

a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES. Vol. $\underset{\substack{\text { [NEW SERIES.] }}}{ }$ 8.]
 NEW YORK, MAY 1, 1875.
 [${ }^{83.20}$ por Annum,

IMPROVED SHINGLE AND HEADING MACHINERY

We illustrate herewith three improved machines for shingle manufacture, which, though they have been before the public for several years, have, during the period since their introduction, been made the subject of numerous improvements, so that, at the present time, they are now offered in highly perfected form
Fig. 1 represents Evarts' patent twelve block rotary shin gle machine. Upon each of two sides of a frame, about seven feet square, is placed an upright shaft. These shafts anch carry a horizotal saw oach carry a horizontal saw, and above the saws a circular carriage, some eight feet in diameter, is mounted. The carriage is divided into twelve spaces, into each of which a block, to be cut into shingles. is placed while the carriage is in motion, new blocks being supplied as fast as the first ones are cut up by the saws. It is stated that twenty thousand shingles per hour can thus be made. The carriage is driven by two friction rollers, which cause a uniform and wheady feed, and prevent back steady feed, and prevent back lash. The motion is posicive and continuous, there being no springs or other gear to get out of order. The dogs are simply weights raised by an inclined plane to drop off the end and fasten the block while the saw is passing through. But ono man is required to place the bolts within the revolving carriage, while a boy can easily remove the slabs from the opposite side. This is done without delay or danger, as the bolts are free except when the saw is passing through them. The work produced is smooth; and as the tables are stationary and nut tilted to produce taper when the apparatus is once adjusted the shingles produced subsequently are exactly alike
The machine is claimed to saw at least double the shingle of an ordinary two-block machine, and quadruple the shingles of any hand-fed one-block apparatus. If only half the capacity of the machine is required, or a production of from 65,000 to 75,000 shingles per day, but one saw need be used.
The apparatus is made to saw shingles from 16 to 18 inches in length, and is further claimed to saw up closer
and make fewer clip shingles than any other device of like nathe.
The Evarts hand-feed one-block machine, which is represented in the second engraving, has one saw shaft, and a reciprocating carriage operated by hand. Eccentrically geared automatic feed works are added, so that the feed may be either automatic or by hand, as the user may desire. Perfoctly tapered shingles, of any required thickness at top o

EVARTS' ROTARY SHINGLE MACHINE.
pine or cypress timber, and from 8,000 to 12,000 pieces of heading.
The third figure represents Low's patent shingle and barre head sawing machine, a light running and portable appara tus, easily attached to any kind of power, and excellently suited for shingle and flour barrel head work. The saw is arranged in a vertical position, so that the bolt gate or car age moves in a similar direction. The gate is counter balanced and has a head block to hold the bolt, which is fed out over the saw, and then de pressed while the latter cuts off a shingle. The bolt then rises and a similar movement of the feed pushes it outward in place for another cut. The saw does not have to be removed from the machine to be gummed or filed, and it does its work with the grain of the timber, requiring no countershaft to run it The dogs are set but once fo each block. The capacity of the machine is from 20,000 to 30,000 shingles per day.

In addition to the foregoing, the manufacturers, Messrs. C. S. \& S. Burt, of Dunleith, Ill. produce every kind of machine produce ery for matring shingles and head for maky ing, including dog saws, saw bolting apparatus, knife o wheel jointers (double or sin gle), knot or saw jointers with one or two saws, different style of bunching machines, etc.
For further particulars re garding these various devices, address the Messrs. Burt, as above.

Venus.

The Italian observers at Mad dapore, in Bengal, to which party the eminent spectrosco

§rientific glmxtican.

MUNN \& CO., Editors and Proprietors. PUBLIBHED WEEEITI AT
NO. 37 PARK ROW, NEW YORK.
o. d. monn.
A. ह. bEACB .

TERMS.
One copy, one yenr, potage Incluced....
ne
Club Ratea:
Ten coples, one year, each 8270 , postage included.
Over ten coples, same rate each, postage included.
Cr By the new law, postage is payable in advance br............ 27070 the paper free of charge.
Nors.-Persons subscribing will please to give their full names, and Poss
Offle and State address, plainly writen, and also state at which time they Flish their subscriptions to commence, otherwise the paper will the recelpt of the order. When requested, the numbers can be supplied from Jaruary 1st, when the volume commenced. In case of changing rest-
dence, state former address, as well as give the new one. No changes can dence, state former address, as well as give the new one. No changes can

VOLUME XXXII., No 18. [New Series. 1 Thirtieth Year.
NEW YORK, SATURDAY, MAY 1, 1875.

the money value of education.

Says an English writer, whose remarks have been widely quoted in this country: "There was a time when what is generally understood as a good education had a pecuniary value of some importance both to men and women; but its day has gone by with the general spread of education. Men and women do not succeed nowadays simply by being wel educated, but because they possess certain faculties which superior education may or may not have enabled them to turn to a more or less remunerative account.
If the favor with which these assertions have been re ceived among us betokened merely a widespread scepticism in regard to what is " generally understood to be a good education," we should have no objection to make. It is only too true that the traditional culture, which the schools aim chiefly to give, rarely proves of much direct pecuniary value, even where it does not have the contrary effect of unfitting the recipient for the conflicts of productive life; but it is a grievous error to suppose, as many do, that the same holds true of what is really good education: an error that has al ready done much mischief, and is likely to do more, in leading the rising generation to despise instruction.

So far from having its money value lessened, education, properly so-called-that is, the fitting of the man or woman to meet the demands of modern life-has a higher value than education ever had before. There never was a time when proper culture gave a man greater power or better op portunities for gathering to himself the good things of life It is quite another thing to say that what is commonly understood as a good education fails to prove so advantageous to its possessors. Not all knowledge is power; nor is the same knowledge equally powerful at all times. There is a wide range of oulture which merely fits a man for the high est enjoyment of life, enabling him simply to be an appre ciative observer of the progress of humanity and the vicissi tudes of Nature. This adds value to life, but does not in crease its market value; accordingly we leave it out of this
account. There is acain a wide range of knowledge which
simply puts a man on a level with his neighbors, and there ore conveys no relative advantage, though the lack of might prove a serious disadvantage: a range of knowledge which necessarily widens with the general spreading of edu ation.
For instance, among illiterate people, the man who ha penetrated the mystery of letters may gain thereby a signa uperiority, as in mediæval Europe. The exercise of th arts of reading and writing under such circumstances bring him money: at least they may secure to him the " benefit of the clergy" in case of necessity, not, as often supposed, the unsubstantial benefit of being prayed over when condemne to death, but complete exemption from civil trial and convicion. With us, where nearly everybody reads and writes these arts are relatively of lower value.
A few years ago a tolerable knowledge of arithmetic, with good handwriting and some acquaintance with the art of keeping accounts, was a certain passport to profitable em ployment. The useful art of bookkeeping was then a mys ery to the multitude, and therefore had a considerable mone value in the markets. To-day, when nine boys out of every en are more or less familiar with these elements of a busi ness education, and too large a proportion vastly over esti mate the importance of them and expect to thrive by them alone, such knowledge gives a young man no special dis tinction. He will find the knowledge very useful on many ccasions; but it will rarely prove to him such a certain road to fortune and fame as the business colleges would have him elieve.
In like manner, the trumpery information to be had from the old style school books once had a certain money value "l" learned profession. Now that such knowledge is as common common schools, its special value is gone
Shall we say, from facts like these, that the money valu of a good education is declining? Not at all; but merely tha the elements of a practical money-making education have changed. Given these elements, with sufficient force to use hem, and there is no end to their money value.
Of course this does not imply that the scholar of little force will always be able to compete successfully with th ntaught or, more properly, self-taught man of superio ative talent. An ounce of mother wit is worth a tan enith without wit toy as it was when the pro was strong) with proper education is sure to surpass a man o corresponding force without such education, other condition being equal. Everything hinges,however, on what we regar s a good and proper education
If we dignify by that term the veneering of hearsay know ledge and useless accomplishments which so often passe or culture, then it is right enough to say that "a good edu cation" helps one very little in the battle of life. But re stricting the term, as we ought, to a training calculated to make the most of the child's powers of sense and intelleot, to set him on the right road to his highest development a a thinker and doer, while making him actively acquainted with the best results of human effort, especially in the de say, the money value of a good education is immensel greater than ever before.
To circulate unqualified condemnations of education is bout the worst thing our newspapers can do. Perhaps the best is to insist continuously on a closer adaptation of school work to the needs of the times, and the encouragement of out of chool work fitted to make our youth apt and skillful and in elligent as productive workers.

PHOTO-MECHANICAL PRINTING.

There is perhaps no more inviting and fruitful field fo cientific discovery and invention than in the line of photo raphy, and but little attention to the subject is required to con! ince one that this field is fast yielding up its treasure to patient and successful investigation. Though the sun is as swift and reliable as time itself, it is too slow and too un certain to command the full confidence of the artists who ish to form permanent impressions of the varied object hat now come within the scope of the photographic art. In tead of the slow method of waiting for the sun to shine and then for it to transfer from a negative, one by one, the pictures which will continually fade by the action of light, his work can now be done by the ordinary printing press nd with durable carbon printer's ink. Yet the results thus peedily reached are not like the cheap woodcuts that issue a almost fabulous numbers from the press, but have more he character of the finely cut lithographic pictures
In 1839 Mungo Ponton, a chemist of Bristol, Eng., an nounced the fact that sized paper, treated with a bichromate, was subject to ar alteration, by the action of light, which rendered insoluble the sizing which the paper contained. In this fact lies the germ of all the processes of which it is our purpose to speak. The following are some of the many which are modifications of this principle: Carbon printing, in which each picture is itself a sheet of gelatin of required thickness, permeated with the coloring matter, and each impression is made by the dirdet agency of light; photo lithography, in which the transfer is made on stone by means of gelatin; photo-zincography, which differs from the last by using zinc instead of stone; photo-galvanogra phy, in which a sheet of gelatin-with the parts not acted on by light swcllen by water-is made to serve as a basis of electrotyping; Woodburytype, in which a sheet of geiatin-
with the parts unacted on by light washed away-is used with the parts unacted on by light washed a way-is used
as a means of obtaining, by hydraulic pressure, a metal mold.

This mold is filled for every impression with gelatin con taining coloring matter, and the print is really an embossing, so to speak, of colored gelatin on the paper. From the im pression on the metal-which is an alloy of zinc and anti mony-these types are printed on prepared paper, by a small hand press resembling the printing press.
In 1855 M . Poitevin, a French engineer, discovered that bichromatized gelatin, acted on by light, had the properties of a lithographic stone, and might be used as such. Since the parts on which the light has acted are impervicus to water, upon moistening the plate some of it will be dry ome wet ; and where light partially acted, it will be part dr and part wet. Now, as oil and water repel each other, b putting grease upon this plate, it will adhere entirely to the dry parts-those which were exposed to light,-partially to hose under partial light, and not at all where it took up moisture. And now, by rolling over this plate a cylinde of lithographer's ink, the plate is ready to make a lithogra hic print. This idea, with modifications in its mode of ap lication, has its representatives in various processes now mployed. Among these we will briefly notice only two.
Mr. Joseph Albert, court photographer of Munich, ha shown great ingenaity in perfecting what is now called the Albertype process. He commenced in 1868 ; and after nu merous experiments forfixing, to the plate on which it is spread, the film of gelatin from which the pictures ar printed, the happy thought occurred to him to use the sensi ive qualities of the chromic gelatin itself for a cement. He consequently used a plate of glass, spread upon it a coatin of gelatin, then-while the front surface was protected by an underlayer-exposed the back or glass surface to light which rendered it insoluble; and hence adhesive to th plate in presence of water. He hardened the sensitive surfac by chrome alum, chlorine water, and other coagulating so lutions; and to makeit as tough and hard as possible, h pread several films one upon another, hardening each in it urn till he had made a sensitive plate so hard and durabl that thousands of impressions could be printed from on plate. For printing the impression transferred under egative, he uses a lithographic press and the ink com monly made to accompany it. After this, no washing oning, etc., is necessary, but the picture is complete whe leaves the press. Any kind of paper and any colored ink may be used; titles, descriptions, dates, etc., can be printed the same impression; and one negative can be stereotyped d infinitum. The Photo-Plate Printing Company New York, and the Albertype Printing Company, of Bos n, are sole proprietors of this patent
In the heliotype process, some perfectly flat surface is irst coated over with wax ; upon this is then poured a ho solution of gelatin, after which bichromate of potassa is dded, then burnt alum or tannin, to make the surface fin nd durable. After it has hardened, the sheet is stripped ff and set up in an achromatic chamber to dry. Then th wax is removed, and the sheets are ready for the reception f light under the ordinary photographic negative in the or dinary photograph printing frame. The sheet of gelatin i hen forced by pressure under water upon a flat plate o etal; and when the water has been pressed out, it is ready or printing in any ordinary printing press. Several thick nesses of ink are used, and for the deepest shades a little oi is added, which will adhere only to the deeper shadows The plate must be kept moist in printing; and if moistened ith colored water or Indian ink, a picture res
These two processes, with that of the Woodburytype briefly entioned above, have lately been used with great profit and satisfaction by Mr. Alex. Agassiz and others, for represent natural history specimens, in the Illustrated Catalogue of the Museum of Comparative Zöology, Zöological Results o he Hassler Expedition, etc. The negatives of these plate were all taken by Mr. A. Lowell, as they are ordinarily made or silver prints. By each of these processes very satisfac tory results were secured, as well in regard to expense and correctness of plates as in their general execution. And the prospect is cheeringly encouraging that, ere long. Natura Science will find in photography one of her most profitable allies. The expense of plates representing results of the naturalist's investigations bas long been a serious hindrance o the advancement of Science; for a correct figure is often more expressive and instructive than pages of verbal description. By these methods, the cost of a quarto plate, inluding paper, mounting, lettering, etc., and exclusive of the negative, is only ten or fifteen cents per copy; and this hardly more than the mere cost of lithographic press ork, to say nothing of the artist's drawings on stone. The Woodburytype is a little more 'expensive and cumbersome than the other two, because, on account of the method of preparing the plate from which the impression is taken, it must be mounted for protection. Notwithstanding this, it will not preclude its use, for its pictures have a remarkable resemblance to good silver prints, with all their brilliancy and sharpness.
Another very important advantage those methods have ver lithography is in their greater accuracy. By them the original sketches of investigators can doubtless be repro duced, and "subsequent observers will be better able to judge of what has actually been seen, and not of what has actually been added by the pencil of the artist who copies original drawings on stone." Mr. Agassiz finds it less trouble and expense to employ the carbon processes, even when it necessitates occasional visits to New York and Philadelphia, than to superintend, in the Museum itself, the lithographic plates. Dgain, Mr. Agessiz says: "On account of time re quired to complete a large number of plates, either as en
issue so great a number of plates within the period required issue so great a number of plates within the period required
for permanent photographs." From a lithographic plate for permanent photographs." From a lithographic plate only about 500 good impressions can be taken, but here they
can be made by thousands. It will also be of great adcan be made by thousands. It will also be of great ad-
vantage in copying plates from monographs, or valuable picrantage in copying plates from monographs, or valuable pic-
tures of any kind which are out of print or otherwise inactures of

IMPROVEMENTS AT THE MOUTH OF THE MISSISSIPP1.
The long discussion relative to the most practicable method of improving the mouth of the Mississippi, so as to render the same passable to vessels of deep draft and thus to open the river ports to direct ocean traffic, was virtually terminated by the granting of an appropriation by the last Congress, for the construction of a system of jecties at one of the passes through which the stream enters the Gulf. The plans involving canals, which have been strenuously advocated by many eminent engineers, are therefore for the time at least set aside, and to Captain J. L. Eads, an engineer now widely celebrated for his successful construction of the St. Louis bridge, has been entrusted the task of causing the mighty current of the Father of Waters literally to undo its own work and to break down the barrier which itself hes created.

The Delta of the Mississippi is formed of narrow strips of land, mostly low lying banks, through which the river winds until it makes its exit to the Gulf by a number of narrow passes. In some of these channels, previous attempts
have been made to deepen them by dredging, with but parhave been made to deepen them by dredging, with but par-
tial success, however, as a single flood has been known to carry down sufficient sediment to fill them to their original depth; and the current besides, emptying into the open water at the mouths, speedily left at that point bars of blue clay, surmountable only by light draft ships. The gist of Captain Eads' plan will now ba readily apprehended when it is regarded as shifting the point of deposit of these barriers from the shoal water at the entrance of one pass, out into the deep water where filling up by natural causes is impossible. By this means the river current is to be made to cut out and scour its own channel across the present bar. To do this, it is obvious that the banks of the pass must be extended, so as to lead the stream far enough out; another section of conduit, as it were must, be added, and this is now to be formed of the submarine dykes or jetties.
The materials of which these structures are to be composed are willow twigs bound in bundles, termed by engineers "fascines," eight or ten feet in length and about as many inches in diameter. A large number of fascines at a time will be lashed together to form rafts, the first of which wil be from seventy-tive to two thousand feet in width, the largest rafts being sunk in the deepest water. The rafts will next be toxed to the proper point, there loaded with stones, and submerged, and thus the work will continue, one raft being sunk above another until the surface is beac Each line of rafts will be narrower than the one below it The two walls which will thus be constructed will be proThe two walls which will thus be constructed will be pro-
longations of the banks, and between them will form a chanlongations of the banks, and between them will form a chan-
nel with sloping sides. In the course of time,the interstices nel with sloping sides. In the course of time, the interstices
of t wigs and stones will fill with sand and mud, so that eventually two solid submarine levees will be produced. Very little pile work, it is said, will be required except perhaps at the head of South Pass, which is the outlet at which the jetties are to be built, in order to provide for the proper regulation of the volume of water in the new channel at various stages of the river.
Captain Eads has already began his surveys, in which work, together with the making of the necessary contracts for materials, labor, etc., the summer will be consumed The first raft,it is expected, will be sunk by the beginning o October next.

motion on a moving body.

For the last few months we have been receiving queries from all sections of the country, something like the follow ing: "If a train is moving at the rate of sirty miles an
hour, and a cannon on the train is fired, giving the shot a hour, and a cannon on the train is fired, giving the shot a
velocity of sixty miles an hour, will it leave the train, or velocity of sixty miles an hour, will it leave the train, or
just drop down at the mouth of the gun?" We have once or twice attempted to explain the matter in our correspon ence columns. but our remarks seem either to have been overlooked or misunderstood, and we must try once more to stop this stream of inquiries by satisfying the inquirers. Our remarks may also be useful in giving some of our read ers m re correct ideas about rest and motion than they pos s93s at present.
The dwellers on the surface of the earth are carried through space so smoothly that many of them doubtless for get that the earth is revolving on its axis with a velocity, a the surface, of more than 1,000 miles an hour, and moving n its orbit at the enormous speed of about 68,000 miles an hour. They know, however, that they can set up a target on the surface of the earth, and pierce it with a shot that has much less than the velocity of the earth, whether th shot be fired in the direction in which the earth is moving or the contrary. It is easy to see, then, that if a ship or train is put in uniform motion, and the same experiment is
tried, it will give a similar result. The reason, too, must be tried, it will give a similar result. The reason, too, must be obvious after a moment's retlection. Everything on the ship will evidently erly occupied, to some other position on the moving body.
This disposes of the first part of the question, and now we will consider what is necessary, in order tor make bod
seen Mr. Hale's entertaining story of the "Brick Moon," which was projected into space with such velocity that it never returned to the earth. Mary more of our readers, no doubt, have experienced some of the difficulties of leaving a moving body, as, for instance, a car: because, as we explained some time ago, the car had put them in motion, and so there was a liability of their being dashed back again violently if they attemped to jump directly from the rear of a train moving at high speed. Now of course the train is not
going to be more considerate of the shot in a cannon than it going to be more considerate of the shot in a cannon than it
is of a human passenger, so that, unless the powder drives it back faster than the train is moving forward, it will not leave the gun. It is scarcely necessary for us to say that the case supposed by our correspondents is a purely imaginary one, since a train or a ship does not move with perfectly uniform velocity, and neither does a shot from a cannon. Considered in this light, the subject is of no practical importance, and our only reason for referring to it in this prominent manner is to call attention to the principles involved, which are both interesting and useful. We do not propose to discuss this question of the cannon and the train any further, and beg that our readers will send us no more commu nications on the subject, as we have not room even for all the valuable and instructive letters that we are constant. ly receiving

WHAT IS THE CADSE OF TIDES?
There are occasional fallacies which, in some mysterious way, gain credence in the minds of men till they finally becomo accepted as unguestioned facts. Among these may be mentioned the oft-repeated proverb: "It is always darkest just before day," and the commonly accepted explanation of the rising of light bodies in a denser medium. It is not true that smoke, heated air, balloons, etc., rise because of their ightness, and then the air rushes in to take their place; but the air, being heavier, seeks by gravity the lowest place, and in so doing crowds up the lighter bodies. Water is said to contract down to a few degrees of the freezing point, and then to expand in changing to ice; but it is probable tha he molecules are drawing closer to one another all the time and that the apparent expansion is because the crystals of do not fit together exactly, and hence leave between hem interstices filled with air, and thus occupy more space And it is quite possible, if not probable, that the common
explanation of tides furnishes still another illustration. explanation of tides furnishes still another illustration.
With sufficient credulity, the explained cause of the tide on he moэn's side of the earth may be accepted as somewha satisfactory: but there is room for reasonable doubt as regards that of the tide opposite the moon. This luminary is said, in the first case, to draw the water away from the earth, and in the second, to draw the earth away from the water This is considered possible because the nearer object will be influenced more by the moon's attraction than the more distant object, and this difference of attractive force, as exerted on the stable earth and the unstable water, is said to pro duce the tides as we observe them. Attraction varies inversely as the square of the distance. If we represent the force with which the moon draws the earth by ten, the force with which it attracts the water on the opposite side of the earth will be about nine and two thirds. This latter force is not diminished by the intervening earth, and tends to draw he water toward the moon. The earth, by its attraction, olds the water to its surface, and its influence is not lessoned when the moon acts upon it. As both these forces tend to draw the water opposite the moon toward that luminary, we would reasonably expect a low, rather than a high, tide at that point. It is said that the water remains behind by its inertia. But as the moon acts constantly upon the earth, and gradually upon any one point of its surface, the inertia of the water would be overcome at least as soon as that of the solid \rightarrow the inflon
Again, the theory rests on the supposition that the at traction of the moon gives the earth a daily motion toward itself; but this cannot be strictly true, for, if so, the earth and moon would be continually approaching each other, and we would live in constant fear of a collision, whereas they maintain a uniform mean distance between them. In opposi on to this, it is argued that the deviations from the tangentia motion of the earth in its orbit are precisely those which the earth would move through if falling toward the attract ing body unaffected by any other impulse.
satisfactory, each must decide for himself.
The sun also exerts upon the earth an influence tending to produce tides, which is about two fifths as great as that exerted by the moon. The sun's real attraction, of count of its greater distance, the difference between its in fluence on the earth and on its aqueous envelope is less. From the sun's influence, we would expect a tide to follow thy sun, as one is said to follow the moon, and differ from it nly in being smaller; and when the sun and moon are in quadrature, we should expect, according to theory, that there
would be four tides in a day: two caused by the moon and wo by the sun, whose major ares would be at right angles oach other. When the sun and moon are in conjunction, we have the highest tides, because both act together and in the same direction. When they are in opposition, we should expect the lowest tides because they act in opposite directions and each tends to counteract the effect of the other. But in act this combination also appears to produce spring tides. If the tidal wave is caused by the moon, and follows he as she apparently makes a complete circuit of the earth in about 25 hours, it must travel at the rate of one thousand miles per hour, and this is hardly reconcilable with its mild-
Mr. Airy's law for the velocity of tidal waves, which makes
it the "same as that which a free body would acquire by falling from rest, under the action of gravity, through a space equal to one half the depth of the water." The Pacific Ocean is estimated to average 440 fathoms in depth, and according to this rule the velocity would be less than 200 miles per hour; or, by a slight change in its application, the rule would make the average depth of water over the whole surface of the earth more than twelve miles. The tidal theory supposes the anomalous condition of an inter. rupted ocean enveloping the whole globe. Again, if the moon or sun causes the tide, we would expect an observable uniformity in the direction and velocity of the tidal wave from the eastern borders of the Atlantic and Pacific Oceans to their western borders; but on the contrary, it is acknowledged by orthodox believers in the lunar and solar cause of tides that we have little or no clue to the course or rate of travel of the ocean tide. Even for the North Atlantic, which is constantly alive with commerce, no connection has yet been discovered between tides of the opposite coasts.
The tide on either side of the earth does not rise on the vertical between the earth and the attracting body, but, under favorable circumstances, about three hours behind it; and when these are not favorable, the retardation may be almost indefinitely prolonged. The reason of this is said to be that the inertia and friction of the water, and other causes, prevent its rapid change of form; and although the elevating force is greatest under the vertical, it still continues to act in the same direction, and with but little diminution of force, for some hours after the passage of the moon. But, strange to say, when the influences of the sun and moon are combined to overcome this friction and inertia, the interval between the meridian passages of these luminaries and the spring tide is longest of all. The retardation so varies with the depth of the sea, form of the basin, interruption of the land, etc., that confessedly no regular progressive movement of etc., that confessedlyno regular progressive movement of
the tide wave can take place except in the unfrequented the tide wave can take place except in the unfrequented
Southern Ocean. This, together with the acknowledged Southern Ocean. This, together with the acknowledged
want of observed connection between the tides on the oppowant of observed connection between the tides on the oppo-
site coasts of the North Atlantic-though here subject to consite coasts of the North Atlantic-though here subject to con-
stant inspection-leads to the conclusion that the belief, respecting the movement of the tidal wave around the earth from east to west, is based on conjecture rather than positive demonstration. On the other hand, there are some reasons for the supposition that this wave moves in the opposite direction Mr. John Wise, who suggests some of the ob jections mentioned above, claims that it moves from west to east, and is due to the action of the earth's centrifugal force just as water is thrown forward on the surface of a rapidly revolving grindstone. In substantiation of this, he says " The first authenticated records we have of this centrifugal wave rolling round the earth, from west to east,are given in the log of the clipper ship Sovereign of the Seas, in her re markably short passage of eighty-three days from the Sand wich Islands to New York, in 1853, in accordance with Maury's chart furnished by our government. This ship made $16 \frac{1}{2}$ knots an hour in her easting for four consecutive days while ridingthis great centrifugal wave in her doubling of Cape Horn. And in the same year, by the same directions, the sailing ship Flying Scud made equally good castings, and made as much as 449 miles in one day, taking advantage of this fact of the great tidal wave." These statements would seem to necessitate the progressive movement of the wate as well as the wave, for their explanation. But it is gener ally held that the water itself has little or no real forward motion.
Mr. Wise also claims that there are not two distinct daily tides in the Southern Ocean, nor at all intertropical points and that where two appear, they are due to gurgitation and regurgitation of the water, occasioned by its forcible contac with the shores between which it oscillates, and may be in fluenced by the fact that the equator of the earth is an ellipse and not a perfect circle. He assigns, as the cause of their regularity, what Herbert Spencer calls the rhythm of motion and says: "They have their elucidation in, and are mani festly referable to, that harmonious pulsation of Nature which exhibits itself in the throbbing of the heart, in the motion of the blood, the vibration of sound, the 'nodding' of the poles of the earth, in all mechanical movements, and in the measured cadence of the waterfall as it rises and falls in its musical rhythms."
That most of the objections cited herein have their stereo typed answers is not denied. But it will doubtless be con ceded that there is some reasonable doubt as to their correct ness, and that strict science, which rests on facts and not on theories, would not be injured by a careful revision of this whole question. With this end in riew, we close our re marks as we began, with the honest query: What is the cause of tides?
Cambridge, Mass.
S. H. Trowbridge.

Coughing

The best method of easing a cough is to resist it with al the force of will possible, until the accumulation of phlegm becomes greater; then there is something to cough against, and it comes up very much easier and with half the cough ing. A great deal of hacking, and hemming, and coughing in invalids is purely nervous, or the result of mere habit, as is shown by the frequency with which it occurs while the patient is thinking about it, and its comparative rarity when he is so much engaged that there is no time to think, o when the attention is impelled in another direction.

A GElatinots substance frequently forms in sponges after prolonged use in water. A weak solution of perman ganate of potassa will remove it. The brown stain caused
by the chemical can be got rid of by soaking in very dilute
muriatic acid.

The New York Tribune Building.

On April 10, the 34th anniversary of its commencement, the New York Tribune opened the doors of its new offices to the public. The structure is of great hight and immense solidity, and is built of brick laid in cement, with dressings of stone and granite. The finial on the clock tower is 260 feet above the sidewalk, surmounting a building containing sub-cellar, basement, nine stories, and attic. The walls of the lower portion, sustaining the great weight of the masonry, are 5 feet 2 inches to 6 feet thick. The building is ry, are 5 feet 2 inches to 6 feet thick. The buiding is
claimed to be absolutely fireproof. No wood is used in its claimed to be absolutely fireproof. No wood is used in its construction, except for foorings, doors, and window frames; and the wooden floors are mere plankings being employed on each floor to carry the superstructure. The floors are ingeniously constructed, being flat arches of hollow con crete blocks, resting at the ends on flanged iron beams they are made of plaster of Paris, coke dust, and the hydraulic lime of Teil. When the whole building is complete, it will certainly be an exceedingly handsome and commodious structure
a Hoe web press is already at work in the new press room, and has a capacity of 16.000 complete copies per room, The composing room is fitted up for one hundred compositors, and the editorial and other offices are intended to be models of comfort and convenience. Speak ing tubes are used for intarcommunication, and pneuma tic tubes convey papers and documents between the ed itors' room, the counting room, and the composing room and the elevators and heating and ventilating apparatus are all of the most modern design. The pneumatic tubes are operated by a blower placed in the basement of the building, similarly to those in the Western Union offices, an illustration of which we recently published.

SMITH'S IMPROVED WHIFFLETREE HOOK.

This is a simple device for attaching the trace to the whiffletree, and consists of a pair of sister hooks, which are ar ranged to open to receive the trace, and which, when closed, prevent the trace from becoming accidentally detached under any circumstances
Fig. 1, in the engraving, shows the hooks closed, and Fig. : the same open. A is the ferrule, which is secured to the whiffletree in the usual manner. The lower half, B, of the hook is in one piece with the ferrule, and has a downward projecting lug on the end, as shown. The upper half, C , is pivoted sidewise to the lower half, but is bent in oppo-

site direction to the latter. Both \jmath, Ω arts are recessed at thei overlapping front portions, to form, when together, as in Fig. 1, an eye for the ring of the trace. In attaching the latter, the eye is first placed over the part, B, and carried back to the rear; the upper part is then brought down, and the trace pushed forward over both.
This device, the inventor informs us, has given general satisfaction wherever used. It offers no open hook in which the reins are apt to get caught, and yet allows of the attach ing or detaching of the traces in th \rightarrow shortest possible time. It certainly is a very simple and ingenious appliance for the purpose intended.
Patented through the Scientific American Patent Agency February 16, 1875. For further particulars relative to sal of entire right, or with regard to manufacturing on royalty, address the inventor,' Mr. O. J. Smith, Wau watosa, Milwau kee county, Wis.

Consumption of Wood in France.

The Independence Belge gives some curious statistics re lative to the consumption of wood in France. A large quan tity of soft wood is used for making toys, and to give an ide of the magnitude of this trade it will be sufficient to take one article alone, children's drums, of which in Paris alon 200,000 are sold every month. The total number made an nually in France is estimated at $30,000,000$, while a consid erable quantity of wood must be consumed to supply 60,000 000 drumsticks

a CURIOUS OCULAR ILLUSION.

It is generally believed that the minute striæ which ap pear upon distoms, under the microscope, aro in reality a assemblage of hexagons, as the strix resolve themselves into an assemblage of such figures when subjected to higher magnifying powers. M. Nachet, the celebrated French microscopist, describes, in a recent number of La Nature, an odd optical illusion which, he states, accounts for she figures on the diatoms appearing as hexagons, when, in reality, they are spherical in shape.
The reader can see for himself, from the diagrams given herewith, that M. Nachet's conclusion is without doubt correct. The large circular dots in Fig. 1 are drawn as nearly as possible in positions similar to those of the supposed hexa-

is effected by gradually adding a slight excess of carbonate of baryta to the liquid, slightly heated, but not so as to ex ceed 50° to $60^{\circ} \mathrm{Fah}$. It is complete when a further addition of carbonate occasions no effervescence, and does not become covered with peroside of iron. Pure sulphate of nickel then remains in solution. It is separated from the precipi tate by filtration, and the filtrate is evaporated till a pellicle appears on the surface, when it is set aside to crystallize.M. A. Terreil.

Varnish from Valcanized Rubber.

The following description of a method of making a varnish from vulcanized rubber is taken from the Moniteur Indus triel Belge. In answering questions relating to the dissolution of vulcanized caoutchouc, we have repeatedly doubt ed the possibility of so doing. The present process, however, seemingly includes burning out the splphur, etc., and then dissolving the residue. If any of our readers practically test the recipe, we should be glad to earn the result.
The fragments of vulcarized rubber are deposited in a deep earthenware pot, which is closed by a tightly fitting cover and deposited on burning coals for about five minutes. During this period care must be taken not to open the vessel, as the vapor is highly inflammable. On removal, the mass is examined by pushing a wire into it to see that it is uniformly melted; and if this be the case, it is at once poured out into a large, well greased, shallow tin pan, and left to cool. When hard, it is broken into small pieces, placed in a bottle with benzole or rec tified essence of turpentine, and there thoroughly shaken and stirred.
The dissolution then takes place, and after a brief rest
 the clear liquor which forms the varnish is decanted from the impurities which settle at the bottom.

STOCKLEY'S IMPROVED ANTI-PRIMER

Hundreds of our readers have to complain of inefficien working done by steam engines, and of damage to cylinders (in the bore and to the heads) and pistons, all being caused by water working over into the engines in the steam. Dry steam is an absolute necessity to the engineer who desires to work economically, both in consumption of fuel and wear of his machinery.
Mr. J. Stockley, an engineer employed in the Wallsend coal district, England, has invented an appliance for securing dryness of steam, and it has, we are informed, been al ready applied to several marine engines with marked success A fixed case or pipe, C D, is put on the boiler, as shown The steam from the dome enters the casing, as shown, and

the theory is that the helix within C causes the steam to as sume a whirling motion, by which the water is expelled by centrifugal force, and falls down D into the boiler, while the now dry steam, pursuing the course shown by the arrows, rises and escapes through the stop valve above. The action will, we think, be readily understood. Flap valves, to prevent the water rising, are inserted in the pipe, C D. This invention appears to have given excellent results in practice and it is no doubt designed on sound principles.

An Excursion to the Mediterranean.
The memorable cruise of the Quaker City, so comically described in Mark Twain's "Innocents Abroad," is to be re peated; and those who have wished to "do" Europe, after the manner recounted by that genial humorist, will this sum mer be offered an excellent opportunity for so doing. Mr. George F. Duncan, himself one of the original Quaker City George F. Duncan, himself one of the original Quaker City
travelers, proposes to charter a steamer and secure about 100 travelers, proposes to charter a steamer and secure about 100 terest in the Mediterranean. The ship will sail on about the 1st of June, and the cruise, which includes visits to the Hol Land, Egypt, etc., besides affording abundant time for ram bles inland on the Continent, will terminate with the arrival of the travelers back in New York on about the 10th of Novem ber. The cost of the trip will be $\$ 1,500$ currency for each passenger.
This is an excellent ohance to see a large amount of the world for little money. The reader will find further particulars in the advertisement on another page

WHIPPLE'S IMPROVED CLOTHES DRYER.

The device illustrated herewith will doubtless meet a ready welcome from laundresses, inasmuch as it tends to obviate the use of the stationary clothes line. Instead of the clothes being carried out to the line and there secured, requiring the person to emerge from a warm room, often into cold and blowy weather at the risk of incurring illness, the garments, through the present invention, are secured to lines on a simple frame, which last is then transported bodily out of doors, and set up-an operation requiring but a few se conds. The wooden frames, $5 \frac{1}{2}$ feet high by 4 feet wide,

are neatily strung with metallic line, the total length of the latter being about one hundred feet. At the upper left hand corner, as shown in the engraving, a hinge joins the two frames, but in such a manner as to admit of their lower portions being thrown outward, as represented. The other upper corner is provided with a recessed hinge and set screw, as shown at A. and is enlarged borw, the recess of the hinge allowing of the entrance of the shank of the screw and the consequent joining or loosening of the parts as desired.
When set up, the clothes, after being wrung out, ar attached, and the entire device is then carried to the drying grouvd and left there until the clothes are dry. This is of much convenience, since it allows of the transporting of frozen garments directly to the fire without requiring their being torn loose from the lines at the risk of injuring them, and ad mits of the clothes being carried immediately to shelter in case of a sudden shower.
The apparatus is readily converted into an ordinary clothes horse by loosening the screw, A, and securing the hinge, which joins the left hand corner of one frame to the right hand lower corner of the other.
For further particulars, address the manufacturer, Mr. D B. Chapman, New London, Conn

The Recent Life-Saving Dress Trial in England.

We mentioned recently the remarkable performance of Captain Paul Boyton in making his way to land after having jumped overboard from the steamship Queen, while that vessel was yet two and a half miles distant from Cape Clear, through the support of a life-preserving dress, to exhibit which was the object of his transatlantic voyage. A storm arising, the efficiency of the invention was put to a severe test than the wearer contemplated; but though he was kep in the water some seven hours, during which period he traveled thirty miles, Captain Boyton reached shore in safety, and this despite a terrible buffeting from the breakers.
Since his arrival in England, Boyton has given several exhibitions of the life-preserving capabilities of his dress in the Thames river, attracting large crowds of people, as wel as the examination of the Royal Humane and other societies The latest test to which the invention has been subjected is certainly Ω crucial one; and although its wearer failed to accomplish completely the task which he had set himself sufficient, nevertheless, was done to warrant the pronounc ing this device to be certainly one of the most efficient of life-preserving apparatus yet produced. Captain Boyton undertook to fioat from Dover to Boulogne, crossing the English Channel and accomplishing a distance of over fifty miles, within one day. The darkness of the night and inclemency of the weather. coupled with an error on the part of his pilot in not directing him a straight course, prevented the fulfilment of the undertaking; but as it was, the swim mer, after remaining in the water fifteen hours and reach ing a point within eight miles of his destination, everged with clothes dry, temperature of body lowered but one de gree, pulse at eighty, and fully capable, according to medi cal opinion, of remaining afloat at least six hours longer. A repetition of the effort will undoubtedly bring success, though to all practical purposes the same has already been achieved. The credit, however, must in no slight measure
be awarded to Captain Boyton's powers of endurance, as it is evident that, while the dress furnished buoyancy for the period above named, it had nothing to do with the rapid propulsion of the individual over the water
We notice that several of our contemporaries fall into the mistake that the invention is a very recent one. This is not the fact, since it is nearly six years ago that it was patented hrough this agency, by its inventor, Mr. C. S. Merriman both in the United States and in most of the foreign countries. In our issue of January 14, 1871, a fully illustrated description of the device appeared, together with an accoun its successful exhibition off the Battery in this city.
The efficiency of the invention now being proved,it remains to see how long before the steamship companies will defer itsadoption. The objection of occupying valuable space cannot be urged against $i t$, inasmuch as it can be folded into the compass of an ordinary overcoat; nor is its cost,pro bably, to be compared with that of much more common and more elaborate life-preserving apparatus. With the record of its qualities now well known, it certainly appears that the knowledge of such a means of safety being on board would do much to lessen the terrors of the sea to the raveling public, and at the same time, as a necessary con sequence, to increase the receipts of sieamship lines.

IMPROVED ELECTRIC LAMP LIGHTER.

The lamp-lighting device shown in our illustration is called " the electro-catalytic lamp lighter, and is brought out by Messrs. Voisin \& Dronier, of Paris, France. It re out by Messrs. Voisin \& Dronier, of Paris, France. Ir reapparatus, in which hydrogen gas is used to heat platinum apparatus, in which hydrogen gas is used to
sponge. In this case, the igniting material is a thin platisponge. In this case, the igniting material is a thin plati-
num wire, heated to glowing by an electric current passing num wire, heated to glowing by an electric current passing
through it, and thus igniting a wick, the lower part of wbich through it, and thus igniting a wick, the lower part of wbich
is immersed in benzine which continues to burn until extin guished. Fig. 1 shows the apparatusin sectional side eleva tion, and Fig. 2 shows the igniting wire in its actual size.
The glass vessel, b, is placed in an inclosing casing or box and is provided with a galvanic element attached to the detachable top, the long carbons, c, reaching down into a solu tion of bichromate of potassa and diluted sulphuric acid which fills the vessel, b, up to a certain point. A zinc plate d, is suspended between the carbons by a sliding springacted rod, e guided in a perforation at the top, and depressed by a button at its upper end; so that, when depressed, the zinc plate is immersed in the solution till it comes in contact with a lateral carbon connecting stop, f. At the under side with a lateral carbon connecting stop, f. At the under side
of the lid of the vessel are applied two parallel copper wires, g, in contact with the sliding rod and the carbons, for trans mitting the electric current (produced by the immersion of the zinc) to the igniter at the aatside of the casing.
The igniter (Fig. 2) is composed of two copper tubes $h h$, placed on the ends of the wires, g. The copper tubes are laterally connected by an insulated brace sleeve, j, and have, at their front end, small rods, i, which approsch each other. These small rods are connected by the spiral platinum wire, k, which is protected against injury by a perfora ted guard piece, l, attached to the lid and extended over the igniter. The length and resistance of the platinum wire

have to be determined in proportion to the galvanic elemen and if the wire is of proper length, it will be heated brightly when only one fourth of a square inch of the zinc is im mersed in the solution. The lamp, $c i$, which is filled with benzine, is placed in front of the apparatus so that the wick is just below the platinum wire, but does not touch it. The lamp is attached to the base of the apparatus, and can be refilled by unscrewing the top part, the wick being held by a forked guide piece, n, in the exact position required for gnition.
The whole apparatus can be hung by the ring, o, to the wall, or applied in any other suitable manner. The battery solution is sufficient for about 500 ignitions, while the gal
vanic e’ements allow about 15,000 before renewal is required.

A NEW LOCEING BOLT

In the annexed engraving we illustrate a new and simple ocking bolt, such as is used for connecting fish plates with railroad rails, irons of railroad bridges, and for like purposes. The novel feature is a mortise made near the outer end of the bolt and through the same, in which two arms or dogs, A, in the sectional view, Fig. 2 , are pivoted to a com mon center, B. Between the arms is arranged a U-shaped spring, which throws them outward. In pushing the bolt hrough the aperture, and in applying the nut, the arms are easily shoved into the mortise; but when the nut is in place as in Fig. 1, the arms are thrown out by the spring, their

square shoulders thus locking the nut. The device was pa ented January 20, 1874, to Mr. J. C. Tiffany, of Portsmouth N. H

Riveted Structures.

Structures composed of several parts must mainly depend, for their strength and stability, upon the joints or means of connection between them. Thus, in a wrought plate girder, he riveting becomes a very important element of strength, and no correctness of mechanical design or sectional area of parts will avxil, if one of the join:s happens to be defective or weak. Every joint should, in fact, be equally as strong, at the least, as the material or parts connected, for it is very clear, if it were not so, the sectional areas of the plates or pieces would only be partially called into requisition, and, in fact, the structure would be no stronger than its weakes joint, or its stability would be measurable by the strength of its joints. Taking, for example, a cylindrical boiler, its offective strength to resist the pressure of steam would only be that of its weakest riveted joint, as we are all occasion ally made aware of under the distressing circumstances of boiler explosions. This point,in fact,cannot be too strongly in sisted upon,for it is obvious that,in constructing such works, there is a tendency to regard the general form, and not every detail ; or in other words, the joints and minute connections are only thought of collectively. In every structurerequired for active stability or strength, the details require equal at tention and care to that of the general design. As regards iron plates or boiler plates, it is known they have less tensile strength than the same iron made into bars. This is due chiefly to the process of rolling iron into plates of such thinness; and it is also found that a boiler plate is less tenacious across the fiber than in its direction; its greatest cious across the fiber than in
strength being about 20 to 22 tuns per square inch, while strength being about 20 to 22 tuns per square inch, while
its least strength in the transverse direction is about 10 tuns its least strength in the transverse direction is about 10 tuns
per inch of section. In making cylindrical boilers, therefore, it is evidently desirable to put the plates in their strongest direction round the boiler, so that the transverse pressure, which is always the greatest, should have the strongest direction of the plates. It is seldom found that boilers give in their longest direction, and a cylindrical boiler is calcu. lated to have about double the strength in that direction to what it has transversely under a given uniform pressure of steam. The circular or cylindrical form of boiler is the strongest, and has superseded the rectangular form with flat purfaces. It is easily seen that a circular form is the best for resisting uniform pressure. For the plates, though wrought iron is commonly used, steel is rapidly coming into use. The relative strengths of iron and steel are as follows:

Iron..
$50,000 \mathrm{lbs}$.

From which it is seen that steel has nearly double the strength of wrought iron. The recent boiler explosions which have startled the public will, we believe be the means of introducing to a greater estent than bitherto the claims of steel for boiler plates. Let us further examine the conditions of strength in boiler censtruction; and first as regards the materials and joints: We may here casually refer to the advantage that would arise, in reducing the risks of the calamitous accidents we are constantly hearing of,if periodi-
oal tests were instituted by government authorities by the ap plication of hydraulic or steam pressure of double the usua working pressure.* Itis very evident that the strength of a boiler depends, first upon the resistance to tearing of the plates, and secondly upon the resistance to shearing of the rivets. New plates may tear along the line of rivet holes, or by the detrusion of the pieces of plate between the holes and the edge of plate. In this case, the resistance is measured by the shearing strength of the plate per square inch multiplied by the number of pieces detruded or pushed out. We hava already shown that the tenacity of boiler plate is about 20 tuns per square inch. As regards rivets, the shear ing strength may be taken as the same; 22 tuns is considered the average, however, for best Yorkshire iron. We have nest to consider how the riveting can be made to equal in in strength the plates, so as to obtain the greatest amoun of strength from both. This is usually done by making the rivet equal to twice the thickness of the plate. Then the pitch or distance from center to center of rivets must be con sidered, as it is very clear, if this distance is not sufficient to make the plate between two rivet holes as strong as the rivet itself, no advantage is gained, as the least resisting will give. Thus, in a single rivetod joint,the breadth should be at least equal to three diameters of the rivet, and the pitch should also be three diameters. The plates at the lap joint are double, hence are equal in strength to the rivet; joint are double, hence are equal in strength to the rivet; and the distance from the rivet nole to the edge of the plate
must be one diameter, hence the whole width of the joint from must be one diameter, hence the whole width of the joint from
center of the rivets will be three diameters, as above stated. center of the rivets will be three diameters, as above stated.
There must, it will be seen, be a diminution of the effective There must, it will be seen, be a diminution of the effective
strength of the plates in thus riveting them together, equal strength of the plates in thus riveting them together, equal
to the amount of metal punched or drilled out, which is one to the amount of metal punched or drilled out, which is one
third. This diminution in the strength must be carefully considered, and precautions taken to lessen it as much as possible, either by increasing the number of shears to which a joint is liable, or by drilling the holes. Thus, a double shear rivet is considered twice as strong as a single shear one; and to make the joints equally strong the single shear join should have twice as many rivets as the other. Fig. 1 show

Fly. 4 .

a double shear rivet, and Fig. 2 a single one. When plate are in tension, the aggregate shearing area of the rivets on each side of the line of joint, multiplied by the safe strain to shearing per inch, should equal the total working strain on the plates. In some joints, as in girder plates, the collective shearing area of the rivets should be nearly equal to the effective plate area. In practice, the rivet area is made about $\frac{1}{10}$ greater, to compensate for any inequality in the strain. "In steel plating," observes Mr. Bindon Stoney," the rivet area of the rivets in steel should be one third greater than the nett area of the plates, but the heads; of steel rivets are very apt to fly." Mr. Hodgkinson deduced from experiments that the "strength of plates, however riveted together with one row of rivets, was reduced to about one half the tensile strength of the plates themselves ; and if the rivets were somewhat increased in number and disposed alternately in two rows, the strength was increased from one half to two thirds or three fourths at the utmost. For the relative strengths the following may be taken
Strength of an unpunched plate, 100 ; strength of a double riveted joint, 66 ; strength of single-riveted joint, 50. Punch ing, it would appear, reduces the tensile strength of iron to a greater degree than the entire area of metal punched out. It has been stated that drilled plates are 15 per cent stronger than punched ones. The preceding remarks apply to girder and boiler riveting. We give here the rules adopted by boiler makers. For plates less than $\frac{1}{\frac{1}{2} \text { inch thick, the diame }}$ ter of rivet equals twice the thickness of the plate. For plates more than $\frac{1}{y}$ inch thick, the diameter of rivet equals once and a half the thickness. The pitch of single joints equals $2 \frac{3}{4}$ to 3 diameters, and that for double joints equals 34 to 4 diameters. The lap for single joints equals 3 diameters, and that for double joints 5 diameters, of the rivet. While in boilers the distance between the holes and edge of plate is 1 diameter, in girders it is seldom less than $1 \frac{1}{2}$ times diameter of rivet, and the pitch varies from $2 \frac{1}{8}$ to 5 or 7 inches. Some joints, as in girder work have covers or plates riveted on one or both sides; these covers should equal in strength the plates. See Fig. 3, which shows an economical arrangement of tension joint. Another resistance must be noticed, which tends to increase that of
the riveting, namely, that due to the contraction of the rivets the riveting, namely, that due to the contraction of the rivets
when cooling. This frictional resistance does not, however, when added to the rivet's resistance, quite equal that of the plates, though much stress is placed upon it by engineers.
Various ingenious devices have been proposed to obtain a uniform strength both in the plates and joints. Oval rivets
have been suggested, in which a greater area is left between the holes by putting the narrowest part of the rivet in line with the joint,the longest diameter being placed in the other
direction. Thus a $\frac{8}{4}$ inch round rivet may, as far as its direction. Thus a $\frac{8}{8}$ inch round rivet may, as far as its rea of section and strength; but the hole being reduced i the direction of the joint or weak line of the plate, greater advantage would result,because the plate could be made so much stronger. Oval holes may as easily be drilled as roun nes, and it is not improbable this mode of riveting will su persede the ordinary kind for boilers before long.
Sir W. Fairbairn proposed rolling the plates with thicker dges along the rivet holes so as to approximate the strength of both; this, too, is a feasible suggestion. Another equally good plan is to arrange the plates and joints diagonally, the
joints being at an angle of 45° with the axis of boiler. By joints being at an angle of 45 with the asis of boiler. By
this plan the strength of the boiler is increased considerably according to Mr. W. R. Browne, in the ratio of four to five
In good boilers the joints that have to resist the greates train, the circumferential, are double-riveted, while those subject to longitudinal strain are single-riveted. Even thi precaution, however, does not mase the joints so strong a he plates by a ratio of one fifth.

Cortegiondente.

The White streak in silk

To the Editor of the Scientific American;

I am aware that manufactucers have been more or less wist, and that dyeing by the ordinary process for silk would not color it. It is alleged that it may arise from not thor oughly washing the material from soap; or it may arise from dead wood, or from adulteration, or from a parasite or fungus. That it is not soap, every dyer knows. That it is not a parasite or fungus is evident, because an ordinary thread of twist contains about 15 threads as reeled, and each thread about 5 as spun by the worm, so that the aggregate is 75 threads. Were it a parasite or fungus, it would be a spot only on 1 thread of the 75 . and the other 74 threads would wrap round it, and it would be lost to view. No silk made on mills where the spindles are run with leather belts and the silk is taken up on shaft bobbins, and is not stretched on the stretchers now in use, ever developed the so-called white streak.
That it is a vegetable substance is shown by the fact that the process for dyeing cotton, flax, or woody fibers colors it but the process for silk, wool, feathers, or other animal sub stances will not color it.
The friction rolls on spipning mills are continually wear ing, by friction with the silk. The bands are whipped and worn, at the knots, into fine threads flying around the spin dle; the wood rolls of the stretcher are constantly wet and softened, and are subject to friction, giving off fine particles. All these latter are taken up more or less by the thread; and it is from this source the trouble must be looked for
I would like to confirm the statement that it is found on raw silk by boiling and dyeing; then if the streak remains, will admit that there is something in the theories of adultera M, parasite, or fungus.

Lewis Leigh
Mansfield Center, Conn

A Remedy for Potato Blight.

To the Editor of the Scientiflc American:
Having read a communication from Mr. Lyman Reed, of Boston, some months since, concerning the cause of the potato rot, and referring the process to the action of microscopic parasites attacking the tubers, I devoted some spare hours to the verification of his view, which, with some modifications, I am compelled to indorse. My investigations have been conducted with an instrument magnifying 800 diameters (640,000 times), assisted by a dissecting microscope giving 50 diameters, for the preparation of sections and the isolation of specimens. My method has been to procure specimens of the different varieties, and, having carefully cleansed them, to subject thom to gentle heat for 96 hours or more, then to submit them to a careful examination. The ova of the insects seem to occupy the interior layer of the cuticle of the tubers, and pass rapidly into larvalstate under the proper ihermal condition. I have no doubt that they commence that histolytic process that ends in the destruction of the tuber; bat I doubt whether there is any genetic connection between the fungi developed on the stalks in the course of
the degeneration, and the larve, in which the degeneration primarily starts. The fungi are very likely independent structures resulting from the deposition of spores from the atmosphere, on vegetable tissue already in the course of dis. solution from other causes. Indeed, I may say that from actual examination I am assured that such is the case, and that, as a general rule, vegetable tissues develop microscopic fungi in the process of breaking down, where similar spores deposited on healthy tissue would remain undevelnped. I have madedrawings of the larvæ mentioned by Mr. Reas in their various stages, and, what is more important, have tested them with various re-agents. Tested with weak solution of sulphuric acid, they become very active for a few minutes, then fall into a torpid state, but finally recover. Substantially the same effect is produced by alcuhol. Ordinary whale oil attacks them virulently in the larval state, but not so virulently in the less developed stages. Kemosene oil is still more fatal to them in the larval state; but unless a considerable quantity is absorbed they gradually recover, and the younger the larva the less readily they gield to the action of kerosene. In some experiments prosecuted last
summer on what are generally known as apple tree worms he same rule held good. Sperm oil and kerosene were both destructive to the fully developed larva, but very inefficien when applied to the undeveloped ova. After thoroughly resting the potato larve in their various stages, with solu tions of nitric, muriatic, sulphuric, and oxalic acids, then with alcohol, sperm oil, and kerosene, and with various alka ies, and finally with iodine tincture, I was forced to the conclusion that the remedy was not to be sought in this di ection, and tried a combination of one part of carbolic acid t thirty parts of common whale oil, with unerringly destruc ive results, both as respects the larva and the ova.
If you will permit me, on a subject of such importance hrough your universally read journal, I will take the liber ty of announcing that a bland solution of carbolic acid in common whale oil or kerosene is the scientific remedy fo the rot. The best way to use it would, I think, be to dip the potato, just before planting, in the solution, which is very inexpensive and very easily obtained. I may add tha my experiments convince me that carbolic acid in this bland solution in no way impairs the germinal activity of the tuber; but, by way of certainty, let me recommend your far mer readers to first try the experiment on a few hills this spring, and, if successful, to adopt it as a remedy for the blight.
I will, should you signify that it would be agreeable to you, be glad to give you full details of my investigations, accompanied with drawings of the insects in different stages and descriptions of structure and manner of developmen from the egg, of which I have copious notes: according al ways to Mr. Reed the full honor of first discovery.
New York city.
Francis Gerry Fairfield.

To the Editor of the Scientific American

In reply to your many correspondents w. 10 ask about (and are pleased to commend) my recent article (in "Practical Mechanism") on the subject of pump suction pipes, I would say that the result of my experience has been that, by allow ing the flow of water through suction pipes to be 300 instead of 500 feet per minute, the following increase in the ratio of efficiency of the pump is attainable, and carefully conducted tests show it to be correct: Under a 27 feet lift, 15 per cent under a 15 feet lift, 7 per cent; urder a 5 feet lift, 2 per cent.
I account for this increase of efficiency as follows: Sinc the area of a circle increases as the square of the diameter the friction of the water is, proportionally to its volume, less in the larger pipe. Tbe check given to the upward move ment of the water (in the suction pipe) by the pump piston (when it reverses its motion at the end of the stroke, and be fore the suction valve has had time to close) is experienced to a less degree upon the larger than upon the smaller body of water contained in the suction pipe. The larger suction pipe holds a proportionally larger supply of water close to the pump barrel, and serves in the same way as does a steam chest to a steam engine, to increase the volume of the supply. The increased efficiency, due to the application of an air chamber to the suetion side of a pump, is in part, if not wholly, due to the same principle. The presence of air in communication with the suction pipe is neither desirable nor obtainable in a continuously working pump, because the water in time absorbs all the air, and fills the chamber which contains it. That vessel may therefore be more correctly contains it. That vessel may therefore be more correctly
termed a supply reservoir. In the experiments referred to termed a supply reservoir. In the experiments referred to
above, there was one bend or elbow in the suction pipe im. above, there was one bend or elbow in the suction pipe im-
mediately outside the pump barrel, and the water was remediately outside the pump barrel, and the water was re-
ceived into a reservoir in the pump and directly beneath the ceived in to a reservoir in the pump and directly beneath the
suction valves. which were of rabber and of the kind known suction valves. which were of rabber and of the kind known
as griddle valves. They were as large in area as the barrel of the pump; the reservoir referred to was about two thirds as large in cubical contents as the pump barrel, and (as a consequence) but very little difference in the ratio of the efficiency of the pump was observable, whether the suction pipe was supplied with an air chamber or not, excepting at the 27 feet lift test, at which the application of the air cham. ber increased the efficiency about 3 per cent. The number and radius of the bends in a suction pipe affect the efficiency of the supply of water to a serious degree, as the greater their number, and the less the radius of each bend, the larger should be the area of the suction pipe. These conditions are, however, so variable that but little would be added to our present knowledge upon the subject by making tests, unless under a multiplicity of those conditions.
I stated, in the article on pumps, that "all pumps ihrow less water than their capacity, the deficiency ranging from 20 to 40 per cent, according to the quality of the pump This loss arises from the lift and fall of the valves, from inaccuracy of fit or leakage, and in many cases from there bting too much space between the valves and piston or plunger." To this latter remark, I would now add that, in cases where the defect referred to exists, I have increased the efficiency of the pump as much as 25 per cent by simply filling in the vacant space with lead, first boring a few holes in the metal for the molten lead to run in, so as to prevent in the metal for the molten lead to run in, so as to prevent
the lead from moving when cold. It is of vital necessity to keep the space between the pump plunger or piston and the valves as small as possible, filling in all corners and allowing only room sufficient to allow the latter to open to the neces sary distance.
279 West 12 th street, New York city
SAWDUsT, mixed with any resinous substance,cut in small cakes
wood.

practioal meohanigi.
 Numbre EAII

mand turning - roraina drills.

Here it will be as well to give instructions as to how t forge the drill. First heat the steel wire slowly, otherwise the extreme point will become heated before the rest of the drill; and bear in mind that the steel must not be made ho enough to scale, that is to say, it may be made to a brigh red but not in any case to a yellow heat, for at that heat it will become what is called burnt, by which the virtue of the steel will be destroyed, and it will fall to pieces when str uck by the hammer. But there is a stage of overheating in which the steel, while not sufficiently burnt to cause it to crumble in forging, will yet be sufficiently deteriorated to nearly destroy its value as a cutting tool, and the only way t) avoid this evil is to heat the steel slowly and evenly to bright red.
In forging the steel down to the required size, hammer it square, that is, forge it into a square bar to prevent it from becoming hammered hollow, or splitting, as it is almost sure to do if hammered all over its circumference; and take care at first to forge the point least,so as to leave a body of metal there which will tend to prevent the steel from splitting. By following these directions, the shape of the drill, when forged down to the required size and ready to be rounded up and finished, will be as shown in Fig. 62.

Fig. 62.

The corners of the square part, from A to B, may then be hammered down, making the stem round; and the bulbous end, C, may then be forged to the required finished size. A side view of such a drill is shown in Fig. 61, and Fig. 63 pre sents an edge view.

Fkg163.

HARDENING AND TEMPERRING.

Our next duty is to harden and temper the cutting end of the drill. Steel is said to be hardened when it is as hard as it is practicable to make it, and to be tempered when, afte having been hardened, it is subjected to a less degree o heat, which partly but not altogether destroys or removes the hardness. The degree to which this tempering is per formed, or in other words the degree of the temper, is made perceptible and estimated as follows: By heating a piece of steel to a red heat (not so hot as to cause it to scale), and then plunging it into cold water and allowing it to remain there until it is cold, it will be harlened right out, as i; is termed, that is,it will be made hard to the greatest practicable degree. If it is then slowly reheated. its outer surface will, as the temperature increases, assume various shades of color, com cessively to a deep yellow, red, brown, purple, blue and cessiv, which latter fades awas as the to redness again, when the effects of the first hardening will have been entirely removed. It becomes apparent, then, that the colors which appear upon the surface of the steel denote the degree to which the tempering or resoftening operation has taken place. Having then by practice ascertained the color which denotes the particular degree of hardness requisite for any specified tool, we are enabled to always temper it to that degree,suffieiently near for all practical purposes. It is undoubtedly true that, if the conditions of tempering which will be laid down in all our instructions are (for want of sufficient experience in the operator) varied, the colors will not present, tJ positive exactitude, the precise degree of temper: the difference being that, if the color forms very rapidly, the tool may be left of a lighter color; and that if the colors form veryslowly, the tool may be left of a slightl deeper hue. The difference in temper, however, as com pared to the color, will in no case be sufficient to be percepti ble in ordinary tool practice, and need not, save under cir cumstances requiring great minuteness in the degree of tem per, be paid any attention to.
When a tool (such as a drill) requires to be tempered a and near the cutting edge only, and it is desirable to leave the other pa:t or parts soft, the tempering is performed by heat ing the steel for some little distance back from the cutting edge, and then immersing the cutting edge and about one half of the rest of the steel, which is heated to as high a degree as a red heat, in the water until it is cold; then withdraw the tool and brighten the surface which has been immersed by rubbing it with a piece of soft stone (such as a piece of worn-out grinastone) or a piece of coarse emery cloth, the
object of brightening the surface being to cause the colors object of brightening the surface being to cause the colors
to show themselves distinctly to indicate the state of the steel The instant this operation has been performed, the brightened surface should be lightly brushed by switching the finger rapidly over it; for unless this is done; the colors appearing will be false colors,as w $4 l$ be found by neglecting this latter operation, in which case the steel after quenching will be of one color: and if then wiped, will appear of a different hue. A piece of waste or other material may of course be used in place of the hand. The heat of that part of the tool which has not been immersed will become imparted to that part which was hardened, and, by the deepening of the colors, demerse the tool and quench it altogethercold.

The operation of the first dipping requires some little judgment and care; for if the tool is dipped a certain distance and held in that position without being moved till the end dipped is cold, and the tempering process is proceeded with, the colors from yellow to green will appear in a narrow band, and it will be impossible to directly perceive when the cutting edge is at the exact shade of color required ; then again, the breadth of metal of any one degree of color will be so small that once grinding the tool will remove it and give us a cutting edge having a different degree of temper or of hardness. The first dipping should be performed thus: Lower the tool vertically into the water to about one third of the distanse to which it is red hot, hold it still for about sufficient time to cool the end immersed, then suddeny plunge it anotherthird of the distance to which it is heated ed, and withdraw it before it has had time to become more than half cooled. By this means the body of metal between the cutting edge and the part behind, which is still red hot, will be sufficiently long to cause the variation in the temperature of the tool end to be extended in a broad band, so that the band of yellow will extend some little distance before it deepens into a red ; hence it will be easy to ascertain When the precise degree of color and of temper is obtained, when the tool may be entirely quenched. A further advan tage to the credit of this plan of dipping is that the required degree of hardness will vary but very little in consequence f grinding the tool; and if the operation is carefully per formed, the tool can be su tempered that, by the time the too has lost the required degree of temper from being ground back, it will also require reforging or reforming.
The distance a tool requires to be heated and dipped at th arst dipping, and the distance to which the transient dip ping should be performed, vary so much with the substance of the metal that a definite idea can only be obtained by an

illustration, as shown in Fig. 64, A, B, C, etc., representing pieces of steel, either round or square, the line marked 1 being the distance to which the steel is made red hot, the line 2 (in each case) representing the distance to which the firct dipping should be made, and the line 3 representing the distance to which the sudden and transient plunging should be performed.
Having tempered our drill according to these rules, to a dark purple, our next operation is to grind it. The flat sides of the cutting end should be ground on that side of the stone on which the latter is running from you, the faces being ground to a gradual level, of which the extreme point is the hinnest part. The thinner the point is, the more easily the rill will enter the metal, and, but for the liability of its breaking, it might be ground almost to a sharp edge. The correct thickness cannot be determined because it increase with the size of the drill; but a very little practice will en able the artisan to estimase it forany size of drill
The angle of one cutting edge to the other varies with the kind of work upon which the drill is to be used, the rule being that, for ordinary work, a right angle will suffice; but ordrilling sheet metal a more acute angle should be em ployed, so that the drill will emerge from the work gradually: otherwise, when, by reason of the point having emerged the drill is released from the pressure necessary to force it in to the metal, the remainder of the cutting edge will enter the metal very readily, and, taking an excessive cut, will wist or break the drill. For this reason the drill should be ed to its cut very slowly after its point has come through. Care must be taken to grind the drill so that the point is in the exict center of the diameter, otherwise the drill will bore a hole larger in diameter than itself; and the angle of the cutting edge should be equal on each side of the point, or else one cutting edge only will perform any duty. The ngles should be ground with the grindstone running towaros you, the flat side of the drill being rested upon the grindstone rest. When the drill is placed in the lathe ready for operation, it may easily be made to run true by tapping it ightly with a hammer
Small drills may be run very fast in the lathe, which will cause them to cut freely, and to drill the hole straight; if, however, the metal to be drilled is unusually hard, the speed must be reduced.

squaring tre ends of the work.

The work being centerdrilled, it must be placed in the lathe, with a driving dog on one end, the back center being screwed up only just so tight that the mork may be moved
by the fingers, and yet it must have a firm bearing agains the lathe centers. The hand rest should then be placed a close to the work as possible without touching it, when the ends of the work must be trued up. The object of first tru ing the ends is to prevent the centers in the work from wear ing on one side more than the other, as they would do if one side of the end face of the work was, at either end, higher than the other. The operation is called "squaring the ends" and is performed with a side tool, of which there are two kinds, both being made of three-cornered (or three-square as it is generally termed) steel, the only point of difference being in the manner of grinding them. A worn-out saw file is an excellent thing to make a side tool of, because the teeth grip the rest and prevent the tool from slipping. It is not necessary to soften the file at all, but(for either kind) merely o grind it as shown in Figs. 65 and 66. A being in each case

Fig 65.
SIDE VIEW
the cutting edge. The tool shown in Fig. 65 has two cut ting edges, one of which rests upon the hand rest while the other is cutting, which does not in any way damage the edge but causes the tool to hold very firmly to the rest, and hence to turn very true. It possesses the further advan tages that it cuts very freely, and that its point can, by rea.

son of its thinness, approach much nearer to the center of the work without coming into contact with the lathe center Except for heavy work, it is by far the best tool in every re spect, nor would the other have been presented at all, save that it is very largely employed when it is required to per form heavy daty. Both of these tools are slightly roanded in the length of their cutting edges, and are kept sharpened fom the end about half an inch back
If their cutting edges are smoothed by the application of n oilstone, they will give a very clean and smooth polish to the work. The rest should be set at such a hight that the cutting edge of the tool is slightly above the horizontal cen ter of the work; and the tool should be so held that its side face stands nearly parallel with the end face of the work, the cutting edge beirg held slightly inclined towards the woik, which will give to the tool edge the necessary clear ance. Any excess of this inclination renders the tool liable to turn out of true,and destroys its cutting edge very rapidly Having squared each end of the work, it must be take rom the lathe, and the burr left by the turning tool around e center filed off, when the work will be ready to counter sink, that is, to bevel off the edge of the hole made by the centerdrilling, and thus to form a recess in which the lathe center will fit. And here it becomes necessary to explain one of those fine points for which the purely practical man is apt to sneer at the theoretical workman. Nine out of ten practical men will countersink by simply centerpunching, or olse neglect the operation altogether, and force up the back center of the lathe and thus wear a countersink in the work The wear and damage caused to the lathe center is sufficient condemnation of this system, unless it be applied to work that requires to be reduced in size regardless of its being either true or uniform, and this should be done in a lath used only for such work. Countersinking by centerpunch ing will answer very well for jobs that require sufficient work to be performed on them at each end to give them time to wea and fit the center; and as this is nearly always the case, this system is considered sufficient for all practical purposes. It is, however, mechanically incorrect, because (even supposing the artisan to be able to grind the centerpunch true so far as roundness is concerned,and true in its bevel with relation to the bevel of the lathe center), unless he holds the center punch so that the center line of its length is dead true with the center line of the work, the countersinking will be deepe on one side of the work than on the other, and hence wil throw the work out of true. It will, however, right itsel after running a little time in the lathe. Now it is quite true that the amount to which the work will thus be thrown out of true is very slight, and (as stated) soon rights itself but even when the end of the work running on the still or dead center ras worn itself true, it must be turned end for end in the lathe before the other end will become true. Then again, when there are many pieces of work to countersink, that operation may be as quickly performed by means of the square center as with the centerpunch, while the square cen ter will cut true and uniform. The only possible claim that countersinking by centerpunching can possess is the saving of the time required to place the equare center in the lathe; for after it is once placed there, the operation may be as quickly performed in the one case as in the other.
Countersinking by the square center is performed by mak ing the square center the running center of the lathe, and by feeding the work up to it by the back lathe center, as de sicribed in the instractions upon canterdrilling.

MOVABLE FRONTS FOR BUILDINGS.

We illustrate herewith a method of throwing open, if need be, the entire front of an apartment, which, in view of the approaching warm weather, is quite timely, since it is applicable to a number of cases readily suggested. Our artist has represented the device applied to a butcher's store, to which it is especially suited, inasmuch as it allows of doors and windows being slid completely out of sight, leaving nothing but the pillars or other necessary supports of the building above, and so affording thorough ventilation, broad access, and every opportunity of displaying stock. It might also be arranged in the edifices used as summer concert gardens, so as to leave, on warm nights, merely the roof and its sustaining posts: or in country houses, which thus could be opened so as to allow of the tho rotugh circulation of the air. The addirough circation is lo adir framework, and windows being put alto framework, and windows being put alto gether out of the way, and protected from danger of breakage, while, at the same
time, always remaining ready for prompt return to their places
In Fig. 1 the door and fan light are shown in their usual locations. Both, how ever, are hung in framework, which tra verses guide rails, which extend up and down toward the story above and into the basement or cellar. The frames are suspended by cords which pass over pulleys into the hollow side pillars, and which sustain counterweights, by which the balancing of the frames and their contents is effected. Thus arranged, the door, as shown in Fig. 2, may be pushed downward into the cellar, while the fan light may be raised into the wall of the upper story. When the door frame is down, a foot plate is laid upon the sill, over the opening, so that the latter is covered and concealed. The foot plate is also similarly located when the frame is up, in order to prevent the same being lowered when the doors are shut, except by first removing the plate.
The doors and fan light are hung and may be used in the ordinary manner, and the arrangement of the device for windows or portions of the wooden wall of a light building is precisely similar. If desired, building is precisely similar. If desired, the weights may be omitted, and the raising and lowering effected by suitable gearing. Also any desired locking devices may be
added for holding the frames in either position.
The invention was patented January 26, 1875, to Mr. John Murphy, of Fond du Lac, Wis., who may be addressed for further particulars.

IMPROVED ROTARY PUMP.

In the annexed illustrations we present sectional views of a new rotary pump, in the construction of which there are several novel features which will render it of especial interest to the mechanical reader. Of these perhaps the one most prominent is that of the entire capacity of the pump cylinder being utilizable, instead of merely the annular portion without the eccentric ring, as is commonly the case. Both compartments, exterior to and interior of the ring, are Both compartments, exterior to
filled and emptied at every refilled and emptied at every revolution, and this whether the speed be fast or slow, as it will be seen, further on, that the motion, and consequently the operation, of the machine is essentially positive. Stuffing boxes are avoided by rendering the apparatus self-packing, and by suitable construction the working parts are balanced, equalizing the pressclaimed further that the pump claimed further that the pump oing the a 4 without leat or to any desired hight, and this to any desired hight, and this without necessitating the machine s being driven at the high velocity peculiar to many rotary pumps. The volume of water discharged under all conditions is stated to be exactly proportionate to the power and speed applied.
In Fig. 1 is shown a vertical longitudinal, and in Fig. 2 a transverse, section. In the latter illustration, A is a portion of the casing, on the interior of which is cast the ring, B, the depth of which is greater than the outer portion of casing. The other side of the cylinder is formed by the disk, D, Fig. 2, to which the shaft is rigidly attached. To D is attached eccentrically a ring, E, some portion of which is always in contact with the casing, A, and also with the ring, B, at a point exactly opposite, so that the ring is really the piston of the pump, since the whole disk, D, is rotated by the shaft. The equalization of stream is effected by the center ring, B, being deeper than the outside casing, A, so that the cubic contents of annular spaces,
C and L, on inside and outside of the eccentric ring, E, are ability of the various portions. The pump is further stated the same. Bolted to casing, A, and covering, D, is an outer to be especially useful for thick liquids, and to be adapted case, F, in a socket in which the shaft end abuts. Holes, G, through portion, D, allow the water to fill the space between D and F, thus balancing the movable portion by equalizing the pressure on both of its sides.
Referring next to Fig. 1, it will be observed that the piston ring, E , is held in the sliding abutment, H . A perspective view of the latter is given in Fig. 3, from which it will be readily understood that the movable tumblers adjust themselves to the eccentric ring, as the revolution of the
to brewing, tanning, wrecking, and a large number of other purposes. The wear, we are informed, is very slight; and as it takes place on the surfaces in such a manner that abrasion from one compensates for the same on another, the parts al ways maintain their relative positions.
Patented October 6, 1874, to L. D. Green. For further particulars address the manufacturers, Messrs. Bagley \& Sewall, Watertown, N. Y.

MURPHY'S MOVABLE FRONTS FOR BUILDINGS

Steam as a Fire Extinguisher.
An interesting experiment with Sanderson and Proctor's patent fire extinguisher was recently made in Lower Aspley Old Mill, Huddersfield. The apparatus depends for its effectiveness un the efficiency of steam as a medium for extinguishing fire; and al though this is used in many mills, there are some people who doubt its suitability for this purpose. Therefore both points came to the test in the trial. The self-acting arrangement consists of a number of thermometers, which serve as contact makers in an electric circuit, and the apparatus proper, which turns on the steam valve by re leasing a pin on the wheel, and permitting the weight attached to the same to turn it round. Contact can be made at any given temperature, the fire simply raising the mercuryin the thermometer to the desired point. Lower Aspley Old Mill, which has been used in the woolen irade, is at present empty, and in a condition highly favorable to be burned down from the quantity of oil, grease, and dust deposited on the floors, wrease, and dust deposited on the foors, of firewood and shavings had been placed on the floor of the bottom room, which measures 75 feet $x 22$ feet $x 14$ feet high. The fire was lit exactly at half past three, producing immediately a large body of flame, and not quite a minute elapsed before the apparatus turned on the steam. For the next two minutes the fire continued to burn unchecked, but then it became less, and in nother two minutes no more flame could be seen. When the steam, which was 40 lbs the Woiler had been going into the room in the boiler, had been going into the room fren but kin oor opened; but a well known crackling in side told that the fire was burning up again, so the door was closed, and steam turned on for twenty minutes longer; this was quite sufficient to remove every trace of fire, and, after the room had been aired for about half same imparts to the abutment a to-and-fro motion on its an hour, the whole of the interior was perfectly dry, and seat. The water enters at the port, I, and, as the piston ring no trace of moisture could be detected, a circumstance which rotates, is forced before and between the same and the casing, around to the upper portion of the latter, and finally out of the port, J. As the piston ring rotates, it soon forms a space between its inner periphery and the fixed ring, B, into which the water from port, I, freely enters, filling the interior of the piston, finally to be forced out by compression between aid piston and the fired ring. In Fig 1 it will be seen that the port, I, is half open to the space outside of the piston ring, and at the same time is also opening into the inside may be easily explained, and one of great importance to machinery in rooms where steam has beenclude one or two解 on floor upon which the fire had been placed was very slightmored in the quantity of frewood burned解 was very small. The trial was so far a success, both as re-
gards the apparatus and the agency of steam as an extingards the apparatus
guisher.-Engineer.

[BAGLEY \& SEWALL'S ROTARY PUMP.
space. The shaft, as shown in Fig. 2, abuts in a socket within which its extremity comes in contact with a set screw, by means of which the bearing against the casing at K is brought up to compensate forwear. At this bearing, it is claimed, all leakage is prevented by a circular groove in the seat, which groove, by a channel, communicates with the suction port. Any escape is thus drawn into the last mentioned orifice.
Among the other advantages claimed may be noted simplicity, ready accessibility of parts without necessitating breaking connection with any of the pipes, and interchange-

Sulphur as a Fire Extinguisher Les Mondes suggests that brimstone should be carried on board every ship for use in case of fire. Half a hundredweight (30 kilos.) of brimstone would be sufficient to abstract the whole of the oxygen from 3,531 cubic feet of air thus render ing it unfitted to cus render ing it unfitted to support combustion. a shis' like a ship's a the sulphur ous gas produced by the burning of the brimstone would penetrate where water from the decks could not be brought to bear, and the density of the gas would prevent its rising or spreading if care were taken to close the hatches carefully with wet sails, etc. It is suggested that the brimstone should be made up in the form of large matches, the ends of which could be passed through scuttles prepared for them in the decks or bulkheeds in cese it is asserted thet $\$ 4$ or $\$ 5$ worth of brimstone would be sufficient to stifle and annihilate all traces of combustion in an air space of 35,000 cubic feet

New Property of Glycerin.

R. Godeffroy, on examining a chemically pure glycerin found that when heated to 302° Fah. it took fire, and burn with a steady, blue, non-luminous flame, without diffusing any odor or leaving a residue. The glycerin had the specific gravity $1 \cdot 2609$. This property enables glycerin of lowe specific gravity to be burnt by means of a lamp wick

GROWING ORCHIDS.

The orchids are among the most recent popular claimants for the attention of the florist and the amateur, and there for the attention of the florist and the amateur, and there
are some varieties which can be raised with very little are some varieties which can be raised with very little
trouble and expense, as a large proportion of the entire class require but a moderate degree of heat. The species are very numerous, and are found all over the world, this country being, however, but sparingly represented among them. The best known of the American kinds is probably the showy orchid (orchis spectabilis, of Linnæus); this is found from New England to Kentucky, and beautifies the wooded hills in the month of May. The large, round-leaved orchid (platanthera orbiculata) spreads its foliage on the ground, and the white orchis (p. dilatata) bears a wand-like spike of whitish flowers. Both these kinds are common in our Northern States. Perhaps, however, the most beautiful of our native sorts is the great purple orchis (p. peramena, Gray), with its large, showy flowers. It grows freely in moist spots in the West and South
As a rule, all orchids require plenty of moisture, and the beautiful English specimen shown in our engraving is elevated in a bed surrounded by spars of wood, serving to keep the roots well supplied with air, and to surround them in a water-bearing mass of moss or other vehicle.

New Form of Concrete Foundations.
At Glasgow harbor, the foundations for a 60 tun crane have been put down on a new principle by Mr . Deas, engineer to the Glasgow Harbor and Clyde Na. vigation.
The quay wall itself is carried on triple groups of 12 feet cylinders. The crane seat rests on twelve con. crete cylinders, 2 feet 4 inches thick and 12 feet external diameter, in three rows of four each. The four nal diameter, in three rows of four each. The four
front cylinders were made in pairs, and the middle and front cylinders were made in pairs, and the middle and
the back rows singly, the last two rows being joined together by tongues of brickwork. The cylinders were made in wooden frames, in rings about 30 inches deep. They are composed of a mixture of five of gravel to one of Portland cement, and were ready to lift and set in position after being made about three weeks.

The cylinders sit each on a cast iron shoe, on which, after being set in the trench, brickwork in cement was built to a hight of 5 feet. On the top of this the concrete rings were placed, and jointed together with strong Portland cement mortar. The bottom of the trench in which the shoes were placed close together was about 3 feet above low water level. After the was about 3 feet above low water level. After the
building of the cylinders on the shoes was completed, they were sunk, by means of Milroy's patent excava they were sunk, by means of hiroy's patent excara tors, untir the bottom of the shoes reached the depth of 32 feet below low water level, or about 52 feet below
quay level, about 100 tuns of cast iron rings, of the same shape as the concrete rings, being required to force each cylinder down. The cylinders were then cleaned out by the excavators to the level of the bottoms of the shoes, and filled with Portland cement concrete, the lower 9 feet of the front cylinders being composed of five of gravel to one of cement, all the other concrete used in filling being nine to one. The diamond spaces between the cylinders were also cleaned out to the same level, and filled to the top of their cylinders with concrete, five to one.

THE SOLANUM CRINITUM.

This is one of the handsomest of all the plants known as sub-tropical, when grown in warm sheltered spots. According to the $R e$ vue Horticole, this plant was introduced to Paris gardens in the year 1862, and is a native of Guiana. It is, in addition to its fine size and dignified port, a plant of remarkable beauty, owing to the texture of its leaves, which are covered with a deep rich velvet of tender green color, with violet veinings set with spines. So very remarkable a plant deserves to be cultivated as an indoor plant where the climate will not permit of its being grown out of doors.

Panoramic Photographs.

M. J. F. Plucker, of the Belgian Photographic Association, contributes to the Bulletin an ingenious method of producing panoramic prints from two or more negatives. The negative must be taken so as to include, at the edges where the junction is to be made, a portion of the subject in common This portion is printed from one of the ne. gatives upon a slip of paper, which is divided in the center with a penknife. divided in the center with a penknife.
The two halves are then attached to The two halves are then attached to
the negatives in such a manner as to exactly cover the portion it is intended exactly cover the portion it is intended
to "stop out" of each, a piece of opaque to "stop out" of each, a piece of opaque
paper, the size of the negatives used, paper, the size of the negatives used,
being also gummed on for the purpose of protecting the sensitive paper, which is not covered by the negative. The first negative is placed in a printing frame large enough to hold the number of negatives intended to be combined, and, after printing, the extremities of the line of junction are carefully marked with a pin point. Negative
No. 2 is then introduced and brought into register with the

SOLANUM CRINITUM.

pin holes. This may be done either by holding the frame up to the light, or by resting it on the edge of a table, a lamp being placed on the floor. Having secured the register, proceed to print in the usual way, repeating the operation for each different negative.

Magnetization of Steel.
The magnetic strata are limited to a certain thickness, which they can never exceed. This limit varies in different steels. It is very great in those which are soft, and dimin. ishes as the proportion of carbon augments and as the temper is harder. For certain bars which the author has studied it is $=0 \mathrm{~m} \mathrm{4;}$ but he has specimens where it is below

Uses and Properties of Salicylic Acld.
Salicylic acid is prepared from the oil of wintergreen, the latter obtained from the gualtheria procumbens, a trailing plant common all over this country and widely known as the wintergreen, tea berry, partridge berry, and deer berry, by boiling the oil for a few minutes with a solution of caustic potash: in this operation wood spirit is liberated, and on the addition of an acid salicylic acid is precipitated. Thus obtained, the cost of the substance has been high. Although its existence has been familiar to chemists, through its little or no utilization, it, in common with a very large number of other organic compounds, has been but slightly known outside of the laboratories. At the present time, however, there is a prospect of the acid coming into wide general employment through the recent discovery, of M. Kolbe, Professor of Chemistry at the Leipsic Univer sity, that it can be fabricated from carbolic acid which discovery has been already put in practice on a large scale by M. Van Heyden of Dresden
M. Kolbe has found that, while salicylic acid can be produced from carbolic acid, it, on decomposition by heat, regenerates the latter, and, further, it partakes, in common with carbolic acid, of the power of killing the inferior organisms which determine the phenomena of fermentation and of putrefaction.
Salicylic acid is in fact a powerful antiseptic, and, from its harmlessness and freedom frem odor and taste, appears to be more valuable, in a considerable degree, han carbolic acid. Its properties are well shown in the following brief summary of M. Kolbe's experiments: Beer yeast, which, as is well known, determines the alcoholic fermentation of sugar, is totally inert on a solution of glucose to which one one-thousandth part of salicylic acid has been added. Ground mustard, when treated with tepid water,yields a strong piquant odor of mustard, but becomes completely odor less if a small portion of the acid be previously added. The acid also hinders emulsin, or the ferment of sweet almonds, from acting on the amygdalin and transforming it into essence of bitter almonds.
A very small quantity of salicylic acid retards considerably the spontaneous coagulation of milk. A quart of beer containing 15.4 grains of the acid and exposed to the air does not become sour, nor does the east vestige of the cryptogamic vegetation peculiar to spoiled beer show itself. Eggs plunged for one hour in a solution of the acid, and in no manner treated otherwise, were found perfectly fresh after three months' exposure to the atmosphere. Meat powdered over with the substance is prevented from spoiling fo weeks. To prepare for use, the meat is merely washed o disengage the acid, as the savor of the latter is very slight and by no means disagreeable. This is a re 1-10 m.m. The latter only receive what might becalled a markably valuable property, and one which will doubtless superficial magnetic coating, the thickness of which it is not find profitable utilization in transporting beef from Texas possible to augment by increasing the intensity of the current. But if the depth of the magnetization diminishes along with the magnetic conductibility, the intensity of the magnetism increases. It follows that the quantity of magnetism is subject to two causes of inverse variation-the depth which increases, and the intensity which lessens, as the conduc tivity increases. - M. J. Jamin

Everlasting Perdition.
A reward of two hundred and fifty dollars is offered in

the Northern States, or from Australia and South Americ

 to Europe.Dr. Thiersch, of Leipsic, has investigated the uses of salicylic acid as applied to surgical dressings. When placed upon cancerous sores and ulcers in a powdered state, it hin ders the putrid odor and produces no inflammatory symptoms. The impregnation of tow dressings and of bandages with the substance is found to be attended with excellent results, though it is curious here to remark that the acid is absorbed and afterwards found in the urine. The application of the acid to treating contagious maladies, such as ty phoid and cholera, has as yet not been made the subject of experiment; but now that the proper ties of the substance have brought it prominently before the scientific world there is little doubt but that the most extended investigations into them will shortly follow. It is already in use in the surgical wards of Roosevelt Hospital in this city, as a dressing for wounds, ulcers, etc,, in the proportion of one drachm to sixty-two and a hal fluid ounces of water.

Apparatine.

This is a new substance said to give excellent results when employed for preventing incrustation in boilers, besides being useful where gelatin and gelatin-like substances are required It was discovered by Mr. H. Gerard It is a colorless and transparent mate rial obtained by treating starch, fecula, farina, and any other amylaceous substances with a caustic alkali. Hither to it has been found to be best made with potato starch, treated with a ley of caustic potash or soda, the following being the most suitable proportions, and best method of preparing the apparatine: 15 parts potato starch are put into 76 parts water, and kept in a state of suspension by stirring when 8 parts potash or soda ley at 26° when 8 parts potash or soda ley at $26{ }^{\circ}$
Baumé are to be added, and the whole
in favor of the revision of the services of the State Church, so as to exclude the threat of Everlasting Perdition against those of Her Majesty's subjects who do not believe in that
doctrine. Essays are to be sent in before May 1st of the doctrine. Essays are to be sent in before May 1st of the
present year addressed to Rev. R. Spears, 37 Norfolk street, Strand London.
thoroughly mixed. In a few seconds the mixture suddenl clears, and forms a thick jelly, which is then beaten up vigorously, and the longer the operation is continued the better the quality of the apparatine. It is in this state a colorless, void of smell, and of a stringy, glue-like consistence, II
exposed to the airit dries slowly, but without decomposing and even when heated to dryness, although it thickens and swells, it continues as unchanged as when air dried. When dried in thin sheets it resembles horn, but is more flexible, and may be folded back upon itself without breaking. For sizing textile goods of all kinds, silks, woolens, cottons, etc. apparatine is said to be admirably adapted, imparting to them a smoothness which hitherto has been found unattain able. When once applied to the goods and become dry, ap paratine appears to be virtually insoluble. as three or four washings in hot water have been found to exercise little or no effect upon it, so that it may be used for all purposes in which glue or gum is required. Diaphanous or coarsel woven fabrics, when dressed with apparatine, are rendered stiff and rigid, like a sheet of metal; and the new gum may be used as a thickening in calico printing. It will be under stood that we have indicated only a few of the uses of this valuable substance, which, it will be seen, is comparatively cheap. It is necessary to keep it in airtight vessels to pre vent it becoming dry, unless it is used up as soon as made for alchough it does not dry very rapidly when in bulk, it is not easily rendered soluble when it has once become hard To prevent incrustation in steam boilers, the apparatine may be plared in the boiler or be added to the feed water in the tank, but the best results have, we believe, been obtained by placing it in the boiler direct.

CAR AND CARRIAGE SPRINGS

We continue below our serigs of extracts from Mr. Edward H. Knight's " Mechanical Dictionary,"* selecting for the present paper a variety of interesting engravings relating to the various types of springs in use upon railway cars and on ordinary vehicles.
Car springs may be classed as elliptical, pneumatic, tor sional, rubber and steel, rubber, steel, and air, spiral, helical, circular plate (plane, corrugated, and segmental), square plate and bow. In the engravings which follow, the parts and structures are so evident that only a short description of each will be given. In Fig. 1, a is a double elliptic spring, the bearing of the end leaves of which are so shaped that, as Fig. 1.

the spring bends beneath its load, additional leaves receive a bearing upon the ovoid bars. b is an elliptic spring, the principal leaves of which are made of a continuous plate wound around. Auxiliary plates, above and beneath, extend the area of bearing of the boses. o represents a single plate wound around a mandrel. It is designed to be used with upper and lower bars, as at b, or in a box, as at d. d shows an el liptic spring in a box and a follower above, upon which the weight is imposed. Long bolts secure the follower. e is a series of plates which, when under others, assume the form, e^{\prime}. 'I'he box above has a series of steps beneath adapted to

Fig. 2

the lengths of the leaves of the springs, so that, as the weight increases, additional leaves obtan bearings in the box. Λ form of pneumatic spring is shown at f, in which the weight bears upon a box, the central plunger of which bears upon
water, which transfers the pressure to a body of air imprisoned below.
In Fig. 2, g is a torsional spring. The weight of the truck comes on spring rods having arms, \langle. The torsional pressure is brought upon the rods, and by them transferred to the axle boxes. h is a pneumatic spring consisting simply of a rubber air cushion beneath the box. i is a hollow india rub er ball in a box with a polished interior j represents umber of rubber disk in a box beneath a followerents number of rut all blocks at the ends. l has concavo-convex plates fitted upon a ocks at the ends. l has concavo-convex plates fitted

Fig. 3.

In Fig. 3 a cylinder of vulcanized rubber, with an interior coil to keep it from binding against the spindle, and an ex terior spiral coil to keep it from spreading too far, is shown at m. In n air is inclosed in a rubber tube, which is enveloped in a steel spiral. o has an india rubber cylinder inclosing a spiral spring, and a bolt to limit the extent of the up ward movement of the cover. The rubber expands into the flanged rim. $\quad p$ has a spiral steel spring contained in an annular case. q represents a pair of concentric spiral springs on the respective sides of a dividing cylinder. In r there is a combination of spiral and rubber springs, with telescopic tubes to form walls. s is a concentric arrangement of seve ral spiral springs coiled in alternate directions. t shows a closer coil of the same general construction but of different proportions. In u each set has a pair of spirals, concentrically arranged, diversely coiled, and inclosed in a cylindrical cally a al form around a mandrel. w is a volute or helical spring, the made to sustain the load. x is another helical spring shown in elevation.

Fig. 4 represents a variety of springs mainly constructed of plates. y and y^{\prime} are views of a set of circular disks of ries; in y^{\prime}, two pairs of the same are allied. z has annular disks arranged in pairs and united by a rod. a has segmen-
tal plates alternating with flat plates in groups, the whole in a box under a follower. In b the spring is composed of a pile of circular plates, corrugated radially and arranged round a stem. In c the plates gradually increase in length upward and downward from a middle diaphragm. The bearings are on the ends of the longer and outer plates. Rubber springs are placed between the movable top and bottom plates of the case and the spring plates. d has several pairs of concavoconvex radially corrugated plates, and between the plates of a pair is a disk of rulcanized rubber d^{\prime} is a sectional view pair is a disk of vulcanized rubber. a is a sectional view from opposite directions and shortened between bearings on l , hey are bent. f has square plates curved diagonally and astened together the which bear upon each other at the corners and diagonally through the centers; the bearing points of the plates are changed by being lengthened and shortened when the spring vibrates. g has square, rhombic, oval, or circular plates bent bow-shaped and placed between bolsters. In h the plates are so disposed between the bearing surfaces that, when the weight increases, the load is transferred to points nearer the mid-length, so as to shorten the portion of spring involved in the support.
Numerous modifications and applications of the foregoing examples might be shown, but the above give a sufficiently clear idea of the various devices now in use. While on the subject of springs, however, it will be interesting to note a few of the appliances adapted to carriages, some of which will be found in Fig. 5.

At a semi-elliptical springs are exhibited, which are hung upon the ends of C springs attached to the axles. In b the usual elliptical springs are between the bolster and axle. Elastic wooden springs at c connect the axles and also support the bed. At d semi-elliptical springs couple the axles. At c a bolster is hung upon C springs, and at f is shown a system of curved springs, with three points of connection to the bed and two to the axles.

Mr. S. R. Wells.
We notice with much regret the death of Mr. Samuel R. Wells, a well known phrenologist and publisher of this city. Mr. Wells was born in 1820, and was educated as a physician; but subsequently becoming deeply interested in phre nology, he devoted himself thereto, delivering lectures and writing many works on the subject, the principal of the lat ter entitled the "New Physiognomy." He was associated for some time with Messrs. O S. and L. N. Fowler. Later however, he conducted his business alone, and with consider able success.
Mr. Wells was a man of many scientific at'ainments, a pro gressive thinker, and a firm advocate of temperance and a proper observance of the laws of health. Works on these topics, by various authors, were frequently issued by him and the principles of the same strongly maintained in the Plirenological Journal, of which he was the publisher and founder. He died on April 13th, after an illness of ten days, and of anattack of pneumonia, followed by other diseases.

A VERY ingenious application of electro-metallurgy has recently been brought before the notice of the Society of Arts. It consists in the application of a coat of silver, by means of electro-deposition, on natural leaves and fowers. By this means very delicate ornaments are produced, since the precise form and texture of the natural leaf is preserved under the thin silver film.

Rubbivg warts, night and morning, with a moistened piece of muriate of ammonia, is said to cause their disappearance without pain or a scar resulting.

Apple Gases.

Bender has experimented with ripe apples and obtained gases from them in the following proportions: 31.07 per cent carbonic acid gas, $68 \cdot 93$ per cent nitrogen gas. He believes hat a fermentation is produced at thetime of ripening, from which fermentation the carbonic acid gas results.

The way to wash silk is to spread it smoothly upon a clean board, rub white soap upon it, and brush it with a clean hand brush.

NEW BOOKS AND PUBLICATIONS.

A New Monetary Sybtem, the Only Mrans of Securing the Respective Rights of Labor and Property, and of Protecting (from his work on Labor and Capital). Edited by his Daugh ter, Mary Kellogg Putnam. Fifth Edition. By mail \$1.50, free of postage.
408 Walnut street.
This book contains many original ideas on the subjects of tanking and currency, and glves forth many pauaceas for the evils of poverty, hard work,
and short pay. We do not think it will convert any one to the bellef that the laws of Nature and of supply and demand can be successfully abrogated b laws or Nature and or supply and demand can be successfully abrogated by
spectal legislation, however speclous such law-making may be; but as the production of a sincere and very discursilve thinker, the volume demands the attention of students of 1 s subject, which is dally growing in Import
ance to the future of this country. United States Habiwais
comprising a Complete List of the Manufacturers, Importers Wholesale and Retall Dealers, Commission Merchants, etc., in the United States and Territories. Price $\$ 6.00$. Boston, Mass. Greenough, Jones, \& Co.
This book is a most useful compllation, and appears to contaln all the
nitormation stated in Its very comprehensive title. The various trades intormation stated in its very comprehensive title. The various trades. including arricultural implement makers, bell founders, boller makers,
engine toulders, plumbers, and every other bianch of the metal- working engine tuilders, plumbers, and every other bianch or the metal. Woring
business, are arranged alphabetically by stat a s, Lusinees headings, towns, and names. Much labor and care have evidently been spent on the woik which appears to be authentic in every particular
the Metric System of Weigits and Measures. By J. Picker ing Putnam. New York city: Hurl and Houghton.
sir. Putnam places the advantages of the decimal or metric aystem be
fore his readers with much clearness and force; and although the two side fore his readers with much clearness and force; and although the two sides
of the questlon are very generally understood, it is well to keep the subject or the question are very generally understood, it is well to seep the subect IIttle doubt that. the Frenoh plan will be the basis of it; and of this, even the opponents of that system are tolerably well convinced.
Wooden and brick buildings. with Details, containing One Hundred and Sixty Plates of Plans, Elevations, Views, Sec tions, and Details of Various Structures. With Specifications, Forms of Contract, Schedule of Prices, etc. Pubiished Under
the Direction of A. J. Bicknell. Volume II. New York city A. J. Bicknell \& Co., Architectural Publishers.

We recently reviewed this handsome work, on the lisue of the frst volume; and have now to acknowledge the recelpt or Volume in, which com-
pletes one of the most useful and valuable works on practical architectur ever Issued from the press.
aggener's Standard Wages Tables, showing Computation of Wages for Any Number of Hours, from 'One to Sixty.
Compiled by D. B. Waggener, Author of "Book-kceping Simplifled," " Improved Trial Balance Bo
Philadelphia, Pa.: D. B. Waggener \& Co. a complete ready reckoner for all wages calcul
A Series of american Clinical Lectures. Edited by E. C. Seguin, M.D. Volume I, No. 3. Containing " Pneumo-Thorax,'
by Ausin Hunt, Sr., M.D., Professor of Medicine at Bellevu by Austin Hunt, Sr., M.D., Professor of Medicine at Bellevu
Hospital Medical College. Price 40 cents. New York city Hospital Medical College. Price 40 cents. New Y
G. P. Putnam's Sons, Fourth avenue and 23 d street.
This conctnued pubication is likely to prove of special value to student thy guldes to practice. Not only are the views of the lecturers given in extenso, but the latest authoritative opinions on the therapeutics asd patho logy of each case are combined in each issue, which is complete in Itself.
The Population of an Apple Tree. By A. S. Paokard, Jr., the Study of Insects," etc. Price 25 cents. Boston, Mass. the Study of Insects," etc. Price 25 cen - valuable contribution to popula

The Glacial Epoci of our Globe. By Alexander Braum. Price 25 cents. Boston, Mass. : Estes and Laurlat.
We have here a very readable account of the much vexed qu
glaclal theory, which is polintedly written and well illustrated.
Sixth annual Report of the State board of Health of Mas sachusetrs. Boston, Mase.: Wright \& Potter, 79 Milk street
The resources and Manofacturisg Capacity of Lower fox River Vahlev, Appleton, Wisconsin. By A.J. Reid, Edito
of the "Appleton Post." Appleton, Wis.: Reid \& Muler.
Miscelllandous Rolling mill information. No. 10. Pittsburgh Pa. : J. L. Lewis.

Inventions Patented in England by Americans.
[Compled from the Commissioners of Patents' Journal.]
From March 9 to Marc h 29, 1875, tnclusive
aile beabings, Etc.-E. D. Murfey, New York clty.

Boot Tips.-E. Maynz, Boaton, Mabs.
Beake, Sigal,
beate, Signal, eto.-J. f. Smith (of Pittsburgh, Pa.), London, England. Botros Nexdle, etc.-G. Norwood, Boston, Mass.
Buttre Tob.-C. B. Sheldon, New York city.
Coffer Polping Maceine.-w. v. V . Lidge
Corfic Polping Machine. - W. V. V. Lidgerwood, Mortistown, n.
Foring Pulp into boxes, mtc.-S. Wheeler et al., Albany, N.
Gas burnir.-J. Ellis, Lynn, Mass.

hobirbt Siwing M Mobink.-W. Pear
Injeotor.-S. Rue, Phladelpha, Pa.
Motoz.-J. M. Cayce, Franklin, Tenn.
M
Papir box Macrine. - P. B. Machine Co., Cleveland, Ohio.
Photographic Plate.-H. Hill et al., Woroester, Mass.
Railway Where.-R. N. Allen, Hu ison, N. Y., et al.
Railwat Wherl.-R. N. Allen, Hu ison, N. Y.,
Roller Skatr.-G. Petitt, Oakland Polnt, Cal.
Rollar siate.-G. Pettitt, Oakland Point, Cal.
Rotary Engine.-w. V. V. Lidgerwood, Morristown, N. J.
Sorew Grar and Stexring apparatus.-D. N. b. Comn, Newton, Mage
Soriw Machingry.-C. M. Spencer, Hartford, Conn.
Soap.-S. S. Lewls (of Boston, Mass.), et al., London. England.
Spinning Hemp, eto.-J. Good, Williambb
Stean Enoine, etc.-G. B. Dlxwell, Mass.
Steay Evaine, etc.-G. B. Dixwell, Mass.
Stocitig Supporter.-A. H. Cramp, New York elty.
TELzorapi. - M. Gally, Rochestor, N. Y.
Uxbrella.-D. G. Stelnmectz, Philadelphia, pa.
Weft Stop Motion, -T. Isherwood, Webterly, R.

Ferent gutcticar aud forcigu zatents

Improved Bucket Ear

James D. Field, Blue Rapids, Kan.-This bucket ear is constructe rib, that is perforated for the bail, the side plates being attached to the bucket.

Improved Machine for shearing Metal.
John Walsh and James Dutot, Newton, Iowa.-This device is so stanstructed that, by a down pressure, the lever will exert a con
stantly increasing force upon the Jaw, and act upon the principle of the knuckle joint. The lower jaw hangs loosely on the ful-
crum pin, with the outer end resting on a wedge. This wedge is crum pin, with the outer end resting on a wedge. This wedge is
moved back and forth, to open and close the shears, and act only on the lower Jaw.

Improved Wagon Brake.
Lewis B. Morgan, West Liberty, W. Va.-The invention relates to that class of automatic wagoa brakes wherein the weight applies the brakes through a sliding reach, and cons'sts in combining nith
the ordinary brake lever and axle an end-slotted reach with an end eye ordinary brake lever and
evod, lever, and arc rod.

Improved Car Coupling.
Charles Hobzner, Louisville. Ky.-The invention relates to that hook, that passes over a shoulder of the opposite car, and couple automatically. The invention consists in a lever upheld at its rear by a spring support, a push bar having a crosspiece supported by springs, and in a peculiar device by which the cars may, with grea facility, be uncoupled from the car or from either side.

Improved Bedstead Fastening.
Lnuls Guienot, Baitimore, Md.-The object of this invention is to provide a fastening for bedstead rails and all kinds of frame work which are to be detachably connected. It consists in a short bolt
having at one end a screw thread and nut, and a squared end to rehaving at one end a screw thread and nut, and a squared end to re-
ceive a wrench, and at the other a right angular groove. Said bolt is placed longitudinally in one portion of the frame, and is held grooved end of the bolt entering a detachable plate in the other portion of the frame work, which is provided with a lug or extension which moves in the said groove, and, when the bolt is turned,
draws and locks the two portions of the frame securely together, draws and locks the two portions of the frame securely together,
the nut serving to tighten the devices as they may from time to time require it.
mproved Plow.
B. S. Benson, Baltimore, Md.-The invention consists in combin ng with a plow a set of wheels placed at an inclination to a vertical lane and provided with agroove upon ther peripheries, which re

Improved Ash simer.

Frederic Anthes, New York city, assignor to Theodore Wenk and he sections composing the body of the sifter to the circular end thereof by means of slotted lugs and clamping bolts, also to the construction whereby the removable door section of the sifter is attached and held in place. By this construction the various parta of the sifting cylinder can be very easily and quickly put togethe and taken apart, and the sifter can be cheaply made.

Improved Spring Bed Bottom

Edward P. Bennett, Elkland, Pa.-The present invention relate to new and useful improvements in spring bed bottoms, and con whist in springs attached to the head and foot boards, having eyes which hold rods, and in a series of solid spring slats, slotted at the
ends to receive the rods, the said rods being divided or split, and having central springs.

mproved Neck Tio.

Alden J. Adams, New York city.-The object of this invention is to prevent the slide of a cravat from slipplng down while the sai rded with a hook and eye or other fastening with the body of the v.ded
slide.

Improved Wardrobe Bedstead.
Robert G. McClure, Jamestown, O.-Tbis consists of straps for the purpcse of holding the bed, and preventing it from bulging when
urned up, the same being stiffened in the middle, while their end emala flexible, and are provided with loops that fasten over knob on the side boards of the bed bottom.

Improved Cloth-Shearing Machine。

Isaac L. Holmes, Saco, Me.-The first part of this invention conslsts of an automatic feed-regulating apparatus, whereby the cloth
is delivered to the machine, so that it has a uniform tension while is delivered to the machine, so that it has a uniform tension while pasing through it, notsubject to the unequal pulis and strains com mon to the cloth when drawing into the machine. The second part ers are stopped by a seam when it approaches them, and allowed to rest until the seam passes, and then set in motion again, as it passes away from them, to protect the cutters from the effects of
the extra thi kness of the seam, and to prevent the seam from being cut. The third part of the invention consists of the bed piece of the stationary knives pivoted to the frame, so that these knive can be readily swung up away from the revolving knives to facil
tate the clcaning of the latter of the oil and emery used in shaipening them.

Improved Casting of steel-Faced Anvils.
John Donovan, Carpentersville, Ill.-This consists in a wire loop
in the horn of the plate, for keeping it in place in the mold, and in construoting the face plate concave oa the side receiving the iro to compensate for the greater shrinkage of the iron in the middle.

Improved Rallroad-Car Truck.

Alonzo Gilman, Leni ton, Idaho Ter.-This invention consists of a appication of one double llanged wheel and one plain or fla sists in an altercate arrangement of these wheels on adjacent axles so that both ralls are utilized, and the cars are kept properly on the ralls.
James Harding Urown, Porter's Mills, Wis.-This is an improved barrow for carrying barrels and other thinge, which may be used a a wheel barrow or as a hand barrow. It may be expandel or cos tracted to adjust it for carrying a larger or a smaller barrel, as ma justed. The said wheel can be conveniently attached and detached as required, and the side bars and braces locked in place when ac justed.

Improved Car Axle Lubricator.
John D. Imboden, Richmond, Va.-The invention consists in a detachable wire frame, having elastic sides that press a woven
fibric or otherabiorbent to each side of the journal, thus supplvin? fibric or other abiorbent to each side of the journal, thus suppivina
the lubricant and wiping the journal at the eame time. The greal merit consists in the facility with which it may be applied to any
fournal box and removed therefrom.

Improved Paper Dryer.
Jonathan Hatch and Guiliford Smith, Windham, Conn., asaignors
to Smith, Winchester \& Co to Smitb, Winchester \& Co., same place.- Each side is provided with
girders, which support the cylinders and fans. These cylinders each have two heads, which consist of a hub and a spider, each being made separately and fastened together. The advantages claimed in tisis manner of making these heads are, first, to prevent breakage in the shrinkage in casting; secondly, to admit of lightening the several parts; thirdly, to facilitate the construction of said heads and hubs. The longitudinal rails, which connect the cylinder heads, are stayed by internal rings. Wire is wound spirally over the cylin-
ders and fastened with a cap piece. These cylinders are revolved n a steady and uniform manner, gear wheels being attached to the hubs at one end, which engage with each other.

Improved Cotion Chopper.
Theodore C. Burnham, Waco, Tex.-The chopper knives are at ner ends may meet or slightly overlap at an angle. By operatio n arm, the knives may be held back and prevented from outting an arm, the knives may be held back and prevented from outting nives to their work under ordinary circumstances; but shoul said knives strike anything they cannot cut, the spring will yield and allow the knives to swing back and pass the obstruction
Improved Bird Food Holder
lmproved Bird Food Holder.
Samuel E. Tompkins, Sing Sing, N. Y.-This is a griping tongs for olding sugar lumps, bread, cuttle bone, pieces of fruit, and the
ike, with a griping stand or foot adapted for temporarily attaching it to the wires of the cage, so as to hold the food resmaneitly.

Improved Distance-Measuring Instrument. William F. Harrsch, Chicago, Ill.-The invention consists of two reflectors, of which one is placed stationary on a suitable fram
under an angle of forty-five degrees, in front of the object glass of he telescope, extending to the hight of the center line of the same he other pivoted reflector is mounted on a sliding piece, whic noves under suitable angle to the line of sight along a scale on which the distance is indicated by a pointer of the pivoted reflecto at the point where the reflected picture and the real object, seen by
the upper half of the telescope above the stationary reflector, fall exactly into one.

Improved Harventer.
Charles D. Shrader, Lancaster, Wis.. assignor to himself and Allen . grain harvesters, for the purpose of facilitating the work of the inders. It consists in a sweep operated to compress the gave against the rear side of the platform.

Improved Mangie
Henry Tamms, Bartlett, Ill-This consists in a weighted pressure or, with central shafts, which is connected by slotted and ful-
crumed levers and connecting rods with crank wheels, operated by rumed levers and connecting rods with crank wheels, operated by in intermeshing cog wheel, for imparting reciprocating motion to that one person may readily work the mangle and tilt the weighted box, while another feeds the clothes rollers to the same.

Improved Game Board.
Owen A. Gill, New York city.-This invention consists of a disk indentations or cup-shaped recesses and different provided with rendering the playing of a ball thrown from a revolving wheel into these holes more difficult and hazardous.
mproved Cording Attachment for Sewing Machines Hamilton C. Jones, Brooklyn, N. Y.-The lower part of th uides the cords on a level with the foot without the whic eling acted upon by the presser foot, and impeding the regular sitching to the fabric. A sheet metal guide plate slides in groove suides at the top of the presser foot, and may be laterally adjusted of cord to the needle and retained for guiding any thickness ing into grouves of the presser foot. The side flange of the guid late is provided with a folding front extension, which is bent in the shape of a flat tapering tube, by which the cord and fabric are radually folded, and thereby more easily fed.

Improved Car Wheel

Samuel Baldwin Chapman, New York city.-The wooden tread made by gluing together pieces of veneeriug placed obliquely to each other and obilquely to the wheel, so that the exterior surface of he sections which form the tread will be endwise of the grain, and having between the sections a steel ring, which will resist the wear while alfording a much greater degree of traction than can be ob ained from an entire metallic tread. A metallic band surround heavy rubber ring which surrounds the hub. The rubber ring acts as a cushion to give th
olling stock of concussions.

Improved Millstone Dress.
Jefferson Carvill and John Caven, Kingston, Minn. -The middle portion is arranged about an eighth of an inch lower than the face but rising in concave shape up to the level of the inner margin of
the face. This recess may, of course;'be dressed out from time to ime, as the stone wears away; but in ordor to save the labor of so ressing it, it is proposed to construct the part separate from the ther, and arrange it in a recess, with adjusting screws to lower it way from time to time, as the face of the stone wears.

Improved Traveling Cap.

Adolph Schwarz, New York city.-This consists in the introduc the eres and mouth are left uncovered, but the nose and cheek protected.

Improved Device for Moving Rallroad Carn. Benjamin F. Phelps, Kansas City, Mo.-The object of this inven ion is to provide means for moving cars on rallroads; and it conists in a lever slotted atthe lower end, having a friction wheel in crum composed of two bars attached to its sides, to the lower end of which fulcrum bars a self-adjusting crab is attached.

Improved Sewing Machine Sbuttio.
John G. Nichols, New Eureka, Kan.-This invention consists in a ion of the thread is obtained by a tension device, occupying but ittle space, within the shuttle body, the threading operation bein Also performed with greater ease and celerity than in the shuttles
heretofore constructed, by dispensing with guide eves, instead, notches and slots into which the thread can be readily entered.

Improved Can for Mixing Paint
Walter W. Thayer, New York city.-This invention consists of a in uid The handie communicates by a vent hole andisuing orifice which are closed and opened by a hinged spring valve, with the mixing can for admitting the required quantity of liquid to the
oolor. The marking brush is placed after use into a side sleeve of he handle and recess of the can, while the paper with the direo tion to be marised is gecured by a opiling holder to the can.

Business aud extsonal.

The Charoe for Insertion under this head ts 81 a Line.
Agricultural Implements, Farm Machinery, Seeds,
Ferillizers. R. H. Allen \& Co. $189 \& 191$ Water St..N. Y. Magio Lantorns, Stereopticons of all sizes and
prices, for Parior Entertainment and Public Exhbibtions. Pays well on smanl Investment. Catalogues rree. McA
 Tor all desecriptions of light scroll Sawing. See adv't.
page 2ss. Trump Brots, Manutacturers, whimington, Del The Worcester (Mass.) Gazette says: "They Who
wish to advertise judiclously and cheapily can find no bet ter medum througn mith to reach the great public thà Tinners, all-Address No. 8, Marcellus, Mich. 2nd Hand Fngines and Boilers for Sale at Low
Prices. Address Junlus Harris, Ttusville, Pa. Hand Bolt Cuttors, Power Bolt Cutters, Light-
ning Screw Plates, etce. Wriey \& Ruseell Manuzacturing Company, Greent
Telegraph and Electrical Instruments and Bat-
teres, cheap. A. A. Buell, 86 Bank St., Cleeveland. o. ${ }_{1}^{1,000}$ Ibs. English Steel Necdle Wire, in coil, No.

The "Lehigh" Emery Wheel. A new patent. $1,2 \& 3$ H.P. Engines. Geo.F.Shedd, Waltham,Ms. Smanl Property, well located for economical
manufacturlsg. Lump coal costs 82 , and Nut coal 81.50 per tun, dellyered. Taxation 1.37. Employees' nouses
rent for $\$ 5$ to 812 per month. Excelleut shlppling facllHes. Bullidings new and in good repair. Goood schools deacription, price and terms, by addressing Kittredge description, price and terms, by addressing
Cornice and Ornament Company, Salem, ohlo.
For Sale-Small
We have a light Machine (Gray and Malleable Iron and steel) wh hich we want to have manutactured. ncy, ill
For best and cheapest Surface Planers and Uni-
versal Wood Workers, address Bentel, Marredant Hamilton, onto.
For 13; 15,10 \& $\boldsymbol{E} 18$ in. SWing Engine Lathes, ad-
dress tar Tool co... Providence, R. Models for Inventors.-H. B. Morris, Ithaca,N.Y Wanted-Foreman in an Agricultural Machine
Shop. Reterence required. Address Harris Manufacturing Company, Janesilile, wis
A Rich Gold Mine Discovered for Agents Selling
very desirable new Patent Articles for housekeepers and vethers, G. J. Capewell, cheshire, Conn.
Every Me.alW orker rhoulh havean Universal Hand
Planer. Addreas J E, Sulterrin, 60 Duane St., New York. Steam and Water Gauge and Gauge Cocks Com-
tined, roquiring only twe hoies in the Boller, used by ail boller makers who have seen It , 815. T. Holland, 57 Gold Diamonds and Carbon turned and shaped for
Scleatlif purposes; alaso, Glaziers' tured and reest by J. Dtckinson, 64 Nassau Street, N. Y.
See N. F. Burnham's Turbine Water Wheel adertisement. next weets, on page 301
 chnne, the best In the market. Can be seen in operation
124 Goorck St., New York. Inquire for Geo. Marshall. Soap Stone Packing in large or small quantities,
Walrua Leather Wheels for pollshing any Metals. Belt Studs for fastenlng Leather or Rabbe
Baxter Wrenches for difmult corners. Baxter Wrenches for difleult corners.
Greene, Tweed \& Co., 18 Park Place, New York.

 ture of cheap furnture or agricultural I mplements.
Hardwood lumber in abundance and cheap. Address, for particulen
Agents. 100 men wanted, ; \$10, dally, or salary;
sellign our new goods. Thomas's Fuld Tannate of soda never falls to
remore scale from any Steam boller; it removes the scale-procucclng material from all stind of water; cannot tnjare Boliler, as it has no effecton I Iron; savees 20 time its
cost both in Fuel and repars of Boller; ticreases steam-

 Filect Tri-nitrogivenerin, Mica, Blasting, Powder, cha Insulated Leading WIrre, eece., etce., etc., result or seren yearr' experlence at Hoosac
M. Mowbray, North Adams, Mass.
Faught's Patent Round Braided. Belting-The
Beas thing out-Manutactured onli by C. W. Arny, $301 \& 4$ Price
Ole
ony
\& Por sending messages, making magnets, the electric light,
 operatlon by any lad. Includes batery, key, and wres.
or price. F. C. Beach \& co., 26 Canal st., New York.
The Lester OIC Co., 183 Water St., N.Y., Exclusive
Manufacturers of the renowned Synorial Lubricating oil. Send for clrcular.
Wash Stands, New Styles, Marble Tops, can be
nsed in ant situatiton. Prices sery low. Send tor a cater ogue. Bailey, Farrell $\& \mathrm{Co}$., Pttrsburgh, Pa Send for Cricular of a very superior Boller Feed
Pamp. D. Fribole \& Co... New Haven. Conn. For best Presees Di.es, and Fruit Can Tools, Blise
$\$$ Wullams, cor. of Plymouth and Jay, Brooklyn, N . Y .
 For Solid Emery Whell and Machinery, send to
whe Unlon Stone Co., Boston, Mrase., for circuiks.

Peck's Patent Drop Prees. Still
Iddress Mllo Peck, New Haven. Conn.
 Ittle euttons on the deeks of the managers signais are sent
o persens to the varlous departments of the establish - persons
nent. Cheap and efrective. splendid for shops, offlces,
s. isellungs. Works for any distance. Price 86. Witt good
Battery. F. C. Beach $\&$ Co., 246 canal st., New York,
lakera. Send for tre
 Hotchkisg Air Spring Forge Hammer, best in the
narket. Prices low. D . Frible \& Co.. New Haven, Ct. Genuine Concord Axles Temples and Oilcans. Draper, Hopedae, Mase.
 ithograpp, ec.
 All Fruitcan Tools, Ferracute W k's, Bridgton,N. J.

F. O. B. should consult a physician.-R. J p. 347 , vol. $31-$ S. A. T. will find directions fo frosting glass on p. 264, vol. 30. Canvas can be pre served from mildew by the method described on p. 90, vol. 31. A black dressing for leather is de-
scribed on p. $1 \pi 1$, vol. 32 . - W. S. 0 will find a re scribed on p. 171, vol. $32 .-$ W. S. \mathbf{O}. will find a re-
cipe for walnut stain on p. 90, vol. 32 . Nickel plat ing is fully detailed on p. 171, vol.30.-C. A. H. will find that a method of casting iron free from air holes was described on p. 409, vol. 31. - Y. will and directions for making concrete gravel walks on p. 50 vol. $32 .-A$. B. M. will find that the induction coil and its operation have been fully describedo p. 362, vol. 31.-E. B. M. will find a description
the type writer on p. 79, vol. 27 . Shaving soap is described on p. 251, vol. 32. For gold ink, see p. 21 , vol. 26. -W. M. W. will find recipes for hair wash on pp. 207, 363, vol. 31.-T. B. S. will find directions
for preserving natural flowers on p. 266, vol. 31 . M.T. D. will find directions for removing hair from the face on p. 229, vol. 28.-S. E. will find directions for casehardening iron on p. 69 , vol. 31 . in wells on p. 59, vol. 22.-M. F. will find recipes fo Worcestershire sauce on pp. 241,281,vol. 26.-R.O.B can mold rubber by following the directions on p. 363, vol. 30.
(1) G. A. W. says: I noticed in your issue
of March 27 a method for marking out ovals, of March 27 a method for marking out ovals,
which is good as far as the description goes, hut a which is good as far as the description goes, hut a great many mechanics do not know how oval of a given length and width. The following rule will be found simple and correct: If you wish to mark out an oval 4 inches in length, and 24
inches in width, mark out the length and width thus

Take one half the length (2inches)and measure from then set pins at A,B, and C, tie your string, b, around them; then pull up pins at a^{\prime}, and use the pencil as you describe
(2) L. A. W. asks: 1. What is magnetism? A. Magnetism is the power which certain bodies called magnets have to attract iron. Magnets are of two kinds, natural and artincial. Natural mag nets consist of the ore of iron called magnetic or of steel, and are magnetized by rubbing against other magnets. No substance is indifferent to th magnet, though iron is most of all affected by it. ism and is the difference between animal magnetism and electricity? A.There is no known connec tion between animal magnetism and
If any exists, it has yet to be proved.
(3) I. H. asks: 1. How can I obtain the dif erent colors of gold in electroplating? A. Make $11 / 2$ alum, $11 / 3$ sulphate of zinc, $11 / 2$ common salt. Add enough water to form a paste, which is put on the articles to be colored. Place them on an iron plate over a clear fire until they attain
a nearly black heat, and then plunge them in cold a nearly black heat, and then plunge them in cold water. Different hues may be had by varying the
mixture. 2 . Is there anything I can putin my silver solution that will prevent it from stripping? A. Clean the articles well and electroplate them slowly; and then the silver will not strip off.
(4) M. A. G. asks: Is there any kind of lamp in which I can burn kerosene oil, that will be safe
if left to burn ina shop all night? A. Use a large if left to burn ina shop all night? A. Use a large lamp of glass, having a proportionally small burndifficulty.
(5) A. H. H. asks: 1. What is the principle A. A metallic plate is connected to the line and another to the earth, the two plates being separated by a thin insulating material. The principle upon which the arrester works is that the tension of the atmospheric electricity is so high that it will leap across the insulating substance between the two plates, and then pass off to the ground, while you give your readers a table showing the eleotro-
motive force of the principal forms of battery
now in use on telegraph lines? A. The electromo tive forces of the various batteries are as follows Daniells', Minotti's, Callaud's, Gianty's, and Hill's, $1 \cdot 079$ volts; Marie-Davy, 1.524 volts; Leclanche, 1.812 ; 1 . Faures canbo battery, 1765 ; Grov 1812 ; Bunsen, 1.964 ; electropoin fuld (bichroma ah) single element, 1.015 volts.
(6) M. W. M. asks: How can I magnetize of a strong electro-magnet in one direction.
(7) N. A. B. asks: How many methods are nd of obtaining pure silver from silver coin, A. Perhaps they? I wantthesilver toplate with character on a small scale is the following: Firs dissolve your coinsin nitric acid, and add muriatic until no further precipitate forms. Remove the ral times with hot water. Place the filtrate in flask with some small pieces of zinc, and cover them with dilute sulphuric acid (1 to 4). When the
zinc is completely dissolved, the metallic siver will be found in the bottom of the flask as a graysilver being in a very florely divided the fact of the you desire to use the silver in the metallic form as an anode), all that is necessary is to melt it in a small black lead cru
(8) E. asks: What makes the wet end of towel darker in color than the dry end? A. Lee of the light is refiected from the wet towel, an (9) G. W. H. asks: Are thereany chemical that change color in coming in contact with mag netized steel or other ma
We do not know of any.
(10) T. says: The accepted theory is that in support of this theory, among other phenome na , it is urged that the deeper the earth's crust penetrated, vertically, the greater the degree of eat is developed. Now why is it that the furthe we penetrate the ocean, the less is the degree o heat attained? Will it be urged that the lower th This is true down to 39°, but water at the bottom of the ocean, at the extreme depths that have been reached, shows a lower temperature than 39° Fah . What is urged is no objection to the theory of central heat, because the heat penetrates by con-
duction through the materials of the solid crust. uction through the materials of the solid crust都
(11) E. E. M. asks: 1. Can an electro-mag 100 lbs ., with one cell of a powerful bichromat battery? A Yes. 2. How far will it attract weight of 10 lbs. if it moved without friction? A The attraction decreases as the square of the di
(12) D. McK. says: I want to make a smal galvanic battery which, when I take hold of th wire, will give a considerable shock ? What is the
best method? A. You cannot get a considerable shock from a small battery except by passing th current through an induction coil. See p. 362 , ol. 81.
(13) T. W. D. asks: 1. How is phosphide of lime made? A. Phosphide of calcium, com monly known as phosphide of lime, is obrained by the action of the vapur of phos
tic lime at a high temperature.

1. How is high
A. Either pure hy with dilute sulphuric acid, or common illumina ting gas (coal gas) is used for this purpose. 2. Will
the gas from a kerosene lamp do? A. No. 3. How nany square feet of gas will it take to raise a flv b. balloon? A. It will require about 140 cubid feet of coal gas,
pure hydrogen.
How is gunpowder made? A. Saltpeter, sul phur, and charcoal are ground separately to powder, mixed, made into a paste with water, dried
(14) H S
(14) H. S. asks: Would it improve th of sperm lard, or orther similar fored oll a portion A. No Use a better kerosene. It should not tle, and should have a high burning poin
(15) A. C. C. asks: Will you tell me what put on glass so that I can take a photograph dieven film of photographic collodion, and is the placed in a bath of nitrate of silver for a shor time. It is then transferred to the camera, and after exposure is washed, first with a solution o sulphate of iron, and then with a solution of h posulphite of soda. It may be mentioned that who has not devoted some time to the practial study of it. We would refer you to some work the subject. If the back of the negative, obtaine by the method as above described, be blackene it will give to the plate, when looked at, the ap (10) J. R. L.
(16) J. R. L. says: I want to make a preparation to use on black tobacco to prevent one lump from sticking to the other, and at the same time Tinfoll cannotbe dissolved so as to make it possible to add it to a mixture of oll and glycerin.
(17) C. G. D. says: I am manufacturing chromate of potash, prusslate of potash, powdered gum arabic, and water. After the ink is first bottled, there is a scum formed at the mouth of the bottle; but when this is removed there is no more formed. What is the cause of this? A. It is probably due to impurities in the materials user.
Allow the ink to stand some time before bottling. Sulphate of quinine is sometimes used as a rem edy.
(18) G. A. W. says: I have read the follow ing directions for drawing an octagon in a given
square: Mike A C equal A B; then draw the square

E F D, and line from D to E will be one side of he octagon. Proceed in the same manner in the rect method? A. Yes.
(19) F. D. S. asks: Is there any chemical wich I can mix with lard oil so as to retard o prevent oxidation when exposed to the air? A
No.
(20) P. S. G. asks : Is there any kind of alpaca or gingham tops waterproof? A. Try the ollowing: First sponge the cloth on both side with a solution of 1 part sulphate of alumina in 10 parts water, then with a solution of soap, which prepared by boiling 1 part light colored resi nd one of crystallized carbonate of soda with 1 oap thusformed to to be lo diated by the addition of common salt. This soap is then dissolved to ether with 1 part soda soap, by boiling in 30 part ater. After this last sponging, inse in the rain. (21) P. P. W. asks: How can I take the printed heads off an account book, so as to beable wrie others in theirstead? A. We do not know (22) J. G. C. asks: Is there any simple method by which an amateur in chemistry ma scertain the strength of a given sample of nativ balue of of or the proportion of chlorine which a given weigh of it will liberate when it is heated with hydro hloric acid. This quantity of chlorine varie much in different samples, and is dependent upo the proportion of oxygen which the oxide of man sanyse to its existence as protoxide.
(23) J. E. C. asks: 1. Is there a liquid that Will erase ink marks from paper, and leave the camel's hair pencils, dipped alternately in solu tons of oyanide of potassium and oxalic acid. is there any substance that will resist the ac tion of mucilage when dry, except hard and vul-
canized rubber? A. Yes. Most metals will do this.
(24)
(24) S. H D. says: Located near Titusville, Pa., is an immense gas well, struck nearly 4 year go by parties who were anid by arious he nomena. The gas was led away from the mouth of the vell by 4 pieces of tubing, and this tubing was coated with ice from $\frac{1}{18}$ to $1 / 4$ of an inch in thickness. This was with an august sun beating down on the pipes; small pieces of ice were als hrown out of the well with considerable force of course the pressure on the pipes must hav gas passing through them, and I should hav thought the friction would have caused heat instead of the reverse. A. It is a well known fact that. when a gas is allowes to escape fom whapidly rom surrounding bodies, and that this chilling ef fect is proportional to the pressure from which th gas is liberated.
(25) A. S. asks: How can I restore the polsh to a nickel- plated stove which has been disc (26) C. A. (26) C.A. B. asks: 1. What can I put in wacolor the clothes yellow. A. This may be acc.mm plished either by boiling the water for some time or by the addition of the proper quantity of clea ime water. 2. What is used to bleach clothes in ton goods the frot operation consists in scourin them in a slightly alkaline solution, or, what is be ter, by exposure to steam. They are afterwards put into a basket and rinsed in running water. The immersion of cotton in an alkaline ley, how ever it may be rinsed, always leaves with it an earthy deposit. It is well known that cottlan the action of acids better thare the actlon of them
time is even necessary before can be prejudicial to it; and by taking advantage of this valuable property in regard to bleaching, means have been found to free it from the earthy deposit by pressing down the cotton goods in a very weak solution of sulphuric acia, and after wards removing the acid by washiug, lest too long remaining ina of polishing shirts, collars, etc., besides the ordinary irons? A. Put a bit of parafin, the size of a hazel nut, in each bowl of starch. (27) D. A. D. asks: Can you give me the method by which Berthelot was able to obtain alution sof solves about 120 times its bulk of the gas, then diluting the mixture and submitting it to distillation with facility. Tritylic alcohol has been obtained by acting on tritylene in a similar manner.
(28) H. W. says: In your answer to A.C.R. you say that, ir the first fioor is set high up fro to health are in favor of the house with no cellur. The fact is that a great many dwellings are buil lation, and the real question is: Are they healthy Ithink not. In Illinois, there were three settle ments within visiling distance of each other, alto every family of the three settlements (with one exception) was sick with the prevalling fever of theseason. The excepted household had an upper floor to their house (a half story) which was used for sleeping in by all the family, consisting of pacaped the fever. All the rest of the inhabitants ived in one story houses, and of course slept and close solid foundation, we found that things would moldif left standing for a few days. Preserves, placed upon a top shelf, in a short time became moldy; out when placed in the second story, they all kept well. A barrel of hour was kept standing failed to rise and as a conseque bakings of bread, it not being fit to eat. The barrel and flour were then taken out of doors and placed in the sun, so that the air could circulate
freely around and under it, and after standing freely around and under it, and after standing
thus about 6 hours, it was replaced on the floor and thus about 6 hours, it was replaced on the floor and
set on two strips of board one inch thick. By this set on two strips of board one inch thick. By this
means the flour was wholly restored and rendered good to thelast. I could cite many other instances. A. All receptacles for foul air under or near a dwelling should be very closely attended to, and
so opened as to be thoroughly ventilated, as the so opened as to be thoroughly ventilated, as the instances
lustrate.
(29) S. V. C. asks: If a student learns telegraphy on a Tom Thumb electric instrument,will he be able to work an ordinary railroad office in
strument correctly? A. If a student learns to read well by sound, he can operate in any office where sound instruments are used.
(30) A. K. asks: Is the beech tree a negatricity? I lived for 25 years where one fourth ecthe timber was beech, and never saw one that was injured by lightning. A. The beech tree has no polarity; but it is a good conductor when green
and full of sap. and full of sap.
(31) F. C. B. asks: How are those batteries
made in which lead is one of the elements, and made in which lead is one of the elements, and
what is the solution? A. Similar to the Callaud, What is the solution? A. Similar
using sulphate of copper solution.
(32) C J. M. asks : 1. Can you give me directions for making a constant battery for ringfeet? A. Use any form of a sulphate of copper battery. 2. What size of wire, and how much,
shall I use on the poles of an electro-magnet, to be operated with the above battery and circuit? A. Use 200 feet of No. 24 insulated copper wire.
(33) E. A. D. says: I wish to deposit copper on a very frail non-metallic substance. I cannot
apply plumbago, nor use any composition in apply plumbago, nor use any composition in
which phosphorus occurs. The application to render the article a conductor must be in a liquid tried soaking your model in melted paraffin, and then applying plumbago?
(34) A. F. B. asks: 1. What size of insula diameter? net, with an iron core 9 of an inch in diameter?
A. It all depends upon what use you wish to put it to. 2. Would an electromagnet made of one bar,
bent in the form of a U , be more powerful than bent in the form of a U, be more powerful than
one made of two bars, and the ends connected by (35) J. E. M. says: 1. If I have two pairs at a distance o 34 inch apart, will be drawn together, and the
other pair will be drawn together if placed 1 inch apart: If both pairs were placed an equal distance apart, say $1 / 2$ inch, would not the weaker magnets be drawn together with as great rapidity as the stronger? A. No. 2. If I were to place a
permanent steel magnet without a keeper inside permanent steel magnet without a keeper inside
a hollow glass globe, and then exhaust the air a hollow glass globe, and then exhaust the air
from the globe, would the attractive power of the from the globe, would the attractive power
magnet remain exactly the same? A. Yes.
(36) J. W. McM. says: I have an electromagnetic machine. The battery consists of two
zinc plates with a thin platinum plate between them,and the platinum plate has been destroyed by the acid. Would not a copper plate answer the same purpose? If so, should it be the same thickness as the platinum one, or thicker? The acid is
dilute sulphuric. A. Copper will not answer; use a dillute sulphuric. A.

thin plate of silver

(37) J. E. L. says: I have a hot air furnace which warms 16 rooms. It is set in brick double
walls, the inside wall being 16 inches from radia. Walls, the Inside wall being 16 inches from radia.
tor. I would like to sometimes draw the hot air from the hall; so I put a 10×14 register and a 9 inch tin pipe down to the bottom of the outside wall, and a damper in the outdoor cold air box. I closed the damper to see if it worked, but it did not; then I closed the registers, but I left 3 openings, and it will draw the air from the hall through one of
the hot air registers. A. It is necessary to keep a the hot air registers. A. It is necessary to keep a the air will then descend through the lowest registhe a
ter.
(33) C. W. E. asks: What substance is the know of any.
(39) A. N. W. asks: 1. What is the most lasting and cheapest battery that I can work an alarm bell with, with No. 20 fine copper wire in a circuit of about 100 feet? A. Smee's or Léclanch6's. 2. In using one of Grove's cells, if I take out the platinum plate and amalgamated zinc,wilt themix-
tery? A, slightly. 3. How long will one of Grove's cells last wlthout being renewed? A. That dethe cost of a Rhumkorfts coil and condenser? A From $\$ 300$ to $\$ 500$. 5. Can I make one myself without machinory to coil the wire on the core? A. Possibly, but it requires a good deal of skil and fnowledge to make one, and youre economical to buy it.
ably find more economical to buy it.
(40) I. M. L. says: 1. I have a line 650 feet hong each on the line. How many Hill's jars will be needed? A. Three 2 with a line of a give ength, with 3 relays of 55 ohms each, if I replace the relays with 3 of 10 C ohms each, will it requir more or less battery ? A. Less.
(41) W. D. says: A fair trial of galvanized in Canada. Under the contracting and expandin influence of heat and cold, the cross joints open and leakage on the first thaw is the result. Eve the gutters on mansard roofs part at all the Joints, to the great annoyance of those who have eithe recommended or used this material. One method has been to solder and rivet the joints, the rivet being about $\$ 4$ or 1 inch apart, but in spite of this the seam opens visibly. What is the remedy? A. In this vicinity, tin in small sheets 18 almost universally used for the purpose. The tin is clinched sheets, the less the effect of the contraction and ex pansion on the joints. Galvanized iron is used for cornices and other molded work.
(42) A. M. S. says: I have a large Newmell Wash him with carbolic soap.
(43) C. W. H. says: We have a copper tank,
and an ordinary brick and cement cistern for holding water. The water in the copper tank is much softer than that in the cistern. The water in the cistern probably takes up some of the lime from
the sides and bottom of the cistern. Can a cistern the sides and bottom of the cistern. Can a cistern be covered with silicate of soda or with paraffin,
and thus avoid the trouble? A. A coat of hydrau-lic cement will be the best remedy for the diffculty.
(44) H. F. N. asks: Is there any substitute for oil for drilling cast steel and wrought iron? A. Soapy water is sometimes used.

1. Is it an established fact that there should be no oil used it the steam chest or cylinder of an engine? A. No. 2. If grease is needed, which is the
best, oil or tallow? A. Tallow.
(45) C. T. asks: Would any mechanical it in motion be deemed perpetual? A. Yes.
(46) F. W. J. asks: What will weld iron and steel together without the aid of sand or
borax? A. Brush clean with a wire brush frequently while heating, and when taken out to
(47) J. P. says: 1.I havean engine of 3 inch and x am thinking of ma2 feet depth of hull. I propose to make a boiler 4 feet long by 22 inches diameter, with a 13 inch flue running the whole length. I set my grate inside the flue to run about 16 inches back. Shelland
flue are of sis inch, heads of $1 / 4 \mathrm{inch}$, charcoal iron. Hue are of $\frac{8}{16} \mathrm{inch}$, heads of $1 / 4$ inch, charcoal iron. carry 75 lbs. of steam. 2. At what speed (in still water) can I run ? A. Probably 6 or 8 miles per
hour. The other engines you describe may answer hour. The other engines you describe may answer
for a boat 14 to 16 feet long. The inclination of for a boat 14 to 16 feet long. The inclination of
shaft and position of propeller depend greatly on shaft and position of p
the design of the hull.
(48) W. H. S. asks: 1. In making hydrogen rom sulphuric acid and zinc, for an oxyhydrogen inght, will a plain bottle do for a vessel ? A. Yes.
2. What is the proportion of commercial acid to water ? A. About 18.5 per cent water.
(49) B. J. says: Please state the diameter A. Five inches.
(50) W. W. D. asks: How large a boat could run with side wheels3 feet in diameter, and an ibs. of steam? A. From 25 to 30 feet long.
(51) W. F. H. asks: 1. How high can waproduced in top of pipe by the escape of steam, as n an ordinary steam siphon? A. From 20 to 25 feet. 2. What length of time is required to raise water to any given hight by such means, steam be-
ing at 7 ibs. preseure in boiler, and the pipe, ing at ion ios. preseure in bolier, and the pipe,
through which the water is to be raised, of 30 inch es diameter? A. Less than a minute, with plenty steam. 3. Is this way of
economical? A. Not very.
(52) J. M. says: 1. I intend building a scow feet long $x 20$ feet wide, with stern wheel. What engine with cylinder 15×15 will do. 2. What size of stern wheel will be necessary, the above men-
tioned scow drawing 4 feet when light,and ranning at 8 miles per hour? A. One of from 8 to 10 feet di-
(53) C. D. P. asks: We wish to warm
church, 40 feet by 70 feet by 18 feet high, with church, 40 feet by 70 feet by 18 feet high, with a furnace in the basement. The smoke flue will furnace, where it enters the perpendicular flue What should be the dimensions of the horizontal moke pipe and of the chimney? A. The smoke pipe may be 10 inches in diameter, and the chimney lue 12 by 12 inches.
(54) J. W. W. asks: To what depth can a ing bell? A in the Atlantic Ocean, using a div depend on the welght of the bells and the capaciy of the compressing pumps.
(55) J. J. H. asks: 1. By what standard are No. of gage. Dox in mine

. How are the qualitles of gunpowder numbered? States standard is as follows: Musket, grains be tween 0.03 and 0.00 inches. Mortar,grains between
0.00 and 0.10 inches. Cannon, grains between 0.25 0.00 and 0.10 inches. Cannon, grains between $0 \cdot 25$
and 0.35 inches. Mammoth, grains between 0.60 0 ad $0 \cdot 90$ inches.
(56) F. H. F. asks: Please give me a rule describing a heart cam that will give a perfectly
uniform motion and at the same time be easily driven? A. Divide the length of stroke, \mathbf{A} B , int any number of equal parts, and describe circle

on which the cam turns. Divide the outer circ into twice as many equal parts as A B was divide The points in which these radil cut the corresponding circles are points of the cam.
(57) A. L. F. asks: How many horse power at 60 turns a minute, with steam cut-off at $\$ 4$ stroke and pressure at 60 lbs. per square inch, give? This question can only be answered deflitely by experiment. All we could do from the data sent
would be to guess at the mean effective pressure. You can do this if you like, thus: Product of mean effective pressure in pounds per square inch \times area of piston in square inches \times speed of piston in feet (58) J. H. K. asks: How can I find the log ithm of a number, say 25 , without using a boo of tables? A. Theformula is as follows: Let a
any number. Then log. $\left(\frac{a}{a} \frac{-1}{-1}\right)=0.888589 \times\left\{\frac{1}{2 a-1}\right.$
$+\frac{1}{3 \times(2 a-1)^{3}}+\frac{1}{5 \times(2 a-1)^{6}}+\frac{1}{7 \times(2 a-1)^{7}} 1+$ etc. $\} \quad$ In

You can work this out if you feel inclined; but we imagine that you will not care to use this for (59) A. L. K. says: 1 . There is a sawmill with two engines and two sets of boilers, each set having an iron smoke stack 65 feet high $x 56$ inches diameter. One set of boilers have two flues in each, the other set are plain cylnoders. All burn saw dust. The latter have good draft, but the other, The question is whether, if one of the exhaust pipes (7 inches in diameter) is inserted in the flue boiler stack, the draft will be inproved. A. It is very probable that the change will improve the draft 2. If so, at what distance from bottom should the exhaust enter the stack? A. Insert the pipeso that it discharges a little above the top of
the boilers.
(60) F. J. asks: 1. What is the best size, cylinder $9 / 4$ inch diameter by $11 / 3$ inches stroke? A Make it of copper, upright, with a flue in the center. 2. What is the best manner of heating? A
(61) J. P. asks: Will it require more power
to drive a paddle boat, of two hulls, like the Casta-
lia, than one large hull of the same draft and lia, than one large hull of the same draft and
beam? A. It will take more power for the double hull.
(62) J. M. asks: 1. About what length When folded up, would Peaucellier's parallel mo
tion have to be to describe an arc of a circle of 5 eet radius? A. Between 7 and 8 feet long. 2. In what work are quarter twist bells illustrated? A In Rankine's "Machinery and Millwork." 3. Are Rankine's works of any use to any one excep Tables" scarcely any of the rules are expressed
(63) O. P. says: Two pipes, the shells of Which are of equal thickness, the diameter of one
being one foot, the other one hundred feet, the pipes being filled from the top by forcing wate n : which will burst first, and at what hight? A.
If the material in the pipes is of equal strength throughout, the largest pipe will burst first, as the and it will burst at the bot tom, as the pressure is greatest there.
(64) C. P. W. asks: Having had a contro opinion. If we place one valve, as usually used over the ports of an engine, and make an exac duplicate and attach it to the other, the two a steam joint on the cover of the steam chest while the other makes a similar joint over the not, if you mean a perfectly balanced one.
(65) E. M. says: I have an engine with a $21 / 25$ inches cylinder, capable of running from 400 the diameter and pitch of screw, and the length nd width of a boat, for such an engine, and how
much water ought she to draw? A. You can make he boat from 15 to 18 feet long, 5 to 51/2 feet beam Boiler, 2 feet diameter, 3 feet high.
(66) W. S. asks: Can water be injected in to a boiler above the water line? A. Yes. 2. And may be worked? A. This will depend upon the onstruction of the injector, several forms being (67) H.
(
(67) H. W. S. asks: 1. I am about to put in a turbine water wheel, using 75 inches water in a
circular sawmill, under 16 feet head; the wheel will be 40 feet from the dam, and the water conducted to the wheel through a round tube of 3 feet internal diameter, the tube sloping down to the wheel. In closing the gate of the wheel suddenly, will the momentum or shock, caused by the sudden stop-
page of the flow of water, strain or injure the tube, and will a safety valve be necessary near the wheel? A. In closing the gate with moderate
speed, no safety valve will be necessary; but when the closure takes place instantaneously, you can provide a stand pipe, three or four feet high, contanning air, which will act as a cushion. 2. Would the 3 feet diameter tube be large enough for a
wheel using 75 inches water, under 16 feet head? A. Wheel using 75 inches water, under 16 feet head? A. Yes. 3. Would friction gear answer well to run an
edging saw for edging stuff from 1 to 4 inches wheel 4 feet in diameter, venting 200 inches of water, under 17 feet head, taking the water through an incline tube of 3 feet internal ciameter and200 reet long; the wheel under this head is rated by wide open it will not run one run of stones. What Fide open it will not run one run of stones. What choked, or some of the parts jammed.
(68) F. W. asks : I am about to put up a ends I propose to place, on the outside of the posts and studding, one inch plank, to this put on a heeting of tar paper, and on this ordinary floorng. Will this answer the same purpose, in every espect, as putting the inch boards on the inside
of the posts, the flooring on the outside, and fill in the space, of say 4 inches, with sawdust? A. The sawdust flling is likely to be the warmer of the
(69) L. R. B. asks: What power does the engine whose pitman is below the center of the
axles exert on a locomotive? I claim that the engine whose piston is moving ahead and whose crank wrist is above the center of axles is the only one which is doing any service. A. The ef-
(70) E. R. M. asks: 1. How can I make a battery that will last a good while without needing renewing, and be always ready for use? A. The purpose. 2. Of the ordinaryliquid batteries,which is the most powerful? A. The Grove or Bunsen is the strongest.
(71) C. L. T. asks: How are letters placed on glass in street advertising by the calcium light?
A. The plain letterings are painted or written, and A. The plain letterings are painted or written, and
the more elaborate ones are photographed, on the
(72) T. A. P. asks: How can I construct a small and cheap camera obscura for sketching ob-
jects at short distances? I have a common two nch burning lens, and a 1 ane reflor, 4 by 6 inch. Will these answer? A. These will answer the purposevery well. Take a emall close bar painted which place your lens, and over this your reflector at an angle of 45°.
What is the best recipe for green ink? A. Di-
gest 1 part of gamboge with from 7 to 10 parts of gest 1 part
blue ink.
(73) J. E. B. asks: Where oils, reduced or ut with alcohol, are added to plain sirup, how A. The sirup does not dissolve freely in your oil and the remedy is not to add them.
(74) G. B. A. asks: What is the best prepa of tungote of soda is highly
(75) D. B. B. says, Maply to J. G. R., who asks how to construct a cheap oxybydrogen blow long and 1 inch thick, and two brass tubesabout θ nches long; to an end of each of the tubes attach gun nipple. Bore holes in the wood obliquely and of such a diameter that the brass tubes, when inserted, do not move easily. Bring the gun nipples to about three eighths of an inch apart. The
bore of the-gun nipple of the hvdrogen tube must e the larger, so as to allow twice as much gas as be the larger, so as to allow twice as
comes from the oxygen tube to escape.
(76) A. W. L. says, in reply to W. S., who
asks how to kill or drive off fleas and sand flies Let him procure crude pitroleum, just as it come out of the wells, and apply it to those parts of the
body which are exposed to the attacks; and he body which are exposed to the attacks; and he will not be much troubled by them, if he is even so much as molested. On Lake Superior, mosquithey are scarcely visible) will not bite us when we have black oil, as it is termed, on our hands and faces; and it is a never failing remedy for the extermination (after one or two applications) of bugs from household furniture. Of course when used on the person the odor is not very pleasant; butin
furniture it is not noticed after a few days have purniture
(77) D. R. K. says : H S. C. asks how much fuel is required to melt 1 tun of iron. You an-
wer: "Probably 2 or $21 / 2$ times the iron." Wo have an ordinary cupola, and we can melt 2 tuns have an ordinary cupola, and
iron with 800 lbs . Lehigh coal.
(78) M. W. M. says, in reply to H. B, who
asks : Does the hair grow after death? Steele's "Physiology" says that the hair is said to grow after death. This is due to the fact that, by the shrinking of the skin, the part below the surface is
caused to project, which is especially noticeable in the beard.
Minerals, etc.-Specimens have been re ceived from the following correspondents, and examined, with the results stated:
C. D. H.-It is an impure quartz sand.-L. J. S.It is similar in composition and properties to fullr'searth. Your clay was probably not of the same obaracter as ordinary clay, which is a hy drated silica of alumina containing some oxide of
iron. Other substances were most likely present. Lime could be mixed with clay so as to be impervious. But the hydraulic lime will only be of good quality when the lime and clay are mixed in proper proportions and calcined at a proper temperature. The wet soil you mention beoame pulverized owing to the loss of water on drying, which substance being at the same time destroyed. - G.D. M.-It is partly decomposed muscovite, a variets of mica.-F. McC -As to your spacimen of cheese and the poisoning resulting therefrom, similar cases have been brought to our notice where per ons have become sick after eating cheese, an pieces of cheese in character similar to that for-
warded have been examined without yielding races of ordinary poisonous bodies. It would facilitate an explanation of the unwholesome char acter of such cheeses if it were known whether the milk was of proper kind, or whether there was anything unusual in the process of cheese making. In some oases persons have been poisoned
by drinking milk from a oow which had eaten animal itself being unaffected.-W. J. L.-No. contained oxide of iron, alumina, and silica, wit a small amount of carbonate of lime. Also lime, potash, and soda salts. The solubility of these salt imparts a saline taste to the powder. No. 2 differs from No. 1 in the absence of lime and alumina, considerable amount of soda and potash salts, and also baryta. They exist partly in combination with sulphuric acid, as sulphates.
J. E. M. asks: What do cake bakers put in
their icing to make it hold the shape?-J. S. B their icing to make it hold the shape?-J. S. B.
asks; Is there a good recipe for the curo of chicken cholera?-J. A. Jr. asks : How do the English prepare and finish bone, producing a beautifully horse, oaused by having blind teeth, be cured ?-H. E. W. asks: Is lime a year old as good for tanning as that made three months ago ?-S. D. P. Jr. says: I have a new carriage from which mud has taken off the varnish in places. Can I restore the work to its original appearance without rubbing down
and revarnishing? and revarnishing?

COMMUNICATIONS RECEIVED.

The Editor of the borrntific Amrrioan acknowledges, with much pleasure, the receipt of or iginal pap
On the Earth and the Moon. By M. D. H On Botanical Classification. By J. W On Frozen Water Pipes. By H. S. C. \& Co., and bTT. G. B.
On the Age of the World. By D. C.T. On the Sun's Orbit and Rate of Motion. By
J. H. G. On the Flight of Birds. By R. O. D., and by F. G. F.

Also enquiries and answers from the following

F. A. L. Jr.-J.N. Q.-O. A. F.-S. T. W.-F. G. A. B.-N.D.-S. P. W.-L. V. K.-E.C T.

-C. W.-E. A. M.-G. W. M.-H. F. J.-P.S.-A. V
R.S. R.-C. S. P.-E. P.L.-M. B.-S. A. H. - C.F.

HINTS TO CORRESPONDENTS.

should repeat them. If not then published, they may conclude that, for good reasons, the Editor deolines them. The addrese of the writer should al-

ways be given.

Enquiries relating to patents, or to the patentablity of inventions, assignments, etc., will not be
published here. All such questions, when initials publy ared civen, are thrown into the waste basket, as It would fill halp of our paper to print them all; but we generally take pleasure in answering briefly by mall, if the writer's address is given. Hundreds of encuirles analorous to the following are sent: "Whose feed water heater is the best ? etc.? Who sells talking machines? Whose is the best method of shorthand writing?
the best hydraulio elevators? Who makes a rella ble rain gage? Who makes an effective caloric en all such personal tnquiries are printea. as will b bbserved, in tne coiumn of "Business and Pe onal." which is specially set apart for that fur of that solumn. Almost any desired informan can in this way be expeditiously obtaned.
[OFFICIAL.]

INDEX OF INVENTIONS

Letters Patent of the Dnited States wer

oranted in the Week ending

 March 30, 1875,and each bearing that date

Air-cooling apparatus, F. A. Hyatt.

 Alarm register, ire, Phelps andAuger, earth, D. . Arnold......
Awl for shoemakers,. . A. Smith
Bag holder, D. and C. Garver
Bag holder, M. Olson..
Bale tie, J. H. Hardman.
Bale tie, H. B. Jones....
Bath tub, A. C. Brownell.
Bed lounge, C. Astalfy.
Bed ralls to posts, Pastening, L. Guilenot
Bed, ventilating, E. L. Roberts
Bee hive. G. H. Mobley...........
Beer, medicated, R. W. Tavene
Bell pull fastening, etc., J. Schade
Belt coupling, J. Hare.
Bill fle, T. Hutchinson
Blin ile, I. Hutching priming, flectric,
G.
Blower, rotary
Boller, water heater, J. R. Lamb...
Boller, seetional steam, H. Whittingham
Boller tebe
Boller tube cleaner, C. Schmandt...........
Bonds, etc., machine for numbering, Bodel
Boot and glove buttoner, G. Stackpole
Boot heels, constructing, E. Niples
Boot heels, constructing, E. N. Higley
Boots, Inserting fastenings in, G. V. Sheffeld.
Bottle, mustard, A. A. Pistid.
Breeching attachment, T. s. Hanchett
Brick machine, w. s. Wallace
Burner, lamp and gas, T. v. Keam.
Burner, gas, J. W. Lyon..............
Burner. gas generating, R. F. Claston
Burner, vapor, S. S. Gras.
Butter print, R. S. Willam
Cane julce, bleaching, J. M. Lescale
Car body, street, J.
car body, street, J. Stephenson..........
Car brake, H. F., J. M., and W. B. Rice
Car brake, E. Stewart.......
Car door, frelght, McCarty and Glenn
ar platiorm, street, J. Stephenson
Carspring, B. A. Cloones.............................. Car signal device, J. Stephe
Carrlage, hose. T. MoCabe.................
Carriage, Afth wheel, R W. McClelland.
Carrlage prop nut and rivet, G.
Cartridge shell, N. C. Hunting.
Cartridge shells, feeding. A. C.
Cartridge shells, , feeding. A. C. Carey.
Carts, trough for coal, W. P. Patton
Churn, P. La Tourrette......................
Clothes dryer, M. C. Grifith
Cothes hod, J. . . Murphy.
Coal
Clrck, self-closing, w. Knau
Coke and gas making, J. T. B.
Concentrator, J. Vincent, Sr
Corn dropper. I G. Vall.....
Cultivator, F. W. Tolley.....
Cup. seasoning, J. Coulthard
Cupboard and sink, combined, H. Cul.
Curtinin fxture, Buckley and Sawy
Curtain Axture, O. Ellsworth.
Curtain fxture, H. L. Hall.
Cutter head F. Scowamb...
Dental p.ugger. R. B. Donaldson
Digger, potato, H. W. King
Digger, potato, B. W. King.
Door check, D. Gundelifnger
Draw head. J. H. Gartside.
Draw head.J. H. Gartside.............
Drilling ralls, device for, J. H. Lakey
Dryer, lumber, J. J. Curran
Dryer, lumber, J. J. Curran
Elevators, coal and other, Winslow \& Goldsmit
Engine, alr and gas, J. Taggart
Engine, rectprocating, R. Cre
Engline, hydraulic, F. Rochow
Engine cut-off, D. H. Smith
Engines, etc., piston for, Feib
Envelope, shirt, J. Gllbert...
Equallizer, dratt, w. H. Broww
Evaporating apparatus, F. Rando
Excavator, M. . E. Lasher.
Faucet, beer, Miller and
Feed cutter, J. A. Schwerdt........
Fenders, etc , feet for, F. s. Bissel
File wrapper, Grinsted and Da ling
Fire arm, breechiodin, B. L. Denniso
Fire arm, breech-ioading, w. M. Scot
Frre arm, magazine, R. S. Chaffee
Firearms, lock for, J. H. Lester.
Fire box door ring, G. F. Chalender.
Fire extingulsher, chemical, A. Gray Fire extinguisher, chemical, A. Gray..............
Fire extinguishing apparatus, J. H. Connells.. Flowers, artificlal, s. Orth..
Forge blower, L. H. Watson..........
Fork, horse hay, E. v. R. Gardner
Frasture splint, Brown an
Frutt gatherer, N. Lash..
Fulling mill, R. Etckemeyer
Furnace for steam generators. H. M. Smith.
Furnace, hot alr, w. McFarland
Farnace of bakers' ovens
Furnace, plpe welding, J. Fieldhouse
Fuse primings, electric,
Gas retort, w. Harkness.
Gas retort, . . F. Welble
Gas retort, w. F.
Gate, farm, s. R. Holt...
Generator, steam, s. R. Mathewson..............................161,483
Generators, fusibloplag for steam, J. F. Mahoney 161,42

Glove, Clate and Durfee (r).....
Grain drill teeth Grain drill teeth, I. B. Sandukky
Grain dryer, R. S. Reynolds (r). Gri ta. hul ing. Wallace and Hyde. Grate bar, A. W. Cram..........
Grate bar, R. c. Graves (r)..

Harveester, J. H. Elward (r).

 Harvesters, J. H. Elward. Harvester. Buxton and Howe (r)Harvester, s. s. Loudenslager.
Harvester rake, J, P. Monnett. Horse collar and hame, Schnelder and Meek. Horses, breaking, J. Z. Walling..........
Hcrseshoe fastening. McVeen and Price
Horseshoe nalls. making, A. D. Bingham Aosseshoe nalls. making, A. D. BIngham.
Hose, drying and stretching, A. C. Carey. Hose, drylng and stretch
Hose jofnt, E. Dayton... ice macLine, W. H. H. Bowers.......
ron, manufacture of, J. F. Bennett ack, manufacture of, J. F. Bennett
coupling, J. H. Combs.. KInn, peat, W. E. Wright
Lamp, B. B. Schnetder (r) Lamp chimney attachmeut, H. Jo........
Lathe centering device, H. B. Carpenter Letter box alarm, J. Harrison...........
Lever, mowng machine, A. B. Conde.
LIghting rods. making, W. B. Munn. Lock, combination, w. Baldwin
Lock for doors, etc.. H. Winn. Loom for weeaving hatr cloth, J............
Loom let-off, Rose, Cartwright and Rose Loom shuttle, R. W. Porter...
Lubricating compounds, I. G. Betts161,468, Lubricating compound. J. J. Koch..............
Matches, machine for boxing, F. Mansfeld.. Matches, machine for $\begin{aligned} & \text { Seat cutter, J. P. Harris. } \\ & \text { Mnlistones, emery rubbers }\end{aligned}$. Minlng powder. R. Cahuc.........
Mowing machinc, W. W. Brigh Mowing machine, H. C. and D. c. Markham. Neck to fastening,
Nut lock, o. T. Welc
Obstetrical supporter, W. E. Stalnback........
Ordnance projectlle, rifed, w. H. Van Gleson
Ore crusher. D. Ore crusher. D. Trumbull, Jr
Oven, annealling, R. Boyer
Oven, annealing, R. Boyer.....
Painting and banner, G. Frode
Pantaloons shaper, R. M. Eastman
Paper bosom. E. P. Furl Pavemeat, compositton, J. P. Richard............
Pen haudle and lead pencli. H. C. Benson Plano stoon, Düring \& Leck..
Pile driver, explosive, J. M. Pile driver, explosive, J. M. Allen....
Pin and clamp, shaw, G. \& F. Hartj Plpe ittings, tapping, J. Kacerovsky
Pitcher, glass sirup, L. Wagner..... Plane, bench, w. Johnstone...
Planing machine, wood, J. Rot Planter, seed, Post \& Cabbert..
Plow, ditching, A. L. Harned. Plow, sulky, E. Robertson Press, sorew, W. H. H. Minge
Printing press, plate, J. wi:so Propeller speed regulator. E. F. Be Pruning implement, C. B. C Pruning Implement, C. B.
Pump, Curtis \& Russell (r)
Pump box, w. Δ. Spooner.
Pump box, w. A. Spooner...............
Putty, manufacture of, Qullter and corder, gage, G. Vincent Rallroad pinch bar, c. Ragan.
Ralload rall chair, J. Raddin
Ralifroad rall chair, J. Raddin.....
Railroad signal, R. L. Kilpatrick
Raroad isga, ,
Rake, horse hay, D. P. Sharp...
Range, portable, G. w. Walker

```
Register, adjustable ventiamig,
```

$$
\begin{aligned}
& \text { Roller, fleld, A. Hilts } \\
& \text { Roor, metallic, T. M. }
\end{aligned}
$$

Roor, metallic, T. M.
Rooang the, S. Mills.
Sait brine, concentrating, w. Harrison Saw gummer, D. Sattler.
Saw, JIg, G. S. Whlame Saw, JIg, G. S. Willams.
Saw mill, D. C. Prescott. simingmachine, scroll, G. S. Young
Scale beam, T. Tebow............. Screws of rolls, operating, J.
Seal. metallic, E. J. Brooks. Sewing machine, 日. A. Blanchard..........161,471, Sewing machine, J. H. Burr....
Sewing machine, O. Farrar...................
Sewing machine attachment, D. M. Mellox
Sewing machine attachment, D. M. Mellox
Sewing machine button hole, J. McCloske Sewing machine feet gulde,,
Sheet metal die, N. C. Stlles.
Sheet metal die,
Shoe, c. Perley
Shoe soles, drying, A. F. Smith (r)
Shoes, exhbiting, R. T. Leaverto
Shoemakers, a wi for, A. A. Smith
Shovel, T. J. Blake.
Shutter and bind fastening, C. H. Crals.
Shutter fastener, c. Russell.
Shutter rastener, c. Russen.
Shutte box mechanlsm, G C
Shuttle mechanism, G. Crompton.
Silicer and corer, apple, siler \& Brooks.
Spinning ring die, Foreha
Stamp, hand, J. Sigwalt. J
Steel, manufacture of, J. Eyquem.....
Stereotype block register, A. J. O'She Stove, E. Smith (r)...........
Stove, magazine, E. Bussey.
Stump extractor. W. H. Fulton...............
Sugar, manufacturing oard, F. O. Mathiessen
Sugar, manuracturing oard, F. O.
Table, convertible, F. A. Gllbert...
Table,
Table, folding extenslon, A. W. Fa
Table Implement. O. W. Taft.... ...
Table implement. O. W. Taft
Thlll couppling, A. W. Forwo
Thread, twine, etc., making, sutherland et al.
Tlie molding machine, c. Diebold.
Tippet and muff, oombined, J. Engel......
Tobacco machine, lump, D. W. De Fores
Towel rack, folding, J. T. Sher
Toy block, C. M. Crandall (r)
Toy pistol, T. Case....
Trap, fly, H. B. Earing
rrap, Ay, H. B. Earing
Trap, fy, D. E. Roe ...
Trimming, J. T. Ross.
Truck, hand, H. Parker
Trass, J. L. Rowe.....

May I, 1875.]
\&rientific Ammerican.
285

qadtertisements

 per line, by measurement, as the letter press. Adver-
osemonts must be recived at publication office at early as Frtdaymorning to appear in next resue.

EVERAUTIFULESGOMING ROSES,

Rocking ch

Allomatic Find Morticing Machine.

 A GENTS, READ THIS,-WE WILL PAY
 He Agents Wanted

 IINDST RIAL INSNTTUTE AGEMCYY,

 Statatend County Kikh

$\$ 2400$

FIRE PROOF SHUTTERS.
CLARK \& CO'S SELP-COILING ROLLING STEEL SHUTTERS (Burglar Proof), For Store ronts and Rear Windows, require nomachinery or balance weights, and can be applied to any opening; also Rol the world. Send for Catalogue to

TIIIII +1 WROUCHT BEAMS \& GIRDERS

THE Union Iron Mills, Pittsburgh, Pa.

 The Toll-Gate! Prize Pictaro sent free ! An PATENT
Planing \& Matching

NIAGARA
 STEAM PUMP

H: 8

Hubbard \& Aller Engines and Bocmers, a Epecialty.

B

10

 MILL PROPERTY FOR SALE.

 R ECEIVER'S SALE.-Patent for graduated car

 and anman

of Boult's Patent

 ETM, Sond for Pamphet ind

 MACHINERY.
IRON \& WOOD WORKING MACHINERY OF EVERY DESCRIPTION.
Cold Rolled Shafting.

Model Engines.事

 GOODNOW \& WIGHTMAN, 2 Cornhill, Boston, Mase
Chemical \& Mineral Productions and

218 West 26th St., New York, and a
Portable steam enaines, combin

 Planing \& Matching,

BLAKES STEAM PUNPS FEO.F.BLAKEMFGCO.79\&8I LBERTYST.NY CAUSEWAY \& FRIEND STS. BOSTON.

STENCIL DIES Fitict eutiagg posine

景
 Men agents wanted.

 $\mathbf{W}^{\text {Ood.Working machinery gen }}$

Water Theels.

F OR SALE, BELOW COST-A No. 4 Solden

CHOT-QUNS EITLSE PISTOLS EETOLTERS,

MAGNETS-Permanent Steel Magnets

(OLD ROMLLED SIEAFIING

The ract that min saring nas 75 per cent grea

 G Mllwaukee. Wis. $G_{\text {Bottles, }}^{\text {LLASS }}$ MOULDS, for Fruit Jars, Lamps

 TO ELECTRO-PLATYREBJEDELERS, BATTERIES. CBEMICALS, AND MATERIALS, In sete

 send
cular. Errman \& Herchen RODE M'F'G. Co.,

 INDEPENDAXTELL M, PTG Co.ss
 AORTUNE Bob intil in ine Raboer stamip O11FS Mafrty hoisting NO. 348 BROADWAY. NEW BROSE. \&e 00 R ichardson, meriam aco

 I RPORTANT FOR ALL LARGE CORPO

 Toda \& Rafierty Machine Co mantracturibs of

 AR Storaki's Patisnt
 Barnes' Foot-power stron

. INDEPENDENT BOILER. FEED PEMPS

C ${ }^{\text {ORN HUSKER-S0 BUSHELS PER HOUR, }}$ B.

Machinist's Tools

NEWSPAPER FILE.

The Koch Parent Fine, for proerrving now waperr,

 Addrees
catuertisements
 Enoravings may head advert soments at the same rate per line, by measuremont, as the letter press. Adcarly as Friday morning to appear in next tesue.

OOKS FOR BUILDIERS.
A.J. Bicknell \& Co., 27 Warren St., N. \mathbf{Y} Artesian or other Wells! For Sale!

 School of Civil Engineering OF UNION COLLEGE, SCHENECTADY,N.Y.

 W WANT TO SELL MY PATENT FOR DEVICE

 THETTANT N. TM COMPANY
limeryWheels $A=A$
 THE BEST INJECTOR FRIEDMANN'S PATENT. Orer 15,000 Now in Use Here and in Europe. Throws more and hot ter mater, with less steam, than
any thers. 1 thas two Waterwys, ixed Nozzles, and no
movable parts to get out of order. NATRAN \& DREYFUUS, Sole Manufacturers,
IOX Liberty St., New Yorls.

Excelsiop Do Your Own Printing

 BusinessMen dotheir printing and
advertising, avae mony and ncrease
trade. Amateur Printing advertising, save money and ncrease
trade. Anateur Printing, delight
ful patime for spare hours.
BO

C CR COVERING FOR BOILERS AND OUR FRES sarves Twonty per Cent in Fael. Asbestos F elting CO .

会New Deaign Upright Drills. Have the best 'Quick Return' yet offered. The smaller sizes are driven with the
New Square Belt. Send for Circulars WOOD \& LIGET MACEINE CO.
 Planers Shapers, Slotters, Bodt Cutte
etc. Also, Shafting, Pulleys, \&c.
Mun \& Co.'s Patent Offices.

Established 1846.

The Oldest Agency for Soliciting Patents in the United States.
TWENTY-EIGH2 FEARS EIPERIENOR.
MORE PATENTS have been eecured through this agency, at home and abroed, than through any other in
the world. They employ as their sasistants a corps of the most axdratamen that can be found, many of whom have been seected from the ranks of the Patent Offloo.
SIXTY THOUSAND inventors have avalled themselves of Munn \&Co.'s services in examining thetr inventions, and procuring their patents.
MUNN $\&$ CO
MUNN \& CO, in connection with the publication of the Sonskitio Anarions, continue to examine inventions aseignmente,attend to filing applications in tho Patent Office paying the government fees, and watch each case step by step while pending before the examiner. This is done through their branch offlice,corner F and 7th Streets, Washngton. They also prepare and file cavesta, procure design pstenta, trademarks, and reissues, attend to rejected cases rights, attend to interierences ative written pocine copymatters of infringement, furnish copies of patants: in on attend to every branch of patent businases poth in this and n foreign countriee
Patents obtained in Canada, England, France, Belptum Germany, Rassias Prassia, Spain, Portuga, the British
Colonies, granted.
Δ special notioe is made in the socestitino Angrions os all inventions patonted through this Agency, with the sold, in pereidence of the patentee. Patents are often by fuch nottce
A pamphlet of 110 pagee, contalning the laws and foll directulus for obtaining United States patenta, also a circolar pertamung exclusively to Foreign Patents, stating coot each country, time granted, etca, sent free. Iddrese MUNN \& CO.,
PabHahera BOIENTIFIO AMERIOAN,
Branrog Orrion-Oorner F and 7th Streets

Have You Ever Seen

The Illuatrated Catalogue of the Exorlifor Portable Pbinting Pbrss? Every man nis ocon printer. Our new as aress now ready. A few dollars buys a press and type that will print your cards, labels, envelopes, bills, etc. Send two stamps for full catalozue of presses, type, etc., to the Manufacturers,
W. KELSEY \& CO., MICriden, Conn

Working Models

HARTFORD
STEAM BOILER Inspection \& Insurance COMPANY.
$\begin{array}{lll}\text { W. B. Thatind, V. Pit } & \text { J. M. Aum, Proll }\end{array}$ J. B. Princ, Soz

Rope.

ASBESTOS MATEERIALS

ROOFLSG, SHEATHING, BOILER FELTING, PAINTS (all Colors), ROOFING PANFT
CEMENTS, EC., prepared ready for use. Send for Pamphlets, Price-Lists, occ. Lberal inducements to dealers
 patenteo and sole Manufacturer, \}H.W. JOHNS, 87 Maiden Lane, N. Y.

CHASE'S
Pipe-Cutting and Threading Machine.
 Mix
 - THE CHASEE MANUFACTURING COMPANY,

SECOND

EXCURSION

TO THE

HOLY LAND, THE CRIMEA,
 MEDITERRANEAN, EGYPT, GREECE,

 AND INTERMEDIATE POINTS OF INTEREST
 GEORGE F. DUNCAN, Omice U. S. Shipping Commissioner, New York.

ROOTS' FORCE BLAST BLOWER.

FIRST PREMIUM

AWARDED
AT
PARIS AND VIENNA.
SPEED ONLY 100 TO 250 REV. PER M. SAVES HALF THE POWER REQUIRED FOR FAN.
P. H. \& F. M. ROOTS, Manuf'rs, CONNERSVILLE, IND.
S. S. TOWNSEND, Gen'I Ag't, 31 Liberty St., NEW YORK.

Portland Cement.

Address JOHN A. NOEBLING S SOVA, Manufactur
ers, Trenton.

PORTLAND CEMENT

 IRON PLANERS. ana

COVERINTG
 BOGARDUS' PATENT UNIVERSAL ECCENB TRICDUS MILSATFON Brinding Bones, Oreres. Sand, old

THE LECLANCHE BATTERY.

 Batery, Butable for RCE
TRICAMBELLSHORGLA
ALARMS, MEDCAL BA

Machinists ${ }^{\text {Thools. }}$ LDCIUS W. POND, MANUFACTURER
 R OGERS' TANNATE OF SODA BOILER R Scale Preventive has been in use for elght years,

ELGIN WATCHES.

THE BEST for RAILROAD purposes now manufatured. RAMLIRCAD puiposes now
mrom over 30
SUPERINTENDENTS of Leading RallSix grades of Gents' Watches with Stem WUY NO MORE CHEAP SWISS WATCHES

THE NEW ELGIN WATCH, "T.M.AVERY" The BEST WATCH, for the money, now made in the Each Watoh manuric. pany, bearing their Trade Mark, is accomand number of the watch, Gus
its quality
Fole bale all Jewelers.
 Diamond Solid Rmeri Wheds.

SCIENTIFIC AMERICAN, FOR 1875.
THE LOST POPULAB 8CIENTIFIC PAPER
IN THE WORLD. IN THE WORLD. THIRTIETH YEAR.
VOLUME XXXII.-NEW SERIES. The publishers of the SCIENTIFIC AMERICAN 1855, a new volume commenced. It will continue to be the alm of the publishers to render the con teats of the new volume more attractive and use than any ofto prodecesor

To the Mechanic and Manufacturer. No person engaged in any of the mechanical pur suits should think of doing without the scuentric americal. Every number containsfrom six to te engravings of new machines and nvention whic The SCTENTIFIC AMERICAN is devo nteresta of Popular Seience, the Mechanic Art Manufactures, Inventions, Agriculture,Commerc and the industrial pursuits generally; and it is va uable and instructive not only in the Workshop and Manufactory, but also in the Househola, the L ng Room.
TERME
One copy, one year (postage included)....... $\$ 3.20$
One copy, six months (postage included)... 1.60 One copy, three months (postage included).. 1,00 One copy of Scientiflc American for one
year, and one copy of engraving, " Men
of Progress".............................
year, and one copy of "Science Record" for 1874

Address all letters and make all Post Office o
MUNNN \& CO.
37 PARE ROW, NEW YORE

