A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

NEW YORK, APRIL $10,1875$.

THE PNEUMATIC DESPATCH SYSTEM IN THE WESTERN UNION TELEGRAPH BUILDING, NEW YORK.
We have recently examined, with considerable interest, the pneumatic system of transmitting telegraphic messages tioned at the receptacle lifts a little window in the compartconstructed building of the Western Union Telegraph Company, in this city. In such an immense edifice comprising eleven stories, it would comprisly involve sreat, it would obviously involve great delay to maintain the necessary communica tion by means of messenger boys, and consequently the apparatus which we describe and illustrate herewith has been introduced, with remarkably successful results. In the large engraving, Fig. 1, sections of several of the stories are represented, showing the manner of leading the numerous tubes through which the necessary current of air. which propels the packages, is maintained.
Those of our readers who have had occasion to send a telegram at the central office above named may remember that, after they had delivered the writing to the clerk, that functionary rolled the paper in a little parcel and inserted it in a wood and leather case, of the manner and form shown in the upper portion of. the illustration, Fig. 1. He then dropped the case into an open tuke, leading up through his desk, at A, and perhaps announced that the packet had reached the operating room, in the seventh story, ahmost before the curious watcher of his proceedings had had time to draw a second breath. The packet appeared to be sucked into the tube, peared to be sucked into the tube, and so in fact it is, and in about two top of the great building. After top of the great building. After leaving the clerk's hand it passes down through the wide curve in its conduit, at B, and thence ascends the straight portion of the same, until it jumps forth from the end of the tube in one of the compartments of the receptacle, C, in the operating room. A section of a portion of this receptacle is shown in Fig. 2 , in one compartment of which a packet is seen emerging from its tube. The compartments, C, Fig. 2, are entirely cut off from the main portion of the case, being constructed within the same, so that above them and extending over all is a large empty chamber, E With the lat empty chamber, E . With the latter, however, each compartment communicates by an orifice, F , which is provided with a cover opened or closed at pleasure, thus, as will be seen further on, throwing any tube into or out of action, or moderating the air current therein. In the center of the receptacle and opening into the upper chamber, E , is a large tube, D, which, as shown in Fig. 1, extends down beside the pipes, B, and connects with a blower in the cellar. Regarding this blower we have, on other occasions, had considerable to say, but a word with reference to it here may not be amiss. It is a positive blast rotary blower, invented and constructed by the well known firm of P. H. \& F. M. Roots, of Connersville, Ind., represented in this city by Mr. S. S. Townsend, general agent, No. 31 Liberty street. The ma blacksmith shops, blacksmin shops, pork-packing and other establishments, and, besides, has met with extensive employment for venti lating purposes in buildings, ships, mines, and other locali ties. It will be understood that, in the present instance, the blower forces the air out beneath, so that the current is drawn down the tube, D , through the chamber, E , in the receptacle above, thence through the orifices, F, and compartments, C , and finally up through the pipes, B. Thus used as an exhauster, and at the slow speed of 120 revolutions per minute, it draws down five cubic feet of air per revolution, or 36,000 cubic feet per hour, thus propelling the packets, and at the same time (by removing the last mentioned aggregate quantity of air from the atmospheres of the rooms with
 tination. The case is then returned to the first story hy drop own gravity, landing in the box, H , whence it is again take out to be filled and started back on its journey.
Of course there is a large number of the conduit pipes, B as one opens before every desk at which telegrams to be despatched are received. The whole system, however, is so arranged as to be readily accessible, through movable panels placed in the walls at points traversed. Beside the general set of pipes there are auxiliary circuits in some of which lateral tubes lead to the offices of the President, the General Superintendent, the Treasu rer, and the Associated Press. In each of these rooms is a small case I, provided with glass windows to be raised for interior access, similar to those in the large receptacle in the operating room. This case is di operating vertically into two ments by a wire cauze partition ments by a wire gauze partition, tube lo tube leading to one of the compar the other being merely a drop pipe for return messages or empty cases No explanation is needed to show that a constant suction, by the means already described, is maintained in one of these tubes, so that the officer wishing to forward a message has only to insert the packet, which travels, as before, to the operating room, and the answer to his ques tion, from a station perhaps on the other side of the world, within a few minutes drops back in the opposite mompartment. It will be noticed compartmenis return is be notice he the along the la eral pipe the exhaus from the first conduit acting throug the former, through the wire gauz partition in the box.
The entire apparatus is quite in genious, and for such extended use presents perhaps some advantages over the older application of the Root blower to the same purpose illustrated in Fig. 3. This arrange ment was employed in the old West ern Union building, and as seen is operated by hand. The principal point of difference lies in the fact that in this case the packets ar driven up by a blast instead drawn up by suction. The cases ar inserted in the ras. The cases ar near the hand wheel, and then blown upward until they strike a curved guide, which causes them to enter a box placed for their recep tion. In returning, they simply fall through the tube and slide into a suitable receptacle. This plan may be operated with horizontal or perpendicular pipes, with a single pipe, or with a series of tubes leading throughout a building.
The method which has been put in operation in the West ern Union Telegraph building is similar to the design of Mr. A. E. Beach, of the Scientific American, for pneumatic postal transmission, which was first put in practical operation on the premises of the Broadway Underground Railway Company, corner of Broadway and Warren street, in 1870-1 and has heretofore been described in our columns. In that example a Root blower was employed in the same manner as here illustrated in Fig. 1, to exhaust the a ir from a general receiving box, with which the pneumatic transmitting tubes communicated. The latter curved about in various directions through the premises; and when letters or parcels of any sort were dropped into the tube, they were instantly carried forward into the receiving box. The latter was so arranged as to permit the removal of the cortents at will The successful operation of this method attracted much at tention. Even the smallest bits of thin paper, pennies, en velopes, handkerchiefs of visitors, newspapers, and packages of considerable weight were unerringly transmittel and delivered. The highest velocity of transmission was between 40 and 50 miles per hour, the pipes being six and eight inches in diameter. This general design of postal
transmission consists in having tubes of about eight inches in diameter, laid under the streets and made to communicate with the various lamp post letter bozes. These pipes radiate, in lengths of a half mile, in various directions from a postal station, where they communicate with receiving boxes in which an exhaust is maintained by Root blowers, as shown in our engraving. Thus, whenever letters are dropped in at the lamp posts, they fall at once in to the pneumatic tube and are instantly carried forward, on the wings of the wind, to the nearest station, and thence delivered, or by tie attend

MUNN \& CO., Editors and Proprietors. PUBLISHED WEEILY AT
NO. BY PARK ROW. NEW YORK.
O. D. MONN. \quad A. E. BEACH.

One copy, alx monthe, postage included..........
CIuD Rates:
Ten coples, one year, each $\$ 2$ 70, postage included................................27 00
Over ten coples, same rate each, postage Included............
cre By the new law, postage is payabie in advance by the pubushers, and
subscriber then recelves the paper free of charge.
Notz. - Persons subscribing will please to give their full names, and Post Wish their subscriptions to commence, otherwise the paper wity time the Wish cecir subscriplions to commence, otherwise the paper wir be sent from
the recelpt of the order. When requested, the numbers can be supplied from January 1 st , when the volume commenced. In case of ohanging reasdence, state former address, as well as give
be made unlese the former address ts given.

Volumme XXXII., No 15. [New Series. 1 Thirtieth Year.
NEW YORK, SATURDAY, APRIL 10, 1875.

HOW SCIENCE IS ANNLHILATED

Everybody admits that a man who sets up as a doctor with out first submitting to a careful medical training is a knav or a fool. Everybody admits that to practise medicine prop erly requires a very thorough preliminary education, and no little practical observation of the ills that flesh is heir to Yet nine persons out of every ten stand ready on all occasions to offer advice in case of sickness; and those who know least of medicine are least conscious of their unfiness to prescribe. It is very much the same in Science. To be able to read It of Science, or eren floting paragraphs about is tate by very many people as evidence enough of their ability to by very many people as evidence enough of their ability to
criticise it, especially if they happen to have some little right criticise it, especially if they happen to have some little right
to speak in some other department of thought. Unmindful to speak in some other department of thought. Unmindful
of the fact that the errors of scientific theory have always of the fact that the errors of scientific theory have always
been discovered by scientific men only, the unscientific and been discovered by scientific men only, the unscientific and
antiscientific hold themselves ready at all times to point out the mistakes in the deductions of men who have spent a la borious lifetime making themselves acquainted with the facts of the case, meeting the cautious suggestions of men like Lyell or Darwin with a confident assurance that would be justified by nothing short of infallibility. As a rule, we smile at these volunteer champions of ignorance, and let thei vaporings pass. Now and then, however, they afford typical illustrations of antiscientific reasoning too good to be slighted.
Of this character was the lofty rebuke to Science adminis tered the other day by a somewhat prominent Doctor of Ditered the other day by a somewhat prominent Doctor of Di vinity, in a morning paper: a rebuke, we may add, which has been the source of great consolation to more than one
dear soul alarmed at the spread of knowledge, in proof whereof we have, in a subsequent issue of the same paper letters of rejoicing in regard to the Doctor's championship.
The special science which falls under the Doctor's con demnation is geology-if, indeed, it is in any way worthy of being called a science. Particularly is it rebuked for talking of periods of time more protracted than the Hebrew serip tures provide for: Facts of its own finding condemn its as sumptions. For instance, one of the remote periods of geol ugy is the cretaceous, or age of chalk. Between that time
and this, incalculable ages have come and gone, say the geo logists. Sheer assumption, says the Doctor, for deep sea soundings prove that chalk is now being deposited in the At lantic ocean; today is the chalk age, and your long drawn periods of time are pure myths!
Again, the geologists set the carboniferous epoch so fa back that the six thousand years of Hebrew history dwindle to insignificance. All that time is wiped out with a para graph, a floating paragraph which the Doctor has discovered going the rounds of the country newspapers, to the effec that the wooden supports used in certain of the Hartz minef have been converted into lignite since they have been put in only a few centuries ago. See! cries the Doctor: a thousand years at most suffice to convert wood into coal; how dare you in the face of such evidence, presume to say that sixty cen turies would not suffice for the production of your carbonife rous strata?
"What will geologists say to that?" asked an excellent lady, after reading the Doctor's triumphant overthrow of their science-" falsely so called.
We could not say, though we modestly surmised that, if compelled to notice the indictment,they would probably say "What of it?" What has chalk to do with the antiquity of the cretaceous era? Who that knows anything of geology imagines that the age of a coal seam is in any way depend ent on the time required to turn wood into coal? The chem ist can do that in a few hours. Shall we say, therefore, that the carboniferous period was yesterday, and that all the stu pendous changes that have since taken place in the earth and its inhabitants, happened last night?
Besides, if that is the line of argument, why stop half way? Any geologist will willingly furnish the Doctor with arguments ever so much more sweeping than those he uses. For instance, in the South Seas, the corals of today are form ing strata that are the exact counterparts (fossils excepted) of-say-the Trenton limestones. In other parts of the world sand deposits,such as composed the Potsdam sandstones, are now forming. Why not say, therefore, that the silurian pe riod is a figment of the imagination: that it is now, yester day, or any time this side of Adam's day? Still worse: it was discovered last year that, in the deeper parts of the At lantic, strata of mud are now forming, precisely like the stra ta which make up certain slates of the so called azoic pe riod. The next time the Doctor demolishes geology, let him declare that this fact proves that the Laurentian period, in stead of being countless ages old, is altogether modern! I will make his case seem much stronger to the ignorant, and will not weaken his argument in the least
That it is at all necessary to comprehend a theory or an ar gument, or the bearing of known facts upon either, seem never to occur to critics of this sort. Indeed, the first requi site of an anti-science critic would rather appear to be a thor ough and radical misapprehension of what Science teaches. That enables him to mispresent Science boldly, with no risk of being charged with a wilful perversion of truth.
A very pretty, though very mild, case of a scientific misap prehension occurs in an editorial in the last issue of the American Garden. It would not be noticeable in a strictly evangelical family paper, but seems a trifle odd in a publica tion devoted to a department of natural science.
The editor, very properly, dubs the article "Scientific Va garies." Its subject is a paragraph from a recent lecture by Sir John Lubbock, upon the natural relations of insects and flowers. After mentioning the observations of Sprengel and Darwin, Sir John remar the beauty of our gardens and the sweetness of our fields, and
that the flowers owe to them, not only their scent and color that the flowers owe to them, not only their scent and color
but their very existence in their present form. "Not only but their very existence in their present form. "Not only
have the brilliant colors, the sweet smell, and the honey of he flowers been gradually developed by the unconscious agency of insects, but the very arrangement of the colorsthe circular lands and the radiating lines, the form, size, and position of the petals, the arrangement of the stamens and pistils-all have reference to the visits of insects, and are dis posed in such a manner as to insure the great object whic these visits are destined to effect."
This, says our critical editor,scornfully, is a fair sample of the errors and vagaries into which intelligent men may be led-men who see things from only one point of view, and 'endeavor to twist and bend every fact or circumstance in Nature to make it fit the theoretical structure of which thei preconceived notions suggest the plan
" No doubt," our critic adds, "the color and scent of flow rs atcract insects to them for the purpose of aiding or bring ing about the fertilization and consequent fructification of the seed for the continuation of the species--this latter be ing the end and aim of all physical life." [What if Darwin had said that ?] It is freely admitted, also, that the intricate and wonderful arrangement of floral appendages are often peculiarly striking, and apparently throw in the way of the fertilization of the flowers obstacles that can be counteracted only by the aid of insects. But-and this is the culmination of the argument, " but the idea that insects, ages and ages ago, went to work, consciously or unconsciously, to develop the various scents, the multitudinous shades and combinations of colors, and the marvelous structure of flowers (and this ast as an obstacle to their own labors) is-what? We should say a curiously stupid misreading of very plain English; but the critic suspects nothing of the sort, boldly pronouncing it " something absurd and overtasking the credulity of man "! "Is it not," he asks, " more easy to believe that there is an intelligent Creator, First Cause, or Primal Cause (as men have variously expressed it), who has created things as they are?" etc., etc.-as though easiness of belief had anything to do with the matter. Then he winds up with this ingenious dotable question: "Are not the ideas of Sir John Lubbock
as here expressed, most illogical? And is this not a good spe cimen of ""Science, falsely so-called?
True, 0 Garden! Yery true-" as here expressed." Fortunately, however, Sir John entertains no such ideas; and we may set it down as a rule that, when men outside the ranks of Science-the foremost ranks at that-essay to demolish Science, it is usually their own "bogus" Science, as in the instances we have noted, that comes to grief.

HOW A PIECE OF COAL BURNS.

There is no mistaking the words of a genuine thinker. His subject may be most difficult, but what he says is sure to be " understandable of all men." No matter what Priestly wrote about, his sentences were transparently clear. Franklin's English was uniformly direct simple, and precise. Men may quarrel with Darwin's opinions, but they have themselves alone to blame if they mistake his meaning. Huxley's style of speech and writing is as idiomatic as Mark Twain's. Faraday's lectures conveyed the latest discoveries of Science in sentences which children could comprehend. When our own Professor Young speaks to a popular audience, they wonder how astronomy can be called abstruse: the exploration of the sun seems as easy as a trip to Jersey. Professor
Meyer will illustrate the mysteries of sound or magnetism so Meyer will illustrate the mysteries of sound or magnetism so simply and clearly that his non-scientific hearers never suspect the ingenuity of his way of putting things, or how easily a less exact thinker could make a mist of the whole matter. In Professor Barker's hands the spectroscope seems as simple as a child's toy, the analysis of the Universe with it as intelligible as the adventures of Robinson Crusoe; and Oliver Wendell Holmes will illuminate a social or metaphysical problem so happily that the average reader never dreams how keen is the intellect that sparkles so playfully about it, how many duller men have broken their heads over it.
But it is needless to multiply examples. The least discernng reader can tell when a man knows what he is writing about, whether he has anything to say, and-"What has all this to do with the combustion of coal?" Do you ask"? Not much directly, we admit. Still it mạy help us to intimate indirectly the scientific rank of the ambitious author of "The Sun and Earth as Forces in Chemistry," a work that aims at nothing less than a revolution in chemical science This is how coal burns, according to his system
" Carbon combines with oxygen, leaves its solid shape for a gaseous one forming carbonic anhydrid gas, and this greatly because of carbon's own heat constitution; and, further because of the intense nearness of the oxygen to carbon and our earth's comparative distance; this because also of the excellent heat capacity of oxygen itself; and thus carbon with oxygen leaps up into carbonic anhydrid gas, earth looseued into the highest sun forms, approaching that of oxygen itself, for the heat capacities of carbon are near those of oxygen; but the oxy-terric struggle for carbon is arduous; our gen; but the oxy-terric struggle for carion is arduous; our
earth has greatly in her favor her immensity, but then she earth has greatly in her favor her immensity, but then she
is far off, and her forces decrease with distance; but even so, is far off, and her forces decrease with distance; but even so,
for freeing carbon from our earth's control, oxygen requires always, as we know, the further assistance of heat on carbon; we always for oxy-carbonic combination, have to set fire to carbon.
Nice and easy, isn't it? It's a wonder nobody ever thought of it before :

UP OR DOWN IN RAPID TRANSIT?

The clash of systems and the wreck of-plans, for rapid transit in New York, betokens great activity in the development of the question, if not an approaching settlement of it. Eight years ago the State Senate Commission appointed to investigate this matter received for consideration five plans for underground railways, as many for mixed depressed and underground systems, and about twice as many for elevated roads. The Committee of the American Society of Civil Engineers,appointed last fall, found the number of projects increased to seventeen for underground roads, eight for depressed, and fifty for elevated. The latter style seems especially attractive to ingenious architects with little to do, and consequently the "elerated" devices put forth are out of all proportion to the rest. Speculative minds cannot but be atıracted by speculative projects, the absence of demonstrated
facts and known experiences leaving room for a free play of facts and known experiences leaving room for a free play of
the imagination; besides, the opportunities for architectural the imagination; besides, the opportunites are so much more invit. ing than the severe simplicity of tunneled structures, to men naturally desirous of putting their work where it can be seen, that the temptation to make pretty plans and pictures of such roads seems all but irresistible. How far this preponderance of plans for roads above ground assisted the known original hias of some at least of the members of the Committee, in leading them to look most favorably upon the elevated system, it is not our purpose to enquire; it is enough to say that the adequacy of the reasons they give for reversing the decision of the Senate Commission will be questioned by very many able engineers.
It may be well at this point to recur to the conclusions arrived at by the Senate Commission, and notice how complete ly the judgments expressed by them have been justified since that time.
Their first position, that commercial, moral, and hygienic considerations all demand an immediate and larger addition to the means of travel in the city, needs no argument; it is admitted by all. Their second conclusion, that,if every avenue lengthwise of the island were to be occupied by surface rails, the relief afforded would be inadequate, has been substantially demonstrated. Every avenue, save Fifth arenue, has its line of street cars; yet it is true,as predicted,that 'the
ences, and dangers," is as great as it was eight years ago, iu fact much greater.
The third point, that the steam roads upon the surface, then in use, should be removed, has been largely complied with by the Harlem Improvement and the diversion of the principal trains of the Hudson River road to the east side of the city. That a central line alone would not suffice to meet the requirements for increased facilities is also admitted. The conclusion that elevated railways erected on supports in the middle or on the sides of the present streets cannot be fully adapted to the transportation of freight, and had not been tested in any practical way so as to warrant an unconditional recommendation of them for transportation of passengers, is but partially offset by the limited success of the Greenwich Elevated Railway in the transportation of passengers. The objections to a system of railways running wholly through blocks are urged as strongly by the Committee as by the Commission. That the growth of the city will soon demand, if it has not already, the construction of several lines of railways is also admitted on all sides. The only point directly combated by the Committee is the final conclusion of the Commission that underground railways passing under streets present the only speedy remedy for the present and prospective wants of the city in the matter of safe, rapid, and cheap transportation of persons and property Let us see how well the position of the Committee is sustained by their own showing
They claim, in the first place, that a prime condition of uccess with rapid transit in New York is that the roads be capable, as statistics clearly show, of accommodating a larger passenger business than is now done upon any steam railroad in the world, save the underground roads of London. The capacity of underground roads having thus been demonstrated, and their profitableness as well, it is difficult to see why a different plan should be experimented with, especially when, as the Committee justly obserre, " rapid transit in New York is so nicely balanced between financial success and failure, that it cannot afford to pay for mistakes, either of principle, policy, or material detaii." Another point urged by the Committee is that the required roads must not only be "absolutely safe, but appear so." As far as experience has gone the west side elevated railway is much safer than the surface roads; butit does not "appear so." Consequently multitudes of passengers take the surface roads in preference. This is true, even of those who live along the line of the road and thereby become familiar with its operation. Transien: travelers, and in a city like this their number is very large, are still more doubtful of the safety of rapid transit on stilts. The underground road would be still safer and what is more to the point, would appear safer. Besides, when the Harlem Improvement is complete, and the tunnel under the Hudson receives, as it necessarily will, the bulk of the travel from the South and West, the majority of the transient visitors to the city will of necessity make a large part of their suburban journey under ground; to complete the passage to the heart of the city in the same manner will be a matter of course, whatever the relative safety of possible routes may be. A road that has brought one safely four miles is not likely to be alarming for two or three or four miles more; and no comparison is forced with surface roads, as there would be were passengers compelled to leave the tunnel and choose between the street car and one twenty feet above the street.
Another condition of rapid transit, say the Committee, is that heavy trains shall not run over the lines. 'To our minds a very essential condition is that they shall be able to do so. If the wants of the city are to be adequately met, the rapid transit roads, the central ones at any rate, must be able to lake up and convey the loads of passengers and freight brought in by the regular lines of railway leading to the city. To make elevated railways capacious and strong enough to perform the service is, we admit, impracti cable: yet the work must be done. Unbroken transit is desirable for passengers and essential for freight. There must be as little breaking of bulk as possible. The superior advantages of underground roads (in connection with the Harlem Improvement and the Hudson River Tunnel) in this respect are immense: for freight could then be passed with no change whatever
Another condition insisted on, and very justly, by the Committee is that the interests of the public and of property owners along the line shall be thoroughly protected during the location, construction, and operation of rapid transit lines. "Some sacrifices (they say) are required of them, and they must suffer some inconveniences; the public must give the right of way upon two, or perhaps eventually four, avenues; the dwellers upon them must take the chance of some annoyance from passing trains, and the property owners, the risk of a possible depreciation of their property." And again they say: " Invasion of privacy is a part of the price which must be paid for rapid transit." The "cheekiness" of these as-sumptions-there is no other word for it-is amazing, when we call to mind the well established fact that the right of way under the streets already belongs to the city; that there is relatively no interference with private property or vested rights in the construction of underground roads; that there
is no possible invasion of privacy below the pavement; that the annoyance of passing trains underground is found in London to be practically nil; and that every road beneath the streets adds a new thoroughfare without reducing the already limited space above ground, and thereby helps to free the city of one of its most serious obstacles to individual comfort and freedom of outdoor travel, on foot or in private conveythat "the great obstacle to cheap rapid transit lies in the
avenues," owing to their great width. This is certainly an unfortunate circumstance, if true, inasmuch as the avenues constitute the chief extension of the streets of the city in the direction of the greatest travel. It is consoling to think, how ever, that the objection applies only to elevated roads. The great width of the avenues fits them for underground roads peculiarly well.
It must not be inferred from anything we have said that we are opposed to elevated roads in principle. As tem porary expedients in certain parts of the city, especially when traversing streets of little infportance, they are undoubtedly a convenience. That they can be countedon for fully and permanently meeting the needs of the commercial and traveling community is quite another affair. Their alleged superiority on the score of cheapness holds only, if at all, when light structures for light service are taken into account. To compare in all cases slender elevated roads with broad and substantial underground ways, in point of cost,may be clever, but it is not convincing. As for the appearance of the elevated roads, the best the Committee can say is that they " need not be hideously ugly." No more need telegraph poles and telegraph wires; yet, with increasing public improvement in the matter of taste, the demand becomes more urgent that the poles be cut down and the wires run underground. How long could we count on public tolerance of elevated roads, though at first they might seem to be endur. able?
A few words-in closing an article already too longabout the action of the Society of Engineers in maintaining as a society, a noncommittal policy touching the different projects for rapid transit now under discussion by the public. The Engineering and Mining Journal intimates that, in declining to publish the report of the Committee as an official expression of the Society's opinion, the Society stultified itself and jeopardized its hitherto well deserved reputation for honesty, independence, and impartiality. Still further, it is complained that, owing to the slim attendance at the meeting at which the report was received, a few member, were able to compromise the Society in refusing to commit it to the line of policy which the Journal favors. To an unprejudiced mind, it would rather seem that the twenty-five gentleman who receised the report acted with great discretion in avoiding any expression of opinion whereby the four hundred and twenty-five absent members would be involved, especially when it is well known that very many of those absent members favor other views than those arrived at by the Committee. To say that simply printing, on the covr of a report published by a society, a courteous resolution, to the effect that the society did not, as a body, endorse the views of the Committee, was a shirking of responsibility, or an endeavor to "smooth" or "ignore" the report, is simply childich

PROPOSED TUNNEL UNDER NEWARK BAY.

In approaching Jersey City from Newark, the tracks of he New Jersey Central Railway are carried across the marsh. es and over the broad waters of Newark Bay, on an elevated railway resting on wooden piles. The constant decay of this structure, especially that portion which spans the water, involves the practical rebuilding of the work once in about five years, and there are times, particularly in winter, when the concern is unsafe. It is at all times a source of expense, care, and trouble. "This," says the New York Tribune, " has led the Central Railroad to seriously consider the practicability of building a tunnel under the waters of the bay from Elizabethport to Bergen Point. Prominent engineers consider the project an easy oneto accomplish, owing to the general flatness of the bottom of the bay and the solid condition of the earth to be found there, the driving of piles having demonstrated that little sand is to be met with, and that for only a short distance out from the Bergen Point beach. A rough estimate places the cost of a tunnel for double tracks, extending a distance of two miles and a half, at $\$ 6,000,000$, and which, if built, would last for a century. The bay bridge has cost the company fully thrice its original cost, as the Chief Engineer estimates that it has been rebuilt three times since its first completion. An iron structure across the bay would be little improvement over the old bridge, whereas the building of a tunnel would leave the waters of the bay free to navigation. The matter will, in all probability, assume a definite shape within a year."

Another Trial of the Bessemer Steamer.
The Bessemer saloon steamer arrived at London, at the beginning of March, having made the passage from Hull in a heavy sea. The English Mechanic states that the hull rolls moderately and easily, and scarjely pitches at all. The machinery is believed to be capable of controlling the oscillation of the saloon; but the man employed to work, it being of course inexperienced at the task, was not up to time in handlin the levers. 'Ihe vessel will be ready for Channel traffic in : few days.

Dr. J. E. Gray.-John Edward Gray, for many years the chief naturalist of the British Museum, recently died in Lon don, aged 75. He published nearly 130 works during his connection with the Museum, the zoölogical collections of which were much increased, improved, and popularized un. derhis care.

General Garibaldi has brought forward a project for the improvement of the Roman Campagna. The general proposes to construct a canal in a straight line from Rome o Ostia. The canal is to be available for navigation and ir rigation purposes. The cost of construction is estimated a $\$ 6,000,000$.

A NEW STELLAR INDICATOR
The annexed engraving represents a new and simple device for distinguishing the stars, which has lately been introduced in France. It consists of a suitable pedestal on which is placed a celestial chart, the latter being a projection of

the heavens of the observer. It differs from ordinary charts in that the student is not obliged to hold it over his head and look up, in order to clearly define the positions of the stars; in other words, it is very much as if the sky were all reflected into a mirror, were such possible. Beneath the chart is an apparatus by which it may be oriented, the pole star serving as a guide.

When properly placed it suffices to regard the star, the name of which it is required to know, through the eye piece, 0 C , when it will be found on the chart between the branch es of the alidade indicator, I. In the same way, inversely by first settling the irdicator, any star desired may be found in the heavens. The supporting card is marked around its cir cumference with the names of the months, and on an inner ring with the hours, midnight being above and noon below. From the portion devoted to the star map included between the branches of the indicator may be seen the aspect of the heavens at any day and hour, and also the hours of rising and setting of stars, of their passing the meridian, etc.
A small lantern gives sufficient light to illuminate the de vice without distracting the eyes of the observer.

sPECTROSCOPIC QUANTITATIVE aNALYSIS.

The spectroscope, through the discoveries of Mr. Norman Lockyer, is now successfully used as an instrument, not merely for qualitative but also for quantitative analysis. It has been found that the breadth and length of the spectroscopic

bands vary in proportion to the abundance of the simple bodies entering into the composition of any alloy. The variations being previously studied in alloys of known compo sition, a means of comparison is obtained whereby ingre dients of a metallic compound can be determined instantly, thus saving the time and labor necessary to reaching a like result through ordinary chemical analysis, and at the same time with as great a degree of exactness. The appearance of the lines or bands used as standards, as well as of those to be examined, is permanently fixed by photography, so that careful study can be made of them by the observer at his leisure.
Mr. Lockyer has employed this method in testing alloys of gold and silver in the English Mint, in London, and the apparatus used by him is represented in the annexed illustra-
tion. It consists of an electric lamp, in the lower carbon of which a recess is made to form a little crucible in which to vaporize the alloy to be examined. This takes place very soon after the current is established, when the spectrum of the substance is thrown on a screen in a closed box, from which a photographic picture is at once taken. The slit in the spectroscope through which the light, af wer traversing a condensing lens, is admitted to the instrument is provided (0^{\prime}) with a movable cover which may be adjusted very accurate ly by means of a delicate scale. Three, four, or five spectral images may thus be photographed one under the other, so that the coincidence of corresponding lines may be rigor ously compared. During day time sunlight is used instead ously compared. During day time sunlight is used instead
of that of the electric lamp. The latter, at night, is operaof that of the electric lamp.
ted by thirty Grove elements.

An Improved Poultice

At a recentmeeting of the Académic de Médecine, Paris, M. Le Fort read lis report on a substitute for the ordinary linseed meal poultice, invented by M. Lelievre. It is prepared by saturating two superimposed layers of wadding with a solution of fucus crispus, or Carragheen lichen, and drying them in a stove after they had been submitted to strong pres sure. In this way a sheet of the consistence of cardboard is produced, a portion of which is cut off when wanted, and soaked in hot water for fifteen or twenty minutes; this swèlls'it out and fills its tissue with a mucilaginous fluid. It has been tried in several of the hospitals, to the great It has been tried in several of the hospitals, to the great
satisfaction of both patients and attendants. It can be pre satisfaction of both patients and attendants. It can be pre-
pared in large quantities beforehand, and will keep for a long time without undergoing any alteration. MM. Demar quay, Gosselin, and Verneuil pronounce it to be far superio to the linseed poultice; it keeps moist for more than six teen or eighteen hours; it does not slip, is inodorous, does not readily ferment, nor does it soil the linen or bed of the patient. The new poultice is destined to render great service in hospitals and ambulances, and above all on board ship, where it is difficult to keep the linseed in a good state of preservation.

UNDERGROUND REFRIGERATOR FOR BUTCHERS.

The novel arrangement of a refrigerator for butchers' use represented in our illustration, will perhaps be found con venient in that it admits of economizing space in a shop and also of saving ice which would be preserved longer ow ing to the uniformly cool temperature of the soil. The de

vice consists of a bricked cistern, B, lined with isolating material, C , and containing an iron tank between which and the isolating substance ice is packed. The meat is hung on a rack which is lifted in or out of the vessel by a suitable tackle. A small hand pump, n, serves to remove the water due to the melting ice, and d is a cover to the tank.

A Bear under Chloroform.

One of our Colorado exchanges gives a graphic account of an attempt to transfer a large cinnamon bear from a cage to an enclosure outside, that he might have greater scope for exercise; but a kindness he did not appreciate. The work of removing him from the cage was undertaken. It was first necessary to secure the bear so that a collar, with chain at tached, could be put on him. Ropes were finally got around his legs, but he resisted violently, and it became a serious matter whether he could be secured at all. Once or twice he came near breaking away from his captors, and the surround ing crowd fled, panic-stricken, in all directions. Finally a happy thought struck some one, and a bottle of chloroform was sent for. To an application of this kind, the bear soon uccumbed, and was secured in good shape.
It is not uncommon for beasts in cages to become wild with rage at times; and this incident suggests that possibly chloroform may be effectually used in producing quietude in all such cases.

THE EARTHQUAKE INDICATOR.

Count Malvaria, of Bologna, Italy, has recently devised n ingenious instrument for giving warning of earthquakes and also for registering the direction of vibrations of the same. The construction will be understood from the an nexed engraving. The table is adjusted level by the set screws, which serve as feet. Upon it is a circular inclined plane, K, surrounded by a rim, H, and carrying in its center a reversed hemispherical cup, G, the surface of which is divided into eight channels which are placed so as to corres pond with the eight principal points of the compass. The summit of the cup is provided with a metal point which en ters a shallow indentation in a ball, 0 . The ball is main tained in place by the concave lower portion, V , of a weight P, resting upon it. The weight is sustained by the chain, E,

the earthquake indioator.
which is supported by the standard, D C, and adjusted by he screw, F .
To set the apparatus, it is arranged as depicted in the en graving, the weight pressing upon the ball just sufficiently to hold it on the apex of G. The instant, however, a trem bling of the earth occurs, the ball rolls from under the weight down a channel in G, and thence to the inclined plane, K, through an aperture, L, in which it falls, striking spring me chanism, and so firing a gun, or else acting upon a clock so that the latter is caused to stop, thus registering the exact moment of the shock.
In order to determine the direction of the vibrations, a fine hole is made, from bottom up, in the weight, P. In this a needle, a, is placed so that its end rests upon the ball, although its body is then pushed up into the weight aperture When the ball falls, the needle drops also, but is held by its enlarged head, so that it cannot escape from the weight. It rests, however, in the groove on the cup, G, down which the ball has rolled; and as this groove must be opposite in the ball has rolled; and as this groove must be opposite in
direction to that pointing to the course of the impulse of the direction to that pointing to the course of the impulse of the
soil, the true bearing of the vibration is at once determined. soil, the true bearing of the vibration is at once determined.
The instrument is said to possess great accuracy, and, doubtless, will serve important ends in localities subject to earthquakes.

A Novei Drcor fish

Messrs. David Huard and Charles M. Dunbar, of Ashland Wis., are the inventors of an ingenious device for trolling or still water fishing, which is quite certain to become a fa vorite with anglers. It is a decoy fish, made of wood or other

suitable material, and constructed with a cavity just back of the head. Inside of this is pivoted, at A, an ordinary fish hook, and beneath the latter is a spring, B, which tends to draw its barbed end up through a slot in the back of the fish. C is a piece of wire, pivoted as shown, but bent so as to slide longitudinally on its pin. This, when pushed for ward, catches over the point of the hook, and thereforehold it down against the spring. The wire extends clear through the fish, and terminates with a little rubber plug which closes the rear aperture. An eye on the end of the wire serves for the attachment of the line.
The device in the illustration is represented as set, and the plug then tightly closes the rear opening. When a fish seizes the decoy, the jerk given causes the line to pull out the plug and, at the same time, to carry the wire, C, to the rear The hook, then freed, springs up through the slot and holds the fish. This was patented May 26, 1874.

machine for maring fence pickets.

The object of the machine illustrated in the annexed engravings is to dress and shape the heads of pickets or palings. The novel feature consists in the sliding or reciprocating table which, by suitable attachments, supports and clamps pickets of different lengths, for presenting the same to the action of the revolving cutters. In Fig. 1 is given a perspective view of the machine, and in Fig. 2 a plan of the improved table.
The carriage, A, upon which the pickets are placed, travels upon ways, B, which are vertically adjustable to alter the inclination. The pickets are arranged side by side, and are arranged side by side, and are secured by the pressure of the spring, C, Fig. 2, said spring being adjusted by the lever, D, connected therewith by a pivoted bar. The lever is held at any adjustment by means of the ratchet bar, E .
The rear extremities of the pickets rest against the end piece, F, of the carriage, by which they are so gaged to the saw that they are all cut in uniform lengths. The piece, F, is rendered adjustable, in order to suit different sized work, by the slotted side pieces, which are provided with clampwhich are provided with clamping bolts, as shown. The cutrevolving heads, the bearings revolving heads, the bearings of which are adjusted in the frame to vary the space between them for wide or narrow pickets, by an independent screw for each. They are driven by a single belt which passes over both pulleys and over a guide pulley on the bed of the machine. Each head carries two molding cutters, a pointing cutter, and a saw, which are formed in the outline of the edges to cut the pickets alike on both sides when the latter are presented obliquely through the inclination of the carriage. By this arrangement the cutters are enabled to shear or draw out the wood, and thus to work smoother and easier than when operating crosswise the grain. The saws serve to remove the feather edge left by the pointing cutters.
The device can easily be attended by a single man, and, it is claimed, can cut 5,000 pickets per day. From the adjus tability of its various parts it is capable of executing a large variety of work, leaving the same in condition fit for imme diate use. It is equally suitalle for the purpose above de scribed or for a tenoning machine, by simple adjustments of the cutter heads and carriage; and by suitable changes of the knives, picket heads of any desired patterns may be formed. The machine, we are informed, is the first wlich

has been devised for producing the picket heads in complet tate
It was patented through the Scientific American Patent Agency, December 29, 1874, to Mr. Isaac Levy. For further particulars address the owner of the patent, Mr. A.M. Lewin Room 1, 302 Broadway corner Duane street, New Yo city.

Kalsomining.

This is the time of year for house cleaning, and, apropos the season, comes the following, from a correspondent of o the season, comes the
To kalsomine a good-sized room with two coats, take ten pounds of whiting, dissolved in hot or boiling water; one fourth of a pound of glue (which should have been put to soak in a pint of water the night before) may now be melted slowly on the back of the stove, stirring frequently. To color a beautiful tint, get two ounces of ultramarine blue and one ounce of Venetilan red: mix separately with cold, soft
water, and strain through a stocking or thin cloth, each in a separate vessel. The whiting may now be stirred well; if too thick, add more hot water, and strain through a flour sieve into a good-sized pot. Add some of the blue and red, alternately, till you get the desired shade, which may be ascertained by putting a little of the mixture on a piece of paper and drying by the fire. When your color is determined, pour in the glue; and after mixing well, apply the wash hot to the walls, brushing in any direction, as it mixes bette
phrenosin, $\mathrm{C}_{34} \mathrm{H}_{67} \mathrm{NO}_{8}$, may be considered as the mono-ami dated form of a fatty acid, whilst cerebrin, $\mathrm{C}_{34} \mathrm{H}_{68} \mathrm{~N}_{2} \mathrm{O}_{8}$, is the di-amidated form; kerasin, $\mathrm{C}_{46} \mathrm{H}_{91} \mathrm{NO}_{91}$, the third on the list, is a colorless crystalline substance. All these com pounds give a most magnificent purple color when treated with sulphuric acid and sugar, by Pettenkofer's reaction Stearoconote has the same composition as cerebrin, and can easily be convertedinto it by boiling with hydrochloric acid and benzine; cerebrin can also be reconverted into stearo onote
The amount of these prin ciples is considerable, the phosphorized and nitrogen ized compounds, with th cholestrin, constituting 5 per cent of the brain.
In answer to a question by Dr. Wright, Dr. Thudicum replied that the examination was conducted on the normal brains from human subjects, controlled by experiments o the brains of oxen. In soft ening of the brain, he had found free glycero-phosphoric acid and fatty acids.

The Electric Light.

It has long been known that the carbon electric light is not due to a direct luminous effect of the electric current, but merely to the property which this current possesses of heating the conductors which it traverses, and that with the greater intensity the more resistance they oppose to its passage. The intensity of the ordinary electric light(with carbon points) arises from the circumference that the stratum of air, a bad conductor, which is found between the two charcoal points, is heated two charcoal points, is heated to an excessive degree by the

MACHINE FOR MAKING FENCE PICKETS.

than if put on too carefully. On white walls two coats are necessary; but after the room is once done, one coat is suffi cient. Should the ceiling have to be done, put on the whit ing alone first, then rehea ${ }^{\frac{1}{2}}$ the wash and add the paints and ulue, the latter to be light colored, if the walls are to be white. Common glue will answer for a painted wall. A pa per border finishes the room perfectly-makes any room nea and pretty. Should the second coat not be put on till next day, heat the mixture, as the glue will not mix with the other ingredients unless pretty warm.

Chemical Constitution of the Brain.

At a recent meeting of the Chemical Society, London, Dr. Thudicum delivered an interesting address on this subect. He said he thought the best way would be to explain the table of the constituents of the brain, which was hanging on the wall, comprising twenty-one som pounds, besides fats and fatty acids. This subject which was one of great difficulty, had occupied him many years, and he had found that it was quite useless to work on the small scale, in fact, before anything could be done, 1,000 brains bad to be subjected to che mical examination. Of the constituents of the brain, nearly all the albumen present was in the insoluble form, and the sub-group of the phosphorized principles, to which he had principally directed his atten tion, consisting of the kephalins, myelins, and lecithins, all contained phosphorus. There were also present nitrogenized principles, oxygenized principles, inorganic matter, and about 80 per cent of water. The water is very difficult to remove from the brain matter, but it can be done by slicing it thin and soaking it in buccessive quantities of strong alcohol. The dried
sut product is then finely divided, and rubbed through a sieve. Heated to 103° Fah., with alsohol, it leaves a sieve. Heated to $103{ }^{\circ}$ Fah., with alcohol, it leaves
white matter, consisting of the albumen, most of the white matter, consisting of the albumen, most of the
phosphorized principles, all the nitrogenized, and much phosphorized principles, all the nitrogenized, and much of the cholesterin. The alcoholic solution, when con centrated, deposits the lecithins, and, by further evaporation, the fatty ethers. The constituents of the white matter may be separated by treatment with ether which extracts the kephalins; on concentrating the solution, and adding alcohol, these are precipitated The myelins are only slightly soluble in ether, but may be dissolved by absolute alcohol, which leaves the cere brin, phrenosin, and kerasin.
All the phosphorized principles are soluble in water, but the kephalins, as a class, are characterized by the property of oxidisability, turning brown in contact with ether: while the myelins, on the contrary, possess great stability, and are therefore, readily obtained colorless and crystallized. Hydrochloric acid, or any salt, readily precipitates the phosphorized compounds ; but when dialyzed these are removed, and the compounds again pass into solution, affording an excellent method of purifying them. The phosphorus is always present as glycero-phosphoric acid.
The quthor then explained his theory of the constitution. structure of the various compounds; after which heshortly noticed the members of the nitrogenized group, of which
hoisting engine, the principal feature in which is a novelar rangement of friction attachment in connection with the drum. The device obviates the necessity of brakes and allows of the load being raised, lowered, or held suspended, with great ease. The diagram on the right of the engraving shows the drum loose upon the shaft while the driving gear is keyed firmly thereon. In the side of the large gear on the drum shaft, wood is dovetailed and turned off to receive the flange of the drum, which is forced thereon by means of a steel screw and pin, operated by the hand lever shown. A slight pressure of the hand on the lever causes sufficient friction between the flange of the drum and the gear to cause the lifting of from two to sixty tuns, according to the size of the engine.
This mechine has been in use by the Department of Docks
of this city for the past year, and has been principally em ${ }^{-1}$ ployed in pile driving. The raising and letting fall of the hammer is readily effected by manipulating the governing lever. A testimonial signed by the engineer-in-chief of the department expresses satisfaction with the working of the engine, and pronounces the same superior to other devices, in which clutches are used.
The engine has also been used for some time at the mar ble yards of Messrs. W. B. Smith \& Sons, of this city, and we learn from a letter of that firm that a weight of 30 tuns was there easily lowered a distance of 23 feet, with one hand of the engineer managing the lever.
In the construction of boiler and machinery, the best materials are employed, and improved devices by the same inventor added, which increase the general efficiency of the working parts. The looiler is extra large in size, compared with the engine, so as to afford an ample steam supply. In general, the machine is excellently adapted for dock hoist ing, pile driving, dock building, and for employment in quarries, mines, warehouses, and similar localities. For further particulars address the patentee, Mr. J. S. Mundy No. 7 Railroad avenue, Newark, N. J

batreguadente.

Extinguishing Fires on Shipboard.

To the Editor of the Scientific American
In view of the inefficiency of the methods at present in use for extinguishing fires on board ship, and particularly in sail ing vessels, I propose to make use of carbonic acid gas in a manner which, I believe, has not hitherto been proposed. The plan is to have, in some convenient locality, a flask or flasks, each about 3 feet in length and 1 foot in diameter, containing about 100 lbs . of the gas in a liquid state. From the top or upper side of the flask, a small iron pipe is to be permanently fitted along the "water ways (or just under the deck), throughout the entire length of the ship. From this main pipe, at suitable intervals, are branch pipes, at right angles to the main, passing down next the skin, to every storerom and hold of the ship; so that each compartment of the vesse shall have its own pipe, or pipes, reaching from its bottom to the main pipe at the spar deck. There is to be a cock in the main pipe near the gas flask and one in each branch pipe near the main, any one of which can be turned from the spar deck.
On the alarm of fire, the hatches are to be battened down; the cock in the branch pipe leading to the compartment where the fire is discovered is to be opened, and also the cock in the main next the gas flask. The liquid gas, which is under a heavy pressure in the task, passes out through tho pipe in the form of vapor, as soon as the pressure is relieved by turning the main cock, and is driven in an instant, by the great pressure behind it, to the compartment to which it is admitted. Arrived at this point, and being $1 \frac{1}{3}$ times as heavy as air, it fills the compartment from cold by its expansion at the same time; while the pressure cold by its expansion at the same time; while the pressure
with which it enters forces it into all interstices in the cargo, with which it enters forces it into all interstices in the cargo,
driving out every particle of air, which will all escape from driving out every particle of air, which will all escape from
the top, as no compartment on board ship is absolutely airthe top, as no compartment on board ship is absolutely air-
tight. Knowing then the culic contents of any compartment tight. Knowing then the culic contents of any compartment
and the culic space occupied by the cargo in it, sufficient gas and the culic space occupied by the cargo in it, sufficient gas can be admitted as to render it absolutely certain that no fire to see if the fire is out until such time shall have elapsed as to render it perfectly safe to do so. By shutting the cock in the main pipe, the remainder of the gas is kept from vaporizing until such time as it may be required. On arriving in port, the flask is disconnected from its pipe, and can be refilled in a couple of hours, and then set up and connected in its usual place.
Should no fire occur, the apparatus can remain intact for an indefinite time. except occasionally to see that the cocks are in working order. The liquid is entirely non-corrosive in its character and the vapor is not injurious to any class of cargo; while it is, I think, the only substance that will permanently suppress, the most advanced state of combustion in a cargo of coal
It is, of course, well known that carbonic acid gas is the agent employed in the Babcock extinguisher and others of like nature; but in these the gas is produced on the spot by the action of an acid on marble dust or bicarbonate of soda. The objections to such an arrangement are that the apparatus is somewhat cumbersome and complicated, and the supply of gas is rather limited unless a great pended when once generated; and before a fresh supply can be obtained from any one machine, the apparatus must be cleaned out and the requisite materials rearranged; while in cleaned out and the requisite materials rearranged; while in
consequence of the moderate and varying pressure of the gas produced, a permanent system of pipes cannot be employed produced, a permanent system of pipes cannot be employed
to carry the gas to any great distance from the generator. to carry the gas to any great distance from the generator.
What I propose is simply to carry on board ship the gas itself in its most condensed form, the liquid, of which 1 lb . is equal to a trifle over 8 cubic feet of pure gas, to be contained in vessels capable of withstanding the great pressure neces sary to keep it from vaporizing at any temperature.
U. S. Torpedo Station,
F. M. Barber.
Lieut., U. S. N

Drive Wells in Minness To the Editor of the Scientific American:

Newport, R. I.

The city of Minneapolis recently purchased two steam fire engines for the protection of property situated bevond th reach of the city water works. A few cisterns for hollding a
supply of water for the steamers have been constructed, but they are expensive, are liable to leak, and require constan Department Mr. Winn Buckett, Chief Engineer of the wrla of $2 \ddagger$ inch pipe, situated thirty feet apart or fifteen feet from a center, and brought together at the top, where the suction hose of the engine is to be attached. A trial was made on March 17; the engine threw a continuous stream, from a 1 inch nozzle, to a distance of 185 feet for one hour. When the cap was removed, there was found to be 9 feet of wate in the wells, the same amount as when they commenced. Minneapolis, Minn.
C. E. Eastman.

Loss of Life at Sea.

To the Editor of the Scientific American:

I see that there has been an official investigation into the loss of the steamer Cospatrick, and according to that repor only three out of five hundred were saved. Something of course should be done to avert such calamities; but as long as steamers are built as they now are, there is no remedy While steamers depend on small life boats to save four hundred or five hundred passengers in case of accident, we must expect what has happened so frequently in the last few years. It is strange that, with all the inventive talent in ou country, some plan has not been thought of besides furnish ing steamers with life rafts and boats, when it is so easy to make the steamer itself the life boat. There is not a steame now afloat that could save five per cent of her passengers in case of accident; in fact, we may load the steamer with the
best life-saving apparatus now in use, and, in case of accibest life-saving apparatus now in use, and, in case of acci-
dent, a panic follows invariably, and nearly all are lost. Why not build a steamer in which fire, leaks, striking rocks, or going on shore would not endanger the life of a single passenger? In order to do this, the freight and passenger business must be measurably separated, the life steamer carrying only the mails and other safe freight. It may be said tha this would not pay; but let the public once understand that it is as safe to cross the ocean as it is to stay at home, the travel would double in less than a year,and the voyage could be made in much less time than now.
D.Winer

Lockport, N. Y.

New Cure for Wounds.

So the Editor of the Scientific American:
I wish to publish the following cure for punctured wounds for the henefit of all who may need it:
As soon as such a wound is inflicted, get a light stick (a knife or file handle will do), and commence to tap gently on the wound. Do not stop for the hurt, but continue until it bleeds freely and becomes perfectly numb. When this point is reached, you are safe; all that is then necessary is to protect it from dirt. Do not stop short of the bleeding and the numbness, and do not on any account close the opening with plaster. Nothing more than a little simple cerate on a clean cloth is necessary. I have used and seen this used on all kinds of simple punctures for thirty years, and never knew a single instance of a wound becoming inflamed or sore after the treatment as above. Among other cases, a coal rake tooth the treatment as above. Among other cases, a coan rake tooth
going entirely through the foot, a rusty darning needle through the foot, a bad bite by a sucking pig, several intances of file shanks through the hand, and numberlen
 Iailure of this treatment.
S. W. Hementiar

Lansing, Inwa.

Government Licenses for Plea (othe Editor of the Scientific American:

1 see it stated in your paper that a steam launch or other small steamer, intended and used for pleasure only, is not subject to United States inspection. Last October, I took a launch, 28 feet keel by 6 feet beam, to Florida. On arrival, I was notified not to get up steam until the boat had been inspected. After a delay of ten days or more, the United States Inspectors came to Palatka, and passed the boat Inspection of hull and machinery cost $\$ 25$. I was then re quired to have a regular engineer and also a pilot: cost of
license for each, $\$ 10$. After complying with all the regula license for each, \$10. After complying with all the regula-
tions as regards fittings, life preservers, etc., I had hardly tions as regards fittings, life preservers, etc., (had hardy
room left for myself and gun. I am not alone in this thing It might be well for parties to know this, so as to save themselves trouble. I have a copy of the United States law, and I do not see how I can get rid of this tax each year. Titusville, Pa.
H. R. Lyle.

Underground Rallway at Constantinople.
A telegram from Constantinople announces the opening of the Pera and Galata underground railway. The station of Galata is situated between the Koumrou and Sevoud streets, and that of Pera, which is not yet completed, in the Rue Nadir. The tunnel is ventilated by two shafts. one of which is 80 feet in depth, and the other 65 feet. This railway is worked by a fixed engine, the carriages being hauled by a rope at the rate of $11 \frac{1}{4}$ miles per hour; the trains are run at intervals of five minutes. The difference of level between the two sta-
tions is about 200 feet , so that the average gradient is about in in about 200 feet, so that the average gradient is about
1 in 10 . It is estimated that the number of passengers car ried daily will be 30,000 .

The American Rallway system.

The total length of the railways in the United States is nearly seventy-five thousand miles, or over three times the diameter of the earth. It would occupy a passenger five months' time, travelinf night and day continuously, at an average speed of 20 miles an hour, to go once over all of our ways. At the average speed of the fast

astronomical notes

Observatory of Vabbar College
For the computations of the following notes (which ar pproximate only) and for most of the observations, I am debted to students.

Mercury.

Mercury was at its greatest elongation west of the sun on he 28th of March, at which time it could be best seen. But t must still be in good position, and will be up to the mid dle of April, and should be looked for in the early morning. On the 1 st it rises at 4 h .54 m ., A. M., and sets at 3 h .57 m . . M. On the 30 th it rises at 4 h . 44 m . A. M., and sets at 5 h 58 m . P. M.

venus.

Venus is less brilliant than it has been, and its apparen diameter is smaller; but it is still a very conspicuous object n the morning
On the 1 st Venus rises at 4 h .10 m . A. M., and sets at 2 h . 2 m . P. M. On the 30 th Venus rises at 3 h .40 m . A. M., and sets at 3 h .38 m . P. M.

Mars.
The apparent diameter of Mars is increasing, but it is still ery small; it rises very late, and is low in altitude when on he meridian. It may be known by its ruddy light and by eing some 18 east of Antares, among the small stars of phivechus.
On the 1 st Mars rises at 0 h .23 m . A. M., and sets 9 h .25 m A. M. On the 30 th Mars rises at 11 . h. 12 m . P. M., and sets a the next morning.

Jupiter.

Jupiter is now the most conspicuous planet, and, notwith standing its low altitude, is the best situated for observa ons. Even with a telescope of small power, the movement f the satellites can be followed; and their oclipses, by going into the shadow of the planet, or their disappearance, by being behind the planet, as in occultations, or by passing in font of the planet, as in transit, can be noted. The largest of the moons of Jupiter is the third in distance from the planet. It will not be seen for several hours on the evening of the oth of April, being behind the planet and in its sha dow. On the 9th the second satellite in distance from Jupi t, which is the smallest, will not be seen for some hours of he evening, because it is in transit, or in front of the planet and only very good telescopes will enable nbservers to distin guish it from the planet. On the 19th thesame will happen in he case of the first satellite, or that nearest to Jupiter. For wo hours in the evening it will be between the earth and upiter, and seemingly projected upon the face of the planet On the 27th and 30th similar phenomena can be seen. On he 27 th the first satellite is not seen for some hours, being behind the planet, and on the 30th the third is not seen beause in front of the planet.
On the 1st Jupiter rises at $7 \mathrm{~h} .43 \mathrm{~m} . \mathrm{P}$. M., and sets at 6 h 3 m . the next morning. On the 30th Jupiter rises at 5 h . 30 m . P. M., and sets at 4 h .30 m . the next morning. Saturn.
It is of little use to attempt observations on Saturn at pre ent. It does not rise until morning at the 1st of the month and being far south, the diurnal path is only 10 hours above our horizon.
On the 1st Saturn rises near 4 A. M., and sets at a little after 2 P. M. On the 30 th Saturn rises at 2 h .10 m . A. M., and sets at 26 m . after noon.

Uranus.

Uranus continues to be in good position for evening ob ervers, but requires a good telescope. It is among the mall stars of Cancer, and can be known from a star by the fact that even a small telescope will show a disk. It rises
on the 1 st at $1 \mathrm{~h} .7 \mathrm{~m} . \mathrm{P} . \mathrm{M}$., and sets at 3 h .23 m . in the mornng. It rises on the 30 th at 11 h .13 m . A. M., and sets at 1 h 9 m . the next morning.

A star is said to be occulted by the moon when it is hid den from us by the orbital motion of the moon, a motion when the moon is on the meridian, from west to east. When uch an occultation occurs before the moon is full, it is a ver retty sight, as the star suddenly disappears behind the dark mb of the moon. Astronomers determine the longitude by bservations of occultations.
According to the American Norutical Almanac, on the 12th the moon will occult two stars in Cancer at 9 h .57 m ., and at
10 h .43 m . Washington time. A small instrument is suff cient to show these stars, as they are not much below the 6th magnitude.

Sun Spots.

The large spot, which was mentioned in the last report as having just appeared, crossed the sun's disk nearly in a line with the equator. Photographs were taken of it on the five lays during its passage, showing it to be a large and ver lack spot, surrounded by a broad and distinct penumbra On March 17 a large spot appeared in about the same posi ion; and as exactly twenty-seven days had elapsed since th appearance of the other, it is without doubt a return of the ame spot. It appears somewhat smaller, and not so intense y black as at its first appearance, but is still very large. It will probably be visible for about twelve days longer. Be sides the large spot, several small ones in groups and pairs have crossed the disk during the last month, and faculæ have been observed several times. On the 10th of March two spots, one upon the eastern limb and the other on the western, were seen surrounded by strongly marked faculæ; and remote from any visible spot, a luminous chain of the same appearance extended, from the edge, nearly one third across the disk.

Bronzes Incrustes.

This is the name given to a new style of bronze or copper work ornamented with gold and silver, and manufactured by Christofle \& Co., in Paris. The ornamentation is produced by etching and electro-plating, and consists, according to Dr. Meidinger, in the following operations: After the object, which may be of massive copper or bronze, has received the desired form, the drawings are made with water colors, the body of which is white lead. If several pieces are to have the same design, it may be printed on as in porcelain and faience painting. Those portions of the surface not painted are covered with varnish. The article is then placed in dilute nitric acid, whereby the paint is dissolved and the surface of the metal is etched to a certain depth. When the etching is finished, the article is washed with water and immediately placed in a silver or gold bath, and a layer of the precious metal deposited by electricity on the exposed portions. When the latter operation is finished, the varnish is perfectly removed and the whole surface ground or polished, so that the ornamented portion is just even with the remain der of the surface. The contours are quite sharp. The surface is then bronzed, which does not change the color of the gold or silver. A specially fine effect is obtained by producing a black bronze of sulphuret of copper on portions of the surface between the silver ornaments. A copper vessel then has three colors, black and white drawings on a red brown ground of suboxide of copper.
This new process for ornamenting metals has been devised at Christofle's works since the Paris Exposition of 1867. Specimens exhibited at Vienna in 1873 show the high degree of perfection to which it has already been brought. Unfortunately, these goods are so expensive as to be only accessible to the few, although much cheaper than those in which the engraving is done by hand, and the gold or silver inserted by mechanical means. The production of an incrustation requires a high degree of manual skill and patience, but no costly machinery; indeed, every brass foundry contains all the necessary tools for the mechanical operations.-Iron.

THE STORAGE AND HANDLNG OF FLUIDS

We propose, in this and in subsequent issues, to lay before our readers, from time to time, short articles descriptive of a large variety of mechanical tools and apparatus now in use in the industrial arts and processes. These papers will be illustrated by a series of excellent engravings, selected from the pages of Mr. G. H. Knight's "American Mechanical Dictionary," a very valuable and exhaustive work, which has for a long time been in preparation, and which has just been issued from the publishing house of Messrs. J. B. Ford \& Co., in this city. The advantage of our proposed plan to the reader is that, besides his attention being called to a large number of very useful inventions, he will find the same presented in connected form. That is to say, instead of his being obliged to run over a whole volume to collect the component pertions of a certain process, series of processes, or operations upon like articles, all will be carefully gathared together, arranged in an interesting and instructive group, and accompanied by explanation, as a rule, much more compendious than necessarily could or does exist in the original work. The subjects are not all new or novel inventions, and many of those described are in actual employment. For this reason, however, they are none the less interesting to the generality of readers unacquainted with each special branch of art or trade, while, at the same time, they become especially useful to inventors, as indicating the present status of any industry or any species of mechanism or process, upon which improvements or in which discoveries may be meditated.
Subjects as far as possible will be treated and grouped under general headings as pertaining to the shop, to the household, and to various callings. In some cases, which can be brought under no definite head, articles relate to each other will be arranged together in connected form. We begin with operations relating to the preservation of fluids; and from the various paragraphs in the dictionary before us on such subjects, we select the most interesting illustrations relating to bottling and kindred topics.
alarm funnel.
A useful apparatus, which gives warning when the liquid in a barrel has risen to a certain point (in filling), will be found in Fig. 1, which is an alarm funnel, The fnnnel being placed Fig. 1

over the bung hole of the barrel, the diquid raises th 3 float which, in turn, detaches the button in the upper casing from a stop. This frees the spring of the alarm bell, causing the latter to ring.
bottle cleaning
For this purpose a bottle brushing machine is shown in Fig. 2. The brushes, fixed on a rotating shaft, are insertep Fig. 2.

Eut brushiug Machine

into the bottles, and rotation isimparted to them by means of the treadle, b. The operator can take one bottle in each hànd, and thus cleanse two at once.
In Fig. 3 is represented a variety of
BOTTLE STOPPERS-SUBSTITUTES FOR THE ORDINARY CORK. In diagram a, the stopper is attached to a bail. Spring arms which are permanently fixed in an annular recess in the Fig. 3.

swelling of the bottle neck, catch into notches of the bai and hold it and the stopper securely in place. Diagram, b, shows a permutation lock, which is set on a given combina tion and serves to hold a cap over an ordinary cork or similar stopper. In diagram, c, a ring, represented separately, is divided so as to be easily slipped around the neck of the botthe. This carries a hinged bail which is forced over the cork. A peculiar-shaped bottle is required in diagram, d, the opening through the neck of which is diagonal. The pressure of the gas is upon the side of the cork, and does not tend materially to expel it. The cork may be ejected with a push, without a corkscrew. Diagram, e, represents a simple rubber ball driven by the pressure of gas inside the neck. It is removed by the pressure of a rod when it floats upon the liquid. The mode of tying champagne coriss is represented in f. Diagram, g, is similar to e. The neck of represented in f. Diagram, g, is similar to e. The neck of
the bottle is molded with an interior annular recess, filled by the bottle is molded with an interior annular recess, filled by
a packing ring against which a glass ball is sustained by pressure of the gas. The screw faucet in diagram, h, has a packing against its lower end, and is depressed into a seat. Another locking device is shown in i, which represents a simple one-way cock, opened by a key made to fit its inden tations. Diagram, k, shows a glass rod which carries a packing around its enlarged head. One of its tapering ends guides it into the neck of the bottle, where it is held, when the latter is turned upright by the pressure of the gas. The as to be swung up on to the cork while the same is held by
the plunger of the bottling machine. Two views of this device are given. In diagram, m, a rubber stopper hinged on one side is held on the other by a simple metal catch, se cured to a ring which encircles the neck. Another arrangement of a glass ball, very commonly used, is represented in n. The ball is restrained from falling off when the bottle is tilted by a cage. In diagram, o, a stopper of rubber is compressed between two disks which are brought together by u screw, and thus expanded against the inside of the neck; and in μ a bail is hinged by a collar around the neck, and is provided with a screw which compresses a rubber-faced cap Fig. 4 shows a
bottle charger
for charging bottles with a liquid under pressure, as, for instance, with air containing carbonic acid and with a graduated amount of sirup. a is the vessel containing the aerated water, b the sirup cup, c a pipe equalizing the pressure in the

Fig. 4.

vessels, $a b$. The size of the opening leading from the cup, b, to the nozzle, d, is adjustable, and e is the handle of the faucet, by which the liquid is discharged. Beside Fig. 4 is given a simple form of bottle faucet, the hollow stem of which is threaded. The latter is forced in througin the cork. The device serves as a useful means for drawing soda water or other effervescent fluids.

That odious Postal Lew

Complaints reach us from all directions at the act of our late Congress in imposing upon the people the new postal law, increasing the tax upon publishers, seedsmen, merchants, and all others having occasion to send newspapers o small parcels to their friends and customers. The nearest express offices to the homes of the majority of persons re siding in the country are three to five miles distant, and the carrying of transient matter, newspapers, seeds, plants books, and other light parcels through the mails is a grea convenience, and a saving of time and trouble to many. The delivery by the post office in rural districts is quicker and more certain than by express, particularly to persons no generally known.
The public generally are aware that the last session of Congress made a partial revival of the franking privilcge. Somebody must pay the Congressman's postage. So the Somebody must pay the Congressman's postage. So the
same Congress which put a free frank on the public documents, which nobody reads, raised the price of postage on all ments, which nobody reads, raised the price of postage on all
transient newspapers, books, etc., one hundred per cent. transient newspapers, books, etc., one hundred per cent.
This now prevents the people from sending many articles by post, and forces that traffic into the express offices, in whose interest the law, at the last hours of Congress, was enacted and it withdraws from the postal revenue a large portion of its former receipts. The indignant public will have to wait till next meeting of Congress before relief can be afforded them, when we expect to see such amendments made as will reduce the rate of postage on newspapers and small parcel lower than it has ever been.

Models by Mall.

Persons sending models or other articles by mail should not be unmindful that the full postage of one cent an ounce instead of one cent for two ounces, as formerly, must be prepaid at the office when mailed, to insure the sending. If a model is sent in a box, the cover must not be nailed o screwed to the sides; if sent in a paper or cloth wrapper, the bundle must not be pasted, sealed, or otherwise secured s that the officials cannot readily examine the contents by simply cutting or unfastening a string. In New York and simply cutting or unfastening a string. In New York and
other large post offices, there is a special department for ex other large post ofices, there is a special department for ex is known as Third Class matter; and if any writing is found concealed, or if the package is so made up that these officials cannot readily gain access to the contents, full letter postage is demanded on the entire weight.

Free Lunch Suspended.

In consequence of the increase of postage and the neces sity of prepayment, we are obliged to decline sending odd numbers or specimen copies of the Scientific America: free, as has been our custom for a quarter of a century
Hereafter persons desiring specimens or any special numbers of the paper will please to remit, for each copy ordered, ten cents.
New subscribers to the Scientific American will here after receive the papers from the time of our receiving the order, unless they specify some other date for commencing All the back numbers from the commencement of the volume (January 1) may be had if requested at the time of sending the order, or on request, after receipt of first number.

Paris Exhibition, 1875.-An International Eshibition, in which great prominence will be given to all matters con nected with marine and river industries, is to be held in Paris, from July to November nest. The building selected is the well known Palais de l'Industrie, in the Champs Elysées, where the Exhibition of 1855 tock place.

IMPROVED CIRCULAR SAW TABLE.

There are two excellent improvements in the saw table represented in the illustration, which will at once bespeak for it the favorable consideration of woodworkers. The first is the simple and novel mode of raising and lowering the saw, and the second the system of squares and gages by means of which work can be cut to exact lengths, squared, or beveled without previous lining or marking. Besides these advantages, which are essentially prominent, there are others of nearly equal importance, among which may be especially noted the means of adjusting the table to a bevel, and the mounting of the saw mandrel so that it runs without jarring or rattling. A perspective view of the machine is represented in the engraving.

The saw blade is attached to a mandrel, which is journaled in an inclined frame. The latter, with a horizontal frame beneath, forms a kind of bell crank, with which a vertical toothed segment is connected. In the teeth of said segment engages a worm, which is rotated by means of the hand wheel shown in the side of the machine. The effect of turning the seg. ment is to cause the upper part of the bell crank frame to slide down or up inclined ways, and thus correspondingly to move the saw. This mechanism is in a compartment partitioned off from the space immediately beneath the saw, so that the dust does not come in contact with the working parts to clog them. The driving pulley is on the saw mandrel; and as the latter is moved up or down, the belt is maintained uniformly tight.
The aperture in the iron table for the saw is lined with detachable pieces of wood, so that all danger of the teeth coming in contact with the metal is obviated. The bearing of the mandrel to the frame contains Vs, which, entering one within the other, prevent sideways motion and rattling. The blade is readily removed from the end of the mandrel, the latter being steadied by a wrench passed down through a small aperture in the table, and grasping a nut portion of the mandrel.
The hand wheel and shaft shown in front and under the edge of the table operate a worm which, engaging in segments, raises arms from a horizontal to an upright position. These carry the side of the table up with them, and thus dispose the latter for cross beveling. On the surface of the table will be noticed a longitudinal groove; another channel of somewhat different section is also provided at right angles to the plane of the blade. These serve to hold the squares and gages by which the work is adjusted to the saw. A flat piece of iron slips into the longitudinal groove, and to it is attached at right angles a straight edge. Against the latter the side straight edge. Against the latter the side
of the board is placed, and the work is thus brought squarely up to the saw. The gage which traverses the other channel has a V which enters one part and a nut which slips into another portion of dovetail section of the groove. By turning a clamping wheel the nut is caused to bind, and thus to hold the gage at any desired point. The upper portion of the metal part of the device has an opening into which a high or low gage may be fastened by a simple wedge attachment; a bevel gage, tenoning machine, or any other suitable fixture may be quickly inserted and held. Other simple attachments in the grooves at once convert the device into an excellent miter table.
From our examination of the machine in operation, we believe that its use will tend to save both time and material, while ensuring accuracy in work. It will saw fillets or corner pieces, large or small, with rapidity, cut the edges of logs and ends of cants of any circle to a joint, saw chipping pieces with edges beveled at the same time, saw up or cross cut from the least draft on a pattern to an acute angle in very many kinds of work, and prepare the same ready to put together. For pattern makers, cabinet makers, carpenters, organ and stair builders, the machine is especially useful. It will cut up stair steps, drawer stuff, etc., into exact lengths with square ends, and will miter the ends of risers. For shelving, desk, and similar work, a dado head may be substituted for the saw, when the machine will groove crosswise the stuff with perfect accuracy, and without lines of measurements after the first cut.
This machine is the invention of Mr . W H. Havens, of 132 Broadway, Paterson. N. J., to whom letters for further particulars may be addressed.

$$
\begin{aligned}
& \text { CMPROVED WINDMILL. } \\
& \text { The novel windmill represented in the } \\
& \text { annexed engraving is from its simple con- } \\
& \text { struction and capability of self-adjustment, } \\
& \text { aceording to the strength of the wind, ex- } \\
& \text { cellently spited for raising water for cat }
\end{aligned}
$$ ©, supplying svater to kouses, driving

HAVEN'S CIRCULAR SAW TABLE.

churns and other agricultural machinery, or to perform a num ber of the various duties for which a cheap and light motor may be required. The new features to which attention is di rected are the mode of connecting the arms bearing the sails, so that an excess of wind tends to fold up the latter, and als a brake wheel, whereby the motion may be retarded.
The engraving shows the manner of constructing the device for adaptation to farm purposes; and on the left, the arms are represented as folded. In the latter figure the outer arm, A, alone is connected rigidly to the shaft, the other arms
front arm, A, being rigidly fixed to the shaft, is retarded. The other arms, however, are free to spread out and com plete the wheel, transmitting all their power through the straps to the front arm, A.
In order automatically to govern the speed in case of storms, the auxiliary win g, D, is applied to a sail of the rear arm. This wing is sligh tly held by a spring, and opens out when the wheel is in high motion, so as to form a plane at ight angles with the sail proper, thus retarding the move ment sufficiently to fold the wheel but not to scop the same To obtain very slow motions, the brake is em ployed as already indicated. A weight on the end of the brake rod may be employed to hold the wheel when the latter is not required to revolve; or instead of the weight, a float may be used, resting on the water in the well, and so arranged as to allow the wheel to pump only a certain quantity of water before the brake is put on.
The device was patented May 5, 1874, by Mr. Elijah S. Smith, of Good Hope, McDonough county, Ill., who may be addressed for furthe particulars relative to sale of rights, etc.

Animal Wonders.

In each grain of sand, there are marvels; in every drop of water, a world. In thatgreat spec tacle called Nature, every being has its marked place and distinct rôle; and in that grand drama called life, there presides a law as harmonious as that which rules the movement of the stars Each hour removes by death myriads of exis ences, and each hour produces legions of new ives. The highest as well as the lowest creted organism consumes carbon and water to support life and its duties, and it is not un teresting to and its duties, and it is not un the ways and means, peculiar to some of the inferior animals. From their petrified ejections being free to revolve thereon. The sails, however, near their \mid we know what such fossilized reptiles as the plesiosaurus extremities, are connected by leather straps which allow the etc., are, and may some day be able to discover the fish and wheel to spread out only to its full size. The rear end of the crustacea they hunted down. Animals, when not living by shaft has a crank arm, and this communicates with the pump rod, On the rear of the rear arm the brake wheel, B, is secured, in contact with which is the pivoted brake, C, governed by a rod leading down the standard, which supports the box for the shaft. The tail board serves, in the ordinary manner, to cause the wheel to turn in whichever direction the wind may be blowing. When the wheel begins to revolve, and power is thus applied to the crank arm, the
 dents; marn nected with branches of industry positive trades, or are con carpenters, paper manufacturers, and weavers, lacemakers even, all working first for themselves, and next to propagate their kind. The miners dig into the earth, form natura arches and supports, remove the useless soil: such as the mole, the chinchilla of Peru, the badger, the lion ant, as well as certain worms and molluscs. The masons build huts and places according to all the rules of architecture, is the bees and tropical ants: there are fish that construct boats that the waves never can upset, and Agassiz has drawn attention to a fish which builds its nest on the floating sea weed in the middle of the ocean, and deposits therein its eggs. The wasps of South America fabricate a sort of paper or pasteboard. Spiders are weavers as well as lacemakers; one species constructs a diving bell, a palace of lace. When the astronomer has need of the most delicate thread for his telescope, he applies to a tiny spider. When the naturalist desires to test his microscope, he selects a certain shell of a sea insect, so small that several millions of them in watercould not be visible to the naked eye, and yet no microscope has yet been made sufficiently powerful to reveal the beautiful variegated designs on the ato mic shells! Aristotle remarked, and he has since been corroborated, that a variety of plover enters the crocodile's mouth, picks the remnants of food off the animal's tongue and from between its teeth. This living toothpick is necessary, as the tongue of the crocodile is not mobile. The Mexican owl, when enjoying a siesta, puts itself under the guard of a kind of rat, that gives the alarm on the approach of danger. Parasites are everywhere, depend on no peculiar condition of the body, and are as abundant in per sons of the most robust as of the most debilitated health. They are at homein the muscles, in the heart, in the ventricles of the brain, in the ball of the eye. They are generally either in the form of a leaf or a ribbon, and are not necessarily, as was once supposed, confined to a special animal. The parasites of fish have been detected living in the intestines of birds; and there are some that, for the purpose of development, must pass into the economy of a second animal.

The removal of foreign substances from the ear may be often accomplished by doubling a horse hair in the form of a loop, and placing the patient upon the side, passing the loop into the ear as far as it will go, then turning it gently. The substance will gen erally come out in the loop after one or two withdrawals. The application will do no damage if the hair he carefully used

STRASBOURG CATHEDRAL AND ITS CLOCK

We publish a view of the interior of the celebrated cathe dral at Strasbourg, a city which suffered the horrors of bombardment in the late war between France and Germany ; but the cathedral enjoyed almost complete immunity, and the renowned clock altogether escaped injury.
The view is taken from the north aisle, looking across the nave into the south transept. The great flight of steps in the foreground leads up into the choir, under which is a crypt, the most ancient portion of the existing edifice. In the south transept are seen the upper part of the clock and the celebrated Angel Column, a beautiful example of thirteenth century sculpture. *The clock was completed in four years by Herr Schwilguè, to replace the one constructed in years which had been itself preceded by the clock of Bishop Berthold. The maker of the first clock, according to the legend, was blinded by his fellow-townsmen lest he should construct a similar work for some other city. The second clock was designed by Conrad Dasypodius, Professor of Mathe matics at Strashourg, in conjunction with the Brothers Habrecht, mers Habrecht, mechanicians of Schaffhausen. The decorations of the case were due to
the painter Tobias Stimmer, a native of the same town. a native of the same town.
This clock stopped in 1789 , This clock stopped in 1789 , and in 1838 Herr Schwilguc̀ undertook the task of restoration. The mechanical part of his work is completely new, and far superior to that of his predecessors. The old decorations and the general design of the former clock have as far as possible been preserved. The whole consists of an edifice of three consists of an edifice of three left, in which ther to left, in which the weights the bottom story is a celestial globe adjusted for the latitude of Strasbourg, and behind it a perpetual calendar with a dial in the center, on which the eclipses of the sun and moon are calculated. On either side are compartments giving the Dominical letter, the solar and lunar cycles, the true and mean time, etc. Above is the clock dial with two genii, one of whom strikes geni, one of whom strikes the first note of the quarters while the other marks the hour by inverting a sand glass. In the second story is an orrery on the Copernican system, a dial plate on which the phases of the moon are depicted in black and gold, and the group of the four ages of man, one of whom strikes the second note of each quarter, while Death in the center marks the hour. Above these in the third story the Savior waves the banner of redemption and blesses the twelve Apostles, who pass belve Apostles, who pass before wh hour, the Genius below in. verts his glass, and a cock upon the weight tower crows thrice in memory of the
temptation of St. Peter. The
procession of the puppets is as great an attraction to ordinar tourists as is the complicated mechanism of the works to scientific visitors.

Bronzing Cast Iron.
By the process of Gaudion, Mignon, and Bouart, of Paris, the copper is said to be thoroughly adherent to iron ; there is nothing between the two metals; and they are so completely united that, if an accident happens, the cast iron will some times scale off with the copper. It is said, moreover, that the deposit of copper is perfectly even, not thicker on salient parts than in hollows or under cuttings. A number of large statues have been covered with copper at Val d'Osne, and among other works, two bulls,larger than nature, presenting each a surface of at least one hundred and thirty-two square feet, and on vases, candelabra, and decorative castings of all kinds, and with invariable success. Some of these objects have been exposed to the air during one summer and two winters without suffering any injury. The copper deposited on the works is never less than $1-100$ of an inch in thickness.

The cost of the works is not more than doubled by this ap plication, and the copper, when carefully treated by a French bronzist, presents an appearance very little inferior to true bronze. The same process is applicable to the tinning of copper or cast iron vessels, the adherence of the two metals is complete, and the coating of tin may be laid on any desirable thickness. The process consists in first scouring and then dipping the articles that are to be coppered into a bath of melted chloride or fluoride of copper and cryolite, to which chloride of barium is added.

Saving is Wealth.

One great cause of the poverty of the present day, wisely
One great cause of the poverty of the present day, wisely
enough of it, is within the reach of all. It is obtained by one process, and one only-saving.

Oil Fuels.

At a recent meeting of the Scientific and Mechanical Society, at Manchester, England, a paper on the "Combustion of Oils for the Gentration of Steam," was read by Mr. Wm. Gadd, who said: "My special object is to describe to you an apparatus, which I believe successfully accomplishes the purpose, and from the use of which I hope to render the combustion of oils for the generation of steam a practical reality.
"The means employed in this method are of almost the simplest character possible, and consist of, first, an open vessel, by preierence flatshaped, cast iron or fire clay, or any oth er suitable material, which is placed upon, and covers, the fire bars in any ordinary furnace. In and upon this vessel are formed projec tions, of a conical or other shape, as many as are found to be necessary; which projections have holes passing completely through them. so as to allow of a free passage of atmosphere, for the sup porting of combustion in parts of the fire or flame range of steam pipes A small dimensions pipes of gas pipes are quite sufficient is laid along the bottom of this vessel, having fine holes pierced therein, at the required intervals, for the emission of numerous small jets of steam. This range of pipes is put in communi cation with the boiler, and regulated by means of a valve, or stop tap. Another pipe is in communication with the cistern or reservoir of oil, and another with the watersupply. The oil sup ply is made self-acting by means of a ball tap, which cives at once mechanica gives at once mechanica
stoking of the simplest and most perfect character possible.
" Upon proceeding to start this apparatus, I first let into the vessel a little water and then as much oil as will nearly bring the liquid to the top of therange of stean pipes, or, in other words, to the depth of three eighths or half an inch; but cither a greater or less depth will act about equally as well. I then light the oil, and when it is fairly started I turn on the steam; and according to the force and quantity will bo the intensity of the flame produced, giving a very per fect combustion at all press ures. Of course, in starting a boiler when cold, it be comes necessary to borrow steam from another boiler for a short time, or to raise a few pounds of steam the expense of a little smoke. The use of the wu ter, which to some may wastrange, is of may seem with the very great service whe very heavy hydro carbons, in assisting to pro duce perfect combustion, and

NTERIOR OF THE CATHEDRAL AT STRASBOURG

 dition, be it ever so small, will soon make a large pile. If The oil being the heaviest substance, the water rises to the the young men and women of today will only begin, and be- top, and thus retards the combustion of the oil, until it esgin now, to save a little from their earnings and plant it in capes through the water in the form of gas, or at any rate the soil of some good savings' bank, and weekly or monthly until it assumes a much lighter form than it originally had add their mite, they will wear a when they ability to increase it will also grow. Let clerk and trades man, laborer and artisan, make, now and at once, a beginning. Store up some of your youthful force for future contingency. Let parents teach their children to begin early to save. Begin at the fountain head to control the stream of extravagance-to choose between poverty and riches. Let our youth go on in the habits of extravagance for fifty years to come as they have for fifty years past, and we shall have a nation of beggars, with a moneyed aristocracy. Let a generation of such as save in small sums be reared, and we shall be free from want. Do not be ambitious for extravagant fortunes, but seek that which it is the duty of every one to obtain-independence and a comfortable home, Wealth, and of the flame, produced by the action of the steam, has such fhe flame, produced by the action of the steam, has such a cooling cffect on the surface of the liquid as to prerent the same from boiling, no inatter how hot it is above. This retardation, I believe, assists very much the economical consumption of the fuel. But with some oils the water is not needed. In fact, thic particular details of this method may be varied according to the character of the oils desired to be used. Thus I find it capable of adaptation to the light, as well as to the heavy, hydrocarbons.

My experiments, as yet, have not been made on such a scale, or for a sufficiently protracted period, to enable me to give you any tables or exact calculations, either as to temperatures under the various conditions, or the evaporative capabilities of the fuel. But I will give yon ono slearly de.
termined result, which was obtained in the open air, without the aid of a flue or draft, and which will enable you to form an approximate idea of the value of these fuels used in this manner. A quart of oil, the cost of which was a lit tle under one cent, was put into the ressel along with water, and lighted, and, by means of the steam jets, was caused to produce a flame 3 feet long by 2 feet 3 inches wide, and 3 feet high, which continued to burn fiercely, at those proportions, for very nearly thirteen minutes, Now
you will readily form a notion of the amount of flame, and you will readily form a notion of the amount of flame, and
the length of time it will burn, which can be derived from the length of time it will burn, which can be derived from the combustion of a quantity of coal purchasable by one cent.

Useful Recipes for the Shop, the Household,

In hardening and tempering steel, a clean charcoal, anthra for or coked bituminous coal fire is required; such as is fit ening purposes. The sulphur contained in the coal combines with the steel to form sulphuret of iron,and ruins its texture.
The employment of cyanide of potassium in electroplating and other arts often results in painful ulcers on the hands of the workmen. Protosulphate of iron in fine powder, rubbed up with raw linseed oil, is the best remedial application. When a cork gets pushed down into the neck of a bottle, insert a loop of strong twine and engage the cork in any direction most convenient. Then give a strong pull, and the cork will generally yield sufficiently to be withdrawn.
In case a finger ring becomes too tight to pass the joint of the finger, the finger should first be held in cold water to re duce any swelling or inflammation. Then wrap a rag soaked in hot water around the ring to expand the metal, and lastly soap the finger. A needle threade 1 with strong silk can then be passed between the ring and finger, and a person holding the two ends and pulling the silk, while sliding it around the periphery of the ring, will readily remove the latter. Another method is to pass a piece of sewing silk under the ring, and wind the thread in pretty close spirals and closely around the finger to the end-that below the ring--and begin unwinding.
The easiest way to hold pearls, in order to drill or otherwise cut them, is to fit them loosely in holes bored in a piece of wood. A few drops of water sprinkled about the aperture cause the wood fibers to swell and hold the gems firmly. When the wood dries, the pearls fall out.

The best mode of oiling a belt is to take it from the pulleys and immerse it in a warm solution of tallow and oil; after allowing it to remain a few moments-the belt should be immersed in water heated to 100° Fah., and instantly removed. This will drive the oil and allow all in, and at the sume time properly temper the leather.

A simple and usually successful mode of extracting a a needle or any piece of steel or iron broken off in the lesh is accomplished by the application of a simple pocket mag. net. An acqnaintance of ours had a little daughter who recently broke a needle off in her hand. A surgeon was called, who made several efforts to find the needle by probing and incision, but without success. After the surgeon had left, he mother conceived the idea of trying a magnet; one was procured, and after one or two applications of it the broken This idea will be of especial utility to workers in iron. Machine shop surgery is not the most delicate nor least painful, though men heroically undergo it rather than stand the loss of time due to an inflamed eye or festered finger. Iron filings have a way of imbedding themselves in the eye, which defies almost every ordinary means for their extraction. For their removal, a small, blunt, pointed bar of steel, well mag netized, will be found excellent, and we should recommend that workmen liable to such injuries keep such an instrument about them. It would be a good plan to insert such a bar in a penknife, in a manner similar to a blade
An easy method of breaking glass to any required form is by making a small notch, by means of a file, on the edge of a piece of glass; then make the end of a tobacco pipe, or a rod of iron about the same size, red hot in the fire, apply the hot iron to the notch, and draw it slowly along the surface of the glass, in any direction you please; a crack will be made in the glass and will follow the direction of the iron. Roun? glass bottles and flasks may be cut in the middle by wrapping round them a worsted thread dipped in spirits of turpentine, and setting it on fire when fastened on the glass.
To clean and restore the elasticity of cane chair bottoms Turn the chair bottom upward, and with hot water and a sponge wash the cane: work well, so that it is well should it be dirty, use soap, let it dry in the air, and it wil be as tight and firm as new, provided none of the canes are
broken. Guns and rifles may be easily cleaned from lead by the fol-
lowing: If a muzzle-loader,stop up the nipple or communilowing: If a muzzle-loader,stop up the nipple or communi-
cation hole with a little was, or if a breech-loader insert a cation hole with a little wax, or if a breech-loader insert a
cork in the breech rather tightly; next pour some quicksilver into the barrel, and put another cork in the muzzle, then proceed to roll it up and down the barrel, shaking it about for a few minutes. The mercury and the lead will form an amalgam, and leave the barrel as clean and free from lead as the first day it came out of the shop The same quicksilver can be used repeatedly by straining it through wash the quicksilver will be again fit for use.
he quicksil wor use.
All light woods may be dyed by immersion. A fine crimson is made as follows: Take 1 lb . of ground Brazil, boil in 3 quarts of water, add $\frac{1}{2}$ oz. of cochineal, and boil another half with $\frac{1}{2}$ oz. saffron to 1 guart of water; the wood should
be pear wood or sycamore. Purple satin: 1 lb. logwood chips, soak in three quarts of water, boil well an hour; ad 4 ozs. pearl ash, 2 ozs. powdered indigo. Black may be pro duced by copperas and nutgalls, or by japanning with two coats of black japan, after which varnish or polish, or us size and lampblack previous to laying on japan. A blue stain 1 lb . of oil of vitriol put in glass bottle with 4 ozs . indi go; lay on the same as black. A fine green: 3 pints of the
strongest vinegar, 4 ozs. best powdered verdigris (poison), strongest vinegar, 4 ozs. best powdered verdigris (poison) $\frac{1}{2}$ oz. sap green, $\frac{1}{2}$ oz. indigo. A bright yellow may
with aloe; the whole may be varnished or polished
A good way to clean black kid gloves is to take a teaspoon-
ful of salad oil, drop a few drops of ink in it, and rub it over the gloves with the tip of a feather: then let them dry in the sun.

The White Streak in Silk.

For a number of years the silk manufacturers of this country have been troubled by the appearance of what is com monly called a " white streak "in dyed silk. This name describes the appearance about as well as any other term we can apply, and has been adopted for lack of any more positive information respecting it. It makes its appearance, principally, on black silk after it has been wound on the spools ready for use on the sewing machines. It is not however confined to black machine twist, but is visible in many of therother dark colors.
It has the appearance of a slight roughness or fuzz on the side of the thread as it lies on the spool. It is invariably white and easily recognized, especially when it occurs in the black silk. We, as manufacturers, have not been exempt from this troublesome difficulty. The combined talents of the silk manufacturers and dyers in this country have been employed during the last few years to discover some method of overcoming the white streak, either by varying the pro-
cess of manufacture, or by covering it in the dye. cess of manufacture, or by covering it in the dye. As yet all efforts have failed to be completely successful. Various theories have been proposed to account for its appearance; much time and money have been spent in the study of the ing it.
Some manufacturers believe that it is due to carelessness during the process of dyeing: that the silk is not thoroughly washed from the soap suds in which it is boiled, leaving particles of soap adhering to the silk. Others stoutly affirm that it is due to the dead wood which the silk takes on as it passes over the wooden rollers of a machine known as the tretcher.
The Nonotuck Silk Company's present theory is that the streak is due in some way to the process of adulteration to which the silk is subjected as it is wound on to the reel from the cocoon. They think it pessible that the cocoons when wound may be soaked in warm water to which a quantity of rice starch has been added, thus making a kind of rice water or thin paste, which the silk takes up as it is wound, thus adding a cheap weighting material to the silk.
That this theory does not account for the appearance of the streak is evident; since some of our brands of silk, we are confident, are perfectly free from any adulteration, but yet the streak occurs abundantly in them. A careful examination with the microscope and chemical reagents, for the purpose of obtaining some definite idea of its nature, soon settled the fact that it is a vegetable substance of some kind but exactly of what nature, I was unable at once to deter mine. This slight clue enabled our dyer to apply a dye that would partly cover it. This new process of dyeing,however, was attended with many objections. It was more expensive, while it took a much longer time to dye the silk. Our greatest objection to this method of dyeing was that it increased the weight of the silk with the dye stuff, thus injuring its quality, and affecting its strength. We could ill afford to sacrifice the strength of the silk for the sake of covering the streak, so we sought to avoid the difficulty by using another brand of silk. I finally became convinced by careful exami nation that it was of the nature of a parasite, or a fungus growth on the raw silk. All of my researches tended to confirm this theory.

I have lately submitted samples of the streak, which were found both in the raw silk and in the dyed silk, to Pro fessors Verrill, Eaton, and Johnson, of Yale College, New Haven, who all confirmed the theory of its being a fungu growth on the silk. An eminent naturalist of Boston, whoni
I consulted on the subject, also confirms the theory, and I consulted on the subject, also confirms the theory, and
thinks that we may find that this growth is connected with the disease with which the silk worms of Europe have bee troubled for so long a time.-C. A. Burt, Oncida Circular.

DECISIONS OF THE COURTS.

United States Circuit Court.o-District ol Massahusetts.

United States Cireuit Court..--District of Connecticut.

 ?

\qquad
\qquad
\qquad

United States Circuit Court.---Southern District

Inventions Patented in England by Americans. [Compiled from the Commissioners of Patents, Journal.
Artifiolal Furl.-D. F. Packer. Mystic River, Conn.
Botile Stoprer, etc.-N. Thompson (of Brooklyu, N. Y.), London, Eng Cartridge holder.-H. Metcalf, Springfield, Masb.
Furniture Castrr.-J. Crist, Furniture Castrr.-J. Crist, New York elty.
Gab, btc., Regulator.-H. W. Shepard, Broo
Gas, etc., Regllator.-H. W. Shepard, Brooklyn, N. Y.,
Generating Steam, bto.-D. F. Mosman, Chelsea, Mass. Mcle and Shuttle Spindle.-J. H. Le Moyne, Boston, Maes Mubical Mocthpiece.-C. G. Conn, Elkhart, Ind.
Pump.-G. G. Hartwick, Jersey City, N. J., et al.
Smelting Copprin, rev,-s. L. Crocker, Mass.
SNap Hook.-F. C. Nye, New York city. (Two patents.)
Spooling Tbread, eto.-J. W. West, Boston, Mags.
Treating Farinaciove Mattere.-W. Adambon, Philadelphia, Pa
Valve.-T. Shaw, Philadelphia, Pa
Fecent Americay and forign equtents.

Improved Car Spring

Improved Car Spring.
Andrew Jackson Culbertson, San Andreas, Cal.-The ceuters of
bent metal bars are connected with the body frame by king bolts. bent metal bars are connected with the body frame by king bolt
The ends of the bars are attached to blocks, which are placed The ends of the bars are attached to blocks, which are placed in
recesses in the truck frames. To the blocks are attached rods, th upper ends of which are attached to springs. The lower parts of the springs rest upon seats attached to the truck frames. To the cross spring are attached the longitudinal springs, which are inter-
posed between the cross bars of the frames and the truck frames, and diminish the rocking of the car body.
Improved Apparatus for Stamping Embroidery Patterns.
John McGarin, New York city, assignor to Isaac S. Van Deusen Passaic, N. J.-The essential feature of this invention consists of a
rotary and traversing brush for printing the patterns on the cloth through the perforations of the pattern sheet or plate; also, mechanism for revoiving it, and at the same time moving it over the pat tern and the cloth; and.also a carriage for the roller, and the oper ating mechanism, comblned with the pattern and cloth-holdin table. Another feature of the invention is the table for holding the
pattern and the cloth, provided with adjusting supports, having inclines by which the table can be raised readily from time to time as the cloths to be printed (of which a number are put together one above another) are removed; and another feature consists of an extension table for holding long or short cloths. There is also an extension frame for long or short patterns, and contrivances fo letachably fastening and unfastening the patterns and the cloth
readil) readily.

April io, 1875.]
Die for Forming Spring Shanks for Shoes. Emil Briner, New York city.-At the uppermost part of the main
casing is arranged rigidy a steel cutting plate, which has above the casing is arranged rigidy a steel cutting plate, which has above the
cuttIng edge a vertical guide frame, through which the piece of
 heet metal from which the shank blanks are made sised ald
lace of the cutting plate to projecting guide plates arranged at one ifde of the main casing, at such a depth below the cutting plate that the exact width of the shank is cut off therefrom by a plunger. The plunger is constructed with a top cutting plate, for the purpose of
phearing off the blank gradually without cutting across its whole shearing off the blank gradually without cutting across its whole
width at the stme time. \boldsymbol{A} sliding spring-acted bolt comes in conwidth at the same time. A sliding spring-acted bolt comes in con-
tact with the punched-oft blank on each stroke of the plunger, pressting the same, while receding against the face of the cutting plate of the plunger, and preventing the dropping of the blank. The esaping die of the plunger corresponds to the form of the spring shank to be produced, the curved part of the same being, however, curved
to a greater extent than the shape of the tinished shank, for the purto a greater extent than the shape of the tinished shank, for the pur-
pose of allowing for the elasticity of the metal. The correspondingly curved convex shaping die imparts the required degree of spring to the shank. When the shank is released by the return moioward a slotted recess for assuming its permanent curved shape, and drops through the same to the pan below.

Improved Device for Baling Cotton.
William Iler, Shreveport, La., assignor to himself and John W. Wiliam Her, Shreveport, La., assignor to himself and John W.
Ilurns freely on a bolt. An arm comes in to contact with the which of turns freely on a bolt. An arm comes in contact with the end of
the lever, so that when the end of the band is between it and the the lever, so that when the end of the band is between it and the The draft bar passes through a mortise in the lever, so that it will
turn freely on a pivot pin. At the other end of the draft bar is another clamp for clamping and holding the other end of the band.

Improved Car Coupling.
Albert A. Kellogg, Montgomery, Mich., assignor to himself and Miles E. Cartwright, of same place.-This is a drawhead with longitudinal top slot and swinging coupling hook, that is seated, when
carried into downward position, into a bottom hole of the drawhead, locking thereby the coupling link. The coupling hook is attached to a lateral shaft, and swung, by a spring-acted lever frame provided with haudles at the sides of the car, into raised position,
being retained therein by the action of a bell-crank lever, with being retained therein by the action of a bell-crank lever, with with broad front head slides in a guide recess of the drawhead, and conuects with the ofther end of the dog, so that by the concussion of the drawheads the shaft of the coupling hook is released, and the hook carried
ling the link

Improved Sleeve Button.

Herbert N. Mason and Orville P. Richardson, Attleborough, Mass., suid Richardson assignor to said Mason.-The shank which connects the shoe to the front portion of the button is attached to the back
of the front, and also to the disk of the shoe, by fitting a tenon on of the front, und also to the disk of the shoe, by
the end through the plate, and heading it down.

Improved Thill conpling.

Eyhraim Soper, Brooklyn, N. Y.-A clainp is bolted to the shaft, and has a stud going through a mortise, aud a pivoted cam lever, so as to force the clamp together and hold it fast. The safety trap is erving the purpose of the strap itself, it prevents the cam from working loose. An elastic cushion is made with a wide groove, and the eye in the eye strap olamp is contracted along the middle por-
tion, so that the collars of the cushion are interposed between the ion, so that the coliars of the cushion are interposed between the
ware and the eye strap, and thereby prevented from striking arainst the ears und rattling.

Improved Car Coupling.

 George W. L. Row, Steele's Tavern, Va.- When any car is thrownoff the track, so that thereby the relative position of the link and
drawbars is changed, a retaining spring is arranged to give way and If the track, so that thereby the relative position of the link and
drawbars is changed, a retaining spring is arranged to give way and release the link, so as to uncouple thereby the cars.

Improved Dressing of millstones.
John Williams, Dresden, assignor to himself and George J. Stone-
breaker, Fayetteville, Tenn..- This consists of a metallic frame, breaker, Fayetteville, Tenn....This consists of a metallic frame,
having slides which run in grooves, moved by racks and pinions, and two guides which connect the slides, between which is contined the marker, which is moved in the guides at right angles with the
slides. The object of the device is to cut the face strictly with the staffed face of the stone, and by so doing retain the true face.

Improved miter Box.

Herman Hempel, Syracuse, N. Y.-The guide block of a miter box Herman Hempel, Syracuse, N. Y. -The gulde block of a miter box
is constructed with a rotary base plate and sectional blocks, made right-angled in front and foriued circular in the rear. The rapid
adjustment of the clamps to the required mitering angle and the adjustment of the clamps to the required mitering angle
molding is effected by the simple pressure on the treadle.

Improved Process of Coloring Tobacco Oscar Knab, Newark, N. J.-This consists in treating tobacco
leaves for imparting or restoring' a dark color to the same by passing the leaves, in a soft and moistened state, through a solution of

Improved

 Willizm T. Dobbs, Pana, Ill.-This invention consists of plastictubing formed of cements to shut off caves, slides, or other formauions of the earth that give way and slip down, causing a break in tions of the earth that give way and slip down, causing a break in
the walls of wells or other deep borings in the earth. The compound with which the cave in the wall is tilled and crammed is per-
fectly soft and plastic, adjusting itself to the cavity. It undergoes fectly soft and plastic, adjusting itself to the cavity. It undergoes
a chemical change and hardens under water at any depth in a few a chemical change and hardens under water at any depth in a few
hours, completely binding and securing all fragments and loose particles, so that being subsequently drilled through it will leave a
zolid and strong wall. The compound used is a mixture of gypsum, bydraulic cement, and fine sharp sand, in any proportion that will form a solid cement.
Improved Adjustable Cut-off for Steam Engines. Henry Webster, Cassville, Wis.-An oscillating toe piece works in the regular manner when rack pieces do not touch raised top rails; hut as soon as the top rails are set to engage them, pawls are in-
stantly released thereby from the shoulders of the toe piece, and produce, by the weight of the levers thereon, the dropping of the respective toe and lever, and the cutting-off of the steam. The
nearer the top rails of the rack pieces are placed to the pivoted nearer the top rails of the rack pleces are placed to the pivoted
arms of tive toe piece, the shorter will be the cutting-off action, and the quicker the speed of the engine.

Improved Folding store-Shelf.
Minter P. Key, Waxahachie, Tex.-This store shelving is so constructed that it may be readily folded for convenience in removing it from the store, and for transportation. Each section of the
shelving is divided into three equal parts. The lower part is occunied by drawers and a closet. The middle part is hinged to the lower part, so that it may be turned down. The upper part is
binged to the middle part, so that, as the middle part is turned back hinged to the middle part, so that, as the middle part is turned back vertical position. To the upper part are attached caster wheels, The caster wheels, when the shelving is arranged for use, enter re-

Sritutific Amprican.
Improved Machine for Tinning Sheet Copper. William Jenkins, Newark, N. J.-Sheet copper and other soft
metals (as sheet bruss and other composition metals) are usually tinned by "wiping" the fused tin or tin and lead with cloths o waste, no machinery being employed for the purpose. To spread the melted tin evenly by this hand process requires much care and skill, and a great waste of time. The present invention is a combination with a vat of two rolls, the former running in the molten metal within said vat, and provided with a surface that will cause face, or one that will not permit the adhesion of said metal, so that a sheet of copper may be tinned on one side.
Improved Spring Bolt Fastening for Tongucs, etc. Ethan H. Pettit, Twin Lake, Mich., assignor to himself and Del lamar Wade, of same place.-A semicircular plate on the end of the tongue has circular portions to receive a tongue yoke, which con-
sists of a hook part and spring-held straight part combined, and sists of a hook part and spring-held straight part combined, and
their ends meeting, so as to form a flush joint. This leaves an ope their ends meeting, so as to form a flush joint. This leaves an open
space for the introduction of the trace or other article to be secured.

Improved Whiffietree Hook
Othuiel J. Smith, Wauwatosa, Wis. - A hook is formed of a stationary part, having a downward extension at the end, and a piv
oted correspondingly curved part is arranged to fold or lap thereon oted correspondingly curved part is arranged to fora is first placed over the lower part, and carried back
The trace
toward its rear end ; the upper part is then brought down, and the toward its rear end; the upper part is then brought down, and the trace placed over both, so as to lock them tightly together and pre vent their opening. The trace is thereby not liable to be detached
in going down hill, or by other causes, but is retained in the hook, in going down hill, or by other causes, but is retained in the
without the use of a spring, in a strong and secure manner.

Improved milk-Cooling A pparatus.
Orrin J. Stickles, Canton, N. Y.-In this device any desired num ber of pans and tubes may be arranged in a series, and connected by the same water pipe. Cold water or ice is allowed to fow into
and stand in an inner tank. The milk in contact with the cold wall and stand in an inner tank. The milk in contact wilh the cold walls
of the tank will become cold, will sink and be replaced by the
warmer particles, thus establishing a circulation that will soon cool warmer particles, thus establishing a circulation that will soon
the entire mass of the milk, however large the tank may be.

Improved Carriage Curtain Fastening.
Henry Foster, Westerly, R. I.-That portion of the fastening which is attached to the curtain is a wedge-shaped slide having shank extending through the curtain. On the under side of th
wedge is a pin, forming the lock. The slide travels in a socket plate which has a series of holes, into which the pin will rest when the curtain is drawn to the desired tension. When it is desired to un fasten or adjust the curtain, the operation is performed by tilting
the wedge sufficiently to release the pin from its hold in the plate. the wedge suffliently to release the pin from its hold in the plate.
This being done, the sald wedge may be moved backward or forThis be
ward.

Improved Step Ladder.
Robert S. Van Zandt, Williamsburgh, N. Y.-The standards of the ladder are made of the same width, and the adjacent ends of the side bars are hinged to each other, so that they may be turned int other to form a step ladder, and turned parallel with each other for
ond torage and transportation.

Improved Alarm Lock.

Jonathan Walton, Brooklyn, N. Y.-This device may be used as lock, a latch, a bolt, and an alarm, as may be required. When the pin is held forward and a bolt pushed outward, the end of the bolt
strikes against the head of the pin and pushes the catch outward strikes against the head of the pin and pushes the catch outward
allowing the door to be opened. When the pin is left free, the out
. ward movement of the bolt simply pushes the pin outward, and does not move the catch. A button is pivoted to the catch, so tha it may be turned down over the pin to hold it, so that the outwar
dot movement of the bolt may push back the catch and allow the doo to open. When the button is turned back, its free end strikes upon
a projection, so that the catch cannot be pushed beck, thus forming a projection, so that the catch cannot be pushed back, thus forming
a double lock. The bolt is thrown into or out of gear with the knub spindle by meaus of a key. A rong, which serves also as cap fo spinde clock, is sounded by turning the knob

Improved Car coupling.
John B. Winters, Attica, Mich.-In this coupling a pivoted hook is arranged within a drawhead, and acted upon by a spring, which en-
ables it to operate automatically for connecting with the coupling ables it to operate automatically for connecting with the coupling link. The lever for car coupling is connected with a cranked leve
on the platform. Said lever is pushed to the left to uncouple, is held on the platform. Said back by a pin when the hook is coupled, and is held forward to keep the hook raised for the escape of the link by like means.

Improved Check Box
Somers Van Gilder, Knoxville, Tenn.-This is a contrivance or apparatus whereby the cash receiver of a store or other busines place will exhibit to the customer the amount of his blll by mean they are placed by the operator by means of slides. The check
prevent the withdrawal of the slides after so exhibiting the bill, and prevent the withdrawal of the slides after so exhibiting the bill, and
fall into locked receptacles, where they record the amount for
Improved

Improved Reversing Link for Steam Engines.

John Simpson, of Meadville, Pa., assignor to Dick \& Church, o
same place.-This invention relates generally to valve gearing, bu same place.-This invention relates generally to valve gearing, but
particularly to that shown in the patent No. 125,769. Two slotted particularly to that shown in the patent No. 125,769. Two slotted bolted
pivots pivlar in the middle of each pivot is titted between the two plates t hold the pivots in place, making a simple and cheap contrivance,
well adapted for durability. The wrist pin of the valve rod works well adapted for durab
in the notched pivots.

Improved Cranberry Separator.
Daniel T. Staniford, New Egypt, N. J.-As the cranberries fal upon inclines, such of the perfeot berries as are unobstructed bound upon the upper inclines and roll down aprons into a receiver, and are the marketable berries. The imperfect berries do not bound but slide, down one incline to another, and, falling from the last in
cline into a receiver, are thrown away. The berries that fall from cline into a receiver, are thrown away. The berries that fall from
the last upper incline fall into a receiver, are called middlings, and are again passed through the separator.

Improved Compound Engine.
Jackson W. Bell, McKinney, Tex.-This invention consists of series of engines for working the steam over by exhausting it from the first into the second, and so on, for utilizing the pressure los when the steam is exhausted from a single engine into the air. Th engines are all connected to one driving shaft at different point for supply and exhaust pipes and valves to all.

Improved Water Wheel.

William J. Thompson, Springfield, Mo., assignor of one half hi right to Springfleld Iron Works.-This invention applies more espe cialy to a water wheel for which letters patent have already bee
granted to the same inventor ; and the improvement consists in a improved mode of operating the gates; in a spring for each gate, to insure the simultaneous closing thereof; and in a three-chamber 'g,
box around the main shaft, having an arm, which extends over the sector gears and supports the pinion shaft.

gausiress and extsonal.

The Charge for Ineertion under this head is 81 L Line.

If you wish to build a mill that will, in 10 hourss
 They can five an advertiser more for his mones
than any otuer ageney in the Untited statese.-I crusuader,

 For Sale,Model Engine. Wri.E.Lewis.clevelana, Thhe Dilidine Animal Trap, patented Auq. 2j, 1, isit

 Order wanted for Spool Blanks, se., or Hard or Sorndon,

 Agents.-10 men wanted; sio daily, or salary,

Thoms's Fluid Tannate of Sodar never fails to

 M. suowray, North Adams, Nass.

 "The Best are always the Cheapest."
Over One Thousand in use, giving entire satisfactio
Address Wm. D. Kussell, 18 Park Place, New York. Address Wm. D. Russell, 18 Park Place, New York.
File-cutting Machines. C. Vogel, Fort Lee, N. Engnnes, 2 to 8 H.P. N. Twiss, New Haven, Ct. Faught's Patent Round Braided Belting-The
Best thing out--Manufactured only by C. W. Aruy, 301 \& 303 Cherry St., Philadelpha, Pa. Send for Circular.
Price only $\$ 3.50$.-The Tom Thumb Electric Telegraph. A compact working Telegraph Apparatus,
for sending messages, making magnets, the electric light, for sending messages, making magnets, the electric light,
giving alarms, and various other purposes. Can be put in
operation by any lad. Includes battery, key, and wires. operation by any lad. Includes battery, key, and wires.
Neatly packed and sent to all parts of the world on recelpt
of price. F. C. Beach \& Co., 263 Broadway, New York. of price. Manuacturers,who have wastestrips, pieces,
or round blanks to seil, address-giving sizes-Norton Bros., 41 \& 46 River St., Chicaso, Ill. Zero-Refrigerator with Water Cooler. Best in
the World. Send for Catalogue. A. M. Lesley, 221 w .
23d street, New York.
The Lester Oil Co., 183 Water St, N.Y., Exclusive
Manufacturers of the renowned Synovial Lubricating Oill. The most perfect and economical lubricant in cxistence. Send for Circular.
For small size Screw Cutting Engine Lathes and
Drill Lathes, address Star Tool Co., Providence, R. I. Wash Stands, New Styles, Marble Tops, can be
used in anv sttuation. Prices very low. Send for a catausede. Balley, Farrell \& Co., Pittsburgh, Pa. Peck's Patent Drop Press. Still
Address Milo Peck, New Haven, Conn.
Genuine Concord Axles-Brown,Fisherville,N.H. Spinning Rings of a Superior Quality-Whitins-
ville Spinning Ring Co., Whitinsville, Mass. Hydraulic Presses and Jacks, new and socond
band. Latkea and Machinery for Polishing and Buming

The "Scientific Amerncan" Offce, New York, is
Aitted with the Minlature Electric Telegraph. By touching litte buttons on the desks of the managers siggals are sent co persons in the various departments of the estabilish-
ment. Cheap and effective. splenald for shops, oftices,
men dwellings. Works for any distance. Price 86, with good
Battery. F. F . Beach $\&$ Co, 263 Broadway, New York Makers. Send for free lllustrated Catalogue.

* For best Presses, Dies, and Fruit Can Tools, Bliss Buy Boultss Panaling, Moulding, and Dove-talling
Macine. Send for clicular ond smple of work B Hach'y Co., Battle Creek, Mich., Box 227.
Small Tools and Gear Wheels forr Models. Lish
tree. Gooonow Wighman, 23 cornhill, Boston, Mass. Hotcchiss Air Soring Forge Hammer best in the
market. Prices Iow. D. Frisbie \& Co., New Haven, Ct. For Solid Wrought-iron Beams, etc., see adver-
tsement. Address Union Iron MIlls, Pittsburgh, Pa. for Ithograph, \&c.
Temples an
Temples and Oilcans. Draper, Hopedale, Mass. For Solid Emery Whels and Machinery,
the Union Stone Co., Boston, Mass, , for circular.
Mechanical Expert in Patent Cases. T.D. Stetso All Fruit-can Tools,
Griudstones-4,000 tuns. Berea Stone Con, N.J. Send for Circular of a very Superior Boiler Feed
punn. D. Frisbie $\&$ Co., New Haven, Conn

4 4utus Mapise

W. H. G. will find directions for silvering mirrors on p. 237, vol. 31.-W. H. P. can make a p. 202, vol. 32.-J. F. P. will find a recipe for black ink on p. 203, vol. 29.-J. C. can clean gilt frames
by following the instructionson p. 27, vol. 31.-W.E. will tind on p. 251, vol. 29, a formula for rubber
varnish aplicable to textile fabrics.-W. A. B. will ind an explanation of the pyrometer, for indica ting the fusing points of metals, on p. 171, vol. 32 . -L. B. A. will find details of the threads to be cut
in bolts of various sizes on p. 27 , vol. 29. D. K. will in bolts of various sizes on p. 2i, vol. 29. D. K. will
find rules for ascertaining the strength of boilers on pp. 155, 185, vol. $32 .-$ C. B. will find details of the 29.-H. M. B. will find a description of nitro-glycerin on p. 283, vol.30.-E. L. will find a rule for determining the curvature of the earth on p. 122, vol. pantagraph on pp. 99, 179, vol. 28.-W. C. W. G. will find an article on steam on the Erie canal on p. 96 ,
vol. $2:$.-F. W. P. will find directions for cleaning oiles on pp. 313,379 , vol. 28.-W. B. A. will find that on p. 123, vol. 31, for steel.-P. McL. can cast Bab bitt or other metal free from air holes by following the directions given on p. 409, vol. 31.-G. M. E will find on p . 11. vol. 31, a recipe for a shellac var-
nish which will do for making leather airproof.. 267 , vol. 33. The manufacture of starch from po tatoes is described on p. 315, vol. 31.-J. M. S. and others will find a description of Hero's fountain
on p. 5. , vol. 29. -F . H. W. and C.S. P. will find di on p. 59, vol. 29.-F. H. W. and C. S. P. will find di-
rections for making rubber stamps on p. 156 , vol 31.-W. J. C. will find a recape for cement for
leather on p. 119, vol. 23.-J.K. and others will ford full descriptions of tools for lathe work in the early chapters of "Practical Mechanism."-E. D. W.
will find full directions for constructing a filter cistern on p . 251 , vol. $31 .-A$. R. will find a recip for laundry blue on p. 219, vol. 31.-G. A. B. will
find directions for bluing steel on p. 123, vol. 31.p. $\because 0$, vol $31, G$. s, tions for casehardening wrought iron on p. 202, vol 31.-M. K. W. will find complete instructions for coloring photographs for the magic lantern on p. 390, vol. 30 .
(1) G. E. F. says: A machinist proposes the following: Three up and down saws (with two upright iron rollers), the sides of the rollers to be
fluted so as to press against the deal and feed it to futed so as to press against the deal and feed it
the saws. He thinks that the deal, however crooked, will be always straight between the pulleys. Would this answer the purpose? A. The principle is old. One of the upright rollers is stationary
or fixed at any desired position, the other yieldor nixed at any desired position, the
ing to irregularities.-J. E. E., of Pa.
(2) C. C. D. and others.-A one inch objec-
tive ought to divide Castor, but no power of 100 should be used. One of 50 is better
(3) L. C. H., of Heidelberg, Germany, asks: How can I become a good practical master me-
chanic of a railroad? A. You must commence in the shops, and make yourself acquainted with the theory as well as the practice of the profession,
and work your way up by industry and perseverance. (4) G. W. L. says: I am working on a boiler
36 inches in diameter by 20 feet iron, with cast iron heads $1 \frac{1}{4}$ inches thick, without flues, tubes, or braces. What is the safe working steam pressure to be carried? I asked a theoretical engineer, and he gave a rule of algebra that 1 cannot work out, as I have nevor went beyond
the rule of three in arithmetic. Is there any book that rives rules for finding the strength of iron, distance apart of stay bolts, braces, and rivets in a boiler without algebra? I asked the above men-
tioned engineer also what rule there is for getting the proper distance apart of stay bolts in flat surfaces of a boiler of $\frac{5}{18}$ inch iron, to carry 70 lbs , $\sqrt[3]{\frac{5 \overline{\partial z 0}}{70}} \times 9=\sqrt{79} \times 0 \cdot 9=8$. This is all Greek to me. Will I have to learn algebra before I canget such a rule to work? A. You will find the information
as to working pressure in the article on "Strength of Boilers," pp. 153,186, vol. 32. Your remark about the formula being all Greek to you suggests that, in common with many others, you doubtless look
upon algebua as a sealed hook, entirely different
from arithmetic. In a large measure, however, it
is only a kind of shorthand for expressing rules, is only a kind of shorthand for expressing rules, of algebra would aid you greatly in your business. To illustrate how the use of algebraic expressions condenses an expression, we will translate the example quoted for you. $\sqrt[V]{ } \frac{1530}{70} \times 0.9$ expresses that the number 5530 is to be divided by the pressure
of the steam, and that the square root of the quoient is to be multiplied by $\frac{9}{10}$. A little practice will en
sions.
(5) A. M. A.-The inventor must sign and make affidavit to the papers. But he may use his
middle name, with first initial letter ; and may give only the temporary residence where he is when the papers are signed.
(6) R. E. B. says: I find that the fire pot in my parlor stove never has clinkers on it. It is of
cast iron. Why would not cast iron answer in place of brick in a cooking stove, which in a few ays bcco.nes coated with a substance like sla Which has to be cut off, causing a great deal of
trouble? A. Probably its form would have to be changed as well as the material, to prevent it from burning out.
(7) S. H. H. asks: I have been perplexed When tempered and cleaned off, Idiscovered cracks or flaws all over the plates, on the side where the holes were smallest, but not entering the holes. I have made a great number of plates of this kind, and never met such an accident before. What is
the cause? A. The plates were probably made of a different quality of steel from that which you had been accustomed to use.
(8) P. R. B. says : 1. I propose to bring a top of a hill to base, through a pipe 2 inches in diameter. The distance from pond to summit o hill is 30 rods; perpendicular hight from pond to 300 rods : perpendicular hight from pond to base 150 feet. What would be the amount of water dis charged with a 2 inch pipe? A. The pipe will pro
bably deliver between 40 or 50 gallons per minute or the water will have a velocity of 5 or 6 feet second. 2. How heavy a pipe would be required to
stand the pressure? A. Ordinary iron pipe will nswer.
(9) E. H. R. asks: What is the best shape, size, and hightfor a brick chimney for a stationary engine of 50 horse power? A. A general rule is ma me either round or square, from $\frac{1}{3}$ to $1 \frac{1}{4}$ of the ratesurface, and the hight from 50 to 75 feet.
(10) H. D. W. says: 1 . I have a small enlathe jig saw. I intend making a copper boiler a lathe jig saw. I intend making a copper boiler
Of what capacity should it be? A. From 10 to 12 gallons. 2. How much pressurecould such a boiler stand if made of $\frac{1}{16}$ or $\frac{3}{32}$ inch copper? A. It will depend upon the diameter. 3. How much pressure
would be sufficient to run the engine? A. Fifty would be sufficient to run the engine? A. Fift or sixty lbs. 4. How much weight should I put on
my safety valve? A. Determine it by means of
(11) C. W. says: In an article recently pub ished in your paper on combustion, the practice of consuming the carbonic oxide is recommended The theory of course is an old one, but is it a correct one in an economical point of view? In practice it is found, I believe, that, the more air you admit to a fire, the more rapidy is the heat evolved carried up the chimney. It is no use ma-
king the fuel give out more heat if we cannot retain that heat and utilize it. At the great factories at Mulhouse in Germany, a series of experiments was tried in relation to the combustion of smoke, with a view to the saving of fuel. The result was
disappointing. When the necessary amount of air for the perfect combustion of the smoke was admitted to the fires, there was a loss of heat. The in London. At Mulhouse the practical engineer
indice now is to admitaslittle air as possible to the fires ($1 / 2$ of the amount formerly admitted) and to "feed a little at a time and often." A. We do not think these matters are so definitely settled that a general rule We have known of a number of cases in which it seemed to us that there was an advantage arising from admitting air above the fire. We do not at present recall the experiments to which you refer,
and would be glad if you would send us a record, in case it is convenient.
(12) G. M. E. says: 1. I wish to construct a boiler for a 2 inch cylinder engine to carry from 20 to 30 lbs. steam. What should be the size and diameter and 3 feet high. 2. Would the engine be large enough to run a small round-bottomed boat, feet long and 4 feet beam? A. Yes.
(13) W. H. M. asks: How can I make some miniature winter scene? A. Use small pieces paper.
(14) G. W. T. asks: 1. I am building small engine, 1% x 3 inches stroke. Will ports $18 \times 3 \times 4 / 4$
be too large to drive a small 6 inch foot lathe with 40 lbs steam pressure? A. The engine will answer very well. 2. What weight of fly wheel would I
want for such an engine? A. From 15 to 20 lbs . 3. Of what size should the steam pipe be? A. Use a steam pipe of about $\% / 8$ of an inch in diameter.
(15) C. W. McC. says: I have water which and thirty rods long with fifty feet fall, using the same on a fifteen inch wheel to drive a churn. Would the power be increased by erecting a bulkhead at the lower ond of the conductor 20 feet
high, closedat the top aid connecting the wheel
with the bulkhead? A. We cannot see, from your
(16) J. R. says: A plate is 10 feet long by 6 nches wide by 2 inches thick; 6 inches of its width each end and in the middle, on both sides, I desire to weld on square pieces of iron, each piece 8 inches square and 2 inches thick. Can these six pieces be welded by passing them with the plate through he rolling mill in the same way as the plate was through the rolls? I suppose that the pieces could be welded by hand. A. There would be some dif ficulty in effecting the weld as you surgest, as it probally never has been done, so that the question could only be decided definitely by experiment.
(17) J. C. asks: 1. I wish to place a small engine in a boat 18×2 feet, and am told that it will be very dangerous to have an upright boiler,on account of the boat's rolling. Would it be so? A.
It is very common to use vertical boilers in small It is very common to use vertical boilers in small
boats. 2. What speed could be got from such a oat, drawing 8 inches water, with an engine 3 x inches, and a boiler pressure of 00 lbs ? A. If the
(18) C. H. P. asks: What is the difference
between one square mile and one mile square: detwe one square mile and one mile square.
(19) H. S. says : I am building a small steam engine 2×6 inches; the exhaust is $38 \times 3 / 4$, and the
steam ports $1 / 143 / 4$. Do you think the exhaust is too small for the steam? What size of boiler will of steam will I have to carry to ε ret the most pipes and two steam chests, as on river boats, but I shall have slide valves instcad of the uisual poppet valve. Do you think they will admit it up to the Fair next ycar? I have only been at my trade
two years. I designed and made my own draw ings and my own patterns for the engine The dimensions of ports will answer very well. A boiler 1 foot in diameter and 3 feet high will answer to run the engine, but not to do
much work. The higher the pressure of steam, the more power you gine. You will have no difficulty in exhibiting
your engine at the American Institute Fair we should judge that you were doing very well at your should
trade.
(20) L. M. asks: Will a stack 30 yards high, y? If so, what is the cause of it? A. It will, for the same reason that the products of combustion rom a boiler pass up the chimney.
(21) H. H. C.says: 1 . I am building a steamboat with is feet keel and 4 feet beam. She is?
fcet deep. She has an upright engine, cylinder 2 nches bore by 4 inches stroke. Her propeller 25 inches long, with 11 two inch return flues work-
ing at a pressure of 100 lbs . Firebox is 30 inches ing at a pressure of 100 lbs . Firebox is 30 inches long. How much weight will the boat carry? A.
It would be necessary to make a calculation from It would be necessary to make a calculation from
the drawing of the boat, but you can casily settle the matter by experiment, either with the boat or a model. 2. How fast will she run? A. The boat will probably have a speed of from 6 to 7 miles an hour, under favorable conditions.
(22) S. D. asks:A few weeks since I saw,on perpetual motion. It worked with levers and balls. It drives a balance wheel and several cog wheels. I could not see where the power to drive was applied. The machine was placed on a boxed table that looked suspicious. How is it
driven? A. We never heard of it before; but it reminds us of a story we once read of a wheel that started itselfand neverstopped, but which did stop when the horse that was turning it got tired.
(23) F. D. asks: 1. Will water flowing from two inch tube, the lower end of which tube is gradually contracted to one inch in diamcter, turn an overshot water wheel three fect in di-
ameter with sufficient force to drive a small two gallon churn? A. It ought to drive a number of
such churns. 2. What amount of water would low through such a tube in an hour? A. From 300 to 400 cubic feet. 3. Could not more work be any other with the above conditions? A. We thillk
(24) T. R. says: I am desirous of discharging grain from the cars to a flouring mill at a dis-
tance of 350 feet. The discharging point can be a tance of 350 feet. The discharging point can be a
few feet the lower, if desirable. Can it ve done through an airtight tube, by suction or otherwise, and would an exhaust fan produce a sufficient vawould answer very well. See our front page of this issue.
(25) E. W. P. asks: Is it true that the lateral pressure of water against a perpendicular sur-
face of any hight is just the same when the water face of any hightis just the same when the water
extends back only one inch, as it would be if it extended back twenty feet or any greater distance? A. Yes, it is true; and the reason is that
the pressure of water is transmitted equally in every direction, so that it only depends upon the hight of the column and the area of the surface pressed.
(26) C. S. B. asks: What size of engine is
necessary to propel an ordinary Whitehall boat, is feetlong, at a speed of eight miles an hour? What should be the size of boiler and screw? A. Enrine 2×3 inches; boiler 24 to 28 inches in diameter; propell
(27) P. F. M. says: 1. Our fire engine has a 9 inch crlinder with 12 inches stroke; pump is 5 acting. The boiler has about 195s square feet of acting. The boiler has about isijsquare feet of
chamber．Do you think we could throw any fur－
ther by connecting a single line of hose to both of ther by connecting a single line of hose to both of
these checks，＂Siamese＂fashion？A．We think blow from the surface than from the bottom，in case the foaming is caused by violent boiling of the water，and by changing from fresh to salt water？ I do not mean to let the bottom blow remain idle
altogether，but to use it occasionally．A．It does altogether，but to use it occasionally．A．It does
not make much difference in such a case，as it is necessary to blow very freely until the water is changed． 6 ．Is it necessary to blow at all，in case
we are working fresh water？I think the water imply lifts but does not foam，and by working the engine slowly（say at $i 0$ revolutions）I think the wa－ ter would settle．A．If the water is perfectly
freshand clean，it is notnecessary．4．We experi－ fresh and clean，it is notnecessary．4．We experi－
ence great trouble with our engines when we feed ence great trouble with our engines when we feed
with dock water．Can this be remedied？A．The only plan that occurs to us is not to use that kind
of water．Fresh，clean water is almost indispen－ able for the satisfactory action and durability o n ordinary fire engine boile
（28）M．B．B．asks ：How much power should 1 require to propel a boat 10 miles an hour against ong over all，with 12 feet beam，depth $41 / 2$ feet，width long over all，with 12 feet beam，depth $41 / 2$ feet，width
of bottom 9 feet，to draw $21 / 2$ feet of water？A． from 25 to 30 ffective horse power．
（29）P．R．S．asks ：1．I wish to put in lons water will it require？A．You will require from 8 to 16 gallons of water per horse power per hour．2．I shall have to dig 20 feet to water and then get hard water．Would it not be better to
put in a cistern and use rain water，and run the put in a cistern and use rain water，and run th the steam to use over again？
he erhast into the well or cistern it would be best to use a coil with holes in it through whic the steam could escape．
（30）P．M．asks：Is the curve which a can A．It is neither，but a curve depending on so many varying elements that its general equation has ever been precisely determined．
（31）J．T．L．asks：Will an expansion valve reat extent？A．Probably．2．How much spac is generally allowed between grate bars used in burning wood？A．There is great difference
（32）A．D．P．asks：1．Is the plan of filling a boiler full of water and applying heat a safe an correct method of testing the strength？A．Yes， 2．In cleaning flues with steam，is it necessary for
（33）L．S．G．says：I have a small telescope of about 15 inches focus；the object glass is 118 inches in diameter，and the eyepiece is composed
of 2 double lenses．If I get a new object glass of 48 inches focus，and use the old eyepiece，would be any
Can I mold rubber and give it a red color？ process． W C B says．It is supposed that out timber will support a safe strain of 800 lbs ．per cubic inch．If this is so when the bearings are
placed 1 inch apart，what will it support when placed 12 inches apart？In what ratio does the strength diminish as the bearings are separated
A．The strength varies about in the inverse ratio A．The strength varies about in the inverse ratio
of the distance between supports，so that it would be about $\frac{1}{12}$ as great in the second case as in the
first． （35）J．T．S．asks：Do the steam chest and
cylinder of an engine reguire oiling？Some engi－ cylinder of an engine require oiling？Some engi－
neers contend that it is an injury，and causes prim－ ing．A．Generally it is best to use oil，but wehave certainly not advisable to use so much that it certaines priming．
（36）J．A．B．asks：Could a worn cotton gin be made to cut straw，etc．，by taking off the saw being fed to the cutter by its own weight？A． This would probably succeed，as this device，as we
understand your description，is somewhat similar to straw cutters in common use
（37）J．A．G．asks：What is the reason that boiler platesteel is straighter than boiler plateiron？
A．We doubt if it is a fact，for similar grades of A．We dou
the metals．
（38）R．W．T．asks：I have two hot bed sashes，side by side；one was used last year，the other is new．The panes of the former are dry，
while those of the latter are so clouded with mois ture that I cannot see through them．There is one new pane in the old sash which is also clouded with moisture．Has the glass undergone any change
from the action of the sun？A．Air has been ad－ from the action of the sun？A．Air has been ad－ mitted by some opening near the sash having no moisture．The right conditions for a hothouse are fulfilled when the moisture collects upon the un－
（39）J．C．asks：Who was the invertor of
the fish joint on railway rails，and when was it irst the fish joint on railway rails，and when was it first
brought out？A．W．B．Adams，of England，184it
（40）H．C．B．asks：If arsenic（arsenious acid）is dissolved in water raised to the boiling
point，will the water retain all the poison？If not， point，will the water retain all the poison？If not，
what proportion，and is there any residuum，if the arsenic is pure and sufficient water be used？A Arsenious acid is soluble in 12 parts of boiling wa－ ter．In order to form a solution of the acid con－ taining 1 part of the acid in 12 parts of the water， it is necessary to boil an excess of it with the wa－ parts of wath only 1 undissolved，even with 1 part of the acld to 50 or 60 parts of water．

Will chloride of lime impart its strength to alco－
hol the same as it will to water？A．Yes．Chlor ide of calcium is soluble in 0.25 parts wes．Chlor ah．，in 8 parts alcohol at 59° Fah．
（41）W．M．asks：Is there any preparation tion of dilute sulphuric acid？A．Yes，paraffin．
（42）W．S．W．asks：What elements ar be found in the onion？A．Onion consists of carbon，hydrogen，oxygen，nitrogen，and sulphuy，
combined into various bodies，one of which，th sulphide of allyl，gives to the onion its most char cteristic properties．
Please name a few tests by which a soil can be analyzed．A．Soil cannot be analyzed by a fe
tests． tests．
（43）N．S．B．Jr．asks：I have a fernery，the case of which is $11 / 2$ by $21 / 12 \times 2$ feet；the tray to hol
he earth（prepared by a florist）is galvanized iron， he earth（prepared by a florist）is galvanized iron，
inches deep．Why should the plants mold？They have been watered once a month and air frequent y admitted，but the plants will mold and appar ently decay．They look perfectly fresh，but break and fall when touched．A．The fernery must
have plenty of strong sunlight at first．It must have plenty of strong sunlight at first．It must
not be watered too often；the earth must not be not be watered too often；the earth must not be
too strongly impregnated with stimulants．You e proper ones．We do not know from your de cription what the cause of the mold is，and we annot of course recommend a remedy．
（44）E．P．W．asks：What is celluloid？A． elluloid is a compound of gun cotton and gum camphor．The processes used in its preparation een made known
（45）F．D．B．asks：1．Can copper and brass illuminating gas？A．No，although brass may be used by gas furnaces of suitable construction． 2．What is the cheapest way to build a small fu ace for melting as above？A．Dr．Faraday de scribed a small furnace used in the laboratory of sists of a blue pot， 18 inches high，and 13 incles in
sitation and sists of a blue pot， 18 inches high，and 13 inches i． nches internal diameter，had the lower part cut off，so as to leave an aperture of 5 inches．This when put into the larger pot rested upon its lower external edge，the tops of the two being level
The interval between them，which gradually in－ The interval between them，which gradually in
creased from the lower to the upper part，was filled with powdered glass blowers＇pots，moistened with powdered glass blowers＇pots，moistened A round grate was then dropped into the furnace of such a size that it rested an inch above the in ner edge of the lower pot；the space beneath it，
therefore，formed the air chamber，and the part above it the body of the furnace．The former $11 / 2$ inches from the bottom to the grate，and th izontal conical hole， $11 /$ inches diameter on the ex terior，is cut through the outer pot，forming an opening into the air chamber at the lower part for
receiving the nozzle of a pair of double bellows The furnace must be perfectly dry before being used．The fuel is coke．The bellows are mounted on an iron frame，and the furnace is raised upo chamberto a level with the nozzle of the bellows This furnace is sufficiently powerful to melt pur iron in a crucible in twelve or fifteen minutes，the
fire having been previously lighted．It will effect the fusion of rhodium，and even pieces of pure platinum have sunk
crucible heated by it．
（46）L．Y．L．says：I have a cistern con the water is filtered through brick partition．Th water is very hard，so as to form an incrustation on vessels used for boiling it 6 or 8 times．Lim water has but little effect on it．How can I rem edy the evil？A．The trouble probably is that you have not hit upon the right proportion of lime wa
er per gallon of cistern water
（47）T．K．says ：I have green paper window binds in my house．Are they injurious to health？ renclose a sample of the paper．A．We have ex
amined and tested the sample of paper，and bave minute trace of arsenic．
（48）J．R．D．\＆Co．say：We send you a por tion of a bar of zinc which was put in our steam
boiler and left there for ten days．Will you please analyze it，and let us know what hasproduced such a remarkable change in it？We are now building our third boiler in eight years，the other two hav－ ing been entirely destroyed by the water we are
compelled to use．A．An analysis shows that the interior of thezinc contains a great number of par ticles of sulphuret of iron，and has undergone de ble to say what the water contained without an－ alyzing it，and what would be the best remedy to apply before knowing this．
（49）C．R．B．asks：The eggs of the pelma－ todytes palustris（marsh wren），when blown and
dried，fade from a dark mahogany to a light cho dried，fade from a dark mahogany to a light cho－
colate color．The eggs of the melaner pes erythoce－ colate color．The eggs of the melaner pes erythoce－
phalus（red－headed woodpecker）before being blown are of waxy，translucent appearance．After be－
ing blown，they are of an ivory white．Will make them retain their original color？A．Try varnishing them．
（50）J．H．B．asks：Can you tell me of a pro－ melting glass with metals？A．Mix the oxides the metals in with your glass until the requisit tint is obtained on melting．
（51）H．M．H．says：Enclosed I send you a der mine at ore from the celebrated Legal Ten it consists of zinc blende mana．You will see that it consists of zinc blende，galena，and ruby silve upon such specimens to bring out and preserve
ol is sometimes used for this purpose．We should be very happy
（52）F．D．S．says：Oil exposed to the air absorbs oxygen and becomes oxidized．Is there ployed to arrest this tendency to oxidation，or pre vent it altogethe
（53）J．E．says：W．H．S．describes a cheap alvanic battery set up by one Baron：I made on解 the under side，long enough to come out from the top of the jar by a foot；then Itook another piece of iron as above，and suspended it about 4 or 5
inches from the other plate，and about 2 inches rom the top（and under）of the water，to which I oreth I then plib of blue vitriol on the op of the piece of iron at bottom，and then poured on sufficient clean rain water to cover the top most piece of iron nearly two inches，and then al－ vater $1 / 4 \mathrm{oz}$ ．of sulphuric acid．At the end of this ime I tested it，and found，when I passed the cur－ ent through 2 coils of 3 inches long and 1 inch thick，there might be perhaps power sufficient the proboscis of a fly，but certainly not any ore，for I could not with the end of my tongue culty？A．Two iron plates arranged as describe would produce an electro－motive force of abou copper and zinc plate arranced in a similar man
（54）E．asks：1．Can a magnet be con－ （54）E．asks：1．Can a magnet that will sustain a weight of 100 lbs ．with ne cell of a powerful battery？A．Yes．Bend an ron rod one inch in diameter and eighteen inches ong into the form of a horseshoe，and wind wire．Use，for a battery，the largest sized Bunsen ell．2．Would it attract 10 lbs．at a distance of A．No．
（55）O．C．says：I am making a machine net a want to start by the aid of an electromag－ wheel．Where shall I place the electromagnet so as to get the most power at the end of the leve that disengages from the wheel？the force of n electromagnet is inversely as the square of the my electroma net to the fulcrum，the more powe right．
（56）W．M．asks：Can I construct an elec－
ricalmachine or a dry galvanic battery that will trical machine or a dry galvanic battery that will that will produce a visible spark？A．You might make a miniature electric machine which would for a model．
（57）J．S．P．asks：How can two or more bly you mean to ask how two or more message can be sent on one wire at the same time．By so
halancing the outgoing current that no effect produced upon the receiving instrument at the sending station，while the instrument responds to signal received from the distant station．
（58）T．E．B．－The alleged new motive power in Philadelphia that you allude to is doub less the Keely Motor，one of the perpetual mo ion humbugs，by which the owners claim to gen while they have a juggling exhibition of the thing for the purpose of selling stock．Keely or one of is confederates is the operating juggler．The or cylinders communicating by pipes．First the un water through，then air to prove that there nothing within，and that the show is＂honest．＂ The pressure gace up．He turns again，an now you don＇t＇see it．The gage falls．
（59）J．L．L．asks：1．Is it more difficult for No．2．Do all metals require coating with copper before they are nickel－plated？A．Only iron and steel．3．Does nickel require more battery power
than silver？A．No．
（60）D．M．G．says：In your answer to my question as to the comparative strengths of gas pipe and solid rod，you made a misstatement．
What I wished to know was this：Which would be best for supporting a weather vane on a church spire， $11 / 2$ inch gas pipe or $11 / 2$ solid iron rod， ight lightest would be the best，if it has
strength．What was the misstatement？
（61）S．S．G．asks：Is there any cure f that disease which is shown by a purple color on
the skin？A．This disease is called nævus，and in－ cludes the various affections termed mother marks，vascular growths，etc．，constitutingan im portant section of surgical affections．The nature the tissues affected，as the arterial，capillary， venous elements predominate．From the descrip tion given by you，we would class yours under ve－ quite prominent and often forming into tumors The first point to consider is whether the case is to be taken．If it is small and does mot show an tendency to increase it should be left alone，as very probably it will shrivel up and disappear of itself，or turn into a mole．If，however，it is large， there are five principles of operation，whichErich son states as follows： 1 ，to excite adhesive inflam－ mation in the tumors，and so to produce plugging they are composed ； 2 ，to destroy the growth by
caustics； 3 ，to remove it by the galvanic cautery ，to remove it with a knife； 5 ，to remove it by lig
ture．All the methods above stated should performed by a surgeon，as delicate treatment is quired．Your letter is not definite enough fo ． or you．
（62）L．S．H．asks：Does the weight of a oay increase or decrease，the nearer it approache
to the earth＇s center？A．It decreases，because it ards the center by a less mas
（63）C．A．P．asks：1．Can a locomotive
unning in full forward gear at any speed be re versed to full backward gear without shutting an of the steam off？A．The chances are that some f the parts will give way． 2. How can it be know hen a locomotive is priming？A．By looking a he glass gage，trying the gage cocks，or，in aggra y the cases， ，the poung of the engine als of the exhoust steam 3 ．Is it necessary to us oth pumps in supplying a locomotive with water？ ．Generally，no．
（64）F．T．D．asks：Last season I ran a side Wheel boat，length 60 fect，beam 15 feet，draft 4 ith 14 inches dip；rate of speed running light is nots，laden about 2 knots．Would it be better feet morediameter，and about 4 icches more di f the water？A．We doubt whet you woul ain anything by the change．It seems to us ould be better to use feathering foats．
（65）W．T．H．asks：What shall I burn to make red or purple light，and how shall I burn it A．If you have gas，surround the flame by the col－
ored glass．A red fire can be made by intimately ixing 61．A red tre can be made by in sulphu nd 23 carbonate of strontia．Dampen it，and rive it into a paper cylinder，and dry thoroughl 32 niter， 27 chlorate of potash， 20 chalk， 1 charcoa Purple light： 60 per cent chlorate of potash， 16 sulphur， 12 carbonate of potash， 12 alum．It must
be borne in mind that the red and purple fires are be borne in mind that the red and purple fires are hable to ignite spontaneously，and serious accicent have thus happened．These lights can be purchase atisfy you much better
（66）J．H．C．asks：In the tabulated results of the duties of English steam engines，what is －four lbs．
（67）C．F．asks：We bought a second hand horse railway power and thrasher，which are oth gummed up，and I would like to know if ther part．A．You will find it better to take the ma hines to pieces
（68）A．R．C．says：I have invented an ex pansion steam engine，and I want to know th
nost successful method of jacketing the cylinde to keep down radiation．A ．The most successfu plan is to jacket the cylinder with live steam．Th next best is，perhaps，heated air
（69）C．P．M．asks：Will ports ${ }^{\frac{3}{4}}$ by $2 \frac{1}{4}$ es？A．Yes．
（70）G．C．B．asks：Using steam at a press ure of 60 lbs ．per square inch，would a boilcr and urnace combined， 5 feet high， 28 inches in diam fre surface，be sufficient to run an engine $41 / 2$ inch es diameter by 7 inches stroke？A．The boile too small．2．Would such an engine be owerful enough to runa 24 inch saw for sawin hard oak wood？A．The engine，w
steam，will drive the saw very well．
（71）G．H．W．says：1．I have built a model of a steamship $71 / 2$ feet long， 16 inches wide，and deep．Please tell me the proper dimensions of cyl－ of boiler．A．Make an engine of 34 inch diamet and inch stroke，bis 10 inches diameter and 1 inches high；screw $41 / 2$ inches diameter and 1
inches pitch．2．What ought to be her speed A．Probable speed 2 to 21 miles an bour 3 ．Would mall pieces of coal burn properly under boile itted with 4 tubes，and give sufficient heat？A Use charcoal for fuel．
（72）J．A．J．asks：How can I erect a fur nace suitable for melting from 100 to 800 lbs．cast ron？A．The general principle of such a furnace
is to have it lined with refractory material，such s firebrick，and to create a strong draft by artifi cial means．
（73）J．S．asks：1．Will a double leather belt hug the surface of a pulley closer than a
ingle leather one？A．We suppose yourquestions single leather one？A．We suppoze yourquestions
refer to the friction between the belt and pulley． f the tension is the same in each case，the friction will be the same with either a than it will a leather－covered one？A．We are no sure thata pulley covered with leather is bette
than one with a smooth iron face．If any of ou than one with a smooth iron face．If any of ou would beglad to hear from them．
（74）E．E．asks：Will soft water become The by long standing in cemented cisterns？of waters is due to their taking up an increased proportion of lime．It is doubtful whether this would occur in the case mentioned， degree．
（75）L．B．S．asks：1．Will a steam engine， o drive nder 112×3 inches stroke，te large en bottomed and sharp at bow and stern？A．The proposed engine will not answer．Use one three
or four times as large，and connect directly to the paddle shaft．2．Can I heat the boiler with a kero cient steam with any lamp．
(76) J. \& D. N. ask: At what distance will imented with a small magnet, and we cannot find anything to place between the magnets to prevent them attracting each other. A. Magnetic induc tion takes place through all substances, independent of theircharacter or composition. This induc
Minerals, etc.-Specimens have been received from the following correspondents, and examined, with the results stated
J. T. C.-It is plumbago.-C. A. L.-It is frankIfite, a mineral consisting mainly of the sesquioxides of iron and manganese combined with the
protoxides of zinc and iron. The attempts to work it for zinc have proved unsuccessful; but it sa an ore of iron. The zinc is said to give increased tenacity to theiron.-N. H. S.-A number of specimens of black oxide of manganese have onif yours was not reported upon, it has not been he angle between -It is a part of a trap column the angle between two of the faces in the speciIt is a silicate of alumina, iron, magnesia, lime potash, and soda. It is not valuable.-F. L. R. C.It is iron pyrites, some of it in cubic crystals. Not valuable as an iron ore.-H. P. W.-It is prehnite, which is a silicate of alumina and lime the green i.h portion) in traps. It is not an ore. The magnetic action is due to a slight percentage of iron
oxide in the mineral.-C. . M.- It is a water-rolled mass of fragments of feathers of waterfowl and slmilar débrie,, mixed up with sand and saline mat-ters.-L. A. A.-It is rock crystal. It is of little value except when in fine clear crystals. It is very common iu many parts of the country.-S. N.-It is probable that the substance found is not quick-
silver. Send a specimen.-J. W.-They are iron and copper pyribes, specimen No. 2 being richer in copper. The reduced metal is mostly black protosulphide of iroh, together with some sulphide of copper and carbon derived from the fuel. The iron ladle is covered with metallic iron and a little opper.-D. O.-It is copper pyrites, and is composed of 35 per cent sulphur, 35 copper, and 30
iron. The white rock through which the pyrites is scattered is quartz.-D. W. D.-It is a mixture of iron ore, olay, and carbonaceous matter, not valuable as an iron ore.-M. McC.-It is very fine ind; it would not answer as a molding sand, altil ugh it might be employed for grinding, polish\mathbf{n}_{s}, etc.--D. K.-This ore is sometimes also called pur, le copper ore, and is abundant at the copper heavy spar and malachite, and is often contained n copper-bearing shales. Copper 63 per cent is a arge amount, but it must be remembered that the percentage of a selected sample may be much
higher than the average yield.-A. H.- It is pyrocene, a silicate of lime and magnesia with a small percentage of oxide of iron and manganese, but
not sufficient to make it an iron ore.-W. W. B.bres cannot be analyzed without the use of chemicals, and no book describing such a process exists.
-G. Y. R.-It is of the order hemiptera, family phido, but the genus we cannot state positively. Aphides are found upon every part of plants. ome specles which are the stems of twigs others oll up leaves or form call-like swelling on leaves -Packer:-J. W. s.-Your liquid would require a long and costly analysis.
G. W. W. asks: How can I pulverize mica re glass pendants for lamps and chandeliers drilled?-E. C. asks: What is a good way of dyeing alk blaok, and for finishing and putting on the sloss?-S. B. asks: How can I soften a bird's skin estore the color to kid gloves, which I had cleaned and which then got damaged by water?-D. R asks: Why do hens eat off each other's feathers? Is there anything that will prevent them from do Is there
ng it?

COMMUNICATIONS RECEIVED.

The Editor of the Scientific AmmRions acknowledgee, with much pleasure, the receipt of or-
iginal papers and contributions upon the following ubjects:
On Scale in Boilers. By C.
Watch-Making Machinery. Hy A. P. B On Marriage. By B. F. On the Pendulum and the Elli By L. H. R On Freezing Fire Plugs. By J. L. K
Also enquiries and answers from the following A. G.-R.-C. G.-J. M. W.-A.C.-T. W.-K.-T.
A. R.-A. V. H.-W. K.-P. M.-C.W.B.-G.-S.B. -B. F. S. Jr.-A. A. W.-L. D.-J. M. - W. H. P.-
E. M.-J. J. W. - G.-B. F. P. \rightarrow P. F. \mathbf{o}^{\prime} S. - W. H. W

HINTS TO CORRESPONDENTS.

 Correspondents whose inquiries fail to appear should repeat them. If not then published, they nay concm. The eddrese of the writer should al ways be given.Enquiries relating to patente, or to the patenta.ity of inventions, assignments, etc., will not be pubished here. Al such questions, when initial it would fill half of our into the waste basket, as but we generally take pleasure in answering briefly by mail, if the writer's address is given
Hundreds of enquiries analogous to the following are sent: "Who sells oil that is not affected by poons, etc.? Who makes the smallest portable engines? Who sells telegraph instruments? Which sthe best lens for photographic portraiture? observed, in the columin of "Buslness and Per-
sonal," which is specially set apart for that purof that solumn. Almost any desired information can in this way be expeditiously obtained.
[OFFICIAL.]
INDEX OF INVENTIONS Letters Patent of the United statem were Granted in the Week ending March 9, 1875,

AND EAOH BEARING THAT DAT [Thosemarked (r) are reissued patants.]

Auger, earth, F. J. Clarke

Auger, earth, E. Whitnes.
Awli, nceder, etc.., bending, Mann \& Boardman Bag fastener, C. W. Harve
Barrels, H. M.s.fitzhug Barrel rack, C. F. Rigby Basin, wash, Kinsman \& Smith
Bedstead, Invalid, J. Goodwin. Bedstead, Invalid, J. Miche
Bee hive, N. C. Mitchell. Bevel, try square, and a Bill fle, F. B. Alderson......
Binder, temporary, j. N. Hal Botler tube expander, o. Pagan Boot. gatter, C. Hersome Boot heels, etc., trimming, , Lambart. Boots, crimplng stiffenin
Bolting machine, F. T. Ry
ox, spice, G. B. Wheel Bracket hook, window, N. Plympto Brick molds, sanding, D. o. Loy
Rroom bag, E. D. Bronson. Brush, tooth, S. Stevens.....
Bucket, sheet netal, C. Hofr.
Burner, lamp, J. Curzon.....
Burner, vapor, A. F. Gray.
Butter worker, D. Sager.
Button hole casing, Y. V.
Car brake, E. J. J. Roberts...
Car coupling, D. L. Adams
Car sprink, J. H. Plickels (r)...........
Car wheels, swaging, A. L. Blackman.
Carbureter,
carriage, shifting seat for, J. P. Cost
Cartridge bell, D. Taylo
Castings, chllling, E.
Chair, folding rocking, G. o. Wellman
Chair, opera, G. W. Borel...
Chair, reclining, \mathbf{N}. H. Hill
Chair seat, C. Brown........
Chalr, titing, C. F. Spence
Chimney cap, J. Gorton..............
Chmney taging bracket. P. Willard Chinney, entllator, J. Hower
Chinch bug gatherer, E. H. Marsh..
Clay pulverizer, D. Rudy.
Cloth pressing machine, w. Hebdon
Clothes pin, Farrington \& Potte
Clothes sprinkler, w. Olson....
Clothes sprinkler, W. Olson.
Coffee urn, H. C. Wilcox....
Column, wrought Iron, J. B. C. Cornell. Crane, J. Dornaan.............
Cuff holder, H. B. Adams...
Curling iron. J. M. Baxte.
Curtain fixture, C. P. Rose
yinder rellef valve, brake, Rider et at
Dental plate, G. V. N. Relye
Digging machine, potato. T. Head
Dish of pottery ware, J. Mosea.
Door hanger, W. Johnson
Dredging box, J. S. Field...................
Drill and planter, seed, L. L. Haworth.
Elevator, H. Pearc
Elevator, or chaince......................... Elevator, water, J. Keith.
Envelope and letter sheet
Fare box, c. G. Imlay........................
Faucet for effervescent liquors, C. Greiner
Fence, portable, H. Prickett............
Fire arm, breech-loading, E. Whitney.
Fire arm, revolving, D. Smith.
Fire arm ordnance chamber,
Fre box, water, J. De Butt..
Frie place fender, J. Old.
Flowers, sheet wax for, M. J. Mc. Coll
Fountaln, perfume, E. Rath
Fruit dryer, L. A. Gould...
Frut dace, bot at Ar, G. Burrows.
Furnace, metallurgic, J. Felx.
Furnace, ore roasting, J. .i. Cl
Garden pprinkler F. M. Gras
Gas retort, D. L. Mac Nelll.
Gear for shafting, driving, s. s. Hepworth.
Goods on blas, cutting, S. Mayer.............
Governor for horse powers, J. D. Heebne
Governor, steam, D. L. F. Chase
Grain and straw lifter D. Crane
Grain binder, C. L. Travis....
Grain, implemeut for binding, W. A. Patterao Grain thrasher and separator,
Grate, S wartout $\&$ Whedon.
Grave cover and monument, R. H. Sipes...
Grinding rolls, machine for, J. M. Poole
 Harvester, wheel, G. D.
Hasp.Smith \& Ege
Hat and cap, P. Goldman
Hat box, G. L. Jaeger
Hay loader, L. Under wood
Hinge for safe doors, etc., w. R. Perry
Hoe, J. N. Burton.
Horses, feed bag for, H. Engelbert
Horsees, sun protector for,
Horsee, T. B. Bishop
Horseshoe bars, bending. Hale and Johnston.
Hose, foot pipe for suction, w. P. Painter.
Hose, hydraulic, J. D. Josilin.
Hose to coupling,
Hose to couping, attaching, A. J. Morse.....
Hydrant, etc., non-freezing, H. I. Chapman
dre former, s. Kraus

Ice making:apparatus, w. Hoo
Key, folding door, B. Erbe.......
Knit fabric, Kent ana Leeson........
Knitting machine, Kent and Leeso
Knitting machine,
Lamp, F. Kampfe.
Lamps, supplying oil to, R. V. De Guinon...
Lamp, hydro electric, W. H. Zimmermann. Latch, gate, R. C. Bernard.......
Lathe for turning irregular forms, J. Beaudry Lemon press, H. Newberger.
Loom shuttle, J. H. Peasles
Measure, dry, D. M. Meaflord
Measuring tank, J. Lessler..............
Metal bending machine, J. C. Chapma
Motor, J. M. Cayce...............
Needle blanks, bevoling ends of, \&. C. Kingman.
Night soll, removal of, W. P Pinter.
Night soll, removal of, W. Painter.....
Night soil tanke, discharge for, w. Painter.
Night soll tank indicator, W. Painter..
oil, safety tank for, J. H. Hayward...
Oily matter, extracting, R. Scalfe..
Ordnance, projectlle for
Ore feeder, J. Tullock.
Organ key board, L. K. Fuller.....
Organ stop action. F. M. Brush.
Organ stop action. F. M. Brush.
Organ tremolo, reed, J. R. Lomas
Overalls, J. Moore.
Packing, hydraulic,
Packing, hydraulic, F. Tay.o.
Pantaloon stretcher, J. D. Ryan..
Pantaloon stretcher, J. D. Ryan..........
Paper feeder, pneumatc, s. scholigeld. Paper, etc., cutting, J. Ball
Peg cutter, W. J. Squires.
Pegging jack, J. J. Stewart
Petroleum atorage apparatns, G. Des Georges
Plano stringing and tuning, W. F. Kearsing.
Plecture holder, S. Binnes.
Pin, tollet, A. N. Kellogg.
Pipe for suction hose, foot, W. Pain
Planter, seed, H. E. Pennypacker...
Plow, , Lane (r)..............
Plow, elde hill, c. H. stratton
Pocket hook, bafety, E. G. Wheeler.
Prees, hay and cotton, B.
Pris...
Prter's galleys, A. T. De Puy (r).
Printer's galley, A. T. De Puy.
Pruning shears, C. H. Bllings..
Pulles, friction, T. F. Carver
Rillway, elevated, J. R. Cornell........
Raflway ralls, patching, Moore and Mill
Rake, horse hay, B. Mellin
Range, cooking, J. Old...
Reflector, B. Goetz....
Regliter, air, G. Lawrence
Register, hot air, H. Fritz.
Road scraper, McCall, Watkins, and Scott.
Rubber dam tension welght, T. G. Lewif.
Sash and blind fastener, J. Christle
Sarh fosterer, L Quitman
Sash holder, J. Sweet.....
Saw swaging machine, L. W.
Sawing shlugles, machine for, w. Huey
Sawing shlugles, machine for, W.
Screw driver, w. F. Patterson
Screw tap, T. S. Wild.
Seed drill and
Seed dropper, E. M. Morgan
separator, grain, o. K. Wood.
Sewing machine, A. S. Dingmo
Shafting, driving gear for, s. s. Hepworth
shirt bosom supporter, J. S. Edmnnds.
Shoe, ladies', G. L. Davis..........
Shoes, manufacture of, W
Shutter and blind fastener, C. B. Haynem
Shutter bower, J. B. Hand..
Sinks, attachment for, J.
Sky light bar, J. Harney
 stencll cutter, P. L. O'Brien..
stereotype plate holder, A. Case
Stone, crushing, s. H. Johnoon...
Stove, cooking, J. S. Van Buren
Stoves, air chamber for, E. Hawk
Stud fastening, s. Zacharias.......
Sugar, making hard, J. o. Donner.
Sugar cutting machine . O.
Sugar machine, centrifugal, J. O. Donner
Sun protector for car horses, v. Heary....
Sun protector for car horses,
Surcingle, H. M. Witter......
able, extension, G. Ahre
Tackle block, G. Martin.
Teeth, plate for artiflial,
Telegraph apparatus, duplex, M. G. Farmer
Telegraph solution, chemical, T. A. Edison
Thill coupling, E. Jarrell.
Thill coupling, G. F. Smith (r)
Thill coupling, S. M. Strader.
Thill coupling, S. M. Strad
Thill coupling, G. Wright
Tool handle, H. Staples......
Tyre shrinker, D. Strattan....
Umbrella handle, E. Layman
Umbrella handle, E. Layman
Umbrella handle, etc., G. W. Tuck
Valve for street water maina, J. Bir
vehicle end gate rod, W. J. Lew/
Vehicle fender, N. Jeckson......
Vehicle, spring, Phenix and Ci.
Vehicle, spring, Phenix and Curtis........
Vehicle spring and side bar, J. W. Gosiling
Vehicle torsional spring, C. W. Saladee
Vehicle wheel, J. H. E. Boyk
ventilator, chimney, J. Howe
VIse, т. L. Baylles.
Wagon, axie and thimble skenn, I. L. Anderson.
Wagon end gate, s. c. Myers....
Wagon seat, W. H. H. Snellbaker
Wagon seat, w. H. H. . C. Wright.
Washing machine, T. Patterson.
Wasting machine, i. Patterson.
Watches, reversible plnion for,...
Weather strp, b. C. Underwood.
Tell strainer drive, w. C. Ma
Wind wheel, J. M. Kauftiman
Windlass, M. G. Imbach..
Windlase, F. S. Rowland..
Windmill, A. and W. Graf...
Windmill, sheckler and Bolender
Wood planing machine, w. w. C
DISCLAIMERS FILED.

Desians PATRTITD. 8,194.-DRAWER PuLLS.-O.F.Fogelstrand, Kensing
$8,195,8,196$. - M 8,197, 8, 198.-CARPETs.-A. Heald, Philadelphia, Pa
 $8,201,8,202 .-$ BREASTPIN, RTC. -L. S. Beals, Astoria, N.Y.

TRADE MARKS REGISTERED
2,7i5.-Ciants, rtc.-Batcheler Bron., Philadelphia, Pa
276.-FErtilizers.-H. N. Hooper, Dedham
 2, zi8.-Whisky.-Torlina \& Co., St. Louls, Mo.
 ,281.-AlPACAS.-Farr Co., Holyoke, Mas@
$2,222$. -Gin.-C. A. Hubbard, Haddam, Ct.
284 - HLMA, ETC.-Michener \& Co., Philladelphia, Pa
2,284.-Frrtilizer.-Patapsco Guano Co.,Baltimore,Md.
2,285.-Axes.-Patrick \& Co., San Franclaco, Cal.
SCHEDULE OF PATENT FEES.
On each Caveac...
On each Trade ma
Ailing each application for a P
and
On application for Relssue...
On an a aplication for Dei................
on application for Design
7

CANADIAN PATENTS
List of Patents Granted in Canada,
March 6 to $10,1875$.
sam hangers. March Minneapolif, Minn., C.. S. (inang

4,468.-K. Knott, London, Out. slanghtering, prèpartuk, and packing meat. Mareh f,
4,4i9.-C. T. Cleaveland, oldtown 4,46.-C. T. Cleiveland,
furniture. March $6,1875$.
4,4 $10 .-$ L. Cote, st. Hyaciut
,450.-L. Coté, St. Hyaciuthe, P. Q. Extension 1 of No.
526. Tr'mming and finfaning machine. March $10,1875$.
t,471.-L. Coté, St. Hyacinthe, P. Q. Extenalon 2 of No.
526. TrImming and finishing machine. March $10,1875$.
4,472.-T. S. Elliott, Guelph, Ont. Washing machine.

March $10,1875$.
473. - R. H. Hud
4,473.-R. H. Hudg!n, Whithy, Ont. Farm and carriage
gate. March 10,1875 .
${ }_{4}^{\text {4,474.- K. N. Meriam, }}$

March 10, 1895.
4,465.-J. B. MeCune et al., Hamilton,
and Aolding machine. March 10, 1875 ,
4,477.-J. S. Rood, Waterbiry, Conn.,
chine caster. March 10, 1875.
epring. March 10,1875 .
March 10, 1875 .
,480.-R. O. Blan
S481.-R. O. Blamey et al., Petersmurgh, Ont. Churn.
March 10, 1855 .
March 10, 885.
4,481.-W. OHara et al., Fall River, Mass., U.S. No
conducting covering for bollers, etc. March 10,187 ,482.-M. Deal, Bucyrus. Ohio, U. s. Scouring case for smutters and separators. March 10, 1875.
4. $183 .-$ E. Andrews, Williamsport, Pa., U. S. AttachIng saw handles. March $10,18 \pi 5$.
4, \&84.-A. A. Marphy et al., Montre fre extingulsher. March 10, 1875.
,485.-J. H. Dorion, St. Anne de Tamachiciu,
Improvement in architecture. March 10, 885.
Improvement in architecture. March 10, 1875.
, 486.-J. L. Wilson, Woodstock ${ }^{\text {O }}$ Ont. Seting device.

gavertipements

Engravings may head advertisements at the same rate
per ine by meassrement, as the letter press. Adver-
tisements must be received at publication office as early as Friday morning to appear in next $28 s u$.
FACTORY FOR SALE-Must be sold to close a

WAGGENER'S PRACTICAL BOOKS.

 TEXAS STATE FAIR.

PONTOON BOAT

STMERE STPAMMPSS.

EMPLOYMENT.

 COPE $\&$ MAXWRLL M,FG CO., INDEPENDENT BOLLRR-FEEP PTMPs,

 STBAM PUMPS FOR SALE

WARDWELI PATENT,
FOR CUTTIING STONE INTO VARIOUS SIZES AND DIME QUARRIES.
gTEAM STONE CUTTER CO., RUTLAND, VT BOLE PROPRIETORS AND MANCYACTURERS. MAGNETS-Permanent Steel Magnets

COLD ROLLED SHAFMING

Manufactured by Valley Machine Co., Easthampton, Mass

THE Union Iron Mills, Pittsburgh, $\mathbf{P a}$
 no fangee, Fuch have proved so oblectionabie to the old
 The Toll-Gate! Prize Picture sent free :An

Model Engiues. ${ }_{c}^{c}$

Iadies at Home

And

FIRBT \& PRYIBIL, Bandiditicatines

PATENT

Planing \& Matching

THE IM
RA ST
NIAGARA STEAM PUMP,
 Hubbard \& AIller.
Pulleys, Bhafting and Hangers a Specialty.

Useful and Rare Chemicals.

050 PER WEEK in an honorable business

MACHINERY
OF EVERY DESCRIPTION
Cold Rolled Shafting

GEOR $\underset{181}{ }$ Chambers $\& 103$ Reade Sta., N.' $\mathbf{Y} . \mathrm{Clt}$

Portable steam engines, combin

Planing \& Matching,

BLAKE'S STEAM PUUMS
 FOR FVERY POSSIBLF DUTY

Seeds and Bulbs.
I Lobstrated spring catalogu now ready

DREESCATUN SEENS

 DREER' Always Fresh and Reliable. ABD
Steam Pumps
 STEEL CASTINGS.

Masun's fat't friction clutche

Asbestos Frel ting Co.

P. BLAISDEILI \& CO.

"EDEOGRRAPHY"
 $\frac{1}{2}$ PATENT MACHINTST'S TOOLS Set rop Dogs, Redinced Prices.

 B
PORTABLE ENGINES,

 FOOS \& JAYNE

TO MAKE Read ENOUGH Every MONEY word.

 . o. Bor sseo.
E. Monor, poblaber.

IR.TNEN TYCK SCIENTIFIC \& MECHANICAL ENGRAVER ON WOOD
 \qquad
 Hewhs Rictinble

 Stone and Ore Breaker

STENCTIL DIES For forlitity bitine

 agents wanted
 Sill cost but one cent $\begin{gathered}\text { Write at at once to } \\ \text { F. M. REED, 8TH ST., NEW York. }\end{gathered}$ W ODD. WOREING MACHINERY GEN

 WELBSPORT, PA. Emery Wheels under a new patent.
send for circular.

 TTONE SAWING MACHINERY DERRICKS \& TRAVELLERS

gadurtisements

 Engravings may head advertisements at the same rate
per line, by measurement, as the letter press. Ad per line, by measurement, as the letter press. Aa
vertisements must be received at publication offce as vertisements must be received at publication offce as
early as Friday morning to appear in next issue.

crates

 LEWIS' PATENT AUGER BITS

REVOLUTION INDICATORS.

 Corrugated Iron

PORTLAND CEMENT

 Diamond Solid Rmery Wheds.

TMPARTANT FOR LLL LARGE CORPO.

 Mran \& Co.'s Patent Offices.

Established 1846,

The Oldest Agency for Soliciting Patents in the United States.
MORETY-EIGHI YEARS EXPERIENCR. the world.
They employ as their assistants a corps of the most experienced men as examiners, specification writers, ano draftsmen that can be found, many of who
ected from the ranks of the Patent Office.
SIXTY THOUSAND inventors have availed themselves of Munn \& Co.'s services in
MUNN \& CO., in connection with the publication of the Scientifio American, continue to examine inventions,
confer with inventors, prepare drawings, specifications, and confer with inventors, prepare drawings, specifications, and
assignments,attend to filing applications in tho Patent Office paying the government fees, and watch each case step by
step while pending before the examiner. This is dont step while pending before the examiner. This is dont
through their branch office,corner F and 7th Streets, Wash ngton. They also prepare and file caveats, procure design
patents, trademarks, and reissues, attend to rejected cases (prephered attend to inventor or other attorneys), procure copy matters of inf ringement, furnish copies of patents: in fact inf foreign countries. of patent busin ${ }^{\text {rss }}$ doth in this an in foreign countries.
Patents obtained
Germany, Russia, Prussis Spain Portugal, Germany, Russial Prussia, Spain, Portuga, the British
Colonies, and all other countries where patents an granted.
Al special notice is made in the Solenctifio Amerioun o all inventions patented through this Agency, with the
name and residence of the patentee. Patents are ofter name and residence of the patentee. Patents are oftet
sold, in partor whole, to persons attracted to the inventior by such notice.
A pamphiet of 110 pages, containing the laws and fall directions for obtaining UnitedStates patente, also a circolar pertsining exclusively to Foreign Patents, stating cost
each country, time granted, etc. sent free. Address MUNN $\&$ CO.,
PubHshers SCIENTIFIC AMERICAN,
Brange Offion-Corner Fand 7th N. Y.
Brasor Offios-
Wrehington D. $\mathbf{C l}$

ASBESTOS MATERIATS

ROOFING, SHEATHING, BOILER FELTING, PAINTS (all colors), ROOFING PAINT,
 Patentee and sole Manufacturer, $\}$ H. W. JOHNS, 87 Maiden Lane, N. Y.

 mid pisuminer

Mill FurnishingWorks

Do Your 0 Wn Printing

$P_{\text {resse }}^{\text {Printing }}$ THE BEST INJECTOR For Locomotive and Stationary
FRIEDMANTS
PTTENT.
Orer
Throws m more
nnd
and hot ter water wad in Europe.

LOWTPRICED EMERY WHEELS

IRON PIANERS,
 NOTICE

$\overline{T o d d}$ \& Rafferty MachineCo.

COVERING

Wire

Rope.

 steel any chenarcoa Of supror nualty, sultable for
 John w. mason \& co., 43 Broadway. New Yor
Working Models

HARTFORD

STEAM BOILER Inspection \& Insurance COMPANY.
W. b. Flanklin, V. P't. J. M. Allem, Pree J. B, Pruect, Ses

.

THE HEALD \& CISCO Patent Centrifugal Pumps.

 TO LUMBERMEN. \$IOO.00 IN GOLD.

 Their Damascus Tempered Saw. comprising their Cel-

 B TRIC OGUS PATENT UNIVERSAL ECCEN

Machinists' Tools.

IT PAYS! IT PAYS!

WHAT PAYS?
 Fexd \& See

Every business man admits the necessity of advertising. so doing. But it is not all who advertise that do ot advan-
ageously, and in the most effective manner, to derive the greatest beneft for their money. As a rule, it is the best econorny to advertise what one has to sell or wishes to
purchase, in papers having the largest circulation among Chat class of persons likely to be interested In the article.
Parties having Manufacturing Establishments to sell or lease, or who wish Estimates made for Constructing Bridges, Dams, Iron Buildings, Furnaces, Heating Apparatus, , Steam Engines, Boilers, wood and Iron Working Machinery, Agricultural Implements, or Contracts for
Engineering Works of all kinds, will find that it pays to advertise in the ScIENTIFIC Ambitican.
The value of the Scientipic Aybricis as an tsing inedium cannot be over-estimated. It goes into all Che machine and workshops in the country, and is taken
at the principal libraries and reading rooms in the United States and Europe.
A business man wants something more than to see his dvertisement in a printed newspaper. He wants circula er of three thousand circulation, it is worth $\$ 3.75$ pa itne to advertise in one of forty-five thousand.
We invite the attention of those who wish to make their usiness known, to the annexed rates:
 a line Engravings may head advertisements at the same rate
per line, by measurement, as the letter press. Adverisements must be received at the publication office as early as Friday morning to appear in next issue.
If anything is wanted in the mechanical line, advertise If ity in the ScIENTIFIo AMERICAN.
Ii one has a patentor machinery to sell, advertise in the sientific Ambrican.

Munn \& Co.,
$3 y$ Park Row, New Yorts

 The Improvement in Fulling Stocks

OTIS' Bafery huibing Machinery

348 broadwat otis, bros. \& Co

PROW24

SCIENTIFIC AMERICAN, FOR 1875. THE MOST POPULAR SCIENTIFIC PAPER IN THE WORLD.
thirtieth year.

VOLUME XXXII.-NEW SERIES.

The publishers of the SCIENTIFIC AMERICAN beg to announce that on the second day of January, to be the aim of the publishers to render the conteats of the new volume more attractive and useful than any of its predecessors.

To the Mechanic and Manufacturer No person engaged in any of the mechanical pur suits should think of doing without the SCIENTIFIC American. Every number contains from six to ten ngravings of new machines and inventions whic The SCIENTIFIC AMERICAN nterests of Popular Science, the Mechanic Arts Manufacturee, Inventions, Agriculture,Commerce and the industrial pursuits generally; and it is val uable and instructive not only in the Workshop and Manufactory, but also in the Househola, the \mathbf{L} brary, and the Reading Room.

TERMS.

One copy, one year (postage included)....... $\$ 3.20$ ne three months (postageincluded) 1.00 One copy of Scientific American for one
year, and one copy of engraving, " Men
of Progress"............................ 10.00
year, and one copy of "Science Record"
Remit by postal order, draft, or express. $\quad 5.50$
all letters and make all Post Office or

