motion of one tooth. Al-
lowing a little time for the arm to fall, the shears will cut 100 pieces of one half inch iron, 75 pieces of three quarter, 50 pieces of one inch, or 15 pieces of two inch iron in one minute, while the fly wheel continues at the speed of 120 turns per minute. Its great firmness causes the blades to wear a long time. An opening from the joint allows the scale and rust to fall out.
These machines, we are in formed, have proved by use to be very efficient, reliable, and extremely cheap, as their firs cost is not one half that of other shears capable of the other shears capable of the same grade and amount of work. The principal features of these shears are soon to be adapted to a combined shears and punch for boiler plate work. The device has been patented in the United States, Canada, Great Britain, France, Belgium, and Austria.
For further information, address the inventor and manu facturer, W. X. Stevens, East Brookfield, Mass.

A Ralluay on the Sea
 Bottom.

Dr. Lacomme's project might, perhaps, be termed more fitting ly a marine railway, or a rail way for the marines. He proposes to lay a submarine line of rails at the bottom of the Straits of Dover between England and France, upon which a weighted chariot or platform is to run, and upon this platform is to be placed a submarine boat, com-

We had a conversation with the president of one of our largest railroads the other day, in which he said, speaking that he believed that it was better economy for any railroad doing a large traffic to pay the present price for steel rails than to lay down iron, even if the latter were delivered free of cost. We thought at the time that the assertion was pretty strong; but on in quiry among other practical railroad men, they confirmed the first gentleman's assertion.
A recent number of the Railroad Gazett contained an engraving representing the wear on a steel rail, laid down in 1865, on the single main track in Clark street, Chi cago, where nearly all the trains of the Chi cago, Rock Island, and Pacific and the Lake Shore and Michigan Southern railroads passed over it, and where engines were constantly shifting. Iron rails in similar positions were renewed as of ten as once in six months the steel rails having outworn sixteen of the iron rails. The steel rail was gradually

worn down o

iron rails.
It will be observed, on reference to the list of Canadian patents published in these columns weekly, that the number of patentees is largely increasing. The last week's issue numbered forty-eight. In the corresponding week of last year, only half this number was issued

Srientific gmmeriam.

MUNN \& CO., Editors and Proprietors. NO. 37 PARKK ROW, NEW YORK.
O. D. MUNN. A. E. BEACE.

TERMS.
TER MI
$\begin{aligned} & \text { One copy, one jear, postage included....... }\end{aligned}$.
One copy, six monthe, postage included....
Oleb Rates:
Ten coples, one year, each 82 70, postage included...................... 82700 cs ten coples, same rate each, postage included.................... 2 vo
y the new law, postage is payable in advance by the pabishers, and the sabscriber then recelves the paper free of cnarge.
Norz. -Persona subecribing will please to
 Otice and State address, plainly written, and aleo state at which time they
wish their subscriptions to commence, otherwise the paper will be sent from Wish their subscriptions to commence, otherwise the paper will be sent from
the recelpt of the order. When requested, the numbers can be supplled trom January 1st, when the volume commenced. In case of ohanging rest dence state former addrese, as well as give the new one. No changes can
be made anless the former address 1 s given. be made anless the former address is given.

VOLUME XXXII., No 20. [New Series. 1 Thirtieth Year. NEW YORK, SATURDAY, MAY $15,1875$.

THE GENESIS OF INVENTORS.

In the symbolic representation of the ages, the characteristie human type of one period is the hunter; of another, the shepherd; of another, the farmer At one stage of the world's deveio pment, the soldier is the prominent man, at another the priest. Now the leading man is the builder; now the adventurous sailor; again the studious philosopher, the far seeing patriot, the irrepressible reformer, is the commanding spirit of his time.
Of the nineteenth century, the typical man is the insentor. He is at once the leading factor and the peculiar product of modern civilization. He it is that has introduced the elements which chiefly distinguish the life of to-day from the soldier, the sailor, the priest, the philosopher, the statesman, the artist-each fulfils his function; but in no way do they surpass the achievements of other ages, in no way do they help to make our life different in kind or different in character from the lives of our ancestors. The work of the inventor does.
Subtract from the means and methods of our daily lifeall those elements which are or have been patented, or a:e the products of patented applications and appliances, and how much-how everything, in fact-that gives distinction to our age will be takenaway! Pull out from our houses all the parts save those not now or ever patented, all those that have
been formed or put together by patented means, and what a been formed or put togetber by patented means, and what a
wreck would be left! Take from our tables all the articles food, and furniture, in whose production and carriage patented inventions have been essential, and how meager our diet would bel Strip from our bodies every article of clothing save employed, and how scant would be our attire! Deprive the employed, and all the luxuries which invention has brought within' their reach, the poor of the comforts and conveniences which the inventor has provicied or made possible, and how much of use and enjoyment would go out from their lives! Just now we are commemorating the brave deeds, the unconscious heroism and wisdom of the founders of our
Republic. In norespect can it be said: "They builded better than they knew" than in the provision they made for the encouragement of invention and protection of inventors, then, like themselves, a slender and straggling band of pioneers
on the border of an unbroken continent, a new and unexplored field of effort for the amelioration of human existence. It was not a matter of climate or race, it could not be the conditions incidental to the conquest of a new country, that made the Yankee an inventor above all other men. The same race had undergone similar experience before, perhaps
a score of times, yet it did not develop inventors except sporadically. It was not necessity, the reputed mother of inventions, that started our fathers on the course which has wrought a revolution, a multitnde of revolutions, in the
productive arts. The original need of labor-saving devices in America was no greater than had prevailed the world over since human life began; always and everywhere humanity has stood in want of the beneficent products of the inventor's art, and everywhere it has stood ready to turn such pmoducts o good account
Why then were not more inventions made? Simply because the true parents of invention-encouragement of inventors provided, their legitimate issue followed, genius for invention was developed, and its progeny increased in geometrical progressive. Every new contrivance gave birth to many, inventive competition set in, and ultimately improvement labor
It is true, the student of pure science comes in for a share a large share, of credit for making modern life what it is. Very largely he has led the van of discovery and made inven tion possible. But it must be remembered that it is their practical application that gives material value to such dis coveries; and that where such applications are not directly
favored, the progress of pure science contributes little to the ad favored, the progress of pure science contributes little to the ad-
vancement of human well being. In Germany and in England, the progress of scientific discovery is very rapid, yet invention lags. In this conntry invention leads, and frequently we take from them the barren scientific fact and return an application which gives it the highest value. It cannot be because the Germans have little inventive genius or practical skill, that they invent so seldom. They turn inventors quickly enough when they come here; an examination of the latest weekly index of inventors, containing some 250 names, shows that fully twenty per cent of those are unmistakahly German That a large percentage of our inventors are of British birth is too well known to call for investigation.
The secret of the superior inventiveness of the Americanized European lies in the fact that here his efforts are encouraged, there systematically repressed. Here we know the inventor's value, and appreciate him accordingly. We know that a
fertile soil gives us far less advantage in the markets of the fertile soil gives us far less advantage in the markets of the
world than the time-saving and labor-ssving implements world than the time-saving and labor-saving implements
which enable us to win our agricultural products easily and quickly-implements which we owe to our inventors. We know that our commercial superiority and the immense development of our manufactures rest very largely upon the genius and labors of inventors. But a little while ago Eng land led the world in these departments of human activity, by an aggregate of over ten million tans annually; while our manufacturing establishments, notwithstanding high priced labor and the predominance of machinery, give employmen to nearly a million more operatives than those of Great Britain. How many of our six and half million mechanics could pursue
their labors in default of patented inventions? How much their labors in default of patented inventions? How much
of the five thousand million dollars worth of manufactured products, which they turn out a year, would be possible without the inventor's aid? We know our indebtedness to inventors,
we welcome them as public benefactors, as prime factors in we welcome them as public benefactors, as prime factors in
our industrial system; we protect 亿hem in the development and application of their ideas, and reap our reward.
In Europe the contrary cnstom prevails. In Switzerland and Hollare, the inventor is refused any property right in his invention whatever; in the other States, the right is granted as a favor and weighted down with costs and conditions. The inventor is treated as an invader of vested rights, an The good he may do to the multitude is less considered than the inconvenience he may occasion a few manufacturers by compelling them to improve their wares or cheapen then prices. Patents are regarded not as mainsprings of mechanical progress, but as "fetters" imposed upon industry, as
"dragnets" spread to entangle manufacturers and curtail the area of their operations. The rich manufacturer, satisfied with his plant and his profits, calls the poor inventor a " nuisance " or " gambler," who, " instead of contenting industry, is always scheming, and dreaming, and wasting his time and his money." If successful he becomes sometimes worse than a nuisance. The Lord Chancellor of England, expressing the feeling of the dominant classes of Europe as well as of Great Britain, calls him by implication a black mailer, a sort of mechanical pirste, who robs the manufacturer when he can, and hampers him when he cannot rob; and the
leading journals, like the Times, rejoice at every prospect of educing the number of patents and patentees as a relief to productive industry. Under such condition it is no wonder that inventors as a class do not thrive, or that they bring their
inventive talents where they are appreciated.

DEATH IN THE SALT CELLAR.

We are not of a morbid turn of mind; as a general rule we believe that there is nothing to be gained by constan meditation on the uncertainties of human existence; bnt oc asionally something occurs which reveals death lurking in ome unthought-of ambush, which presents the idea of mor tality in a form which fairly startles one into somber reflec
tions. If a boiler blows up and kills its attendants, or a sailor is drowned, or a miner suffocated, the circumstance, hough we deplore it for the time, leaves no impression on he mind, for it is tacitly expected; but when an hotel full of people, as at a prominent watering place last summer, began o die off like sheep, killed by the water which was neces sary to their existence, or the pedestrians in a public street are suddenly hurled to the ground by an explosion of presumably harmless objects, or a bit of color in wall paper or ress carries disease or death, then we are forced into the disagreeable belief that our lives are our own only in a very limited sense.
We have been led, perforce almost, into this train of thought, by the realization of how closely the community has escaped a calamity which might have carried mourning and death into hundreds of homes. The Niagara, a large ailing vessel of the Anchor line, recently reached this port from Liverpool, after a stormy passage of thirty-three days The cargo of the ship consisted of 1,950 bags of salt of tle finest quality, such as is sold for table use. This filled tle old, and the 'tween decks space was devoted to chemica' and general merchandise, the former including about a hun dred kegs of arsenic. During the bad weather, the cargo shifted, the arsenic kegs broke adrift, and, pounding against the ship's side, speedily became sufficiently injured to allow of the leakage of their contents. Meanwhile the seams of the vessel, opening, admitted water, and this, mingled with he arsenic, poured down into the salt.
On the arrival of the ship in New York. the chemicals, etc were taken out in damaged condition, and then the salt bays were removed and delivered to the consignees, who in course of trade lost no time in disposing of the salt, or rather of a portion of it. At this late hour, the thought occurred to tle captain of the vessel that the arsenic solution might hare poisoned the salt; and acting thereon, he at once telegraphed far and wide to stop its sale and consumption. Professo Doremus was sent for to analyze chemically the material and from his report, based on the examination of a large number of samples, it appears that the arsenic was present in uch considerable quantities as to render the salt utterly unfit for use for any kind of food.
It is stated that the warning has been given in sufficient time to prevent the sale of any of the poisoned susbtance, the telegrams reaching the parties before the salt itself. But the contemplation of what might have been the result, were such not the case, is enough to cause even the most indifferent to shudder. The salt is said to be still of use for manufacturing purposes, and hence will not prove a total loss. The question of value, insurance, etc., is the gist of triangular fight between the custom house people, the in surance companies, and the owners; and here we suppose he matter will end. It seems to us, however, that it should not be allowed to drop here. The fact that the lives of perhaps hundreds hung on the memory of one man, and hat it was nothing more than mere luck or chance which caused that individual to bethink himself in time, is entirey too serious to be passed lightly by.
The public would like to know who is responsible for such criminal stapidity as the stowage of a terrible poison in a locality where, even by the merest limit of possibility, it could get mixed with a staple article of food: also whether it is customary to pack arsenic in vessels capable of smashing by rolling about the decks. There are plenty of laws regulating the sale of poisons; it might be well, if such are not already there, to embellish the statute books with laws governing their transportation.
the agrioultural display at the centennial.
A circular signed by the Chief of the Bureau of Agricul ture of the Centennial Exposition, Mr. Burnet Landreth, has recently been issued, directing public attention to this very mportant portion of the national exhibit, and reqnesting, from agriculturists generally, aid to ensure its completeness. As the time in which the labors of the Bureau must be per fected is now less than a year, we need hardly point out that hearty practical cooperation is what is wanted from the pub ic, and not mere approval of its ends and purposes. As we have already strongly urged, the period for discussion regarding the Centennial has gone by. The project is to all intents wel matured, and is being carried into execution as fast as circum tances will admit. The way to accelerate its progress, there ore, is for each individual to make up his mind as to the part he proposes to take, and to set about preparations a nce ; or if he is not interested in directly participating, but et is sufficiently patriotic to desire lending to the show his best aid and comfort, now is the time for him to consider how many ten dollar bills he can afford to withdraw from his business or income to exchange for shares of stock. The vestment is said to be a safe one, and the managers of the Exposition believe that a handsome dividend will be returned Regarding preparation of exhibits, it may be well for farmers to remember that, if they propose displaying specimens of crops, such must necessarily be of the present year's harvest nd sown during the present spring, so that the dressing of he soil, selection of seeds, and other especial cares must be attended to now. Live stock intended for exhibition will also require early attention, although this class of the display will not be exhibited until the months of September and October of next year. The Bureau publishes the following information regarding the time allotted to the various varieties of animals, etc. Horses, mules, and asses will be oxhibited, as one group, from September 1st to 15̌th; horned cattle, from September 20th to October 6th; sheep, swine and goats, one group, from October 10th to 25th. All animals ontered, except trotting stock and fat cattle, must be of pure blood and, besides, highly meritorious in condition, otc. Only
the best of each kind is wanted. Exhibitors must furnish attendants, and feed their own stock, for which ample accommodation and good forage at cost price will be provided Animals will be inspected by a competent veterinary surgeon before admission, and those which become sick subsequently to entry will be isolated and carefully treated. Application for space must be made at once (address the Chief of the for space must be made at once (address the of Agriculture, Philadelphia), in order to enable the Bureau of Agriculture, Philadelphia), in order to enable the
officials to form a proper estimate of space, etc., required. officials to form a proper estimate of space, etc., required.
We would remind farmers generally that tie liveliest interest We would remind farmers generally that toe liveliest interest
is taken abroad in the subject of stock-raising in this country, is taken abroad in the subject of stock-raising in this country,
as witness the large attendance of foreign buyers at the great as witness the large attendance of foreign buyers at the great
nale at which the famous $\$ 60,000$ cow was diposed of, a year nale at which the famous $\$ 60,000$ cow was diposed of, a year
or so ago, and that without doubt the representatives of the or so ago, and that without doubt the representatives of the
Earl of Leicester, Colonel Towneley, the Earl of Radnor, the Earl of Leicester, Colonel Towneley, the Earl of Radnor, the
Dukes of Bedford and Rutland, Mr. Bakewell, and in fact of all the great English sheep and cattle breeders, will be among the most critical visitors and perhaps future purchasers of the animals displayed.
The entries which will represent the labor and skill of our agricultural population, as woll as the products peculiar to our soil, are so numerous and varied that it would be im. possible eren to summarize them here. Cotton, corn, and possible eren the marvelous fruit and vegetable productions of the Pacific coast, the yield of the maple trees of New Engthe Pacific coast, the yield of the maple trees of New Eng-
land and of the orange groves of Florida, will be prominent land and of the orange groves of Florida, will be prominent
in the general exhibit, and the lumber from our Northern in the general exhibit, and the lumber from our Northern
States will be placed side by side with that from the vast States will be placed side by side with that from the vast
Scandinavian forests. The necessity of a very complete disScandinavian forests. The necessity of a very complete display of the timber of all districts of the country may be especially urged. Samples of trees of all kinds are asked for by the Commission, and it is suggested that the bark of one or more of the giant trees of California (Washingtonia gigantea) be taken off the trank in segments and sections, to be placed on arrival on a skeleton frame of the same dimensions as the original. The Agricultural Hall, having an extreme elevation of seventy-five feet, will afford ample room for at least a partial exhibit of one of these monsters of primeval forests. Thus also with other trees of the Pacific proast, hardly secondary to it, as abies Douglasii and nobilis, coast, hardly secondary to it, as abies Douglasii and nobilis,
librocedrus decurrens, pinus Lambertiana, the white pine librocedrus decurrens, pinus Lambertiana, the white pine
and hemlock of the North, the yellow pines in their several and hemlock of the North, the yellow pines in their several
species, the live oak, the cypress (taxodium distichum) of the species, the live oak, the cypress (taxodium distichum) of the
South, and a long list from every section of our broad territory.
In addition to specimens of trunks of trees should be exhibited timber and lumber in all forms; as samples of masts and spars, large and small; knees and square timber, as prepared for naval purposes; planks and boards exhibiting unusual brealth and character of cell and fiber: in brief, every description, quality, and form of wood used in construction and decoration.
We are gratified to note an increasing interest on the part of all classes of the public in the Centennial everywhere. Several prominent business houses have 'given generons subscriptions. A popular movement in New York toward the furtherance of the enterprise is about to be made. It seems to us that some grand representative stracture from the metropolis, typifying its growth within a century from
a mere village to one of the greatest cities in the world, a mere village to one of the greatest cities in the world,
would be appropriate and in harmony with the general surwould be appropriate and in harmony with the general sur-
roundings, and might at the same time be a means of arousing a greater local interest. Boston is busily engaged upon something of the sort in the shape of a tower, which will be built wholly of iron and will rise to a hight of 200 feet, or 540 feet above the river level. It is to be used as an observ atory, and elevators will transport visitors to the summit The contracts for the iron work are already awarded, and the edifice is to be completed on July 4 of the present year

THE MANAGEMENT OF BOLLERS AND ENGINES.

Extensive as is the literature connected with the steam en gine, there is very little in print in relation to the practica management of steam machinery. It is not difficult to dis cover the reason for this omission. The practical details are so varied, for the different cases that may arise, that it is al most impossible to classify them. It is impossible so to fore see that the remedy for any emergency which arises can be pre seribed in advance: and it is not desirable that the engineer should trust implicitly to a set of formal rules, which will save him helpless to provide for a case which is not covered oy the directions. At the same time, there are a number of general principles, which every engineer learns by experience, and their publication may be of use to those whose ex perience has yet to be acquired. Many steam users, recog nizing the importance of having their machinery carefally managed, are in the habit of sending engineers and firemen to be examined in regard to their qualifications before on gaging them. We give below an abstract of an examination recently conducted by a well known oxpert. The engincel who was examined was unusually well qualified for his duties and a record of his replies may therefore prove very useful Omitting the questions, the following simmary gives a fai idea of the scope and character of the examination
the engine and boiler.
"I have not examined the engine and boiler very carefully but there is a horizontal engine, with plain slide valve, diame ter of cylinder, 12 inches, length of stro. ie, 26 inches. There is a horizontal tubular boiler, set in brick, diameter, 4 feet, length, $11 \frac{1}{2}$ feet, steam dome, 24 inches in diameter and 10 inches high, number of tubes, 65, each three inches in diame ter. I have not examined the connections of the boiler, bat I can tell you what they should be, if the boiler is properly set. There should be a feed pipe, 1 inch in diameter, with
globe valve and a check valve, the former being nearest the
boiler, so that the check valve can be examined at any time if necessary. There should be a blow-off pipe, distinct from the feed pipe, with a plug cock, outside of the brick work. This pipe may be tapped into the boller if attached to one of the heads; but if seoured to the shell, it would be better to use a flange. There should be a safety valve, 2 inches in
diameter, attached to the top of the steam dome, and a 2 inch diameter, attached to the top of the steam dome, and a 2 inch steam pipe leading from this convection to the engine, with a the bottom one about 3 inches from the top row of tubes, the distances between them being from $3 \frac{1}{2}$ to 4 inches. There should be a water gage, attached direct, if possible; but if this is not possible, the counecting pipes should be arranged so as not to be in contact with the Hame or hot gases. Ther should be a steam gage, counected with the upper part of the boiler, and arranged with a siphon and drip cock. The grate bars should have a side play between each other, when cold, of from $\frac{1}{16}$ to $\frac{1}{8}$ of an inch, aud an end play of between $\frac{f}{f}$ and \ddagger of an inch. The heating surface of a boiler is all the surface exposed to the flames and the hot gases, including that part of theshell in the furnace, the ends of the boiler and the interior surlace of the tubes.

the enaineer's deties.

"The ordinary daily duties of an engineer are as follows: On coming in the morning, he should first ascertain the mount of water in the boiler; and if that is all right, proceed to raise steam, either cleaning and spreading the fire, hire is kindled in a boiler in essentially the been hauled. fire is kindled a boiler in essentially the same manne in a store, wood and shavings first being ignited, and then
covered with coal. In starting tho fire, it is a good plan to covered with coal. In starting tho ire, it is a good plan to
cover the back of the grate with coal, to prevent the passage of cold air through the tubes. In getting up steam, the safety valve should be raised a little, to permit the escape of air from the boiler. Having got the fire under way, the engineer should wipe off the engine, fill the oil cups, and make any adjustments that may be necessary, sach as tightening keys, and screwing up joints or glands of stuffing boxes, and should see that the cylinder cocks are open When steam is raised, he should open the stop valve, and start the engine; after which, if a"part of his duty is to attend to the shafting, he should examine and oil it. Then he should get out the ashes, provide a supply of coal, and screen it if necessary, and proceed to make everything tidy around the engine and boiler. Throughout the day, he around the engine and keep a watchful eye on the fire, the water, the steam, and the engine. In managing the fire, care should be taken to have the furnace door open as little as possible; and if steam is formed too rapidly, the fire should be regolated by closing the damper and ash pit doors. In regalating the hight of the water, it is a good plan to keep a steady feed, and maintain the hight constant. If it is found that the water is falling, the engineer should discover whether it is caused by a leak, or by the refusal of the pump to work. He can tell whether the pump is working by the sound of,the oheck valve falling after each stroke, or by feeling the teed
pipe or check valve.' A pump will not feed when the temperature of the water is very high, unless it is specially adapted for pumping hot water; and if it refuses to work from this cause, the temperature of the water should be reduced. A pump will not deliver water if the proper valves are not opened, if its passages are choked, or if its packing is defective. It would be necessary to examine the pump at once, and endeavor to discover and remedy the difficulty. If the water falls in the boiler on account of a leak, it can zometimes be temporarily repaired with a plug, or the pump can be run faster, so as to keep up the water until stopping time. If this is not possible, the fire should be hauled, and the engine allowed to rim as long as there is sufficient steam pressure. In case the engineer finds that the pump is not feeding, and he has a fair supply of water in the boiler, he should at once examine the pump, and ondeavor to remedy the trouble without stopping the engine. If he does not succeed, however, before the water falls below the level of the run as long as the steam pressure is sufficient. If he has been called away from the boiler, and on his return finds that the water is below the level of the lower gage cock, he that the water is below the level of the lower gage cock, he
thould immediately ascertain the team pressure, and if it ehould immediately ascertain the steam pressure, and if it
is rising rapidly he should haul the fire at once. If the steam pressure is about the same as usual, he should examine the pump; and if it is not delivering water, he should haul the fire. If the pump is feeding, he may run it faster,
watching the steam gage carefully. If the pressure does watching the steam gage curefully. If the pressure does ase the enfiue should not be stopped until the steam pres sure is considerably reduced. The engineer should be very particular, on finding the water low, to examine the steam gage at once; and if the pressure is unusually high,he should haul the fire without delay.

A boiler foams or primes, either because it has insufficient steam room, or on account of dirt or grease in the boiler or the feed water. The trouble is often experienced with new oilers, and disappears when they become clean. Priming is dangerous, if much water is carried over with the steam, ay it is difficult to maintain the water level con-
stant, and the engine is liable to be broken by the water in the cylinders. If the trouble is caused by insuffic en steam room, it can sometimes be partially overcome by in creasing the steam pressure, and throttling it down to the fectual way is to pressure in the cylidem, If the priming is due to dirt or grease in the boiler, the engineer should blow off frequently, and clean the boiler every few days. I blowing off, it is well to raise the water level in the boiler by
putting on a strong feed, and then blow down below the level hat is ordinarily maintained. It is very often the case that he water level is higher, when the engine is running, than it is when none of the steam is being used. The engineer should ascertain how much higher the water rises in such a case, so as to have a proper quantity of water when the en gine is stopped.

cleganing the boiler,

" The flues or tubes of a boiler should be cleaned about once a week, with a brush or scraper. In case incrustation has formed in them, they can becleaned by a jet of steam from a rubber hose. A boiler should be blown down and cleaned, under ordinary circumstances, about once a month. The fire should first be hauled; and then, if possible, it is best to let the wiler stand until the water becomes tolerably cool, say for 12 hours, after which the watermaybe allowed to run out. Then remove the man and handhole plates, enter the boiler, and clean it with scrapers and brushes in every part that can be reached. It should then be washed out with cold water from a hose, and this washing with a hose is the only means f cleaning those parts of a boiler that cannot be reached by hand. There are many boilers into which a man cannot enter, and of course these can only be washed out. When the fire is hauled, all leaks in the boiler should be repaired. Leaky parts that are exposed to the fire must have patches riveted on; in other places patches secured with bolts can be used, each pitch having a lip around it, and the joint being made with a putty composed of red and white lead. Leaky rivets or seams can sometimes be made tight by caulking. Small leaks around the ends of tubes can often be stopped in the same way, but as a general thing a leaky tube must either be replaced or plugged. To plug a tube, drive a white pine plug tightly into each end, and cat it off even with the tube heads, then pass a bolt through the tabe, with cup washers on each end, and screw it up tightly, putting putty under the washers.

ater and steam gages.

"When a boiler is in use, the gage cocks should frequently be tried to see that they are not choked up, and the glass gage should often be blown out. After ascertaining the proper place for the weight on the lever of the safety valve, a stick should be secured to the lever with wire, so that the ball cannot be moved out any farther. A cord should o secured to the safety valve lever, within easy reach of the engineer, so that the valve can be opened by hand if it sticks, and the safety valve should be tried at least once every
der.
ngineam gage should be tested at least once a year, and the ongineer should frequently try its accuracy by allowing the steam to raise the safety valve, and noting the pressure
shown by the gage. The hand of a stam shown by the gage. The hand of a steam gage sometimes sticks, and the engineer should tap the face of the gage
lightly several times a day, to assure himself that it is in working order. He may also to assure himself that it is in gage pipe, and open the drip cock, noting whether the hand goes back promptly to 0 , and returns to the former reading when steam is again turned on.
'In testing a boiler, warm water should be used, and a better test, when this is possible, is to enter the boiler and make a thorough internal examination.
'In leaving a boiler for the night, the fire may either be hanled or banked. If it is to be banked, it shonld first be cleaned, and then pushed baciz and covered with coal, the boiler being left with the furnace door open, and the damper closed.

The principal derangements of engines are hot bearings, loose keys, and leaky joints. If a bearing heats continually,
when properly adjusted and well lubricated, it is too small, when properly adjusted and well lubricated, it is too small,
Sometimes bearings heat, on account of dirt or grit, because Sometimes bearings heat, on account of dirt or grit, because they are set ap too tightly, or are out of line. A hot bearing can often be cooled without stopping the engine, by mixing sulphur or blacklead with the oil, or by turning on a stream of wator from a hose. If a joint blows out, it can sometimes be wedged, so that the engine can be run until stopping time. An engineer should exercise all his ingenuity to overcome a a difficulty without stopping the engine, except in cases where it would be dangerous to continue to run. If keys or bolts become loose, it will gencrally be indisated by a thump in the engine. To prevent the freezing of pipes and conin the engine. To prevent the freezing of pipes and con-
nections in exposed eituations, they should either be thonections in exposed eitaations, they should either be tho-
roughly drained, or the water should be kept circulating in them.
Our readers will scarcely need to be told that a man who could pass sach an examination as this understands his business pretty well, and we think that the foregoing remarks will be read with interest and pleasure by all who manage engines and boilers.

Photography of the Electric Spark.
Mr. Leo Daft, photographer, of T'roy, N. Y,, has sent us everal photo stereos, recently made, of electric discharges etween the terminals of the Holtz static electrical ma chines. In some of the examples, the picture shows the electrical flow divided into ten streams, which have the ap pearance of ten fine, white, zigzag wires, sharply defined and arranged in the form of an elliptical framework. It is probable that the metals used in the terminals had some thing to do in giving the remarkable actinic power to the sparks which these photo impressions indicate. Mr. Daft intends to continue his photo-electrical experiments, which are certainly very interesting.

Live fish (pickerel or trout) will keep a cistern froe from

IMPROVED SURFACE PLANER.
It is claimed this machine will plane or surface hard or soft wood from $\frac{1}{8}$ to 6 inches thick and 24 inches wide, and in any quantity from 10,000 to 20,000 feet per day, and will plane smoother than the average large sized planers. It is very strong, and is capable of doing its work in the most thorough manner, being built entirely of iron and steel, heavy and substantial in all its parts, the proportions being such as to insure the greatest durability and strength.
The main frame or stand is a solid and strong casting in one piece, forming a rigid and solid support for the material to be planed, thereby insuring smooth planed work. The cutter cylinder has long steel journals perfectly fitted by scraping into self-oiling bearings lined with the best anti-friction metal, made for the purpose. The journal boxes form the upper part of strong adjustable slides with long gibbed bearings, and the cylinder can be raised or lowered, while in operation or not, by means of a hand wheel placed in a convenient position for the operator. Any wear of the slides can be taken up and nicely adjusted by the gibs. A graduated scale attached to the slides shors at a glance the distance between the table and cutter cylinder. The upper feed rolls are held down by cast steel spiral springs, which are very sensitive to the unevenaess of the material, and act quickly and strongly.
The two driven feed rolls are in close prox imity to the cutter cylinder; the distance be tween them is only 788 of an inch, so that short and long stuff can be planed without clipping the ends. An adjustable roller scraper is at tached to the back feed roller to keep it fre from gummy matter. The feed arrangemen is extraordinarily strong, and powerful; the gearing is of a small diameter, and is not a all liable to break. The feed can be instantly started or stopped, and the material returned if desired.
The machine has four idler rolls and two driven feed rolls, all of wrought iron, making in all six rolls which can be adjusted to take up the wear. The cylinder bonnet can be quickly swung back for the purpose of sharp ening the knives, and the gearing bonnet can also be raised for oiling the parts.
For further particulars, address Bentel Margedant \& Co., Hamilton, 0.

Imitating Enamel on Iron.

F. W. Oliver's process consists in producing on iron various designs of different cclors, and imitating vitro-enamel in the following manner: A crystalline appearance is given to tinned iron by means of a mixture of water and sulphuric and nitric acids, applied thereon, and afterwards washed off. An impression of a design is made on suitable transfer paper, on which coa:ings of solid white aud silver bronze dust and colors are applied. The plate, prepared as above, is coated with a misture of turpentine and copal varnish: it is then heated, and the design transferred thereon in the usual way, and the plate is baked and polisned.

APPARATYS FOR REMOVING CONDENSED STEAM FROM PIPEs.

We extract from the Moniteur Industriel Belge, the an nexed engraving of a simple device for removing water produced by the condensation of steam in pipes. The action of the mechanism is entirely automatic. A is the entrance pipe, and B the exit pipe of the water: C is a float balanced by the counter weight, D, and resting on the surface of water which accumulates in the lower part of the vessel. As the float is raised by the addition of water, a pinion on the shaft, on which its rod turns, engaging in a rack, elevates a slide valve. E, and so opens the escape orifice. The water then flows out until the float falls low enough to shut the valve once more A device of this kind attached to the steam heating apparatus of a building, would the steam heating apparatus of a building, would doubtless prevent that disagreeable clacking and ham-
mering due to the water forming in the pipes, and the mering due to the water forming in the pipes, and the
consequent injury to the latter owing to repeated conseque
sirains.

upplying Caged Birds with Green Food

Among other advantages," says a correspondent in Science Gossip, "derivable from the regular supply of such plants as chickweed, shepherd's purse, and groundsel to caged birds, especially finches, I find that these almost always increase the appetite, leading them to eat more seeds, in cases when they appeared falling off a little from their ordinary food. In early spring the leaves of the plantain are much relished by bullfinches and canaries, and they seem to have a wholesome effect. I should like to hear the opinions of blrd fanciers regarding the statement, often repeated in books, that birds derive no benefit, but rather the reverse, from green food given in frosty weather. I have
not found any evil result, on a small scale, provided the food not found any evil result
is not given too damp."

Improved Method of Laying Underground Telearaph

 ne.Mr. A. Holtzman, of Amsterdam, Holland, is the author of a method which is alleged, after two years of trial, to give

BENTEL \& CO.'S SURFACE PLANER.

and solidifies, and holds the wires, in perfect insulation, un affected by moisture, temperature, or decay. A telegraph ine of forty miles length near Amsterdam, on the above plan, has proved an entire success. Although laid in bad swampy soil, no breaks have occured. It is alleged tha this method of laying wires is economical.

Metal Deadening.
When a wire, by which a weight is suspended, is made to wing about by torsion, the amplitude of swing, it is known, over diminishes; the successive amplitudes form, according to Gauss and Weber's observations, a converging geometrical

PPARATUS FOR REMOVING CONDENSED STEAM.

 in to avoid these false tones. It would in he dead process would affect all the tones similarly; only correct blow ing will bring about the desired resultA similar experience is had with stringed instruments. In hese, it is not the strings that require long playing, fo their resistance to the vibratory motion is (owing to the mallness of mass to be moved)unimportant ; but the resonanc ceases. However excellent the construction of the latter, ong continuance of good playing is indispensable for them. This is accounted for by the fact that the good player a waken stronger tone, and so vibrations of greater amplitude hence, also for these, the deadening is diminished. Furthe he excites only a certain kind of overtones, which de termine the clang color, and for these overtones th deadening is diminished. Through long rest without use, the advantages of this playing-out are again lost as the accommodation also partly disappears through rest. That pianos do not also grow better after lon use is due to the fact that the mechanism of th piano wears out.
The circumstance that, with increasing temperature the deadening grows so very quickly may perhap serve somewhat to explain the process of hardening of steel. The soft steel is heated, and thereby the mole cules are brought into a state of greater internal fric tion. If now, the hot steel is quickly cooled, the mo lecules have not time to part with this condition greaterinternal friction ; it atill remains, in part, in th cold state and we have then a hard steel The steel it is lis is the coling it is know, is cooling occurs The resistance of the molacules of hard steel to mag. netization, and the greater magnetic residuum, wit ness a
cules.

.

A malady has attacked the lemon plant, the origin of which is believed to be the forced cultivation of the fruit. The lemon plant is very hardy, and infinitely easier to cultivate than the orange, and this fact has probably induced a certain amount of careless ness in its treatment, from which growers are now suf fering. The 1 ree was originally a native of the dry hot soil of Persia, whence it has been transferred io and hot soil of Persia, whence it has been transferred 50 various other countries, where, under different circumstan ces of soin and chitate, has been made largely to increa its vield of fruit. The disease which has now made its ap pearance is called la secheresse, or dry rot, and seizes the ox tremities of the plant, sometimes the roots, sometimes branches, whence it gradually spreads through the wh tree, drying up its sap in its course.-Nature

THE NEW YORK RIVER FRONT IMPROVEMENTS.!
We publish herewith a view of a series of the arches which are to form the extensive improvements now being carried out on the North River front of this city. Therecan be but one opinion as to the efficiency and solidity of the construction, the design for which is the work of Mr. J Newton, assistant engineer, and possesses several interest ing and original features. The work which our illustrations (selected from Engineering) depict is now in progress on the west side of the Battery, where the river bottom is a hard, quartzose rock. Before the dredging was done, the rock was covered with a deposit of river sediment, in seme places upwards of 12 feet in thickness, and varying in consistence from a thin silt to a tough, plastic, black mud. This was cleared away by the dredging machinery already described in our pages. The surface of the rock is jagged and
crete from wash; at the formation level, horizontal guide were secured. The box was then filled with concrete low ered in buckets which opened at the bottom. When the concrete reached the guides just mentioned, it was lereled off by a heavy iron I beam placed on one of its sides, and pushed along the guides from one end to the other; by this means, if the guides are properly placed, the entire founda tion is perfectly level. The voussoirs were cut before the foundations were begun, and the top of the pier came at the xact hight required above datum.
The first foundation, already alluded to, was put in by constructing a box or inclosure under water. A number of wrought iron standards (Fig. 2) were placed in line in the centers of the same number of molds on a level platform these molds were then rammed full of concrete. The blocks,
the size of the monolith has but little to do with the time equired for placing it.
The concrete of which the monoliths are made is composed of the best Portland cement. When the wooden molds are removed, which may be safely done in twenty-four hours after they are filled, they present a smooth and hard surface, and more accurate than it is possible, in practice, to cut the beds and builds of natural stone suitable for hydraulic work. A cube one foot square formed of this concrete, seven days old, did not yield until the pressure brought upon it by a hydraulic press was 80 tuns, and then the concrete in the middle of the block was found to be somewhat damp.

A New Dry Photo Process.

I propose, says M. Carey Lea, to make public a process which, I think I may venture to say, possesses a very high

NEW YORK RIVER FRONT IMPROVEMENTS-THE ARCHES.

very irregular, and the depth of water over the site of the 500 is from 25 to 45 feet. The din, hight of roadway above mean high water, 5 feet, and from mean low water 9.58 feet me mean rise and fall of the tide in New York harber, the determined by a long series of observations, is 458 feet. Th pier is composed of twenty full center arches of 20 feet span
the faces of these arches, exposed on the sides of the pier the faces of these arches, exposed on the sides of the pier, down to 3 feet below low water, are of cut granite. The arches are supported by monolithic blocks of concrete, made to exact dimension by ramming the materials in strong wooden molds. These blocks are made with suitable grooves for chair slings: they are transported from the place where they were made, and placed in pesition in the pier, by the floating derrick previously described. These concrete monoliths are in two series: First, the base; these are 4 feet by 8 feet 6 inches by 13 feet; next, the piers which are placed on these. For the first three or four arches these are 14 feet in hight, 5 feet 6 inches thick, and 10 feet in length, eight being re quired to complete a pier.
When these tall monoliths are in position the work is so near the water line that it is an easy matter to place the eenters which rest on them, and then set the granite vous soirs. The centers being set the facing of granite is laid in cement; between the granite springing stones of the arches, concrete blocks are laid. These are made in molds to the curve of the soffit, and are plainly shown in the en gravings; these blocks bring the work above low water. The joints in the granite be ing watertight,and the sheath ing of the centers nearly so the space thus inclosed be. tween the stone sides of th pier, if not altogether watertight, is protected from the wash of the tidal current this space is then filled with concrete, well rammed in, and the work by this means is rendered as solid as that formed in the molds.
If desired, however, there is no difficulty in making this space perfectly watertight by caulking the sheathing of the centers, so that the concrete could be rammed in at all stages of the tide.
The foundations at formation level are 84 feet in hight by 12 feet in width, and vary in distance from datum according to the irregularity of the rock bottom. In all, except in the first pier from the riverwall, they have been constructed by sivking a box the full size of the foundation. This box was weighted and sunk, then, by means of vertical timbers, chains, and screws, adjusted to the required hight This box (see Fig. 2) was roughly fitted on the irregular rock bottom by means of planks sliding in appropriate guides,

Fig. 2.-CONSTRUCTING THE FOUNDATIONS.
dams and ordinary masonry. The preparation of the bed for the monolith, as is evident from the above description, is in fact the only portion of the work which is at all difficult. Under favorable circumstances, with respect to weather, after the foundation is ready, the arch piers, 80 feet in ength, were set in 30 feet of water, ready for the super the derrick to lift and place a monolith of some 30 cubic yards, but setting it exactly in place occupied longer. It may be observed that, within the capacity of the derrick,
interest; in fact, no photographic work in which I have ever been engaged has appeared to me comparable with it. The method gives, by simply pouring an emulsion over glass, not only a high but, I may say, an intense sensitiveness. Moreover, by virtue of the silver iodide which they contain, these plates need no backing. They develope with great rapidity and need no intensifying, so that the whole operation, from first to last, is reduced to the most absolute operation, from first to last, is reduced to the most absolute
simplicity. The advantages in the way of facility of management and the high degree of sensitiveness are such that I should not be surprised to see these dry plates largely supersede the wet process; in fact a beginner will more easily work this dry method than the wet when the emulsion is to be obtained commercially, which it soon will be, as I do not propose to place any restriction upon its manufaeture by any one who may choose to prepare it.
collodion.
To each ounce of solvent, consisting of alcohol and ether in equal parts, take ordinary crystallized cadmium bromide, $6 \frac{1}{2}$ grains; ammonium bromide, 2 grains; ammonium iodide, $1 \frac{1}{2}$ grains; cupric chloride, $1 \frac{1}{2}$ grains. About eight grains of intense pyroxylin o the ounce, with two drops of aqua regia. Sensitize with silver nitrate, using from twenty to twenty-five grains o the ounce. The first-men tioned quantity is excellent for ordinary work; when a very high degree of sensitive ness is desired, the larger quantity may be used.
For the reason that the emulsion is to be dried, some economy may be practised by making a more concentrated emulsion, as follows: ordina y cadmium bromide, 9 grains ammonium bromide, $2 t$ grains; ammonium iodide, 2 grains; cupric chloride, 2 grains.
Use about ten grains of in tense pyroxylin. The silver nitrate must be increased in the same proportion as the salts, so that twenty-five to thirty grains to each ounce of concentrated collodion will be proper. Three ounces of this collodion will, aiter treat ment, give four ounces of finished emulsion.
The best results are obtained by keeping this emulsion with occasional shaking, for from twenty-four to thirty-sis hours. It is then to be poured out into a flat dish and allowed to set. Particular care is needed in this part of the opera tion ; the preservative must be applied just at the right time -neither too soon nor too long after the pouring out. Th mulsion must be occasionally examined and moved about in the dish to promote e equal drying. As soon as a skin form n it boles must be made through it, and the collodion derneath be made to flow out and over it. If this be ne
lected, the surface will become hard and leathery before the emulsion is set underneath. The object is to keep the whole mass as nearly uniform as possible, and, as soon as it is gelatinous, to apply the next treatment. The proper condition can be judged of by touching with the tip of the finger : as soon as nothing comes off upon the finger the emulsion is ready for the preservative.
Any preservative may be used. As to the effects of different preservatives, I will speak presently. If the lesser quantity of silver be used, the preservative may generally be applied in its ordinary condition: but if the larger, then it will be well to add to the preservative one tenth of its bulk of ordinary acetic acid (No. 8 or Beaufoy's).
The preservative is to be poured into the dish, and then immediately the film is to be plowed up with a porcelain, horn, or glass spatula (not a metallic one), and reduced into small pieces; and the whole, preservative and film, is to be transferred into a convenient glass jar-not too small. The flakes of emulsion are to be occasionally stirred and left in contact with the preservative for fifteen minutes from the
time when it was first poured over the mase. (In operating time when it was first poured over the mass. (In operating
upon a large scale, commercially, it will probably be found upon a large scale, commercially, it will probably be found
better to leave a little longer in contact with the preservative, and always to acidify. For working with a few ounces, the foregoing is the right way.) The preservative is then poured off and water poured on, the Hakes well stirred up, and the water chauged soveral times. The flakes are then left to stand under clean water for about an hour; then sereral more changes; then stand another hour ; then several more changes. By this time ererything soluble is extracted from the flakes; indeed, after the first hour no silver can be found in the wash water. We have now only to dry. This may ho done at ordinary temperatures, or the reasel may be set over a stove, provided its bottom be not allowed to become hotter than the hand can bear. The drying must be thorough; the
flakes shrink wondorfully, and curl up like tea leaves. They flakes shrink wonderfully, and curl up like tea leaves. They
are not white, but of a medium grey color, notwithstanding which they make a pure cream-colored emulsion.
To re-emulsify, the dried flakes are put into a bottle and are covered with one third ethor, one third alcohol, and one third plain collodion. They must be well shaken at intervals. The new emulsion is not in good order till after, at least,
fortr eight hours, and is better at the end of a week. When forty eight hours, and is better at the end of a week. When it has once been thoroughly mixed with the liquids, and has been shaken at intervals for some days, it seems to lose all There is no reason why it should not keep indefinitely. Or it may be preserved in the dry state and emulsified at any time, using from twenty to twenty-five grains of the dry emulsion to each ounce of solvents. Three and a quarter
ounces of collodion, formula No. 2, will yield about one ounces of collodion, formula
hundred grains of dry flakes.
preservatives.
The oharacter of the image will depend very much upon the preservative used.
Albumon Preservative. -This gives an exceedingly sensitive and delicate plate, with much less density than most of the other treatments. For this reason I prefer it to the rest, as
tending to give detail in both lights and shadows, with great varieties of half tone. My formula is: Water, 12 ounces; thick gam and sugar solution, 1 ounce; prepared albumen, 1 ounce; sixty-grain alcoholic solution gallic acid, 1 ounce sixty-grain tannin solution (in water), ty ounce. To be added in the order named. If rather more density be required, double the tannin. I use it as above. This preservative works very cleanly and satisíactorily: I use it exclusively. Gallic Acid and Coffee.--A mixture of gallic acid and coffee, using about two ounces of sixty-grain solution to twelve ounces of infusion of roasted coffee, gives very good results; it should, however, be acidified with acetic acid, using about half an ounce of Beaufoy's (No. 8) to the above quantity. It gives a blacker image than No. 1, and moreintensity. It wil probably be useful when the pyroxylin is deficient in intensity. It gives excellent transparencies by exposure
under a negative, but too intense for lantern work, for which No. 1 is much hetter, as well as for negatives.

DEVELOPMENT.

For a $61288 \frac{1}{2}$ plate pour four ounces of water into a 7×9 dish, add half a drachm of sixty-grain solution of pyrogallic acid in alcohol, and put in the plate. Mix in a bottle equal quantities of a fifteen-grain solution of potassium bromide and an eighty-grain ammonium carbonate. Of this mixture pour one fluid drachm into the dish. When the detail appears add another drachm, and later, if necessary, a third; or add half a drachm of the ammonium carbonate solution without bromide. The two first additions must have bromide ; the third is best without for a negative-best with for a transparency Fix in hyposulphite solution of the same strength as used for wet platos.
I should have mentioned that I always keep the collodion for a month-for several if possible. The plates should be edged with a solution of india rubber in benzole.
The principle of applying a preservative to a mass of material at once and then washing it out again could be patented. This is common to the new processes. The plan
of applying a silver bath to a mass of partially dried collodion of applying a silver bath to a mass of partially dried collodion great usiofulness of these processes, I believe that such patents would be very valuable. I prefer, however, to give them freely to anyone caring to use them, asking only, in return, tohave them ascribed to their author and not apprapriated by hose who may make trivial modifications on them.'

A glue which will resist the action of water is made boiling 1 pound of glue in 2 quarts of skimmed milk.

שarrespundetuce.

To the Editor of the Scientific American:

I will give you a method for setting slide valves of locomotives, which is practical and easy. Make a steel tram, about $5_{\frac{1}{2}}^{2}$ inches long, with two points at right angles with the straight bar, one point to be 24 inches in length and the other $1 \frac{1}{2}$ inches. Both points are to be sharp. Take a cenerpunch, and make a center mark on top of the steam chest packing box; then take a strip of tin and putit in the steam port. Draw the valve slowly back untll you can just move the tin between the edge of the valre and the edge of the
steam port (which is now closed, except a.s to thickness of steam port (which is now closed, except as to thickness of
the strip of tin). Take the tram, place the short point in the center mark on the packing box; then make a scratch on the valve stem, and go through with the same process with the opposite steam port. Now you have marks on the valpe stem just where the valve begins to open. The valve stem must next be got into radius (as we term it), which is to show the proper length for the valve stem. It is done thus: Cover the steam ports equally with the valve, put the center of ock shaft and the rocker pin at a right angle with the bore of the cylinder ; and when the ralve stem is adjusted to this is of the proper length and should not be altered.
To adjust the valves in forward motion, hook the reverse lever in the forward notch, take the dead points for centers, and alter the eccentric rods until the spaces are equal on the valve stem, which is determined by the use of the tram. Take
the forward centers and give $\frac{1}{16}$ inch lead to the valve, for the forward centers and give $\frac{1}{1 \theta}$ inch lead to the valve, for
either passenger or freight engines. By adopting this plan the engine will reverse her action promptly. Hook the re rerse lever in back motion, and repeat as above.
If the job is to te done quickly, and the eccentrics are in the proper position, it can be done by the travel, in this way: Move the engine slowly forward with steam, take the tram, and trace the movement of the valve on the valve stem ntil the stem stops; then trace the return movement until hat stops. Take a pair of dividers and measure each dia travel line (or where the ralve stopped). Alter eccentric rods
the travel line (or where the ralve stopped). Alter eccentric rods
until the spaces are equal. By these means, you do not reuntil the spaces are equal. By these me
quire to take the steam chest covers off.
East Saginaw, Mirh.
Thomaf M. Hafea.

An Invention Wanted

To the Editor of the Seientifle American:
I would invite the attention of inventive minds to the subject of respirators for miners, to protect them from the foul gases which trouble so many men, especially in coal mines An invention that would protect them when laboring to sub due a fire in a coal mine would certainly prove a very valua-
ble one, and be the means of saving many lives,and millions ble one, and
of property.

f property. Hazleton, P

C. F. H.

The New British Patent Bill

The Lord Chancellor's new Patent Bill, briefly described by us a few weeks ago, meets with vigorous opposition in some of the English papers. Among the ablest remarks upon the subject are those given in Engineering. In a recent number he editor says: "Contrary to our anticipations, the Paten mischief intact. In spite of the almost unanimous opposition which it has met with out of doors, the only modifications which it has met with out of doors, the only modifications
which have been introduced merely relate to matters of which have been introduced merely relate to matters of
detail. Instead of four examiners we are to have six, the referees are to be appointed by the Commissioners of Patents alone, without the concurrence of the Board of Irade, as was at first suggested, and their services are only to be called in hen necessary, and not as a matter of course.
The radical vice of the measure still remains; and alchough it is pretended that the examination clauses have been ramed to meet a unirersally expressed wish, we are quite fure that nothing of this kind was ever asked for by the idea has been fostered chiefly by a small knot of shameless placehunters, who will not be satisfied with any system placehunters, who will not be satisfied with any system
which leaves them unprovided for. By dint of arpearing which leaves them unprovided for. By dint of arpearing
now as members of this society, now of that, and by reading papers here and delivering lectures there, a delusive impres sion has been createl that inventors are really desirous of seeing the system of preliminary examination introduced. We do not for obvious reasons mention these persons, but a
careful examination of the various propositions for patent careful examination of the various propositions for patent law reform put forward during the last ten or fifteen years
will reveal their names. There are of course somg advocates of preliminary examination who are perfectly disinterested, having only joined in the cry on purely theoretical grounds. These goodnatured individuals have in all probability never made a search in their lives, and are totally unaware of the enormous difficulty of deciding whether an invention has really been anticipated or not.
The Lord Chancellor has been at great pains to explain that he does not propose any eramination as to "utility;" but what is the meaning of "frivolons" if it does not include projects
which are " useless," in other words, void of "utility"? It which are " aseloss," in other words, void of "utility"? It
is the same thing in another form-an old friend with a new face. Lord Cardwell sneers at an invention (of American origin) which consisted in placing a piece of india rubber at the end of a pencil, so that the person asing it could rub may be "frivolous" or not, but it was a sufficiently valuable patent to be worth a very costly lawsuit, which is well known pas the "india rubber tip case." Those who have foll known
question need scarcely be reminded of the case of Smith r Buller, which occupied the Court of Chancery for many days, the conts amounting to about $\$ 20,000$, and in which the matter in dispute was a very minute improvement in swivels. So small was the improvement that ordinary observers would not have detected the difference between the old swivel and the new. Large fortunes have been made out of "solid headed" pins, and buttons have raised many to affluence. Only the other day a large technical college was founded and endowed by a philanthropic manufacturer who stated that a very large portion of his princely fortune had been amassed by making steel pens and split rings. The question of frivolity is in some respects more delicate than tbat of novelty; and when the examiners have once tasted blood, we shall probably find them rejecting as "frivolous" contrivances shall probably find them rejecting as "frivolous" contrivances
which, though seemingly insignificant, may have cost a man years to invent, and which the whole of a trade has been in years to invent, and which the
rain endeavoring to produce.
For years past we have done all in our power to warn inventors as to the almost certain results of an arbitrary system of preliminary examination like that embodied in the present bill. We showed some time back, in a series of articles on "Anticipated Inventions," how some of the greatest inventions of the day would most certainly have been refused by any moderately well informed examiner. If inventors permit this bill to pass in its integrity, they will find them. elves in the position of the man who made a monster, and was in due time destroyed by it. For a few years we shal have chacs, soon to le fullowed by the entire abolition of hose laws which have done so much to foster inventive talent, and have borne no inconsidarable share in bringine the manufacturing industry of this country to the high the manufacturing industry of
position which it now occupies."

The Hellograph.

Through the general introduction of electite telegraphy, nd the all but universal adoption of the Morse alphabet, i ocurred to Mr. Manca to produce an instrument which is very compact, very portable, easily set up, and easily worked. Although he was first in favor of larger instruments (which are still preferable for permanent stations), he is now convinced that an instrument of the size here described is all that is requisite. The chief objection to the adoption of the sun telegraph is that we cannot command the sun to shine in the same manner that we can control a galvanic battery; and it must be understood that Mr. Mance advocates his system only as an auxiliary to other systems of field telegraphy.
The instrument consists of a light, but firm, tripod stand similar to those used for prismatic compasses. On the top a similar to those used for prismatic compasses. On the top a
plate is moved by a tangent screw which admits of quick and slow motion, and the plate carries on a pin a semicircu ar ring, which again carries on pirots the round mirror, the silvering of which is removed in the center for the space of a circle about 3-16 inch diameter. To the plate is also at tached a simple key, which is pressed down and springs back like an ordinary Morse key. This key is connected with the top rim of the mirror by a steel rod, which can be length. ned and shortened-as occasion may require-by turning the handle and screwing the rod through the small brass ball which secures it to the edge of the mirror.
By means of the last named adjustment and the tangent screw, the glass can be altered, as the ever-changing position of the sun may require.
From 12 to 15 yards in Pront of the instrument is placed sighting rod. This rod is to mark a spot exactly in a line sighting rod. This rod is to mark a spot exactly in a line
with the center of the heliograph and the distant station. A with the center of the heliograph and the distant station. A
metal stud marks the spot, and a wooden cross piece marks metal stud marks the spot, and a wooden cross piece marks
where the flash rests when not directed on the opposite station.
The instrument can be set up ready for working in a few minutes. When the exact position of the distant station is not known, a flash of sunlight must be thrown in the direc tion of the most likely points, and this must be continued till it is answered by a flash, which indicates that a distan signaling party is on the lookout. Then, after releasing the tangent screw, the glass must be turned to a convenient angle, and the sighting stick must be directed in a line with the distant station by looking through the small aperture in the center of the mirror. When this is effected, the stud must be raised or lowered till it is in the line of vision on a must be raised or lowered till it is in the line of vision on a
levei with the center of the glass and the distant flash, and levei with the center of the glass and the distant flash, and
the short cross piece must be placed at right angles to the the short cross piece must be placed at right angles to the
upright, about a frot below the stud. After being thus ad upright, about a foot below the stud. Afte
justed, the instrument must not be moved.
The spot will be observed gradually to rise or fall, according to the direction in which the sun is apparently moving. The handle of the key, or the tangent screw, or both, as the case may be, must be turned slightly after every two or three words, to ensure, as far as possible, that the center of the spot shall be on the stad when the key is pressed down. When the sun is rather low in the heavens, and behind the signaler, it becomes more difficult to direct the flash with accuracy. In consequence of the obtuseness of the angle, the spot loses its circular form, and becomes rather dim when reflected on the stick. If it is required to work frequently with the sun in this position, the employment of a second glass on a light tripod stand is recommended.
But it would be useless here to enter more into the minutiæ of working the instrument : suffice it to say that, in experienced hands, twelve words and more per minute have been obtained. while others state that men-after a fort. night's practice - could attain only from four to five words per minute. As to the distance, 10 and 20 miles-and in very close weather 40 miles-have been obtained - Tel, graphic Journal.
device for attaching the plates to the roof is represented at e, in Fig. 5, and also in Fig. 2. This, at the sides of the plates, is an upright iron strip, split part way at the top to hookover the side of the sheet. 'To adquit of this engagement the sheet is bent upward, as represented in Fig. 1, and the curve is such that the edges of adjacent shecte may be in contact and parallel for a short distance. The end cleat is also nailed to the sheathing. To finish the work, the sides are Fig. 2

rought together square at the eaves, and the comb formed, the same as in a standing seamed tin roof, by turning up a two inch standing seam with roofing tongs. In the engraving, Fig. 2, the cap, f, which surmounts the adjacent sheet edges, is drawn to the top, so that the fastenings, c, can be seen where the sides of the plates meet. The method of securing the parts by countersinking is represented in vertical section in Fig. 3, and Fig. 4 is a horizontal section of the same.

Fig. 3.
Fig 4

\square

After the roofing plates are all in position, the joints across the ends are closed and compacted by beating the folds to gether The invention is applicable to any class of build

Fig. 5

ngs, but particularly to large manufacturing establishments on account of the slight pitch at which it can be laid, the cost of building being thus materially decreased.

Further particulars may be obtained by addressing the manufacturers, Messrs. Scott \& Co., 75 East Front street
Cincinnati, Ohio. Cincinnati, Ohio.

Struck by Lightning.

Mr. D. Pigeon gives, in Nature, the following interenting account of the effect of lightning upon himself and members of his family, during a recent thunderstorm: " The house, in which with my family I have spent the winter, stands in the center of Torbay and close to the sea. In the garden, which gives access to the shore, is a flagstaff, 50 feet high, with a metal vane at the top, the mast being steadied at about 25 feet from the ground in the usual way with iron wire guys. About a foot above ground, each wire rope terminates in a $\frac{1}{2}$ inch rhain, which is anchored a few feet in the soil.
February 25th, 1875, was a ruiny day during the forenoon, with heavy wind from the southeast; but in the afternoon

SOOTT'S PATENT SHEET IRON ROOFING.

So many conflagrations have been caused by sparks fram chimneys, or from adjacent burning buildings, falling upon roofs, that the safety offered by a covering entirely of iron, and consequently firepronf, is by no means unimportant. The device herewith illustrated, while securing that advantage, presents a variety of others which, in brief, render it a most efficient protection. It is portable, and is supplied in plates of eight foet in length by two in width, which are trimmed to fit with accuracy so as not to get out of line, no matter how great the distance over which they may be run. These plates are provided with side and These plates are provided with side and
end connections complete, so that the work end connections complete, so that the work
of laying them is greatly facilitated. The of laying them is greatly facilitated. The
joints are strong and windproof, and rust joints are strong and windproof, and rust
or wear by weather is prevented by coatings of pure iron oxide and linseed oil. Finally, it will be noted that nails through the roofing plates are alsent, and a fre quent cause of leakage thus avoided, and that the peculiararrangement of plates and seams provides fully for the contraction and expansion of the metal.
A sheet, as supplied by the makers, is represented in Fig. 1. The enids. a and u, are folded over in opposite directions, the former being uppermost when the piate is former being uppermost when the piate is
in position. The mode of locking together in position. The mode of locking together
those ends is shown in Fig. 5, from which those ends is shown in Fig. 5, from which
it will be seen that a continuous water she

the sky cleared. There had been no sign of thunder all day. At 5 P.M. my wife. my son, and myself were standing under the flagstaff and within 10 feet of a mooring chain, watching the bay, when the vane was suddenly struck by lightning, which broke the mast short off in two places, tearing and splitting the wood between the vane and the Iron guy ropes. Through these the discharge then passed to the ground, but three out of four mooring chains were broken.
The broken mast and vane fell to the ground close to us. Heavy hail followed the flash, the wind falling instantly to
minutes later, after which there was no more lightning. The discharge startled the whole village of Paignton; the coast guard ofticer compares the explosion to that of a $300-$ pound gun; and at Torquay, $3 \frac{1}{2}$ miles distant, a scientific friend speaks of both flash and crash as most terrific.
1 must now attempt to describe the effects on ourselves and the inpressioms on our senses. Of the three, my wife only was " struck," and fell to the ground, my son and my. self remaining erect, and all three retaining consciousness. For more than half an hour my wife lost the use of he er limbs and left hands, both of which became rigid From the feet to the knees she was splashed with rose olored tree-like maks, branching upwards, while a large tree-like mark, with six principal branches diver-
ging from a commun center, thirteen inches in its ging from a commun center, thirteen inches in its
largest diameter, and bright rose red, covered the body. largest diameter, and bright rose red, covered the body.
None of us are certain of having seen the flash, and my
None of us are certain of having seen the flask, and my
wife is sure she saw nothing. As to the noise, my
wife is sure she saw nothing. As to the noise, my
wife heard a "bellowing" sound and a "squish,"
recalling fireworks; my son also heard a "bellow," while I seemed conscious of a sharp explosiod. My wife describes her feeling as that of "dying anay gently into darkness," and being roused by a tremendous blow on the body, where the chief mark was af terwards found. My son and myself wert conscious of
a sudden and terrific seneral disturbance, and he af-
firms that he received a severe and distinctly electrical shock in both legs. My left arm, shoulder, and throat especially suffered violent disturbance, but I did not think it was electricad. As I turned to help my wife, who was on the ground, I shouted, as I thought, that I was unhurt, and hoperl they were also, but it seems I only uttered inarticulate sounds, and my son, in his first attempt to andwer, did the same. This, however, was only momentary; in an instan we both spoke plainly.
Neither of us referred the occurrence inimediately to its true cause, but the idea of being fired at was present to all our minds, my wife indeed remained of opinion that she was shot through the body until she heard mespeak of lightuing. An infinitesimal lapse of time enabled my son and myself to recognize lightning; but I cannot say whether I did so before or after my first glimpse of the wreck on the ground. Neither of us heard or saw the mast fall, though it descended fifty feet, and foll on hard gravel close to us. My son and myself both experienced a momentary feeling of intense anger against some " person or persons unknown," further showing that wo preliminary referred the shock to some consciou agency. I ought perhaps to add, that neither of us felt any sensation of fear at the time; but we were all nervous for several days after.
I have endeavoured to keep to fact throughout, but I ven ture to add a remark madeby my wife as we raised her from the ground: "I feel quite sure that death from lightning must be absolutely painless;" and I offer it as an unconscious corroboration of views on this subject which our experienc seems to strengthen.

The Use of the Hand as an Optical Instrument. Dr. F. Thomas, of Uhrdorf,observes that, although artist are well aware of the advantages of monocular vision and spection of hand as an impromptu stereoscope for the in pection of pictures, the pubilc generally knows nothing of hem. Any one who carefull watched the crowds that dail thronged the avenues of the late Vienna Exhibition might
have seen how very, very few persons amongst them ever have seen how very, very few persons am
availed themselves of this ready resource.
And yet, how different is the appearance of a really good picture thus seen and the same viewed in the ordinary way by binocular vision! Regarding it with a single eye throug the hollow of the hand as through a stereoscope, we get a relief, a substance, which otherwise is more or less wanting in a word, we get the third dimension, depth, which is in dispensable to realistic effect. Nor is the method applicable to the contents of picture galleries alone; every photograph every engraving and print, of correct design, may be benefi cially treated in the same way. As with the stereoscope, so with its impromptu substitute, we get increased focal length,
and with it the several artistic advantages thence accruing On the other hand, defects in drawing are ruthlessly exposed by the same means. Trifling errors in perspective, which might have passed unnoticed under ordinary circumstances, stand revealed in their full deformity.
With juster perceptions of the magnitude and relative di mensions of objects, monocular vision, combined with the stereoscopic use of the hand, gives us, also,a correcter appre ciation of the effects of reflected light. And this applies not only to the confused appearance occasioned by the interposition of highly reflective media between the object and the olserver, but also to artificial reproductions of the same effect.
A point ignored in every treatise to which Dr. Thomas has had access is the effect of the hand, when thus used, in modifying or correcting our perceptions of color. The rays of the setting sun are flooding the landscape with golden light. Prominent in the distance stands forth a church tower lighted up with a rich orange glow. By regarding it attentively through the hollow of the hand, and opening and closing the latter suitably, the tower can be made to assume any inter mediate tint between the white it really is and the orange it has assumed in the rays of the western sun. The woods, too, dark, somber, and night-like to the unaided vision in like manner can be made to resume the hues they wore in the broad light of noonday. A brigh patch on the far distance shows a soft subdued white, and we notico then for the first time that to the unassisted eye it presents a bright golden color.
Indeed, our conceptions of coior are mainly dependent on comparison-contrast. But these are quite inadequate to enable us, under all circumstances, to detect and discriminate between minor differences of shade by ordinary unaided binocular vision. For that purpose, we must have recourse to the hollow of the hand, looking through it at the object with one eye, and comparing the effect observed with that produced on the other and unshaded eye. Both eyes may be open. In such cases, the chief point is not monocular vision, but the shading of the eye by the hand thus applied. As with a Nicol's prism, we thus restore the equilibrium of the blue light diffused through the atmospheric regions-which in the landscape above referred to was overpowered by its comple mentary color, the orange emanating from the sinking sun -and are so enabled to see objects under the hues they would -and are so enabled to see objects under the hues they would
present when viewed by the white light of a noontide sun.

Phosphareted steel.

A year or two ago, it was generally admitted that a pure ore or pig iron, and especially one containing less than 0.08 to 0.05 of phusphorus, was absolutely essential to the production of a good Bessemer steel ; the consequence has been that many of our richest iron ores, most cheaply mined and supplied, have been ruled out as unfit for Bessemer work Such are most, if not all, of the limonite and fossiliferous ores of Pennsylvania, Virginia, Tennessee, Georgia, and Alabama, in which the percentage of phosphoric acid runs bama, in which the percentage of phosphoric acid runs
usually from 0.05 to 0.15 per cent, corresponding to about usually from 0.05 to $0 \cdot 15$ per cent, corresponding to aboat
double these amounts in the pig iron. This small percent. double these amounts in the pig iron. This small percent.
age of phosphorus has been a perfect bugbear to iron mana. age of phosphorus has been a perfect bugbear to iron mana-
facturers, and so important was it considered that one of our facturers, and so important was it considered that one of our
large steel works imported 10,000 tuns of ore from Algiers at large steel works imported 10,000 tuns of ore from Agiers a
a cost of about $\$ 16$ per tun, because it was, at that time, im possible to procure ores here sufficiently free from phus phorus for use in the manufacture of steel rails. Innumer able efforts have been made to get rid of the phosphorus in the sereral processes through which the iron passes in its manufacture, but these efforts have been but partially suc cessful, and then only in the puddling process, and, conse quently, of no use in the manufacture of Bessemer steol.
Investigations which have been made during the past two or three sear have developed the fact that, by a kind of omeopathic treatment (similia similious curantur), certain substances which themselves give hardness and brittleness to steel may be in part substituted for other ingredients having a similar tendency, to the great improvement of the resulting metal. It has thus been found that, by securing proper relative proportions of carbon, phosphorus, silicon and manganese, a steel of great softness and strength can be obtained, while the same percentage of phosphorus in ordinary steel would have indicated very different properties.
There is no longer much doubt of the fact that manganese exerts upon steel a body giving and toughening influence, as well as a neutralizing effect, on the hardening or cold-shorten ing due to phosphorus. Though these properties of manganese have been blindly suspected for some time, the mutual dependence and, to a certain extent, interchangeability of arbon and phosphorus were not fully appreciated till the success of M. Tessié Du Motay, in producing, with ferro manganese, a good rail steel containing about 0.12 carbon, 0.25 phosphorus, and 0.75 manganese, was fully established The secret of success appears to be in putting into the netal from three quarters to 1 per cent of manganese with out bringing the percentage of carbon above $0 \cdot 16$, while the netal contains the ordinary amounts of phosphorus and sili con, or, say, 0.25 to 0.29 of the former and 0.03 of the latter When the percentage of phosphorus is diminished, that of carbon should be increased, and vice versí, within certain limits. Steel is undoubtedly destined to supplant iron for almost every use where the latter is now adopted. Our iron masters should apply those improvements that will place as in a position to compete successfully in other market than our own. - Engineering and Mining Journal.

IMPROVED WASHING MACHINE

The annexed engraving represents a new washing machine which may be readily attached to any kind of tub. It is operated by passing the clothes between a corrugated roller above and an endless belt, which envelopes smaller rollers, beneath, the upper roller being held in its place and against the garments by stout spiral springs, and rotated by the handle shown.
In the illustration, A is the upper roller, which is faced with sheet metal. In Fig. 2, the arrangement of the small $\left\lvert\, \begin{aligned} & \text { Hare's oxyhydrogen blow pipe! "Properly considered," says }\end{aligned}\right.$ rollers and belt beneath is clearly shown. One of the springs which bold the roller, A, down upon the clothes is represented at B, and the simple screw clamps, by which th device is attached to the tub, need no special description, except to note the fact that they, in common with other metal work of the machine, are strongly constructed of galvanized iron, and are pivoted to the frame portion at C, so as to be adjusted on the circular edge of a tub.
The garments, as they pass between the rollers, are thoroughly rubbed by the upper one, receiving the same scouring as if rubbed by hand upon an ordinary washboard. The springs admit of the upper roller adjusting itself to any thickness which may be passed beneath it.

This machine is also claimed to wash the lightest fabrics with much less wear than is produced in washing by hand.
Patented February 24, 1874. For fur ther particulars relative to sale of State, county, and town rights, address Mr James Taylor, P. O. Box 44, Otter River, Mass., or Box 577, Stamford, Cons

WOLFF'S BUTTON HOLE CUTTER.
The devive represented in the illustration is a handy little instrument which cuts a slit for a buttonhole and, at the same time, punches the rounded end of the same. The handle resembles an ordinary pliers, and at the ends of the jaws two curved cutting blades, A, are attached. Just inside the blades, and on one jaw, is a circular head, attached as shown, and carrying several punches of various sizes. On the other jaw is a rotary anvil, B, corresponding in its sides to the shapes of the punches. The length of the button hole depends upon the distance to which the curved blades hole depends upon the distance to which the curved blades
are permitted to pass each other. The length is regulated are permitted to pass each other. The length is regulated
by the punches being adjusted in their head, so that, if one of them is brought opposite to the anvil, it will strike the

same and prevent the cutting blades passing beyond the desired distance. In one of the jaws is secured a set screw, C, which is so adjusted that it keeps the punches from striking too hard against the anvil. When buttonholes are to be made without eyelets, the punches are turned out of the way, and the length of the cuts determined by the screw, C. Both the cutting blades and the punches can be easily removed for sharpening or replacing them by new ones. Patented April 7, 1874, to Mr. Raphael Wolff, of New York city

New Process of Dental Surgery

Mr. Napier, an English dentist, announces what he con siders to be something new in dental surgery, especially in a case where the teeth were extremely sensitive, and it became necessary to file them down for the purpose of introducing artificial teeth on the stumps. For the sake of avoiding pain in the operation as far as pos sible, ether spray was first made use of in reducing the sensibility of thate of in of cotton, dipped in ether, and laid first on the teeth and then on the instrument, being found to answer a still better purpose. While engaged in this operation it occurred to Mr. Napier to avoid the usual practice of dentists (of extirpating the nerve), with which object he took a bit of hard wood, dipping it in nitric acid, and with this cauterizing the exposed portion of the nerve in each tooth successively. He then filed the teeth down to the level of the gums without producing any pain whatever. He found that in this way the stump of the tooth remained perfectly healthy, giving no pain of any kind; and the subsequent experiences of the patients were of the most satisfactory character.

Professor Sergios Kern, of St. Petersburgh, finds that the explosive properties of nitro-glycerin nearly disappear if the substance is highly heated.

TAYLOR'S WASHING MACHINE

oxyhydrogen blowpipe has also led Siemens, in our time, to the invention of the regenerative gas furnace, by which, as Hare says in his memoir, 'to avoid these evils,' that is, the contact of solid fuel and the loss of heat consequent on its conversion into gas, it was thought desirable that means might be discovered of clothing the upper surface of any body which might be subjected to this species of operation with some burning matter, of which the heat might be equal to that of the incandescent carbon with which the lower surface might be in contact ; or by which bodies might be exposed on solid supports to a temperature equal or superior to that of the porous charcoal uniting with oxygen. It soon occurred that these desiderata might be attained by means of flame supported by the hydrogen and oxygen gas. In the Siemens furnace the objects to be heated are sustained on a solid support in an atmosphere of burning gas, the oxygen of the atmosphere arriving by one inlet, and the combustible gases by another, and the two uniting in a true Hare's blowpipe flame to do their work. The necessary contrivances for the alteration of the flow of gas and air through the regenerative cellular flues of firebrick are evidences of a high degree of inventive skill, applied to the solution of a problem which, in its essential features, was clearly set forth by the American philosopher, Robprt Hare, in 1802."-Engineering.

Electrical Colored Shadows.

Six Grove's cells were connected with one of Ladd's large induction coils, and the secondary current, condensed by two large Leyden jars, was sent, in the usual way, between two pairs of metallic electrodes, in order to examine their spark pectra.
Two of the electrodes were of platinum: these may be called Two
pair A.
Of the other pair, B, one electrode was of platinum, and eother of the metal to be examined
Place a piece of white paper equidistant from, and on one side of, the two sparks. Hold the finger so that a shadow of it maybe cast by each spark. The two shadows will be seen to be most beautifully tinted with different delicate colors; varying according to the metal inserted in B.
It will be seen that the shadow thrown by A is lighted by B, and is seen on a ground jointly illuminated by $A \cdot$ and B while B's shadow, lighted by A, is soon on the same common the whistle.

HOPKINS' LOW WATER INDICATOR.

colored ground as before. Without these considerations, it might have been supposed that the shadow thrown by B, and lighted by the unchanging spark A, would itsel have remained unaltered. "I saw it of the colors, pink, light pink, dim pink, light green, nearly white, and yel low green; corresponding to the introduction into B of Bi Ag, $\mathrm{Sn}, \mathrm{In}, \mathrm{Al}$, and Mg respectively."-C. T. L. Whitmell, in Nature.

IMPROVED LOW WATER INDICATOR
The invention illustrated in the annexed engraving is a new low water indicator which, it is claimed, can never get new low water indicator which, it is claimed, can never get
out of order so as not to give an alarm. The foaming of the boiler, it is stated, in no wise prevents the proper action the boiler, it is stated, in no wise prevents the proper action of the device. The apparatus is, besides, simple in construc tion and possessed of various other advantages which wil be readily understood from our engraving and the following escription.
indicator as attached to the boiler and Fig. 2, the mechanism of its upper portion. A is an expansion tube connected to the genera tor at the alarm line, and provided at its up per extremity with a valve, B, the stem of which runs through a spring, C, Fig. 2. One end of the latter s fired, and across sloti its forward portion a bar D is placed. E i its forward portion a bar, D, is placed. E a detent or right angled lever, pivoted a shown in Fig , with the rod, F. The long arm extends up ward through the slot in the spring, and is notched in such a way that, when the expan sion tube, A, is cold, the crossbar, D, rests in the recess, thus retaining the spring, C, when depressed, and consequently holding the valve in its seat. To the lower part of the lever E, is fixed a spring catch, G, which has its nib a very small distance below the notch in said lever. Rod, F , is fixed in a casting in the lower end of the expansion tube, and a H is a whistle.

The operation of the device is as follows When the water is at its proper hight, the tube, A, remains cool, the crossbar, D, rest in the notch of the lever, and the spring catch, G, rests against the side of the bar On the water in the boiler falling below the alarm line, the water in the expansion tube runs out and steam takes it place, expanding said tube which, in lengthening, raises the ever, E. The short arm of the latter being held by the rod, F

the long arm is thrown over, the notch slips off the crossbar, the spring raises the valve, and the steam, escaping, sounds

To stop the alarm it is only necessary to depress the spring by means of its handle. The catch, G, the engages with the crossbar, D , and, retaining the spring, holds the valve to its seat. When the water in the boiler again reaches th proper level, the tube, A, quickly cools, and in contracting throws the lever, E, over, so that the notch engages with the crossbar At the same time the catch, G, is displaced and the spring is thus allowed to rise suffi ciently to admit of the engagement just men tioned. If it is desired to blow dry steam through the whistie, the upper end of the pipe, A, can be plugged and steam taken through a separate pipe below the valve. The device may also be placed in a horizontal position, and the whistle dispensed with, a nozzle being used in its place. The appa ratus then becomes an automatic gage cock. Patented November 10, 1874. For indicators or for fur ther information address Messrs. Hopkins \& Tytler, manu facturers, Albion, N. Y.

The meeting of the British Social Science Association will be held at Brighton in October nest, and there will be an exhibition of appliances and apperatus relating to the sanitary and educational systoms.

NOVEL DEVICE FOR PREVENTING RUNAWAY HORSES. The annexed engraving, for the description of which we are indebted to the Pesth Wochenblatt für Land und Forstwirthschaft, represents an ingeniously simple device for checking runaway horses. A A are stout rings, of suff ciently large diameter to slip over the fore legs of the animal and close up to the body. They are held in the last mentioned position by lines, B, which lead up through leaders on the saddle, and are joined to a single ring whichslips over a hook, C, on the dashboard. Thus arranged the de vice forms no impediment to the horses' motion, as the rings, though connected togethe between the legs, are joined by a sufficiently long bond. In case of the animals' running away, however the driver has merely to lift the ring for the hook C, and allow the larg rings A to descend le, ann on the lege ings, A, to descend his of tride. it be and horse's stride. If it be necessary to bring them to a sudden halt, to avoid immediate danger, the supporting lines are let go altogether. The rings then fall to the horses' feet, restricting their further progress, and perhaps throwing the animals. This would probably result in injury to the latter, but it would not be employed except to prevent instant accident to the occupants of the vehicle; and it is possible their lives would be more imperiled by the sudden stoppage than if the ppliance were not used, But the idea is novel and some one, no doubt, considers it practica. ble, and perhaps it is.

The Tallest Chimney in the World.
The tallest chimney in the world is the Townsend chimney, Glasgow, Scotland. It was built by Robert Corbett, of Glasgow, for Joseph Townsend, of Crawford Street Chemical Works. The total hight from foundation to top of coping is 468 feet, and from ground line to summit, 454 feet; the outside diameter at foundation being 50 feet, at ground surface 32 feet, and at top of coping 12 feet 8 inches. The number of bricks used in the erection were as follows: Common bricks in chimney 1,142,532; composition and fire bricks for in side cone, 157,468; common bricks for flues, etc., 100,000 ; total, $1,400,000$. The weight of etc., 100,000 ; total, $1,400,000$. The weight of
bricks at 5 tuns per 1,000 is equal to 7,000 bricks at 5 tuns per 1,000 is equal to 7,000
tuns. When within 5 feet of completion, the tuns. When within 5 feet of completion, the chimney was struck by a gale frcm the northeast, which
caused it to sway 7 feet 9 inches off the perpendicular, caused it to sway 7 feet 9 inches off the perpendicular, and it
stood several feet less in hight than before stood several feet less in hight than before it swayed. To
bring back the shaft to its true vertical position " back " had to be resorted to, which was perforined by Mr Townsend's own men, ten working in relays, four at a time sawing, and two pouring water on the saws. The work was done from the inside on the original scaffolding, which was not been removed. Holes were first punched through the sides to admit the saws, which were wrought alternately in each direcion at the same joint on the side opposite the inclination, so that the chimney was brought back in a slightly oscillating manner. This was done at twelve differant hights, and the men discovered when they were gaining by the saws getting tightened by the superincumbent weight.

THE LITILE DODO OR DODLET.

A great many, very interesting additions have recently been made to the collection belonging to the Zoological So ciety of London, and are now to be seen in their renowned gardens in the Regent's Park. Among them is a bird variously styled the didunculus, dod. let, little dodo, and toothed billed pigeon, the scientific name for which is the'diduncu. lus strigirostris, which was brought from the Samoan Is lands. The bird was not un lanown in Furope a specime known in Europe, a specimen having been sent thither in 1864; and from its size, dark plumage, and terrestrial hab its, it might be mistsken, at a little distance, for some species of moorhen, but a closer in. spection of its structure con. vinces one of its relationship to the pigeons.

The head and upper portion of the neck and breast, says the London Field, to which we are indebted for the annexed engraving, are of dark slaty green color, the primaries the same, but somewhat paler; the rest of the plumage chocolate brown; the face and throat bare, and of a dark flesh colo in the young bird, approach ing to orange in the adult. The bill, which is remarkably deep, and with the upper mandible dentated, is orange yellow in the young bird, and red in the adult. The legs and feet are
also red. In the contnar of the bill, the form and pnsition of the nostrils, and several other characters, the didunculus differs from any other living species at present known; and, although a smaller bird in size, it approximates nost nearly in all its characters, to the extinct dodo, and, like it, com bines the character of a rapacious bird with that of the harm less pigeon.
It will be seen that the mandibles of the didunculus are powerful in structure, yet, according to Dr . Bennett, the beak is never used as an offensive weapon; for when the hand is

DEVICE FOR CEECKING RUNAWAY HORSFS

Preventable Diseases

It being conceded by every sensible person that good health is paramount to all other human blessings, we take frequent occasion to transfer to our columns (from reliable sources) practical information tending to promote and preserve the lessing so essential to all. To The Herald of Health, for April, we are indebted for the following:
" The range of what are called preventable diseases is now known to be very wide, and all such diseases it should be the first duty of man to prevent. Much of this-that for which I especially wish to ask attention-is no only preventable disease, but is disease that is called into existence only by the act or by the neglect of man ; and it is not too much to say (after the thorough investigations of the sub ject that have been made by sanitary authori ties) thit there has never been a case of ty phoid fever that was not almost directly caused by the ignorance or by the criminal neglect of some person whose duty it should bave been to prevent it. Such disease never comes with out cause; and its cause is never anything else than organic poisoning, arising from organic decaying matter or from the spread of the in fection directly from a patient suffering from the disease.

Typhoid fever has many names, all of which are suggestive of its origin. It is called "drain fever," "sewer fever," "cesspool fever," ' foul well fever," "nightsoil fever," etc.; and it is never caused except by the introduction into the system of the germ of the disease-whic can originate only through the operation of neglected organic wastes, or by communica tion through the lungs or stomach by means of foul air or foul water, or from germs arising from the persons or from the excreta of ty phoid pattents. So far as its contagion is con cerned, ample ventilation of the sick room and the immediate removal or disinfection of the feces are ample preventives. It is not contagious, as smallpox is, but is spread by the action of germs which infect the locality of the patient, and extend more or less widely ac cording to the precautions used to confine it There is not necessarily the least danger that the disease will attack even the constant at tendant of the patient, if proper care is taken. With the householder himself rests the entire responsibility of the origin of every first case placed in the cage, or the bird is seized for removal from one \mid breaking out in his household. This is a certain and tho cage to another, it never attempts to bite its captor, but, on roughly well established fact, and there attaches tohim the the contrary, is so timid that, after fluttering about or running into a dark corner of the cage in its efforts to escape, it soon becomes subdued, and is easily taken. This statement, however, requires some modification; for, according to the Rev. S. J. Whitmee, a resident at Samoa, who has kept the bird in confinement there, it is sometimes "exceedingly sabage When eny oreaches the cage" he says, "i rage. When any approses and rafles its fith "he rage, and trie o bite. If it gets hold of one's finger," he adds, "I know
from experience that it gives a severe gripe."
In size, the bird may be compared to a large pigeon, which resembles in some of its habits, and in the nature of its food. Like some of the Australian pigeons, it flies with a loud noise, which is especially noticeable as the bird rises on the wing. Like the ground pigeon, it nests or roosts on bushes or stumps of trees, and feeds on the ground. Its food consists of plantains and the fruit of the soi, a kind of yam,

THE IITILE DODO (didunculus atriginobins)
oughly well established fact, and there attaches tohim the
full measure of guilt for every such case. This is a respon sibility for which the community should hold him strictly accountable. It would really be as correct to ascribe a red handed murder to Providence as to attempt in this way to console ourselves for a fatal attack of typhoid fever. We are taught that we shall not cleave our child's skull with an x, and that if we do, death will surely result; but we are no less absolutely taught that we shall not poison our child' blood with the foul emanations of our house draing and ith the the We may ignoth lon the ame fatal result follow. We may ignorantly load the wa ter with which our families are supplied with lead poison,
and so be without the guilt of intention; or we may ignorantly poison our wells by the infiltration of infected organic matter, and in this case, as in the other, be acquitted of the charge of criminal intent. But in these days, when so much has been published concerning the origin of diseases of this class, however free we may be of all criminal intent the serious charge of crimina neglect must surely lie at our door.
It may be assumed, without hesitation, that, whenever a pronounced case of typhoid breaks out in an isolated coun. try house, or when any form of low fever occurs, though it may fail to assume a distinct typhoid character, there is in that house, or about it, or in eonnection with its supply of drinking water, some accumulation of neglected filth, some pile of rotten vegetables in the cllar some overflow from a barnyard, some spot of earth barnyal with the slops of the saturated with form of kitchen or some other form of impurity, to which the origin of the disease may be distinct ly traced. The spread of typhoid is very generally occasioned by germs contained in the bowel discharge of fever patients; but the disease is constantly originating itself where no such cause exists, and every first attack is a plain indication that either at homo or in sowe house at which the patient has visited, one or two things has occurred: (1) there bas bean an exhalation of poi.
er, $c \mathrm{k}$, soldered to the ziac disk, we obtain a galvanic cus
sonous organic gases from a kitchen yard, from a neglected tered the lungs ane other source of bad air, whe disease or (2) either in the food or in the drink of the patient these germs, originating in the same organic putrescence, have found their way to the stomach. In either case the blood is attycked; the subject may have been sufficiently robust and vigorous, or sufficiently unsusceptible to infection, to have avoided a serious or fatal illness; but in every instance the danger has been incurred, and, when incurred, the risk must be the same as in taking any other form of slow poison.
This is not theory, but simply a well established fact, demonstrated by long, careful, and frequently repeated investigation. The precise character of typhoid infection and the exact manner of operation when introduced into the blood, are not known; but that it always originates in the way described, and that it may invariably be prevented by This being the case, it lies perfectly within the province of every farmer (and if the farmer will not attend to such matters of his own accord, his wife has a way of urging him matters of his own accord, his wife has a way of urging him
into it) to remove, while it is yet time, any source of infecinto it) to remove, while it is yet time, any source of infec-
tion to which his house may be liable. Vegetables in any considerable amount should not be kept in the house cellar, considerable amount should not be kept in the house cellar,
and at least once a week the floor of the cellar should be swept and every shred of waste vegetables removed. Even when this is done, the cellar should be ventilated by a window or other small opening toward the quarter least exposed to cold winds (and in summer on every side); the privy, if a privy is used, should be well away from the house, and especially far from the well, unless its contents are received in a tight box and entirely absorbed by dry earth or ashes, and even then frequently removed; the chamber slops of the house should never, under any circumstances, be thrown inthe privy vault, nor into a porous cesspool, from which they can leach into the ground and through the ground for a of the house. The same disposal of the liquid wastes of the of the house. The same disposal of the liquid wastes of the
kitchen is desirable, but not so absolutely important. It is, kitchen is desirable, but not so absolutely important. It is,
however, important that this should be led by an impermeahowever, important that this should be led by an impermea-
ble drain to a point well away from the house and from the ble drain to a point well away from the house and from the
well; swill and all manner of nondescript refuse material, such as is sloughed off by every household in the ordinary course of its living, should be removed at least daily from the near vicinity of the dwelling, and the vessels in which it accumulates should be frequently cleansed and aired; manure heaps should not be left to ferment and send off their exhalations at a point whence frequent winds waft them toward and into the dwelling, nor should the barnyard be allowed to drain (either over the surface or through a porous so l) to ward the house or well. If all these precautions are taken, the well will be tolerably safe, and in most cases absolutely safe; but if there is any doubt on the point. then let no well water be drunk except after boiling; or the drink
ing water of the house may be taken entirely from a filtering water of the house may be taken entirely from a filter-
ing cistern, of which the filtering bed is sufficient to hold back all organic matter
If all these points are well attended to, and if the ordinary rules of cleanliness be observed in the household, the members of the family may be considered as safe against attacks of typhoid fever.

THE MEIDINGER BATTERY.

The Meidinger element is a modification of the Daniel battery; but it has no porous cell, and possesses greater durability and constancy of current. It consists, as shown in the engraving, of a glass vessel A A, 8 inches high and 5 inches placed a small glass vessel, $d d$, of half the dimensions of the larger glass, cemented in with rosin. A zinc disk, Z Z , which is supported upon a ledge of the outside vessel, surrounds the smaller glass. The inside wall of the smaller glass, $d d$, covered by a sheet of copper nsulated riveted. The mouth of the vessel is closed by a wooden or tin plate having an opening in the center for the reception of a glass cylinder, $h, 1_{2} \frac{1}{2}$ inches in diameter and 8 inches bigh, narrowing towards the lower end, which is rounded and in which a hole is made. This tube is sunk to the center of the small glass, $d d$. The
entire vessel is filled up to the zinc disk, about $1 \frac{1}{y}$ inches beentire vessel is filled up to the zinc disk, about $1 \frac{1}{2}$ inches be--
low the upper brim, with a diluted solution of Epsom salts. The glass cylinder, k. in place of which a glass funnel can be used, is filled with crystals of sulphate of copper, forming a concentrated solution, which, being a heavier fluid, sinks down through the small hole in the glass tube, and fills the small glass, $d d$, to the center.
There is very little diffusion of the copper solution upwards, or out of the litule glass vessel, $d d$, to the zinc disk,
Z, even when the battery is not in operation; so that, after Z, even when the battery is not in operation; so that, after of being affected by the copper. The battery is therefore much superior to the ordinary Daniell battery, which, when the circuit is open, produces a great diffusiou of the sulphate of copper through the porous cup.
The zinc is usually amalgamated on its inner side, enabling its impurities to be easily removed, which would otherwise form a hard crust. If the copper wire, $g f$, which is riveted to the copper sheet, e, is connerted with a small strip of cop.
rent having an electromotive force equal to that of a Daniel cell, and it remains constant as long as there is sulphate of copper in the glass tube, h; and the zinc, Z , is not dissolved. During the activity of the battery, in fact, the solution o sulphate of copper increases a little in quantity, in conse quence of a diffusion which is caused by the overflowing (in e smaller glass, d d) of the heavier sulphate of zinc solution ormed by the dissolution of zinc. By the action of the cur ent, the greater part of the copper is deposited on the uppe alf of the copper plate. A trace of copper, however, appears upon the zinc, but frequentiy this is after several weeks
operation. The duration of the battery depends on the size operation. The duration of the battery depends on the size
of the glass vessel. A battery of the size described (according to Meidinger's statement) ought to be taken to pieces and the solution of Epsom salt and sulphate of zinc drawn off, and pure water put in it as soon as it has consumed 3 lbs . of sul phate of copper, which, however, may take a year.
The resistance of this cell considerably exceeds that of the Daniell battery with porous cells; but for a line battery, where the resistance in the wire is rery considerable, this is of no special importance. Meidinger recommends, for main lines, cells 5 inches high and 3 inches wide; while the bat tery of the size depicted in our engraving is intended for local use and for line batteries of small resistance. As a local battery for the Morse telegraph, it is best to use six cells, two of which are connected with like poles, so that we have practically, three elements with enlarged surface and conductivity.
Generally, in charging the Meidinger element, a solution of 1 part Epsom salts to 4 or 5 parts of water may be used. In proportion to the activity of the battery and the consump tion of the sulphate of copper, fresh crystals of this salt should be added to the contents of the glass funnel. But when the surface of the fluid has sunk by evaporation, soft water only need be added to the glass funnel. An improvement han been obtained in this element by having the funnel-shaped sulphate of copper vessel entirely closed at the top. After the jar, h, has been charged with crystals of sulphate of copper, a solution of Epsom salts (sulphate of magnesia) is added thereto.

The Meidinger battery is valuable wherever long dura on and a current of moderate but constant strength is re quired, and especially for operating the Morse telegraph, electrical clocks, hotel telegraphs, and electric bells. The chief condition for its successful use is that it shall not be shaken, as shaking causes a mixture of the fluids. and in this way destroys its action and the constancy of the current. Its faults consist in the liability that the tube, h, may be filled up with sulphate of copper(either from impurities of the salt or from precipitation of metallic copper) or crystals of sulphate of zinc, so that the action of the element ceases; and partly because the flow of the solution of sulphate of copper from the tube to the lower edge of the zinc cylinder rises, tan hen, at the least diffusion, the sulphate of copper at is decomposed by the zinc, a superfluous quantity of sulphate uf zinc is formed in the fluid, and metallic copper is precipiuf zinc is formed in the fluid, and metallic copper is precipi-
taved in the form of a brown, spongy powder upon the zinc cylinder. This battery is extensively used upon the Austrian cylinder. This
telegraph lines.

Useful Heclpes for the Shop, the Household,

 and the Farm.Beef bones, boiled in water for some hours with rock salt and a little alum, yield a size which can be used in the pre paration of cotton and silk goods.
The clatter and risk of glass in carringe windows can be prevented by placing,
ece of india rubber
Unless the mouth
Unless the mouth is frequently and carefully cleansed, it cause decay of the teeth cause decay of the teeth. Soap is the best material for pre renting the development of the fungi and for neutralizing
the acid. Precipitated cbalk mixed with the soap assists the acid. Precipitat
The following practical hints on ballooning are published by Donaldson the aeronant, in a little paper edited by him and named the Aerial. The lifting strain of a balloon is principally on the net. If a balloon will stand inflation, it is safe in mid-air. In winter, the atmosphere is warmer one mile above the clouds than it is at the earth's surface. The weight of a balloon to carry one man, including net and basket, should not exceed 80 lbs. A cotton balloon will last for about sixty ascensions. A balloon thirty feet in diameter undergoes a strain of $1 \ddagger$ lbs. to the square foot of surface cas, which at the earth fills the bag only half full, will, at an elevation of $3 \frac{1}{2}$ miles, expand so as to fill it completely. One poor light is the best for aerostatics. Kites can be used to steer balloons by sending them up or lowering them into currents of air traveling in different directions from that in which the balloon is sailing.
To make green gold, melt together nineteen grains pure gold and five grains pure silver. The metal thus prepared has a beautiful green shade.
The following recipes for metals resembling gold are said to produce a metal which will so nearly approximate the genuine as almost to defy detection without a resort to thorough tests: Fuse, together with saltpeter, sal ammoniac, and powdered charcoal, 4 parts platinum, $2 \frac{1}{2}$ parts pure copper 1 part pure zinc, 2 parts block tin, and $1 \frac{1}{2}$ parts pure lead. Another good recipe calls for two parts platinum, 1 part siler, and 3 parts copper.
Cement for sealing fruit cans is made of resin one pound,
talllow one ounce.

DEOIBIONS OF THE COURTS.

United states Olrcuit Coart-o-District of New
 c. poorairis equits.-Beiure Nix uli, J. -Decided Mas, 1874.3]

 and
\qquad
ond
\qquad

new boozs and pobicactions.

phia, Pa. the commencement of the year 1870 , Mr. Chllds, pablisher of the dally Phethadelphta Ledger, Issued an almanac whith contalined not only the calendar and a grest deal of statistical information of a local interest, bu
aiso several pages of practical household rectpes, and other information o general value. One hundred thousand coples were printed and presented to the subscribers of the Ledger in that jear. The firstissue proving ao accept able as a book of reference, Mr. Childs was induced to continue the publication and gratultous distribution among tie Ledger"s patrons, and each successive year has the work improved. By the favor of the pubisher, w make a handsome volume of 350 pases of very valuable information, on both local an
other work.
Leffel's Milling and mbchanical News. Fifty cents per annum. James Leffel \& Co., Springfield, Ohio.
To permons interested in milling machinery or water power, this paper
wrued each month, pessessea espectal interest. The editor is an admirer o isuued each month, possesses especial interest. The editor is an admirer o
the Scientific American, and in his April number promulgates the fact as follows: "It is a matter of just congratulation to Americans that, what ever may be the assumed superiority of European standards in art and ilterature, this country has at least one sclentifc journal which so signally eclipses any forelgn publication of the kInd that a comparison can scarcely
be made. We refer, of course, to the Scirntific Ayrrican, published by be made. We refer, of course, to the Scientipic Aymrican, published by
Mesers. Munn \& Co. 37 Park Row, New York city. Besides beling a recog Mesers. Munn \& Co. 37 Parti Row, New rark of infornation in the whole domaln of practical sclence, it is faulteess in its appearance, and its illustra tlons are works of art. Its subscription price is $\$ 3.20$ per annum, poatage prepaid, 'and the immense circulation it hat
cing intelligence of the A mertcan people.

Ornamental Debigns for Fret Work, Fanoy Cariting, and
Home Decohations. Price 60 cents. New York city : Henry
Homi Decorations. Price 60 cents. New York city : Henry
T. Williams, 46 Beekman street. This book contains a very raried and extensive assortment of original designs, and will be found useful by the numerous workers with the band or
iIg saw. Our correspondence suows that many of our readers devote thelr Hig saw. Our correspondence shows that many of our readers devote their
spare hours to this occupation, which 18 a pleasing manner of passing the
time, and occasionally a source of proft, as well as a means of adding to the spare hours
time, and occastonally a source of proft, as well as a means of adding to the
interior decoration of a home. To their attention, we commend the numeThe Fireside Astronomer, a Plain and Famillar Description of All the Most Important Facts relatlog to the Heavenly By S. N. Manning, A.M. Kankakee, III.: Times Office This unpretending little pamphlet deserves to be widels circulated, for it
containg a very clear and succluct esplanation of the general plan of the contatns a very clear and succluct explanation of the general plan of the
sidereal universe and of the sclence of astronoms by whith its laws have
 en throughout in a simple and clear style, which lacks nothing in precision
or accuracs. We cannot expect that our tyros in the subilme selence will or accurace. We cannot expect that our
tind a book better sulted to thetr needs.
papers on the tails or Cobiets, and on the Loss of hight in
its Transmission thhough Space. By Heary M. Parkhurst, New York city:
Ths is a reprint of a very luteresting paper read by the author at the
Hartford meeting of the American Ausoclation for the Advancement of Hartford meeting of th
Sclence, in August last.
Notes on Explosivis. By Walter N. Hill, S.B., Chemist, L'. S. Torpedo Station, Newport, K. I This pamphlet is a useful and compendious account of the constitution,
action, and effecta or the vartuos explosives now in use in engineering operations and in wariure. The fiformation in it has never, we belleve, been Lecture on the: Whitehead Torpedo. By Lieut. F. M. Barber, L. S. N., Torpedo Station, Newport, R. I.

A readable actount, historical and descriptive, ur an englne of debtuc. tion which now occupley the atten
important part in future wartiare.
a Practichl Treatise on Fhiution of Aili in Minfs. By the late J. J. Atkinson, Government Inspector of Mines for the
Counts of Durham, England. Price ©N cents. New York County of Durham, lingland. Price tw oents. New
cits $: ~ D . ~ V a n ~ N o s t r a n d, ~$
>3
Murray and 27 Warren streets. this litite bouk throws wueh ught on a subject little noticed in pupular treatises on mining engincering: and it desorves to be attentivety read, for
it slows how reandly the whole system of rentilation of a mine mas be disturbed, and lts ettcleacy destroy ed, by the very currentsintended to ensure remerocentic Cival (Route of P

Canal (Route of Paya). By L. Lacharne.
The author or this work desires to call pablic attention to the Pass of
Paya as a route for the much discuesed ship canal between the Atlantlc and Paclicic Oceann. He states that the Pass has al ways been followed by the
1 ndians crossing the Isthmus, and clains, with apparent reason, that, by follo A a
The dentin. Scienge and Quarterly Art Journal. Conducted by In. A. P. Merri山. Volume I, No. 1. One Dollar a yoar.
vew York city : E. Richards \& Co. New York city : E. Richards \& Co.
Thls new-comer appears to be well and carefully edited, and Is altogether
a promising magazine for the use of the dental profession.
Journey in Honduras and Jotrings by the Way. By R. G
Huston, C.E., Honduras and Interoceanic Railway. Price 50
cents. Cincinnati, Ohio: Robert Clarke \& Co
A pleasant account of a country which attracts a great deal
iust now. but the physical features of which are little known.
Tife Grahaimte Abphalt Pavement on fifth afenue, new
York City. New York city : Francis and Loutrel, 45 Maiden Lane.
Mr. J. L. Graham invites public attention to this pamphlet, in which the facts as to the durabillty and excellence of his system and material for par-
ing are duly set forth and verifled by testimonials. nnual Report of the Chief Engineer of the Water Depart-
ment of Philadelphia, Pa., for 1874 . hlogle of the Officers and Students of the School of Ceribner'y Monthly for May contalns the frst illustrated and complete description of the new opera house in Paris which we have seen published
on this side of the Atlantitc. There 1s, besides, an electro-mechanical on this side of the Atlantlic. There 18, besides, an electro-mechanical
romance, which tells how two lorers, one a rallroad engineer and the other a telegraph operator, utllized an abandoned wire to make a clicult which the
passing locomotive closed. and so rang a bell in the operator's oflice, thus warning her of the approach of her John's engine. This neat little contrivance, while a special train full of rallway magnates is standing at the depot
gives unexpected warning of the coming of a llghtning express. The young lady rushes frantically up the line just in time to stop the approaching tralu and arrest a horrible accident-and of course, in the sequael, she and her in-
and
tended are bountifully rewarded. It 18 a pretty little story, charmingly told, and, besides, convers a pessible hint for an invention. The rest of the papers are of the usual standard of excellence, and the illustrations plent1-
ful and good. Jules Verne's ' Mysterious Ieland'" is continued, and there ts a valuable illustrated article on "Drainage in Holland." Scribner \& Co. Publishers, il3 Broadway, New York. W1 a sear.
The Eclectic Magazine for May ofiers a well varied and excellent table
of contents, selected from the foremost of contemporary periodicals of contents, selected from the foremost of contemporary periodicals. Pro-
fessor Huxley's "Results of the Challenger Expedition" 19 given in full.
The Professor arrives at the conclusion that " all the chief kuown constitThe Professor arrives at the conclusion that " all the chlef kuown constlt-
uents of the crust of the earth may have formed Ilving bodies; that they may be the ash of protoplasm, and consequently that the time during which ufe has been active on the globe mar be indefinitely greater than the pertod
the commencement of which is marked by the oldest known rocks, whethe fossiliferous or unfossilliferous." This paper will repay careful perusal, a Will Indeed the other sclentinc essays, notably the " "Lmimts of Sclence," a nd
the $"$ Reproduction of Organisms," with which the present number is rich. Thomas Carlyle's " "Early Eings of Norway," and Jullan Hawthorne's " stone and Plaster'’ are continued; and there are the usual serial and othar stories
and editorial summaries. E. R. Pelton, Publigher, 108 Fulton strent, New

[^0]

Improved Ore separator

Thomas B. McConaughey, Newark, Del.-In using the machine, Fater is admitted at the upper forward end of a wash trough, and the ore is fed in at its lower rear end. The ore is moved through
the channels of the trough against the stream of water by shovels and is pushed by said shovels from the forward end of the said trough. The ore falls upon the screen, and the fine ore passes through the holes. The coarser ore and the rubbish are carried
across the screen by its motion, and fall upon the apron of the carrier. The coarser stones and rubbish are removed by hand from the carrier apron as the stream of ore is being carrled forward, and the remainder falls from the carrier into a receiver.

Improved Loom shuttle.
Jumes M. Peckham, Fall River, Mass.-This improvement consists in a metallic holder for the tension cloth and grooves cut in the
shuttle from the shuttle opening to the eye recess. These groove allow the holder containing the tension cloth to be shoved in to hold the tension cloth in the proper position. The holder is made of a single piece of sheet metal having two tongues doubled over on the
plate. The cloth is slipped in between the plate and the tongues. plate. The cloth is slipped in between the plate and the tongues.
The holder is alipped into the grooves, and the thread is passed over The holder is alipped into the grooves, and the
the cloth, which affords the necessary tension.

Improved Laboratory Gas Burner.
Charlew D. Cheney, Canandaigua, N. Y.-The base is of concavoconvex form, having a hollow center extendig down below its pipe, and delivers it in a small jet into the center of the burner tube, entering through an aperture in the banging center. It is provided with a dovetailed lug, which fits a corresponding noteh, the form of the notch being such as not to prevent sllding the tube endwise sutticiently to release tise lug. A valve is made to close
over the end of the center by means of the rod to which the valve over the end of the center by means of the rod to which the valve
is attached, which rod extends up through the base, with the"lever is attached, which rod extends up through the base, with the, lever
on its upper end. This lever is moved back and forth between on its upper end. This lever is moved back and forth bet
stops, and the extent or size of the flame is regulated thereby.

Improved Oller.

Inaad Levy, Ellaville, Fla.-This oiler is so constructed that it may be tirst used for blowing off the dust, shavings, etc., from the places where the oil is to be applied, and afterwand may be used for applying the oil. It is made in two parts-one made of eheet metal, for
the oil, and the other made of india rubber, for the air-said parts the oil, and the other made of india rubber, for the air-said parts
belng separated by a division plate, and each part being provided betng separated by a
with its own nozzle.

Improved Bench Plane.

John E. Norwood, Boston, Mass.-The stock is provided with side
openings, through which the cutting iron, which is made with side openings, through which the cutting iron, which is made with sid
extensions, is permitted to pass out flush with the outside. Th outting iron is rigidly fastened and adjusted, and allows of the use of the plane for cutting rabbets, or as a block plane, for truing up miter joints or cutting across the ends of the wood.

mproved comb.

Lias Brown, Wappinger's Falls, N. Y.-This is a neat and oonve nient comb for holding the ringlets or curls at the back of the head and preventing their falling forward: and it consists of two sym metrically arranged combs with curved connecting arms,
pivoted together, to be introduced sidewise into the balr.

Improved Olothes Wringer
Israel F. Biown, New London, Oonn.-This invention consists of a shaft with anti-friction rollers interposed between the journals of the squeezing rollers and their bearings, so that the journals turn
upen the faces of the rollere, while their shafts turn on the bearings, so as to diminish in large measure the resistance due to the great pressure of the journals on the boxes, and thus enable the
machine to be turned much easier than the wringers usually are.

Improved Vulcanizing Apparatus.
Willam J. Birdsall, Naugatuck, Conn.-The rubber goods are vulanized in a steam-heated chamber, and ane thised in dry hout and

Improved Platen for Lever Presses.
John F. Taylor, Charleston, S. C.-This invention rests in the conoint cotton press, a ad it consists of a stationary part and a mov able part, one part having cylinders and water ways, and the other part having rams or pistons and a cuitable packing. It also consist lateu by forcing water in, and letting the same out from between stationary and movable portions of the said platen.
Improved Steam-Encased Engine Cylinder. James E. Taylor, Westminster, Md.-This invention relates to
certain improvements in steam-encased engine cylinders, and it crtain improvements in steam-encased engine cyme in combina-
consist in the peculiar construction of the steam dome in tion with the steam-encased cylinder, whereby the latter is relieved from the direct pressure of the entire subjacent body of steam, the and the consequent leakage of steam prevented.
Improved Self-Raising Seat for Water
James E. Walter, Baltimore, Md. -This invention relates to certain mprovements in seats for water closets, whereby the same are ren dered self-raising. It consists in two hinges having a common are wound in opposite directions from the middle, the oentral por tions of the spring being secured to the frame work of the basin of oloset, and the two extreme ends of the spring being inserted in holes in the edges of the seat to elevate the same. It consists also
in the combination with the said spring and hinge of a cylindrical protective casing of sheet metal.

Improved Railway Safety Switch.
Edward A. Trapp, Davenport, Iowa.- This invention relates to
certain improvements in railway safety switches, and it consists in a main rail having its bottom flange cub, flared inwardly, and bent ap to form a horizontal guide, in combination with leading tongues, so as to move under the guide formed by the out portion of the main rail. By means of the peculiar construction of the switch, guard rails are dispensed with, the switoh made self-adjusting in one direction, and a contlnuous line of rails always insured to and from the switch.

Improved Cooler for Lard, ete.
Frank C. Pray, New York city.-The essential features of this in vention consist in deviocs whereby the lard is bleached, after hav
ing been cooled, by being separated through the perforations of ng been cooled, by being separated through the perforations of The invention is also intended for cooling milk and any oleaginous matter, and may be seen in operation at the store of the inventor 393 West 12th street, as above.

Improved Piston Packing.

James L. Sherman, Cassville, Wis.-This invention consists in the
construction and arrangementof divided and grooved rings to form the packing of a steam piston rod, and a cup-like device for containing sald rings and recelwing the ateam, which acts on and com

Improved Pen Holder
John Boyd, New York ctty.-This is a flexible connection of the pen to the holder, made by connecting the tubc of the penholder
to the handle by a rubber band at the upper end, aud a spring be to the handle by a rubber band at the upper end, aud and of the tube. This is said to give better results than when the pen is connected
to the lower end of the tube by a spring, so that the axis of motion to the lower end of the tube by a spring, so that the axis of motion
is at the lower end. A further improvement on the penholder in is at the lower end. A further improvement on the penholder in
common use is elfected by placing an eccentric spring tip on the common use is elfected by placing an eccentric spring tip on the
spring, which tills the hollow tube of the penholder. The pen is placed between the tip and the tube, at the smaller diameter of the latter, and bound in its place by turning the tip.

Improved Twine Holder.
Jonathan Hill, Stanhope, N. J.-The twine box contains the ball, the side, around a drum, thence to the guide eye in the ceiling throm which it is to be suspended over the counter. It passes also
from through the guide eye of a trip lever, so that when it is pulled ofl
the ball the tension will lift the lever, and, by swinging the axle support, shift the drum out of gear with the regulating device which is intended to act when the reooil takes place to slow the ac-
tion of the spring. When the twine is pulled off from the drum, it will wind up the spring, to turn the drum back to wind on the slack

Improved Machine for Crushing Oleaginous Seeds Alfred B. Lawther, Chicago, Ill.-This machine has crushing rollby an upright supply pipe, of suitable hight, having a tluted feeding roller and hopper at the top end. The oil seeds are forced through the feed pipe, and compelled to pass through the rollers, which, by the uniformity and power of their- motion, crush the seeds and break the oil cells completely, without reducing any portion to pasty condition, leaving also the husks or bran comparatively
coarse, so that it may be seen in the cake after pressing. The chine, doing are then passed to the muler stones, and producin a greater yield of oil with less power, less labor, and less pressur on the oil-extracting presses.
Improved Chuck for Making Swelled Tenons. Alexander D. Ruff, Owingsville, Ky.-This invention consists of in and a lever, combined with a sliding tool in a revolving chuck, be formed forces the tool, having an irregular edge for makin welled tenons, down against the side to dress off the tenon, by pushing the pin backward as the piece enters the cavlty of th
chuck. The invention also consists of a spring, combined with th sliding tool, the lever,and the pin, so as to push the tool back out of the way of the swelled portion of the tenon when it begins to with draw from the cavity of the chuck, and allow it to pass out withou the swell being cut off.
Improved Ventilating Attachment to Hearths. William S. Winfleld, Cross Plains, Tenn.-This invention consists of a box-shaped attachment, with hinged and concaved lid and cinder basket, set into the floor below the grate, to communicate eithe
with the story below, or by a pipe with the outside air, for supply with the story below, or by a pipe with the outside air, for supply-
ing the required ventilation on the opening of the lid for the ready lng the required ventilat
kindling of the fire, etc.

Improved Tongue Support ror Vehicles.
James MoCarter, Frankfort, Ind.-This is an improved spring support for wagon tongues, by which the jerky action of the tongu and the strain on the horses arising therefrom on the passage of the tent avoided. The invention consists of a \mathbf{U}-shaped piece of spring wire, which carries, at the front part, a tongue-supporting pulley, being bent spirally around side pulleys of the pivot bolt, connect ing tongue, and hounds, and applied with the rear ends equidistan rom the king bolt to the front axle.

Compound Switch for Fire Alarm Telegraphs. Samuel Weeks, New Orleans, La.-This is a compound switch for are alarm telegraphs, for throwing by one movement a series of
switches into circuit. It is composed of a series of upper switc fingers, establishing and breaking circuit of main alarm battery and of a set of lower spring flngers for closing and opening th shaft, and with opposite non-conducting cam extensions. The whol is so arranged that a turn of the crank shaft causes simultaneously the contact of the upper flngers and the disconnecting of the lower,
or the breaking of contact of the upper and the closing of the or the breaking of contact of the upper and the closing of the

Improved Screw-Cutting Die Plate.

Horace Grifing, New Haven, Conn.-This consists of tivo separate dies fitted in a recess in the side of the plate by being boxed there-
to and bolted fast, so that they cun be readily taken off, by removto and bolted fast, so that they cun be readily taken off, by remov-
ing the bolts, for changing and sharpening. The dies are provided ing the bolts, for changing and sharpening. The dies are provided
with slotted holes for the passage of the bolts by which they are astened to the plate, to allow them to be adjusted to suit the size in hollow handles, which are also Jointed near the plate, and the de tachable portions have a socket in the end to receive the projectin shank of the screw when screwing into the portion formed on the plate.
Theodore C. Lawrence, Ladoga, Ind.-This inveution consists of a metallic recessed guide casing, in which the saw runs by means of detachable clamped extension strips, a oentral wooden strip pre-
venting the getting dull of the teeth. Wing-shaped side plates of the casing bear pivoted clamp plates, which may be set to any angle n the supporting wing plates. The clamp plates are provided wit sliding and guided strips for fastening the molding securely by strong clamping screws, to expose it to the saw or connect the co:-
ners. The solid metallic construction of the mitcr tox pro luce ners. The solid metallic construction of the mitcr tox pro luces the permanent and accurate working of
curacies of the variable wooden boxes.

Improved Steam Brake.
Thomas F. Fouts and Elijah Planck, Burlington, Iowa.-This is and cylinder and piston, arranged transversely of the locomotive volving line shaft, which extends along the train from car to car, and winds up the chains which work the brakes. The steam is supplied from the locomotive boiler, with which the engine is connected by a pipe, to admit steam at one end for applying the brake.
Spring3are used to force the piston back. The line shaft is in sections, one for each car, which are coupled by socket couplings

Improved Macbine for Colling Metal Rods. Philander H. Standish, Jefferson City, Mo.-The mandrel consists ont, with an oral tapered point, graduated from the coize of th largest to that of the smallest coil to be made. The bar is fitted in the hollow shatt of the driving wheel, so as to be shifted along it, to
cause the tre cred point to project under the bending wheel more or cause the tir cred point to project under the bending wheel more or less, accor-ing to the size of the coils to be mate. A collar at eac
ond of 1 hollow shaft holds it wherever it may be set, to utilize end of thy hollow shaft holds it wher
the same machine for colls of all sizes.

Fousimess aud wersonal. The Charref for Ineertion under the head is $81 a-$ Inve.

 Lathe Gear Cutters, Wm.P.Hopkins,Lawrence,Ms.

Wanted A responsible party to manuracture

 largely secured our confldence and respect as that of
Geo. P. Rowell \& Co., Avertising Agents, New York. The.r contracts are allways plaln, , intelligltile and specific. They secure the most advantageous rates from publishers secured beyond chance or technicallty, in getting whatalmays that publishers have done as they agreed to.-
Sio.x Clty (Iowa) TImes.]
Assistance wanted to obtain Patents in Canada
and Europe, for an Ironing Machine; one half interest will be assigned. Geo. F. Perrenet, Rockport, Texas. The "Catechism of the Locomotive," a book of
625 pages, 250 engravings, fully describes the theory, con-struction, and management or American Locomotives.
Price, post-pald, 8.50 . Address The Railiroad Gazette, 73 Broadway, New York.
For $13,15,16$ and 18 inch Swing Engine Lathes,
address Star Tool Co., Providence, R. I. Wanted-Machinery for splitting out or riving
Pipe Staves 60 inches long, 3 to 5 inches wide, and 146 Pipe Staves 60 inches long, 3 to 5 inches wide, and 11/
Inch thick, from White Oak Timber, for the New Orleans
market. Address Geo. G. Hughes, Jackson, Tenn. One Barrel Stave Saw and Edger, nearly new, for
Sale Cheap, by S. J. Benedict, East Randolph, N. Y. "Book-Keeping Silmpilited." The Dooble entry

 Mills for Flour \& Feed, White Lead, Colors, Iory
 Models for Inventors.-H. B. Morris, Ithaca,N.Y
 Con, New Orieanat.
$1,2 \& 3$ H.P. Engines. Geo.F.Shedd, Waltham,Ms.

 Millistone Dressing Diamond Machines-Simple,
effective, economical and durable, giving universal satioeffective, economical and durable, giving universal satio-
action. J. Dickinson, 64 Nassau St., New York.
Hand Fire Engines, wft Hand Fire Engines, Lift and Force Pumps for fire
and all other purposes. Addresd Rumsey \& Co., Seneca

 churches, and desirable community for residence. Full Cornice and Ornament Company, Salem, ohlo.
Thomas's Fluid Tannate of Soda never fails to
remove scale from any steam boller; it removes the remove Scale from any steam boller; it removes the
scale-produclng material from all kinds of water; cannot in ju-g Boiler, as it has no effecton iron; saves 20 times its
cost buth in Fuel and repairs of Boller; increases steaming capactry of Boller; has been tested in hundreds of
Boflers; has remored Bushels of Scales in single cases. Price 10 cents per lb., less than $1 / 2$ price of other prepara-
tions, and superior to all otherr. Address orders to N. Spencer Thomas, Elmira, N.

For Tri-nitroglycorin, Mica Blasting Powder, cha Insulated Leading Wires, etc., etc., etc.. result or
seven years' experlence at Hoosac Tunnel, address Geo seven years' experlence at Hoosac
M. Mowbray, North Adams, Mass.
Faught's Patent Round Braided Belting-The
Beat thing out-Manufactured only by C. W.. AAny 301 \&
303 Cherry St., Phlladelpha, Pa, Send for Circular 303 Cherry St., Philadelpha, Pa. Send for Clicular.
Genuine Concord Axles-Brown,Fisherville,N.H Genuine Concord Axles-Brown, Fishervile,N.H.
Price ony $\$ 3.50 .-$ The Tom Thumb Electric
Telegraph. \mathbf{A} compact working Telegraph Apparatus, for sending messages, making magnets, the electric light,
giving alarms, and various other purposes. Can be put in giving alarms, and various other purposes. Can be put in
operation by any lad. Includes battery, key, and wires.
Neatly packed and sent to Neatly packed and sent to all parts of the world on recelpt
of price. F. C. Beach \& Co., $2+6$ Canal St., New York.
The Lester Oll Co., 183 Water St., N.Y., Exclusive
Bend for CIrcular.
Temples and OUcane Draper, Hopedale, Mase

 Hisement. Ad
inthograph, dc.
Spinning Rings of a superior Quality-Whiting-
ville spinning RIng
co., Wruit-can Tools, Ferracute W k's, Bridgton,N. J. Wash Stands, New Styles, Marble Tops, can be
ased in ann ettuation. Prices very low. Send for a cata For best Preases. Diese, and Fruit Can Tools, Blise
willame, cor. of Plymout and Jay, Brooklyn, N. \mathbf{Y}. Mechanical Expert in Patent Cases. T.D. Stetaon For Solid Emery Whe

 A. A. can separate aluminum by the proces

 carden walks by the garden walks by the method described on p. 50 ,vol. 32 .-E. L. S. can silver plate his iron knobs b using the preparation described on p. 187, vol. 30 It would be better to copper them first, see p. 90 ,
vol. 31.-M. J. G. will find directions for bronzing vol. 31.-M. J. G. will find directions for bronzing
on iron on p. 283, vol. 11 , and on brass on the ame page.-J. D. C. can raise water by the device de cipe for a dip for gilding brass on p. 302, vol. 30. H. D. G. can solderiron to iron by the method described on p. 123, vol.30.-E. B. can construct a con tinuous battery by following the directions on pp
315,362 , vol. 31 .-E. C. B., H. M., and others 15, 362, vol. 31.-E. C. B., H. M., and others can ce ment brass lamp fittings to glass by using the pre-
paration described on p. 27 , vol. $30 .-$ M. A. G. can make condensed milk by the method described on . 343, vol. 30.-F. E. W. can remove mildew from
otton cloth by washing with eoap. A recipe for acid dip for castings is given on p. 107, vol. 31.
(1) C. J. M. asks: In burglar alarms, how
is the gas lighted when an alarm is given? A. By friction match, in many kinds of alarms.
(2) C. H.A. asks: 1. What is the meaning of
the word ohm, in electrical science? A. A unit of resistance. 2. I am making the positive element of a Smee's battery (the silver plate) by de-
positing the silver on tin foil. How can I get the foil off the plate? I cannot remove it successfully by melting. What acid will dissolve it without affecting the silver? A. Cover the foil with plumbago before depositing the silver. 3. I have made several Leyden Jars lately, but they do not work properly. The foil was attached to the inside and
the outside of the jars with ordinary flour paste the outside of the jars with osdinary flour paste
The machine (plate 16 inches, 4 rubbers) works ad mizably, giving a spark of from 3 to 4 inches, but I cannot accumulate a particle of electricity on the Jars. A. Connect all the outer coatings to-
gether for one sideand all the inner coatings for gether for one sideand all the inner coatings for
the other. 4. How can I manage to deposit a film of silver on polished copper, so that it can be rewith plumbago.
I have a coarse-grained grindstone which, with
considerable labor, I had fitted to my lathe. Owing to the swelling of some wooden wedges near the center, the stone split into two pieces. What
cement can I use to repair the damage? A. Try a cement can I use to repair the damage? A. Try a
mixture of black japan varnish and white lead. (3) J. B. C. asks: How are steel magnets, to retain a large quantity of magnetism, made?
What kind of steel is used, and how is it tempered? A. Steel magnets designed to possess strong magnetic power should be made in sections and fastened together. In order to retain their power the
poles should be connected together by an iron poles sho
keeper.
(4) W. E. D. asks: 1. Is the Smee battery a good and desirable one for running a short
telegraph line? A. Yes. 2. What is the best solution to use with the above battery, the zinc plates
being amalgamated? A. 1 part sulphuric acid to 20 water. 3. How often would a battery of 5 one quart jars of the Snuee pattern require cleaning
and fresh solutions, in running a line one mile long in close circuit? A. If you use magnets of 200 ohms resistance, probably the battery would run six months. 4. Would the above battery be
sufficiently strong for nickel plating? A. Yes. 5 . W e have a telegraph line nearly one mile in lengtb, with eight offices; would it, not be best to have all
the batteries of the line divided and half of them the batteries of the line divided and half of them
placed at each end rather than have three or four placed at each end rather than have three or four
at each office on the line, it being a close circuit? A. It makes no diference where you put the bat teries in the line. 6. I had occasion to repair a
small sounder ; and on taking off the paper cover ing of one of the spools, I found the spool was
wound with No. 26 wire. not insulated; but bet_{t} ween each layer of the wire was a piece of pape to insulate the layers from each other. Please explain the modus operandi of this. A. The wire is wound in sucha manner as to keep the different better than insulating the wires with silk or cot-
(5) C. J. H. says: You give a recipe for of indigo in the form of a thinnish paste, an which should be neutral, or nearly so. Please
five me the formula for making this ingredient digo as follows: 8 ozs. sulphuric acid (commercial), what shall I neutralize the 1 carefully mixed. With what shall t neutrand ced chalk, and marble dust either will neutralize the acid, but on filtering out (after mixing with water) the chalk or marble dust preparations, the coloring matter combines with
the lime, and the liquor passes off clear, leaving the lime, and the liquor passes off clear, leavin, onate of potassa to neutralize the sulphuric acid he soluble sulphate of potassa goes into the ink
nd in using a steel pen, the sulphate attacks th pen and leaves an annoying crust upon it. Can you help me out of my difficulty? A. Add smal quantities of indigo until the solution is neutral, or nearly s
(6) W. B. H. says: I wish to bring a stream
water from a reservoir, in 3 inch pipe, down of water from a reservoir, in 3 inch pipe, down plane on the other side. The fall from the reserrom the bottom of the ravine up the hill on the other side, to the discharge is 50 feet rise. 1. What would be the pressure to the square inch at the bottom of the ravine? A. About 65 lbs . When the
flow of water is stopped at the outlet, and 22 lbs., ow of water is stopped at the outlet, and 22 lbs plus the friction, or say 25 lbs., when the water has
free discharge. 2. Would the pressure be greater free discharge. 2. Would the pressure be greate
in consequence of the rise of the pipe on the othe side? A. Yes, when running free; no, when pipe one inch in diameter, that would sustain pressure of 150 feet fall, make a three inch pipe that would sustain the same pressure, or must the
strength of the pipe be increased in the proportion that the size is increased, to enable it to sustain nust be increased in proportion to the diameter of the pipe. 4. How high would it throw water from a common hydrant through an ordinary hose terial of which the pipe is made and the numbe nd abruptuess of the bends in it. 5. Would 50 feet fall on the other, leaving, at the discharge, the ull force of the remaining 100 feet fall, or would the force of the remaining 100 feet fall be made less by the effect of 50 feet rise? If so, how much ? . The force would be less in consequence of the liction in the extra length of pipe. How much ess will depend upon the velocity of discharge it is laid.
(7) T. H. R. asks: Has electricity ever been used as a motive power for running light ma
chinery, such as printing presses,sewing machine chinery, such as printing presses,sewing mat
etc.? A. Not with any practical success.
(8) B. J. A. pays: I have seen attached to tric machines for giving shocks, constructed in the following manner: The guard (generally of wood) and, as far as I could see, one pole of a cell of bat try was connected with one end of the guard, putting both hands on the metal would instantly receive a shock. I have constructed one on th above principle, and it will not work. Can you in-
form mewhere the trouble lies? A. The circuit must be so arranged that the current shall pas How much nitrate
ne ounce arid will dissolve one ounce of silver.
(9) W. L. R. asks: What size of insulated wire is the best to make electro-magnets for at-
tracting weights? A. No. 16. 2. Will cotton-covered answer as well as silk-covered? A. Yes.
(10) A. B. asks: 1. How shall I proceed to set up a Callaud battery? A. To set up the bat-
tery, place the coppers in the bottom of the jars, flll with blue vitriol to a level with the tops of the copper; suspend the zincs in position so that the bottom of each shall be about two inches from the top of the copper. Connect the copper of each cell to the zinc of the next, flll the cells with pure soft water to cover the tops of the zincs
then put the battery on short circuit for four hours, or until the solution immediately under the winc appears clear and white, when the battery will be ready for use. No acid or quicksilver is used. The zincs must not be amalgamated. After the battery has been in use a few days,
the zincs may be lowered half an inch to an inch, the zincs may be lowered half an inch to an inch, care being taken not to allow them to touch the
blue solution. Lowering the zincs decreases the battery resistance, and is only necessary where a number of wires are worked from one battery. About two pounds of sulphate of copper per cup
is required to charge the smaller cells, and four is required to charge the smaller cells, and four
pounds the larger. A little onl poured upon the surface of the solution in the cells prevents evap-
oration and creeping over of the zinc solution on oration and creeping over of the zinc solution on
the edge of the jars. When oil is not used it is better to charge the battery with a smaller quantity of blue vitriol, a little being added from time to tine, as the supply is exhausted. 2. Please explain the meaning of the word ohm, as applied to
telegraphy. A. The ohm is a unit of resistance. 3. I have a sounder marked 6 ohms. Will this cork on a metalic circuit of 1,700 feet with 3 very well. You will require about 10 cells. You will achieve success if you persevere. Reading by sound requires a great deal of practice.
(11) A. N. W. says: I am making an elecdoor of the house. The circuit is about 60 or 70 feet, with No. 20 copper wire supported on wooden brackets, with one Callaud's cell. The magnet
consists of 2 pieces of softiron $\$ / 8$ inch diameter, 3 inches long, screwed into one piece $\left(21 / 3 x^{1} / 6 x^{3 / 8}\right.$ inches). I have about 14 lb . Very fine insulate
silk wire coiled on magnet ; but it will not work.
Can you tell mo the silk wire coiled on magnet; but it will not work
Can you tell me the reason? A. Use No. 20 wire
for magnets. Put armature witbin sixteenth of an
inch of poles, and use ten cups of battery arranged
(12) G. asks: How many cubic feet of gas will one gallon of gasoline make at ordinary burning gas pressure? A. The quality of gasoline va-
ries greatly; but 200 cubic feet would be a fair ries great
(13) X. Y. Z. says : I have a block of buildings, 28 feet deep, with a roof of slate of 7 feet
pitch. During the winter I have been extremely annoyed by the snow and ice crowding over the and partially melted it, and saturated that in the gutter with water. At night it would frecze into ice, and again melt upon the roof next day. The
soow would slide cfr, and crowd this gutter ice now would slide crf, and crowd this gutter ice until it would project a foot or more over the bing absolutely dangerous in case of falling What is the best and at the same time conomica remedy? A. Take a plank 12 inches wide, set it up vertically about 6 inches back of the gutter,bloca up about 3 inches, and brace it with iron brace rom the top back to the roof; this will hold the now and let the water run through. But the
now will cause some of the water to remain on the slate, to make its way through the joints there of by capillary attraction. It will therefore be necessary for you to take off the lower corners of
slate for about 4 feetin hight, and relay this por slate for about 4 ff
ion with tin only.
Can anything be put into white lead paint to pre vent its turning yellow? A. Enough blue pain
is sometimes put into white lead, at the time of mixing, to give it a slightly bluish cast,and to coun eract its tendency to turn yellow.
(14) T. B. asks: 1. What is the best paint the heat has heretofore burned off everything we have tried? A. Coal tar, commonly called black varnish. 2. Would tubes put into a boiler, parallel
with the central flue, be likely to make it generwith the central flue, be likely to make it gener-
ate steam more quickly? A. Yes, if put in by a
(15) C. M. A. asks: I propose to put in istern, the water of which is to be used for drink ing purposes. What it striks the best hind of filt ise? It strikes me that a wall across the cistern,
of porous brick, would be the cheapest. How would it answer? How thick should it be? A Brick is frequently used for this purpose; the wal may be built across one side of the cistern, and, as the water will be always of nearly the same
hight on both sides of $1 \mathrm{il}, 4$ inches thick will be ight on both sides of il, 4 inches thick will be
ufficient. 2. If I put the cistern in my cellar would any ill effects arise from dampness, etc., in he horse? A. Not if prop
ventilated from the outside.
(16) M. A. says: I have an underground tered in the usual way, Rosendale cement being used. Atabout 18 inches from the bottom there is hight of 1 foot. I have tried several about, bu have not succeeded in keeping the water out. In one instance I dug a hole, six inches in diameter,
four feet below botton of cistern, into which the water drained: into this I put a pump, and kep he water level below the bottom of the cistern. I now put another coat of cement on, keeping th water pumped out till the cement was well hardened, took out the pump, tamped the hole with
clay to within 3 or 4 inches of top, and filled with clay to within 3 or 4 inches of top, and filled with
cement; but it would not hold. The pressure of water broke the cement, which did not adhere t Portland cement. What is the remedy? A. The bo sendale for the purpose you refer to, but it should have a chance to set before it is immersed in the feet in hight of the sides of the cistern above ground; supply it with as much water as it wil as hard as stone; then lower it into the excavation and build the remainder of the cistern upon
it. This bottom tub may be built of brick, well grouted in the cement, or with cement concrete, omposed of broken slones, bricks, gravel, sand, and cement. The proportion of the ingredients may be as follows. 1 manure of cement powder, broken stone and gravel. To resist pressure. the bottom may be built of a concave or arching form,
like a dome reversed. The following is an instance of the capabilities of concrete to resist the action of water: At the harbor of Cherbourg, France, the hlocks, of 12 f $\epsilon e t$ by 9 feet by $(1 / 2 / 2$ feet, contain-
ing 712 cubic feet, and weighing 52 tuns, were built up of mortar and stone, like rubble masonry, wirhout molds. The mortar contained one measure of Portland cement powder to three of sand, and occupied from $1 / 8$ to $1 / 4$ of the entire mass. Blocks of
this kind, 9 months old, showed a compressive strength of 113 tuns per square foot, which is but hesive force was about 200 lbs . per square inch.
her after becoming hard, they were slung to pontoons and thrown loosely into the sea. Some of the 52 un blocks have in heavy gales been thrown up
from the bottom of the sea (30 feet deep) and odged on top of the breakwater, entirely uninjured.
(17) W. M. asks: 1 . Our steam gage indi-
cates 12 lbs. steam even when the cates 12 lbs . steam even when the boiler is cold,
and there is no steam at all. Will the gage show 12 lbs . more than the true pressure when the steam rises? A. Yes. 2. We are running a 6 inch circuhave gummed the saw twice, and have taken off about $1 / 3$ inch in the diameter of it; but since wo gummed it the last time we have been troubled by the saw running toward the log. What is the rem-
edy? A. The baw ought to be hammered. 3. The about $1 / 4$ inch. Ought this to be so? A. No. It is about $1 / 4$ inch. Ought this to be so? A. No. It
the cause of the diffculty before mentioned.
(18) S. H. L. says: I have some very soft castings of iron; while cutting a thread on them,
all the cuttings stand on end. What is the cause all the cuttings stand on end. What is the cause
A. Magenetism, created by friction produced by using a dull tool.
(19) W. H. G. asks : 1 . What will be the
effect of carefully retemer effect of carefully retempering a good quality of steel,say a cap $1 / 1$ inches in diameter and 15 inches
long, carefully repeating the tempering 5 times? long, carefully repeating the tempering 5 times
Will the rise of thread be increased or decreased? A. No. 2. Will the cutting quality be affected? A. Yes, it will deteriorate.
(20, E. H. says: I am an engineer on a tug, ber boiler is constructed in locomotive fashion, with 42 flues 214 inches in diameter; firebox is 4×3
feet. The fues in the firebox end leak constantly. feet. The fues in the firebox end leak constantly,
If I stop them and blow out, they stop leaking If I stop them and blow out, they stop leaking,
but commence to leak again as soon as I have occasion to carry a hot fre. A. Probbubly the tube care too close together, so that the circulation is im
ard perfect. If so, more moderate fring
ing will doubtless be the only remedy.
(21) O. G. B. asks: What is the best mode of constructing a frebox under a horizontal tubu-
lar boiler to burn slabs and sawdust? The boiler is 48 inches in diameter and 10 feet long, with 36 three inch tubes. What length and width of grate surface would be required? A. Mate the fornace
from $1 / 4$ to $1 / 8$ larger than for burning wood. See p. 59 , vol. 3 c.
(22) J. C. C. asks: 1. What disadvantage is therein a small upright double cylinder engine
with both cranks on one saaft? I do not hear of with both cranks on one siafthere are many suob engines in use, but ordinarily a single engine is
considered simpler. 2 . What power could I get considered simpler. 2. What power could I get
from such an engine, the cylinders being 2 inches from such an engine, the cylinders being 2 inches
in diameter and of 4 inches stroke?
A. Horse power=pressure on piston in lbs. per square inch x would be the best way to set the valves to get the most power? A. Cut off steam at about 9 of the
stroke. 4. In what relation to each other would it stroke. 4. In what relation to each other wourd
be best to set the cranks? A. At right angles. 5 . Will brass wear as long, for the cylinder and other cylinder engine give more power than one cylin der, of the same piston surface as both? A. No How can I make a writing fuid that is green
when first written with, but turns black on dry ting? A. Take 55 parts by weight bruleed gall nuts and 200 parts water. Boil for an hour, and then and 1 part indigo dissolved in 3 parts sulphuric acid.
(23) H. H. H. asks: What is the weight on neiting rod 60 inches long and pressure 50 lbs. Please sive the rule. A. The pressure of the steam In lbs. per square inch, multiplied by the area of
the piston in square inches. To this must be addthe piston in square inches. To this must be add-
ed the weight of the moving parts, when they act ed the weight of the moring
so as to increase the strain.
(24) B. R. F. asks: What is the best means of cleaning a basement of roaches? A. Put 1
drachm phosphorus into a lask with 2 ozs. water, plunge the lask into hot water, and when the phosphorus has melted pour the contents of the briskly, adding water and $1 / 2 \mathrm{lb}$. flour, with an ounce or two brown sugar. This paste is said to
effectually destroy roaches. effectually destroy roan
(25) H. J. M. says: I want to construct a
small boiler for driving light machinery. will tin small boiller for driving light machinery. Will tin
plate stand a pressure of 15 lbs. per square inch, plate stand a pressure of 15 lbs . per square inch,
the builer being 2 feet square by 6 inches deep? A. You can use tin if you make the boiler cylun4 What are the yellow shining particles in the piece of stone enclosed? A. It is mica.
$\underset{\text { (26) M. A. J. asks: Will a wrought iron }}{ }$ 70° to 212° Fah., cease to be affected as to contraction and expansion by the heat? A. Any material
under these conditions will have its coeftcient of under these conditions wiil have its coeflicient of expauslon afected in tine, and after long use may
cease to be sensibly influenced by change of tem. perature. It is a general law that all machtines, including animal mechanism, wear out in course of time.
(27) R. H. J. हsks: How many gallons will flow per minute through a 94 inch nozzle on a 3 inch hose, with 40 lbs. pressure per square inch ?
A. About 7 cubic feet. 2 . How much will flow through a $\%$ nozzle on a 2 inch howe with the same
(28) D. C. C. asks: 1. I have been running an engine 22 by 24 inches stroke, with a 9 foot fly whell, making 120 turns per minute. How can I
find out ouw many orres power this enzine is? A. The only way to ascertain the power defnitely is meter. 2. Can the steam make any difterence in the power when it makes the same number of of
strokes per minute with 40 lbs. as with 80 lbs.? A. strobes per minute with 40 Ibs. as with 80 ibs.? A .
The steam is, no doubt, (29) C. R. asks: Can I burn of seam. (29) C. R. asks: Can I burn a hole about 7
inches in diameter through a cast iron plate near ly 1 ioch thick, by the use of the oxyhydrogen
blowpipe? I cannot get at it to drill it. could be done, but it would be very expensive,
We think that if you can reach it with a blowpipe We think that if you can reach it with a blowpipe
von can probably devise some arrangement to atYoun can probably devise some
tack the material with a tool.
Will soluble glass do to coat a tin vessel with so as not
Yes.
(30) H. B. B. asks: If the tensile strength a fy wheel rim of 1 square tinch sectional how will $\begin{array}{ccc}\text { and } \\ \text { tain } & 0,000 \mathrm{l} \\ \text { lbs.? }\end{array}$ strain, and the tensile strength of the material is
15,001 lbs., of course the wheel would not 15,001
alst it.
(31) H. W. G. asks: Why do kerosene
mps, especilly those made of brass, sweat oil or why does oil collect on the sides of lamps filled
rith kerosene? with kerosene? A. It is due to the evaporation of
the oil drawn up through the wiek by capillary at the oil drawn up through the wivk by capillary at
traction while the lamp is not in use, which is conraction while the lamp is not in use, which is con
densed in part upon the cold surfaces of the lamp. Try an airtight cap.
(32) H. R. E. asks: Can you give me a re the action of sulphuric acid? A. No whe sulphuric acid will dissolve the zinc at once.
(33) F. M. asks: Is there any way to temper machinists' tools, such as straingt edgee and
squares, without warping them? A. Make them
out of old saw blades, which require no tempering.
(34) F. B. S. asks: How can I make the
eggs of Pharoan's serpents?
A. These are little cones of sulphocyanide of mercury which, when lighted, give forth a long, serpent-like, yellowisi
brown body rown body. Prepare nitrate of mercury by dis
olviog red precipitate in strong nitric acid as long is it is taken up. Prepare also sulphocyanide of ammonium by mixiog 1 volume sulphide of carbon, 4 strong solution of ammonia, and 4 alcohol.
This mixture is to be frequently shaken. In the This mixture is to be frequently shaken. In the
course of about two hours, the bisulphide will course of about two hurs, the bisulphide wish Boil thisuntil the red color disappears and the so e evaporated at about $80^{\circ} \mathrm{Fah}$, until it crystal zes. Add little by little the sulphocyanide to the nercury solution. The sulphocyanide of mercury will precipitate; the supernatant liquid may be poured off, and the mass made into cones of abou alf an inch in hight. The powder of the sulpho the vapor from the burning cones should be avoid ed as much as possible. To ignite them set them on a plate or the like, and light them at the apes f the cone.
(35) W. S. H. asks: How can I temper a hin circular saw, about 2 inches in diameter and dit thick, without springing it? A. Heat red hot,
dace between two flat perforated iron plates, and wer into oil, quenching right out.
(36) N. R. asks: How are wood screws cut Thave made a die that cuts the thread well enougb but I cannot form a point. A. This is done by
pecial patented machine.
(37) H. P. G. and others ask: 1 . What is the nature of an explosion of gunpowder? Does
it press equally in all directions? A. The effect of an explosion of gunpowder is simply due to the the gaseous state. With gunpowder we have a Volume of gas, which would normally occupy a
space three hundred times as great as the grain ocupied, liberated rapidly, but still in a perceptiHe interval, and for this very reason gunpowde is the safest projectlle agent thus far discovered
For if, as in the case of nitro-glycerin this large volume of gas were liberated all but instantane ously, the strain upon the gun would be so great
that it would, in all probability, burst the breact before it started the ball ramming, in blasting rocks, blow out before the rock splits, for it cannot possibly bo made strong
or than the rock? A. See answer to A. J. this page.
(38) A. J. K. says: A sand blast is made by pouring dry sand upon the powder in a drill bole.
When the powder isexploded, why is the loose sand not driven out, and the rock left uninjured ? A. The pressure of the gas at the moment of its libe
ration is, of course, equal in every direction must also be borne in mind that before this volume of gas has expanded to the density of the at mosphere it must have displaced a a column of ain
which exerts a pressure of something on every square foot of surface. With nitro-glycerin a volume of gas, 800 times that of the liquid
used, is set free all but instanteneoust used, is set free all but instantaneously. It can
readily be seen that the sudden development 0 this large volume of gas, which becomes at once a part of the atmosphere, would be equivalent to a
blow by the atmosphere against the rock ; blow by the atmosphere against the rock; or, what
would be a more accurate representation of the phenomenon, since the air is the larger mass, and acts as the anvil, a blow by the rock against the
(39) F. B. aoks: Will an explosion of unconfned nitro-glycerin upon the surface of a rock
split it? If so, why? A. Takea light wooden surspitit it? if so, why? A. Take a light wooden sur-
face, say one square yard : the pressure of the air against the surfacei is equal to about 9 tuns, but the air presses equally on both sides, and the molecules
have such great mobility that, when we move the have such great mobility that, when we move the
surface slowly, they readily give way, and we enit rapidly for tittie resistanco. for the molecules must have time to change their position, and we encounter them in this passage.
If now we increase the velocity of the motion to the highest speed ever attained by a locomotive, say one and one fifth miles per minute, we should
encounter more particles, and find a resistance Which no human muscle could overcome. Increase the velocity ten times, to twelve miles a minute,
(the velocity of sound) and the air would oppos (the velocity of sound) and the air would oppose
such resistance that our wooden board would be such a resistance that our wooden board would be
shivered to splinters. Multiply again the velocity ten times, and not even a plate of boiler ron could
withstand the resistance withstand the resistance. Multiply the velocity
once more by ten, and we should reaoh the velocity of the earth and its orbit, about 1,200 miles a midute, and, to a bodv moving with this velocity, the comparatively dense air at the surface of the
earth would present an almost impenetrable barearth would present an almost impenetrable bar-
rier, against which the firmest rocks might be rier, against which the frmest rocks might
broken to ragments. Indeed this effect has been several times seen, when meteoric masses moving
with theese planetary velocities penetrate our own
atmosiohere. The

against the aeriform anvil at a point where the at-
mosphere is far less dense than it is here ; so in the case of nitro-glycerin, than it is here; so in mosphere with such a velocity that it has the effect of u solid mass, and the rock is shivered by the $\underset{(40)}{\text { blow. }}$
(40) E. W. P. asks: 1. What will dissolve gutta percha? I have tried naphtha, but withou
suceess. A. Gutta percha is dissolved readily by succes. A. Guta perchalphide of carbon, oil of
benzole, chlorofrr, bisulp
turpentine, and the essential oils generally. 2.Will tanswer for mending rubber? A. Yes.
(41) J. H. H. asks: 1. Can you give me in formation as to the temperature required to melt
copper, zinc, lead, iron, and brass? A. Copper copper, zinc, lead, iron, and brass? A. Copper
1990° Fah., zine $77^{\circ} 3^{\circ}$ lead 617°, cast iron 27800. The
 melting point of brasi
together unon the proportion of its ingredients, . How can I make insulated wire for bo
A. Coat copper wire with gutta percha.
(42) E. says: I have a fine oil painting o om age and ill uage it has become badly cracked Is there any preparation by which these cracks can be hidden or taken out? A.Itsappearance would be
mproved by careful retouching and varnishing. mproved by careful retouching and va.
The takting out of a crack is not possible. The taking out of a crack is not possible.
What kinds of colors are used for colo What kinds or colorsare used for cre used.
(43) S. G. R. asks: 1. In preparing glycerin best way of converting that into soda soap? A Who mares suct a lime soop with glycerin? Glycerin forms soluble compounds with lime and soda . What is the best work on the manufacture
soap? A. Morft's book has a high reputation. (44) A. S. M. asks : How can I make muffles for baking a charcoal composition in, to render it
porous for filtering purposes? A. Mufles are porous for filtering purposes? A. Mutfles are
earthenware ovens, usually formed with an oval earthenware ovens, usually formed with an oval
top and flat bottom. They open at one end and slits in the top and sides.
How is rubber made to retain Hock, for piano covers? A . The flock is rolled on while the rubber is in a softened state, by passing
revolving cylinders heated by steam.
(45) J. M. McC. says: We have a large cistern under a factory, for the purpose of holding rain water for scouring, etc., which bas a ately been filled partially with hard water, but principally by
rain. After letting it stand a few days, we have used said water and it really seems as bard as the well water. Please to inform me why this is? we are confldent that it is more than half soft or rain water. A. It is probable that there were sufficient
me salts in the hard water to make all the water ime salts in the hard water to make all the wate
in the cistern hard, when the waters mingled to
(46) P. O. T. asks: In estimating the per entage of tannin in bark, leaves, etc.., by means
of protochloride of tin and muriate of ammonia. ow is the resulting precipitute measured? By means of a glass-stoppered cylindrical Jar, properly graduated to cubic centimeters.
(47) L. A. W. asks: What is the real cause
of the fulling up of flannel by washing? A. It is due to a combination of causes, but principally to he rubbing; and where soap is used, this action
(48) W A P acks:
(48) W. A. P. asks: What is Berlin bronze
nd how is it applied on cast iron? A. The trade and how is it applied on cast iron? A. The tr
does not seem to be familiar with the name.
(49) J. H. P. asks: There is something tha ter is applied to the skini, it leaves no stain. What is it? A. The tincture (so-called) referred to may be obtained by adding, to the alcoholic solution of
odine, ammonia or hyposulphite of soda.
What can be put into ink that will give it a fine gloss, something like
somesugar of milk.
(50) G. B. McD. asks: 1. Are platina and platinum the same? A. Yes. 2. If 10 ozz. 225. tinum, what will the nature of the alloy be as to malleability, ductility, and specific gravity What will be the melting point of the above alloy
A. Only a trial will answer this, as the properties A. Only a trial will answer thie, as the properties,
etc.,of the two bodies are not found in the alloy etc.,of the two bodies are not found in the alloy
3. Can copper be succesfully
electro-plated with steel? A. No. 4. How can I procure a list of a fice since 1858? A. This list will be found in the volumes of the Sctentiric American.
(51) P. S. asks: What is ground lime composed of? A. You probably mean sulphate of lime or gyppum, also known as plaster of Paris,
which is a combination of lime and sulphuric acid Gypsum, which has been dried at a temperature from 400° to 500° Fah, and ground to a ane pow der, has the peculiar property, when mixed with
water, of recombining with the water, and bind Wacer, of recombining with the water, and bin plaster of Paris owes its value in the arts.
(52) J. T. asks: Why does a sunbeam, admitted into a darkened room throug a square
triangular, or other aperture of irregular contour always form a circular or oval image on the floo or opposite wall? A. In case the opening is o sufficient size, the image will be of the same form as the opening; but when small, other rays enter
besides those moving in paralle lines, and (by besides those moving in parallel lines, and (by
crossing) approximate the form of the image to a circle.
Observation seems to have given rise to and to
confrum a theory that the nearer to the oon the moory that the nearer to the hour of billity of foul weather; and the nearer to the hour of midnight this occurrence takes place, the
greater the probability of fair weather greater the probability of fair weather. On what
principle is this theory based? principle is this theory based A. No sqtisfactor
explanation of these phenomena is given, and the axcuanacy of these observations is open to grave
douth.

At a certain elevation, above the lower portions portions, there is a line termed the thermal line, brcause the stratum of the atmospbere at that
hightis warmer than the strata either aboveor below it. What is the cause of a greater beat in this stratum than is found elsewhere? A. The existence of this thermal line has only been made
known recently; and until the investigations of Glaisher and others are more advanied, explanaons would be mere guesswork
Do rays of light from the sun approach the earth in straight lines? If they do not, in what in straight lines until they encounter the earth's atmosphere, when they are bent into irregular
curves by the different refractive powers of the various strata of the atmosphere.
(53) H. C. Z. asks: What am I to use to
soften hard rubber balls? A. Boil them for some time in soft water
What can I use to give old books a better ap-

COMMONICATIONS RECEIVED.

The Editor of the BCIENTIETC Amprican ac-
knowledges, with much pleasure, the receipt of or iginal papers and contributions upon the following ubjects:
On Proportioning Gears. By T. A.C
On Parasites. By D.
On Tides. By E. S.
On Hard Rubber Th
On Hard Rubber Thermometers. By J. M. B. On Salicylic Acid. By G. H. B.
On Science and the Pope. By G. R. On Science and the Pope. By G. R.
On Dentistry. By S. B. P. On the British Patent Laws. By A.H F. C. R.-T. F. W.-T. H. P.-E. G. W.-J. B F. C. R.-T. F. W.-T. H. P.-E. G. W.-J. B. C.-
W. B. H.-W. G.-O. B. T.-A. R. F.-J, W. N.-T.C

- F. R.-S.-T.

HINTS TO CORRESPONDENTS.
Correspondents whose inquirles fall to appear hould repeat them. If not then published, they may conclude that, for good reasons, the Editor de ways be given.
Enquiries relating to patents, or to the patenta Enquiries relating to patents, or to the patenta
bility of inventions, assignments, etc., will not be
published here. All such questions, when initials ublished here. All such questions, when initials only are given, are thrown into the waste bosket, as
it would all half of our paper to print them all; ut we generally take pleasure in answering briefly mail, if the writer's address is given.
Hundreds of enquiries analogous to the following akes woolen "Wholls insulated copper wire? Who rrs, and finisher cards)? Who makes horseshoes with movable calks? Who makes balanced slide alves for locomotive use? Who manufacture
oy balloons? Who sells platinum, and what is it cost?" All such personal inquiries are printed. a will be observed, in the column of "Business and Personal." which is specially set apart for that pu pose, subject to the charge mentioned at the head of that tolumn. Almost any desired inform.
can in this way be expeditiously obtaned.
[OFFICIAL.]
INDEX OF INVENTIONS
Letters Patent of the United states were
Granted in the wook ending
April 13, 1875,
and each bearing that date.

Alr compresoror check valve. E. . . Winchester... 161.1999Alarm box, fre, Mccullough and Anderson..... 162,088	
Bale te, M. T. T Brown......................... 820,023	
Bale te. J. M. Goldsmith........................ 1620	
Barrels, vent for beer, Hindemyer et al.......... 162,00	
Bath, electro-therapeutic, J. W. Mollere.......... 16	
Bed bottom. 0 Wens and C	
Bedstead, cet, s. c. Lusk.	
Bedstead fastenng, E. Deetz................... 162	
Blluard cushion, Held and Bensiıger 161	
Boiler man hole cover, H. Colli	
Boot heels, etc., burnishing, G. H. Billise.	
Bottle 8	
Brick machine, J. F. Cla	
Brick machine, I. Gregs, J	
Brlage, fron, J. B. Eads	
Bridge, iron trus, C . K	
${ }^{\text {Bralde bit, }}$	
Brollfr, G. C . Blise	
${ }_{\text {Broller, G. . D. Dudiey }}^{\text {Bugy }}$	
Bural casket, 0. M. Allen....................... 161,8	
Burner, lamp, L. J. Atwood 162.1	
Burner, rapor, J. Benson......................	
Burner, vapor, J. Q Jaynes................... ${ }^{162}$	
Butter pail, c. B. sheldon 161	
axie bo	
Car axle box, J. D. ImbodCar brake,G. Glzinger...	
Car brake, J. M. Melly.	
ar coupling, W. Dorr...	
Car coupling, D. C. Morris. \qquad 161,	
Car coupling, A. E. Rowley 162, Car coupling, w. G. smoot.	

2,879.-Cetlery.-W. Brokhahne, New York city. 2,8e0.-Medioine.-E. R. Burnham, Chicago, Ill. 2,881, 2,382.-Magnesias.-C. Phillips, New York cl GOHEDULE OF PATENT FEEG

On each Trade mark.... On filing each application for On lesuing each original Pat

On application for Retseue
On Hiling a Disclaimer......................
On an application for Deign (3x year)
On application for Design (y years).....
CANADIAN PATENT8.

for street cars. April 10, 1875.
4,613.-H. Altken, Falkitk, Scotland. Making illumin
ating gas. Aprill 10. 1875.
April 10, 1975. .
Lillen , Stambridge, P. Q. Morable roor
April 10, 18 is5.
4,616.-C. Clamond, Paris. France. Thermo-electric

apparatus for harvester. Aprill 10, 1875.
,618. - P. Schoffeld, Philadelphia, Pa
,618.-P. Schoffeld, Phill
gage cocks. April 10, 1875.
4,619.-J. F. Cole, Sophiasburgh, Ont. Motive power
for churns, ett. Apri1 10 1855.
4,620.-S. E. Griscom. Pottarille, Pa., r. s. Milstone
dressing machine. Aprlt 10 . 1875 ,
,621.-W. S. Sampson, New York clty, N. Y., U. S.
Farnace or killn with central draft fine. Aprlil 10,1875
4,622.-C. C. Parker, Aylmer, P. Q. Potato digger

A,65. J. P. Abbott, Cleveland, o., U. S. Ha
Itce eor eaves troughs, etc. April 10, 1875 .
Tice for eaves rou g ol., Rochester, N. Y., U. S. Art
fich- J. Cow man et
filal marble and ornamental stone. April 10, 1875 .

4,628.-Wm. W. Ingraban et a!., Chteago, It., U.S.
Grain scourer and separator. Anrtl 16, 1875 .
4,629.-J. Mattice, Chinguacousy, Ont. Alternation
4,629.-J. Mattice, Chinguac
Bcrew power. April 16, $15 i 5$.
,630.-L. H. Hôbert, St. John, P. Q.
16, 1875.
4,6is.-L. H. Hébert, st. John, P. Q.
ing machine table. April 16, 1875 .
Ing machine table. Aprill 16, 187
4, $632 .-$ D. McCullough, Kemptvil)
Aprll 16, 1875.
4,633.-Wm. Bowes, Pinkerton.

16, 1875 .
4,635.-James E. Wisner, Fr
hay rake. Aprll 16,1875 .
gadterttsentats.

Engravings may head advert terments at the same rot
per line, by measurement, as the letter prees. Adver
tisements must be received at publication effice a
early as Frlday morning to appear in naxt issuc.

ELECTRICITY
ts Theory, Sources, and Application. By Jons T

HANDRAILING

MINING,

Amerter ,
E. \&F SPON, S46 Broome Street,N. Y.

Piontro of invention legaluy esta

 Prationicicer

Spall evgine lithes at unheardof

notice for bridge contractors.

\qquad
RICHARDSON, MERIAM \& CO.,

MACHINERY.
IRON \& WOOD WORKING MACHINERY OF EVERY DESCRIPTION
Cold Rolled Shafting.

GEORGE PLACE \& CO.,

 $\xrightarrow[\text { Hocel sicam tanginee } 11 \text { in. bre }]{\sim}$ for making sman

EAGLE FOOT LATHES,

\$2400

for practical men. Onr new and enlarged Cataloque of Practical
AND sCIENTIFIC bOOKS-96 pages, 8vo.-Aent free to will furnlsh his address.
HENRY CAREY BAIRD \& CO., PUBLISHERS AND BOOKBELLERS,
406 WALNOT STREET, Phlladelphi

Valuable Books Heat, Steam, and the Steam Engine.
BURGH.-A New Work on Modern Marine Engr-
 4to.. cloth......
Half morocco
bURGH.-Modern Compound Engines; belug Supplement $t \rightarrow$ "Modern Marine Engines; beling a
large foiding plate8, tto., half morocco.......... 89.00 BURGH.-A Practical Treatise on the Condensa-
tion of Steam. Royal 8vo., illustrated............. 810.00 BOURNE.-A Treatise on the Steam Engine, in its
vario us applicationsto Mines, Mills Steam Nuvigation
 BOCNNE.-A Treatise on the Screw Propeller,
 BOURNE.-Recent Improvements in the Steam
Eninine, being a, Supplement to the "Catecbism of the BOX.-A Practical Treatise on Heat, as Applied to the Ubeful Arts. Illustrated by 14 plates, contaning
114 figures. $12 \mathrm{mo} .25 ~$ BURGE.-Practical Rules for the Proportions of
Modern. Ens nes and Bollers for Land and Marine Pur-
poses. 12mo., cloth.......................... 81.50 BURGH.-The Slide Valve Praotically Consi-

 Ings............ 6 .
 HOOD.-A Praotical Treatise on Warming Build-
 MAIN AND BROWN.-The Marine Steam Engine. MAIN AND BRO WhN.-The Indicator and Dyna-
mometer. With thetr Pratical Aplications to the
Steam Engine. Ilustrated. 8ro...................50 MAIN AND BROWN.-Questions on Subject Connected with the Marine steam Engine and Examin
atton Papers. 12 vol. .mo., cloth................51.50
NORRIS. A Handbook for Locomotive Engineers
 ROPER.-A Catechism of High Pressure and Non-
 ROPER.-Handbook of the Locomotive, including

TEMPLETON.-The Practical Examinator on
Bteam and the Steam Engine. 12 mo o............. $\% 1.25$

 WILLIAMS.-On Heat and Steam; Embracing Nons. Hust rated. \&vo................................s.
A Select List of Books on STEAM AND STEAM
ENGINE, with prices, gent free upon application. of postage, at the publication price. The aby mail, fre

HENRY CAREY BAIRD \& CO.,
4 AND SAK MLL-Saves phe labor of is men. s. c

Mand
 BENTEL, MAREEDANT \& CO. , willtion, orico.

Chemical \& Mineral Productions
 TO ELECTROFPLATRRS KEEFELERE,

FIRE PROOF SHUTTERS.

CLARK \& CO's SELF-COILING ROLLNNG STEEL SHUTTERS (Burglar Proof), For Store Fronts a d Rear Windows, require no machinery or balance welghts, and can be applled to any opening; also Roil-
ng Wood Shuters for Stores and Dwellings. Thousands are in dally use, and are acknowledged the best shuttera in the world. Send for Catalogue to jambs G. wilson, Manager, London, Paris, VIenna, and Berlin.
318 West 26 th St., New York, and a

1MRADR FNGINTH EVEREBLOOMING ROSES
 in wort
of Cost
Every
valveco

 Herrman \& Hercheir
rode m'fo RODE M'F'G. CO.,

 * BLAKE'S PATENT Stone and Ore Breaker

OTIE MAFBTY Hoisting OTIE, BROS. \& CO
NO. 348 BROADWAY, NEW YORK.

 We have tw
of hem in oun Iublic ontires

 Aidiress, United States Pinano

THE Union Iron Mills, Pittsburgh, Pa

 Sill

> PATEYT

Planing \& Matching

\qquad W ARRANTED TO CURE DISEASE OF TRE BONE

WENNCRets. Humpoack, and Fracture.

Do Your Own Painting

 \&AVE RH-SHINGITING,

NIAGARHEIMPROVED

STEAM ${ }^{\text {P }}$ UMP
 Hublbard \& Aller. Emantrs and boinks, Pulloys, Bhafting and Eangere MILL PROPERTY FOR SALE

AGENTS WANTEi

Planing \& Matching,

BLAKESSTEAM PUNPS CAUSEWAY\& FIIEND STS. BOSTON.

STENCIL DIES Foro anting bustine Cefan

$\mathrm{B}^{\mathrm{ANRRLPRTS}}$ SALE OF HORIZONTAL

MOT-OUN EITLES PIBTOLS REVOLTEAS,

PUNCHING

INTER-STATE

Inilustrial Emposition

 CHICAG0, 1875.Will Open September 8th and Close All MANUFACTURERS, ARTISANS and INVENTORS
Wiating to bring thetr producte before the
GREAT WESTERN PUBLIC
NO CHARGE FOR SPACE OR POWER. Terms liberal to exhibitors and facllities first Applications recelved at any time. For blanks and further information, apply to
JOFN P. REYNOLDS,

ecretary.

$A^{\text {saw }}$ that is 1 saw-self-Feeding, cuts

gatvertisements.
 Engravings may head advertisements at the some rate per line, by meanermine, as the lettor press. Ade
vertsements must be received at publication office as early as Friday morning to appear in next tesuc.
 SECOND HAND GAS WORKS FOR BALEL-
 W ANTED-A responsible party to manufao-

R.TEN EYCK
 SCIENTIFIC \& MECHANICAL
 ENGRAVER ON WOOD.

Working Models

School of Civil Engineering OF UNION COLLEGE. SCHENECTADY,N.Y

\qquad Niagara SteamPump Works Ebtablibitid 1862.
HarLes b. Hardick, 23 Adams streot
BROOKLYN, N. Y.

Machinist's Tools.

 Todd \& Rafferty Machine Co. vantifattorese of

 REESE'S ADJUSTABLE STENCIL LETTERS

 Mann \& Co.'s Patent Ofictes.
Bstablished 1846.
The Oldest Agenoy for Soliciting Patents in the United Statem
zWENTP-EIGHI FEARS ETPERIEROS.
MORE PATENT \bar{S} have been ecocred trrousb this areaner, at home and abrood, than chrough any other in ${ }^{\text {the morla }}$
They emplog as their sadstants a corpo of the most ex.
 ected from the ranks of the Patent Offloe.
SIXTY THOUSAND inventors havo avalled themselves of M ann d Co.'s servines in emminting their inventiona and procuring their patenta.
MUNN $\& C O$, in connection with the pablication of the Screvitifo Amerioar, continue to aramine inventions confer with inventort, propare drawings, epociflcastons, and peying the government fees, and watch eoch case step b) paying the government feos, and watch esch case step by
top will
pending before the examiner. This io done t through their branch office, ocrner F and 7 th 8 Streets, Wash. ngton. They allo propare and fle careetta, procure dedifp pastenta, trademarke, and relsences, attend to rejected copece (prepered by the inventor or other attorneys), procure cops. righte, attend to interferencoses bive witten opitions or matters of infringement, furpilah copies of patants in fact n foralgo countries.
Patents obtained in Canads. England, France, Bellotum Germany, Russia, Prosesia, Spain, Portugal, the Brithet Solonies, and all other countries where patents an cranted.
 all inventions pstented through thic Agency, with tht eold, in part or whole, to personss attrected to the tivention by suab nottior.
A parpphlet of 110 pagees contanning the lawa and fall d. reotlons for obealning United States patanta, also a circoulay perthinung excloasively to Foreign Patanta, stating cost fos
eash country, time granted, eta, eent tree. Address MUNN \& CO."
Pubhahers BCIRETIFIO AMRRIOAT,
BManas Omo-Cormer Fand fin
BMAROA OHNO-
 TO LUMBERMEN. \$100.00 IN GOLD,

 Emerson, Ford $\underset{\text { beaver falis, pa }}{\&}$

ASBESTOS MATERIATS

ROOFING, sHEATHING, BOILER FELLTING, PAINTS (all colors), ROOFING PAINT

 arkill \& EEIZEL, 44 Honaday St., Balt

Machinists' Tools.

Boviog

Dogras tannate of soda
R OGERA, TANNATE OF SODA BOILRER

\qquad
 J. Bicknell \& Co.. 27 Warren St.,N.

IRON PTANTARS,

THE B E S T IN Locomotive and stationary Boilers. Orer 15,000 Now in Use Here and in Earope
 NATHAN \& DREVFUS, Sole Manufactarers
ETH Send for Catalogue. Liberty St, New York. (MMTIII 空

REYNOLDS \& CO 145 EAST ST., NEW HAVEN, 'CT.,

HARTFORD

STEAM BOILER
Inspection \& Insurance COMPANY.
V. B. Tumind, V. Pit J. M. Acenc, Proti J. B. Praca, Soe
ABtyord, Conn

> ROOTSFOREE BLAST BLOWER. FIRST PREMIUM AWARDED AT PARIS \&VIENNA THOUSANDS IN USE BOTH IN THIS COUNTRY \& EUROPE. SPEED ONLYIDOTO250 REV. FER MIN. SAVES HALF ${ }_{\text {the }}$ POWER used by $^{\text {FAN }}$. P.H.\&F.M.ROOTS MFRS.CONNERSVILLE IND. S.S.TOWNSEND 3I.LIBERTY ST. N.Y.GENEAGT.

Portland Cement

imery Wheels (TANITE EmeryGinders
 Bogardis patent Unversal bccen-

WIRE ROPE

IImproved Foot Lathes.

Mill Furnisking Works

PORTLAND CEMENT

 Asbestos Folting Oo

ELGIN WATCHES.

THE BEST POT RAILROAD purposes now manuractured. Certificates prom over 30
SUPERINTGNDENTS or Leading RallSIX grades of Gents' Watches with Stem BUY NO MORE CHEAP Attachments.
BUY NO MORE CHEAP SWISS WATCHES.
THE NEW ELGIN WATCH, ULGAS 5 The BEST WATCH, for the moneJ, now made in the Each Watch manuractured by the Com-
pany, bearing theirTradeMark, is accom-
panied by a MEDAL, bearing the name
 its quality, For sale by all Jewelers.
MPORTANT FOR ALL LARGE CORPO

 MAGNETB-Permanent Steel Magnets

Diamond Solid Bmery Wheds.

Improvad Slotting Machine.
New Trip to relieve the Tool ou the
un stroke The best arangement jee.
 in Fair of 1874, against all competitors.
WOOD \& LIGIT YACHNJ CO.

 SCIENTIFIC AMERICAN, THE MOET POPOLAR SCIENTIFIC PAPER II THE WORLD.

> THIRTIETH YEAR.

VOLUME XXXH.-NEW SERIES. The publishers of the SCIENTIFIC AMERICAN beg to announce that on the second day of January,
1875, a new volume commenced. It will cont'rue to be the aim of the publishers to render the cn tents of the new volume more attractive and useful than any of its predecessors.

To the Mechanic and Manufacturer. No person engaged in any of the mechanical pur suits should think of doing without the Scientific Ancricans. Every number contains from six to te angravings of new machines and inventions whic The SCTENTIFIC AMCPRTCAN is dero
interests of Popular Sclence, the Mechanic Arts, Manufactures, Inventions, Agriculture,Commerce, and the industrial pursuits generally; and it is val uable and instructive not only in the workshop an Manufactory, but also in the Household, the L orary, and the Rerme

TERM8.
One copy, one year (portage included)....... $\$ 3.20$ One copy, three months (postage included). . 1.0 One copy of Scientifle American for one
jear, and one copy of engraving, "Men
of Progres".......................... 10.00 One copy of Scientifc American for one
year, and one copy of "Bcience recor.
for 1874............................ 5.50
Remit by postal order, draft, or express.
Addrese all letters and make all Post Gilce ders and draftes payable to

MUNNN \& CO.
TiAE "Scientific American", is printed with

[^0]: Inventions Patented in England by Americans.
 rComplied from the Commissioners of Patente' Journal.] From March 30 to Λ pril 13, 1875, Inclusive
 Boots and smors.-L. Heath, boston, Mass.
 Briok kily, etc.--E. W. Bingbam, Portland, Oregon
 Car Dram and beyfer.- A. b. Pullman (of Chicago, ill.), London, Eng
 Cctlery, eto.-O. W. Taft, New York city.
 derailment indicator.-J. Turner (of Chicago, ini.), London, England. Friction Match Machinery.-McC. Young, Frederick, Md.
 Gradated Rcle, eto- Hastinge \& Co., Granby, Conn. Loom.-J. F. Wicks, Providence, R.
 Looy Pattren Clain.-J. F. Wicks, cerce. r. I.
 Masing Stgar.-F. O. Matthlessen, New lolk city.
 Making Stgar. - F. O. Matthessen, Nem 101 kclty .
 Nut Machinery.-W. Charles, Chartiers, Pa., cial.
 Papre Box.-L. A. Kettle, Yhiladelpha, Pa.
 Rallway Wierl.-R. N. Allen cof Hudson,
 Railmat Wierl.-R. N. Allen (of Hudson, N. Y.). London, England, et al
 Reoordinat Steam

 Segpenders.-S. W. Flsk, New York city.
 Tranwate rto-A S. Hallide of San Fra

