
a WeEkly journal 0f Practical information, art, SCIENCE, MECHANICS, CHEMISTRY AND MANUFACTURES.

BRIDGE ON THE MONT CENIS RAILWAY.
Although the opening of the Mont Cenis tunnel has of ected a great saving of time, not only between France and ind England and India-the direct route from East, viâ the Suez Canal, being now used for passengers and mails-travelers in search of the picturesque probably pre fer to travel over the mountain, using Mr. Fell's railway, and obtaining views of the grand scenery of the Alps from

Honors to an Inventor. In France, Frederic Sau. vage is considered to have the largest share of merit in practically applying it in practically applying steam power to the screw propeller, which he did in 1832. The town of Bou-longe-sur-Mer, where Frederic Sauvage was born on the 20 th of September, 1786, has lately gone to considerable expense in awarding him posthumous hong him posthumous honors, which culminated in the uncovering of a monument to his memory. At 10 o'clock the government, municipal, naval, and military authorities, deputations from various cities, headed by M. le Baron de Latouche, Sous-Préfet, and M. Huget, Maire, started in procession from the Hôtel de Ville for the de Ville for the cemetery to which the remains of Frederic Sauvage were removed from Paris and in. terred with public honors on the 20th of September, 1872. The monument over
his grave is a square pedi.
ment in three portions, made of gray marble of the same of July, 1857. The monument was designed by M. de Bay kind as the Napoleon Column is built, and obtained from the Marquise quarries. It rises to the hight of 14 feet, and on the top a bronze heroic sized bust of Frederic Sauvage is placed.
On either side of the monument is an inscription setting forth the date of his birth, death-19th July, 1857-the translation of his remains, and a list of his inventions. On the front are the two words "Frederic Sauvage," and a bronze bas-relief showing a vessel with a screw propeller, a mill for aswing marble, and a souffet hydraulique for raising water, all of which were either invented or perfected by F. Sauvage, who, in addition, invented the conformateur, an anstrument for measuring the head, physionométre, and anstrument for m

The bronze bust and bas-relief were modeled by Mr.
ohn Hopkins, and were cast by Messrs. Thiebaud et Fils, of Paris.
Frederic Sauvage's life was similar to those of many other inventors, in that he spent his days and fortune in perfectng inventions which brought him no profit. Having lost his own money, he borrowed from others, and, being unable to repay, was thrown into a debtor's prison, which he after-
wards exchanged for a madhouse, where he died on the 19th

American trade mark. In all, 1,841 objects, weighing a tota of 11 pounds and 10 ounces. The person was crazy, and his mania, whenever unwatched, consisted in swallowing any small object. It is remarkable, however, that the function of digestion could continue with this immense mass in the stomach.

The Baltimore American gives the following account of a troupe of trained Java sparrows and parroquets, now exhibiting in the streets of that city :
' When a suitable place is found, a circular table is opened and the birds are all turned loose apon it; they manifest no fear at the crowd, and do not offer to escape. The performance consists of ringing bells, trundling small wheelbarrows, slack wire walking, firing off pistols, dancing, swinging each other in small wings, an excellent imitation of a trapeze perform. ance, and a number of other equally interesting tricks. The most wonderfal part of the performanee, however, is done by a parroquet. This bird walks to the center of the table, and, after bowing to the crowd, seats himself in a small chair near a bell. To the clapper of the bell hore is attached a amall cord, and any one in the crowd is allowed to ast the ird to alrikeany nome the bird to strikeany number of
times upon the bell. If times upon the bell. If
asked to strike ten times, he asked to strike ten times, he leaves the chair, seizes the bell rope and pulls it ten times, after which he bows and returns to his seat. This was repeated a great many times, and with one exception the bird made no mistake. The bird will atrike twent but after that he refuses; and his owner states that he has worked nearly a year to get this bird to strike up to thirty, but it appears that his memory gives out at that point, and it is unable to count further. A collection is, of course, toten up after each exhibition.'

Roman Remaing

An important discovery has been made at Highwood, near the village of Ashill, in Norfolk, England, consisting of a vast collection of Roman remains in an oak-lined well, 60 feet deep. The Norfolk and Norwich Archæological Society recently visited the spot, when the well, under the superintendence of Mr. Barton, was emptied of its contents by a number of workmen. The well contains a great variety of articles, the most abundant being urns, of which about 100 have been obtained; more than fifty of these are perfect, and many of most beatiful form and ornamentation. There is considerable doubt as to the purpose which these welle is considerable doubt as to the purpose which these wells were intended to serve; there are
others have been found else where.

Visorite

Theaccount of trials of this newly discoveredexplosive, at Stockholm, states that a charge of about eight ounces, made up in five cartridges and deposited in an excavation, raised a block of stone of 163 cubic feet. It would have taken over fourteen ounces of dynamite to have produced the same effect.

srientifir fimmerican.

MUNN \& CO., Editors and Proprietors PDBLISHED WEERLY $A T$
NO. 37 PARK. ROW, NEW YORK.

o. d. MUNx.

a. e. beach.

TERMS
One copy, one year, portage included..
Clubrates:
Ten coptes, one year, each 2270 , postage included. ver ten coples, same rate each, postage included. and the subscrioer then recelves the paper free of charge.

VOLOME XXXI, No 23. [New Skrirs.] Twenty-ninth Year
NEW YORE, SATURDAY, DECEMBER 5, 1874.
Contents :

SUCTION.
As our readers may have observed, a number of inquiries have recently been made in regard to the action of pumps and siphons: whether the water delivered by these machines was sucked up by the action of the mechanism, or forced up by the pressure of the atmosphere. To these questions we have answered: that there is, properly speaking, no such principle as suction, meaning thereby that water would not rise in a void space unless some pressure was applied to force it up. Until it was demonstrated by Torricelli that the atmosphere had weight or pressure, it was popularly beleved that a liquid would rush into an empty space, because "Nature abhorred a vacuum." We judge, from the tenor of many of the letters sent to us, that this belief is not, as yet, wholly dissipated ; and some elementary works on natural philosophy treat the subject in such an obscure manner as to confirm their readers in this opinion. It may be added, also, that one of the earliest accomplishments acquired by the infant is that of sucking, although we venture to assert that the exact nature of this process is not generally understood. It may be useful and interesting, then, to examine he action of the common pump, and compare it with that of the human mouth when engaged in sucking liquid through tube. The common pump, in its simplest form, consists of a cylinder containing a tightly fitting piston, a pipe con nected to the bottom of this cylinder extending into the water; at the bottom of the cylinder is a valve which opens when pressed from beneath, and there is a similar valve in the piston. Now suppose the piston to be at the top of the cylinder, which; together with the pipe, is filled with air As the piston is forced down, it compresses the air in the cylinder, so that the valve in the piston opens and allows the air to escape. When the piston is pulled up, there is a vold apace beneath it in the cylinder, so that the pressare of the air on the water outeide of the pipe forces it up some way in the pipe, opens the valve in the bottom of the cylin. der, and forces some of the air from the pipe into the cylin der. After a few strokes, the water will be forced into the cylinder, and then, as the piston deacends, the wate will rise through the valve in the piston, and be carried out
on the upward stroke. If the pump cylinder is placed at a greater distance above the surface of the water than the hight of a column of water equal in pressure to the atmosphere, no water will be forced into the cylinder-showing, as Gaileo ironically asserted to the advocates of the suction theory, that, if Nature does abhor a vacuum, its abhorrence only extends to a hight of 34 feet. Again, if the water be placed in a tight vessel from which all the air is exhausted, and the pipe from the pump extends into the water with an airtight joint, the pump will cease to draw water, no matter how perfect the suction may be. A similar experiment conducted with the human suction apparatus, the mouth, will give a like result, proving that something more than the removal of the air is necessary in elevating water. To show that the suction of the mouth is similar to the action of the common
pump, suppose a short tube to be held between the lips, the ther end being immersed in water. The first operation smilar to the downward motion of the pump piston, the ongue being moved forward or upward against the palate, commencing at the root and filling the mouth. Next, as in the case of the ascending piston, the tongue is drawn back or bent down, creating a void, into which the water is forced by the pressure of the air, this pressaredepressing the cheeks at the same time. The tip of the tongue is then applied to he teeth, to prevent the return of the water, and this action corresponds to the closing of the valve in the bottom of the pump cylinder. Finally, the tongue is pressed against the palate, commencing at the tip, forcing the water back; and the month being relieved of the water, the former operations re repeated.
This is only one illustration of the many that could be given to show that natural operations are conducted on truly scientific principles, so that the investigations of scientific men for the discovery of natura? laws are among the mos + important and practical of the labors of the human race
The action of the siphon may properly be considered in this connection. It appears to be the belief of many of our correspondents that the column of water in the long leg of the siphon, being heavier than the short column, pulls long, and that the pressure of the atmosphere cannot ren der any resistance, aince, if anything, it is a little greater a the lower end of the siphon, and so would rather tend to force the water back. A simple experiment, that can readily be made, is to place the short end of the siphon in an exhausted receiver, filling the tube with water, when it will be found that the liquid is discharged into the receiver, instead of flowing out at the other end; so that by this means the action of the siphon can be reversed, water being drawn through the long leg and delivered at the short one. The correspondents above referred to seem to think that the water in a siphon is something like a rope over a pulley, the part on one side being longer than that on the other, so that the weigtt of one part overbalances the other and draws it down. The trouble with this conception is that the water is an exceedingly weak rope; and if the heavy part starts to draw the other along, the rope will break in two, unless it is forced from behind. In reality, then, the action of a siphon is something like that of a rope over a palley, the strength of the rope being about fifteen pounds per square inch. Thus, as long as the distance from the highest point of the siphon is no greater than the hight to which the pressure of the air will raise the water, this pressure keeps the rope of water together, and the flow goes on continuously. But if this hight is exceeded, the air can no longer force the water up, and the rope breake, leaving in the upper part of the siphon that vacuum which Nature was said to abhor. It would appear, therefore, that the heavy column in the long og of the siphon only draws or sucks along that in the short leg when there is something to push, that does all the
work until the water is transferred to the long leg; and the ucking force gives out simultaneously with the failure of he pushing force to elevate the water to the highest poin of the siphon.

OPERATIONS OF THE PATENT OFFCE.

We publish on another page an abstract from the annual eport of General Leggett, now Ex.Commissioner of Patents, howing the operations of the Patent Office for the year endng September 30, 1874
The Ex-Commissioner dwells with commendable pride apon the increased proportion of patents granted, and the diminished proportion of rejected cases-a result due, he aggests, to the publication, in a popular, accossible $f(p m$, of weekly abstracts of all new patents, together with the full specifications thereof. We have, on several occasions, expressed the opinion that the more widely the publication of the patents was extended, the greater would be the increase in the number of patents granted, and the less the necessity of maintaining so large a standing army of officials as we ave now at the Patent Office.
We are glad to perceive that the Ex.Commissioner has at last reached the same view. He has heretofore been an adocate for the increase in the number of examiners; but his present conclusion is that, by extending the printing, the erent large force of examiners may be diminished.
Since the presentation of this report, the Hon. J. M. Thacher has assumed the duties of Commissioner of Patents, and the public will look with interest for the development f the line of policy that is to characterize his adminiatra tion. He has on former occasions given expression to views which would lead us to suppose that, vi?er his rule, the Patent Office would surely be conducted in the interest of Pventors. But there are nome indications of a contrary policy. For example: In some of the classes, he permits in-
ventors to be harassed by long delays; while in respect to
that large class of applications known as compositions, espe cially medicines, he is daily sending out, under his officia
signature, decisions like the following: "This application is signature, decisions like the following: "This application is
finally rejected on the ground that physicians' prescriptions are not patentable.
The author of such stuff is evidently a quack in paten aw, whatever may be his pretensions in medicine. Such decisions are not only absurd, but they are in direct violatio of the law and the previous practice of the Patent Office. The 24th section of the patent law expressly provides that any person who has invented any new and useful composition of matter, or any new and useful improvement thereon, may obtain a patent therefor. Medical compositions or pre scriptions rank among the most important of discoveries. Hundreds of such patents have heretofore been granted, and have resulted in the production of many new and valuable medical remedies, by which life has been saved and health promoted.

With a few exceptions, such as above indicated, we believe that the examiners of the Patent Office are animated by a desire to serve the country according to the best lights they have. But we fear they are not sufficiently awake to the real purpose and intent of the patent laws, which is to en courage and assist the inventor. There is a tendency to looseness, inefficiency, and injustice on the part of the Pat. ent Office in its decisions. This is strikingly shown by the astounding fact that some 7,500 applications for patents wer last year condemned to the category of the rejected. The con clusion is irresistible that, if the claims of these applicants had been properly coneidered, if the Patent Office officials had in every instance, as in duty bound, extended the encouraging word and the helping hand to these inventors, the number of rejections would have been far less. We earnestly hope that the new Commissioner will bestir himself and try to promote the needed reforms.

WHAT IS STEEL?

At the time of the Vienna Exposition, this question was brought up and resulted in numerous discussinns among the metallurgists assembled at the Austrian capital. Professor Jordan, of the Central School, and M. Greinert, Superinten dent of the Seraing Steel Works, proposed that the proper definition of steel was "all malleable siderurgical products obtained in a melted state," and to reserve the name wrough iron (fer) for such malleable products as were not submitted to fusion. According to this, however, natural steel, pud dled or forged, and cemented steel would be no longer steel in spite of the properties which distinguish these from rof iron. In a word, steel, whether melted or not, is a product which places itself, from all points of view, between cast iron and wrought iron. The various ferrous products en countered in the arts form a continuous sqries from th softest and purest iron up to the moatimpure cart metal or rather, there are two continuous but diverging series both commencing at pure soft iron. The one ends at black or dark gray pig, including untempered or unannealed steel ; the other, terminating at white cast iron, more or less manganiferous, includes tempered steel.
M. Gruner, in his recent report of the progress of the coal and iron industries, as developed at the late Vienna Exposition, af ter advancing the views last given, arrives at the conclusio that we should underatand, by the term steel, all iron (whether melted or not, more or less pure) which is susceptible of tempering, but which is malleable, hot or cold, so long as it has not been submitted to sudden cooling. Soft iron, whether melted or not, is me malleable, hot or cold, but not suscep tible of tempering
As puddled, as well as refined and cemented steel, is dis tinguished from melted, Bessemer, and Martin steel, etc., , also should soft iron be divided into puddled and homoge neous iron. This last may be especially subdivided into the homogeneous metals of Bessemer, Martin, Siemens, etc. It should not be forgotten, however, that, though the types are well characterized, there is a gradual passage from one to the other. Thus homogeneous iron passes in an insensible manner to cast steel, as soft iron, simply refined, passes to hard steely iron, then to properly called natural steel, which itself terminates in wild steel (woild stahl) for wire draw benches, before attaining the true white cast iron.

RUSTING OF RAILWAY RAILS.

At the recent session of the American Association for the Advancement of Science, Professor Haldeman read a paper on this subject, showing that railway rails when in use oxi dized but very little, bat when not in use were subject to rapid oxidation. In fact, disuse for one day, for example Sunday, resulted in a visible increase of rust of the track rails. This, in the opinion of the author, would indicate that in chemical combination, vibrations may interfere with the molecular arrangement of the elements. In the discussion which followed, Professor Vander Weyde took the same view, and thought that molecular relations tended to preven rust. But other speakers combated this view, and it wa suggested that possibly the oil employed upon the locomo tives might be more or less spread in a thin film over the rails in use, and thus prevent their oxidation.
Prafessor Robert Mallet, of London, has had his attention called to this discussion, and in a recent note to The Engineer states that some thirty years ago he was requested to ex amine and report upon the same matter on behalf of the British Association for the Advancoment of Science, a grant of money being allowed for the purpose. He made a variety of experiments and examinations, all of which were duly reported. He found, in brief, that one of the reasons, why
used, is because the vibration of the used rails tends to shake off the rust formed, so as to prevent its prolonged contact with the metallic iron from accelerating the corrosion of the latter.

THE MECHANIC OF THE FUTURE

An esteemed correspondent desires us to call attention to the difficulty in finding mechanics able to fill situations where special knowledge is required, and to the hindrances thrown in the way of capable men by trade rules and custome, prescribed and enforced in the interest of the worth less and incompetent
This country is almost overstocked with professional men and whenever education and ability are unitedin a young man, he is almose sure to quit the practical part of histrade and become a consulting engineer and an expert, living by fees instead of by wages, and selling his knowledge and no his skill. Thus, men of brains are taken out of the really working class; and many manufacturers look in vain, in the rank and file of their establishmente, for men capable of being master mechanics. The question as to where our leaders and foremen are to come from is deserving of our best consideration; for there are many influences at work which are retarding the progress of the American working man. Boys and young men should especially bear in mind the value of acquiring a thorough knowledge of all branches of the trade by which they intend to earn their bread, so as to become capable leaders and instructors of othera, les gifted and fortunate than themselves. The gentleman above referred to recently needed a first class machinist to super intend a certain branch of business, the specialties of which
wonld require a few months of attentive study and practice. wonld require a few months of attentive sludy and practice.
It is difficult to believe that the rules of a trade society, ostensibly organized for the protection of the rights of work ing men, prevented a akilled artisan from leaving an in ferior position to be a superintendent; but it is nevertheless a fact. He stated that the union to which he belonged would not allow him to work for an hour at less than a cer tain rate, even though his temporary reduction should cer tainly lead him to permanent employment of great responsi bility and credit, and consequently large remuneration. The employer, naturally averse to having his liberal offer thus treated, at once declined to promote the man on any terms whatever, as no one who would thus debar himself from getting on in the world was fit to be put over others, who would natarally follow his example and imbibe hisideas.
So many qualifications are wanted in a manager and su perintendent of a machine business that fitness for the post is rare, and the ambition to fill it creditably ought to stimulate our workmen to study and improvement.

GHAEAOTERISTICS OF A.BUSINESS RING.

During his career as a great contractor, the late Thomas Braseey was engaged in the construction of railways in England, France, Spain, Italy, Belgium, Saxony, Bohemia, Austria,Hungary, Moldavia, Syria, Persia,'India, Australia, Canada, and South America, aggregating something like six thousand five hundred miles, besides water works, drainage schemes, docks, bridges, and other important undertakinge.
In the execution of these great works, he had, at various In the execution of these great works, he had, at various times, tweniy-seven different partners; four hundred million dollars of other people's money passed through his hands; and at times the army of workmen to which his contracts gave employment numbered as many as eighty thousand men.
Such a record, to say the least, entitles Mr. Brassey to a high place among the great captains of industry to which the age of railway construction has given birth and occupation; and as one of the pioneers of a new order of men, his charac ter is peculiarly worthy of atudy, more especially as he re presents a type of man which the world is likely to have more and more need of with the spread of the industrial civilization which distinguishes our modern times.

Abundant materials for the study of Mr. Brassey's qualif cations for an industrial leader are furnished in the volume on his "Life and Labors," prepared by Sir Arthur Helps: and though it is never safe to assume that all the characteristics of a successful man were essential or helpful to his career, and therefore worthy of imitation by those who would aspire to similar success, we may nevertheless easily detect those which were strikingly helpful; while the doubt. ful ones, even those most widely at variance with the popu. lar ideal, may possibly have been factors worthy of recognition.

Bsfore entering upon any analysis of Mr. Brassey's character, it is proper to notice, first, an important condition of his success in the great business of his life, a condition without which every other qualification would have been wasted. ITis business training was such as to give him a practical knowledge of nearly every kind of labor necessary to be understood for the accomplishment of great works of construction. This we put before any personal characteristic, since no man, however well fitted by Nature for the rank of master, can command to good purpose without a minute personal knowledge of the work to be done, a fact which ambitious youngsters are very apt to overlook. Mr. Brassey was fortunate in not being sent to school until he was twelve years old. At sixteen, he was apprenticed to a surveyor and real estate agent,-something different, by the way, from what the term implies with us-who subsequently took him
into partnership. His first work of consequence was in coninto partnership. His first work of consequence was in con-
nection with the laying out of the once celebrated Holyhead road, of which all England was very proud. At the death of his instructor, Mr. Brassey became sole agent and representative of the owner of a large estate, in the care of which he had brickyards and limekilns to superintend. Later he
had the management of a quarry, from which stone was
taken for a viaduct on the Liverpool and Manchester Rail way, the first for passenger traffic ever constructed. It wa in connection with this quarry that Mr. Brassey made the acquaintance of George Stephenson, under whose advice he made his first (unsuccessful) tender for a railway the age of twenty nine, Mr. Brassey entered upon his life work as a railway contractor. His first undertakings received his personal supervision to their minutest details, thus laying the foundation for the higher and more valuable art for which he became celebrated in after years, the art of dealing with details in masses.
Thus Mr. Brassey was prepared by education for dealing with the great problems of railway construction. Let us consider briefly the personal qualities which he brought to he work. In the first place, he had the energy needful for reat accomplishment. Said one who worked under him or many years: "If he'd been a parson, he'd have been a bishop; if a prize fighter, he would have had the belt." The physical basis was sound and enduring, and his activity untiring. With great capacity for hard work, he keenly enoyed working hard, not so much for the profit it would bring as for the pleasure of doing. He could not bear to have work drag, nor to leave anything which he undertook undone or half done. Even when the pushing forward of work, arrested by accident or otherwise, involved the taking upon himself responsibility for expense which belonged elsewhere, he did not hesitate to go forward.
A striking illustration of this spirit occurred in eonnection ith the Paris and Rouen Railway, his first great foreign with the Paris and Rouen Railway, his first great foreign
contract. In the carrying out of this work,he was restricted in his choice of certain materials to French products; and in consequence of inferior lime for mortar, a rapidly built via duct-a huge brick construction, a hundred feet high and a a third of a mile long, costing $\$ 250,000-f$ fell down in utte: ruin. It was suggested that, on representing the facts of the case to the directors of the company, some alleviation of his loss might be obtained. His reply was: "No: I have contracted to make and maintain the road, and nothing ahall prevent Thomas Brassey from being as good as his word.' Without stopping to discuss the question of responsibility in the matter, new materials were secured, and the work was reconstructed with a rapidity that was accounted marvelous. It is a satisfaction to record that the company voluntarily assumed the cost of the new structure.
With all his anxiety to have work done rapidly and well, Mr. Brassey never wasted his energy in worry. Having await the result and abide by it with perfect equanimity. Thif, as Sir Arthur justly remarks,is a great felicity of temperament. It gives a man of much work the staying quality known as "bottom" in a racer, and enables him to meet inevitable reverses without being crushed or disconcerted. It is the basis of the two-o'clock-of the-morning courage,which the first Napoleon used to rejoice in, a quality which Mr. Brassey had to an eminent degree. If called up suddenly in the middle of the night, upon some urgent peril or difficulty, he met the alarm with perfect coolness; sat down to consider and calculate what was the best mode of obviating the dan ger; and before break of day, when he had to proceed to ter, like man. His example could not but be felt by his assistants, who took coarage at his stability of mind, and gave their fullest confidence to a leader who always seemed ready for any emergency. In addition to this imperturable pre sence of mind, Mr. Brassey evidently possessed singularly quick and comprehensive powers to take in the essential conditions of a problem at a glance, uncommon power of rapid calculation, and great ability for organization-qualities which not only inspired his staff with confidence in times of difficulty or danger, but enabled him to administer complicated affairs with a royal ease and facility.
It was in dealings with his agents, however, that his most striking characteristics were displayed. In the course of his career, he carried into execution nearly two hundred contracts, many of them involving hundreds of miles of railway. The works for which he made unsuccessful tenders amounted to upwards of seven hundred million dollars. It is obvious that no man could examine the details of works of such variety and magnitude. He must necessarily trust largely to his agents; andit was in the choice of these, and his subsequent treatment of them, that Mr. Brassey's business eagacity came into full play. He chose his agents with great care and with consummate judgment. After that, he placed implicit trust in them; and though capable of exer jaing the most minute supervision and criticism, he never
udged by details, but looked to results. His system of judged by details, but looked to results. His system of keeping accounts was what most men would consider loose,
and his agents were entrusted with vast sums of money to be expended almost at their discretion; yet his financial secretary and confidential adviser upon all monetary matters testifies that not one of his representatives was ever known to deceive or rob him. When asked if this was to be taken as a proof of the general honesty of mankind, Mr. Tapp re plied: " Not exactly that. I think it rather more shows that he placed so much confidence in those whom he em ployed, and put them, as it were, so much upon their honor, that they would not deceive him; and that people, who might not have acted uprightly with other masters, did so with him because they felt responsible to him, and also a certain amount of pride in being confided in by him to such an extent that they really carried on the business as if it were their own." His biographer adds his personal beliof formly, in respect to all those who worked under him, was
such as would be generally successful if carried out with that perfect faith and completeness which he always manifested in these transactions-a belief which might be con
sidered Utopian had it not such a substantial backing in Mr sidered Utopian had it not
Brassey's large experience.
In another connection, Sir Arthur observes that where most men fail in governing is in not entrusting enough to those who have to act under them. Most men intend well and try to do their best as agents and subordinates; and he is the great man who succeeds, with the least change of agents and subordinates, in making the most of the ability which he has to direct and supervise. Besides, men must act according to their characters; and he who is prone to confide largely in others will mostly gain an advantage in the general result of this confidence, which will far more than counteract any evil arising from that part of the con fidence which is misplaced.
That a man whose ruling passion was the execution of reat works in a way which should win him renown for faithfulners, punctuality, and completeness in the execution of his undertakings should succeed, as Mr. Brassey did, by such a mode of dealing, with those on whose faithfulness and integrity his reputation depended, is cogent evidence that his plan of action was not far from correct. Not only did Mr. Brassey trust his subordinates, but they trusted him as implicitly. In the earlier part of his career, when each contract had his personal supervision, he allotted to each nominal sub.contractor his portion of the work, and fixed the price for it. Says one of them : "They did not ask him any questions. He said: 'There is a piece of work for you. Will you go into it? You will have so much for it.' And Will you go into it? You will have so much for it.' And
then they accepted it, and went to work." Their invariable then they accepted it, and went to work." Their invariable
willingness to take the work at his valuation was accounted willingness to take the work at his valuation was accounted
for by the conviction, which each of them had, that if any mistake had been made, to their injury, Mr. Brassey alway stood ready tomake good the loss. In case a job turned out more difficult than had been anticipated, no appeal would be made; the work would go on according to contract until Mr Brassey made his customary tour of inspection, when he never failed to recognize the contractor's position, and voluntarily set it right. When his undertakings became too ex tensive to be thus minutely inspected, the same policy was carried out through resident agentr. To many this course may seem very unbusiness-like, but the result uniformly proved the wisdom of it. By treating his agents generously he secured generous service in return, and was able to with draw his attention more and more from matters of detail He never wasted his time in doing work that an agent or sub contractor could do just as well. As to mere money grub bing, one of his principal agents testifies that he had not any of that in his composition, but he knew the value of money as well as any one, and how far a pound would go nevertheless he had no greediness to acquire wealth, and he was always ready to give away a portion of his profits to anyone who was instrumental in making them,and that to a emarkable extent
For illustrations of Mr. Brassey's hatred of contention, his uniform courtesy, his large-hearted unselfishness, his frank appreciation of merit of all kinds in others, and other quali ties which pertain to the man rather than the contractor, we have no space. At the busiest period of his life, he would travel hundreds of miles to be at the bedside of a sick or dying friend or associate, to give what aid or consolation he could: a spirit whish his staff rewarded as it deserved. The regard and affection which Mr. Brassey won from all those who served under him were most strikingly manifested during his last fatal illness. Men of all classes, humble navvies as well as trusted agents, came from great distances
solely for the chance of seeing once more the old master they loved so well.
At a time when there seems to be a growing belief that a masterly man must be a stern disciplinarian, rough rather than gentle, brusque rather than courteous, exacting, watchful, a believer in the vile theory that every man must (in business) be treated as a rascal until he proves himself something better, it is singularly pleasing to review an exceedingly successful career, throughout the whole of which the opposite qualities are conspicuous. At a time, too, when financial treachery and eye service are supposed to be predominant, when the most minute and exacting checks upon the free conduct of agents fail to prevent "irregularities," it gives one fresh confidence in the general honesty of human nature to see the spirit of trustfulness made the basis of a great business, and to see it justified by service honorable to the highest degree.

That Special Edition.

The issue of a Special Editic n of ONE HUNDRED THOUSAND copies of the Scientific Averican will come off soon afer the first of December.
The names of parties to whom this large number of pa pers will be sent have been selected with care, and the pub lishers gaarantee the issue to be fully 100,000 , and it will probably reach 150,000 copies. The probability of this excess over the one hundred thousand is predicated on last year's experience. We then guaranteed 60,000 , but actually printed and mailed 120,000 copies.
The papers will be mailed in separate wrappers, and the ostage prepaid to every post office in the United States, Canada, and the adjoining Provinces.
The space allotted for illustrating new machinery and inventions is nearly all taken; but a few more good engra-
vings, of first class inventions, may find place in the editoal pages, if immediate application is made. a very little more space left for advertisers. See page 365 of this paper for particulars.

The following on the subject of aniline colors, from the pen of Mr. P. Kuntz, of Paris, may be useful as a concise resumé: The first colors employed were the violets; it was only in 1859 that aniline red was discovered, and by whom first is wot clear. Aniline red, rosaniline, or fuchsin is now usually prepared by the mixture of aniline with arsenicrl acid and water, or aniline and arsenical acid found in commerce in the state of sirup, and which contains sufficient water for the purpose. Pure rosaniline has scarcely any color. According to the opinion of Hoffmann, generally accept: 1 , the coloring matters produced by the various reagenta 1.0 m aniline are all salts of one and the same basis, the rosaniline. The colors of the salts of rosaniline are not permanent, they will neither withstand ley, soap, nor the effoct of light; but their base serves in the preparation of other ey.jring matters which are of great interest. The resinous residue of the preparation of fuchsin, treated with different solvents, gives the chrysaniline, violaniline, mauvaniline, etc. The color recently introduced into commerce under the name of cerise, and the tint of which, less scarlet than that of fuchsin, approaches rather to poppy color, is also obtained from the residue of fuchsin. By treating uchsin by means of various agents, and in various methods, the most varied tints of red are obtained. One of the colors most employed in the dyeing of silk, saffranine, the magnifi cent color of which approaches scarlet, is obtained by a method the details of which are but little known. The blue colors derived from aniline are produced by numerous methods, the great part of which remain laboratory curiosi ties. The number of processes which have entered into actual practice are relatively very few. The most advantageous are those first indicated by M. (xirard and M. Laire, in which the alts of rosaniline are heated with aniline. It is believed that the production of these blues is based on the introduction of phenol into the composition of rosaniline. They are classed under the generic appellation of Lyons blue. Different phases of the manufacture yield different products, some of which are insoluble in water, and are called bleu. direct, bleu purifié, or bleu lumiére, the last being entirely exempt from any tinge of violet ; the others, which are soluble in water, constitute the industrial coloring matters.

The bleu. de Paris is obtained by the action of the bichloride of tin on the aniline of commerce. Other blues have been successively added to the list, some discovered accidentally, others by scientific experiments.

The violets likewise are the results of the action of various agents. They seem to be produced by the mixture of blue and red in very different proportions; in many of the proceeses, it is very difficult to obtain the precise tint re. quired. Accordius to the intensity of the preponderating tint, the violetis too blue or too red. The violet of Hoffmann, dahlia, is obtained by the mixture of rosaniline or of a salt of rosaniline with the iodide of ethyl and concentrated alcohol in different proportions. The violet of Paris results from the mixture of methylated spirit, chloride of ammonia, and aniline, by the method of MM. Poirier and Chappart. Perkin's violet, which was the starting point in an industrial sense, is prepared by bringing bichromate of potash into contact with sulphate of aniline, and treating the precipitate with wood spirit, which absorbs the coloring matter. The spiritis then evaporated and the residuum mixed with water with the addition of soda, which precipitates the coloring matter.

The most important green pigments derived from tar are those of Usebe and Hoffmann. The former was discovered scisidentally, by a workman named Cherpin, who, not being able to fix aldehyde blue in a tissue, applied to a photographer, who recommended him to try hyposulphite of soda, the result was the production of a magnificent green color. Auiline browns are but little employed. Aniline yellows are numerous; most of them, however, have an orange or brown tint. Aniline black may be said to be almost exclusively for cotton.
The employment of these colors is very simple. Silk, whether in hanks or woven, is dyed by simple immersion, and wool in the same manner. The same colors also serve for printing on silk and woolen fabrics. For cotton, the colors must first be mixed with albumen and then submitted to the action of ateam; or they are printed on cloth prepared with tannin, which forms with the pigments insoluble products. Aniline is not the only substance derived from tar which yields coloring matter. Naphthaline, which distils at $428^{\circ} \mathrm{Fah}$., yields among others the yellow of Marius, one of the most brilliant and purest yellows known, which dyes woolen and silk without mordant, from light citron to gold of the purest tint with true yellow reflections, differing from the greenish yellow shade of picric acid, another substance derived from tar. Naphthaline red is superior to the aniline reds, and possesses greater solidity; but it can only he employed for light tints, as it loses its brilliancy in the daiker shades. These two are the only colora which naptha? line supplies at present to industry; the others have not sufficient purity, brilliancy, or freshness, and are too much affected by light and atmospheric influences; their price is also at present, too high
Anthracene, which distils (at a temperature above 360°) with the last products of tar, has, on the contrary, a brilliant future, since the important discovery of its transformation into alizarine. Anthracene is still too dear to come into dangerous competition with madder; but its production and the apparatus used are being reduced to greater simplicity. It is a carburet of hydrogen. Artificial alizarine is prepared by means of bromine and potash. According to the calculations of M. Kopp, in order to replace completely the aliza.
rine of madder and purpurine by artificial alizarine, $\boldsymbol{r} 04$ tuns as moss, for packing grafts. It is needful, however, to of the latter would be required in the dry state, which is keep an occasional eye to them, to see that the proper de equal to 7,044 tuns of the raw color. It would require 2,720 tuns of the raw artificial alizarine to replace the true alizarine only ; this quantity represents about 720 tuns of anthracene.

\section*{ORTSMOUTH, ENGLAND.}
 the docks at portsmouth, england.

The well known town of Portsmouth, in Engiand, is not of the steamers, running between Liverpool and New York only a thriving business place and a commercial port of considerable extent, but it is the chief station of the British navy, and has, on this account, been so etrongly fortified that it is deemed by many high authorities to be absolutely impregnable. The fortifications are bastioned ramparts faced with masonry, and inclose the whole town, to which entrance is permitted by four carriage ways; and outworks, in the form of trenches, are arranged to protect the inner line of walle. The harbor is only 220 yards wide at the entrance, but broadens to a width of about six miles; and on the waters of the whole British necure bay, safely find anchorage. The dockyards of this immense naval station, large as they are, are not sufficient for the accommodation of the ships under repair, and some very important additions are now being made. We publish herewith a view of the works now under construction, from which a good idea of their nature and magnitude may be formed. The immense blocks in the foreground show how concrete is coming into use not only in ordinary work, strength and permanency are points to which expense is not to be compared. The large repairing and refitting basin, from which numerous dry docks of great size branch off, is nearly ready for the inlet of the waters, on which ride the ships whose masts are ceen in the distance, towering above the buildinge.

Cuting and Storing Grafts.

There is no better time to cut grafte, says the London Garden, than at the commencement of winter. In cutting and packing them away, there are some precautions to be observed. In the first place, let them e amply and distinctly labeled, as it is very annoy-
ing to find the names gone ing to find the names gone
at the moment of using them. For this purpose they should be tied up in bunches, not over two or three inches in diameter, with three bands around oach bunch-at the ends and middle. The names may be written on a strip of pine board or lath, half an inch wide, a tenth of an inch thick, and nearly as long as the scions. This, if tied up with the bunch, For ceep the same secure. determining the name, there should be another trip of lath, sharp at one end, and with the name distinct ly writien on the other, thrust into the bundle with the
name projecting from it. If these bunches or bundles are now placed on end in a box, with plenty of damp moss between them and over the top, they will keep in a cellar in good condition, and any sort may be selected, and withdrawn without disturbing the rest, by reading the projecting label. packing substance: convenient, clean, and easily removed

one of the American aquarium cars, a newly invented con. trivance for transporting live fish, which has succeeded very well in long overland journeys, and by means of which it is hoped to effect a useful interchange of living fish of various nds between England and America. England, and we at the same time might transport to the other side of the Atlantic some varieties of fish which are not found there. -Nature.

PEAT FUEL MANUFACTURE IN CANADA.-CUT'JING AND PULPING APPARATUS. (See page 356.)

PEAT FUEL MANUFACTURE IN CANADA.-DRYING AND STACKING, (see page 356.)

PEAT FUEL.

The difficulties in utilizing peat as fuel have been very widely discussed, but the operations at La Pigéonnière, Canada, have, by ten years' practical operation, proved the practicability of converting the substance into a clean and cheap fuel, the supply of material for which is, in many localities, practically unlimited.
The Irish peat, the formation of which is due to the moist atmosphere, when cut and dried in the air, is ready for use in furnaces, etc.; and the considerable formations in Somer setshire, England, and in the valley of the Somme, in France are utilized in a similar manner. In Canada and this coun try, where the atmosphere is drier, a supply of surface wa ter is required to produce the substance. It is fibrous in texture, and somewhat red in color; in drying, it loses 40 per cent of its bulk and about 90 per centof its weight. Thus 10 tuns of the material must be dug out to obtain one tun of fuel; and its economical working is, therefore, a point of great importance. When dry, its heating capacity is about three fifths that of coal.
To render its combustion practicable, it must be pulped and disintegrated before drying, otherwise it is too loose in condition to form a good fuel. The pulping operation destroys a certain hygroscopic character that the dried raw peat assumes, and causes it to resist moisture and to be indestructible by frost.
Mr. James Hodges, C. E., is the engineer of the La Pigéonnière operations, and the process is described as follows A center level line is traced out, and for ten feet on each side of it the surface is cleared of vegetation, the débris be ing piled up on each side to form two banks 20 feet apart This arrangement is the preliminary work for a canal, and at one end of it a kind of dock is formed, for launching the apparatus shown in our first engraving. It being ascertained that the peat bog contains sufficient water to flow in behind the machine and fill the excavation, the cutting vessel is started. It consists of a boat of 80 feet length, 16 feet beam, and 5 feet depth, with two screws, of 11 feet diameter, in front, fitted with cutting blades and driven by an engine in the stern of the vessel. The blades cut their way through the bog; and as the water flowsin as fast as the peat is taken out, the vessel moves forward, generally at the rate of about 15 feet per hour. Two men are required to clear the peat from pieces of wood, roots of trees, etc. When cut, the peat is lifted by an elevator and discharged into a hopper, and thence passes into a pulping apparatus, and flows off by a distributing trough. The two men occasionally add water to keep the pulp of a proper consistence, but no other hand labor is required. The distributing trough lies at right angles to the length of the boat, and may be lengthened to deposit the material at the required spot. The peat is left on the ground to dry, to the depth of about 9 inches; and when consolida. ted, it is ready for cutting into blocks. Ttris is done with curved knives, placed 6 inches apart and mounted on a frame, and worked by two men. In a fortnight of lavorable weather, the blocks are ready for stacking, wheth a gang of a man and three boys can perform at the rate of 4,000 blocks a day. They required to be turned and restecked to insure thorough dryness. Our second illustration shows this process.

Mr. Hodges states that, in 10 hours, frem 800 to 400 tuns of pue, can be excavated by this machine. This will yield about 50 tuns of dried fuel, and will leare a canal 150 feet long, 19 feet wide. and $5 \frac{1}{2}$ feet deep, in the peat bed. For this quantity, an e-erage of 38 men for the day of 10 hours will be required. Fu 3 l thus made has been burned in the locomotives of the Grand Trunk of Canada Railway, with a saving, it is said, of 45 per cent of the expense of coal, and a rather larger economy over that of wood.

The engravinga were originally pablished in Engineering.

Wrave Motion.

Mr. Deverell, of Englaind has devised an apparatus by Which the movement of 2 ship at wea is registered. From the reaults of a recent vojege, Mr. Deverell deduced the following: The duration of the vojage was 2,026 hours. During that time the ship made $1,764,088$ beam oscillations or rollis, and $1,041,137$ fore-and-aft oscillations or pitches. The average number of oscillations in both directions per minute was 14. The aggregate arc of pendulum registering beam movements was over $15,000,000$ degrees, while that of the fore-and-aft movements was nearly 5,000,000 degrees." Mr. Deverell also considered that he had definitely established from these observations the following propositions: 1. That between ocean limits, the swell of the ocean is unceasing. 2 . That the motion of an independent body within a ship on the ocean is unceasing. Here then was represented an immense amount of conservable energy, and the question remained : Could a practicable method be found for conserving it for use on board ship? Mr. Deverell believed that it could, and to a sufficient extent to be useful in auxiliary propulaion. He expects to be in a position in a few months to detail his method of putting his propositions into practice.

The Bicycle

A remarkable instance of what can be done with the bicycle was recently exemplified in England. A match had been made between Mr. Stanton and Keen, the champion rider, to run 106 miles, the former to receive a start of half an hour. Stanton's machine had a driving wheel of 58 inches in diameter, that of Keen's being 4 inches less. Keen accom. plished 50 miles in the extraordinary time of 3 hours 14 minutes 18 seconds, but was compelled to retire in the 91st mile, leaving Stanton to finish the 106 miles alone, which he did in 1 minute $5 \frac{1}{2}$ seconds less than 8 hours-an average of over 13 miles an hour, inclusive of a few short stoppages for otreshmenta, etc.

ASTRONOMICAL NOTES

 Observatory of Vassar College.For the computations of the following notes (which ar pproximate only) and for most of the observations, I am ndebted to students.

Ponitions of Planets for December, 18 y4.
Mets for
Mercury.
Mercury should be looked for in the morning. On the 1st December, it rises at 5 h .22 m . A.M., and sete at 3 h .32 m P.M. At this time it is well situated. On the 31st, it is not as easily seen, as it rises at 6 h .59 m . A.M., and sets at 3 h 51m. P.M.
Venus rises on the 1st of December at 8 h .17 m . A. M. nd sets at 5 h . 3m. P.M.
On the 8th of December, Venus makes a transit across he sun's disk, affording an opportunity to astronomers to determine, by the best methods now known, the disance of the sun from the earth. To observe this phenomonon, expeditions have been sent to northern and southern tations by the United States, Great Britain, Russia, and other countries.
The transits of Venus which have been observed occurred in 1639, 1761, and 1769. The next after this of 1874 will be in 1882, and will be visible in this country. The transit of 1769 was observed in this country, and a curious pamph et describing it was published at that time in Providence R. I. The writer says: "The transit of 1761 was observed at S^{s}. Jobn'e, in Newfoundland, by John Winthrop, at the expence of the Massachusetts colony.'

- To observe the transit of Venus in 1769, several obser vators were sent into the South Seas by the Royal Society in London; the Empress of Russia sent several companies into those parts of her empire where the visible duration was of the greatest length, and the King of France did likewise send observers into foreign parts.'
On Dec. 31st, Venus rises at 4 h .59 m A.M., and sets at h. 49 m. P.M.

Mars.

Mars is not well situated for observers. It rises at 2 b . 46 m . A.M., and sets at 2 h .4 m . P.M. on the 1st of December On the 31st, it rises at 2 h .20 m . A.M., and sets at 0 h .50 m P.M.

Jupiter.

Jupiter is also unfavorably situated for observations, rieng on the 1st at 3 h .18 m . in the morning, and setting at 2 h 20 m . P.M. On the 31st, Jupiter rises at 1h. 43 m . A.M., and sts at 0h. 33m. P.M.

Saturn.
Saturn is not as well situated as it has been through the ummer. It comes to the meridian before dusk, and sets on the 1 st at 8 h .57 m . in the evening. On the 31st, it rises at 9 h .28 m . A.M., and sets at 7 h .14 m . P.M., so that it is carcely possible to get a good vlew.

Uranus.

Uranus can sometimes be seen with the eye; and as in rises on the evening of the 1st, among the small stars of Cancer, at 9 h .24 m ., it could perhaps be seen at midnight. It rises on the 31 st at 7 h .23 m . P.M., and passes the meridian at about 2 h .30 m . in the morning, at which time it ha an altitude, in this latitude, of nearly 59°.

Neptune.

Neptune rises at 2 h .32 m. P.M. on the 1st, and sets at 3 h . 38 m . the next morning. On the 31 st , Neptune rises at 34 m after noon, and sets at 1 h .39 m . the next morning.

Sun Spots.

The record is from Oct. 20 to Nov. 14, inclusive. The pho tograph of the 20 th shows the three large spots of the 19 th , with another of good size, very near the center, which was not seen on the 19th. The 21st was not clear; and on the 22 d , this spot had disappeared, together with the most westerly of the other three. On the 23d, the two remaining spots were seen, the more westerly having perceptibly decreased in size, and on the 24th it had disappeared without reaching the edge. From the 26th to the 29 th inclusive, the spots were few and very minute, the faculæ being very marked on the 27 th . On the 30th, a large spot appeared on the eastern edge
of the sun's diak, which proved to be the precursor of a fine of the sun's disk, which proved to be the precursor of a fine group. Photographic pictures of Oct. 31st and Nov. 2d show two large, well defined spots. Owing to clouds and fog, no pictures were taken from Nov. 2d to Nov. 10th; but large spots were seen to divide into several smaller ones, the picture of Nov. 10th showing a group of six small spots within the western limb. On the 11th, the group was near the edge of the diak, and on the 12th it had disappeared, and the sun's axial motion had brought a small spot into view within the eastern limb. On the 14th, three groups of very
small spots were seen within the eastern limb, and nearly in a line with the sun's equator.

In describing a recent balloon ascent to the French Acad. emy, M. Tissandier mentions having entered a bank of gray clouds at a hight of only 485 feet, this being lower than in any previous ascent. At one time, cariously, while the ground was completely hid from the voyagers, they ascertained, from the voices they heard, that they were distinctly seen from the ground. The clouds were transparent from below upwards, opaque from above downwards. M. de Fonvielle took spectroseopic observations of the sun at various hights, from 4,850 to 3,250 feet. The blue was observed to invade the space occupied by the indigo and violet rays, while the red was much the same as on the ground. On nearing the upper surface of the olouds again, the violet and indigo resumed their former extent.

Cortespoudente.

ENTOMOLOGICAL NOTES.

To the Ebditor of the Bcientific American.

I send you a few notes on entomological paragraphs which have lately appeared in the columns of your journal.

beech blight.

Under this head, you published several communications last spring, one of which, from Mr. Jacob Stauffer, of Lancaster, Pa., contained the following words: "It would seem that this blight is not so very new after all. Westwood fig. ures the larva of the psylla betulce." * * " I would simply add that neither from Mr. Riley, Mr. Walsh, nor Mr. Harris could I learn anything further about the epecies, or if it were ever before noticed."
The insect is not the psylla referred to, and does not belong to the flea lice (psylludar), but to the plant lice (aphidcs). It was briefly described by Dr. Asa Fitch, in 1851, under the name of eriosoma imbricator, though it in reality belonga to the genus pem.phigus. I have referred to it in the American Entomologist, vol. I., p. 58.

vesicatory potato bugb.

The Colorado potato beetle poseesses no vesicatory properties; but the socalled old-fashioned potato beetles, be. longing to the very same family as the Spanish fly (cunther is vesicatoria) all possess it in a high degree, and the fact was known and made uss of not only nineteen years ago, but half century ago. Kirby and Spence, in their invaluable "Introduction to Entomology," speak of these insects being used n place of the green European species, and Harris and most ubsequent authors who treat of the lytte refer to the fact. Some years ago I caused large quantities of the striped bliser beetle (lytta vittata) to be collected and properly dried, and rom them Mallinckrodt Brothere, of this city, made an excellent cerate, which has-been used with satisfaction by our local physicians. I would also state to Mr. E. S. Wicklin that these blister beetles have not become great strangers. Lyttavittata may be got in almost any year,by the cartload in his latitude, and they often ruin a potatofield in a fow days; while cinerea, marginata, and atrata frequently swarm on particular plants. The European vesicatoria abounds most on ash trees, and is collected principally from these trees, and with far more labor than is required to collect the vittata in this country. But such is the force of habit and the difficulty of diverting the course that trade has once taken, that our pharmaceutists still send to Southern Europe for their cantharides. But I presume they make as much profit on the one as they would on the other, and there is no particular inducement for them to encourage home industry.

THE PHYLLOXERA PREMIUM

An item in one of your late numbers makes mention of the fact that one of your correspondents has discovered that the liberal use of cow dung is a sure cure for the phylloxera on vines, and-whether jokingly or not, I cannot pretend to say-calls upon the French Government to remit the amount of the reward, in case the proposed remedy prove effectual. It is a pity that your correspondent is so modest as to keep back his name, and a still greater pity, for him, that cow manure and cow urine were among the earliest supposed remedies thoroughly tried in France. The fact that he will not be able to prove priority of auggestion is all the more to be deplored, for the reward for a remedy has been increased from sixty thousand to three hundred thousand dollara. Cow manure is an excellent invigorator of the vine, and its use, as that of all other invigorators, is beneficial in counter working the effects of phylloxera, but it is no sure remedy for the disease.

Charles V. Riley.

St. Louis, Mo.

\qquad

To the Editor of the Scientific American:

I notice in your issue of November 7, 1874, an editorial rticle entitled: ‘What Temperature Kills?" In the third paragraph you say that " not one seed germinated after ex. posure to boiling water." I wish to state that the seed of the common locust tree will not only stand the temperature of boiling water, but will always fail to grow unless boiled or 8 to 10 minutes.
My father planted about 15,000 seeds of the common lo. cust on four acres of land, and only about 50 seeds germinated. We now boil them for 10 minutes, or place them in cold water and allow it to come to a boil, and remove them three minutes afterwards. These seeds will grow finely after a large brush pile has been burned over them.
These are facts, occurring every year, to my personal knowledge.

Hiram Van Meter.
Macomb, Ill

The Crystallization of Carbon.

To the Erditor of the Bcientific American :
I would like to add my testimony to what you have already published to the world on the crystalization of carbon, especially as at last we seem to be on the high road to success.
Twenty years ago, while conducting experiments for ano ther purpose, I was accidentally led to the conclusion that the diamond is a crystal of slow growth, from carbon, firs reduced either to a liquid or gaseous state. I inferred this, partly, from the growth of large crystals of other substances, whose full size was not attained in less than from five to eight years time. This theory is less complex than that of Mr. Thiese, of Rochester, and it consists in confining car bonic aoid gas in a large strong receiver, and in submitting
it to a moderate heat and great pressure for a considerable
length of time. The oxygen would probably be first thrown down to form ozone; other constituents and spurious carbon would follow, forming a mass at the bottom, upon which the crystalization of pure carbon would take place in due time.
I would suggest the construction of several largeand stout glass vessels for the purpose, so that different combinations of chemicals may be submitted to trial, and the result noted from day to day.
St. Albans, ${ }^{\prime}$ t.
-

A Siphon Water Ram.

I'o the E'ditor of the Scientific American:
I wish to call attention to an improved siphon hydraulic ram, which, I believe, will elevate water to the hight of thirty feet with considerable less fall than the ordinary ram requires for that elevation.

The engraving herewith given will explain its operation the arrows indicating the course of the water thoough the siphon. A is the check valve, and B the outlet valve. Water may be discharged at C, or be carried up by the tube, D, in which case the air chamber, E , will be required.
Gilman, Ill.
b. Frest.

A Flying Machine

To the Editon of the Scientific Americail:
Cannot we arouse a little more spirit and inquiry regard. ing the sabject of a practical flying machine, and keep the ball rolling until the aim is accomplished? What think you of this contrivance" (See accompanying illustration.) As hore represented, the fireless steam engine is assumed to be used, but the object is rather to show a good arrange ment for other parts, aside from the notor.
The horizonthl driving shaft passes through the frame of the car, and is made to revolve by means of its cratkie, worked by rods from the oscillating cylinders below. At each end of this shaft are beveled gears which actuate the vertical wing shafts, and so rotate the spiral fans.
The arms which support the wing spindles are disconnected at the center of the car (under the canopy) and so ar ranged upon the car frame that, by means of handles, they are easily and quickly made to revolve, partially and independently above the shaft, so that the gearing may always be in action The object is to incline the wing shaft The objoct is to in propling the ma or the purpose of propeling the ma chine forward or backward, or of turn ing it around when desired.
By this mode of gearing, the two fan wings always revolve in contrary directions to each other, and each has the same number of revolutions. They are also of the same form and size. When both wing shafts are vertical, the car moves upward; when both are slightly inclined in one and the same direction, the car will not only rise, but also move forward; and a contrary inclination of both wings stops the forward motion. A certain velocity of the wings, when the shafts are vertical or nearly so, as be fore said, causes the car to rise; a less velocity balances i in the air, neither rising nor falling, and still less allows it to descend gently.
The form of the car can be varied to suit the fancy, and it can be made to carry two or more persons. The legs are supposed to be hinged to the body, and to have stout india rabber straps attached across them, to act like springs, breaking the jar when the machine alights. Should the wings cease to revolve, they will act, with the canopy of the car, as parachutes to break the fall. Indeed, a regular par achute can be made to rise and open above the canopy, and flaps may be placed on the sides of the car, if desired.
The most effective inclination or anglefor the blades ap pears to be about 33° from a horizontal line. The wings need not be very large. When intended to carry the ma chine and o nly one man, $t \in n$ feet diameter for each wing ap. pears to be quite sufficient.

Charles Thompson.
We must not mistake the buoyant power of still air for its capabilities under the quick stroke of a wing. This ef fect of rapid motion in the wing is well illustrated in birds A wild duck of quick motion flies with only one square inch of wing to each ounce of its weight; a turkey with only three fourths, robins with four, tame pigeons with three and three quarters, bats twenty, and butterflies from twenty to fifty; and we find generally that large and heavy birds have much less wing space, proportionally, than the smaller ones. In this machine every desired evolution appears to be pro vided for. Now what motor shall we use? The whole machine, with all its appliances, can probably be made with in a weight of 150 lbs ., and at a cost less than that of a good orse.
iv D . i
New York city.

Lacing Belts.

ot the Edulur of the Scientific American
Permit me, through your valuable columns, to give your readers my experience in lacing a belt: Place the ends of the belt together, punch holes as for lacing in the usua way; then punch another row of holes directly behind them, from one to one and a half inches away, and not as large as the ones nearest to the end. Cut a lacing eight times as long as the belt is wide, or the lace may be spliced as soon as one is used up. Commence lacing from the inside of the belt; put the lace through the holes nearest the end and in opposite ends of the belt, beginning at one edge, and draw the lace through, until the ends of the belt are drawn to gether and the lace is of equal length on the outside of the belt. Pass the ends across, put them down in the contrary way from what they were before, and bring them up through the same holes thet you put them through first; then you

have the laces on the outside of the belt. Put the ends of tach lace down through the holes directly behind them; bu do not draw them down snug until after you put it up through the same hole as before from that side, and draw it all tight. Now we have one set of holes finished, and the lace is on the outside of the belt. Cross the ends, and pass down the first row of holes, and repeat as at first, and the lacing will be exactly similar, with the exception that there will be but two thicknesses of lacing in the place of three, as at the first ; for it is most essential to have the edges of as at the first; for it is most essential to have the edges of
the belt laced firmly, lest your belt should run crooked over

PROPOSED FLYING MACHINE.
the pulleys. This way of lacing I have learned from fifteen years' experience, and I freely give it to your readers, for I have received far more valuable information from correspondents of your paper, which I would not be without for anything.

Clarence McCoy.
Antioch, Cal.
[Our readers will not fail to see that there is a great advantage in haviug the lacing on the side next the pulley run ning lengthwise of the belt, as this method gives less friction on the pulley.-Eds.]

New Galvanic Batteries

To the Editor of the Scientific American:
In addition to the facts in my communication, published on page 277 of your current volume, I wish now to inform you that I have succeeded in making Daniell's and Bunsen's batteries constant and inodorous, by asing glycerin instead of water. Thus, in Daniell's battery I put glycerin with sulphuric acid in the copper, and glycerin with sal ammoniac or sulpharic acid in the zinc.
In Bunsen's battery, I ase glycerin and sulphuric acid
round the zinc, and glycerin and nitric acid around the carbon. I therefore call this latter battery the nitro-gly cerin battery. In this battery I use carbon taken from the bottom of a gas retort, cut into convenient slabs, which I find to be better than artificial carbon. I tried cast iron in this battery, but the result was that the iron oxydized very rapidly and covered the zinc. I found also that it is not necessary in using glycerin to amalgamate the zinc.
I thus caused the most powerful butteries to be constant. Milwaukee, Wis.
L. Burbtall.

sliding Face Plate

To the Brditor of the Scientifis American:
Mr. Rose's recent article on boring the crank calls to mind a sliding faceplate, of which I send a sketch. Fig. 1 is a front view ; Fig. 2, a side and sectional view; Fig. 3, back of faceplate, showing dovetail bar, t. S is a slide, as long as will swing over the ways, W, hollowed by a dovetailed

longitudinal groove, and provided with a hub, d, at the mid dle, which screws on the spindle, H. P is a faceplate with a bar, t, extending rearly across the back, fitted to the slide, S, along which it may be moved. g is a bar beld against t, by screws, 8 , at any desired pressure. C'is a crank, strapped to the faceplate, and the latter is moved to a posi tion for boring the main hub; the dotted lines (Fig. 1) show the position for boring the smaller hub. Both hubs ar bored and faced at a single chucking; and if the workman is careful not to spring the piece in clamping, the work will be positively in line. It is of no consequence whether the faceplate is crowning or dishing, or whether the slide is square with the spindle; the work will be true. By using a dowel pin, at y, and alternately at p, cranks may be bored to have exactly the same throw. Eccentrics can be accurately harad and turned at a single chucking.

Its genersl uee will be readily under stood by mecbanics. All holes bored will be on the line, $a b$, ard work must be bedded accordingly
E. B. Whitmore.

Rocheater, N. Y.

Curious Apples

To the Elditor of the Scientific American
The curious apple described in your issue of November 21 is simply the effect of abnormal growth, one portion of the fruit developing and direning sooner than the other. The sweet and sour portions show the contrast between ripe and unripe fruit. By keeping a specimen a sufficient time, this fact will appear. The suture between the parts is also produced by one part baving an earlier and larger development. Splitting a bud could not produce the effect. Even if it could be made to grow, it would only produce on each side a limb bearing froit according to its kind. Trees of the greening apple are sometimes subject to this uncatural growth of the fruit, avd the contrast between the ripe and unripe parts is of course strongly marked.

Fletcher Williams.

Newark, N. Y.

rawing as an Educator

In referring to the usefulness of the art of drawing, in edu cation, the Illustrated London News says: "The achool board have taken an important and, we think, very wise step by resolving to introduce the elementary teaching of drawing into the schools. The teaching of drawing confers, as it were, a new sense ; it develops perceptions which reading and other branches of education can never reach. To say nothing of the increased pleasure it affords through life, so long as the power of sight endures, it trains precisely those faculties which are most regarded in nearly all mechanical occupations, and it forms, therefore, the basis of most technical education. There are few mechanios who would not be be ne fited in their work by a knowledge of drawing; while here and there the proposed teaching may stimulate genius that might otherwise remain dormant. The system of teaching adopted in the German kindergarten has been recommended and the suggestion deserves consideration."

THE NEW FRENCH ARMY GUN.

Through the courtesy of a Paris correspondent, we have lately obtained tracings of the official drawings of the new gun, which a board of officers, under the presidency of Mar shal Canrobert, adopted, on the 13th of August last, as the weapon with which the army is to be provided. Ont of the various designs submitted to the examiners, it appears tha but two were favorably regarded. One known as the Beau mont, the invention of a Hol. lander, found support from four of the eight members of the board, while the remaining half adrocated the Gras gun, a French invention. The casting vote of the president, probably influenced somewhat by a pa triotic feeling, decided the ques tion in favor of the Frenchman and so the weapon of which Captain Gras is the reputed inventor is that of the French army of the present and future

We give an engraving of the Beaumont gan, and also illus trations of the Gras arm, pre pared from the tracinga above referred to, to enable the reader o draw his own comparison In the Beaumont (Fig. 1), the ring A is contained in the pring, A, is contained in the ever of the movable breech piece, and its longer branch ex ercises a pressure in rear of the needle, B. The dog, C, has, be neath its lower forward porion a helicoidal projection, which, at the firing, lodges in a corresponding recess in the bolt, B. The rotation thus im pressed upon the latter causes pressure against each other of the spiral surfaces, and, conse quently, the recoil of the dog and needle, sufficient to bend the spring. All the movable portion is then drawn to the rear, so as to expose the end of the spent cartridge, in order to remove the same, and to introduce a new one. This done, the movable part is brought forward until the stop on the bottom of the dog takes against the trigger catch, at D. The breech lever, which has hither to been in a horizontal position, is then turned upward closing the mechanism, when the parts are as shown in our illustration, and the weapon is ready to fire.
From this arm the Gras gun, represented in Fige. 2 and 3 (section in the latter), will be found to present much material difference. Fig. 2 shows the position of parts as the car ridge is being extracted, and Fig. 3 the mechanism just be ore it is closed together for firing. A A is the movable breech piece operated by the lever, B. C is the dog, at the nd of which is a button, to which the rod, D, of the firin pin, E, is attached. F is the coiled spring, which throws the pin forward. For loading the gun, the parts are drawn back as shown in Fig. 2. The cartridge is inserted, and the bolt, A, by the lever, B, is drawn forward. While this is being done, a stop, enters a cam groove, H, in the side of the bolt, A, so that the latter is forced to turn as it is brought orward. In Fig. 3, it will be noticed that the notch on the dog. C, is almost in contact with the spring stop, I, governed by the trigger. By pulling on the latter, this stop is with drawn, and the needle is thrown forward by its spring, stri

Eing and exploding the cartridge. At J is the extractor, the part containing which, though drawn back, does not tarn with the movable breech, so that the spring hook alway grapps the rim of the cartridge case from above. With thi gun, it is stated that 45 shots can be fired in three minutes, effective at a range of 5,120 to 5,440 feet.

A Wooden Railroad in Michigan

The tram road of Van Etten, Kaiser, \& Co., manufac turers of rough and dressed pine, lumber and lath, at Pin conning, Bay county, Mich., is 11 miles long, and is thu described by the firm: "There are, first, logg laid crosswise about five or six feet apart. The loga are from 12 to 16 feet in length. Then gains are cut in the logs and flattened timber laid in these gains; this prevents the road from spreading. Our rails are of hard maple. Before spiking the rails down we put ties across the stringers, notching the stringer enough o let the tie down even with the top of it, and spike the tie fast before the rail is laid on. The ties are of 2 inch hem
lock plank, from 6 to 12 inches wide; this prevents the tringer from rolling. We would recommend any one who wishes to build a road on the above system to build it a straight as possible. We have some carves in our road, and we have been obliged to diepense with wooden rails on the curves, and lay down iron. We operate our road with loco motive power. Cost of building, without rolling stock, is about $\$ 2,000$ per mile. The stringers are made from elm,
ap, and, at the same time, to compress the upper jaw be ween the strap going over the nose and the bit. The amoun power which it is desired to use is regulated by tighten ing or loosening the bridle in its connection with the reins, so that either a constant strain may be maintained, or the pressure on the jaw applied only when the reins are strongly pulled upon.
By means of the sliding piece just above the nose the parts of the bridle may be brought together at any de ired distance above the ends of the bit. By thus changing the adjustment of the bridle, its action on the animal may be varied as desired.
The second invention, which is represented in Fig. 2, is de signed to prevent horses turned out to pasture from jump. ing fences and so running away. It consists of a strap which buckles around the horse's head just below the eyes, to the front part of which the blinder, in shape concaved apon the arc of a circle, is secured. This is further supported by the short strap shown leading to the edge of the blinder from the top of the animal's head.
As will be readily under stood, this blinder is not for travel. While it admits plenty of light and air to the horse's eyes, it, however, stops the anmal's view, both in front and at the sides, so that, as he ap proaches a fence, he is able to ee neither the bars nor the round beyond, and conse quently does not attempt the leap. The device is easily detachable, and may be used in connection with an ordinary halter or bridle. It was pa-

THE NEW FRENCH ARMY GUN

oak, pine, and ash, and are flattened on two sides to 10 aches in thickness.'
\triangle BRIDLE AND A BLINDER FOR UNRULY゙产HORSES. A novel arrangement of horses' head gear has been patented, June 30, 1874, by Mr. R. W. Sanborn, of Rochester, N. Y., by which, it is clsimed, the most unruly animal can be constantly kept under control. The device consists of a kind of bridle, as represented in our engraving (Fig.

1), the ends passing over the horse's nose, thence through the bit rings, then through two apertures in a sliding piece, and finally through guide loops on the head stall, the extremities being made fast to the reins. The effect of this is, when a strain is brought upon it, to draw the animal's head
tented through the Scientific American Patent Agency, June 23, 1874, by Mr. 'John W. Kennedy, of Central Village, Windham county, Conn.

MITH'S IMPROVED REIN HOLDER

This invention is intended to prevent the fastening of the reins to the bridle in a twisted condition, also to keep the former from falling under the horse's feet when unattached to the bit, or from dropping under the tongue of the vehicle. The device is represented in our illustration secured to the barness, and also separately in Fig. 2. It consists of a simple metal casing, having one pivoted roller, A, and another, not pivoted, but forced in close contact with the first by means of a spring, B. The rein is passed through between the rollers, and thus supported.

On work harness, the rein holder may be made pendent to conform to the position of the reins. On light harness it may take the place of the terret, and thus, it is claimed, be of greater service than a rein holder secured to the carriage, since it keeps the reins up in front of the animal so that he cannot get his fore feet over them. At the same time the reins, when thrown over the dashboard, are less liable to get under the horse's feet and tail. The inventor points out that, in similar devices which keep the reins taut, the horse is apt to put his tail over, and so, pulling on the lines, to cause himself to back, thus breaking the hitching strap, a difficulty evidently obviated by the present invention.
The entire right is for sale; or, if not sold within six months, proposals for manufacturing on royalty are invited. Patented August 25, 1874, by Mr. A. K. Smith, of Nebras ka, Pickaway county, Ohio, who may be addressed for fur ther information.

THE INDOOR GARDEN AND THE SHRUBBERY. The numerous lovers of flowers are now turning their atention indoors; and the conservatory and the window sill again receive the chief share of consideration. We introduce to notice an exquisite flowering plant, easily cultivated in a hothouse. It is called the lemon-scented gardenia, and is especially suited for bouquets, and for any purpose for which choice cut flowers are in demand. It is readily propagated by means of cuttings inserted in a genial bottom heat, and young plants, if liberally treated, seldom fail to flower the first year. A rich peaty soil suits it admirably and during the growing season, it requires copious supplies of moisture, both at the roots and in the atmosphere. Apar from its attraction as a decorative stove or warm greenhouse plant, its flowers are extremely useful for buttonholes, as they can easily be mounted on thin wires, either singly or in clusters. Like other gardenias, this species is very liable to be infested with insects, which must be carefully looked after. Its pearly sweet-scented flowers, which are produced in winter, form a good substitute for orange blossom, and on that account alone it deserves a tention. It is a native of Southern Africa.
The flowering bulbs which decorate our mantelpieces are being much inquired for. Among the best for indoor growth are narcissus (such as the paper-white and soleil d'or), hyacinths, snowdrops, crocuses, and tulips. All these may be potted in a light compost, and the two first mentioned grown well in glasses of water. A more effective method of displaying their beauties is the use of a perforated vase, as shown in our engraving. It is pierced with holes, opposite each of which a is pierced with holes, opposite each of which a
flower bulb is placed; and the intervening spaces are filled with compost. Some use moist pphag num (moss) in place of soil; and if the bulbs are well ripened, it answers nearly equally well. A hyacinth bulb, planted at the top, finishes off the arrangement in a pleasing and artistic manner.
Hyacinth and narcissus bulbs may also be placed in common hyacinth glasses, filled nearly full of tepid water. Care should be taken to prevent the base of the bulbs touching the water below; and if a apace of about half an inch is left between the roots, attracted by the moisture, soon pro trude from the base of the bulb, and find their way down inside the glass. If this point is not duly attended to, it often results in the bulbs rot ting away at the base, and this is especially the case if they are unripened or loose in texture Few early flowering plants give greater satisfac tion to the amateur than these, an they areao oani. ly grown, and flower so quickly after being potted.
In addition to those mentioned above, flowering bulbs of both the belladonna and Guernsey lilies, if carefully potted in any light rich soil, will flowor in a week or two, and will keep the window gay until hyacinths and narciesuas develop their
delicate, war-like, richly perfumed flowers.
Leaving the greenhouse and parlor, we come to a very hardy shrub, recently brought from Japan, and exhibited in Paris; it is the rhodotypus kerrioides, and is shown in our third illustration. The flowers are pure white, and are abundantly prodaced, the plant being about three feet high. It is easily propagated by cattings, and by separation of the suckers. In favorable seasons, it begins to flower about the middle of April, and continues to bloom throughout the

perforated vase for; flowering bulbs.
month of May. We know of no subject, aays the English Garden, from which we select the illustrations, more worthy of a place in the flower garden or choice shrubbery.

The Java Agricultural and Industrial Exhibition.
There will shortly be no corner of the world which the industrial exhibition idea has not reached. The Datch colony of Java announces her second "Exhibition of the Works of Certain Industries of all Nations," to be opened at Diocja-
karta, in April, 1875. The colonies of Holland in the great eastern archipelago are very extensive, and contain a popuation of $30,000,000$. The demand for machinery, especially agricultaral implemente, is large, and the natural productions of the islands are very numerous and valuable. The agriculture of Java is excellent, showing much of the care in tillage and irrigation which distinguishes the Dutch people in their own country.
The managers of the Exhibition especially wish to intro duce to the people of these islands: Labor-saving tools, implements, and machinery of every description and for every urpose, for use and appliance in industrial, agricultaral, or domestic pursuits; as well as articles for general use, either

THE LEMON-SCENTED GARDENIA, AND BLOOM (natural size)
kind, say a heavy piece of glass, which should remain there for an hour at least. This assists in securing a complete contact to the print. At the end of an hour remove the weight and leave the print, back up, until perfectly dry all through. Sometimes they start off without help, which shows perfect success. Rememeber that careful manipulation is the only surety for success. A little experience will enable any one to perform this operation well."-Philadelphia Photographer.

Carrots.

In Belg um and other continental countries, the carrot has been grown as a field crop for a longer time, and to a much greater extent, than in Britain. In the year 1765, the attention of the Society for the Encouragement of Arts, etc., was directed to this branch of husbandry, and, in consequence, an account of the culture of carrots and the uses to which they may be applied was published by Robert Billing, a farmer in Norfolk, who states that he obtained, from twenty and a half acres, five hundred and ten loads of this root, which he found equal in use and effect to a thousand loads of turnips, or three hundred loads of hay. Some of them measured two feet in length, and from twelve to fourteen inches round. Horses are remarkably fond of carrots, and when mixed with oats they form very good food for them. The efficacy of these roots in preserving and restoring the wind of horses had, it is said, been partially known in Suffolk, where carrots were administered as a secret specific for the complaint long previously to their being commonly applied as food for that animal. Carrots are equally beneficial as nourishment for cows, sheep, and swine. It was stated some years since that at Purlington, in Yorkshire, the stock of a farm, consisting of twenty working horses, four bullocks, and six milch cows, were fed from the end of September to the beginning of May on the carrots produced from three acres of land. The animals, during the whole of that period, lived on these roots, with the addition of only a very small quantity of hay.
Carrots contain a large amount of water, 86 parts in 100 lbs. Their most distinguished dietetical substance is sugar, of which they possess nearly $6 \frac{1}{2}$ per cent. Starch is also found in small quanti ties, with a small portion of albumen. The an cients used the seed both of the wild and cultiva ted carrot as an internal medicine against the bite of serpents; they also gave it to animals that had been stung by them.
Dr. James says that carrots strengthen and fatten the body, and are very proper food for consumptive persons. The root of the garden carrot is much used as a poultice for cancers, on account of its antiseptic qualities. In some parts of Europe a spirit is distilled from this vegetable. The abun dance of sugar contained in the roots is readily
for wear or food, adapted to the requirements of a people of ous native and Euabits," containing among them numer distinction and of cultivated and refined tastes."
It is worth knowing that booka, engines, machinery of all kinds, and metals (raw and manufactured) are admitted to these ielands free of duty; while textile manufactures, leather, clocks, domestic wares, and provisions pay a duty of only 6 per cent ad valorem.
Mr. L. W. Morris, of 50 Broadway, New York city, is the agent for the United States, and will be happy to give de tailed information.

The Glace or Enameled Photograph.

The glass upon which the enameling is to be done must be scrupulously clean. Plate glass, free from scratches, is the best, although good photograph glass will do if not scratched. Blisters in the glass hurt nothing. After it is thoroughly clean, sprinkle over it, by means of a five cent pepper box, powdered talc (or French chalk), and with a tuft of cotton rub in a circular motion(carefully going over the whole surface) until no trace of the chalk is perceptible. Do not rub heavily. The chalk gives a surface to the glase that assists in the lifting the enameled print from it. Now that assists in the lieting the enameled print from it. Now
flow the plate with collodion made as follows, namely, ether fow the plate with collodion made as followe, namely, ether
$4 \frac{1}{2}$ ounces, alcohol $3 \frac{1}{2}$ ounces, cotton to thicken (eay from 5 to 7 grains to the ounce of solucion), and 24 drops (or minima) of castor oil. When this flow is dry, apply the prints face down, after immersing them in a gelatin solution made as follows: Coxe's gelatin 1 ounce, water 8 ounces, glycerin 50 drops. Add the gelatin and glycerin to the water, and let it stand over night,when it will be ready for use after filtering, which can be done by warming aufficiently to make the solution'limpid. Allow the prints to remain in this solution aoout five minutes before laying them on the collodionized glass, and then pass a gum roller lightly over them to press them tightly to the glass, and also to remove the surplus gelatin. After the prints are nearly dry they are ready for the mounts. For this purpose, light Bristol board is best.
Use the gelatin solution for mounting, and mount on the glass as the prints lay. The whole thing must be perfectly dry before an attempt is made to remove them from the glass. When they are dry, run a knife blade around the edge to start them up; and if thoroughly dry and the work properly done,they will come off all right. "I forgot to say back, after the place, that it ia a goodidea io lay upon the converted into alcohol. About 160 lbs . of the crusbed roots are required to yield one gallon of spirit. Sugar has been obtained from them; but notwithstanding the large amount existing in them, the manufacture has not been found proitable. In Germany, a substitute for coffee has been made of the roots chopped up into small pieces and partially carbonized by roasting. A dye similar to wood haa been ob tained from them.
Parkinson, botanist to James I., tells us that ladies of his

RHODOTYPUS KERRIOIDES

time used to decorate their hats or heads with the leaves of the wild carrot, which in the autumn are exceedingly beau tiful. This, says Phillips, would rather show the simplicity of our ancestors than their want of taste; as we have seen ladies' dresses trimmed with the curled leaves of the garden paraley, which were not more admired for their novelty han for the elegance they displayed.
If in winter a section be cut from the end of the thick part of the root, and this be placed in a shallow vessel con-
taining water, young and delicate leaves are developed, forming a radiated tuft, the graceful and verdant appearance of which makes it a pleasing ornament to a room in that season when any semblance of vegetation is a welcome re lief to the eye. Flowers may be cut out of large carrot that closely resemble ranunculuses, without the least aid of caloring.-Hompden G. Glasspole, in Science Gossip.

PATENT OFFICE YEARLY REPORT.

The Annual Report of the late Commissioner of Patents, General M. D. Leggett, was recently submitted to the Secre tary of the Interior, and we here give an abstract.
The following table shows the receipts, expenditures, and business of the Office during the year from October 1,1873, to September 30, 1874

MONEYS RECEIVED.
Amounts received for applications for patents, ex-
tensions, caveats, disclaimers, appeals, and trade tensions, caveats, disclaimers, appeals,and trad marks.
For caveats.
For recordin
For recording assignments
For subscriptions to Official (Gdzette...............
For registration of labels (since August, $1 \times i \not)$).

'Total.

 MONEYS EXPENDEI).

 MONEYS EXPENDEI).}

Amount paid for salaries.
Amount paid for photogra . $\$ 484,694$
Amount paid for photographing back issues.. Amount paid for photographing current
a mount paid for contingent expenses.
Amount paid for tracings.
Total.
Excess of receipts over expenditures.

> STATEMENT OF THE BCSINESS OF THE OFFICE.

Nuniber of applications for patents from Oct.1, 1873
to Sept. 30, 1874.................... to Sept. 30, 1874. designs.

pplications for extensions of patents.
Patents extend
Caveats filed.
Parents expire
Patents expired... fee...
Applica
Applications for registration of trade marks.
Trade marks registered.
Application for registration of labels
The number
slight increase upon those of the preceding year
The prompt publication of abstracts of patents issued has improved the character of such applications, thereby warranting the issue of patents for a larger proportion than could otherwise be granted. Before the establishment of the Patent Office Gazette, it was from two and a half to three years after the issue of a patent before the public had any means of knowing of its contents. Consequently there would be in existence from twenty-five to thirty thousand patents, the substance of which was sealed to all except their owners; hence applications were constantly being made to patent devices which had been previously patented by others.

REPRODUCTION OF DRAWINGS OF OLD PATENTS
The importance of printing the older existing patents is illustrated and explained.
No one thing in the Office is needed more than a thorough digest, published in convenient form, of each one of the 145 classes of inventions, as represented in the Patent Office. The number of applications on file in the Office is nearly 300,000. To look back over these applicationsand the devices represented by them, in considering new applications, is a work the vastness of which need not be further explained to be fully understood. The digest referred to should, in a classified form, briefly describe each one of these, in such a manner that they would become sufficient in the examina. tion of cases, without constantly resorting to the files. If correct and thorough digests of this character, from the organization of the Office down to the present time, were in the hands of the examiners, inventors, and attorneys practising before the Office, the labors of the examining corps would be 35 per cent less than at present, and would bear a considerable reduction, unless the number of applicants largely increased. In many of these classes a sufficient number of volumes could be sold to reimburse the government for the entire expense of their publication. Such digests. would, therefore, be an economical investment, saving money to the Treasury, and securing far greater accuracy in examining ap. plications and the granting of patents. "To this matter, there fore, I would earntioly request the Secretary to give special thought and attention. A special appropriation would be needed for the purpose.'

MORE ROOM NEEDED.

Additional room is required for the use of the Patent Office. It is utterly impossible to properly transact the work of the Office in the narrow quarters granted to it. Eight additional rooms are needed immediately. The report pays a just tribute to the cbaracter of the persons employed in the Patent Office, and regrets that the salaries paid are not sufficiently large to retain the best men in the service, whe
are constantly leaving it for more lucrative employment.

The new American built steamer Tokio has made a successful first voyage, from New York to Aspinwall. Time, seven days and fifteen hours, being an average of eleven knots an hour, on thirty-nine tuns of coal per day, with fifty pounds of steam and six boilers. There was no occasion to

Among mineral aubstances, fow solids, but quite a number of liquid and gases, are endowed with more or less powerfal scents, in most cases not very pleasant ones, and usually characteristic. Those odors belong to simple substances, such as chlorine, bromine, and iodine; to acids, as hydrochloric and hydrocyanic acid; to carburets of hydrogen, as those of petroleum; to alkaline substances, ammonia, for instance, etc. The odors observable among minerals may almost all be referred either to hydrocarbonic or hydrosul. phuric gases, or to various solid and liquid acids produced by the decomposition of fats, or to peculiar principles secreted by glands, such as musk, ambergris, civet, and the like. The odor of plants is due to principles very unequally distributed throughout their different organs; some solid, as resins and balsams, others which are liquid, and known by the name of essences or essential oils. In most cases the essence is concentrated in the flower, as occurs with the rose and the violet. In other plants, as in bent grass and Florence iris, only the root is fragrant. In cedar and sandal wood, it is the wood that is so; in mint and patchouli, the leaves; in the Tonquin bean, the seed; in cinnamon, it is the bark which is the seat of the odorous principle. Some plants have several quite distinct fragrances. Thus the orange has three: that of the leaves and fruit, which gives the essence known by the name of petit grain; that of the flowers, which furnishes neroli; and again the rind of the frait, from which essence of Portugal is extracted.
What, now, is the chemical nature of the odorous princ ples in plants? The chemistry of today reduces almost all of them to three categories of well ascertained substances : hydrocarburets, aldehydes, and ethers. We will endeavo to give a clear account of the constitution of these three kinds of substances, and to mark their place in the register of Science. The hydrocarburets are simple combinations of carbon and hydrogen, as, for instance, the petroleum oile. They represent the simple compounds of organic chemistry. As to aldehydes and ethers, their composition is rather more complex ; besides carbon and hydrogen, they contain oxygen. Every one knows what chemists mean by an alcohol; it is a definite combination of hydrogen, carbon, and oxygen, nei ther acid nor alkaline, which may be regarded as the result of the union of a hydrocarburet with the elements of water. Common alcohol, or spirits of wine, is the type of the mos important series of alcohols, that of the mono atomic alco hols. Chemists represent it by the formula $\mathrm{C}^{2} \mathrm{H}^{6} 0$, to indicate that a molecule of it arises from the union of two atom of carbon with six atoms of hydrogen and one of oxygen. Independently of the alcohole, which are of great number and varying complexity, organic chemistry recognizes ano ther class of bodies, of which vinegar is the type, and which receive the name of organic acids, to mark their resemblance to mineral acids, such as oil of vitriol or aquafortis. Now every alcohol, on losing a certain amount of hydrogen, give rise to a new body, which is called an aldehyde; and every alcohol, on combining with an acid, produces what is called an ether. These rapid details allow us to understand pre-
cisely the chemical character of the espences or essential oil cisely the chemical character of the espences or essential oils which plants elaborate within their delicate tissues. Except assenc number among them which contain sulphur, as the qualitative the family of crucifers, they all present the sam ont oxygen Bosition-carbon and hydrogen, with with out oxygen. Between one and another of them merely the regular gradations, but so as always to correspond either to hydrocarburet, or to an aldehyde, or to an ether. In thi case, as in almost the whole of organic chemistry, every thing is in the quantity of the composing elements. The quality is of so little importance to Nature that, while fol lowing always the same laws and constantly using the same ions of the cas, by merely changing the ponderable rela tions, myriads of substances which have no resemblance to each other. The strange powers of the elements and the mysterious forces concealed in matter make themselves known to us in a still more remarkable phenomenon, to which the name of isomery is given. Two bodies, thorough ly unlike as regards their properties, may present absolutely the same chemical composition with respect to quality and quantity of elements. "Bat in what do they differ?" it may be asked. They differ in the arrangement of their molecules. Coal and the diamond are identical in substance. Common phosphorus and amorphous phosphorus are one nd the same in substance. Now, the odorous principles of phants offer some exceedingly carious cases of isomery of bergamot, of neroli, of juniper, of savin, of lavender, of cubebe, of pepper, and of gillyflower are isomeric bodies that is, they all have the same chemical composition. Sub jected to analysis, all these products yield identical subatances inidentical proportione, that is, for each molecule of essence, ten atoms of carbon and sixteen atoms of oxygen, dere depend far more ments of their minute particles, never to be reached by our search, than on the nature of their matter itself; and they show, too, how far we atill are from having penetrated to the first conditions of the action and forces of substances. But chemistry has not stopped short with ascertaining the inmost composition of these substances; it has succeeded in reproducing quite a number of them artificially; and the compounds thus manufactured, wholly from elements, in laboratories, are absolutely identical with the products ex tracted from plants. The speculations of theory on the ar noncementy of atoms cometimes condemed as neelese
not merely aid in giving us a clearer comprehension of natu ral laws, which is something of itself, but they do more, a real instances prove: they often give us the key to brillian and valuable inventions. An Italian chemist, who was the employed in Paris, Piria, in 1838, was the first who imitated by art a natural aromatic principle. By means of reactions suggested by theory, he prepared a salicilic aldehyde, which turned out to bee the essence of meadowsweet, so delicate and subtile in its odor. A few years later, in 1843, Cahours discovered methyl-salicilic ether, and showed that it is iden tical with the esbence of wintergreen. A year after, Wert heim composed essence of mustard, while believing himself to be making only allyl-sulphocyanic ether. These discover les produced a sensation. Nowadays the chemist possesses he means of creating many other natural essences. Common camphor, essence of bitter almonds, that of cummin and of cinnamon, which are aldehydes, as we have seen, may be prepared without camphor leaves or almonds, with out cummin or cinnamon. Besides these ethers and aldehydes, whose identity with essences of vegetable origin has been proved, there exist, among the new bodies known to chemistry, a certain number of products formed by the union of common alcohol or amylic alcohol with different acids, hat is to say, of ethers, which have aromatic odors more or less resembling those of some fruits, but as to which it can not yet be affirmed that the odors are due to the same pria ciples in both cases. However this may be, perfumers and confectioners, more industrious and wide-awake than chem. ists, have immediately made good use of many of these pro perties.
Artificial aromatic oils made their first apparance at the World's Fair of London in 1851. There was there exhibited pear oil, diffusing a pleasant smell like that of a jargonel, and employed to give an aroma to bonbons. This product is nothing else than a solution of amylacetic ether in alcohol. Apple oil was exhibited beside the pear oil, having the fragrance of the best rennets, and produced by dissolving amyl valeric ether in alcohol. The commonest essence was tha of pineapple, which is nothing else than ordinary butyric ether. There was observed, too, an essence of coynac, or grape oil, used to impart to poor brandies the highly prized aroma of cognac. The product which was then, and still is, he most important article of manufacture, is the essence of mirbane, which very closely resembles in its odor that of itter almonds, and which commerce very often substitutes for the latter. Essence of mirbane is nothing else than nitrobenzine, which results from the action of nitric acid on benzine. Benzine, in turn, is met with among the products of distillation of tar, which also yield the substances used in prepariag those beautiful colors called aniline.-F. Papillon, in Revue Scientifique.

sCIENTIFIC AND PRACTICAL INFORMATION

OCCLUSION OF GASES BY IRON WIRE.

In drawing certain numbers of iron wire, it often becomes ecessary, in order to continue the use of the drawing bench, to anneal the iron. This is done in a hermetically closed eceptacle, so as to avoid, as much as possible, the oxidation of the metal. In spite of this precaution, however, the later becomes covered with an ochraceous film, which it is ne cessary to remove by an acidulated bath. It frequently hap. pens, however, that, subsequent to this process, the metal becomes so brittle as to render its further drawing impossible. M. Seroz, engineer of the Sociêté des Forges de La Franche Comté, has examined into this phenomenon, and inds that the iron becomes charged with a condensed gas. On breaking the wire under water in a test tube, inflammable bubbles were generated, which detonated in the air. The exact nature of the gas has not yet been decided, nor that of its direct action upon the metal; but it is believed to e either hydrogen or carbonic oxide.

the edcalyptus globulus.

In addition to its remarkable properties as preventer of miasmatic fevers, Dr. Behr, of San Francisco, Cal., states that he has been recently informed by an Australian corre. spondent that the wood of this tree made most excellent shingles, by reason of its non-inflammsble characteristics. It was a common joke in Anstralia to hand new comers an ember, from the fireplace, of this wood, by which to light their pipes. It would go out as soon as drawn from the fire. Made into shingles, it furnishes a first rate fireproof material for buildinge.
the origin of guano.
Dr. Habel, who has devoted several years to the exploration of guano islands and the microscopic study of the fertilizer, has recently arrived at the conclusion that the material is not the dejection of sea birds, as ordinarily supposed. He has obtained an insoluble residue after chemical treatment, composed of fossil sponge and marine plants and animalculæ. He thinks, therefore, that guano results from the accumulation of fossil remains, of which the organic matter has been transformed into a nitrogenized substance, while the mineral portion has remained intact.

Cooking Oatmeal.-W. gays: One rearon why oatmeal is not more generally used as food is that, in the way in which it is usually cooked, it requires constant stirring, which takes a good deal of time and attention. If, after the porridge is mired,thatis,as soon as the oatmeal is stirred into the boiling water, the cover is put on and the tin saucepan containing it placed in ansther pot of boiling water on the stove, and the water let boil, good oatmeal porridge will be made, without water let boil, good oatmeal porridge will
the least danger of its being ecorched.

A Dog on the Witness Stand

The Richmond, Va., Enquirer states that a Mr. Spears wa recently before the police court in that city,charged with keep ing a vicious dog, and the animal was ordered to be killed Subsequently, however, the execution of the sentence wa suspended, as the evidence upon which he was convicted was ex parte, and a new trial granted. When the case came up again, a large number of persons testified as to the good character of the dog, and the whole matter resolved itsel into the fact that he had scared the gentleman, who com plained of his attacking him, by rough play. Nevertheless to make assurance doubly sure, at the request of his master the dog was put upon the stand to testify in his own case On being asked if he would bite any one, he uttered a pecu liar noise and shook his head. He was then asked if he would bite if his master set him on, and replied in the affirmative by nodding his head and barking. When asked if he would bite the Court, he replied in the negative. Several other questions were asked him, and his answers and actions exhibited the greatest intelligence. It is needless to say that he was honorably acquitted.

Resharpening Files.

Well worn files are first carefully cleaned with hot wate and soda; they are then placed in connection with the positive pole of a battery, in a bath composed of 40 parts of sulphuric acid and 1,000 parts of water. The negative is formed of a copper spiral, surrounding the files but not touching them; the coil terminates in a wire which rises toward the surface. This arrangement is the result of practical ex perience. When the files have been in the bath ten minutes they are taken out, washed, and dried, when the whole of the hollows will be found to have been attacked in a very sensible manner; but should the effect not be sufficient, they are replaced in the bath for the same pariod as bsfore Sometimes two operations are necessary, but selvom more The files, thas treated, are to all appearances like new ones, and are said to be good for 60 hours' work. M. Werder mann employs twelve medium Bunsen elements for his bat teries.

New Lighthouses.

A Baltimore firm, under contract with the government, have in course of construction two lighthouses, one of which is destined for Hunting Island, and the other for Morris Island, South Carolina. The one for Hunting Island is entirely of cast iron, and is one hundred and thirty- eix feet high and twenty- seven feet in diameter. The one for Mor ris Island will be one hundred and fifty feet high; the lantern brackets, the gallery, and the lantern are of cast iron, the tower being of brick. The roofs of both the lighthouses are of copper, and each is to be supplied with a apiral stairway.
E. A. says (in commenting on the following statement in our recent articles on "Dentistry": "The teeth may possibly be removed by patiently sawing and catting the vulcanite away from the pina"): Teeth can be easily and quickly removed by holding them in a spirit lamp until the vulcanite is softened a little around the pins, and the teeth pushed off, using a cloth to protect the hand; but they will come off en tirely clean and in much less time than they can be filed, to say nothing of the cost of the teeth.

zecent Surxrican and foreign tetatents.

Improved Car Coupling.
Rtchard Hopkins, Frostburg, Md.-The coupling is pivoted loosely to the lateral front plece of a frame, which is piroted by arms to staples of the drawhead. The arms of a rod frame swing along the sides of the draw.
head, and carry a bottomptece, which extends across the under side of the head, and carry a bottomplece, which extends across the under side of the ing, and also weights the same, to cause the dropping of the coupling pin after the uncouping mechanism 1s released. The rod frame is hung to hook-shaped levers, which are plvoted to the car frame, and connected by elbow-shaped extensions to the forward projecting lever. The device is operated at the top of the car by a lateral crank rof and
with a crank shaft and wheel supported in a top frame.
Improved Adjustable Bed.
Albert F. Supplee, Nelsonville, $0 . \rightarrow$ This is a mattress-supporting frame divided in the middle longitudinally; also divided in three sections trans. versely, and hinged together, and supported by springs upon two middle provided with adjusting levers that either end or side of the bed may be
prond sised and supported higher than the opposite side or end.

Improved Box and Bale Hook.

John W. Knight, Gaiveston, Teras. or shield of leather or equivalent material, combined with the handle and o prevent the hands from rubbing or pressing against the bale or box, and thus becoming injured. The gusrd is so applled to the hook that (when, by lifting the box or bale, the hand is pressed toward the sald box or bale) it
will be interposed to protect the hand from the rough surface, as well will be interposed to protect the hand from the rough surf

Improved Book-Supporting Attachment for Ta bles. Whllam h. Patterson and Ole Swensen, Cresco, Iowa.-A spindle hold the book holder directly in front of the writer. The book holder is ad holder is held so as to throw the light of the lamp on the book on the holder to be copled from, as well as the one on the table to be written in. A couple of welghted arms are Jolnted to the book holder, hanging down in front of it, so that the weights will rest on the book and keep it open. do so, and it can be taken off and put on readily for c
ing the parts. An Inkstand holder ts also provided.

Operating Steam Engines by Compressed Air. Jathod of charging steam bollers with a compressed mediam of a a or for instantaneous nee, and is more particularly applicable to the bollers of for instantaneous use, and is more particularly applicable to the biners of
steam fire engines. It consists in admitting a high pressure of air or gat into the boller above the water when required, and operating the engine by the compressed medium while steam is belng generated, the compressed medium furnishing a motive power which is instantaneously avallable, and
which, owing to the expansion of the air or gas by the heat, is sufficlently continuous to run the engine until reenforced by the steam, without any atermiseion.

 bers of the bale. The key is inserted tin kevhole elota in the ends of the | $\begin{array}{l}\text { shank, a } \\ \text { abera of } \\ \text { h oop. }\end{array}$ |
| :--- |

mproved Grain Binder

James McNeal, Chauncey, Ill.-This invention consists of a pair of grip ng arms, in comblnation with a sewing machine needle and shuttie and pass it across the needle hole into a bight of the twine, and hold it while the twine is being thed by the sewing machine devices.

Improved Bed Lounce.
Ferdinand Braun, New York clty.-This sofa bed is readily thrown into open or folded position for use as bed or sofa or lounge, all the part belng frmly and securely connected. A hinged section has a longitudinal a hinged top plece for retaining the same rigidy in open inclined positoa.

Improved Horse Hay Rake.

Solon H. Bushnell, Fairport, N. Y.-Collars placed upon an axle are
secured adjustably in place by set screws which pass in througa proje secured adjustably in place by set screws which pass in through projec-
tions. Upon the other side of the collars are formed projections to re tions. Upon the other slde of the collars are formed projections to re-
celve the ends of the rake teeth which are held by set screws which pass in through the side of the said projections, and press against the sald rake teeth down to the ground with more or less force, as circumstance may require; and other apparatus is provided which, as the rake teeth are raised to discharge the collected hay, prevents the hay from belng raised by and with the rake teeth, and causes the hay to be promptly dropped thus preven
scattered.

Improved Wheel for Vehicles.

of sheet metal has a groov In the face of half a circle; also sockets upon the inner periphery for the reception of the spokes. The last screw deep into the hub, so as to enter
the socket, and then screw out again sufficlently to screw them in the rim. The tyre of and then screw out again sumiclently to screw them in the rim. the groove.

Improved Dust Cap for Watch Regulators

Wenzel H. B. Schmled, Napa, Cal.-This is a dust cap arranged to cov and shteld the hair spring and regulator hand, and the more dellcate por
tions of the watch movement. It 18 a metallic frame, enclosing a transpa rent plate, and is tightly fitted down on the plateand over the bridge, an fastened by square-headed screws. These screws have each an eccentrlc washer under the head, which, when the cap is fastened, are turned b means of a watch key on th
curely holds the cap in place

Impioved Chemical Fire Extinguisher
Jacob B. Van Dyne, Louisville, Ky.-This invention relates to certa improvements in chemical fire extingulshers, and consists in the combinanected with a common discharge pipe by intermediate flexible plpes pro vided with detachable caps. It consists further in the combination of diveled screw rod, a frame, and anut for the purpose of forming a stoppe for the acld vessel, and alao in the comblnation of a detachably locked actd
vessel with an acld vefsel holder, permanentiy attached to the shell of the extingulsher.

Improved Plow.
August Ihringer, Calvert, Texas.-Th1s invention relates to mea Whereby the beam of a plow may be elevated or depressed at the front end eld securely at several points of adjustment.

Lmproved Burean or Dressing Case Bedstead.
Crosby, Boston, Mass.-The object of this invention 18 to
a sedstead in combination with a burean or dressing.case, so constructed a bedstead in combination with a burean or dressing.case, so constructe
and arranged as to fold in the latter when not in use, and be disposed a emall compass and out of sight. It consists in the combination of a bu reau naving bottom and rear recesses, with a bedstead having a hinged head section, the sald head section silding in ways into the bottom recess
and the other portion folding in a vertical position in the rear recess The lower portion of the bureauls also provided with a hinged leaf, which, when the bedstead is drawn out, adds to tis length.

$$
\begin{aligned}
& \text { Improved Nozzle. } \\
& \text { New York city.-The no }
\end{aligned}
$$

James \mathbf{H}. McConnell, New York city.-The nozzle is swiveled to the bulb of a shut-off cock. A plug is inserted through a hole in the side of the bulb, which hole is closed by a screw cap, so formed that its outer sur-
face may be continuous with the surface of the bulb. Upon the inner end face may be continuous with the surface of the bulb. Upon the inner end top of the plug. By this construction, by turning the nozzle in one direction, the plag will be turned to allow the water to flow through the said nozzle; an
shut off.

Improved Table.

Louls Postawka, Cambridgeport, Mass.-The head pleces, whtch are long tenon, fitting in a socket, and are attached to the frame by bolts which pass up to sockets in the upper side of the frame. The posts are mounted on foot pleces which receive the two legs of each end, which, together With the head pleces, form side frames, and the two frames are connected by a stretcher, screwing into them by right and left threads. Mr. Postawka Is the patentee of an ingenlous and useful improvement in plano stools
whereby the seat is raised and lowered by turning a knob at the side, in place of rotating the seat.

Improved Sash Fastener.
Thomas L. Shaw, Lsurinburg, assignor to himself and Hugh G. Fladger
 plece, which is gulded in ribbed inclosing plates, and acted npon by a
strong spring bolt for forcing curved V-sbaped arms, with tapering ends into notches of the window casing or sash frame, for retaining the sash in any position, and locking the same. Particulars regarding this invention

Iniproved Pianoforte Attachment.
John W. Brackett, Boston, Mass.-This is an improved organ pedal tages of the organ for practice, enabling them to gain the techntes of both the plano and organ at the same time. A set of organ pedal trackers evers, and stickers is combined with the keys of a piane, and stops and their evers are also provided, in connection with the trackers of the device. The value of this invention consists primarily in the facillty afforded to students of obtaining practice in the use of the feet in pedaling, and thus
acquiring an indispensable qualification for playing the organ when the jatter instrument is not accessible.

Improved Fancet for Oll Cans.
Edwin A. Jackson, New York city.-This faucet is arranged entirely Fithin a bell-shaped base part, with faucet barreland spout, which is sof-
ered to the can. The plug is provided with a hinged and recessed finger plece, to be thrown up for the purpose of turning the plag, and locked in downward position over a spring of the spout for closing securely the
lmproved Blide Valve for Steam Engines.
Henry Bolthoff, Central City, Col. Ter., assigaor to himself and James Clark, same place.-This sllde valve is composed of two parts, connected the shaft that the parts are simultaneously moved in opposite directions. The valve is so set as to about half open the maln port, more or less, as the case may require, when the crank is on the center. The upper part if moved in an opposite direction, consequently the full opening is made in less than the usual time required by the ordinary valve. The upper part
has on the inside of each port an adjustable jaw, for the parpose of increaing and decressing the size of the ports for cutting off steam at any point of the atroke that may be desirable.

Improved Quilting Attachment for Sewing Machines. Willam \mathbf{H}. Null, Blandinsmille, III.-This invention Includes apparatus
or adjusting the legs toward and from eacb other, to vary the hight of the ullt to adjut logs the machind from eacb other, to vary the high of the Fill descend a little to facllitate the feeding. The quilt is attached to ollers, held against turning by a friction band, lever brake, and holding awl; and one roller has a ratchet, ratchet lever, and pawl for turning it draw che quilt from one to the other as the work progresses. The quill cords passing over sultable guldes, to be operated allke by the lever to retch evenly at both ends. and the lever being provided with a catch bitton, to hold it when pulled back to stretch the quilt.

Imploved Batteniug.
John Loppacker, Yew York city.-The boards are connected by the clea pleces, and their edges are grooved. Grooves and rabbets of the cleat
plece recelve tenons of the boards, and a cleat, which overlaps the latter iece recelve tenons of the boards, and a cleat, which overlaps the latter
is held tightly thereto. The lower side of the cleat plece is fush with the is held tightiy thereto. The lower side of the cleat plece is Hush with the
lower sides of the boards. By this mode. the boards and cleat pleces are securely locked together, and the possibility of leakage is a voided.

Improved Bottle Stopper.
Joel B. Miller, Rondout, N.Y., assignor to himself and August Yost, same
lace.-This stopper is located ingide the bottle, and has a bale or handlo place.-This stopper is located inside the bottle, and has a bale or handlo
hinged to the top. It 1s provided with an enlarged upper cand, designed to prevent the stopper from falling to the bottom of the bottle, and also t
serve as a handle to facllitate the drawing of the device into the neck.

NEW BOOKS AND PUBLICATIONS.

Chemical and Geological Essayb. By Thomas Sterry
Hunt, LL.D , F.R.S., etc., etc. Boston, Mass. : James R. Hunt, LL.D,
Osgood \& Co
Dr. Sterry Hunt has for many years been a highly valued contributor to our current sclentific literature, both on account of his learning and
attainments and his uniformly graceful and pleasing style. In collating attainments and his uniformly graceful and pleasing style. In collating
these papers, published originally in magazines or read before sclentific assoclations, he has given us a book of permanent value to the history of eontemporary Science ; and in it he enunclates many original vlews and
theortes, some of which have been justifed by actual discovery by himself theortes, some of which have been justified by actual discovery by himself and other investigators. The paper on "The Theory of Chemical Changes'
deserves espectal commendation as a model of popular sctentific expo deserv.
The Comnon Frog. By St. George Mivart, F.R.S., etc Lecturer on Comparative Anatomy at St. Mary's Hospi-
tal, London, Author of " The Genesis of Species," "Eletal, London, Author of "The Genesis of Species," "Ele
mentary Anatomy," etc. Price $\$ 1$. New York: Mac mentary An
millan \& Co.
From the days of Galvani and Volta, the batrachlan has always been morphosis from a fish to an amphible well as for its remarkable meta study. Mr. Mivart discueses thoroughly and well the whole of the delf cate organization which makes the frog so asefulf for physiological experiments, as well as the
of animated nature.
The BLOWPIPE : a Guide to its Use in the Determination of Salts and Minerals. Compiled from Various Sourcts
by George W. Plympton, C.E., A.M., Professor of Physiby George W. Plympton, C.E., A.M., Professor of Physi-
cal Science in the Polytechnic Institute, Brooklyn, N.Y. Price $\$ 1.50$. New York city
rayand 27 Warren streets.
Professor Plympton's earller work on blowplpe analysis has long been
recognized as a standard authortty; and the volume just recelved is equall valuable as a text book, whlle its modern date and comprehensive equall ment make it the manual, par excellence, of aualysis by the dry method
It is well illustrated, and will be read and consulted by practical sclentist

The Use of the Steam Enaine Indicator, or Practical Science for Practical Mon. By Edward Lyman, C. E.,
M. A.I. M. E., etc. Price \$1, postage paid. Published by the Author, New Haven, Conn.
The use of the indicator is becoming dally more general, and there need for precise and detalled description of its theory and mechanism Which we tha excellently
orig'nal tables of pressures at various points of stroke, under steam an off at different proportions of piston travel, are given, as well as card howing the merits and faults of engines of all varletles, as displayed by the unerring indicator
A Practical and Critical Grammar of the English Language. By Noble Butler. Price $\$ 1$. Louisville, Ky.: John P. Morton \& Co.
We have to give the highest commendat ard work, whith epitomizes the very numerous and complex rules of form.
atlon of our parts of speech in a clear and forctble manner. It is accurate and precise In all its deflititions ; and the examples are selected with great judgment. A better grammar cannot be put into the hands of the young ; os students of all ages.
Eating for Streneth: a Book comprising the Science of Eating, Receipts for Wholesome Cookery and Drinks Editor of "The Herald of Health,". etc. Now York Editor of "The Herald of Health," etc. N
city: Wood \& Holbrook, $13 \& 15$ Laight street.
This book is a collection of much useful iuformation on the important
subject of diet, and contains many practical directions for the preparation of wholesome food.

Cinated Guide to the Cincinnati Exposition, and Catalogue of the Fine Arts Department. By Daniel J
Kenny. Price 25 cents. Cincinnati Gazette Company.
This book is excellently arranged, and contains much useful and instrue
a Practical Theory of Voussoir Arches. By William Cain, C. E. Price 50 cents. New York city: D. Van
Nostrand, 23 Murray and 27 Warren streets. This useful handbook is No. 12 of Van Nostrand's "Sclence Serles."

Inventions Patented in England by Americans. [Complled from the Commissioners of Patents' Journal.]

From October 17 to October 28, 1874, inclusive
Axiz box.-C. A. Hussey, New York city.
Box Nalung Mative -J. H. Foster et
Box Nailing Machine.-J. H. Foster et al., Chicago, ill.
CAr Coupler.-J. D. Mills. Alexandria, Va.
Cutting Screw Threads.-N. W. Frost, Cohoes, n. f.
Cutting Textile Fabrics.-W. F. Jobbing et al., New Ycrik city.
drying Lumber.-G. A. Woods, Cambridgeport, Mass.
Engine Draft, btc.-W. O. Cooke, New York city, et al.
Engine Draft, rtc.-W. O. Cooke, New York city, et al.
Ianition Fube.- W. A. Leonard, Boston, Mass,
Lady's Garmint.-O. P. Flynt, Boston, Mass.
PAPER BAG MAciline.-G. S. Lewis, Springield, Mas, N. Y.
Potato Digerr.- L. A. A Apinwall (of Albany, N. Y.), London. England Potato Plantrr.-L. A. Aspinwall (of Albany, N. Y.
PUPING APPARATUS.-J. E. Prunty, Baltimore, Md.
Rotary Engine.-a. J. Works et al., New York clty
Umbrrlla, etc.-R. S. Spencer, New York city.
W
Wrirsz's Bpools.-H. H. Bryant, Boston, Mass., et al.
Wis Tsi's Apools.-H. H. Brysnt, Boston,
Wert Stop.-S. B. Capen, Boston. Mass.

soutimess aud texsanal.

 The Charoe for inertion under ins sead is 81 a Lne Agricultural Implements, Farm Machinery Edaluable Patent for Sale. Address J. C

 Morse R. Benbow, Boston, Mase.

 Worrs,", Yltteburg, Pa,

I have a manll invention; will sell for cash
or exchange tor a Plano. For particulars, adores

 tindis Cumax Turbine; ;and the beat sam mint in the

 hane Works, Harrison, N. J. Prtces to sult the tumbe Models and light metal work. H. B. Morris
Ithana N, Y.
 and
 For Solid Wroughtiron Beams, etc., gee ad. Oor IIthograph, etc.
Wairus Leather Wheols for polishing Iron,

 For Solid Emery Wheelg and Machinery, Scale in Steam Boiless.-I will remorve and
 Steel Lathe Dogs, 14 gizes, and 7 gizes of
 Salamander. Felting-Leading manufactu-
rers pronounce Salamander Feltug tue only y neestruc.
 Maten's Comination Goverror Is Is ent on

 Blak's's Belt Stads are the most reliab

Co. 18 Park Place, New York.

 For small size Screrc Cutting Engine Lathes

 Flectric Telegraph. A compact working Telegraph apCan be put in operation by any lad. Includea battery. zey and wires. Neatly packed and sent to all parts of
the worid on receipt of price. F. C. Beach $\$$ Co., 288 the worid on recetpt of price. F. C. Beach \& Co., 288
Broadway, New York. Tingue, House \& Co., 69 Duane St., N. Y. Manufacturers of Machine Blanketing, Felts, and Cloths Piano Forte Makers, Paper Makers, Calico Printers Punching or Washer Clopht, Filter and Strainer Cloths
for sil kinds of liquids. Sample sent on application.

 Temples \& Oilcans. Draper, Hopedale, Mass. All Fruit-can Tools,H erracute,Bridgeton,N.J. Hydraulic Presses and Jacks, new and se-
ond hand.Lathes and Machinery for Pollshing and BufDeane's Patent Steam Pump-for all pur
poseastitritly frrst class and rellable. Send for clrcular Forges-(Fan Blast), Portable and Station The "Scientific American", Office, New York, onching little buttons on the desiss of the managers, ignals are sent to persons in the varions departments
of the establishment. Cheap and effective. Splendd for shops, offlces, dwellings. Works for any distance.
Price 85. F. C. Beach \& Co., 2636 Broadway, New York,
Makers. Brown's Coalyard Quarry \& Contractor's Ap-
paratus for hoisting and conveying materials by fron cable. W. D. Andrews \& Bro., 414 Water St.. New York
For Surface Planers, small size, and fo Box Corn
ell, Mass.
Lathes, Planers, Drills, Milling and Index For best Presses, Dies and Fruit Can Tools
Blise\& wrlliams, cor. of Plymouth \& Jay, Brooklyn,N. \mathbf{Y} Eames Patent Molding Machines for Metal
Casticgs. Saves fully one thrd in cost of labor of moldng, and secares better work than the ordinary method
nor Circulars, address P. \& F.Corbnn, New Brtain Conn
 The Improved Hoadley Cut-off Engine-The Unit Sta send Conomical steam-power in Peck's Patent Drop Press. For circulars, Small Tools and Gear Wheels for Models. Portable Engines, new and rebuilt 2d hand specialty. Engies, Boilers, Pumps, and Machinis
ools. I. . Shearman, 45 Cortlandt St., New York. Shininning Rings of a Superior Quality-
Send for sample and price list.
Johnson's Universal Lathe Chuck. Address
Lambertville Iron Works, Lamoertville, N. J. Best Philadelphia Oak Betting and Monitor
stitched. ©. W. Arny, Manufacturer, 301 \& sos Cherry Stitched. ©. W. Arny, Manufacturer. 901 \& © 903 Cherry
Bt... Philadelphia. Pa. Send for new circular. Buy Boult's Paneling, Moulding, and Dove-
talling Machine. Send for clrcular and ample of work. talling Machine. Send for circular and sample of
B. C. Mach's Co.. Battle Creek, Mich.. Box 227 . The New Half Dollar and other Steam En
gines. E. P. Ryder, 88 Clermont Av., Brooklyn, N. Y. For First Class Steam Boilers, address Lam
bertvile Iron Works, Lambertville, N. J.

B. H. can answer his query as to the size o B. H. can answer his query as to the size of 8, vol. $29-\mathrm{A}$. F . McD will find the directions on p . 59
ol. 24 , for galvanizing iron pipes suffetently explict -E. F. G. Will find directions for making rancld butter
sweet on p. 119, vol. 30.-G. A. B. Whill find a reccipe for
brdrutme on irdllme on p. 347, vol. 28.-T. D. H. will find rectpe find ample instrueltions for bullding an ice bouse on p.
fil, vol. 30.-C. E. E. P. can pollsh stones by the proces
 will find answers to thetr questions as to suction an stphons on the editorial pages of this issua.-C. D.C.C.
should consult a physictan. - F. J. B. can bronze iron ipes by following the directions on $p .107$, vol. $30 .-\mathrm{B}$. (1). W. J. R. asks: Is there a flexible pipe
made that will stand the heat and pressure of steam say from 50 to 125 lbs ? I I want it to be limber, so thata
Ittle power will bend it to anyangle when the pressure is on. A. Yes. It is not very flexible; but by giving it
sufflictent length, it can readily be turned in any desire (2) J. F. K. asks: What is it that eats gage? The tube was packed with rubber, and had been
in about one year, under a steam pressure of 50 lbs . A. The tabe presents the appearance of having been
(3) J. E. B. asks: I am running a blast en by 30 inches in diameter, in batteries of two bollers
each, furnish the steam. There 1 s a steam dome on each, furnish the seat, the domes belng connected by the main stean plpe that goes to the engine. One of the batterles be
came charged with electricity. I opened a brass drip came charged with electricity. I opened a brass drip
cock that was in the plpe upon the boflers, and left it open untitl g got the eteam turned on. When I went to
hut it, ifelt a prickling sensation in my fingers, and opened it again. When I placed my Anger within $\% / 8$ of an Inch of the cock, I could feel it very plainly. Can
you explain it? A. It probably oocurred from the the sides of the orifice.
(4) J. B. S. says: Our safety valve is 4 the wetght $1 \mathrm{~s} 75 \mathrm{lbs} . ;$ the distance from valve stem to
weight is $11 /$ times the distance from valve stem to weight 1811 is times the distance from valve stem to
fulcram. At what pressure should it blow off? A. It 2. The engine to double, the cyllnders beting 12×24
inches, with a spur wheel (on crank shaft) of 2 feet diameter, geared to a wheel of 8 feet diameter How many revolutions to the minute should this en-
ginerun without Injury, working at 75 lbs. steam to the square inch? A. From 60 to 70 . 3. We have two boitera set side by side, with 2 inch feedipipe, with check
valve at the muddrum of each. Our steam connecvalve at the muddrum of each. Our steam.connec-
tions are 4 inches in diameter, with a large valve on each boller for disconnection, We bave an equalizer of 4 inch plpe for water connection, with a stop valve in
center. We never have any trouble with more press.
are in one boller than the other from unequal firtug.
 or warm, or nearly bolling water. I think if all bollers were connectedin this way there would not be somany
terrible explosions. A. This is a very good arrange terrible explosions. A. This is a very good arrange.
ment, and we are much obliged to you for the descrip.
(5) G. H. A. asks: Will Babbitt metal
(5) G. H. A. asks: Will Babbitt metal
make a good piston, if meited and run in a brass cyllin
der? A. Not very. Your other questions have been der? A. Not very. Your other quest
epeatedly answered in these columns.
(6) J. B. H. asks: How is the fine wire, of
whicha mile weighs only a grain, drawn y A. It 1s en closed in a mass of other materral, and the two are
drawn together into wire, atter wich the casing is dis.

(7) H. A. T. says: I have an engine $12 \frac{1}{2} \times 36$ direct connection of valve stem to eceentric. What
ead should it have, and at what polnt should the cutoff be? A. G1ve the valve $1 \frac{14}{}$ of an inch lead, when
cold. The point of cut-off will generally be regulated by the pressure of steam and the work to be done. My railroad has a curve in it, about ic feet in 100, 100
feet long, and then trere is 100 feet of straight line What is the best mode of running on the track soas to
get the car 'round the curve? A. The tracks of street get the car 'round the curve? A. The tracks of street
rallroads have many such curves, and spectal appli-
(8) C. J. B. asks: What is the process of gumming the parts of a newspaper together, to make
it into book form? A. It is done by a machine
which folds the paper and at the eame time applies
(9) E. T. C. savs: I wish to put upp a lath
or turn ing hard wood, such as oak aud asb, of from to 12 nnches in dlameter. I am thinking of lavingtwo
pulleys on the mandrel. Of what dameter, and how purad on the face should they be? A. You can make
bron The face of each should be 2 inches. 2. What width of ubber belt should 1 use? A. Two inches. 3. How
many revolutions per minute should the work make? A. From 500 to 800 revolutions per minute. 4. Would
pulleys bult up of pieces of wood, so as to present the pulleys will do better if turned from solid pieces of wood, or lagged and turned off after betng bullt up.
. How large should a steel or tron mandrel be? . How large should a steel or iron mandrel be?
A. Dlameter of mandrel should be ${ }^{2 / 3}$ inch. 6. What
orse power would it take on 9 inch work? A. From to x of a horse power.
(10) H. P. asks: What would be the prob (10) H. P. asks: What would be the prob-
ble bursting pressure of a cyllindrical boller 28 inches
in dlameter, of plates 1 inch thick, with a single rowot diameter, of plates $1 / 4$ inch thick, with a single
ivets? A. See p. 193, vol. 29 .
Does sharpening cotton gin saws aid in the clean. Does sharpening cotton gin 8 aws ald in the clean-
ing of the seed, or does it only increase the speed of the la? A. Speed is the more 1 mpo
do not require to be very sharp.
(11) F. R. M. asks: Will you please give
irections and formulæ for designing a good turbine waterwheel of the vortex or central discharge bind? ou will find itably treated in Rankine's, Fairbairn's and Welsbach's works. It is entirely too comprehen
sive forour columns. Moreover, if the best proportons were deflaitely fixed, there would be no more
(12) D. asks: Can a band of steel, $\frac{1}{2}$ inch 150 libs., be used as a belt on pulleys 4 nches in diame-
er? A pece of the best saw steel, about $1-40$ of an er? A. A plece of the best saw steel, about $1-40$ of an
nch thick, might answer, but it would be liable to (13) D. M. says: I want to build a small fornace for melting iron. Of what size should it be to
workerly ? Would a furnace of 12 tinches inelde dameter and 36 inches high be large enough to make
ood sound castings? A. The above dimensions will robably give good results. 2. I haveread that melting rox on a small scale 18 never successful. What is the
rouble? A. Very small masses of iron are Itize quickly, which causes the difflculty. 3. What
sized of fan blower, with 4 fans, running a bout 2,500 resized of fan blower, with 4 fans,running a bout 2,500 re-
volutions per minute, would be required for the above mentioned furnace? A. A A blowe
(14) E. D. P. asks: How can I tin gray with a a olu
melted tin.
(15) J. W. S. asks: 1. How many strokes round wheels of an ordinary mowing machine? The one which I am planning paakes 128 strokes to onerev-
olution of the ground wht els, and works the gear Wheels by a screw. A. The speed of the knives is pro phth the machine advanges. 2. Is the machine that
makes the most strokes of the knife generally the est? A. Not necessarily
(16) J. L. G. asks: 1. A saw mill is drawn
y a portable englne of 25 horse power. The flues in the botler leak badly on some days, and on others they
will not leak at all. Sometimes the water will stand Wh the ash pit in a considerable quantity. Is such a
boller safe? A. We would like to have further particuooller safe? A. We would llke to have further particu arsin regard to this case, such as kind of feed water
used, and whether the tubes leak by fits and starts, or ase
ater olowing down or cleaning the boiller. 2. How of.
ten can the flues in a boiler be upset with safety? A. The tubes can be upset as long as there is enough ma erial left, and somelme a ferrule can be forced into carry 100 lbs. sfeam: is it dangerous to run with 50 or 60 ibs. of steam on? A. If you have a good prmp. and
are careful, the boller is not particularly davgerous on are careful, the boller is not particularly dapgerous on n the engine as suggested.
(17) W. asks: Why is it that, if you take powder, and load them into two gans, one rifled and the other a smooth bore, the ball from the rified barrel
is thrown with so much more force and preclition than Is thrown with so much more force and prectition than
the ball from the other? A. The greater prectision of the ball from the rifle is due to the rotary motion decrease of windage, and the greate ressureexerted by theexploding powder upon it.
(18) M. B. asks: How can I dye wood black?
A. Boil y_{3} lb. chip logwood in 2 quarts water, add 1 oz. pearlash, and apply hot with a brush. Then take $x / 1 \mathrm{lb}$. gwood, boll in 2 quarts water, and add $1 / 2$ oz. verdigris
 or Bunsen's battery are made as follows: The tine dust of the shape required for the carbon, and exposed to the heat of a furnace. When taken out, the burned
mass is porous and unflt for use; but by repeatedly mass is porous and unft for use; but by repeatedly
soaking it in thick airup, or gat tar, and reheating it, it at length a cquires the necessary soliddty and conductetorts is harder and better than the carbon thus made butitis difticult to work, and the supply of it 1 lim
ited.
(20) A. B. C. asks: Can more than one wire oetng through wires? For in stance, two or more wires
work from New York to Phlladelpbia, with a main battery at Trenton; can both or more lines be supplied inthout divlding the battery? A. They cannot. An
intermediate battery constitutes a portion of the main ctrcult, and connecting in another wire would have
(21) S. W. says: A few days ago,on exam
ning one of our tire alarm boxes, found iumps, or solta rystals, of sulphate of copper adhering to the kerit Isulation of the wire inside the box. The box is some crystals were not on the wire when it was put in the dox. The question $18:$ How came'the sulphate there?
A. It was probably placed there at some subsequent ime by some one having access to the box, for the pur (22) J. O'C. and others.-Belts will move
towards that part of the pulley where the radus is the
(23) J. E. H. asks: How can I silver plate
watch case or other articles? A. Place the articles in bath consisting of two grains of cyanide of sllver
nd two grains of cyanide of potassium in every two hundred gratns of water. Connect the zinc poles of battery of three or four cells to the article to be plated
and the copper pole to a plece of silver. Which 1s also plunged into the bath. The passage of the current decomposes the salt, deposits silver on the object, and
causes the dissolution of an equal quantity of metal causes the dissolution of an equal quantity of metal
from the silver electrode. The time required for the operation depends on the thickness of coating re
(24) J. F. A. asks: How many feet of silk ondary coll of an induetion apparatus capable of pro
ductng an inch spark? What ts the length of the pri mary coll? Will the ordinary soft iron of commerce do for the core? A. An induction coil of that capacity Wire of 0005 s inch diameter, or No. 26 Birmingham
gage,for the secondary of twe secondary coll. The primary coll conslist of two layers of copper wire of 0.1 of an inch diameter
or No. 12 Brmingham gage. Ordinary soft fron of commerce will ansser very well for the core, but Nor
way fron is the best for this purpose.
(25), F. C. B. asks: How is an induction
coll arranged so that the drawing out of the core in-
 tube enclosing the coll regulates the current, drawing
to out increasing, and pushing it in decreasing, its otrength: A.- There de no arrangament Whereby the fect of a coll. A primary coll when enclosed in a bra , because the induction currents circulate within the abe instead of passing into the secondary coll. By withing the secondary, the currents circulate in the col and thus the inductlye eflect is
(26) C. D. C. asks: What are the characterGrove? A. The Leclanche baty? Is it as intense as the odin a solution of ordinary comen merclal sal ammoniac the negative pole is a prism of carbon, tightly packed ganae and carbon, In the form of a coarse powder.
The zinc unt tes with while ammonia is set free at the negactive electrode Its electromotive force is $1 \cdot 48$ volts, whille that of a
Grove is 19 volts. There is no waste of material when the Leclanché battery is not in action; and if the evap oration of the liquid is prevented, it may be allowed to
remain untouched for months without losing power remain untouched for months without losing power.
it 18 , therefore, admirably adapted for working tele aph wires where the open circuit is used, and where tric bells. When placed in short circuit, it polarizes
very quickly, and is therefore not adapted for working local circnits, or for working ordinary main line tele
(27) L. V. R. asks: How can ivory be made that it could be worked into any desired form? A Soak it in a solution of pure phosphoric actd, and it
will become flexible. Exposure to the atcoosphere will arden it, but it may be made again pliable by immer
(28) R. N. asks: Does the 11 seconds of tion of 11 seconds in that period, or that the lunar month is now 11 seconds shorter than it was a century
ago? A. The total secular acceleration of the moon's mean motionamounts to between ten and eleras ${ }^{\text {sec }}$
onds per century. See Herschel's "Outlines of Δ ronomy" pp 412 -419 Lunar perturbations are almos fluence of the ether of apace must be immeasurably
finall
(29) C. S.O. says: I have some photographs, If they had been plled together before the varnish had
dried, and then pulled apart. How am It o make them appear all right? They are perfectly new. A. For re appear alligh
storing the surface to photographs, etc., if the scratches do not go through the albumen, wax them. Formu-
la: Dissolve 1 oz. white waxin 2 ozs. turpentine by a las
hot water bath. Add a few drops oll of lavender izes the odor of the turpentine. This has the consist ence of butter. On an imperial sized photograph, take a lump the size of a pea, and, with cotton flannel, rub This glvesa high polish.
(30) N. S. asks: What is put inside casks
oo prevent alcohol from soaking into the heads and staves? A. Dissolve in a water bath 1 lb . leatherscrapa and 1 oz. oxallc acld in 2 lbs. Water, and dillutegradual
is with 3 lbs. warm water. Apply this solution to the
sumea brown color and become insoluble in alcohol.
it will closeallthe pores of the wocd, and will not
crack or scale oft.
(81) J. J. asks: What are food recipes for
composition bronze, and blb and bell metals? A. A

(32) N. F. C. says: I have a 24 inch achro-
matic telesco ope, of 44 inches foeus; and with the Huy. ghentan eseplece I I Reta power of 80. How hig a power
willit stand, and how must I coustruct the eeveplece? A. It will bear 125 . Then $44+125=0.352{ }^{\prime \prime}=$ equivalent
ocus $\times 2=0.704^{\prime \prime}=$ focus of field lens: and $0 \cdot 704+8=0.2351^{\prime \prime}$
 moon to the earth ? A. Moon's distance in miles, 210 .
$000 \div 125=1,120$ miles. (33), B. F. H.-Get Webb's "Celestial Ob.
jects," third edtiton. It contains an account of all ob. (34) T. M., of Roorkee, British India, and
others., The ScizNTIFIC AMERINAN, bound, will cost you s3. per volume. Volumes 26,22, , 29, are not on on sale
at present. Science Record, three volumes, 86.50 to
(35) W. P., of Dublin, Ireland, and others, Earope" is to be 1ssued by the Navy Department.
Washington, D. C.
 postage, 85.08 per annum
(37) J. . . B. says: 1 . In your issue of Octo.
ber 31, you say that it is not aste to cement directly on

 tern of hls make to fall for want of strength. Put on three good trowel coats (the last one contaning a 11 t .
tie larger proportion of cement), and a brush coat for hard dnish, made by mixing cement in water to the con-
gistence of thlck cream, and add a pint of fine salt for
 ble enough to hold its place as the cement 18 lald on,
the brick wall 18 in no sense needed. $1 t$ is only mones from frost. A. There are some solls sufflicently hard and permanent to admit of the treatment described by
our correspondent, and no doubt such ts the nature of

 witha great deal or risk. It is not merely the loose ne 8 and frabillty of the soll that we have to contend
agalnast, but the presaure of the surface which, when confned by an underitratum of clay, 18 somettmes very coniderable, and forms the matn diff-
Aculty in the construction of dry cellars., This press ure tends to wash a way the earth behind the cement,
 periment.

1. suppose I have a pump whose bore 182% Inches and way stopeock) two plpes, one with an inch and the wat
other $\%$ nch in bore, the plpes both leading to the same clstern: How much more water will be eupplled to the
pump at each stroke oy the former than by the latter? A. If the pump is worked with a slow motion,tts cylln. der wilbe filled at every stroike, the same by the small
plpe as by tee large one, the difference belng in the greater veloctty of the water and consequently greater friction in the small ppe than in the large one; and for
this reason, with the small pipe, greater power would be required to work the pump. But the quantity of wa
ter drawn at each stroke will be the same in each case
 well at a distance, the water to be pumped up? A.
Iron pipe coated with coal tar would stand well. 3 .
Wind Iron or lead plpe? A. In some solls, lead plpe is the
beest, but others soon destros
 A. Gum benzoln contalns about 80 per cent restn and
from 15 to 20 per cent benzold acid. $A 8$ sit 18 soluble in in alconol, the solution would be a varnish, and would theretsa allght chance of the benzolc actd betng irri taut to the 8 k In.
(he planet Saturn? A. Saturn has three princlpal
 be seen in a four inch achromatic. . 2. Do they all re.
volve around the planet tin the same the? How does the time of their revolution compare with the ro
tation of the planet on 1 ts axis?
A. Saturn rotates 1 in
 A. No. 4. If 1 understand the principle of the whirl pool, it is that the speed of the water 18 Increased as it
nears the center: $a \mathrm{~m}$ Itrght If a ball constructed of
 would be imparted to it, would it at the same time take a slow rotary motion? A. Fasten a builet to a thread
and let tit revolve around a stick. As the pendulum shortens,the bullet moves faster. 5. As the ball comes motion be increased at a corresponding rate to tos pro (40) B. S. Says: I have two lenses, one of
whiten has a focal distance of 5% Inches, and a dameter

 glass, 12 nches being the distance,an object at a distance
of 3 or 4 miles 18 plainly seen. How can I them so as to see plainly at a good distance, betng near-
slghted? A. Place your lenses 173 inches apart. sighted ? A. Place your lenses 133 inches apart.
What is the process of photography from the clean rey Lea's "Manual," or Dr. Vogel's "Handbook iof
Photography." (41) G. M. H. asks: 1. Can the achromatic objective for an astronomical telescope, to anyadvan
a ge? A. We find by exf.criment that view tubes and
portrait combinations may be used as telescopes, ta
king out the stops, with a focussing glass or pocke ring out the stops, with a focusing ener of eyeplece
magnifler as an eyeplece. 2. What power would be most desirable fnr a lens, of 1% Inch dlame about 30 , (42) A. L. C. says:
moon was passing off, on Sunday
morning, October 25, the north western edge was flrst made luminous, being plat: that phesomenon? A. Because the moon passe through the earth's shadow very near its edge. 2 .
there any difference, by actual measurement, betw there any difference, by actual measurement, bet
the equatorial and polar diameters of the moon? A stereograph of the moon shows a bulge or projection thirty miles lower than the visible one. 3. Can the polar axis of the moon be other than perpendicular to the plane of its orbit? A. The moon's axis is inclined
to theecliptic $1^{\circ} 3010,88^{\prime \prime}$. Its orbit is inclined $58^{\circ} 8^{\prime}$
 ithes of our solar system? A. They range from Titan, of the earth, and Jupiter's satellitese, respectively 2,240 2,192. 3,579, and 3,062 mlles, to the minute spheres form
ing the rings of Saturn, and the meteorttes, which are ing the rings of Saturn, and the meteortes, whichare
the debris of comets. 5, How do you find the parallax of the sun? A. By measuring the displacement of Ve-
nus on the sun's disk, with the distance in latitude between two observers as a base line. 6. If I were stand-
ing on the equator, Ishould see the pole star in the hobelow the pole? A.No. 7. Why \&oes the pole starap-
pear so much nearer to the zenith than the horizon, to ee thus situated? The pole and Σ half from the pole.
Why does more
Why does more frult fall during the night than during
the day time? A. If the fact is as stated, it is becaus
(43) J. D. L. asks : 1. What is the best work (43) J. D. L. asks: 1. What is the best work
grinding and pollshing lenses, one that contains all nearly all the modern practice of optictans? A. We any person can make an achromatie by following ed" glass, the lesser optictans at umes conceal thetr
Improvements. Our spectal information on achroma tics has been collected by an amateur, and will not be found elsewhere. A mong the lea ding optlclans, Steln hell and G. \& S Merz delerme whether a lens has the
requiste curvature by placlng a lens of correct and oppostte curvature above it, and illuminating through a
piece of tissue paper. If the parallel rainbow diffacthon bands. crossing the lenses, are straight, then th surfaces are allke ; if the bands are curved, they are
unlike. Clark uses a home-made wooden spherometer and works to the two hundredth yart of an inch,where as the continental opticlans follow Fraunhofer, and en deavor to have thetr work correct to the thousandtb
of an tinch (see Prechtl's "Dloptrik"), and to dlspense With local correction, which is necessary after all. howstring armed with diamond dust, instead of a lap. The force for his little hypocyclold polisbing machtves
ts aupplied by the leftarm of the workman turning a sapplitd by the leftarm of the workman turning horlzontal fly wheel. Clark uses a steam englne fo
rough grinding, and a vertical iron wheel fed with sand and water instead of the tradtional lead grinder. In subsequent operations, he puts the fron grinder on the stump of a tree, and walks round it, moving the lens to
and fro oy its handle. He does pttch polishing by hand, with rougeand a wooden disk, the surface cut into one toger dioped in rouge, if zones of different focus have formed in polishing. Fitz and others use the machine
for local correction, neariy as figured by Draper. Forelgn optictans fasten a lens with uniform the best method of bending a plate of glassin a true spherical concave? A. It is better to grind out and
pollsh the cavity. A plate of glass will curve silghtly without buckiling when suffclently softened by heat
(44) N. Y. asks: 1. What quantity of wa-
er converted into steam is used in computing the horse power of bollers? A. There is no fixed standard. 2.
What is the horse power of a locomotive firebox boller, with a grate 42×44 inches, and a cylindrical part 4 feet 1 diameter, with 43 three inch tubes 12 feet long, and
dome $24 x 24$ nches? A. There ts no rule the dome 24×24 nnches? A. There is no rule that applies to
this questlon: 3 . What would be a fair evaporation er pou
(45) D. D. asks: If a boiler and a tank are
placad 50 yards apart, and connected by a 1 inch plpe, would the pressure be the same in both by a. Yes. ame degree? A. No. When the boller of the fireless locomotive is filled,do
hey force any steam in with the water? A. Yes. (46) W. H. says: I am about to build a rreat runs about 5 milles per hour past my whar n the principle of a windmill or propeller wheel, and is to be wholly submerged. I wish to utillze the power
to the extent at least of 12 to 15 horse power. What ize of wheel and number of fans would you advise? How many square feet should there be on each fan?
. Your plan ts somewthat novel, and you will have (47) M. H. asks : What is the most ap with the matn slabs? A. It would requitre too much wuch clearer idea by personally inspecting the workWhat are the best works on mechanical drawing, an,
n the liuk and sllde valve? A. Professor Warren, Works on drawing are very thorough; and Auchinclos On Link and Valve Motions" 19 the standard author-
(48) W. B. says: 1 . I am building a small
boat engine; it is verticai, $3 \% / 2$ inches stroke $33 / 2$ inches ore, to run 300 revolutions per minute, and to use
 nog by 4 feet 4 inches beam. Of what size should $m y$
boller be to supply the requisite amount of steam? oller be to supply the requisite amount of steam ? A
Make a boiter 2 feet in diameter and 3 feet high. Ot what size should my screw wheel be? A. From 20 to will it be weighted down enough to immerse the whee When the machinery and 6 persons are in it ? Its fult
depth ts 21 inches. A. You can readly determine whether your boat will come down enough by placing weights in it. 4.0 年 what size should the pump be? A. Large en
sulred.
(49) J. A. B. says: 1 . I am building a boat,
feet long by 8 feet beam, and 8 feet deep. ingin a boller, 8 feet long by $2 \pm$ inches dlameter, and an engine 5 inches bore by 12 inches stroke, to drive a
screw wheel, geared with a
3 feet, a 2 feet, or a 1 foot Wheel. By which should I get the most speed? few experiments will be your best pulle in in gearing the the
propeller wheel. 2 . How many milles an hour will it make? A. The boat will propably go from 5 to 6 milles an hour. 3. What size should the propel
Make the wheel as large as conventent.
(50) H. H. says: I purpose building an oil tank, ten feet square and four feet deep, of two inch都 plan? A. No. It will answer very well.
(51) G. L. L. asks: How can I make and mang a kerosene lamp for the pnrpose of heating
. Your best plan will be to buy one. oreare a variety or such 1 mpp
What is white metal? A. Parts by welght, tin 82
ead 18, ant1mony $5, z 1$
(52) N. O. V. asks: In what manner can he best? A. Belt them Irom the same shaft, and see Which will hift tne most weight under zartations of
ing at a high velocity, to a slight change of speed.
(53) D. C. H. says: I am running a hori ralve face against the side of the cylinder; the slide
alve consequently rides on its lower side. The ralve annoys me very much by a constant cllcking notse, by
beling forced a away from the face and then back again. Whyls this? Should not the pressure in the steam chest
keep it up to tis place? The valve has nearly $1-16$ inch ead, which glves about $\%$ inch lead to the exhaust Culd the feed water heater cause a back pressure suf make it work quietly? A. It is quite likely that the exhaust closes too soon, so as to cushion above the (54) C. C. H asks: Does melting and re
neting lead make the pure metal any lighter? A What is the phtlosophical reason that a circular saw
me ats better at a certain speed than it does if run faster
(55) H. B. asks: What should be the exact ne, the cyllinders of which measure $2 \% / 811 / 2$ inches? We emploged to furnish steam to two cyllinders of the bore dimensions? A. You will
these dimensionsin back numbers
Is there any solder for soldering brass, of the same parts, tin 1 part.
Wast What work on the steam engine would you advise a
mateur to read? A. Bourne's "Catechism of th eam Enine "is one of the best.
Wouce the speed of a foot lathe and bands servet eared head? A. It would answer, but notas well a Bearing.
Would t
Would the above deseribed engine be large enough
run a lathe swinging elght inches?
(56) J. C. P. asks: If a perfectly tight vesal, of 4 gallons capacity, contains 1 gallon of water,
nd is of sumflent atrength to resist ang amount of ressure by heat applifed to the same, would any por.
ton of the water evaporate? A. It would all be con
(57) F. O.
asks: How can I make fruit
rees bear well? Last season the plum and pear trees ere full of blossoms; but they bore little frutt. Th ground with worms in them. A. You must remove all eration which coat the trunks and roots with
(58) H. M. asks: How many inches high inside measure of the box is 10×16 inches? A. Dlvide of the box in inches. The quotient will be the hight
(59) G. S. S. asks: When a pair of scissors
at paper or any material, which blade does the cutng, the upper or lower, supposing that both blades
are closing together? A. Both blades exert a shearIng force, in such a case.
other wflldo the shearing.
(60) W. J. S. says, as to the difference beraph taken with a non-distorting (archatectural) lens abs lutely identical with a correct perspective draw ng taken from the point at which the lens is placed
Any one may prove this by placing the eye at the point where the lens was, and tracing the view on a plece of glass interposed between the eye and the view. If the
distance between the eye and the plate is the same as he focal length of the lens, the two will absolutely ens, and doubt if to can be made.
(61) G. F. T. asks: How can I tin the in hen put it into melted tin to which sal ammoniac has een added. Move the bofle
(62) J.H. P. asks: 1. Do oxygen, nitrogen, cording to their volumes? A. The greatest expansion is between $32 \circ$ and 21210° Fah.; 1 volune of hydrogen, at dioxide at 32° becomes $1 \cdot 37099$ at at 212°. Such olight differ peaking, all gases expand 1-273 part of thetr volume for every 1.80 Fah. of increase of temperature. 2. I What a
aslan raccounts for the colors of the African and Cau African is due to a plgment in the cells of the epidermis. Thelpigment and epidermis of a negro were ana
yzed by Scherer, with the following result

carbon.
Is there a substitute for tobacco that can be manu
Is there a substitute for tobacco that can
Iactured into cigars? A. We know of none.
 and then dusting over it the metallic bronze powder When dry, it is again varnished over. As to the masto on's tooth, write to the Academy of Na tural Sclences
(63) W. W. H. asks: 1. What degree of
heat 1s requred to kill trichine in cooking? A. 212° (64) O. A. F. asks: 1. Can you give me a ectpe for a good hair oll? A. Castor oll, ($1 / 2$ pints, al
coholl $1 / 2 /$ pinte, oll of citronella $1 / 2$ oz., lavender $1 / 2$ oz nake wellbefore each applicstion. 2. What solution
wo to wash the head with, and not injure the (65) J. L. asks: What is the best thing for
washing the head with, which whll mase a lather arid ashing the head with, which will mase a lather and
not tojure the hatr? A. Take aqua ammonia 3 ozs pints; perfume with bergamot. In applytigg, rub the
$\underset{\text { use on }}{\text { (6y) }}$ W. S.irtokeep it oftand make it retain its lor, and at the same time keep the scalp clean? A. If
our hair ls losing its color, hair oil will not make it etain its hue. See answer to J. L. on this page.
How can I clean thin bucksyin gloves? A. Try ben
(67) W. V. G. asks: How can I destroy graybacks in Clothes that cannot be washed? A.Sprinkie
our clothee with chloroform, and pack them in a ches xcluding the air. Two days under
chlorotorm should exterminate them.
(68) S. R. asks: 1. Will sumac grow best in W+1l grow wellin any common soil. 2. How far apart
should dt be planted? A. Four feet would be plenty It be a small kind, three feet would be sumflecnt. That is \urcorner matter of experiment. It grows as well cr
poor as on rich soll, and we should say very little cult ation is necessary. 4 . How is the curing done? Should spreadit on the ground like hay? A. With the be arietles, the plant is usually cut a blle in a soft s Fhen It ts thraehed with flalls, the stems and coarse When it
ticles rat
sold.
(69) J. B. says: Every few months I suffer everely from an attack or the cramp in the stomach lcation of a strong mustard plaster. Wyll you ex plain the nature and cause of these long cramping sells, and how the mustard plaster effects a cure? A. causes, chefly, however, from the accumulation o ases in the canal. The distenston paralyzes the prop
muscles to such an extent as to prevent tis expul slon. The plaster seems to set upa nervous reficx ex
citability, probably through the medium of the sympa owever, entirely inferential.
(70) O. asks: How does gelatin clarify cof its combination with the tanntc acid wbich is a large
constituent of the berry. In bolling the geletin in offee, it forms a precipitate of tanaste of gelatin, bich acts precisely like albumen in collecting all sed or the prectpitate to settle. The bulky precipitiate the egg separates at once when the solution reache
(71) C. S. H. says: Passing a house recent me in to see it. Entering. I found myself in a hall or
entry about six feet qquare. with a door on each side og me in the left hand front corner of the hall, h rected me to look at the blank wall above spoken or. I saw nothing but darkness at irst: but
ute and a half a falnt tinge of a ocher color showed e and a half a falnt t.
 tood outlined upon the wall; the color, the window the folds of the curtains, the fences, and the follage of
the trees, were distinct and beautiful, in a picture 6 bout cture was tranamitted through the beyhole of the Ividly produced is a mysiery to me, as to all other Who bave seen it. It is only three daysaince it was firs luminous rass, which pass into a darkened chamber rite surface, they form images of external objecti hese imares are inverted; their shape is alwass that of the aperture. In the cand indepenrs, the brightne nd precision of the images are increased by means of
(72) $\underset{\text { used in }}{\text { E. Wanfold }}$ W. Friting prepared? A. The she soft printing paper, and smear withany clean grease mixed dry place. This is for black paper. Other finely
ground plgments may be used to produce the desired

Minerals, etc.-Specimens have been re eived from the following correspondents.and examined with the resalts stated
W. D. S.-The fragments are part of a fulgurite or
ightning tube. For full informatlon, see pp. $3,2 i 4$ vol 31.-O. P.-Your specimen contalno carbon, but burns
with such diffculty that it is doubtful (as far as we ould judge from the (her ould be used for coal
L. K. of Konigsberg, Austria, asks: How ndla, asks: What is the greatest length of rallway tha tstes?-S. asks: Howe day of 12 hours, in the Unite cartridge charged ? Is it possible to recharge the cop How can I recolor coral when the original color has
been drawn by heat?-E. A. D. asks: What is the composition used on the back of postage stamps?-F, J.H. asks: Can any one tell me of a means of calculating
the distance between two potnts on the surface of a
globe, angle and length of the two radil (which, of course, are in the same plane) betng glien ?-A F.asks :
How can I clean polnt lace, which has grown yellow

COMMUNICATIONS RECEIVED.

The Editor of the \&cientipto american acknowledges, with much pleasure, the re-
ceipt of original papers and contributions apon the following subjects:
On Aerial Navigation. By G. W. M. On Grinding Plane lrons. By A. C. On Some New Dyes. By A. D.
On Gongs. By C. L.
On Feathering Arrowheads. By R. K. Y On Feathering Arrowheads. By
On the Divining Rod. By W. C. On Swinging Saloons. By W. S. T On the Phyllozera. By M. L. R.
Also enquiries and answers from the follow.
S.F. B.-H.E.C.-A. A. F.-L. F. W.-N. A. E.
J.F.-J. W.D.-W. D. D.-A. G.-C. H. s.

HINTS TO CORRESPONDENTS. Correspondents whose inquiries fail to ap pear should repeat them. If not then published, they may conclude that, for good reasons, the Editor declines them. The address of the writer should always be given
Enquiries relating to patents, or to the patentability of inventions, assignments, etc. will not be published here. All such ques tions, whan initials only are given, are thrown into the waste basket, as it would fill half of our paper to print them all; but we generally take pleasure in answering briefly by mail, if the writer's address is given.
Hundreds of enquiries analogous to the following are sent: " Who makes a pulver izer, suitable for powdering dry manure? Whose is the best process for drying lumber
by exhaust steam? All such personal enquiries are printed, as will be observed in the column of "Business and Personal," which is specially set apart for that pur pose, subject to the charge mentioned at the head of that column. Almost any desired information can in this way be expeditiously obtained.

[OFFICLAL.]
 Index of Inventions

por whice
Letters Patent of the United States rere grantrd in the week end
November 3,1874,

and race bearing that datz.

Alarm, electro- thermo fre,
Alsali, restoring canstic, D. H. J. Fros
D. Alisall, restoring caustlc, D. Hanna....
Amalgamating machine, S. F. Clouser Amalgamator, B. Tyson Bag holder, W. H. Smith Bag-retaning device, J. L. Holbrook
Bag, travellng, R. W. Chapman Bale thes, w. s. D. Davis
Bechive, J. Yoder..................
Bell, crank door, W. E. Slmonde
 Book cover, J. D. Mets. Boot and shoe, J. A. Stockwell(r).
Boot heelse compressing, E. Flisher Boot heele, compressing, E. Fisher.
Boot wire, stralghtenting, w.
rrant. Boots, lasting, Ballou \& Copeland.
Botile Boox, chenks, s. S. Van Gillder.
Bridie bo mand. F. Metinb Bridie
Bruab h ondles, driving, J. An Brush handies, driving, J. Ames, Jr
Brush-making machine, Carrington Brush, palnt, A. A.
Buckle,
Build ting material, elevating, Conrad et al.,
Bunge, coatiog and presesing, P. J. Frantze. Bungs, coating and prestng,
Burlal cases, coverng, $w, ~$ Burlal case handle, w.s. Woo
 Button hole cutter, R. Wolif
Cane R. Cane, R. G. Englisb.
Cans, top hoop for milk, H. H. Roe Car coupling, B. s. smith.
Car coupling, E. Stone.
Car coupling, Way \& Hotman.
Car coupling plns, making, F.Leonar
Car couplling gulde, w. M. Reeder
car couping gulde,
Car ouor, D Connor
Car
ar truck, rallway,
Car wheel, F. M. ..Dripps.
Carbureter, L. Marks
Carpets, fabrric for, w. Wallace
Chalr boto child's, B. M. Richardson (r)
balr bottoms, making, J. B. Westw
alr, reclining, E. Collin
Caatr, desk, and book rest, E. J. Smith
Cheese, manufacture of, Andrews et al
Cheese vat steam hea
Clay, pulverizing, w. L. Gregg. Cloth-cutting machine, R. M. Eastma loth - measuring macia, J. McNelll Clothes line pole, A. F. Tar
lothes wringer, Becker $\&$ smith
Clothes wringer, \mathbf{C}. W. Brown.
clothes wringer, $\mathbf{C l}$. E. McDonald.
Coffee roaster, $\mathbf{~} .0$
Coffer dam, F. Cox.

Corn-haoking machine, w. D. Jonea cilitvator, J. Hall..........
cotter, meat, B.
C. witon Datter, Tine, C. Dental platee, atta chling teeth to, B. J. Field
Dentist's Ditchnng and tile-laying machnne,
Diving apparatza. J.P. schmitz Door check, c. W. Briedenbach Dratt regulator, F. J. Kenny
Drill, ratchet, H. Smith
Din Drill, ratchet, H. Smith.
Drllling machine, metal,

Ejector, dust, L. Sterne. | EngIne, , Ire, Fartis $\&$ Miller |
| :--- |
| Engine, rotery | Englne, rotary, D. L. I. Flanders Extracti, apparatus for makiog, J. Rob Eyeglass and spectacles, J. C. Wakefield...

Fats, Dleaenting and claritylng, J. F. Babco Fence, ron, i. D . stimba
Filter, R. L. Gentry
Filtering under press
Firearm, magazine, , C. D. Luce
Frre arma, ramrod for, H. F. Pe
Fire arms, $\begin{aligned} & \text { \&ivivel loop } \\ & \text { Flue cleaner, A. Crobby }\end{aligned}$
urnaee, heating, W. Twitchel
Furnace, hot alr, H. F. Hayden...
Furnace, gas, R. B. and H. R. Goil
Gas, manufacture of, F. King...
Gas carbureter, Venners \& Ju
Gaseller, drop light c C Deass
Gate, farm, McKee $\&$ Randal
Glags eessel or bucket, J. Adams
Glassware, stemmed Hobset
Glas8ware, stemmed, Hobbs et al
Governor and throttie valve, w. s . Deeds
Grave gaard, A. Rank.
Harness sadale pad, J. w. Domett
Harvester, M. K. Le. Lewlis...............
Harvester dropper, J. M. Curiton
Hinge, gate, s. .G. Peabody
Hinge, spring. J. Collun
Hinge, spring, s. Joyce
Horse-clipplng machne, w. Clark
Horeeshoe calk blanks, J. A. and G. H. Mçeee
Horseshoe calk, detachable, B. \mathbf{O}. Bradfeld.
Hydrant, G. H. Balley..................
Hydrant and street washer, R.
Ironing machine, G. F. Perrene
Kettle, D. Jones.
Ladder and wash bench, F. s. B. Bidwel
Lamp, street, M. A. Cha
Lathe, P. J. Frantze.
Leather-rounding machnne, L. D. William
Leather-splitting machne, . McKay... Leather-cutting block holder, Newton \& Titua Lite preserver, J. B. Stoner.
Lttolycte,
B. W. Bradford
Litcoly cite, B. W. Bradiord....
Lock, comblation, A. Mcerrie Lock for fretght car doors, R. R. H. Langlands.
Lock for sllding doors, mortise, B. Mallory. Locomotive bollere, S. A. Hodgman..
Locomotive smoketack ; T. Lanaton Locomotive plled fabrict, s. Sanford... Loom let-of and take-up, E.
Loompleser, J.
G. Guriseat
Loom:shedding mechantism,
Loom weft fork, N .
Mainspring, J.
Metal-tw1stung machine, L. J. Masterson
Mill, cider, J. sime.
Mill, rrinding, A. F.
Mill, rolling, D. Hall
Mill feeding devtce, T. G. Hall.

Nipple, seamlese rubber, c. B. Dicci........
Olis, etill tor reffinn Ons, gtill for renting, J. Jchube
Ore pulp, treating, A. Patchen.. Organ coupler, reed, G. B. Kelly Paddle wheel, featherlng, G. Pan, baking, E. E. O. Warner
Pan, cake, A. F. Trpp
Pan Hfter, Goodrich Tunt Panele, etc., cornering, Beck
Paper box, T. J. Powers.....
Pencll case, screw. A. T. Cro
encll holder for slate frames,

Planing machine, cllmer \& Mannix
Planter and cultivator, convertibe, , T. w. Page
Planter and calivitar,
Planter, corna, s. B Davis.
Plow, c. T. Elliston
Plow wheel, w...............
Pruntig Implement, s. J. Vance...
Pulleys, bearing for band, W. D. Andrew
Pump, L. H. Wheeler.......................
Purtifer, middllings, W. N. Esselityn
Purliar, middllings, Wright \& Batema
Rallway rall jontt, Burch \& $\$$ Smith
Roor, composiluon, E. Cuarchill
Saw gummer and sharpener, H. Baughman

Scaffolding, P. Rodecker
Sewng machine, W. A. Mack. (r).....
Sewng machine binder, H . Y. Young
Sewing machne gack, I. P. Garland....
Sewing machine needie, w. s. Spaling
Sewing machine threader, J. M. Stamp.
Sewing machine table, W. Whitworth
Sewing machine table, W. Whitwort
sneet metal, ollng, F. W. Perry....
Sheet meatal corers, making, J. E.
sningles, packlng, E. T. Rowell.
Shoe fastener, G. L. L .
soovel, Itre, J. Edgar.
Show case, B. Metzge
Shutter fastentng, J. s. . . eieato
suuter worker, J. Arnold
Shutter worker, J.
Sieve, G. A. Wells
Soldering machine, can, A. . . A. Alien...
Sower and cultivator, seed, E. Emmert
spark arrester, J. B. Wardwell...........
Spark arrester and consumer, G. H. Grigge
spark arresters, screen for, J. E. Wootten
spinning trame, ellk, J. E. Atwoo Bquares, stamplig carpe
stave machne, L. R. Fulda
steel, manufacture of, M.

Stocking supporter clasp, J. P. Li.....ga
stone Stone, hardening artificlal, F.
Stove, lamp, J. W. Schreiber.. Strainer, S. Males
Street washer box, J. A. Latham
Time detector, watchmen's, J. E. Buerk
Time detector, watchmen's, J. E. Buerk..
Tobacco stems, crushing, G. P. Unverzagt
Trap, fly, W. J. Kayser..................
............. $156,411,15$ Vault cover, W. Dale....
Vehtcle, M. V. Ntchols (r) Veblcle wheel, L. Waruer
Vehicle wheel, J. V. Woolsey.....
Vinegar, makig, D. Wimpthetm
Vinegar, makig, D. Wimphei...
Violin chin rest, H. W. White....
Wagon brake, C. M. Leflugwe
Watch key, F. E. Allen..
Watch, stop, C. E. Jacot......
Water closet valve, J. E. Boy
Windlase, W. H. Hartield
Wringer roll, T. J. Dickerson..
APPLICATIONS FOR EXTENSION.
Appications have been duly filed and are now pending ings upon the respective applications are appointed for
the days heretnafter mentioned

EXTENSIONS GRANTED.
30,59._-Door Latci.-T. Slaight.
DESIGNS PATENTED.

TRADE MARKS REGISTERED.
2,046.-Lubrioating Oils.-Am. L. O. Co., Cleveland,O
2,047 \& 2,048.-Nurbing Bottles.-M. s. Burr \& Co Boston, Mass.
$2,049 \& 2,050 .-$ PLo
2,051.-Fritit Jrliligs.-Sberwood et al., New York city
2.052.- Wasine Extract.-A. Döring, New York city. 2,053.-Gboceriess.-A. Gndillot, New York clty.
 2,059.-Toweling.-Stark Mills, Manchester, N.H.

SOHEDULE OF PATENT FEES.

 On each Caveat...... On lasuing each original Patent.,
On appeal to Commissioner of Patenta.
On application for Relesue................ On application for Extension
Ongranting the Extension..
On filing a Disclaimer
On an application for Design ($3 \times$ years)
Onapplication for Design (7 years)....

CANADIAN PATENTS

Ligt of Patenste Granted in Carada November 7 to $14,1874$.
,026.-L. A. Dessanalles and Wm. Murphy, Montreal,
Can. Amelloratlons aux ©olllets servant au passage des lacets pour fermer les chaussures, dits "Oellets
pour Lacer les Chaussures." (Improvements on Eye pour Lacer les Chaussures.
leta for Boots.) Nov. 7, 1874 .
azt.-W. Shaver, Kemptrine, Ont. Improvement on
attachment for sewing machines, called "Shavers
Attachment for Sewing Machines for Laces, Braids, Attachment for Sewing Machines for Laces, Braid
etc., with Hem." Nov. 7, 1874 .
 z1e's Improved Dump Wagon." Nov. 7, 1874,
029.-G. D. Thornhll, Xenla, Greene county,
assignee of W. Counter, Alobany city, U. S. IImprove
ments on car couplings, called "Coulter's Car Coup ments on car coup
ling." Nov. 7,1874 .
Improvement in spark arresters, called "Barsley" Spark Arrester." Nov .7, 1874.
4,081.-J. Gregory, Wingham, Huron county, Ont. Use-
ful middling purifer, salled "Gregory's Improved ful middilings purliter, called "G
Middings Purifier." Nov. 7 , 1874.
s. Y., S. S. Improvement on the method or process
Nor hardening and toughening the surfaces of cas for hardening and toughening the surfaces or cass
fron, called "Robinson's Improved Process for Chilling, Carbonizing, and Toughening the Surfaces
Cast Iron Moldboard for Plows and other Castings. Nov. 7, 1874.
Comp. ${ }^{1834 .}$. J. B. Armstrong, Guelph, Wellingten county, Ont. Improvements in furnaces for heating steel in
tempering, called "Armstrong's Improved TemperIng Furnace." Nov. 7, 1874.
,085.-J. Absterdam, New York city, U. S. Improve-
ments on process for the manufactura
gas, called "A bsterdam's Process fo
of Illuminating Gas." Nov. 7,1870 . 4,036.-J. Britd, Naugatuck, New Haven county, Conn., U. S. Improvements on self-binding palley blocks
called "Bird's Eccentric Pulley Block." Nov. 7, 1874 , roe county, N. Y.. U. S. Improvement on steam gor ernors, called "The Judson Steam Governor." Nov 7, 1874. obtaining a white pigment, and in the process em-
ployed therefor, called "Orr's White Enamel Paint." ployed there
Nov. $7,1874$. 4,099.-M. Chase, Jr., and C.S. Muir, St. John $\cdot \mathrm{s}$, New
Brunswick. Improvements on shingle machines, criled "Chase \& Mulr's Shing on shingle machines, 1874.
$4,040$. provements in line kitns, called "The Dominiou Champlon Lime Kiln.' Nov. 14, 1874. ,O41.-D. W. Long, Pa:kersburgh, Wood county. Va.,
U.s. Improvements on 1 inges, called "Long's Surety Hinge." Nov. 14, 1874 .
,042.-S. wilmat U. s. Improvements on water engines or motors,
called "Wilmarth's Water Engine or Motor," called "
14. 1874.
U. call. Improvements on a machine for moving logs, called "Rodgers' Log Mover." Nov. 14, 1874.
.044.-J. W. Upson, Tallmadge,Summit county,O.,U.s. U. S. Improvements on an apparatus for screening
and loading coal, called "James W. and loading coal, called "James W. Upson's A ppara-
tus for Screenting and Loading Coal." Nov. 14, 1874. , O45.-W. Golding, New Orleans, Orleans county, La. U. S. Improvement on steam generators, called
"Golding Steam Generator." No O46.-T.L., I., C. B., and J. M. Hubbard, Port Huron, winches, called "Hubbard's Ship Winch." Nov. 14,
${ }_{\text {,047. }}$ M. A. Cushing, Aurora, Kane county, Ill., U. s. Improvements on hot air furnaces, called "Cush.
ing's Tubular Warm Alr Furnace", ,048.-D. P. Dleterich, Philadelphla, Phladela, ty. Pa., U. S. Improvements on gum shoes or
sabots, called "Dleterich's Gum Shoe." Nov. 14,
${ }^{1874 .}$. Barber, Detrolt citt, MICh., U.S. Improve. mentand Tllting Requing ,O50.-W. Beck, Batavia, Genesee county, N. Y., U. S.
Improvements on metalic hoop locks, called ''Beck's Improvements on metallic hoop locks, called 'iBeck's
Metallic Hoop Lock." Nov. 14, 1874. Mest-W. Beck, Batavia, Genesee county, N. Y., U. s. Improvements on tyre tighteners, called "Beck's Tyre Tightener." Nov. 14, 1874.
,O52.-J. E. Dnstin, A. L. Brown, and w. G. Brown,
White ield, N. H., U. s., and A. Ordway, Lawrence city, Mass., U. s. Improvements on spariz arresters ,053.-H. B. Casgrain, Ottawa city, Ont. Extension of No. 150, called "The Tniversal Office File." Nov. 14
1874.

gatuettitureuts.

Back Fase
lnside Page
81.00 a lline.
75 conta a lline.

Engravings may head advertisements at the same rate per line, by measur ement, as the eetter press. Advertisements
must be racesved at publication ofice as early as Friday morning to appear in next ts8ue.

TRON BRIDGES-CLARER, REREVES \& CO.,
 GENDINE TURKEY OIL STONE. Also, ARKAN
SAS AND WABHITAATONE STO
BOYD \& CGASE, N. Y., Manufacturers.

Andrew's Patents.

BLAKESS STEAM PUNPS
 for eyprypassible duy

 CAUSEWAY\＆FRIEND STS．BOSTON．
$\$ 2400$
2nd Hand Engines and Boilers，
 BESSEMMER
Steel WireRopes

VASSERS OSATIVY LY maxe Ronge
 MANUFACTURERS，ATTENTION！ Labor to Hire

 ＂A TRIAL TRIP．＂The golenoe ot

 SINGLIE AND BARREL MACHINERT．
 $\mathrm{B}^{\text {ANKRUPTS }}$ SALE OF HORIZONTAL

Works $\begin{gathered}\text { At home，male or female } \\ \text { weok，day or oreming．}\end{gathered}$ for all wo send railuabio pachave

BrANS C GIROEPS

 A FORTUNE Foen Aux in tio Rober stam $\$ 5 \% \$ 200^{\text {Der day at home．Tormat Froe．Adrome }}$
 870．－postpala－s 1.60
THE NURSERY．
 36 Jromfield Stres SHOREY，
36 Bromfield Street，Boston，Mass，

MACHINERY

iron \＆wood working machinery Cold Rolled Shafting，
 $G E O R G E P L A C E \& C O$ \＆
Planing \＆Matching

HAS NO EQUAL FOR VARIETY，QUALITY，AND ECONOMY OF ITS WORK． inet，Carriage an HORIDNTAL AND TIPRIGHT BORING MACRINES，SUPERIOR TO ANY IN USE LAN NG AND MATCHING MACHINES，and other Wood－working Machinery．
Sond for Catalogae and Price－List．BENTEL，MARGEDANT \＆CO．，Hamilon，Ohio．

Rare Chance to Advertise．

Cheapest and Best Mode of Introducing NEW MACHINERY AND INVENTIONS．

ToAdvertisers．
During the month of December，we shall publish a spioisl edition of 100,000 coples of the SCIENTIFIC AMERICAN，which will be mailed in separate wrappert and the postage prepaid to every post office in the United States，Canada，and adjoining provinces．
It is intended that a copy of the paper shail reach the principal manufacturera，workers in lumber an Advertisements will be taken for this extra edition，at the following rates：namely， 75 centa a lin Advertisements will be taken for this extra edition，at the following rates：namely， 75 cents a lin
inside，and 81.50 a line on last page．A few notices，in the Buainess and Personal column，not exceeding four lines in length，will be inserted at $\$ 1.50$ a line．This affords an unusually favorable opportunity for advertisers to reach a class of persons not accessible in the ordinary channels of advertising．The names have been selected with care，and the publishers guarantee the number 1ssued to be full 100,000 ；the postage on these coples，which is two thovsand dollars，will be prepaid，thas insuring the prompt for warding of the papers to their destination．

Advertisers will bear in mind that this announcement is for a Spectal Edition，which is to be circulated gratuitously among non－subscribers，and that the same advertise
if ordered in the extra，will be seen by entirely different persons．

ENGRAVINGS．

this paper or in other publications will be recelved for insertion in this Spectal Edition on reasonable tere ADDRESS

MUNN \＆CQ．，Publishers， 37 PARE ROW，NEW YORK
First class stationary engines

 E FOOT L ATHEXS，

BAXTER PORTABLE STEAM RNGINE

REDUCED PRICE LIST，NOVEMBER 2， 1874

$\boldsymbol{T} \boldsymbol{H} \boldsymbol{E} \boldsymbol{A} \boldsymbol{X} \boldsymbol{T} \boldsymbol{E}$,

WM．D．RUSSELL，
When of the Baxter Steam Engine Co．

P．BIATEDコIT \＆ 00.

 CHRISTMAS BELLS FOR 1874

 $\$ 10$ to $\$ 1000$ invored din sooze E Oid pays O1NS Matety hoistive
 COR LEGAL ADVICE CONCERNING

Planing and Matching
 The Toll－Gate！Prizz Plotarionant froe An

TTONE SAMING MACHINERY
DDERRICKS \＆TRAVELLERS， THOMAS ROSS，Rutland，Vt．

Hit
Niagara Steam Pump． CHAB．B．HARDICK

DJEOHITA

W OUD．WORRINQ MAUHINERY GENS

CLABS MOULDDS for Frait Jars，Lamps

Sill

 Cotaye ECtire

 Mong fiok ORANGE JUDD CO．． 245 Broadway，N．Y

Ladies at Home

H．WESLEY PERKINS， SCIENTIFIG＂ENGRAVER park row

TAGNETS－Permanent Steel Magnets
 MINGLE\＆BARREL MACHINERY

PORTABLR STEAM QNGIEEKD COMBIN．

An deutfohe Erfinder．

Diefe große und thätige ©laffe untrer $\mathfrak{B e}$ boblferung madien mir befonders baraut aufmertam，das unire frirma burd ifre $\mathfrak{B e r}$
 §auptfïdten，befondere Worthoile zur Extar： gung von in．unc nusiändifden Batenten bietet．
Seber Erfinder，gletdurei meldjer Stationalio tatt ange马örig，if burd bie liberalen patentge－ jetze ber Bereinigten Staaten zum ßatentidutz ü̈r ©rfindungen beredtigt．Unfre Firma ift bereit，geftiitst auf 26 jährige Erfabrung，Deutíd）e Erfinber jeber ふeit zu beratben und ди mäfigen『reifen rafd und pünttlid ßatente zu erlangen：
Die Deuttae Section if in ben jänben fähiger beutjder Sngenieure，beldje in ber Dffice berfönlid mit Erfinbern berfehren baerben．

Der ，SScientific American＂wird in feinen Epalten bie bebeutenberen Erfindungen be． ipredjen．
Sorrefpondenz erbeten und prompt beant mort．ßampglets in deutider Sbradie mer Den auf Brtlangen franco zugefand

Yorefifire：
20，
Scicntific American＂Patent Agentu
37 Bate giow，
Tave Tors cian

gatertisementa

Racil Page
mando
Pase
noilde Pazo: : : : : : : 81.00 a Hinfing ine, oy measuromens. as the letter press. Advernseoments must bereccived at publication oobic
morning to appear in next tesiue

CAUTION.

On account of the popularity of the Wheeler \& Wilson
Sewing Machines. partles bave largely been engaged in purcbasting old and second -hand machines of that make, and imposed upon the pubilc by selling them as new
machines. The Wheeler \& Wilson Company begs to advis, the public that any one desirting to buy their second-hand machines, can be supplied by that Com-

Wheeder \& Wislow IITr Co. 625 Broadway, New York

Excelsior Do Your 0wn Printing

$\$ 9$ Preasfor card.g.labelis, enzelopog

 MRORTANT FOR ALL LARGE CORPO

 $\mathbf{P}^{\text {ROPOSALS FOR CONVICT LABOR. }}$

 Male Mit

Muna \& Co.'s Patent Oficices.

Established 1846.

The Oldest Agency for Soliciting Patents in the United States.
twenty-EIGH $\overline{\text { YEARSS EXPERIENCE. }}$ MORE PATENTS have been secured through
this agency, at home and abroad, than through any other in he world.
SIXTY THOUSAND inventors have availed entions, and procuring their patents.
They employ as their assistants a corps of the most ex perienced men as examiners, specifcation writers, and ected from the ranks of the Patent Office.
MUNN \& CO., in connection with the publication of the Scientific American, continue to examine inventions, confer with inventors, prepare drawings, specifications, and
ssignments,attend to flling applications in the Patent Office paying the government fees, and watch each case step by tep while pending before the examiner. This is done ngton. They also prepare and file caveats, procure design patents, trademarks, and reissues, attend to rejected cases prepared by the inventor or other attorneys) procure copyights, attend to interferences, give written opinions on attend to every branch of patent business both in this and foreign countries.
Patents obtained in Canada, England, France, Belgium Germany, Russia, Prussia, Spain, Portugal, the British
Colonies, and all other countries where patents are granted. A special notic all inventions patented through this Agency, with
name and residence of the patentee. Patents are often old, in part or whole, to persons attracted to the invention
A pamphlet of 110 pages, containing the laws and fall diections for obtaining United States patents, also a circular pertaining exclusively to Foreign Patents, stating cost
each country, time granted, etc., sent free. Address MUNN \& CO.,
Publishers SCIENTIFIC AMERICAN,
37 Park Row, N. Y.
Washington D. O

STEAM GOVERNORS WITHOUT GOST,

STEAM GOVERNOR IN THE WORLD

HUNTOON
co

MACHINIST'S TOOLS, LdoIUB

Tor

THE HEALD\& SISCO Patent Centrifugal Pumps,

ASBESTOS MATERIALS

ASBESTOS ROOFING, FOR STEEP OR FLAT ROOFS IN ALL CLIMATES
 These Materials are prenared ready for use, and can be eanily appiled by any one send for descriptive Pam-
 Patentee and sole Manufacturer, $\}$ H. W. JOHNS, 87 Maiden Lane, N. Y.

RON PLANERS, Nain PORTLLAND CEMENT,
 SUPER-HEATERS

PORTLAND CEMENT

 WWAIN.
AMechanicalSensation
 The

Working Models And Rpermental Macen ine \& M Stone and Ore Brever

 $\mathrm{B}_{\text {and }}^{\mathrm{ARTLETTRS}} \mathrm{S}$ BOULEVARD, STREET

 Machinery, Crane Bros. Mfy. Co., chicago.

$\mathrm{F}_{\text {tor }}^{\text {OR SALE-2nd }}$ hand Portable and Sta

THE PULSOMETER. The dimpleft moit darabla and anouit

GIASS OIT OUPE

THE JOHNRARDICK
NIAGARA STEAM P P S

 Engines and Bollers, Pulleys, Shafting and Hangers a Specialty.
 MURRILL \& KEIZ̈RE, 44 Hollidey Bt. Balt

ASTRAL 0 I L

HARTFORD
STEAM BOILER
Inspection \& Insurance

COMPANY

W. B. Franklin, V. P’t. J. M. Allen, Pres't
J. b. Pigract, Sec.
HABTFORD,
 HUSSEY, WELLS \& Co.,

CAST STEEL,
 cast steel teeth,

 Todd \& Rafterty Machine Co.

 Great est invention of the age. ELECTRIC \& VAPOR CHAIR.

ROSPy

SCIENTIFIC AMERICAN.

FOR 1875

the most popdlar scientific paper IM THE WORLD.
THIRTIETH YEAR.

VOLUMR KXXII-NEW SERIES.

The publishers of the SCIENTIFIC AMERICAN Deg on announce that on the first day of January, 1887, a newrolume commences. It will continue to be the aliz
of the pablishers to render the contenta of the new volume more attractive and useful than any of the pre

To the Mechanic and Manufacturer l
No person engaged in any of the mechanical parsuits ahould think of doing without the soisatitio Ampri ons. Every number contains from six to ten engraving

It is the Most Popular Paper in the World It is the Most Popular Paper in the Worla \& aving the large circulation of nearly 50,000 per week handred engravings of new machines, useful and novel inventions, manufactaring establishments, tools, and processes.
The SCIENTIFIC AMERICAN is devoted to the interests of Popular Sclence, the Mechanic Arts, Manufac trial pursuitis generally; snd it is valuable and instructive not only in the Workshop and Manafactory, but also by the new law, the postage must be pald in advance on New York, by the pablishers; and the subscriber then recelves the paper by mall free of charge. TERMS.
One copy, one year (postage included).......... 3.20 $\begin{array}{lll}\text { One copy, six months (postage included)....... } & 1.60 \\ \text { One copy, three monthi (postage included).... } & 1.00\end{array}$ One copy, three montho (postage included).... one copy of eagraving, "Men of Progress".. 11.0 On ecopy er Sclentinc American for one year, and one copy of "science Record "for 1874...... Bemilt by postal order, draft or express.

MUNN \& OO.
37 PARE ROW, NEW YORE

