

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY AND MANUFACTURES. $\xrightarrow{\text { Vol. XXXII--No. 1.] }}$ NEW YORK, JANUARY 2, 1875. $\left[\begin{array}{c}\mathbf{\$ 3 . 2 0} \text { per Annum } \\ \text { Postage prepaid. }\end{array}\right.$

IMPROVED PLANING AND MATCHING MACHINE.
The invention herewith illustrated belongs to the large and varied class of planing and matching machines, of which almostevery wood-working shop of medium and even of small of strength, compactness in form and design, and economy in room, power, and cost. It is adapted to plane and match in room, port lumber up to 14 inches in width, and will surface 24 inches wide and up to 5 inches in thickness, by dropping the matcher shafts below the bed. There is a strong, heavy, and substantial frame. The bearings are perfectly
culars, address the manufacturers, Bentel, Margedant \& Co., Hamilton, Ohio.

Action of Magnets on Spectra.
M. Choquart, of the French Academy of Ssiences, states that the effect of magnetic influence on the spectra of the finally of sulphur and selenium is to cause them to pale and same infuence multiplies the rays and renders more brillian the spectra of chlorine and bromine. The effect, says the investigator, is so rapid as to seem magical. The result of these

The annexed engraving shows its arrangement. The strap which passes over the shoulders is made in two parts, buckled together so as to admit of adjusting. To the end is attached a ring strap of a size to fit around the smaller part of the pouch ; and above, a larger ring strap is attached to encircle the corresponding portion of the flask. There are two straps more, one of which is secured to both ring straps at one side, terminating in a buckle at the upper strap; and the other is similarly attached, but passes up over the top of the pouch The end is then fastened by the buckle just mentioned. The The end is then fastened by the buckle just mentioned. The
pouch thus held is prevented from being lost by the tearing

BENTEL, MARGEDANT \& CO.'S PLANING AND MATCHING MACHINE.
fitted by scraping, and made of the best anti-friction metal, the latter compounded for the purpose by the manufacturers. The bearings also have self-oiling boxes, and the steps of the spindles are also self-lubricating.

The cylinder cutter head is made triangular, of a peculiar form, and carries three knives. The last though straight, simila r to thos egenerally used, make a drawing cut, thereby nsuring a very smooth surface even if the material be crossgrained or knotty. The cylinder has long steel journals, and on each end a driving pulley, and can be raised or lowered while in operation. Both cylinder and top rolls are raised and lowered together by one hand wheel, in planed ways at an angile, in order to keep the belt at the propertension for any desired thickness of lumber.
The machine is furnished with a newly patented sectional chip breaker, and an adjustable pressure bar, which holds the lumber down so that, as nearly as possible, a uniform surface is presented to the revolving knives of the cutter. The one piece pressure lar, held by springs or weights, presses the material only along the whole line of cut or width, and rests upon salient points or elevations, without allowing for the warp or sinuosities of the timber. If it is required to press the material which is in wind in its whole width to the table, the driven roller in front of the chip breaker is brought down, but the chip breaker itself only sufficient to bring its parts in a perfect contact with the whole width of the material. Heretofore the pressure bar had to press very heavily on the work, which made it necessary to use much feeding power to overcome the resistance. The feed rolls are weighted and strongly geared.
The arrangement for changing from a matcher to a surfacer is very complete, and the adjustment can be made with facility. For surfacing wide lumber, the matcher spindle can !e lowered out of the way by loosening the adjustable step and letting tl:o top of the spindle slide below the table. One oi the matce ar spindles is adjustable by a crank wrench, while the other may be placed to suit the width and nature of the work.
A matcher clip is furnished for preventing splitting and tearing cross-grained lumber when matching, also a lever to hold the lumber to the guide when feeding the lumber in. The matcher heads are made of gun metal and provided with a full set of cutters. The feed of the machine can. on either side, be instantly started or stopped.
The invention is covered by several patents secured through the Scientific American Patent Agency. For further parti-
discoveries is to render the deductions from the spectra of
the heavenly bodies only to be accepted with great caution, as they virtually introduce a new element to be considered in drawing conclusions from the aspect of the same.

IMPROVED SHOT POUCH SLING.

Mr. William W. Kollock, of Augusta, Ga., has patented, hrough the Scientific American Patent Agency (November

17, 1874), a novel and simple shot pouch sling, by means of which the pouch may be conveniently carried in such a manner that it cannot become detached and lost, and so that it will always be in handy position for loading the gun.
off of the rings. The invention seems a useful one, and doubtless will meet with appreciation among sportsmen generally. For further particulars address Mr. E. M. Habershaw, or the inventor, as above.

A contemporary publishes the following list of offers for the Stevens battery, or for portions thereof, which was recently offered for sale on terms which we have already published:
T. F. Rowland, Brooklyn, N. Y. For the 15 lots, $\$ 80,000$. The Chief of Bureau of Construction and Repairs of United States Navy Department. For all the lots, $\$ 145,000$. This lid was accompanied with a proviso that, if any foreign government offered more, with the intention of removing the ship from the United States, then the United States Navy Department would increase their bid so as to exceed any such offer, subject, however, to the approval of Congress, which would have to make an appropriation for that purpose.
John Roach, New York. For total lots, $\$ 105,000$.
John Stewart, New York. For lots 14 and 15, $\$ 3,000$.
H. McKay, No. 52 Broadway, New York. For total lots, *50,000,
J. H. Wiggins, New York. For total lots, $\$ 60,000$. John F. Feffenly, No. 533 Water street, New York. For lots 14 and 15, $\$ 4,500$.
N. Lassar \& Sons, Hoboken. For lots 14 and 15, $\$ 5,274$, and for lot 1, which consists of the hull, $\$ 20$ per tun for the scrap iron, and $\$ 2,600$ for another lot.
A. Pervis \& Son, Philadelphia. For lots 1 to $14, \$ 52,000$, and for lots 14 and 15, $\$ 52,000$.
We have often read of the value of workmanship, and how raw material worth a few cents a pound may be, by skillful manipulation, changed into watch hair springs worth their weight in gold or microscope objectives more precious than diamonds; but here we see that, in the estimation of would-be purchasers, the value of a vessel that cost millions of dollars, expended with a vast amount of the highest engineering talent, is not over $\$ 145,000$ in any cas?, unless some other government than our own wants it; and then the importance of the vast structure to our navy will be allowed to magnify the price indefinitely. Solomon said, ages ago : "It is nought, it is nought, saith the buyer; but when he hath gone his way, then he boasteth."
I. C. says: "A one-line advertisement in the Scientific american paid me fifty-three dollars and fifty cents."

Sxinntific : 1 meritam.

MUNN \& CO., Editors and Proprietors. published weekly at

NO. B'Y PARK ROW, NEW YORK
o. D. MUNN.
A. E. BEACH.

TERMS

One copy, one year, postage Included...
8320
160
Ten copies, one year, each $\begin{gathered}\text { Club } \\ \text { 70 } \\ 0\end{gathered}$, postage included
Over ten coples, same rate each, postage included.
PT By the new law, postage is pay able in advanc
esubsciber then recelves the paper free of clarge
he subscriber then receives the paper free of charge
Note. - Persons subscribing win please to glve their full names, and Post wish their subscriptions to commence, otherwise they will be entered from January 1 st , 18it.. In case of changing residence state former address, well as give
is given.

VOLUME XXXII., No. 1. [New Series.] Thirtieth Year.

NEW YORK, SATURDAY, JANUARY 2, 18%.

Contents. (Illustrated articles are marked with an asterisk.)	
Amalgam fil	
Argand burners (32).................	${ }_{7}$ Magnets on spectra, action of....: 1
Astronomical notes................... 8/ Man, the overworked.............. 5	
为	
$C_{\text {canals, }}$ Belgirn, steam on......... ${ }^{3}$ Patents, list of Canadian........... ${ }^{12}$	
the	
ne for lathe wo	
Engines, small, proportioning (16)	
	or fles and
Gun cotton (44)...................... 11	
Hudson river sources, the...........	

THE VACUUM AN ABSOLUTE NON-CONDUCTOR OF ELECTRICITY

The passage of electricity through rarefied air constitutes a well known experiment in the lecture room of physical science. The oldest style of performing it is to attach, by means of a stopcock connection, a long glass tube to the air pump, each end of the tube being provided with brass caps. The electricity may be made to flow through its interior as soon as the exhaustion of the air has proceeded to a certain exteut ; then a most beautiful exhibition is produced in the dark, resembling the aurora borealis; hence such a tube is called an aurora tube, and the aurora borealis has been ascribed to a discharge of electricity from the polar regions to the equator, through the stratum of rarefied air above the clouds. Another form of this experiment is the so-called electric egg, which differs from the preceding in nothing lout that, in place of a long tube, an egg-shaped glass globe is emploved, into of a long tube, an egg-shaped glass globe is employ
which brass knobs or points project from both ends.
hich brass knobs or points project from both ends.
Lately this same experiment has been modified, so that the vessel filled with rarefied air is always ready for the experiment. Gassiot and Geissler first conceived the idea of manufacturing small and large glass tubes, melting pieces of platinun wire into their extremities, so as to introduce the electric current, exhausting the air in them to the proper degree, and then sealing them hermetically.
Is it had been found that rarefied gases of different natures produce different colors of light in the dark when the electric current was passed through them, and later that different kinds of glass and liquids, when illuminated in this way, prokinds of glass and liquids, when illuminated in this way, pro-
duced a great variety of effects (due to fluorescence), a very extensive assortment of these tubes was soon in the market; and they may now be bought, under the name of Geissler tubes, from the dealers of philosophical instruments in our large cities, at different prices, varying according to their size and the elaboration of their construction.

Experiments prove that electricity is retained on the surface of bodies by the presence of the atmosphere, which creases, the escape of electricity becomes easier; while, in a greod vacuum, tlie resistance to escape becomes zero, and the electricity flows off and cannot be retained at all. This has for a long time been the accepted theory, and is still taught in most text books on physics, and is believed in by most electricians; but that it is an error was proved by Bécquérel, Hawksbee, Gray, and Snow Harris, as they showed that even the weakest electric discharges could be retained in vacuo. Bécquérel even went so far as to show that the charge was retained for fifteen days, provided that the va cuum was so perfect as to be equal to a mercurial pressure of one millimeter (the twenty-fifth part of an inch); and he conone millimeter (thed that, in a perfect vacuum, the body would retain the charge for ever : in other words, that electricity could not be charge for ever: in other words, thated angun.

Du Moncel, in his lately published French work on the Ruhmkorff coil, gives an account of his experiments in passing a powerful electric current through a tube in which the air was being more and more rarefied, and states that, when
the vacuum was made very nearly perfect by the continued the vacuum was made very nearly perfect by the continued
operation of a good air pump, the passage of electricity operation of a good air pump, the passage of electricity
through the tube continually diminished; so that at last, when the pressure had decreased to less than a half millimeter (one fiftieth of an inch), the light had almost disappeared, while tests proved that very little electricity passed; when, however, a little air was gradually admitted into the tube, the electric current was re-established, and the light appeared again.
Gassiot was the first who attempted to make an absolute vacuum, deprived of all traces of air or gas. He first made a barometer of the easily fusible alloy made of lead, tin, bismuth, and cadmium, which melts below 150° Fah., contains no mercury, and which would not contaminate the vacuun with mercurial vapors. He did not, however, succeed in this way, as the vacuum thus made always contained traces of air or gas. He tried then another method; he filled the vacuum with pure carbonic acid gas; and after exhausting by the air pump, he left the remnant to be absorbed by caustic potassa, which, by its well known great affinity for this gas, removed the last traces. He produced in this way a vacuum much more perfect than any one ever did before; while his manner of procedure allowed the experiment to be extended over several days, and even weeks. When the vacuum had been made with the air pump on carbonic acid, an electric discharge, which, in the air, would not pass over a distance of half an inch, traversed twenty inches with the greatest ease. In proportion as the vacuum became more perfect by the absorption a more and more pale luminous vapor. The vacuum becom ing more perfect in the course of several days, the luminosity became confined to the sides, where the platinum wires, which conducted the electricity, enterea into the vacuum; and a certain space, half way, became dark, and this darkness and a certain space, half way, became dark, and this darkness
extended itself, so that, in a tube of twenty inches length, it occupied nearly ten inches. When a galvanometer was placed in the circuit, it indicated that there was no longer a constant discharge as before, but occasionally alternate discharges: when also the tube showed light flashes, and the so-called stratification of the light. When at last the absorption went on, and formed a perfect vacuum, perfect darkness was obtained in the tube, and no trace of light showed itself, even with strong electric charges, while neither the galvanometer nor an ordinary vacuum tube, when introduced into the circuit, would manifest a trace of any current, notwithstanding that this other ordinary vacuum tube showed luminosity with
feeble currents. From all this, it is therefore evident that it is practically demonstrated that the absolute vacuum is not only a non-conductor, but that it is absolutely impenetrable by electric discharges.
De la Rive studied the phenomena observed. As soon as, during the attempts to pass the electric current, a small amount of gas is introduced, corresponding with a mercurial pressure of $\frac{1}{4}$ millimeter ($\frac{1}{100}$ inch), he found that the phenomena vary, according as the gas is admitted near the pos tive or the negative side; and he gives a very detailed descrip
tion of the so-called stratification, the succession of colors, tion of the so-called stratification, the succession of colors,
the rose-colored mist, etc., phenomena which are always repeated under the similar circumstances, depending, of course, upon certain laws governing the relation between the electric and luminous vibrations.
The writer of this article possesses a strong glass tube in which, after the method of Gassiot, the vacuum has been produced by the absorption of carbonic acid. The ends of the platinum wire intended to introduce the electric current are only one quarter inch distant from each other. But notwithstanding this short space, the strongest possible charge cannot be made to traverse this distance of vacuum, while the same charge will pass through a distance of six inches in common air, and of as many feet through a glass tube in
which the air is rarefied. In the Stevens Institute, Hoboken, which the air is rarefied. In the Stevens Institute, Hoboken,
the experiment with a similar tube can be shown to any visitor, and excites the surprise of many who still persist in the faith in an electric fluid, notwithstanding they have abandoned the doctrine of a caloric fluid, being advanced enough in their ideas to be satisfied that heat is a mere mode of motion of ponderable matter.
Now the fact is that the whole science of thermotics cannot produce a single experiment upsetting the old doctrine of a caloric fluid,so conclusive as the experiment above described. Nobody has ever succeeded in producing an empty space or vacuum through which heat could not pass; but having done so for electricity, it proves conclusively that this subtle agent cannot be of the nature of a fluid, as a fluid would not be mode of motion (wave vibration or molecular rotation) of ponderable matter, which cannot be propagated except by such matter, and will be as effectively arrested in its propulsion, when ponderable matter is absent, in the same way as is the the case with the sound waves when the medium by which they can be transmitted is wanting.

DON'T KISS THE BABY!

The promiscuous kissing of children is a pestilent practice. We use the word advisedly, and it is mild for the occasion. Murderous would be the proper word, did the kissers know the mischief they do. Yes, madam, murderous; and we are speaking to you. Do you remember calling on your dear friend Mrs. Brown the other day, with a strip of flannel round your neck? And when little Flora came dancing into the room, didn't you pounce upon her demonstratively, call her a precious little pet, and kiss her? Then you serenely
proceeded to describe the dreadful sore throat that kept you from prayer meeting the night before. You had no designs on the dear child's life, we know; nevertheless you killed her! Killed her as surely as if you had fed her with strychnin or arsenic. Your caresses were fatal.
Two or three days after, the little pet began to complain of a sore throat too. The symptoms grew rapidly alarming and when the doctor came, the single word diphtheria sufficed to explain them all. To-day a little mound in Greenwood is the sole memento of your visit.
Of course the mother does not suspect, and would not dare to suspect, you of any instrumentality in her bereavement. She charges it to a mysterious Providence. The doctor says nothing to disturb the delusion; that would he impolitic, if not cruel : but to an outsider he is free to say that the child's death was due directly to your infernal stupidity. Those are precisely his words: more forcible than elegant, it is true but who shall say, under the circumstances, that they are not justifiable? Remember

"Evil is wrought by want of thought

As well as by want of heart."
It would be hard to tell how much of the prevalent sick ness and mortality from diphtheria is due to such want of thought. As a rule, adults have the disease in so mild a form that they mistake it for a simple cold; and as a cold is not contagious, they think nothing of exposing others to their breath or to the greater danger of labial contact. Taking into consideration the well established fact that diphtheria is usually if not always communicated by the direct trans planting of the malignant vegetation which causes the dis ease, the fact that there can be no more certain means of bringing the contagion to its favorite soil than the act of kissing, and the further fact that the custom of kissing chil dren on all occasions is all but universal, it is not surprising that, when the disease is once imported into a community, it is very likely to become epidemic
It would be absurd to charge the spread of diphtheria en tirely to the practice of child-kissing. There are other modes of propagation, though it is hard to conceive of any more di rectly suited to the spread of the infection or more general in its operation. It stands to diphtheria about the same rela tion that promiscuous hand-shaking formerly did to the itch. It were better to avoid the practice. The children will not suffer if they go unkissed; and their friends ought for their sake to forego the luxury for a season. A single kiss has been known to infect a family; and the most careful may be in condition to communicate the disease without knowing it Beware, then, of playing Judas, and let the babies alone.

POSTAL DETECTIVE SERVICE.

It is rather more the custom to abuse the officials of the post office, for losses, irregularities, and other difficulties happening in the mails, than to give them credit for their skill in the detection of crime and recovery of missing property. We hasten, therefore,..to put on record a recent in stance of a prolonged search for lost money in which we have been directly interested, and which has resulted in a remarkable and praiseworthy success on the part of the post office detectives. On the first of May last, a correspondent in a village in Louisiana mailed a registered letter to this office, and enclosed therein the sum of sixteen dollars. The missive failed to reach us, and we notified both our correspondent and the post office authorities. The latter placed the case in the hands of special agents, and for the past seven months the detective officials have been actively at work tracing the lost missive. We, and doubtless the sender of the monev, had given up hope of its recovery, and hence our astonishmnet was all the greater at the reception, a few days ago, of a erse communication, signed L. M. Terrell, Superintendent Railway Mail Service, Fourth Division, and dated from Chat tanooga, 'Tenn., citing the above facts, and stating that the writer had arrested the guilty party, and recovered the funds, which we found enclosed. When the immense number of letters which pass through the mails is considered, this re gaining of a single missive, the abstraction of which had probably been carefully concealed, exhibits a brilliant piece of detective ability, which redounds highly to the credit of our postal service.

TEMPERATURE OF IGNITION OF CHARCOAL.

Some months ago, as our readers will remember, an in teresting discussion arose in our columns in reference to the possibility of igniting charcoal or over-seasoned wood, by the heat radiated from steam pipes. A well known engineer stated that he had collected conclusive evidence, proving the possibility of fires occurring in consequence of the ignition of wooden beams by contact with steam pipes, in cases where the wood had lain for a long time in contact with the pipe, and had thus been submitted to a process of charring at a very low temperature. We stated at the time that we were not convinced of the possibility of such action by any evidence which had then been given, and asked for more proof.
It is a well known fact that the lower the temperature at which charring occurs, the lower the temperature of ignition. The question is, however, whether the temperature of char ring can ever become so low as to cause the temperature of ignition to become equally low, or nearly as low. In such cases as were above referred to, it was supposed that the
wood lay in contact with the steam pipe for months, or even wood lay in contact with the steam pipe for months, or even
years, and that finally the wood, having become thoroughly charred, actually took fire at steam heat.
We have some evidence which has just been received, which may assist in settling the question, and in setting at rest the apprehensions of the authorities of our insurance companies, who are now acting upon the assumption that the
possibility of this source of fire is so well supported by evi
dence that they are justified in imposing very severe restric tions upon the use of steam pipes.
Mr. Robert Harper, some time ago, contributed, to the collection of the Engineering Department of the Stevens Institute of Technology, a piece of wood, which, as he states, 'stood during sixteen years and one month on top of and in contact with a one inch steam pipe, containing steam at fifty pounds in cold weather, used for warming the First United Presbyterian Church of Hoboken, N. J." The wood seems to be spruce. It is well seasoned, but no sign of injury or of charring is perceptible, and there is nothing to indicate that it might not have remained on the steam pipe an indefinit length of time without injury.
The accompanying diagram is interesting, and rives valu

able evidence in this connection. We gave, at the time when this subject first came up, a table showing the temperatures of preparation and the corresponding temperatures of ignition of charcoal for a wide range on the scale
Mr. Stahl, a student of the graduating class of the Stevens Institute of Technology, has prepared for us, at the request of Professor Thurston, this diagram, in which the vertical scale is one of temperatures of preparation and the horizontal suale is one of temperatures of ignition, and the curre show It will be seen that the curve is apparently nearly lyyper bolic. The lowest temperature of preparation was 500° Fah. but it is seen at a glance, even that at 350°, the temperature of steam under a pressure of over 125 lbs . per square inch the temperature of preparation and of ignition cannot coincide unless some marked change of law should occur at so low a temperatare, carrying the curve, which here represents that law, abruptly inward to reach the point A. We need hardly state that such a phenomenon would be quite improbable, and gram very interesting and instructive.

SCIENTIFIC FACTS AND SPECULATIONS.

Addressing a Glasgow society the other day-his subject being the relations of Science to religion-the Earl of Shaftes bury was pleased to be very patronizing to Science. No pos-
sible harm could come to his hearers' faith, he assured them, through the advancement of true Science. The speculations of scientific men might be misleading and mischievous, but facts never; and the function of true Science was simply the observation and registering of facts. Therefore, if he had the wealth of Glasgow, he would send fifty thousand pounds to Max Mitller to help on his explorations at the fountain head of Aryan civilization. 'The learned professor's opinions on many things were far from sound; nevertheless, he was doing good work and ought to be encouraged. For like rea sons, this champion of English orthodoxy would send another quarter of a million dollars to Professor Tyndall, and say to him: "'Accumulate your facts; I don't care about your theoies, but turn your powerful intellect to the pursuit of facts." The evil that men do lives after them; and probably the worst legacy left by Francis Bacon-that pretender in Sci ence, time-serving politician, insidious lawyer, corrupt judge, treacherous friend, and bad man, as Dr. Draper justly styles him-is this very theory of Science which Earl Shaftesbury echoes. According to this school of superficial thinking, the
man who turns his powerful intellect to the recording of the temperature of the air, the direction of the wind, and the state of the sky three times a day is a meteorologist worthy of the name; but the man who leaves the recording of facts to other men, or to automatic machinery, and busies himself with suggesting and testing hypothetical interpretations of the recorded facts is a mere theorist, not to be acknow ledged by " true Science." Similarly, the greatest astronomer is he who makes the greatest number of observations and discovers the most asteroids or comets ; the greatest geo logist, he who finds the most fossils. To seek the law within the law, by investigation guided by hypothesis,
one's right to the title of a true son of Science!
It is the fallacy of the French Academy, which rejected Darwin as an unscientific theorist because he turned from the blind accumulation of facts to the development of an hypothesis whereby to account for the facts. The very important truth that Darwin's hypothesis had given life to millions of otherwise fruitless facts, and still more had given purpose and direction to the observations of hundreds of naturalists,
thus accomplishing more for the substantial enrichment of natural history than all their Academy had ever done, was ntirely overlooked.
We are far from deprecating the accumulation of facts. No great truth was ever discovered without them, and the
masters of Science have ever been zealous in their pursuit. But their service to Science did not end in barren observa tions, nor were they made at haphazard. In every case where great discoveries were the result, point and purpose were iven to their investigations by hypothesis. Indeed, there an be no true inductive investigation without a marriage of hypothesis and experiment; and it is by such investigations only that Science has come to be what it is. The secret of the successful career of Faraday lies not less in his fertility in inventing hypotheses than in his patient observation and conscientious determination to prove all things. Without his genius for guessing, he would never have been able to add so much to our knowledge of electricity and magnetism. The first observer of the transit of Venus tells how he tried theory after theory, in order to discover one in accordance with the motions of Mars. So, too, Kepler submitted guess after guess, hypothesis after hypothesis, to computations of infinite labor, in determining the laws of planetary distance and motion. The writings of every great man in Science afford confirmation of the necessity of hypothesis in the pursuit of facts, as well as in the pursuit of scientific truths. But probally there cannot be found in the whole history of Science a more striking example of the worth of investigation guided by hypothesis, and the worthlessness of investigation without such guidance, than is afforded by the labors of Sir Isaac Newton. In his case we may see a great man studying chemistry, unaided by any theory : studying the phenomena of light under the influence of an utterly erroneous hypothesis: and again, incited by a bare suspicion that the attraction of the earth might extend as far as the moon, spending his ripest years mathematically testing hypotheses of the most st upendous reach, having for their object nothing less than the laws of the physical government of the solar system, if not of the Universe.
It is easy to imagine how a patronizing Earl of Shaftesbury, a brother alchemist, a Baconian philosopher, might have reproached him for wasting his precious ime in theoretical nvestigations, advising him to stick to his laboratory and bend his powerful intellect to the accumulation of facts. But what says history of the days and nights which he spent in his laborious chemical experiments?

While his hypothetical and deductive investigations have given us the true system of Nature, and opened the way in almost every one of the great branches of natural philosophy, the whole results of his tentative experiments are compre hended in a few happy guesses given in his celebrated 'Queries.' "
Aided by the insight into the principles of Nature which chemical theory affords, the student of to day is able to discover more useful facts in a year than Newton could in a ifetime. So it is in every department of Science; and though weak men are apt to mistake hypothesis for final truth, rest ing on it instead of using it as a means of further progress, the hypotheses formed by powerful intellects are the stepping stones of true Science, without which there could lee no advancement. If it were possible and necessary to confine our great men to one department of their work, we should therefore say, not "accumulate facts," but give us theoies. There are men enough, of smaller caliber, ond segister: men enough to test your hypotheses and to follow their lead; do you give us theories. The guesses of enius are more valuable than the demonstrations of medicrity.
Fortunately, however, there is no great need of such division of labor. Genius for sound hypothesis is very apt to be seconded by superior skill in devising means for subjecting hypotheses to the test of experiment

SEEING THROUGH COLORED GLASSES.

A child, or an adult not accustomed to critical observation, looks through a bit of colored glass, and straightway declares hat it makes everything green, or blue, or red, as the color of the glass may be. The first impression is that the glass somehow throws a flood of colored light upon the scene; and such, for many ages, was the universal belief.
The ancients explained the phenomena of sight by suppoing that the eyes shot forth rays which passed through space to the objects seen: that they saw by means of these rays, much as one might explore by touch the bed of a pond by using material rods. From this standpoint there could be no apter explanation of the action of colored media than to say that they changed the character of the rays proceeding from he eye, and so changed the aspect of the objects looked upon hrough such media. Nearly eight hundred years ago this view was shown to be erroneous by the Mohammedan philosopher Alhazen, who taught the true theory, since adopted by the christian world, namely, that the light proceeds from the object to the eye. The old theory is practically forgotten; yet its influence is still seen in common speech. To most people a colored glass colors a landscape by adding color to it, though it is well enough known that it really takes more or less away from the color of the several objects, r at least the most of them. Even educated people will say hat a green glass, for example, gives its color to objects seen through it. More than that, they will say, as Professor Clif ford does in his able essay on the Philosophy of the Pure Sciences, printed in a late number of the Contemporary Reriew, that a colored medium will give its color to ccerything. Thus: "If a man had on green spectacles, he would see verything green. And if he found out the property of his spectacles, he might say with absolute certainty that everything he saw, without exception, would be green."
Surely Professor Clifford can never have looked through a pair of green spectacles! It is equally sure that he could have given no thought to the actual phenomena of color in writing the illustration we have quoted, elee he qenta hqve
stayed his hand. Even if it were possible to make a glass which would be transparent to all green rays and opaque to all others, the asserted result would not happen. All things would not look green through it, but only those which emitted or reflected green light. All objects colored red, orange, yellow, blue, violet, or showing any combination of these hues, would furnish no rays capable of passing through the supposed glass, and would consequently look black, not green.

But the transparency of colored glasses is marked by no such exact chromatic limits, so that the effect of them is still less: likely to be as Professor Clifford assumes, as any one may readily see by looking through a pair of green snectacles. If the observer has paid but little attention to the matter before, he will be surprised to see how slightly the natural aspect of things is affected by the glasses. Still more will he be surprised to see how many objects show neither their natural tint nor the tint of the glasses, but a color bearing no apparent relation to either. We happen to have on our table samples of red, green, and blue glass. Probally the colors are as perfect as glass can be made to receive, yet neither specimen shows a pure color. For instance, all allow a little yellow light to pass through them; the green transmits blue rays quite freely, and the blue glass fails to arrest some of the red rays. Seen through the red and green together, the golden clouds above the setting sun show a pale canary-yellow tint, and so does a bright white cloud in another part of the sky. Through the blue glass, the golden clouds have a fainter hue, approaching orange, yet are distinctly visible. The clouds change to orange, then to red. No change can be observed through the green glass, save a gradual fading, the clouds becoming invisible when they have attained their brightest tint of red, the green glass being opaque to all rays below the yellow. Through the blue glass, however, the reddening sky grows purple, the final hue being exceedingly rich and beautiful. Through the red glass, the sky appears lurid, like the reflection of a great fire. The blue glass seems perfectly opaque only to green and vellow; the green is opaque to red rays alone, the red glass to green only. These observations give a clue to the changing hues of colored objects when looked at through the several glasses in bright daylight, a few instances of which may be cited to show how widely Professor Clifford's assertion varies from lact. The salmon-colored cover of the Contemporcary looks yellowish brown through green glass, and a dead brown through blue. Through the red it shows the palest possible orange tint. A yellow envelope shows a brighter yellow through the green glass, bright orange through red glass, through the green glass, bright orange through red glass,
and salmon color through blue. Some cherry colored silk appears a lustrous brown through green glass, pale pink through red, and an almost invisible purple through the blue. A piece of light blue silk appears a light drab through green glass, a pale brown through red, and bluish gray through the blue glass. A red spot in the carpet seems brown through green, pale red through red glass, and wint color through blue. A deep green band on a water pitcher shows lead color through the green, slate color through red, and brown through blue. Curiously, any color in the glass, instead of enhancing, as one would naturally suppose, the corresponding color in objects, invariably makes it less bright and clear. It is only as objects emit or reflect white light that their color ap. proaches that of the medium through which they are seen.

Single Rail Steam Towage on the Belgian Canals.
We learn from the Moniteur Industriel Belge that a sys tem of steam towage is about to be established on the Bourgogne canal, over a distance of about 150 miles. The tow path will be laid with a single rail weighing some 16 pounds to the yard, and fixed on traverses placed 3.2 feet apart. The locomotive has four wheels, two of which are placed directly along the axis of the vehicle, one in advance of the other, and two, one at either side. The former pair are directing, the latter driving, wheels. The directing wheels are grooved, and fit the rail: the others have rubber ties which give purchase on the macadamized road, and which press thereon only to the extent of 0.07 pounds per square inch. By means of simple mechanism, the weight of the machine may be thrown either upon the driving or directing wheels at will. In the first case the maximum and in the last the minimum of adherence is obtained, to suit the conditions of a loaded or an empty boat. A single road is to be used, with relay engines provided at suitable distances. Each locomo. tive tows one boat; and when a meeting takes place of two traveling in opposite directions, the engines change boats and retrace their paths.
This single rail system has already been satisfactorily tested for short distances on the Belgian Canals, and the projector,M. Larmangat, has obtained a government concession for its extended construction for forty years. The locomotives are to weigh 4 tuns each, and will travel at the rate of $3 \cdot 1$ miles per hour, with full boats carrying, a cargo of 150 tuns each.

Proposed Utilization of the Hudson River Sources.

The Legislature of New York, last year, ordered a survey in order to determine whether the immense accumulation of water on the great Adirondack plateau could be held in re serve and drawn upon as needed for State purposes. A report on the subject has recently appeared, from which we learn that this storage can be safely and economically effected. At the present time this waste, and is productive of much damage during the spring freshets. If confined, it could be obtained in sufficient quantities, when needed, to supply deficiencies in the river during the dry needed, to supply deficiencies in the river d
summer season for at least one hundred days.

THE UNDERGROUND RAILWAY, NEW YORK CITY. NUMBER VII.

Continued from page 402.
The centering for the great 68 feet arch near 95 th street shown in the engraving in our last article, page 402, was pu up and the arch turned while the trains were constantly passing and repassing beneath it. The centering was of itself a considerable work. In Fig. 17 we give an elevation thereof. It consists of a series of frames or ribs placed 5 feet 6 inches apart, from side to side. The back piece of the frame 6 inches apart, from side to side. The back piece of the frame
consists of two polygonal frames of boards 9×3 inches, so arranged that the boards of one frame break joints with those of the other, the joints, as usual, being in the direction of the
end of the back piece rests. The other vertical support, 10×6 inches, single, is placed nearer the center of the tunnel, and rises to the back pieces. The inclined shore, 12×6 incles starts from the foot of this lattershore, and rises to the under side of the horizontal tie, where it abuts against a straining beam 4×6 inches, placed underneath this latter. These shores are strengthened by string pieces, 2×9 inches, double, and rest upon a sill placed transversely to the axis of the tunnel. Under this sill, and resting upon longitudinal timbers, 8×6 inches, are the wedges (three sets for each end of the rib) by which the frame is keyed up. The laggings are 3 nch plank.
The frames are braced together by two beams, 8×12 inches, placed horizontally across the upper side of the horizot:tal tie placed horizontally across the upper side of the horizon:tal ti
the clear, and the hight 16 feet 8 inches. The arches are semi-circular. Their center is 36 feet east and west from the center of the central tunnel. This latter has a span in the clear of 27 feet; and as the side tunnels have each a span of 16 feet, we have, for the thickness of the rock walls separating the side and central tunnels, 14 feet 8 inches. The middle tunnel is unlined, but the face of the rock is trimmed off o a very fair degree of smoothness. The two side tunnels, however, are each of them lined with brick 16 inches thick, and the space between the rock and the brick filled in with concrete.
The ventilation is effected through circular shafts sunk ver the summits of these tunnels, at the usual distance part. These shafts are lined with brick 16 inches thick, apart. These shafts are lined with brick 16 inches thick,
and are 6 feet in diameter in the clear, and coped on top with

Fig. 17.-THE UNDERGROUND RAILWAY IN NEW YORK-CENTERING OF THE GREAT ARCH, FOURTH AVENUE, NEAR 95th STREET. radius of curvature, which, for the intrados of the 68 feet $/$ rib), placed, one along the backs of the vertical shores, and pene-hammered granite coping 10 x 18 inches, surmounted by span, is 44 feet 5 inches. The back piece is strengthened and prevented from spreading laterally by a compound horizontal tie beam, composed of four beams 10×3 inches, placed in pairs and joined a little to one side of the center by a spliced joint, as shown in Fig. 17. This tie beam is placed a little above the springing line. Quite close to the crow is also placed a straining beam, 6×6 inches, single, supported by two inclined struts, 8×6 inches, single. The long horizontal tie beam is connected with the back piece by one vertical and four in connected with the back piece by one vertical and four in-
clined ties, each composed of two pieces of timber which clamp the back piece and tie between them. The dimensions of the beams of the vertical tie, which is placed in the center of the span, are 9×2 inches, and those of two of the inclined ties, 9×3 inches. These ties are braced by single beams, 6×6 inches and 8×6 inches, placed in such wise as to convey the pressure on the back piece directly to the points of support of the frame. These supports are so arranged as to leave sufficient room for the passage of trains. They consist of three beams for each end of the rib, two vertical and one inclined. One of these, 6×6 inches, is placed upright against clined. One of these, 6×6 inches, is placed upright against
the abutment, a horizontal beam 3×5 inches, on which the
rib), placed, one along the backs of the vertical shores, and pene-hammered granite coping 10×18 inches, surmounted by
two along the backs of the inclined shores. On the outside an iron railing. During the excavation of the tunnel, these two along the backs of the inclined shores. On the outside an iron railing. During the excavation of the tunnel, these
of theselatter supports are placed inclined beams, 8×6 inches, ventilating shafts served also as working shafts, the headwhich bind the frames in sets of threc, the beam passing from ings being carried forward north and south from the bases of the foot of the shore of one rib across the middle of the shore : them, and the excavated rock raised to the surface by a small of the second to the top of that of the third rib. From here steam engine.
another beam passes to the foot of the sixth rib, and so on. The blasting was done in the most careful manner, the The ribs at the end of the tunnel, where the span is fifty charges in the neighborhood of the dividing wall being so feet and the radius of the intrados 31 feet, differfrom the ribs just described in that they want the vertical shores and the ties joining it with the back piece. The inclined shore in this case rises from the foot of the abutment.
The rock tunnels commence at 92 d street and extend to the north side of 94 th street, a distance of some 550 feet. It will be remembered that at this point on the road was the old rock tunnel. This tunnel now forms the large central tunnel, and on each side of it was excavated a single tunnel. The three tunnels as they now exist are shown in cross section in Fig. 18. The two single tunnels are 18 feet high from the railpoad grade to the top of the arched roof, and 18 feet 8 inches wide at the bottom: or, allowing 32 inches for the thickness of the two side linings, the span becomes 16 feet in

Fig. 18.-THE UNDERGROUND RAILWAY IN NEW YORK.-THE ROCK TUNNELS, FOURTH AVENUE, BETWEEN 92d AND 94th STREETS:

ROAD AND FARM LOCOMOTIVES AND STEAM ROAD

 ROLLERS.The newest types of Messrs. Aveling and Porter's steam road roller and road and farm locomotives are illustrated on this page, the steam roller particularly presenting many improvements when contrasted with the well known roller of provements when contrasted with the well known roller of
Messrs. Aveling and Porter's manufacture which has already been illustrated in the Scienifific American. As nearly as practicable, the steam roller is now made to conform in design and construction to the successful and extremely simple road locomotive of this eminent firm. The heavy turntable and steering apparatus of the old pattern roller is avoided, and the weight thereot is added to the rolling wheels, the $1 \frac{1}{2}$ inches, instead of $2 \frac{1}{4}$ inches, as heretofore. The durability of the wheels is thus increased twofold. One man only is required for the entire control of the roller, in place of two, and therunning expenses, including coal, oil, and wages, are by this arrangement reduced to six dollars per day for the 15 tun size. The consumption of fuel is less The consumpta style fuel is less han in the old style of roller; the boiler and engine are larger and more powerful; the number of wearing parts is fewer; and moreorer, the first cost of the machine is materially less.
Now that the steam roller has become a recognizerl necessity in the practice of good road making, this improvement and reduction in cost will be acceptable to the large cosmber of corporations the large number of corporations and conThe engraving of the road and farm locomotive is taken from one of Messrs. Aveling and Porter's recent manufacture. In general construction it does not differ materially from the engine of this firm which gained the first prize at the latest trials of traction eugines by the Royal Agricultural Society of England. In some of its minor details, alterations have been made which add to the success of the locomotive. Messrs. Aveling and Porter have built upwards of a thousand road and farm locomotives, and they have gained first prizes with them at the International Exhibitions of London, Paris, and Vienna.
The variety of uses to which these locomotives are applied, including plowing, thrashing, and the removal of heavy material, induces a large and extensivedemand, which has never been so great as at the present time. Mr. A. T. Stewart, at his Garden City, Long Island, has adopted the Aveling and Porter road locomotive, and $\mathrm{i}+\mathrm{s}$ success has been remarkable in plowing, thrashing, hauling, and the uprooting of large
trees. Mr. Hinsdale, Mr. Stew. trees. Mr. Hinsdale, Mr. Stew-
art's manager at Garden City, art's manager at Garden City,
speaks very highly in its praise. Messrs. Aveling and Porter's agent in New York city is Mr. W. C. Oastler, 43 Exchange Place. Gas from Sewer Refase.
A novel and apparently im portant utilization of sewage portant atilization of sewage has recently been successfully put in practice in Breslau, Ger many. Mr. Alfred Sendermann announces that from this waste he has obtained an excellent illuminating gas, and this on a scale sufficiently great to warrant the belief that the plan might be extended to meet the requirements of large communities.
The apparatus, which is built underground, consists in a large reservoir in which the material is collected and thence run off to re torts located at a still lower level. The gas is here generated in the usual way, and conducted to a tar cistern and then to a condenser. The purification is effected by milk of lime, and finally by pas sage through clean water.
The gas thus obtained is said to burn with even a brighter flame than that made from coal. Its odor is slightly acid, but not at all disagreeable.
The common residues, such as coke, tar, and fatty matter, are inodorous and perfectly utilizable. The cost of the apparatus is no dearer than that of the ordinary description, while the expense of the product is necessarily less than that of coal gas. 'There is no disengagement of bad odor from the factory. If these claims are legitimate, several important sanitary problems will be solved by the in vention.

AVELING AND PORTER'S ROAD LOCOMOTIVE.

He suggests that every boy, while he is acquiring a knowledge of the arts, sciences, and modern languages, should become practical agriculturist and master of some useful trade, and that the girls should be instructed in all the practical duties of the household, understand and become familiar with the chemistry of the kitchen, and made to master the
art of making every article of a lady's wardrobe, and also that ther learn bookkeeping, banking, telegraphy: photograthat city $\$ 100,000$ for the establishment of a free industrial
phy, or any other occupation that is within the measure of phy, or any other occupation that is within
their strength and adapted to their tastes.

The Overworked Man of Business.
The London Sanitary Record, in an interesting article on "Overwork," gives the following graphic picture of the business man who is overtasking his powers:
" Sooner or later he finds that his day's work has become an effort, a toil rather than a delight; the last hour has become a strain only maintained by determination; a sense of exhaustion and fatigue envelopes his closure of the day's work, and the last columns of figures have presented difficulties hitherto unknown, and the last pile of letters has seemed mors trying than of yore. Anything new, of an unwonted character, making special demands upon the
higher faculties, becomes arduous higher faculties, becomes arduous and distasteful, revealing the fact that the higher powers are first commencing to give way, to announce their inability; while the more routine matters, which have almost become automatic or even almost become automatic, or even habitual, can still be effectively discharged. But in time even these lower processes are affected,
and the last half hour at the office and the last hulf hour at the office is a distinct trial, and is followed by a new sense of exhaustion. There is a certain amount of irritability combined with the sense of exhaustion, that irritability which is ever found along with the exhaustion of nerve matter; this irritation, sometimes almost this irritation, sometimes almost the commencement of nervous exhaustion and failure. While work seems to become more irksome. the usual sources of pleasure no longer afford their wonted solace and satisfaction. There is a hightened susceptibility to any little trivial annoyance, domestic mat-

ters are felt more keenly, the din-
 aVELING AND PORTER'S STEAM ROAD ROLLER.

of some 25 feet. Submitted under these new conditions to a
much higher pressure than before, the fish, to counterbalance the same, augmented the quantity of gas contained in the the same, augmented the quantity of gas contained in the
natatory vessel. Analysis of the gas then showed an increase in oxygen to 25 per cent, showing that the cause of the augmentation was cleurly a secretion of that gas in a pure state.

A Noble Bequest

Ex-Mayor T. M. Allen, of Hartford, has offered to give
ner is not so satisfactory, th ry, the children are noisy; the more necessity for rest, and the more distinct the craving for comfort and quiet, the less seems forthcoming. There is an emotional exaltation which reveals the irritability of the exhausted nerve centers; the newspaper is stupid and uninteresting, the piano wants tuning, servants are deteriorating, children are less obedient, and wives less sympathizing than of yore. The mind is as sensitive as is the skin after a blister; the slightest touch produces pain."

The Sandy Hook Ordnance Experiments.
The experiments with the ten-inch Rodman smooth bore gun, which has been altered into an eight-inch rifled piece by the insertion of a wrought iron core, are still in progress at Sandy Hook. It is intended to subject the weapon to the test of 500 rounds; and up to the time of writing, 400 rounds have been fired. The charge used is 35 lbs. hexa. gonal powder, with a Butler projectile weighing 170 lbs . At the 363rd round, the pressure in the bore was $25,500 \mathrm{lbs}$. per square bore was $25,500 \mathrm{lbs}$. per square
inch. Careful examination with inch. Careful examination with
a star. gage, an instrument capaa star gage, an instrument capa-
ble of noting changes in diameble of noting changes in diameter of the bore of $\frac{1}{1000}$ of an inch, fail to show the slightest varia ,tion, and the gun is apparently as strong as when first fired.
It is intended to continue using the piece after the 500 th round, until bursting takes place, in order to determine the limit of strength. These results are of strength. These results are of
the highest importance, since, if the highest importance, since, if
the success thus far encountered the success thus far encountered
is continued, some 4,000 smooth hore guns, now in government possession, will be fully trebled in value and efficiency.

Amalgam Fillings for 'resth

 " As a durable filling, amalgam can be used," says Dr. A. C. Castle, " in cases where other metallic fillings cannot be applied. Their use has been on the increase for very many rears; and where formerly only grains were sold, our most distinguished dental depots now monthly sell pounds of the best American prepared amalgams.Opposition to their use is made by those only who seek to obtain fabulous fees for gold fillings, which cannot be obtained for these, and hence appropriate to themselves the title of "the best dentists." In the appropriate places I have of "the best dentists." In the appropriate places I have
used amalgams for forty years past. No injury, above elecused amalgams for forty years past. No injury, above
.ro galvanic artion, has been done by their presence."

finishing locomotive wheels

It has of late years become the custom-and a very good timately brought into contact with the material, and that one too-to bestow much greater care upon the finish of lo- plentiful supply of rinsing water be at hand. To this end comotive engine wheels than was formerly the case, and, as a the washing machines are constructed with several cylinders, result, several special machine tools have been introduced for the purpose of trimming off wheels, which in Europe are universally f wrought iron, and thus saving hand labor.
We illustrate a machine for this purpose by Mr. F. W. Webb, loco motive engineer to the London and Northwestern Railway Company. It is a curvilinear slotting machine, and the tool is mounted in a holder provided at one end of a vibra ting lever, the oth ar end of this lever leeing slotted, and being fitted with a sliding block, into which the pin of a disk crank enters. As the crank disk re volves with its up, per edge approach ing the fulcrum of the lever, the ef fect of the arrangement is to give the tool holder a slow downward and a quick return stroke. The point of the tool, of course, describes an arc of a circle struck from the center of the vibration of the lever, thereby producing a convex form on the inside of the tyre, ant so giving addi tional strength to the rim. The wheel bed plate is revolved by suitable automatic mechanism, as shown, somewhat similar to the devices ordinarily emploved in planing machines. Provision is made for wheels of any diameter, by means of the crank and screw shown on the right of our engraving.

WOOL WASHING MACHINERY.
In scouring wool, the operator has to insure that a con-

WEBB'S WHEEL FINISHING MACHINE

ciency till last rear, when Messrs. J. \& W. McNaught, of Rochdale, England, exhibited at Vienna the machine of which we publish an engraving.
Fig. 1 represents the machine, used as a single self-acting wool washing apparatus for smaller quantities of wool, while Fig. 2 shows the transferring apparatus provided for carry ing the wool from one washing reservoir to another in a series of machines. The arrangement of the working part of this apparatus will be easily understood from the engrav motion of the wool, and the points of the rakes are through one half the curve in connection with the wool, and travel forwards, while they rise above the wool and travel backwards through the second half of the curve. The rakes which carry the wool forward through the troughs are similarly arranged; aud at the point of contact of each of the curves described by the four systems of rakes, as shown in Fig. 1, fixed rakes are provided, through which the wool is pressed on one side and caught on the other side by the descending rakes of the next system,

a continuous travel of the wool being thus effected. Returning to the arrangement for transferring the wool from one trough to the next, it will be seen from the sectional view of the transferring apparatus that the last system of rakes carries the wool on to an inclined plane, through which the small rakes, C,C', C, project; these latter hold the wool on the inclined plane, B, when the points of the rakes, A, have to travel lackwards. From B, the wool is taken off and carried forwards by a separate apparatus, H , to which a curvilinear motion is also given by the cranks, I, and the rod, K. The rollers, M, M, M, M, carry the material between the squeezers, F , from which it passes either over another roller, as shown, into the following reservoir, where it is at once caught by the rakes, D, worked by the crank, 0 , and the rods, n and m, or over a second squeezer or pressing roller to the dry ing machine, as shown in Fig. 1.
'This apparatus for getting the wool fromone reservoir into the other, or from the last reservoir through the squeezers to thedrying marhine, is well designed, and fulfils its purpose perfectly, while the mode of forcing the washing fluid from one reservoir into the other a jet of steam is very simple, and also gives most satisfactory results.
The inventors provide the self-acting machines (says Engiucerin!, from whose pages we extract the engraving) with a feeding cloth and a brass revolving immerser. The squepers have wrought iron shafts $4 \frac{1}{2}$ inches in diameter, and are covered with hemp or wool, and the fixed rakes are adjustable.

NEW SWIMMING BATH IN LONDON.

The public baths and washhouses are a feature in the life of English cities that is worth attention In many of them a bath, with clean towels, etc., can be obtained for two cents; and hot water, use of tubs, and all necessaries for washing linen can be had for two cents an hour. One of the larges of these estallishments belongs to the parish of St. Marylebone, and is situated in Seymour Place. It possesses ac commodation for some hundreds of bathers and washers, and is very largely patronized.
An important addition has recently been made to this es tablishment in the form of a large and handsome swimming bath, of which we present an engraving, extracted from the London Builder.
The length of the bath room is 85 feet, and the width 41 feet, the hight being 28 feet from the platform round the bath to the apex of the roof. The dressing boxes, averaging 4 feet 3 inches long and 3 feet 6 inches wide, are contained along the sides of the room in recessed arched openings. All the fittings of these boxes are of ebony, and the metal work is electro-plated. 'The arcading is continued along the end walls, but the recesses here are filled in with ornamental tile work. 'The piers of the arches have each three panels, filled in with blue hand-painted tiles, with variously designed representations of birds, fishes, and water fowl. The roof is supported by cast iron semi elliptic ribs, ornamented with gilded scroll work panels.

The size of the bath itself is 26 feet by 73 feet, and the depth of water 4 feet 6 inches, shelving down to 6 feet. The spring diving board is 4 feet above the water, but there is another diving board 5 feet higher than this one.
The bottom and sides of the bath are covered with glazed tiling, in variously designed patterns; and the hand-painted tile border above the water line, 21 inches wide, represents the appearance of an aquarium, with fishes and rockwork.
The whole of the interior of the building is decorated with Pompeian ornament. Mr. Raymond Smith is executing the marble fountain, which will be placed at the east end of the bath. The architect is Mr. H. Saxon Snell, and the cost of the building was $\$ 21,250$

The American Centennial Great Exhibition.
The Financial Agent of the Centennial Board, Ex-Gorernor Biglow, of Pennsylvania, recently made a speech at Norwich, Conn., upon the prospects of the Centennial, from which we take the following interesting particulars:
The Board accepted the refusal of Congress to grant money as an intimation that they must rely upon private capital or State aid to carry forward the project, and on this basis they have zealonsly devoted themselves to the work of raising funds, with much success. But they will make one more attempt in Congress to get money from the public treasury in the shape of payments for premiums, police guard, etc.
"I an conficlent that you must feel especial interest in the present status of this great enterprise, and I shall give it to you in as few words as practicable. The buildings are an art gallery, covering $2 J$ acres, a main exhibition building, covering 20 acres, a conservatory of $2 \frac{1}{2}$ acres, a machinery hall of 12 acres, and the agricultural department of 5 acres, making a total of 42 acres, which, with the space occupied by the zoölogical garden and the cattle pens and grounds for the agricultural tests, will make a vast show. Some months since, the art building and the main exhibition building were contracted for, and the inner walls of the art building are up to the square, and the granite will be all put up during the coming winter; and its completion in time is fully assured The foundation of the twenty-acre building is nearly completed, and the glass and iron are being prepared with satisfactory expedition, and its completion within the time prescribed may be confidently relied on. The conservatory and the machinery hall will be contracted for within a few days; the agricultural department, which can be completed within a few months, will be commenced in the spring. I say, further, there is nothing in the financial condition of the Board of Finance to interfere with the progress of these buildings. The State of Pennsylvania and the city of Philadelphia have provided for the art gallery ; the city for the machinery hall and the conservatory; and the sulscriptions to the stock, al ready secured, amount to about $\$ 2,000,000$, which sum, with what we expect to get from Connecticut and the other States, will be applied to the main exhibition building and the agricultural department. So you seethat the great problem of the
buildings is solved. The next inquiry that naturally arises is: Will there be anything to put into these great buildings? I answer, unhesitatingly, an abundance. The space already applied for decides that question affirmatively, and eighteen months still remain before the opening. I know that the Director General, A. T. Goshorn, is already impressed with the great difficulty of restraining the exhibition, that is, to restrain it in quantity so as to elevate it in kind. I have myself, within a brief period, visited all the great cities of the country, and witnessed the exhibitions at Cincinnati, Chicago, Indianapolis, St. Louis, Louisville, Philadelphia, and Yew York and have rathered some knowledge of the public feeling; and I feel that I am warranted in saying that public feeling; and I feel that I am warranted in saying that in the department of machinery and of the useful arts
generally, and in that of manufactures and natural producgenerally, and in that of manufactures and natural produc-
tions, the display will overshadow all its predecessors. The prospect of attendance and display from foreign countries is brighter by far than the Commission had anticipated. The following countries have formally and favorably accepted the invitation of the President to be represented and take part in the coming international exhibition,to wit: Germany, France, the Netherlands, Belgium, Sweden, Norway, Spain, C'anada, Liberia, the Sandwich Islands, Japan, Honduras, Ecuador, Hayti, A Chili, Mesico, Ecuado, While Great Britain, Austria, New Zealand, and the Australian islands have adopted no official steps as to ministers, commissions, or appropriations of mone?; the Director General is in posséssion of trustworthy information showing that each one of the governments of these countries intends that its subjects shall take part in the exhibition. In ten of the countries named, commissioners have been appointed to care for the articles to be exhibited, and in seven or eight it is known that handsome appropriations have been made to defray the necessary expenses.
I wish I had the precise utterances of Baron Schwarz-Senborn, delivered at Philadelphia a few days since, as to the value of the late Exposition in Austria. He said that manufacturing had received a strong impulse, and that new and special branches had sprung up in and about Vienna; that looked at from this standpoint, the exhibition had been a most judicious investment. I cannot doubt that the Exhibition of 1876 will prove so to our country, for while we may have lessons to impart, there are many more we should accept."

Professon Watson, at present one of the members of the transit of Venus expedition for this country, has found a new asteroid. This makes his seventeenth discovery of the same kind.

The Brooklyn tower of the East river bridge was completed on the 16 th of December. Its total hight is 268 feet. It is very imposing in eppearance; we hope it will not prove a tower of folly.

ASTRONOMICAL NOTES.

Observatory of Vassar College

For the computations of the following notes (which are approximate only) and for most of the observations, I am indebted to students.

Positions of Planets for January, 1875. Mercury.
On the 1 st of January, Mercury rises at 7 h . 4m1. A.M., and sets at 3 h .53 m . P.M. On the 31st, Mercury rises at 7 h . $5 \% \mathrm{~m}$. A.M., and sets at 6 h .4 m . P.M.
Mercury and Saturn will be in conjunction on the morning of the 27 th, and must be nearly together in the evening; but they are so far south in declination, and set so early, that it will not be easy to see them.

venus.

Venus should be looked for in the morning, being west of the sun after the transit.
It rises at $4 \mathrm{~h} .56 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. on the 1 st , and sets at 2 h .46 m . P.M. On the 31st, Venus rises at 4 h .13 m . A. M., and sets at 1 h .01 m . P.M.
Venus attains its greatest brilliancy on the 12th, at which time it passes the meridian a little after 9 A.M., at the low altitude of $: 31^{\circ}$

Mars

On the 1st, Mars rises at 2 h .18 m . A.M., and set.s at 0 h . 47 m P.M. On the 31 st , Mars rises at 1 h .50 m. A.M., and sets at 11 h . : 88 m. P.M.
The apparent diameter of Mars is now very small, and its southern declination is large; of course it is not a good time for making olservations on the planet.

Jupiter.

Although Jupiter's relative position is becoming better, it is yet not very favorable to observers. Jupiter rises on the 1 st at 1 h . 41 m . A.M., and sets at 0 h .29 m . P.M. On the 31st, Jupiter rises at 11 lh .53 m . P.M., and sets at 10 h .35 m . the next morning. It can be beautifully seen at early morning.

Saturn.

Saturn, also, is far south in declination, rises in the morning, and sets early in the evening. On the 1st, it rises at 9 h .24 m . A M., and sets at 7 h . 10 m . P.M. On the 31 st , it rises at 7 h .36 m . A.M., and sets at 5 h .30 m . P.M.
Saturn and Mercury are nearly in the same position near the last of January.

Uranus.

Cranus is in northern declination among the small stars of Cancer. On the 1st, it rises at 7 h .18 m. P.M., comes to meridian at 2 h . 22 m . in the morning, and sets at 9 h .26 m . On the 31 st , its position is very good. It rises at 5 h .15 m . P.M., comes to meridian about midnight, at an altitude of 66°, and sets at 7 h . 25 m . the next morning.

Neptune.

Neptune is too far off to be seen without the aid of good telescopes. It rises at 0 h .29 m . P.M. on the 1 st , and sets at 1 h .35 m . the next morning. On the 31 st , it rises at 10 h .31 m . A.M., and sets at 11 h . 37 m . P.M.

Meteors.

Very bright meteors were seen on the evenings of December 11,12 , and 15 . One which passed from the zenith to the southwest, at 8 h .27 m . P.M. on the 11 th, was so large as to attract the attention of persons who occupied a brilliantly lighted room.

Sun Spots.

'The record is from November 16 to December 16 inclusive. The photographic picture of the 16 th shows the group of spots seen on the 14th, consisting of several very small spots. The next picture was taken on the 19th, when one large spot appears near the place where we should look for the group. Clouds prevented photographing again until the 25th, when a large spot was seen near the center of the disk, preceded by a smaller one. On the 26th, no change took place, except that caused by the sun's axial motion. From this time until Decem. ber 10, on account of clouds and wind, but three pictures were taken, and no spots were observed except a very small group on December 4. December 10, a group of good size appeared, of which five photographs have been taken, showing marked changes during its passage across the disk. The picture of the 10th shows three spots of moderate size just within the eastern limb. On the 12th, the most westerly of these was surrounded by small spots arranged so as to form nearly a complete circle. On the 15th, the group consisted of five distinct spots of good size. On the 16th, no change.

GLUE.

During the progress of a recent investigation, 1 observed," says S. Dana Hayes, in the Americun Chenist, "some chemical characters of commercial glue, that I believe have not been previously described.
Analyses of two samples of white glue, of the best grade. yielded the following results :

	$\begin{aligned} & \text { "Yo. } 1 \text { ex- } \\ & \text { tra C." glue. } \end{aligned}$	Frozen glue.
$\begin{array}{llll}\text { Moisture (loss of weight at } 212^{\circ} \text { Fah)... } & 16 \cdot 70 & 16: 28\end{array}$ Gelatin, with a little animal fiber and		
fats.	79.85	$80 \cdot 42$
Carbonate of lime.	$1 \cdot 42$	$1 \cdot 33$
Sulphate of lime.	$0 \cdot 41$	$0 \cdot 34$
Plosphate of magnesia	$0 \cdot 35$	0•31
Alkaline salts.	$0 \cdot 17$	$0 \cdot 12$
Silica, oxide of iron, etc	0.09	$0 \cdot 08$
Oxide of zinc.	1.01	$1 \cdot 12$
Total.	$100 \cdot 00$	$100 \cdot 00$

Analyses of ten more samples of frozen and sheet glue, of common grades, and from different makers, showed the pro portion of water contained in them to vary from fourteen to proportion of ash or mineral matter varied from three to six
per cent, averaging rather less than four per cent. Two of
these samples contained about one per cent of white zinc, these samples contained about one per cen
and two of them contained sulphate of lime.
" Analyses of two samples of commercial gelatin averaged sixteen and a half per cent of water, and $2 \cdot 56$ and $3 \cdot 11$ per cent of ash, respectively. There was no oxide of zinc or sulphate of lime in these gelatins.
The presence of so much water was quite unexpected; and as the quantity is nearly the same in fresh and in seasoned specimens, it is not a make-weight, although steam is very freely used in the rooms where glue is packed by the manufacturers. The carbonate of lime comes from the quick lime used for cleaning and preserving the animal matter, or glue used for cleaning and preserving the animal matter, or
ghile the sulphate of lime is formed by the addition of small quantities of sulphtric acid during the process of manufacture, to neutralize the lime that is carried forward by the solutions of glue. The oxide of zinc is said to be added to prevent souring, or the acidity caused by decomposition, and it also improves the color of the glue; but it is not very generally userl, as these analyses indicate. I have hearl of the use of sulphate of rinc, alum, magnesia, etc., by gluemakers, but I did not find any other substance than those named above in these specimens, which represented the article commonly sold and used.
The impure glues, or those containing the most mineral matter, became almost insoluble after they had been broken into small pieces and heated in a hot air bath (copper oven) at 212° Fah., for two or three hours, until they ceased to lose weight ; they then soften and become dough-like, but do not dissolve when boiled in water for some time. The purer gelatins were not so much injured, and one specimen, containing only 2.56 per cent of ash, was not materially affected by this thorough drying. The solid sheet glue, while drying in this way, tumefied, and became very porous: the frozen glue did not alter in structure.
The conclusions drawn from these experiments was that the excess of lime combines with the gelatin and, perhaps, with the extraneous animal matters of the glae, at the high temperature, forming a compound like lime soap, as the whole quantity of lime is retained in the insoluble portion left after boiling the dried glue in water. Such an explanation accounts for the difference noticed in the effect of drying upon gelatin and common glue."

Inventions Patented in England by Americans.

From November 2 to November 26, 1874, inclusive. attaching Teapot He ndeles, exc.-Tiffany \& Co., New York city bale tie.-W. Cooper, Tyler, Texas.
barrel.-A. Mason, New York city.
boorts and boot Making Machinert.-F. D. Ballou et cul. bontom, Mass, Carburetting Air.-T. B. Fogaity, Warten, Mabg Chemical Telegraph, etc.-W. E. Sawyer, Washington,
Distilled Water,-W. A. Lighthall, Brooklyn, N. Y. Drain Piprs, etc.-H. Hirsch, New York city. Dress Protector.-C. Murphy, Camden, Me. Fastening Buttons, etc.-Z. K. Young, PTilladelphia, Pa
File Cutina Machine.-C. Vogel, Fort Lee, N . File: Cutting Machine.-C. Vogel, Fort Le
Fish Joint.-J. Hampson, Newburgh, N. Y. grinding and Polishing Machingry.-J. h. V
Ironivg Machine.-T. s. Wiles, jew York city. Roning Machine--T. S. Wiles, New York city.
Lemting GAs.-H. B. Stockwell at al., Brooklyn, Loom Wret Stop.-J. J. Switzer, Boston, Mass. Mrcianical Toy.-W. A. P. La Grove (of N. Y. city), London, England. Nobing Device for Animals.-W. Crighto
Pianoforte.-A. Stelnway, New York clty.
Pianoforte.-A. Steinway, New York city.
Preparing Textile Fibers.-H. B. Meech (of N. y. city), London, Eikg. Ratchet brace.-J. W. Evans, New York city.
Reaping and bundingg Grate -E. Horton, Hattford, Conn.

Rotary Motor and Plisp.-- J. H. Field, Edgelield, Tenu.
swing Machine.-Singer Manufacturing Company, New York city
Spinning Machinery.-G. Chatterton, Providence, R. I.
Stray Engine.-T. L. Jones, Natchez, Miss.
Stociing Darner.-O. S. Hosmer, Boston, Mase.
Stopper.-N. Thompson (of Brooklyn, N. Y.), London, England.
Street Lamp.-E. Parkman (of Madison county, Tenu.), London, England. Trlegraph.-W. E. Sawyer, Waahington, D. C
Trimang Wall Papers.-H. L. Todd, Corning
Trimming Wall Papers.-H. L. Todd, Corning
Tyreson Wheis.-E. Mellon, Scranton, Pa.
Water Meter.-F. W. Brooks, New York cits

NEW BOOKS AND PUBLICATIONS

$\$ \mathrm{~s}$, gold) a year. London: J. Van Voorst, 1 Paternoster Row. During the past three or four years, the Chemical Society of London ha oen engagedin an undertaking which deserves the support and recognition
of all who are interested in the progress of physical, and especially chemical, science. For the past few years of its existence, the society published quarwhich had been read at the meetings. Afterwardsit was found deslrable to issue the Journal monthly; and this form it retained till the year 1871, when, with the add of funds, partly derived from voluntary subscriptions by the Fellows of the Society, partly froma subsidy recelved from the British Assoclation for the Advancement of sclence, the society undertook the task of printing, not only every memoir on chemical or allied physical subjects published either at home or abroad. The monthly Journal of the Chemical society thus becomes complete chronicle of the progress of chemistry all over the world. Taking the last number of the journal, we find that the 100 pages of which it conslsta contain about 150 abstracts of papers taken from seventeen different journals,
including the Annales de Chimie et de Physique, the Comptes Rendu ncluding the Annales de Chimie et de Physique, the Comptes Rendux of th
Frencl Academy, the Berichte of the Berlin Chemical Society, Poggendorff Annalen, and the Journal fur praktische Chemie. The student of theoret cal chemistry or the manufacturer, the mineralogist, the physiologist, or the sclentilic agriculturist, may here find a complete and yet concise record of all that has been lately done in the department in which he is specially interested We trust that sulhanimpr ground for want of support
The Polarization of light. By William Spottiswoode, F.R.S.
william spottiso is the Vice-Presidn of the R A A Sor Place. Mr. Willam Spottiswoode is the Vice-President of the Royal Soclety; and
athough an amateur, is widely known as a profound and accomplished clentist. The book before us (No. 6 of Messrs. Macmillan's excellent packe ieries) contains the substance of lectures delivered to the work
people in the employ of Messrs. Spottiswoode \& Co., printers, etc. The ranch of optical science herein treated is clearly elucidated, and its great mportance in technology and its beauty as a
demonstrated in forcible and pleasing language.

Tables for the Determination of Minerals by their PhysiCal Properties, etc., for the Use of Students in the Field. Frazer, Jr., A.M., etc.
We have here an exceedingly useful and compendious gulde for explorers, is at hand. The ene to pronounce on substances in situ, where no laboratory his aim has been throughout to render the science of mineralogy as clear and accessible as its complicated nature will permit. The translator's work has faithfully and intelligently.
insects of the Garden, their habits, btc. by A. S. Packard, Jr., Editor of "The American Naturalist"" etc. Also (by the
same Author) Insects or the Pond cents each. Boston, Mass.: Estes and Lauriat, 143 Washington street.
Two numbers (of twelve) of a moss interesting serles of handbooks of natu-
ral history. We commend them especially to the notic THE STO
The Stone Age, Past and Present. By e. b. Tyler, Author of "Primitive Culture," etc. And "Theory of a Nervous Ether," Estes and Lauriat, 143 Washington street.
The first of these essays is an interesting treatise on the use of stone fimple nents in all ages, and it points out, some forcible instances of the survival of he use of such tools to this day. The second paper is a resume of the theo-
des on a subject whith has been widely and discursively treated, with som original speculation on the supposition, which has long engaged the attention f the eminent author.
Registler of Rural Arfatis. Price 30 cents. Abbany, N. Y.:
Luther Tucker \& Son. Luther Tucker \& Son
Messrs. Luther Tucker \& Son. Publishers or the Albany, N. Y., Culuma-
ror, havelssuedtheir illustrated Annual for 1875 in a very attractive form. It contains a large number of engravings of interest and use to agriculturists, and is full of practical suggestions and directions of importance to horticulturists and fancy gardeners.
The International Review. Sis. Six times a year. New York: A. S. Barnes \& Co.

The number for January and February contains several valuable articles. Dr. McCosh, President of Princeton College, revlews the late utterances of Professor Tyndall, about the potency of matter, and shows the weak points
of his reasoning. Professor Vogelgives an articleon Baron Lichig, Profes or Hart discusses the proposed Centennial Exhibition and that of Viennar
The Chemist's and Dhuggints Diaity for 18\%\%.
A useful and conventent form of dlary. published by the proprietors of our annual Report of the 'Treasurer of the United Statis the Secretary of the Theascry, for the Fiscal Year ended June 30, 18\%4. Washington, 1). C.: Government Printing Office.
Mr. Jasiss Vick, one of the largest seed dealers of Rochester, N. Y. has
just published the tirst number of his FLoril Guide for 1875. This is a coorl just published the first number of his FLoril Guide for 1875. This is a goodl
sized magazine, beautifully y illustrated, and containing descriptions of the
best best flowers and regetables, with valuable directions for culture. It is issucd price of twenty-five cents a year.
The docble Centery calemar and shicate note book is the title of a pocket volume forwarded to us by Mr. C. W. Younggren of Amboy, III. The silicate part is use
known watch concern.

DECISIONS OF THE COURTS.

United States Circuit Court.--District of Massachupatent ege beater.-edinis p. Monroe co. the dover ntamping com PANY.
[In equity-September 3, 1874.]

United States Circuit Court.---District of New Tersey.
 [In equity.- Before Nixuil, Judge.]

 [C.A. Durfin and J. Mareselan for complanants.

heton diatite company.
 :
 $\mathcal{W V E V G =}=\mathrm{Fam}$

IE.W: Rond for connalanant:
REPEAL OF PATENTS.--OPINION OF THE ATTORNEY GENERAL.
The following letter of the Attorney Cieneral is of great interest to patentees and the legal profession, as it contains an annouucement of the princi-
ples which will control the Government in the matter of its joinder in suits to repeal patents:

ตvquvavavevivis $=\mathrm{GVGG} \mathrm{G}=\mathrm{z}$ $=\mathrm{mam}=\mathrm{mam}$

gecent Samerican and foreigy watents.

Machine for Rolling Blanks for Nut Bars.

 George Johnson, Haverstraw, New York.-This invention consists of a revolving clearer having notches in its periphery, in combina-tion with a pair of rolls for rolling notched bars. The notchesof the clearer correspond to the notches in the rolls for forming the hex agonal nuts, so as to mesh with the notches in the soft, hot fron as it is received and discharged by the clearer.

mproved Water Elevator.

Henry M. Sweet, East Haddam, Conn.-The shaft passes through box flange which is attached to the brake lever. This box flange is
made to slide in a slot of a curb sufficiently to throw a pinion out of gear with a wheel. The pinion is thrown out of gear, at the same the that the brake is applied, by manipulating a lever, by means of which

Improved Garter

Samuel Chard, Mianus, Conn.-This consists of an outside spring band and an inside adjusting band, severed at one point, and conference than the limb which it is designed to clasp. It is placed over the top of the stocking, and exerts, through the spring band, a gentl

Securing Handles to Burial Caskets.

William S. Wood, Newtown, N. Y.-An ear plate extends from one end to the other of the handue, and is of some ornamental design. stay plate is placed on the inside of the casket and is secured by crews and nut rivets having square shanks, which pass throug are riveted thereto to keep them in place lefore the handles are are riched. The stay plate extends down through the case to near the bottom with a rib on its outer side, and has a tendency to stiffen the side of the case and keep it in shape when lifting upon the handles

Imporved Voltaic Battery

Dr. Robert Arthur, Baltimore, Md.-This invention relates particu-
arly to an improvement in the mechanical construction of the batteries kuown as the Bunsen or carbon and the Grove, although it is applicable to other forms. The invention is the result of difficulties encountered in the employment of these and other well known bat teries for running a mall cectro-magnetic engine, and for operating filling teeth. The battery is composed of the following element namely: An outer jaw or cylinder with lower end closed, having groove or depression in its bottom containing mercury; an inner bon plate provided at the upper end with a platinum tube, and frag ments of zinc in suitable quantity, the latter being placed in the a

Improved Mooring Attachment for Buoys.

Henry Brown, Charleston, N. C.-The object of this invention is
to provide a means of replacing the worn out loops of buoy bottoms to provide a means of replacing the worn out loops of buoy bottoms
and ballast balls, without the expense, time, and trouble usually inand ballast balls, without the expense, time, and trouble usually in-
volved in the repair of the same. It consists in making the bottom plate of the buoy with a pocket, which receives a detachable mooring link, to be fastened therein by a keyed bolt. It also consists in
casting the ballast ball with two holes, which intersect eacch other at rightangles at the center, one of which said holes receives the tapering shanks of two loops, and the other a bolt which passes through
the said shanks and locks them.
Improved Water Piston for Hydraulic Presses. Jraulic piston formed of the usual packing rings, so united with a cut and an elastic ring that u very durable and efficient piston is ob tained, while the cost thereof is comparatively sinal
Improved Car Coupling.

Improved Car Coupling.

Ezra N. Gifford, Cleveland, O.-This invention relates to certain im provements in car couplings, and it consists in the peculiar construc ests the end of a cross bolt, by means of the peculiar conformatio position, and the danger of its loss obviated. It consists also in the inclined shape of the shoulder upon the front of the coupling catch; and the mode of locking the short cross bolt by embedding its bent end in a recess in the drawbar, whereby the suid bolt is protected from incidental knocks, is always kept in place, and is easily detach the drawbar in combination with the coupling catch and bolt.

Improved Velocipede for Picking cotton.
Charles and George E. Hess, Huntsville, Ala.-'This invention rewith the least possible labor to pick cotton from the pod or and and place the same within a bag, the said picker and his bag being supported relatively to each other during the whole operation, while the bag is readily conveyed along from point to point without manpulation.

Improved Gas Cooking Apparatus.

Thomas Peacock, Wood Green, Eng., and John C. Peacock, Fins bury Park Road, Eng.-This invention consists in ec nomizing the
heat derived from a combustion of gas by preventing the walls, top, heat derived from a combustion of gas by preventing the walls, ton and bottom of stovefrom radiating the heat generated within the of air, while the products of combustion are drayn off at the lowest

Improved Bracket for Dentist's Chair.

George W. Gray, Albany, Oregon.-A slotted plate is attached to joint, so that it can be inclined in any position, carrying with it sleeve in which slides an upright tube. The last is held as desired by a set screw. A T joint is attached to the top of the upright through which passes a sleeve which slides on a feather. On the end of the end of which is a ball and socket joint. The ball is clamped in the socket by a set screw. A talle of any form is arranged on the arms
which extend from the stem of the ball. any instruments or materiuls used in tilling and excuvating teeth Water cups are attached by means of sliding rings. When the patient is seated, the table is adjusted by means of the various mechanisms described, to bring the instruments and materials nto convenient position for u

Improved Button Boot.

Edward F. Wells, New York city.-The lower portion of the overlapping flap of a button shoe is made in one piece with the quarter. Λ flap piece constitutes the upper part, which is sewn to
the main portion, the slit extending ubout half way down the latter. The seam, at the place where it bears inside against the leg, is

Improved Rotary Harrow.

Willian J. Murphy and William H. Cock, Murfrecsborough, Tenn.-There are two rollers, a foot in diameter, into which are screwed knives. To a cross bar is bolted another set of knives, so
arranged that their paths may be midway between the pathsof the knives of the rollers. There is besides a roller which is designed to

John B. Herman, Blair, Neb.-The plow Plow. ar by a universal joint, which.-The plow beam is connected to the movement, so as to allow the plow to be laterally adjusted to cut may be desired. There are besides novel devices which enable the plow tobe readily adjusted to run deeper orshallower in the ground, and others by which the caster wheel may be readily adjusted to take the downward pressure of the plow, and thus decrease the friction and enable it to be drawn by less power, and mechanism which permits the plow to be readily lowered to and raised from th ground when desired, and holds it securely in place when su:

Improved Sheat Dropper for Harvesters.
Perry G. Nichols and William O. Nichols, Cresco, Iowa.-The table is pivoted to the frame for tilting. It has an arm extending
below the pivot at one end, to which a cord is fastened, which is suitably connected with a bell crank. The last communicates with foot treadle in front of the driver's seat, so that by a downwar novement of the foot treade a catch will be pulled back to unfasten the table, and the table will be tilted to dump the sheave The table will then be turned back by gravity, the weight of the next sheaf put on by the binders, and it will be fastened by a catch and spring. The catch is so arranged relatively to the binder's table
that the binder next to it can reach it readily to unfasten it by that th
hand.

Improved Peg Box for Pegging Machine

 George H. Davis, Oxford, Mass.-This invention consists of a peg box with two feed channels for stock, to makepegs of two sizes, an tion with the negring machine patented by C . Varney, and so a ranged that the operator can shift the feed mechanism at will with out interrupting the operation of the machine, to use pegs of differ ent sizes in different parts of the work. The inventionalso consist of certain improvements in connection with the cutter, and an imImproved Componnd Metal working Machine. George L. Jones, Vanville, Wis.-This invention relates to inprove nents in the compound metal working machine patented by th mechanism, substantially such as previously employed, punching a supplementary punch, so that bands, tyres, etc., riay be punched at certain points with large holes, and at others with small ones at the same time.

Improved Whiffitree Tug Fastener.

James L. Graff, Petrolia, Pa.-Instead of boring the whiffletrees ongitudinally to receive rods, cylindrical metal caps are applied to end and a plate at the other, is formed at a right angle to each cap. a short pin projects from the center of the disk in a plane paral el with the sliding rod. A bar slides in a socket formed on the rear side of the cap, while the plate projects interiorly of the sock and a pin projects through the loop formed on the end of the socket. A coiled spring is placed in the cap between the end of the the loops on the cap, the pie ends of the traces are inserted in the sockets by pressure applied to the knobs, and there secured. To release the traces, the bars are drawn toward each other by cords, which are joined to a ring between centrally arranged pulleys.
Improved soap Bubble Toy. Willian A. Harwood, Brooklyn, N. Y.-'This is a little tin cup
with another small cup attachment on the bottom, forming an inclosed cher sin torming an inA small tube like a pipe stem enters the chamber at the top, and there is a passage from the cup into the chamber. There is also a and around the oue bottom of the chamber containing the cone flange projecting downward a short distance. The pipe blows along the surface of the water, and carries small quantities along with it down through the exit passage to form the bubble.

Improved Saw Gummer and Sharpener.
Henry Baughman, Dorn's Gold Minc, s. C.-This invention has for its object to improve the construction of the saw gummer for which letters patent were granted to the same inventor, February $15,18 \% 3$, and December $9,18 \% 3$. To an upright frame is bolted a
block, and a support for the block, against which the straight saw is clamped to be operated upon. The imner end of this block ma be inclined to one side and the other, to give a bevel to the say tecth. The clamp, by which the saw is held, has a rabbet on it nner side for the back edge of the saw to rest upon, and is so con drop down, the inclination of its slots will car y forward the clamp and with it the saw. As the clamp is again raised by a lever, tooth of the saw will catch upon a stop attached to the block, by which the saw will be held, so that it cannot be carried back by the backward movement of the clamp, thasbringing the next toot into position to be operated upon by the gumming wheel. Anothe escape of tilings.

Improved Heat Radiator.
Owin Marrin, Bronklyn, N. Y.-This invention consists in proane apart to regulat the size of the openings, through which the heated air, gases, and ther products of combustion ascend in the flue.
Improved Saw 'Tooth swaye.

Alonzo (t. Rouse, Jacksonville, Fla.-In usiner this swaye, the tooth of the saw is first inserted between projections, its edge pro-
jecting into a recess. Blows with a hammer upon the stock will cause the said projections to form small thansverse grooves in the upper and lower sides of the tooth. The swage is then remove and adjusted to bring the edge of the tooth between another pro the stock will thus bring the edge of the tooth to the proper form, obliterating the grooves and finishing the edge or point of the tooth.

Improved Polishing Machine

William S.Wood, Newtown, N. Y.-In this device motion is effected by a rotary spindle with a chuck plate, to which is attached a spriby pivot carrying a box or holder for the grinding substance, in such a
manner that the pressure and stroke or motion are entirely at then manner that the pressure a

mproved Brick Mold.

John Treadway, Harerstraw, N. Y.-This invention consists of a movable key or wedge block placed beneath the reciprocating f pressure on the brick is rised according to the quantity or cond tion of clay in the mold

Buginess aul tersoual.

 The Charoe for Insertion under the head is \$1 a Line. The Varmishe and Japans of the London $\mathrm{Mr} \mathrm{r}^{2} \mathrm{E}$

 nos cherrs st., Philadelephia, Pa. send tor circular.

 Amateurs' Photograph Apparatus, for Home

 Atabie bustinese for man mith capital. Cataliogueg free.

O. A. Davis, Sacramento, Cal., wan Hayand Cotton Presses made on royalty.

 ecturring Co., 88 Broas st.-P. \mathbf{P}. . Box 1184, , New York.
 E. Erory metal., Morker should hare a Niviveral

urer, be Danane street, New York.

 rocelp
 Plttoburrin. Pa.

 gat. For particuara, , oddreses Providence steam and oas Pipe co., Proridence, R.I.
 For Solld Emery, Whells and Machhory, send to Seale in steam Boliners-I will remove and prae
 elphna, Pa.
Forls the best Cotton Cans and Galvanted Fire
Palle

 dreme' Patent, inside pase.
All Fruit-can Tools, Ferracute, Bridgeton, N. J. Hydraulic Pressee and Jacks, new and second
hand. Lathes and Machinery for Polishing and Buffing
Metals. E. Lyon, 470 Grand Street, New York. Iron Frame Band Saws, cheapest ard best, $\$ 150$.
Address S. C. Forsalth \& Co., Manchester, N. H. Brown's Coalyand Quarry and Contractor's Appa-
ratus for hotsting and conveying materials by fron cable. ratus for hoisting and conveyng materials by fron cable
W. D. Andrews \& Bro., 414 Water St., New York. Temples and Oilcans. Draper, Hopedaut, Maus. For Surface Planers, small oize, and for Box
Corner Grooving Machines, send to A. Daris, Lowell, The "Scientific American" Office, New York, is to persons in the various departments of the establishment. Cheap and effective. Splendid for shops, offlcees,
dwellings. Works for any dstance. Price 86 , with good Battery. F. C. Beach \& Co., 228 Broadway, New York;
Makers. Send for free fllustrated Catalogue. For beet Preeses, Dies, and Frult Can Tools, Blise Eames Patent Molding Machines, for Metal Cast
ngas. Sares fully one third in cost of labor of molaling, and secures better work than the ordinary mathod. For
CIrculars, address P. \& F. Corbth, New Brituin, Conn. Peck's Patent Drop Prees. For ctroulars, addree
Milo, Peck \& Co., New Haven, Conn.

 Saw Ye the Saw?- $\$ 1,000$ Gold for Sawnill to do
came work with no more power Expended. L. B. Cox Co., 197 Water St., N. Y.
Hectato Bello

Dlamond Carbon, of all sizees and shapes, for
drillug rock, sampug stone, and turning emery wheels,

 invaluable substitute for expensive forgings, or iron Cast-
Ings requirling great Strength. For Crcular and Price
List, address McHaffee Steel Co., cor. Evellna and Levant Sts., Philadelphla, $\mathbf{P a}$
Steel Lathe Dogs, 14 sizes, and 7 sizes of Steel
Clamps. The Best and Cheapest. Send for Circular and Price List to Phila. Hydraullc Works, Evelina St., Phila.
Hand Fire Engines, Lift and Force Pumps for fire and all other purposes. Addresd Rumsey \& Co., Senecs
Portable Engines, new and rebuilt 2d hand, a
specialty. Engines, Boilers, Pumps, and Machinist's Tools. I. H. Shearman, 45 Cortlandt St., New York.

For First Class Steam Boilers, address Lambert-
Engines and Boilers a Specialty-1st class; new
patterns; late patents; reduced prices. Plain and Cut ofr Hor'l and Vert'l Engines; Hoisting Engines; the celebra-
ted Ames' Portable Engines; Bollers of all ted Ames' Portable Engtnes; Bollers of all kinds; Climax
Turbine; and the best Saw Mill in the market. Large
stock always on hand. Hampson, Whitehill \& Co $\quad 38$ Cortlandt St., New York. Works at Newburgh, N. Y.
Buy Boult's Paneling, Moulding, and Dove-tailing
Machine. Send for circular and sample of work. B. C. Machine. Send for circular and sample o
Mach'y Co., Battle Creek, Mich., Box 227.

J. E. S. will find a: description of mica on ical problem is utterly unintelligible.-W. P. Will
find directions for black enamel leather on p. 122 tnd
vol. 2 .-E.E. S. can bleach mosel by using a prepara-
tion described on p. 91 , vol. 28.-H. W. M. and W. J. will find a description of the art of molding or modeling on p. 88 , vol. $24 .-C$ C. C. Will find a rectpe for
solder for gun barrels and other iron and steel solder for gun barrels and other iron and stee
work on p. 353, vol. $\%$. J. V. will find directions for japanning iron work on p. 208, vol. 26. Bronzing is described on p. 283, voi. 31.-J. J. McG. will find directions for cleaning brass and nickel plating on p.
370 , vol. 26.-F. E. W. will find a recipe for indelible ink on p. 112, vol. 2i. Japanning on iron is de scribed on p. 122, vol. $27 .-W$. L. A. will find an ac
count of the canal boat award on p. 81, vol. 30 .count of the canal boat award on p. 81, vol. 30.-
W. C. R. can keep the rust from his plowshares by will find a hule p. 180, vol. 26.-J. H. D. will find explicit directions for constructing a cheap telescope on $p .186$, vol. 30 .
W. P. M. will find full directions for treating su -W. P. M. will find full directions for treating su-
mac on p. 363 , vol. 31.-B. B. B. will find a formula for silver plating without a battery on p. 299, vol 31. Galvaniving wrought iron is described on p.
346, vol. 31 . - W. J. can temper his brace bits to a W. H. H. will find directions for making a vood 31. solder on p. 185, vol. 2i.-E. E. H. should apply to
 31. Polishing brass is desaribed on p. 102, vol.
A.
s. G. - will find full directions for etching on glass on p. 409, vol. 31 .-J. E. will find rulesfor cal-
culating the proportions of gear wheels on p culating the proportions of gear wheels on p. 330 ,
vol. 24. - E. B. W. will find directions for mending rubber boots on p. 203, vol. 30.-J. C. H. will find iul directions for stufling and mounting animal
on p. 250 , vol. 30.-H. D. P. will find a recipe for scarlet ink on p. 200, vol. 30.-C. T. will find full directions for washing flannel and other woolen fab-
rics on p. 287, vol. 33.-H. F. H. will find instruction rics on p. 287, vol. 3.--H. F. H. will find instructions
for gilding on walnut on p. 90, vol. 30.-E. B. M. for gilding on walnut on p. 90, vol. 30.-E. B. M
will find directions for turaing iron on pp. 76, 122, vol. 30.- M. B. can galvanize iron wares by the pro
cess described on p. 3t6, vol. 31.-D. H. M. will fin a description of a simple and excellent ilter on p.
$251, ~ v o l . ~ 31 .-J . ~ H . ~ B . ~ w i l l ~ f i n d ~ i n s t r u c t i o n s ~ f o r ~ g i l d ~$ ing on china and glass on p. 41, vol. 2\%.-J. J. an many others will find that the anti-snoring device
is illustrated on p. 34, vol. 24.-F. W. Will find a reis illustrated on p. 34, vol. 24.-F. W. Wil find a re-
cipe for the logwood and copperas dye on p. 331,
vol. 31-A. G. S. and D. M. will find a formula for harness blacking on p. 218, vol. 23.-H. C. will find ample information on measurement of engine power on p. 16, vol. 29, and on indicating engines on
(1) G. W. says: 1. I have thought of ma and atove flues, running from the cellar to the and stove fiues, running from the cellar to the
top of a dwelling. Can I make it with iron hoops strong enough to be safe when flled-with water to a hight of 25 feet, using water lime in laying
the brick and plastering inside? My object is to the brick and plastering inside? My object is to
prevent freezing and to economize in room and prevent freezing and to economize in room and
brick by combining the cistern wall with the infor water by letting it run from the roof and thence to any part of the house, through pipes, properly arranged in the walls and secure against
frost. A. By makdug the interior wall of the chstern of sufficient thickness to reaist the pressure slonable construction is possible. But it is objec tlonable in two respects: First, the water at the supplied only to the lower part of the house; and secondly, the column of water will be so extend ed when full as to cause an undue pressure at the bottom. Both of these objections will be over-
come by adopting the usual tank at the upper part of the house, and the danger of freezing in such case is less than is generally supposed. 2. Can a four inch wale of a wooden frame building, instead of siding the house with wood, anchoring the word to the frame occasionally? The object is to save painting; it would also be safer from outalde expoeure
to fre. A. We consider such a construction very impracticable, as the unequal settlement of the diverse matcrials would cause them to separate, and thus in a very short time cause the house to have
the appearance of a ruin. The expense of mating the wall entiraly
(2) W. L. says: In order to ventilate and carry off a portion of surplus heat in a small con-
servatory or greenhouse, i put a round ventilator in the ceilling, 18 inches in diameter, carrying à about four feet above the roof, with a cap. The room is heated by a double tier of hot water pipes. Contrary to my expectations, instead of having an
upward draft, the cold air blows down the shaft upward draft, the cold air blows down the shaft
during a windy day, and on still days is sluggish during a windy day, and on still days is sluggish How can 1 obviate the difficulty? A. You do not air near the floor. If you have no such opening, we should suggest one as a remedy.
(3) A. C. R. says: No. 1 asserts that houses with cellars are healthier than those built with
ut them; but No. 2 says the contrary, and that a house built on solid foundation without cellar not likely to be affected by disease arising from mpure air as easily as the house built on a cellar.
Which is right? A. There have been so very few Which is right? A. There have been so very few cannot be answered experimentally. If you fill a cannot be answered experimentally. If you fill a of the sure lattor to rise to within a short distance the way the water lies in the earth; but sometimes it isat one hightand sometimes at another. In some
localities it lies deeper than in others. It this city, localities it lies deeper than in others. It this city,
at one section, water can always be found within at one section, water can always be found within
feet of the surface; on the other hand, at Passaic 8 feet of the surface; on the other hand, at Passaic
Bridge, a well had to be sunk 60 feet before water Bridge, a well had to be sunk 60 feet before water
could be obtained. It can, therefore, easily be inerred that the healthf thiness of a house, having a cellar, will depend upon the nature of the soil in ence as to dampness, to a house at Passaic Bridge, whether it had a cellar or not. But answering
generally as to cellars, if the first floor is set high up from the ground and is well ventilated beneath, the probabilities of health are in favor of the
(4) J. G. R. says: 1. In consequence of a
oo severe strain on our engine, the foundation oo scvere strain on our engine, the foundation
wall is shaken. Can we remedy it by passing Rowall is shaken. Can we remedy it by passing Ro-
sendale cement (sufficiently diluted) into the cracks, or would it be better to bind it with bolts and bind the foundation, and to fll up the cracks. We have another foundation in which mine water has eaten the keys from the lower bolt ends,
thereby causing the bolts to turn when the nuts thereby causing the bolts to turn when the nuts
are turned. Can I tighten the bolts in the masonare turned. Can I tighten the bolts in the mason-
ry by pouring in a solution of sal ammoniac mixed ry by pouring in a solution of sal ammoniac mixed
with flne iron flilngs? A. We scarcely think you there the sal ammoniac and iron driven joint. Melted sulphur will answer very well, if you can prevent it from running out of the bottom of the
(5) E. M. asks: 1. What part of a horse
ower will it take to run a sewing machine? A.
rom $1-30$ to 1-20. 2. What bore of cylinder would
: Fromit 2 to $21 / \mathrm{f}$ fonhestill answer very well. 3 . Will a $8 / 8$ supply pipe supply steam enough for a In general, yes.
(6) R. L. H. says: What is the difference in temperature, or relative heat, of the oxyhydro-
gen blowpipe and the common blowpipe? A. The en blowpipe and the common blowpipe? A. The hottest point isabout2,000 Fah. That of the oxyhyrately determined.
(7) F. W. asks: 1. How can I cover muslin With a thin coat of gum? A. You do not state
What kind of gum. 2. Howcan I color it black inside and a light yellow outside? A. We know of no better method than that of coating it with size, and the
How can I clean dogskin gloves? A. We can re
(8) J. G. C. says: 1. What is the relation of the magnifying lensee to the condensing lensee with regand to focus in the magle lantern? A. The deatred to magnify the objects placed before the condensers. To give the relation in any particular
and case, it is ne kuhn? A. The Lieberkuhn consists in plaoing the small lens in the center of a highly polished conight is reflected upiver, by which means a strong ject which is thus examined with great ease.
(9) A. D. P. asks: What is the best meththe cupel. There ts no means easier or cheaper. There is a rock in North Carolina called the cot stone What is it? A. Send us a spectme
(10) C. A. asks: What kind of furuace or letort isused in makinglampblack? A. The burn-
ing of the tarry and pitchy combustibles is carried on in any suitable furnace. The smoke is conucted through long horizontal flues terminating
in chambers hung with sacking, upon which the ampblack is deposted.
(11) S. P. B. asks: What kind of steel are ales made of? A. Generally from cemented steel, tween cast and spring steel? A. The first is cemented steel, melted, cast into ingots, and rolled into bars. Spring steel is produced, according to
Bauerman, by heating blistered steel to an orange red heat, and drawing down in size by hammering r rolling.
(12) T. A. C. says, in reference to lining
 him to the trouble of removing it from the bearinger, but tell him to stretch a line parallel with the to the sharting and as near level with its canter as
the surroundings will permit. True it laterally by
the line and then level it up. A. This is a good the line and then level it up. A. This is a good
method for an experienced workman, but the other best adapted for general use.
(13) I.G.H. says: To run a saw mill, we have n engine 14×36 inches stroke, with an 8 feet driv ing wheel, belting to a pulley on the main counter This pulley is so small (in order to give the neces sary speed) that the belt will slip. Can we, by putting in another countershaft, improve the mill by belting from the engine, and then to the present
shaft, thereby giving an opportunity to increase the shaft, thereby giving an opportunity to increase the
pulleys to a size that will prevent slip? Theengine is said to be 60 horse power. It is argued that this extra shaft would take so much more power tha
the engine would not drive the mill. Can you the engine would not drive the mill. Can you tel
us about how much power it would consume to drive this extra countershaft, it being about 8 fee long? A. The change suggested would be a decided improvement; and instead of a loss, more of the
power of the engine would be utilized than at
(14) E. C. D. Jr. as'as: How can I test soda diluted acid est is to find how many measures of reaction of and to neutralize 100 grains of a spect men of soda salt. The acid is measured in the al kalimeter, which is a straight glass tube, or very
narrow jar, with a lip, about $/ / 5$ of an inch in width and 14 or 15 inches in hight, generally mounted upon a foot, and capable of containing at least 1,000 grains of water. It is graduated into 100 parts,
each of which holds 10 grains of water. To form each of which holds 10 grains of water. To form the test acid, 4 ozs . oil of vitriol are diluted with 20 ozs. of water, or larger quantities of acid an water are mixed in these proportions. About $\$ / 4$ oz for an hour to obtain pure carbongte of a soda, of which 171 an hour, to obtain pure carbonate of soda, of quantity containing 100 grains soda. This portion of carbonate of soda is dissolved in 4 or 5 ozs. ho water, contained in a basin and kept in a state of gentle ebullition, and the alkalimeter is filled up to 0 with the dilute acid. The measured acid is to be gradually poured into the soda solution, till the ac line, and becomes distinctly acid, and the measure of acd ne and ly observed. The last portions of the acid must be carefully added by a single drop ata time. It may probably require about 90 measures. In applying the test acid, it is poured from the alkalimeter, as before, upon 100 grains of the soda salt to betested, dissolved in two or three ounces of hot water, the dition of actd. The salt contains as many grains of sode as it requires measure of many grain ize it, and, therefore, so much alkall per cent. The first trial, however, should only be considered a approximation, as much greater accuracy will be often inade in the cold; but it is very advantageou to have the alksiline solution in a besin in which it is heated and evaporated duringthe addition of the east acid. The indications then become greatily of the carbonic acid and the concentration of the solution. With such precautions the proportion of soda may be deternined to $0 \cdot 1$ grain in 100 grains
salt; and an alkalimetrical determination, made in a few minutes, is notinferior in prectsion to an ordi fer manalyes.
(15) B. L. H. asks: Is the pressure in a bafety vealer at the mud valve inan it is at th safety valve or other part of the boiler above the
water? A. The pressure is greatest at the lowest point in the boiler, and least at the highest point.
(16) W. F. McK., H. B., and many others say: We are about to build small engines to drive a cylinder, say, 4 incheslong. We want the dime sions of all the working parts. A. Make a drawing of a large engine of good deedign on a reduced
scale. This will give you a falr idea of the proportions.
(17) H. B. asks: What sized boiler should I use, with how many flues, to furniah steam to
two cylinders $21 / 2 \times 11 / 8$ inches? A. Make the boller two cylinders $21 / 6 \times 11 / 8$ inches? A. Make the boller
with from 18 to 20 square feet of efflelent heating with from 18 to 20 square
surface per horse power.
(18) A. B. C. says: We are sinking a shaft in very hard rock, below the 700 feet level. The shaft at the 700 feet and about 15 feet below is running at an angle of 59°, and is 8 feet long by 4% feet
wide in the clear. At the 700 feet, a tunnel was run in the hanging wall or side about 12 feet, when we cut soft ground. We want to get the shaft int this soft ground in order to sink it faster. How this soft ground in order to slink it faster. How are now
feet.
(19) E. W. M. asks: If a pipe from a large tank has a check valve placed at the end, and a
pipe of the same diameter has a check valve on the same level as that in the pipe from the tank the water in the tank and pipe being of the same head, on which check valve is the pressure th each, and water wil flow with the same velocity from each, if the heads are equal.
Is steam used for heating buildings ordinarily hotter than that whi engines? A. No.
How can I whit
How can I whiten ivory after it has turned yel-
low? A. Rub it with pumiterent low? A. Rub it with pumicestone and water, and
expose it to the rays of the sun in an airtight glass case. Repeat the operation several times, if neces

You gave a recipe for bluing glass chimneys; wil not the heat cause the color to peal off? A. No. What causes blistering on paint, when heat is applied ? A. The moisture in the paint is vaporized. You give a recipe for plating small articles with-
out a battery, taken from Watt's "Metallurgy." Will that plating stand for 6 months with moderate
(20) F. O. asks: How can I dye feathers t
a red color, to be waterproof, for fishing flies? a red color, to be waterproof, for fishing flies?
Take 1 oz. Brazil wood in powder, $1 / 2 \mathrm{oz}$. alum,, 1 oz. vermilion, and 1 pint of vinegar; boil them to a moderate thickness, and dip the feathers (they
first laving been soiked in hot water) into the mix first
ture
(21) C. D. asks: C'an aluminum be worked 1. Yes, readily
much as silver.
much as silver.

1. Will an engri
turning lathe? turning lathe: A. Yes. 2. Should the engine be
connected by a belt to the flywheel shaft of the lathe? A. You can use a belt from 1 to 2 inches wide, with a wheel on engine 8 inches in dianneter, and another on lathe shatt of 6 inches.
Speaking of ati inch gear wheel, does it mean a inches in diameter over all, or from base of tooth to base of opposite

In what book can

Iniding book can f fnd practical instruction for building model engines? A. We do not know oi
any that distinguishes a model steam engine from any that distingu
an ordinary one.
(22) N. J. J. asks: How many fish can be rased in a pond containing an acre of ground
supplied with100 gallons of water perminute? Try to raise as many as possible, and the principle of the survival of the fittest will regulate the mat ter.
(23) H. B. asks: 1 . Will a cast iron shell turned down to the proper thickness do for a small boiler? A. It would be better, in most cases, not
to turn it down at all. 2. What in used for packing
the the jolst the joints. Ordurily uscol. 3. To what degree must iron be heatcd to
mett common solder, and could soldering be used melt common solder, and could soldering be used
on boiler joints $\%$ A. To about 400° Fah. It could be used as sugrested.

1. Is it possible to obtain good small sized cast
ings of iron A . Yes. Youmusthave seen plenty inss of iron: A.Yes. You must have seen plenty,
such as stove castings and the like. 2 . Is copper such as stove casting and the like. .. Is copper
cast? A. Yes. It is ordinarily sold in cast ingots.
(24) F. II. and others: It is always best to place the tightener on the slack side of the belt;
and to get the greatest driving power, it should bc and to get the greatest driving p.
placed close to the small pulley.
(25) J. B. P. asks: Doss any harm arise trom using, in the cylinder of a steam engine, a
mixture of black lead, sulphur, and tallow, or black lead and tallow? A. With a surface condenser, thc
collection of the lubricant in the tubes sometime collection of the lubricant in the tubes sometime
causes trouble. Impure tallow frcquently eat away the tallow. It is better to use good oil
2. What is the best naterial for an idle pulley,
used in a summill for transmitting motion used in a sawmill for transmitting motion to re-
verse the carriage: A. Cast iron. 2. What maverse the carriage\% A. Cast iron. 2. What ma-
terial is best for use in making a friction feed pulley in a sawmill? A. Cast irgn. 3. Why
do saws which have been worn down from 60 do saws which have been worn down from 60
to 5 tinches require hammering to make them run stiff enough to work? A. A saw is gencrally strained somewhat in the rim, and when run down it must be strained agyin.
I have a boiler, 14 fect long by 51 inches diameter,
with 3 thece with 39 threc inch tubes; outside diameter of tubes
is 3 inches. The tubes are contained in that portion of the boiler below a linedrawn 30 inches from botton of boiler. How much water willit take to
fill the boilce to a line fill the boilcr to a line drawn ? inches above top
row of tubes? A. You can readily calculate the Yow of tubes? A. Youn can readily calculate the
volume of that part of the boiler diminished by
rolume of tubes.
(26) E H. S. says: We have a schoolroon $39 x 23 x$ about 14 feet. The acoustic properties of
this room are very poor; at times it is hard for the this room are very poor; at times it is hard for the
teacher to make herself understood. What can we teacher to make herself An. The echo has been de-
do to improve them?
stroyed or materially reduced in rooms of this kind stroyed or materially reduced in rooms of this kind
by breaking up the reftex of sound, from the wall oppositc the speaker, by wires. As has bcen explained in our previous issues, the manncr of doing
this, lately adopted in England, is to stretch the and, say, 6 inches out from the face of the wall. This may be tried at first for a space of about $1 /$ the
width of the room at the center of the will, width of the room, at the center of the wall, and if found bencificial, afterwards extended.
(2i) H. L. IL asks: How can I plate with tion with a nickel positive pole, and proceed in the same way as with silver plating.
(28) 'T. D. M. asks: Where is meerschaum and is washed by the waves to shore and collected in dust-like form. I think it is dug out of the earth. Which is right? A. The word meerschaum
is German for froth of the sea, in allusion to its lightness and whitish color. It is a hydrated silicate
of maynesia and occurs in Asia Mingr in stratite earthy or alluvial deposits at the plains of Eskihi sher, where, according to Dr. J. Lawrence Smith, it it has proceeded from the decomposition of carbo-
nate of magnesia, which is imbedded in serpentin in the surrounding mountains. It is also found in Greece, at Hrubsclitz in Moraria, in Moroceco, and
(29) O. asks: 1. Is there any known process
by which cotton seed oil can be thoroughly and by which cotton seed oil can be thoroughly and
economically refined? A. In the strictest sense what is called by the trade reflined oil is more or less pure oleic acid. This so-called refining of the
oil is the abstraction of the dark color, accumpanied by improvement in flavor, and may be ac
complished by washing the oil in a solution of ace tic potash or soda : but in nearly every case it will be previously necessary to submit the oil to a thorough steaming and washing with hot water, so as to remove from the oil as much as possible of the
mucilaginous and albuminous matters, met with in muciaginous and albuminous matters, met with
the crude oil sometimes to a very large amount; ; waste, that is to say a larger amount will be more be necessary, and in consequence thereof a larger
proportion of the more solid fatty matter of the
oil is abstracted. The mixed liquids-alkaline lye and oil-after having been beaten up together,separate in three distinct layers on belng left to repose. oil; the middle layer is the still yet dork col ponified solid fat of the oil, while at the bottom is found the dark, almost black colored alkaline lye. Owing to the great discrepancy of impurity of the
crude oil (some being evidently pressed from the crume oil some being evidently pressed from the
damaged sech) it is impossibleto state exactly what yield of purified oil may be obtained. It has been ound that under the most favorable circumstances 100 parts of the previously steamed oil yielded from
85 to 88 parts of retined oil. It has been found, in practice, that potash for some reason or other anseers the purrwse of cutting down the oil much better than soda. 2. What are the uses to which
thoroughly refined cotton seed oil could be put A. The refined oil is notoriously exported for the
(30) I. J. S arks: Is there anything which will effectually destroy magnetism in steel parts of watches, except passing them through the fire? Λ.
No.
(31) C. A. asks: How can I smooth the surace of a glass eye, it having become rough by rea-
on of the wear of the eyelid? A. Try rubbiny with a little putty powder.
(32) J. S. asks: What is a good look on ac tions of the principal stars, and also the focus and power of lenses for telescopes: A. Try the "Handbook of the Stars," in the Cambridge series.
What is an arrand buner : This is
What is an argand burner: A. This is an ar-
rangement for increasing both the supply of air and the burning surface of the flame. In the candle flame and gas jet, combustion takes place only on by which a second current of air is admitted to the interior of the flame, thus burning with a double surface. The effect is increased by a glass chimney contracted so as to deflect the ascending outer current of air strongly upon the flame. Your other uestion should be referred to a physician.
(33) E. T. C. asks: How can I make ordi-
nary dry Venctian red into a cake or ball suitable or use on a striking line,as a carpenter uses chalk? A. Make it into a thick paste with water, and dry.
How can I stain and polish a violin? What How can I stain and polish a violin? What kind
of varnish is used? A. Boil together Brazil wood of varnish is used? A. Boil together Rrazii wood oit a little potash. A suitable varnish for wood of turpentine, mixed with a small portion of linseed oil.
I have heard that split timber, such as spokes, on. Is it a fact? A. Probably, from the large urface exposed to the air.
(34) A. M. asks: How can I color gelatin
. The gelatin is either melted or disolved in 1. The gelatin is either melted or dissolved in limited quantity of water,and the tint desired is ob-
tained by adding one of the aniline colors. It is then poured on to a smooth warm iron plate and immediately poured off again, leaving a thin filmstth
adhering to the plate. This is allowed to dry. It may then be cut into the required shape.
(35) S. F. B. asks: How shall I arrange to . Puta chafing dish with some lightel charcoal nto a close room or large box, then strew one or two ouncesof powdered brimstone on the hot coals,
hang the articles in the room or box, make the door fast, and let them hang for some hours.
Is it
Is it not a good plan to hang the watch at night wear on opposite side from where they do in the time while in the pocket? A. Possibly:
(36) S. S. W. asks: 1. Can neatsfoot oil be extracted from leather so as to be used again? 1.
Try biing with water for a long time. Thit oil
will be found on the surface of the water. smap be mande from the oil? A. Yes, with an alka--
li. 3 . What is the mode of bleaching oil, and puriying it from forelgn particles? A. Ay straining or filtering, and heating several times with cqual quantities of rose water, with constant agitation.
(37) M. K.W. asks: We camnot make a porproper machinc work, as we do not know what proportions on sulphuric acid to use to a gallon of parts of water. 2. What is carbon oil (used in the bottom as a purifier)? A. We do not know of any oil by this name. Benzinc, naphtha, or gasoline will answer the purpose. See answer on p .379 , vol.
(38) G. D. asks: If I place a lighted alcohol lamp under a glass receiver, it will burn a moment
or two until the oxygen is exhausted; what is the difference in pressure per square inch of the air outside, and the air, minus oxygen, inside? A. The ume; but what that difference is will depend upon the temperature, barometric pressure, etc. Alcohol is $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}$, the carbon burning to form its volume of CO_{2}, equal to the volume of the 8 atoms of drogen in excess of $2 \mathrm{H}_{2} \mathrm{O}$ forms vapor of water which when condensed produces the diminution of
(39) J. S. P.-See the books on water colors and water color painting by Rowbotham, Findley,
and Barnard.
(40) J. C. \& Co. ask: Do you know of any boiler? of keeping scales from the bottom of a than a good feed water heater.
3. How much lower should the tail end of a 20 feet bolting reel be than the head for wheat flour: There is considerable difference of practice among
millers, but one foot fall will answer very well. 2 millers, but one foot fall will answer very well. 2. Why do some millerssteam the wheat before grind-
ing? A. We would be glad to hear something on as to power of engine is too indefinite.
(41) J. B. asks: How do worms get into ap(42) 0. P.
(42) O.P. ask:: 1 . What power is require or raise 100 lbs. 40 feet high in 4 minutes: A. $\frac{1}{3,5}$ of 100 lbs. 40 feet high in one minute? A. $\frac{1}{3 /}$ of horse power.
starts slowly. What laws govern this force? A. A. The same laws as govern the raising of a weight al to the resistance of the wheel.
(43) W. H. asks: How can I melt sandarac for making the polish for blat walnut wood de-
scribed by you on p. 315 , vol. 30 : A. Gum sandarac melts readily on thc application of a moderate heat.
(44) M. T. asks: How is gun cotton made huric equal parts of strong concentrated sul phuric acid, of specific gravity 184 , and fuming
nitric acid into a porcelain basin as anch eotto wool is stecped in the fluid as the acid is capable of thoroughly moistening, and the vessel covered witl alass plate, and left for a few minutes. The cotton wool in then removed from the acid, immedi-
ately transferred to a vessel containing a large quantity of water, and washed with care, the wate gun cotton, which is next dried in a current of warm air, and finally combed to remove all lumps. The cotton should not be left too long in the acid, (品) P.
(45) M. E. P. asks: Will it add to the powand of course proportion all other parts to the increased length of cylinder, the number of revolu-
tions and the pressure of steam remaining the tions and the
same? A. Yes.
(46) C. E. S. asks : 1 . Can a young man of
years' experience in the engineering and draftsman's business, not a graduate of any college, enter the navy to work under some engineer in that letter of inquiry to the Chief of the Bureau of Steam Engineering at Washington 2 How an hc become a member of the Mechanical Engineers Association? A. We do not know of any such as sociation in this country.
(47) S. M. W. says: I am very desirous of having an electric light for use in illuminating a magic lantern and illustrating other objects in a
schoolroom. What apparatus shall I require ? Will a battery or an electro-magnet be best? How long will the battery run without being renewed,
and what form of battery would be best? A. You and what form of battcry would be best? A. You
require two pencils of charcoal or baked carbon, and a battery of 50 carbon cells. The battery battery would last and cost of running it would depend upon its usc. If you used it every evening for several hours, the battery would require to
renewed every day, at an expense of about $\$ 3$.
(48) $\mathrm{O} . \mathrm{H}$. asks: 1 . The weight of a pile driver is 100 lbs., falling 20 feet; what is the force of which it could be calculated. 2. Would a weight of

Minerals, etc.-Specimens have been re eived from the following correspondents, and examined, with the results stated:
A. R. C.-Quartz rock--R. M. K.-It is black ox-
ic of iron.-W. F. B.-It is ron It is called iron pyrites, and is composed of iron ti: per cent, and sulphur :3:s per cent--R. W. T. No. 1 is datholite or borate of lime with native
copper. No. 2,3 and 7 are calamine or silicate of copper. No. 2,3 , and 7 are calamine or silicate of
zinc. No. t is micaceous schist. No. 5 is siderite or carbonate of iron with red oxide of iron. No 6 is conglomerate rock.-D. W. D.-No. 1 is clay
mixed with scales of inica and impregnated with oxide of iron. No 2 is sulphide of lead or lead ore
No. 3 is striped jasper. No. 4 is black marble. H. C.-It is not, as you suggest, either tourmaline, sphene, or zircon. It is pyroxene.-J. K.-The sam-
ple contained very few entire specimens of pinnularia, and it was much more difficult to obtain per fect specimensof navicula, which were also present The amount of fine sand and grit present requires
that the earth be treated with extremedelicacy and caution, for which reason we consider the deposit of little value.-A. W. H.-Chemical analysis of your specimen of soil shows the presence of common rides. Along with these are the sulphates of soda and lime, also a small amount of alumina and ox-
ide of iron. Particles of quart z, both white and de of iron. Particles of quartz, both white and colored, are mixed up with the powder, and shreds
formerly belonging to plants and probably marine formenls alsi,. The large beetlc received some time ago without name or address is the xcorcal)cuus tityris and the curious spider belongs to the genus gole
odes.
H. P. asks: How can I imitate twist on the barrel of a gun:-G. F. C. asks: Can rosin be rc
moved from varuish after it has settled and hard ened upon it without injuring the varnish, for in sance, from a violin that is varnished :-W.S. B. is an open polar sea at the south pole? 2. Did Captain Ross ever make any northern explorations?L. McB. asks: What kind of varnish is the best
for a violin? Should the violin be oiled befor for a violin? Should the violin be oiled before
applying the varnish?-J. H. 1. asks: Who was the discoverer of the method of manufacturing tinfoil used in America ?-J. D. H. asks: 1.
What can I put in aniline dye for coloring wood so as to enable it to take a bright polish af in different colors, so that the colors will not ogether, and will dry quickly ?-H. P. L. asks: How can I make paper pulp from old scraps of paper? asks: 1 . I want to make some piano wires. How is it done, and how are they tempered: 2. How can I plate steel wire?-F. N.D. asks: What is the rule by
which paper can be cut so as to cover a globe?

COMMUNICATIONS RECEIVED.

The Editor of the Scientific American aciginal papers and contributions upon the following ubjects:
On Shoddy. By J. L. N.
On Blast Furnaces. By E. J. H.
On Drawing in Education. By G. R. D.
On a Magneto-Electric Machine. By E. G.
On Cable Telegraphy. By G. L. By E. G. W.
On Double Entry Bookkeeping. By S. G.
On a Wonderful Mechanism. By G. B. K.
On a Flying Machinc. By T. H. C.
On Cast Iron in Boilers. By J. W. H
On Cast Iron in Boilers. By J. W. H.
On Curious Apples. By E. L. E., and by C. L. s
On Zinc in Boilers. By J. W. C., and by L. On Zinc in Boilers. By J. W. C., and by L.T. W
On Machine Belts. By J. R. P. On Machine Belts. By Jy R.
On Removing Snow. By On Removing Snow. By
On Boiler Explosions. By R. D.
On Modern Spiritualism. By.
Also enquiries and answers from the following W. W.-M. C. G.-J. B.-J. K.-E. L. E.-A. H. M

- S. L. G.-P. H. B.-V. W.-F. B. M.-F. W. P.-
J. M.

HINTS TO CORRESPONDENTS.
Correspondents whose inquiries fail to appear should repeat them. If not then published, they clines them. The address of the writer should always be given.
Enquiries relating to patents, or to the patentability of inventions, assignments, etc., will not be published here. All such questions, when initials only are given, are thrown into the waste basket, as
it would fill half of our paper to print them all it would fill half of our paper to print them all
but we generally take pleasure in answering briefly but we generally take pleasure in answe
by mail, if the writer's address is given.
Huail, if the writer's address is given.
Hundreds of enquiries analogous to the following are sent: "Who sells books on watch and clock making? Whose is the best work on oil painting
as a fine art? Who sells double-barreled breechas ading hunting rifles? Where can chrome stee
loal be obtained? Who makes the best lime kiln? Why do not manufacturers of explosives advertise in
the Scientific American? Whose is the best rock drill?" All such personal enquiries are printed, as will be observed, in the column of " Business and Personal," which is specially set apart for that purpose, subject to the charge mentioned at the head of that column. Almost any desired intained.

[OFFICIAL.]

INDEX OF INVENTIONS

Letters Patent of the United

 Granted in the Week endingDecember 1, 1874,
AND EACH BEARING THAT DATE.

Furnace, soldering, J. Day.
Game apparatus, W. M. Comey Gas heater and condenser, S. Warren.. Gas meter, Warner \& Cowan...
Gas purfier, P. Munzinger (r).
 Gas revolving retort, J. H. Van Hout
Gratn conveyor, N. G. Simonds...... Grain meter, w. C Fowler Grate bar, o. B. Cores Harrow and roller, rotary, L. Belly Harvester reel, J. F. Gordon. Heater and filter, feed, G. F. Ja
Heating bulldings, J. Cowan Heating greenhouses, J. Cowa Heel shave, L. T. Snell. Hemp dressing machine, G. Davis Hinge, J. A. Dunning....
Horse troughs, etc., float for, J. Jonsen Horses, feed bag for, T. Medley Hydraulic ram, W. W. Grier Ice cream freezer, Faloon \& Conne ron for Jewel stone setting, R. B. Hubbard Ladder, step, H. Niemann Lamp, C. F. A. Hinrichs. Liquids, drawing effervescent, T. Warker Locomotive attachment for boats, C. How Magnet for motors, electro, w. S. Sims Mains, device for tapping, J. J. Quin Medical compound, L. Hetfleld Meter, liquid, Pemberton \& Piper gh machine, G. W. Bugbee Mortlisng machine, P. Herzog. Nasical instrument, T. Atkins Paddle wheel, feathering, Pastry board, A Gurney Paving composition, w. C. Porter ..
Picture frame supporter, J. Pipe joint, Tr. H. C. Stanford Plow, C. F. Cham
Pump, J. L. Leas
Pump valve, II. C. Hopking. Purifier, middlings, H. . . Rarnard Puritier, middlings, G. Parker. Ralway, cuiless rope, W. Eppelsheimer. Rallway switteh, J. Gray
Rallway tie, F. H. Whtman tooller, land, B. S. Healy
Roolling pin, C. Frazier.
Roof, mansard, Roofing tile, L. Hamel
saw mill head block, w. Bellis
Saws, flattening and tempering, C. Rtchardson
Scales, sack, P. P. Parker...
Sewing machine, G. B. Arnold (r).. ewing machine, cam silde, C. B. Curtis Sewing machine, cam slide, J. B. Secor Shaft coupling, S. Stuart Shaft tug slide, il. Austin
Sheet metal spinning, W. M. Conger.....
sing Shoe counters, maklug, T. A. Baxendale Shoes, attaching buttons to, I. Gray..
Slgnal switch, F. W. \& W. W. Brierly sled, s. Mills pindle step and bearing, \mathbf{D}. Matthew Spinning machine, P. Motirn stone, atifilcial, Colby \& Eras stove, F. P. Blonm.
Stove platform, w. M. Conge
street sweeping machine, J. W. Mctoonaili
Tatle, ladies work, C. R. sny
Target, W. Lwo.....................
Templet, adjustable,
Toy pistol, w. Lyon
Track clearer, J. W. Hodges
Tyre upsetting machine, H. Harriso
vehticle spring, R. M. stivers
rehicle spring, J. Tilton
rehicle whieel, H . Gwynn.
Vehicle wheels, tyre for, W. H.
Wagon axle box, G. B. Durkee
Wagon brake, F. Clemens
Wagon standard, D. Sullivan
Watch case spring, J. Parmele
Watch hands, tool for holding,
Water wheel, v. D. M. Anson.
Well ropes, device for operating, D. A. Wr.............
Whiffetree, D. M. Cobb.
Whip holder, J. H. Pitts.
Whisky, Marland \& Crossm
Windmill, w. H. Wheeler.
EXTENSION GRANTED. DISCLAIMER • FILEI).
30,802.-Clothes Wringer.-G. J. Colby.
DESIGNS PATENTED

,905.-M lis, In

,906, -PIPD STEM.-W. Demuth, New York city 7,907.-PIPE STEM.-W. Harvey, New York (Ity 7,905.-Stair Rods.-M. Krickl, New Jork city
$7,909 .-$ Fork Handles. -C. Oshorne, North ough, Mass.
$\boldsymbol{i}, 910 .-$ TYPE.-A. Little, New York city 7,911\&7,912.- Soda Water apparates.-G.F.Meachan Newton, Mass.

TRADE MARKS REGISTERED
0999- - Worm Mrdicines.-A. W. Allen, New
2,100.-Flotr.-F. Bertschy, Milwaukee, Wis.
, 101.-Sheet Iron.-Brittan \& Co., San Fra 2, 102.-Clocess.-H. J. Davies, New York city 2,103- Dress Goods, etc.-Everett Mills, La
2.104.-Blung.-G. A. Moss, New York city. 105.-CLIGARs.-Sartortus \& Reinig, Memphis.

157,316
16

157,280,
280,

SCHEDULE OF Patent fees. 810

 On Issing each original Patent. | O |
| :---: |
| On |

 On Hing a miscialmer..................
On an applcatton for Design (3% year On application for Design. (7 years).

CANADIAN PATENTS

```
list of Patents Granted in Can,
November 25 to December 3,1854 .
```

4.(087.-S. S. J. Wright, Madra, st. Lawrence count.,N.Y.
I. s. A comblined carriage wrench and bit brace, cal ". Wright's Combtned Carriage Wrench and Bit Brace, Nov. 25, 1874. 8stem,
Nov. 25,1874 . 18 .

ment on the manufacture of shovelas and spades, called
"Xerkes ' Improvement in the Mannacture of Shovels

and Spades.". Nov. 25,1874 . , 0 ,

soso.-D. Renshaw, Boston, Mass. U. U.S. Improvements
on sectional steam rencrators, culled "The Rensher
 ster, England. Improvement in the manufacture or volving furnaces, and on apparatus connected ther with, called "Crampton's Improvements on the Manufacture of Iron and steel, and in the Construction and
Lining of Revolving Furnaces, and on Apparatus conLining of Revolving Furnaces,
nected therewith.,

```
nected F. Cass, LO riginal, Pr
```

provements on foldung stands, callect "The Improved
provements on. folding stands,
Foldung stand."

steel." Nor. 26, 1874.
, ,094-- - . Keyes, Bennington, Bennington county, Vt.,
E. S . Improvement on steam boller furnacee, called
U. S. Improvement on steam bother furnacee, called
"Kepege Improved Steam Boller Furnace." Nov. 26,

Improvement on seamless paper ressels , and the
chinery for manufacturing the same, called "The Slay-
ton Seamlers Paper Vessel. Nov. 26, 18it.
O96. - M. E. Zeller, Iresalae, Champuign, ill., U. S.
Harness Finding." Vov. 26, 1874.
4, AOT.-W. J. Kent, Buftilo, Eric county, N. Y., U. S.
Inprovements on reedorgans, c
Reed Organs.,
Nov. $26,187$.

U. S. Im
"Blomquist's Improved T Rall Joint." Nor. 6,18 , city

ments on serew drivers, called "Patterson's Reversthle
Screw Driver." Nov. 26, 1574.
, $100 \rightarrow-$. Freeland, Montreal, P.
the manufacture of oap, called "Freeland's sements on
Soap Maker." Nov. 26, 1874 .
101.- G. W. . Brown, Buffalo, N. Y.., U. $\&$. Improve.
menta on
ments on spring beds, called " "Brown's Improvement in
sprivg Bed Bottoms." Nor. 26,184 .

Improverent on stencil plates, called "Reese's Λ djust,
able Stencll Letters,", Nov 26, 1871 .
able stencll Letters.". Nov. 28, 1874.

".Curtis' Turbine Water wheel." 1 Nor $26,1 \times i$, callod

shirts, called " "Took's Shirt." Nor. 26, 197t.
, 105.-R. Ross, Vergennes, Addison county, Vt, i. S .
Improvements on machnes for finishing horse she
Improvements on machnes for Milishing horse sho
nalls, called "Ross Machine for Fiulshing Horse Shoe

4,106.-J. Lelth, Ridg way, Elk county, Pa., U. S. Im.

.10\%.-B. A. Whitaker, Wellington square, Wentworth
counts, , int. Improvements in rolicrs for curtains,
called 'The

county, ont. Improvement on boilers, called "Root
${ }_{\text {ing Buildings., }}$ Nor. 27, 1871
,109.-W. II. Fulton, Foxeroft, Pseataquis county,Me.,
t. S. Improvements on machinc for raising or extract.
ing stumps, rocks, etc., called "The Iron Glant."
Not. 27, , 8741.0
U. S. Improvenits
C. S. Improvements on machine for scouring, gloss
ing or setting leather or beaming hides, called. .'ock
wood's Hide and Leather Working Jachne." Nov. 27,
4,111.-F. W. Ofeldt, Newark, Essex county, N. J., U.S.
Imaoline or other rolatie hadrocarbons, called "Star
Gas Machinc." Nov. 30, 1874,
r.112.-.J. B. Camyre, Montreal, P. a. Improvement in
bollers for washngy clothes, called "The Nonpareli
Steann Washng Machine., De. 1, sict
Stean wang chne Den
provement in emery stone pearling machines, called

1884.
,114.-C. Mee \& J. George, Kingston, Ont. Improve-
ment on Organs and Melodeons." Dec. 1, 1874.
,115.- Wm. Inglis, Bolton, Lancaster county, Eng., and
J. Inglis, Montreal. P. Q. Improvement on clevator
vessels, called "Impal Gratn Elevator Ros.ts,"
Dec. 1,187 .
s... Nison, Minneapolis, Hennepin county, Minn
C.S. Improvement on steam brakes for railway cars,
called '"Nison's Steam Brake for Rallway Cars.
Dec. 1. 1874.
Dec. 1. 1874. Warwick township, Lambton county,
4,117.-G. Ott, War
Ont. Extension of No. 217, called "Ott's Beehive."
Ont. Extension of No. 217, called "Ott's Beehive.
Dec. 1, 1374.
4,118.-C. P. Holmes, New York city, U. S. -1 st Exten-
sion of $1, \tilde{\sigma} 04$, called "The \mathbf{t}-nited Canada Churn." Dec.
sion of $1, \overleftarrow{0}+$, called "The Conted Canada Churn." Dec.
a, 187.
$3,184$.
$\begin{aligned} & 3,119 .-C .\end{aligned}$
,119.-C. P. Holmes, New York city, U. S.-Second Ex-
tension of 1,74, called "The
tension of 1,604, called "The l-nited Canada Charn.'
Dec. $3,18 \pi 4$.
120.-R. Dudles, Frie, Erie county, Pa., U. S. Im-
provements on torsion springs for cars, wagons, etc.
provements on torsion springs for cars, wagons, etc..
called "Dudley's Improved Torsion Spring." Dec. 3,
called "Dudley's Improved Torsion Spring." Dec. 3,
4, 127.
4, E. Chesterman, Philadelphia, Pa, U. S. Improve.
,121.-E. Chesterman, Philadelphia, Pa., U. S. Improve
ments on apparatus for registering and classifying the
fares of passengers, called "Passenger Fare Fnumera- 810
.820
$\mathbf{8 3 0}$ 810
825
815

FOR 1875.
THE MOST
POPULAR SCIENTIFIC PAPER

IN THE WORLD.

THITTIETE YEAR.

aNEW VOLDMR of this widely-Circulated and qpleuldidy illustratec) paper commencess on the fourth of

TERMS.

 lishers's are require to pay postage in advance. The subsicriber then receives his paper through the l'ost-offiće frec.

Scientific American, one jear (including $\$ 320$ Science Recordfor 1875, (including post-

COORENED ROTHES

Scientific American, two jears (including postage)

550
Two copies of Scientific American for one year, and two copies of Science
Record for 1875 (including postage) 9

Scientific American, one year, and one copy of Science Record for 1875,
and one copy of Men of Progress
(incluaing postage)........... 12

CLUT RATES AND RREMHUMS.

CLUP R T T E S
Five copies of Scientific American, one year, postage included, $\$ 2.80$ each

Five copies of Scientific American, one year, postage included
Ten copies of Scientific American, one year, (\$2.70 each) $\$ 27.00$

Clubs are not confined to one address, nor to ouc post-office, but max be solicited in different towns, and

af The SCIENTIFIC AMERICAN is SOLD BY ALL THE PRINCIPAl
EWS DEALERS in the United States, Canada and abroad.

Gduertisements．
$\underset{\substack{\text { Back Page } \\ \text { Inside Page }}}{\text { and }}$ Inside Pare ver line，by mecourement as the lets at the same rate early as Friday morning to appear in next issuc．

BAIRD＇S

 BowsFOR Pracicical men．
 henry carey batrd，

SEIF－CULTURE．
Self－knowledge is the key to universal knowledge，an this is the key to the selence of mind．The Phrevologl－
Cal Jourval now in its 60 th volume，is the chief expo－ nent of Physiognomy，Phystology，Ethnology，Psychology， half a year；new vo
Broadway，New York

Barnes Foot Power scrol

GOOD OPPORTUNITY．－Bupgies Car

P．BIAISDELI \＆CO．， Manufacturero or whercester，Masse，

 the wall street review

警HUSsEY＇S NATIONALS－ Cottage Architecture．
 WOODWARD＇S \mid 1，000 Mongrixe Dramivic
 MONCKTONS National sixidillars，past－ MONCKTNNSATIONAL Sixidillare，post－
GFO．W．READ \＆CO．， and Vtenemb band saw

Hard－Wood Lumber AND CHOICE FIGURED VENEERS． GF Enclose stamp for Catalogeve and Price－List．
Orders by mail promptly and faithfully executed．

（TTONE SAWING MACHINERY．

 DERRICKS

HAS NO EQUAL FOR VARIETY，QUALITY，AND ECONOMY OF ITS WORK． For Car Enildera，Planing Mills，Hoase Buildera，Sash，Door and Blind Makers，Agricul HORIZONTAI，AND UPRIGHT BORING MACHINES，SUPERIOR TO ANY IN USE． Send for Cond matching machines

RARE OFFERS！

Ladies＇0wn Magazine，

 \＄2 A YEAR，
 DOLLARS
TO THE AMOUNT OF TWO MILLION FIVE HUNDRED THOUSAND ARE TO BE DIS－
TRIBUTED，ON THE 2TTH FEBRUARY，BY TRIBUTED，ON THE 2ITTH FEBRUARY，BY
THE PUBLIC LIBRARY OF KENTUCKY，UPON THE OCCASION OF THEIR FIFTH AND LAST CONCERT

Drawing Certain or Money Refunded． One Grand Cash Gift ：
One Grand Cash Gift
One Grand Cash Gift
One One Grand Cash Gift
One Grand Cash Girt
One Grand Cash Gift

 100 Cash Gifts，
240 Cash Gifts， 500 Cash Gifts，
$\mathbf{5 0 0 0}$ Cas

```
*
```

N min riew

Tadies at Home

MAGNETS－Permanent Steel Magnets

PORTABLE STEAM ENGINES，COMBIN－
 use．All warranted satigfactory or no sale．Descriptive
cIrculars sent on apilication A ddress
THE J．C．HOADLEY Co．，Lawrence，Mass． SHINGLE \＆BARREL MACHINERY STAVE CUTTERS，JONTERS，EQUALIZERS，AND
HEADNG TURNERS
BAIEY GAUGELATHE－For turning all kind han－ dies and Cabinet work．simplest and best in use．We
manan acture a full line of Wood and Iron Working
Machinery，Steam Enines \＆co Addres

R ICHARDSON，MERIAM \＆CŌ．，

Warehoue $\begin{gathered}\text { Polisher，Can Opener } \\ \text { h }\end{gathered}$

 \mathbf{W}

Screw cinsm

MACHINERY． irox \＆wood working machinery Cold Rolled Shafting．

ar

Planing \＆Matching，

Planing \＆Matching
 A MATELRS＇FOOT E EVGINE LLTAES

LUDIOW VAIVES．

MACHINERY， Niagara Steam Pump． CHAS．b．WARDICI，
punchina DROP PRESSES， CHARLESGOOCH

Useful and Rare Chemicals．

Patevt ror Sale－The cuirix boiner

Free to Sewing Machine Agents．

 W OOD－WORKING MACHINERY GEN

OLSY Mafety Hoistivg

The Toll－Gate Prize ipecture enantree ：inn 55 succes berovo cmp CNAMA
$\mathrm{S}^{\text {AVE YOUR }}$ BOILERS，SAVE FUEL，

L Counts patent lathe dogs，

Second Hand Figines and Boilers，

Aduthititements

Baci Paze naside Pase

Engravings may head advertisements centst a s ine
 early as Friday morning to appear in next issue. HOME
SBWING MACHINE He

FREE

 MAXIM'S
Automatic Pumping Engine

IIISTIIIIMachinery, Crane Bros. Mfg.Co. chicago.
$\mathrm{F}^{\text {OR SALE.-2nd-hand, Portable and Sta }}$

Commercial Agency.

Muxilio diving ic

The Register or January, 187.5, is now belng prepared, and
as possible.
it will contain a fill list of National and State Banks.
Name and Address of every Private Banker A Complete List of all the Mannfacturing Village in the United States and British Provinces, with numerals giving credit and capital in each case.
The compilation is made from detailed reports, at the offlces of the Agency, 109 and 111 Worth St.
This Agency was the frst to undertake the reporting of
the entire country, and its records are therefore the oldest the entire country, and its records are therefore the oldes
in existence. This gives a declded advantage, which it maintains through numerous Associate and Branch Offices, hy systematic use of intelligent traveling agents, and by
the employment of over 7,000 local resident correspondthe em

An efflcient and economic ected with the institution.

The REGISTER will be found a most valuable assistan to every Banking and Commercial House in the country.
() CR PIPES saves Twenty For Cent in Fuel

Asbestos Felting Co.
Todd \& Rafferty MachineCo. The ceproted Man Facturers of

 TMPORTANT FOR ALL LARGE CORPO Bnerions And MANUFACTURING CONCERNS.-

STEAM GOVERNORS WITHOUT GOST, STEAM GOVERNOR IN THE WORLD HUNTOON COVERNOR CO.. Lawrence, Mass.

 Greatest invention of the age ELECTRIC \& VAPOR CHAIR.

 PRATT'S

ASTRAL
OII.

BAXTER PORTABLE STEAM ENGINE

${ }^{6} \boldsymbol{T} \boldsymbol{H} \boldsymbol{E} \boldsymbol{B} \boldsymbol{A} \boldsymbol{X} \boldsymbol{T} \boldsymbol{R},{ }^{\prime}$,

WM. D. RUSSELL, 18 Park Place, Nezo York. Offlce of the Baxter Steam Engine C o.

THEJOHNHARDICK

NIAGARA STEAM PUMP,

Hubbard \& Aller.
Engines and Boiners,
Pulleys, Shafting and Hangers a Specialty.

Mill FurnishingWorks

ASBESTOS MIATPRTATS
ROOFING, SHEATHING, BOILER FELTING, PAINTS (all colors), CEMENTS, \&c.,

Pateutee and sole man an facturer, \}H. W. JOHNS, 87 Maiden Lane, N. Y.

Portland Cement

MAGIC LANTERNS
II M'Allister's Patent Artoption,

THE HEALD \& CISCO Patent Centrifugal Pumps.

STEAM BOILER Inspection \& Insurance COMPANY.
W. B. Franklin, V. P't. J. M. Allen, Prest

$$
\begin{aligned}
& \text { Cat }
\end{aligned}
$$

Now is the Time to Subscribe New York Weekly.

best story and sketch paper published

 CIRCULATION 350,000 .Largest Circulation of any Paperin the World.
Everybody Reads it : Everybody Admires It SEND THREE DOLLARS, and you will receive, for one year, the most popular ilter-
ary paper in the world (postage prepaid by us), containing 34 Complete Serial Stories,
150 Short Sketches of Love \qquad
000 Pleasant Paragraphs,

 Materialig, etc.,
250 Hiscal Items etc., etc., and a variety of
other interesting reading matter.
SUBSCRIBE FOR THE NEW YORK WEEKLY AMUSED, ENTERTAINED, INSTRUCTED.
and cheered by the weekly visits of apaper that has neve
failed to merit the esteem of its millons of readers.

THE NEW YORK WEERIY POSTAGE FREE
 subser
the NEW YORE WERKLY postugef

STREETTERS \&HOLID BI ADDRIBERD TO 25, 27, 29 and 31 Rose St., N.Y. P.O. Box 4896
Mimin \& Co.'s Patant Ofices.

Established 1846.

The Oldest Agency for Soliciting Patents in the United States.
TWENTY-EIGH1 FEARS EXPERIENCE.
MORE PATENTS have been secured through this agency, at home and abroad, than through any other in the world
SIXTY THOUSAND inventors have availed , rentions, and procuring their patents.
MUNN \& CO., in connection with the publication of the Confer wift inventors, prepare drawings, specifications, and ascignmentagttend to flling applications in tho Patent Office paytag the government fees, and watch each case step by step while pending before the examiner. This is done through. Their sranco omea, corner F and th Streets, Was patenta, trademarks, and reissues, attend to rejected cases (prepared by the inventoror other attorneys), procure copy rights, attend to interferences, give written opinions o matters of intringement, furnish copies of patents: in fact attend to every branch of patent busin ${ }^{\circ} 8 s$ both in this and in foreign countries.
Patents obtained in Canada, England, France, Belgium Germany, Russia, Prussia, Spain, Portugal, the British
Colonies, and all other Colonies, and all other countris where patents an
granted. $\underset{\text { A specis }}{\text { granted. }}$
A special notice is made in the Sciestifio Angrican of all inventions patented through this Agency, with the
name and residence of the patente. Patents are often sold, in part or whole, to persons attracted to the invention by such notice.
A pamphlet of 110 pages, containing the laws and full drrections for obtaining United States patents, also a circular pertaining exclusively to Foreign Patents, stating cost for each country, time granted, etc., sent froe. Address

Publishers SCIENTIFIC AMERICAN,
Branco Ofrios-Corner F and 7th Streets,
$T \mathrm{HE}$ "Scientific American" is printed with

