
a WeEkly Journal of practical information, art, science, mechanics, Chemistry, and manufactures.

NEW YORK, FEBRUARY 13, 1875.
$\underset{\text { Postage prepaid. }}{\mathbf{\$ 3 . 2 0} \mathbf{~ p e r ~ A n n u m , ~}}$

THE EXCELSIOR UNIVERSAL WOOD WORKER. It often happens, in manufacturing establishments, that even in the busy season, many expensive and valuable tools are allowed to stand idle because the peculiar kind of work, for which they may be exclusively adapted, is not for the time same required. There is no doubt that large shops economize shops economize
work by having, for work by having, for
every change of every change of
operation, a special operation, a special
tool, but the value of such apparatus is certainly enhanced if its construction be such that it can be devoted to other operations whenever the same may be desirable.
Such a machine is that represented in the annexed il. lustrations, the distinguishing name of which forms the above heading. Its operation is not new, and therefore not experimental ; but the experimental but the combina tion of several ope rations, and the form, shape, and adjustability of the different parts to make them answer one and all the purposes, are decidedly novel and useful. It is built by the well known firm of Ben tel, Margor Bentel, Margedant \& Co., manufacturers machinery, of Hang ilton, Ohio.
The sticker or molding operation is not intended for such heavy work as the large sized Universal Wood Worker, made by the er, made by same illustrar ers and illustrated some time ago in this paper. The present machine has one sidehead only, but is, nevertheless, very strong, as the whole frame is cast in one piece, without joined or framed parts.
framed parts. Fig. 1 shows the apparatus arranged for a molding machine. The table or platen consists of a large main support on which a side bracket is raised and lowered independently of any other adjustment of other adjustment of parts, also of two tables independently adjustable in a horizontal plane, all of which can be raised and lowered at either end of the machine, by means of a crank wrench, which engages two screws connected screws connected by corresponding gearing.

THE EXCELSIOR WOOD WORKER AS A MOLDING MACHINE.

THE EXCELSIOR WOOD WORKER AS A HAND PLANING MACHINE.

THE EXCELSIOR WOOD WORKER AS A SHAPING AND BORING MACHINE.
tershaft of the sidehead, driven by strong friction gearing, enables the operator to start or stop the sidehead at will, while the material is moved forward by the feed rollers, and operated upon by the cenral cutter head. ral cutter head This gives an im portant advantage in planing material on the sides only, in the middle, or on one or both ends, substituting, in many cases, machine work for labor hitherto labor plished only by plished only by
The feed rollers are of a peculiar construction; they remain perfectly parallel at any hight, or rise from the table, are strongly and simply geared and linked, and and no are so arranged that they press on the whole width of the material with even pressure.
The feed shafts, on which the teethed wheels are held by a nut rest on strong. rest on strong sleeve sockets ings, in which they can be slid back if not needed. The feed arrangement is held down by adjusting levers and weights. The hand lever on the end of the machine is used for starting or stopping the feed. The weighted chip bonnet is adjustable to permit the use of long or short projecting molding cutters. The usual springs The usual springs and spring holders, which are adjustable for their purpose, accompany the outfit. They can be let down on the sides of the tables, and may be advantageously used, at any altitude of the any altitude of the tables, for a large variety of work.
The back top of The back top of
the machine, visi. the machine, visible in the engraving, serves in this position of
the machine as a commodious rest for short or long material before or after it is planed.

Fig. 2 shows the apparatus arranged as a hand planing machine, to which it can be changed quickly, and while the central cutter head is running.
The feed roller shafts are returned in their sleeves; the large table is slid back and the small one brought forward close to the cutting line of the cutter head. The main support is raised so that the front top, back of the cutter head, is on a level with the cutting line. The machine is then in position for planing material out of wind, squaring, beveling, cornering, chamfering, or tapering. The small front top may be raised or lowered for any desired thickness of cut. A fence or guide, which is adjustable to any desired angle, rests on the back top. By simple changes of the cutter heads, the adjusting of the tables to a common level with the cutting line of the cutter head, and the raising or lowering, parting or closing, of the front tables, all the different manipulations can be made, such as planing out of wind, beveling, cornering, tapering, mitering, rabbeting, jointing, panel raising on both sides at one operation, hand matching, rolling joints, gaining, plowing, circular, elliptical, and serpentine molding, rip and crosscut sawing, etc., doing all the work of the Universal Wood Worker. The tables can both be raised or lowered together, preserving the same position relative to each other; so that the depth of the cut can be changed at a moment by a turn of a crank wrench. For using a rip saw of larger dimension than the distance between the tables, the same are simply lowered below the saw and kept apart at
the middle, so that part of the teeth come below the line of the middle,
A patent gaining frame, quickly adjusted for any angle of gain required, accompanies every machine. The back top is provided with holes to fasten the pattern on for cutting circular and elliptical moldings.
In the thirdengraving, the main support, with the front tables, is shown raised to the hight of the adjustable back top, thereby forming one large table; the sidehead is also raised to a hight which lurings the smaller leather-covered pulley in line with the larger step of the cone pulley on the upright countershaft of the side head. This increases the speed of the sidehead mandrel to 5,000 revolutions
The speed is now altered for the purpose of running smaller cutters as they are used on friezing and shaping machines, but the motion may be changed now in either direction by the foot lever. The side mandrel may be set at a perpendicular or angular position, and raised or lowered at will while running; cutter heads or knives of different sizes and shapes can be used and will operate in the same manne and for the same purpose as those of the best special friezing or shaping machine. The guide plate or fence, which is so very useful when the machine is operated as a hand planer or Universal Wood Worker, can be used now for many jobs, as well as the groove in which the gaining frame slides. The gaining frame itself is convenient for many purposes.
The illustrations show only one side of the machine with the stickerhead or platen in three different positions, but the oppos
The center mandrel passes through the machine and has on the projecting end a tapered hole suitable for machine auger bits or chuck shanks. A boring and routing table adjustable in perpendicular, horizontal, angular, and rotary position, con stitutes the outfit on this side of the machine. Boring or rout ing may be done while the machine is operated on the front side so that two persons can use the operative power at the same time. The boring table is of a new and novel design. We are informed that the machine is sold with and without the boring arrangement, and is so arranged that the boring table can be put on at any time afterwards by simply fastening a few bolts.
The right to manufacture the device (the last paten on which was taken through the Scientific American Pat ent Agency, April 7, 1874) within the United States is for sale. For further particulars, address the manufacturers as above.

Comparative Tests of Building Materials.

The superiority of American steels and irons to simila rades of metals of foreign production has been often as serted; and it is now proposed to definitely settle the point which is of the utmost importance in engineering, mechan ics, and agriculture, by a government commission. The suggestion comes from the American Society of Civil Engi neers, who deputed a committee to wait on the House Com mittee on Appropriations, on January 26, to urge the passage of a bill, now before the House, which provides that th President shall appoint a commission, consisting of a repre sentative each from the Engineer, Ordnance, and Navy Corps, the Coast Survey, and four civil engineers, to serve withou pay, to institute and carry out such a system of tests upon American building materials, particularly iron and steel, as would result in the adoption of a standard of strength t govern future constructions.
Similar experiments have been made in Europe, and data for the guidance of architects and for the use of local boards in framing building regulations, have been obtained. Hith erto our scientific men and artificers have had to use these results; but we hope that improved practice, comprehending the well known facts as to the excellence of American
metals, will result from the appointment of the proposed commission.

Rock or swamp maple is a better step for a turbine than either lignum vite or elm. Cast iron is useless.

Srientific Ameriant.

MUNN \& CO., Editors and Proprietors. pUbLISHED WEEKLY AT
NO. 37 PARK ROW, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS.

One copy, one year, postage included....
One copy, six months, postage included..
Club Rates:
Ten copies, one year, each $\$ 270$, postage included..
160

By the new law, postage is payable in advance by the publish........... 270 he subscriber then receives the paper free of charge.
Note.-Persons subscribing will please to glve their full names, and Post
ffice and State address, plainly written, and also state at which time they Office and State address, plainly written, and also state at which time they wish their subscriptions to commence, otherwise they will be entered from
January $1 \mathrm{st}, 18 \overline{\mathrm{u}}$. In case of changing rezidence state former address, as well as give the new one. No changes can be made unless the former address is given.

VOLUME XXXII., No 7. [New Series.] Thirtieth Year.
NEW YORK, SATURDAY, FEBRUARY 13, 1875.

Patent law amendments.

We understand that the Patent Committee of the House of Representatives have concluded to report the following of Re
bill:
o amend the act entitled "An act to revise, consolidate, and amend the statutes relating to patents and copy
Be it enacted by the Senate and House of Representatives That sections twenty-three, twenty-five, thirty-three, fifty three, and sixty-four of the act entitled "An act to revise consolidate, and amend the statutes relating to patents and copyrights," approved July eighth, eighteen hundred and
seventy, be, and the same are hereby, amended to read as seventy, be, and the same are hereby, amended to read as
follows:
"SEC. 23 . That every patent shall date as of a day not later than six months from the time at which it was passed and agent; and if the final feeshall not be paid sufficiently within that period to admit of the patent being prepared for issue
the patent shall be withheld."
"SEC. 25. No person shall be debarred from receiving. a patent for his invention or discovery, nor shall any patent is-ty-one, be declared invalid by reason of its having been first patented in a foreign country ; provided the same shall not have been introduced into public use in the
"SEC. 33. That patents may be cranted
issued to the assignee of the inventor or discoverer the as signment thereof being first entered of record in the Patent Office; but in such case the application for the patent shall be made and the specification sworn to by the inventor or discoverer, but an assignee of the entire interest in a patent may
make application for reissue without the aid or consent of make application for reiss,'
"SEc. 53. That wherer.
SEC. 53. That whenever the owner of a patent shall make oath that his patent is inoperative or invalid (a) by reason of defective or insufficient specification, or by reason of the than he has a right to claim as new, or by reason of two or more parties having made application as joint inventors when, in fact, they were not, or in case of a patent issued to
a single party when the invention was joint, or in case the patentee has failed to claim what he had a right to claim, as hown by his original (b) drawing or model, if the error has fraudulent or deceptive intention the Commissioner shall, on the surrender of such patent, and the payment of the duty required by law, cause a new patent for the same invention, and in accordance with the corrected specifications, to be issued to the patentee, or, in the case of his death, or assign-
ment of the whole or any undivided part (c) of the origina
patent, to his executors, administrators, or assigns, for the unexpired part of the term of the original patent (d), the sur-
render of which shall take effect upon the issue of the render of which shall take effect upon the issue of the
amended patent; and the Commissioner may, in his discretion amended patent; and the Commissioner may, in his discretion
cause several patents to be issued for distinct and separate cause several patents to be issued for distinct and separate
parts of the thing patented, upon demand of the applicant and upon payment of the required fee for a reissue for each of such reissued letters patent. And the specification and claim in every such case shall be subject to revision and restriction in the sam9 manner as original applications are. And the patent so reissued,together with the corrected specification, shall have the effect and operation in law, on the trial of all actions for causes thereafter arising, as though
the same had been originally filed in ach corrected form: the same had been originally filed in wach corrected form; in case of a machine patent, shall the model or drawings be amended, except each by the other."
"Sec. 64. That upon the receipt of such application, and the payment of the duty required by law, the Commissioner
shall cause to be published in the Patent Office Official Gazette, and in such other papers published in thice Official Gazette, country most interested adversely to the extension of the patent as he may deem proper, for at leastsixty days prior to the day set for hearing the case, a notice of such applica will be considered, that any person may appear and show case why the extension should not be granted.'
The above bill, about to be reported by the committee on patents in the House of Representatives, contains several important improvements in the present statute, but falls far short of correcting many of theimperfections of the latter. Some of these will now receive a passing notice
The 25th section of the act of 1870 needs further amend ments than those proposed in this amendatory act. He who holds both a foreign and a home patent is now obliged, if the foreign patent was granted prior to the House patent, to keep up the former in order to preserve the latter.
There would be less objection to this if the home patent were to expire only with the natural life of the foreign patent. But in case of a French patent, a hundred francs mus be paid every year in order to keep it in existence. A fail ure to make this payment-no matter for what reason, o whether intentional or not-causes a forfeiture of the French patent, and the American patent expires with it, as the law now stands. Another objection to the section in its present form is that the foreign patentee may allow it to run for ten years or more, unused and unknown in the United States; and when some manufacturer erects expensive works here and commences to manufacture the same thing, the foreign pat entee may obtain an American patent within two years there after and entirely close up this home manufactory, unless the proprietor of the latter will pay such an exorbitant roy alty as may be demanded of him.
The law should require the holder of a foreign patent to take out a patent or to put the thing patented in use here within say one year after it was patented abroad,or the same shculd become public property in this country.
In section 53, at (a), after the word "invalid," the words "in whole or in part" should be inserted. The law is now generally so interpreted; but this is sometimes controverted and it is contended that the patent in its original shape must be wholly worthless, in order to justify a reissue: and such seems to be the natural import of the language of the statute. It should be the policy of the law to give an inventor the full benefit of hisinvention, and the Office usually strains a point in order to produce that effect; but the matter should not be left at loose ends in this respect.
Again,at (b),after the word " original," the word " specification" should be inserted. The original specification is quite as reliable as are the drawings or the model in indicating the true invention, and often much more so. But as the section now reads, both here and in lines 62 and 63 of the bill, the specification is entirely ignored in this connection. The same word "specification" should also be inserted before the word ' model" in line 62 above referred to.

There is also some correction needed in or about line 46 of the bill, in this same section. After providing for the cases in which a reissue may be allowed, the bill goes on to state that " the Commissioner shall, on the surrender of such patent, and the payment of the duty required by law, cause new patent for the same invention, and in accordance with case of histed specification, to be issued to the patentee, or, in vided part of the original patent, to his executors, adminis trators, or assigns, for the unexpired part of the term of the original patent." Now suppose the patentee to have as signed, say the one twentieth of the original patent to John Doe, is it intended to give the said Doe the sole right to ob tain a reissue? But such is the provision of the bill as it

If the words "or any undivided part" were erased, the true intent would be more nearly expressed. But if,after the word "patent" at (d), the words "the surrender of which" were erased, and the words "if an undivided interest in the original patent shall have been assigned, all the assignees must join in the application for a reissue. And in all cases the surrender of the patent" were substituted, the change would be still much better.
But there are some amendments not noticed in the bill which are quite as much needed as any of those which it con tains. Some of the most important of these will be briefly adverted to.
As the law now stands, an assignee has ninety days within which to record his assignment. This holds the door open for fraud. An innocent purchaser may have had his assignment on record for 89 days before any other assignment is re corded or suspected to exist, and still he may find it worthless. The registry laws of some of the States in relation to the sale of real estate have had this same provision. But experience has fully demonstrated the superiority of the rule that the first deed on record shall hold the property. It
may work hardship in some cases, but it incites to vigilance, and is, on the whole, vastly preferable. The same would and is, on the whole, vastly preferable. The same would
doubtless be the case in relation to the assignment of patents.
But licenses are by the present law not required to be recorded at all. After the most thorough care and vigilance, the purchaser of a patent may find that scores of licences to nake, use, and sell the thing patented in every portion of the United States have left the property,for which he has paid his money, comparatively worthless. This ought not to be so. A license should be recorded just the same as an assignment or a deed.
But there is another evil, which, although less in magnitude, is just as palpable and should not be overlooked. The 48th section of the act of 1870 summarily abolishes the appeal from the Commissioner to the courts in interference cases. There is reason to believe that this was the result of accident or mistake. Interference cases above all others should be subject to such appeals. The inquiries involved are just as intricate, and the questions of law and fact call into requisition as high an order of legal acumen, as those which tax to their utmost capacity the most experienced and clearsighted minds that are to be found on the bench of any court in the republic. And yet, by the law as it now stands, these questions are to be decided, without any right of appeal,by a Commissioner who is wholly inexperienced in such matters, who has never read a chapter of Kent or Blackstone, and who is wholly ignorant of the great legal maxims which underlie all sound judgment in matters of that nature. Such an arrangement is outrageously improper, and should be changed at once.
We shall make only one further suggestion in this connection. After a decision by the Board of Examiners-in-Chief, we see no reason why the dissatisfied party should be obliged to appeal in all cases to the Commissioner before he can make his appeal to the Supreme Court of the District, especially in interference cases. If such a case is appealed from the Board of Examiners-in-Chief, it rarely if ever fails to be taken eventually to the court. It would save much trouble and some expense if the dissatisfied party were permitted at his option to appeal directly to the court. A change in section 48, which would make it read as follows, would accomplish the entire purpose above suggested.
"Section 48. And be it further enacted that, if such party is dissatisfied with the decision of the Commissioner, he may appeal to the Supreme Court of the District of Columbia sitting in banco. Or the dissatisfied party may athis option appeal directly from the decision of the Examiners-in-Chief to the said Supreme Court without first having appealed to to the said Supreme Court with
the Commissioner of Patents."

CAN ANTS TALK?

No one has studied the habits of "our six-legged rivals" without becoming impressed by their ability to communicate with each other, and the wide range of intelligence which they seem to be able to convey. Information of common danger is quickly spread throughout colonies numbering many thousands, the news being brought by perhaps one or two spies. Hitherto their mode of communication has been two spies. Hitherto their mode of communication has been
a mystery, the most plausible hypothesis being that it was a mystery, the most plausible hypothesis being that it was
by a sort of fencing with their antennæ. Thus an ant reby a sort of fencing with their antennæ. Thus an ant re-
turning from a foraging expedition meets another outward bound. They stop, strike antennæ together a few times, then proceed, No. 1 to the nest, No. 2 setting off on a new course and going straight to the place where No. 1 found her load. It would now appear that the striking of antennæ is merely a sort of salutation, as two neighbors might shake hands, while conversation goes on by other means. At any rate, according to the report of Professor Landois to the Natural History Society of Prussian Rhineland, they are provided with a sounding apparatus resembling that of the sand wasp. To have implies to use; and though its pitch is generally inaudible to human ears, its range of tone may be ample for a fully developed language. We say " generally inaudible," notwithstanding Professor Landois' belief that it is always so, having more than once noticed a faint strident, hissing sound proceeding from columns of large ants when annoyed. The next thing in order is an apparatus for making inaudible sounds audible, as invisible rays are made luminous; then some enterprising student may give us a comparative gram mar of formic idioms

THE SEWING MACHINE.

The Committee on Patents of the House of Representatives has recently reported adversely to the application for the extension of the A. B. Wilson sewing machine feed motion patent. As we have previously explained, this patent has been controlled by a coalition of manufacturers, namely, the Wheeler \& Wilson, Grover \& Baker, Wilcox \& Gibbs, Singer, and the two Howe companies, who have made it the means of exacting immense royalties from smaller makers, and thus of distancing all competition, while at the same time of amassing colossal profits from their own large sales. The patent has already been once extended, and this second extension, had it been granted, would have continued the monopoly for a further period of seven years,during which time a score of millions would probably have been added to its al ready vast wealth. As it is, the invention now becomes public property, and is free to all users. The onerous royalty is thus obviated, the door opened widely for a healthy competition, and the diminution in price of the sewing machine probably to the extent of fifty per cent, will doubtless soon follow.
The history of a successful invention of this kind furnishes a suggestive commentary upon the wisdom of the principles which underlie our system of patent laws. Of principles which underlie our system of patent laws. Of
these, the ultimate object is, solely and purely, benefit to the
community, not the mere securing of a monopoly to the inalthough the proprietors of this valuable right have been allowed to exercise a species of tyranny for several years, and to exact from the public large sums, still the object has been not to afford means for them to get rich, but to induce them to improve and develop the invention. Spurred on by immense gains, those reaping the harvest have accomplished this development. More than that, they have evolved a new thd lucrative industry. Ample opportunity has been afforded the same privilege, asserts that the benefits to the public will not be so great in so doing as will be secured by removing the restrictions. Certainly the reward obtained during the period of the monopoly by its owners has been enormous, but it is utterly inconsiderable beside the profits which will now accrue to the public.
In brief, for twenty-one years we have submitted to great exactions, but in so doing we were investing sums to secure the prosperity of our descendants. By allowing a few to become wealthy over a couple of decades, we have induced them to develop a great industry which will prove a source of income to millions in years to come.

PROSPECTS FOR 1875.

We are gratified to be able to state that the subscriptions to the Sccientific American, for the new year of 1875, are pouring in from all directions as they have never done before. We are now printing, every week, 50,000 copies of our journal, which is undoubtedly more than the combined cir culation of all other papers of its kind published in the world.
We hope our friends who have not yet renewed, and all who are engaged in the formation of clubs, will send along back names as rapidly as possible. To prevent the loss of we elembers by those whose remittances are a little tardy, we electrotype each issue and preserve the plates, whereby may be required.
We recommend persons to patronize their local periodical dealers, when equally convenient for them, in preference to the mail. By receiving the paper weekly from the counter or by carrier, the objectionable creases in the paper, necessitated by the folding for the mail, are avoided; besides, it is commendable to patronize home enterprizes in every thing.
We have the most gratifying assurances from all parts of the country that, notwithstanding the hard times among some of our industrial classes, the demand for scientific and books, since the new year, demonstrate this fact.

SCIENCE RECORD FOR 1875

We have much pleasure in announcing the issue of the volume for the current year, which we believe will, on examination, be found fully equal in merit to any of the preceding books of the series. The Science Record for 1875 contains about 600 pages, and such is the wide scope and variety of contents that the index alone fills some ten closely printed pages. The index of references is also extensive, designating nearly one hundred and fifty scientific publications that hare been more or less consulted in the compilation of the
work. work.
In the department of Chemistry and Metallurgy, which covers nearly sisty-eight pages, we have accounts of all the important brovements, discoveries, and suggestions in these All who are interested in either of these departments of Science, or who desire to be concisely informed as to the latest progress therein, will find the records to be of value. The department of Technology, occupying nearly one hundred and fifty pages, contains a very large amount of new and useful information, illustrated by a variety of engravings. The new alloys, new recipes, and new processes in the various arts, here collected and condensed, are of great value, and probably not attainable in any other one work. Among the illustrated articles is the latest form of machinery for the artificial manufacture of ice: also the methods and apparatus used in gathering natural ice. Here we find described the many uses of paraffin, new methods for the ornamentation of metals, nickel plating, iron welding, new imitations of silver and other precious metals, directions for the practice of several new and simple arts, photographic improvements, waterproofing of paper, manufacture of car-
bonic acid, solvents for rubber, protection and ornamenting of iron, preparation of bronzes, uses of mica, production of artificial leather, artificial manufacture of precious stones,
tempering of steels, and a multitude of other subjects, all tempering of steels, and a multitude of other subjects, all useful, interesting, and desirable for reference.
Under the head of Electricity, Light, Heat, and Sound, overing fifty pages, we have descriptions and engravings machines for producing the electric light, several forms of new batteries, an engraving of the apparatus used for the new artificial light called the Bicarbon Light, said to be equal to the oxyhydrogen but cheaper and superior, better also than the electric or magnesium light. An electrical barometer, a simple little instrument, worked by electricity drawn from
belts in machine shops, is represented, and a great number of belts in machine shops, is represented, and a great number The improvements and new suggestions.
The department of Mechanics and Engineering, occupying cles of special interest to the mechanic and engineer. The latest improvements in ships are here given, with engravings. The Bessemer steamer is illustrated, also the Castalia twin ship. Diagrams of the most recent ordnance are given.
There is a chapter on the propulsion of cars and vehicles by
springs, with engravings. The latest railway improvements and structures are shown, and among them the new car of Giffard, of injector fame, which moves without oscillation. The departments of Rural Economy, Botany, Horticulture, Agriculture, etc., are full and interesting. 'The latest egg hatching machine is illustrated; so are the habits and form of the Colorado potato beetle, etc.
Under Materia Medica, Therapeutics, Hygiene, we have a large amount of new and important information, from the most reliable sources, profitable to every reader.
Pisciculture is an interesting department, containing engravings of the most recent methods for hatching and cultivating fish, with descriptions. The farming of fish is rapidly growing in importance, and there is evidence of more profit, with less labor, to be made from the streams that flow hrough the land than from the adjoining land itself.
The department of Natural History and Zöology will be found especially interesting, as the amount of new informa tion acquired during the past year, from various expeditions, is large and important.
In the department of Geography, the past year has been prolific of new and interesting information. A series of views of the remarkablecañons of the Colorado is given, which convey an idea of the astonishing natural formations that exist in our West.
Astronomy is full of useful interest; some of the results of the Transit of Venus observations are given, together with a mass of new and valuable matter.
The department of Biography is illustrated with the portraits of several eminent men of science, and will be found unusually interesting.
Taken altogether, the Science Record for 1875 is a book of unrivalled importance and value. All who desire to have before them, in condensed form, the year's progress in Science should possess a copy. Sent by mail, prepaid. Price
$\$ 2.50$. Published by Munn \& Co, Anerican, New York.

AN ANCIENT METRIC SYSTEM.

The library of Asshurbanipal, King of Assyria, found during Mr. Layard's excavations at Nineveh, shows that Science had made no little progress in Asia twenty-five hundred years ago. This curious library consisted of flat, square tablets of baked clay, having on each side a page of closely written cuneiform cursive letters, which had been impressed on the clay while it was yet moist. The great majority of these tablets are now in the British Museum, and have been found to contain the remains of an immense grammatical encyclo pædia. There are also fragments of many mathematical and astronomical treatises, with catalogues of observations, tables, calculations of eclipses of the moon, and observations of solar eclipses, the earliest of which occurred neasly a thou sand years before the beginning of the Christian era. There are also fragments of law books and legal records, books of
chronology, manuals of history, accounts of Assyrian and chronology, manuals of history, accounts of Assyrian and
other divinities, collections of hymns in the style of the other divinities, collections of hymns in the style of the
Psalms of David, a geographical encyclopædia, works on natural history containing lists of plants and animals, of timber trees employed in building and furnishing, of stones fit for architecture and sculpture, etc. Perhaps the most interesting of all these lists is a classified catalogue of every species of animals known to the Assyrians, showing a scientific nomenclature similar in principle to that of Linnæus. Opposite the common name of each animal is placed a scientific and ideographic name, composed of two parts, a family name and a characteristic epithet denoting the species.
A still more remarkable indication of the scientific advance ment of the ancient Assyrians appears in their system of weights and measures, in which, as in the French system, all the units of surface, capacity, and weight were derived from one typical linear unit. The basis of the system was the cubit (equal to 20.67 inches). This was divided into sixty parts, corresponding with the minutes of the degree. The cubit, multiplied by 360 , the number of degrees in the circle, produced the stade, the unit for large distances. The fundamental unit for areas was the square foot, the square of a measure bearing to the cubit the relation of 3 to 5 , or $12 \cdot 4$ inches of our measure. The cube of the foot was the metreta, the standard of all measures of capacity; and the weight of a cubic foot of water gave the talent, the fundamental unit of weight; the sexagesimal division of the talent gave, first the mina ($=510.83$ grains), and second, the drachma (=8.51 grains).
The sexagesimal system was employed throughout their mathematics, the unit being invariably multiplied or divided by sixty, the result again by sixty, and so on to infinity. "This, it is very evident," observes Lenormant, " was the result of a wise combination of a very practical character, intended to combine the advantages of the two systems of dividing unity that have been in dispute at all times and among all nations-the decimal and the duodecimal." We still follow this Chaldæo-Assyrian system in the divisions of the circle and in our divisions of time.

Water glass deserves more extended household usage. Mixed with paint or whitewash it gives increased durability and a fine gloss, it is an excellent fireproof cement, and when dry is also waterproof. It is a good adhesive mucilage for mending china, glass, or wood, and made into a wash is the best coating for brick vaults.

Dr. Guttceit recommends rubbing warts, night and mornng, with a moistened piece of muriate of ammonia. They soften and dwinde away, leaving nosuch white mark as follows their dispersion with lunar caustic.

THE UNDERGROUND RAILWAY, NEW YORK CITY.

number Ix

Continued from page 68.

the passenger stations.

With the exception of that in the viaduct, described in ou lastarticle, all the stations are beneath the street level. The first of these underground landings occurs in the beam tunnel, midway between 58 th and 59 th streets. It consists of two waiting rooms and two landings, one of each for each side tumnel, placed immediately beneath one of the rectangular openings of the central tunnel. The platforms are 150 feet long, 12 feet broad, and 3 feet 6 inches above railroad grade. Along its entire length the outside rubble retaining wall of Along its entire length the outside rubble retaining wall of
the tunnel is removed and set back 11 feet nearer the house line, its place being supplied by a row of cast iron columns 10 inches in diameter at the base of the shaft, 10 feet 6 inches high, and of $\frac{1}{2}$ inch metal. They are placed 11 feet 9 inches apart and 3 feet from the inner edge of the platforni. About the center of the platform the re aining wall is again interrupted for a distance of 59 feet, and set back 20 feet nearer the house line, thus forming a recess 20 Fet by 59 feet, which contains he waiting room, ticket office, water closet and vaults. The waiting room is 36 feet long, 10 feet wide and 11 feet 6 inches high. From the north end of this room rise iron steps which ead to the sidewalk. These steps are 8 feet broad, have iron rames and rises, with wooden reads, and are divided down the center by an*iron railing 3 feet high, which also extends from the foot of the stairs to the ticket office, thus separating the flight into two flights, one to be used by passengers ascending from the station to the street, and the other by those descet:ding. At the exit on the sidewalk, these steps are cov red by a neat wooden house 8 feet x 12 feet,and lighted by patent lights placed in the roof.

The general style of this house is shown in Fig. 6, page 338, volume XXXI
The roof of the station, like that of the tunnel, is composed of H iron beams and turned arches between them. Along the top of the iron columns run the two girders previously lescribed; along the retaining wall which sunds the platform is placed one H beam, and upon the 20 inch brick walls, which form the inner walls of the waiting room and stairway, rest two more girders. Upon these are placed transversely the H beams similar to those used in roofing of the beam tunnel and between them the brick arches.
The lighting of the station is derived from eleven patent lights, 3 feet in diameter, placed in the sidewalk immediately over the waiting room, from the lights placed in the roof of the house covering the stairs, and from the rectangular opening in the roof of the central tunnel. The ventilation is also largely derived from this latter opening, but also through the ventilators in the side of the house over the stairs.
The station at 72 d street is precisely similar to that at 59th street, and needs no description. The station at 86 th street is illustrated in elevation in Fig. 23. It differs essentially from those just described. There are two stations, one for each of the two side tunnels; but unlike the 59th street station, they are placed on the inner side of the small tunnel, or the side nearest the central tunnel, and do not have a waiting room. They consist really of a covered platform, 172 feet long, 13 feet 8 inches wide, and 3 feet 10 inches above the railroad bed.
Along the inner side, and separating the side from the center tunnel, runs a rubble wall, 4 feet thick, with vertical faces and lined on the side of the platform with brick. Three
feet six inches from the inner edge of the landing is a long row of cast iron columns, 10 inches in diameter at the base, 11 feet $4 \frac{1}{2}$ inches high, and of $\frac{5}{8}$ inch metal. These columns sup port two 15 -inch heavy girders placed side by side, their flanges touching. Upon these rest the roof beams and turned brick arches.
At the south end of these platforms is the ticket office. A flight of four steps leads from the street to the platform on which this ticket office stands; and from this landing go off, to the east and west, two other flights which lead to a platform below the street grade, and from these latter landings a final flight, at right angles to the latter, leads to the platform beside the track.
At the north end of each platform is a small waiting room 35 feet by 8 feet.
The last station on the road is between 125th and 126 th streets, in the open cut and upon the west side of the track. Its general appearance is well shown in Fig. 22, which also shows in perspective the open cut through Harlem and

Fig 22.-THE UNDERGROUND RAILWAY, NEW YORK CITY.--PASSENGER STATION AT 125th ST.-THE HARLEM OPEN CUT AND CROSS STREET BRIDGES.
weight to stature gave in pounds to the inch: Ohio and Western States, 2.185; New England, 2.121; England and Scotland, $2 \cdot 118$; Germany, $2 \cdot 168$

A Layer of Hydrogen above our atmosphere
In a paper read before the Manchester Literary and Philosophical Society, Henry H. Howorth observes: "It is clear that, if under certain conditions hydrogen be an exception to the general law of the diffusion of gases, and follows ra her the more general law of gravitation, it will exist in a stratum above the atmosphere and beyond the reach of direct observation. In his experiment upon the occlusion of gases, Mr. Graham examined several aerolites, and found that, under the air pump, they parted with a very large quan tity of occluded hydrogen. If, as is probable, the gas was occluded by the aerolites when at a red heat, and this red heat was coincident with their passage through that layer of the upper atmosphere in which the phenomena of shooting stars and of the aurora occur, it seems more than probable that this stream is a layer of hydrogen. This is confirmed by what we know of the spec trum of certain auroras, which resembles those of the zodia al light and the solar coro a The spectrum of the co ona has been the most atten tively studied, and Janssen, perhaps the greatest authori y on it, speaks most conf ently about its distinguish ing feature being the hydro gen lines, while a special line which characterizes both its pectrum and that of aurora and which is different to that of any terrestrial substance considered by Father Sec hi to be an abomal hydro en line. Dr. Dalton lons go argued, as Mr. Baxendell as reminded Mr. Howorth that the peculiar features of he aurora could best be ex plained by the hypothecation of a stratum of some peculia as above the atmosphere gas of a 'ferruginous na ture' is the expression of Dr
station consists of a platform, 164 feet in length, 8 feet in width, 2 feet 10 inches above railroad grade and composed of a layer, 12 inches thick, of broken stone covered with 4 inches concrete and 12 inches hard finish. The platform is covered over its entire length by a corrugated iron roof, rest ing upon 9 -inch heavy beams supported upon 15 -inch heavy girders, which in turn rest upon cast iron columns, of the same kind as those used in the other stations, placed 12 feet apart and 4 feet from the edge of the platform. These columns rest upon cap stones 8 inche:; thick and 2 fee square
At the south or 125 th street end of the platform are the wait ing room, ticket office, vaults, etc., occupying a recess 53 feet by 10 feet. These rooms are covered by 15 -inch heavy beams and 8 inch turned brick arches. The stairs from the platform to the street are also at the south end, are 5 feet wide with yellow pine steps and cast iron risers and strings, sup ported by 9 -inch heavy beams.

Weight and Height of Americans

According to a recent work of Mr. B. A. Gould, Actuary to the United States Sanitary Commission, in which some very interesting figures relative to soldiers in the last war are given, it appears that the American nation, instead of being degenerate and inferior to the European race in point of physical perfection, is far the reverse. The figures adduced show that " the tallest men were from Michigan, Illinois, and Wisconsin; the next tallest, New England, New York, New Jersey ; and the shortest from Scotland, England, Germany." In weight, the men of Kentucky and Tennessee were the heaviest, averaging 150 pounds; England, Scotland, France, Belgium, all between 138 and 139 pounds. The ratio of

Dalton. Now hydrogen, in
the higher chemistry, is not only classed among the metals, but Faraday and others have shown that in its relation to magnetism it is nearly allied to iron, so that a stratum of hydrogen above the air would seem to exactly answer Dr Dalton's postulate. If it should exist, the earth would re semble the sun in one remarkable feature, for we now know that the sun is girdled with an immense layer of hydrogen Lastly, he would add that the heterogeneous texture of the gaseous nebula, like the great nebula in Orion, seems to ar gue that the law of the equal diffusion of gases does not ,revail there."

Singular Mathematical Fact.

Any number of figures you may wish to multiply by 5 will give the same result if divided by 2-a much quicke operation; but you must remember to annex a cipher to the answer, whenever there is no remainder, and when there is a remainder, whatever it may be, annex a 5 to the answer Multiply 464 by 5 and the answer will be 2,320 ; dividing the same number by 2 and you have 232, and, as there is no re mainder, you add a cipher. Now take 357 , and multiply by 5 ; there is 1,785 . Divide the same number by 2 , and you have 178 and a remainder; you therefore place a 5 at the end of the line, and the result is again 1,785 .

Wicks of Kerosenc Lamps.

The unsatisfactory light frequently given by kerosene amps is often due to the wick. The filtering of severa quarts of oil through a wick, which stops every particle of dust in it, must necessarily gradually obstruct the pores of the wick. Consequently although a wick may be long nough to last some time, its conducting power may be so impaired that a good light cannot be obtained.

Fig. 23.-THE UNDERGROUND RAII. TAY NEW YORK CITY.-THE 86th STREET PASSENGER STATION.

BAKER'S IMPROVED BOOTJACK.

The simple and powerful bootjack, represented in the annexed engraving, will doubtless find a ready welcome from all who expect to experience countless struggles with well soaked boots during the wet weather of the next few months, It will be noted that the device takes a firm grasp, not merely of the heel, which is liable suddenly to come off, causing the operator to sit down with more celerity than grace, but of the entire counter, tightly holding the same until the foot is extricated.
The rear portion, Fig. 1, consists of a casting, A, which is

hinged to the bedplate, and its forward portion is inclined back, and curved, to receive the boot. Pivoted to the front end is a catch plate, which is secured to the bed by a bolt, B, passing through a slot, so that the plate may slide freely in a longitudinal direction. In pulling off the boot, the lat ter is inserted, as shown in Fig. 2, between the catch plate and the curved part of the rear casting. The other foot is then placed upon the part last mentioned, pressing it down, thereby causing the catch plate to slide outward, so that the boot is clamped tightly between the two portions of the device. While the boot is held, the foot is withdrawn.
Patented through the Scientific American Patent Agency, December 8, 1874, to Mr. Peter H. Baker, of Virginia City, Nevada, who may be addressed for further information.

Private Pisciculture

Mr. Seth Green, the well known pisciculturist, states that he has invented a new method for transporting and hatching nearly all kinds of fish eggs, by which spawn can be carried for one hundred and thirty days journey, and can be hatched in any room in the house. One million eggs, it is also said, can be hatched by using a pail of water daily.
We believe that fish culture by private parties can be rendered a lucrative source of income, provided it is followed with the same care as is exercised in the raising of poultry or any other live stock. Hundreds of farmers have streams and ponds on their lands now of no value save perhaps as watering places for cattle in pasture, and yielding a few watering places for cattle in pasture, and yielding a few
worthless perch and catfish, perhaps an occasional trout or worthless perch and catish, perhaps an occasional trout or
pickerel. If Mr. Green has solved the most difficult part of the problem, namely, the successful transportation of the eggs, the mode of stocking of waters and the rearing of the fish are not difficult subjects of which to acquire an adequate knowledge. One species of fish in particular, which is little known, will, we think, prove especially remunerative, and for this reason we commend it to notice. We mean the land-locked salmon, which is a distinct species of the fish, though so closely resembling the ocean salmon as to suggest the idea that, at some remote period, a quantity of the latter fish, being by a convulsion of Nature barred from returning to the sea, had propagated in their land-locked quarters and eventually developed into a separate variety. The habits of the land-locked and ocean salmon are closely similar. The young fry of the former seem to remain in the fast water before going down to their ocean, the deep still water of the pond or lake, about the same time as those of the salmo salar. The average size of the fish is about one and a half pounds, though it has been captured weighing as high as eight pnunds. It requires running aerated water with access to still pools. As a table fish, the land-locked salmon is said to be superior to its ocean relative; and as game it is said to be superior to its ocean relative; and as game it
is reported to be unequaled, rising to the fly from running water even in the thottest summer days.

Steam and Water Power.

According to Mr. Batchelder's book, in 1863, where he quotes Montgomery on cotton, at Lowell or Lawrence, the interest, at six per cent, on the purchase of a mill power, and of land for the mill, will average about $\$ 15$ per horse power per annum. The rent for water power, also, in cases where the mills are not owners of the water power, would appear to be from $\$ 300$ to $\$ 500$ per annum, per mill power of $62 \frac{1}{2}$ horses net, showing a rate, per horse power, of $\$ 5$ to $\$ 8.33 \frac{1}{8}$ only. In Holyoke, the price is about the same. At Manayunk, Phil.
adelphia, the rent of water power and land used to be (1863 about $\$ 60$ per horse power per annum. I am not aware that the price has been diminished. To these rents should be added a comparatively small expense for labor, oiling, etc., and for repairs. It is obvious that Lowell and Lawrence, and a few places equally well situated, have, after deducting the value of land for the mill, advantages in water power which do not form, however, an average for the United States. I understand that no water companies, with such profitable terms for mills as that of Lowell, are now formed, although, in 1863, it was considered that, such is the superabundance of water power in New England and other parts of the country, it could be obtained in situations favorable for manufacturing for half the cost at Lowell. The reason, or at least one reason, is that the labor required in preparing the water power has increased, as the cost of using steam power has diminished. Another, probably, is that the cost of freight is so much higher, that this and other considerations of a like nature are of more moment, in selecting the site for a mill, than the advantage of water.-H. Gastrell.
THE BELGIAN MODE OF LOWERING MINERS IN SHAFTS. Mr. J. W. Cole, of the Tanite Company, of Stroudsburg, Pa., sends us, from Brussels, Belgium, the following interesting account of his recent visit to the collieries of the Sociétés des Charbonnages de Mariemont et Bascoup. These large corporations- own an area of some 500 square miles of coal fields, and employ 9,000 men, producing, from fourteen coal fields, and employ 9,000 men, producing, from fourteen
mines, 7,000 tuns per day. The apparatus for lowering and elevating the miners to and from their work is very ingenious, and of especial advantage where a large number of men are to be transported. Its operation will be understood from the annexed engraving, in which A and B are two steam cylinders, connected by the pipe, C , and containing water in the spaces below the pistons. The latter are attached to
platforms, D and E. The parts being as shown by the full lines in the engraving, a miner steps upon platform, D. Steam is now admitted above the piston in cylinder, B, forcing said piston down, and hence driving the water into the other cypiston down, and hence driving the water into the other cy-
linder. This of course raises platform, E, and, as is evident, linder. This of course raises platform, E, and, as is evident,
brings the two platforms on a level, when the piston in A is brings the two platforms on a level, when the piston in A is
at its highest, and that in B at its lowest point. The miner now steps from platform, D, to platform, E. Steam is again

admitted, this time above the piston in A; platform, E, sinks, and eventually comes on a level with a third platform, D^{\prime}, secured below platform, D. This operation is continued, the workmen entering at the top and stepping from one platform to another until the bottom is reached.
The societies own 14 locomotives and 123 stationary engines; the boilers for the latter are so arranged that no fire door can be opened without closing the flue, thus avoiding the evil effects of a cold air draft.

COMBINED WRENCH AND BOLT CUTTER
The expensive and cumbersome bolt cuttersheretofore pro vided for blacksmiths and carriagetrimmers led Mr. P. Broad books, of Batavia, N. Y., to invent a simpler and more effective tool for his own shop; for this he obtained letters pa tent, dated March 18, 1873. Recent improvements have add ed to the value of the invention, the moderate cost of which makes it a feature of interest to every mechanic having occasion for its use.
The engraving represents a side view, and shows the manner in which the tool is applied. A and B represent lever handles, pivoted at C. On the lever, B, is found a cam-shaped head, beveled so as to form a cutting edge on the inner side, which operates (with the head, D, of the opposite lever) like a pair of shears. The head, D, is formed with a deep notch or recess, so that it will fit on a nut, and may be used for turning the same like an ordinary wrench. This recess has an offset, E , for turning smaller nuts, and supporting them while the bolt is being cut off by the cam head. The wrench

head is also provided with a half round notch, F, for sup porting wires and small rods while being cut off.
The nuts may be turned up and the bolt ends cut off with one operation of the tool. The cut is smoothly made, and an excellent finish is left. The bolt is riveted on top of the nut, as a slight flange is formed, extending a little over the edge of the nut, sufficient to hold the latter from working off. Specimens cut by this tool (one of them a seven sixteenths inch bolt), forwarded to us, fully corroborate the above.
The great power in this bolt cutter is secured by applying, close to its fulcrum, a cam-shaped cutter to a rod or bolt to be cut. The simplicity of the tool (composed of only two pieces, fastened with a rivet or bolt) insures its durability. By screwing the cam lever into a vise, or fastening it into the bench, the other lever can be operated so as to cut bolts, rods, or wires with great ease and rapidity. By removing the handles, as shown in the engraving, the shanks, A and B, form a serviceable pair of large compasses.
This wrench and bolt cutter, and one of the bolt cutters in the Broadbook system of compound tools (already illustrated in the Scientific American), will enable a person to reach, and cut easily, anybolt in any part of a vehicle, and the two tools together cost less than one of the bolt cutters now in cominon use.
Arrangements will be made with manufacturers to make this combined wrench and bolt cutter on royalty. For full particulars address Broadbooks \& Co., Batavia, N. Y.

The Anthracite Coal Harvest of 1874.—The total quantity of anthracite coal mined in Pennsylvania, in 1874, was twenty-one millions six hundred thousand tuns, or over five hundred and sixty millions of cubic feet. Placed in one mass, this would form a solid wall one hundred feet high, one hundred feet wide, and nearly eleven miles in length.

If a shaft springs in running, the trouble lies probably in either a too small diameter of the shaft for its weight and velocity, a set of unbalanced pulleys, or an unequal strain on either side by the belts.

Correspumdente.

Animal Suicides.
 Animal Suicides. To the Editor of the Scientific American:

A few weeks ago I saw in your paper an account of a scorpion stinging himself to death while being burnt with a sun glass. He did not intend to commit suicide; it was a mere accident on his part. I lived in Brazil for several months,and I have seen more than a dozen sting themselves to death. I used to take a straw or small stick, and lay it across their used to take a straw and hold them down with considerable force; and they
 would turn their tails ower and feel very carefully for the
straw,and then draw back and strike at it; and often the sting straw, and then draw back and strike at it; and often the sting
would strike the straw and split it, and so enter the body. I have taken an iron ring, about 4 or 5 inches across, and heated it black hot and put it over them; and when they began to feel uncomfortable, they would strike all around with their tails. But I never knew one to sting himself. At one time I enclosed two of them within a hot ring; and when hey began to feel the heat, they went at each other with their stings, and in a short time they were both dead.
Hynn, Mass.
S. A.T:

A New Form of Flying Machine.

To the Editor of the Scientific American:

Screw propulsion is the principle upon which will, probably, be accomplished the great problem of aerial navigation. The plan here proposed is a modification of the device presented by W.D. G., in a recent issue of the Scientific American. The horizontal driving shaft is attached below the spar, above which the wing propellers revolve in opposite directions. This shaft is rotated by means of cranks actuated by the machinery below, and is connected with the wings by means of bevel gearing. The wing spar is arranged to rotate partially around its own axis, the driving shaft moving with it. The wing propeller shafts may thus shaft moving with it. The wing propeller shafts may thus
be worked vertically, or inclined forward at any angle debe worked vertically, or inclined forward at any angle de-
sired. To rise vertically in the air, the wing propeller shafts are set in a perpendicular position; when a forward motion is required, they are inclined forward. At right angles to the wing spar is a fore and aft spar, and a sail is attached to these after the manner of a kite. Below, about where the string would be attached in the ordinary kite, is suspended a bag of ballast whose position can be shifted at pleasure by means of the lines passing upwards through the bottom of the car. By slackening the forward line and hauling taut the aft line, the inclination of the kite may be increased
as circumstances may require. This ballast as circumstances may require. This ballast
may be a part of the cargo or the baggage of may be a part of the cargo or the baggage of
passengers. When the wings get out of order or need oiling, they may be stopped, and the stern propeller on the car below put in motion. The air ship then sails like a kite when the boy runs with it on a still day.
If great speed is required, all three propellers may be run at the same time, the shafts of the wings . being placed horizontally : the of the wings . being placed horizontaly or rise
ship will then fly onward at a level, ship will then fly onward at a level, or rescend, according to the slope given to
or der the kite by means of the ballast lines. Working in a socket joint at the end of, the stern propeller shaft is a rudder, the other end of which swings by a cord from the spar above. The steering is effected by ropes, not shown in the illustration, attached to the rudder and passed to the deck of the car through pulleys on the wing spar. On approaching the earth, the bag of ballast touches first; and at this elevation, by keeping its wingsin gentle motion, our ship may remain suspended until transfers of passengers and mails are effected, or preparations are made for landing. If an accident should happen to the machinery, the ballast may be instantly adjusted so as to bring the kite to float level, in which position the contrivance becomes a capital parachute. The passengers may then repair to the upper deck and calmly await the result.
Increased power and greater security may be obtained by having two propellers on each side of the car, arranged along the wing spar, and so connected that either or both sets may be run. A greater number of fore and aft spars may also be introduced, crossing at the center of the car, like the three sticks of a kite. The rudder might be attached to the rear extremity of the fore and aft spar, in which position it would exercise greater power and render the flight of the ship more steady ; it might have a horizontal as well as a vertical wing, and be capable of a vertical as well as a horizontal movement, performing in this way precisely the functions of the tail of a bird.
The great and only obstacle to the successful accomplishThe great and only obstacle to the successful accomplish-
ment of the problem of aerial navigation is the weight atment of the problem of aerial navigation is the weight at-
tendant upon motive powers now in use. But even with steam machinery, by using concentrated fuels, the above device would seem practicable. The inclined plane or kite principle is that applied by birds after acquiring momentum by flapping their wings. In this case, the propelling power is continuous, and great velocities might be attained, amply sufficient, no doubt, to dispense entirely with all downward action of the propellers after once starting.

The day cannot be far distant when the inventive genius of the nineteenth century will accomplish a mode of locomotion practised with so much ease by such vast numbers of the animal kingdom. The time may yet come when the present ways of travel will be regarded as we now do the old fashioned 'pike and stage coach; and nations will be brought into such easy, rapid, frequent, and intimate commercial and social connection as to result in a grand unity in language, law, and government on earth.

Wm. W. Blackford. New Orleans, La.

The Universal Jointed Propeller.
To the Editor of the Scientific American:
In your issue of November 28, I notice a communication from Lieut. F. M. Barber, U. S. Navy, together with an engraving representing a universal joint in the shaft of a propeller, which he claims as his invention, but states that he has no patent, and perhaps some one may get an idea by seeing it.
Mr. Barber, in his praise of the boat to which he has applied it, is correct, as, from my experience and knowledge of its operation on several vessels, I find it absolutely essential in many respects for the security of sea-going and other vessels, apart from its intrinsic value as a means of rapid manœuvering.

I have taken out patents in the United States, Great Britain, France, Belgium, and Canada.

Washington, D. C
James L. Catheart.
Remarks by the Editor.-Several patents have been
granted for different means of making the connection between the driving shaft and the propeller, so that the latter could be used for steering purposes. The idea of connecting the propeller with the driving shaft by means of a Hooke or universal joint is quite old, and was shown in an old English patent, the date of which we have forgotten, but it can be found in Bourne's "'Treatise on Propellers."

Burning Chimneys. Scientific American:

To the Editor of the Scientific American:

Probably the most prolific cause of fires in houses, especially in the country, is the burning of chimneys. Of the dozen or so of fires I have witnessed, at least one third are known to have been caused by sparks from burning chimneys falling upon the roof. To prevent the burning of chimneys is an easy matter. The soot in the chimney cannot burn, except as the fire of the stove is communicated to it through the pipe. If the pipe, therefore, be kept clean and free from soot, and the damper in the stove always closed, the chimney will never burn out. To free the pipe of soot, take the stove handle or any convenient implement, and rap
pressure of 100 lbs ., and connect it by a steam pipe with another boiler, and force dry steam into it until an explosion occurs. In my opinion he will find as many fragments and as much destruction as if the boiler contained the nsua amount of water.
I am glad to see the cause of boiler explosions discussed in the columns of the Scientific American, and are convinced that the interchange of thought on the subject will eventuproblem.
Washington, D. C.
Brass vs. Phosphor Bronze for Rolling Mill Uses. To the Editor of the Scientific American:
I have read in your issue of January 16 an article on phosphor bronze, by a correspondent in this place. Previous to reading it, I was laboring under the impression that it was a superior composition for journal boxes and rolling mill brasses; but on comparing the results,of the trials given by your correspondent, with similar work done on bras bearings, my former opinion of phosphor bronze has been changed considerably. The trials made with the bronze brasses were made in a single turn mill,located on the bank of the Monongahela river, a few hundred yards above the mill where some trials were made of which I give you the results.
The water supply of both mills is taken from the same source; and as a matter of course, when the bronze bearings were getting gritty, muddy water, the brass ones were getting the same. The following is the actual work done in the regular way, not by trial bearings. We have no ten inch mill, so I will give you the particulars of a sixteen inch bar mill,for merchant iron. A set of brasses usually run a year in the roughing and finishing, and it is customary to put in new ones every time the mill is stopped to line up and repair, which is done generally in July or August of each year, though the brasses may be but partly worn. This train runs double turns, making over twenty-two millions of revolu tions per annum, and turning out in that time about sixty thousand tuns of finished iron. An eight inch train, the driving shaft of which carries two large speed pulleys and a nine foot fly wheel, has journals six inches in diameter and twelve long; it has

BLACKFORD'S FLYING MACHINE.

will fall into the stove and be harmlessly consumed, or it can be removed in the usual way.
If there be a horizontal pipe, this should be taken down twice a year and thoroughly cleaned. Or if the pipe be only a few feet in length, and the arrangements will admit of it provide the horizontal pipe with a permanent scraper, as follows: To the end of a stout wire, a few inches longer than the pipe, attach a small segment of a disk of sheet iron, at right angles to the wire. Remove the elbow, and thrust the scraper into the pipe. Pass the other end of the wire through a hole punched in the elbow, loop the end of the wire for a handle, and replace the elbow. After first rapping the pipe, the soot can all be drawn out and let fall into the stove. This arrangement I adopted six years ago, and my chimney has not burned out during that time. I clean my pipe thus, as often as once a fortnight during cold weather.
Franklin, N. Y.
J. H. P.

Steam Boller Explosions.

To the Editor of the Scientific American:
In your issue of January $16, \mathrm{Mr}$. R. D. Williams attempts to account for the destruction resulting from steam boiler explosions ; and although he brings an array of figures to support his theory, I think he is wrong when he assumes that (because a boiler is not torn to pieces when it gives way under a which produces the fragments, but that, at the inder steam, which produces the fragments, but that, at the instant of the
explosion, a large amount of water heated to a temperature above the natural boiling point is converted into steam, and that alone tears the boiler and causes the destruction which follows. He seems to forget that there is very little elasticity in cold water and a great deal in steam; the former, at the enormous pressure of 15,000 lbs. to the square inch, is only compressed $\frac{1}{20}$ of its volume, while a very large volume of steam can be confined in a very small space.
The opening of a seam or lreaking of a rivet relieve water pressure, because, there being so little elasticity, it soon finds its volume; but it is not so with steam. The
same rupture would relieve but a comparatively small fracsame rupture would relieve but a comparatively small frac-
tion of the pressure exerted in producing it,and the pressure continues exerting its force upon the broken or fractional part until the whole pressure is relieved and the steam has acquired its full volume. A wooden wedge driven into a
cast iron pipe would produce a slight fracture; but a steel cast iron pipe would produce a slight fracture; but a steel
spring of the same strength would not only cause a fracture spring of the same strength would not
but would also break it into fragments.
I do not deny, positively, that the conversion of water into steam at the instant of explosion does not lend force, for such a thing is perhaps possible, but I think hardly probable. I do contend, however, that steam of sufficient pres-
sure to rupture a boiler is also sufficient to cause the de sure to rupture a boiler is also sufficient to cause the de struction of life and property which follows explosions.
If Mr . Williams wishes to test the correctness of his
theory, let him take an empty boiler that will burst at a
brass boxes in pillow blocks, the first set
put in when the mill was built, and they of which was put in when the mill was built, and they ran for six years, double turns, equivalent to twelve years of single turns. The second set have now been in some two years or more, and are in good condition. Roughing roll brasses usually run one year as bottom roll brasses, and are then changed to top roll brasses, where they do duty for one year longer. In the finishing rolls (same train) the roller has only had three sets of brasses since the mill has been built (over eight years). These brasses have carried the journals, which revolve over fifty million times in a working year, and turn out about five thousand tuns of finished iron in that time. We also run a thirty-five tun rotary squeezer, cast from the same patterns and fitted by the same parties as the one mentioned by your correspondent. The one under which this most "severe test of all" on a bronze plate was made turns about eleven revolutions per minute, and squeezes puddle balls for nineteen furnaces,single turns. Our squeezer runssixteen revolutions and does the work for twenty-eight puddling furnaces, double turns, or nearly three times the work, turning out sixty-five tuns of blooms per day of two turns; and under the upright shaft of this squeezer, the builders put a chilled plate of cast iron: and after fifteen months of steady running, as above mentioned, it shows no perceptible wear. I am therefore unable to sec where this severe test comes in. The brasses we use are made from ingot copper and pure block tin, in proportion of seven oi copper to one of tin. I cannot give its tensile strength, ductility, etc., data which may be very desirable to wire drawers, brass rollers, rivet makers, etc., but which are of no value in determining the value of a composition for journal brasses; but I will guarantee that, if honestly made as above, they will give satisfaction as to durability, and will run smooth and cool, and cost some eight or nine cents per lib. less than bronze. The senior proprietor of this mill, an excellent mechanic, live, progressive, and full of ideas, brought up in a mill, knows the requirements of rolling mil) brasses probably as well as any man in this country; and iv order to have the best of the kind that could be produced, hi has all his brasses made on the premises, for his own use only has all his brasses made on the premises, for his own use only. ordinary duty performed by the brasses in his mill. He also adopted a plan of preventing the cinder which gets in between the neck of the rolls; and as it is proved to be a good plan for muck mill brasses, I give it for the benefit of your readers: Bore grooyes out of the bearings, $1 \frac{1}{2}$ inches wide and $\frac{1}{2}$ inch deep and $1 \frac{1}{2}$ inches apart, put them at an angle of 45° with the face of the brass, and fill up said grooves with soft Babbitt metal. Then when cinder or iron gets in, it will travel but a short distance before it reaches the soft metal, and the motion of the roll will imbed it therein so hat it cannot protrude and score the neck, as it would were it to stick in the brass.
Another useful plan, adopted by him and now coming ints general use, is a mode of preventing screws from get ting tight in their nuts. The plan is to plane a key wa
or groove in the screw, $\frac{1}{2}$ inch wide, the full length of the screw and down to the bottom of the threads; and it will act like a tap and scrape all the hard, gummy grease out of the nut and always keep it clean and working free. It is a very simple matter, but saves a great deal of time and vexation.
Pittsburgh, Pa.
T. J. B.

To the Editor of the Scientific American:
A letter in your paper of January 16 on phosphor bronze bearings for rolling mill journals, giving the results of three trial bearings, is, I think, fatal to the use of that alloy for the above mentioned purpose, as a much cheaper and more durable bearing can be and is obtained by the use of cast iron lined with Babbitt metal. Under the vertical or central shaft of a rotary squeezers a chilled cast iron plate is used, costing a few cents per pound and giving universal satisfaction, as most mill owners can testify. I am of the opinion that if phosphor bronze were put to a fair test, it would be equal to the best alloy of copper and tin, but for good durable bearings, I think nothing can beat the ones I have mentioned.
Pittsburgh, Pa.
How to Learn Color Tests for Temper
Says Mr. J. Richards: "Procure eight piece of cast steel, about 2 inches long by 1 inch wide and $\frac{8}{8}$ of an inch thick; heat them to a high red heat, and drop them into a salt bath. Leave one without tempering, to show the white shade of extreme hardness, and grind off and polish one side of each of the remaining seven pieces. Then give them to an experienced tool maker to be drawn to seven various shades of temper, ranging from the white piece to the dark blue color of soft steel. On the backs of these pieces paste labels, describing the technical name of the shades and the general scribing the technical name of the shades and the general
uses to which ${ }^{*}$ tools of corresponding hardness are adapted. uses to which tools of corresponding hardness are adapted.
'Ihis will form an interesting collection of specimens, and accustom the eye to the various tints, which will,after some experience, be instantly recognized when seen separately."

PRACTICAL MECHANISM.
 Nомber XVII.
 hy joshua rose.

movement of the piston and the crank.
Let us now place upon the valve a maximum of steam lap, and we shall find an entirely new element under consideration. It is that, although steam lap to a certain amount gives us a more free exhaust, beyond that amount it cramps the exhaust by closing the exhaust port of the cylinder. Suppose, for instance, we give the valve, of the engine upon which we have been experimenting, seven eighths of steam lap (instead of three eighths, as formerly). We shall find that, at one part of the stroke, the valve, after having opened the exhaust port full, will commence to close the cylinder exhaust port, so that, while the steam port (being used as an exhaust port) is full open, the exhaust port of the cylinder is as shown in Fig. 54 (the valve seat face at D being left wider

than before, to prevent the steam from blowing through to the exhaust port, as it would do if the face, D, were only as wide as the bridge between the steam and exhaust ports, as in our former experiments), A being the steam port operating as an exhaust port and full open; whereas the exhaust port, B, of the cylinder, is closed to such a degree as to cramp the exhaust to the extent of the difference in width of open ing between the ports, A and B. We have, however, already decided that the exhaust opening should never be less (dudecided that the exhaust opening should never be less (du-
ring any part of the exhaust) than one half the full width of the steam port ; hence it follows that the maximum of steam lap should in all cases be such an amount as will leave an exhaust opening, at all times, at both the ports, A and B, Fig. 54 , equal to one half of the full width of the port, A; and i also follows that the limit to which a valve may be made to work expansively is defined or governed by the width of opening which it will leave at B.
We will now place the engine upon which we have exper mented under conditions to work to a maximum of expan sion, giving to the valve seven eighths inch of steam lap on each side, by increasing the valve travel to three and nine sixteenths inches, and lengthening the eccentric rod one eighth inch (which will be necessary for the increased travel).
Having effected these alterations and moved the engine round a revolution, the first thing to attract our attention is that the front steam port is not left full open by the valve at any part of the stroke, making it appear that the eccentric rod is either too long or that the valve is not properly set that neither of these defects exists is proved by the fact that the valve lead is equal at each end of the stroke while ou valve travel is sufficient to fully open both ports (provided the valve movement were regular); for the width of the steam port, seven eighths, added to the steam lap, seven eighths, amounts to one and three fourths inches, which, multiplied by two, is three and a half ; whereas, our travel is three and nine sixteenths inches, or one sixteenth more than would ap-
pear to be actually necessary. The valve travels over an opening of port the amount of the deficiency of the increase of travel, and this irregularity of movement is ir remediable in all valves having a maximum of steam lap; so that, if the lead be made equal at each end of the stroke, the front port never opens (as a steam port) to its full width The irregularity is not, however, a very serious defect, since it does not affect the port unfavorably as an exhaust port, and since the port is, of itself, wider than it would require to be if used as a steam port only, and is, therefore, open sufficient ly for the admission of the steam. It will naturally occur to themind that this defect could be remedied by increasing the valve travel; but were recourse had to this expedient, it would cause the valve, when in the position shown in Fig. 54, to leave the opening, at B, still less ; and we must, there fore, leave the valve travel as it is, bearing in mind that an increase of valve travel, while advantageous, as we have al ready shown, to a valve having a small amount of steam lap, is inadmissible, except it be to a very small degree, in one having a maximum of such lap.
The causes which effect partial closure of the front port are those set forth in Fig. 53 and its accompanying explanation. We have given the valve three fourths of an inch more travel than it had in our former experiment; and the effects of this increase are experienced more in one part of the valve travel than in another, as already explained. We have also increased the lap of the valre, and have had, as a natural consequence, to increase the lead of the eccentric so as to get the same amount of lead on the valve as we had in our previous experiment(that is, one sixty-fourth of an inch); for an increase in the amount of the steam lap on a valve ne cessitates an increased amount of lead of the eccentric (to get an equal amount of lead on the valve) and therefore a greater irregularity in the movement of the valve. The lead of an eccentric (which gives us the lead of the valve) is the amount to which it is set so that its throw line stands in advance (in the direction in which the engine is to run) of a line at right angles to the center line of the crank, as shown in Fig. 55, A A being the center of the line crank; B a line at right angles to A A; C the throw line of the eccentric; and the distance from C to B, at the periphery of the eccentric, the lead of the eccentric, the arrow denoof the eccentric, the arrow deno-
ting the direction in which the engine is to run.
In a former experiment, we found that increasing the throw of the eccentric, and hence the travel of the valve, rendered it necessary to diminish the lead of the eccentric, and therefore tended to diminish the irregularity of the valve movement. The reason, in that case, was
that no addition had been made
 to the steam lap of the valve; for if such an addition had been made, the eccentric would have required to have been given increased instead of diminished lead, as shown in Fig. 53.
Proceeding with our maximum increase of steam lap, we find the movements to be as follows:

$\begin{gathered} \text { Piston moved } \\ \text { inches } \end{gathered}$	$\begin{aligned} & \text { Port open } \\ & \text { Inch } \end{aligned}$	$\begin{gathered} \text { Piston moved } \\ \text { inches } \end{gathered}$	$\begin{gathered} \text { Port open } \\ \text { inch } \end{gathered}$
1	5-8	7	1-2
2	3-4	8	5-16
3	13-16	9 1-4	closed, and ex-
4	13-16		pansion begins
5	$3-4$ full	$113-8$	closed, but ex-
6	11-16	12	pansion ends exhaust port open full
table no. 12.-back end.			
$\begin{gathered} \text { Piston moved } \\ \text { inches } \end{gathered}$	Port open inch	$\begin{aligned} & \text { Piston moved } \\ & \text { inches } \end{aligned}$	Port open inch
1	13-16	6	5-8
2	7-8	7	7-16
3	7-8	8 5-8	closed, and ex-
4	7-8		pansion begins
5	$3 \cdot 4$		osed, but expansion ends
		12	exhaust port open full

We find here that the steam in the back end commenced to work expansively three quarters of an inch earlier in the stroke than that in the front end of the cylinder, and that it was used expansively during two and five eighths inches of the stroke instead of two and one eighth, as in the front stroke; and furthermore, that the steam in the back end commenced to exhaust when the piston had moved eleven and one eighth inches of its stroke, leaving it to travel the other seven eighths of an inch without any pressure behind it; while the steam in the front end commenced to exhaust when the piston had moved eleven and three eighths inches of the stroke, leaving it to travel the other five eighths without any steam pressure behind it.
Such are the irregularities due to the employment of a maximum of steam lap and its accompanying lead of eccenric, the greatest defect of them all being that the exhaust port opens too early in the stroke, and thus the engine loses a large part of the effectiveness of the steam. It is the variation of the exhaust port opening after the piston has com
menced its return stroke (which does not, therefore, ap pear in the previous tables) that prevents us (as before stated)
from adding any more steam lap to the valve, as is shown in the following tables of the exhaust openings:

We here find that the exhaust opening, during the early part of the stroke, that is, from the first to the fifth inch of piston movement, was less at B than it was at A, in Fig. 54, and was, at one part of each stroke, but little more than one half the full width of A, and therefore as small as is compatible with an exhau it sufficiently free for a fast running engine. We have, in point of fact, by the partial closure of B, filched from the exhaust opening to enable us to use the stean more expansively; and in the case of a very fast running engine, we have rather lost than gained by the operation. In locomotives(the piston travel being very fast) suffi cient steam lap is employed to leave the opening at B equal, at all parts of the stroke, to the full width of the steam ports.
It has been already remarked that lap on the exhaust side of the valve is sometimes employed to prevent the steam from exhausting too early in the stroke; and that, whatever the amount of such lap, it cramps to a like amount the exhaust opening. How then, it will naturally be asked, can exhaust lap be employed at all, since the opening at B is already as small as admissible, and such lap would make it still less? This leads us to the consideration of the width of the exhaust port of the cylinder, that is to say, of the port, E, in Fig. 47. We have in all our previous experiments made this port twice the width of the stean port, which is the proportion generally employed; and which proportion is ample, providing that the amount of steam lap is not more than three quarters that of the width of the steam port ; because, up to that amount, the exhaust opening at B, in Fig. 54, will, at all parts of the stroke, be equal to that at A, in Fig. 54, while beyond that amount it will be, as shown, less than at A.
The width of the cylinder exhaust port may be, if the valve have little or no steam lap, even less than twice the width of the steam port; for instance, the port, E (Fig. 47), has been in all our experiments one and three fourths of an inch wide, the steam ports being seven eighths of an inch wide; but the valve having no steam lap, the port, E , may be made one and one half inches wide only, in which case (the bridges and steam ports remaining unaltered in width) the valve would require to have a narrower exhaust port, the valve would require to have a narrower exhaust port,
and would hence be to that amount narrower in its total width, thus reducing the area of its back face, upon which the steam acts to press it to its seat, and hence reducing the friction upon its face and the power required to move it.

Finishing Microscopic Slides.

The object and a moderate quantity of balsam are covered with thin glass in the usual way, and, if the object is small, held down with a spring elip to prevent displacement. The slide is then boiled either over a spirit lamp or, better still, over an ordinary microscopic lamp. Vapor of turpentine is freely given off, which, as the slide cools, contracts, drawing under the superfluous balsam, which should be kept round the glass cover with a needle. When cool, the balsam may be chipped off with a knife, and the slide finished in the usual way. The cover can never be displaced, as is too often the case where the slide is not boiled. A little practice will tell when the boiling has gone far enough, as, if continued too long, the bubbles formed during the process will not disappear, and the slide will be spoiled.

In the article on balloons, page 64, current volume, in 1st example: For $5,026.5$ pounds, substitute $5,026.5$ feet. Section (e) of the rule: For buoyant effect, substitute square of the buoyant effect. Formula at end of article:
$x=\frac{2 a}{b-}\left[\frac{8 a^{3}}{b^{3}}\right.$, etc., should read $\quad x=\frac{2 a}{b}+\left[\frac{8 a^{3}}{b^{3}}\right.$, etc.

IMPROVED CAMP LOUNGE.

Parties intending to camp out during next summer, hunt. ers, lumbermen, and, in brief, all who, either for pleasure or necessity, sleep in the open air, will find in the device herewith illustrated a light, compact, and comfortable couch. It is composed of but few parts, which may be taken apart and folded into very small space, so as to be carried in a small valise, or in the hand, or even in a deep overcoat pocket. The invention is simply a piece of canvas which, when stretched on a frame, presents the appearance represented in the engraving. There are two side sticks, A, which are jointed in the middle so as to be folded in smaller space, and two girths, B and C which form the transverse portions of the frame. Girth, B, forming the head, is straight, and into its extre mities the shanks of the double fer rules are screwed with right and left hand threads. The inner pair of fer rules receive the ends of the side sticks. The shanks of the ferrules of girth, C, are arched so as to raise the hip of the person reclining a short distance above the ground. Said shanks are also provided with right and left hand screws, so that, by turning both girths, the width of the frame may be expanded at pleasure
In putting the couch together, the side sticks are inserted through the side hems, and the headgirth through an additional head piece. The foo girth rests upon the ground. The girths are then turned to proper width and the canvas stretched tightly. In order to support ${ }^{\text {the }}$ couch at a suitaorder to support the couch ats suita-
bleincline, two sticks are inserted in bleincline, two sticks are inserted in
the outer ferrules of the double ferrules on girth, B, said ferrules being formed at right angles to those in which the side sticks are inserted. The holes shown in the girths are for the insertion of sticks in case levers are needed for turning the girths. A loose piece of canvas is provided, secured to the main portion, and which rests upon the ground beneath the lower portion of the body and feet of the occupant. The small compass and convenient shape into which the device can be folded, is shown on the left of the illustration.It is not absolutely necessary to carry any of the wooden portions of the couch, except the girths, B and C. as the side and supporting sticks may easily be cut from the forest when needed.
The device is a substitute for the india rubber, woolen, and other blankets usually carried to spread upon the ground. It may also be pitched upon uneven ground, securing a comfortable resting place; any desirable elevation of the head may be obtained by driving the sticks more or less into the soil. It, besides, furnishes a softer bed, and raises the body of the occupant above the surface, an advantage of great sanitary importance
Patented through the Scientific American Patent Agency, January 12, 1875. For further particulars address The Camp Lounge Company, Troy, N. Y., who will forward one to any address for $\$ 4$

IMPROVED GRATE BAR.

We illustrate a novel grate bar, by Mr. C. Toope, of this city, and patented to him January 12, 1875. The inventor has had many years' experience as a practical engineer and iron molder. In the present device he has utilized his expe rience to produce a bar which, while having the greatest amount of air surface, will still retain the necessary strength. The inven tion, it is claimed, cannot be injured by contraction or expansion. The lock on the sides, in the center of each bar, holds it securely in its place, and prevents it from falling in case the ends should be burned off. The lugs on its sides are about two inches apart, and intersect each other. These, togethe with the crossbars between the flanges, on the lower side, prevent the bar from warping or twisting, and the flanges from wi dening or contracting. The bar is further claimed to be light, durable, and to give a large area of air surface, and, from its pecu liar construction, to save from 25 to 40 per cent in weight, according to size, as compared with other bars now in use.
The inventor is extensively engaged in the foundery business, with ample facilities for manufacturing, and proposes to furnish these bars either by the pound or square foot, at the ordinary price of castings, and much below the price usually charged by middlemen.
The engravings represent, respectively, the upper side, Fig. 1, and the lower side, Fig. 2. For further particulars address Charles Toope \& ' 'o., Lexington Iron Foundery, 88th street, near Fourth avenue, New York city.

Causes of the Decay of Teeth.

In a paper read before the American Dental Society of Europe, Dr. George W. Field says: "By analysis, healthy blood is found to contain a small percentage of inorganic matter, and we can but infer that it is there for a purpose, and that purpose the building up and supporting a perfect osseous system, and that it is from this source alone that the teeth
can derive the materials essential to the proper development of their different parts. The blood, acting as medium to supply these materials, cannot manufacture them, but must be supplied most generously, and the food taken into the system must be the base for supplies. Then it follows that the food richest in phosphates is what we need. In the preparation of wheat flour the most valuable part is rejected-that which contains the very nutriment for the want of which we are losing our teeth. 'The animals fare better than we. The Scotch oatmeal is still richer in phosphates than wheat, be the latter ever so properly prepared; therefore, to substitute

A NEW CAMP LOUNGE.
this for the fine wheat flour is what is essential if we wish to have such teeth as Nature designed we should. These are my convictions, and they are strengthened daily.
I have had opportunity to examine the mouths of people of almost every nationality, and I have found none that could be compared with those from the north of Ireland and of Scotland. These people make use of oatmeal as a principal article of food. They tell me that it is an almost universal breakfast dish, in the form of porridge, with milk, especially for the young. In many families it is served in cake form for supper. This is a national dish. All partake of it, old and young; and it is with the latter, during the period when all the developmental forces are active, that the system thus nourished is the most benefited. These people not only have a good dental development, but they are strong and healthy possessing a strength and vigor of constitution almost un known elsewhere. Acknowledge that Nature must find in the food the material out of which to build up a strong and vigorous constitution: how can we expect to have teeth other than of the delicate, fragile sort, easily acted upon by the deleterious agents present in the mouth, if we persist in withholding the very elements required for their proper nourishment and development?
We all know that, during the period of growth and development, if there is an unusual deficiency of the bone-produc-
ing elements, if, because of a severe illness, there is a sus-

Fig. 2

TOOPES IMPROVED GRATE BAR.

pension or a weakening of the assimilative power of the system, this temporary arrest of the developing process in growth leaves its ineffaceable mark, and nowhere so conspicuously as upon the teeth. This being the case, is it unreasonable to suppose that, given the ordinarily good health and activity of the developmental forces of children, and a generous supply of the proper bone food, we will have as result a good dental development?"

Finny Musicians.

M. Dufossé has recently published a series of admirable esearches, in which acoustic phenomena and fishes have been fully systematized and classified, certainly with very ing epithalamia.'
curious and striking results. He recognizes the fact that, out of 3,000 species of fishes 52 are capable of producing sounds. Dr. Galton, in commenting upon the subject, adds that "there is every reason to believe that the majority of the sounds produced by fishes are not casual utterances, but are truly voluntary;" and he further states that, among such, there is a most remarkable development of the organs of hearing, in all essential particulars correlative with the degree perfection of the instrument.
M. Dufossé divides the phenomena into two classes nder the first he places certain sounds which fishes emit when taken off the hook and pitched into a receptacle. These are evidently involuntary, and perhaps convulsive; and among them may be mentioned a croaking noise made by the tench, carp, loach, and other thicklipped fish, when compelled suddenly to open the mouth. The sea horse also makes a peculiar, sharp sound, by means of a little bone loosely articulated to the gill covering.

The second class includes expressive noises; and it is in this category that the novel and interesting portions of the discoveries are met. Subdividing his subject, M. Dufossé first refers to expressive sounds of a stridulous or harsh nature. These are caused by friction of the pharyngeal bones in a species of mackerel. The noise is rough, short, and piercing; and both males and females are equally sonorous, especially in the hottest part of summer. A somewhat similar sound, though more resembling a grinding of the teeth, is made by the sun fish, and is due to friction of hard prominences in the jaws, playing the part of intermaxillary teeth.
Blowing sounds are included in the second subdivision, and are peculiar to the carp tribe. It appears that the fish has an air bladder, provided with a duct communicating with the gullet. Little valves in this duct can be opened or closed by the animal at pleasure, so as to control the escape of gases from the bladder, through which the blowing sound is produced.
The most important portion of the investigation is found in the second division of the second class, namely musical sounds. Their timbre is more or less sweet and soft, and never excites such sensations as are caused by grinding the teeth. They are subject also to an extraordinary degree of change, and their vibrations after being analyzed can be measured by appropriate instruments. They are generated by the air bladder, together with its muscles, the action of the latter being aided and intensified by the rest of the organs. The quality of the sounds is modified by the contraction of other muscles. The maigre, a fish found in shoals off the French coast, is cited as the most striking instance. The sounds emitted are notable principally for their length, having a mean of 24 seconds, and for their monotonous uniformity. The timbre varies very much, the most common being that of an ordinary reed organ or the reed of a clarionnet. Another timbre resembles that of the largest string of a violoncello, sometimes passing to that of a bourdon organ pipe. Some sounds, are, however, less sweet, and may have some likeness to the tone of a hurdygurdy or rattle; while others are clear and pure, resembling in their timbre those produced by a hautboy, harmonica, or accordeon. They have generally, however, a tendency to degenerate into a humming sound, either from an excess or from a want of intensity. M. Dufossé suggests that the song of the fabled sirens had its origin in the utserances of a shoal of maigres.

In his review of these investigations, which we find in the Popular Science Review, Dr. Galton mentions numerous other instances of musical fishes. In the harbor of Bombay there is a fish, resembling the ordinary perch, which makes long drawn musical notes like the dying cadence of an æolian harp; and in Ceylon two mollusks are found, called " creeping shells," which evolve similar sounds. The magoora, a fish found in the lake at Colombo, makes a grunt when disturbed under water, and Darwin mentions a kind of silurus, met with in the Panama river, which also produces a grating noise, distinctly audible when the fish is submerged.
Dr. Galton says, in concluding, that "as the sounds generally excel in frequency and intensity at the breeding season, it will not be unreasonable to regard them-granting, as we do, that the chirp of the cricket and the croak of the frog is each in its way an alluring serenade-as nuptial hymns, or, to use language ascribed to Plutarch, as "deafen-

In plugging screw holes in finished work, giue only the edge of the plug; put no glue in the hole. Pass a sponge of hot water over brad holes, and, when dry, sandpaper and paint The putty in the latter case, after the wood is swelled, will not meet the brad head.

REMARKABLE BIRDS.

Our latest English advices report that many additions of interest and importance have recently been made to the Zöological Society's collection in Regent's Park, London. Among these are some specimens of a bustard, which is common in the Cape settlement, South Africa, and is known scientifically as the eupodotus kori; and we publish herewith an engraving of two of them, selected from the pages of The Field.
Burchell, in his " Travels in the Interior of South Africa," gives an account of this bustard, which he found on the borders of the Orange River. He says it is there known as the woilde paauw, or peacock, and is much esteemed for food, sometimes growing enormously fat, and increasing to a weight which a man can only carry with difficulty. In the Sichuana language, he tells us, the bird is called kori, from which its present scientific appellation has been derived

In the Cape Colony, where it is migratory, arriving from the interior in greater or lesser numbers according to the drought, it is called the gom paaun, and is pretty generally distributed in the open plains dotted with mimosa jungle in the northern and eastern parts of the colony. It is a noble bird, and, when seen stalking about in its proper haunts, says Mr. E. L. Layard, " affords a sight to a hunter's eye never to be forgotten."

Andersson states that the kori bustard is found throughout the year in Damaraland and Great Namaqua Land, and is common as far as Ondonga; but is partially migratory. He never saw one weighing more than thirty pounds; but was assured on good authority that, in some parts of the Free States and the Transvaal districts, individuals are sometimes shot weighing from sixty to seventy pounds. This statement, however, must be accepted with reservation. The spread of wings is 8 feet 4 inches. Its flight is heavy, but nevertheless rapid, and at night, says Anderson, when changing its feeding ground, it may be seen flying at a great hight. It feeds on insects and berries, and is very partial to the sweet gummy exudations of the low mimosa thorn, so abundant in Damaraland. This, no doubt, is the origin of its Cape name, "gom paauw," although Andersson, who refers to this propensity, does not give the local name for the bird; while Mr. Layard, who mentions the name in his " Birds of while Mr. Layard, who mentions the name in his "Birds of
South Africa," says nothing about the bird feeding on gum. South Africa," says nothing about the bird feeding on gum.
He states, hnwever, that it is never found far from the miHe states, however, that it is neve
mosa jungle that skirts the rivers.
In addition to the food above mentioned, the kori will eat reptiles, and can swallow a lizard or snake of considerable size. A female bird of this species, which was shot by Mr. Layard and a friend, disgorged the largest chameleon they
had ever seen, and the crop contained in addition a mass of small snakes and locusts.
The three smaller figures in the background, in the act of "showing off," are Australian bustards, of which remarkable species we published illustrations and descriptions on page 162, volume XXVIII. Mr. Bartlett, the superintendent of the Zöological Gardens, has reason to believe that this curious display, which takes place in the pairing season, is different with each species.

Diphtheria.

Dr. George Johnson, senior physician to King's College Hospital, England, gives an interesting paper in the London Lancet on this subject, from which we derive the following:
"I propose in the present communication to discuss some important practical questions relating to the etiology, the pathology, and the treatment of diphtheria.
There are practitioners who, believing that diphtheria is a specific contagious disease, maintain that defective drainage and filth have little or no influence in its causation, while others, denying its contagiousness, assert that its ori gin and spread may always be explained by its insanitary conditions. I believe that both classes of negationists are in error. I have nodoubt that the disease, though not highly contagious, is communicable from the sick to the healthy, and. I have as little doubt that it is often caused by filthy emanations from sewers and cesspools, and this, too, when it is in the highest degree improbable that any specific poison can have been introduced from without into the decomposing stuff that has excited the disease. In proof of the contagiousness of diphtheria, the following, amongst a multitude of similar cases, may be set forth :
M. Valleix, a colleague of Trousseau, while examining the throat of a patient, received into his mouth a small quantity of saliva spurted out by the patient in coughing. Next day, on one of his tonsils there was a pellicular deposit, and some hours later both tonsils of the uvula were covered by false membrane; the disease made rapid progress, and in fortyeight hours he died. Another of Trousseau's provincial colleagues was performing tracheotomy in a case of diphtheritic croup, when he applied his mouth to the wound to suck blood from the trachea. He thus inoculated himself, and died in forty-eight hours. [Several other similar examples are then cited, also cases where the disease was apparently communicated to persons visiting or living in the apartments of the diphtheria patient.]
I believe that all the cases which I have cited are examples of the diphtheritic infection being conveyed either through the air or more directly by the actual contact of the morbid
secretions with the tissues of the recipient. To oppose to positive evidence of this kind such negative statements as that, in numberless instances, medical attendants and nurses have come into close contact with diphtheritic patients, without taking the disease, appears to me a vain and frivolous objection. Diphtheria is not a highly contagious disease. In the scale of infectiousness it stands far below scarlet fever, for instance, and there is reason to believe that the susceptibility to disease differs almost infinitely in different persons; but a medical attendant who entirely ignores the contagiousness of the malady is likely to neglect reasonable and necessary precautions to protect himself and others from the risk of infection.
When a case of diphtheria occurs in a house without evidence of importation from without, still more when several cases occur together or in quick succession, there will be good reason to suspect that sewers, cesspools, or contaminated water may be the source of the disease. My belief is that, in a very large proportion of cases, there is as close a relation between diphtheria and insanitary conditions as exists between typhoid fever and similar insanitary conditions; and I scarcely need say that, if this be so, the general recognition of the fact is of the greatest importance with reference to the adoption of preventive measures. There is reason to believe that much more harm would result from ignorance of the filth origin of diphtheria than from practically ignoring its infectiousness.
Many instances have come to my knowledge in which fetid fæcal emanations have appeared to be the direct cause of diphtheria.
One case was of a family consisting of a lady, her husband, four children, and three servants. The house is drained into a cesspool about twenty yards distant. The accumulation of many months was emptied one day while the wind was blowing towards the house from the cesspool, and a very offensive smell reached the house. Three days afterwards all the four children became feverish and complained of sore throat; the tonsils were seen to be inflamed and covered with yellowish white patches. In a few days two of the servants were attacked, one rather severely, and, lastly, the lady. Her tonsils were inflamed and covered by false membrane. The only member of the family who escaped was the husband, who was away from home all day, and one servant.'
In another case the family consisted of the father and mother, seven children, and three servants. 'On going up the garden to the house, my nose was assailed by a horrible stink, and, seeing some men at work close to the house, I stopped to see what they were doing. I found that they had ripped open a drain running in front of the house within ten

-
Again, the specific heat of water is greater than that of any other substance we know; that is to say, a certain weight of water contains more heat than an equal weight of any other substance; and this greatly influences the climate of islands and countries lying near the sea. Thus, in the hot summer months, when the land gets strongly heated, the water absorbs the rays of the sun, but its temperature rises much more slowly, and thus it moderates the heat of the land; whereas in winter the reverse takes place: the land parts with its heat readily and becomes cold, while the water gives out a much greater quantity of heat in falling through a similar number of degrees. For this reason the climates of islands are more uniform, and subject to less extremes than those of inland countries. The heat given out by 1 lb . of water in cooling 1° would raise 1 lb . of air 4°; or 1 cubic inch of water in losing 1° of heat warms 3,076 cubic inches of air 4°. On this account, too, our east winds, blowing over large surfaces of land which has but low specific heat, are so much colder than our west winds which come to us over water. Water, too, has a high latent heat, and this, too, has an important bearing in the condition of water as it exists in Nature. Thus, 3 cubic feet of water at the temperature of 32° Fah. gives out, when it becomes converted
into ice, a quantity of heat equal to that given out by the into ice, a quantity of heat equal to that given out by the burning of a bushel of coal.
Further, water expands on freezing, and the coating of ice thus formed on the surface has a tendency to prevent large masses of water from being entirely frozen. Sometimes we hear of ground ice, or ice formed on the beds of rivers; and the lecturer, who was in Switzerland last winter, noticed that in all the rivers there this ground ice was formed. It admitted of a very simple explanation. Owing to the curious property of this maximum density of water, in still water the ice will be formed on the surface, as before explained; but in these Alpine streams the whole mass of water is kept agitated and mixed up, and consequently keeps throughout of a uniform temperature. Thus we may have the whole body of water uniformly cooled down to 32° Fah., and ice will then form as readily at the bottom as at the top; in fact, more readily, for it is easily proved that ice forms (and the same is the case with other liquids as well as water, in crystalizing) most readily in contact with rough surfaces, and therefore forms first in contact with the stones on the bed of the river; and when once formed there it goes on increasing. If water be perfectly still, it may be cooled down several degrees below 32° Fah. without freezing; and people have sometimes been surprised to find the water in the jugs in their rooms in a morning, which was quite liquid when they took up the jug, freeze as they attempted to pour it out. Being perfectly quiescent, it had cooled below 32° without freezing, but froze as soon as it was moved
One of the properties of water most useful to chemists is the power it has of dissolving a great many substances; and this is of great commercial value, since such gases as hydrochloric acid gas and ammonia gas can be dissolved, and the solution become marketable articles. At 59° Fah., and under 29.921 inches pressure, 1 volume of water will dissolve 780 volumes of ammonia gas, or 450 volumes of hydrochloric acid gas. With regard to solids, it is found that, as a rule, they are more soluble in hot than in cold water (common salt is equally soluble at all temperatures). Hence, if water at a high temperature be saturated with them, as it cools they will be deposited, and it is found that they assume in deposition definite geometrical forms; these are called crystals. (Beautiful crystalization effects were then shown on the screen by means of the electric lamp and solar microscope, the crystalization of red prussiate of potash being exceedingly beautiful and interesting.)

London water.

The above remarks apply to pure water, but we never meet with pure water in Nature: all natural waters contain more or less dissolved matter; the difference is only one of degree. We may divide the water we meet with around us
into (1) drinkable or potable water; (2) mineral water; (3) polinto (1) drinkable or potable water; (2) mineral water ; (3) pol-
luted water, so fouled, by the drainage of towns or the refuse of manufactories, that it is no longer fit for domestic use. As the result of researches and observations carried on during the last fifteen or twenty years, it has been asserted that water is one of the most ready means of transmission of germs of epidemic diseases, for example, water contaminated with the excrementitious matter of persons infected with those diseases. Many people will not believe the thing to be true, because the idea is so horrible; but it is nevertheless the case. People in large towns are constantly in the habit of drinking water which is contaminated with their own excrementitious matters, and in this way such diseases as typhoid fever and cholera are spread. I could give instance after instance of this. The presence of these matters in water is not so easy to detect as you might think; and unfortunately, the waters so contaminated taste somewhat better than the pure waters, and people often prefer them, being unaware of the cause or
their preference There are means for testing the purity or impurity of your water I will mention one or two simple ones: Get a solution of nitrate of silver or lunar caustic (buy the crystals at the chemist's, and dissolve them in distilled or rain water). Here are three specimens of water, to each of which I will add a ew drops of this solution of nitrate of silver The first is distilled water, and you see it remains
perfectly clear. The second is the ordinary Thames water, perfectly clear. The second is the ordinary Thames water, supplied by the Grand Junction Company to this building here we have a moderately large white precipitate. The
third specimen I have obtained from a notorious pump in Bloomsbury square, and you see what a copious precipitate we get from that; it becomes as white as milk. If, then, the nitrate of silver gives a very copious precipitate (it will usu-
ally give some precipitate; but say if it is more than that

Thames water gave) beware of drinking the water. It may be fit to drink, but the probability is that it is contaminated with those noxious matters. There is no wonder that our third specimen gave such a precipitate (and all the shallow wells of London are as bad), for the water in them is nothing more than the soakage from the cesspools and similar places in the neighborhood. And yet people in the neighborhood constantly drink it, and often prefer it to that supplied by the companies, especially in summer, when it is cooler than the vapid warm water from the taps. Some parts of London are supplied with water from deep wells sunk into the chalk. Now, if you subject that water to the next test I will mention, you will see its superiority. Take a tumblerful of water, let a beam of sunlight from a slit in a shutter pass through it, and observe the path of the light in the water. Here we have two specimens of water; the first from the pipes of this building, that is, Thames water, the other the deep well water. On sending a beam from the electric lamp through both of them, we see at once that the path of the beam in the first revealsitself as a broad and very marked band of light, while in the second the path of the beam is almost invisible. That is to say, there is nothing like so much suspended matter in the latter specimen as in the former, although the Thames water is as clear as sand filters can filter it; but there is no filter so efficient as the soaking through several hundred feet of chalk.

Henry Highton.

Rev. Henry Highton, a gentleman long and well known in scientific, telegraphic, and scholastic circles, died recently in England. As a scientific man he is associated with vari ous discoveries in connection with electrical telegraphy, for which he more than once received a medal from the Society of Arts. He took out his first patent as early as July, 1844, for a telegraph worked by static electricity and a chemical recorder. In 1846 he invented his well known gold leaf tele graph, which, however, was never practically used. A small strip of gold leaf inserted in a glass tube was made to form part of the line circuit, and it was placed between the poles of a large permanent magnet. Whenever the line currents passed through the gold leaf, it was instantly moved to the right or left, according to the direction of the current. Its delicacy is so great that efforts have been recently made to introduce it upon our long cable circuits. In 1848 he took out a patent, with his brother Edward, for a new form of needle telegraph, and various other modifications; and in 1850 the British Electric Telegraph Company was formed for the express purpose of working and bringing into more general use the inventions of Messrs. H. and E. Highton. He recently (1872-3) introduced a new form of battery, and has been engaged in perfecting a mode of working long subma rine cables by means of his gold leaf receiver, and a new electromagnetic induction apparatus, by which the sensitive ness of telegraph instruments is considerably increased. Hə also, some years ago, invented and perfected a new kind of artificial stone, now largely used for paving and building purposes.
stoppage or Carriers in Pneumatic Tubes.
Although this accident is exceedingly rare, yet the possi inty of its happening at all necessitates the discovery of a ready means for localizing the position of the arrested carrier The method hitherto employed has not given good results. It is to apply to the mouth of the pneumatic tube a recepta cle full of compressed air of a known pressure, which is al lowed to enter the tube. The resultant pressure in the receptacle and the tube,as far as the arrested carrier, furnishes datum to estimate the carrier's distance. The distances so measured have not been approximately correct. M. Ch Bontempsadopts another method, based on the law of the propagation of sound waves in pipes. He fits to the mouth of the pneumatic tube a kind of drum, an instrument fur nished with an elastic membrane whose inflations or depressions are automatically registered upon a revolving cylinder A diapason likewise traces, upon the same cylinder, seconds and fractions of a second. The under part of the membran is set in motion by an explosion, say that of a pistol. The blow raises the membrane, and its upward motion is at once registered. The wave speeds onwards along the tube with a speed of 363 yards a second, and strikes against the ob stacle; thence it is reflected back to the membrane, and a second motion is registered. It now only remains to calculate the exact time between the two registers, representing twice the time the wave takes to traverse the distance from the tube's mouth to the obstacle. This arrangement is said o be so exact that the possible error does not exceed 2 meers, or $6 \frac{1}{2}$ feet.

Cheap Telegraphy.

Competition is the life of business; and where that business conducted by people of experience and ability, the public are the gainers.
The Atlantic and PacificTelegraph Company now loom up s competitors with the Western Union Telegraph Company. General Eckert, an experienced telegrapher and manager, long connected with the Western Union, has taken the
presidency of the Atlantic and Pacific. A lively competition is expected, and telegraphing, in some directions at least, is likely to be done at reduced prices.

Dr. Demarquay, of the Hospice Dubois, recently removed a lipoma weighing 3,200 grammes, about 7 lbs., from the shoulder of a woman aged seventy-three. The tumor had been twenty years in existence, and the old woman used to wear it in a bag, and carry it on her shoulders as a soldier his knapsack. The operation was perfectly successful, and the patient is doing well.

DECISIONS OF THE COURTS.

michigan.

zecent Smericam and forcign ezatents.

Improved Violin.

Josiah H. Payne, Garner, Miss.-This is a violin provided with string-fastening devices at the base of the neck and openings cor responding therewith through the top and bottom of the rim, for the passage of the strings. By this arrangement, the tail piece tached, is dispensed with, and the tone of the instrument is greatly improved.
Improved Device for Protecting Horses, Talls.
Frankin E. Howard, Geneseo, N. Y.-This invention consists in a bag formed of leather, cloth, or other material impervious to mud, readily applied or removed from the tail, a useful device at this season of the year. It
the hair of the tail.

Improved Boller Tube Expander.

William S. Sharpneck, Onawa City, Iowa.-This invention consist In an expander adapted to all sized tubes made in longitudinal sec tinct from each other, each gradation being provided with a collar for forming the bead inside the head of the boiler.

Improved Stove Pipe Elbow.
Samuel Smith, Brooklyn, E. D., N. Y.-This invention consists in forming a part of and extending from one and riveted to the other Improved Plow.
Thomas Canty, Kaufman, Tex.-Several deep notches are cut in parallel and flat of rips are attached. Thus said plates form continu ations of the share, over which the soil glides with a minimum amount of friction. The means of supporting the rear ends of the
strips is a brace having arms. Thus all the mold board strips are strips is a brace having arms. Thus all the mold board strips are
supported and held rigidly in position, so as to resist lateral and supported and held rigidly in position, so as to re
downward pressure.

Improved Rallway Switch.
John D. Murchison and William T. Haney, Taylorsville, Ga.-This invention consists of pivoted switch rails, which are set by a longi-
tudinal crank rod connected therewith, and by pivoted lever rods and elbow levers, operated by curved upright levers at both sides and at suitable distances from each end of the switch rails, to be struck by a laterally adjustable bar at the head block of the loco-

Henry Hanproved Locomotives and Cars.

Henry Handyside, London, England.-This invention relates to certain peculiar construction and arrangements of locomotive enwagons of a train, whereby the safe and casy ascent of trains up is facilitated. The locomotive engine is coupled to the train or other oad to be hauled up an incline, by a rope or chain, which is wound on a drum mounted in the framing of the engine. The axis or shaf of this works horizontally in bearings in the main framing. and is riven or rotated direct or by gearing, as found most convenient from a separate pair of cylinders, distinct from the usual cylinders Which drive the locomotive in ordinary cases. These separate cylin transmit a rotary motion to the shaft of the hauling drum by con necting rods coupled to crankssecured to the ends of the hauling drum shaft, or coupled to the shaft of separate or intermediate gearing The drum or windlass barrel is loose upon its shaft, and is coupled therewith, when required for hauling purposes, by means of a sliding clutch, provided with projections or teeth, by preference responding holes or recesses in the end of the drum. A clutch lever is provided for throwing the hauling drum into or out of action, as
required. On arriving at the foot of a steep incline, the enginee will release the hauling drum on the engine, and will, without stopping the engine, run it up the grade to any desired distance. O stopping the engine, struts immediately come intoaction and maintain the engine firmly in its place. The hauling drum is now started by throwing the clutch into gear therewith (the rope or chain hav ing been paid out as the engine ascended, and the entire train, or any part of the train, is hauled up by the sole power of the cylinders
which work the winding drum. The strutson the train act to prevent any retrograde motion thereof, when required, or in case of an start again without the train to take another length of the incline and so on until the complete ascent of the incline has been effected the train being hauled up by the engine by the aid of the winding drum. On level sections, or on comparatively light grades, the

Improved Butter Worker

Jonas Lindbeck, Andrew J. Lindbeck, and John E. Lindbeck, Bishop Hill, Ill., assignors to themselves and Andrew Jacobson, teeth which are made teeth, which are made diamond-shaped in their cross section, and
are placed in an inclined position. To a shaft, rotated within the cylinder, are attached teeth, which are also made diamond-shaped in their cross section, but are inclined in the opposite direction, and are arranged spirally upon the shaft. In the top of the cylinde is placed a hopper for the convenient insertion of the butter. A the butter is fed into the hopper, it is thoroughly worked and mixed by the teeth, and at the same time carried forward to the other end of the box, and is forced out through a hole in said end. As the pivoted to a chaber, hole, it projects beneath the end of the box to serve as a channel back, and the brine into a spout.

Improved Clothes Washer.
Ezra Crowell, Belfast, N. Y.-This invention is an improvement in low sheet metal cylinder and a plunger reciprocating therein. The improvement relates to constructing the cylinder with vents on the side near the top, and connecting them, by means of an exterior of the piston

Improved Device for Liting and moving Railroad

Benjamin F. Phelps, Kansas City, Mo.-The object of this invention is to provide means for conveniently lifting and moving railwhich is and other heavy bodes, and a consists of a lever, The push bar is forked to go over the end of the lever, and has an adjustable dog on its end, by means of which it is attached to the angle of a car. By means of a self-adjusting fulcrum pawl, the lever
may be applied by either lifting or bearing down, as may be demay b
sired.

Improved Hanger for Plant Shelves.
William Higgs, Washington Mills, N. Y.-This invention consists a shelf hanger, made of a single piece of wire, bent into the general form of a right-angled triangle, with a prong formed of its end
or ends at the lower end of its perpendicular, and a loop formed at e upper end of its perpendicular
mproved Scissors for Use with Sewing Machines. Sarah L. Fawcett, New York city.-This invention comprises a
pair of scissors with a sharp cutting hook to free the cotton from pair of scissors with a sharp cutting hook to free the cotton from
the rotating hook of a sewing machine, and a pulling hook for dre rotating hook of a sewing machine, and a puling hook par
drawing the cotton from under the needle. The contrivance is par ticularly adapted for the Willcox \& Gibbs sewing machine, and
ines which use the rotating hook.

Improved Combined Cultivator and Seeder

 Matthew Green, Walker Station, Mo.-The pinion of the seed applied to a shaft which passes into the seed receptacle along th bottom thereof, and is provided with a screw thread inside of the box or receptacle. A slide has a perforation with a flexible spring surrounding the same, being of a diameter corresponding tothat of the screw end of the shaft, so that the latter feeds, by the hat of the screw end of the shaft, so that the latter feeds, by the ral tlange of the screw to the seed-conveying tube.

Improved Steam Rock Drill.
Joseph C. Githens, New York city.-The essential features of this nvention consist in mechanism which causes the piston to turn as it
moves upward, and allow it to move downward without turning Other devices force said piston and disk together and apart by team, for holding and releasing the guide rod as the piston move up and down.

Improved Fruit Dryer

William S. Plummer, San Francisco, Cal.-This invention relates plates are made to revolve and carry the fruit around a horizonta course through a heated chamber and back to the place of starting, When the dried fruit is replaced by green, making a continuous pro ess. The invention consists of a pecular construction of the circu ar chamber, partly of stationary walls and partly of revolving
walls, also of contrivances for heating the chamber economically walls, also of contriv.

Improved Horse Power Well Boring Machine, Matthew Steward, Napoleon, Ohio.-This is a horizontal master drives the horizontal windlass to hoist the auger. The shaft als ears with a hollow horizontal wheel for turning the auger, and is connected with it by two friction rollers on the wall of the eye of he wheel, against which vertical bars parallel to the shaft and attached to it by arms bear, so as to allow the auger to descend
freely, and with but little friction, at the same time that it is reely, and with but little friction, at the same time that it is revolving. The platform for the attendant of the auger is built overthe

Improved Machine for Barking Wood.
Orson W. Clark, Appleton, Wis.-The cutter has a roller guide on ach side of it, one being to gage the wood for the depth it is acting on the dressed portion of the wood after it passes from the former, and to hold it altogether after the end escapes. These gage rollers are each mounted in the end of a rocking support, and can be shifted toward and from the axis of the cutter. The nut for feeding the frame along is made in two parts, which are pivoted togethe and connected by a rocking link, so that when one of the parts of the no is pressed on the screw, the other part will also be closed on ing screw by the same means, through the medium of the said rock jaws and disconnects the frame from the screw, so that it can be in stantly shoved back to the place of beginning, after each piece is barked.

Improved Soda Water Cock.

Henry Fraser, Pictou, Canada.-Upon the top of the cock is a dee ring flange, having a screw thread cut in its inner surface to receive frew formed upon the upper part of the cock. In the lower ent handle of which passes out through the flange. By this construc ion, the upper part will always be held squarely in place, and thu will not be exposed to any unequal pressure.

Improved Biscuit Board.
Aaron P. Forman, Canton, Miss., assignor to William B. Stinson ame place.-In using the machine, the dough is placed in the cenby their revolution. The dough falls from the rollers. It falls upon bottom board, from which it is removed and again placed in th hopper, and the operation is continued until the dough has been sufficiently worked.

Improved Folding Table.
Nicholas S. Tiemann, New York city, assignor to John A. Tiemann, of same place.-The invention consists of a combination of op, in such a manner that the legs are caused to fold and unfold and assume their proper poris
Improved Machine for Making Fence Pickets.
Isaac Levy, Ellaville, Fla.-The invention is an improvement in the class of machines wherein revolving and vertically adjustable The improvement relates particularly to the construction of the sliding or reciprocating table and an attachment thereof, for sup porting and clamping pickets of different lengths. A bar is adjusta be up and down the carriage, toward and from the cutters, by slot ted side pieces and clamping bolts.

Improved Weather strip

William O. Chamberlain, Battle Ground, Ind.-The invention con sists in a weather strip for doors, formed of two zinc strips, having their adjacent edges rolled to interlock with and turn upon each other. The free edge of the zinc is secured to a strip of wood. piral spring ts athehe a stationary wooden strip, and its othe end is secured to the wooden strip above mentioned. The elasticit o that it will pass over the threshold without touching, when the door is swinging open and shut. A small wheel is pivoted to the side post in such a position that, when the door is swinging shut, the face of the said wheel will strike the wooden strip and force its fre edge downward, so as, when the door is closed, to be in close contact with the sill.

Improved Lubricator.
Morris Evans, Erie, Pa.-The lubricator is connected by a separate pipe with the steam space of boiler, and is so arranged that the lu-
bricator therein is thereby thrown in a continuous stream into the steam chest and cylinder, and the quantity of the stream easily con rolled by the regulating steam cock.

Improved Plow.

Hugh D. Smith, Richmond, Va.-By suitable construction, the beam may be moved up or down upon its standard, a cleat keeping

gusimess and ervional.

 The Chargefor Ineerion under thie headi is 81 L Line.

"Rook-Keeping Simplifed.", The whole system

 and Penasy vanala A enene, Priladelpha,
Corundum for Sale Corundum for Sale in the Stone. Address John
Ralston, Sllppery Rock, Butler Countr, Pa. Engines, 2 to 8 H.P. N. Twiss, New Haven, Ct. Baltimore Steel Hoe Works, Manufacturers of
he "Lockwood Hoe." Send for Sample and Price List. The science of advertising is one which can be
learned by experience only, and, like everything else reuiring study and skill, is best understood by those houses whose sole businessit is; hence, we regard that advertiser
as pecullarly fortunate who is enabled to secure the ser-
vices of a rellable agent, conversant with the whole subject, and able, by his experience, knowledge, and general
reputation with both ihe pubilic and the publishers, to offer all the advantages and emoluments that can only be pos-
sessed by a frst-class house. Among those houses of
known solidity and promptness, whose mertis are univernown solidity and promptness, whose merits are univer
sally recognized, and whose rellabillty and skill remain unquestioned, perhaps that of Geo. P. Rowell \& Co., 41
Park Row, New York, is most deserving of mentlon and oner the best interests of thetr customers, and a prompt-
ness in the execution of all orders intrusted to thetr care as been the characteristie of the firm at the outset, and has done much to ingratlate them in public favor. They
have always possessed the best facilties for doing work both cheap and well, and by promptness and fair dealing succeed in procuring from publishers, in all cases, the
lowest cash rates; and, by so dolng, distance their com-
petitors in a majortty petitors in a majority of cases when figu
estimates. - [Frank Leslie's Illustrated.]
estimates.-[Frank Lesile's Mustrated.]
Peck's Patent Drop Press. Still
Address Milo Peck, New Haven, Conn.
Governors- $9 / 8 \& 1 / 2$ inch for $1 / 2$ to 3 H. P. Engines.
Brass; perfect working. Finished and ornamental. Price 20. Samuel Harris \& Co. 45 Desplaines St., Chicago. To Inventors-A responsible firm wishes the right hinery, as a specialty. "Machintst," Station B, Philadelphia, Pa. Our Taper-Sleeve Belt Pulleys fasten securely
using no Keys, Set-Screws or Bolts. Our Dead-Pulleys stop all loose-pulleys and belts, attached to machinery
not in actual use. Cold-Rolled Shafting, Colifs' Coup-
ings, best Hangers A. B. Cook \& Co, ings, best Hangers A. B. Cook \& Co., Erie, Pa.
Wanted-To buy a Portable Saw Mill, second
hand or new. L. W. Bryan, Moosic, Pa. Grindstones- 4,000 tuns. Berea Stone Co.,Berea, $\mathbf{0}$.
Babbitt Metal-Made from the same receipt, for over 30 years-the celebrated J. B. brand-never known
to fall. J. W. Baker, 821 North 2nd St., Philadelpnia, Pa Wanted-To Sell Canadian Patent for Cole's Aucomatic Boller Feed Regulator and Low Water Alarm
Combined. Address H. S. Cole \& Co., Milwaukee, Wis. For Sale Cheap-1 Second hand 40 lb. Hotchkss
Ar Spring Hammer. D. Frisble \& Co., New Haven, Ct. Planing Mill Machinery Wanted-Address, price
and terms, Hunter \& Tilley, Berkley, Norfolk, Va. For small size Screw Cutting Engine Lathes and Inventors of Electrical and Telegraphic arrange-
ments are invited to communicate with the Electro-MagGenuine Concord Axles-Brown,Fisherville,N.H. Wanted, by Manufactory of Steam Engines and
Standard Articles, $\$ 20,000$. Address John, 1802 Olive St., Standard Artic
St. Louis, Mo.
Dickinson's Patent Shaped Diamond Carbon
Points and adjustable holder for working Stone, dressing Emery Wheels, Grindstones, \&c., 64 Nassau st., N. Y.
Spinning Rings of a Superior Qualty-Whitins-
ville Spinning Ring Co ville Spinning Ring Co., Whitinsvile, Mass. Send for
sample and price list. Mining, Wrecking, Pumping. Drainage, or Irriga-
ing Machinery, for sale or rent. See advertisement. Anrews' Patent, inside page.
Faught's Patent Round Braided Belting-The
Best thing out-Manufactured only by C. W. Arny, 301 \& For Sale-One "Cottrell \& Babcock" Water
Wheel Regulator, in good order-by D.Arthur Brown \& Co., Fisherville, N. H.
Co.,
Price only \$3.50.-The Tom Thumb Electric
Telegraph. A compact working Telegraph Apparatus, or sending messages, making magnets, the electric light, giving alarms, and various other purposes. Can be put in
operation by, any lad. Includes battery, key, and wires.
Neatly packed and sent to all parts of the world on recelpt Neatly pacced and sent to all partso of the world on recelpt
of price. F. C. Beach \& Co., 263 Broadway, New York. For Solid Wrought-iron Beams, etc., see adver-
tisement. Address Union Iron Mills, Pittsburgh, Pa., for ithograph, \&c.
Fairy
plete, $86 ;$ wlthout battery, $\$ 1$. Electro-Magnetic ManuCast IIron Sinks, Wash Stands, Drain Pipe, and
Sewer traps. Send for Price List. Balley, Farrell \& Co., Pittsburgh. Pa.
For Solid Emery Wheels and Machinery, send to
the Union Stone Co., Boston, Mass., for circular. Mechanical Expert in Patent Cases. T.D. Stetson,
23 Murray St., New York. All Fruit-can Tools, Ferracute, Bridgeton, N. J. Hydraulic Presses and Jacks, new and second
hand. Lathes and Machinery for Polishing and Buffing Brown's Coalyard Quarry and Cuntractor's Appa-
ratus for hoisting and conveying materlals by fron cable.
w. D. Andrews \& W. D. Andrews \& Bro., 414 Water St., New York.
For Surface Planers, small size, and for Box
Corner Grooving Machines, send to A. Davis, Lowell, Corne
Mass.

Temples and Oilcans. Draper, Hopedale, Mass.

The "Scientiffc American" OOficee, New York, is
fited with the Minature Electric Telegrapb. By touching Ited with the Miniature Electric Teleegrapb. By touching to persons in the various departments of the establush-
ment. Cheap and effective. Splendid for shops, oflces, dwellings. Works for any dstance. Price 86, with good
Batiery. F. C. Beach \& Co., 263 Broad way, New York,
Mes. Makers. Send for free illustrated Catalogue.
For best Preses, Dies, and Fruit Can Tools, Bliss Ensines and Boilers a Specialty- list class; new
patterns; Iate patents; reduced prices. Plain and Cut-oft Hor'l and Vert' Entines; Holsting Engines; the celebra Turbine; and the best Saw Mill in the market. Large

Buy Boult's Paneling, Moulding, and Dove-tailing
Machine. Send for circular and sample of work. B. C. Creek, Mlch, Box 227.
Smail Tools and Gear Wheels for Models. List
ree. Goodnow W Wightman, 23 Cornhll, Boston, Mass. Hotchliss Air Spring Forge Hammer, best in the
market. Prices low. D. Frisbe \& Co.. New Haven, Ct.

\%hinglesvalinurie

W. F. M. will find directions for making cement for mending rubber garments on p . 203 ,
vol. $30 .-$ L. F. P. will find a recipe for lard oil on pol. 30.-L. F. P. will find a recipe for lard oil on
p. 283 . Furniture polish is described on p. 315, vol. 30 . Cutting glass is detailed on p. 331, vo
30.-C. W. will find a recipe for wood filling on p 347, vol. 31.-J. W. will find recipes for black and
red ink on pp. 203, vol. 20, and 200, vol. 30.-S. S.can make a polishing starch by the recipe given on p. 203, vol. 31.-T. H. D. S. can make a T square by
following the directions on p. 165 , vol. 30 .
(1) J. A. McI. asks: How can I make Britannią metal? A.Melt together 8 ozs. shruff or dr.
brass, 2 lbs regulus of antimony, and 10 lbs tin.
(2) C. A. D. asks: What is wire-drawn
steam? A. Steam which has its pressure reduced by the resistance of passages.
(3) D. W. G. asks: What can I use to coat fectually resist the action of vinegar and spirit uous liquors? A. We have seen it recommended in similar cases to use tannate of gelatin.
(4) N. H. V. asks: Does the volatile fluid sulphide of carbon contain carbon in solution? sulphie of oz. bisulphide of carbon, $404 \cdot 21$ grains
sulphur and 75.79 grains carbon may be obtained; sulphur and 7579 grains carbon may be obtained,
yet the carbon cannot be said to be in solution, but in chemical combination with the sulphur. So also won, in its free state, is insoluble in carbon. Car lies.
(5) S. E. A. asks: 1. At what temperature Deville give the fusing point of platinum to be be tween 2660° Fah. and 2696° Fah. 2. At what temperature will a compound of silver with one third
platinum fuse? A. Direct experiment is your onl resource to find the melting point of your alloy.
(6) J. H. A. asks: 1 . Will oil in which steel It must be kept up by a supply of melted resi stirred into the oil when warm. 2. Which is the best oil for steel? A. Pure Straits whale or sperm
oil. Be sure that it is free from any mixture of oil. Be sure that it is free f
mineral oils.-J. E. E., of Pa.
(7) W. W. says: I separated some fine powder from hard ooal ashes which are wasted. Is
it useful for anything? A. Such ashes have been used for cleaning tin ware for a long time with be used in this way at present with pecuniary pro fit as a commercial undertaking.
(8) C. E. P. asks: What process does car bon undergo in order to form it into crucibles? A
Black lead crucibles are made of two parts of Black lead crucibles are made of two parts of
graphite and one of fire clay, mixed with water into a paste, pressed in molds, and well dried. Graphite or plumbago is an allotropic form of carbon.
is also used in the manufacture of lead pencils.
(9) A. E. S. asks: 1. How can I fix lard so that it will remain in a soft or liquid state in cold weather? A. Try mixing the lard with a small
quantity of kerosene oil, which may be deodor quantity of kerosene oil, which may be deodor-
ized by digesting for a short time on chloride of ized by digesting for a short time on chloride of
lime. 2. Would it be safe to mix it with alcohol for burning in a lainp? A. We would
mend alcohol as a solvent in this case.
(10) F. F. V. says: On p. 304, vol. 31, is paragraph on the crystallization of tin. Could this capsule? A. Any metallic vessel not attacked by capsule? A. Any metallic vessel not attacked by
the solution, or one made of carbon, will answerthe purpose as well.
What impurities does sheet zinc commonly contain, and how may they be removed, so as to leave
it comparatively pure? A. Commercial zinc contains a small quantity of lead, iron, and of a pecu liar carbonaceous matter, besides (occasionally traces of arsenic and of copper. The best method
of obtaining the metal in a state of purity con through a slightly acidulated solution of sulphate of zinc, filtering from any precipitate that may be found, (and after boiling the solution, in order to expel the sulphuretted hydrogen) precipitating the zinc in the form of carbonate by the addition of
carbonate of soda. The carbonate when ignited is carbonate of soda. The carbonate when ignited is
converted into the oxide of zinc, which must be converted into the oxide of zinc, which must be
distilled in a porcelain retort with charcoal prepared from loaf sugar.
What is block tin, and how may it be reduced to al to distinguish it from a name given to the met ficially covered with tin). The tin which is imported from Banca and several other places is al$\left\lvert\, \begin{aligned} & \text { most chemically pure. English tin usually contains } \\ & \text { small quantities of arsenic, iron, copper, and lead, }\end{aligned}\right.$
and often traces of gold. When required in a state of perfect purity, the metal may be obtained by means of voltaic action. For this purpose a con
centrated solution of tin in hydrochloric acid is placed in a beaker, and water is cautiously poured a bar of tin be plunged into the liquid, beautiful prismatic crystals of pure tin are gradually depos-
ted upon the bar, at the point of junction between he meta
(11) H. K. G. asks: I have on hand 15 or 20 arrels cider, which I wish to make vinegar of. It is nearly 3 years old, but will not become sour,
though it is no longer sweet. How can I make this though it is no longer sweet. How can I make this
sour? A. Try the following plan: Put some of the cider in a clean cask and add to it some vinegar ome days, if the place and the souring is going on, add another portion of the cider, and at similar intervals a third
and a fourth. When the whole has become vineand a fourth. When the whole has become vine-
gar, take out as much as is equal to the vinegar gar, take out as much as is equal to the vinegar
first put in, and replace by fresh cider, and so proarst put in, and replace by fresh cider, and so pro-
ceed. The casks should never be but partly full; good exposure to air is necessary, and the temperaure should be kept up to 86° Fah.
(12) B. says: I have made a glass prism, to ment will do for the joints, that will not injure the transparency of the fluid? A. Obtain a quantity of pure white shellac, which dissolve in alcohol
Evaporate until of the consistence of a thick paste Moderately heat the onds of the glass plates to be joined, and immediately apply the shellac paste, and allow to set until perfectly hard. By this the action of the liquid, and, if ordinary care be taken of it, will remain perfectly tight for a very longtime. This recipe is kindly furnished by Wate
\& Co., instrument makers to the Stevens Institute.
(13) A. B. C. asks: 1. There has been a bituminous coal as fuel in dwelling houses is attended with any injurious effects to the interior decorations, gilded work, etc. Is this so? A. When tion of sulphurous gases has a still more injurious effect than the deposit of soot mentioned be-
low. But it must be remembered that these pernicious consequences are dependent upon the escape of the products of combustion; and if bituy guarded against. 2. What relation does English cannel coal bear to the bituminous coals of this
country? A. The striking difference between the country? A. The striking difference between the
cannel and the bituminous coal is that the former contains a very much larger amount of volatile 66 per cent of this. The English cannel coal has ridge from 56 to 72 per cent, the Pittsburgh bituminous has but 33 per cent. In burning there is a corresponding formation of thick sooty flame, and
a likelifiood, in cases where this combustion of the a likelifiood, in cases where this combustion of the
(14) A. J. H. asks: 1. Will cast iron stills do for distilling spirits? A, Such stills have not been used for this purpose. Some more heatwould be required for a cast iron than a copper still, and be safe to try such a still. 2. Will a lead worm do? A. It would be better to use a tin-lined lead pipe for the worm, since liquids running through lead pipes sometimes form lead salts which are poison-
ous. In fact worms of block tin are used in chemous. In fact worms of block tin are used in chem-
ical laboratories, where it is desired to distil with ical laboratories, where it is desired to distil with the greatest freedomfrom impurities. There would
be a tendency in the tin-lined lead pipe worm to se a tendency in the tin-lined lead pipe worm to
sag with the heat, on account of the metal not being as stiff as copper; but this can be prevented by worm.
(15) G. McI. asks: How is chlorate of pot micallyobtained by exposing to a current of chlorine gas a mixture,in a slightly damp state,of 69 parts
carbonate of potash, and 168 parts of caustic lime, previously reduced to the state of hydrate; chlorate of potash, carbonate of lime, and chloride of calcium are formed; boiling water dissolves both he chloride of calcium and chlorate of potash as the chlorate requires 16 parts of cold water for
indalitan its solution, and the chloride is soluble to almost tute of experience in such matters, to undertake
its manufacture.

1. In making
2. In making the calcium light, what kind of lime is used? A. The best results may be obtained
with quicklime, freshly burned, free from sand, with quicklime, freshly burned, free from sand, piece of lime be used, the piece being 2 inches by $3 / 4$ of an inch thick? A. It cannot be used for more than a few hours, for the reason that, from the in-
tense heat that it is subjected to, it becomes disinegrated and partially vaporized.
(16) J. S. S. asks: 1. Is there any mode of when the journal or pivot has a travel back and orth of about 90°, the work or pressure being conof machine? A. You can use such a box as you suggest, if you make it with ample bearing surface, and provide it with sufficient means of lubrication, Secure the thimble in position. 2. Are friction and wear greater where the journal makes an entire
turn than where the travel is back and forth? A. The power required to overcome friction is ordinconstant stopping and starting incident to the re ciprocating motion. 3. I want to use a toggle lever attached to the connecting rod of an engine (revolutions 200 per minute). There is a journal or pivot at each end of toggle lever, and brasses will not teel pivot working in a casehardened iron thimble itted in each end of toggle lever? Should the it be shrunk in while the lever is hot?
(17) C. S. M. asks: I want to raise water by
hydraulic ram from the foot of the bill a hydraulic ram from the foot of the hill, on which my house stands, to the cistern in the attic, a ver-
tical distance of 90 feet. I have a steady but small spring with a fall of 20 feet. How many galthe best approved ram to raise one gallon into the cistern? A. See article on hydraulic rams, p. 259, cistern?
vol. 31.
(18) G. W. S. asks: What is the difference . The the Griffiths and the Hirsch propellers? haped, and in the Hirsch propeller the pitch expands from hub to periphery as well as in the diection of the axis.
(19) C. W. S. asks: We have a cross cu
aw hanging up in the shop. On some days the saw hanging up in the shop. On some days the
strokes of the hammer will create a greater effect upon the saw than usual. It sounds as if some person had struck it a light blow with a mallet, the sound being clear and distinct. The quicker the
strokes while driving a nail, the greater the effect Has the purity of the atmosphere anything to do with this? A. We think not.
(20) F. C. S. says: 1. We are somewhat bothered in sawing frozen pine logs with a 56 inch
circular saw. She will run all right in any other circular saw. She will run all right in any other What is known as saplingpine, when frozen, isabout as difficult timber to saw as can be found. The extreme points of the teeth must be wider than the plate of the saw, and very sharp, with the under
side wider than the upper part of the tooth, so as to wider than the upper part of the tooth, so as
to present a very sharp cutting edge to the timber. Does it take a different kind of saw for sawin. frozen pine? A. When timber is frozen, it gener frozen.
(21) T. C. W. says: I melted 1 lb . each while hot, I poured the contents of the vessel into while hot, I poured the contents of the vessel into
a wooden mold in the shape of a brick; but I found, after the mixture got cold and hard, that I could not get it out of the mold; it adhered to the wood. Please to tell me how to construct a mold so that the substance will readily come out when cold.
A. Try covering the surface of the mold with a A. Try covering the surface
thick coating of plumbago.
(22) A. V. P. says: There was in Decem ear, for some days, a very bright star visible in the think, rising a few minutes after six, or about one hour and twenty minutes before the sun, and
visible until a few minutes after the sun rose to the naked eye. This morning it looked four times as large as a star of the first magnitude, owing pos sibly to the fine condition of the air. What star is it? A. Venus. 2. About two weeks ago we were
astonished at the unusual brightness of a star rising in the E ., or a little S . of E , just bef.are $9 \mathrm{P} . \mathrm{M}$. It rivalled Venus at her brightest, and its light flashed in our field giass, fairly lighting it up. After getting up into the heavens, it lost meen half so
brightness, and since then it has not been conspicuous. What is it? A. Sirius.
(23) C. N. G. asks: 1 . What is the size of
he largest telescopic lens nowin use? A. There the largest telescopic lens now in use? A. There are now completed two similar Clark equatorials,
$261 / 2$ inches clear aperture, and 26 feet focus. The crown lens is double convex, of equal cur vature on each side, 13 feet radius. The flint lens is 12 feet 8 inches radius on the concave side, nearly flat on
the other. 2. What is its value? A. $\$ 50,000$. 3. Can lenses be made any size? A. The largest disks now obtainable are 30 inches in diameter, price $\$ 10,000$ glass reflector of 6 feet 6 inches aperture are now being made in Europe. 4.Can large ones be made as rapidly in proportion to their size as small ones? A. No.
(24) J. C. says: 1. We learn that the moon traction is in inverse proportion to distance (less distance, more force). When the tide is $\tau 2$ feet high, moon's attraction is increased and earth's attraction decreased. Why does not the water con-
tinue to rise and go to the moon? A. Because the tinue to rise and go to the moon? A. Because the
earth is nearest. 2. Why does the earth turn on its axis? A. Because the primeval nebula rotated
(25) C. M. asks: 1. In your issue of November 7 , in answer to A. H., who asks how to pre-
pare the glass for a camera, you say that lead-faced chucks are cast of the proper curvature, and the lever is held upon the chuck by a wooden handle attached with pitch, while sand and water are ap-
plied. Would not hard-tempered steel answer the plied. Would not hard-tempered steel answer the
same purpose as lead chucks? A. No; brass or iron grinders follow the roughing out. 2. Are microscopic objectives ground in the same manner,
that is, with lead-faced chucks? A. Microscope lenses are roughed out on a lathe with a steel tool dipped in turpentine, or a diamond pinched into copper rod, then ground in one of a pair of bras chucks alternately with the chuck of opposite curvature.
(26) W. P. \& Co. ask: Is it practicable to discharge water from a centrifugal pump eight
feet below the surface of the water? The dis charge pipe is 22 inches diameter, the pump ma king 220 revolutions per minute. The lift of the
suction pipe is from 4 to 6 feet, and the pipe is 22 suction pipe is from 4 to 6 feet, and the pipe is 22 with a good pump.
(27) J. W. asks: What boiler, engine, and to propel, at $1 s$ miles per hour and sharp bows? She 10 feet beam, 3 feet draft inder $7 x 9$ inches, boiler 4 feet diameter, 6 feet high; propeller from 32 to 36 inches diameter with 4 feet ${ }^{\text {piteh. }}$
(28) G. H. B. asks: What would be the ef(when completed) of a fire under that part of it (when completed) of a fire under that part of it
extending over the tops of buildings? A. It
would depend so much upon the attendant circum-
stances stances that we could not give a general answer,
except to say that if except to say that, if our fire department were to
act as efficiently as it usually does, the cable would probably not be injured.
A curse for a boat race is three miles long, measured on the shore of a river. At slack water
a rower can row the distance in $\geqslant 0$ minutes. How long would it take him to row over the same course with the current of $41 / 2$ miles an hour, and how
long also against the same? A. Seep. 202, vol. 31 .
(29) G. E. M. says: 1. How many hors power would it take to run a dummy on a 20 inc gage rail way, not over 30 feet grade to the mile,
hauling weight 8,000 lbs. at a rate of not over 10 miles per hour 1 would be best? A.A pair of vertical engineswould answer very well.
(30) J. C. W. asks: 1 . What kind of stove same beeconomically used in the place of anthracite coal at about half the price per tun? A. A
stove with open grate would be the best. We stove with open grate would be the best. We
scarcely think there would be any great economy in this arrangement; but if it proved efficient, you would have a very cheerful and healthy fire.
Would it do to mix coke and coal for use in an or that the ection would wood were mixed with the coal. We have never tried the experiment, however, which is the only
(31) O. W. R. says. I have an engine of 1 inch bore $x 3$ inches stroke. It makes 500 revolu
tions per minute, and cuts of at $3 / 4$ stroke. Fly wheel is 1 foot in diameter and 1 inch wide, weigh ing 10 lbs. What power could g get by running it
at a pressure of 50 lbs. per square inch? A. You might of a boiler should I use? A. A cylinder boil er would answer very well.
(32) R. H. S. says: I dissolved a three cent in a solution of soda of commerce, then added spirits of ammonia, and precipitation commenced I washed with pure water, and had a a green mass.
what is it? A. You first formed a solution of niWhat is it? A. You first formed a solution of ni-
trate of nickel and nitrate of copper. On adding trate of nickel and nitrate of copper.' On adding
the esoda, you neutralized the nitric acid in excess of what was needed to convert the metals into ni in proper quantities) you threw down a greenish blue precipitate of a copper salt, together with a
little hydrated oxide of nickel. If you had used potash, you could have effected the precipitation more perfectly. This residue cannot be used for
plating. (33) C. H. asks: What is the cleapest way
of obtaining 1,00 cubic feet of oxygen? Perfect purity is not required. A. Oxyyen may be ob-
tzined on a mall scale very readily by simply heating in a close retort a mixture of 4 parts chlorate of potash and 1 part black oxide of manganesc. If large quantites are desire, the cont. The principle
of T. du Motay may be employed.
of this process resides in the fact that the manganates and permanganatos of potash, soda, and baryta, the ferrates and chromates of the same bases,
and in general all metallic oxides and acids which and in general all metalic oxides and acias
will form, with potassa, soda, or baryta, binary com-
pounds capable of superoxidising possess the prop erty of yielding their oxygen, at a more or less ele vated temperature, when they are submitted to the action of a current of steam. These bodies, thus
deoxidized, also possess the property of reoxidizing deoxidized, also possess the property of reoxidizing
themselves when they are exposed to a temperature more or less great. The atmosphere is therefore the constant source from which the oxygen is
derived. The mode of operation is the following: placed in a distilling vessel, whether at the maximum or minimum state of oxidation. If the commum or minimum state of oxidation. If the com-
pound is in the latter condition, it is oxidized by means of a current of air mechanically drawn over
it; if at the former stage, itis deoxidized by means of a current of steam. The oxygen and steam, on issuing from the mouth of the retort, pass together into a condenser, where the steam is sepaover into ca gas holderat, and isthere oollected. When all the utilizzable oxygen has been disengaged by
the steaming process, the action of superoxidation by means of the air current is recommenceed. By
thisalternate process the oxygen is generated as this alternate process the
(34) J. A. H. . says: We have heard lately
considerable difterence of considerable difference of opinion about the distance boilers should be set from the grates. Some parties claim that 6 feet is better than less; others
say 3 or 4 feet. I am satisfied that there is economy in having plenty of space. Can you tell what
would be the most economical distance to seta 60 inch shell, tubular boiler with 4 inch flues, 16 feet long? A. If by "from" you mean "above,"" we
should say that for burning coal, with natural draft, it would probably be well to set the boiler not more than 30 inches above the grate, which
would malke 5 feet from center of boiler to surface would ma
of grate.
(35) R. K. asks: What is the best mode of is best to have a space of from 3 to 6 feet between the grates and boiler, and the same space for fre class claim that it is not best to have a bridge wall, as they want the above space for the whole length
of the fire bed. Others claim that from 12 to 18 inches space between boiler and grate is enough, with a bridge wallat back of grates. A. We do not
believe that any authoritative rule can be given we should judge that both parties have good reas ons for their opinions, since we have seen boilers
set in both ways that did well. A bridge wall is generally convenient in working the fire. The most
common practice in setting boilers is to place them from $11 / 4$ to $21 / 2$ feet above the grates.
(36) C.H. asks : I have several times noticed he chimneys of my kerosenelamps break without ried, at others they were on the table in a warm oom. Can you tell me the reason for such conences with the unexplanable one of the vase that vent into a thoutand pieces just before the maid or 11 worls was going to dust it.
(37) J. H. S. asks: What advantage is te, when the driven belt only at requires 527 f eet in the same time? What law governsit? A. The
greater the speed of a belt, the less tension it regreater the speed of a belt, the less
quires to transmit the same power.
when
What is the expansion of steam pipe, when heated, per foot? A. Its
212° Fah. than at 32°.
(38) J. \& H. ask: Does the use of coke in ordinarystoves, with cast iron or brick-lined fire
pots, injure the stoves? A. Not unless you allow pots, injure the stoves? A. Not
the iron to become unduly heated.
(39) H. C. W. asks: 1. Is the air in the air chamber of a hydraulic ram or force pump absorbed and carried off by the water? A. It is ab-
sorbed by the water to some extent. 2 . If cast iron is used for such chambers, can it be rendered impervious to air by japanning or glazing, or any ber will answer well enough for most cases.
(40) 1. F. asks: Is there any way by which printerially injuring the same? The paper without ton is heavy writitng paper, and could bear a good
deal of rubbing without tearing. A. We know of deal of rubbing without tearing. A. We know of
no better method than that of acting upon it with no better method than that of acting upon it
some solvent, such as turpentine orbenzine.
(41) D. J. asks: What colors can I mix to make pearl gray paint? A. Any white pigment with a little blue black.
How can I sepale
How can I separate gold from silver? A. The silver and gold may be parted by treating the alloy
with very pure aquafortis. In order that this prowith very pure aquafortis. In order that this process should succeed, it is necessary that the silver
should be as two or three to one of gold ; also that the acid should be pure.
Is there any work on mixing of pig iron to produce the different grades of bar iron? A. Read Baermann's "Treatise on the Metallurgy of Iron,
(42) J. J. T. asks: Does a revolving body such as the fly wheel of an engine or two weights evolving on arms, weigh as much when at rest as when in motion? A. Yes.
(43) J. W. asks: Can you tell me anything bout the Keely motor of Philadelphia? I have rated and run off, who say it is a fact and can be utilized. Have you seen it? Do you believe in it? Do you know anybody connected with it? Tell me
all you know or think of it. A. The Keely humbug was shown up in our paper last year.
(44) W. P. asks: What is the best means of polishing leather? A. Atter the usual process of anrying, the hide or skin, being rendered fexibe
and uniform, is conveyed to the shed or drying house, where the greasy substances are applied, Which is called dubbing (daubing) or stuffing. The oil used for this purpose is prepared by boiling
deep or doe skins in cod oil sheep or doe skins in cod oil. Before waxing, the leather is commonly colored by rubbing it with a
brush dipped into a composition of oil and lamplack on the flesh side, till it is thoroughly black it then black sized with a brush or sponge, dried the flesh side with a broad, smooth lump of glass, sized again with a sponge, and dried.
(45) P. R. S. asks: 1 . What is the correct nd ammonia? A. $\left.\left(\mathrm{NH}^{4}\right)^{2} \mathrm{SO}^{4}\right)^{2}$ (H^{20} nick new system, or $\mathrm{NiO}_{3} \mathrm{SO}_{3}+\mathrm{NH}^{40} \mathrm{SO}_{3}+6 \mathrm{HO}$ in the old system. 2. Can I use cast zinc cylinders for Bunsen batteries, and how should I prepare them?
A. Yes. First dip them in dilute sulphuric acid A. Yes. First dip them in dilute sulphuric acia, and then rub them with mercury by means of a
piece of flannel. You should experienee no other iece of flannel. You should experience no othe
trouble, if your connections are properly made 3. Which are the right proportions of water and cid to ten of a Bunsen battery? A. One of nickel in a metallic state out of a mixture of it with nitric and sulphuric acids, most of it being sul-
phuric acid? A. On a small scale, the method of phuric acid? A. On a small seale, the method of
electrolysis will probably answer your purpose
(46) B. C. asks: How is cider made to effer-
vesce? A. By bottling while the fermentation is vesce? A. By bottling while the fermentation is
still going on. In this case the carbonic acid gas enerated in the process of fermentation is imrisoned in the liquid in the bottle, and escapes olently when, on drawing the cork, the pressure is
removed. 2. What gives it the biting taste? A. It is due to the
acetic acids.
(47) P. I. says: I want a cheap vessel of 100 tallons capacity to boil a mixture, in containing 4
per cent of sulphuric acid, over an open fire. Iis here anything cheaper than a copper tank? Will
lead or nickel-plated iron do? A. For this purpose lead is out of the question, as it is a poor conductor of hat, and would speedily be burnt through. As to nickel, we have tried the experiment in the folFirst, a suitable vessel was coated on the interior ith an even coating of nickel by galvanic action, hed with a solution containing 4 per cent of sul point; in about half an hour (the solution being ept at about the same density by the addition of water from time to time) the nickel was found to be entirely dissolved. For your purpose we can
recommend large porcelain-lined iron pots, which may readily be obtained, and at a much smaller ost than either of the above.
(48) A. F. O. says: 1. Is bichromatized glue Insoluble in water? A. It is insoluble in water of light. 2. Is it also as insoluble, in alcohol, as it What proportions of glue and bichromate are used to produce the best result, and how should they be treated? A. Make a strong solution of isinglass in pure distilled water ; for this purpose the woter
should be hot. Add to this as much bichromate of potash as it will dissolve; allow to stand. When potash as it will dissolve; allow to st
cold, decant from the crystalized salt.
(49) J. McL. asks: How can I make ink for writing on zinc labels? A. Dissolve muriate of gar.
(50) C. A. L. asks: How can I burnish sil
ver plating?
A. Use a tool of hardened cast steel or bloodstone.
A. Use a tool of hardened cast stee
(51) H. W. S. says: To find the radius when the length of chord and hight of arc are given Let x distancefrom center of circle to chord; then, the value of x can be found, and x +hight of arch But I give a simpler rule. To the squar divide the chord, add the square on the higin ath radius, or $\left(\frac{1}{2} \text { chord }\right)^{2}+h^{2}=r$.
(52) R. L. Du
(53) R. L. DuB. says, in answer to several I erected a saw mill in New Jersey. The boiler I erected a saw mill in New Jersey. The boile
was a return tubular, 14 feet 6 inches long and 5 inches in diameter, with 64 three inch tubes, and brick firebox 48x56x27 inches high; bridge wall was 7 inches at center, rounded to the sides of boiler.
I had to use coal for a few weeks and lined the I had to use coal for a few weeks and lined the
firebox down to $\%$ the above size. After making frefox down to $\%$ st the above size. After making and slabs, and I found it hard to keep up steam until I reached the following result: I made the firebox the original size, lowered the bridge wall 13 inches (keeping the same circle as before), lowered the paving in rear of firebox to a level with the grate
bars and obtained a barrel of furnace slag from bars, and obtained a barrel of furnace slag from
3 to 7 or 8 inches in size and 1 or $11 /$ inches thick to 7 or 8 inches in size and 1 or $13 / \mathrm{inches}$ thick, which I placea on the grate bars, about hat cov oot heated, I threw in the sawdust, which burned very well but smoked fearfully (clouds would arise from the smoke stack). I then introduced a 2 inch pipe, with about fifty $1 / 4$ inch holes, directly behind the bridge wall, leaving both ends of pipe open;
after which, I never had a particle of trouble either in keeping up steam or in burning up the smoke Not even in firing up did I ever see any smoke come out of the stack, which was 30 feet high and to 38 inches inside megrent. If argot to state that I covered the top of boiler with sheet iron, then laid brick on it, covering the interstices with sand. The sheet iron was to prevent the sand from vedging off the wall when the boiler expanded.
(53) V. M. J. says, in reply to J. C. W., who From persess in burningslack or fine soft coal nusually strong drafts, nor close bars, are neecessary. We have a boiler 15 feet long by 4 feet 3 inches diameter with 51 four inch flues, connected with in it. Orisinally the woiler had common castiron nit. Originaly the feet, and the grate was 4 feet 8 inches wide. With this arrangement, ordinary lump coal was used but owing to the quality of coal and the amount of fire for 5 hours and keep clinkers off the bars; and at noon and night, it required hard and hot work to get the bars in good order. Three or four years ago, a change was made in the grate bars, substi-
uting those now in, which are the same width formerly, but 8 feet long, being more than half the ength of boiler. The bars are made in short pieces, half the length in width, and supported by cros bars. The openings in bars are about $5 / 8 \times 21 / 2$
nches and the ribs of bars about $9 / 8$ inches wide. Immediately inside of furnace doors, at end of bars, on which the fuel may, be thrown. Also, at
boind and similar and back end of grate The doors are provided with dampers for regulating draft, both for furnace and ash pit. Damper in
breech just at entrance to chimney and boiler breech just at entrance to chimney, and boiler
about 23 inches above the grate, complete the general arrangement. With this arrangement, common slack is used successfully, requiring less in uier to fire, and with the great advantage of having the bars free from clinkers, from the draft not being so intense. Good Judgment and experience in firing with this arrangement will insure the almost complete combustion of the smoke. The same kind of bars were put under a boiler which had a
stack 6 feet high, with satisfactory results. The stack 65 feet high, with satisfactory results. The
bars have been furnished in other cases, and wher bars have been furnished in other cases, and wher-
ever used will soon repay the expense of the change from the old style, on account of better of coal.
Minerals, etc.-Specimens have been reeived from the following correspondents,and examined, with the results stated:
J. E.C.-It consists of silica, which, under the microscope, appears as extremely small transparent grains. It may be used for polishing, or as a detergent (alone or along with rouge or saponacein soluble glass, or in glassware, glazes, etc.-T. S. C.-The specimen sent was found to consist of silica, silicate of alumina, carbonate of lime, carbolime. It is a very poor conductor of heat, and would largely prevent the hear from passing to the water, and thas the iron would be overheated.
G. A. F.-A most careful analysis of this specimen Was made, and revealed not a trace of nickel.
Why did you form the opinion that it was an ore why did you form
of iron and nickel?
(17) D. J. C. asks: Supposing a man is pullng a boat in smooth water in a dead calm, at the
rate of a mile in 10 minutes, and to accomplish this he is compelled to pull thirty strokes per minute with a pulling force of 50 lbs. to each stroke. The
he oars are ten feet in levgth, weigh 10 lbs. each, the
weight of the oar being equally distributed along Weight of the oar being equally distributed along
its full length, so that you can balance it horizonits full length, so that you can balance it horizon-
tally by holding it on your finger in the center of its length. The oars extend outside the rowlocks $71 / 2$ feet: the oarsman has to makse the recover in $1 / 2$ the time it takes to pull the stroke. What percentage of the pulling power is required to make the recover?-J. E. B. asks: How can pearl be
dyed of various colors, using aniline?-H. P. asks: How can I imitate twist on a gun barrel?-E. B. L. asks: How can I make blacking for boot sole
edges?-F.S.V. asks: How can I make soap for lowing bubbles that will last?-D. D. F. asks: Can any one give me some information as to the
raising of hops, the distance apart, manner of culraising of hops, the distance apart,
tivation, when to pick them, etc.?

COMMUNICATIONS RECEIVED.

The Editor of the Scientific Ambrican acnowledges, with much pleasure, the receipt of orubjects
On Rapid Transit in New York City. By G.R.N. w. I. L.

On the Sun's Orbit. By J. H.
On the Epimethean Gods. By G. H.
On Ssciliating Saloons on Steamers. By A. de B.
On Theories of Spiritualism. By S. C. F. On the Highest Lakes. By C. B.
On Small Steam Engines. By G. F. S.
On Hollow Bolts. By J. B.
On Ornamenting Locomotive
On Dinhtheria
On Diphtheria. By S. D. F.
On High Lakes. By H. R.S.
On High Lakes. By H. R.S.
On Weights and Measures. By S. P.L.

HINTS TO CORRESPONDENTS.

Correspondents whose inquries fail to appear
hould repeat them. If not then published, they should repeate them. If not then published, they clines them.
ways be given
Enquiries relating to patents, or to the patentability of inventions asignente, will not be published here. All such questions, when initlals only are given, are thrown into the waste basket, as it would fill half of our paper to print them all; but we generally take pleasure in answer
by mail, if the writer's address is given.
Hundreds of enquiries analogous to the following peat for fuel? Who makes machines for shaping ax and broom handles? Who makes machinery for working flax fiber? Who sells plane guides? Who sells decalcomaine pictures? Who makes
domestic gas machines? Whose is the best coverdomestic gas machines? Whose is the best cover-
ing for steam pipes? What is the best preventive f boiler incrustation\%, All such personal enquiries are printed. as will be observed, in the column of "Business and Personal," which is spe-
cially set apart for that purpose, subject to the charge mentioned at the head of that column.
Almost any desired information can in this way be expeditiously obtained.
[OFFICIAL.]
INDEX OF INVENTIONS
Letters Patent of the United States were

Granted in the week ending

January 12,1875 ,
and each bearing that date.

Car truck, railway, J. Turne
Car wheel, w. . . Cochran.
Carriage seat,
Carriage seat, extension, J. V. Randall.
 Casting Ingots, mold for, Foster \& Lockwood
Chair foot rest, T. Head..
C'himney guard, R. Priseman
Cigars, packing, S. Jacoby..
Cistern top and filter, E. D.
Clock movement holder, W. H. Brickett
Coal, etc., from hopper, feeding, J. B. wilford Coal, etc., loading, C. H. Bass
Conservatory, window, J. T. Crawford..
Cooler and filter, water, A. H. Peterson. Cooler, milk, L. J. Roberts.. Copying press waterproof pad, C. \& J.G.R. Rowland Cuff, J. W. A. Cluett. Culinary vessel, G. R. Moor Cultivator, R. S. Higgins
Cultivator, revolving, N. S. W
Cultivator, wheel, J. Stofford.
Cylinders, lining for, E. Hill, J
Dental handpiece, J. W. Gllbert
Digger, post hole, W. M. Ryan
Dtsh washer, W. N. C.
Ditching machine, H. H. Gray.
Drawing rolls, cleare
Drill, rock, J. Hanrahan.
Drying apparatus, w. J. Johnson
Elevator, L. L. Whitlock...........................
Engine, compound, S. Archbold
Engine, rotary, O. Adams
Engine, rotary, J. S. Fair
Englne, traction, W. C. Luc
Evaporator, centrifugal., Wendel and Florich
Excelsior, machine for making, J. G. Moore
Fabric, compound, G. V. Shepard....
Fare registering devíce, J. A. Brown
Faucet, H. B. Leach..
Fire arm sight, T. Wunstons
Fire arm sight, T. Duns
Forms, turning irregular, B. H. Conno Fruit picker, B. F. Price.
rurnace, ato mizer, hydrocarbon, R.D. Turne
Furnace, boller, E. P. Chancellor
Furnace grate bar, c. Toope.....
Fuse, electric, C. A. and I. S. Brown
Game apparatus, C. B. Wainwright
Gas governor, F. w. Wlesebrock...
Gas regulator, Globe, E. E. Fit
Graine, Eradle, J. W. S
Grain drill, J. King.................................
Grain scourer, D. M. Richardson..................
Grass and bristles, etc., cutting, J. Pickering.
Grate, J. B. Larkin
Grate, J. D. Slichte
Hame fastener, O. M. Coburn.......................
Harvesters, C. W. and W. W. Marsh (r)..... 6,22.
Harvester and Wh, for in. Hinton. 158,63
Heater, fire place, W. L. Phillips (r)....
Heater, radiator, steam
Heaters, boller for water, W. Taylor.
Hinge, D . W. Long.
Hubs to axles, attaching, B. B. Howard
Hydrant, M. Burnett.
Ironing board and step ladder, I. L. Landis.
Jack, lifting, J. Beers
Jar, covered, W. C. King (r)...
Ladder, fire escape, Oberndorf and Frank.
Lamp, traveler's, T. R. Almond
Lantern, J. Kintz (r).................
Leather, manufacture of, C. J. Tinnerholm
Locking device for slide rests, M. J. Shimer
Locomotive variable exhaust, E. A. Hill.
Locomotive variable exhaust, E. A.
Lubricating box, J. Whitake
Metal bending machine, E. A. Peck Mill, shoe and die for stamping, w. Hainsworth.
Musical instrument, brass, H. G. Leliner
Vall driving machine, w. S. Watson
Paper cylinders, drying, J. F. Jones....
Paper pulp, manufacture of, J. F. Jones Photometer balance, electrical, W. W. Good wi
Piles for beams, manufacture of, Z. S. Durfee. Pitman, T. E. Chandler..
Pitman connection, L. H. Davis
Planing machine feed roller, Brown and Meyer
Planter, cotton seed, Miller and Reev
Plow, A. B. Farquhar
Plow, Prawl andWemple
Plow beam, C. Kimple
Plow beam, metal, M. McDowell.............
Plow irons, roll for welding, W. M. Watson
Polishing wheel, elastic clamp
Presser feet to bars, attaching, J. J. Schneide
Printing, letter press map, C.H. Waite
Privy vaults, cleaning, S. R. Schar
Propeller, screw, E. B. Porter.....
Propeller, screw, E. B. Porter.....
Purifier, middlings, J. W. Wilson
Purlting frame, T. N. Wheeler....
Radiator, automatic valve, J. Elde
Rallway rall joint fastening, P. McCarty
Rake, horse hay, P. Mast.
Refrigerator, S. H. Crump.
Resawing machine, J. Gerhardt...........
Roller and seeding machine, J. H. Holland
Rolling metal, L. Thomas (r)
Running gear, J. Becker, Jr
Saw mill, H. D. Hall.
Sa w mill dog, W. M. Ferry.
Sewing machine, J. B. McCune
158,
158,
158,
6,
158,
158,
158,
158,
158,
18,
Sewing machine presser roller, M. M. Barnes....
Sewing machine tuck marker, J. Y. Detwiler Shoe nalling machine, P. H. Ba
Shoe upper, J. L. Perry........
Slate frame, S. B. Bushfield (r) Soap, manufacture of,
Spike, J. J. Adgate.
poke tapering machine, P. Coon
ponge cup, B. Brower......
Sponge holder, Conradson \& Fo
pool machine, G. E. Lyman
Stich imitation and dividing, C. S. Dunbrack
Stone cutting machine, L. Dutertre.
Stone, artificial, J. L. Rowland (r).
Stone, artificlal, J. L. Rowlan
Stove, heating, G. Comstock
Stove, heating, G. Comstock.................
tove polish, etc., mixing, J. C. Wightman....... 158,660
Stove, reservoir cooking, G.G
Straw cutter, J. K. O'Nell (r)
Table ware, covered, H. C.

Thills, coupling and uncoupling, F. P. Stone
Tile machine, Chandler \& Tay
Tobacco, plug, c. Sledler.
Towel rack, J. A. Reynolds....
Toy wind wheel, W. G, Fischer
rap, fy, J. H. Bustis.
Valve, balanced slide, W. Obenc
Valve gear, cut-off, H. Bilgram.
Vehicle
Vhicle wheel hub, A. N. Pric
esssel, center running on shore, $\mathbf{~ \text { peme }}$
Vise, bench, C. Burton.
agon bolster, L. F. Wh
Washing machine, J. s. Shrawder
Washing machine, H. G. W
Water closet, R. C. Clark...
Water pneumatic pressure, R. A. Chesebrough.
Water wheel, S. N. Knight.
Weather strip, W. T. Vale
Windmill, S. D. Hopkins
Windmill, S. D. Hopkin
DESIGNS PATENTED.

,002.-ORRAAN CASES.-J. P. Lomas, New Have
,003.-CARPETs.-T. J. Stearns, Boston, Mass
,004.-Coor SToves.-N. S. Vedder et al., Troy,
,005, 8,006 .-Stoves.-N. S. Vedder et al., Troy,
TRADE MARKS REGISTERED
159.-Cooking Stoves.-Bonnet \& Co., Quincy, Ill.
160.-BAKING Powder.-Hamilton\&Co.,Ft Wayne,I
161.-Cig ARs.-S.Lowenthal \& Co., Cincinnati, Ohio
,162, 2,163.-Pianofortis.-Arion Co., New York city
,164.-NURsing Bottles.-M.S.Burr\&Co.,Boston,Ma
167. -Medicines.-D. Dick \& Co., New York cit
168 .-Cook Stoves.-Fuller \& Co., Troy, N. Y .
169.-Varnishes.-A.E. Hoppock \& Co., Newark,N.
SCHEDULE OF PATENT FEES.
n each Caveat.......
on filing each appication for a Patent (17 years).
On Issuing each original Patent.
On appeal to Examiners-in-Chief
on appeal to Examiners-in-Chief
On appeal to Commissione
on application for Re
On fling a Disclatme
On an application for Design (3 $3 / 2$ years
on application for Design (7 years).

CANADIAN PATENTS

List of Patents Granted in Canada

Jandary 8 to Jandary 18, 1874.
,243.-J. G. Muller and W. Muller, Dayton, Montgomery county, Ohio, U. S. Improvements on apparatus
for manufacturing illuminating gas, called "'Muller's Gas Machine." Jan. 8, 1875 .
,244.-M. Bray, Boston. Sufolk county, Mass., U.
A newrivet, called " Bray's Rivet." Jan. 8, 1875 . A new rivet, called " Bray's Rivet." Jan. 8, 1875 .
$4,245 .-J$. Boyle, Toronto City, Ont. Improvemen on machinery for molding iron, called "Boyle's Iron Molding Machine." Jan. 8, 1875
son, Cambridge, Middlesex county, Mass., U. H. S. Im-
Im provements on lamp, wicks, called
bonized Lamp Wick., Jan. 9,1875 .
aux apparells de securité des navires a vapeur et à volle contre la mauvaise mer,pour les empecher de sombrer. "Cetnture Baute,dite de Sauvetage des Navires." Jan.
9,1875 . Improvements in safety apparatus for ships and salling vessels, to prevent sinking.
county, Wis., U. S. Improvements in the manufac ture of paper barrels, called "Thomson's Paper Bar
rel.,' Jan. 9,1875 . Improvements in base burning stoves, called "Bussey's Base Burning Stove." Jan. 9, 1875.
250.-G. Willams, Toronto City, Ont. in friction pulley blocks for carrying wire rope, etc.,
called "w williams' Improved Semaphore Wire Rope Pulley." Jan. 9, 1875. W. L Scoville, Manlius, Ono daga county, N. Y., U. S. Improvements in do hangers, can,
Jan. 9,1875 . ty, N. . . Jebb Improvements in station ticket called "Harvey's Improved Station Ticket." Jan.
1875. 253.-E. Caswell, L. Whitlock, and S. Scott, Lyons
Wayne county, N. Y., U. S. Improvements on ma chine for boring hubs, called "Caswell's Hub-Boring Machine." Jan. 14, 1875
${ }^{\text {D }}$ ' Ary, same place. Mode of maty Ont., assignee of R D'Ary, same place. Mode of making galvanic electric
body wear, conststing of insoles and belts and bands o different forms, called "D'Ary's Curative Galvanic Insoles, Belts, and Bands." Jan. 14, 1875.
4,255.-W. W. Wickes, Brooklyn, Kings county, N. Y.
U. S., assignee of J. J. Bate, asme place. Improve.
ments on refrigerators, called " Bate's Improved Re-
frigerator." Jan. 14, 1875. 4,256.-J. L. Thomson and \mathbf{F}. N. Davis, Beloit, Roc
county, Wis., U. S. Improvements county, Wis., U. S. Improvements in paper bari.
called "' Thomson's Paper Barrel.', Jan. 14,1875 . called Thomson's Paper Barrel. Jan. 14, 185 .
4,257.-W. M. Comey, Norfolk, Norfolk county, Mass.
U.s. .mprovements on games, called 'Comey's Game of Conquete.".".Jan. 14, 1875.,
4,258.-R. Patton, Montreal, P. Q., assignee of J. M 4,258.-R. Patton, Montreal, P. Q., assignee o
Maharg, Montreal. Improvements on steam called "Patton's Steam Trap.", Jan. 14. 1875.
4,259.-G. M. Bright and F. Barron, London, signees of J. H. Banks, of 11 Lavender Road, Batter sea, Surrey county, Eng. Improvements on the pro
duction of printing surfaces and of engraved metal sur faces applicable for other purposes, called "Banks faces applicable for other purposes, called "Banks and of Engraved Metal Su
purposes.
Jan.
14, 1875 . purposes.'
$4,260 .-$ Jan. Burke, Toronto C gas carburetters, called "Burke's Improved Gas huretter.' Jan. 14, 1875.
,261.-P. B. Myers and S. Rough, Buchanan, Berrien county, Mich., U. S. Improvements on carpet stretch ers, cal
1875.
$4,26)^{2}$
provements on retaining washery, N. Y., U. S. Im
provements on retaining washers for lock nu
"Thomas' Lock Nut Washer." Jan. 14, 1875 .
4,663.-E. N. Porter, Morrisylle, 4,263.-E. N. Porter, Morrisville, Lamville county, vt.,
U. S., assignee of E. E. Foster and M. B. Eaton, same U.S., assignee of E. E. Foster and M. B. Eaton, sam
place. Improvements on milk coolers, called "Th Mlace. Mmprovements on mik coolers, called
Morrisille Milk Pan and Cooler." Jan. 14, 1875.
4,264.-A. B. Daniels, Frankliln, Norfolk county, Mass. 4,264.-A. B. Daniels, Franklin, Norfolk county, Mass.
U. S. Improvements on games, called "Daniels' Game of Tourette.' Jan. 14, 1875 .
Instrument for wrapping wire or cord on broken vehicle shafts or whifletrees, fork handles, or any such like ar ticles, called "Clarke's Wire and Cord Wrapper.'" Jan
15,1875 . $15,1875$.
$4,266 .-\mathrm{N}$.
4,266.-N. A. Menaur, Buffalo, Erie county, N. Y., U. S.
Improvements on tea kettles, called "'Menaur Tea Ket tle." Jan. 15, 1875.
4,267.-F. B. A. Royer de la Bastie, vilette, Department of Aisne, France. Process and furnace or apparatus for
tempering and hardening flat and shaped glass, calle tempering and hardening flat and shaped glass, called
"Royer de la Bastie's Process and Apparatus for Tem pering Glass.,', Jan. 15, 1875.
4,268.-C. F. Lalonde, Montreal. Améliorations aux ma-,268.-C. F. Lalonde, Montreal. Ameliorations aux ma
chines in separer les clous, viz., troquettes, rivets, cro chines à separer les clous, viz., troquettes, rivets, cro
chets, etc., au sorter du bain d'etainage, "، Machine separer les vis, clous, broquettes, rivets, crochets, etc.
au sorter du bain d'etainage."
Improvements in ma chines for separating nails, screws, tacks, rivets,hooks, etc.. When taken out of tin baths. Jau. 15, 1875 .
4,269.-J. E. Townshend, Montreal, P. Q. Improvement in the cleansing. disinfecting, and preserving feathers halr, wool, flocks, fiber, and all materials used for beds
and upholstery, called " Townshend's Process," Jan 15, 18\%5.
4,2r0.-J. E. Thompson, Stambridge, Missisquoi, P. Q Improvements on steamers, called "Thompson's Per-
fected Steam Cooker." Jan. 15, 1875. provements on bedsteads, called "West's Combine provements on bedsteads, called ", West's Comb
Bookcase and Wardrobe Bedstead.', Jan. 15, 1875 . 4,2"t2.-Jas. Goodwin, Lennoxville, Sherbrooke county,
P. Q. Retissue of No. 8,377 , on "Goodwin's Invalid Bedstead.'.'Jan. 15, 1875.
,$\quad 273 .-$ R. Whiting and J. Kyser, Clevelancl, Ohio, U. S Improvements on brace fasteners, called "Whiting's Brace Fastener.', Jan. 15, 1875.
,274.-J. Baker, Trenton, Hastings countr, Ont. Ex
tension of No. 223 on ' Baker's Combined Hed tension of No. 223 on '"Baker's Combined Hand Flour
Scoop and Sifter." Jan. 15, 1875 . 4,275.-LL. J. Hewitt, Toronto City, Ont. Inprovements
in Wheel.," Jan. wheels, 1875.
In
,276.-G. D. Booth, Ottawa, Carleton county, Ont. Im
provement on breech loading shot guns, called ${ }^{\prime \prime}$, Booth', provement on breech loading shot guns, called '‘Booth',
Shot Gun Rifler,Adjustable and Convertible." Jan.15, 1875.
$4,277 .-G$.
W. Otis, Lynn, Essex county, Mass. Improvements on lightning conductors. Attachments of head
and ground plate for "otis' Solid Cable Fluted Lightning Rod.' Jan. 15, 1875. ning Rod. Jan. 15, 1875.
,278.-C. P. Crossman, West Warren, Worcester county,
Mass., U. S., and E. J. Brown, Worcester, Worcester county. Improvements on salt boxes or casters, called ‘‘Crossman's Salt Box or Caster.'" Jan. 15, 1879 .
, $279 .-W$. L. Phillips, New York city, N. Y., U. S. I provements in stoves for heating a ad ventilating pur
poses, called "'Phillips' Fire on the Hearth." Jan. 15, poses,
185.
$4,280 .-$ D. provemente provements in vehcles for the conveyance of passen-
gers, called "Conboy's Turn-Down Seat." Jan. 15,
1875 ${ }_{4}^{18781 .}$,I. M. Rhodes, Hancock, Houghton county, Mich., U.S. Improvements on a fracture bed and apparatus,
called '" Phodes' Fracture Bed and Apparatus." ,Jan.

Vances' pruning knife
S. J. Forincer pan royality.
Tempering Edge Tools BY STEAM.

patented process by whek atun of tootis aran Infalluby

26 PEMBERTON SQ., Boston,Mas. New Variety Moulding Machine,

At Prices that Defy Competition. Send for Prices and Descriptive Circular.
Important Notice to

CIRCULAR SAW MILLS.

The Suits for Infrivgement of the Lane

 Saw Mill Patents, brought against F. C. Candee\& Co., New York, (selling agents of Belknap, Ely $\&$ Co., New York, (selling agents of Belknap, Ely
$\&$ Co., Northfield, vt.,) against Luke Buzzell, St. Johnsbury, Vt., and others, have been terminated in favor of the plaintiffs, and decrees have been validity of the Lane patents, and perpetually enoining the defer dants from further use of the folowing devices, viz.:
An independent outset or tapering device; A frost dog-sliding on a post, and binding in
he eye; the eye;
Dog rests, or
mill carriages;
Stationary racks and travelin
set works of saw-mill carriages
A weighted double-acting set

tions; and

A friction running back rig for retracting the In addition to aprights.
In addition to above patents-the validity of
which was disputed in the United States Court for a year and a half, by a powerful combination of rival manufacturers-we have several other very important improvements in Circular Saw Mills, the exclusive use of which is secured to us and
our licensees by letterspatentof the United States, the validity and force of which have never been, the validity and force of which have never been
disputed. Lumbermen, Saw Mill Manufacturers, and others, shall hold all parties to a strict accountability for making, vending, or using mills with Lane's improvements, unless said mills are made by or obtained from parties holding licenses or other anthority from us.

LaNe manufacturing company,

Fated to he Free. -2W: E $=2=2$ ture every week free as a supplement. At news stands or
by mail postage pald. Great inducementstogagents and
dubs. The Graphic Company, Publishers, 39-41 Park
Place, New York.

DECATUR Agricultural Morks ror sale.

 Todd \& Rafferty Machine Co.

PERFECT
NEWSPAPER FILE.

Address
MUNN \& CO.,
Publishers "Sctentific Anericans."

BAIRD'S BOOXS

FOR PRACTCLCL IIEN.
My new, revised and enlarged Catalogue of PRACTI-
CAL AND SCIENTIFIC B0OKS 96 pages , \&vo-will be
sent, free of postage, to any one who will favor me with
his address.
HENRY CAREY BAIRD,
406 TALINUT STREET, Philadelphia,

BOOKS

Steam and the Steam Engine.

Seeds and Bulbs.

THE

Shapleg Rngine,

 ULLI
${ }_{20}$ Platt St., N. Y

GTONE SANING MACHINERY.
 Steam Pumps

 Useful and Rare Chemicals.

P. BIAISDEII \& CO.,
 Solid and Homogeneous. Guaranteed tensile strength, 25
tuns to square inch. An invaluable substitute for expen sive forging ,or for Cant Iran requiring great strengt
Send for circuar and price Ilist toe
Mc HAFFIE STEEL CO.. EEelina St., Philadelpha, 1 a MASON'S PAT'T FRICTION CLUTCHES

*Pantrs Stritcher.

-Thriling Stories.

THE Union Iron Mills, Pittsburgh, Pa.

 BANKRUPT'S SALE OF HORIZONTAI

 G LASS M MOULDS, for Fruit Jars, Lamps

E COUNT'S PATENT LATHE DOGS,

PATENT

 and Molding Machines, Gray and Wood's Planers, Selfoiling S Saw Arbors, and other wood- Working machnery.
S. A. Woodran
Seud for Circulars, etc.
LUDI_OWT VRED STONE $\boldsymbol{\sim}$
Neß eardife A NE W DISCOVYERYI
 W erally, Spectalltes, Wood worth Planers and Rich-
ardson sipatent
Centrate Andrews, watents.
\qquad

 A 11 Lightit Simple, Durable, and Economical.

Free to Sewing Machine Agents.

BLAKEXS PATENT Stone and Ore Breaker

agents wanted.

GOO W, READ ©
GEO. W. RBAD \& CO.,

Hard-Wood Lumber The LAD CHOICE FIGURED VENEERS, VARIETY : The Lowest Prices :
Enclose Stamp for Catalogue and Price-LIst.
Orders by mail promptly and falthfully executed.
OTIS' maxh minearey IT WILL PAY 27th February
Positively no Postponement. A Drawing on 2\%th,

Or Money Refunded.

 Pablic Librarry of Kentctcky.

Death of Gov. Bramlette.-Action of the Trustees-A Successor Appointed-No More Postponements-Drawing Certain February 27th.
Ah a meeting of the Trustees of the Public Library of
Esq., who under the late Hon. Tho. E. Bramlette was the
real business manager of the glit concerts already given
in ald of the Public Library of Kentucky, be and he ts
hereby authorized to take the place made vacant by the
death of said Bramlette, in the management of the af. farrs of the ifth and last gift concert, and that the draw. ing announced for February 27,1875 , shall positively and postponement or delay on any account whatever.

Jonn S. CaIN, Secretary.

ert should be addressed to the undersigned, and I pledge myself that the drawing shall come off February 27 th or
C. M. BRIGGS, Agent and Manager, Roor. 4, Public
E. M. MAYO PATENT BOLT CUTTER.
 Model Engines.

Ladies at Home

MAGNETS-Permanent Steel Magnets

PORTABLE STEAM ENGINES, OMBDN

MACHINERY
IRON \& WOOD WORKING MACHINERY Cold Rolled Shafting.
HANGERS, PULLEYS, COUPLINGS, BELTING, \&c
\& Send for Illustrated Catalogue and Price List.

[^0]
To Electro-Platers.

B interits, chemicas, AND MATERIALS,

Second Hand Engines and Boilers,

Ind

EAGLE FOOT LATHES,

Planing \& Matching,

आ(1)

SCIENTIFIC AMERICAN, THE MOST POPUCAR SCIENTIFIC PAPER
IN THE WORLD.
thirtieth fear.
VOLUME XXXII.-NEW SERIES.
The publishers of the SCIENTIFIC AMERICAN 1875 , a new volume commenced. It will continue tents of the new volume more attractive and useful than any of its predecessors.

To the Mechanic and Manufacturer. No person engaged in any of the mechanical purAMERICAN. Every number contains from six to ten engravings of new machines and inventions which cannot be found in any other publication.
The SCIENTIFIC AMERICAN is devoted to the interests of Popular Science, the Mechanic Arts, and the industrial pursuits generally; and it is val uable and instructive not only in the Workshop and Manufactory, but also in the Household, the Library, and the Reading Room.
By the new law, the postage must be paid in advance in New York, by the publishers; and the subscriber then receives the paper by mail free of

One copy, one year (pise included)
One copy, six months (postage included).... $\$ 1.20$ $\begin{array}{lll}\text { One copy, three months (postage included).. } & 1.00\end{array}$ year, and one copy of engraving, " Men of Progress"................................ 10.00
One copy of Scientific American for one,
year, and one copy of "Science Re
year, and one copy of "Science Record"
for 1874................................... 50
Remit by postal order, draft, or express.
Address all letters and make all Post Office
MUUNTN $\underset{\text { 3' PARK ROW, NEWYORK }}{\text { E }}$
galtertigements.
Back Page
Iuside Pake
Engrarings may head advertisements cents a line. per line, by measurement, as the letter press. Ad-
vertisements must be received at tetbication fice Working Models

IRON PLANERS,

IRON CUTTER,

Portland Cement.

 LTVTTRTM
 TO LUMBERMEN. $\$ 100.00$ IN GOLD.

 TOMACHINERY AND FACTORY
 TO MANUFACTURERS

Excelsior Do Your Own Printing Pritable

 TANNATE OF SODA, SCALE PREVENTIVE

Rope.

JOHN W. MASON \& CO., $2 d$ hand Portrable estationary Yng ine \& Boliers,at STANDARD BRICK MACHINE. used tor the manutatacture of sic rek. of 1 , and all arth
GIASS OII CUPS

MACHINIST TOOLS

For Sale Cheap.

Younso's Diamond Saws

For Cutting Stone, From ten to thirty times faster than by the old method.
Great economy of stone, labor, power, room, etc. tr send tor Illestatad itruarar to

hUGH YOUNG,

Cutler's PocketInhaler

COVERING

THE PUSOMETER.

MillFurnishingWorks

HARTFORD

STEAM BOILER

Inspection \& Insurance COMPANY.

w. B. Franklin, V. P'f. J. M, Alien, Prest J. B. Prizci, Sec.

 WAMED $=$ MUY A

Manufactured soolely p, N.
Hubbard \& Eller. Pulleys, Shafting and Hangers
Machinists' Tools.

TAREROMOTrester, Mass.

NEW YORK OFFICE. 15 New Cavici STRer. Patent Apractica1) 耳ood thing - two patents se For Sale. ${ }^{\text {il }}$
THE HEALD \& CISCO Patent Centrifugal Pumps.

 K IDDER'S PASTILES A SURE RELIEF FOF GREATEST INVENTION of the AGE. ELECTRIC \& VAPOR CHAIR.
 Send for ciri cular.

Niagara Stas. B. HARDICK, CHAS. B. HARDICK,
VALUE OP PAPEMTS,
And How to Obtain Them.
Practical Eints to Inventors.
ROBABLY no investment of a small
sum of money brings a greater returt sum of money brings a greater return
than the expense incurred in obtaining a patent, even when the invention is but a small one. Large inventions are found of Blanchard, Morse, Bigelow, Colt, Ericsson, Howe, McCormick, Hoe, and others,
who have amassed immense fortunes from their inventions, are well known. ized large sums from their patents.
ized large sums from their patents.
More than Firvy Thousand inventors have
availed themselves of the services of MUNN $\& C 0$ during the TWENTY-SIX years they have acted as solicitors and Publishers of the Scientific Ameri-
CAN. They stand at the head in this class of busi CAN. They stand at the head in this class of business; and their large corps of assistants, mostly se-
lected from the ranks of the Patent Office: men calected from the ranks of the Patent Office: men ca-
pable of rendering the best service to the inventor, rom fthe experience practically obtained while examiners in the Patent Office: enables MONN \& Co
to do everything appertaining to patents BETTER and CHEAPER than any other reliable agency.

early ev-

 ery letter,describing some invention, which comes tothis office. A positive answer can only be had by this office. A positive answer can only be had by
presenting a complete application for a patent to
the Commissioner of Patents. An application conthe Commissioner of Patents. An application con-
sists of a Model, Drawings, Petition, Oath, and full Specification. Various official rules and formalities
must also be observed. The efforts of the invento must also be observed. The efforts of the inventor
to do all this business himself are generally with out success. After great perple xity and delay, he is usually glad to seek the aid of persons experienced in patent business, and have all the work
done over again. The best plan is to solicit proper advice at the beginning. If the parties consulted are honorable men, the inventor may safely conflde his ideas to them; they will advise whether the im-
provement is probably patentable, and will give provement is probably patentable, and will giv
him all the directions needful to protect his right.
How Can I Best Secure My Invention? This is an inquiry which one inventor naturally
asks another, who has had some experience in obasks
taining patents. His answer generally is as follows, and correct
Construct a neat model, not over a foot in any di-mension-smaller if possible-and send by express, prepaid, addressed to MUNN \& Co., 37 Park Row,
together with a description of its operation and together with a description of its operation and
merits. On receipt thereof, they will examine the merits. On receipt thereof, they will examine the
invention carefully, and advise you as to its patentability, free of charge. Or, if you have not time, as good a pen and ink sketch of the improvement
as possible and send by mail. An answer as to the as possible and send by mail. An answer as to the
prospect of a patent will be received, usually, by
rearch of made at the Patent Office; such a measure saves the cost of an application for a
Preliminary Examination.
In order to have such search, make out a written description of the invention, in your own words, with the fee of $\$ 5$, by mail, addressed to MUNN $\&$ Co., 37 Park Row, and in due time you will receive an acknowledgment thereof, followed by a written report in regard to the patentability of your improvement. This special search is made with great care, among the models and patents at Washington, to ascertalin whether the imporen
patentable. patentable.
To Make an Application for a Patent. The applicant for a patent should furnish a mo-
del of his invention if susceptible of one, although del of his invention if susceptible of one, although sometimes it may be dispensed with; or if the in
vention be a chemical production, he must furnish vention of the ingredients of which his cost furnis consists. These should be securely packed, the in ventor's name marked on them, and sent by express, prepaid. Small models, from a distance, can often be sent cheaper by mail. The safest way to
remit money is by a draft or postal order, on New remit money is by a draft or postal order, on New
York, payable to the order of MUNN \& Co. PerYork, payable to the order of MonN \& Co. Per-
sons who live in remote parts of the country can usually purchase drafts from their merchants on

Foreign Patent
The population of Great Britain is $31,000,000$; of France, $37,000,000$; Belgium, $5,000,000$; Austria, 36,
000,000 ; Prussia, $40,000,000$, and Russia, $70,000,000$ Patents may be secured by American citizens in all these countries. Now is the time, when business is dull at home, to take advantage of these immense foreign fields. Mechanical improvements of all kindsare always in demand in Europe. There will never be a better time than the present to take pations with the principal capitals of Europe. A large share of all the patents secured in foreign Agency. Address MunN \& Co., 37 Park Row, New York. Circulars with full information on foreign patents, furnished free.

Canadian Patents.
In order to apply for a patent in Canada, the applicant must furnish a working model, showing the operation of the improved parts; the model needs not to exceed eighteen inches on the longest side. Send the model, with a description of its merits, by
express, or otherwise, to Munn $\&$ Co., 37 Park Row. Alsoremit to their order by draft, check, or postal orter, the money to pay expenses, which are as follows: For a five years' patent, $\$ 75$: for a ten years patent, $\$ 95$; for a fifteen years' patent, $\$ 115$. The five and ten years' patents are granted with priv!lege of extension to fifteen years.

Trademarks.
Any persons or firm domiciled in the United States, or any firm or corporation residing in any oreign country where similar privileges are oxtended to citizens of the United States, may regis-
ter their designs and obtain protection. This is er their designs and obtain protection. This is
very important to manufacturers in this country, and equally so to foreigners. For full particulars address MUNN \& Co., 37 Park Row, New York.

Design Patents.
Foreign designers and manufacturers, who send goods to this country, may secure patents here up-
on their new patterns, and thus prevent others rom fabricating or selling the same goods in this market.
A patent for a design may be granted to any person, whether citizen or alien, for any new and orignal design for a manufacture, bust, statue, alto reevo, or bas relief, any new and original design for tics, any new and original impression, other fabpattern, print, or picture, to be printed, painted, ast, or otherwise placed on or worked into any aricle of manufacture.
Design patents are equally as important to citiens as to foreigners. For full particulars send for amphlet to MUNN \& Co., 37 Park Row, New York. Copies of Patents.
Persons desiring any patent issued from 1836 to November 26, 1867, can be supplied with official copies at a reasonable cost, the price depending upon tions.
Any patent issued since November $27,186 \%$, at he drawings and specificaticns, may be had by remitting to this office $\$ 1$.
A copy of the claims of any patent issued since 1836 will be furnished for $\$ 1$.
When ordering copies, please to remit for the invention, and date of patent of patentee, title of Co., Patent Solicitors, 37 Park Row New York MUNN \& Co. will be happy to see inventors in peron at their office, or to advise them by letter. In all cases they may expect an honest opinim. For such consultations, opinions, and advice, no charge is made. Write plain; do not use pencil or pale ink; be brief.
All business
All business committed to our care, and all co In all matters pertaining to patents, such as conducting interferences, procuring extensions, drawing assignments, examinations into the validity of patents, etc., special care and attention is given, For information, and for pamphlets of instruction M
PUBLISHERS SCIENTIFIC AMERICAN,

37 Park Row, New York.

OFFICE IN WASHINGTON-Corner F and 7th
Patent Omice

[^0]: 10

