a Weekly journal 0f practical information, art, scievce, hechanics, chemistry, and manufactures.

AMATEUR TAXIDERMY.

moderate knowledge of practical tax idermy necessitates two essential qualifications: first, a touch both gentle and delicate; second, some knowledge of natural history and anatomy. A badly prepared bird or animal is worth less as a specimen, and a ghastly ob ject to behold. The last mentioned ap plication will, we have no doubt, be peculiarly applicable to the result of our reader's first the lines below. We do not say this in order not say thiscourin order such attempt -far from it-but merely to insinuate, in advance, that the practice of the art is not half so easy as it appears from the simple description of the various processes. Therefore we hope that all who, having armed themselves with scalpel and forceps, are now sitting with scalpel victim of Tabbs's last raid on the re canary cage in front of them, and this paper spread out in convenient position for reference, will blame, not our elucidation, but their own inexperience, if, in lieu of the life-like image existing in their mind's eye, a badly rumpled little knob of yellow feathers reward their toil. Skill is only to be gained by study and practice, and the path is sure to be thickly strewn with monstrosities in astonishing variety; but when once a astonish degree of deftness is attained the student will find that an occasional he student winl fhe woods, with a light ramble through the woods, with a light shot gun for company, will be sure to produce enough interesting specimens to keep him amused, as well as instiucted, during many of the long evenings between now and summer.
We should begin with a small chicken. Not that a stuffed chicken-unless of course, its interior be filled with bread crumbs, and its exterior be roasted-is an object of extraordinary oan ary beauty, or at all suggestive of anything in particular, but because it is easy to get, and it has a moderately tough skin. Besides, if we are economically inclıned, the meat will make good soup, and need not be wasted. Don't begin with a canary, nor with a chippy or any other small bird. Stuff several chickens first, or any larger animals.
We will suppose, now, that the student is seated at his work bench. A defunct pullet elevates its rigid claws in the air before him. He has rolled up his sleeves, and is about to make his in.
itial incision. Before he does so, let us look over his kit of tools. Our artist has sketched them all, on the table before the individual which, in the large engraving, he represent

Fig. 2.-TAXIDERMICAL IMPLEMENTS.
at work, and in Fig. 2. First, there is the scalpel. Thi can be purchased for a small sum from any maker of sur-
geon's instruments. The blade is short and very sharp, while the handle (not jointed) is long enough to allow of a firm grasp. From the same maker, a couple of pair of surgeon's scissors should also be obtained, one quite small and sharp-pointed, the other of medium size; also two or three spring forceps of rarious dimensions. A small pair of pliers for clipping wire is required, some spools of cotton (Nos. 10, 30, and 100), a quantity of excelsior and tow, some cotton batting, a little prepared glue, a number of pieces of wire about fifteen inches long, and straight (size No. 20 or thereabouts), can of dry oatmeal, and some arsenical soap. This last can generally be obtained of druggists, or, if not, can be

back the skin, and the meat removed, when the bone is re placed, and the other thigh treated in similar manner.
The skin is next detached, to the wings, which are cut from年 body at the joint next the same, and the bones scraped clear of meat. Then the nec i is divided, so that the skin, with the head attached, can be peeled from the entire body clear to the root of the tail. The last is bent toward the back, with the left hand, the finger and thumb keeping down the detached parts of the skin on each side of the vent. A deep cut is then made across the latter until the back bone, near the oil gland at the root of the tail, is exposed. Sever the back bone at the joint. This detaches the body, which may be removed and thrown aside, while the root of the tail, with the oil gland, is left. Great care is needed in this ope ration, as, if not enough lone be left at its root, the tail will come out; but all fleshy matter should be neatly dissected away.
'The neck now requires attention. This need not be split or in any wise cut. The skin is merely pulled over the flesh, as a glove is removed from the finger, until the skull is exposed and appears is in the sketch, Fig 4 With the point of the knife remove the ears; and on reaching knife, remore the ears; and on reaching the eyes, carefully separate the lids from the eyeballs, cutting neither. It requires very delicate and slow work at this point, so as not to injure the eyelids. Then scrape out the eye cavities, and cut away the flesh of the neck, removing, at the same time, a small portion of the base of the skull. Through the cavity thus made, extract the tongue and brains, and after cleaning away all fleshy matter, paint the eye orbits with arsenical soap, and stuff them tightly with cotton. Care should be taken not to detach the skin from the bill, as it is necessary to leave the skull in place. Finally, fill the interior of the skull with tow, after coating internally with the prepared soap. Cotton, it should be understood, will not answer as a material for stuffing any portion of the body through which, sul)sequently, it may become necessary to pass needles or wires. It packs too hard, and therefore tow or excelsior must 1 e employed.

The skinning operation being now completed, the stuffing is next proceedcd with. To prepare for this, the bird, before being skinned, should have been measured, first as to its girth about the body, and second as to its length from root of tail to top of skull, following the shape of the form. From these data an artificial body of the rightdimensions is artifial bed and inserted as follows: On constructed and inserted as fows: On a piece of straight wire, equal in length to the last measurement above mentioned, a bunch of excelsior is secured by

THE TAXIDERMIST AT WORK

made of carbonate of potash, 3 ounces, white arsenic, white soap, and air-slaked lime, 1 ounce each, and powdered camphor, three sixteenths of an ounce. This is combined into a hick paste with water, and applied as below described, with a small paint brush. It should be marked as poison, and kept scrupulously out of the reach of children or pet nimals.
If the bird has been shot, immediately afterwards all the holes made in its body, as well as the mouth, should be plugged with cotton, in order to prevent the escape of blood or liquids. Operations should not be begun for twenty-four hours, so that the body may have ample time to stiffen and the blood to coagulate. It is well during this period to inclose the bird, head downwards, in a cone of paper, so that the feathers will be held smooth. See initial letter.
The first process is skinning, and it is in this operation that delicacy and neatness is required. In commencing, the left hand is used to part the feathers, exposing the skin from left hand is used to part the feathers, exposing the the scalpel
the apex of the breast bone to the tail. With the held like a pen, a free incision is made between these points, as shown in Fig. 3, care being taken to divide the skin only, without cutting into the flesh. The skin is then pressed apart, and oatmeal dusted into the cut, in order to absorb any fluids which may escape. Careful lifting of the skin clear of the flesh follows, until the leg is reached, when the scalpel is again used to disarticulate the thigh joints. The bone of each thigh is then exposed for its whole length, by pushing
repeated winding with stout thread.
ch is represented in our Fig. 4, is molded This bundle, which ing that of the bird's body, and its to a shape resembling that of the bird's body, and its tained from the bird itself. As will be seen, it is attached at the end of the wire, the long protruding portion of which

Fig 3.--SKINNING-THE FIRST INCISION. serves as a foundation for the neck. The extremity of the wire is clipped by the pliers to a sharp point, and then forced
diagonally upward through the skull, on top of which it is clinched flat. Cotton batting is then wound about the wire between skull and body, until sufficient thickness is obtained to fill the skin of the neck. The position of the various parts at this point is represented in Fig. 4. Painting the inside of the skin with arsenical soap follows, and then the skin is drawn back so as to envelope the false body, and a needle and thread is thrust through the nostrils to make a loop for convenience in handling.

The finest pair of forceps is employed to pull the eyelid skin into place, to arrange the feathers, and to pull up the cotton in the orbits so as to stuff the cavities out plumply. More cotton is next pushed down the throat until the same is entirely filled (Fig. 5). Two pieces of wire-quite stout for large bird-are then sharpened at one extremity. Taking the wire in one hand and guiding it with the other, the operator shoves it into the leg, from the ball of the foot up alongside the thigh bone, the skin being turned back for the

Fig. 4.-MODE OF ATTACHING THE FALSE BODY. purpose. Cotton is then wound about both wire and bone, in order to fill the thigh out naturally, and the same process is repeated for the other side. The ends of the wire below are left protruding in order to support the bird on a perch, if such be desired. The upper ends are pushed clean through the artificial body, from below up, and clinched on the upper side. This secures the legs, which are afterwards bent in natural position (Fig. 6).

The bird can now be set up, that is, the wires stretching out below the claws can be wound about a perch or pushed through holes in a board and clinched on the under side. In the latter case, it will be necessary to spread the claws and fasten them with pins. For small birds, the cut in the breast need not be sewn up; a chicken or larger fowl will require

Fig. 5.-FILLING THE THROAT.
a few stitches to hold the edges together. If the tail feathers are to be spread, a wire is thrust across the body and through each feather, holding all in the proper position. The wings are then gathered closely in to the body, and two wires, one from each side, are pushed in diagonally from up, down, and through the skin of the second joint (Fig. 7). The wings are thusheld, and the wires, as well as that through the tail, are left protruding for an inch or more. A touch of glue within

Fig. 6.-Stuffing the legs.
the eyelids prepares the latter for the eyes. These must be purchased from taxidermists, but for small birds common black beads will answer. If plain glass beads can be obtained, by the aid of a little puint the student can easily imitate the eye of a chicken. After the eyes are inserted, a sharp needle is used to pull the lids around them and into place.

The operator must now, with a fine pair of forceps, care fully adjust the feathers, smoothing them down with a large camel's hair brush. This done, thread must be wound over the body very lonsely, beginning at the head, and continu ing until all the feathers are securely bound. The bird is then left to dry for a day or two, when the thread is removed, the ends of wire cut off close to the body, and the work is complete.
Stuffing animals sequires less delicacy and care to avoid injuring the skin than with birds, but necessitates a close knowledge of the form and natural position. The mode of skinning and stuffing is the same, except that the neck is cut down, as the head cannot, of course, be drawn through. This last is also the case with ducks, woodpeckers, and othe slender-necked birds. In preparing deer's heads and antlers, the skull is best taken in, as it can be secured on a piece of wood, on which the neck can be built up. In skinning the head, the incision should be made on the back of the neck, and care should be taken completely to fill all cavities of the skull.

Fig. 7.-THE BIRD PREPARED FOR DRYING.
We should advise amateurs in this interesting art to en deavor to give an aspect of life to their productions, by grouping them or placing them in odd though natural posi tions. For instance, a chicken can be easily placed as in th act of picking up food or crowing-any position will be bet ter than stiffly standing erect. Similarly animals can be re presented attacking prey, fighting, or playing. A very fin group, now in the Central Park Museum, this city, represent ing an Arab mounted on a camel and attacked by lions, will exemplify our meaning. All the animals in this group are superbly prepared and placed, though, of course, such work requires a skilled naturalist as well as taxidermist.
We are indebted to Messrs. Ulrich and Riedel, taxider mists, of No. 16 North William street, this city, for the practical suggestions above given.

Sir Gharles Lyell

We regret to announce the death of Sir Charles Lyell, a reteran scientist whose labors in the field of geology have gained for him universal renown. He was a native of Scot land, and was born in 1797; and he graduated at Exeter Col lege,Oxford, where Dr. Buckland (afterward Dean of West minster, and father of cur contemporary, Mr. Frank Buck land) was Professor of (ieology. The personal influence of Dr. Buckland, one of the most successful teachers who ever imparted a charm to an abstruse science, probably turned Lyell's attention to geology, he having commenced, on leav ing the university, the study of law. In his twenty-ninth year he published his first paper, " On the Recent Formations in Forfarshire, Dorsetshire, and Hampshire." His fame as writer was rapidly achieved, the scientific world at once recognizing his patient and laborious research, and his mas erly and lucid method of exposition. His "Elements of Ge ology" and "The Principles of Geology" are his two most valuable works, and are known as accurate and exhaustive text books; while his more recent volume, "The Antiquity of Man," is perhaps the most important contribution yet made to that branch which connects his favorite science with the whole problem of the Universe and its origin.
Sir Charles traveled much in this country and Canada in 841, and a very interesting book on our geology was published by him soon afterwards, called "Travels in North America," a second volume being the result of subsequent investigations made in 1845. During his first visit, he gav a course of lectures on geology in Boston, Mass. He served twice as President of the Geological Society of England, and departed this life full of honors and distinctions bestowe upon him by learned societies in all parts of the world.

New York Science and Art Association.

This institution, at its last regular meeting, elected for President, S. Irenæus Prime, D. D. ; Vice Presidents, E. P. Rogers, D. D., Howard Crosby, LL. D., Professor D. G Eaton, Henry Day, W. P. Titus.
Its course of lectures this winter has been very brilliant, and every one of them attended by crowded assemblies. The Association gives the lectures freely to the public, its only object being the diffusion of useful knowledge. To this end it invites learned and able men to discourse to the people on topics of commanding interest, and the multitudes desirou of being instructed show that these eflorts are appreciated.

Srientifir Gesmericam.

MUNN \& CO., Editors and Proprietors. PUBLISHED WEEELIT AT
NO. 37 PARK ROW, NEW YORK.

O. D. MONN.	A. E. BEACH.
- TERMS.	
One copy, one year, postage included....................................... 8320 One copy, six months, postage included...................... 160	
Club Rates:	
Ten coples, one year, each 82 70, postage included................... 82700	
Over ten coples, same rate each, postage included...................... 270 ct By the new law, postage is payable in advance by the publishers, and	
Note.-Persons subscribing will please to give their full names, and Post Office and State addresa, plainly written, and also state at which time they wish their subscriptions to commence, otherwise they will be entered from January 1st, 1biu. In case of changing reaidence state former address, as well as give the new one. No changes can be made unless the former address is given.	

VOLUME XXXII., No 11. [New Series. 1 Thirticth Year.
NEW YORK, SATURDAY, MARCH 13, 1870.

THE NEW RULE OF THE PATENT OFFICE.
Contrary to the uniform and long-established practice of the Office, the Commissioner has recently promulgated a rule that hereafter no rejected and abandoned application shall be competent reference on which to reject an application for a patent. A person may now hunt among the models of reected applications, to which free access is allowed; and if he finds anything that has never been patented, or described in a printed publication, or gone into public use, he may-if he can bring his conscience to the sticking point for making the necessary affidavit-obtain a patent therefor which will be good and valid against all the world for seventeen years. It is true that an affirmation, showing that he had derived his knowledge of the invention in the manner just supposed, would defeat his action for infringement; but such proof can arely be obtained.
The patent law denies a patent unless, among other requirements, the thing patented was " not known or used by thers in this country "prior to its invention by the applicant; and after the patent is obtained, it may be defeated by howing that the patentee " was not the original and flrst in. ventor or discoverer of any material and substantial part of the thing patented." A quarter of a century ago, Judge Cranch had decided that an invention was completed and reduced to practice when, by means of models, drawings, and other descriptions, it was set forth in such terms that a peron skilled in that particular art could reproduce the invention sodescribed. When this was done, therefore, in an application for a patent, the invention was knoon in this country, and no other person could afterwards be the original and first inventor thereof.
The rule embodied in this decision has governed the action of the Patent Office ever since, until the recent change. A rejected application was therefore regarded as just as good a reference on which to reject a new application as a patent itself would have been. The importance of preserving and rranging the files, models, and drawings of all rejected applications was therefore manifest.
The business of the Office has grown up chiefly under the rule above referred to, and the education of the practitioners herein has been shaped accordingly. The change of the rule, without any corresponding change of the statute. natur.
ally created no little surprise and aroused a feeling of disar proval in our minds.
But upon reviewing the action of the Federal courts on this subject for several years past, we find that they have been gradually drifting away from the rule laid down by Judge Cranch, and the views of the inferior courts in this respect have finally been sanctioned and confirmed by those of the Supreme Court of the C'nited States. We are far from being the advocates of what Mr. Jefferson used to denominate judge-made laws. We believe that the proper duty of the judiciary is to give effect to the statute, according to its fair intent and meaning-leaving to the legislative department the duty of correcting whatever may be thought amiss in the law as it exists. When the courts overstep this rule and undertake, by construction, to change the statute into what they think it should be, they launch forth upon a sea of uncertainty, and find themselves the authors of unnecessary difficulties for which there is no adequate compensation. Different judges will have different views of expediency. No one can tell into what shape prevailing doubts will finally crystalize. The most intelligent members of the profession find themselves incapable of giving reliable opinions, and property in patents becomes to a needless extent a gambling contrivance. To us it has always seemed as though the ruling of Judge Cranch, above referred to, was in substantial accordance with the statute, and that, if thought erroneous, an act of Congress was the proper remedy, especially after it had been so long recognized and acquiesced in by the Office.
But the ultimate decision of the courts is the rule to be observed in administering these and all other laws. What ever may be our individual opinions, the great court of last resort must be regarded as being endowed with judicial infallibility so far as our own subsequent actions are concerned. The rule of the Patent Office should be made to harmonize therewith, and the Commissioner was bound by his duty to act accordingly. This he seems to have done by the establishment of tho rule we have been considering, and to which the conduct of all internsted parties must be made to conform.
This rule will to a great extent dispense with the necessity of preserving the files,models, or drawings of abandoned applications, or at all events of leaving them open to public inspection. Until the applications are abandoned,the previous rules of the Office preserved them in secret. After their abandonment, they can hardly be needed for any commmeudable purpose, and perhaps their preservation might be discontinued altogether, to the great relief and convenience of the office. With this matter, however, we do not intend to med dle at present.

PISCICULTURAL PROGRESS.

That fish culture is evidently destined to become as much a settled pursuit as stock raising, we believe its past progress, as well as its prospects for the future, leaves no reas onable doubt. The success which has attended the efforts of the public-spirited gentlemen, who, for several years, have devoted their time and studies to the industry, is certainly very flattering, and an abundance of the finest and most delicate of game fish, in almost every stream and brook suitable for their development, appears now to be dependent mainly on the degree to which individuals will interest themselves in procuring the necessary spawn. This, through the new transporting apparatus, which we illustrated last week, is reduced to so simple and easy a proceeding, that the means or populating otherwise waste waters is to be obtained merely for the asking, or at most attended with an expense intrinsically trivial, and entirely inconsiderable in comparison with the benefits to be gained.
We took occasion recently to speak of the landlocked salmon as an excellent fish for stocking streams. There is another species which is worthy of equal commendation, and which is, besides,especially suitable for streams preserved for sporting purposes. We allude to the grayling, the natural habitat of which is in streams in Michigan, flowing into the Lake. This fish has, during the past year, been successfully hatched in New York State. It is not so good eating as trout, but is not at all inferior as a sporting fish. It is easily kept in good condition, and does not require so much food as the trout, and it is in season while the trout is not. The grayling spawns in April and the trout in November.
Mr. Seth Creen, however, adheres to the belief that trout the only fish with which to restock worn-out streams, and he states that in no event can grayling and trout he reared in he same waters.
Mr. R. B. Roosevelt, President of the American Fish Culturists' Δ ssociation, at the recent annual meeting of that body, briefly recounted progress during the past year, in his spening address. Shad have been put on the Pacific coast, and captured in Sacramento river where they have never before been taken. So, also,bodies of water previously destitute of fish have been well filled with salmon trout, white fish, and various varieties of bass. Experiments are in progress with relation to the sturgeon, and it is believed that this val uable and large fish may be successfully artificially hatched

NATURE'S EFFORTS

' If Nature put not forth her power, about the opening of the flower, who is it that could live an hour?"
So argues one of Tennyson's "Two Voices," anent the "stirring of the blood" which makes youth ambitious of great deeds. As poetry it is admirable, it lying in the province of poetry to personify all things, Nature not excepted.
As prose, it would be less commendable; as Science, utterly As prose, it would be less commendable; as Science, utterly
intolerable. Yet men who think themselves scientific no intolerable. Yet .men who think themselves scientific not
unfrequently indulge in expressions in the same strain, which,
if they mean anything, mean that the aggregate of phenomena to which we apply the term Nature is capable of willing and choosing, and of adapting special means to special endsa palpable absurdity. Curiously, too, such language is often indulged in by those who deny the implied divinity of Na ture, and recognize no controlling intelligence behind the veil.
An instance occurred the other evening: A more than usu ally thoughtful physician was speaking about the large family of small children, left orphans by a consumptive paient just dead; he said: "That is the usual way ; those least worthy of perpetuation-those who have least to transmit to their offspring-multiply the most. Men know that they are slowly dying of an incurable disease, and that their children are almost certain to inherit ill balanced bodies and untimely death; yet they multiply to the last, just as plants when struggling under unfavorable conditions invariably run to seed. It seems," he continued, " as though Nature, conscious of impending defeat, threw all her available force in the direction of seed, to increase the chances of perpetuating the stock."
We have little faith in the theory which ascribes infinite perfection to Nature; in most cases, things are as they are simply because they could not be much worse and exist ; still we should slirink from an interpretation of the facts of life imputing, like our friend's theory, infinite foolishness to Nature. The under dog in the fight may be an object of
pity. From a human or humane point of vinw, pity. From a human or humane point of viow, he may he a
proper subject for assistance. But to expect Nature to interfere in his behalf would be as unreasonable as to expect her to make a special effort now and then to help water to run up hill. If the fittest survive-and that is the natural order -the least fit must go down and stay down.
But do not the frailer sort seem to multiply excessively, as our medical friend asserted? To a great extent they do; but that does not necessitate his interpretation of the fact. That simply involves the same fallacy which a prominent sanitarian exemplified in his explanation of the fact that, in the poorer districts of great cities and in other places, as in rural Russia, where ignorance and poverty abound, the birth rate is relatively excessive. It shows an effort of Nature, he said, to make up for the unsanitary condition of such places, and the consequent waste of life in them: in other words, the death rate being excessive, the birth rate has to be correspondingly great to enable Nature to keep her seed up in the matter of population. Of the folly which Nature would exhibit in thus choosing the worst possible ground for fighting her assumed battle with death, he said nothing.
It was easy for a more logical and sensible observer to turn the tables entirely by calling attention to the fact that the excessive death rate, observed under such conditions, is the consequence and not the cause of the excessive birthrate. A high birth rate implies rapid child-bearing, exhausted mothers, ill-cared-for children, and many deaths in infancythe invariable source of a relatively large death rate; and the same unthrift and ignorance, which result in poverty and overcrowding in unwholesome tenements, are very apt to manifest themselves also in improvident child-bearing with its fatal consequences.
As in this, so in all other similar cases, the moment men begin to indulge in the seductive habit of attributing intention, purpose, design, or what not, to the drift of phenomena, that moment they turn their eyes from their real connection
and delude themselves with vain imaginings. and delude themselves with vain imaginings.

RUBBER TIPPED PENCILS.

On July 23d, 1867, James B. Blair obtained a patent for a rubber head for lead pencils, claiming, as a new article of manufacture, " an elastic erasible pencil head." The patent was acquired hy "The Rubber Tip Pencil Company," who pretended that the patent gave to them the exclusive right to make rubber heads for lead pencils and under threat of legal proceedings against all who proposed to make such articles, they prevented competition, obtained a large business, and
soon grew wealthy. A few stationers, however, ventured to soon grew wealthy. A few stationers, however, ventured to
dispute the broad claims of the Tip Company, and a suit finally came to the United States Circuit Court for trial. The defendants alleged that the rubber head claimed by the plaintiffs was simply a bit of rubber with a hole in it, on which a patent could not be sustained. The court took the same view, and decided that the patent was invalid. An ap. peal was then taken to the United States Supreme Court, as will be seen from our report on another page. The Supreme Court affirms the previous decision, thus completely rubbing out the absurd claims of the erasible pencil head Tip Company.

WASTE LAND AND FOREST CULTURE.

After a century spent in spoiling our woodlands, we are, as a people, slowly awakening to the fact that the chief end of man is not to cut down trees. We are heginning to learn also that, so far from being incompatible with forests, permanent civilization is impossible without them, that the tree slayer's ambition to bring the whole land under tillage would result, if successful, in making tillage a waste of labor throngh climatic disturbances. Alternations of drouth and
deluge, blighting heats and blasting colds, have ever been deluge, blighting heats and blasting colds, have ever been
the penalty for general forest destruction; and many a land once fertile is now a desert for this cause alone. Indeed woodlands are to climate what the balance wheel is to machinery, the great conservator and regulator, without which other conditions are wasted.
There is probably not a periodical in the country which ands. had more or less to say about the waste of our wood
the advantages we have squandered only by the creation of great forest reserves, with a general commission of fcrestry to see to their protection. Had we a strongly centralized government, it might be easy enough to carry out such a scheme successfully. As things are, we very much doubt its feasibility, except perhaps in regions like the Adirondack Wilderuess, where the soil is unfit for anything else, and where such precautions are very little needed. Within our personal recollection,large areas in Clinton and Essex coun ties have been twice stripped of timber by lumbermen and charcoal burners; yet to day the same hills are covered with thrifty third growth. Where the difficulties of transportation are so great, there is little danger that the natural wood growth will fail to keep pace with the wood cutters. It is only where land has been cleared and brought under tillage, or laid waste by repeated fires, that special effort is required for the restoration of the forests. The fears that have been xpressed in regard to such irreclamable wildernesses as those of Northern New York are therefore quite gratuitous.
Besides, it is a genaral distribution of woodlands, not ocal forests, however extensive, that the country chiefly needs. The farms of ('entral New York are benefited by groves in their immediate neighborhood far more than by the forests of Essex and Franklin counties. Still more do he farmers of the West require frequent spaces of woodland o break the storms of the prairies, to regulate the rainfall and temper the climate, and to meet the local demand for wond. Great forest reserves in Michigan or Wisconsin would help them comparatively little. They should look rather to ocal measures for the cultivation of trees; and the most that they should ask of government is a law authorizing townships to compel the gradual couversion of unused land into woodland. In every part of the country, there are tracts of land held by individuals or by corporations for specula tiva purposes. Very largely such landholders are non residents, who count on being enriched through other men's efforts. While A, B, and C are clearing their farms and establishing sehools, churches, and other conditions of civiliza ion, a market is made for the lands of 1 , who contributes oothing to the advancement of the new socicty, yet gains in he end perhaps more than the actual settlers. It would be no injustice to him to make him do his part towards the building-up of the community through whose labor he is made rich; and there is no way in which this could be more surely accomplished than by compelling him to plant a por tion, say one tenth, of his idle land to trees every year. There would be no injustice in this, for the growth of the timber would add year by year to the value of his investment, while the resident community would be benefited by securing a local supply of fuel and lumber with all the climatic advantages of abundant woodland. The settler can ill afford to wait twenty or fifty years for the maturing of a crop; the speculator on the other hand, who is simply hold ing the lund for its "unearned increment," can well afford to have a legitimate increment in timber growth slowly swelling the value of his investment. The necessity of planting might limit his purchases, but it would scarcely limit his profits in the end.
In all the older States, there are vast areas of waste land owned hy railway companies and other corporations, much of it of little value for plow land or pasturage, yet well suited for the growth of wood. The railway companies are in the habit of sending to the remotest parts of the country for ties, when, by the exercise of a little forethought, they might grow them more cheaply at home. It would be to their advantage in the end, as well as a benefit to the community at large, if they were compelled by law to do so.
So too in mining regions, as in Pennsylvania, where miles and miles of mountainous country have been stripped of timber and scourged by fire until nothing remains bat black ness and desolation. With their abundant riches underground, the great coal compunies can afford to neglect the land above; but the State at large cannot long afford to let them do it. Such waste of woodland has brought ruin to every country that has permitted it; and if the owners of the soil will not restore its natural covering through enlightened self-interest, the inhabitants of the State will have to interfere in self-defence.

Fall of a Meteoric Stone.

The Times has already mademention of a brilliant meteor that was seen at Iowa City and other points in C'entral Iowa, on the evening of February 12, at half past ten o'clock. Its course was from southeast toward the northwest. It was apparently about half the diameter of the moon, and accompanied by a beautiful train. The color and vividness were about like that of molten iron. Wbile in view it was seen to separate into many fragments, and, after about three minutes, the reports of three explosions were distinctly heard. One of the fragments seems to have fallen about three miles south of the village of West liberty. An observer near that point says: "For fully a minute the heavens were lighted by the fierce glare of the swiftly descending fire ball; and when it struck, the earth shook as from an earthquake for miles around, and the noise of the
concussion was heard by the people of Grinnell, 95 miles concussion was heard by the people of Grinnell, 95 miles
away. The fiery ball, striking terra firma in a large open field, frightened residents in the vicinity half out of their wits. It sank fifteen feet into the ground, and left a hole of that depth and ten feet in diameter. For hours it continued to spit forth tlame, crackle, sputter, smoke, and occasionally discharge loud cannon-like reports, to the infinite terror of the people in that vicinity. None dared approach while this miniature volcano continued in action; but with the cessation of life, hundreds gathered around to investigate the wonder."-Dubuque T'imes, February 19.

IMPROVED ANIMAL TRAP.

The moment we looked at the model of this invention, we thought about pirates. Not that we mean to insinuate that there is any bond of connection between buccaneers and rat traps-romance forbid such base comparisons! But when we saw an apparatus in which the unsuspecting animal is lieguiled to walk along a treacherous pathway, which sudden ly turns a sommersault and deposits him, before he has any time to remonstrate, in some unknown region beneath, we were reminded of the polite requests, on the part of the big whiskered gentry, which resulted in their captives promena ding to the end of a plank, from which they failed to return. The inventor says that this trap will fix any animal in exactly that way, any animal, moreover, from a mouse to a buffalo. Although a mouse might stand such treatment and not need subsequent repairs, we doubt if a buffalo would. In fact, we think thatthe average buffalo, after gloriously coasting down the end of a plank into a yawning chasm, would experience such a general disorganization as to render him of no further utility whatever as a buffalo. Still he would be caught, and that is exactly the object of the trap, to the representation of which, as applied to rats, we devote the annexed illustration.
The deluded rodent, shown on the left, takes the high road leading to destruction ciu the pivoted platform, A. In cheerful anticipation of a feast, he proceeds to the inner extremity of said platform and tackles the banquet, and probably places his paws on the swinging piece, B. Either touching the bait, E, or meddling with the swinging piece is, on his part, an unfortunate mistake, as the efficet i: to push back the curved catch, C^{C}, and so release the lower ex-|made a growth, as the young growth cannot cover the dead tremity of the latter from a lug, D , by which said catch snag.
supports the end of the platform. The victim's weight then The proper cutis shown in Fig. 6. It is called the "clean overbalances the lead on the opposite extremity, and he im- cut," and is made by cutting at an angle of 45°, beginning at mediately loses interest in the bait and devotes his mind to jabbing his claws into the platform with the vain hope of making his abrupt departure look as if it were less involuntary. Eventually he finds himself in darkness beneath from which he may, at his convenience, emerge into the cage like apartment above, and regale limself by watching his like apartment above, and regale himself by watching his
relatives served in the same manner, or he may find profitarelatives served in the same manner, or he may find profita
hle food for thought in speculating over the neat arrangement of the counterpoise or weighted end of the platform, which, after the victim is deposited, brings the latter back to a level position, when the catch again engages with the supporting lug, and the trap is ready for new prey. We doubt, however, if his conclusions would accord with ours, name y, that the trap is a very ingenious and useful little device he might receive the further information, that it was patented August 25, 1874, and that State, county, and township rights are for sale, witl disgust, and undoubtedly he would anarhematize Mr. John Dildine, of Limestoneville, Montou county, Pa., who is the inventor to be addressed for further particulars.

THE MANIPULATION OF PRUNING.
Lindley truly says: "Pruning is the art of scientifically removing certain branches, or parts of them." But except

1

2

3

4

5

6
by well educated and experienced gardeners, it is seldom, if ever, properly performed. Unless the operator thoroughly understands the principles upon which it is based, and the proper mode of operation, it is better to let Nature take
her own course, as less loss will then be incurred and less this has a tendency to prevent excessive growth, and as it is injury done. By ignorant men the simple operation of cutting off a shoot is almost always done in an injurious way. Some make a long "slivering cut," as in Fig. 1. Here the cut is begun too low down and is carried up too high, exposing the back of the bud to the weather and either killingit outright or causing it to make a feeble or weakly growth. Others, as in Fig. 4, cut " to the quick," producing the same vil effects. To avoid this, some make "snag cuts"-beginning the cut on the same side of the shoot as that on which the bud is placed, and thence sloping upwards from it, as in Figs. 3, 4, and 5. This necessitates going over the work a second time to remove the snags after the bud has then comparatively easy of control, and will not require much pruning. The object of the pruning is to prevent the head becoming too thick, and to induce the formation of fruit spurs. The Morello cherry bears its fruit chiefly on last year's wood, and should therefore never be pruned back severely. As a rule, all cherries should be but sparingly pruned, as the use of the knife has a tendency to cause them to gum. Fig. 7 represents the growth of the wood of an apple tree, showing a bearing spur on the three-year-old wood, the blossom buds on the two-year-old wood, and the leaf buds on the last year's growth. In this, a a a a repreleaf buds on the last year's growth. In this, $a \operatorname{a} a \operatorname{a}$ repre-
sents the fruit buds, $b b b$ the leaf buds, and c the scar from the fruit borne the last vear. When,
in the course of time, the spurs of any of these trees become too long, they must be shortened back to the eyes near their base. They will then throw out a new set of spurs.
The peach and the nectarine bear their fruit on the last year's wood. Hence all the pruning they require is to cut back this wood about one third of its length, thinning out all superabundant wood, but retaining enough in the center of the head to prevent the mass of the fruit being borne towards the ends of the branches, in which case the branches may break or split with the weight, to the great injury of the tree. As the trees are thrifty growers, a little consideration will direct us how to obtain a symmetrical and balanced fruitful head.
Of all the fruits cultivated by man, none has been so twisted about, so tortured, by systems of training, pruning, and feeding, as the grape vine. Were it not possessed of a constitutional vigor and a power of resuperation common to few, if any, other plants, it would long since have disappeared from cultivation. The books that have been written about it would make a small library. Each author inveighs against every other system of training or pruning, and declares his mode the only correct one, and it alone the one which should be universally adopted. Each forgets that the vine grows and produces fruit in almost every soil and climate, whether on the rocky sides of mountains where and chate, wheth or upon the alluvial the thermometer goes down to zero, or upon the alluvial savannahs of Demarara, and subject to its equatorial heats.
While the vine produces its fruit on the new growth of the current scason, the main requisite for its successful cultivation is the formation of moderate-sized, bealthy, well ripened wood of the previous year-such as will furnish one or more strong eyes for the new year's growth. All the systems of training and feeding that have been invented have this object in view, and all the various modes of pruning resolve themselves into the procuring of two eyes or shootsone for the production of wood for future use and the other for the immediate production of fruit. This is best brought about by the spur method, in which a shoot from a strong about by the spur method, in which a shoot from a strong
cane has been pruned back so as to produce two shoots, only cane has been pruned back so as to produce two shoots, only
one of which was allowed to produce fruit the last season, as shown in Fig. 8. Here the upper shoot was the fruit bear er, and the lower one not allowed to bear. Now we cut back the upper one on the line a, and the lower one on line, d. From the bud on the lower shoot will come a fruit-bearing shoot for the current season, and the bud, b, will make a growth shoot to produce fruit the next year. The present lower shoot will then be cut away, as the upper one has now been-and so on year after year. If the bud, b, should be developed at c, instead of in its present position, it will make developed at c, instead of in its present position, it will make
no difference, as in all probability a bud will be developed on no difference, as in all probability a bud will be developed on
the upper side, next year, from which to get a growth shoot, the one beyoud it making a fruiting shoot.

Fig. 8.
In a single article we can only give a few hints, or a general outline of bow the operation of pruning should be performed.-The American Garden.

NON-FREEZING FLOAT STEAM TRAP.

Every practical engineer is familiar with the requirements of a perfect steam trap, which are as follows: It must liberate the water of condensation from steam heating surfaces, under all pressures and at all temperatures, draining one foot or a thousand feet of pipe with equal facility, without being regulated or adjusted; it must allow no steam to escape; it must be frost-proof ; and it must be so arranged that it may be readily cleaned without disturbing the machinery.

The device now under consideration, patented September 29, 1874, by Mr. W. H. Jenkins, of Philadelphia, Pa., was used at the late Exhibition of the Franklin Institute; and it drained, we are informed, the principal portion of are informed, the principal portion of
the main steam pipes for supplying power to drive the machincry. It is stated by the inventor that it possesses economy, efficiency, and convenience, which are attained by the construction hereafter described.

It is constructed on the float principle. Steam enters the trap at A, and, with the water of condensation in the pipes, will pass through the filter, C, leaving, will pass through the filter, C, leaving
there the scale and dirt. When suffithere the scale and dirt. When suffi-
cient water collects in the case to raise cient water collects in the case to raise
the float, M, the lever, $G G$, fulcrumed at F, and the valves, OO, connected to the lever, G, at I, are also raised, allowing the water to pass into the outlet, L. As long as the water runs into the trap, the valves, 00 , will remain open; but if the supply stops, they will close, until the water again reaches a point enab ling it to raise the float, M . In the upper part of the case, B , the lugs or flanges, E E, support the perforated wrought iron sheet, D D, upon which rests a filter of fine wire gauze. This
is so arranged that, by removing the bonnet or plate, II, the filter may be taken out and cleaned without disconnecting the pipes, or otherwise disturbing the machine. The float, M, has an opening at the top; and by means of the tube, N, this opening is transferred to within an eighth of an inch of the bottom. The foat, being thus subjected to the same pressure within as without, cannot collapse, which permits its being made of very thin material, and thus renders it more buoyant, and the inventor states that it cannot become more buoyant, and the inventor states that it cannot become
water-logged; since, if a quantity of water collect in it, the
variation of pressure ordinarily occurring would at once re variation of pressure ordinarily occurring would at once re
move it through the tube. The float being spun together move it through the tube. The float being spun together
and made entirely without the use of solder, is not affected by heat. The balanced valves, 00 , and the counterbalanced valve, R, and their seats, P and T, respectively, are made of the best brass, and so arranged that they can be ground in without the trap being renoved, or the lower half of the case disconnected from the pipes. The valves, 00 , being nearly balanced in upward and downward pressure, a large outlet can be operated by a small float, this being a decided point of advantage in this trap. The counterbalanced valve, point of advantage in this trap. The counterbalanced valve,
cept cleaning at long intervals, as there is no chance for affecting its action from without, thus securing it from being tampered with. It is manufactured in three sizes, No. 0 to drain up to 2,000 feet of one inch pipe, No. 1 for 4,000 feet one inch pipe, and No. 2 to drain up to 20,000 feet of one inch pipe.
For further particulars, address Messrs. Jenkins \& Kern, 228 Church street, Philadelphia, Pa.

House Drainage.

At the Sanitary Conference recently held at Birmingham,
At Wing sans', Laborers', and General Dwellings Company, one of its essential purposes

JENKINS' AUTOMATIC STEAM TRAP.

he iron ball, S. When there is no pressure within the trap, the weight of the ball, S, will keep the ralve open. When steam is turned on, the air in the pipes and case will pass out through the port of the valve, k. When the pressure increases to 3 lbs. per square inch, the valve will close and remain so until the pressure is removed, when it will open by its own action, allowing the water and steam to pass out, leaving the case dry and hot, and thereby rendering it impossible for any water to freeze in the trap. In order to set the trap in operation, connect the pipe to be drained with the inlet, A. Attach to either end of the outlet, L (plugging up he other end), the waste pipe. The inventor assures us that, when properly connected, the trap requires no attention ex-
being the erection of low-rented houses in which every attention is paid to insure the best sanitary arrangements.
In making the drainage of their houses, the company invariably, and as a fixed rule, avoid carrying the drains under any portions of the houses. Instead of this a drain is arranged at the backs of two a drain is arranged at the backs of two rows of houses, running lengthwise in The gardens, and into the main drain.
The drain pipes are lead from the backs of the houses instead of beneath them and hence into the street, as is generally done in all after modes of house drainage. This plan they have carried out in the houses they have built at Liverpool, Birmingham, Salford, etc., and they are adopting it near London at the Shaftesbury estate, where they have already erected 800 and ase constructing 400 more houses. It has been found that

wherever this plan has been adopted, the death rate in these houses, compared with that of a similar number of ordinarily drained houses, has been much less.

IMPROVED SAFETY GOVERNOR.

The illustration, Fig. 1, shows the above named governor with a number of improvements, which have recently been added, and are partly explained as follows:
Fig. 1 shows the governor and stop or throttle valve combined; the advantage of which will be apparent, as it obviates the necessity of the usual clumsy throttle separate from the governor. The stop valve and actuating parts are so constructed as by no possibility to interfere with the govern-

LYNDE'S :ACME SAFETY iGOVERNOR AND STOP VALVE COMBINED
ing valve, and can be reground if necessary with as much precision and in the same manner as when first made. 'The governing valve is a new device; and it is claimed that, being steam balanced, a much larger valve than heretofore can be used, thus increasing largely the capacity of the governor The need of this increased capacity of valve will be appreciated by many who hare been compelled to purchase a much larger governor than seemed necessary to admit sufficient steam to the engine cylinder. The proprietor states that a size smaller may always be ordered, of the Acme governor than has heretofore been used, when calculating the size of governor wanted.
Fig. 2 shows the Acme governor (the parts leting in about the position they take when rumning) with the auxil iary attachment, whereby the variable pressure in the engine cylinder is used to assist in regulating the engine: thus reducing the variation of speed, between light and heary loads, to a minimum
It is well known that a governor, set tor run an engine at a certain speed when light, cannot run it at same speed when full load is put on, without alteration; the engine must go a little slower (from three to ten per cent, according to the governor used) to allow the governor to open its valve. This difficulty is met by the contrivance (lately patented) named above; it has been well tested and is quite novel, the load itself assisting to let on steam tocarry it. With this arrangement the engine will run less than one per cent slower, fully loaded, than when light; it takes no power to run it,and needs no oiling, etc.
'This instrument is constructed on the same principle as a steam damper regulator, the lever F being held and regulated by a spiral spring, E ; its office and operation are as follows: The siphon pipe is attached to the steam chest; and when the valve, k , is open, the pressure in the steam chest will be eserted under a disk of rubber, $(t$, on which stands a piston, having a center point pressing against the lever, l , which is set by the nut and spring, D, so that, when the engine is not loaded, it will have no effect on the governor; but as soon as an increased pressure is felt in the cylinder and chest by the addition of load, the lever, F, is forced up against the lever, H, thus helping to open the governor valve to supply the steam for the increase of load, without perceptible change of speed. Of course as the load changes, the pressure in the chest varies also ; and the practicability of this arrangement must be apparent. But it is only necessary where exact speed is required, or where the desire is to do the work with the least possible pressure in the boiler.
For full particulars, circular, and explanatory diagrams,address J. D. Lynde, 405 North Eighth street, Philadelphia, Pa.

PRACTICAL MECHANISM.

Numbre tis.
br .joshua nosf.
tile crank.
The crank is a mechanical device, generally employed to convert a reciprocating into a rotative movement, and has proved the most simple and effective mechanical arrangement yet devised for that purpose. It delivers all the power it receives, save and except the usual allowance for the friction due to its movement, which friction varies according to the amount of power or load which the crank transmits. The crank has, it is true, two points in its movement at which it does not transmit power, and (if an engine crank) depends upon the momentum of the fly wheel to carry it forward. But at these points the piston does not receive any steam, hence there is no loss of the power applied. It is true, also, that the power applied to the crank pin is always at a considerable angle to the direction in which the pin itself moves; and this, together with the difference in the distance moved by the crank and that moved by the piston, during a revolution of the engine, gave rise to the common error that there was power lost by the employment of the crank. 'That such is not the case may be demonstrated by the following propositions:
Let us suppose that we have an engine whose cylinder area is 50 square inches, and its length or stroke 12 inches; the crank, therefore, is 6 inches from eenter to center. If the pressure of the steam on the piston be taken at 11 lb . per square inch, and is constant throughout the stroke, the total steam pressure on the piston will be io lbs. ; and as the piston moves up and down the cylinder while the crank performs a revolution, it is self-evident that the amount of power applied by the steam to the piston will be equal to 50 lbs . moving 2 feet. Now, suppose there is attached to the crank shaft a pulley $7 \cdot 639$ inches in diameter, to the periphery of which one end of a rope is attached, the other end suspending a weight of 50 lbs . The circumference of such a pulley being 2 feet, it is apparent that each revolution of the crank will raise the 50 lbs. weight 2 feet, which is the exact amount of power applied by the stean to the pis ton (allowing nothing for friction), since the element of time will be equal in both cases. The radius of a pulley of the above given diameter is 3.819 inches, which must, therefore, represent the average leverage of the crank: that is to say, a crank, whose length is 6 inches from the center of the shaft upon which it revolves to the center of its crank pin, would (in order to lift the weight as described) require to act all round the stroke at a leverage equal to $3 \cdot 819$ inches, or always in full power, since that is the duty performed by the pulley.
In order to ascertain, in as practical a way as possible, by calculation and demonstration, the average leverage of a
crank, we may divide the circle described by the crank pin
nto as many divisions as there are inches in its revolution and then, after measuring the leverage of the crank when it is in each position, we add the whole of them together and divide their sum total by the number of divisions or point at which such leverages were taken. The quotient will then he the a verage leverage of the whole; and if the result of such a calculation, applied to a crank of the above given dimensions,
gives us 3.819 inches, it will demonstrate, if we make no al. gowance 3.819 inches, it will demonstrate, if we make no al receives.
It will sutfice, however, to take nine of such crank positions (instead of one at every inch of movement); this will give a result sufficiently correct for the purpose of illustration, as shown in Fig. 56, which is drawn to one quarter of the full size. a a represents the circle described by the center of the crank pin. The digits, from 0 to 9 , on each side of the above circle, are equidistant points, denoting the positions of the crank at which its leverage is taken; and the lines descending from each digit represent, in each case, the center line of the connecting rod when the rank is at that position. Hence the digits, from 0 to 9 , on the parallel line, I, denote the positions, in each case, of the erosshead end of the connecting rod.

It is obvious that, whether the crank stands iat corres ponding points) on the right or left half of the circle, the leverage will be the same; so that, if we ascertain the lever age of the crank at points $0,1,9,3$, and 4 , on the left hand side of the illustration, and points $5,6,7$, and 8 , on the right hand half of the circle, it will lee the same as taking the whole nine points on one side of the circle, and will make the lines of the illustration much clearer. The leverage of the crank in any one position is the length that a line, struck at a right angle to the center line of the connecting rod, passing through the center of the crank shaft, will be. When therefore, the crank is at point, 1 , the center line of the connecting rod being denoted by the line, 11 , the line, a, represents the leverage of the crank, and so on through the whole of the positions. Proceeding, then, to demonstrate from the illustration, we have

Here, then, we have 8.302 inches as the sum of the leverages of nine positions. Dividing this by 9 , it gives us 0.922 inch as the average leverage, in the experimental illustration. Since, however, the illustration is only one quarter the full size of the supposed engine (to which the hypothetical pulley and weight were attached), we must multiply this 0.922 by 4, which gives us $3 \cdot 688$ inches as the average (calculated) leverage of the crank. To the absolutely correct, this should be 3.819 inches; and were the leverages taken at a greater number of points, our answer would be more nearly accu rate, because we have one dead point in a total of 9 : where as, did we meas ure the leverage at 40 points of the stroke there would be hut one dead point in the total of 40 : then again, carh crank movement commenced at the minimum of leverage, and only attained the maximum on the completion of the movement, which latter does not, therefore, represent the average leverage of the crank during the movement, but merely the actual leverage of the crank on arriving at each position. Hence, the gitater the number of points at which the leverage is taken, the more nearly correct will the result obtained be.
To recapitulate, then, the proposition of the pulley and weight proved that, in order to deliver all the power placed by the steam on the piston, a crank 6 inches from center to center would require to give, by calculation, an average leverage all round the revolution of 3.819 inches, whereas the llustration and the accompanying figures demonstrate, by calculation, that the crank would develop very nearly tha amount, the slight discrepancy arising from the fact that w have not, in our example, taken a sufficient number of pusitions of the crank to obtain a perfectly correct result.
It is certainly an objection to the employment of the crank as a means of converting a reciprocating into a rotary motion, that its leverage, and therefore its power, is so variable; this is, however, rectified to a great degree by the action of the fly wheel, which, acting as a reservoir of power, gives back to the crank, when the latter is at and near its dead centers, part of the power which it received from the crank while it was at or near its full leverage or power.
The points of full power are not, it will be observed, on exactly opposite sides of the diameter of the circle of the crank travel, so that a straight line passing through the center of the rrank shaft cannot intersect both the points of full power.
The illustration and its accompanying table of movements shows the crank in that case to be at full power between positions 5 and 6 ; if, however, the connecting rod were long es in proportion to the length of the crank, its point of full power would come nearer to a horizontal line, drawn through the center of the crank shaft and at a right angle to the cen ter line of the cylinder, the rule being that, the longer the connecting rod proportionately is, the nearer will its point of
way between the two dead centers; and as a consequence, the more regular will the variation of the leverage of the crank be, that is to say (referring to the illustration), the leverages of points $1,2,3$, and 4 would be greater, and the leverages of points $5,6,7$, and 8 would be less, and hence the one series of positions would more nearly equal in leverage to the other series

Let us now consider the crank movement and leverage in elation to the piston movement; and we find, on referring to he diagram, that, while the crank moves from position 0 to position 1, the crank has gained three eighths of an inch of everage, while the piston has only moved about one six teenth of an inch, using, therefore, but very little steam, and so on, as per the following table:

Crank movement	Leverage gained	Piston movemen inch
0 to 1	3-8	1-16
" 2	11-32	3-16
? " :	5-16	5-16
3) " 4	9-32	7-16
4×5	3-16	17-32
5 " 6	$\begin{aligned} & 0 \\ & \text { Leverake loss. } \end{aligned}$	17-32
${ }^{6} \cdot \cdots 7$	5-16	1.2
7 " 8	$1-2$	11.32
8 " 9	11-16	3-32

which shows that, when the crank has moved from position 0 to position 2, which is two ninths of its stroke, it has gained very nearly one half of its full leverage (that is $\frac{3}{8}+\frac{1}{3} \frac{1}{2}=\frac{2}{3} \frac{3}{2}$ or nearly $\frac{3}{4}$ inch), while the piston has moved one twelfth only of its stroke (that is $\frac{1}{16}+\frac{3}{16}=\frac{1}{4} \mathrm{inch}$, the total stroke being three inches). Again wheu the crank has moved to position 3, which is one third of its stroke, it has gained a little over two thirds of its leverage (that is $\frac{3}{8}+\frac{11}{32}+\frac{5}{6}=\frac{3}{3} \frac{3}{2}$, which is over two thirds of one and one half inches),' while the piston has only moved a little over one fifth of its stroke. At both positions, Nos. 5 and 6, the crank remains as nearly as possible at its full length of lever, while at position 7 it has moved seven ninths of its stroke, remaining still a lever equal to over seven tenths of its full length, the piston having moved over seventeen arentieths of its stroke Even at position 8 the crank is at a leverage approximating to one lalf its full length, al. though when in that position it has moved cight ninths of its entire stroke. Thus we find that the reason, that a crank is equal, all round its revolation. to a lerers of more than one
half its length from the center of the crank pin to the center of the crank shaft, is because it movesso quickly into its leverage and retains the same so long, and, furthermore,that the piston movement, and therefore the consumption of steam in the cylinder, during that part of the crank move ment in which the crank is at a leverage of less than one half its length, is comparatively very small indeed.
It will be further observed that, as the momentum of the fly wheel causes the crank to travel at (nearly) an equal speed during all parts of the revolution, the piston is traveling much faster at one than at another part of the stroke. For instance, suppose the crank to makea revolution in a second, it will move from each of the divisions (in the diagram) to the next division in the one-eighteenth of a second. The piston, then, while the crank was moving from point 5 to point $\mathbf{6}$, traveled at the rate of (referring to the table of piston movements) one and one half inches in one eighteenth of a second; while on the other hand, the crank moved from point 1 on one side of the dead center to point 1 on the other side of the dead center, that is two divisions, the piston moved one eighth of an inch only, and had (since the crank moved two divisions)two eighteenths or one ninth of a second to do it in ; so that the reversal of the direction of the movement of the piston is not so sudden as it would at first sight appear to be, or as to cause any violent shock, or entail any appreciable loss of power.
The difference between the amount of power transmitted to the piston and that delivered by the crank shaft may be apreciated when it is stated that in large engines it is computed at nearly two pounds per square inch of the piston area, and in small engines to from ten to fifteen per cent of the total mean pressure on the piston throughout the stroke; te which must be added the amount of friction due to the load which the engine may be driving, the allowance made for this latter being about seven per cent. This difference is accountable for in the power required to operate the slide valve and other working parts of the engine, although there is no doubt that the strain placed by the blocks upon the guide bars when the crank is at and near its points of full power is also very great, in consequence of the angle at which the center line of the connecting rod stands to the faces of the guide bars.
Not so much power is consumed in moving the connecting rod as might, at first sight, appear, because the movement of the crank pin end, which is the heaviest end of the rod, is circular, and it is only at the very center of the crosshead bearing of the rod that its novement is a purely reciprocating one. The movement of the rod as a whole is, as stated, a circular one at the crank pin end, and an oval one between the crank pin and crosshead, which oval becomes longer and narrower as the point on the rod, at which the movement is considered, is located nearer to the crosshead journal.
But little expenditure of power is involved in reversing the motion of the piston, piston rod,crosshead, and guide blocks, because whatever amount of power is required to move them in the first half of the stroke, during which their speed is accelerated, is delivered back by them in the effort to arrest their movement which takes place during the last half of the stroke; hence we find that there is no foundation for any supposition of a loss of power due to the movement of a crank as applied to an engine.

ASTRONOMICAL NOTES.

Observatory of Vassar College.
For the computations of the following notes (which are approximate only) and for most of the observations, I am indebted to students.

Mercury.

Mercury has been seen after sunset in the twilight from February 1 to the present time (February 18), and will prob ably be visible for some few more evenings.
After March 10, it should be looked for in the early morning before sunrise, and on March 28 it should be readily seen, as it is then at its greatest elongation west of the sun. March 1, Mercury rises at 6 h .23 m . A. M., and sets at 5 h 53 m . P. M. On the 31 st , Mercury rises 4 h . 54 m . A. M., and sets öh. 56 m . P. M.

Venus, although past its greatest brilliancy, is still 4 beautiful object in the morning. It rises at 4 h .18 m . A. M on March 1, and sets at 1 h . 56 m . P. M. It passes the meri dian about 9 A . M., and to good eyes is still visible at tha time.
On the 31st,Venus rises at 4h. 10m. A. M., and sets at 2 h 40in. P. M. On the 27th, Venus is so near Saturn that the latter can be easily found.

Mars.
Mars can be seen in the early morning hours. It rises on March 1 at 1 h .15 m. A. M., and sets at 10 h .33 m. A. M., be ing far south in declination, and above our horizon only a little more than nine hours. On the 31st, Mars rises at 0 h . 25 m . A. M., and sets at 9 h .27 m . A. M.

Jupiter.
On March 1, Jupiter rises at 10 in the evening, and sety the next morning at 8 h .42 m . On the 31 st , Jupiter rises at 7 h . 47 m . P. M., and sets at 6 h 37 m . the next morning. As Ju piter comes into better and better position, the varying phe nomena which its satellites present should be carefully noted.
Between 10 P. M. of March 18 and 2 A. M. of the 19th, the third satellite and its shadow and the first satellite and its shadow may be seen projected on the disk of Jupiter. Saturn

54 m . P. M. On the 31st, Saturn rises at 4 h .2 m . A. M., and ets at 2 h .12 m . P. M.
According to the American Nautical Almanac, Venus and Saturn are in conjunction (have the same right ascension) on the 27th, Venus being $1^{\circ} 16^{\prime}$ north of Saturn. As Venus is well known to every one, this position will enable observ ers to recognize Saturn.

Uranus.

Uranus rises on March 1 at 3 h .14 m . P. M., and sets at 5 h , 88 m . the next morning. On the 31 st , Uranus rises at 1 h . 12 m . A. M., and sets at 3 h .28 m . the next morning. Seen through a telescope, Uranus presents the appearance of a small full moon, bluish white in color. Its satelites are seen as exceedingly minute points of light.

Neptune.
Neptune rises and sets so nearly with the sun that it can not be seen.

Sun Spots.

The record is from January 24 to February 18 inclusive. During this time, on account of cold weather and clouds, only nine photographs have been taken. In the picture of the 24th are two spots of medium size, near the end of their passage across the disk. From this time until February 16 photographs and observations with the telescope show that spots were remarkably few and small. To day (February 18), the preceding day having been cloudy, the photograp shows a very large spot just within the eastern limb. A present the spot appears narrow but of unusual length, and if it follows the ordinary changes in passing across the disk must be visible to the naked eye when it reaches the middle of the passage.

Cortesyoudence.

Can Ants Talk?

To the Elitor of the Scientific American:

The following may perhaps answer the above question:
During a ramble over the mountains last spring, I was at tracted by a low, shrill, squeak close by, when, upon looking in the direction of the sound, I saw on the ground, evidently hastening from me, a large insect of the ant species, about $\frac{8}{4}$ of an inch in length, its hinder part of a bright red color and covered with hair. I saw nothing peculiar in its shape, it being similar, as nearly as I could tell, to a common ant only much larger. Struck by the novelty of the sound, stopped it with my stick, and tantalized it for some minutes during the whole of which time it emitted its scream, which I can describe in no other way than that it was similar to the sound which one would make when calling the attention of a bird in its cage, and that it was sufficiently loud to have been heard at a distance of 40 or 50 feet. I finally secured the insect and have kept it ever since, preserved in alcohol From the above it can be seen that the vocal power of the ant is sometimes far from inaudible; for in proportion to its size, I should estimate that the cry of my ant would exceed he bellow of a bull, or the roar of a lion.
Salt Lake city, Utah.
H. L. A. C.

New Telegraph Alphabet.

To the Editor of the Scientific American:
The ordinary Morse telegraph alphabet, consisting of dots, dashes, and spaces, answers very well when a register is dased, and the signals are recorded on paper; but since the sounder instrument has almost entirely superseded the register, this alphabet is defective, as the sound of a dash is very much like the sound of a dot with a succeeding space. This fact suggested to my mind the idea of forming an alphabet which would consist entirely of dots and spaces, and thus lessen the liability to mistakes in transmitting messages by sound. I selected an article in a newspaper, ascertained how many times each letter occurred in it, and arranged them in tabular form, placing the letter which occurred most frequently, first, thus:

Utilization of Exhaust Steam

To the Editor of the Scientific American.
Some mechanics hold that exhaust steam cannot be practically used for heating purposes on account of the back pressure on the engine, which has sometimes resulted in producing greater loss than profit, both mechanically and economically.
Mr. James F. Smith, of this city, a practical engineer, has ecently overcome this obstacle by making the heating pipes of the full area of the exhaust. At the end of the building so heated, it is necessary to exhaust upwards, and work down with the drips. It will, of course, require larger piping, and the pipes should be laid with sufficient descent to carry off the waste water. A child can be easily regulate the throttle for each room; and the rough and unsightly crates now in use can be dispensed with.

New Sarety Elevator

We have lately examined, at the shops of the Holske Ma chine Company, in this city, No. 279 Cherry street, the working operation of their new elevator, for warehouses, stores, offices, and other purposes. One of the distinctive eatures of the improvement is a novel clutch, by the shift ing of which, by the usual cord, the motion of the ope drums is changed, and the elevator made to ascend rope drums is changed, and the elevator made to ascend
or descend, as may be desired. Another improvement re lates to a safety clamp attached to the elevator platform, so arranged that, in case the lifting ropes should break, the platform instantly locks itself between its guides, and cannot fall. As a practical trial, we saw two men mount the platform and sever the lifting rope while they were upon it; but the platform barely settled four inches before it was solidly locked fast.
Another point of improvement is an additionalsafety device for locking the main gears in case the driving belt fails or breaks. The device for this purpose is simple but effective. Altogether the improvements appear to be admirably adapted for practical use, and contain every appliance for safe and reliable operation which the best experience can suggest. All elevators are of course more or less alike. They consist of a platforn on which the goods or passengers are to ride wire lifting ropes to raise and lower the same,winding drums to operate the ropes, and steam power to perform the work. These things being equal, that will be the best elevator which likewise supplies the most effective devices for ensuring safety and preventing accident. In these respects it will probably be difficult to find anything superior to the improvements above described.

To take a hearty meal just before retiring is, of course, in jurious, because it is very likely to disturb one's rest and produce nightmare. However, a little food at this time, if one is hungry, is decidedly beneficial; it prevents the gnawing of an empty stomach, with its attendant restlessness and un pleasant dreams, to say nothing of probable headache, or of nervous and other derangements, the next morning. One should no more lie down at night hungry than he should lie down after a very full dinner, the consequence of either being disturbing and harmful. A cracker or two, a bit of bread and butter or cake, a little fruit-something to relieve the sense of vacuity, and so restore the tone of the system-is all that is necessary.
We have known persons, habitual sufferers from restlessness at night, to experience material benefit, even though they were not hungry, by a very light luncheon before bedtime. In place of tossing about for two or three hours as formerly, they would soon grow drowsy, fall asleep, and not wake more than once or twice until sunrise. This mode of treating insomnia has recently been recommended by several distinguish ed physicians, and the prescriptionhas generally been attend ed with happy results.-Scribner's Mag،zine

Good Words for the "Science Record."

The following words, from three of our friends in remote places, who have just received the Science Record, express the sentiments of many others, which we refrain from printing on account of our limited space:
"Received Soience Records today; they are a splendid reward for a little work."-Martyn F. Gilbcrt, liacine, Wis. " The Science Record came to hand this morning; upon examination I find that it far exceeds my expectations, and would be a valuable addition to any man's library."-Jas. D. Hollister, Salisbury, N. C.
" Many thanks for the Science Record; it is well worthy of going to any trouble to get. I hope I may be able to get you more new subscribers."-Francis Carroll, Manager, N. O. Gas Works.

Any person having paid for a volume, or being entitled to one for obtaining new subscribers to this paper, and not having received it, will please notify the publishers at once, as copies have been mailed to all the names upon our order ooks.
The Science Record for the years 1872, 3,4, 5,-four vol-umes-will be mailed on receipt of $\$ 8$, or a single copy of either year for $\$ 2.50$.

Dr. Fothergill says in the Popular Science Montlly that the intellect is more than normally brilliant when the person is affected with the first stages of pulmonary consumption or with chronic gout.

The Suez canal has earned a profit equivalent to seven per cent on its cost, during the year ending in September
last.

IMPROVED RAILWAY AXLE BOX.

Hot boxes are one of the many annoyances with which railway mechanics have to contend, railway owners to pay for, and railway passengers to anathematize. Dust will get into brasses, and friction inevitably follows. Then the parts get hotter and hotter, and finally oil and waste burst into flame; the train is delayed, sometimes for hours, and in the end rushes nn to its destination with ruined brasses and badly cut journals, looking (after nightfall), to the astonished denizens of way stations, more like a rapid torchlight procession than anything else. The usual means for avoiding the difficulty are: Care in closely fitting brass and journal, the use of alloys, for the former, least liable to cut, and of various lubricating materials claimed to perform their office more effectually than oil. An invention which, like the one which is herewith il lustrated, aims at the root of the evil, by pre venting altogether the entrance of dust and providing a means to keep the brass cool has, we believe, hitherto been absent, or, i it existed, no tidings of its success have eve reached us. The present device has, there fore, the merit of novelty and also of leing a long step in the right direction. It appears to be practical, and we think that railway mechanics will not hesitate to give the new axle box a fair trial.
It comprises two distinct inventions, the first for keeping out dust, the second for maintaining the brass cool. To gain the for mer end, the box must be perfectly tight next the wheel, sufficiently so to prevent the leakage of oil, and yet it must allow the axl abundant play in its lateral and other move ments. By referring to the sectional view Fig. 2, the manner in which these ends ar accomplished will be seen. A is the back of the box, cast in one piece with the body. A metal guard and bolts secure to the inner side a bellows joint, B, which is stamped out of leather and hence has no seam. The oute portion of this joint is similarly attached to a gun metal ring, C, shown enlarged above On the axle a ring, D, is shrunk; and just out side of this, another ring, E , of iron, contain ing spiral springs which tend to push it out ward, is placed. The springs serve to take up any wear of the rings. The bellows joint slips directly over these, so that the ring, C, bears against the ring, E . Outside of the ring, C, and also bearing against it, another iron ring, F, is secured rigidly to the axle. It will be seen, therefore, that the leather forms a screen between axle and box, and, as it is attached to both and is flexible, it forms no obstacle to the lateral play of the former. The two rings, E and F, bearing directly against the ring, C, revolve, of course, with the axle; and as the ring, F, is slightly tapered, its natural effect, owing to the centrifugal force due to the revolution, is, it is claimed, to throw the oil away from the joint, and thus to prevent leakage.

This arrangement, the inventor states, can be applied to any railway box at a cost not exceeding fifty cents. He claims that it allows of filling the box to a sufficient depth with oil alone, and thus doing away with packing entirely, so that the axle runs directly in the liquid. A large saving is thus effected, not merely by obviating waste of oil, but also in packing and the time and labor involved in inserting and re moving the same.

The apparatus for cooling the journal consists in the peculiar construction of the brass, and in a water receptacle with suitable con necting pipes secured above and outside the box. The brass, shown at G in the sectiona cut, is cast with a core,so as to leave within it longitudinal and horizontal channels on each side of the brass. These connect with short tubes on the outer end of the brass; and to the tubes, the flexible rubber pipes, H , which lead to the water reservoir.I (shown in the perspective view, Fig. 1), are attached. It is claimed that, by this device, the brass can never become heated higher than the boiling point of water, even if the lubricating material should be neglected. The resorvoir is a simple box of tin, provided with a screw cap, opening to allow of its ready replenishment. It is attached to the box by a simple thumbscrew, so that if broken it may be easi ly detached. Its cost, the inventor says, need not be over ten cents, while the brasses, he further adds, are no more expensive than those ordinarily employed. In winter the water can be mised with alcohol or glycerin to prevent freezing.

As an additional precaution against dust, a piece of leather, J. Fig. 2, is attached to the rear of the box by clamps.

The entire device is quite simple, and, as we have already stated, can be readily applied to trucks already in use. If its use in addition yields even a portion of the many important advantages claimed, its economical value will be quickly appreciated.
Patented through the Scientific American Patent Agency, in the United States, Canada, England, and other countries. For further particulars address the patentee, Mr. C. A. Hussey,care of the Mercantile Agency, 335 Broadway, New York city.

HUSSEY'S RAILWAY AXLE BOX

-and some ministers used to have fifteen heads to one sermon; pin heads; heads of cattle, as the farmer calls his cows and oxen; head winds; drum heads; cabbage heads; at log gerheads; come to a head, like a boil; heads of chapters head him off ; head of the family; and go ahead-but first be sure you are right.

Recording Votes by Electricity.

A clerk employed in the French government telegraph office (M. Jacquin) has conceived a system for recording votes by electricity. It is thus described: "Before every deputy two ivory buttons are placed, like the buttons of electric bells. If the deputy wishes to vote 'Yes,' he presses the button on his right ; if he wishes to vote ' No,' he presses the button on his left. The voter establishes by this means an electric communication, which is transmitted to an apparatus close to the .

The Young American brings up a " boy's composition" on cads as follows
"Heads are of different shapes and sizes. They are full of notions. Large heads do not always hold the most. Some persons can tell just what a person is by the shape of his head. High heads are the best kind. Very knowing people are called long-headed. A man that won't stop for anything or anybody is called hot-headed. If he isn't quite so bright, they call him soft-headed ; if he won't be coaxed nor turned, ther call him pig-headed. Animals have large heads. The heads of fools slant back. Our heads are all covered with hair, except bald heads. There are other kinds of heads be sides our heads. There are barrel heads, heads of sermons
in colors "aye" or "no" on a list sheet at the Speaker's desk It was a simpler plan than that of Jacquin.

The Institute of Mining Engineers.

This society held a meeting at New Haven, Conn., on February 24 and 25 , Professor R. R. Raymond being the Pre sident. Various interesting papers were presented.
Professor Raymond introduced the subject of
iron and fteel,
with special reference to the decarbonization of spiegel iron y annealing. He exhibited a specimen, the outside of which ad been rendered malleable.
An able paper was presented by Mr. Henry M. Howe, of
blast furnace economy
The waste of fuel is mainly due to the reduction of carbonic acid. The proper remedy lies in using lower furnaces with narrower throats, so that the charge may be heated more rapidly on entering the furnace, and that the carbonic acid produced by the reduction of the ore may be duced by the reduction of the ore may be
formed nearer the tunnel head, and may be exposed for less time and to less fuel before it escapes from the furnace. The waste of fuel is, in all cases, attributable to, first, th reduction of carbonic acid; and second, to the escaping gases carrying off unnecessary sen sible heat. A paper on the
metallurgy of quichsilver
in North Carolina was read by Professor o. Eggleston, of the School of Mines of New York. The ore is found as cinnabar and na tive mercury, in dirt washed into the valleys from the decomposition of the cinnabar and serpentine rock. Cinnabar ore is put in the furnace in pieces the size of an egg; ore con taining native mercury is made into adobes the size of a brick, or a half larger. The processes are roasting and precipitation with lime in a retort. Roasting is done in a re tort without lime and in shaft furnaces which are intermittent and continuous.

Professor Blake, of New Haven, read a paper on
PROVISIONS FOR THE COMFORT OF MINERS
The Hassard colliery, in Belgium, was es pecially referred to. A comfor table home has been established for the miners near the mouth of the shaft, capable of lodging comfortably 200 men . The success and beneficial results of this experiment may, to a great degree, be regarded as a model for such undertakings, and worthy the at tention of our colliers and metallurgical establishments.
Professor Eggleston said that the material comfort of miners is not the only tbing that receives attention. Provision is made for their intellectual and moral welfare. At one of the works in Hanover, where a large number of men are employed, the whole question of amusement and instruction is solved better than anywhere else. In England and France sickness is better provided for than in Germany. The chil dren of the miners at this place in Germany are instructed in schools provided for this purpose. The ordinary lager beer garden is provided ; also a ball room and theater. The music and acting are carried on by the workmen themselves. The hospital system in England is gratuitous. In France a certain portion of the wages of the workmen goes to a hospita fund. Fines for disorderly conduct go to this fund, which is managed by the workmen These plans have worked admirably. In this country, difficulties arise from the lack of con certed action on the subject, and from the large number of nationalities to contend with, which is not the case in Europe. A paper on
the newburtport mines,
by Professor Richards, of the Massachusetts school of Technology, was presented by Profesor T. Sterry Hunt, of the same institution. It appears that the first ore discovered here was in the form of loose masses in the drift, but subsequent explorations showed that the source of the ore is a vein having a northeas course, cutting the ancient crystaline soda of the region. Two shafts have been sunk upon it, each of which has now reached a depth of aboutforty feet. In one, the ore-bearing por tion of the vein was six feetin breadth, and in the other, about seven inches. Further ex plorations are required to determine the president and his secretaries. Every time the electric current acts thus it opens the door to a ball, and the ball falls through a tube into the ballot box. The balls are made of glass or ivory, and are strictly identical in weight. The two ballot boxes are then weighed, and the number of balls indicated by the weight. Finally, by turning a handle, all the balls which have not been used are let out, and they give the number of members who have abstained or were absent when the vote was taken. Nothing can be more simple. The inventor has offered to set up his apparatus in the Versailles assembly for the sum of $\$ 12,000$.'
Mr. Thomas Hall, of Boston, Mass., calls our attention to the patent granted in this country, in 1850, to Albert N. Henderson, of Buffalo, N.Y., for an electrical vote recorder. Hen derson's plan was to have a couple of keys on each member desk, by pressing which the members could instantly print
breadth of the lodes in these shafts. The ore is a galena, carrying silver, with some copper, yielding, on assay, both gold and silver. Small portions of copper pyrites, zinc blende and native silver have also been found. The treatment of Baulbach, of Newark, of about four tuns of the loose ore found in the soil, gave thirty-eight per cent of lead, together with $\$ 58.76$ of silver, and $\$ 4.85$ of gold, to thetun of ore. Assays of the borings from a portion of the lode showed over fifty per cent of lead, containing silver and some gold, giving to the base bullion a value of about $\$ 300$ to the tun.

The Congress of Mexico offers a reward of $\$ 20,000$ to the first mine that produces 500 flasks of quicksilver. The met al is extremely scarce, a fact said to be due to the lack of proper enterprise in prucuring it, rather than to any deficiency in its presence.

TWO REMARKABLE PLANTS. severe and so prolonged, the which have this year been so contemplating the inhabitants of the greenhouse and the hot house; and the vegetation of the tropics appears more than ever beautiful when the weather has bound our soil in an iron chain. Of all the classes of plants which the art of the gardener, aided by artificial heat, can cultivate in our northern climate, the palms exhibit the greatest variety of graceful foliage; and we publish herewith an engraving of the male species of the hardy palm, an ornamental kind exhibiting a remarkable difference between the two genders.
The male kind is known by its large thick trunk which, near the ground, branches out into strong vigorous boughs, thickly covered with spiky foliage of a deep yellow color; these spikelets at first grow out straight from the branches and then incline sharply downwards. It bears innumerable little flowers, growing closely together, of a beautiful deep orange color tipped with yellow. The female is comparatively small, with much thinner branches, the greenish yellow leaves of which grow straighter than those of the which grow straighter than those of the much further from the stem. Its numerous small flowers, of a pale yellow hue, also grow at greater intervals apart. It blooms from April to May, and the seeds ripen from February until April the following season, thus requiring an entire year for complete fruition. As regards display, the preference must be given to the male trees, which may well be pronounced exceedingly ornamertal. It is a moot point whether the males or females are most numerous; but cer tain circumstances would indicate that the males are.
Our second specimen is even a greater curiosity. It comes from Costa Rica, and has a large scarlet spathe, and a twisted spadix, which, when elevated, as they are, on a tall peduncle, have a peculiar aspect, and have gained for this species the name of flamingo plant.
The accompanying illustration has been prepared from a photographic representation of one of the finest specimens of this plant to be found in Europe, and it is also one of the best varieties of this truly beautiful species. The compost in which it has thriven so well consists of peat, charcoal, broken crocks, and nuoss. The pot is half filled with drainage. The temperature it has all along been grown in is intermediate between that of a stove and a greenhouse. We are indebted to The Garden for the two engravings.

Aniline Colors without

 Arsenic.Coupier, of Paris, was the first to succeed in producing fuchsin by the action, at a suitable temperature, of hydrochloric acid and iron in small quantities on pure aniline and nitrotoluol.
Recently, the Gesellschaft für Anilin Fabrikation, of Berlin, have erected new works, where no arsenic acid is used in the preparation of colors. Not only fuchsin (rubin), but all the cofuchsin (rubin), but all the co-
lors derived from it which are lors derived from it which are
manufactured by this company, are warranted to be produced without the employment of arsenic, and to be entirely free from this poisonous reagent.
The Berlin company are working Coupier's process with several important modifications, and produce from 450 to 675 lbs . of produce from 450 to 675 lbs. of
fuchsin per day. Some specimens of fuchsin and other colors manufactured by this company appear to be products of unrivaled beauty, purity, and strength." The fuchsin is stated to be not only purer, but stronger than that made by the aid of arsenic acid, and is the pure hydrochlorate of rosaniline. The rosaniline base, from its great purity, is admirably adapted for the preparation of aniline blue, and is now being very largely used by other manufacturers of aniilne colors.
Being free from arsenic. these dyes are not only fitted for coloring sweetmeats, liqueurs, sirups, and pharmaceutical preparations of every description, but may be used in many other industrial purposes where poisonous colors would be more or less dangerous, as in the staining of paper, paperhangings, toys, etc.
It is to be desired that other manufacturers of these dyes will adopt the new method, and relinquish the old arsenic acid process, which, apart from the inconveniences it has caused both manufacturers and consumers, has led to many lamentable accidents.-Chemical N eros.

THE FLAMINGO PLANT-(ANTHURIUM SCHERZERANIUM).
cess of the operation depending more upon the quantity and state of the materials than upon the skill of the workmen. Thus if a round or square tank is required, a piece of the sheet lead sufficient in size to form the sides and ends of the tank, or the hoop, if a round one, is bent into shape, the overlapping ends being secured by a few touches of solder or a few nails, driven from the inside, so as to keep the overlapping edges perfectly close. On the outside of the joint a piece oi stout brown paper is pasted, so as to cover the whole of the joint. The hoop, or parts to be joined, are then turned downwards on to the casting floor, and molding sand of good quality packed over the joint to about five or six inches in depth, a piece of wood about three quarters of an inch thick being placed over the junction of the edges, while the sand is being rammed to gether. This wood is to form the runner or channel for the molten metal, and must be slightly longer than the joint to be made, so that it can be drawn out lengthways. The sand being tolerably firm, cut down to the wood with a trowel, forming a sort of V shaped groove along nearly the whole length of the intended joint, leaving a few inches of the wood buried at one end, which is also to be completely stopped. When the wood is drawn out, which is the next operation, the other end of the runner is to be stopped up to a greater or lesser hight according to the thickness of the metal; about an inch is usu ally sufficient. It will be understood that we have here, as it were, a broad-mouthed ditch in the sand, stopped at one end, and with a bar one inch deep at the other; and at the bottom are the overlapping edges of the lead that is to be joined. A quantity of lead is then melted in a furnace, and brought to heat sufficient to melt the two edges of the metal to be joined.
Everything being in readiness, a small quantity of rosin is dusted along the intended joint at the bottom of the runner, and a bar formed to catch the overflow of metal. The latter is then poured in steadily but quickly, giving it as much fall as possible, and keeping up the supply till, by means of a trying stick, it is known that the cold metal of the edges has been melted. The overflow end is then stopped up, and more metal poured in, the molten lead being kept ready to fill up as shrinkage shows itself. When set, the sand is removed, and the runner or the remains of the metal poured on the joint is cut off with a chise and mallet, and the surface flushed with a scratch brush or wire card. The paper that was pasted over the outside will have fallen off, and will be seen to have left a smooth surface, in which no trace of a join is visible.
It will be seen that the secret of success lies in having a good bed of sand, plenty of hot metal, and careful attention to the shrinkage. The bottom of the tub or tank is put in by a similar process. The hoop or sides, when the tank is not too deep, being completely sunk in a hole in the castingshop, is filled up with sand inside and out. The sand is then removed from the inside to a depth equal to the thickness required in the bottom of the tank, and smoothed over well with the trowel. The sand outside the tank must be rammed hard, and a bay left all round to take the overflow. As before, rosin is sprinkled over the edge of the metal, and the melting furnace brought close to the work. When the metal is as hot as possible, two or more men take a ladleful and pour along the edge ; and when the latter is melted, the molten metal is poured in until it is up to and running over the lerel of the outside sand all round. The dross is then skimmed off and the metal left to cool, as
ruction of vessels for holding acid or corrosive liquids, which would attack one of the ingredients of ordinary solders; as for instance the leaden vessels, tanks, and chambers employed at chemical works. In vessels subjected to considerable changes of temperature, alloys are frequently of little use in constructing joints, owing to the difference in the amount of their expansion and that of the metals to which they are attached; and in other cases they set up a galvanic action, which more or less speedily destroys the more oxidizable metal. Autogenous soldering is also employed for the sake of appearance in pewterer's and plumber's work-especially in the former, in which, if solder where employed, the joints of angles and the seams would become too apparent to the eye. Burning is also resorted to to remedy defects in castings,and in various jobs in which solder is either inapplicable or objectionable.
The simplest method of burning is that adopted in the manufacture of leaden tubs, tanks, and other vessels, the suc-
shrinks equally all over and requires no further attention. It is obvious that, instead of making the bottom by pouring on molten metal, a piece of the required size can be cut out of thinner sheet lead, and placed on the top of the inside sand; but we believe the majority of experienced workmen prefer the first mentioned method of burning in a bottom. If the article is of considerable size, however, it is necessary to have more than one workman, as the metal must be poured on as quickly as possible.
This method of lead burning is, it will be seen, considera bly troublesome, and is rarely used ezcept when the lead is too thick to be melted conveniently by means of the blowpipe or the oxyhydrogen flame. The latter is, however, always used when possible by those who can accomplish the operation, which requires a much greater degree of skill than the process of lead burning we have described above. The edges to be joined should be scraped clean, and be dusted with rosin. A piece of lead is then laid along the intended joịnt, and the
flame brought to bear upon it. In many cases the skillful lead burner omits the strip of lead, and obtains a joint by fusing the two edges to be united; but it is only the skillful workman who can accomplish this, as, especially in thin lead, the ellges as they approach fusion are apt to run away from one another instead of coalescing. It is always best to use the covering strip of lead, because it is easy to remove superHuous metal from the joint, and failure in the other process involves loss of time. In either case it is only by practice that the amateur or tyro can hope to succeed.
Similar processes are applicable in the case of the other metals. Thus brass may be burned together, by placing the parts to be joined in a sand mold, and pouring a quantity of molten hrass on them, atterwards roducing the parts by means of the file, etc., to proper dimensions. The sine qua $n \not n n$ is plenty of molten metal, made a trifle hotter than usual. Pewter is generally burned by the blowpipe or a very hot copper bit. In angles and where it is bent over sharp cor ners and in seams, one edge is allowed to stand over the sur. face of the other, and a strip of the same metal is then laid along the intended junction. The joint is then burned, as mentioned, by melting the surfaces and edges by means of a blowpipe or the hot soldering iron, and the superfluous metal is filed off, leaving the joint, if at an angle, looking as if it had been made out of the solid. The principle of the process is the same whatever be the mode in which it is performed; and when hot metal is used as the sole agent of heat, it is necessary to have plenty of it, and to see that the parts to be joined are clean. It is scarcely necessary to say that the autogenous method is the only proper method of remedying defects in castings, and, notwithstanding the trouble attached to it, should always be attempted with all metals for which it is applicable, and all articles in which it is possible. We do not suppose that trifling defects in iron castings will be remedied by this means, though there is no very great difficulty in accomplishing it, as flanges are often burned on to pipes aad wheels; but with the more costly or easily worked metals, the practice of this process would be uttended with advantage.-English Mechanic.

The Earth-o-Its Heat and Contraction.

Professor P. M. Duncan, F.R.S., recently delivered at the Royal Institution a course of lectures upon "'The Grander Phenomena of Physical Geography." He pointed out that there is strong evidence that the earth is a solid body now cooling, because the deeper man can get in mines or in borings the hotter is the temperature, and if the temperature continues to increase at depths to which man cannot reach, in the same ratio that it does at depths which he can reach, a temperature of $3,680^{\circ}$ would be found at a depth of 4. miles. At this temperature granites and lavas fuse. Assuming, then, the earth to be a hot body now cooling, as it cools the rocks must contract; moreover, those rocks which are rich in silica will not contract so rapidly on cooling as others, couseq uently herein is a source of change of shape of the earth. It is well known that surface changes are going on, that some large areas of land are in course of slow upheaval, while others are slowly sinking, and that at one geological period there was a great upheaval of the larger portion of the continent of North America. The globe, therefore, is cooling unequally. The radiation from some parts is greater than at others, so in this there is a further source of disturbance. Sir William Thomson has calculated that every year 92 horse power of work-for heat means workis got rid of from every 247 acres of the surface of the globe. The dissipation of energy and the contraction of rocks not being uniform, the effect of these disturbing causes is to produce horizontal thrusts, which form mountain ranges by crumpling up the earth, for mountains are formed by this crumpling action, and not usually by direct volcanic or other upheaval. The changes produced by the contraction are slow, and there is every reason to believe that our present sea floors and our present continents are extremely old, geographically speaking, so far as their present forms are con cerned. He said that the upper part of Snowdon consists of sea sand, fossil sea fishes, and volcanic ashes, all mixed together; in fact it appears to have been at one time in the same condition that the Bay of Naples is in at present, that is is to say, volcanic ashes fell into it and sometimes buried fish. The lower part of Snowdon consists of vast streams of old lava. At some geological period the crumpling action a'ready mentioned took place below the Bay of Snowdon; consequently the bottom of the bay was elevated and became the top of the highest mountain in Wales. Rain, and rivers, and atmospheric changes then played upon it during the course of long ages, sculpturing nut the beautiful mountain sicenery which characterizes the Snowdon range.

Heet Steak Electricity.

The six Christmas lectures for juvenile listeners at the Royal Institution, were delivered by Dr. J. H. Gladstone, F.R.S. He chose for his subject "The Voltaic Battery." Most of the experiments and teachings were of course too elementary to interest the readers of these pages, but one of the experiments revealed a fact not generally known. He said that in daily life weak electrical currents are at work where their presence is often little suspected; for instance, supposing a person at dinner to have a silver fork in one hand and a finger upon the steel part of a knife held in the other, it follows that, when he plunges the knife and foris into a beef steak, two dissimilar metals are thereby placed in a moist conducting substance, consequently a voltaic circuit
is formed and an electric current flows through the body of the individual between the knife and fork. To prove that the individual between the knife and fork. To prove that
this was really the case, he connected a reflecting gal vano-
meter with the knife and fork by means of wires; he then meter with the knife and fork by means of wires; he then
proceeded to cut a beef steak, and the current thus generated deflected the needle of the galvanometer, so that the spot of light which it reflected was seen traveling along the screen by all the observers.

Steam Boat Poetry.

At a meeting of the Institution of Engineers and Shipbuilders in Scotland, held in Glasgow, on Wednesday, December 4, 1867, Mr. J. A. Napier, F.R.S., submitted the fol lowing verses, written by Wm. Muir, saddler, Kirkintilloch, March, 1803, " on seeing the new-invented Steamboat pass through the great Canal, dragging two vessels behind it fully loaded."
the steam barge, or nactical novelit
When first by labor Forth and Clyde
Were taught o'er Scotia's hills to ride
Were taught o'er Scotia's hills to ride
In a Canal long, deep, and wide,
Naebody thoch
That winders without win' or tide
To gar them true that boats would sail
Thro' tields o' Corn or beds o' Kail,
An' turn o'er Glens their rudder's tail,
Like weathercooks
Like weathercooks
would needed bail
Wi' common folks
They ca'd it nonsense, till at last
They saw boats travel east and wast,
Wi' sails and streamers at their mast
Syne, without jeering, Was worth the hearing

For mony a year, wi' little clatter, An' naething said about the matter,
The horses hauled them through the water Frae Forth to Clyde;
Or the reverse, wi' weary splatter,
And sweaty hide.
Then wi believed, poor silly bodies,
That horses' hoofs and hempen woodies An' cursing callins clad in dudies, 'To swear and ca' them.
But little think wi what's in noddles, yne darklins forth frae drumly puddles Brings things to view
That the weak penetration fuddles,
0 ' me an' you.
or lately we have seen a lighter, May old hoat-kaulers a' gae dight her, Black sooty vent
Than half a dozen horse she's wighter By ten per cent.
Wi' something that the learned ca' steam, ,' huge engines to draw coal seam Or carry hutches, She in her breast swells sic a feum As has few matches.

By it she through the water plashes, In' out the stream behint her dashes, at sic a rate baith frogs and fishes Are forced to scud, To shun the mud.
When first I saw her in a tether Draw twa sloops after ane anither, Regardless o the win an weather
Athwart her bearin', Athwart her bearin',
she had come hither A privateering;
An' that the pair she had in tow Were prizes, struck me, sae I vow: cried when fixed to their prow I saw her cableAmang the rabble."
It was sae odd to see her pulling, An' win' an' weather baith unwilling, Defy'd them baith, 1 that fullin' Gude English claith.
Can o'er, thought I, a flame o' reek,
Tho' it war keepit for a week,
Perform sic maist the folks O gazing hunders?
But facts wi canna well dispute th
Altho' wi little ken about them;
When prejudice inclines to doubt them,
Plain demonstration deep can root them, An' set ws right.
Or lang gae now wi' whirligigs,
An' steam engines will plough o
An' gang about on easy legs,
But flit in tethers, needlessna That us'd to hain us.
Braw news indeed for man and beast, An ' on their former labors feast, Wi' cheerful hearts,
warm steam insist warm steam insist
To play their parts.
[The boat referred to, we presume, was the Charlotte Dunas, built by William Symington, a native of Falkirk, for claimed.]

ENGINEERS, CONTRACTORS, MACHINISTS, AND MANUFACTURERS.

The publishers of the Scientific american are prepared to execute il lustrations, in the best style of the engraver's art, for this paper only, of all civil and engineering enterprises, such as New bridges, Docks, Furnaecs Rolling mills, and all kinds of Manafacturing Works, including Wood and Iron Workine Machines, Lathes, Shears, Steam Boflers, Engines, Pumpa Governors, Raliroad Improvements, Agricultural Implements, Architectura Works, Conservatories, etc. Engravings may be made from good photographs or well executed drawings, or artists will be sent to any part of the country to make the necessary sketches. The furnishing of photographs, drawinzs, or models is the least expensive, and we recommend that course as preferable. The examination of either enables us to determine if it is a subject we would like to publish, and to state the cost of engraving in advance of itsexecution, sothat parties may decline the condifions without ncurring much expense. The advantage to manufacturers and contractors of having their machines, inventions, or engineering works illustrated in a paper of such large circulation as the Scientific Americ.in, which not only extends to nearly every manufacturing establishmeat in this conntry and Canada, but has an extensive circulation abroad, is obvious.

For full particnlars asto cost for engraving and pubinhg addrees

MUNN \& CO., 37 Park Row, New York City,
model, drawing or photograph, and letter by the same mail.

NEW BOOKS AND PUBLICATIONS.

beton Corgnet: A Description of the Material and its Cses in France and Amerlca. Published by John C. Goodridge, Jr., Aven York and Long Island Coignet Stone Company, Thir Avenue, near Third street, Brooklyn, N. Y.
Engineers, bullders, and architects will tind in this pamphlet complete ufactured. The work comprises a large number of valuable reports upon practical tests of the material, prepared by well known experts, and also the specifications of the ten patents under which it is made. A profusion of excellent engravings of completed structures, in which the beton Coignet is used, embellish the text. An advertisement of the pamphet will be found The Progress
The Progressive Ship Builder. By John W. Gritiths, Lditor the Author, New York, P.O. Box 51:5.
This is the first volume of an extended treatise upon ship-building which inasmuch as it embodies the results of the author's experience of fifts-two years in the art, cannot but be of great practical value. Certainly, a work Which aims to circulate broader ideas regarding a calling which (though on
of the noblest, and at the same time one which our great seaboard, it milgh be thought, would render one of the tirst to the country in industrial impor tance) has of late assumed proportions far too inconsiderable desee, and in onest welcome. The book is writen in a a useful contribution to litera copiously tilustrated.
ture on the subject.
The Microscope and its Revelations. By William B. Carpenter, M.D., LL.D., F.K.S., \&c. Mustrated with twenty-five plate and 449 wood engravings. Fifth Edition. Lindsay \& Blakiston Philadelphia, Pa.
This is a thoroughly revised edition of probably the best, certainly the most exhaustive, work on microscopy extant. The book is eminently prac
ical; and for this reason, perhaps above all others, we can heartily commend it to students-while the very distinguished position of its author in the scientific world is an ample guarantee that nothing, in the already wide though constantly widening feld through which he aims to conduct the reader, has been omitted or slighted. His endeavor clearly is throughout to make the student investigate for himself, or, to quote from the preface " hetng satigfted that there is a large quantity of raluable microscope power
at present running to waste,'’ he hopes to direct this power to more systematic labors. The original work included chapters on the principles and construction of the microscope, accessory apparatus, management of the instru ment, collecting and mounting of objects, and elaborate description of microscopic forms of life. These general topics in the volume before us have been hrought down to the lacest dates, and descriptions have been added of the newest inventions as well as discoveries in the science. The publishers deserve much credit for the excellent appearance of the very sale in this city by D. Van Nostrand.
We have recently received an exceptionally handsome chromo calende from Messrs. Schumacher \& Ettlinger, of Nos. $13 \& 15$ Murray Street, in this city. The work, which is a neat llower design representing a fan, is exe-
cuted in gold and a varity of brilliant colors, making it a very attractivcuted in gold and a variety of brilliant colors, making it a very attractiv

DECISIONS OF THE COURTS.

Supreme Court of the United States.
THE RUBBER TIP PENCIL COMPANY, APPELLANT, v8. BAMYCLE E. HOWA
HENRY BANGER, MICHAEL

zaxent Gancrican and forcign tatents.

Improved Extension Table Slide.
Abraham S. Bowen, Rushille, Ind.-The invention consists in a
novel mode of improving the adjustable slides of extension tables novel mode of improving the adjustable slides of extension tables,
by combining a recessed and apertured slide with a casting having by combining a recessed and apertured slide with a casting having
a tit that fits in the aperture, so as to avoid the use of screws and a tit that fits in the aperture, so as to avoid the use of screws and
enable an ignorant workman to properly adjust the casting in the slide; also in providing the tenoned slides with straps and the castings with grooves, cavity and shoulder, so that the slides will freely

Improved Combined Hitching Strap and Nail.
Ernst Ohm, Terre Haute, Ind.-The invention relates to devices by which horses may be conveniently, quickly, and securely hitched in
close proximity to a residence, and consists in a hitching nail consisting of a body and detachable cap having a notched flange.

Improved Hand Potato Planter.
Josiah Sawyer, Tremont, Ill.-A tube is made in sections sliding into each other, so that its length may be readily adjusted according
to the hight of the person carrying the dropper. To the lower end to the hight of the person carrying the dropper. To the lower end
is attached a flexible tube of rubber, and of such a length as to touch the ground when the box is carried in position for use, so that the potatoes will not roll when they reach the ground, but will lie ex-
actly where dropped. In using the dropper, the potatoes are cut into pieces of the desired size and placed in the box. The person using it measures off the ground by his steps, and at the proper time he raises enough seed for a hill from the box, and drops it into the
tube. When the dropper is set down, the tube rises through the hole n the box, and again slips down into place when the box is raised from the ground.

Improved saw Gummer.
Osakis, Minn.-The
S. Lee Tibbals, Osakis, Minn.-The presser bar is made with spring at the attached end, so that it will raise itself from thedie and is yerforated to receive the punch. It also carries a perforated
guide. The saw is placed on the face of the die, and the bar is guide. The saw is placed on the face of the die, and the bar is
brought down on it and held in position by a cam lever. This cam lever is provided with journals, and engages with a slotted hook within which the end of the bar works.

Improved Car Seat.
Edwin G. Wellman, Canandaigua, N. Y.-This car back is detached extend across the cands of the seat. It may thus beadily slid tich one edge of the latter to the other, when it is desired to reverse the same. This invention was described and illustrated on page 118 of

Improved Coffin Clamp
William H. Houck and John B. Fox, Quincy, Ill.-This invention relates to an improved coftin clamp for hearses, by which any size or shape of coffin may be firmly secured in the hearse in a quick and
convenient manner. Upright standards slide in cuide slots of the body of the hannerse, and retain the cotrin by oscillating clanping on a right and left hand screw bolt, which is so constructed that he front and rear clamps may be moved together, or one pair separately, for being thereby adjusted to any coffin. The clamps are previously set to the shape of the coffin, which facilitates the clamp-
ing, and allows the almost instant locking of the same when the collin is placed on the hearse by the pall bearers, so as to avoid hereby thes of the inventors, P. O. box 2,225 , Quincy, Ill.

Improved Horse Hay Rake.
Peter Mast, Waterville, Ohio.-This is an independent shifting and the pivoted tooth bar, for the purpose of controlling and gove:ning the rake teeth instantly during the progress of raking with-
out changing the position of the adjusting lever, so as to adapt the out changing the position of the adjusting lever, so as to adapt the and efficacy of working the same

Improved Gan Retort.
Samuel P. Parham, New York city.-This retort has a clay shell and a wrought metal lining, the two being provided with an air space that will admit of expansion. Both ends are open, and the
terminals of the lining extend beyond the shell, and on these extenterminals of the lining extend beyond the shell, and on these exten-
ions support end tubes. The latter have outwardly projecting ions support end tubes. The latter have outwardly projecting firmly in place, the shell, lining, and tubes being all simply cemented together. Naphtha liquid is forced or caused to flow through an
aperture into the initial tube, and thence drawn through the lining, aperture into the initial tube, and thence drawn through the lining, wherein it loses its liquid form, assumes that of a gas, and is drawn
through the outlet by an exhauster. This has been found in practhrough the outlet by an exhauster. This has been found in prac-
t'ce to produce a very rich gas, sufficiently pure for mixing with the t'ce to produce a v
purified coal gas.

Improved Hog Trap.

Peter Lane, Elwood, Ind.-This invention is an improvement upon Hay 19, 1874. It seizes the animal, throws it on its side, and holds it in convenient position during the operation of spaying.

Improved Mosquito Bar Frame.

William F. Howe, Galveston, Tex.-- This is an arrangement of the posts, and slipping the cord from the ends of the bars, from taching the posts from the bedsteads, the bars may be folded to gether, and they and the post tied into a small and compact roll.

Improved Map Exhibitor.

sebastian C. Adams, Cincinnati, O.-The chart to be exhibited is ther of the rollers by turning them by meansof cranks. The jourals of the rollers revolve in spring clips, which press against the nhich they may be turned, and also keep the chart tany position into wound. The bars to which the clips are attached are halved to the two cross bars, and are sccured detachably to sald bars by screws oo that they can readily be detached and packed into a compact bundle for storage or transportation.

Improved Ventilating and Warming Drum. Peter H. Carman, Brooklyn, N. Y.-This ventilator is placed in furnace or fire. It forms a box in which are horizontal and vertical partitions. Tubes, of greater diameter at the bottom than at the top, extend from the lower partition to the upper partition, all passing through the central partition, with the exception of the
outside tier. This central partition is cut short to allow the heat to pass from the lower compartment to the upper compartment by means of flues. Above and below the horizontal partitions are two one set of compartments, and half connect the other set. The one set of compartments, and half connect the other set. The
fresh air is admitted into a compartment, and passes ur through the left hand tiers of tubes, by means of which the air is heated and digcharged into the chamber, whence it is conveyed to the apartment. At the same time, the foul air at the bottom of the apartment is drawn into another chamber, an upward draft being induced
by the heat with which the tubes are surrounded, and is discharged by the heat with which the tubes are surrounded, and is
into a chimney or flue, and conducted from the building.
lmproved Tanning Apparatus.
Harvey Reed, Atlanta, Ga.-This invention consists of tan vats contrived with removable partitions and sliding and removable
racks for supporting the skins; also with an arrangement for circuracks for supporting the skins; also with an arrangement for circu-
lating the liquor through the leaches and vats in an endless course, lating the liquor through the leaches and vats in an endless course,
so that the skins may be put in at the end of a series of vats, out of which the liquor is forced into the leaches again and shifted along from time to time, to the other end. Into the latter the liguor flows again after being renewed in the leaches, and thence the tanned batches are lifted into the drying house. The leaches are arranged in a series and introduced into the endless channel for the liquor at one end with new material, and shifted along to and removed with the spent material at the other end. The exhausted liquor thus
entersthe oldest leach as it comes from the vats, and passes to the entersthe oldest leach as it comes from the vats, and passes to the wwest in going back to the vats, and thus extract the tannin and of a softening and scouring wheel contrived to produce the conrrent of liquor, and having outwardly projectingfloats to act on the water, and inwardly projecting floats to scour and rub the hides placed in it, while the liquor is pumped up into it as it revolves.

Improved middlings Purifier.

Edwin W. Johnson, Foreston, II., assignor to himself and Joseph . Knodle, of same place.-The meal is acted upon by a continual saucers with great facility, by a strong of vertically disposed caused by the suction fan through side apertures, near the bottom of the separating chamber, so that thereby the bran and other im-
purities are separated from the flour and carried partly around the purities are separated from the flour and carried partly around the
saucers, by the central apertures of the valve chamber and fan cassuucers, by the central apertures of the valve chamber and fan cas-
ing, to the discharge conductor, and partly through a suitable numing, of side channels at the inner circumference of the separating chamber, to the valve chamber and the exit conductor

Improved Chain Gripe and Tightener.

John N. Ackerman and George J. Ackerman, Hackensack, N. J. A cast iron framehas a pivotedsheave. A lever has an end yoked so as to receive the aforesaid frame, and is pivoted thereto by the
same bolt. A pawl is pivoted on the yoke of the lever, and a spring keeps it in position. To operate this device, the flat side of the frame is placed against the load, and the chain is thrown over. The chain is next passed up over the sheave, and then down through the yoke of the lever; then, by pulling the said lever downward, it will cause the pawl to gripe the chain and draw it through, and an-
other pawl, resting on the sheave above the chain, will gripe and other pawl, resting on the sheave above the chain, will gripe and
hold it while the lever is being raised in position for a fresh gripe.

Improved Bee Hive.

Monroe Davis, Arcola, Mo.-The essential feature of thisinvention is a moth trap, composed of a nest of curved plates, which prevent the insects from entering
having once emerged.

Improved Screw Propeller.

Elbert B. Porter, Havana, Cuba.-The invention consists of a crew propeller with semi-elliptic or otherwise bent and twisted blades attached at one or both ends of shaft, and provided with inpropeller is made of rolled metal plates, each auxiliary and main propeler is made of rolled metal plates, each auxiliary and main
blade being separately attached, so that any part may be repaired without interfering with the other parts.

Improved Potato Digger and Cultivator. Alden Crosby, Gray, N. Y.-The forward ends of three beams are
spread apart, and are connected by a curved bar. The forward pread apart, and are connected by a curved bar. The forward apart, as may be desired. To the beams are attached the plow standards, which carry the plow plates. The forward plow plates are made with teeth upon the outer part of their lower edges, and their inner parts or wings are so formed as to throw the soil toward and around the plants, and round it up into a ridge. The rear plow plates are so formed as to move the soil farther inward, and com-
plete the formation of a ridge around the plants. When the maplete the formation of a rigge around the plants. When the machine is to be used as a potato digger, the plow plates are so adcenter beam is attached a standard, to which is attached a sharppointed plow, which opens up the hills and throws out the potatoes. Another device rakes over the soil thrown up by the plow, and thus separate the potat.
the top of the soil.

Improved Electric Fuse

Charles A. Browne and Isaac S. Browne, North Adams, Mass.The invention relates to electric fuses, consisting of a shell having wires in packing, and attached to a second shell or cup containing the explosive compound. It consists in preparing these for transortation and subsequent consumption, so that the outer or second and then dried and attached by the consumer to the independent fuse.

Improved Arm Fracture Apparatus.
David Bissell, Detroit, Mich.-The arm splint comprises two pairs of clamping plates, one for the arm and the other for the fore arm, the plates being of concavo-convex form, whereby they are adae and
to envelop the arm, or nearly so. They are also made double, and contrived to lengthen and shorten, and may be adjusted toward and from each other, to shift along the arm, as may be required. The upper plates of each parr are detachably connected to the others, so removing it from the arm ; and the part to be applied to the fore arm is provided with flexible springs, with adjusting screws for applying the pressure to the arm. The object is to conform the pressing device to the shape of the arm for regulating the pressure on the different parts, and to hold the arm in the requisite shape.
The clamping plates are made of zinc, and a zinc plate is used in The clamping plates are made of zinc, and a zinc plate is used in
front of the pressure springs for the benefit of its cooling nature front of the pressure springs for the benefit of
and to facilitate the application of electricity.

Improved Street Railway Car Truck
Henry C. Bull. New York city, assignor to himself and M. A. Southworth, New Orleans, La.-This consists in connecting the sections of the tubular truck frame of a street railway car by tubular joints, thus forming a continuous passage therein. Thus constructed, the entire frame is adapted for use as a water
tank for supplying the boiler, and may be of any size found necestank for supplying
sary or practicable.

Improved Wheel for vehicles.

Abraham B. King, Camden, \mathbf{O}., assignor to Catherine King, Rome, Ga.-The interior of the hub is in three divisions or chambers, for ontaining the nut and washer on the arm of the axle, the rubber poke tenons. Stops which enter grooves in the springs hold the latter stationary. Confined as these springs are around the pipe box or axle, a degree of elasticity is imparted to the axle and wheel which counteracts the usual Jarring and
the motion of the vehiole soft and easy.

Improved Spring Bed Bottom.
George W. Hatch, Fond du Lac, Wis.- In thls bed bottom the wire
sprlngs are each formed of a series of bends, having an upward inclination, straight connecting portions, and eves, sald springs being arranged lengthwise of the slats.

Improved Safety Valve.
Southworth, New Orleans, La.-The first invention consists of a pistor of large area, subject to the pressure of the steam, which pressure holds the valve closed through the medium of a spring until the set point for blowing-off is reached. The pressure is then caused, by
means of a rod and lever, to react on the spring, and to open the means of a rod and lever, to react on the spring, and to open tho
valve and allow the steam to escape. The invention also consists it the arrangement of an adjustable collar for varying the set point at which the valve shall open and allow escape of steam.

> Improved Washing Machinc. Villiams, Hamilton, Iowa.-This consists i

Horace G. Williams, Hamilton, Iowa.-This consists in the pecular construction and arrangement of the devices for eperating a the machine the clothes are placed upon the bottom of the tub. sufficient quantity of soap and water is put in, and the free end of
a lever is worked up and down, which alternately presses the water a lever is worked up and down, which alternately presses the water
out of the clothes, and allows them to again become saturated. As out of the clothes, and allows them to again become saturated. As
the lever is being worked up and down, it is, at the same time, moved to one or the other side, so that the presser may strike the clothes
the to one or the other side, so
each time in a new place.

Improved Spring Seat Support.
Frank A. Hawley and A mos Pearsall, McGregor, Iowa.-The scat which is constructed partly of wood and partly of sted sprame, The wooden spring part is of slightly curved shape, and applied under suitable upward inclination to the front part of the perch. The brackets are attached to the wooden spring part of the frame, which is laterally braced by a stiffening piece. The steel springs are of
inverted C shape, and applied with or without straps to the upper ends of wood spring pieces.

Improved Grain Cradle.
John W. Settle. Glasgow, Ky.-Uyon each tinger, at the point where the rod usually passes through, is placed a socket, which is secured detachably to the fingers by a small screw passing through
said socket and into or through the fingers. By this construction, said socket and into or through the fingers. By this construction,
the fingers are not weakened by having holes forned through themi for the passage of the cross rod, and are thus less liable to break ut that point, while the sockets allow any tinger to be convenientlyremoved and replaced with a new une.

Improved Leg Fracture Apparatus.
David Bissell, Detroit, Mich.-This is composed essentially of two and extensible for the leg and thigh, respectively, with an adjustable extensible, and remove leg box for the leg to rest on; also adjustible, leg and thigh; also means for extending the limb; also miens for adjusting them to crook the leg at the knee; also means for effect

> ing extension from the shoulder, and certain other Improved Steam Generator.

Henry C. Bull, New York city, assignor to bimself and M. A. Southworth, New Orleans, La.-This is a new steam generator
composed of three distinct shells or walls, separated so as to leare spaces. A fan assists the chimney in drawing the extcrior air through openings into the open space, and causing it to ascend
to the top of the furnace, where it passes through to the top of the furnace, where it passes through openings
in the middleshell and into anotherspace in which it descends to In the middle shell and into another space in which it descends to
the openings beneath the grate. In passing down through the spaces, the air becomes heated and is delivered to the fucl in the condition of a hot blast. Devices are included in the boiler whereby in the water is made to take place, resulting in great advantages in in the water is made to take place, resulting in great advantages in
preserving the interior surfaces of the water-heating tubes in a clean and efficient condition

Improved Iron Bridge.

Fdwin I. Farnsworth, Leavenworth, Kan.-This invention consists of an improved construction of girder or arch for bridges, of two vertical (edgewise) channel or T beams, with a flat plate riveted on top, transverse plates under side at the posts and feet of the arch, and diagonal or lattice bracing intermediate to the transverse plates.
This affords greater strength for resisting the crushing effect on the feet of the arch where the greatest strain exists, and also greater lateral strength along the arch. It also enables the inside of the arch to be painted.

Improved Middlings Purifier.

Joseph W. Wilson, Warsaw, Ill.-The spout, through which the middlings are passed into a stationary boit, incloses a fan, to the outer edges of which are attached brushes, for the purpose of agi-
tating the middlings. The fan takes the air around the shaft at the bottom, and forces it, together with middlings and impurities, out into a chamber, where there is a current of air passing upward to another fan which carries the impurities up and out into a dust them on a horizontal bolt. motion, together with a quivering motion, which keeps the wid dings constantly agitated over the cloth. and also leeeps the cloth clean without the aid of knockers or brushes.

Improved Corpse-Preserving Casket.
Bartholomew Hartwell, Baltimore, Md.-The invention relates to after death, and preserved by ice from decomposition. The inven-
and tion consists in preventing any liquid from coming in contact with the body and in making the cooler in sections that may be easily filled and carried into the house by a single man. A lining is used to go
around the inside to hide the joints where the ice cans come toand cund
gether.

Improved Cotton seed Planter.
B. F. Cadenhead, Bolingbroke, Gu.-The invention relates to the construction of cotton planters so that they may be simple, efficient,
and at the same time obtainable at a small cost. It conaists in a and at the same time obtainable at a small cost. It consists in \boldsymbol{a}
seed wheel having feed recesses at regular intervals between the periphery and hub, and in a box slotted in front, rear, and bottom and provided with stirrers turned by friction.

Improved Cut-off Idjusting Device.

Henry C. Bull, New York city, assignor to himself and M. A. outhworth, New Orleans,La.-This consists of two cut-off valves, oue or cach port of the slide valve, having independent rods extending
out through the steam chest, one within another, and connected with an adjusting nut, one by a right hand and the other by a left hand screw, so that the sleeve, which isswiveled to the eccentric rod, being turned right or left, will shift the valves toward or from each

Improved
Improved Bay Fastener.
James Macphail, Laporte City, Iowa.-This is a fastening string attached to the sack, passed in a loop through holes of an elastic isk and metal button, and secured by a knot to retain the disk and
button in position. The string is then wound around the hag end, and securely fast mned thereon by being wedged int rimediately be-

Improved Car Coupling.

B. F. Cadenhead. Bolingbroke, Ga.-The invention consists in an automatic car coupling, consisting of a link slotted at cach end and
pivoted drop-catches combined with a laterolly perforated drawhead and removable crossbar, also in combining cross pieces and a draw pin with the cross bar, and in using a presser pin with a drawhead
having rear perforations.

Wusiness aud zersomal

The Chargefor Insetion under thise head is \$1 a Line

 AgriculturalImplements, Farm Machinery, Seeds Magic Lanterns, Stereopticons of all sizes andprices, for Parior Entertalmment and Public Exxhbtitons,

Prize Essay on the Balance Spring and its Iso-
chronal Adjustments. By Mortz Immisch. 82.00 , mall free. E. \& F. N. Spon, 446 Broome Street, New York. Advertiser, having the best Patent Wrench in
the United Stacos and Canada, desires some party with
 Wanted, Power Mortiser,new or 2 d 'd, in exchange
for doors or mouldnggs. Forsaith \& Co., Manchester, N. H Position Wanted in a Machine or other Mechani
cal Works-preterably Steam Engnes-as Foreman or As sistant, by a practical Machinist and experienced Mechan
Ical EngIneer and Draughtsman. Address Frank H. Pond M. E., Woonoocket, R. I. Makers of all Linds. Lis Ice-Making Machines, send
address to A. R. Risien \& Bro., Groesbeeck, Tex. 2nd Hand Enirines and Boilers fors Sale at Low
prices. Addrees Junlus Harrls, Titusville, Pa.

 An old established responsible House wishes, in
connection with thelr different European Offlces, to take connection wrth therer different European Offlces, to take
the exclusive European Asency for frrt class spectal Machlinery. Only established drms, who can guarantee their
ware, need address D. \& \mathbf{W}., Box 2620 , New York. For small size Screw chutting Engine Lathes and
Drill Lathes, address star Tool Co., Providence, R. I. W. Campbell's Self-Acting Shade Ro,
Trade supplied, 87 Center Street, New York.

Send for tlustrated Circular-New principles of of
propelling vessels-speed Increased, and power saved. . H. Jenner, Brockport, N. Y
Wanted-Responsible parties to make and sell
Clarke's Safety Pocket Book'’) on a royalty. One year In use.
ville,
N.
A.
Ad
Best Steam or Hot Air Heaqter invented. J. b.
Sammis, Winona, Minn. Rare Metals and Oxides-Aluminum, Magnesium,
Cadmium, Blsmuth, Woirram, \&c. L. Feucht wanger \& Co., 180 Fulton St.. New York. J. N. Cassell, , incoln, N. Ne, wants a d
comb manufactured on royalty in Combs.

For Sale, or Partner Wanted for Patent on Canal Avertising. -Geo. P. Rewell \& Co., New York.
This se, persaps, the most enterprising and rellable, as it is
 Thentr oftces in the Thmes bulldinn contain fles of papers
published in all parts of the Union, and they have a sss. unique as it is useful.-[N. Y. Dally Star, Dec. 15, 1870.] Wood-working Machinery, 2 d Har, D, for. Sale-All 1 Sle
In good working order: 24 ft . Circular Saw-mill Set

 Iron chatn, 4 c. per 1 b .; 1 Iron Felloe Machne, , 50 ; No. 1
H. P. Smith 4 -gided Moulder, 8310 . New Wood-working Machnery, all kinds, a.
Co., Manchester, $\mathrm{N} . \mathrm{H}$.
ckinsons Mas. C. Vogel, Fort Lee, N.J. Dickinson's Patent Shaped Diamond Carbon
Polnts and adjuutable holder for working Stone, dressing Emery Wheels, Grindstones, \&c., 64 Nassau st., N. Y.
Engines, 2 to 8 H.P. N. Twiss, New Haven, Ct. Miller's Brick Presses for fire and red bric
To Machinists,-For Sale, Cheap-A partially fin-
Ished Engine Lathe, 11 feet bed, 28 Inch swing. For furlesed Engine Lath
ther partuculars,
Fort Plalin. . Y.
Send stamp for specimen copy of the Sheet-Metal
Builider; all about Galvanized Iron Cornices. Published Price only 83.50 .-The Tom Thumb Electric
Telegraph. A conpact

 of price. F. C. Beach \& Co., 263 Broadway, New York. Lathes, 2 d H'd, for Sale, perfect order-Two 8 ft .
screw-Cutting Engine Lathes, 15 in. swing, complete,

 Piano and Organ Wire Work of all kinds, Valve
and Key Ping, Iron and Brask Fringshng Nalls, \&c. \&c.
The Hender Machne A New Thing :-I wiil furnivsh any Machine, and
Drivng Power, or a complete set of Machinery for any KInd of MIII or Factory, at the Manufacturer's lowest
prices; set It up, If wanted. Send on your order. Address
 Send to Atlas works, Indianapolis, I
Shotograph of thelr 20 noch Engine Lathe.
Phot Wash Stands, New Styles, Marble Tops, can be
used It ant situation. Prices ery low. Send tor a catalogue. Balley, Farrell \& Co., Plttsburgh, Pa.
Grindstones $-4,000$ tuns. Berea Stone Co.,Berea, 0 . Send for Circular of a very Superior Boiler Feed
Pump. D. Friste \& Co., New Haven, Conn. Peck's Patent Drop Pres. Still the
Addreess Mill Peck, New Haven. Conn.
For small size Screw Cutting Engine Lathes and
Drill Lathes, address Star Tool Co., Providence, R. I. Genuine Concord Axles-Brown,Fisherville,N.H.

Power Hammers and Bolt Forging Machines-
Nine sizes of the former and two of the latter, guaranteed the mose economit tools of thelt kInd known. Fror price
and cuts, address S. C. Forsaith \& Co., Manchester, N. H. Hydraulc Presea and Jacke, new and second
band. Lathes and Machnery Tor Poilinhng and Buffing
Metais. E . Lyon, 470 Grand Street New York.

 Matchers, $865 ; 24 \mathrm{in}$. Rotary Bed Planers, $2200 ; 26$ in. Double-belted Rotary Bed Planer, welght 2,4001 1bs., 8350 .
Circular Saw chnnery a 8,
ter, N. H.
The "Scientific American" Office, New York, is
Tted with the Min Ited with the Minature Electric Teleeraphit By ouching
 wellingo. orks for any clatance. Price 86, with good
Battery. F. C. Beach \& Co., 26 Broadway, New York, Makers. Send for free illustrated Catalogue.
For best Presses, Dies, and Fruit Can Tools, Bliss
\times Willams, cor. of Plymouth and Jay, Brooklyn, N. \mathbf{Y}. Buy Boult's Paneling, Moulding, and Dove-tailing,
Machine. Send for circular and sample of work. B. C. Small Tools and Gear Wheels for Models. List
tee. Goodnow \& Whtman, 23 Cornhll. Boston, Mast For Sale-One "Cotrell $\&$ Babcock" Water
Wheel Regulator, in good order-by D. Arthur Brown $\& ~$ For Surface, Planers, small size, and for Box,
Corner Grooving Machines, send to A. Davis, Lowell, Yass.
Hotchkiss Air Spring. Forge Hammer, best in the
narket. Prices low. D . Frisbe \& Co., New Haven, Ct. For Solid Wrought-iron Beams, etc., see adver-
tisement. Address Union Iron Mills, Plttsburgh, Pa., for Isement. Ad
thograph, \&c.
"Book-Keeping Simplifed." The whole system
 Faughts Parent Round Braided Belling-The
Best thing out-Manuactured only by c. We. Arny, 301 \&
 Temples and oilcans. Draper, Hopedaie, Mass.
For Solid Emery Whels and Machinery, send to
te Union Stone Con,., Boston, Masss., for dircular. Mechanical Expert in Patent Cases. T.D. Stetson,
Murrav St., New York. All Fruit-can Tools, Ferracute, Bridgeton, N. J.

A. B. L. can cement emery to wood by
using the best glue. - R. B. K . is informed that French polish is generally used on pianofortes See p. 11, vol. 32.-W. D. will find a recipe for a gold lacquer on p. $3 \mathbf{3 i 2}$, vol. 30 .-H. C. Y. can puri-
fy his garments by lurying them for a while in the ground.- H . T. D. and many others are inthe ground.- $\mathbf{M r}$. . . D. D. and many others are in-
formed that $\mathbf{M r}$. Seth Green's address is Rochester, N. Y.-A. D. should keep his preparation for pre-
serving hides, etc, covered with a thin laye of serving hides, etc., covered with a thin layer of
glycerin in a well corked bottle--L. v. R. ought to know better than to try to construct a perpetual motion.-J. C. should consult a physician.-
Mrs. S. C. J. and J. M. S. will find a description of a fountain on p. 406, vol. 29.-E. C. C. will find an xposure of the motor in question on p. 273, vol. on p . 331 , vol. $32 .-$ F. T. W. can blue steel by the process described on p. 12. . von. $32 .-\mathrm{J}$. H. H. . will
find a good recipe for baking powder on p. 123. vol find a good recipe for baking powder on p .123 vol.
32. -P . D. and others who inquire about the cultivation of sumac should address the Commissioner of Agriculture, Washington, D. C.--S. B. can dress buffalo skins by the method described on p . 266 ,
vol. 26.-C. B. F. will find a recipe for indelible ink on p. 112, vol. 27 . Solder for silver is described on by the process given on p. 11, vol. $32 .-$ F. P. will find directions on p . 388 , vol. 29, for keeping moths out of clothes.-W. R. M. can cement leather to rubber by using the preparation given on p. 119,
vol. 23.-J. w. will find directions for browning vol. 28.-J. W. will find directions for browning
gun barrels on p. 11, vol. 32.-G. F. will find instructions for vulcanizing rubber on p. 378, vol. 28.-G. scribed on p. 250, vol. 27.-J. M. McC. will find a recie for diamond cement (cementing whalebone,
etc.) on p. 90 vol. $30 .-$ D. F. (diameter of pipes) H. W. G. (dividing a board), J. E. S. (steam pipes), and H. L. L. (boilers and engines), do not send suf-
ficient data. D. asks : 1. Would a common
(1) B. P. D.
cast iron, such as is used for making plows, ancast iron, such as is used for making plows, an-
swer for an engine cylinder 2×4 inches?
A. It swer for an engine cylinder $2 \times x$ inches? A. It
will be better to make the cylinder of brass. 2. engine for one or two hours daily, or would a horizontal or upright be best? A. A boiler such as
is used in connection with a water back will an is used in connection with a water back will answer very well, and yuu can e. . How much press-
formation from a plumber
ure would be best? A. Carry a pressure of 15 or ure wou
20 lbs.
(2) J.
(2) J. G. asks: What proportion of heat will a pound of iron, completely burnt, yield compared with a poun.
one fifth as much.
(3) J. W. F. says : P. M. B.says that a boat 120 revolutions, makes 9 knots, thus showing a negative slip of $9 \cdot 1$ per cent. What kind of a screw does he use to give this result? A. Probably he is in error, either as to speed of boat or pitch of
screw. What is called 9 milles an hour is sometimes only a guess.
(4) F.C.says: Iam working a vacuum engine close to a boiler, with \%/ inch plpe, giving ample
steam. I wish to remove the engine to a distance steam. I wish to remove the engine to a distance
of about 600 feet. The pipe will have to be run of about 600 feet. The pipe whil have to be run
partly in the open air, partly through a long shed, and partly under a street, and I would like to kno the best description of covering, size of pipe,
etc., and if it will be necessary to put a steam trap near the engine. A. Use a pipe about 1
inch in diameter, well felted, and attach a trap nearthe engine. Avoid as much as possible abrupt nearthe engine. Avoid as much as po
changes in the direction of the pipe.
(5) B. C. \& Co. ask: How can we separate
siver from tin and lead? A. Cupel the alloy. (6) I. H. F of Flekkefjord Are oak bark ashes (from under the boiler in a tannery considered as good
tilizing purposes? A. Yes.
(7) E. H. asks: What is the cause of what is called the sun's "drawing water ?" It is an appearance of lines running from the sun to the hor izon. A. The sun's rays passing through the in-
terspaces of clouds. When reflected, the rays mes converge.
(8) G. F. P. S. asks: 1 . Is the plane of the moon's orbit always parallel to itselif? A. No. 2.
When does the line formed by the intersection of When does the line formed by the intersection of
the moon'sand earth's orbits point to the sun? he moon's and earth's orbits point to the sun? A
When the new or full moon is at one of its nodes 3. Does not the moon have the greatest altitude at night in winter when passing the meridian? A
No. Greatest meridian altitude of the moon is 77 18^{\prime}, at summer solstice. Least, $20^{\circ} 6$,occurs at winte solstice.
(9) N. P. asks: Will the lenses of a magic
lantern answer for a small telescope fornight use? lantern answer for a small telescope for night use?
A. Not well. To try any two lenses as a spyglass, the one of longest focus is to be placed in one end of a paper tube as objective, the other is placed in
a paper tube which slides within the first. Scpa rate the two lenses the sum of their focal lengths, then contract the aperture by cardboard stops until you get some kind of defnition.
(10) J. P. asks: Has the earth two or three motions? A. An infnite number of perturbing
forces vary the earth's motion. Each periodic movement in the solar system communicates its rhythmic oscillation to all its members,whethersun, planet, or metcorite.
(11) R. R. D. says: I wish to make a translacent covering for hotbeds, of cloth instead of
lass. One man recommends covering with 2 ozs. lime water, 4 ozs. linseed oill, 3 ozs. fresh eggs. Another recommends 1 quart linseed oil, 1 oz. pulver zed sugar of lead, 4 ozs. pulverized rosin. These are to make the cloth waterproof and airtight.
Which is the best of the two? A. The latter.
(12) K. asks: How many books did Euclid write? A. There were 13 of the original books
written or arranged by Euclid. Most modern works on geom
original work.
How arose
quality in the number of day erent months? A. It has been taken was fixed in the time of Julius Cesar
Would it be necessary to steam the planks for building a boat 17 feet long by 4 feet wide, of cy
(13) C. B. H. says: 1 . The journals of the
rollers in rolling mills are usually kept wet by rollers in rolling mills are usually kept wet by a
constant stream of water running upon them. A kind of oil or roll grease is used on such journals, water. What is its composition? A. It must be ome kind of grease, such as tallow, that is solid at ordinary temperatures. 2. I have a well which produces the best quality of lubricating oil; can use this oil to produce the above roll grease for wet journals? A. It is doubtful if you can.
My well produces an abundance of gas, which,
when conflied, gives 30 or 40 lbs. pressure; can utilize this gas in running an engine, using the gas instead of steam? A. An ordinary steam engine gas when mixed with air forms an explosive compound, we advise you not to try the experiment.
(14) C. H. S. asks: How fast can cut cog gearing be run? A. The sudden acceleration and
retardation of the wheel make trouble with these gears. It is not possible to defnitely answer your
(15) C. B. W. says: 1. We have a 1 inch pipe, 1,800 feet long, through which we get water
We have about 80 feet head, and lift the water 15 feet with a siphon, 400 feet of the pipe forming the siphon. If the 400 feet of the pipe forming the siphon were larger, would we get any more water A. There is not likely to be any advantage in changing the pipe. 2. How much pressure would responds to a pressure of nearly 35 lbs . per square
(16) J. O'C. asks: What is the use in ma king the face of a pulley crowned ? Are not pul-
leys frequently made tlat? When two shafts with their pulleys are properly ranged with each other the faces of the pulleys being flat, will not the elt run eveniy on them, and no more to one side
than the other? If the faces are crowned, and the shafts not parallel, the crowning will not keep the vert even on the pulleys. A. The object of crowning the shafting, and those arising from the belt being crooked. It is true, however, that there are very many places in which flat pulleys are use with good satisfaction.
(17) K. asks: 1. What size, pattern, and oat sooula a propeller be for a 6x6 engine in drawing $2 \not 2 \mathrm{f}$ feet astern? A. Three bladed, 30 to 32 inches diameter, 40 to 42 inches pitch. 2. What constructed revolutions of such an engin, wen 300. 3. What speed ought I to get in smooth wa-
(18) G. F. asks: What is the amount of mosture contained in a cubic foot of air
(19) B. E. E. asks: 1. Can the solution described on p. 55 of vol. 32 be used to preserve the hull of a yacht? A. Yes. 2. Can it be put on af-
ter the yacht is built? A. No, as the wood reter the yacht is built? A. No, as the wood re-
quires to be steeped for some time in the solution
in order that it may become thoroughly impregna-
ted by absorption of the liquid. 3. Can I paint over is
(20) M. B. L. asks: 1.1 have a 12 inch 4 ply sion frequently to reverse, and I find that often, when it is working true, the belt has a strong ten ency to run off on reversing. How can I correct
this? A. It is probable that the belt is crooked, the shaftsare not in line. 2. What is the best plan of putting a large belt together where it has to be uncoupled frequently saving of time and an efectual joint being the objects? Λ. We do not now of any fastening that will answer all of these uestions. 3. What would you suggest as the best eans of conveying power from a saw manooat, speed of mandrel being 300 or 400 and of pulleys would be the best.
(21) A. B. says: 1 . We have a new boiler uilt of brick and coated with water lime Be uilt of brick and comed wat water lime. Beboiler supplies steam for running the engine, and the exhaust steam from the cylinder passes up through the factory (by a ssstem of pipes separate
from that used for heating direct from the boiler) nd thence into the cistern beneath the bevel of the water. By this arrangement little of the heat is lost except what passes out of the emoke stack.
As no water is wasted, it is used over and over, and Nill become practically as pure as distilled water nd so leave no sediment or incrustation on the boiler. The water in the cistern is now quite hard by reason of the fresh lime, and this will for a
time cause a deposit of lime in the boiler. What time cause a deposit of lime in the boiler. What
will soften the water or cause the precipitation of the lime before the wateris pumpedinto the boilr? A. Mechanical means, such as a heater with ediment collector, would probably be the best有, your cistern is arranged to be sup inage from the roof when it nd blow off frequently, the feed into the boiler illed with soft water. 2. What gases are produced an explosion of gun cotton, and are they of ature to injure a metallic surface? A. The pro ducts of the explosion vary greatly according to
circumstances, but they are not ordinarily injurius to a metallic surface.
(22) C. W. N. says: Please explain your re if the Z. as increases its volume ${ }_{2}^{\frac{1}{7} \frac{1}{3}}$ part for each
If degree C. of the rise in the temperature, it would double the volume existing at zero at a less tem ter than 273°, on the principle of comp hat will be the result when you heat up again Supposing you reduce the temperature to -13612°,
in accordance to your answer to Z. you will have in accordance to your answer to Z . you will have
half the volume that you commence with. Now you must (according to Z .) increase the temperaure 273° to recover the half you lost by reducing ucin, that is, to double the volum true that som cing the temperature. A. It is true given in text books on physics. It is only with in finite limits that it is correct to say that the vo me is increased or diminished $\frac{1}{2} \frac{1}{7 \pi}$ for such change of stating the law is as follows: If the product of he pressure and volume of a gas at $0^{\circ} \mathrm{C}$. is given, he pressure an
he product of
creased by rease of $\frac{1}{273}$ of the amount at 2 ero, fill be dimincrease of temperature of $1^{\circ} \mathrm{C}$., and will be dimin-
ished in like proportion for each diminution in
temperature of 1°. It will be observed that the hcrease or decrease is referred to the pressure ard volume of the gas at a temperature of $0^{\circ} \mathrm{C}$ Below is given the analytical statement of the wh, at a temperature of $0^{\circ} \mathrm{C} \quad \mathrm{P}=$ prer square emperature $\mathrm{T}^{\circ} \mathrm{C} . v=$ volume of a given weight of the gas in cubic feet, at a temperature of $0^{\circ} \mathrm{C}$. V
$\mathbf{P} \times \mathrm{V}=p \times v+\frac{\mathbf{T}^{\circ}}{2 \sim 3} \times p \times v . \quad$ Now if $\mathbf{T}^{\circ}=2 \pi 3^{\circ}, \mathbf{P} \times \mathbf{V}=0$, condition that does not involve the annibilation of matter, and merely expresses that the gas no
longer exists as gas. (This also answers J.J. T.)
(23) C. W. N. says: 1. You advise H. M. to
ase a 2 feet diameter wheel with a 3 feet lead for 300 revolutions per minute. We are using a 28 nch wheel with 55 inches lead (4 buckets) on a oat 30 feet long and of 6 feet 6 inches beam. Our cun our wheel at over 310 revolutions per minute. We find, however, that this is a great waste of power, as the wheel appears to lose most of its propelling force and does nothing but churn the water into a foam, and the speed is not so good as when we turn 200 to 230 revolutions. Next spring it is our intention to put on a three bucket wheel,
same diameter, with 6 footlead,which we think we can turn up faster (as it will take all the water that comes to it, through larger openings between the uckets) and will drive the boat faster. Let us have your opinion on the subject. A. This off steam on thisengine, and how much should it he open after the center is past? A. At from 58
to $3 / 4$ of the stroke, with a lead about $\frac{1}{16}$ inch on $t 034$ of the stroke, with a lead about 16
each end.
Is the pressure on a steam boiler alike all over Is the pressure on a steam boiler alike all over?
A. It is greatest at the lowest point. Is an injector practicable on a
(24) F. C. G. asks: Is taking the tin off tin en y successful busibe hiory of mas dozen attempts, aided by ample money capital, to make a business out of tin scrap, which resulted neighborhood five independent tin scrap establish ments; now there is but one, and its propietors ar ments; now
reticent.
(25) J. W. H. says: Fire balloons made of tissue paper occasionaly take fre from the blaze
of the alcohol. How can the lower part of the of the alcohol. How can the lower part of the
balloon be made freproof? A. Try steeping the paper in a solution of
ticle on p. 55 , vol. 32 .
(26) E. B. Mc asks: 1. How can I bring tin to a liquid condition? A. We do not know of
any method better than melting it. 2 . How can 1 powder tin? A. Tin may be very finely granula ately pouring from some hight into a vessel of cold water through a wet broom or sieve.
(27) M. V. O. says: In your reply to C. W. you say that the water in the drive well rises by
the pressure due to a higher source of supply. If the pressure due to a higher source of supply. If
this is true, what need is there of any pump at all, and why does not the water flow over the top of the pipe? A. Your view is correct; but our cor-
respondent'squestion referred to the cause of the water rising up to the level from which it was taken by the pump.
(2S) O. C. asks: 1. What is the difference between the composition of gunpowder and blast-
inn powder? A. There is no essential difference ing powder? A. There is no essential difference.
2. Which wood makes the best charcoal for powder, balm of Gilead, cedar, soft maple, or willow Is ivory
(29) W. M. (1. Will win ther liquid boil away faster in the night than in the daytime? A. Not if the other conditions are the same
What is meant by the multiplication of the
cube? A. Give an example to illustrate you meaning.

1. I saw it stated that the cylinders of the Great Eastern were 14 feet in length; should it not be 4 feet? A. No. Fourteen feet is correct. 2. Was
there ever an engine with 14 feet stroke? A.There there ever an engine with 14 .
have been quite a number.
have been quite a number.
will a water wheel run with more force in the night than in the daytime? A. No.
(30) A. B. D. asks: If a tank has a pipe, $\frac{1}{4}$ inch, running in, and a siphon, 8 inch, running
out, the tank being empty, when the pipe running out, the tank being empty, when the pipe running in was opened, when would the water begin to run
outs As Ason as the water level was up to the
highest point in the siphon. highest point in the siphon.
I am making a small, steam engine, 3 inches
stroke by $1 / \mathrm{sinches}$ bore. Would a boiler 23 inchstroke by $11 /$ incheses bore. Would a boiler 28 inch-
es high and 1 inches in diameter do, and of what es high and 1 in inches in diameter do, and of what
thickness an minetal should it be?
. Make it Hotwice as large, of $\frac{3}{15}$ copper.
How an remove Indian ink marks from my
arm? A. We are not sure that there is any safe arm? A. We are not sure then
method. See p. 331, vol. 30 .
How can I brone
How can I bronze a gun barrel? A. Rust the surface with chloride of antimony, or dilute muriatic acid. Then clean ii; polish with wax, and apply shellac varnish
(31) L. B. C. asks: 1 . Would a. 10 horse
ower engine raise enough water to run an overpower engine raise enough water to run an over-
shot wheel that would give 30 horse power? A. No. 2. Would a 3 inch stream on a 10 foot over-
shot wheel force an inch stream up a hill 100 feet? shot whe
A. No.
(32) H. S. asks: What is the shortest cor rect rule for getting the amount of ininch lumber
in a logg, given the diameter and the length? A. of course it is easy to thd how much can be cut from the log after it is squared, but frequently there are several slab boards taken off in squaring.
Lumbermen, however, by a little observation, can readily construct tables, by which to estimate the contents of any log
(33) J. C. B. asks: In driving a pipe for a
well, how do you determine when you have arrived well, $\begin{aligned} & \text { ate do you determine when you have arrived } \\ & \text { at water? A. By applying a pump, or sounding. } \\ & \text { will }\end{aligned}$. Will sulphur answer as well as lead to secure
iron to rock? A. Yes. iron to rock? A. Yes.
(34) D. H. W. asks: 1 . To what class of mechanical powerdoest the wagon wheel belong? A.
It isa lever,as in the case of a locomotive. 2.Which runs the lightest, an iron axled or a thimbleSkeined wagon? The iron axle is $11 / 2$ inches in di-
ameter, and the thimble-skeined axle 3 inches. Probably the question cannot be answered in a Probably the question cannot be and
general manner, as it depends upon the friction
betwen the wheol and the axle, and consequently between the wheol and the axle, and consequently
upon the fit. 3. Which is the fulcrum, the axle or the ground? A. In the case of a wagon propelled from within, as a locomotive, the axle is the ful-
crum. If it is moved by the application of a force crum. If it is moved by the application of a force
from without, and the wheels revolve, the ground may be regarded as the fulcrum. It is evident, in revolving the wheels.
(35) M. G. asks: Which will resist most pressure, a $11 / 2$ gas pipe, or a $11 / 2$ inch solid rod? A.
The solid rod, if the material were of the same quality in each, because the section to resist rupture
would be greater.
(36) G. P. a asks: What causes a lathe to
chatter? A. The springing of the tool or of the chatter? A. The springing of the tool or of the
bar. It may be that the lathe is too light for the work.
(37) W. H. H. G. asks: Will a four-ply rubbir belt be suitable for a fish elevator, the belt
coming into contact with salt water and fish slime? A We think not.
What is the process of deodorizing kerosene
with chloride of lime? A. The oil is mixed with lime and heated, then treated with sulphuric acid, and washed with water.
(33) J. N. M. says: Some years ago, experiof compressed air, which was supplied in a strong of compressed air, which was supplied in a strong
reservoir at the beginning of the route. Why
might not the power of a windmill be applied to might not the power of a windmill be applied to
condensing air into a large receiver, and the supply of condensed air used as a regular and con-
stan \dagger motor for light or heavy machinery? A.The
dea seems good. The only way to se
ly, whether it is so or not, is to try it.
(39) J. H. S. asks: 1. Would a cast iron over a forge, do for melting zine for galvanizing? A. Yes. 2. What should be used to keep the zinc
from oxidizing and vaporizing A. Use sal amfrom oxidizing and vaporizung A. .ine shal am-
moniac with the zinc. 3. Would a hemispherical
tank answer best? A. Yes.
(40) J. F. G. says: Our water reservoir is 2
niles distant, and 160 feet above our mill. What miles distant, and 160 feet above our mill. What size of pipe must be laid from the reservoir to the
mill, so that the natural pressure of water (at the mill, so that the natural pressure of water (at the
mill) will throw a stream of water 100 feet high by the use of 50 feet of $21 / 2$ inch hose and a $114 /$ inch nozzle? A. It will depend upon the way the pipe
is laid. If it is generally straight and free from abrupt changes of direction, it should be from 5 to inches in diameter.
(41) F. L. K. asks: What wood makes the best patterns for light castings? A. Pine, covered
with shellac, answers very well. Mahogany can If
If small copper tubes be fixed in a mold, and nelted brass be poured upon them, will the tubcs
melt or collapse? A. They would be very apt to melt or
melt.
Is the
It. A. We do not know of any.
2. Whatare the holes through the side of the firebox of a locomotive for? A. To admit air into the
combustion chamber. 2. How can small leaks at combustion chamber. 2. How can small leaks at
seams and stays be stopped? A. By caulking. It is well to attend to smalleaks promptly. 3.Would not the electric light be used as a head inght or $10-$
comotives? A. It would not be desirable, but it might be done. 4. How much coal willa 40 tun engine burn (on a level) to the mile, pulling a train of 20 cars weighing 10 tuns each, the diameters of
the drivers being 4 or 5 feet? A. From 40 to 50 lbs. 5. Why is zero on the Fahrenheit scale 32° below the freezing point of water? A. Because Fahren-
heit considered the zero of his scale to be the heit considered the zero of his scale to be the
greatest cold that could be produced.
(42) R. A. I. says: I read that steam at high
pressure will not scald. Is this true? A. The pressure will not scald. Is this true? A. The
statement is to be taken with considerable allowance; but the steam issuing from a tea kettle is
far more likely to scald than the same quantity ar more likely to scald than the
coming from a high pressure boiler.
(43) J. A. V. says: In your answer to W. der of air with 100 liss. pressure to the square incb place it on a small boat, and let the air escape, the air on the outside traveling in the same direction and at the same speed as that coming out of the
cylinder, it would move the boat or not) you say that the boat would move. What would make it do so? A. The unbalanced pressure opposite the

$$
\begin{aligned}
& \text { acce or discharge. } \\
& \text { (44) W. M }
\end{aligned}
$$

(44) W. M. C. asks: 1 . The cylinder of my ngine is of 234 inches bore and 4 inches stroke. By arrying 80 ins. steam, making 150 revolutions per
minute, how large a yacht can be propelled? A. Make the boat from 20 to 25 feet long. 2. How large a screw ought to be used? A. From 2 to $23 / 4$ feet in diameter. $\begin{aligned} & \text { 3. Ought the } \\ & \text { cal or horizontal? } \\ & \text { A. Vertical. }\end{aligned}$
(45) H. W. asks: Can I ascertain the power ength of stroke, diameter of driving wheel, number of wheels connected, and weight of engine? A. No. The weight on the drivers must be given.
If you suppose, however, that the adhesion is If you suppose, however, that the adhesion is
greater than the tractive force, the solution is very greater than the tractive force, thesolution is very
simple. We give the rule by which you can make thenecessary calculations. The tractive force in pounds is found by multiplying together the square of the diameter of the piston in inches, the length
of stroke in inches, and the pressure of steam in ibs. per square inch, and dividing the product by he diameter of the driving wheel in inches.
(46) H. L. N.-You cannot restore the petinal mechanism by which it was produced, name1y, an emery grinding wheel and a walrus leather
(47) J. N. P. says: 1.1 am making a small englne, of which the dimensions are as follows:
Diameter of cylinder 3 inches, stroke 4 inches with cut-off at crank angle of $135{ }^{\circ}$, with lead. Exhaust closes at crank angle of $157^{\circ} 5^{\circ}$, and opens at extremity of the stroke. Ratio of crank to con-
necting rod is 1 to 5%. 1 propose to use steam at 50 los. pressure; what would be the proper dimensteam quick and use the minimum of coal? A You should have a boiler with from 60 to 70 square feet of efficient heating surface. 2. What do you
think of the dimensions of the engine? A. They are well proportioned. 3. I have discarded the slide valve, and am going to have two cylinders
side by side, and use two pistons in the smaller to side by side, and use two pistons in the smaller to
take the place of the slide valve; I thereby will save a greater part of the steam lost in the long ways incident to the slide valve, and avoid the
enormous friction of the same. It has probably enormous friction of the same. It has probably
never occurred to many that, in order to move an ordinary slide valve 8 by 10 inches with steam at 80 lbs. pressure, it would require two draft horses do-
ing their be t, if attached directly to the valve ing their be t, if atached directly to the valve
stem, with no lubricant under the valve. A. We think this idea is in general very good. 4.I want to
use an iniectorand indicatorcan these instruments be used on so small an engine, and do I I need verbal
inatruction as to theiruse learn how to ther asef the you practice and Learn ituwing the theory of their a cation. 5. How
bany revolutions will the engine make with 501bs. many revolutions will the engine make with 501 bs.
pressure, and no load except the friction of the engine? A. The e
olutions a minute.
(48) R. T. M. asks : 1 . How much per cent
on alcohol does lager beer contain?
A. The of alcohol does lager beer contain? A. The
strength of beer varies according to the quality
and quantity of the malt and hops used, and the
mode of conducting each stage of the process, but mode of conducting each stage of the process,
especially the fermentation. If the first fermentation be stopped at an early stage, the beer will contain a considerabie quantity of sugar and comparwill acquire the property of effervescing strongly will ancuire the property of effervescing strongly
when the bottle is opened. If, on the other hand, the fermentation be allowed to go on in the vats or
casks till nearly all the sugar is converted into alcasks till nearly all the sugar is converted into al-
cohol, and the carbonic acid escapes, the beer be cohol, and the carbonic acid escapes, the beer be-
comes more alcoholic. For these reasons, lager eer varies in its amount of alcohol from 2 to 10 per cent. 2. Can a grown person drink a pint of
alcohol without being hurt?
A. It would cause death.
(49) W. M. R. asks: Will strong sulphuric (50) H. J. S. says: Wells, in his "Philosophy," defines sound as produced by impressions
made on the tympanum or drum of the ear by the vibrations of the air. If a cannon be fired far out hearing, would there be any sound therefrom?
a. Certainly not, under the above definition of sound
(51) O. W. B. asks: 1. Does soaking a flute in olive oil benefft it in any respect? A. We think dry and cracking or warping. 2. Why are flutes with ivory heads and blow joints better than those with wood? A.The ivory prevents the instrument
from getting out of tune by preserving the blow from getting out of tune by preserving the blow
and key holes at a constant diameter. The comand key holes at a constant diameter. The com-
mon wooden instruments, in many cases, in a short time become utterly useless from the con-
(52) S. L. M. asks: What is the amount of expansion of an iron rod $11 / 4$ inches in diameter and 13 feet long, when the thermometer r
10° to 75° Fah.? A. About $\frac{1}{6}$ of an inch.
(53) L.V. R. asks: How can I ascertain the number of degrees of heat required to reduce a
certain metal to fusion? A. One method is the use of the pyrometer. As mercury boils at about 660°, we cannot use the mercurial thermometer or higher temperatures. The pyrometer consists which is dropped a bar of platinum, secured to its place by a strap of platinum and a wedge of por-
celain. The whole isthen heated, as, for instance, by placing it in a pot of molten silver, whose tem pands much more than the case of black lead, and being confined from moving in any but an upward direction, drives forward the arm of a lever over
a graduated arc, on which we read the degrees of a graduated arc, on which we read the degrees o
Fallrenheit's scale. There are several forms of py rometer, but their use for delicate work is not customary now. The arrangements now used for the determination of high melting points with the greatest accuracy are either based upon the ex-
pansion of gases and vapors, or on the clectrical properties of bodies. For details, consult Ganot's "Physics."
(54) S. P. asks: Will petroleum gas ar
A. Yes. S . 1 , (55) J. S. asks: 1 . What coloring is put
nto spirits of wine for use in thermometers?
A. The coloring made use of generally for this pur-
pose is, we believe, annatto. 2. How can I make an alcohol thermometer? A. Obtain a glass tube baving a very small even bore, and baving a coil at its
lower end. Fill the coil and a portion of the stem lower end. Fill the coil and a portion of the stem
of the thermometer with the colored liquid, and of the thermometer with the colored liquid, and
boil until the air is completely expelled from the
 with the blowpipe. ally graduated by placing them in baths of differ ent temperatures together with a standard mercu rial thermometer, and marking on the alcohol
thermometer the temperature indicated by the mercurial thermometer.
How can I mend rubber shoes? A. See p. 203,
vol. 30 .
(5b) C. G. M. asks: 1. To whom should I apply for a license to run a steam engine? A. If
it is for a license to manage a steamboat engine, it is for a license to manage a steamboat engine,
you should apply to the United States Inspector. State or city inspector in your city. The custom vare in different States. 2. What are the usual
questions asked by the examiner? A. The quesquestions asked by the examiner? A. The ques-
tions ordinarily refer to the applicant's previous experience, and his knowledge of the construction and management of engines and boilers.
(57) J. C. asks: What is the standard o value of fuel, and upon whose investigations is it based? In different books I find it stated that, by the combustion of one pound of carbon, sufficient
heat is produced to increase the temperature of from 13,000 lbs. to nearly 20,000 lbs. of water $1{ }^{\circ}$ Fah. By some authors it is stated at $8,000^{\circ}, 8,0800^{\circ}$
etc., C. What is the ard? A. The unit usually employed is that frrst
used by Rumford, who estimated the calorifc power by the number of parts, by weight, of wa ter which one part, by weight, of the body would,
on perfect combustion, raise 1° in temperature. on perfect combustion, ralse ch in $^{\circ}$ in temperature.
Thus one part, by weight, of charcoal, in combining with 22% parts of oxygen to form carbonic acid of 8,080 parts, by weight, of water $1^{\circ} \mathrm{C}$. Estimates of this character are also made by what is known as Berthier's and Stromeyer's reduction methods.
These processes consist in determining the quantity of either cupric or plumbic oxides reduced by given quantity of the fuel.
(58) J. A. S. J. asks: How can I stain pine
cofins black, to dry quickly? A. Step the wood for two or three days in lukewarm water, in which a little alum has been dissolved, then put a handful of logwood, cut small, into a pint of water, and
boil down to less than $1 / 2$ pint. If a little indigo is
added, the color will be more beautiful. Spread a
layer of this liquid quite hot upon the wood with layer of this liquid quite hot upon the wood with
a soft brush, which will give it When it is dry, spread on it another layer; dry it again and give it a third ; then boil verdigris at discretion in its own vinegar, and spread a layer of it on the wood; when it is dry rub it with a brush and then with oiled chamois skin. This gives a
fine black, and imitates perfectly the color of neony.
(59) J. H. M. says: I have a small boat 48 arge an engine would it take to propel it? A. An engine with cylinder of one inch diameter will an
ent
(60) E. M. asks: What will remove grease stains from marble? A. Try chloroform.
What will remove a beard from the face without using soap or razor? A. A depiliatory will destroy
the beard so that no future growth will take place. the beard so that
See p. 229, vol. 28 .
(61) B. F. W. asks: 1. What is the reaction by which hydrogen is evolved when metallic zine is
boiled with $\mathrm{K} O \mathrm{H}$, and what chemical compounds boine with K A. and whatchemical compounds
are formed? A. By the action of a boiling soluwhile ovide of on zinc, hydrogen in the alkaline solution. 2. What effect does the presence of an arsenious compound $\left(\mathrm{As}_{2} \mathrm{O}_{3}\right)$ have on the reaction and the resulting compounds? A. The arsenious acid would speedily be a
potash to form arsenite of potash.
(62) C. M. F. asks: What is a good recipe for boot blacking? A.Ivory black and molasses,
each 3 ozs.,spermaceti oil oz, white wine vinegar each 3 ozs., ${ }^{\text {sp }}$
1 pint. Mix.
Can I obtain back volumes of the Science Record?
(63) S. A E. asks: How are artesian wells
Dored ? A. For a full descruption of the method bored? A. For a full description of the method
of boring these wells we must refer you to some subject The instruents used $f 0$ chisels long. As the hole deepens, fresh lengths are
to the screwed on until the depired streem is reached.
The most remarkable example of an artesian well The most remarkable example of an artesian well s thatrecently formed at Grenelle, a suburbat the
southwest of Paris, France, which eost eight years of difificult labor to perforate. The depth reached was about 1,500 feet. The water rose to the surface, and discharged itself at the rate of 600,000 gallons per hour. The artesian wells of Elbeuf and Tours, which were formed many years ago, overflow in never-varying streams; and the ancient ar-
tesion well at Lillers, in the Pas de Calais, has for tesian well at Lillers, in the Pas de Calais, has for
seven centuries furnished a constant and equable upply.
How.
How is salt obtained from brine? A. Evaporang pans are constructed of well riveted boiler 30 feet, the width about 20 feet, and the depth feet. These pans are supported by masonry,which
also serves to separate the flues by which the pans feet. These pans are supported by masonary, which
also serves to separate the flues by which the pans
are are heated. Professor Cook's analysis of Onondaga brine gives the rollowing percentage of dry
impure salt in the brine: Syracuse 18:54, Salina 1485 , Liverpool $15 \cdot 86$, an average of about 16.41 per
(64) G. W. S. asks: 1. How can I make a
cheap paint as nearly ilike white lead as possible? cheap paint as nearly like white lead as possible?
A. Use white oxide of zinc ; this may be readily A. Use white oxide of z inc ; this may be readily
obtained by burning zinc with a full supply of abtained by burning zine with a full supply of
a. How can I bring it to a fesh color: A.Use rmine or vermilion.
(65) G. E. W. says: I cut to pieces a 2 cent piece and tried to melt it between two pieces of
charcoal with a blowpipe and alcobol lamp, and ailed. I tried borax with it and failed again. he coin and mix it with four times its weight of rarbonate of soda, you should, if you are a good blowpipist, succeed with an alcohol lamp.
How can I make putty powder? A. It is readi-
y obtained by treating metallic tin with nitric 1 y obtained by treating metallic tin with nitric
acid ; violent action, attended with the extrication of nitrous fumes, occurs, and the tin is converted hydrated metastannic acid; after washing it with cold water, the acid, when dried and ignited, becomes anhydrous, and of a pale buff color; in this form it possesses the properties of the native oxide, and constitutes the putty powder employed
for polishing plate, etc. It is also largely used for iving whiteness and opacity to enamel.
(66) G. W. W.-The reward offered by the tate of New York for improved means of canal go. No offer of reward now exists that we
(67) R. D. A. says, in reply to J. G. S. who posed out of doors: Take 1 lb . white glue, soak 1 pint water for 12 hours, white chalk 2 ozs.,common resin 1 oz., white lead 2 ozs., all thoroughly
pulverized and mixed. After the glue has stood he required time, dissolve it by gentle heat, then rub into it, in a mortar, the other ingredients, rder ony water enough to make a thick paste, in rder to facilitate their union. Then add 1 pint which add water to bring the paste to the required consistence for use. It will require to be kept arm while using.
C. H. S. asks: At what velocity must a cannon ball leave the earth so as never to return to electric lights?-J. H. asks: How can I blue lamp chimneys?-J. R. G. asks: How can I construct a cheap oxyhydrogen blowpipe ?-O. F. asks: What formula is used to find the power of a wedge, harthe blow in pounds given ?-A. C. asks: What is the blow in pounds given ?-A. C.
the composition of percan marble?

COMMUNICATIONS RECEIVED.

 The Editor of the SCIENTiFIC AMERIOAN acmowledges, with much pleasure, the receipt of or subjects:On Spiritualism. By G. W. On Mathematical Facts. By P. J. D.
On Fast Railway Trains. By E. H. w On Aerial Flight. By M. N. On Setting Locomotive Valves. By F.G. W. On a Calculating Machine. By E. K. W. On the Generation of the Wicked. By R.S.F. On Dressing Bill Burrs. By S. B. W.基 Also enquiries and answers from the following: R A.B.-G.T. C.-R.H.L.-R.D.-H.B.H.-J.B.M.B -D. D. H.-G. McI--L. к. D.-P. T. P.-H. N. S.-D.-P M. J. Е.-H. B.-E. A

HINTS TO CORRESPONDENTS. Correspondents whose inquiries fail to appear
could repeat them. If not then published, they may conclude that, for good reasons, the Editor delines them. The address of the writer should al aye be given.
Enquiries relating to patents, or to the patentbility of inventions, assignments, etc., will not be
published here. All such questions, when initials only are given, are thrown into the waste basket, as it would fill half of our paper to print them all but we generally take pleasure in answering briefly by mail, if the writer's address is given. Hundreds of enquiries analogous to the following are sent : "Tho makes the best leather for hydrobe for running a model locomotive weighing 250 lbs.? Who makes a centripetal power? Who makes steam engines of one dog power? Where can the drosera and other carnivorous plants be obtained? Who publishes a good book on steam agnes, etc., suitable for beginners? Who make apparatus for producing illuminating gas from are printed, as will be observed in the enquiries "Business and Personal." which is specially set apart for that purpose, subject to the charge men toned at the head of that column. Almost any desired information can in this way be expeditiously obtained.
[OFFICIAL.]
INDEX OF INVENTIONS

Granted in the Week ending February 9, 1875,

AND EACH BEARING THAT DATE.

Animal shearing machine, w. c. Harlow A ruing hook, Z. M. Lane...........
Axle lubricator, Parker and Kivett. Baby jumper, B. F. Burgess

Bale tie, A. J. Nell
Bale ties, machine for painting, A. J. Nevis Bee hive, J. R. Dickson Beer, brewing, J. \& J. Stuber Blind stop, C. E. Stiller.......... Boiler safety valve, Johnston \& Gissing
Boot counters, making, J. R. Moffit.... Boot stiffeners, skiving, C. H Ore ut Boots, etc., seam for, Brackets \& Whitcomb (r) Brick machine, G. C. Borer Brick machine, Bovey
Bridle bit. N. P. Stevens.... Broom machine, Adders \& Houghton (r)... Buckle, tug, , J. Weston
Burner,
Burner, Argand, J. A. Bowler.......
Burner, Argand gas, Ball \& Wiegand Burner, lamp, H. G. Moehring.
Camera, S. L. Bergstresser
Canister. Burger \&E Graft....
Canister, R. D. Van de Carr.
Car axle box, Verbryck \& Dewberry
ar brake, J. G. Scott
Car coupling, W. A. Boyden...
Car couplIng, L. \& W. Matte so
Car coupling, B. J. Sirmans. Car coupling, heater joint, and brake piper. R. Hun

Car truck, R. C. Wright.
Car wheel, , W. J. Cochran
Car wheel, J. B. Tart.....
Cars, etc., warming railroad, F. \& J. Chalfan
Carriage, child's, A. W. Dabs
Carriage, child's, J. M. Lewis.
Carriage curtain fastener, C. K
Carriage flap fastener, Thomas
Carriage spring, W. S. Higgins
Cartridge, metallic, M. M.E
Casks, tap for, T. A. Mathewson..
Castings, dressing, J. L. Otis...
Chain swivel die, P. H. Stand
Chimney cowl, J. Tomlinson
Chimney cowl,., Tomlin
davis, C. H. Fours.
Clevis, E. O. Harvey
Coal hod, E. W. Byrn.
Coffee mill, W. J. Lane
Cornices, manufacture of SO. Brock
Corset, S. E. Burns......
Corset steel, G. W. MeG 1
Cotton condenser for gins, E. Van Winkle
Crops, etc., thinning, Eustace \& K
Cultivator, E. Children
Cultivator, M. L. Gorham
Cultivator, J. O. Milne..

Gas generator, carbonic acid, 0 . Zwletusch (r)
Gas light governor. N. Tufts.................. Gas regulators, F . W. Wiesebrock.......is.
Gas, my hydrocarbon, H. H. Edgerton... Gate, automatic, H. N. Burnham.
Gate, farm, S. S. Davis. Gate, farm, s. S. Davis.............
Glass plates, bevelling, J. v. Laurent Glassware, covered, T. B. Aterburs
Glassware, hollow pressed, W. Leigh Gold, extracting, F. W. Daphne......
Goods in bulk, transferring, L. Dat Goods in bulk, transferring, L. Grading apparatus, J. Nc,
Grain drill, w. Bro win
Grinding apparatus, C. V
Harness hanging frost
Harvest, C. K. Myers
Hay gatherer, C. T. Noell
Heater,
Heater, feed water, R. Weatherill.
Heating device, water, E. R. stllwell Hole, J. Kaufman.
Hood, Bragger \& Christophe Horse check, Sugden \& Gaffney
Horse feeding support, A. H. Spencer..........
Ice pick and strainer, combined, T. Hagerty
Ice pick and stringer, comb le Injectors, attachment for, D. Lees
Inkstand cover, Wallis \& Harback.
Iron and steel making, C. W. Siemens.
Knife and nippers, oyster, R. T. Megee.
Ladder, D. Argerbright.
Ladder, extension, J. B. Mahony Lamp extinguisher, A. Umholtz..
Lamp globe holder, R. B. Perkins Lamp globe holder, R. B. Per
Lamp support, L. M. Kent. Latches and locks, case for, J. Kinzer (r)
Lath bolting machine, J. C. Mackey.... Loom, J. Dorian.
Loom yarn beam,L. J. Knowles...............
Matches, making, Andrews and Tucker (\mathbf{r}
Mill, fanning, A. Y. Felton
Mill spindle, W. Elliot
Millstone dressing tool
Miter box, H. Hempen
Mitering machine, C. P. Polder.
Mowing machine, P. W. Brown
Nut lock, J. J. Gray.....
Nut lock, B. J. Noonan.
Nut or collar lock, E. Barrow clough.
Organ pneumatic action, R. Nicholls
Organ reed board, J. R. Lotas
Oven, desulphurizing, J. C.
Packing piston, J. W. Hill
Paint oil compound, etc., I
Paint package, J. T. Hunt..
Pants and other garments, G. R. Eager (r)
Paper box, L. A. Kettle.
Paper, figured writing. La Monte and Hall. Paper, ornamenting writing, La Monte and Hall.
Pavement, wood, C. H. Miller................... Pavement, wood, C. H. Miller....
Pen and pencil case, J. Holland. Photographic plate holder, E. L. Bergstresse
Picture frame compound, A. N. Atwood..... Picture frame compound, Wilson and Gerry.
Planter, corn, A. Stales.
Power, obtaining motive, c. Faivre.
Press, hay, H. E. Skilling
Press, hay and cotton, W. A. Wright
Press, punching, w. E. Brooke.....
Tinting spools, machine for, I. and G. Dimock
Pump, G. W. Hooper.
Pump, pneumatic. G. Westinghouse, Jr.
Pump float, suction, Meitzler and Haas Pump float, suction, Meitzler and
Purifier, middlings, W. . . Fender...
 Refrigerator flt for, Herzog and Koch Rolling pin, P. Cavalla Sandpapering machine, v. Heep. aw burring tool, F. J. Martin Saw fling machine, F. w. Benjamin Saw frame, W. Clemson
Saw mill, C. Lindner
Saw mill, C. Lindner.......
Separator, grain, M. D. Jud
Sewing machine, E. S. Hill.
Sewing machine, frons and Moore.
Sewing machine journal, P. L. Reese Shawl strap bar, R. Speer........
Shelf, folding store, M. P. Key. Shingle hands, machine for cutting, Briton et al Shirt, C. E. Sutphen Shoe, c. F. Hill
Shoe, G. D. Hill
Shoe blacking case, w. H. Morse.
Shoe shanks, making metal. Shoe shave, T. Harrington........... Sifter, spring shanks die, E. Brine
S. Goodfellow...... Sifter for stoves, ash, G. G. Wolfe. Ign, illuminated, F. McLewee SIgn, street, G. B. King... Size compound, T. End.

EXTENSIONS GRANTED.
31,147.-- temamboat Staging .-A. J. Bell.
$31,152 .-$ Evaporator. -G . F. J. Colburn. 31,153.-NeRDLe.-G. Cooper.
31,168.-GAs Regulator.-C. 31,172.-PLow.-W. Jarrall.
11,182.-Wood-Bending Machine.-H. McDonald
31,211.-Sewing Machine.-L. W. Landon. 31,214.-SEwing MA Chine.-Q. Rice.
34, 203. -Boot Sewing Machine.-F. D. Ballon.

DISCLAIMERS FILED.
31,17i.-Nedede.-G. Cooper.
34, 203. -Boot Sewing Machine.-F. D. Ballon.
designs Patented
3,045, 8,046.-Carpets.-R. Allan, Yonkers, N. Y.
8,, $047 .-$ Farm Boiler. -WW. C. Davis, Cincinnati, o,
,
8,09.-Роскет-Book Frame.-J.C.Hacker,Brooklyn,N
$8,050 .-$ Oil Cloth.-C. T. Meyer et al., Bergen, N. .J.
8,031 .-Glove Boxes.-M. Murray et al.,Johnstown, N.
8,052.-CASSIMEREs.-F. S. Bosworth, Providence, R. I
B,053.-BRACEET Cup.-J. Kintz, West Meriden, Conn. 8,053--Bracket Cup.-J. Kintz, West Meriden, Conn.
$8,054,8,055 .-L o w n g r s .-J . ~ B . ~ R o t h e r, ~ P h i l a d e l p h i a, ~ P a . ~$
B,056.-Corfin Plate.-W. M. Smith, W Meriden, Conn.
Trast-Coffin Plate .-W. M.Smich, W.Meride
Trade mark Registered.
2,213.-Spool Corton.-J. \& P. Coats, Paisley, Scot
2,215.-Stoves, ETO.-March \& Co., Limerick Sta.,
$2,216-$ Fabrics.-E. R. Nudge \& Co., Boston, Mass.
2,216.-Fabrics.-E. R. Madge \& Co., Boston,
$2,217 .-$ Cigars. - G. Wiener, Philadelphia, Pa.
, 218.-REBBER MovNTINGs.-A. Albright, Newark, N.
,21 9--STove Polish.-- fischer \& Co., New York city.
2,220 - Reprigerators.-J. H. Fisher, Chicago, Ill.
2,221, 2,222.-Dry Goods.-Flaxland \& Co.,Paris, France.
2,23, Whisky. -Jenkins \& Co., Richmond, Va.
2,244--SILEss, ETC.-J. McCreery \& Co., New York city.
2,225.-PAINTS, ETC.-Thornhill \& Co., New York city.
2,226.-PERFEMERY, etc.-S.C.Upham, Philadelphia, Pa.
$\frac{{ }_{2}, 227 \text {.-Cigars. - White \& Mecracken, Les Mines, }}{\text { SCHEDULE OF PATENT FEES. }}$
each Caveat.....
On each Trade mark...............................
On Issuing each original Patent...
On appeal to Examiners-In-Chie
On appeal to Commissioner of
On fling a Disclaimer............................ On application for Design (7 years)...

CANADIAN PATENTS.
List of Patents Granted in Canada
February 3 to $12,1875$.
4,356.-C. E. Robinson, Brookly
burning furnace. Feb. 3, 1875 .
4,357.-D. F. Packer, Mystic River, Conn., E. s. Artifi
clan Fuel. Feb.3, 1875.
Feb. 3, 1875 .
4,359.-W. Lamb, Green Bay, Wis., U. s. Wire rope
carriage movement. Feb. 3, 1855.
carriage movement. Feb. 3, 1875.
360. A. F. Gue, Eastmanville,
Railway train brake. Feb. 3, 2875.
Railway train brake. Feb. 3, 2875 .
4,661 -H. Rogers and S . Moore, Sud
Making boot counters. Feb. 8, 1875.
4,362.-J. I. O'Brien and C. C. Contrell, Brooklyn,
U. s. Weaving fringe headings. Feb. 8, 1875.
$4,363 .-J$. G. Evenden and F. C. wilson, Chicago, ill.,
U. S. Measuring pump. Feb. 8, 1875 .

4,364.-A. Heatherington, Halifax, N. S. Ore amalgam
8, 1875.
4,865.-P. Miles, New York city, U. S. Tub ball fasten
ing. Feb. 8, 1875.
Ing. Feb. 8, 1875.
4, 566.-C. H. Parker, Robinson, P. Q. Water wheels.
Feb. 1875.
4, 367. A. M. Miller and M. M. Miller, Sturgis, Mich.

Advertisements.

WARDWELL PATENT,
OR CUTTING STONE INTO VARIOUS SIZE AND DIMENSIONS IN ALL KINDS OF STEAM STONE CUTTER CO., RUTLAND, VT

W ANTED-To Sell Canadian Patent for Cole's

EVERY MAN HIS OWN GLAZIER.

Practical Draftsman＇s Book of

 AND MACHINISTS＇\＆ENGINEERS＇ Drawing Companion．Forming＇a Complete Course of Mechanical，Engi
 gaud the Younger，and Amoroux clivill Enyne Ars．Re
written and arranged with additional matter and piate
 LIAMH Jonnso
fifty folio ste
edition， 4 to．．．．

 orth appilcations．Conventional Colors．Composition
or Mixture or Colors Continuation orthe Study or Pro
jections－Use of Sections－details of mathinery．Simple

 of The abore，or any of my Books，sent by mall，fre MY new and enlarged CATALOGUE OF PRACTICAL
AND SCENTIFIC BOOKS 9 Gagee，8vo．－sent free to
any one who will furnish his address． HENRY CAREY BAIRD，

INDUATRLAL PUBLISHER，
WALNUT ATREET，Philade

For 1 rite Llat，address STRANGE
\＆NIACHINE Co Teunton Mass
THE BEST PLOW IN THE WORED， Why Go $\begin{gathered}\text { M．Fi．Whil } \\ \text { Cuseta，Cass Co．，Texas }\end{gathered}$
 $\mathrm{M}_{\text {ing and Labor－Saving Machinery of all kinds sult }}^{\text {ACHINERY．－Manfacturen }}$

 FIRST \＆PRYIBIL， BandSawMachines

 461 to 467 W． 40 th St．，New York City （）CR COVERING FOR BOILERS AND
PIPES saves Trenty Asbestos $F_{\text {ele ling }}$ Co．
 10

Shaplee Fanine，
上awionaime
まizewize
Hequ woo worm

Manufactured by Valley Machine Co．，Easthampton，Mass．

Planing \＆Matching，

PATENT
Planing \＆Matching

IUDIOW VATVES．

NIAGARA STEAM PUMP，

MACHINERY
IRON \＆WOOD WORKING MACHINERY OF EVERY DESCRIPTION．
Cold Rolled Shafting． HANGERS，PULLEYS，COUPLINGS，BELTING，\＆c
\＆c．Send for

 Seeds and Bulbs．
Lllostrated spring catalogue
sent，with a spectmen copy of The Alnerican Garden，
new
new

P．BLAISDFII \＆CO．，

 emicicexizis
 Naid
Steam Pumps

 Send for circular and price Iront requiring great atrength
MC HAFFIE STEEL CO．．Evelina St．，Philadelphia， 1 a．

${ }^{8} 5, \mathrm{TO} \mathrm{T} 25 \mathrm{PER} \mathrm{DAY}$

Ladies at Home

GEO．W．READ \＆CO． and

american educational cyclopedia， A REFERENCE BOOK FOR ALL MATRERS OF RDUCATION
IN THE ENITED STATES AND INTHE It is valuable for Teachers，School Omicers，Clergy－
men，Luaw ers，Editors，Politiciaus，and Parents
with，

THE FRANZ \＆POPE Knitting Machine Co．，

NTONE SAWING MACHINERY． JOERIICKS \＆TRAVELLERS

Useful and Rare Chemicals．

MAGNETS－Permanent Steel Magnets

BLKEOSTNUSETMS
 ROR RYPRYPOSSIBLEDTYY

 cavsewar filinsis sosion．

 Free to Sewing Machine Asents

 PTXCHING

【It Union Iron Mills，Pittsburgh，Pa． The atention of Engineers and Architectaf 1 ，called
oo our improned Wrought－Iron Beams and Girders（pat－
（ented），in which the compound welds between the sitem and danges，which bave proved so objectionabie in the old
node of manuacturn，are entriel avoded We are pro－
pared to furnish all sizes at terms as facorable as can be Niagara Steam Pump． cHAS．B．HARDICK，
 ．GO LD， 97 to 113 N．J．I．．R．Ave．，Newark．N．．）

MuII \＆CD．＇s Patent Ofices．
Established 1846．
The Oldest Agency for Soliciting Patents in the United States．
twenty－eight years experience．
MORE PATENTS have been secured throagh
this agency，at home and abroad，than through any otber in
The world． per．enced men as examiners，specification writers，and draftemen that can be found，many of whom hare been se SIXTY THOUSAND
themselves of Munn \＆Co．＇s services in examining theif in ventions，and procuring their patents．
MUNN \＆CO．，in connection with the publication of the Scientific American，continue to examine inventions， confer with inventors，prepare drawings，specifications，and assignments．attend to filing applications in tho Patent Office paying the government fees，and watch each case step by
step while pending before the examiner．This is done through their hranch office，corner F and 7th Streets，Wash－ ington．They also prepare and flle caveats，procure design
patents，trademarks，and reissues，attend to rejected cases prepared by the inventor or other attorneys），procure copy－ rights，attend to interferences cive written opinions on
matters of infringement，furnish copies of patents in fact attend to every branch of patent busin oss both in this and in foreign countries．
Patents obtained in Canada，England，France，Belglum
Germany，Rusia Prussia Spain，Portugal Germany，Russia，Prussia，Spain，Portugal，the Britlsh Colonies，and all other countries where patents an
granted．
a special notice is made in the Scientifio amsaican of all inventions patented through this Agency，with the name and residence of the patentee．Patents are often sold，in part or whole，to persons attracted to the invention
Δ pamphlet of110 pages，containing the laws and full di－ rections for obtaining United States patents，also a circular
pertaining exclusively to Foreign Patents，stating cost for each country，time granted，etc．，sent free．Address IUNN \＆CO．，
Pablishers SCIENTIFIC AMERIOAN，

CIARK'S

Pressure Blowers.
 RAHWAY MANUFACTURING COMPANY
BLAKE'S PATENT Stone and Ore Breaker

WHAT PAYS? Every business man admitt the necessity of advertising

 All who have tried it know the advantages and proft of so doing. But it is not all who advertise that do it advangreatest benefit for their money. As a rule, it is the bes econony to advertise what one has to sell or wishes topurchase, in papers having the largest circulation among Partles having Manufacturing Establishments to sell o Cease, or who wish Estimates made for Constructing
Bridges, Dams, Iron Bufldings, Furnaces, Heating Apparatus, Steam Engines, Boilers, Wood and Iron Working Engineering Works of all kinds, will find that it pays to advertise in the Scientific American.
The value of the Soirntifio American as an advertising medium cannot be over-estimated. It goes into all the machine and workshops in the country, and is taken
at the princlpal libraries and reading rooms in the United States and Europe.
A business man wants something more than tosee his tion. If it is worth 25 cents per inne to advertise in a pa-
adita per of three thousand circulation, it is worth $\$ 3.75 \mathrm{pe}$
line to advertise in one of forty-fle thousand. We invite the attention of those who wish to make thet
 Business and Personal, 1.00 a line
Engravings may head advertisements at the same rate per line, hy measurement, as the letter press. Adver
tisements must be recelved at the publication office as early as Friday morning to appear in next issue. or it in the Scientific Amgrioan. If one has a patent or machinery to SCIENTIFLC AMERICAN.
Address the publishers

Munn \& Co.,

IRON PIANPRS,

 IERCE \& HALING Milwaukee. WIs.
 B

ASBESTOS MATERIALS
ROOFING, BHEATHNG, BOILER FELTING, PANTS (all colors), ROOFING PAINT.

 GREATEST INVENTION of the AGE. ELECTRIC \& VAPOR CHAIR.

MillFurnishingWorks

Rope.

STEEL AND CHARCOAL

HN W. MASON \& CO.,
43 Broadway, New York.
$\mathbf{R}^{\text {ogers' tannate of soda. }}$ $2 d$ hand Partabie © stationaty Enginee \& Bollers, \bar{a} D ICE'8 ENCYCLOPEDIA OF 6 R 6 ,422

 COVERING
 Working Models

STANDARD BRICK MACHINE

 $\overline{\text { Wlics }}$

 ROGERS' TANNATE OF
IMPORTANT TO INVENTORS.

(T)

SCIENTIFIC AMERICAN, THE MOBT POPOLAR SCIENTIFIC PAPER in the w(rid.
THIRTIETH YEAR.

VOLUME XXXII.-NEW SERIES.

The publishers of the SCIENTIFIC AMERICAN

 beg to announce that on the second day of January,1875, a new volume commenced. It will continue to be the aim of the publishers to render the con tents of the new volume more atractive and use

> han any of its predecessors. To the Mechanic and Ma

To the Mechanic and Manufacturer
suits should think of doing without the Screantur American. Every number contains from six to ten engravings of new machines and inventions which cannot be found in any other publication.
The SCIENTIFIC AMERICAN is devoted to the interests of Popular Science, the Mechanic Arts, Manufactur © Inventions, Agriculture,Commerce, and the indu ial pursuits generally; and it is val
uable and it Manufactory, but also in the Household, the Library, and the Reading Room.
By the new law, the postage must be paid in
advance in New York, by the publishers; and the advance in New York, by the publishers; and the
subscriber then receives the paper by mail free of charge. TERMS.
One copy, one year (postage included)....... $\$ 3.20$ One copy, six months (postage included).... 1.60 One copy, three months (postageincluded).. 1.00 year, and one copy of engraving," Men
of Progress"...................... Men
One copy of Scientiflc American for one
for 1874... 5.5
Remit by postal order, draft, or express.
Address all letters and make all Post Office orAddress al letters and to
ders and drafte payable

MUUNTN \& \& CO COM,

