
a WeEkLY J0URNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY AND MANUFACTURES.

$\substack{\text { Vol. XXXI.-NG.20. } \\ \text { [NEW SEREES.] }}$

THE MYERS ROTARY ENGINE.

THE MYERS ROTARY ENGINE.
To fail has been far more frequently the fortune of inventors of rotary engines, than to succeed. So frequently, ndeed, and from so various causes has this been the case, that most engineers adhere to the opinion that with the reciprocating engine the rotary can never enter into successful competition, much less prove a formidable rival.
The question of to what extent the machine we are about to desoribe can cope with the rotative engine of corresponding power in economical use of steam alone, we leave to future consideration in connection with the records of tests sonn to be instituted. In this article, we desire to direct attention to the manical construction as pro the mechanical construction as probably the simplest arrangement ever devised for the rotary engine.
A perspective view of the enA perspective view of the en-
gine is shown in Fig. 1. From Fig. 2 it will be seen that the cylinder is divided by a diaphragm, A, and that the shaft, B, passes directly through. Each of the two compartments of the cylinder contains the working parts of a sepa-
rate engine; and as both are exactly alike, the longitudinal |terminates in flukes, forming a broad surface which bears section, Fig. 3, may answer for either. C is the piston, one against the inner periphery of the casing. The piston also end of which is made to encircle the shaft, while the other passes through a cylindrical oscillating guide, D, which is
 secured in the ring, E. The ring is not attached to the shaft, no is not attached to the shaft, no power whatever is transmitted
through it, and it simply serves as through it, and it simply serves as a guide and to give capacity to the
cylinder. It is held in place by cylinder. It is held in place by
resting in one annular groove in resting in one annular groove in
the diaphragm and in another in the cylinder head, so that, as seen in Fig. 2, when the cylinder head is in place, the three edges of the piston take against the diaphragm, the head, and, as above noted, the inner periphery.

The ring is disposed eccentrically to the shaft; and as, at its highest point, it is in contact with the cylinder between the ports, F and G, it forms a constant abutment for the steam. The latter, entering between this abutment and the piston, acts directly upon the piston, which, being merely a lever arm as regards the shaft, of course turns the same, traveling in the direction of the arrow. In passing the abut ment part of the ring, the fukes
fit into a recess, so that the contact between the abutment and cylinder is always maintained. The reversing gear, by which steam is admitted to either port by means of a common D valve, is operated by the hand lever shown.
The most important points in the rotary engine are no clearance and tight joints which, while avoiding friction, are slow to wear. An English contemporary, speaking of the sliding abutment plan, and allowing the abutment to have the same velocity as the piston, says that, in an engine 9 feet 8 inches in diameter, having 86 square inches of piston surface and making 60 revolutions, such an abutment could not completely close until the piston had moved four inches away from it. This four inches represents clearance, which is waste, for in rotaries there is no compression.
In the Myers mecbanism, there is no cloarance. The abutment is always closed; the instant the piston clears the port, steam enters and immediately exerts its useful effect, and there are no springs, cams, valves, or other devices, save the simple three working parts, to produce this highly important result.

The packing difficulty is a stumbling block for an immense number of rotary engines. In the present machine, the broad bearing surfaces are of metal,face to face. There is no packing atall inside the cylinder, and it only exists in the stuffing boxes about the shaft. So far as the develop ment of friction in the engine is concerned, it might be sup posed that the steam, pressing against the broad flukes of the piston, would force the same into too close contact with the cylinder, bending the ahaft. Such is evidently not the case for the steam must enter between the piston and cylinder, so balancing the former at every point, except during the instantit passes the exhaust port, exactly, in fact, as the ordinary slide valve is balanced. Friction and wear are thus prevented. Finally the aggregate friction of the various parts of this machine, as compared with that of th parts of a reciprocating engine(the piston, the rod, the gibs the crank pin, etce.), is, as is apparent from the very few ness of the working portions, the less.
The operation of the Myers engine is perfectly noiseless there is no pound or clack whatever, and the 50 horse power machine at the Fair runs and reverses instantly under half a pound pressure of compressed sir or steam. The arrange ment of pistons, as shown in Fig. 2, forms really a double engine, the pistons being 180° apart, thus ensuring even mo tion, while it suggests the possibility of any number of en gines and pistons being thus combined.
The particular form of engine represented in our engrav ings, through its promptreversing and capability of holding the load, is especially adapted as a hoister for mines, eleva tors, and like uses. It is besides well suited for the work ing of steering gear, or the driving of propellers in vessels. As it is remarkably compret, occunying a minimum of floo space, it will doubtless prove valuable in establishments where economy of room is an object; and in instances in which, for example, it is desirable to attash a circular saw directly to the shaft.
A word may be added with reference to economy of steam, to point out that the tendency of the pressure within the cylinder is to force the abutment up and so cbviate leakage. If the other leakage about the piston edges is prevented, there seems no valid reason why the evgine should not be as economical as a reciprocating machine at full stroke. All that is neceseary to provide for expansion is to arrange a cutoff at the reversing valve. Of this, however, more hereafter. For the present, we dismiss the subject with the opinion that the engine is of unquestionable merit; and if future tests prove this probable economy of steam, we can predict forit a well deserved success. The inventor is Mr. Edward Myers, and further information regarding the machine may be obtained by addressing the Myers Engine Company, No. 6 Cortlandt street, New York city.

Breathing through the Mouth.

A fact which cannot be too frequently impressed on the mind, says the Sciense of Health, is "that the pernicious habit of breathing through the mouth while sleeping or waking is very hurtful. There are many persons who sleep with the mouth open, and do not know it. They may go to sleep with it closed, and awake with it closed; but if the mouth is dry and parched on waking, it is a sign that it has been open during sleep. Snoring is another sure sign. This habit should be overcome. At all times, except when eating, drinking, or speaking, keep the mouth firmly closed, and breathe through the nostrils, and retire with a firm determination to conquer. The nostrils are the proper breathing apparatus-not the mouth. A man may inhale poison ous gases through the mouth without being aware of it, but not through the nose.'
The editor should, in this connection, have directed the at tention of his readers to the patent anti- snoring device illustrated in these columns some time ago. By its use, the above troubles are all obviated.

Crystalization of Tin.

A fine crystalization of tin is obtained as follows: A platinum capsule is covered with an outer coating of paraffin or wax, leaving the bottom only uncovered. This capsule is set upon a plate of amalgamated zinc in a porcelain capsule. The platinum is then filled completely full of a dilute and not too acid solution of chloride of tin, while the porcelain is filled with water acidulated with $\frac{1}{20}$ of bydrochloric acid, so that its surface comes in contact with the surface of the liquid in the platinum. A feeble electric current is set up, which reduces the salt of tin. The crystals formed after a few days are well developed. They are washed with water and dried quickly.

§rientifir Ammixam.

MUNN \& CO., Editors and Proprietors. published weekiy at
NO. 37 PARK ROW, NEW YORK.
o. D. MUNN.
A. E. BEACH.

TEEMS.
One copy, one year, postage included......
One copy, six months, postage included...
ClubRates:
Ten copies, one year, each $\$ 2$ 70, postage included.
Over ten coptes, same rate each, postage included. 160
60
ar By the new law, postage is payable in advance
and the subscrioer then recetves the paper free of charge.
VOLUME XXXI, No 20.[New Series.] Twenty-ninth Pear.
NEW YORK, SATURDAY, NOVEMBER 14, 1874.

RAPID TRANSIT IN THE CITY OF NEW YORK.
We recently called attention to the appointment of a spe cial committee of the American Socisty of Civil Engineers o receive, consider, and report upon the best plans for pro viding rapid transit in this city. The Committee have held everal meetings, and examined a variety of plans; but only few new ones have been presented.
Mr. Davis proposes a cheap elevated single track railway of narrow gage, like that used in some of the mining dis ricts of England. Mr. Nolan has a two story iron bridge railway. Mr. De Puy's plan is an iron framework placed over the street, with sidewalk for passengers and railway in the middle. Mr. McGonegal would have an arch of iron over the street, with tracks within the arch. Peter Cooper suggests an elevated railway with endless propelling rope and cars. Mr. Speer presented his chain of flat cars, with ittle houses and chairs set therson, forming what he term a traveling sidewalk. Mr. Schuyler exhibited his canal rail way, through private property, estimating the cost at eigh to ten millions of dollars from City Hall to Harlem, eight miles. Mr. Church advocated an arcade railway, four tracks to cost a million and a half per mile. Mr. Gardner urged his elevated railway along the rivers, with warehouses. Oar readers are familiar with most of these plans, as they have heretofore been illustrated and described in the Scientific American.
The Committee, we understand, are not pledged to any particular plan, but are so convinced of the paramount ne cessity of having some sort of rapid transit road immediately built, that they will recommend a hard times railway, one of the economical plans, believing that the cheaper it is in firs ost the more quickly it will be erected.
In the meantime, while the many inventors are planning and the Committee considering, it is gratifying to know tha rapid transit in this great city is making real progress. The magnificent line of solid and substantial underground rail ways on Fourth avenue, between the Grand Central Depot 42nd street, and Harlem river, 44 miles, authorized by the State Legislature of 1872, is now almost completed, and will open for traffic in January next. The continuation of these racks down town to the southern limit of the city, at the Battery, $4 \frac{1}{2}$ miles, by the Broadway Underground Railway Company, was finally authorized by the Legislature, May 10 874 ; and although bat a brief time has elapsed, it is be lieved that the construction will soon begin. These great works, having a total of $8 \frac{8}{4}$ miles in length, built in the strongest manner, under the direct supervision of the most
eminent engineers, will form a rapid transit railway of which
the citizens of New York may well be proud. Our engineer will do well to lend all possible influence in favor of thei early completion. Over these tracks, passengers may be safely conveyed, at high velocity and for low fares. No thing about these roads will be experimental or uncertain Their capscity for traffic will be enormous; they will in al respects be adequate, convenient, and satisfactory to the public.
We commence on another page a series of articles descrip tive in detail of the Harlem section of the Underground Railway, from which our readers will gain some idea of the megnitude and importance of the work. As the most recent specimen of American railway engineering, the plans are worthy of study, and will undoubtedly command the atten tion of civil engineers everywhere. Our articles will not only embrace sectional views and dimensions of the tunnels, viaducts, open cuts, and bridges, but will also exbibit the construction of the underground passenger stations and other peculiar features. These papers will possess special interest and value, owing to the many different forms of construction that are involved along the line of the work.

HINTS TO INVENTORS AND CAPITALISTS

As a general rule, the man who makes an importsnt in vention has not the necessary capital to manufacture and place it in the rarket; hence he is obliged to seek assistance from others, giving up some part of his invention in return for the means of development which was furnished to him Indeed, many valuable inventions are abancioned before being fully perfected, on account of the poverty of the inven tors. It is eminently fitting that capital should lend its aid to intelligence, in cases of this kidd, since the original outlay will be more than returned when the public appreciate the value of the new idea. It is not true, however, that every new idea is a good one, and a useless or imperfect in vention forms one of the best devourers of money that can well be imagined. There are many capitalists who are ready and anxious to furnish means for the advancement of new projects, if assured they will be useful and profitable; but they have been deceived so often by schemes that promised well, that it is difficult to induce them to listen favorably to anything that is presented. It would seem, then, that there should be some middle ground upon which inventors and capitalists could meet, making and recsiving propositions by means of a third party who is well versed in business matters and alao fully acquainted with technical detaile. The capitalist, for instance, although a good business man, generally has not the experience and the technical knowledge necereary to enable him to form a thorough opinion in regard to the value of a mechsnical device or process. The inventor, even allowing that he is fully acquainted with all the matters to which his invention relates, can hardly be considered the most suitable person to expatiate upon its merits. There is a trait in human nature that causes most men to have a pretty good opinion of their own ideas, and our readers must have noticed that the inventor of the most worthless article is apt to consider it of as much value to the world as anything that can be desired. In listening to the enthusiastic talk of the inventor, one is apt to be carried away by his remarks, unless he is thoroughly acquainted with the subject. Many inventors, however, before approaching a capitalist, carry their designs to experts and obtain opinions from them. But even with a score of such recommendations, the capitalist will not be aafe in investing money to develope a design. Many experts are not as careul as they should be in giving opinions on inventions, and o one however honest and capable he may be, can assert positively, without a trial, that a new machine will be suc essful. He can frequently discover fatal defects by simle inspection, but he cannot safely assert that none exist. little incident, which lately occurred, will illustrate these points more fully. A mechanic had invented a new cut.off, which he asserted would save at least 25 per cent of the uel, on being attached to any engine that had a plain slide valve. Like many other inventors, he had exhausted his means in obtaining his patent and building one machine; but it had been examined by several engineers, who thought very favorably of it, and expressed these favorableopinions in writing, so he considered that it would not be difficult to obtain what money he needed. After intervie wing a few capital ists, he met one who seemed quite favorably impressed. The latter, however, rather distrasting his own judgment in a matter with which he was so little acquainted, sent the inventor to an expert, promising to accept his report as inal. The expert was a man who was accustomed to deal ing with such matiers, and was moreover rather cautious in expressing an opinion in cases in which he could readily discover facts. So he addressed the inventor, somewhat after this manner: "My friend, you say that you bave a cut ff which will save 25 per cent of the fuel, and you have also letters from a number of well known engineers, in which they state that they beiieve the invention will ϵ ffect this saving. If it really does, it is a valuable device, and I shall not hesitate to recommend the gentleman, who sent y ou to me, to invest his money. I will propose a plan to you by which the matter can be definitely settled. There is a plain slide valve engine, near here, that has been running or nearly twelve months, and a careful record has been kept of the coal consumed and the power developed each day. Attach your cut.off to this engine, and let the record e taken for a month
The attachment was made; and for several days, as the coal account did not seem to diminish, the inventor kep making slight alterations when the machinery was stopped, but without any apparent benefit. After two weeks his fa
miliar face was no longer seen around the premises; and when the month had elapsed, the apparatus
and is still on storage, waiting for a claimant
Many more such examples could be cited, and there are few consulting engineers who have not met with a number of such cases in their experience. But the trial to which this cut-off was subjected was made in the interest of mo one, being intended simply to determine the truth in regard to its value.

CHLOROFORM DANGERS.

The death of another patient in the dental chair, while under the influence of chloroform, again attracts public attention to the dangers attending the use of that anesthetic. This latest accident occurred in Boston, and the opinion of the plysicians points to the fac؛ that the lungs of the deceased were affocted by consumption, and hence unable to throw off the influence of the volatile spirit. However, the jury impantled at the coroner's inquest ignore in their verdict the previous condition of the patient, and, while asserting tha the death was due directly to the inhalation of the chloro form, add that, owing to our present lack of knowledge regarding the same, its use as an anesthetic is utterly unjustifiable. They also recommend legislative enactments to prevent its administration.
The distressing effects of sulphuric ether, upon a large class of patients, more especially those of extreme nervous temperament, have been the cause of the preference given to chloroform by many physicians. It is argued that the latter anesthetic is not dangerous so long as the inhaler's heart is not affected, and that its more speedy action in producing insensibility is eminently advantageous in many surgical operations. But these claims in its favor, it must be conceded, are greatly outweighed by the consideration that, while there are repeated instances of death being the direct sequel of the administration of chloroform, there is no record of ether ever hasving produced fatal results.
It does not appear needed, however, that legislation should interfere to check the use of chloroform, since the growing tendency of the medical profession is in favor of pure ether as a substitute, or else a misture of chloroform, ether, and alcohol, which, we understand, produces good results without causing the dangerous depressing effect of the chloroform or the nausea of ether. The employment of nitrous oxide in dental surgery is also greatly extending ; aud since it is both a harmless as well as an agreeable aræsthetic, it poseesses peculiar advantages in connection with the rapid operation of removing teeth, or, in fact, with almost any case in which a minute or two of time is ample for the parpose.
As regards the proper treatment of patients who fall into a dangerous syncope while under the influence of chloroform, there is some difference of opinion among physicians. The most recent mode of procsdure (which the eminent French surgeon, Dr. Nélaton, not long since deceased, as well as Dr. Sims, of this city, both state to be very efficacious, having in six different instances saved the patient's life) is as fol-
lows (we extract it from the Tribune). These surgeons had lows (we extract it from the Tribune). These surgeons had
come to the conclusion that death from the inhalation of chloroform was immediately caused by a want of proper determination of blood to the brain. "The want of this stimulant to the brain's action rapidly led to the suspension of other vital organs of the economy. When, therefore, M. Nélaton's patient, upon whom he was operating, suddenly
ceased to breathe, he caused his legs and body to be elevated, ceased to breathe, he caused his legs and body to be elevated, the head hanging down ward. The blood, by apecific gravity, tended to the brain. Artificial respiration was kept up, and after a time the patient again began to breathe of his own volition. He was laid back upon the table, and the operation was about to be continued, when it was notices that he had
again ceased to breathe. The same process was gone through with, and again the patient was resuscitated. A third, and even fourth, time he relapsed into the state that would have been death, and each time his breathing was restored by this process. The fifth time he relapsed, the effects of the an \notin sthetic had almost passed off; and, while the patient was suspended in the air, head downward, and when artificial respiration had just ceaseil, with the returning regular breathing he asked M Nélaton why they were holding him in that extraordinary position. The operation was finished without fur ther ad ministration of the anæsthetic, and it resulted successfully. In the other cases the patients were resuscitated, the medical men having charge of them testify, by the same proc cass. These cases are considered enough to demonstrate, with a reasonable degree of certainty, the proper treatment to be followed in cases of syncope and approaching death, from the inhalation of chloroform.

MASTERS AND MEN.

Great captains have not always been those best able to plan brillisnt campaigns or best able to make the most of the vary ing vicissitudes of war. But whether great in strategy or not, they have always been men who could get the
best work out of their followers: captains whose presence was insoivation, whose commands were prophetic of victory because cartain to be carried out.
"Who ever saw such tactics?" grumbled the veterans of Italy, when the young Corsican knocked their enemies right and left with his handful of men, winning victories not so much because of his audacity and military genius, as because his soldiers could be depended on to do what they were
sent to do. Then, as afterward, the great secret of his success lay in the unbounded personal devotion he inspired in those by whom his victories were won, a devotion which he took great pains to justify, by honoring faithful service to the utmost.
The great captains of industry have ever been of like dis-
position. They have succeeded, not because they excelled posirin. Tivals as marketmen or financiers, but because they could get more and better work, and trustier service in every way, from the men they employed. The best work wins, ther things being equal. This is one of the great lessons so strikingly enforced in Parton's lecture on "Kings of Business," a lecture crammed with illustrations of success-
ful enterprise, drawn very largely from direct study of the ul enterprise, drawn very largely fro
operations of American business kings.
At the Cambria Iron Works, where 7,000 men are employed making iron and railf, the President of the company was asked the secret of such a great development of busi ness. The reply was: " We have no secret. We always try o beat our last batch of rails." This persistent endeavor to excel, not others only but themselves, is the master key
to the success of many.
Λ nother lesson is that the surest way to turn out uniformly good work is to employ good men and treat them well. Said the manager above quoted, the other day: " We
find that the more wedo forour men, the better they do for ind that the more we do for our men, the beller they do fo business kings is crystalized. Justice wins justice. The rudest workman will do more honest work glady for the man who does the fair thing for him and his family, than the hardest driver can get by othermeans. The wisest selfishness is just if not generous: a lesson which small men Thé country is full of illustrations. We have in mind two establishments of the same sort, within cannon shot
of each other, which may stand as types of the extremes of management in this respect.
Half a century or so ago, a sterling business king became controller of a new establishment for mining and manufacturing purposes. The country was new, rough, and unat tractive; yet a thriving village noon sprang up, with stores churches, schools, and all the other accompaniments of a
well-to.do and self respecting community. The men employed were carefully selected, well paid, and fairly treated The works were eminently successful; their various pro ducts soon won an honorable name, not only throughout this
country, but abroad ; and the brand of the establishment was country, but abroad; and the brand of the establishment wa
The king died. The heirs were of the meanly selfish sort caring only for their immodiate income, and taking no interest in the works save to get out of them all that they could with the least trouble to themselves. They lived at a dis tance, and regarded their employees merely as parts of a
great machinery. What they were or how they lived, they did not care. The management of the works was committed to agents, subject to the minutest control from headquarters. Naturally, meanness could command only mean tools, and the character of the directors was soon stamped upon every thing connected with the works. Merit ceased to be regard ed. The good men whose honest work had contributed to the success of the father soon drifted away, to be replaced jet low of lower grade, themselves to be digplaced by those indebtedness to atrongest claim for service was irretrievabl indebtedness to the company, or pliability at the polls, in
gratifying the petty political ambition of the managers, Irgratifying the petty political ambition of the managers. Ir-
regular working, strikes, breakdowns, and other business drawbacks became common; and after some years of decad ence, the once thriving business collapsed in utter failure.
Meantime, the exodus of the honest and saving had depleted the village of all that had made it worth living in. The school degenerated, the church became the playhouse of window-breaking boys, the stores were closed or turned to groggeries, and a low-lived rabble made life miserable in the place of a once respectable commanity. As this town wen own, the adjoining village rose. The owners of the works round which the village clustered, lived among those they
employed, and sought to surround themselves with the best men they could get. Still more: they sought to make their workmen better for being in their employment. Thrift wa encouraged, and the unthrifty systematically weeded out. The men were made to understand that they were expected to be better off at the end of each year than at the beginning. Not to be so, accidents excepted, was to hazard their contin ued employment. Yet the unfortunate, the sick, and the be reaved were looked after with a kindliness that could not be misinterprettd. The wives of the partners-genuine ladie of all the employees, winning their confidence and esteem by sieterly service in times of trouble, and aiding them at al times by judicious counsel, or, if need be, with more sub stantial help.
It is needless to describe the development of a village where the rulisg influence bears steadily toward good government, good schools, good society, sobriety, and universa thrift. Floods destroyed and fires laid waste now and again but help was always ready for the deserving; and though surrounded by colonies of rude miners, colliers, and the like and largely composed of men of rough employments, the
village became and remains a worthy representative of ou village became and remains
best manufacturing towns.
It is needless, also, to describe the prosperity of the business by which and for which the town exists. In employments of such a nature that the indifferent or evil-disposed in a dastroy or waste in five minutes more than he can earn interested help is enormous. By dealing justly with their men, the rising company gained while their meaner rivals lost and won a handsome fortune and the lasting esteem of their men whom they had helped to competence and comfortable homes; while the others were hated for the poverty they en-
gendered in their descent from wealth to merited bankruptcy.

That men have been mean, hard, grasping, and ungener us to their help, and yet have amassed wealth is undeniable, just as generals have won victories with mutinous sol diers; but these cases are relatively rare, and the success so won is not only precarious, but liable to most unexpected reverases. Our great manufacturing establishments have not been built up by such management. As Parton tersely puts it:
" Traverse the world over, search the history of our race in all times ; and wherever you find a man truly superior to his fellows, a natural king of men, born to command, you will find him attentive to the interests, and to the feelings, and to the dignity of those who execute his will. If he is not man enough to be so from good feeling, he is man of business enough to do it from policy. It there is any one here who snubs persons dependent upon him, begrudges them their just compensation, cares nothing for their inter ests or their honor, that man is not naturally a master; he is one by accident only: he belongs, by birth or breeding, or both, to the class of the defeated and the servile. He is merely a beggar on horseback, and perbaps stole the horse.

the development of subterranean heat.

A gentle man engaged in the mining of lead, a Mr. Ewing, of Joplin City, M.o., has written for an explanation of some curious phenomena which have recently occurred in his vicinity. They took place in sinking the shatt of a lead mine. The shaft had been sunk 96 feet, and a drift, located about 16 feet above the bottom of the shaft, had been driven bout 40 feet. At the time the work was going on, nothing unusual was experienced; but a short while after, the tem perature of that portion of the drift situated about two thirds he distance from its opening into the shaft, along a space of 15 feet, began to augment. It finally rose to 102° Fah. while the temperature at the mouth of the drift and in the body of the mine remained at 60°. The miners, on attempting to cut another drift through that portion of the earth which thus increased in temperature, at right angles to the former, were compelled to stop work on account of the op pressive heat. "In one minute's time after entering the warm space, a person will sweat freely. No bad effects are felt, the lamps burning as freely as on top, and the air being good. In the heated portion of the drift, its walls are cor ored in spots with a substance in appearance like mold from dampness. It proves, on closer examination, to be a greasy or waxy substance, which at a lower temperature becomes as solid as clay, and resembles tallow and beeswax mixed together. It dissolves readily in water, and dyes cloth yellow."
At the time of receiving the specimens which accompanied the letter, they were quite hard, though friable, and appeared like a hardened, unctuous, greenish yellow clay. It was evident, from the fact that a change had taken place after the earth in the drift had been exposed to the at mos phere, that we ought to find the results of this change by an
nalysis of the substance, and thence be able to infer the riginal bodies out of which it had been formed. It proved to consist of: Silica and clay, $9 \cdot 499$; sesquioxide of iron, $25 \cdot 170$; protoxide of iron, 0438 ; sulphuric acid, 31640 water, 33030 . Total, 99,777 , which were probably combined as: Silica and clay, 9 499; protosulphate of iron, 0918 ; by drated persulphate of iron, 72960 ; hydrated sesquioxide of ron, 5.880 ; water, 10 520. Total, 99777
These analyses reveal, in a very striking manner, the cause of the remarkable liberation of heat. A large amount of pyrites has existed finely disseminsted throughout the earth. On exposure to air and moisture, it has absorbed both with great rapidity. We have no determination at hand, giving the number of thermal units equivalent to the oxidation of one pound of iron pyrites, and the subsequent conversion of the protoxide and sesquiozide of iron into hydrated sulphates; but it must be a large number, as shown by the reat elevation of temperature. Although we are not awar of such a phenomenon as this having occurred in sinking a
haft in lead mining, yet similar occurrences are common in shaft in lead mining, yet similar occurrences are common in
coal mines, and have produced many serious accidents. In he great piles of "slack" heaped up around the mouths of the pits of the Lehigh \& Wilkesbarre Coal Company, many small pieces of sulphur can be found, produced by sublimation from the decomposing pyrites. It is said that on sinking a pail of water into one of these slack heaps, the water may be made to boil, and cook an egg. The heat thus developed, operating upon the finely divided carbon of pyritous bitu minous shales, may at times reach to the hight of rapid com bustion.
The subject is one full of interest, and of high importance as affording one explanation of volcanic action, and of the
occurrence of sulphur deposits in connection with these phe occurrence of sulphur deposits in connection with these phe ings and sulphur a few hours the temperature rises, the ground is swollen by expansion, and finally flames arise, or there is an explosion. By the hypothesis of similar chemical actions on a great scale, certain geologists have endeavor
earthquake and volcanic disturbances.
A. R. L.

We are gratified by receiving a large number of letters, from subscribers to the Scientific American, approving of
the folding, cutting, and pasting of the paper. These features add to the expense of publication ; but we believe tha our old patrons will influence enough new subscribers to compensate for the extra cost.
The consumption of coal per train mile on the London and South Western Railway shows an average of only 28.0 pounds, against fully 45 pounds on the eight other principal British lines.

NOVEL PLAN FOR BUILDING SUBMARINE STRUCTURES

Mr. Jerome Wenmaekers, a Belgian engineer, is the inven tor of a new plan for the construction of quays, tunnels, and similar submarine structures, which appears to us to present many meritorious and valuable advantages. The invention has been patented September 8, 1874, through the Scientific American Patent Agency; and from Mr. Wenmae ker's drawings, we have prepared the annexed engraving which will render the proposed construction readily under stood.
A number of caissons are built either in segment or in circular form, but providing for a large opening or shaft in the center when several are superposed. The material i iron, with iron partitions, some of the sub divisions formed by the latter being used to hold ballast, while others areemployed for machinery, storage, etc. Each caisson, after being built, is slung to a strong arched struc ture which extends between two boats, and is thus transported to the place at which the submarine excavation, for a tunnel, for example, is to be begun, or rather to meet a hort commencement of the tunnel which is un from the shore in the ordinary manner.
The ballast compartments of the first caisson, A, whether it be composed of several segments or one piece-are loaded, and the tier lowered a short distance below the wa er surface. Then a second caisson, B, is brought up, placed on top of the first, the whole is allowed to become submerged, and a third tier is added, and so the work progresses until a huge coffer dam is formed rubber joints at the sections of which render it thoroughly watertight. By opening suit ble valves, water is admitted to the ballas compartments, C_{ρ} and also to water cham bers, D, pumping engines being used for the purpose if needed. By this means it is claimed that a resistance is imparted to the entire structure sufficient to insure its standing against storms or heavy currents.
For the purpose of preventing the washing off of the bed of the body of water below the dam, double series of piles, E, guided in staples, is driven around the circumference. The water in the center of the struc ture is then pumped out, and the earth is excavated in the space exposed. After a quay or tunnel section equal to the inner length of the dam is completed, the water is pumped out of the compartments, the pilesare drawn, and the whole structure, which then floats, is towed to another point, where the work is continued in connection with that already done,
The building of quays is accomplished by not completing the circle of the dam, but leaving an open space which is filled by the masonry, so that the structure keeps moving further into the water as additional length is given to the quay. The invention does not apparently involve so grea n expense as many systems which have been devised fo similar purposes, while it has the important advantage of capability of being repeatedly used, as the sections maintain heir entirety and are not difficult to transport whereve needed.

CARRIER PIGEONS

The large numbers of carrier pigeons used during the Franco-Prussian war, for the transmission of despatches, and their more recent proposed employment for carrying and their muring a transatlantic balloon voyage, have been he means of exciting a wider public interest in n these curious birds han has existed for many years past. In Illand and France, the read is carefully guard ed, and in all the Euroean countries fine speimens of the birds find eady buyers. Prussia has a pigeon communication between her capital city and the fortressas of Metz and Strasbourg. In Paris many of the daily journals re路 transpiring in the Le gislative Assembly, at Versailles, through the carrier pigeons, in preference to using the te egraph. The birds traerse the distance in rom fifteen to twenty minutes, and the in telligence thus reaches he newspaper offices much more quickly than would be the case were the despatches obliged o wait their turn for transmission by the telegraph operators, or oth rwise delayed by off cial formalities.

The long employment of the pigeons as news carriers has been the means of proving conclusively that no instinct guides them back to their cotes. On foggy days they will not ttempt to return, nor during the night, except at times when there is a clear atmosphere and a full moon. When released, the bird flies upward and then circles around until it sees certain features of the landscape which it recognizes as being adjacent to its home. These it has learned to know during short flights which it is allowed to make during the training period;and therefore the instant the surroundings of its abode, often extending over a radius of several miles, meet he pigeon's eye, it at once travels with wonderful velocity their direction. It is said that, when a bird fails to re

WENMAEKER'S SUBMARINE BUILDING.

member any portion of the landscape beneath it, it will fly for some miles without any reference to course, and then circle about again, and this will be repeated until a familiar object is caughtsight of; or else the bird becomes exhausted, gives up the search, and never retcrns.
The accompanying engraving, from the Fancier's Journal (a most excellent paper of its class, published in Philadelphia), represents a pair of carrier pigeons, imported from England by Mr. John Yewdall, of the latter city, at a cost of $\$ 225$. They are probably the finest birds in the country. Fine pigeons like these, are able to travel about 36 miles per hour.

Telegraphic Cables.

It is evident that a new invention, in connection with the manufacturing of telegraph cables, is needed, and a good opportunity for the exercise of ingenuity in this line now
exists. Engineering says that portions of a cable laid in exists. Engineering says that portions of a cable laid in 1860, between France and Algiers, were dredged up in 1871 in 400 fathoms off Minorca, and the outer covering of steel and hemp, similar to the Atlantic cable, found to be completely destroyed, so that the piece would only bear a few fathoms of its own weight. This was on a soft muddy botom. The Falmouth and Gibraltar, laid in 1870 and repaired this year, was found chafed through at a depth of 1,000

CARRIER PIGEONS.
fathoms. The Direct Spanish cable failed suddenly in the Bay of Biscay, and was found for a mile to be swallowed up in the ground in a depth of 1,300 fathoms, as if by volcanic action, the bottom being stiff blue clay.
If there is any part of the Atlantic crossed by the Atlantic cables having the same species of bottom as that where the Algiers cable of 1860 was dredged up, there would be a certainty of the cable decaying to such an extent that, if lying also over a ridge, it would eventually break. Nor does it seem so entirely improbable that volcanic action or movements of the ground, similar to that which undoubtedly occurred in the Bay of Biscay and also in the Persian Gulf, may occur on some portions of the route. The question of the teredo also arises. Cables in the Mediterranean have been found attacked by these insects at great depths; but in these cases probably from the cables thus examined not having been submerged long enough, the boring was only slightly into the surface. In shallow water, cables have been found with holes bored through the gutta percha down to the copper wire, thus entirely destroying the insulation.
Thus a piece of cable laid in Kurrachee harbor was found bored down to the copper, the insect having got in in places where the outer protecting wires were a little opfn; more recently, too, the cables in the Irish Channel have been found attacked. Two wires in the Dublin and Holyhead cable, Jaid in 1871, have just been found thus injured, and are rendered useless. This cable has each of its outer sheathing wires covered with a coating of tape, and thus the actual iron wires do not touch each other, so that the insect is able to pass between them. The Atlantic pattern of cable is still more open to the attack of the insect, as the outer steel wires, being each covered with a thick coating of Manilla hemp, are separated from one another by more than their own diameter. We have no experience yet of this insect having attacked an Atlantic cable; and should this ever occur, the pattern of all future Atlantic cables will have to be entirely revised. The pattern of the cables used on the principal lines in the Mediterrantan and on the Direct Spanish, where the steel wires touch each other, would be a much safer one in localities where the attacks of this insect are to be feared.
But should the danger be found to extend to the Atlantic, it is doubtful whether the insulation of such important lines ehould depend even on the certainty of the outer wires touching ove another throughout. In the case of the Wexford cable, where the outer covering consisted of iron wires, supposed to touch throughoul, the insect has found out places where they are a little open, and has
thus been enabled to insinuate itself, destroying the insulation by boring through the gutta percha. It is evident that, in these localities, at least a more certain protector
than the iron wires is required than the iron wires is required. Some four years ago,
Mr. F. C. Webb devised the application of a Mr. F. C. Webb devised the application of a thin steel armor to the insulated wire, but it has never yet received any practical application. Something of this sort must, however, be adopted wherever the attacks of the teredo have to be resisted.

Wet Boots.
What an amount of discomfort wet boots entail, and how well we all recall the painful efforts we have now and then made to draw on a pair of hardbaked ones which were put by the fire overnight to dry! Once on, they are a sort of modern stocks, destructive of all comfort, and entirely demoralizing to the tem. per. The following plan, it is said, will do away with this discomfort:
When the boots are taken off, fill them quite full with dry oats. This grain has a great fondness for damp, and will rapidly absorb the least vestige of it from the wet leather. As it quickly and completely takes up the moisture, it swells and fills the boot with a tightly fitting last, keep. ing its form gocd, and drying the leather without hardening it. In the morning, shake out the oats and hang them in a bag near the fire to dry, ready for the next wet night; draw on the boots, and go happily and comfortably about the day's woik.

THE UNDERGROUND RAILWAY, NEW YORK CITY. In London the Underground Railway system has been in operation for eleven years, and so great has been its success, so fully does it meet the requirements of the population, that every year adds to its extension. Opened in 1863 with a section of $4 \frac{1}{2}$ miles, from Bishop's Road to Farringdon street, it has been constantly extended, until now it has a length of about 13 miles; while new extensions, costing some twelve millions of dollars, are this year in progress of construction. Many millions of passengers are annually conveyed over these underground tracks, which extend be neath the streets in all directions, uniting the principal centers of trade, intersecting all the great railway lines, and, by their marvelous capacity for traffic facilitating the enormous trand actions of daily business, for which London is so renowned.
It is gratifying to know that this system, so thoroughly tried by long experience, so certain and fruitful in promoting municipal life and pros perity, is about to be inaugurated here in New York. For many years it has been urgently need ed, but it is only within a very recent period tha the construction was actually begun. The Un derground Railway in New York is projected to un from the Harlem river, on the north down through the heart of the city, under Fourth avenue and Broadway, to the Battery, $8 \frac{3}{4}$ miles. It will, in course of time, naturally have other ex tensions, among the most obvious of which are tunnels under the North and East rivers, to Jerey City and Brooklyn.
Before entering upon the details of this new railway, we would call the attention of our read ers to the remarkably advantageous natural po sition of New York city, for the purposes of busi ness and commerce, and to the location of some of the other great and interesting engineering works besides the Underground Railway, which are now going on in our midst. Referring to the diagram, Fig. 1, it will be seen that New York city occupies a narrow tongue of land, surrounded on both sides by deep rivers, with illimitable dock room, and a magnificent land-locked bay, more than sufficient.to accommodate the com merce of the world. At the Narrows, the gate way to the Lower Bay and the ocean, some of the most massive fortifications are in progress, and the shores on either side, for long distances, bristle with lines of fifteen inch cannon in read iness for defence. The bay and ocean prospects from the hights at the Narrows are superb, and are not surpassed even by the far-famed views of the Bay of Naples. At the left stand the shores of New Jersey, where the Erie, the Pennsylvania, the New Jersey Central, and other great railways from the North, South, and West concentrate. The traffic is at present all conveyed over the river by ferry boats. The freight cars are run upon the decks of great barges, and towed across by tugs, a most convenient, quick, and economical method.
The new docks, which are to surround the water fronts of New York, are now in course of construction, and embracs engineering works of great magnitude. The docks are to consist of iron, granite, and artificial stone, and will involve expenses to the amount of a hundred millions or more of dollars.
On the right is seen the position of the great suspension bridge between Brooklyn and New York, built at the joint expense of the two cities, and expected to cost from fifteen to twenty millions of dollars. This will be the largest suspension bridge in the world, the clear span between the towers being 1,600 feet. The towers are now approaching completion
Further up the East River, the Hell Gate Rocks are speci-
fied. Here it is that the important work of tunneling the bed of the East river is now going on, for the purpose of removing its rocky bottom, which impedes navigation. The general plan of the work is to honeycomb the rocks with tunnels, then fill them with nitro-glycerin and explode the mass, thus deepening the river. This work, costing an immense sum, has been in progress for three years past, but no time has been fixed for the grand final explosion. Still further north runs the Harlem river, over which various fine bridges, and underneath its bottom various tunnels, at the extremities of our city avenues, are soon to be constructed

fig. 1. Diagram showing the position of the bay and city of new YORK, FORTIFICATIONS, SUSPENSION BRIDGE, HELL GATE WORKS, NEW DOCKS, UNDERGROUND RAILWAYS, ETC.
tablishments, projected and in progress. Taken altogether, here are few places where so many illartant improvement are going on as in New York, and there can be no question but that in due time it willbecomeone of the most attractive cities in the world.
Turn we now to a consideration of one of our latest and best city improvements-the underground railway system, the objective of which is the Grand Central Depot, which is located at the junction of 42 d street and Fourth avenue This is the great railway center of the city. Here terminate he tracks of the New York Central and Hudson River Railways, which, with their connections, reach to the far South and West, extending even to the shores of the Pacific Ocean, and receiving direct tribute from all parts of the country, save the immediate Southern seaboard regions. Here also center the tracks of the Harlem Railway, which reach northerly tofCanada, and of the New York, New Haven, and Hartford Railway, extending easterly to Boston, Maine, New Brunswick, and Northeast Canada.

The Grand Central Depot building is an im mense structure, the largest of the kind in this country. Its length is 690 feet, breadth 240 feet hight from railway grade to center of glass roof 109 feet 7 inches. This depot, together with the adjoinıng car sheds, engine houses, freight de pots, and coal yards, covers an area, in round num bers, of 830,900 square feet, or a little over nine teen acres.
The existing northerly section of underground railway extends from the entrance of the Grand Central Depot, on 45th street, northerly, unde the surface of Fourth avenue, to the Harlem river, at 133d street, a distance of $4 \frac{1}{4}$ miles, where the track rises to and crosses a fine railway bridge over that stream. This portion is now almos finished, and is expected to be opened for traffic in January. The southerly portion, known as th Broadway Underground Railway, from the Grand Central Depot to the Battery, was finally autho rized by the Legislature, in May, 1874, and wil be pushed as soon as the financial requisites, now in progress, are settled.
The northerly portion has been built by the Harlem Railway Company, under the supervision of a State engineer commission, consisting of Al fred W. Craven, C.E., Allan Campbell, C. E., the Engineer of the Department of Public Works, and the Engineer of the New York and Harlem Railway. The commission appointed to supervise the construction of the southerly portion, un der Broadway, consists of George S. Green, C.E. Allan Campbell, C. E., and James P. Kirkwood C. E. On the completion of these two sections, the city of New York will possess a magnificen continuous line of fast railway tracks, $8 \frac{8}{4}$ miles long, through its center, over which passenger and freight trains of every class may travel from Harlem to the Battery at the highest speed, and at the cheapest rates, without disturbance of in habitants.
The Underground Railway commences, as we have stated, at the north front of the Grand Cen tral Depot, and here, for a short distance, the tracks for the accommodation of the cross street traffic are spanned by bridges, the first of which, at 45th street, is placed directly in front of the to accommodate the wants of a fast-increasing population. |entrance of the depot. See engraving, Fig. 2. The gradients, In the middle of the city lies Central Park, which, with its lands, roads, and architectural structures, has, so far cost the city over eight miliions of dollars. Along the banks of the North River, above the Central Park, but communicating therewith by noble drives and avenues, new parks have been laid out, in addition to which there are over thirty miles of pleasure roads and avenues, Museums of Art, of Natural History, Zöological Gardens, and other public es-
depths, character of works, and position of the road bed, in respect to the surface or grade of Fourth avenue, are given in our profile diagram, Fig. 3.
To a very great extent, the work now in course of con struction, on Fourth avenue, must be regarded as the neces sary consequence of the building of the Grand Central De pot, and the centering of the great railways we have men tioned at one terminus. The authority for the work was

Fig. 2.-THE UNDERGROUND RAILWAY IN NEW YORK. THE FIRST BRIDGE AND GRAND CENTRAL DEPOT, 45TH STREET,
passed by the State Legislature on the 14th of May, 1872. |and the railway company; that sustained by the city to be By the provisions of the act, the New York and Harlem Rail way Company is directed to construct open cuts, bridges, tuunels, and a viaduç, at certain specified places, to lay temporary tracks, and alter the grade of the cross streets wherever necessary; the gas, water, and sewer pipes are or raised by a tax on real and personal property. A Board of Engineers was also created, who should have entire control and charge of the work, receiving, in return for their services, $\$ 8$ for every day employed. In accordance with the re quirements of the act, a Board of Engineers was appointed onsisting of Alfred W. Craven, Allan Campbell, the Engineer of the lepartment Campbell, the Engineer of the lepartment of Public Works, Edward H. Tracy, and
the Engineer of the Harlem Railway Com. the Engineer of the Harlem Rail
pany, the late Isaac C. Buckhout.
Estimates, plans, and specifications were prepared and bids opened for the work in the same year. Of all the bids offered, that of Messrs. Dillon, Clyde \& Co. was selected, this firm contracting to do the work in the
manner required for the sum of $\$ 6,395,0 \% 0$, or $\$ 285$ per running foot, which was pro portioned as follows:
Earth excavation and embankment \$579,000

Retaining walls
Parapet walls..
Granite coping.
Plark used ing. foundation.
Piling used in foundation.
Concrete.

prain pipe.
Ballasting
Brick work in arches, etc
Bridge from 79th street, exclusive
of parapet, coping, excavation
and drain pipe.
Iron bridges and approaches.
Wrought iron
ron railing.
Felting. .
emporary track.
10 per cent for contingencies.
1,013,000

100,000
238,400

134,700
70,000 182,200
23,800 23,800 300,200 6,800
57,000 $\begin{array}{r}57,000 \\ 708,500 \\ \hline\end{array}$ $\begin{array}{r}34,300 \\ \hline\end{array}$ Total. .
a hight of 15 feet and 9 inches, is again level to 71st street falls between 71st and 73d streets 2 feet 4 inches, or 22.36 feet in the mile; is once more level to 74th street; rises 32.5 feet, or 539 in the mile, to 86 th street, at which point begins he long descending grade which crosses the viaduct and xtends to 129 th street, falling in the distance $69 \cdot 8$ feet, after which begins the up grade, which reaches the street level at 138d street and Harlem Bridge.
At 56 th street the railway grade is $13 \cdot 6$ feet below avenue grade; and at this point,the head way not being sufficient for an arched brick tunnel, a beam tunnel commences and extends to point 24 feet $9 \frac{1}{2}$ inches south of the south side of 67 th street. Here the railway is 25 feet below the street; and the ground rising rapidiy, a headway is obtained sufficient for a arched tunnel, which extends to a point 29 feet 2 inches orth of the north side of 71st street, where the beam tunnels again begin and reach to 27 feet $7 \frac{1}{3}$ inches south of the south side of 80 th street, where the ground commences to rise rapidly and the brick tunnels once more appear, ending the beginning of the rock tunnel at 92 d strect. This tunel is about 550 feet long and is followed by the partly rock and partly brick tunnels, which end at a point 31 feet 6 inches orth of the north side of 95 th street, and from this point to orth side of 96 th street extends a tapering tunnel formed by hree tunnels passing into one. At 96 th street the differnce of grade is about 27 feet; and from this point, the land alls so rapidly to the Harlem flats that at 97 th street the difference of grades is but 8 feet 2 inches, and consequently rom this point to 98 th street extends an open cut, ending at he south end of the viaduct, which reaches thence to the iddele of the block between 115 th and 116 th streets,or a little ver 717 feet short of a mile. [We shall continue the subject in our next and future numbers with various illustrations of the works.]

Coxtespmadewte.

The Crystalization of carbon.
To the Editor of the Scientific American:
You refer, on page 247 of your current volume, to a new idea of making artificial diamonds by crystalizing carbon. It atrikes me that the almost constant co-occurrence of native platinum or gold with diamonds is not merely fortuitous, and these metals may have something to do with the crystalization of carbon. It is a sufficiently proved fact that, at very high temperatures, chemical affinity is much modified, and perhaps disappears ; the same modification may be a result of high pressure. Undoubtedly, in former geological ages, the atmospheric pressure was much higher than it is now, as is proved by the fact that liquid carbonic acid is enclosed in rock crystale. But a great pressure is also produced by a high column of water; and this may be one of the circumetances under which carbon is now crystalizing in the form of diamonds
Let some one try a series of experiments, in which chloride of platinum, $\mathrm{Pt} \mathrm{Cl}_{2}$, or gold may act under the highest possible pressure on a suitable hydrocarburet (containing a maximum of carbon and a minimum of hydrogen), and see if such a decomposition as the following is possible
$2 \mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{m}}+\mathrm{mPt} \mathrm{Cl} 2=2 \mathrm{mHCl}+\mathrm{mPt}+2 \mathrm{nC}$,
in being greater than m , whereby Pt would fall down as a egulus, and C would crystalize as diamond.
If this be Nature's process of forming diamonds, the muriatic acid is of course wakhed away and deposited elsewhere in muriates; while the native metal and the diamonds are retained in the place of formation or carried along by the mechanical action of water. The highest pressure may be mechanical action of water. The highest pressure may be obtained by compressing water at a temperature of over 392°
Fah., if only a material can be found for a vessel that can endure this pressure. It being desirable that the walls of the vessel are translucent, perhaps rock crystal or fluor spar could be used. But as the hydrocarburet is lighter than water, some means must be found to hold it, close to the bottom of the vessel (perhaps by means of a bladder, through which exosmosis takes place), in contact with the solution of chloride of platinum. Perhaps some liquid other than wa er may be desirable; but it must be lighter than the hydro carburet, and not affect either the latter or the solution of platinu'm.
There is another sories of experiments: It is generally known that air dissolved in water contains more oxygen than atmospheric air. Now, ozone is a modification of oxygen produced, probably, by a denser formation of the atoms The oxygen of the air in the water is probably turned into oz one by a high pressure, which would decompose the hydrocarburet by taking a way the hydrogen and leaving the car bon, which would crystalize in the liquid. This process may have taken place where no platinum is found associated with diamonds. According to my opinion, it is worth trying diamonds. According to my opinion, it is worth trying
whether one of these processes, or perhaps both combined, whether one of these processes, or perhaps both combined,
will have the result, so long sought for, of crysta'izing car will have the result, so long sought for, of crysta'izing car bon before our eyes
W. Thieser.

Rochester, N. Y.
Professor Tyndall and the Buddhist Philosopher To the Eiditor of the Scientific American:
In your issue of October 3, page 208 of your curren volume, under the caption "Candle Flamee and Streake of Cloud," you quote the Buddhist philosopher: "It cannot be sqid that he (Buddha) is here or there; but we can point him out by the discourses he delivered. In these, he lives;" and you add: "Science has no further word to offer."
Both the ancient philosopher and the modern professor have erred in making the destiny of man analogous to the transmutation of the correlated forces, heat, light, elec
ered to be removed by the corporations owning them, and the that from this point to 57 th Mayor and Aldermen of the city forbidden to obstruct, and falling in this space 25 feet, 66.6 feet in the mile, whic authorized to adopt and facilitate, the work; the total ex- is the heaviest grade on the róad. From 57th to 596 pense of which is to be borne in equal proportions by the city l streets the grade runs level, then rises to 70th street through

Late in the fall of 1872 , ground was bro ken and the work commenced by the contractors and their sub.contractors, under th ready mentioned, with Mr. I. C. Buckhout, of the Harlem Railway Company, as Super intending Engineer, Mr. W. L Dearborn, C.E., as Resident Engineer, Mr. F. S. Carof Cour., Priacipal Assistant, and a Geo. S Baxter, C E., S. F. Dayo, C.E., Sivene Lee, C. E., and Milford Berrian, C.E. The names of the sub-contractors will be mentioned in nection with the work done by them
We work, briefly give the general plan o scription of its parts, premising that, for the drawings which we publish and for much valuable information, we are indebtprincipal assistant resident engineer, and to Mr. Horan, the chiof of the drafting depart

In plan, the work consists of a four trac railway, reaching from 42 d street to th Harlem river, a distance of four and a quar ter miles, and, with the exception of that portion passing over the viaduct on the flats, everywhere sunken below the el of the street, and covered in with tun he grade lh avenue will admit. On that portion of the line which is covered with tunnels, three kinds of tunneling have been used, depend ing upon the character of the ground and nue grade. Thus wherever sufficient head way could be obtained, arched brick tunnels are used; wherever the headway was too mall to admit of an arched tunnel, a headway was too small to permit the use o the beam tunnel, open cuts, spanned at the street crossings by iron plate girder bridges sixty feet in width, were of necessity re sorted to. The third kind of tunnel re ferred to is the rock tunnel at 92 d street. f reason for the use of these three kind evident by a glance at the accompanying profile, Fig. 3, which, being so greatly re uced, will throw into bold rellef the var nue and the difference between them, and ill and a cood ide of the various specie f woll It will there be notice of work that the grade of the road beging to fall gradually from 45 th to 48 th streets, and .
tricity, motion. There is another law which Science cannot ticity, motion.
disegard. Life, whether vegetable or animal, doess not necessarily become "extinguished as the flame." It becomes latent in the seed. It is there ready to resume its normal law of growth whenever the proper conditions are presented It would be in accordance with strict deduction, from ob served facts in the vegetable, to expect that the animal also, when planted, would return to its renewed form. This expectation is constantly disappointed as to the lower animals and generally as to man. Bat another series of facts muet be also weighed by Science. A large part of our race has always expected a continued existence; and this expectation has been confirmed by human testimony to the ris ing from the dead of a certain Man who also raised other from the dead; and after thus proving his right to know, He declared that all others would eventually be raised to life again, having been planted (as it were) in the ground. Science must of necessity inquire: 1 . Whether the facts of this resurrection and this assertion of a competent witness are duly proved according to the rales of evidence. 2. Whether the statement that growth may be resumed, after cessation for a great length of time, accords with this law of latency as found in plants. Science cannot concern with this as a mat ter of faith; but it cannot dieregard facts duly proved by credible and competent witnesses. Taking up the subject in this line of hard logic, we believe it is to be shown beyond reasona ble doubt that the destiny of man is not to melt into the "infinite azure," nor "to be extinguished as the flame," but to live again and to participate againin the affairs of this world. The mode of his return tolife and the manner in which he will participate in the future world's affairs are not subj jects for discussion here. A belief in the resurrection of a material and organized body leads one very far from the orthodoxy of the churches; but it brings the ascertained facts of Science and the literal words of Scripture into an harmony that does not seem to have been suspected by the ecientists or the doctrinaires,
E. X .

Lunar Acceleration

To the Editor of the Scientific American:

There are good reasons why astronomers do not accept the cheory of the above named phenomenon, published by your correspondent, Mr. John Hepburn, on page 260 of your current volume.
It has not yet been demonstrated that the sun's orbit is any thing like a circle or an ellipse; but there is every reason to believe that his orbit is of a more complicated character that it is without any period, and is not confined to any one plane. It is believed, also, that his motion is comparatively so slow that the change of direction of his course in 25.800 years amounts only to a small fraction of a degree. Unless your correspondent can prove the fallacy of our fundamenta theories of dynamics, he dare not maintain that the sun is rotating in a circular orbit without a central body whose attraction is many times greater than the resultant of all attractions from the rest of the so called fixed stars. Without the sun's orbit be in the ecliptic, and of a circular or elliptic form, it is as absurd to speak of a retrograde motion as it is to speak of an above and below, of a before and behind, of a right or left hand side of the Universe.
There is no doubt but the travel of the terrestrial poles and the precession of the equinoxes have a common cause If we depict the travel of either pole, as observed on a stel lar globe, we find that for any one time both poles occupy directly opposite positions, and that the phenomenon can be produced by no other motion than a gyration of the earth's axis, of which the precession of the equinoxes is a necessary sequence. This being an established fact, I am unable to see what the alleged retrograde motion of the sun has to do with the explanation.
The period for a complete revolution of the recession of the eclipses is somewhat less than 19 years, and that of the precession of the equinoxes about 25,800 years, which is ap parently not quite the same rate, as your corresponden cause, though they are results of the same principle, and have long ago bsen satisfactorily explained and experiment ally demonstrated by the gyroscope.
Your correspondent subsequently takes refuge in a hypo thetical and rather exorbitant increase of the motion of the sun, which no astronomer can take for granted on this ground only. Next he confounds increased with increasing motion. A rotation that makes 31° for $30^{\circ}, 62^{\circ}$ for 60°, and 93° for 90° is simply increased, not accelerated, as it would be if it would make 31° for $30^{\circ}, 64^{\circ}$ for $60^{\circ}, 99^{\circ}$ for 90°, according to the laws of accelerated motion. Lastly, he ommits th mistake of referring the angle he found to the diurnal, instead of the annual, rotation of the earth. If he makes his calcu lations in accordance with the laws of dynamics, he will find no agreement whatever between his theory and the observa tions of astronomers.
I am afraid that the question is still open.
Philadelphia, Pa. Hugo Bilgram.

The Potato Bug
 To the Elditor of the Scientific American:

Several paragraphs in relation to the potato fly (cantharis vittata) have appeared in the Scientific American, and are now going the rounds of the press. It is strange that an insect well known to the medical profession for the lant nincteen years, and which but twen'y years ago amounted, in extensive districts of this country, to almost a scourge, should now have become so great a stranger. Under the head of "Potato Flies," the United States Dispensatory says (I quote from the ninth edition, page 1i1):
"Within the limits of the United States are several species of cantharis, which have been employed as substitutfs for the c. vesicatoria, and found to be equally efficient. Of hese, only the c. vittata has been adopted as officinal.

The potato fly is rather smaller than the c. vesicatoria, which it resembles in shape. Its length is about six lines. The head is of a light red color, with dark spots upon the op; the feelers are black; the elftra or wing cases are black, with a yellow longitudinal stripe in the center, and with a yellow margin; the thcrax is also black, with three yellow lines; and the abdomen and legs, which have the same color, are covered with a cinereous down. It inhabits chiefly the potato plant, and makes its appearance about the end of July or the beginning of dugust, in some seasons in great abundance. It is found on the plant in the morning and vening, but during the heat of the day descends into the soil. The insects aro collected by shaking them from the plant into hot water, and are afterwards carefully dried in the sun. They are natives of the Middle and Southern States. * * If the potato fly has bsen found more speedy in its effects than the cantharis of Spain, the result is, per haps, attributable to the greater freshness of the former. It may be applied to the same purposes, treated in the same Black River Falls, Wis. E. S. WIcklin

Anillne Black Dyes.
 Tocthe Editor of the Scientific American:

- Of late years the importance of aniline black to calico priners and dyers has steadily increased, and I think it may be of sume interest to your readers, among whom you must have many printers of fabrice, to know sometbing of the best methods of printing it and the rationale of the process. Aniline black is produced upon cloth by the application of a mixture of a salt of aniline with a chlorate (usually chlor ate of potassa) and generally a little sulphide of copper Now the great causes of trouble in the process are the fol lowing:
I. Injury to the doctors (scrapers) and rollers by crystals of chlorate of potash.
II. Weakening of the cloth by the action of the acid.
III. The great difficulty of getting a steam color.

The first of these difficulties is avoided by the French printers by using chlorate of baryta instead of potassa, and in England by the use (in some works) of chlorate of soda, a very much more soluble chlorate than that of potassa, and
one which can be procured perhaps as cheaply. The two one which can be procured perhaps as cheaply. The two last difficulties are insurmountable or nearly so, and it has chlorbydrate; but I have found by experiment that acetan ilide is formed, which gives no black color with oxidizers. By carefully aging in very damp rooms, the second difif culty may be surmoanted; but the third, the production of a sufficiently cheap aniline black to steam without tendering he cloth is not yet a solved question.
M. B. C. G. Boston, Mass.

Cribbing in Horses

To the Editor of the Scientific American:

Noticing an article and illustration in your valuable paper ometime ago, on the subject of cribbing in horses, I send the following plan of eradicating the habit:
Cribbing is caused in the first place by some foreign sub stance being pressed between the teeth, or by the front teeth growing too close together, thus causing pain. The horse, to avoid this, instinctively pulls at any hard substance, hus spreading the points of the teeth, and by that means affording temporary relief. To remedy this fault, it is only necessary to saw between the teeth with a very thin saw this relieves the teeth of all side pressure, and effectually onds the trouble. The gulping of wind and the gurgling in the throat are effects that will cease with the removal of the Elmira, Ohio

ग. Соок.

Improvement in Gas Eetorts:

To the Editor of the Scientific American:
I have a wrinkle to impart to those of the gas fraternity who use clay retorts. It is well known that clay retorts, when first fired up, are very open and porous, causing considerable loss in the yield of gas; and the same thing happens when they become coated with carbon on the inside and have been recently burned out. If those who use such re torts will, when they are new, coat them (both in and outside) with a solution of silicate of soda, of the consistence of or dinary sirup, the difficulty will be entirely removed. It is hardly necessary to add that the coating should be done be fore setting, and allowed to dry thoroughly.
Frankfort, Ky.
M. L. Jones.

tror the sclentitc Americ CRUCIBLES.

The excellence of a crucible depends on the ready expan sion and contraction of the ingredients of which it is made The best crucibles are composed of the following composi tions, which are of two kinds, namely, with and withou plumbago.

without plumbago.

Three parts by measure of the Stourbridge best crucible clay, two parts cement, consisting of old used-up fire bricks, and one part hard coke. These ingredients must be ground and sifted through a one eighth inch mesh sieve; the sieve
must not be finer, otherwise the pot will crack. This commust not be finer, otherwise the pot will crack. This com
position must be mixed with sufficient clean cold water trodden with the bare foot to the consistency of stiff dough
and allowed to stand for three or four days well covered with damp cloths, to admit of its sweating and the particles of clay becoming thorougbly matured. It is then ready for use, and must be blocked by hand on a machine, Dr. Ure, in his "Arts and Manufactures," gives drawings and methods of working the machine.
Owing to the coarseness of this composition, the pot cannot well be thrown on the potter's wheel; and in no instance an it be made by preseing.
The crucible must not be burnt in a kiln, but merely highly and thoroughly dried before being placed in the furnace for use. For brass and copper melting, it will stand one good hard day's work; but care must be taken to replace the pot again in the furnace after the metal has been poured. If the pot be not allowed to go cold, it will last for several days. It will, with the greatest safety, stand one melting of wrought iron. The cost, when made on the steel manufacturer's own premises, is about forty cents per pot, each pot holding from 100 to 120 pounds of metal.

hessian crucibles.

Good Hessian crucibles are composed of two parts of the best German crucible clay and five parts pure fine quariz sand. This composition must be sifted through a one eighth inch mesh sieve; it is then tempered and trodden with the bare foot, as before described. When ready for use, it is pressed into different sizes of cruciblee, which, when thoroughly dry, are placed in the kiln or furnace and burnt hard. another composition
Two parts best Stourbridge crucible clay, three parts cement; sift through a one eighth inch sieve. Temper as before described and block by hand on the machine. When thoroughly dry, it is placed in the kiln and burnt hard. These crucibles are principally used for melting gold and silver, and also for dry analysis.
The best and inost perfect fire clay for crucible making is nearly always found in the pavement of coal. Some of the Pittsburgh fire clays, and those found to exist in the pavements of some of the Pennsylvania coal mines, are excellent fire clays. But the various compositions cannot be described, as they are as numerous as the different kinds of clays.
with plumbago.
The Birmingham soft tough pot consists of two parts of the best Stourbridgecracible clay, three parts plumbago, and one part cement, consisting of old used-up crucioles ground and sifted through a one eighth inch mesh sieve.
another composition.
Four parts of the best Stourbridge crucible clay, three parts plumbago, two parts hard coke, and one part cement, concist:ng of old pots ground and sifted as before. Where old pots cannot bo had, the above composition must be burnt hard, ground, and sifted. The scales or chippings of the insides of gas retorts are far superior to the best common hard coke. But where scales and chippings cannot be had, hard coke is the best substitute. All the ingredients of this composition must be sifted through a one eighth inch sieve (but not finer), tempered, and made as before described. When thoroughly dry, it is placed in the kiln and annealed, but not burnt hard. This composition makes a pot (for meltiog the hardest metal) which cannot be melted at any pitch of heat, nor can it be cracked with the most sudden heating and cooling. It is regularly known to stand fourteen and eixteen meltings of iron, even wrought iron. I have often made it to stand more than that.
Any steel manufacturer can make the pot on his own premises at a cost of $\$ 1.20$ or thereabouts, the pot holding from 100 to 120 pounds of metal.
J. D.

Houston, Texas.

Utilization of Silk Rags

According to Les Mondes, one of the wealthiest English velvet manufacturers, Mr. Lister, worked his way to success by years of patient labor in search of a way to utilize silk rags. He began by buying up all such waste at less than a cent a pound; and up to the year 1864, he had expended theimmense sum of $\$ 1,312,500 \mathrm{in}$ fruitless efforts to find a process. Nothing daunted, Mr. Lister continued his experiments; and within the past ten years, he has discovered a way of making the refuse into fine velvet. He carries on this industry at Manningham, Eng., in an establishment which employs not merely 4,000 work men, but 283
travelers in all parts of the globe, whose sole bueiness is to travelers in all parts of the globe, whose sole bueiness is to
buy the silk waste. The factory is said to have cost nearly $\$ 3,000,000$.
The practice of patenting imitations of articles of standard excellence is growing in favor at the Patent OWice. A patent lately granted is for producing an imitation of Russian sheet iron. This is done by hammering the sheet between anvils and hammers that have indented surfaces, so as to give the sheet a mottled appearance. Another patent is for an imitation Swiss window shade, in which the lace work is imitated by stencils.
John Laird, M. P.-The death of Mr. John Laird of Birkenhead, Eng., occurred on the morning of Thursday, October 29. He was the kon of William Laird, of Greenock, Scotland, and was educated the Royal Institution, Liverpool. He was well known as an enterprizing and successful ship builder. We shall probably publish a portrait of him next wetk.

Sulphate of Copper Optics.-If we receive the solar light reflezted by alarge crystal of sulphate of copper upon a sheet of platinum or tin plate, placed at a small distance rom the crystal, the sheet assumes the color of metallic copper upon the part which recives the reflected light.

Improved sash boring and grodving machine.
We illustrate herewith a machine for boring and grooving sashes, which allows the operator to prepare the work ready for the cord at one handling and without changing his position, the entirejob being performed in a space a foot square. It is claimed that the apparatus saves three fourths of the labor necessitated by the ordinary process.
Two mandrels are driven by the belt, A, and carry the pair of bits shown at B, for boring the holes. The groove is made by the saw, C, attached to one o the mandrels. In fron of the saw a single man drel sets and serves to bore through from the groove to provide for the reception of the cord.
The machine is con structed of maple or ash, and is put together with joint bolts. The top is made of walnut and asb strips, $1 \frac{1}{4}$ inches square and glued up. The countershaft and the man. drels-the latter of cast steel-run in the best Babbitt metal. Two groovers and sash and blind bits, complete, are furnished, together with a ten inch circular saw, which adapts the machine for all ordinary light sawing, in addition to its capability of boring blinds, grooving乃butters, rabbeting doors, etc. The detached piece, shown leaning against the frame on the right, serves to fill up the space on top of the apparatus when it is used as a com. mon saw table The floor space occupied is two feet wide by three and a half feet in length.
For further particulars address the manufacturers, Messrs. J. H. Blaisdell \& Co., 405 Cowmerce street, Philadelphia, Pa.

IMPROVED SURFACE BLOW-OFF.

By using the novel surface blow-off repre illustrations, it is claimed, the engineer is enabled to tell exactly how much water is in his boiler, whether scum and foreignsubstances are or are not being forced out, and, in case of the water being lost, he is provided with a means of readily finding it to the last moment of safety.
The engravings represent the invention in section, Fig. 1, ard also give an exterior view, Fig. 2, the latter figure differing from the former, however, in that the stuffing box, which surrounds the tube attached to the float or skimmer, A , is arranged inside instead of outside the boiler shell, and also in some readily perceived details of construction. The device is placed on top of the generator, as shown. The skimmer is a hollow flat box provided with side openings for the admission of the surface water. The tube by which it is suspended extends upward through a chamber, B, and is there perforated so that the water may enter said chamber and escape through the blow-off cock, C. The tube continues on upward, passing through suitable stuffing boxes, and terminates in a screw and wheel, D, surmounted by a test cock, E. As shown in Fig. 2, the wheel and screw is supported in a nut on the standards, F , above the chamber, B . The object is to allow of adjusting theskimmer to any hight above or below the water level, as desired. The test cock, by ejecting when opened either steam or water, accord ing to the position of the skimmer, indicates the location of the latter and, of course, the water level in the boiler. The main tube is made of sufficient length to allow for the entire range of water level, so that the skim. mer may be shifted up or down, as required by the hight of water, without interrupting he flow.
At G, on the main tube, Fig. 1, a stud is provided, which enters a groove in the side of the chamber, B. This serves to prevent the main tube from turning by the nut above.
The inventor states that by this device the scum which rises to the surface of the water may be so thoroughly expelled that a boiler thus provided, and running without cleaning
for a period four or five times longer than other generators unprovided, will still keep cleaner than the latter. He also informs us that he has practically tested the invention upon the boilers of a sugar plantation in Cuba, of which he is the engineer, with excellent success. The apparatus is especially adapted for marine boilers, particularly those upon steamers which make long voyages. It can be arranged so as to be operated from any part of the vessel.

BLAISDELL'S SASH BORING AND GROOVING MACHINE

Railroad Fire Engines.

The Central Pacific Railroad Company employ no less than than four fire trains on the mountain route across the Sierra. The first is stationed at Blue Cañon, the second at Emigran Gap, third at the Summit, and the fourth at Truckee. Each train consists of a locomotive and three or four water cars. These cars are about the same length as an ordinary freight car, and formed of two inch plank; they are very strongly put together, as nearly watertight as pos sible, and elevated above the track about four feet Each car will hold 3,000 gallons of water, or not far from 100 barrelsequal in weight to 24,000 pounds. The locomotives are arranged with powerful pumps that throw a steady stream, and do equally as good work as the best steam fire engi. nes used in any of the large cities. Leather hose three inches in diameter is used, which, when not in use, is wound upon a large reel mounted on one car of each train These trains are kent in constant readiness to pro ceed with all possible speed to the locality of the fire, upon the first alarm. All of the 25 miles of shedding between Em igrant Gap and Truckee is thoroughly deluged with water once a week. In sprinkling the sheds, the pipe man stands on the pilot in front of the engine, which moves slowly along at the rate of two miles an hour. In this work five men are sufficient to manage a sumaient to manage a
train. Since the introduction of the fire alarm telegraph, with 32 differ ent stations between Emi-- Patented through the Scientific American Patent Agency, grant Gap and Truckee, the danger of any very disastrous September 1,1874. For further particulars address the in- conflagration in the sheds is nearly or quite obviated. ventor, Mr. Robert Waugh, Ingenio San Joaquin, Pedroso, Isle de Cuba, or John M. Wiemann, Box 2,524, New Or
leans, La.
sented in our leans, La

WAUGH'S IMPROVED SURFACE BLOW-OFF.

New Chiming Machine,

The art of constructing carillons, or machines for playing tunes on peals of bells, is being much practised in Europe. Iron says: The new carillon or chiming machine which has been fixed in the parish church, Leek, by Messrs. Gillett and Bland, of Croydon, England, was lately opened. The carillon machine is fixed in the same chamber as the clock, to which it is connected by means of a lever. On being slightly pulled, the lever dislodges a pin, which instantly sets the machine in motion, and the tune commences playing. I ${ }^{+}$ is constructed to play fourteen tunes on eight bells, the tenor weighing one tun, and the whole peal about $4 \frac{1}{2}$ tuns. This apparatus is on an entirely new system. The motive power is obtained by weights of about half a tun each, which are suspended from an iron barrel by a steel line. At one end of this barrel is a wheel running in gear with a pinion, driving a spindle, upon which are fixed twenty cam wheels, kept constantly revolving, ready to do the heavy work of lifting the hammers the instant they are released by the musical barrel, which is also kept revolving by a series of wheels similar to a musical box. The levers arranged at the top of the machine are,at the musical barrel end, connected with the hammers above (by means of wire lines and cranks) and the key frame in front of the barrel; and directly the ends of the lever are released by the small braes pins pricked upon the musical board, the other ends of the levers, with the points of the arms attached to them, fall upon the revolving lifting cams and areinstantlyraised into the striking position and locked by the key frame at the other end, so that the two actions of releasing the hammers by the musical barrel and again lifting by the cams are perfectly simultaneous, and therefore very rapid passages in the music can be played. It will give some idea of the slight tension required for letting off the heavy hammers and the remarkable effectiveness of the mechanism when we state that the musical barrel is made of hard wood, only ten inches in diameter, studded with brass pins one eighth of aninch square; and the whole machine does not occupy more than a quarter of the space that the old one did.

BARROW-IN-FURNESS (ENGLAND) AND ITS FOUNDER. The rapid rise of Barrow-in-Furness, on the east coast of Lancashire, England, from a little fishing village to a port, a commercial and manufacturing town, and the center of an iron-making district of enormous wealthand prosperity an lin-maling has been already described on page 22 of our volume XXX Barrow has recently been the scene of the annual meeting of the Iron and Steel Institute; and it is seen that, even
since our recent account of its industries, many important extensions and improvements have been made
The iron business at Barrow has undoubtedly been called into existence by Mr. Bessemer's renowned invention, for which the Cumberland hematite ores are especially adapted. The wealth of two mighty landowners has been brought into the trade, but the brain and soul of the enterprize (for its various manufactures must be looked upon as one) has been James Ramsden, the manager of the local railroad, who projected the Barrow Steel Company, enlisted the necessary capital in the cause till its works became the largest Bessemer refinery in the world, constructed the docks, brought the jute manufactory into operation to employ the females of the ironworkers' families, and remained, throughout, the central figure of the busy scene. More than two years ago, Mr. Ramsden became Sir James, the Queen having knighted him in recognition of his services to manufacturing industry. He became Mayor of Barrow; and during his year of office, his fellow townsmen commissioned an emi: nent sculptor to execute a statue of him, in his robes of state. The statue (of which we publish an excellent representation) is of bronze, and is 11 feet high. At the same time, a portrait of the same gentleman was lung in the town hall.
One of the most flourishing enterprizes at Barrow is the yard of the Barrow Iron Shipbuilding Company. The works are arranged for the construction of fifteen vessels at one time, and a large graving dock is completed. Two thousand men are employed here, and the full force of the works will number seven thousand. An ocean steamshio company is already incorporated, and six steamers of 4,000 tuns each are being built for it; five more of similar size for the East Indian trade, are contracted for by the company. The ex tent of the shipbuilding works and yards, and their proximty to the ocean and to the railroads, are well shown in the excellentengraving (from the London Graphic) published herewith.

The Early Days of Daguerrotyping.
The following amusing account of the early practice of taking sun pictures (from the pen of Mr. M. P. Simons, in Anthony's Photographic Bulletin) will doubtless bring to mind the similar experiences of some of our readers:
". I will give, as they occur to me, a few thoughts and incidents touching the early days of daguerreotyping. Whilst Daguerre was still in his laboratory working out his magic picture-making process, almost every mail from Paris brought over something of this mystery of mysteries, which was soon translated and studied out by the curious experimenters attracted by its novelty. No one after seeing the first

statue of sir james ramsden
of these smoke-like pictures could possibly have anticipated that Daguerre's process would ever reach the dignity of an art. The process was then, of course, still an undeveloped mystery; and then for some cause or other the published accounts of it received were not clear nor definite, and, as a matter of course, those who took hold of it in its early stage had a good deal to contend with, being obliged to fill in and work up a picture (so to speak) from indistinct outlines. Ah those were the days of trials and many tryings of contingencies, of slow iodine, slow cameras,and consequently long sittings; when an artist might very easily have taken his dinner while his sitter was sweating out a picture in the sun. This,then, should have been called "long" as well as "high" art. Few were able to sit long to be "taken off" quietly, and fewer still could go through the mysterious operation without receiving a bunged eye or having some other feature knocked into a condition not the most flattering to be handed down as one's facsimile. But these long, tedious, distorting down as one's facsimile. Bow past, thanks to sensitive bromine and the science of optics. Long before I ever thought of becoming an artist, I recollect hearing one day that some one in the city was making a very curious kind of likeness, described to me as being on looking glass or steel, and very true to life. My curiosity soon led me to the mystic establishment of Mr. Cornelius to see these marvelous mirrors of Nature. The first one I took in my hand to examine must have had an electric effect upon me. I was perfectly amazed, and for the time being completely entranced with their odd and novel appearance. I could not imagine how under, or rather how in.the sun they were made without hands or pencil. It seemed to me the very hight of jugglery, throwing likenesses from the face and catching them upon pol ished plates. It was a mystery then; how much less of a mystery is it now? A few years later, while I was preparing to go in to the art business myself, in connection with "Old Sol" as a silent partner to do the light work, Mr. Langenheim was busy fitting up for the same purpose his atélier in the Philadelphia Exchange, which he did in good style for that early day. His fittings up, ar appurtenances, and furniture were useful and comfortable. But the most important of all was that the lenses he used were the best that had yet made their appearance. Mr. Voigtlander, of Vienna, had just introduced his celebrated lens, and had constituted Mr. Langenheim, his brother.in aw, sole agent for this country. This gave Mr. L. quite a start and a decided advantage over his contemporaries. I at once saw that he was getting ahead of me fast, much faster than suited my youthful aspirations: so one day I took it into my head to make him a professional visit to ascertain if possible the cause of his great success, for up to that time I was not aware of there being any difference whatever in the quality of lenses. I supposed (as the most of our patrons did, and, it would seem, some do still) that the whole thing depended entirely upon the sun, ignoring skill and quality of tools as mere moonshine. I found Mr. L. quite busy making better pictures, and in much shorter sittings, with his quarter size Voigtlander than I was able to do with my half size Plumb. My second visit

to the rooms of Mr. L.; a few months later still, was on a dark, rainy afternoon. I found him this time without sitters, though as busy as ever in that mysterious " no admission room," finishing up his day's work and preparing for the ty to scrutinize more carefully his little lens, without being in anybody's way. There were quite a large number of these tubes and lenses of the different sizes, as they are usually gotten up, lying about on shelves and tables, wait ing for lucky purchases. But the one Mr. L. himself used interested me the most of all; it was tube, lens, and camera box combined, done up in brass, and reminded one of small telescope-the only one of this description I have ever seen-and although, as it appears, not a success, it was dead in love with it at first sight. No child ever lookod with more covetous eyes at toys in the shop windows than I did at this unique, brass-clad camera. The price of it was not extravagantly high either; yet I could only look at it, wishing all the while it were mine. I never in the whole course of my life felt so much the real want of the where withal as then, nor so effectually broke the tenth command ment. I left the Exchange that day with a heavy heart though with a fixed determination to have without delay a Voigtlander lens, even if I had to sell my almost anything I possessed; and I went to work with renewed energy to that end, which was soon accomplished. Our business in those also (as you are aware) in teaching others how to make also (as you are aware) in teaching oiners how to mak.
them, or how to spoil them (whichever is the most proper.) Of this sort of thing I already had my hands full, and it now steadily increased. I frequently have had under my own special care at one time six or eight young and old aspirante to high art, some rubbing or scratching away at plates,some polishing and coating, while others were sitting as patient models to those more advanced in the mysteries of the art. This state of things kept going on until I at length became quite alarmed, feâring that the art I had adopted as a pro fession would soon be teetotally ruined by too much competition, and in order to check it a little I advanced my terms for tuition. But this, strange to say, had the contrary effect My valuable instructions, as it seemed,' were appreciated ac cording to the price I put upon them, for they flocked in upon me thicker and faster than ever (let those who think to increase their business by making cheap pictures take a hin from this). Here was a dilemma for me, and how to get out of it I did not know. I was afraid to raise my price again for fear it would have the same effect, and I had no room for any more. I often look back to those dark, foggy days of the art, when the teacher not infrequently was in turn taught by his pupil, and wonder how we made out so
well as we did, for it was certainly "the blind leading the well as we did, for it was certainly "the blind leading the
blind" over again. We stumbled and fumbled more over our dark experiments than we ever did in our dark room, and yet with our feeble assistance a great many managed to grope their way into the art, who in a little while made for themselves no ordinary name in the profession. But then there were also many others who promised much and per formed but little. It was quite amusing to see the big worded signs that were so plentifully swung out about the city by these freshly made artists. I will here give a descrip tion of one which will answer for the most of them: "John Smith, artist, daguerreotyping taught, and improved apparatus for sale. N. B.-Likenesses taken in cloudy weather. This last was useless information for anybody who had ever seen John's pictures hanging at his door, for they were al more suggestive of clouds than of anything else. John was one of my promising young pupils. It had been but a few the sun, preferring drawing faces to drawing teeth. On seme of these signs was the following liberal invitation "Free exhibition; walk up"-but they did'nt say how high up which I suppose was on account of their extreme modesty they would rather that their patrons should find out fo
themselves how high their art was, though they should lose themselves how high their art was, though they should lose incidents and recollections of the art, occurring under my own notice, and although not by any means a complete pic ture of the times, but only a sketch and, as the artists say, merely rubbed in with neutral colora, may still serve to give ome little idea of the Daguerrean art and its pioneer profes sion, prior to the year 1842. At that period or thereabout the art received a new value by the timely discovery of the gilding process, which gave to the daguerrotype a rich gold on tinge, and, as we now well know, an unquestioned per
manence, falsifying all prophecies to the contrary. This was an auspicious era in the daguerrotype art, and thence forward it made greater advances than ever towards the per fection to which it ultimately attained. Between the years rotypes made-I think (I hope I may be excused for think ng so) that I made some few myself, and have only to refe to my early patrons to prove that I also got off many that were poor ; I rather suspect that they were too Rembrandtish for the time. I often think of $m y$ first sitters with of pleasure and sorrow: sorrow that I was compelled to sit many of them o often to so little purpose (artistically speaking), and pleasure because they were such pationt sitters, eve
ready to makeallowance for the many failures incident to his bewildering, soul-stirring process; and if such a thing were at all possible, I would gladly retake many of them, as a sort of conscience soother, not that their pictures were so far below the then average, but because the then average minds me that most of them are now, like the old camera then used, laid by in the dust.'

THE FRANKLIN INSTITUTE EXHIBITION.

No. I

If the measure of the success of the approaching Centen nial is at all to be gaged by that which has been achieved by the Exhibition now open in Philadelphia, the impossibility f its failure is assured. A single city, representing but a ractional part of the nation's manufacturing powers, has roduced an exhibition of which the country at large may vell be proud. The same has been done in a number of other cities throughout the country. Any single one of the most uceessful of them might fairly be taken as representative f the characteristicindustries of our land. What then may we not fairly expect when the combined wealth of all secions of the country is collected in the huge exhibition grounds at Fairmount, and contrasted with the products of the entire civilized world?
On the 14th of September the Franklin Institute, having btained the temporary occupancy of the immense building t Thirteenth and Market streets, formerly occupied as a reight depot by the Pennsylvania Railroad Company, opened n exhibition of arts, manufactures, and machinery. Notwithstanding the openly expressed fears of the timid, the nergy and good sense of the managers succeeded in trans orming the previously unsightly building into one of the oost convenient and beautiful temporary exhibition halls ever occupied in the city. The full confidence which the managers had in its success was shown in the liberal expenitures that were incurred in order to make the buildings ot only suitable for the Exhibition, but also beautiful and ttractive to the visitors. At first the size of the building, covering, as it does, over two acres of ground, led to the belief among the less prudent that ample space could be obtained up to the time of opening. Too late, however, have hey discovered their mistake. The applications came in so apidly that soon all available room was appropriated, and at the present time over five hundred applications have been jected for want of space.
Those who recollect the Exhibition building only as a reight depot would be surprised at the marvelous change hat has been effected in so short a time. Entering at the main door on Market street, the visitor finds himself in a road aisle, the roofing of which is gaily decorated with flags of all nations. The exhibits or gas fixtures and chandeliers, which occupy the two extremities of this aisle, add much the general effect of the decoration. At night, when all wo thousand odd lights are burning, the general effect is exceedingly fine. The entire right hand side of the building, occupying rather more than half its area, is devoted to he exhibition of machinery in motion. Two lines of shaft ing of $2 \frac{7}{16}$ inches diameter supply the requisite power. One ine is driven at the speed of 120 , and the other at 240 , revo utions per minute. The inconvenience often experienced former exhibitions in regard to a want of uniformity of motion has been obviated by all the driving pulleys being supplied by the Institute. The steam power is furnished by the various boilers that are on exhibition, of which there re quite a number. At the extreme southeast corner of the Exhibition, a large leaden tank has been erected to hold the water for a full exhibit of steam and other pumps, which are all in active working. The left hand side of the building devoted to the exhibition of household goods, philosophial instruments, drugs, dyestuffs, and chemicals, fine arts, rinting establishments, sewing machines, carpets, fancy oods, mantels, carriages, and hosts of other articles. Steam eaters, stoves, and ranges occupy the extreme northeast orner of the building
Having now obtained some idea of the ground plan of the building, we will now examine in detail some of the most nteresting features of the Exhibition. As it will be imposle, in the necessarily restricted limits of a single letter, to deacribe all the exhibits, we will select here and there those which we believe will be the most interesting to the general n of our readers.
Beyond all doubt the feature of the Franklin Institute is he machinery. This fairly outstrips all other classes of exhibits. Nor should this occasion surprise. Not only is the nstitute mainly designed for the promotion of the mechanic arts, but Philadelphia is unquestionably one of the centers of the country for the production of machinery and machine tools. In this way, then, has been produced the finest exhibition of machinery in motion ever shown in Philadelphia, perhaps in America.
The steam boilers are all placed on the ground floor, some ozen odd fect below the general level of the Exhibition floor. In the space thus appropriated are collected some o the most interesting features of the Exhibition. The Pennylvania Diamond Drill Company have on exhibition one of the Leschot diamond-pointed steam drills. The drill of the ne exhibited contains ten diamonds, and bores a two inch hole through marble at the rate of one foot in sixty seconds; hrough sandstone, at the rate of one foot in fifty-five seconds. The actual working of the drill always attracts crowds of curious. The following important advantages are laimed for this drill over the ordinary steel drill, driven ither by hand or steam power: The diamond drill, furnishng as it does a solid core of the rock penetrated, is of great value in prospecting mineral or other lands, since it brings up an actual section of the strata. In this way a far more accurate idea of the nature of the rock is obtained than when it is brought upeither broken or pulverized, as in the ordinary methods. This feature gives the drill great advantages ver all others for coal and mineral lands. The drill is also well adapted for the boring of artesian wells. The bore is round and true, and will admit of the introduction of a tube nearly as broad as the hole itself. A nine inch hole, 3 J̃7 feet
deep, has been successfully bored for the Wilkesbarre Coal Company, in the Empire mine.

the hydradlic brake.

Nearly opposite the diamond drill is a large working model of the McBride hydraulic brake. Ordinary sized car wheels are run at a rapid rate by belting, and stopped at will by the application of the brake. The principal advantrges claimed are simplicity and hence diminished cost, and eneral efficacy, the brake being very powerful. The power is taken directly from the boiler. Under each car is placed cast iron cylinder of suitable size, furnished with a piston, to the rod of which the brake levers are attached. To prevent the freezing of the water in the brake cylinders and pipes, mixtures of glycerin and water are employed, the relative proportions of the two being determined by the severity of the climate of the country through which the road runs. The cost of rendering the water non-freezing is comparatively slight, since but a small quantity of the glycerin is required: and when the pipes, etc., are once filled, no more is required except in case of accident or leakage. A peculiar feature of the brake is the almost instantaneous ransmission of the power and its undiminished efficacy at the end of a long train. The very slight compressibility of water allows the same force to be applied to the last car of a long train as is applied directly to the car in connection with the engine. No other limit can be found to the number of cars the brake can thus stop, except the power of the locomolive to draw them. Since the power employed to work the brake is derived from the steam pressure against the water in the boiler, the locomotive boiler being tapped below the water line, the power is not actually less. During the ope. ration of the brake, the gage does not indicate the loss of as much as half a pound of steam. We understand that the hydrauli
ter road.
the bollers.
In this portion of the Exhibition building, as we have al ready mentioned, are the boilers which furnish the steam otice the following namely: Shearman's improved uprigh ubular boiler, which claims as its distinctive features ea nomy of fuel and space, cleanliness, convenience, safety, and heapness. It claims to produce one horse power with twelve quare feet of heating surface
The well known Harrison steam generator is represented by a large boiler. The advantages of this form of generator, as our readers are probably aware, are security from destructive explosions and economy of fuel. A combination of cast iron hollow spheres, each eight inches outside diameter, and connected together by curved necks, with rebate machine-made joints, are held together with wrought iron bolts with caps at the ends. Each boiler is tested up to 300 pounds to the square inch by hydraulic pressure. The safety of the boiler is to be found in the number of joints hat can give, in case the pressure of the steam becomes he same time, the the hollow spheres of cast iron allows of great pressure without leakage. Experiments have been made in which a pressure of 850 pounds per square inch failed to rupture the boiler or start the joints. This boiler gets up steam quickly and can furnish superheated steam without the addition of extra apparatus. The number of small parts of which it is constructed offers great facilities for transportation and erection, no large opening being required for the introduction of he boilers. The largest can be put through an opening ne foot equare, when desired.
The Wiegand patent safety sectional steam generator also xhibits a large working boiler. The peculiar advantages possesses are safety from dangerous explosions, economy of fuel, and a rapid generation of steam. The practical test for the efficiency of the boilers is to be found in the fact that they are now in use by a number of large manufactur ing establishments throughout the country who know the requirements of a good steam generator, and who would not permit a poor instrument to remain in their works. With an hourly consumption of ten pounds of coal per square foot of grate surface, the area of which is 22 square feet, an hourly evaporation of 117.8 pounds of water is effected for every square foot of grate surface. The total evaporating power of one pound of coal equals $11 \cdot 22$ pounds of water. The Ætna grate bars are attached to this boiler, and apparently give general satisfaction. It is exhibited by Mosely \& Metzgar
The Keystone Portable Forge Company have an excellent display of portable and stationary forges, either for hand or power. They also exhibit their rotary positive pressure blowers, which they claim to be the most power ful blowers known. Lovegrove \& Co. have a fine display of gages, etc.
the steam hammers.
Quite a lively effect is produced in the basement by the working of the steam hammers, one exhibited by W. Bement \& Son, and the other by Wm. Sellers \& Co. The latter is peculiarly light and graceful in appearance, when its power is taken into consideration. It is the old "Morrison steam hammer," with a number of improvements which the Messrs. Sellers have since added. The hammer is formed of a long bar of wrought iron to which the piston is welded, forming, in fact, a part of the piston itself. No side guides are employed, the bar being guided by the top and bottom cylinder heads only. The advantage thus gained is apparent. The entire space below the cylinder is free, and the workmen is enabled to handle his work more effecually than when two of the sides are occupied. At the same ally than when two of the sides are occupied. At the same
time the hammer head and die are more effectually guided
and the frames subjected to a less severe strain. An improvement has been made in the shape of the hammer head and the mode of its attachment. By increasing the sectional area of the piston rod toward the hammer head, the greatest mass of the metai is brought nearest the point of impact, and a much greater efficiency is thus given to the blow. Again, the hammer head, instsad of forming a continuous piece with the piston, is now attached to the lower cylindrical end of the hammer bar by a circular taper key, thas preventing the breaking of the bar by concussion. A modification of the ports of the steam chest allows the use of a supplementa valve which throttles the exhaust steam below the piston but does not affect that above it. In this way the hammer is enabled to strike quick, light blows for finishing, since the exhaust above the piston being unaffected, the hamme can rise as quickly as before; but in coming down, its force may be regulated by the cushion of steam on which it de scends. This compressed steam rëexpands on the up stroke and thus effects an economy of the steam power. We hav seen one of these 300 pound steam hammers drive a pin in beam by a dozen or more blows. In this instrument the workman has as perfect control of the rapidity, force, and character of the blow as if he were enabled to actually wiel the hammer in his hand, and control it directly by his will

Retent Gutriam and foreign eatents.

Improved Mnvalid Bedstead.
Henry Bull, Newport, R. I.-This bed bottom is provided with rollers, and adapted to be slid on and off rails which are hinged to the bedstead
at one end, atd may be lowered at th, other by a windlass or other sultable means. On said bed bottom are h_{i}, red pleces and a fixed apertured seat plece, so that, when extended. the sald hinged pleces form part of the are elevated and connected by hooks to adapt them to support the pa tient.
Elisha c. Sanders, Westerly, R. I. - This invention consists of a frictio clamp, of two sndependent parts, one of which is stationary and has conagainst being turned by the strain to which it is subject. The other fas tening device is so contrived that by the revolving of a tappet against the pressure is relaxed so as to let the drum turn a little. The pressure is
varied by a screw and a spring, so as to subject the drum to more or less varied by a screw and a spring, so as to subject the drum to more or less
resistance; and the tappet wheel employed for relaxing the pressure will beresistance; and the tappet wheel employed for relaxing the pressure win
come fast or slow, and otherwise varied to suit the requirements of the case. The invention is especially intended to be employed as a let-oft attachment for looms, in which case the relaxing
once for each beat of the loom by the tappet wheel.

Improved Pegging Aw
Michael Fichter and John P. Dexhelmer, Lawrenceburgh, Ind.--The handle is made hollow from its upper end nearly to fis lower end. It has a square hole extending from sald cavity to its lower end, into which the
shaftstem or holder fits. The lowerend of the shaft is split, to form jaws to recelve the shank of the awl, which jaws are drawn together to clamp wrench. When the nut is screwed on the awl,netther can move up or dow or turn in its holder
Improved Hay Press.
William H. Penniston, Fox, Mo.-This is an improved device for operatng the beater in beater presses so as to make it prompt in its action, an lessen the distance the horse has travel to agann raise the said
consequently to lessen the time required to complete the bale.

Improved Nut Lock.
Clark Hutchinson, Tonica, III.-This is an improvement in means fo preventing the turning of nuts on screw boits; and it consists in cutting
the screw thread transversely and tying a wire around the bolt at that place. By means of a channel the wire is prevented from working upward Improved Spring Bed Bottom.
Henry Whiteside, Jr., Ottawa, Canada.-This is an improved bed bottom rame, formed of parallel side bars and transverse bottom slats arranged in a lower plane. The means of support and connection between them
consist of blocks and bolts. The blocks serve to keep sald slats and bars equidistantly separated and support the latter on the former, the slats
resting on the cleats of the side rails of the bedstead when the bed bottom resting on
is in use.

Improved Cross Head for Locomotives.
William A. Alexander, Moblle, Ala.-This invention consists in the a rangement of a detachable wrist pin placed into slde recesses of the cross
head, and fastened suitably thereto. It consists further in arranging the aws of the crosshead at a certain angle or tnclination to the horizontal aws of the crosshead at a certain angle or inclination to the horizonta
axis of the same, and placing thereon adjustable slotted wedge pleces fo
setting the top and bottom plates squarely thereon, and securing them by setting the top and bot
means of screw boits.
lmproved Billiard Table Leveler.
George C. Brotherton, San Quentin, Cal.-This invention consists of legs, separated into two parts near the top, and connected by dowel pins
and an adjusting screw, all so contrived that the screw may be readily and an adjusting screw, all so contrived that the screw may be readily
urned by a pin introduced into holes in the head through a slot in the side of the leg. The slot may be cevered by a pivoted or sllding panel or other
piece of ornamental work. The head of the screw is fitted into a meta cap, fixed in the top part, and a metal nut for the screw is fitted into th ower part. of

Improved Gin Saw Filing Machine.
Wiley J. Jobnson, Hernando, Miss.-In than file head, having three holes for files at unequal distances apart, and ar and in line with the crank;shaft, so that it may be turned to any angle.

Improved Spike Extractor.
Whliam Devine, Brownsvilie, Tex.-A gripe or grapple is formed of hinged jaws which are connected to a tube which is swiveled to the hoistin
or jack screw. By turning the jack serew, the tube and grapple will b raised vertically, thereby drawing the spfke

Improved Razor.

Ferdinand Erdmanski, Hlaw tha Kan.-This is a detachable blade whic is inserted into the supporting back part of the razor. It is fastened the lower or maln part. The steady position of the razorblade is secured smmetrically arranged holes of the blaude into recesses of the hinge part.
Joseph E. Curtis, Cbariton, Iowa.-This invention provides,for the con ducting spouts, hoppers, and other parts of the mill, an automatic alarm part, Indicating, by the ringing of a bell, the interruption of the supply When the supply of grain, flour,,etc., is steadily kept up in the spouts,hop bell, and prevent thereby the ringlng of the same; but as soon as the pres ure is discontinued, the rotating shaft will strike the bell stem and glv the alarm, so that the miller has ample time to supply the spout

Lmproved Link Motion。
John Sandall, Jr., Charlottetownan, Can.-This link is formed in two parts
ach part being connected with an eccentric and bith parts ach part being connected with an eccentric, and both parts communicat to operate as thoughhinged together.
Improved Ironing Table.
William o. Donnell, Pittsburgh, Pa.-This froning board is adapted to be
ttached to a vertical wall and supported in a horizontal position by means of hinged brace.
Improved Nut Lock.
James U. Fisher and Hiram W. Fisher, Penn Sta
late has a reduced part which is bent up at the end. Sald part locking turned ue in the bolt from the upper side of the nut, and its lower end circular rabbet the under side of the same. The lower side of the nut has circular rabbet, which recelves the end of the hook plate where it la'sub e part of the plata tirng the nut; then the nut is turne, home, an lly locking the derice.

Improved Paneling Machine.
William Cobban and Charles H. Smith, Bloomer, Wis.-This inventio nsists of a carriage adapted to hold the boards on which panels are to be panel-ratsing tools. A clamp is provided, which both holds the boards in place and springs them out of wind, so
alike on both sides all around the edges.

Improved Ornamental Chain for Necklaces, etc. Saintemme Diolot, New York city.-This invention consists in a chat onstructed of alternating closed rings and opening spring links, the latte belng made of two separate links, soldered to each other at one side, so
that the free ends of both links join by their spring action at opposite ides into socket-shaped connecting ends. The closedlinks are then readil serted.
lmproved Clothes Line Fastener.o
toseph Hill, Wabash, Ind.-This invention consists in making a clothes
tne fastener of a flanged plate having a projection. a lock piece having a ne fastener of a flanged plate having a projection. a lock plece having a agonal slot, and a bolt having an oblong head. This construction enable acility, while it allows the line to be secured and quickly made fast.

Improved Wagon Seat.
Stephen G. Peabody, Champaign, III. - This invention relates to providing wagon seat with an improved attachment for connecting it to, and supprting it upon, the wagon body

Improved Bouquet Holder
John Boyd, New York city. -This is a small ornamental receptacle,
pressure of the lid of which on the stem of the bouquet retains the same rmlyin the holder, while it admits of the instant removal and replacing by eleasing the id. The cavity of the holder may be employed, if desired eesh for a longer period of time.

Improved Adjustable Picture Frame Suspender. Albert Gorrell and Robert J. McClure, Holmesville, Ohio.-Wires djusting rings to sllde freely thereon. At the lower ends of the wires ar used eyes, to which the ends of the suspending cord are attached before belng passed through the rings. As the latter silde readily up or down, the
polnts of suspension are thus resdily and very quickiy adjusted up or down he back. Improved Storage Box for Firemen's Implements.
Thomas A. Colgan, Brooklyn, N. Y.--This invention consists of storag oxes for containning firemen's implements, located in convenient positons throughout the fire districts, and sunk in the sidewalk or roadway The boxes have a corrugated or roughened top, and are provided with
hooks, brackets, or slings for the reception of axes, pikes, and the like The contrivances for locking them are such as to he readily opened with a ydrant w

Improved Cone Sawing Machine.
Junius Harris, Titusville, Pa.-This invention consists of a cone saw in long one side from end to end, to allow it to expand and contract, and ear the large end is fitted between a cone on the shaft for turning the saw nd a corresponding collar, which 18 secured to the cone by a screw passing
tirough the slit. At the otherend, it is connected to a sliding collaron e cone and provided with a lever, by which the saw is shoved back and con racted sultably for sawing bungs and other conical articles. The invenHon also consists of a table top for holding the work to the saw, contrived 1th a hinge joint and a foot treadle for worklng it, so as to press the wor p to the centering point in the end of the shaft over which the saw works,
o hold the work at the beginning, and to drop down to discharge the own pieces.

Improved Suspension Truss Bridge.
form. The chordsare each of two sections of \boldsymbol{C}, an placed parallel with each other, and confined together by a cevering plate The truss posts are confined to the chords, and are connected to the foo blocks by dowels, as are also the transverse stay pleces. The cables pas through the foot blocks, and are connected at each end with swivel o races fit into lozenge-shaped recesses in the bottom of the foot blocks, or lip over projections at the same points. The transverse diagonal brace are held in place by the dowels of struts. The posts and strut bars are
made of star iron, which form gives them remarkable strength. stifliness made of star iron, which form gives them remarkable strength, stifliness
and durability. With the exception of the tension bars at each end, the ables are continuous throughout each span. Owing to the manner 1 Which the lower connections are made with the foot blocks, the trusses
can be adjusted from the roadway, and the structure can be erected, when the same may be destrable, without employing substantial scaffolding, a is usual in the erection of bridges, the uze of screw bolts betng confined to points which are easily accessible.
Improved Rockers for Cradles, etc.
Phineas R. Strong, Colchester, Conn.-This invention consists of cradle rockers with additional pleces pivoted to them in such a manner that the
roduce, when folded to form extensions of the rockers, a cradle, while tanding crib is obtained by turning them in upright position as extension thanding crib is obtaine

Improved : Steam Trap.

esselis provided With a tube, passing centrally therethrough, having slots and a valve team inlet. A float surrounds the tabe, and, silding thereon, lifts a valve od. As usual, the float rises with the inlet of water, unseats the valve,
and admits steam, which forces the water to the boller. As the water alls, the valve closes and water rushes in. By interposing the tabe be
ween the valve rodand the float, the said rod can always movewith per ect freedom, and without receiving any interierence from the float.
Improved Adjustable Kinfe ifor Cutting Hat Boxes.
William Marx, New York city.-This is an improved knifefor cutting hat boxes, so constructed as to enable a number of boxes to be cut at one operation, and which may be readily adjusted to cut larger or smaller
boxes, as may be required. The knife is adjusted for cutting different sized
and boxes by detaching end knives and replacing them with longer or shorte nes. The shorter end knives have a wedge-shaped plate attached to their lare, and make the bottom of the proper size.

Improved Burial Case Fastener.
William S. Wood, Newtown, N. Y.-This invention is to provide means for holding burial cases fast in their boxes when they are packed and betng made in any form so that it will hold the case by entering screw holes on case together.

Improved Method of Protecting Crops from the Chinch Bug.
Leman H. Faunce, Montrose, Ill.-A ditch, about a foot deep, is made
round been hatched in which the crop is growing, or in which the bugs have been hatched, by plowing two or three furrows in the same place, and then
drawtng a small log along the ditch until the dirt is reduced to fine dust In the bottom, a rod, more orless, apart, are set small tin cans, made with unnel-shaped tops. The cans are sunk in the bottom of the ditch unt1 their tops are a little below the surface of the ground. The bugs. in seek
ing to enter or leave the field, pass into the ditch; and being unable to as cend the other side of the ditch readlly they begin, after a time, to pass
longitudnally along it, and fall into the cans. The latter, at convenient ongitudinally along it, and fali nto the cans. The latter, and convenien
imes, are taken up, and the bugs are emptied into hot water and destroyed

> fmproved Operating Crake. arer, Savannah, Ga.-This invention const

William C. Shearer, Savannah, Ga.-This invention consists in augment
ing the friction of brake shoes, and thms facilitating the braking of a train Ing the friction of brake shoes, and thms facilitating the braking of a train
of cars by combining with the ordinary rock shaft a long arm whose bifurtions have end pulleys, over which and: a pair of pendent fixed pulleya passes a chain that
drum on the tender.
Improved Sewing Machine Case.
William Salisbury, Wheeling, W. Va, -This invention relates to a mode
of constructing the box and table of a sewing machine so that the cover of constructing the box and table of a sewing machine so that the cover
f box may be conventently applied as an extension to the table, and so of box may be conventently applied as an extension to the table, and so that the drawers
for convenience.

Montgomery Crossman, Marshall, Mich.-Hitherto the levers of hand ars have been connected by means of suutable rods, with a double crank
xle. The attendant disadvantages of such arrangement are avolded in axle. The attendant disadvantages of such arrangement are avolded in
his invention, which consists in the construction and arrangement of parts, more particularly in connecting the levers witha single wrist pin on and in rear of the driving axle of the cars; also in the means for shifting

mproved Asphalt Pavement.

Edwin E. Glaskin, Boston, Mass.-This invention čonsists in forming a new material, for roofing, paving, and other like purposes, from an asphal
tic dolomite as a base. The process consists in treating said base by first ic dolomite as a base. The process consists in treating said base by first eum, and albertite coal and sesquioxide of iron. The final step consist adding a fresh quantity of the basic material, to wit, the dolomite.

Improved Seed Planter. bilene, Kangas.-Thts invention

dropping devices adapted for ment to th ates, irst, to the means of attachment of the coulter or pllot wheel and seed-dropping devices to the plow beam; secondly, to the construction and arrangement of parts for adjustment of the wiper for the revolving seed
cylinder; thtrdy, to the adaptation of parts for removal of said cylinder cylinder; thirdly, to the adaptation of parts for removal of sa
from Its case and from the shaft of the revolving pilot wheel.

Improved Door Check.
Daniel Gundelfinger, Jefferson City, Mo.-This invention relates to means hereby the knobs of doors may be pecured in a position that will not allow the door to be swung back by a draft of air or accidental force. The vention consists in placing a spring catch on the door,which receives the nd of a notched arm projecting from the wall, said arm being adapted to
and and belng propided with tts own lock. mproved Bale T
John Colley. New Orieans, La -This invention consists of a notched late fastened to one end of the hoop permanently. It receives the hook
of the other end in its notch, and has a bolt for fastening said hooked end which swings around into the hook on a plvot, and then slides lengthwise alttle on a rivet. The end is notched to engage the rivet. and the hole
or the pivot on which the bolt swings is slotted to allow the bolt to slide or the pivot on which the bolt swings is slotted to allow the bolt to slide. he twe rivets are headed down, so as to hold the bolt fast.

Improvement in Folding Tables, Beds, etc.
N. Valley, New York city.-This invention relates to that
Joles which, for convendence and portabllity, are intended to fold up whe ot in use and be laid away in a small space, and is a new and improved arrangement which may equally as well be applied to either a table, bed apboard, stand, or any other similar article of furniture. It consists in
the arrangement of the legs, whtch are attached by means of metallic straps en arrangement of the legs, which are attached by means of metallic straps
to transverse pleces under the table, and folding inwardy, ssid sets of leg being braced ancl locked in position by a hinged brace attached to a longt udinal board under the table by similar metallic straps.

Improved Washing Machine.
n relates to certain mprovements in washing machines. It consists of a bench or table having at one end a transverse opening in whicla are disposed two spring- seated and vertically adjustable rubbers connected with back plates which are de of water on sald table through the mouth formed by the two rubbers, and ass through a slot in a horizontally reciprocating slide below the rubbers ing and squeezing to cleanse them thoroughly, the said clothes passing below into a tub of rinsing water under the table.

Improved Traction Engine
Edward P. Gowles, Wequlock, Wis.-This invention relates to the con
ruction of wheel hubs and axles, whereby the wheels are adapted to b suward P. Gowles, Wequlock, Wis.-This invention relates to the con
struction of wheel hubs and axles, whereby the wheels are adapted to be
vibrated or adjusted with reference to the direction of motion of the en vibrated or adjusted with reference to the direction of motion of the en-
ine. It also relates to the means for effecting the adjustment; and lastly an arrangement for varylng the speed. For running the machine fast oaded, and still slower for drawing plows and the like, a countershaft is provided, which will gear with a train, by suitable interposing mechanism according to the speed required. The wheel of the train which turns the ear axle is connected to it by a universal joint, like the traction wheels,
except that this wheel can vibrate in every direction to allow the axle to

> Improved Lever Escapement for Watches. G G. Schoof, Clerkenwell, Great Britain.-This invent
-This invention con sists in the planting-in place of the common notch of the roller, and a
ingle pin or jewel in the lever acting on each side of the notch alternate iy-of a jewel or other pallet in the middle of a small crescent-shaped re
ceas at the edge of the roller. This jewel engages two upright pins of the ever, and performs the unlocking action an connection with or withou ruby pin near the center of the roller. The resilient or elastic banking of the lever is obtained in connection with banking pins of a pivoted
ever plate, and a yielding spring action thereon, which gives way when banking occurs. The resillent action may also be produced by mounting the spring upon the lever as a substitute for the spring plate, and using tationary banking pins at both sides of the lever.
Andrew J. Dibble, Franklin, N. Y., assignor to himself and Daniel M11ler, same place.-The end Irons are made in the form of a socket, and have
ooks upon their forward side cast in one piece with the body. In the end, nd opposite the point of the hook, is a hole extending entirely through ad opposite the point of the hook, is a hole extending entirely throug
hook by
screw.
James R. Ball, John S. Ball, and John G. Mole, Xenia, Neb.-The seed hoppers are attached to the upper ends, and open into the cavity of stan-
dards. A plate is placed tn the cavitr, and its lower part curves rearratd it is hinged to another plate, the lower end of which is bent back at an spring. The device thus forms a cut-off to prevent any more seed being carried out by the dropping slide than enough to fill its drop ping cavity locks attached to the spokes of the center wheel. The marker may be

sutimess and zexsonal.

 Agricultural Implements, Farm Machinery Black and Brown Bronzes on Brass-InWalrus Leather Wheels for polishing Iron Walrus LeatheSteel, and all the
Park Place, New Yor
M. Berry Anery to make Clothes Pins Wanted. An Experienced Civil Engineer is desirous,
f taking cnarge of the construction of Water Works.

 Sold Low-A Book and Documents, showIng how to introdace Inventions. Pans and meth-
ods for selling Patents are sucessfunly elaborated
into into a Practical System. The Scientific American, Dec.
13 th, $\overline{\text { Tin }}$, sald: " We believe it will be an acquistion of

Second hand Engine and Boiler, of from 2 to 4 horse power, wantea. Wm. Metcalf,Greentield,Mass

 Signal Service Barometer \& Thermometer Comblned; also, , machine for Grinding Plows, \&ce. Send
CIrcular and price to J J Craw ford, Box 21 , Madson, Ind. Boiler Sales removed or prevented " "No cure
no pay." send for circulars to Sutton Co., 55 Siberty St. Nedles for Knitting Machines. of Superior
Quality. Willam Wass, Neede Manufacturer, 4505
No Nedles for Kinitting Machines
Qualty. Willam Wass, Neeache Manu
Main St., Germantown, Philadelpha, Pa.
Steel Springs of any description made or
tempere. seno pattern. J. F. Dubber, 48 Hicks St. rooklyn, N.
Blake's
Blake's Belt Studs are the most reliable
aastening tor Rubberor Leather Belts. Greene, Tweed Co., 11 Park Place, New York.
EVery reader of the Scientific American
will receive free a copy of the best Agricultural und will recelve free a cony of the best Agriculural and
Family Newpape in thit country ba dodressing
Moore's Rural New Yorker, 88 Duane street, dew Tork.

 Wilson \& Roake, Water and Dover Sts., New York. Mechanical Draughtsman Wanted -A first class man, who has had experience And is quick at work.
Ing from sugestions and sketches. Address by 1etter
only, with references. R. Hoe \& Co. 504 Grand St...N. Y .
 Manfacturers of wagons or other heavy vehicles, pleas
Cuthbert, Ga.
For Sale-A valuable Patent (just issued)
on small article made of metal. M. scott, New Brighton, Pa.
Wanted-A Corliss Engine (second hand),
40 to 50 Horse Power. Address D. D. Telford, 517 West Magic Lanterns, large and small, for Home
Amasement and Public Exhiotions. Proftable busi-
 1ster, Manufacturng Opticlan, 49 Nassau St., N.Y.
Many
Works, Whew Englenlignt land Manufactorien have Gas Gas. For particulars, address Prov
Gas Plpe Company, Providence. R. I.
 Steam Whistles, Varlves, and Cocks. Send
for Price List. Balley, Farrell \& Co., Pittsburgh, Pa.
 ready for use. 50 cts., 81 , and 81.50 per gal. Eng. Roof
Paint, ground tin oill, 50 cts. a gal. Liquid Slate Roof Paint, ground in al. New Yor
116 Malden Lane, New York.
For Solid Emery Wheels and Machinery,
Bend to the Union Stone Co., Boston, Mass., for circular. Responsible parties, who wish light ma-
ebinery manufactured, cast or malleable iron preferred, please address E. Mann \& Son, Millford, Mass.
The 1 mproved American Governor. Send
or new catalogue. C. A. Condé \& Co., Philadelphia, Pa. Scale in Steam Boilers.-I will remove and prevent Scale in any Steam Boiler, and make no charge
until the work is found satisfactory. Geo. W. Lord Philladelphia, Pa
New Iron Ore and Dry Quartz Pulverizer
unequaled!
F. Alden, Patentee, Plttsburgh, Pa. For the best Cotton Cans and Galvanized Fire
Pails address James Hull, Providence, R. I. For small size Screw Cutting Engine Lathes Engines 2 to 8 H.P. N.Twiss, New Haven, Ct First Class Tools and Tool Chests. For
descriptive circular, address J. T. Pratt $\&$ Co., 53 Fulton St. Nats Yorr. Combination Governor sold under
full guarantee. Address Matson Bros., Mollne, III. Steam and Water Gauge and Giaizg Cochs
Comoined, requiring only two Holes in the boller, used
 Dickinson's Patent Shaped Diamond Carbon
Points and adjustable holder tor working stone, dressng Emery Wheels, Grindstones, \&c.., 64 Nassun st., N. V. Babbitt Metals-For the best, sond to Co-
nard $\&$ Murray, Iron and Brass Founders, , oth $\&$ Chest. nut Sts., Philadelphha, Pa.
Mechanical Exyere in Fatent Cases. I. D.
For the Best Portable Eogine in the world,
address Baxter steam Eaglie Co., 18 Park Place, N. Y . Exmes Patent Molding Machines for Metal
 Smalll Portable Engines, 2 to 12 H.P. Send
or Prices \& Catalogue. Tully \& Wllde, 20 Platt St.,.N.Y. For Durkee Saw Mills, address the Manu-
facturers, r. R. Bailey \& Vali, Lockport, N. Y.

Hydraulic Presses and Jacks, new and se-
cond hand.Lathes and Machinery tor Pollshnng and Buf.

 Forges-(Fan Blast), Portable and Station The "Scientific American" Office, New, York, touching little buttons on the desss of the manageri sitgals are sent to persons in the various departments
of the estabishment. Cheap and effective. Splendid for shops, offices, dwellings. Works for any distance Price 85. F. C. Beach \& Co., 263 Broadway,
Makers.
Send for free 1 Ilustrated Catalogue.
Brown's Coalyard Quarry \& Contractor's Ap
paratus for hoisting and conveying materials by fron cable. W. D. Andrews \& Bro.,414 Water St.. New Yorl. Tingue, House \& Co., 69 Duane St., N. Y. Y. Endless or in plece, for Printers, Engravers, Polishers
Pano Punching or Washese Cloth, Filter and Strainer Cloth Double-Acting Bucket Plunger Steam Pumps N. Y. Store, 45 Cortlandt St.; Phlla. store, 132 N . 3 rd st. $\underset{\text { vertisement. Address }}{\text { For Shlolid Iron }}$ Iron Mills, Pittsburgh, Pa Mining, Wrecking, Pumping, Drainage, or
Irrigating Machinery, for sale or rent.
See adverthsement. Andrew's Patent, tnstde page.
Temples \& Oilcans. Draper, Hopedale, Mass. Buy Boult's Paneling, Moulding, and DoveHilly Machine. Send for Circilar and sample
c. Mach's Co., battle Creek, M1ch... Box 227
Rue's "Little Ciant" Injectors, Cheapest
and Best Boller Feeder in the market.
w. L. Chase $\&$ Co., 98,95.97 Liberty street, New York.
For Surface Planers, mall size, and for
Box Corner Groovling Machines, send to A. Davis, LowLathes, Planers, Drills, Milling and Index
Machines. Geo. s. Lincoln $\&$ Co., Hartord, Conn. For best Presses, Dies and Fruit Can Tools,
Bliss \& Willams, cor. of Plymouth \& Jay,Brooklyn,N.Y. Price only three dollara- The Tom Thumb
Electric Telegraph. A compact working Telegrab paratus, for sending messages, malking magnets, the
electric light,
Ivining alarms, and various other purpose Can be put in operation by any lad. Includes battery, key and wires. Neatly packed and sent to all parts of
the worid on receipt of price. F. c. Beach $\&$ Co., 263
Sroadway.New York.
The Improved Hoadley Cut-off Engine-The
Cheapest, Best, and Most Economical steam-power in he United States. Send for circular. w. L. Chase \& All Fruit-can Tools,F erracute,Bridgeton,N.J. Peck's Patent Drop Press. For circulars, Small Tools and Gear Wheels for Models.
List free. Goodnow $\&$ Wightman,23 Cornhll, Boston,Ms Portable Engines, new and rebuilt 2d hand Tools. I. H. Shearman, 45 Cortlandt st... New York. Spinning Rings of a Superior Quality-
Whitinsville Spinning
King Co., Whitinsville, Mass Jend for sample and price list.
Johrson's Universal Lathe Chuck. Address Best Philadelphia Oak Belting and Monitor

W. S. will find a recipe for a black finish the effectet of ammonacal vapor on p. 266 , vol. 31 . W F. will tind fulldirections for skeletonizzing leaves o. P. 123, vol. 29.-J. L. Will tind a rectipe for glue that dries
rapidly on. p. 33, vol. 31.-D. H. M. will ind that the d1-
 for a rallway coupling on p. 162 , vol. 29.-J. S. \& Co
should refer to p. 59 , vol. 44 , for directions for galvan izIng Iron.-C. F. B. and F. M. H. should see p. 250,vo
31, for a deecription of the prismatic fountain. can bend timber by the process described on p . 43 , vol

30. Totan buffilo hides with the halr on, see p . 59 , vol | 28.-V. Will find full descriptions of various forms of |
| :--- |
| unstinkable boats on |
| 195, vol | unsinkable bats on p. 195, vol. $31 .-$ H. B. T. T. Will in

details of the process of making artificial butter on
 arecipe for leather cement on p. 268, vol. 30 . - P. H. W. W.
will find directions for gilding on glass on pp. 90279 ,

(1) F. D. asks: If a bell glass be inverted stde, how will the atr afiect the meat, the vessel beng
airtight?
A. It will supply oxygen to the tissues of the meat. Which will slowly yundergo decomposition.
What effect wlll the water have on the meat? What efrect wnit the water have on the meat? A.
will supply the atmosphere around the meat with mols
ture, be pat into the vessel that will destroy the decompo sing property ot the air? A. None which is cheap and
easily used. 4 . If I place ice in the vessel wil eailly used. 4. If iplace ice
nn keeping the meat? A. Yes.
(2) C. T. M. asks: What will counteract nad vulcanized rubber goods in it, and the e ffect ss to
be seen on my gold and silver goods. A. Try standing (3) J. S. T. asks: What is the best method of preparing annatto for colioring butter? Is any
other Ingredient used with tit? A A Anatto contans an butfreely so in alcohol and ether. Potassa dissolves productng a deep red color; and on neutrallzing the
solution with an acit, it falls as an orange prectppatat The fixed ollsalso dissolve the coloring matter of an
(4) J. S. M. asks: What metal is best

(5) J. H. asks: Which will give more power, 9 feet overshot water wheel, or a a breast theel
using the eame amount of water ?
if both when ords were well designed, Iner woury cases,
(6) C. W. G. says: On p. 220, vol. 31, I
 tach a pulley and dord, with weight, and dind how many
tounds your spring will rase one foot high in a minpounds your spring will ralse one foot high in a min-
ate." would not a similar rule be good to determine the power of a steam engine? If I am obliged to run p the weight more than a foot, should not the flnar
alt be divided by said number? Should the pulley be of he same size as the crank circle and keyed directly on he engine shaft ? A. The meth od you speak of will
answer, but is not ordinarlly very convenient. The
(7) M. G. says: I have set up 5 stoves himney was 7 Inches in diameter with 6 inches entranc
 ove with a simillar pipe with a 7 inch entrance in chim
ney; this smokes the rooms. Can it beposilibe that ney; thls emokes the rooms. Can it be'posstble that
there is a draft downwards in the chimney, so that the smoke from the stove pipe descends? A. If the draft of the chlmney were good with the six tnch pipe, there
in no reason why it should not be so with the seven inct Is no reason why it should not be so with the seven inch
pipe, unless the latter is pushed so far into the chlmney pipe, unless the latter is pushed so far into the chimeney
as to reach the back of the flue, in which case, of course, sto reach the back of the flue, in which case, of course,
would de eftiectually closed. The pocket formed by
the closed freplace is of course filled with a ir, and it is
not likely that the suction upon this, caused by the as. ending currentin the tlue, could materraily affect the ay be closed with.
(8) A. B. asks: Is it possible to form two
numertcal squares that shall be to each other as 51 s to A. No.
(9) R. B. W. asks: 1. What are the right proportions of curvature for the concave and conves
dsks of flint and crown glass, to correct allchromatic nd sphericalaberration In a 3 inch achromatic objec slass for a telescope, focal length betng about 4 feet
A. Outside curve of crown lens, 22 ters inches radus
 ying with different glass. 2. Is there any book giving directions as to forms of lenses, and degrees of curva-
iure, for making of telescones, etc.
A." Praktische
 anualfor making achromatic telescopes. The meth-
od of local correction, the use of a covered tunnel and od of local correction, the use of a covered tunnel and
artificial star, with tram adifls method of clearing melted glass by bprinkling

(10) D. J. M. Y. asks:
ravity increase or decrease on the force of

(11) rative tensile strengths of cast and malleabie iron?
Wrought tron has from 2 to 3 times the tensile
(12) L. M. D. asks: How is the accuracy of merrourtai barometer tested? A. Usually by compar.
son with some stand ard instrument. Read T. A. Jen (13) S. N. M. says : Mädler, Mitchell, and other astronomers estimate the velocity of the sun in
pace atal miles a second. On p. 203 , vol. 31, you state
 cal error, or have you later and more rellable observacity at t150million miles a year, or about five miles jeond. Atry thinks it it 27 miles a second. Maps o
elescoptc stars are now belng made, to settle thit (14) W. B. F. asks: Is there any machine, with certainty test a locality for gold or other metals?
(15) A. F. H. asks: How can I make a tereestrial telescope, 36 tnches long? How long ought the
focal length of the object glass to be? A. The focal focal length of the object glass to be? A. The focal
length of an achromatic objective should be about tif teen times the aperture. A set of eyepleces usually
conslsts of several powers between ten and ifty for each Inch of linear aperture, and of one high power of
one hundred for each tnch of aperture. Δ terrestrial ne hundred for each tnch of aperture. 4 terrestrial
eyepplece should be of low power. Change all the d1seplece should be of low power. Canane an ent
nensions of any one of those we have glven, unform-
bit y, by simple pro
(16) A. F. C. says: I have a 21
natich ach telescope of 41 inches focus; and with the Huy henlan eyepiece, I get a power of about 80. How high power will stand, and how must 1 construct the
eveplece? A. working po wers run from ten to fifty per lineal inch of aperture. Powers occasionally used
on fine nights may f aperture.
(17) C. W. B. Says: A beam is hung by two beam. If I shorten one rod, will the suspended beam
Lang directly under the other as before? suspended beam will be deflected to wards the shorter
rod, and the strain upon the shorter rod will be greater than that upon the longer rod in proportion to the dis
(18) E. A. B. says: I have a well in a celor floor over cellar 1s 7 feet 6 inches ; the kitchen ad joins the room oves the cellar. I wish to provide a
ay to dellver water from the well, tinto the Way to deliver water from the well, , into the kitchen,
abve the floor if possible, at a point about 20 feet Irom the well, and to have the pump for this purpose
at the point of delivery. Thelift will not he less the
 do this. A. Perraps the smperest plan would be for
dou to place a lift and force pump in the well at not more than twenty-five feet above the water, and arted by hand power in the kitchen. You would require
ten ed by hand power in the kitchen. You woild reauis
two belts one runnning ertically and one horizontally
(19) G. W. M. asks: 1. What is the proper

(20) J. Q. A. asks: Is there any possible
way of controlling a watch so as to make it run exacty, or not to vary more than one hundredth part of a
seoond in twenty-four hours? A. It never has been
(21) R. L. J. asks: What is black brim
tone, and is there any other name for it? A . When iphur or brimstone is moderateiy heated,tt passes in.
 (22) J. S. N. asks: In a hard coal furnace,
he acid or gas formed in burning Scranton or Lehigh cheacid or gas formed in burnng Scranton or Lenigh
 mon stove pipe, Russian iron, and zinc coated iron, with about the same result. Is there any metalI can
use? Will copper, coated with zinc or tin, resist the Corrosive action? A . Zinc would hardly ans wer. Til
would would do better; copper would probably stand some time, but its rusting would be aceelerated by other
causes. sheet lead would resist the acld vapors, but
might might not answ
pipe would do
 ame point of view, Identically alike? To th1s youn
swer, no. Pleasestate in what the difference consists. A. In a photograph, parts of an object which are muc
nearer than others are unduly magnifed.
2. Are ther any rules by which a drattsman may obtain, without
copylng from a photograph, the same general outline of an object as can be obtained by photography? A.l night be possible to make rules for the purpose men
tioned, but we have never seen any, the ordinary meth ods for perspective drawing betng generally considered
 mons on p. . .0. vol. 31 , but without suceess. Can you
aid me? A. Your battery, if constructed as directed
. could not possibly have been a fallure ; and allhough when in operation you could not feel the current, by
applying the terminal wrie to the tongue you might able to detect its presence by taste or sensation. ${ }^{2}$.
How can I construct oue of sufficlent power to give weak current or shocks? A. A small induction coll
will will best answer your purpose, full directions for the
construction of which you will find on pp. 218, 315, 378,
stamped? $\begin{aligned} & \text { (25) J. B. They are stamped. The conld be mold }\end{aligned}$ ed. 2. Can molds or des be made without the use of master ride, which is engraved. 3 . What klind of metal
is best to make the molds of (aited. S. asks: What temperatures are
requred to volatilize, respectively, gold, silver, zing aquired to volatilize, respectively, gold, silver, zinc,
antimony, lead, and copper? A. The question whethe nutimony, lead, and copper? A. The question whethe
certain metals onolatilize during the roasting of the same, we canon detint tely answer, owing to very llttle
data upon the data upon the subject. Gold melts at aze4o Fah., and
dapler considers to to be volatlle a a a very high temNapler considers it to be volatile at a very high tem-
perature; it also volatillzzes when remelted in cructDles, espectally when combined with copper. If the
fused gold has been covered with the ash will be covered with volatilized goid of of purple color. The mitroscope does not reveal globules of
gold in this coating, but grains of gold may be obtained by smelting; so that the question of whethe gold 18 volatile, in a finely divided state or in combina tion, is still uananswered. According to Deville, gold
volatilizes when melting auriferous platinum, and may be collected by condensing the gold vapor. siver melt
at 1904 Fan., and can or the oxynydrogen flame be volatilized by electricit and 'volatilizes at 22640 Fah., and burns at 9320 Fah. forming ZnO , which 18 not Volatile. Antimony melts
at $806{ }^{\circ}$ Fah., and volatilizes at a bright white heat. at $806{ }^{\circ}$ Fah., and volat11zes at a bright white heat.
Lead melts at 626° Fanh., bolls and volat111zes at a white heat, arr being excluded. Copper melts at $2426{ }^{\circ}$ Fah.
(27) M . $\mathrm{H} . \mathrm{McK}$. asks: Which is best for Ing up level with the jost or leaving a space under the
fioor? A. 1 t 1 b best to leave an air space above the deafenngg. for two reasons; it will both deafen better
(28) H. S. G. asks: Can I put one water weep falls A. There ts no novelty in this plan. One
din
wheel employed; but somettmes, on account of the erreat size sed.
(29) N.S. J. asks: How can I analyze wawould not ald you without the necessary skil. (30) P. \& B. ask: What is the proper shape
for a plece of steel, so that when one end of it is bolted irmly toa solid plece of wood and the steel struck, the A flat bar, supported on the ends on ropes of straw, ordinarily used
(31) W. W. . P . asks: Why does not a pump
ratse water 26 feet perpendicularly y in a mill which is more than $\mathbf{7 0 0}$ feet from the river? A pump in a mill great for the 4 inch pump, or are we at too great a
hight from the water? Shail we put in another or larger pump, orsink the pipe? A. The great length yourp ppe causes so much friction that your pump runs
away from the water. The remedy 1 to to provide a tank or reservolr at the distant mill and a force pump at the
 mhe on he intank, of drawn through it, and the friction
then bee asily overcome. The water, betng discharged
can can be easily overcome. The water, betng discharged
into the tank at the distant mill, can thưs be taken up by the p
quired
(32) A. V. D. . . . says: I hold that the fol-
lowing: $7 \times 3 \times 2 \times 5 \times 0 \times 5 \times 6=6,30$: is correct. My friend argues that $210 \times 0=0$ and so on, the answer being 0 . Please glve us your optilen. A. Your friend is right. You
may get a clearidea of the matter by magalining o to be ris infintitely large.
(33) W. H. H.-'The recipes for colored
stars for rockets were from emtnent authority, and are (34) C. M. C. Says: Atmospheric pressure pable of bearing only 100 lbs. pressure in the open alr
could be placed in a vacuum, would it not burst at 85 ibs. pressare? In other words, should there be an 1 . crease of 15 lbs. made on the bursting pressure of a
boller on account of the resitatance of the atmosphere? A. This allowance is always made in proportioning a
boller, by taking the pressure of the sitem to be that shown by the steam gage, while the pressure. in real
ity, 18 on an average 151 bss greater the

(36) G. H. M. asks: Can gas carbon be con-
sumed, orby any means converied into the gaseous sumed, or by any means converied into the gaseous
state, as the other forms of carbon are when made o
and state, as the other forms of carbon are when made to
defagrate wrthnter or other oxidizIng ageuts? At
present it resists this treatment. A. It acan. When
(37) T. J. M. \& O. H. G. G. ask: On. P. P. 300 taken by Inhalation for bronchial affections, etc. How
is tinevapo produced?
A. The vapor of ammontum he following is the safest for this purpose: Place small quantity of ammonium chlortie (common sal ammonlac) ina flask, or better still, an iron botile,and
heat strongly. The vapor should be inhaled as $1 t$ comes
(38) J. S. asks: How high would a balloon
have to ascend to get outside of the earth's attrac tion, and what would become of such a balloon A balloon could not possibly ascend to more than 30 or miles, the limit of our atm 'sphere.
(39) W. W. A. asks: How can I manufacstarch, the tubers are irrst freed from adhering earth
by a thorough washtng, and are then rasped by machinery. The pulp thus obtatined is reeeived upon a
sieve, and is washed contlnuously by a gentle stream of water, so ong a a the washings run through milky
This milk iness is due to the granules of sturch which
 subside; the supernatant water if drawn offi, and the
deposit 1 s repeateelly washed with fresh water untilil the uspended in a little water run through a tine sin keep bacic any portion of sand, and, atter haying been
again allo wed to settle, is dranned in baskets lined wiin again allowed to settee is drained in baskets lined win
ticking; the m ass sis then placed on a porous floor of alf baked tiles, and drie at tirst of the natural tem perature; the drying
pletea by the appilcation of a moderate heat.
(40) A. S. G. says: In your reply to J. B.TT.
No. 53 in ino 13, vol 31 , your frist answer amoun is to saying thata vessel will be of the same weight when
full of air as when exhausted. This does not seem
to as the materials of which it is composed ; but when is exnaustedit would be buoyed up py the externala 1 at
to just the
 (41) W. M. G. asks: What can I put into What s. sthe best motive power for
Wanatacturing machine? A. Steam. How can 1 find the weight of o bin of stove coal from
be cuble feet of the bin? A. By first determining the weight of a kno wn measure of the materal (say one cubic foot) and then multplyping the number of co
feet contained in the pule by the weight obtained
(42) B. asks: Are not metallic lamps far ded to be the safest where burning fluids contanning
light or volatille oils are used, because of their poo
(43) J. P. G. asks: 1 . Is ozone poisonous?
A. Yes. I. Is it dangerous to breathe or Inhale tit? A ? Yes. 3. If Its fumes were generated in a tight place o o room, would tit be necessary to remove all eatables to Can a famly use water drawn through lead pipes for 20 years without being poisoned? A. Whether the
lead acts upon the water depends upon the character of the water. Some waters affect lead, others do not.
$\underset{\text { spectacles that are dull and scratclied, and make them }}{\text { (44) G. D. F. asks }}$ magnity more? A. There is no oo
mave them reground and repol inhe
(45) C. D. C. Says: I have been very much
othered with my nickel solution. Atter an antucle has been in the solution about an hour, japan-colored treazs appear; and when the plat ing has been polished
 ny thickness having been deposit. the dark spot, nish (some kind of preparation of coal tar). The tar
got dry on the sides but not on the bottom. I then coated it over with hot asphaltum and turpentine, bu
the tar mixed with the asphaltum and ralsed air bub the tar mixed with the asphaltum and ralsed air bub
hesin the liquid. The solution had the smell of tur.
hen pentine and asphaltum. The thing did not work any better, so I filtered the solution and scraped the va clean inside, but it still works as described. What can
Ido to clean the liculd and make it work well? Ido to clean the 11quuld and make it work well? A
This 18 a question best answered by some one who has encountered and overcoome suen a dificiculte in in ickel plating. The plan followed in similar cases by chem
ists 18 to filter, elther through common filters or others 1 ists 18 to filter, elther through common filters or others
having an absorptive action on coloring matters. Fur having an a aborptive action on coloring matters. Fur
ther Impurties are sometimes gotten rid of by p par
tial evaporation and crystalizn te pure salts out
(46) O. H. H. asks : 1. What will remove take out printing ink without tinjuring the goods? ${ }^{\text {A }}$ The best method is to saturate the spot with benzine,
which 18 a solvent for both grease and printers then cover the spot thickly with powdered Frenc
chalk, which will absorb ti. Repeat if necessary. (47) J. B. asks: Why will a perspective photograph taken from the same point? A. Becaus by the rules of perspective drawing is esesentally ditr

 (48) A. S. asks : How is an odometer at
tached toa wheel?
A. It generally has a clamp. If ot, it can be tied.
cyllinder about tor me mhere that enetne is that has stroke? A. There were several such cyllinders in ves.
sels belonging to the Pactic Mail Steamship Company sels belonging to the Pactif
a few vears ago. Whether
Tn service $w e$ cannot say
(49) B. \& Co.say: We want to put a whistle of water furnish |steam enough to blow the whistle nles
(50) E. W. W. Says: A friend of mine section pump, that water is brought through such a
ump altogether by atr pressure, and not by suction right? A. Wes air
 dried them. They would burn about as they would ti
vet with alum water. How should the tungstate be sed ?. It is necessary that the wood be Immersed in (52) H. T. S. asks: Will a piston head give
es esame po wer if made of a wedge shape, as if it inad
(53) J. B. R. asks: How can I find the spe
afc gravity of any luid witha specific pravity botte A. By finding the weight of a bottle fullo of the fluta
e given temperature. Then specific gravity weight of bottle filled with liqutd welg wavt of bottle
wit
(54) H. J. H. asks: At how much greater pressure are steam booliers tested by hydraulle pressure
han would be a safe steam working pressure? A. One than would be a safe steam working pressure? A. On
tird, commonly. 2. What prop ortion of the effective

 reessure, heatea, as when steam isisup, or cold? A
Cenerally when hieated. 4. What is tensile strain in Generally when iented. 4. What is tensile strain in
team bollers? A.II tis the strant tending to rupture
te oboller. Your other questions will be answered in he boler. Your other questino will be answered in
a forthcoming edtoral on the streng th of bollers.
(55) J. B. S. Sasks: Is Soluble glass manufac-
ured in this country A. Aes. By liquit or soluble glass understood a a oluble alkaline sillcate. Its prepara

 Potassa glassis obtatnea by the melttng together of pul erized quartz or quartz sand 45 parts, potasega 30 parts,
oowdered $w o o d$ chareoal 3 parts, the molten mass being issolved by means of boillng in water. Soda glass is
 23 parts, carbon 3 parts; or (acording to Buchner) 1 Mit
pulverized quartz 100 parts, calcined Glauber salt 6 pulverized quartz 100 parts, calciced Glauber salt 6 . 6 .
parts, and carbon 15 to 20 parts. Double water glass prepared by melt arts, calcined soda 54 , potash 70 parts. For technntcal urposes, a a myxture of 3 volumes of concentrated pot
ssa water glass solution,and 2 volumes of concentrate ssa water glass solution, ind employed. By the name of
of ixixg waterglass, von Fnche designates a mixture or silica well saturated with potassa water glass and sill cate of soda. It is used to tix or render the colors per-
manent in stereochrom. Water glass 1 is an Im orrtant roduct in 1ndustry. It is used to render wood, linen
 in the paltutng of stoneand concrete walls, and in the mportant application of water. glass is in the new art of mural and monumental palnting, termed by Yon (56) O. C. asks: If heat comes from the
 the sun? A. The action of the glass ts simply to condense or concentrate to a focal point all the rays of
ight and lummous heat that fall on its surface. There Ore, the greater the diameter of the lenses. the higher Nil be the temperature at the focal point, the temper.
ture of the glass remaining the same. Burning glass es are, , In many cases, made of pure rock salt, Which,
because of its diathermancy, transmits withequal free vecause of its dathermancy, transmits with equal free
om the dark and the lumnous heat rass, as well as hose of light. Heat 18 a form of motion. The old ca
 ows: " The word heat is used in common language,
both as the name of a particular kind of sensation and oth as the name of a particular kind of sensation and
odenote that condition of matter in which It is isapa odenote that condititon of matter tin Whichit 18 capa
he of produclng this sensation to us." You will see ct nature of 1 it is not known.
Is there such a thing as an absolute vacuum? What would be the temperature of as perfect a vacuum as
could be made? A. See article entitled "A Perfect
(58) J. W. W. W. asks:
een awarded for the best means of premium yet oats withoutagitating the water? A. Yes.
In what degree does gas expand on beng heated? A
bout $1-491$ of fte volume for each degree Fah. that
(59) G. H. M. asks. How can I prepare the inate of mercury 6 parts, chlorate of potassa 6 parts
(60) G. D. H. asks: 1. What are the duties and construct brdiges. 2. In what manner, and by
Whom are such men unually employed ? A.They are em. loyed by railr road and other companies, cetty authom. lies, highway commissioners, and private parties. 3. the business of that profession? A. By offering your ervices to those who are in need of them, and demon. trating that you have the requisite $\leqslant \mathrm{k} 1!1 \mathrm{and}$ experi or a rradute of a school in engineering to acquire a ractical working knowledge of any branch of his pro way to acquire pract estan en ind
 our. I wlih to make the boat 12 feet wide and 16 long With a draft of 18 nnches. I have two 8 horse engines ear them down to 100 per minnute. A At would probs bly be better to gear down to a slower speed of wheel.
Stall I have to get a license from government Tes. 3. What will litcost? A.It will cost about \$00:
(62) J. W. R. asks: What is the best com
position to put on a 35 foot turnace chimney, to protect it or make it last? A. There 18 a black varnish m
from mineral oil that seems to answer very well.
(63) A. R. asks: Will a centrifugal water
mill go in a vacuum? A. Xes. Would an oraiaary rocket, Xe
finitely large, ascend? A. Yes.
A. Yes. cover, would there be any economy in using steam un der 45 l los. pressure instead of 20 liss., the eteam betng
allowed to escape in the hay through openings to the pipe A A. No.
(64) G. \mathbf{W}. A. says : I wish to get up a metallic substance to pat up cotton in. N want \&omething
light, but tough and strong, and thinner than zinc. Zinc

 rather too much, in requesting us to do your in venting.
You hoold make experiments with dififerent materlals ntil you find what you want
(65) W. J. A. says: I have a three inch three strokes of the pump empties it. I have a pump
with a two tinch suction pite. The well worked very well when first sunk, the pump having one tich suctio pipe. I thnt $1 t 18$ caused by corrosion of the sann
screen. I had a well borer to examine it, and he said that it was caused by leaving the mouth of the well
open, and he plugged it up. That I found created condiderable back pressure on the pump, and at the sam time didnot give the desired results. Do you think
the well had been closed in the first piace it would 1 . retarded or prevented the eorrosion? A. Probably
your suction 18 choked, and that causes all the trouble. If there is plenty of waterin the spring, it will only ecessary for you to use non-corrosive screens, of
rass or galvanized iron.
(66) P. H. W. says: I wish to put a new beam 7 feet. She draw 222 inches forward,and 26 att. Tre
wheel Γ now have is 38 inches in diameter with 5 feet Wheel I now have is 38 tinches in diameter, with 5 feet
pitch (2 blades). Would I gain anything by using a 4

(67) H. N. asks : 1 . Is it it safe to runa 3×8
gine at 300 turns per minute?
A. Yes.
2 if What power will such an engine give under rive ibs.
ressure? A. About 9 horse power. with 1001 bs, mean pressure? A. About 9 horse pewer, with 100113s. mean
fefective pressure. 3 . What should be the size of the oiler (upright tubular) and thlckness of shell? A Roiler with 120 square fe
(68) A. T. S. says: I am building a smal
gitine $11 / x 3$ inches cyilinder. What kind of pisto acking is best, and how should it be put on? A. Fo oomall a piston it 18 generally sufficient to nake
oolld, with a few grooves. 2, Could I I use hemp pack
 or ruber packng by making a recess in the pistona,and
nelther will be liabie to burn out, wth proper care. 3 . What is the rule for getting size of steam and ex haust

(69) S. E. T. D. says: Does a pendulum of hould be the weight of a ball to a pendulum making
ne beat in a second? A. Any welfht will answer if ne beat tn a second? A. Any
he mechantsm 1 is adapted to it.
(70) T. C. says: I have built a small pleas. es, depth of holose feet to inches. Cylinder is $6 x 5$ Inch. s, and boilier 6 ox 36 Inches, with 130 tubes 114 fiches in
dameter and 2 feet long. I drive a 30 inch Delamate wheel. I have driven her 6 miles agalinst a flood tide in 4 minutes, with ha pressure of 1301 bss. steam. I propose
of lengthen her. How many feet should I add so as to to lengthen her. How many feet should I add soas to
get the utmost poossibe speed out of her?
A. We 5or 6 feet, and probably the presest screw would and
wer. 2 Will the boat be as strong as it was befort being lengthened? A . You can make the boat as strous as before by proper construction. 3. Am I required by
law to have alcensed engneer and pilot? A. It will
and en necessary to have a licensed engineer and plot,
$\underset{\text { earning }}{\text { (71) }}$ A. H. Kineering, soth practically and theoretical
 nology one of the best. After h1s graduation, it would
ve well for him to enter a general machine shop and ork there for some time.
(72) C. P. N. asks. How is fermentation that it will sparkle when filled into the glass? A. By
 of an oradary porousvesse of unglazed earthen ware,
nto which is placead a plate of carben which is surround ed by a mxxture of carbon and peroxxde of manganese, The cup, thus prepared, is placed in a glass vessel tur eup, thus prepared, is placed tha a plass vessel,
surounded with a strong solution of chloride of am.

Minerals, etc.-Specimens have bebc re ceived from the following correspondents, wid examined with the results stated:
A. B. C.--1t 18 muscovite. It contains no silver.ine. No. 3 ts quartz and tourmalline. They containno silver.-R. H. C.-No. 11 s red hematite. No. 2 is horn.
biende. No. 3 is ison pyrites.-A. C. B. A qualita. tive analysis of your mineral shows the presence on
oxide of iron, chlorine, sulphuric acid, soda, lime,mag nesta, and carbonic acid.-J. L. B.- It is tremolite.-J.
E. B.-It is not red but vellow ocher, with a certa. ercentage of clay. You must have it properly ana. yzed before the value per tun can be biven - C. P. D.
-4 qualtitive examination showed that, while the pecimen sent conslsted of a constderable amount of hydrated sesquioxide of fron, yet it also had a large
amount of tnsoluble: earthy matter, and we should
 en necessary to make a further analysis and determine ineercentage of iron present.-We have recelved

E. R. . M. \& P.' W. ask: What will destrov solved ?-H. P. sass: A lady friend of mine has a a apir
of scissors, which she uses constantly, and which were used m her mother ifty years ago. The polish upon came from the factory. On the con trary,a pair of very
beautitul scissors, whose original polsh was as perfect beauttrul scissors, whose origitnal polish was as perfect as that of the old ones,and which were presen ted to her
wo years a a o, are dull and tornised two years ago, are dulland tarnighed. She showed me
also a surgical knife that was brought orer at the same time as the scissors; nothnng could be more beautifu
than the poish, which neither time nor use has dulle while some more modern instrumen ts require constant attention to keep them clean. Ca
J. H. asks: How can I weld steel?

COMMUNICATIONS RECEIVED

The Editor of the Scientific American cknowledges, with much pleasure, the re ceipt of original papers and contributions 'rpon the following subjects:
On Developing a Country. By T. H. B.
On the Szaroch. By C. R. S.
On a Friction Brake. By W. G.
On constant Batteries. By L. B. also en
ing:
c. M . ng:
M. - E. I.-R. R. R.-J. H.-A. Y. P.-P. R. G.-
C. G.F. Q.-R. I. B.-A. G.-C. H. S. D.

HINTS TO CORRESPONDENTS.
Correspondents whose inquiries fail to ap pear should repeat them. If not then pul lished, they may conclude that, for good rea sons, the Editor declines them. The addre.ss of the writer should always be given.
Enquiries relatiag to patents, or to the pa tentability of inventions, assignments, etc. will not be published here. All such ques tions, when initialsonly are given, are thrown into the waste basket, as it would fill half of our paper to print them all; but we generally take pleasure in answering briefly by mail if the writer's address is given.
Hundreds of enquiries analogous to the ollowing are sent: "Where are computation tables published? Who sells horseshoe magnets? Who makes calculating machines! Where can good washing machines be obtained? Who sells a rapid knife cleaning machine?" All such personal en quiries are printed, as will be observed in the column of "Business and Personal," which is specially set apart for that pur pose, subject to the charge mentioned at the information canin this way be expeditiously obtained.

Index of Inventions

por whice
Letters Patent of the United States were grantrd in the wher ending October 13, 1874,
and mach bearing That data
$\overline{\text { Alloy, metallic, H. W. W. Wright.................... 156,007 }}$

Bale tie, cotton, J. Adams

Bed bottom, J. T. Elwell
Bed bottom, D. IIfestand
Bed bottom
Bed bottom, L. Traber....
Bed botom frame, F...
Bed, of fa, f.LTving
Boller fededer, H. Howe............
Boiler indicator, steam, H.
Bonliers, making wash, Wells \& Bent
Bolt-threading die. H. H. Morgan
Bone black, manufa
Boots, inlay for sandal T. 0
Boots, inlay for sanda1, T. Owens..................
Borax, etc.,from water, separating, O. Holden.
Bottle stopper, W. E. Hawkins...............
Bottle stopper, W. E. Hawk
Box, domino, w.'J. Cralg.
Bracelet,S. S. Grant.
Bride rosette and
Buckle, L. Sterne.
Buckle, L. sterne...................................... 155,796
Buggy, spring board,
15.
Burial casket, o. M. Allen.......
Burner, lamp, W. N. Weeden...
Butter box, S. Boyd
Butter tubs, fastening co vers to, Barney et
Capstan, power, Manton \& Remington......
Car brake, W. C. Shearer.
Car coupling, H. G. P. Jenntngs
Car coupling, A. Neel.
Car coupling, M. J. Roaci..
Car coupling, F. W. Rowe
Car coupling, M. P. Scott.
Car coupling, J. sherman.
Car coupling, J. B. Stamo
Car coupling, I. R. Titus.
car coupling pin die, C. H. Williams
Car starter, W. R. Land
Carbureter, A. C. Rand.
Card-settin \propto machine, A.
Carriage, child's, S. P. Ca
Carriage wrench, T . Blodget
Cartridge, J. Orcutt....
Cartridge loading implement, T. L. Stur
Cartridge shells, annealing, A.C. Hobbs.
Caster, table, D. Sherwood (r).............
Cartridere shells, annealing, A.C.

Casters, wire wheel for, w. F. Collter.
Chairs, foot rest for, J. Wayland...... Cbairs, spring bottom for, E. Savoral.
Chopper and cultivator, C. B. Clgopper and cultivator, C. B. Harrison
Cigar bunching machine, B. H. Meyer... Clamp mold, F. C. Miller Clamp board for elliptic springs, R. Vose.
Cl1pping machine, animal, w. S. Burgess Clod crusher, R. R. Redfield. Clothes pounder, F. H. Perry. Cooler, beer, H. W. Belns.
Cornte tool, s. Ferris...
Corpse cooler, P. Weber
Cotton scraper, F. Sandlit
Currents, creating art
Curry comb, c. B. Rogers.
Dairy vessel, F. D. Ston
Dial, sun, D. B. Scoffel
Dorr check, D. Gundelfinger.............
Drilling machine tripod, J. B. Waring
Jummy, N. Ward
Elevator, dress, E Stewa
Englne, steam, R. Eickeme
Floor beam, J. Skeen....
Furnace, heating, Brishop $\&$ Alke
Furnace, steam boller, C. D. Smitth
Gas, illuminating, w. M. Jack son
Gate, farm, W. R. Jenkins, Jr.......
Glass, manufacture of, H. Perctval
Governor, steam, J.D.Lynde
Grain cleaner, S. B. Johnson
Grain, unloading, D. A. Morris......
Granevines, training, J. B. Tilliggh
Gra

Grating cellar, A. Wissle

Hammer, 'power, A. L. S. Chenot....
Harness draft equalizer, E. W. Davis
Harrow, F. Donohue.....
Harvester, C. W. Parker.
Harvester rake, N. Cari....
Harvester rake, W.K. M.lle
Hats, package for, J. C. Bu
Hog trough, J. H. Hunter...
Hoisting machines, brake for, E. Benjaml
Hook, snap, W. E. Spark9.
Knife, splitting, Gerling \& Broderick Lamp collar, W. B. Carrington
Leather, burnish for, J. Clausen Leather-pebbling machine, M. Dolan Lighter, head light, G. M. Da vis.....
Lock furniture shield, J. P. Adams. Loge, devise for sorting, L. W. Pond Lounge, N. H. Borgfelat Mash machine, SchImper \& Immen
Measuring instrument, distance, J. B. Thomas Mill tram, F. G. Wallac

Molding machine, 0 . Meyer
Moldings, machine for dressing, J. C. Brando Motor, hydraultc. W. O. Wakeffeld..
Padlock. J. Adams... Padlock. J. Adams,
Paper pulp digester, W. F. Ladd.
Paper-ruling machine, J. Tregur Pavement, iron, G. R Snow Photographice screen, H. Hamme.....
Plano pedal attachment, s. W. Blak Planchets, ett., cutting, F. M. Huntingto Planter, cotton, Remsen \& Russe
Planter, cotton, O. H. Trout...... Planter, seed, L. S. Connor
Plow, gang. Howes, Dorr, \& Webste
Plow, walking, T. F. \& W. Vandegrif
Yocket Implement, compound
Press, screw, C. W. Creenshaw.............
Press, screw, c. W. Creens and hydraulic, J. F. Taylor (r)
Printing patterns, J. D. McDonal
Pump, E. Buzby
Pumps, bucket for chain, A. W. Newhall Radiator, steam, A. A. Griffing
Radiator, steam, W. H.
Raft sllde, J. Viles, 2d.
Ra1lway crossing, w. J. Morden
Railway signal, electric, Tesse
Rallway 8 witch. F. W. Collins..
Rake, horse hay, B. Owen..
Rein button, C. E. Haynes.
Roll for rolling shafilng, disk, M. Hoagland
Saddle seat, spring, J. L. Sommerville.
Saah fastener, P. Bradford
Sash fastener, W. R. MIll
saw set, J. Legget.
Sawing ming and filing device, w. Webe
Sawing laths, machine for, B. F. Haley
Scaffold, M. Perkins
Scale stock frame, S. Hetilield
Scoop, cart-loading, A. Vreeland
Screw-threading rod s, R. Boeklen
Scrubber and mop combined, G. Pirrung Seat and table, folding, W. Teting Separator, seed, W. E. Lee

Sewing machine, O. s. Haza

Sewing machine attachment, J, W. Robards Sewing machine, boot, H. Dunham, Jr. (r).....
Sewing machine quilters, w. H. Null.....155,885, Sewing machine take-up, J. V. D. Eldredge (r)
Sewing maehine trimmer, w. H. Springer (r) Shaft coupling J F ,
Shank cutting machine, I. Frechette
Shingle machine, F. A. Huntington
Shoe, S. A. West
Shutter fastener, D. F. Hutehingon,
Sifter, coal and ash,H. A. Luscomb

\section*{$9 |$| Sol |
| :--- |
| Spl |
| Spl |}

 pta no clamp, called "The clumax Cloches Pin." oct.
13, 184 .

Crane, Newton, Mass.. U. S ., and E. Rodgers, Boston
Mass Mas.. U. s . Improvements in electro-telegraphic grapherecence repeaters, called "Electro-Tele graphlc Non Interference Repeater.
3.g82.-Wm. Cahll, Syracuse, onondag U.S. Improvement in combtned reveritible kneeling Kneelling and Foot Bench." Oct. 13, 1874.
,938 - M. Attenborough, Sherbrooke, P. Q. Improve ments on a machine for ventilating rooms, called

13, 1874.

3,934.-W. T. Bunnell and A. G. Ronan, Ottawa, ont
Improvements on clothes wringer, called "Bunnell \& Ronan's Clothes Wringer." Oct. 13.1874.
3935.-H. A. Whtting. New York city. U4.
(.935.-H. A. Whitting. New York city, U. S. Improve called 'Whiting's Machine for Binding and Wirlng Hat Frames." Oct. 13. 1874.
3,936.-J. Abell, Woodbridge, York county, Ont. Improvements in threshing machines, called "Abell's
Improved Revolving Grate." Oct. 13, 1874. 3,937.-H. C. Kerstine, Cleveland, Cuyahoga county, \mathbf{o}, Grate Bars." Oct. 13, 1870.
Improvem. Baird, Geneva, Ontario county, N. Y.,U.S carrfageme tops, called "Baird's Concealed Jointed Top
cor Brace." Oct. 13, 1844.
940.-H Gnosill
faucets, called "Gnostly, Improved Beer Fin bee Oct. 13, 1874.
941.-W. H. Cowell, Buffalo, Erie county, N. Y., U. S
Improvements on games to be played with picture card B,called "The Puppet Show of Punch and Judy set to Cards." Oct. 16, 1874.
an2.-E. Cliff and R. Vase, New York city, U. S. Im.
provements in elliptic spring, called "Cliff's Eiliptic
Spring." Oct. 16, 1874.
3,943.-J. Eaton, Mill Island, Sidney Township, Ont. Improvements on rall fences, cat
Rall Fence." Oct. 16, 1874.
.-Jacob Shupe, Berlin, Waterloo county, Ont Improvements on knives for straw-cutting machines,
called "The Sickle Edge-Cutting Knffe." Oct. 16,
3,945.-S. K. Ellts, Wallham, Middlesex county, Mass., "Ellis' Nonparell Skirt Supporter." Oct. 16, 1874. 3,946.-A.D. Cable, Montreal, P.Q. Improvements on lifting jacks, called "A. D. Cable's Improved Jack." Oct. 16, 1874.
$917 .-G$.
E.
county, Engering, Lockleys, near Welwyn, Hert of rails for rall tramways, etc., and on rall joints fo the same, called "DerIn
Joints." Oct. 16, 1874.
3,948-D. B. Herrington, Detroit, Wayne county, Mich chines and other mechanism, called.
Escelsior Motor and Brake." Oct. 16, 18
Escelsior Motor and Brake." Oct. 16, 1884.
at9.-E. A. and C. W. Jones, Centerville, St. Joseph county, Mich., U. S. Improvements on fruit dryers,
,950.-J. H. Baner, Scranton, Luzerne county, Pa
and B. G. Morgan, Hyde Park, Luzerne county, Pa.,
U. Improvements on process for treating sound-
ing boards, called "Baner's Process for Treating ing boards, called "Baner's Process for Treating
Sounding Boards." Oct. 16, 1874. 3,931.-E. and C. Gurney, Hamilton, Ont., assignee of ing ranges, called "Gurney's Improved Cookin Range." Oct. 16, 1874.
,952.-A. Chambers, Marylebone Road, Parish of St.
Marylebone, Middlesex county, England. Improve ments on rallway slgnaling and apparatus therefor, called "Chamber's Improved Rallway Signal Appara tus." Oct. 16,1874.
3,953.- R. McIntosh, Montreal, P. Q. Comblned refrig erator and show case, called
Show Case." Oct. 16, 1874 .
s,954.-C. A. Hussey, New York city, N. Y. Improve
ments on journal bearings, calle Bearing. Oct. 16, 1874 . Beas.-C.A. Hnssey, New York city, U. S. Improve
ments on self-supplying mucllage brushes, called ments on self-supplying mucllage brushes, calle
"Husses's Self-Supplying Mucllage Brush." Oct. 16, 1874.
$3,956 .-C$ U. S. Improvements, Detrott, Wayne county, Mich. Wolverine Billiard Table." Oct. 16, 1874.
county, Oameron, Colborne Village, Northumberland "Cameron's Horse Rake." Oct. 16, 1874 .
S.-A. S. Brooks, Ovid, Clinton county, Mich., U.S Halter." Oct. 16, 1874.
959.-G. W. Lloyd, Detroit, Wayne county, Mich ., U.S.

Process for hardening bricks, called "Lloyd's Proces
for Hardening Bricks." Oct. 16, 1874.
,960.-G. Stackpole, Elizabeth, Union county, N. J.
U. S. Improvements in steam flash engines, etc called "Stackpole's Steam Flash Engine." Oct. 16,
1874. . H. Fenwick, Boston, suffolk county. Mass U. S. Improvements on skirt borrds, etc., calle 1874. "Canada Car Coupling." Oct. 16, 1874.
county, Ont. McGee, East Oxford Township, Oxfor ccunty, Ont. Improvements on machines for making
bricks, called "The Dominion Brick Machine." Oct 16, 1874. H. Ashcroft, Lynn Oity, Mass., U. S. Im provement in safety valves, called "The Ashcroft Safety Valve." Oct. 16, 1874.
3,965.-T. Jones, Harewood House, near Tavistock,Eng land. Improvements on the art or process of prevent. purposes, and for rendering the same uninflammable, called "Dr. Jones' Process for Preventing Dry Rotan Decay in Timber, and for
fammable." Oct. 16, 1874
fam
mon, Syracuse, Onondaga county, N. Y., U. S. Im
provements on cigar machines, called "Hennaman"
Cigar Machine." Oct. 16, 1884.
,967.-N.Lemizre, Montreal, P. Q. Improvements on mizre's Combined Mortising, Boring, and Drilling Ma chine." Oct. 16, 1874.

daduextisementz.

EMPLOYMENT.

MACHINERY
IRON \& WOOD WORKING MACHINERY
Cold Rolled Shafting,
 GEORGEPLACE \& CO.,

MPORTANT FOR ALL LARGE CORPO-

T WILL PAY-Manufacturers and Capi-

FOO'L LATHES WITH JIG
PLANING \& MATCHING,
 FIRST CLASS STATIONARY ENGINES

OTIS'

BAIRD'S gooks

For practicd Men.
My new, revised, and enlarged Catalogue of PRACTI-
CAL AND SCIINTIFIC BUOKS 9 ghages, vo. Will be
sent, free of postage, to any one who will favor me with CAL AND SCLENTIFIC BUOKS-96 pages,
sent, free of postage, to any one who will favor me wit
ais address. HENRY CAREY BAIRD, 406 WALNUT STREET. Phfladelpht

BOOKS

Architecture and Building.

 Smeaton-Builders' Pocket Companion, con-

 HENRY CAREY BAIRD

406 WALNUT STREET. Philadeln

The best and cheapest Paint in the he Trade everyyhere. PRINEOX. For sale by
PANNT CO., Manufacturers, 96 Cedar St Mew CAUTTON.-Purchasers and consumersare cau-
 bear our name and trade mark
package Send for a circular.

W ANTED--An Elevator Engine, either

[^0]
A Rare Chance to Advertise.
 Cheapest and Best Mode of Introducing NEW MACHINERY AND INVENTIONS.

ToAdvertisers.
During the month of December, we shall pubish a special edition of 100,000 coples of the SCIENTIFIC AMERICAN, which will be mailed in separate
United States, Canada, and adjoining provinces.
Itis intended that a copy of the paper shall reach the princtpal manufacturers, workers in lumber and
on, rallroad shops, and the works of other mechanical and chemical industries in the United States Advertisements will be taken for this extra edition, at the following rates: namely, 75 cents a line
inside, and $\$ 1.50$ a line on last page. A few notices, in the Business and Personal column, not exceeding inside, and $\$ 1.50$ a line on last page. A few notices, in the Business and Personal column, not exceeding
four lines in length, will be inserted at $\$ 150$ a line. This affords an unusually favorable opportunity for four lines in length, will be inserted at $\$ 150$ a line. This affords an unusually favorable opportunity
advertisers to reach a class of persons not accessible in the ordinary cbannels of advert'sing.
names have bees selected with care, and the publishers guarantee the number 1ssued to be full 100,000 ; postage on these copies, which is Two thousand doinars, will be prepaid, thus insuring the prompt for warding of the papers to their destination.
Advertisers will bear in mind that the
ratuitoulisers will bear in mind that this announcement is for a Special Edition, which is to be circulated if ordered in the extra, will be seen by entirely different persons.

ENGRAVINGS

A few illustrations and descriptions of machines or articles of utillty, whether they have already appeared adDRESS

MUNN \& CO., Publishers,
37 PARK ROW, NEW YORK.
B RASS \& STEEL SCREWS, MINER'S

Niagara Steam Pump. OHAS. B. HARDICK, ${ }_{23}$ Adams it., Brooklyn, $\mathrm{N} . \mathrm{Y}$. punchina

 $\overline{\mathbf{W}}$ OOD.WORKINQ MAUINERY GENV.
 $\$ 5$ o $\$ 20 \begin{gathered}\text { per day at home. Terms Free. Addrese } \\ \text { Gro. Stinsons } \& ~ C o ., ~ P o r t i a n d, ~ M a i n e . ~\end{gathered}$

THE Union Iron Mills, Pittsburgh, Pa

 Planing and Matching

Iadies at Home
 H. WESLEY PERKINS,
"SCIENTIFIG" ENGRAVER 31 PARK ROW,

LUDLOW VALVESS

COLD ROLLED SHAFTING:

BLAKE'S PATENT

BLAKE Sen STEAMM PUMP

 $\mathrm{O}^{\mathrm{UR} R \text { corviriva for boilers }}$ AND

AIOTHER CHICE!

Fifth and Last Gift Concert Public Library of Kentacky

November 30, 1874

DRAWING CERTAIN at that date.

Todd \& Rafferty Machine Co.

$\$ 10$ to $\$ 1000 \begin{gathered}\text { lnvested } 1 \text { n Stocks \& Gold pays } \\ 200 \text { per cent a month. Send for }\end{gathered}$

R ICHARDSON, MERIAM \& CO

 CRON BRIDGES-CLARKE, REEVES \& CO.
 done on the premises, from ore to to finished bryork
Mustrated Album malled on recelt of 75 cents. $\$ 77 \begin{aligned} & \text { A WEEK to Male and Female Agents, in thetr } \\ & \text { locality } \\ & \text { FREE. Costs NOTHING } \\ & \text { P. O. VICEERY to try it. Particuars }\end{aligned}$
\& CO., Augusta, Me.

 for all wo sond viluabio prochaxit or| | |
| :---: | :---: |
| ine, by measurrement. as sthe eleterer press. Advertsiement
 | |
| | |
| | |
| | |
| | |
| ASPHALTE ROOFING FELT. | |
| | |
| | |
| | |
| | |

 Important to the Trade.

 L. FEUCHTW N NGER \&

AN Ex Meliono Exchiva
 bater Platios

AMechanicalsensation

 Minum \& Co.'s Patenit Oficess.

Established 1846.

The Oldest Agency for Soliciting Patents in the United States.
TWENTY-EIGHY FEARS' EXPERIENCE.

$$
\begin{aligned}
& \text { MORE PATEENTS have benn secerred trough } \\
& \text { this agency, at home and abroad, than through any orther in }
\end{aligned}
$$

$$
\begin{aligned}
& \text { this agency, at home and abroad, than through any other in } \\
& \text { he world. } \\
& \text { STXTY THOUSAND inventors have availed }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SIXTY THOUSAND inventors have availed } \\
& \text { themselves of Munn \& Co.'s services in examining their in- }
\end{aligned}
$$

ventions, and procuring their patents.

They employ as their assistants a corps of the most ex draftsmen that can be found, many of whom have been seected from the ranks of the Patent Office.
MUNN \& CO., in connection with the publication of the
Scientific American, continue to examine inventions, confer with inventors, prepare drawings, specifications, and ssignments, attend to filing applications in the Patent Office
paying the government fees, and watch each case step paying the government fees, and watch each case step by
step while pending before the examiner. This is done through their branch office,corner F and 7th Streets, Wash ngton. They also prepare and file caveats, procure design
patents, trademarks, and reissues, attend to rejected cases prepared by the inventor or other attorneys) procure copy
rights, attend to interferences, give written opinions on matters of infringement, furnish copies of patents: in fact
attend to every branch of patent business both in this and attend to every branch of patent business both in this and
n foreign countries. Patents obtained in Canada, Ensland, France, Belgium
Germany, Russia, Prussia, Spain, Portugal, the British Germany, Russia, Prussia, Spain, Portugal, the British
Colonies, and all other countries where patents are पolonies, and all other countries where patents are
sranted oll inventions patented through this Agency, with the
name and residence of the patentee. Patents are often sold, in part or whole, to persmns attracted to the invention
sater A pamphlet of 110 pages, containing the laws and foll diections for obtaining United States patents, alsoa circular
pertaining exclusively to Foreign Patents, stating enst for each country, time granted, etc., sent free

Publishers SCIENTIFIC AMERICAN,
Branch Offick-Corner Fand 7th Streets

THE NILES TOOL WORKS

 VIIII (7) IIITIT MIIIIIIIIIIIIIII Cincimanai Industrial Exposition 1874, For BEST MACHINISTIS TOOLS over all Competitors. $G O L D \quad M E D A L S$

SUPER-TEATERS

Pyrometers. For testing Ovens, Boil Super-heated Steam, Oil Stills, \&c. Address HENRY W. BULKLEY,
PORTLAND CEMENT, a th beat London Manntactirer. Firoratio by

IRON PLANERS

Mill Furnishing.Worlss

TRENTON, N. J. GREAT REDUCTION ${ }_{\text {ix }}$ PRICES movable-toothed CIRCULARSAWS. E-SEnd or new Prise List. at

 W Gold W ${ }^{\text {Previnea to }}$
S W S

WIRE ROPE.

 MURRLLL \& KEIZER, 44 Hollidarst. Ba MACHINISTS TOOLS, Lucius


```
                                EMERSON, FORD& CO.,
```

PORTLAND CEMENT

Machinists TooLs. OF ALIL RINDS N.Y.Steam Engiue Oic. 98 Ohambers St.
Bogardus patent univensal me

GARTFORD

STEAM BOILER
Inspection \& Insurance COMPANY

Franklin, v. P\% J. M. Alaew, Pres

HUSSEY, WELLS \& CO., PITTSBDRGH, PA
CAST' STEEL,
 cast Steel teeth

SCIENTIFIC AMERICAN. FOR 1875.
the most popular scientific paper IN THE WORLD.
THIRTIETH YEAAR.
FOLUMT XXXII.-NEW SERIES, The pubishers of the SCIENTIFIC AMERICAN beg a announce that on the first day of January, 1875, ,
new wolume commences. It will continue to be the and of the publishers to render the contents of the new
or decessors.

To the Mechanic and Manufacturer! No person engaged in any of the mechantical pursuits sind. Every number contans from six to ten engraving of new machines and inventions which cannot be found in any other pubitcation.
The SCIENTIFIC AMERICAN II devoted to the Inter ests of Popular Sclence, the Mechante Arts, Manufac
tures, Inventions, Agriculture,Commerce, and the indue trial pursults generally; and it 18 18 valuable and instrue tive not only in the Workshop and Manutactory, but als 1n the Household, the Library, and the Reading Roon
By the new law, the postage must be paid in advance by the new law, the postage must be parc in advance
in New York, by the publishers ; and the subscriber.tuen receives the paper by mall free of charge. TERMMS.
TERME
Onecopy, one year (postage included)....
one copy, siz months (postage included). One copy, six months (postage included).......
One copy, three months (postage included). One copy of Sctentific Amertcan forone year,and One copy copy of engraving, "Men of Progress"..
one One copy of Sclentific Amertcan for one year,and
oue copy of " Sclence Record" for 1874..... 550 Lemit by postal order, draft or express,

MUNN \& CO.,

[^0]: CH゙ FORSTEP AND FLAT

