A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY AND MANUFACTURES.

AUTOMATIC FIRE GOVERNOR FOR GAS WORKS.
The invention illustrated in the annexed engraving consists in a common gas governor, connected with the outlet of the hydraulic main, and also with the dampers in the chimney and under the fire. The arrangement is such that as soon as the engine does not exhaust fast enough, a slight pressure, being left on the retorts, is communicated to the governor, causing the latter to rise, thus opening the dampers at both of the above named points, and putting on all draft until the requisite speed is obtained. The pressure then boing removed, the drum descends, closing the dampers, and preventing the fire making more steam until a future supply is once more required.

The disposition of the simple mechanism is clearly shown in our illustration, so that detailed reference to the various parts is unneeded. It will be seen that, as the governor is controlled by the pressure of gas on the hydraulic main, the amount of steam will vary, according to the make of gas-whether it be ten, fifty, or a hundred pounds-and all without any attention on the part of the men, except to replenish the fire.
The Yonkers (N. Y.) Gas Light Company have had the apparatus in successful operation for several months past, where it can now be inspected. It is claimed to dispense with the engineer in many places, dispense with the engineer in many places,
besides performing his work in a better besides performing his work in a better
manner; to save fuel, as burning to waste manner; to save fuel, as burning to waste
is prevented; to preserve the boiler, since the door need not be opened except when the fire requires renewal, and to obviate the use of compensators and engine governors.
The invention was patented through the Scientific American Patent Agency, August 4, 1874, by Mr. James Slade, of Yonkers, N. Y., who may be addressed for further information.

IMPROVED COAL SCREEN.

The invention which we illustrate herewith will be found a very convenient device for use in coal yards, since it allows of the separation of the coal from the adhering dust and small particles with much less trouble to the workman than is necessitated in employing the orlinary screen. It consists of a box having an inclined open front portion for the reception of the screen, which last is supported by the projecting ends of its side pieces resting against the bottom portion of the box, while its upper part is sustained by levers, A. These levers are pivoted to the side walls of, and inside, the box, and are adjustable so that the screen may be inclined to any angle, as required by the quality and size of coal, ore, sand, or other material to be treated.
The rear portion of the box has an upper hinged door, B, which is provided with suitable latches, and there is also a detachable door, C, secured by hooks and staples or other convenient fastenings. The apparatus is mounted upon trucks, so as to render it readily transported from point to point in the yard.
As the material is thrown against the screen, the fine stuff falls through and into the bottox of the box. When a quantity has accumulated, the upper door, B , is opened, and a rake is introduced to draw the screenings to the rear of the receptacle. As soon as the latter is full, the device is wheeled away to the dumping spot, the lower door also removed, and the contents withdrawn.
This simple arrangement prevents the laborious carrying of heavy screens about a Fard, and, besides, preserves the yard free from unsightly heaps of dust and refuse to collect. Since there is no possibility of anything passing through the screen, except smail fragments, the waste of good coal-which often happens through pieces from the acreened heap bscoming mixed with the sifted stuff, and requiring too great a loss of time to pick out separately-is avoided. The doors may be arranged at the side, or a trap may be provided at the bottom, as most convenient.
Patented through the Scientific American Patent Agency, by Mr. Henry L. Leach, of foot of E. 36th street (E. R.), New York city, who may be addressed for further information.

LEACH'S VOAL SCREEN.

sidering this, we must rem omber that a large amount of waste occurs from hewing, and from leaving the upper parts of trees, some of whicu are used as firewood, the re mainder being a total loss. It must also be borne in mind that the demand for timber by railroads, besides for ties and for fuel, is very great, includ ng fencing, bridges, buildings, and structures of various king of that the risk from fires is exceptionally great, and that rur requirements in this direc-
tion are increasing even more rapidly than our supplies are wasting.-National Car Builder.

A. New Plaster Bandage.

A surgeon connected with the Southern Dispensary, in Brooklyn, N. Y., has recently invented a new method of ap plying the plaster splint, which, according to the Tribune, promises to be an important improvement. A common merino sock is drawn upon the foot and leg. It may ex tend as far up as is necessary to include the fractured locality. A small yope is run down the back seam in the center of the leg, around the heel and over the toes, returning up the middle of the instep and front of the leg. Six or seven pieces of flannel are then cut out to fit the leg and foot, allowing for shrinkage. The ends of the bones having been carefully adjusted, the stocking, upon which the rope has been attached as described, is drawn upon the foot and leg. The flannels are soaked in warm water and applied, the plaster of Paris paste being rubbed in with layer after layer. Aftor the last layer has been applied, the plaster is allowed to set. When the plaster has become hard, the splint is perfect, and the patient can get about, on crutches, very comfortably. If the leg. swells, and it is necessary to the leg swells, and it is necessary. to remove the side of three minutes. The cord that has been run around the stocking now forms a line of division in the splint. To remove the splint, all that has to be done is to slip out the cord and slit up the stocking along the line where the cord was. Then the splint, divided in halves, can be removed as though it had been laid upon the limb to obtain a cast. Considerable time is thus gained by using this method of applying gained by using this method of applying
the plaster splint. When the broken limb the plaster splint. When the broken limb
becomes infiamed, it algo is extremely painbecomes infiamed, it almo is extremely pain-
ful and very tender to the touch. The ful and very tencer to the touch. The
slightest jar sends a thrill of pain through States, and $2,681.3$ in the Pacific States. Upon these roads \mid the body of the patient, who bas sometimes been obliged to locomotives were running, and a large proportion of them be chloroformed to enable the surgeonto remove a plaster used wood for their fuel. The number of ties used varies splint applied with a bandage. By the new method, the limb from 2,200 to 2,800 per mile. If we take 2,500 as a mean, we find that 212,692,500 pieces of timber, eight feet long and from six to eight inches between upper and lower surfaces, are required to supply this single item,
The durability of ties varies with the kind of timber, soil climate, and use, ranging from four to ten years. Taking six as an average, the amount required for annual supply must be $35,448,750$ pieces, or $94,530,000$ cubic feet. In con-
 need hardly be moved or touched.

Natural Gas for Fuel

Messrs. Rogers \& Burchfield, the makers of a well known brand of sheet iron, at Leechburg, Pa., produce weekly about 70 tuns of such iron; to make this amount 9,100 bushels of conl, or 140 bushels per tun, would be required if they used coal for fuel. They have now been using gas for seven months, procuring it from an abandoned oil well, 1,250 feet deep, situated about 1,000 feet from the works, and from which the gas is conveyed by a three inch pipe. The branch pipes leading to each furnace are half an inch in diameter. They have one battery of four boilers, driving an engine of six foot stroke, thirty inches in diameter, at the rate of forty five strokes per minute, which furnishes power for six pairs of sheet rolls and one bar train steam being taken from the same boilers to drive two hammers; another boiler furnishes steam for a blowing cylinder, which supplies the blast for seven knobbling fires and one re finery; another boiler furnishes steam for a small engine driving the rolls for the manufac ture of tin plate. This is all done by gas, which is also applied directly in five puddling furnaces, in which the waste is three or four per cent less than with coal, and the quality of the iron is greatly improved ; they also furnish gas for four sheet furnaces, and find it much superior to coal, the waste in these furnaces being about five per cent less than with coal; and further advantages gained are softer iron and a finer surface to the sheet. They have three large annealing furnaces, where they anneal in airtight boxes, putting about ten tuns in each box, requiring about ten hours to complete the process of annssing, at a saving of about to complets the process of annsaling, at a saving of about ment the pots of tin, into which the sheets of iron are dipped are also heated by g.as.
To use gas there is no change required in the construction of puddling furnaces, except that they use the patent water necks. These necks are an absolute necessity in using gas for fuel, as without them the intense heat, generated by the
gas, destroys the lining of the stack and melts off the dampgas, destroys the lining of the stack and melts off the damp-
ers as fast as they can be replaced. The grate bara, the ma: ufacturers stute, never burn out, and the puddler's tools last a bout three times as long as they did when coal was used In furnaces where the water necks canot be used, they are compelled to use a jet of steam to leasen the heat.
Their producti n tas increased about tiorty three per cant since thry began to use gas, and tue iron made commands from $\$ 10$ to $\$ 20$ per tun more than the same class of iron manufactured at the Apoilo works, where they use coal, the iron being made from the sawe class of atock. Tbese facis were communicated to the American Iron aud Steel Aesocia tion.

Sumbitir Smerian.

MUNN \& CO., Editors and Proprietors. poblishel weerta a
NO. ST PARK ROW, NEW YORK.

GAIN FROM THE USE OF FEED WATER HEATERS, In an ordinary boiler, one pound of average coal will pro duce by its combustion between eight and nine thousand unts of heat that are available for generating steam. Sup posing the feed water to enter the boller at a temperature of 32° Fah, each pound of water will require about 1,200 unita of heat to convert it into steam, so that the boiler will evapo rats bstween $6 \frac{2}{3}$ and $7 \frac{1}{2}$ pounde of water per pound of coal. Better resulta than these are often realizad, espicislly in the case of terte, but the figuren given above are believed to cor reapord with those of oroinary practice. The amount of heat required to convert a pound of wathr into steam varie with the pressure, as will be seen by the following table
Urits of beat required to convert ong pound of water, a the temperature of $32^{\circ} \mathrm{Fah}$, into steam at different pres sures:

Pressure of pream in pouna pers in inch, by gape.	Units of heat.	Pressure of steam it poundener sq. nch, by gage.	Units of heat.
1.	.. 1,148	10.	1,155
 1,161	30.	. 1,165
40. 1,169	50.	... 1,173
60. 1,176	70.	... 1,178
80.	... 1,181	90.	... 1.183
100. 1.185	110.	. 1,187
120. 1,189	130.	... 1,190
140. 1,192	150.	1,193
160. 1.195	170.	. 1,196
180.	... 1,198	190..... 1,199
200.....	... 1,200		

essary to convert it into steam can easily be computed Suppose, for instance, that its temperature is 65 , and that it is to be converted into steam having a pressure of 80 pounds per square inch. Tae difírence between 65 and 32 is 33 ; and subtracting this from 1,181 (the number of units of heat required for feed water baring a temperature of 32 '), the remainder, or 1,148 , is the number of units for feed wate with the given $t \in$ mperature.
In the use of an ordinary non condensing engine, in which he steam is exhausted directly into the atmosph re, eacl pound of steam, as it \boldsymbol{s} scapes, carries off the greater prirt of the ir at that it haz received in the boiler. This can be rendere plain by an example: Suppose the feed water enters the boiler at a temperature of 70°, that the pressure of steam is 90 pounds per \&quare inch, atd that the back pressure in the cylinder, urder which the stesm is exhausted, is 1 pound p. r \&quare inch

Sab:ract.
Difference.
Units of heat required to convert 1 pound of water at in to steam at 90 pounds pressure. Subtract.
Units of heat required to convert 1 pound of water
at 70° into steam of 90 pounds pressure.
Units of beat in 1 pound of steam at 1 pound pres
sure, from water at 32°
Sabtract.
Units of heat imparted to feed water, that are carried off by each pound of exbaust steam.

Multiply this by 100 .

1,110
Multiply this by 100
11100
which is the percentage of the beat, imparted to the leed water, that is carried off by the exhaust steam.
Taere remains, then, only sbout 3 per cent of the heat, imparted to the water by the combustion of the coul, that is utilized in the engine. This is a rather serious consideration for the steam user, who may figure up his account with the boiler and engine somewhat after this manner: One tun of coal costs $\$ 6.50$, and evaporates, by its combustion, 15.000 pounds of water, at a cost for fuel of $\$ 0.00043+$ per pound. When the steam resulting from the evaporation of this water is used in the engine, $96.94 \mathrm{p}+\mathrm{r}$ cent of the heat imparted to throwing away exharasted into the air. This is the same as throwing away 14,541 pounds of the water that has beet
traporated, leaving 459 pounds for useful work, so that really each pound of water used in the engine costs $\$ 0014+$ There are very many engimes running today to which this accourt will apply, engines that are sendiog into the air aearly all the heat imparted to the wrater by the fuel. We abowt, in a preceding article, how consid rable saviog would generally result by attaching coodersing apparatus to a non conderising er gine. This cannot alwaye bs dove carried off by the exbaust can be utilized. The mostobvious method is to turn the exhaust steam into vess le throush which the $f \in e d$ water pafses, so that some of its he a may bs mparted to the water, which will then yequire the consump tion of leas fuel for its conversion into steam. There are a
number of heatera in the masket which are guacrateca by number of heatera in the makhat which are guarameca by at the temperature of 212°, and we can state from our own experience that this is not an uncommon refult, while a tem perature of at least 200° abould be realized from the use of asy good heater. It may be profitable to sonsider the effect of ataching such a heater in the case previously cited. The foed water will then enter the heater at a temperature o 70°, and be delivered into the boiltrat a temperature of 200° having had its $t \in m p e r a t u r e ~ i n c r e a s e d ~ 130^{\circ}$ by the exhaust steam, which has lost a corresponding amount of heat. Each pound of water will require 1015 units of heat for its couversion into steam of 90 pornda pressure, instead of 1,145 This, which were needed when tise heater was not in use wis giver a gan of 13 unts of beat for each pound of required when the feed water was pumped into the boiler at a tem oerature of 70 . Each pound of exbaust steam, also iostead of carrying off 1,110 urits of hent into the air, will only take 980 , or $11^{\prime} 71+$ per cent less than it formerly did The accourt previously given will bow figure up as followe The combustion of one tun of coal will evaporate about 16,900 pounds of water, at a coet of $\$ 000038+$ per pourd. In the engine, an amount of heat corresponcing to about 16,300 pounds of the steam is thrown away in the exhanst eaving $6 \subset 0$ pounds for useful effect, at a cost of $\$ 0.0108+$ er pound.
These examples, which correspond well with cases in ordi ary practice, will enable our $r \in a d+r s$ to esimate with tol rabie accuracy the resulta that will be realized from attach ing a leater in any given instance. It will be observed that in the case supposed, no allowance was made for increased back pressure by the use of the beater. This was because the hypothetical heater was properly designed. A good heater does not increase the back pressure in the piston. There are many forms of the apparatus, however, that offer o much resistance to the ercape of the exhavist steam, as to rived from their use. It is easy to see, for ingtance, that if the istroduction of a heater increased the heat of the feed water 10 per cent, but also increased the back pressure so as to call for the expenditure of 12 per cent more fuel, the
arrangement would be anything but economical.

SPECIAL EDITION OF THE SCIENTIFIC AMERICAN.

 ONE HUNDRED THOUSAND COPIES.We shall, during the coming month of D-cember, issue a pecial edition of the Scientific American, aggregating one hundred thourand copies, which will be gratuitously circulated among manufacturers of all kinda, machinists, $\mathrm{m} l l$ owners, and, in brief, representatives of all industries in the United States and in Canada. At considerable out'ay of time and expense, we have procured a list of one handred thousand names, embracing the leading business men of the above importani classes; and to each individual a copy of the Q Cientific American, enclosed in a separate wrapper and prepaid, will be mailed. The item of postage alone will thus cost the large sum of two thousand dollars, and the issue will find its way into every post cffice in the country.
Our motive for printing tivis extra edition, at an outlay of some six thousand dollars we do not desire to conceal, nor could we do so even if such were our wish. Our a.m is to increase cur subacription list; and in pursuance of this ob ject, we take auch means as will enable others beside cur selves to derive b-uffit from the enterprise, in direct proportion to the amoun:s they invest in ite furtherance. To this end, therefore, we propose to admit a few advertise ments. It will yeadily be apprehended that, since the pub lishers are dislinctly pledged to print the large special edi tion above noted, and to mail the same (pre paid) to names ae lected with care and judgment, every person having goods productions, or ideas to bring to the notice of the class above mentioned is here furnished with the means. Moreover, it should be remembered that the names to which we refer are not those of our regular subscribers, but of bueitess men ot aczessible through the urdinary newspaper channels. We would direct especial attention to the fact that, although circulation of 100,000 copies is guaranteed, there is every probability that this will be greatly ex ceeded. Our offer of last year included a circalation of but 60.000 ; but before we had supplied the demand, 120,000 copies were printed and mailed. For this immense excess, we imposed no extra charge upon our advertisers. The same course will be adopted this year. The extra becefit is given freely to those firms who send us advertisements for the sprcial edision.
To the enterprising manafacturers and inventors who ad vertise in our regular columns, and indeed to everybody at all conversant with the ad vantages of a good medium, we beed not point out the benefits to be derived from our propoition. For further particulars, see advertisement on an ther page.

COST OF TUN NELS.

"Ancong the various plans for disposing of the Jones' Falle tream or improving i:s channel, which have been pre sented to the council committee, is one by J. E. Sudler, civi engineer, proposing to divert it by a tunnel frocn a point be yond the city across to the valley of Gwyon's Falls, and thus throw its waters into the middle branch of the Patapaco, or pring Gardens. This tunnel would pass in good part unde Druid Hill Park, atd through a rock formation which, it is believed, lies beneath all the hills in that quarter. Never baving looked to diversion in that direction, and without petending to have examiced into or formed any jucgment in the promiges (the plan lately puggeated by the may or in his special message to the councll for improvement within he city being atill perding), is may yet bo worth while to ir quire into what has been the cost of like tunneling, accom glished in other parts of the world. The apgregate cost of his tunnel for Joues' Faile, the lengilh of which is 16,000 foot, which is a fraction over \$2 per cubic yard. With regard to other tunnels already in existence, their cost is given as folows: The great Mont Celis tunnel cost about $\$ 300$ per ineal foot, including equipment of road, etc. The Kilsby double track railroad tunnel (England), in the construction f which very great difficulties were encountertd from the lapping of quickpands, cost $\$ 26250$ per lineal foot. Bletch ngly turnel, for a couble track raiiroad in Fogland, cost 120. Terre Noire, on the Paris, Lyons, ald Mediterranean railroad, cost but $\$ 50$ per foor ; and the very difficult Hauen tein tunnel, between Basle sind Berne, Switzerland, cost $\$ 183$ per lineal foot. The Hoosac tuosel, though a formation of mica slate and quartz, with working shaft upwards of 1,000 feet in depth, cost $\$ 300$ per lintal foot.
These fuinels were all completed several yeara ago, and be cost per cubic yard of material excavated varies from $\$ 150$ to $\$ 14$. The cifficulice met with in their \in xfcution have led to the invention of improved apparatus, by the use of which the cost of boring, drilling, etc., is reduced from 100 to 300 per cent. The diawond boring mactine wae tho rougbly tested by Captain Beaumont, R. E., in Lapcasbire and Cumberlaud. At Stoughton, the borer reached a depth of 689 feet in two monthe, that could not have beengot at in less tban two years by Land labor. In the Clifton tumeel, Bistol Port ard Channel Dock Railroad, in hard mountain imestone, the drills adranced at the rate of two inches per minute-outside diameter of boring, two inches. The machine advanced at about five times the speed that could be attained by as many min ae could find room to work at a heading. The motoris compressed air. Dynamite is used for blasting, and found to answer admirably. With the aid of these machines the work of turneling tbrough the hardeat eck presents no difficulties of any extraordinaly character and may be executed at a cost verg little, if uny, greater ban the excavation of the same material in open cutting." Taltimore Sun.
To the above, may ba added the cost of that portion of the Underground Railway, in New York city, now near y com Underground Railway, in New York city, now near y com.
pleted, on Fourth Avenue, between 44th street and Harlem
river at 133 d street, a distance of about $4 \frac{1}{4}$ miles. This railway has four tracks, and consists chiefly of open cuts and tunnels, but includes a massive stone viaduct 60 feet wide. 30 feet high at greatest elevation, and abour 6,500 feet long. The open cuts are about 66 fest wide, walls included, and from 10 feet to 14 feet deep, spanned at the street crossings by splendid iron bridges. The tunnels are of three kinds, brick arches, flat iron beam tunnels, and rock tunnels. They consist of three parallel tunnels, one central and two separate side tunnels, all occupying a space under the streets of about 70 feet in width by 30 feet in depth. At about every half mile are roomy passenger stations and waiting rooms, also constructed underground, lighted from the sidewalks. Altogether this is one of the finest examples of underground railway construction in the world. It has been in progress for the past two years, and will be finished in January next. The total contract price of this great work, including stations, bridges, ballasting, viaduct, tunnels, changes of water pipes and sewers, is $\$ 6395,070$, being at the rate of a little under ${ }^{\$} 885$ per lineal foot. Considering the large size, this is a very moderate cost; and for once the city of New York, which pays one half of the bill, has not been cheated or imposed upon.
We recently made a personal inspection of the work from beginning to end, carefully examined all the details of construction, and were much gratified to observe the extreme care taken to render every portion solid and enduring. We shall in our next commence a detailed account of the entire ine, drawings for which have been kindly supplied to us by the officer in charge. These papers will be read with inter est by civil engineers in all parts of the world, as they involve many practical examples of the most recent construction, executed under the supervision of individuals of eminence in the profession.

EXPLOSIVE WOUNDS FROM NON-EXPLOSIVE BULLETS The use of explosive bullets in war is forbidden by international agreement. During the Franco German war, the French were repeatedly accused of violating this humane compact; and the charge, though indignantly denied, seemed to be justified by the nature of the frounds which the Ger man surgeons had to deal with. Where the ball entered, a emall round aperture would be observed, while its course within the body would frequently be marked by a fearful shattering of bones, and its aperture of exit would show a ragged opening that one could thrust his fist in. Only by the explosion of the ball on striking the bone, it was thought, conld such mutilation be possible. The accused have now the full though tardy satisfaction of having their innocence thoroughly established by German investigations.
In a paper read last year before the German Surgical Congress, Professor W. Busch, of Bctin, callea attention to the fact that wounds such as had been attributed to explosive bullets were made by the Chassepôt bullet fired at short range. He explained the phenomenon by supposing that the ball became melted and broken up by forcible contact with the bone, and acted like a mass of shot on the parts beyond. That the ball would be heated by the sudden arrest of its motion, full or partial, could not be doubted; and the spreading of the ball in star shape when fired against an ron target was urged as proof that the heating may be sufficient to melt the lead.
Dr. Augustus Küster was not eatisfied with this explanation, and has since been conducting experiments on gunshot wounds in animals at the Royal Military School at Spandau, the results of which have been published in a late number of the Berliner Klinische Wochenschrift. In makiog the experiments, a large target was placed behind the animals (horses and wethers), so that the condition of the bullets could be observed after their passage through the bodies. The distances were five, twenty, one hundred, and eight hundred paces. The arms used were a muzzle-loading sporting rifle throwing a pointed bullet, the needle gun, and the Chassepôt, Mauser, and Henry-Martini rilles. The animals wer first killed by a volley from all the weapons, and subse quently the carcases were used for further experiments Omitting details of interest only to surgeons, the results o he investigation may be summed up as follows:
on the living and on the dead body. Heretction of bullets on the living and on the dead body. Heretofore the opinion has been that gunshot wounds are more extensive in the living than in the dead body, and that by the wound it can be told whether the injury was done before or after deatha position no longer tenable. Owing to the greater tough ness of the skin of animals, the aperture of exit is not so large as in the human body; the destruction of the flesh and bones, however, is equally extensive.
2. The extent of the destruction is in inverse ratio to the distance, and in direct ratio with the initial velocity of th bullet. The sporting riff made the eimplest wounds. The followed the needle gun, the Chassepôt, and the Mauser riffe, which produced frightful destruction of the bones and soft parts.
3. The destruction of the tissue is produced by the lead becoming heated and broken up, but without being melted. The bullet is mechanically divided, leaving the finer particles of lead in the recesses of the wound, while the fragment of larger size pass out along with pieces of shattered bone flesh, etc. Most of the Chassepôt and Mauser bullets, which have the greatest initial velocity, passed through the animals bodies reduced by one half or more, and greatly altered in shape, making on the target an irregular impression, surrounded by a crown of small pieces of lead, carrying frag ments of bone, muscle, hair, etc. The wounds made at short range were frightful.
4. The injuries described are made only by bullets of soft
lead. The Henry-Martini rifle stands alone in using a ball of hard lead, or lead mixed with tin in the proportion of twelve parts to one. The initial velocity of the ball thrown by this rifle is almost as great as that of the Mauser, yet the wound produced by it is very much smaller. It makes a clean hole through flesh and bone neither shattering the bone nor leaving splinters of lead in the course of the wound. In one case only did Dr. Küster find a Henry-Martini bullet much misshapen, and that time it remained sticking in bone. On but one occas:on, when fired at a hundred paces, did it fail to pass through the longest diameter of a horse, while the Mruser bullets frequently remained in the wounde, owing to the greater resistance they had to overcome in con. equence of their greater misshapement
Having shown that bullets of soft lead fired at short range act just like explosive bullets, and that a close combat with them can be nothing but a horrible butchery, Dr. Küster protests against their use ; and as a duty to a brave oppoacquitted of the charge of having committed an act of unworthy and interdicted barbarity.

WHAT TEMPERATURE KILLS?

At the present stage of enquiry, the very important bio ogical question whether life does or does not ever appear otherwise than as a product of antecedent life plainly hinges on the simpler question: What temptrature kills? In other words, what degree of heat is certainly fatal to living mat. ter? A boiled egg will not hatcin, boiled seeds will not germinate; no animal or plant thus far experimented on hbs been found to survive exposure to boiling water. Yet the appearance of living forms within hermetically sealed flasks, the contents of which have been boiled ten minutes or more, has been observed by too many trustworthy witnesses to be longer doubted. The question to be settled is: Are there any forms of living matter, germs, seeds, or what not, that can ndure 212° of temperature by Fahrenheit's scale? And if so, what higher temperature certainly kills them?
The first to attack the problem with scientific thoroughess and care was the acute and learned Abbé Spallanzani, something over a hundred years ago. At that time Needham was advocating the doctrine of spontaneous generation on the strength of experiments similar to those which later investigations have made familiar. Spallanzani repeated the experiments,and found that the lower infusoria certainly would appear within closed vessels previously subjected to boiling heat. The organisms themselves were killed by temperature of $108 \frac{1}{2}^{\circ} \mathrm{Fah}$. Unwilling to accept the conclusion arrived at by Needham, the Abbé assumed that the un known germs of the infusoria must be able to withstand the higher temperature, and thereupon set to work to discover whether the difference in the capacity of resisting heat, ima gined to exist in this case between parents and germs, could be justified by the establishment of similar differences in heat-resisting capacity between other parent organisms and their germs. By a careful series of experiments, he found that, while frogs and tadpoles perished at 111° Fah., frogs eggs appeared in some cases to resist the temperature of
131° Fah., none, however, surviving $144 \frac{1}{\circ}^{\circ}$ or upwarde. Aquatic salamanders and fish were likewise killed by water having the temperature of 111°. Silkworms' eggs and the eggs of the elm moth failed to germinate after being heated to $140^{\circ} \mathrm{Fah}$. The developed worms died at $108 \frac{1}{2}{ }^{\circ}$. Leeches perished at 111°; the nematoids known as vinegar eels, at 113°; other aquatic worms at 111°, and water fleas at 107°. Thus, while about $110^{\circ} \mathrm{Fah}$. sufficed to kill matured forms, their eggs were not killed under about $140^{\circ} \mathrm{Fah}$.
Observations on seeds and plants were conducted in a similar manner, the water being heated slowly and the seeds and plants taken out as soon as the desired temperature was
attained. Not one seed germinated after exposure to boiling water. Of the corresponding plants a few survived momentary exposure to 156°, none the temperature of 167°. (The grades of heat experimented with differed for the most part by 5° Réaumur, or $111^{\circ} \mathrm{Fab}$., so that the thermal death point was not precisely noted.)
From these experiments it was manifest that (1) eggs ean ndure a higher degree of heat than the animals from which they are derived: (2) a similar differencs exists between
plants and seeds: (3) seeds and plants resist higher grades of heat than eggs and animals. Not a single living thing, however, egg or seed, animal or plant, survived a brief ex. posure to a moist heat of 212^{ρ} Fah.
To the dryness of seeds was evidently due their ability to withstand heat better than eggs. Certain eggs resemble seed in that they may be dried and yet develope after being placed in a suitable damp medium. Might not the germs of in a dry state excel seeds in power to bear heat, as the seeds xcel eggs? Inasmuch as the germs in question were invisible and unknown, they could not be subjected then to the test of certain experiment; and on the ground of their hypothetical existence and power, Spallanzani was able to refuse assent to the probability of the germless origin of living matter in the cases under consideration.
Unfortunately for the panspermatist position,Spallanzani's ssumptions are not merely not sustained but are positively contradicted by more recent investigations. Professor Bur den Sanderson shows that, so far from being able to with. tand desiccation,the germinal particles of bacteria are killed by simple exposure for three days to dry air of the low tem-
perature of 104° Fah., and that the fully formed animalcules are deprived of their power of further development by thorough desiccation. Further, Dr. Charlton Bastian (who reviews this question of the thermal death point of matter very fully in the Contemporary Review for September) has
shown that all direct experiment, on the power of bacteria and their germs to withstand heat, leads to the conclusion that they are both killed by a brief exposure to a moist hea of 140° Fah. Many investigators, working independently of each other, and often without reference to the origin of life question, coincide in showing that, with certain peculiar ex ceptione, the temperature of 140° Fah., with moisture, is fatal to living matter.
In very many, if not most, cases the death point is much lower. Thus according to the observations of Spallanzani, Max Schultze,and Kühne,simple aquatic organisms die under temperatures ranging from 104° to 113° Fah. According to Kühne, elements of the cold-blooded frog are killed at 104°. Stricker and Kühne agree in fixing the thermal death point of the tissue elements of warm-blooded man at 111°; that of the tissue elements of plants, according to Max Schulize and Kühne, is from $116 \frac{1}{2}^{\circ}$ to $118 \frac{18}{3}{ }^{\circ}$: while Spallanzani, Liebig, Tarnowski, and others find that eggs, fangus, spores, and bacteria germs are killed at temperatures between 122° and 140°.
The exceptional cases are the confervec and allied organ isms observed by Dr. Hooker in Sorajkund, flourishing in a hot spring of the temperature of 168° Fah.; others in water of 174°, as observed by Captain Strachey in Thibet; in 185°, as observed by Humboldtin La ${ }_{\text {Hinchera }}$; 190°,as observed by Dr. Bremer in California; and 208°, or 4° below the boil ing point of water at sea level, as observed by Descloizeau in Ieeland.
"It is a well known physical fact," says the late Professor Wyman, commenting on the examples of life at high tem peratures above given, "that living beings may be slowly transferred to new and widely different conditions without injury; but if the same change is suddenly made, they per ish. In the experiments made in our laboratories, th change of conditions is relatively violent, and therefore liato destroy life by its suddenness,"
Even if it were possible for living organisms to with stand suddenly the temperature to which these exceptional growths have become inured through long periods of time the difficulty attending the appearance of living forme, in hermetically sealed flasks which have been previously heated as high as 275° Fah., as recorded in Dr. Bastian's latest ex periments, would not appear to be greatly lessened. The ovidence is overwhelmingly against the survival of living matter after prolonged boiling, much less after exposure to a temperature sixty degrees higher.

SCIENTIFIC AND PRACTICAL information.

worifing men's health.
From a report of Dr. Waller Lewis, a noted English phy ician, regarding the Frealth of Trench working men, it ap pears that the percentage of deaths from consumption, in 1,000 cases collated, is for various trades as follows: Exposed to vegetable or mineral emanations, 176; to dust and ine particles, 145 ; sedentary occupations, 140 ; employed in close workshops, 138; exposed to hotand dry air, 127; re quiring active muscular exercise, 89; requiring exertion of voice, 75; working in open air, 73; exposed to animal ema. natione, 60 ; the remainder being made up of persons working in a stooping posture, exposed to sudden movements of
the arms, or exposed to watery vapors. Concerning the effect of various employments on the eyesight, it seems that the sense is injured by those working with polished metals, looking glasses, etc. The smallness of objects and intensity of direct or reflected light is also a cause of impaired vision ; while astronomers who study the sun have become totally blind, and opticians who daily exercise and test spectacles, tc., engravers, watch makers, etc , are liable to amaurosis and amblyopia.
the population of china.
Abbé David, who has recently devoted some years to the the exploration of Chinese territory and the study of the people, says that the estimate of statisticians that the total population of the Chinese Empire is but $100,000,000$ souls is entirely incorrect. The error is due to the terrible ravages made in certain small political divisions,which have rebelled at times, and in which wholesale massacres have reduced the inhabitants to one half and in some cases one fifth their former numerical strength. The province of Kiangsi is, however, the least populated, and the average of each canton therein is 4,000 people. There are 4,345 cantons, making an approximate total of $17,380,000$ inhabitants. Among the 18 provinces of the Empire, it is certain that several largely exceed Kiangsi in population ; but taking the above given aggregate as a unit, there must be at least $300,000,000$ individuals in the country.
action of sulphuric acid on lead.
From recent experiments by H. A. Mallard, it appears that acids below 61° Baumé, concentrate by boiling until they attain a temperature of 433° Fah., or that at which acids at 61° Baumé boil. They then attack lead, producing sulphurus acid and some sulphate of the metal. Acids above 61° Baumé and below $65^{\circ} 5^{\circ}$ Baumé concentrate by ebulition up to 780° Fab., the boiling point of acids of the latter density, when they attack lead, producing sulphate of lead, sulphur-
ous acid, and a little sulphur. Acids of 655° Baumé at 482° ous acid, and a little sulphur. Acids of 655° Baumé at 482°
Fab. also attack lead, producing the results last mentioned.

The East River Bridge.-It is expected that in four The EAST RIvER Bridge.- - is is expected that in four bridge will be completed. On October 24 a bight of 259 feet had been attained, and there were seven more courses, about 14 feet, of stone to be added. The anchorage on the Brooklyn side is aleo in a forward state.

PEAS THREE THOUSAND YEARS OLD

 In the course of late explorations in the ancient ruins of Egypt, General Anderson, an English traveler, found, inclosed in a sarcophagus beside a mummy, a few dry peas, which he preserved carefully and, on his return to Great Britain, planted in the rich soil of the Island of Guernsey. The seeds germinated, and soon two little plants appeared from which, at maturity, sufficient peas were gathered to plant quite a large tract of ground in the following season.Some of the plants thus raised have attained a hight of Some of the plants thus raised have attained a hight of
over six feet, and have been loaded with blossoms of exquiover six feet, and have been loaded with blossoms
site odor, and of a delicate rose tint. The pecusite odor, and of a delicate rose tint. The pecu-
liar feature of the growth is the stem, which is small near the root but increases greatly in size a it ascends, requiring a support to sustain it up right. The pods, instead of being distributed around all portions of the stem as in the ordinary plant, are grouped (as shown in our engraving extracted from the London Graphic) about the up per extremity.
per extremity
The vegetable, it is said, belongs to the ordina ry garden variety; but from its presenting the very dietinctive differences above noted, it seems worthy of close botanical examination. The peas are of remarkably fine flavor, excelling in delicacy those of the choicest known varieties.

Discoveries by the Wheeler Exploring
 Expedition.

Professor Cope and Dr. Yarrow, of the Wheeler Expedition, have unearthed, in the valleys of the San Juan river, another immense deposit of fossi remains of prehistoric animals. A large number of vertebrates of enormous size, and of genera unknown to Science, have been found, togethe with others of very rare species, including skele tons of mastodons and mammoths, in a very per fect state of preservation. The fruits of the dis covery are not yet classified and arranged, so tha a complete list cannot be given; but specimen have been forwarded to Washington, where, we understand, the naturalists have already begun work upon them. The entire collection is said to be a most valuable contribution to palæontology, and will add greatly to our knowledge of tha branch of Science. We notice, also, that the in vestigations as to the living animals of the coun try explored, are meeting with excellent result As many as 1,000 birds' skins have been obtained including several of new varieties of birds. Five new species of fishes, it is said, have also been discovered.

Waterproofing Compound
This compound is prepared by melting páraf fin and adding gradually a suitable drying oil stirring well to insure intimate mixture; it is then poured into molds the shape of bricks or blocks, and allowed to cool. The fabric to be rendered wa terproof is rubbed over with a block of the compound warming the rubbing face gently if the atmosphere is cold and then ironing the cloth with a warm iron, or passing it between hot rollers. The application of this compound to leather and textile and felted fabricsis said to give excellent results, as, although it renders the cloth thoroughly water proof, it is not impervious to air.

THE AERIAL SCREW

Under this name, M. De Fonvielle has constructed an apparatus for testing the powers of various electric batteries, Using a winged screw, in the form of a ship's propeller, he is enabled, by counting the rotations, to ascertain accurately

the power of any motor which he may apply to it. Our en graving shows clearly the manner of its use. With screw of 12 inches diameter and a motor of three mag nets weighing about 2 lbs . each, a speed of rotation of 5 turns per second was obtained from a battery equivalent to 6 Grove's elements. The speed can be minutely and precisely adjusted by varying the battery power, and experi ments on the size and pitch of the blades of propellers can be readily made. The inventor, in La Nature, recommends it to Mr. Bowdler's notice, believing that it would be useful to him in his military balloon experiments, of which we gave an illustrated description on page 67 of our current volume. chance.

PLANT GROWN FROM A MUMMY PEA.
tion of the person using the apparatus increases, the ball in the tube expands, owing to the decreased air pressure, and hence closes the orifice leading to the surrounding atmos here. The supply for the lungs is therefore drawn in a functions of respiration to continue without uneasiness.

Non-Corrosive Pipes and Plates.

A recent patent by W. A. Shaw, of New York city, has for its object to protect tubes or metal plates from corrosion by associating with them other metals or alloys, the presence of which renders theentire combination passive. It is known that the presence of platinum protects iron from corrosion stance of the last named fact is the well known appl cation, by Sir Humphrey Davy, in sheathing vessel One method of carrying out the present invention to make a pipe or tube of any one or more of the ductile metals, by drawing, rolling, or by pressing said metals out of a cylinder through a die. At the aine time this operation is being performed, a rib bon, band, or wire of a protecting metal or metals is drawn through the die with the tube under treat ment, emerging therewith, either wholly or partial y inlaid within the inside surface of the tube. One or more such bands may be thus inlaid, and they may be alike, or of different metals. The inlaid bands may be embedded in the shell of the pipe, so as to be flush with the surface thereof, or they may be allowed to project, so as to present a greate amount of protecting surface.
It is alleged by the inventor that, when strips of lead and tin are simultaneously exposed to the ac tion of water, the presence of the tin effectually protects the lead from corrosion, and that there is practically no corrosiv e action upon these metals when asso ciated in this manner.

Changes of the Sun's Apparent Diameter.
The question of whether the sun's apparent diameter is subject to any changes which can be detected by observation is discussed in the American Journal of Science and Arts by Professors Newcomb and Holden. The calculations of these astronomers indicate that during some years (1864 and 1870 for instance) there was a tendency to a ten hour vibration of the solar diameter. The conclusion, however, is that this correspondence cannot be attributed to anything but

New Rallway Refrigerating car

Trial was made recently on the Great Western Railway, Eng., of a car, the invention of Captain Acklom, for the trans. port of meat in a purer and colder air than in the ordinary close cars, so as to preserve the freshness of the carcases. The car does not differ much in appearance from an ordinars railway wagon, and the patentee claims that it can be built tittle more expense and filled on occasion with an clas保 is not required. The body of the car consists of a double paneling of galvanized iron network, with the space between filled with two couches of inodorous absorbent felt, the outer one four layers thick, and the inner one, an inch apart from it, but a single layer. The mesh of the external panel is much larger than the corresponding mesh inside, in order to permit free ingress to the heat and atmosphere. The inner panel alone forms a ceiling to the chamber, and is covered with the felt, but with an interval of a couple of inches between its surface and the arched outer roof. The object of this ar rangement is to admit the passage of a current of air when the car is in motion. Underneath is a tank from which water is driven by a forcing pump to a covered galvanized iron gutter, running round the edge of the roof, between the panels; the outer felt is lipped in this gutter, so that the water is bound to percolate through it to a metallined groove below, which returns the drip to the tank. The atmosphere coming in contact with the saturated felt causes evaporation, and lowers the temperature within, while the single inner layer of dry felt preserves the meat from moisture; and it is a curious fact, the warmer the wea ther is, the quicker the evaporation, and consequently the cooler the interior. The carcases are strung up on a row of double hooks inside, as in a butcher's stall, and it is stated that one car can carry those of $17 \frac{1}{2}$ bullocks, or eight tuns of meat. The trial may be pronounced satisfactory, although the car is still susceptible of improve ments, the thermometer suspended within it having registered only 62° Fah., while that of the outer atmosphere was ten degrees higher. Captain Acklom undertakes to supply provisions sound and sweet to the salesman, even in the heat of the dog days, and to carry fish and newly killed meat two or three days, if necessary, untainted. Poultry, milk, vegetables, and fruit can also be transported, in all their freshness, in this felt convenience.

M. DE GROOF'S PARACHUTE

On page 99 of our current volume, we mentioned the death of Vincent De Groof, who was thrown, from a flying parachute of his own construction, from a hight of 80 feet to the ground and instantly killed. We now publish an engraving of the invention, which was, in general plan, an imitation of a bat's wings, the framework being made of cane, and he intervening membrane of stout waterproof silk. "The wings were altogether 37 feet long, with an average breadth of 4 feet. The tail was 18 feet by 3 feet. These wings were inserted into two hinged frames, attached to a wooden stand pan wich the aeronaut took his place vers, which he worked by hand, to give his machine propul-

ion or guidance, as might be required. His theory was that, having started from ai given hight, he could manage his descent so as to reach the earth by a sort of inclined swooping motion, without risk of concussion."-Illustrated London Neros.

The result to the constructor is given above.

The Metropolitan Railway of Constantinople is nearly ompleted. The brickwork of the tunnel, from Para to Ga latz, has been finished, and the rails are now being laid.

THE RUINS OF TROY

The researches of Dr. Schliemann, on the supposed site of the city of ancient Troy, have recently been rewarded by discoveries which have a worldwide interest, proving not only the existence of the city, so often and so strenuously asserted to be purely mythical, but the general accuracy both of the Homeric and Virgilian, the Greek and Latin, accounts of the people, their celebrated citadel, and its ten years' siege. These revelations proveincontrovertibly that the site of the city,supposed by Herodotus, Xenophon, Plutarch, and many other writers to be on the hights now called Hissarlik, was accurately laid down by those writers.
Indications of a destruction by fire, terrible enough to have justified Virgil's tremendous description, have also been found ; and the Trojan goddess (Minerva) is exhibited, in the form of her favorite owl, on vases and earthenware utensils, on metal implements and trophies, and in every possible form.

Several large earthen jars, of pe culiar shape, were discovered by Dr. Schliemann; and we publish an engraving of them in situ, for which we are indebted to $L a N a$ ture.

New Steamer.

A new and economical steamer, named the Ferdinand Vandertaelen, has lately been built and tried at South Shields, England. Her length is 273 feet; breadth, 34 feet, and depth, 24 feet 6 inches. The diameters of the cylinders are high pressure 32 inches, and low pressure 60 inches, 3 feet stroke working pressure, 70 lbs. per square inch; the maximum power deve loped was 395 in the high pressure and 408 in the low pressure engines, making a total of 803 indicated horse power. The.coal burnt during the test was at the rate of 880 lbs. per hour, or $1: 54$ lbs. per indicated horse power per hour. The speed of the ship, ascertained by the patant log, was 11 knots per hour.

Predicted Failure of the Bessemer Swinging Saloon. Our own experience at sea in all sorts of weather and in all kinds of boats-from a fisherman's coble in a chopping sea to the Irish mail boats in a gale-leads us to hold as a matter of faith that rolling does not cause sea sickness in even the most delicate organization, and that pitching dces. The original Bessemer saloon provided for pitching as well as rolling, but the saloon as fitted on board the Bessemer can move athwart ship only, and consequently deals only with rolling. Mr. Bessemer has, in a word, abandoned the idea of contending with the true cause of sea sickness, and confined his attention to combating what is a very secondary evil indeed, if it can becalled an evil in any sense as regards
the causation of seasickness. This being the case, a passenthe causation of seasickness. This being the case, a passen-
ger on the deck abreast the saloon will be just as likely to ger on the deck abreast the saloon will be just as likely to escape the horrors of a Channel passage as if he were in the saloon, except in so far as the rolling of a vessel of such great width may in a measure approximate, in its effects on any one standing near the bulwarks, to the pitching motion of a shorter ship. The reason why pitching causes discomfort is, physicians tell us, because the contents of the abdomen rise by their own inertia, to speak a little incorrectly, against the descending diaphragm. The motion of a pitching ship in a gale is very considerable. Thus it has been shown that the taffrail of an American liner often falls through a vertical space of 30 feet in about one second when running in a heavy sea. The effect of such a drop as this is, beyond all comparison, more severe than anything rolling produces. We do not think that Mr. Bessemer was unwise to abandon that portion of his original scbeme which dealt with pitching. It is very difficult, indeed, to see how, on the one hand, he could have retained it and a reasonably light draft of water together, and, on the other, of what possible utility it would be in his ship. The swinging cabin is already amidships, and will therafore have the least possible motion; and what remains, consisting as it does of the bodily rise and fall of the ship as she mounts a wave or it passes from beneath her, could not be affected by any mechanical expedient placed at mid length. To be really use ful, the swinging saloon should be nearly as long as the ship, and at the same time narrow; and it should be so balanced, like a scale beam, and so geared that, however much the bows and stern of the hull rose and fell, the swinging deck would remain approximately horizontal. Thus, suppose that such a saloon was fitted to an Atlantic mail steamer, then a passenger berthed aft, instead of rising and falling through a range of 20 feet or so, perhaps six or eight times a minute with varying velocities, would always remain practically at rest, the ship alonerising and falling. Again, if it were possible, a small saloon near the bow might be mounted, sa.y, on a hydraulic ram, and caused to apparently rise and fall, but really to remain motionless, while the ship pitched. In a saloon fitted in this way we believe that perfect immunity fron sea sickness, or nearly so, might be secured. But Mr. Bessemer has done nothing of the kind, and his swing ag cabin will be correspondingly inefficient, Whatever
comfort the passengers within it may enjoy will be due not to the action of the cabin, but to its position in the mid length of the ship, where vertical motion is reduced to a minimum.-The Engineer.

Preserving Gum Arabic Mucilage

A writer in the Journal of Pharmacy states that the instability of mucilage of gum arabic may be overcome by mixing with tolu water. Tolu water is prepared by rubbing two fluid drams saturated tincture of tolu with four drams carbonate of magnesia, and then adding two pints of water,

EARTHENWARE JARS FOUND IN THE RUINS OF TROY.

Fig. 3) forms an acute angle. Referring to Fig. 1, the same
shape, X, is combined with whole bricks to make an obtuse angle. It should also be noticed that the method of laying the bricks results in forming a perfect bond; thus,in Fig. 1, the second brick, X, from the top, instead of having its square portion directly under the corresponding part of the brick of like shape immediately above, has it on the oppo site wing of the angle, at D. The fourth brick also has its square end on the same side, and the intervening space is filled with a common brick, E. In Fig. 4, both bricks are of particular form. A^{2} has one end formed to certain angles, and A^{1} is somewhat similar to X though having certain easily detected points of difference.
In Fig. 2 a combination of forms $\mathrm{A}^{1}, \mathrm{~A}^{2}, \mathrm{C}^{1}$, and C^{2} is shown, the mode of making the bond being as already described. Thus bricks of forms C^{1} and C^{2} are uppermost then forms A^{1} and A^{2} succeed, and so on alternately.
In Fig. 1 the result is a neat an gle, ornamented beside with a beading; while in Fig. 2 the bead is ren. dered more ornate by alternating the forms A^{1} and C^{1}. A handsome finish is thus given to the junction of the walls.
These bricks are, of course, sus ceptible of a variety of modifications in form, adapted to different classes of structures. It will readily be seen, however, that the prin ciple is such as to enable any desired angle to be built without changing the figures of the bricks as produced by the manufacturers. The inventor is Joseph E. Bil. lings, of 33 School street, Boston, Mass., to whom all communications with reference to obtaining right to manufacture, or for further in formation with regard to the use and capabilities of the bricks, may be addressed. Patented September 1, $18 \% 4$.
and filtering. It is believed that tolu prevents changes in liquids upon the same principle and as effectually as benzoin influence might be utilized in the preparation of many sirups and mixtures which are remarkable for instability.

UNIVERSAL ANGLE BRICKS.

In order to build oblique angles in constructing brick walls, the usual plan is to have bricks specially made for the purpose (if the work be carried on during the brick making season), or else to have the ordinary shaped bricks ground to the required form. That this entails trouble, de-

lay, and expense, masons and architects are generally well aware; and hence no further reasons are needed for directing attention to a recent invention, which is designed to obviate the difficulties mentioned.
It is proposed to manufacture the brick in the forms marked $\mathbf{X}, \mathrm{A}^{1}, \mathrm{~A}^{2}$, in Figs. 8 and 4 . With X , an ordinary brick, with one corner broken off (laid beside it, as shown at E,

We understand that arrangements are now in progress for manufacturing in New York, Boston, and Philadelphia.

Mind Reading.

The professors of Yale College, New Haven, Conn., have lately been entertained by the performances of J. R. Brown the mind reader. 'The learned professors indulged in hiding coins, pencils, cards, etc., in books, corners, and drawers. Brown was then placed en rapport with the hidee, that is, he took the hand of the person who hid the article, or took hold of a line held by that person. Brown, although blindfolded, would lead the individual to the exact spot, and find the article. Professor Thacher purposely imagined a pain located under his nose. Brown immediately placed his finger in the precise spot. Professor Marsh imagined a particular word, wrote it on paper, and gave it to another person. Brown spelled it out at once by pointing to the respective letters in an alphabet written on a blackboard. The venerable Ex-President Woolsey concealed a coin under some books, but his mind was probably hazy, for Brown could not quite find it, though he came near the epot. But when put en rapport with a younger man, Profecsor Whitney, Brown immediately found the coin. Professor Brewer placed a tape measure in a distant apartment; Brown promptly went, blind folded, to the place and found the article. Professor Fisher gave a pencil case to Professor Johnson, who gave it to Prcfessor Thacher, who concealed the article. Brown led the latter directly to the spot, and found the pencil. Professor Lyman held a paper on which words were written by Profes sor Fisher, and, blindfolded, Brown spelled the words with out difficulty! Having witnessed so many of these curious experiments, it is to be hoped that the learned professors of Yale will be able to explain how they are done.

Artificial Bone Black.

The only process which allows of producing artificial decolorizing charcoals, approaching, in their properties to bone black, consists in impregnating woody matters with phos phate of lime dissolved in hydrochloric acid. The phos phates are thus distributed as they are in natural bones. The mass thus prepared is ignited. The difficulty consists in obtaining products of a sufficient density and mineral rich ness, and free from foreign salts. The charcoal obtained has to be washed in excess of water to remove chloride of cal cium, if poor coprolites have been employed. The author uses the coprolites found in small granules in the gray phosphatic chalk of Ciply.-M. Melsens.

In our article on the hydraulic ram, page 259 of the current volume, the first part of the description of Fig. 4 should read as follows: The pipe, A, leads to a source of supply higher as follows: The pipe, A, leads to a source of supply higher
than the ram, and the pipe, B, connects with the place which than the ram, and the pipe, B, connects with the place which
is to be drained. The distance from the end of the pipe, B to the valve, D, must not be greater than the hight to which water will rise in a vacuum.

From a late report of our diplomatic representatives in Paris, it appears that the commerce of the United States with hat city reaches an aggiegate of seventy millions of dollars per year,

astronomical notes

Observatory of Vassar College.
For the computations of the following notes (which ar approximate only) and for most of the observations, I am indebted to students.
M.M.

Positions of Planets for November, 18 g4. Mercury
Mercury rises on the 1 st of November at $8 \mathrm{~h} .:{ }^{:} 7 \mathrm{~m}$. A. M., and sets at 5 h .39 m . P. M. On the 30 th , Mercury rises at 5 h . 23 m . A. M., and sets at 3 h . 33 m . P. M. It cannot, therefore, be seen in the early part of the month, and in the latter part should be looked for in the morning

Venus.

Venusis at its greatest brilliancy on the 2d of November, when it comes to meridian or souths at about half past two in the afternoon. It rises on the 1 st at $10 \mathrm{~h} .22 \mathrm{~m} . \mathrm{A} . \mathrm{M}$., and sets at 6 h .36 m . P. M. On the 30 th , it rises at 8 h . 25 m . A. M., and sets at 5 h . 7 m . P. M.

It should be observed in the early part of the month, and can be seen, a very conspicuous object, in the southwest. Mars.
Mars is not well situated for observation. It rises on the 1 st at $3 \mathrm{~h} .11 \mathrm{~m} . \mathrm{A}$. M., and sets at 3 h .21 m . P. M., coming to the meridian in the daytime. On the 31st, Mars rises at 2 h .48 m . A. M., and sets at 2 h .6 m . P. M.

Jupiter.
Jupiter is not well situated for observation; and according to the Aneerisan Nautical Almanac, its satellites cannot be geen before the 5 th of November. It rises on the 1st at 4 h . 46 m . A. M., and sets at 4 h .2 m . P. M. On the 30th, Jupiter rises at 3 h .21 m . A. M.. and sets at 2 h .22 m . P. M.

Saturn.
Although Saturn is very far south in declination, it is well situated for observation, and will richly repay any one who looks atit, with the aid only of a small telescope. The ring is so situated that the base can be seen both above and bolow its plane, and on fine evenings the division of the ring can be traced. A telescope whose object glass is two or three inches in diameter will show the ring, and possibly the largest satellite, Titan. With a large telescope, the other satellites are seen as very minute points of light.
Saturn rises on the 1st at 1 h .10 m. P. M., and sets at 10 h . 46 m . P. M. On the 30 th , Saturn rises at 39 m . before noon, and sets at 9 o'clock P. M.

Uranus.

Uranus rises at 11 h . 22m. P. M., and sets at 1 h .28 m . P. M. of the next day. On the 30 th, Uranus rises at 9 h . 28 m . P. M., and sets a little before noon the next day. As it is in northern declination about 17°, it attains a good hight, and can be seen on the meridian in the early morning.

Neptune.

Neptune cannot be seen without a good telescope. On 1 st , it rises at 4 h .32 m. P. M., and sets at 5 h .40 m . A.M. On the 30 h , it rises at $2 \mathrm{~h} .36 \mathrm{~m} . \mathrm{P}$. M., and sets at 3 h .42 m . next morning.

Sun Spots.

The record is from October 2 to Ostober 19 inclusive ; but owing to cloudy days, photographs have beon taken only on the $2 \mathrm{~d}, 3 \mathrm{~d}, 5 \mathrm{th}, 9$ th, $12 \mathrm{th}, 16 \mathrm{th}, 17 \mathrm{th}$, and 19 th . On the 2 d a group of spots, comprising three of good size and several smaller, was seen within the eastern limb and below the center. Pictures of the 3 d and 5 th showed the same group moving across the disk with the revolution of the sun on its axis. On the 9 th, the same group appeared just within the western limb, the three largest spots elongated and the faculæ very marked. Two pairs of small spots were also seen following the group, one above and the other below the sun's equator. On the 12 th, all the spots seen in the last picture had disappeared except the lower pair, which had increased in size. On the 15th, appeared another pair, of about the same size as those last seen, and a single spot just within the eastern limb. On the 16 th, the same spots, with an other nearer the eastern limb, and on the 17th still another at the east and lower. On the 19th, no change was perceived except that caused by the sun's motion.

Barometer and Thermometer

The meteorological journal from Sept. 20 to Oct. 17 gives the highest barometer, Oct. 15, 30.36 ; the lowest barometer, Sept. 29, $29 \cdot 46$; the highest thermometer, Sept. 25 , at 2 P. M., 73°; the lowest thermometer, Oct. 15 at 7 A. M., $27 \cdot 5^{\circ}$.

Amount of Rain.

The rain which fell during Sept. 20 amounted to 1.8 inches.
The rain which fell during the night of Sept. 28 and the day of Sept. 29 amounted to 0.42 inches.
The rain which fell during the day of Oct. 2 amounted to 0.11 inches.
The rain which fell between the night of Oct. 6 and the morning of Oct. 9 amounted to 1.5 inches.
The rain which fell during the night of Oct. 9 and the day of Oct. 10 amounted to $0 \cdot 21$ inches.

Effect of Gases in the Coagulation of the Blood.

MM. Mathieu and Urban give the following conclusions us the results of their studies into the above subject: Blood deprived of carbonic acid by exosmose or by any other process does not coagulate until it regains the gas thus lost. The affinity of the blood globules for carbonic acid is evident. The coloring matter of the blood fixes the gas as readily as it does oxygen. Both oxygen and carbonic acid gases are occluded in the red globules. The coagulation of the blood by supersaturation is produced in pulmonary asphyxia, after a stoppage or extreme slowing of the circula tion and after inflammation. The examination of different
processes of spontaneous coagulation happening during life establishes a relation between the formation of fibrinou clots and the accumulation of carbonic acid in the blood, or the same.

Catresponaderc.

The Plumber's Defence

To the Editor of the Scientific American:

Bearing cheerful testimony to your general fairness, can dor, and good nature, it is to be regretted that they have failed you in treating this tender subject. Our unfortunate occu pation seems to have achieved a painful and unenviable prominence of late, by beingmade the target of savagely jocose and furiously sarcastic attacks.
Just complaints of the imperfect work of plumbers may be accounted for by the amazing want of judgment the owner of a house containing modern improvements displays in the selection of a plumber. If he becomes the owner of a horse, the blacksmith who shall shoe him is chosen after a most thorough investigation into his merits, and after con sultation and advice with posted friends. If he be the pos sessor of a fine watch, the artificer who shall regulate, clean, and repair it is selected with great care, and on no account will it be entrusted to a new or unknown party. But if the same man builds a new house, or buys an old one requiring repairs to its plumbing, straightway he rushes round to searchcafter-the best plumber? Far from it. He has heard that all plumbers are robbers, and he is going to find a cheap man if it takes a month. Of course he succeeds, and of course he gets a botched job. Or, more fatal blunder still, purposing to save bother, he permits or requires the builder to include plumbing in his estimate, thereby making it to the strong interest of the builder to put in the cheapest plumbing that will pass inspection.
No one but an expert can tell by inspection whether plumbing is well or ill done. The incompetence of archi ects and building superintendents in this respect is well known and frankly confessed by the best of them, who do not feel obliged (as third rate men generally do) to know everything. The writer has known of pipes one and two grades lighter than the specifications called for being put in under the very eyes of architects, who were thoroughly hon est and could not havebsen suborned to wink at the evasion had they known it.
The ertployment of the cheapest mechanics who can be made to pass muster and the too rapid pushing of the work make it impossible to thoroughly test the material and workmanship as it progresses. Solid or leaky joints are not the worst, though perhaps they are the mostannoying, effects of a bad job of plumbing. They are apparent at once, and the contractor is obliged to put them in order; but a job put up ith light or inferior material runs very well for a while until constant expansion by continued pressure produces a burst. This is no sooner repaired than another appears, and another, and the jobber who has been called in (and who may be an entirely different party from the one who did the original job) getsall the blame of not being able to " fix a pipe o that it will stay fixed.
Much complaint is made of the exorbitant charges of plumbers, mainly in jobbing or small work. As honest mehanics do not make exorbitant charges any more than hon st men pick pockets, it only remains to explain why hon est charges are sometimes high. A castomer calls to say hat a faucet is out of order. Desiring to find out accurate y what is to be done, you ask how it operates: "Oh, it ust drips constantly; won't shutoff!" " Well, does it turn o a stop, or will the handle revolve continually?" He don't know." You suggest sending a new faucet, in case it should be needed. With a look of excessive sharpness, he xclaims: "No, you don't. Your men would soon find a way o make it necessary. A little packing is all you want." A a decent self-respect stops argument here, the workmen are ent out. Upon reaching the job (perhaps miles away), the thread is found to be stripped or the wings worn off, and the faucet worthless. The helper is dispatched for a new on and the time charged. When the billis presented, the agony is frarful. "Your man just sat around and talked to the girls, while the boy went after something. Do you suppose I am going to stand that?' Another customer drops in and says that his wife wants a plumber sent up 'Don't know what's the matter. Reckon its something about the cocks." A man with proper tools for soldering, packing, etc., is sent up, and finds that a water closet or rain is choked, or perhaps that the gas leaks; and the tools he has (usually a good load) are not at all that he needs. More delay and more of the running, which so exasperates he unfortunate customer. Who is to blame?
It is true that much incompetence and dishonesty do exist, and probably will until competence and honesty are better paid. The mechanic who promptly, faithfully, and carefully looks after his work is worthy of his hire, even it the price is a little higher than that of the incompetent and careless. Probably the touchstone of the whole matter is contained in your aspiration for "a plumber who will do his work well at a moderate cost." If a man thoroughly and faithfully superintends his workmen, he is no more reponsible for the original cost of his work than his custom ers are. His materials, of lead, iron, brass, and copper man pulated to a high degree, are expensive in the nature of things, and bills including these will necessarily be large. If your wish could be modified to a desire for a plumber who will faithfully execute his work and be content with a patient searching you will find him out

When it becomes the practice to bestow upon honesty, abi lity, and industry the premium which they earn and deserve parties who can "fill the bill" will abound.
I feel that the spirit of the foregoing remarks has a wider discussion.
Cleveland, Ohio

The Machinery at the Fair.

To the Elditor of the Scientific American:
Your correspondent " Esor," writing in your issue of October 17, concluded his remarks, in regard to an axle lathe of our manufacture, as follows:
" On the tool post, however, is a taper washer, by means of which to regulate the hight of the turning tool. With such a washer, it is impossible to put this lathe to the full duty it will perform, because, the face of the washer not being parallel or level with the face of the holding screw, the tool is not so firmly clamped as a heavy duty will require. The centers are not yet turned up, indicating that it is not intended to put any work on the lathe, an omission to be regretted."
We take no offense at just criticism; butwe beg to demur o the statement that "it is impossible to put this lathe to the full duty," etc. Very nearly two hundred and fifty of these lathes, built by us in the past thirteen years, all with substantially the same arrangement for adjusting and holding the tool, have been put into operation in the United Siates, Canada, Cuba, and South America. No complain has ever reached us as to difficulty in holding the tool.
Twenty complete and well fitted axles have in a number of shops been turned on one lathe in ten hours; even this has been exceeded in some instances; in one case, twelve were turned in five hours. This we consider tolerably "heavy duty," and think the tool must have been " firmly clamped" at pretty short intervals, without much delay or difficulty.
As regards the omission to put work into the lathe during the exhibition, it would plainly be impracticable, in such a place, to supply it with material, even for a small proportion f the time: a circumstance which we regret as much as ny one.

Wm. B. Bement \& Son.
Philadelphia, Pa

Rapid Railway Traveling.

To the Editor of the Scientific American:
A train consisting of three cars, drawn by engine 97 , riven by Joseph Losey, ran from Easton, Pa., to Jersey City, a distance of 74 miles, in 79 minutes running time, an verage of $56 \frac{1}{4}$ miles per hour. This does not show full speed, as three stops were made; and although I have deducted the actual time that was lost at the stations, there has been no allowance made for slowing down and getting under headway again. The distance from White House to North Branch, $4_{1}{ }^{9} 0$ miles, was run in exactly 4 minutes. The road between the last named points is comparatively straight and level; the time was taken accurately at both stations, and by stop watches on the train.
The engine, an anthracite coal burner, was originally of he Grant pattern, with 16 inch cylinders. She has been ebuilt, and her cylinders now are 17 by 22 inches, and her rivers are 5 feet 10 inches over the tyres.
Hampton Junction, N. J.
Charles Ward.

The Eucalyptus and the Phylloxera

To the Editor of the Scientific American

I have been informed that the Tasmanian blue gum tree (eucalyptus globulus) is acclimated in the southern portion of France. In that territory, possibly in the immediate vicinity of trees of that species, there are large numbers of cultivated grapevines. Perhaps it would be well to examine the grapeines so located and ascertain if they are exempt from the ravages of the phylloxera. The blue gum trees appear to be uitable for the vineyard: they grow rapidly, straight, and irm, and would afford an admirable support for the wire; they cast no injurious amount of shade, and are known to be an ntidote for that vapor of parasites called miasma.
New York city.
Robert Broce Stuart.
Cable Telegraphy.
To the Editor of the Scientific American:
In your last issue you print a paper read before the British Association by W. K. Winter on an improvement in cable telegraphy.
Allow me to state that the principle shown was invented by myself and patented both in England and this country some three years ago. It is used by the Automatic Telegraph Company of New York.
Newark, N. J.
The surgeons of the Hotel Dieu at Montpélier, France, ave had for some time past a queer case on their hands, of a young man who swallowed a fork. The fork still remains somewhere in the body, and, strange to say, occasions no particular inconvenience to the patient, although over a month has elapsed since the accident took place. At the same hospital an individual, while in a state of delirium, lately ate a thermometer, glass and all. The doctors are sorely perplexed for a way to extract the intruding objects.

A RECENT patent for a map consists in having those portions intended to represent the rivers, lakes, and oceans filled with actual water. This is done by attaching the map to a back of wood of sufficient thickness. The rivers, etc., are dug out, filled with water, and glazed. Such maps may be hung upon the wall in the usual manner.

PRACTICAL MECHANISM

turning Cranks.
A crank having a plain surface on its back should hav uch surface planed true. The large hole should be bored first, the crank bsing clamped with its planed surface to the chuck plate of the lathe, when the hole may be bored and he face of the hub trued up. To bore the holefor the crank pin, clamp the face of the hub of the crank, which has bee trued up, against the p ate of the lathe (the crank pin end of the crank being as it were suspended): then bolt two plates to the chuck plate, one on each side of the crank at the end to be bored, and place them so that their ends just come in contact with the crank end, as shown in Fig. T, a a being

the chuck plate, B the crank, C the clamp holding the turned face of the inside hub of the crack to the chuck plate, ard $d d$ the plates ateadying the end of the crank to be bored, so that it shall not move its position on the face plate (ar chuck plate) from the pressure of the cut, and E a weight bolted to the chuck to counterbalance the heavy end of the crank. It is obvious that, if the crank be a heavy one, two or more plates may be used in place of the plate or clamp,C. A crank chucked in this manner will be practically true providing the chuck plate be true, even if the cui taken off the back by the planer were not true, or even though there had been no cut taken off the back, and the crank had, in consequence, been sprung in the first chucking; because the face of the hub (or boss, as it is sometimes called) will, under any circuastances, be true with the hole, bath having been turned at one chucking; and even if the crank were twisted in chucking, the face will follow the hole and remain practically true with it. This face, being in the second chucking bolted to the face plate of the lathe, will be held as true as is the face plate, and cannot apring from the pressure of chucking; neither can the crank pin end spring in the second chucking, bocause it does not receive any strain from either bolts or clamps. Furthermore, if the faç plate is out of true across its face (that is, hollow or rounding), the last hole bored in the crank will, if chucked in this manner, be out of true to only the same degree as is the face plate.
If, on the other hand, both holes of the crank are bored by clamping the planed face of the crank against the faceplate, merely turning the crank end for end to bore the last hole, the holes in the crank will be, when finisbed, out of true with each other to twice the amount that the faceplate of the lathe is out of true, or to twice the amount that the planed surface is itself out of true, from being sprung in chucking on the planer, from having its skin removed, or from other causes. If the face plate of a lathe is known to be hollow or round in the plane of its face, a piece of paper or other substance, of the thickness necessary to compensate for the defect, may be placed behind the crank and between it and the face plate, in the position requisite to effect such compensation.
Weights sufficient to counterbalance the overhanging end of the crank should be bolted to the face plate on the side opposite to such end, as shown at E, Fig. T

BALL TURNING.

The best method of turning balls, such as are sometimes used for the valves of pumps, is as follows: The ball should be cast with two round stems on it, so that the stems can be placed between the centers of the lathe while the ball is roughed out, which may be dore by a front tool for brass. cutting the ball down to within $\frac{1}{32}$ inch of the required diameter, and gaging it as nearly round as can be done by the eye and a pair of callipers. If, however, there are several balls to be turned, a gage may be made by filing out a segment of a circle (equal to, say, $\frac{1}{3}$ of its circumference) in a piece of sheet iron about $\frac{1}{3} \frac{1}{2}$ of an inch thick. After the bal is roughed out, the stems must be cut off, care being taken not to cut them off too deep. The next operation is to chuck a block, of tin or of equal parts of tin and lead, and to bore a hole in it equal to about $\frac{9}{10}$ of the diameter of the ball, into which hole the ball may be lightly tapped with a piece of wood, so that the chuck will revolve the ball and hold it sufficiently firmly to admit of its being scraped by a hand scraper, shown in Fig. U, a being the cutting edge.

The ball should be so placed in the chuck that the scraper marke will cross the turning marks already on the ball; and the scraper may then be applied, taking off just enough to take out the marks left by the tool when the ball was turned
betw 'en the centers. The ball is then taken from the chuck by tapping the former lightly with a piece of wood, and is replaced in the chuckin such a position that the part of the ball which has just been scraped will now be inside the chuck, when the exposed half of the ball may be in turn rued up with the scraper; which being done, the ball is gain removed from the chuck and replaced in such a posi tion that the turning marks will be directly across the previous ones on that half of the ball, the scraper being then pplied in the same manner as bsfore. The ball being again removed from the chuck and replaced so that the part last scraped will be inside the chuck,the process of scraping is repeated, when the ball will have been made round except in so far that some of the scraper marks may be a little deeper than others. The positions in which the ball has been turned during the four chuckings may be clearly un derstood by making a comparison of the ball to the earth the stems representing the north and south poles. The turning marks made while the ball was between the latte centers will be in the same re'ative position as the lines re presenting longitude. The first two turnings in the chuck will leave the turning marks in the same relative position as the lines representing latitude, and the second two turn ings in the chuck will again represent the lines denoting long tude. The operation of scraping may then be repeated, the ball being reversed indiscriminately in the chuck and scrape very lightly and as evenly as possible, after which the bal very lightly and as eve
cutter may be applied.
A ball cutter is a hardened steel tubs with its outsid adge beveled off so as to cause the inside edge to form

cutting edge, as shown in Fig. V, a boing the cutting edge and B the handle. 'It should be made as follows: A piece of cast steel tube a'uout 4 inches long must be bored out, true and smooth, to a bore equal to about $\frac{8}{4}$ of the diameter of the bsll it is intended to cut. The outside of the tube must then be trued up so that the metal will be of equal thick ness all over, which will render the tube less likely to war during the process of bardening. The end of the cuttin end of the tube must be beveled as shown in the illustratio when the tube must be taken from the lathe and hardened right out, care being taken to dip it endwise and evenly in the water, so that its contraction in cooling may be even, which will reduce to a minimum its liability to crack or warp.
The next operation is to grind it out true again, for th bore is almost certain to have warped a trifle in hardening The grinding is performed by a lap in a manner to be deacrib ed in remarks upon laps and lapping. The lapping beidg completed, the handle may be fitted to the tube and the cut ting edge ground on a grindstone, taking care to only grind sutficient off the beveled edge to sharpen it, and revolving the cutter so that it will be ground evenly and smootb. The cutting edge should stand at a right angle to the bore, and may be gaged by applying a square to the outside and across the cutting edges of the cutter. The grinding com pleted, the oilstone may be applied, when the cutter will be ready for use, Fig. W showing the manner of its applica-

ion, a being the chuck, B the ball,and C the cutter
'The cutter, when forced by hand against the revolving ball, rues it up exceedingly smooth and true; the ball being reversed, the operation is repeated in all directions in the chuck which may be; done without stopping the lathe, and then continued until the ball is true, which may be readily known, because the cutter will cut the high parts of the ball easily, taking off large shavings; but when the cutter edge bears equally at all parts on the ball, it will scarcely do more than polish it. When the ball is nearly finished, but a slight pres ure must be placed upon the cutter, and the ball must b more frequently reversed in the chuck.

IURNING PISTONS AND RODS.

A piston should first be bored to receive the piston rod. The next operation is to rough out the body of the piston rod and to then fit it to the piston. The piston is then made fast to the rod, by the key , the nut, or by riveting, as the case may be and the piston and rod should then be turned between the centers. By this means, the piston is sure to be true with the rod, which would not be the case if the piston and rod were turned separately. In turning the piston ollower, that is, the disk which bolts to the piston head to retain the rings in their places, slack back the dogs or jaws
of the chuck after the roughing out is complete, taking the finishing cuts with the jaws clamped as lightly as possible upon the work ; because when the jaws of a chuck are screwed upon the work with great force, they spring it out of its natural shape.

piston rings.

The rings of metal from which piston rings are turned hould have feet cast upon one end, which feet must be faced up true by taking a cut over them. The ring should hen be chucked by bolting the faced feet against the chuck plate, so that the ring shall not be sprung in chucking, as would be if it were held upon its inside or outside diame. er by the jaws of a chuck. The inside and outside diameters of the ring may then be turned to their required dimensions, and the end face may be trued up, when the piston rings may be cut off as follows:
First introduce the parting tool, leaving the ring sufficiently wide to allow of a finishing cut after cutting the ring nearly off; introduce a side tool, shown in Fig. 22, and take a ligh inishing cut off the side of the ring, and then cut it off. The end face of the ring in the lathe may then be trued up by a finishing cut being taken over it, when the parting tool may be introduced and the process repeated for the next ring Piston rings are sometimes made thick on one side and hin on the other side of the diameter, the split of the ring being afterwards cut at its thinnest part, so that, when the ring is sprung into the cylinder (which is done to make the ring fit the cylinder tight and to cause it to expand as it wears, thus compensating for the wear), its spring will be equal all over and not mainly on the part of the diameter tright anglas to the split, as it otherwise would be.
The process of turning such ringa is to face the feet of the ring from which they are to be cut, and then turn up the outside diameter to its required size. 'i'hen move the ring n the face plate sufficiently to cause it to revolve eccentric ally to the amount of the required difference between the thickeat and thinnest parts of the ring, when the inside di ameter should be trued out, and the rings cut off as before dir scted.
The object of turning the inside bore after and not before he outside diameter of the ring is turned, is that, during the process of cutting off the individual piston rings, the bore of he ring will be true, so that the parting tool will not come hrough the ring at one side sooner than at the other; for if bis were the case, the parting tool, from iss liabil ty to spring and its broad cutting surface (parallel to the diameter of its cut), would be apt to epring in, rendering the cutting off pro eess very difficult to perform; because if the piston ring is cut completely through onone side and not on the other, i will probably bendand spring from the pressure of the part ing tool, and in most cases break off bsfore being cut through at all parts by the tool.
The inside diameter (or bore) of piston rings is frequently eft rough, that is to say, not turned out at all; but wheneve this is the case, the splitting of the rirg will in all probability cause one end of the ring (where it is solit) to move laterally one way and the other end to move the opposite way,causing the vise hand a great deal of labor to file and scrape the sides of the ring true again. The cause of this epring is that there is a tension on the inside of the ring (where it hasnot been bored), tending to twist it, which tendency is overcome by the strength of the ring so long as it is solid but when it is split, the tension releases itself by twisting he ring as stated.

Cider

This is the month when fine clear cider may be made, but ater in the year perhaps the best cider is made. To have good cider, says the Maryland Farmer.the apples ought to be sound, clean, and somewhat mellow, and there should be perfec cleanliness in all the operation of grinding, etc. The barrel ought to be clean and free from all taint or bad smell. Keep the barrels full, during fermentation, with cider of the same making kept for the purpose. As soon as it ceases to actively ferment, draw it off into other barrels and at the same time strain it through a blanket or muslin-common cotton-and when it ceases fermenting, add to it 4 lbs. of mustard see or as some recommend, sulphite of lime; then bung down.
A small gimlet hole might be bored through the bung to let off for a fewdays any excess of gas, and then stopped up tight. To haveit extra fine, it should be racked off the thir time. Good cider always commands a high price, and it is admitted to be a wholesomeand temperate beverage.

keEping apples.

A correspondent of the Boston Cultivator kept 1,200 bar rels of apples, mostly Baldwins, in his cellar last winter, by daily expelling the stagnant air and replacing it with pure He attributes the early decay of apples largely to a vegeta ble miasma in the air, which is communicated to it by vege table evaporation under certain conditions. The effect of this miasma is first seen in minute specks on the apple.

An unfortunate trouble exists between the proprietors of the Troy, N. Y., iron works and their puddlers, owing to a reduction in the wages of the latter. The puddlers have refused to accept the reduced wages. A dead lock constquently prevails. If the puddlers do not accede to tbis new scale of wages, the whole works threaten to shut down. This is not a pleasant prospect in view of the nearness of winter.

A SPECIMEN of the ore recently taken from the new silver mine at Wolcottville, Conn., contained from eight to ton ounces of silver to a tun, with a smal percentage of gold. an effort is being made to form a joint stock company, for the purpose of developing the mine.

IMPROVED STUMP SAWING MACHINE.

Settlers in wooded districts of the West, or farmers generally, who contemplate clearing off some of their timbered land during the present fall or in the spring of the coming year, will find in the annexed engraving a new saw represented, which will, without doubt, prove an efficient aid in accomplishing the labor of cutting off the stumps. The blade leaves the stumps with a concave top, which serves to retain moisture, so that the rotting of the lower wood is considerably facilitated, while the division may be made as deep as six or eight inches below the surface of the ground if it be desired.
An ordinary saw is employed, sprung in arc shape and clamped to the ends of a swinging frame, A, which is applied by a central sleeve to a smooth shaft, sustained in a supporting frame. The saw frame is provided at its ends with handles so as to be ends with handles 80 as to be
worked by one or two men. A worked by one or two men. A
cord attached to its center passes cord attached to its center passes
over a pulley, B, on the supportover a pulley, B, on the support-
ing frame, and carries a weight ing frame, and carries a weight
which produces the forward feeding of the saw into the stump.
The supporting frame consists simply of inclined legs pivoted to and secured by nuts on the ends of the horizontal shaft. The elevation of the latter above the ground and the consequent raising or lowering of the saw is proided by spreading the legs and fastening them in the required position by arc-shaped guides, C , and set screws. The lower ends of the legs are connected longitudinally by base runners, D , in order to gain increased "stability to the rame, and to admit of steadier seating on the ground. Suitable handles on the legs serve to carry the machine from atump to stump.
The mode of arranging the apparatus, its size, and various other points of detail are plainly indi points of detail are plainly indi cated in the engraving and require no further explanation. The inventor states that he has used the device with perfect success, cutting off the stumps below, even with, or above the ground with rapidity and ease.
Patented through the Scientific American Patent Agency, September 8, 1874, by Mr. James A. Elston, of Elston Station, Cole county, Mo., to whom letters for further information may be addressed.

Bronzes of Copper and Tin.---The Chinese Gong Metal.

Bronzes containing from 18 to 22 per cent of tin, heated o redness and suddenly cooled by plunging into cold water, have their density increased by the process; but when a specimen which has been so treated is again heated to redness and annealed, or very slowly cooled, the density is reduced. The latter effect is much less marked than the former and a piece of such bronze, subjected alternately to sudden and to slow cooling, has its density notably increased by a few repetitions of the operations. This result does not occur when a bronze containing only from 6 to 12 per cent of tin is submitted to the same series of processes. When alternately, either with annealing or with sudden cooling, the sample is submitted to such mechanical operations as simple compression, the stroke of a coining press, or, in the case of bronzes poor in tin, to extension in a rolling mill, the density of both classes of bronzes is augmented. Both he mechanical and heating actions contribute to this effect, which, in bronzes rich in tin, is more marked with sudden than with slow cooling. Bronzes rich in tin are softened by sudden cooling, while the reverse effect is produced in steel, in which also the density is diminished by the operation, instead of being increased, as in the bronzes.
A discovery of considerable industrial value is announced in Mr. Riche's paper. It is known that bronze containing about 20 per cent of tin cannot be wrought at ordinary temperatures, and that at a bright cherry red heat it crumbles under the hammer. The author has, however, found that at a dark red heat, or a little below it, this alloy is as malleable as iron, and may be hammered into thin plates with the great. est ease. Availing himself of this observation, he has been able, in conjunction with M. Champion, to fabricate gongs, which are, in chemical composition, external appearance,and sonorous properties, identical with the famous Chinese instruments.

Facts about Copper

Mechanical actions, alternating with either slow or sudden cooling, produce in pure copper an increase of density when the heating has taken place without access of air, and a decrease in the contrary case. Brass has its density increased by sudden cooling and by mechanical actions, bat diminished by annealing; while similor, which contains a much smaller proportion of zinc, undergoes no sensible change of density by these processes. Some experiments are described, proving the permeability to liquids of cast iron, by Mr. Riche, who finds that copper melted and run into the mold at a low temperature is also capable of absorbing liquids, a property acquired likewise by rolled copper after heating in charcoal. This property is not possessed by copper which has bsen cast at an elevated temperature,or heated with access of air,
or alloyed with a small quantity of iron. The introduction of a small quantity of iron greatly increases the tenacity and hardness of copper, without interfering with its malleability. - Journal of the Chemical Society.

A Mine of Liquid Sulphur.

In the vicinity of San Martino, near Palermo, Sicily, a mine of liquid sulphur is being worked, or, in other words, large collections of the substance are being made at points where it flows from the fissures in the rocks in quantities of from 400 to 500 hundredweight per day. The sulphur comes from a burning mine within the mountain; and in order to give it
the parts of the lock, in either direction, is the same, so that no intermeddling or tampering with the open lock is possible.
Fig. 1 shows the position of the working parts with the key hole open, and Fig. 2, the same with the guard before the latter. Fig. 3 is a vertical transverse section of Fig. 1. The form of the key is represented beside Fig. 2. A is the bolt, which is thrown by the key engaging in a recess at the rear part of the same. By means of pins, B, on each side, the bolt connects with the double T-headed slots shown in the main tumbler, C , which is pivoted at D and acted upon by the adjacent band spring, and in the latch tumbler, E, which is thrown by its separate spring, F. The tumblers, it will be observed, are thrown in opposite directions, so as to lock over the stop pins, B, of the bolt.
The main tumbler has, at G, a recess which embraces a pin of the double guard plates, H , which are pivoted above the bolt, and swing at both sides of the same, immediate y under the outer side plates of the lock case. These plates are braced with lateral bars, I, Fig. 3, and have slots which enable them to pass over the stem of the key when the same is placed in the key hole. The turning of the key causes, first, a catching of the spurs over the part, J, Fig. 1, thereby carrying down the main tumbler, C, so as to release one of the stop pins, B, from the slots in said tumbler, and to throw the guard plates, H , around the key stem, thereby closing the key holes completely. The key next engages with the bolt recess (see dotted lines, with the bolt recess (seedotted lines,
Fig. 2), and raises also the latch tumbler, E, from the opposite stop pin, B, so that the bolt is free to be thrown for closing or opening the lock. The spring action on the main and latch tumbler carries them instantly, on the completion of the
bolt movement, back over the stop pins, and throws the guide plates

ELSTON'S STUMP SAWING MACHINE

frequently closed for brief periods. Quite recently, on open ing one of theseclosed fissures, it was found that the sulphur had disappeared; and in order to renew the flow, it was sug. had disappeared, and in order to renew the fow, it was sug-
gested to tunnel down toward the mine. Hardly was the work begun, however, before the pressure in rear of the ob structing mass became too great for the latter to withstand and a terrific explosion ensued, hurling the workmen into tho air, killing five and badly wounding six more.

MOAT'S IMPROVED LOCK.

The peculiar feature of the novel lock illustrated here-
Tiv.!

idewise from the key holes, producing thereby the rigid and secure position of the bolt, besides the opening of the key holes for the key.
Patented through the Scientific American Patent Agency, August 25, 1874. For further information address the inventor, Mr. E. Moat, Watertown, Mass.

Elie de Beaumont.

The death of the oldeat of French statesmen, M. Guizot, is closely followed by that of Elié de Beaumont, the greatest as well as one of the most aged of French geologists. M. de Beaumont was born in 1798; and after successfully conducting an extended series of metallurgical explorations under government auspices, he became in 1824 a mining engineer. From 1829 to 1833 he rapidly rose through the position of Professor in the School of Mines of the College of France, and finally became Engineer-in-Chief. At the death of Arago, M. de Beaumont succeeded that savan as perpetual ecretary of the Académie des Sciences, and he was subsequently made a senator of the empire by Napoleon III.
M. de Beaumont's labors have resulted in the publication of several works, in one of which he endeavors to prove that mountain chains are to be classed according to the direction of their range, all those lying parallel with the same great circle of the earth, wherever they may be found, having been uplifted suddenly during the same geological epoch. The features of no fewer than ninety-five systems of mountains are accurately described in the last edition of this book. His geological researches in France have added largely to the knowledge of the resources of that country, as well as to general learning in the science. M. de Beaumont died on the 24 th of September last.

Progress of Telegraphy in the United States.
The annual report of the Western Union Telegraph Company, just published, shows 175,135 miles of wire, and 71,585 miles of line in use, with 6,188 telegraph offices. The total receipts for the year were $\$ 9,262,653$; expenses, $\$ 6,755$,733. The Stearns Duplex telegraph apparatus, by which messages are sent both ways on one wire and at the same time, are in extensive operation.
But the past year has produced an invention still more wonderful than the duplex. Thomas A. Edison, and George B. Prescott, the electrician of the company, have discovered processes and invented apparatus by means of which two messages can be sent in the same direction, and two others in the opposite direction, simultaneously upon one and the same wire. This invention, which they have christened the quadruplex, is in successful operation between the New York and Boston offices, and is satisfactorily performing an amount of work upon one wire quite equal to the capacity of four wires worked with the ordinary Morse apparatus: so says the president.

A NEW device for registering the fares of street railroads has been introduced in Philadelphia. It is a portable receptacle for money or tickets, and resembles in size a large powder flask. The conductor presents the machine to the passenger, who puts in his fare in cash or a ticket, whereupon the conductor presses the spring, which works the register and sounds an alarm bell.

THE SOUTHPORT AQUARIUM AND WINTER GARDEN. |SULPHUR IN SICILY, AND ITS REDUCTION FROM THE A few miles to the north of Liverpool, on the Lancashire coast, England, is a newly grown watering place, Southport. Its beauty and salubrity have gained it renown among the inhabitants of the scores of manufacturing towns in its immediate neighborhood; and it has become a very popular resort, being within a short railway journey of the homes of many millions of people. The Southport folks have recently embellished their town with a building comprising an aquarium, a winter garden, a music hall, and a large covered promenade. The conservatory or winter garden, shown in our Fig. 1, is a large and graceful structure of iron and glass, and contains not only a fine collection of rare tropical and other plants, but also birds and animals, making a nucleu for an extended zöological exhibition. This has been wisely entrusted to the care of Mr. Frauk Buckland, the friend of all living crea tures and the editor of Land and Water.
The aquarium, Fig. 2, is excellently ar ranged, being mainly lighted through the tanks containing the specimens, so that they may be seen to advantage. It is a solid and imposing structure. The exterior of the building, with the entrance gates and a por tion of the grounds, are shown in Fig. 3.

The edifice," says Mr. Buckland, " must be inspected to obtain an idea of its beauty. In general outline it reminds us of the Crystal Palace. One side only of this crystal palace is at present in existence, but there is ample apace (now occupied by houses) to complete the other wing.
Adjoining the dome is a promenade, which at the night of opening was so full that it was almost impossible to move about. On the walls of this were exhibited some of Mr . Rolfe's fish pictures. Here also was exhibited a salmon caught by the rod in the Ness, 32 pounds in weight. I cast him. Mr. Rolfe painted him in his best style, and we conjointly had the pleasure of presenting him to the aquarium. He is represented as lying in a basket on straw, and the deception, to those who had never seen Mr. Rolfe's works before, was very satisfactory, the difficulty being to prevent people from tapping the fish to see if it was real. A glass case is being prepared for its reception.
The aquarium cannot be seen from above ground. The space underneath the winter garden is entirely occupied by an immense tank for sea water; it communicates with two other tanks which are used as occasion requires.
The sea water is supplied from the pub lic baths, whence it is conveyed by means of a pipe; abundance of water is available from this source. The aquarium itself is partly under the promenade and partly under the wint gardens. Under the promenade are twenty-two tanks, the light being let in from the top by day, and illuminated by gas at night.

The fish in the various tanks are as follows: Congers, ling and codling, mullets, father lashers, sea trout, wrasse, anemones and whiting, dog fish, gurnards, crayfish and crabs, whiting, rays and soldier crabs, soles, turbots and fukes, monkfish, topers, lobsters, king crabs, octopus, Maia squina$d o$ and edible crabs, stickle backs and anemones, bass or seaperch, cod, salmon, great lake trout, and gold schlei or golden tench, and large dog fish.

SOUTHPORT, ENGLAND.-Fig. 1.-THE CONSERVATORY.

wood. The thickness of the sulphur deposit, in its frequently recurring changes, often remains very constant, and indi cates an equally regular change in the conditions under which it was deposited; it almost reminds a person of the changing seasons. The fishes found in the sulphur mar enable us to recognize the sulphurous strata as formed by fresh water
Parodi states that the average percentage of sulphur in the sulphur rock of Sicily is 12.5 per cent. When it contains less than 6 per cent of sulphur, it doas not pay for mining and smelting. In 1871, Sicily produced 150,000 tuns of sulphur, probably nine tenths of that produced in the whole world. This production is continually increasing. That this natural wealth does not prove a greater blessing to the country and its prosperity is principally due to the circumstance that in Sicily the proper ty on the surface cannot be released from tha of subterranean treasure, and this circumstanc results in a number of other evils, which do not permit mining to emerge from its great and almost inconceivable imperfection.
The number of sulphur mines in Sicily is upwards of 600 , not more than half of whic are worked at present; and of these, cnly about 50 are of considerable importance.
In looking for the sulphur deposits, a sof kind of gypsum, formed by the decomposition of the sulphur bearing lime or calcareou marl, plays an important part. In general the sulphur is combined with gypsum, and the presence of the latter renders it probable that the former is near. To reach the depos its, inclined shafts are dug, having an incli nation of 25° to 50°, seldom steeper, and more seldom horizontal. Neither horizontal galle ries nor vertical shafts are employed, since the former would not reach the sulphur soon enough, and the latter would require the use of some sort of machinery; and wood is lack ing for this purpose, as also for timbering and rame work. Steps are cut into the inclined plane, and whenit is not steeper than 45° the steps reach all the way across; but whe steeper, two steps are cut side by side, alter nating with each other. The young laborer climb up and down these high, narrow, and slippery steps, panting, groaning, and sweat ing-carrying on their heads and backs heavy bags filled with sulphur ore. They make from 16 to 18 ascents and descents daily, to and from a depth of over 200 feet
By this pitiable method, at least a million tuns of sulphur ore are annually brought up into the light of day by boys and youths Nay, too, the little drippings of water are col ected in stone jugs, and brought up in the same laborious manner. The mine is almos always abandoned when it reaches the water culiar porous limestone in crags and ridges. On the top of the level. The temperature in these is very high, 111° Fah latter is a foraminiferous marl of marine origin, after which renheit, and, owing to the moisture in the air, it is al follows a stratum of tripoli, upon which is a stratum of cal. careous marl, which is in some places more argillaceous, in others more calcareous. This is the stratum which contains the sulphur. The sulphur formation is generally covered over with immense masses of gypsum, on which again is a foraminiferous marl. Then follows the pliocene formation, blue clay, and yellow breccia.
It is probable that the quite extensive deposits of salt, found in widely distant portions of Sicily, were formed at the same time as the deposits of sulphur. The rock
renheit, and, owing to the moisture in the air, it is al most unendurable. The diggers (picconieri), owing to the heat, work naked, or only wearing a small apron. The sulphur rock is so soft that it is cut out with a largeinstrumen like an ax. The roof of the mine is supported by pillars, so that a considerable portion of the ore is left standing, to se cure the structure. In order to obtain the mass of the pil lars, they are weakened more and more, until, at an unex pected moment, the roof falls. The fallen and broken mass is left for a time, until it adheres together; shafts and gal leries are then dug through it to get at the pillars. When

Fig. 2.-THE AQUARIUM.

Fig. 3.-EXTERIOR OF THE BUILDING.
There are also some very handsome table tanks and salt enclosed in the clay strata is often very pure. The |the sulphur-bearing strata lie one above another, there isa aquaria, containing collections of anemones, gobies, fifteen spine sticklebacks, prawns, and Norway lobsters. Orders and regulations have been laid down by the board as to feeding the fish, cleaning the tanks, etc. There is a seal tank, and some fine specimens of the sea trout.

An Illinois editor returns thanks for a centipede sent to him by mail from Texas, "it being," he says, "the first cent of any kind that we've received for several weeks."
deposits of sulphur are not usually of great extent, and sulphur impregnates the 'strata of clay and limestone, ap. pearing either in irregular threads and veins, or in layers three to six feet thick, alternating with the layers of rock, or in round concretions from 0.4 to 0.8 of an inch in diameter. Barytes and imperfect crystals of calxspar accompany the sulphur, and, more rarely, baautiful crystals of cœlestine. Sometimes the sulphur strata enclose whole stems of fossil
double set of pillars. Through errors in the ground plan and ignorance of mining survering, it generally happen that the pillars in the upper gallery do not agree with those in the gallery below. As the stone is often soft and brittle, t is no wonder that they frequently break through.
The condition of the sulphur miners is extremely deplorable. The manner of living in populous spots miles distant from each other, instead of in villages, is peculiar to that country, and the majority of the mines are far distant from
human dwellings. Neither manager nor contractor consider it a duty or necessity to erect a roof to protect their work men, so that they sleep in the open air in pleasant seasons, exposed to the damp dew; while in winter they sleep in the foul atmosphere in the mine itself, exposed to the dangers of being buried alive. In cases of sickness, the unfortunates have no assistance, and the families of those who die, or are killed, are exposed to the greatest misery. As regards education and moral instruction, the working classes are entirely neglected; there are no schools, savings banks, or associations for mutual aid. The consequence is that the society which grows up about the sulphur mines is in every respect an abandoned class, ripe fur crime. The mines are a refuge for evil doers from the whole island
The sulphur is prepared throughout Sicily by melting the stone in calcaroni, where the combustion of a portion of the sulphur furnishes the necessary heat to fuse the remainder. The liquid sulphur drips down to the bottom, and flows out into molds intended for its reception. In building a calcaone, a spot is selected at the side of a hill, and a cylindrical furnace built, from 20 to 40 feet in diameter, and a few yards in hight. The walls are supported in the rear by the earth, and in front project in a semi-circular form. The hearth of the furnace has a double inclination, from the hill oward the front and from the sides toward the middle, so that the liquid sulphur collects in one place, and through a perforation in the inner wall it reaches the outlet. The bottom is pounded down hard like a threshing floor. The interior is filled with sulphur ore, the larger pieces being thrown in just as they are, and the smaller ones are formed into cakes, so that the melted sulphur will flow down through it more readily. When the cylinder has been filled, the pieces of sulphur ore are heaped up in a cone above the mason work, and covered with the burned pieces from a previous operation.
A calcarone will hold from 175 to 1,750 tuns. In charging the furnace, several vertical flues are left open, which serve in part for kindling the fire, and in part to keep up the combustion at the beginning of the operation. The pile is ig nited by throwing burning wood or bundles of straw down these openings. When the whole mass gets to burning, all he openings are closed; and the operation, which lasts from wo to four weeks, according to size, is àttentively watched and the combustion controlled by the cover on the heap The temperature is kept at a proper hight, above 240° Fah., since sulphur melts at 240°, and remains a thin fluid up to temperature of 320°. The melted sulphur is drawn of hrough a hole a foot wide and two feet high, in the front of the furnace, which is previously stopped with clay. The sulphur is run into wooden molds, the bottom and sides of which are
This method of obtaining sulphur is attended with a grea deal of loss; experience shows that the highest yield of a calcarone is 70 per cent, although it does not usually exceed 50 per cent of the total amount of sulphur. The crude sulphur is worth from $\$ 180$ to $\$ 2$ per 225 lbs., so that the fuel consumed is worth at least twice as much as English coal would cost in Italy.
In producing sulphur in Sicily, only those resources to be found on the spot are made use of : no wood for framing, no machinery for raising the ore and water, no coal for smelt ing. Any one who would attempt to introduce any improve ent in mining or reducing the sulphur would encounter reat difficulty, arising chiefly from relations of proprietor hip, and in the social status of the country. Legislation is he only help. Notwithstanding the immense store of natual sulphur on the island, it will be seriously impaired, by he progress in other countries which now make oil of vit riol from pyrites, unless some change is effected in the state of affairs.

THE FAIR OF THE AMERICAN INSTITUTE. The American Institute Fair is proving remarkably suc essful, if we may judge from the large crowds which con tantly throng the building. The display is unquestionably he best that has been made for many years; and since it in cludes a number of industrial processes carried on in presence of the visitors, it calls forth a much morelively interest than it wouid were it restricted to mere exhibition of completed products. At one portion of the hall,ivory turners are at work,making billiard balls and carving ornaments; at anther a newspaper office is shown in full operation, from the editor vainly endeavoring to seize vagrant ideas-a difficult ask, and one we should unhesitatingly decline under the he circumstances, for we doubt if we could work with a bevy of bright eyed damsels staring at us-to the finished sheets deftly piled by the swift-running press. There are tailors cucting out garments by machinery, brush makers manufacturing brushes of all kinds, scroll saws cutting out wooden ornaments and trinkets, engravers making illustraions similar to those in our pages, confectioners cooking andy, and even an old gentleman who cuts your profile likeness in black paper, and does it admirably too, in half a minute, for a small consideration. Up in the Art Department are large volumes, each leaf of which shows an application of one the numerous.tints imprinted on a well known chromo. By studying the pages the visitor can learn in a very short time just how the very handsome works of art which Mr. Prang exhibits are made, and how laborious the ark must be.
There are a number of interesting shoemaking and leatherworking machines in the main hall, and a superb display of leather. Hides tanned by the best American processes are brought in direct competition with those imported from Europe, and the special medals which are offered for excel-
lence have tended to highten popular interest in the exhibition, apart from that excited by its partaking of the nature of an international contest. A new object of curiosity has
been recently added in the shape of the winning boat of the been recently added in the shape of the winning boat of the
Columbia crew at the Saratoga Regatta, last summer. It Columbia crew at the Saratoga Regatta, last summer. It lays across the hall, gaily decorated with blue and white ribbons. The youngsters seem to be especially pleased with a variety of miniature steam machinery exhibited in operation. There is a steam fire engine which throws a needlelike stream for several yards, steam propellers which travel quite rapidly about a tank of water, and a amall machine shop, including lathes, saws, etc., the tools all run by a tiny boiler. Mr. Hawkins, the Superintendent of Machinery,als aims at popularity among the children, for he has lately devoted his ingenious button mold machine to the manufacture of some queer games, which are very interesting, and beside has produced skipping ropes of a remarkable and hitherto unknown pattern.
The Fair as a whole is admirable, and the exhibitors have fairly outdone themselves in the elaborate and tastefulplans adopted in showing their contributions. The management is open to improvement, particularly with reference to al lowing the woodworking people to howl their wares like country showmen, to the individual with the perfumery who squirts cold spray into peoples' ears or eyes,and in regard to that ugly ${ }^{\text {d }}$ drapery on the roof ; and there are ridiculous adver tisements which talk about "enormoas fish" in that little fountain; but generally, however, we find a great deal to praise and very little to condemn.
A recent stroll through the Machinery Department has filled our note book with descriptions of a score or more noveltiea,some of which below described will doubtless prove interesting.

the machine tools

of the New York Steam Engine Company are well worth critical examination. Many of them are in actual operation thus affording excellent opportunities for the mecbanic to watch their practical employment. There is a chucking and turning lathe, by which a hole can be bored or chucked 20 inches in diameter; and by means of a new slide turning rest, a pulley can be turned, baving a diameter of from 8 to 30 inches. This machine has a gap bed. In the upright drills there is a steel drilling spindle attached to a gibbed head which moves up and down with the spindle,giving the latter a very long bearing at every point. A number of macbines which have been illustrated in our volumes are ex hibited, notably a hand crank drill, a slotting machine, and gear-molding machine. The shapers have their cutting bars placed on edge in adjustable guides. The vibration or spring of the tool is prevented by placing the widest section of the bars directly opposite the cut. The box-boring machine is arranged so that either of two bars may be used independently. A side rest is provided for each bar, and four oxes in each rest may be simultaneously operated upon. The 9 inch bending rolls exhibited are so constructed as to be kept in constant contact with the plate, and their spring ing at the centers is prevented. There are a number of other machines of which our limited space necessitates omitting mention.

THE BOILERS,

employed to supply steam to the main engines, are of the Howard eafety type. Five tiers of tubes which incline up. ward to the rear are connected to vertical sections by boring smallitholes in the extremities of the tubes and allowing the cast metal of the sections to flow in,forming a perfectly solid joint. The parts of the vertical sections are bound together by stay rods passing through and set up with brass nuts and the caps opposite the parts where the tubes enter are similarly attached by rods passing lengthwise through the tubes. Above the second tier is a fire brick diaphragm, in rear of which the heat passes and then encounters anotber diaphragm, above the third tier. The products of combustion are then conducted to the front of the boiler, whence they return to the uptake. The three lower tiers of tubes are for water and the upper 'ones for steam, the latter through the disposition of the heat, becoming highly heated. There are three

CURIOSITIES IN THE MACHINE DEPARTMENT.

The first is a large tank provided with windows and filled with water. In this the Myers rotary engine is soon to rotate a good sized propeller, and brilliant lights are to be placed so as to shine down and through the water. This is an ingenious way of loading the engine and, besides, showing its adaptability to marine purposes. The tank, howeve looks somewhat fragile; extra riveting might improve it. Another application of the diamond to industrial use is found in the second of our trio of curiosities. It is

THE DIAMOND BAND SAW.
There is little in the construction of this machine, sav perhaps its extra heaviness, differing from that of the ordiary woodworking tool. The blade, however, instead of being a single strip of metal, is a band covered with small straps of steel, the latter strung on the former, like beads In certain straps the diamonds-borts or catbons-are secured so that three straps containing diamonds may come together,and then an interval to the next set occurs of some eightinches. There are of course other ways of arranging the diamonds, which need not here be described. The ma
chine cuts a curve or scroll in stone as easily as the ordinary band saw goes through wood. A certificate published by the inventor, Mr. Herbert Cottrell, of Newark, N. J., sqye that the blade cut through Newark brown stone, measuring 3 feet $2 \frac{1}{2}$ inches one way and 3 feet 3 inches the other, mak a superficial surface of $1,501 \frac{1}{2}$ square inches, in 22 minute

THE ICE CREAM MACHINE

of Messrs. Dixon and Tonstill is the last odd invention of the three. The prepared materials are dropped into a can arranged above like the oil reservoir of a bolt cutter. They flow through a tube into a horizontal cylinder which is placed in a tub and covered with ice and salt. Inside the cylinder is a helicodal knife, which scrapes the edges and also forces out the frozen material through one end. Both cylinder and knife are rotated by simple gearing. It is quite curious to watch the materialsenter one part of the machine and quickly emerge in a frozen condition from another, in the shape of excellent ice cream.
There are two

pipe cutting and threading machines

which deserve notice. One is that of the Chase Manufac turing Company, illustrated on page 131 of our last volume In this the pipe is held stationary in thevise, and passe through the center of a gear, the rotary motion of which is mparted to the die in the die box by means of guides, upon which the die box freely slides forward as the die passes upon the pipe. When cutting pipe, the tool post, with the cutter, has an automatic feed.
The manufacturers of the other machine are N. W. Frost \& Co., of Cohoes N. Y. Theapparatus is in three pieces, readily taken apart and put together. One portion form anexcellent vise; another is inserted above and carries the handle and a pinion; and the third is the gear wheel, in which the pinion engages, and which turns the dies and operates the feed. The machine does excellent and rapid work, and is very simpleand strong in construction.
the maxim automatic pumping engine
is a novelty recently added. It consists of a little steam boiler heated by gas, which warms and regulates its own feed and controls the fire. It runs a little pump, placed above, which is said to be capable of forcing from ten to twelve barrels per hour to a distance of one hundred feet, at a cost not over 6 cents.

New Camera Lucida for Drawing

It is known that the construction of the camera lucida is founded upon the simultaneous perception of two imagesthat of the object and that of the pencil. Various means have been employed to arrive at this result. In that of Sömmering, it is a metallic mirror smaller than the pupil; that of Amici is constructed on the principle of rfflection on a plate with paral lel faces; that of Wollaston, at present most in use, consist in a prism, of whick the edge, dividing the pupil in two parts, permits the object to be seen by the upper half, and simultaneously the pencil by the lower portion. In all these ystems the fusion of the images is somewhat difficult to seize, especially for certain points of the reflected image Govi, Professor of Physics at the Royal University at Rome, proposes to cover with a thin layer of gold the reflectin surface of a prism, and to apply upon this, with Canada bal sam, a second prism with like angles. Although this laye of gold is sufficiently transparent to allow the luminous ray to pass, its power of reflection is considerable, and it give images of great brightness. We have thus a perfect mean of superimposing, without fatigue to the eye, two different images-the one direct, and the other reflected. The princi ple is the application of that property of thin plates-metal lic or otherwise-to transmit simultaneourly direct rays and to reflect rays which arrive obliquely from another source.

Dr. Robertson, of Georgetown, Mass., thinks that the popular idea that hot or cold drinks are apt to crack the namel of the teeth is incorrect. He has ascertained by experiment that it requires a change of temperature of 160 Fah. to crack the enamel of an ordinary tooth. The teeth are never subjected to such a great change as this in the use of hot or cold liquids.
The first passenger train making the complete circuit of t. Louis lately passed over the bridge and through the tun el. The regular locomotive being exchanged for one of the smoke consuming engines used by the tunnel company, the train passed as comfortably as though traveling in the open air.

The Saw Contest at Cincinnati.-In our account of the aw premium contest at the Cincinnati Exposition, the 16 good boards, 10×20, sawn in two minutes and forty-four seconds, should be described as 16×20, making a still greater esult than we reported.

The Canadian way of measuring a tree is said to be ab certain as it is grotesque. You walk from the tree, looking t it from time to time between your knees. When you are ble to see the top of a tree in this way, your distance from he root of the tree equals its hight.

A Lawyer's advice to a Pupil.-" When the facts are in your favor, but the law opposed to you, come out strong on the facts; but when the law is in your favor, and the facts opposed to you, come out strong on the law." "But," inquired he student, " when the law and the facts are both against me, what shall I do?" " Why, then," said the lawyer, " talk around them."

Leather Pulp.-A process of pulping leather in engines, similar to those used for beating rags in a paper mill, is now in use in Massach usetts. By rolling it into sheets under considerable pressure, a product of great tenacity, homogeneity, and closeness of texture is obtained, which is, moreover, per

Andrew Jamison, Taylorstown, Pa-The feature of this invention is a

 reel mounted on a pivoted lever, which tilts or raises the finger bar so thatt may be adjusted to various hights, thus adapting the machine for use

$$
\begin{aligned}
& \text { lmproved Steam Bell Ringing Appaiatus. } \\
& \text { H. Hudson, Dubuque, Iowa, assignor to himself, Piel }
\end{aligned}
$$

Charles H. Hudson, Dubuque, Iowa, assignor to himself, Pierce R. Sutton, Edwin Smedley. and Orren F. Hodge, same place.-This is a steam engine designed for ringing bells on locomotives. When the bell is in mo-
tion, a bell crank will press a tube down on the rod and force the piston to the bottom of the stroke, and thereby close the exhaust and open the Inlet ports. When the crank has passed the center of the stroke, the steam
admitted by the movement of the valve ring presses the piston up and Inlet ports. When the c,ank has passed the center of the stroke, the steam
admitted by the movement of the valve ring presses the plston up and
throws up the bell. The tube connection allows the bell crank to move throws up the bell. The tube connection allows the bell crank to move
freely upward after the plston has reached the end of its stroke, cut off the freely upward after the plston has reached the end of its stroke, cut off the
stean, and open the exhaust port. The return swing of the bell is followed

Improved Subsoil Plow.

Ira M. Gritin, Maryville, Mo.-This plow will open a wide double furrow The subsoll plow plate forward, and forward, and its forward end is bolted to the upper part of another
standard, several holes being formed in the latter standard to recelve the sald bolts, so that the pltch of the subsoll plow may be readily adjusted as
may be required. The plow standard maybe adjusted at discretion. The maybe requtred. The plow standard maybe ad
handles are attached to the double mold board.
$\underset{\text { Improved B Belgian Zinc Furnace. }}{\text { Itz }}$
Theodore Hiertz, St. Louis, Mo.-The disadvantage of the high Belgian duction of the ores in the upper retorts, the lower ores were exposed to an excessive temperature, which caused the too rapid deterioration and destruction of the furnace lining and the retorts. The present invention is
intended to obvtate these defects, and consists in the arrangement of a intended to obviate these defects, and consists in the arrangement of a
sertes of flues in the front, rear, and side lining of the furnace for drawing in cold air near the lower part of the same, heatingit up during the passage hrough the fiues. and ntroducing it a about the middie of the hight of well and thorough y consume the gases of combustion

Improved Door Fasteuer

James Black, Eist Pepperell, Mass.-This invention consists of a spring
bolt with projecting roller end, which slldes in a socket set into the door and fastens the door by means of an angular plate with suitable inclines applied to the casing. A catch of the socket face plate projects into a re-
cess of the spring bolt, and retains the same inside of the socket during cess of the spring bolt, an
the time the door is open.

Improved Rein Holder.
Improved Rein Holder.
James Lowth, Chicago, ril.-This is a movable spring clamping bar, pit-
oted and supported centrally, under which the relns may be respectively oted and supported centrally, under which the relns may be respectively
drawn in opposite directions. The construction is also such that the reins together may be drawn through or betweegn bars and only toward the
driver.

Willam S. Wood, Newtown, N. Y.-This Case.

 struction of metallic burtal cases, whereby the operation of to the conparts together is facilitated; and it consists in an eyelet or short tube inserted into the screw holesं of the upper surrounaing stay iron for holding the stay iron and the cover of tbefore the screws are inserted.
Improved Spring Bed Bottom.
wire springs have their medtan parts resting ou slats and, Vt. -These around under cross bars, then through the latter, and, finally, bent over made paral
Julien H. Thayer, cold Hill, N. C. -The heel and the toe portion of the The heel part has an arm extending about as far as the toe plece, and hav The heel part has an arm extending about as far as the toe plece, and hav-
tyg the usual connecting rod for turning the crank shaft connected to it,
while the toe plece has a rigid arm rising up by the side of the connecting while the toe plece has a rigid arm ristng up by the stde of the connecting
rod to its middle, and connected at its upper end to a connecting rod by a short connecting link. The upper end of the arm s wings forward and
backward across the connecting rod, and delvers the pressure of the foot on the toe piece against it transversely at the time it is passing its centers thus carrying it past the centers.

Improved Device for Drilling Water Mains.
e B. Hand and John Carroll, Scranton, Pa. - A tubular pi
screw-threaded socket at one end and a screw-threaded stem at the other A screw cap is screwed to sald stem, and the drill spindle passes axially
through both the sald socket plece and cap. There 18 a collar upon the through both the satd socket plece and cap. There is a collar upon the
drill spindle, against whtch the cap is made to bear to feed the spindle to its work, and also to prevent gas or water escaping around the drill.

Improved Boot and Shoe.
Michele Derosa, New York city.-The uppers of this boot or shoe, which Is intended for summer wear, are of straw or analogous vegetable mate-
tal, bratded or plated so as to assume the proper shape. The material is attached to a leather inner and outer sole, so as to form a durable connec tion

Improved Burglar Alarm.
Adolphus Retmers, Lowden, Iowa.-An arm is applied to a block, which 1s placed in such position that the slightest motion of the door or window
may produce the dropping down of the block and, thereby, the release of the parts for giving the alarm, which are arranged at the front slde of sald block. They consist of a spring hammer, a projecting pin for setting the hammer end thereon, and one or more paper percussion caps, which are
held by a band spring tirmly on the block. The dropping of the device releases the hammer and discharges the percussion caps, the detonation of which gives the alarm.

Improved Fireproof Safe.

Edward H. Parker, Poughkeepsie, N. Y.-A top reservoir is called into action at a certain temperature, by fusible metal melting in a valve, so that water thereln rushes through connecting Z tubes and valves into a
main tank, and, after filling the latter, Into the door tank. Inside valves allow the gradual escape of the steam formed 1 n the tanks, but retain the
water on whatever elde the safe may be thrown. When the safe remains water on whatever side the safe may be thrown. When the safe remains
in its upright position, the steam of the main tank escapes through the top part of the vertical valves and the reservoir, that of the door tank through
the tubes opening at the bottom of the door. If the safe falls in the tubes opening at the bottom of the door. If the safe falls in any
direction, the reservoir is detached and the steam makes its exit directly through the entrance tubes. If the safe falls on its top, the steam escapes through the tubular stem of the vertical tank valives, while the water is pre-
vented from escaptng by the concal plugs belng seated in the funnels of the casings; and generally, in whatever position the safe may fall, sultable arrangements admit of the escape of the steam while preventing that of

Improved Tug Buckle and Hame Clamp.
Wllcoxen, Morrisonville, Ill.-The clasp surrounds the James Willcoxen, Morrisonville, Ill.-The clasp surrounds the hame, and takes the place of the old staple and hame hook. It is movable on the
hame, up and down, so as to bring the draft at the proper point. A catch is secured to the joint pine, which closes into a receess in the clasp to secure
and hold the same in the desired place on the hame. When the hame is on he collar, the catchis held in place by the latter. By this arrangement, the tug can be lengthened or shortened at the hame, and the point of draft
can be brought to bear in the proper place on the collar or shoulders of can be brous

Improved Whip Tip Ferules.
Improved Whip Tip Ferules.
E \ddagger ward B. Light, Wertfield, Mass., assignor to Edward B. Light \& Co isting in a ferule having teeth formed in the sides thereof and adapte sisting in a ferule having teeth formed
to be driven the whip tip and stock.

Ludwig Brumlen, Hoboken, N. J.-This process of manufacturing white
of Whiter lead from metallic lead consists in molstening the material in a sultable revolving cylinder with a solution of acetate of lead, oxidizing it by the introduction of heated air, combining the oxide with heated carbonic acta
by the introduction of the same, and of removing and precipltating the by the introduction of the same, and of removing and precipitating the
white lead by a solution of acetate of lead and the uncombined carbonic actd from the cylinder.

Improved Machine for Cutting Roll Paper. Ignatz Frank, New York clty.-A ring-shaped cutter-carrying plate 1 is
rotated by a crank handle. Two cutting knives are pivoted at diametrically opposite points to the base plate and gulde bands, which are attached by fastening screws to sald plate, in such a manner that the cutting blades IIde between them and the plate, belng secured in open position sidewise
of the central aperture by pivoted spring catches, which are forced with their hook ends through holes of the gulde bands into holes of the knives Strong spiral springs on the knives force the same toward the center of the aperture when released from the hook catches. Projecting handle ends of the knives serve to carry the same back into side position, to be held by
the catches for adjusting the roll in the central aperture. The rotation of the cutter-carrying plate, in connection with the action of the spings of the cutter-carrying plate, in connection with the action

Improved Mold for Sugar.

mold has its top, body, and double bottom detachable, the inner bottom betng perforated. An air passage is made through the center for the purpose of cooling the sugar during the process of crystalization.

Improved Corn Planter
Lafayette E. Askew and William H. Sangster, Greenville, Ky.-In this planter, the seed-delivering devices are operated through the medium of a star or rimless wheel, which is turned by the advance of the machine. To
the shaft, within the hopper, is attached a cross bar, the arms of which are lot in a plu. These agitate the seed in the hopper and enter alternately Wheel! The plunger, when released from the cams, is forced down by a bent spring. Plates are so formed that, when the plunger is ratsed, a cav-
ity will be formed between them and the lower end of the plunger of such Ity will be formed between them and the lower end of the plunger of such
a size as to contann enough seed for a hill. As the plunger descends, its a slze as to contaln enough seed for a hill. As the plunger descends, its
lower eads forces the plate apart, and allows the seed to drop to the

Willam Limproved Running Gear- for Wagons.

end of the reach are plvoted to the rear sand board and rear ande. rea torward bolster and the forward end of the reach are plvoted to the for ward sand board and the forward axle. The plvoted rear bolster is cos-
nected with the reach by two chains, so as to be always held at right angles nected with the reach by two channs, 80 as to be always held at right angles with sald reach. The rear hounds recelve the rear ends of braces which
pass beneath, and are secured to, the axle, and thetr forward ends are pass beneath, and are secured to, the axle, and the1r forward ends are
secured to the said hounds. The upper braces pass over the sand board and along the upper side of the hounds, to also serve as a facting for sald hounds. The front lifth wheel frame is provided with a swiveled perforatrengthened by brace straps
Improved Double-Acting Pump.
cted is separated from the he whe tube a passage leads to the upper valve chamber, from which it From this by a valve. From the lower valve chamber a passage leads into the lowe part of the piston chamber, and from the upper valve chamber a passage leads into the upper part of the sald piston chamber. The upper end of
the lower valve chamber is closed from a valve, from which a passage eads to the head of the pump. The upper end of the upper valve chamber is closed by a plate, which is held down to its seat by a screw, which passea
through a screw hole in the bar, the ends of which are placed beneath lugs cast upon the head. As the piston moves upward, a vacuum is formed in the lower valve chamber, which causes the water to pass up through the passage, ralse the valve, pass into sald chamber, and thence through ano-
her passage into the lower part of the plston chamber, to be forced out by the next downward movement of the plston. The same upward move ment of the piston forces the water in the u uper part of the piston cham
ber to raise the valve, pass into the head, and fiow out through the spout.

Improved Bag Fastener.
East Saginaw, Mich.-A strap, the
Scott Wellington, East Saginaw, Mich.-A strap, the ends of which are attached to a plate, passes around the mouth of the bag. At points upon
the strap are eyes through which a cord passes. Spring clutches attache o the plate recelve the cord and hold it when the ends are drawn togethe By compressing the springs, the cord is readlly released.

Improved Paper Pulp Screen.
John S. Warren, Fishkill on the Hudson, N. Y.-The essential feature op
this machine is a revolving cylinder, formed of segment plates of a large circle than the completed cylinder, united at their edges and working in onnection with the ${ }^{\text {screen, which revolves in a contrary dare }}$ producing a pulsating current, the whole operating in the vat.

Improved Bucket Ear

Julius F. Vogt, st. Louls, Mo.-The ear is made with the ordinary ball
ye, below which it is forked to straddle the stave, in which position it astened by a single rivet beneath the upper hoop. The earis thus directly on the top of the bucket stave, and allows the ball to be connected in such manner that the bucket dips, when lowered to
facillty than when attaehed by the ordinary ears.

Improved Fishing Tackle.

Henry L. Sprague, Tottenill pring secured and contained in a hole passing through the sinker. The
line is attached to each end of the spring, and the degree of expansion ine is attached to each end of the spring, and the degree of expansion ct
the latter is limited by a cord. When the hook and line is set, the elastict ty and yielding of the bait caused by the spring gives the fish courage to endeavor to obtaln a better hold, and thus secures the hook, which lead

Improved Toy Attachment for Childrens' Carriages.
John D. McAnulty, Philadelphia, Pa. - This is a little contrivance where John D. McAnulty, Philadelphia, Pa.-This is a little contrivance where ytwo danctng and one revolving figure may be operated for the amuse ment of chlidren whie riding in a childs carriage, the apparatusbeing at tached to the front of the carrage

Improved Cotton Bale Tie.
willam H. Tillery, St. Helena Parish, La.-The band for baling the co on is provided at both ends with side recesses, preferably alternating a
the sides. These are inclined at one end, and curved in semictrcular shap at the other end, in such manner that they form, with the edge of the
band, hooks. The recessed band ends are sllpped over each other, and tied by a link-shaped clasp, which is carried over in lateral position, an
then diagonally into the conneeting recesses, until two correspondin hen dagonally into the connecting recesses, until two corresponding ame, and lock the band firmly thereto.

Improved Millstone Dress.
Ift, Cincinuati, 0. This inventio
Madison Vandegrift, Cincinuati, O.-This Invention consists in an im froved millstone dress, formed of a circle furrow and two circles or set raft or inclination than the outer or skitt furrows. This greatly facilitates the passage of the chaps from the eye to the skirt of the stone, and the same time improves the ventilation.

Improved Paddle Wheel.

Henry Reynolds, Albany, N. Y.-This invention consists of two wheels
made fast at a short distance apart on the same rotary shaft, having their made fast at a short distance apart on the same rotary shaft, having their respective sets of buckets arranged obliquely thereacross, and having the
opposite points of corresponding buckets of the two wheefs arranged above or below and at an obtu e angle to each other. It is claimed that by this construction the same amount of bucket space will be constantly
submerged so that the action of the wheel will be uniform.

Improved Watch Case Back
ness required is punched out of any sheet metal commonly used for watc ases, and first struck up with an vuter flange. The blank is then tran ingeentral spring piston, which together form an angular recess with in clined side. The stroke of the punch on the flange of the blank carrie produces thereb thickness toward the outer circumference of the cap or back, and strength

Improved Furnace for Burning Kilns
George C. Surls, Rochester, Pa.-This invention relates to a heating fur nace for brick. drain pipes, and earthenware kilns, in which an intense
and regulardegree of temperature is required for burning the wares, and in which the cheapest kind of fuel may be used. The furnace has double arches placed over the fire box, which form an air space, connecting with front air flues for heating up the air and conducting the same by rear fiue to flues connecting the furnace with the kiln, so as to produce the inter mixtu.e
latter.
Machinery for Washing, Bleaching, and Dyeing Skins. Thomas Golden, Cutchogue, N. Y.-This is a drum formed, as to its
pertphery, of bars, which are V-shaped on the instde to scrape the sblns There are also simillar V-shaped bars on the inside for scraping the skin. The drum has a door at the side for putting the skins into it and taking them out, and is provided with gear to swing it up out of the tank and ove one edge of the latter to dump the skins out into a cart to save the la bor
of taking the skins out by hand. Pipes are attached to introduce steam and water to the bottom of the tank to regulate the temperature. The machine is to be used in the several processes of tanning and sins as and known as washing, liming, tanning, ralsing, aluming, and softening wit water, line liquor, or pure drench, tan liquor, alum, soft liquor or suma rany of the liquors used in tanning or dressing leather. It is also usefu

Improved Portable Post for Tents, etc.
Henry D. Goldsmith, New York clty.-The two parts of the post ar made tubular, and of such sizes that the unper part may be inverted and
passed into the other part. Upon threesides of a shortsleeve, into which he lower tube fits, are formed lugs to which are pivoted stakes, which are eadily forced into the ground. Piates are provided which limit the dept o which the stakes can enter the ground, and at the same time adjust ighest tube is a cap having a hinged clamp and plate for holding the

Improved Sheathing for Buildings.
Rowell Colby, Freeport, Ill.-This invention consistsin a ng or sheathing for buildings, which is formed of metallic or paper sheet art of the surface, and a cleat is tacked along the upper edge. A coat of mortar is then applied, so as to fill up the space above the cleat. The heathing is next folded over cleat nalls and mortar, and another strip placed along the upper edge, and fastened in a similar manner by a clea nd nails along and with the edge of the lower strip. This operation befng fastened by a cleat or strip of the paper or other material nalle over the same.

Improved Watchman's Time Check.
Carl Pfisterer, Ehigen on the Danube, assignor to Theodore Hahn, Stutí gardt, Germany.-This control apparatus is set by placing a pointer indi-
cating the number of stations against a starting figure on the dial. Ano ther pointer showing the number of rounds is also set against the highes gure on the dial. The several keys are secured in the places or station on be visited by the wachman, who carfic ase till all stations have nee Fisited. The rounds will be indicated on the second dial as each trip completed. Should any station be omitted,the next key will not work the nstrument, and will compel,therefore, the watchman to return to that sta

Improved Tool Handle.

 material, is attached to the handle, and has a broad sboulder and a centra
enon, the tenon belng of less diameter at the shoulder than at 1 ts end enon, the tenon betng of less diameter at the shoulder than at 1ts end. an
tapering or curved from the end to the shoulder. The hole in the is made of the size of the end of the tenon. A ring of steel, with its ends of equal diameter outside, but with the inside to correspond with the
shape of the tenon, is inserted in the handle outside of the tenon mortise, shape of the tenon, is inserted in the handle outside of the tenon mortise, that, as the tip is forced down, the wedge section of thering causes th

Improved Hydrant Cover
James McKnight, Brooklyn, N . Sping catches provided on th over extending down in the hydrant, and are held out in notches in the atter by a cam suspended on a spindle projecting from the under side of
hecover. The upper end of the splndle terminates in a socket on top of he cover, and is turned by a wrench. The cam is held in position for keep he cover, and
ng the catche

Improved Earth Augfr. ones, Mertdan, Miss

Washington Smith Jones, Meridian,Miss--A lower borer plate is formed of two symmetrical halves of cast Iron connected around the recessed part
of the shaft by means of semicircular collar extensions which embrace the haft, and are firmly attached thereto by a sleeve. The sleeve is sllpped ver the collars and keyed to the shaft by a cross pin. A second screw
plate is attached to the shaft, at a sultable distance above the end plate betng also made of symmetrical halves, and which serves mainly to take off the welght of the earth from the lower plate, and lift a greater quan-
tity on hoisting the auger. The detachable guldedrum or band is also pro duced of twoequal parts, constructed of V-shaped plates with collar exten Tons, and applied consecutively to the various recessed parts of the shaf to each plate, and a semicircular band, having the same radius as that of he lower plates, is suitably and firmly connected to their ends. The end of one half drum are provided with stationary sleeves, into which pro jecting parts of the ends of the corresponding half drum if^{\dagger}, producing hereby on the attaching of both parts a fulldrum for guiding the auger in he requifed straight direction. The gulde drum is transferred with the traight direction of the auger easily controlled.

Improved Well Auger
Robert J. Gardner, Carlisle, Ark.-This invention consists in combining, ilding top-closed cylinder and fast ring, whereby an earth auger is formed Whose cutters take off successive shavings or thin slices of soll which are rapidly transferred in to the eylinder. The latter continues to rise on the shaft untll it strikes the fixed ring, when the auger is withdrawn and emp
tied of its contenis. By this peculiar construction and combination of tied of its contenis. By this peculiar construction and comblnation of
parts, the auger is enabled to do its work with singular neatness, eflicten y, and economy of labor.

Improved Wood Bending Machine.
Marshall, Black River, N. Y. - This is a mach
Augustus F. Marshall, Black River, N, Y.-This is a machine for bend ing wood for chair backs and the like by the use of a movable crosshead and screw for working it. It is an improvement on the patent granted to
same inventor September 5, 1871. It consists in the combination of t wo screws with the crosshead for working it, in a manner calculated to avold the cramping and binding of it with the ways. The screws are geared with a countershaft, and are both turned alike, so that one will not overrun the
other. The invention also consists of such arrangement of the stirrups. e former, its carrite, and the die in which the back is bent, that the arms
are bent while the former is being moved out of the die for bending the are bent whlle the former is being moved ou
back to adjust it for recelving the next bar.

Tusimess and geximal.

 The Charve for Insertion under this nead is $\$ 1$ a Line Asticultural Implements. Farm Machinery Magic Lanterns, lare and small, for Home

 gas. For particulars, adarees Providence steam and

 Manufacturers, of Trunk and oscillating

 pot, 56 Broadma,y, eorner Prince St, New York.
New Stiles
No. 4 Geared Press, Cheap.-

 For the best Cotton Cans and Galvanized Fire
Pall, adareses James Bul, Providence, , R. T.

 Hand Fire Engines, Liet and Force Pumps.

Electric Bells for D mellings, Hotels, $8 C-$ -
 Matson's Combination Goveron is sinnt on
trial to any one audressing Matson Bros. Moline, III. Diamonds and Carbon turned and shaped
 Cos x Co., 197 Water St,., New York.
 Eames Patent Molding Machines for Metal

 Best Philadelphia Oak Belting and Monitor
 Direct Steel Castings-Solid and Homoge-
neous. Conestre Power tour timea grater than Cast

 nd Levant Sts, , Phllidedelphita, Pa

 Shafting, Puileys, and Hangers at the lowTingue, House \& © © , 69 Duane St, N. Y.
 Punching or Waster Cloth, Filter and Stranner Cloths Double-Acting Bucket Plunger Steam Pumps,

Hydraulic Presses and Jacks, new and se
 Forgeg-(Fan Blast), Portable and Station. The "SSientific American" Office, New York, Ooching yittle buttons on the deass of the manageri signals are eent to persons in the various department
of the establismment. cheap and effective. Splendt or shops, oflles, dwellings. Works for any distance
rice $\$ 5$. F. C. Beach \& Co., 263 Broadway, New York Makers. Send for free Illustrated Catalogue.
Brow's Coalyard Quarry \& Contractor's Ap.
paratus
or nosisting and convering materais aratus for hotsting and conveylng materials by fron Steam Traps and Injectors on trial; 3 Good
Steam Pumps-cheap. A. G. Brooks, 422 Vine Street, Phladelphia, Pa.
For Solid Wrought-iron Beams, etc., see ad
$\underset{\text { Mrigating Machinery, for sale or rent. See advertise }}{\text { Ming, }}$ ent. Andrew's Patent, Inside page. Temples \& Oilcans. Draper, Hopedale, Mass
Buy Boult's Paneling, Moulding, and Dove C. Mach'y Co., Battle Creek, Mich.. Box 227

Rue's " Little Giant" Injectors, Cheapest
nd Best Bonler Feeder in the market. W. L. Chase \& For Surface Planers, small size, and fo lu, Mass. Groonng Mach.es, send to A. Davis, Low
Lathes, Planers, Drills, Milling and Index
Machines. Geo. S. Lincoln \& Co., Hartford, Conn. For best Presses, Dies and Fruit Can Tools,
Bliss \& Williams. cor. of Plymouth \& Jay, Brook yn,N. \boldsymbol{Y}. Price only three dollars-The Tom Thumb lectric Telegraph. A compact working Telegraph ap an be put in operation by anylad. Includes batter sey and wires. Neatly packed and sent to all parts of
he world on recelpt of price. F. C. Beach \& Co., 263 he world on recelpt
Broad way, New York.
All Fruit-can Tools,Ferracute,Bridgeton,N.J Peck's Patent Drop Press. For circulars, Small Tools and Gear Wheels for Models Portable Engines, new and rebuilt 2d hand,
appeclaty. Engines, Boilers, Pumps, and Machinist's
$\underset{\text { Whitinsville }}{\text { Sping }}$ Sinning of a Ring Co., Whitinsville, Mass. Mechanical Expert in Patent Cases. 'I. D

G. W. P.'s description of the double star is find descriptions of some breech-loading cannon on
pp. 149,402, vol. $27 .-A$. H. will find a rectpe for silver plating solution on p. H. Will find a rectpe for silve 30 . W. H. B. Will find di-
rections for transferring plectures to 30.-J. H. M. will find a rectpe for quick-setting glue on 30.-3. H. M, will find a rectipe for quick-setting glue on
p. 33, vol.
274, vol. 30.-J. T. a a cement for wood and lase on p. cast Iron on p. 59, vol. 24.-C. H. s. Will find directions
for keeping eggs or p. 388 , vol. 30.-T.c. W . will find a S. are referred to p. 107 , vol. 29, for dirrections for an-
nealing steel.-We do not understand what J. A. F. means by a vacuum cylinder to a steam engine.
(1) C. S. asks: Please tell me how I can that of preparing glass negative plates; the difference
is due to the dark background, which reverses the

Shades and ithogrenhers done? A. The stone used in
How is lithograpimetone (carbonate of lime) of a
ithography is a limeston very hard and compact texture, admitting of being ground to a fine surface. The stone must have the
quallics of imbibing both water and grease or oll, the crayon used in drawing upon it belng composed of arease, wax, soap, shellac, and 1vory black, which is
also the composition of the ink used in printing, with little variation. The stone, having the plcture drawn
upon its smooth surface with the prepared crayon, is pon its smooth surface with the prepared crayon,
wet with water. While the stone is still wet, an inking oller is passed over its surface. While the wet part
of the stone refuses to take the ink, the crayon lines, being of a greasy nature, will take a portion of it
from the roller. The stone is then ready for printing.

1. How can I make albumentzed paper, and how sen1tizc it? A. Ampiontum chloride 200 grains, water 5 en, and the froth that forms skimmed off and placed in a flat Vessel to subside. To sensitize the prepared pa-
per, coat one side evenly with a solution of 60 grains per, coat one side evenly with a solution of 60 grains
of nitrate of silver in 1 oz. of distilled water. This latter operation must be performed in a dark room, or by
candle light. 2. With what do photographers fix plecandle light. 2. With what do photographers fix plc-
tures taken on glass with collodion, before transferring to the paper? Do they remove the collodion that
is not acted upon? A. Either solution of hyposulphite of soda or cyanide of potassium. The picture
should first be developed by pouring over it a solution f sulphate of iron in water. 3. Does fodine come in (2) W. C. asks: 1. Will thin sheet lead re-
ist the action of sulphuric acid for an unllmited pe$2=2=2$ tacle? A. It is so used in the lead chamberso of a sul-
phuric actd manufactory. 2 . Will it in the same way resist nitricacid? A. No. 3. Can it also be used to (3) J. A. He acla? A. No
(3) J. A. H. says: I have read your abstract from Mr. Chase's article on "Fishing by means of Ex-
plosives." 1 . Will common gunpowder, gun cotton, or dynamite do for such a purpose? A. Yes. The quanti. ty used depends much upon the' depth of water. 2.
Should the cartridge wrapper be thick metal or will Should the cartridge wrapper be thick metal or will
varnished paper do? A. Paper will snswer the pur.
pose.
(4) P. M. asks: How can I transfer ordina-
ry engravings to glass? A. Fix the printed surface to the glass with ordinary paste. Etch with llquid hydrofluortc actd of spectfic gravity $1 \cdot 14$. At the end of 3
or 4 minutes wash off the paper, and the destgn will be or 4 minutes wash off the paper,
(5) J. S. says: You say that the point of a
wagon wheel touching the ground comes to perfect rest, the wheel being in motion. Do you claim that one part of the wheel is going fast, another slow, and
another standing still? If so, is it the same with fricanother standing still? If so, is it the same witt fric-
ton pulleys:and Idle wheels? Can one part of a solid heel stand still and anothround is atrest w Each point as it reaches ground is atrest with respect angular motion as the other points in the circumfe
(6) O. M. R. says: I am making hydrogen
rom sulphuric actd and zinc in a cyllnder for oxyhyfrom sulphuric acld and zinh in a cylinder is coated with vulcanized nuber. Why cannot I use (in place of the zinc) iron
urnings? A. You can use fron. But iron in dissolving in dilute sulphuric actid does so with the formation of froth, and the evolution of certain olly hydrocarbons.
The solution, moreover, soon becomes saturated with ferrous sulphate, which soon crystallizes. You will have trouble and will find that it is less satisfactory,
xcept in the matter of cost, than zinc. 2. What quan ity of actd will it require to consume 11 lb . of iron,and 28 ozs. strong oil of vitriol, and 5 cubic feet and 1640 cuble inches of gas will be evolved.
(7) J. C. P. asks: How can I temper No. tried hammering and heating, and failed every time.
A. There is a brass wire, already tempered, made speA. There is a bras
ctally for springs.
(8) B. O. says: I wish to solder a piece of
metal about an inch square, to the side of an iron kettle; it is to be a sort of bed plece to which a hasp 1s to
be attached, capable of sustaining a welght of 15 or 20 los. Is there means by which I can make this attach-
ment? A. Braze it by the ordinary method, using spelter and borax.
Is there any machine for bending or twisting wire, by Which I can manufacture wire loops to be soldered to
tin vessels? A. Use a solid block of iron, in which put tin vessels? A. Use a solid block of iron, in which put
three pegs in the required position, and bend the wire, by hand, alternately round the pegs to form the de
(9) L. M. S. asks: 1. Can water be electri-
fied so as to be sparkling? A. No. 2. Will electricity settle muddy or sooty water? A. No. 3. Would elec-
trictty atd in bringing butter quickly in churning? A. rricity aid in bringing butter quickly in churning? A.
No. 4. Would air, forced or pumped into anice cream No. 4. Would air, forced or pumped into anice cream
freezer while freezing, make ice cream lighter.or
(10) J. B. asks: 1. Is it possible to cast Ing the latter before the process of easting? I want to
obtain a smooth underside of the casting, to render filing and planing unnecessary. A. There are facing which answer for the purpose you mention better than any other device. 2. Would plumbago be a non-conductor good enough to prevent explosion if rubbed on
the inner sides of the mold, or would a mold, made of the inner sides of the mold, or would a mold, made of
plastic graphite, render a very smooth casting without
(11) P. S. V. asks: Will sulphur water stde? A. It would not be advisable to use this kind of
water. Possibly the sulphur could be removed by some the feed water heaters in the market.
(12) A. H. asks: Are brass tubes drawn or
olled in grooved rolls? A. They are drawn. 2. Could tubes be rolled by insertinga steel rod (Inside of tube) in a wire draw plate? A. The plan you mention is
(13) A. McG. asks: How can I clean an oil ping paper? A. We can recommend the following: Take the plcture out of frame, lay a coarse towel over
it for 10 or 14 days; keep it continually wet until it has drawn out all the filthiness from the pleture; pass
somelinseed oil which has been a long time seasoning ver it, in the sunlight, to purify it, and the picture Will become as lively on the surface as nat
What is best for cleansing and burn
plate? A. Try the following recipe: Plunge the erticle into this solutlon: Hyposulphite of soda 1 lb ., sal
ammoniac 8 ozs., solution of ammonia 4 ozs., cyanide of potasslum 4 ozs. Let it remain one half hour, wash,
and rub with buckskin. The cyanide of potassium is and rub with buckskin. The cyanide of potassium is
very polsonous. Itmay be omitted, but then the soluery polsonous. Itmay be omitted, but then the solu-
ion is not so active. No powder is necessary in pol(1shing.
(14) C. S. J. asks: What is a test for arsenic
wall paper? A. Marsh's test is the stmplest. Put everal small pleces of the suspected paper, with water, in a flask containing small pleces of metallic zinc;
make the liquid acld by sulphurte actd. This immoditely attacks the zinc, generating hydrogen. Through the cork in the top of the flask, pass a glass tube,drawn
to a fine point at the outer end. After the hydrogen has been evolved for a short time, ignite it at the oute end of the glass tube; bring a polished surface of por
celain in contact with the fiame of hydrogen, If there be celain in contact with the name of hydrogen, 1 there
any arsenic present, it will be comblned with hy-
drogen, and the flame will color the porcelain with the black arsentcal flame
(15) J. R. M. says: A shop mate says he can
make a single tap that will cut 4 different threads, 8,16 , make a single tap that will cut 4 difterent threads, 8,16, It may be used as a It may be used as a toon in the lathe, and thus cut a osity, as a tap used as a tool chaser would be a most
unmechanical device. An ordinary tap, used as a tap, unmechanical device. An ordinary tap, used as a tap,
will only cut a thread of one definite number to the
(16) O. P. asks : 1. How can I find, on the surface of a revolving cutting iron, the exact shape
for striking any given imolding? A. Your best plan will be to mark out with compasses, squares, etc., on a
plece of sheet tin, the molding required; then cut out the same and use it as a gage. You can make a male make a given pattera of molding when revolving on a
cutter head 6 inches in diameter, would not the same cutter, if used on a cutter head 6 feet in diameter, pro-
(17) J. H. L. M. asks: Has a vacuum ever ben produced in a steam engine writhout ving the ex-
aut steam? A. Not to our knowledge.
(18) A. H. asks: How can I prepare the Slases for a camera? Λ. To make emall lenses, pre-
parea vertical crank arbor with a serew thread for
chucks cut frame supports a top, to be worked by a treadle. The frame supports a tub of wet sand through which the
arbor rises. Lead-faced chucks are cast of proper curvature, and the lens is held upon the chuck by a wood-
en handle attached with pitch, while sand and water en handle attached with pitch, while sand and water
are applied. Conver lenses may be cemented to the are applied. Convex lenses may be cemented to the
chuck by drops of pitch half an inch apart. When chuck by drops of pitch half an inch apart. When
rough ground, they may be finished with a brass or Iron grinder, worked with emery alternately on the lens and on another grinder which fits it. Finally apply rouge
with pitch polisher, as we have before directed. Flint lass disks may be cemented to a chuckand turned in a 600 , dipped the end of a three cornered file ground to til the glass touches a brass toolall over. It may then be ground, stuck to a handle with sealing wax, and pol-
ished with rouge against a sealing wax polisher revolvished with rouge against a sealing wax polisher revolv tat surfaces, as of prisms, three brass chucks must be continually worked upon each other while the surface is ground upon one of them. For photographic cameras, ny glass will do, as some diffirion of focus is requis-
tte. For telescopes and microscopes, it must be faultless. To photograph at the visual focus of a telescope of the focal length; or better, the plateholder may be racked in a marked distance found by trial, or a view
tube lens may be placed outside the focus. To photo raph the moon, planets, and stars, a nitrate of silver bath, 35 grains to the ounce of water, must be used with
a collodion containing iodide of cadmum. For the sun and portraiture, a bromized collodion may be used With a 90 grain silver bath. The plate is dipped into a
weaker bath before exposure. The dark room shoul weaker bath before exposure. The dark room shou
be well lighted through buff-colored envelope paper For stars, the plate is lighted a n
burner 3 feet off, before exposure.
(19) M. W. asks : 1. How is printer's postmay bemade as follows: Take 16 ozs. varnish, 4 ozs. inseed oil well boiled, 4 ozs. clear oil of turpentine, 16 czs. Ine lampblack, 2ozs. fine Prussian blue, 1 oz. fint
Indigo. Botl one hour. 2. Are there machines for chinesfor this purpose are, we belleve, in use in this
(20) M. H. P. asks: Would it be practi8 feet fall, with a suction pump and cement pipe? A. Is a be kettle injurious for cooking fruit erves, etc.? A. Not if it is clean and bright at the In what way can light cassimere pants be washed? A, Dissolve a iittle curd soap in water, and mix a little spots of grease and dirt, and rub it in with a stiff brush;
then brush the garment, and sponge with the same mixthen brush the garment, and sponge with the same mix
ture well diluted with warm water. Rinse in clean wa , and hang up to dry
(21) P.M. K. Says : 1 . An engine has a 12 tions. It is filled with two main slide valves; and a ting off at $1 / 2$ stroke. The travel of the main valve is $21 / 2$ inches. No. 1 valve has $1 / 8$ inch lead on steam and $1 / 4$
inch lead on exhaust, with $1 / 4$ inch lap on steam and no h lap on steam and $1 / 8$ inch negative lap on exhaust, or both exhaust ports are open $/ / 6$ inch when the valve is on the mid stroke.
Which of the two valves ls the best, Which of the two valves is the best, all other conditions
being the same? A. The first. 2. An engine is fitted With ordinary double silte valve (no cut-off attached)
which has equal lead; but it will not cut of equally, Which has equal lead; but it will not cut of equally following 1y/2 inches further on the out stroke than on
the in. How is this? A. It is on account of the angutity of the connecting rod
(22) N.O.A.asks : 1. Does it preserve a tooth
ermanently to have it filled, proviaed it is done well ${ }^{\circ}$ A. Yes. 2. Is sill
espect? A. No
(23) M. H. B. asks: What is the best plan e purpose of turning slender tron rods, of differen ize? Will one guard do, or will it take a different one some reason it did not work satisfactorily. A. A common plan is to have a plate composed of two forks,
which can beadjusted for different sized rods. This holds the work in all directions, the effect of moving
the adjusting screws being to make the square open(24) M. asks: 1. How do you find the mean steam engine? A. From an indicator diagram. 2 This depends on a variety of circumstances, and would require more space for the discussion than we can give
in these columns. 3. What book will give me the for mule for the proportion of the parts of a high press. re engine? A. We can recommend Van Burachinery. What is the reason that,on taking a kettle of boillng om for a short time, but after that the heat become unbearable? A. On account of the protection afforded unbearable
by the soot.
Can an 1 m
(25) W. T. E. S. asks: How long would a ressed to 300 lbs. to the square inch. last 8 men, who are in an airtight room containing 240 cublc feet of air.
supposing that the compressed alr 18 let 1 a a required. supposing that the compressed air 1 s let in as required.
and the foul air let out? A. From 4 to 5 hours. We do that vour
(26) C. S. asks: What is the action of aestion was put to me and others. A. It is rather dif
cult to answer a question of this general nature, bu the action of steam may be compared to that of a com (27) R. I. asks: What would the pressure er minute through eight round openings, 4 of 1 inch Tetsbach's "Mechanics," by which you can make th alculations.
(28) W. S. B. asks: How far will a person
ve to stand from the roots of a tree 100
feet high ve the top may be just vistble, the earth betng level
(29) E.P. R.\& Co. ask: Would it be prac.
tcanle to to take steam from a bonler 550 feet distant to run 10 horse engine, the bollers (of course doling other

(30) L. G. D. says: I I wish to draw strips of tiches mide to to tolerable cuttung eadge. Thisis done
 tween two steel rollers, made tapering so as to draw the
 the roliers? Can common sorf steen $\%$ tich thick be be
 non inf the machune were w.
antion would be very slo w.
(31) J. H. says, in commenting on our an-
 of the water through the stiphon, the pressure eeling the
 long leg of the siphon contalas. sufliclent weight or
volume more than the short leg, water can be eraseat to any required hight. A. Your theory wonld answer very
well It the column of water were conneeted together
 arer soin can readilis make the experment
(32) U.Z. L. asks: What is the best methemery book, with oll;
makers of
of emery
(33) At Z. Le. says: 1 . 1 am building ${ }^{2}$

 engrines which I propose to connect to a propeller
shatt. What should be the stze and p ptech of the pro.

 5 or iminesan hour. 4 . Can an attanata speed of 18 knote | smanl a a poat |
| :--- |
| sucha |
| a ppeed. |

(34) W. H. B. asks: Can a barrel that has
an ynaegar In it be cleanead tor keepring beef in?
a. Yes, by usiliga a strong
cleansing win wit water.
(35) N.S. asks: : How an I make a pood

 strong solution of cyanide to dissolve the prectpitate.
Makeone gallon with distilled weter. The solution
 be
of
of
sol

 another veseel con talling one pound of water at 700
Fanh, nand all wed toremal
ont
 ber given is the specifich hat of the esa. Let $x=$ number

 ${ }^{\text {tatth}} \mathrm{m}$ pen, so that the paper would only be enentitive
 condu
Yes.

 salts dimn nush tis orrosive eaction. A hemiteal analy.
 due. 2. Why doessa leaa ppipe in a manure vautt crum
 Which exert tar corrosive eato
 Hine dust is procurea. What is the cause of this, and
what is the dust ? A. The white body is an oxdie or

 having been previously steeped in hot water) into the
said mixture. As to your other question, address Seth Green, Esq., Rochester, N. Y .

 the stearin) and butter oll? A. If we clearly under-
stand your meaning, the olein is the same in both substances. The oletn found in butter was considered by Bromels to be of a pecullar kind, which he termed bu-
tryoletn; but Gottlleb has shown that the difference in
properties between the oletc actd obtained by Bromeis properties between the oletc actd obtanned by Bromeis
from butter and that obtained from ordinary olefin depended simply upon the oxidation which it had un
gone during the process adopted in preparing it.

 riety of hornblende or amphibole, which is a silicate
and aluminate of magnesia, itme, and protoxide of iron with a variable proportion of fluorides of calcium and potassium. It is soluble in a mixture artas.
portions of hydrofiuoric and sulphuric acids.
(43) N. N. B. asks: At what parallel of
ongitude does each day begin and close? A. At 180° east or west of Green wich.
(44) R. C. D. and others ask: Is there any way of bleaching beeswax without going through the
long and tedious process of sun bleaching? A. It may
be dese it destroys theans of nitric acld ; but chlorine, houg it destroys the color, cannot be employed for this pur-
pose with advantage, for it was observed by Gay Lussac that a substitution of chlorine for a portion of the hy-
drogen occurs under these circumstances. When candles made from such wax are burn
of hydrochloric acid are evolved.
(45) A. D. L. asks: To find the coefficient required to move the body by the weight of the body? on analytical mechanics.
(46) J. K. B. asks: 1. What is the most ac-
curate method of finding the throw of the eccentric for any travel of valve? A. The throw of eccentric must be the width of the steam port added to the amount
lap on the valve; hence the travel of the valve or (What is the same thing) the stroke of the eccentric must be
twice the width of the steam port added to twice the amount of lap on one side. 2. What is the mostaccu-
rate method of proportioning slide valves for any width of ports? A: A slide valve should always have
at least $1 /$ inch lap, so as to give a free exhayst the width of the exhaust port of the valve being $1-16$ or $1 \cdot 32$ lider face. Additional lap must be added if working expansively is desired. 3. What is the most accurate
rule for calculating the pressure on slide valves? If the faces of the valve and seat are fitted steamtight the entire pressure will be the product of the entire
area of bearing surface and ports in inches multiplied nto the pressure per 8quare inch maintained in the friction between the two surfaces, will give the force required to move the valve under such pressure when
unbalanced. But as there are few valves which remain accurately fitted, any method of balancing slide valve
(47) C. M. A. says: I am about to build a
mall cottage building, which I wish to construct as mall cottage building, which I wish to construct a
economically as possible, and at the same time to intro duce some modern conventences. Among other things to take the water over the house. Now a cistern o the requisite capacity, say 75 barrels, if lined with
sheet tead or similar material, would be quite expen
sive he requisite dimensions, to lath it inside across the grain or the plank, and then to apply a good coat of wa-
ter lime cement. The cistern is to be located over an ninnished room, so that in case of posible slight leak
age no harm would be done before the leak could be stopped. To guard against freezing, I will put at least
1 foot of dry sawdust over the whole thing. Can this be done effectively? A. We have no confidence in the kind of tank that you propose ; the swelling and shrink
ing of the plank would cause the cement to crack. A better plan would be to construct a circular tank of
inch plank in staves, largest at bottom, and secured with strong iron hoops that may be driven down upon
it If the wood shrinks. A tank like this can be made
tight without a lead lining. If your house ts water will not freeze more then $\frac{1}{4}$ inch thick on th oop, and you will not require any special protection for
this. My rooms will most of them be as small as to make
toves inconventent. I propose, in place of a furnace toves inconventent. I propose, in place of a furnace
o place one of the largest sized cast and sheet tron cyl indrical stoves in the cellar, and to enclose thise with a
brick wall distant 1 foot all around, and make connec tion with this space by pipes to the open air on one to be heated will be about 14,500 cubic feet. What 18 yonr opinion as to the practicability of this? A. You
stove enclosed in brick is a proper heating furnace, bu the number of cublc feet of air heated will be in prot
portion to the number of square feet of heating sur: case by introducing, by means of elbows, $t w$
joints of smoke plpe within the alr chamber.
(48) C. G.asks: Cannot the poke root plant,
which grows in such great profusion throughout the outh and West, be made to subserve some useful pur pose, rather than be treated as a troublesome weed? As
all know who are acquainted with it, the berries have an abundance of juice of a beautiful deep red color and thousands of galions conld be obtained annually
t makes a beautifulink, but 1 t fades after a littie time. Ihave tried putting in copperas, alum, etc., but they
only precipitate the coloring matter. How can this beautiful color be uttlized? A. The poke root (phyto perennial root, and is used in medicine. "The root
bound most in the act/ve principles of the plant. It should be dug up late in November, cut into thin transbe obtained every year. The berries should be collected when perfectly ripe, and the leaves about the middle of
summer, when the foot stalks begin to redden. The berries contaln a succulent pulp, and yield upon press ure a largequantity of fine purplish red juice. They the odor. The coloring principle of their jutce is evaa
escent, and cannot be applied to useful purposes in dyeing, from the difticulty of fixing it. Alkalies ren der 1 yellow ; but the original color is restored by
acids. The juice contains saccharine matter, and after frmenting yields alcohol by distillation. The dried
root is of a light yellowish brown color externally very much wrinkled, and, when in transverse slices, ex hiblts on the cut surface numerous concentric rings,
formed from the projecting ends of fiber, between process. There ish, and at first mild, but followed by a sense of acri-
mony. The active matter is mony. The actIve matter is imparted to boiling water
and alcohol. From the analysis of Mr. Ed ward Donel and alcohol. From the analysis of Mr. Edward Donel ly, the root appears to contan tannic acia, starch, gum
sugar, resin, ixixed oll, and lignin, besides various :nor ganic principles. It is emetic, purgative, and somewhat narcetic. As an emetic it is very slow in its operation, frequently not beginning to vomit in less than one or
two hours after it has been taken, and then continuing two hours after it has been taken, and then continuing
with much pain or spasm, but narcotic effects have
been observed by some physictans, such as drowsiness, vertigo, and dimness of vision. In overdoses it pro
duces excessive vomiting and purging, attended wit duces excessive vomiting and purging, attended wi
reat prostration of strength, and sometimes with co vulstons. It has been proposed as a substitute for ip
ecacuanha, but the slowness and long continuance o ts action wholly unfit it for the purposes which that emetic is calculated to fulfil. In small doses it acts as neatment of chronic rheumatism. The dose of the
treative and powdered root, as an emetic, is from 10 to 30 grains; as
on alterative, from 1 to 5 grains. A saturated tinctur an alterative, from 1 to 5 grains. A saturated tincture of the berries prepared with diluted alcohol may be
given in rheumatic cases, In the dose of a flutd drachm three times a day. An olntment, prepared by mixing a three times a day. An ointment, prepared by mixing a lard, has been used to advantage in psoratinea capitis and some other forms of cutaneous disease. It occ slons at first a sense of heat and smarting in the part to
which it is applied. An extract made by evaporating Whe expressed juice of the recent leaves has beenu used
for the same purposes, and acquired at one time conderable reput as es,
(49) O. C. asks: Is there any waterproof
(49nsh by which paper can be fastened to glass so as o let gaslight penetrate through and show printed fig. res on the paper? A. Ordinary dammar varnish wil oubtless answer your purpose.
(50) W. H. S. asks: How can I make murithe salts of nickel? How can I make the solution of dissolving the oxide of nickel in hydrochloric (muritic) acid. On evaporation it ylelds green hydrated
rystals; by heat it may be obtalned as y yellowish-
(51) X U. asks: How can I dissolve olos (51)X. U.S. asks : How can I dissolve glass, semi-fiuld mass at high temperature. When heate
with a quantity of carbonate of soda or potassa, it ith a quantity of carbonate of soda or potassa. It cannot be re-hardened in the way y.
ot understand your other question.
(52) E. R. M. \& P. W. ask: Is there any ct as an insulator between a permanent magnet and a (53) G. A. M. says: A thermometer was nercury in the tube is separated ind in three portions. think afr is in the tube, Please tell me how to get the
nercury together. A. If you cannot do it by shaking or jarring the mercury together, open the upper end of e tube, form around the opening a small funnel with clean wax or paratll. Geutly heat the bulb with a
spirit lamp, which will force a portion of the air out of spirt amp, whin the tuee then allow the cool; repeat the opera
the tube several times, or until the mercury s together.
tion The several times, or until the mercury is togetor Which soon expels the remaining air and moisture. The
tube, being now full of expanded mercury and mercurt
(54) W. W. asks: Can common family soap of grease some time ago, I used some cunuks of com-
mon soap as a lubricator. I found 1 much superior to ny grease I have used; but I am told by somethat or thes purpos
Wherecan I
w can I rectables of the decimals of an inch, or ommon fractions are expressed in dectmals as lows: thus $\frac{1}{2}=0.5 ; \frac{1}{2}=0.25 ; \frac{1}{8}=0.125 ; \frac{1}{12}=0.0833 ; \frac{1}{16}$
$0.0625 ; \frac{1}{32}=0.03125$, etc. To reduce decimals to commm ractions, use the figures as a numerator, and put 1 for the ecimal point and as many ciphers as there are figures fo de denominator. Thus $0 \cdot 25=\frac{25}{100}, 0 \cdot 03125=\frac{3125}{100000}$, etc.
(55) M. S. P. C. says: In shops where they
(5) urning tin until it is nothing but droes. This dross is of tin, it will weigh (after burning) 126 lbs . How do into the oxide, or, in other words, it absorbs a certain mount of oxygen from the air. The same is tru
all metals when burned in contact with the air.
(56) J. W. P. asks: 1. A bout how long
time will 3 Leclanché cells last on an open circuit of et, where the circuit is closed only a second at a time
or 20 times a day? It is used to ring a tapping bell. A. From 6 to 12 months. These cells are in use in our
fflce, and work stx or seven bells or sounders. The cells have not been touched, we belleve, for te
months past. 2. About how long a time will a Le
clanché cell last on a closed circuit? A. This de pends a great deal upon the resistance of the line an he press knobs. where the metal touches the wood, or at any other place where the wire may happen to touch
wood only? A. The loss would be imperceptible on a short line. 4. If two cells can do the required work,
will the battery last a longer time if I use three cells? A.No. 5.For telegraph wire, will lead water pipes,run-
aing into a well, make a good ground clrcuit? A. No
(57) W. H. D. as³: How can I make coper gas cylinders for the oxygen and hydrogen gases,
0 as to dispense with the use of bags and pressure oards, in using lanterns? A. There are several vari-
ties of these cylloders ; one consists of a cylindrica tank about2 feet in diameter and 3 feet in hight. In this is placed in an inverted position a similar vessel, of
a few inches smaller in diameter. The apparatus is er vessel, by displacement of water. Another form is that of a cylinder, constructed of very strong botiler
on, containing only one small opening for connections n the upper head, which is governed by a screw valve.
The gas is forced tnto the tank by means of an air pump, until the pressure per square inch
20 lbs. The latter are very convenient.
(58) J. P. G. asks: How can I silver the
urface of several panes of fine glass, so that they may pear white and brillant? A. See p. 203, vol. 30.
What is the process of canning fish? A. One process conslsts in placing the fish, after betng cleaned, in open
eessels, which are then set in a steam chest, and the essels, which are then set in a steam chest, and the
contents subjected to the action of steam at 212° Fah for five hours,after? which the fish are removed, dralned, le size, which are then closed and soldered,after which he closed boxes are heated by steam from 217° to $220{ }^{\circ}$
rah. for five hours, according to the size of fish. By liah. for five hours, according to the size of fish. By
his method the fish may be preserved without vinega
(59) J. C. H. asks: 1 . Is the mind located on by corresponding actions in the brain. 2. Can the
mind be located at all? Some physiologists hold to
the doctrine that themindts seprent he soul, while others say the mind is a power with Whth the soul is endowed. Which is correct? A.
These are metaphysical subtletices, not recognized in These are metaphysical subtletics, not recognized in
the treatment of the subject as a part of positive exthe treatment of the subject as a part of positive ex
perimental sclence. 3. When a person is deranged, is it the mind of that person which is impaired, or are the channels through which the mind operates, to recelve
knowledge from external things, injured? A. Both the enters and avenues of mental impressions and sensa tonsare essential tothat healthy and harmonious ope
ration of the mental faculties which characterize a
(60) H. J. F. asks: Why do the legs on the
bottom of the old fashioned fireplace kettles burn in he middle? A. In order that iron may burn, it is not
nly necessary that it should be brought to a high tem. he oxy, but also that it should comeinto contact with he oxygen of the air at the same time, and these c
ditions are only realized in the middle of the leg. (61) I. W. F. S. asks: Can you inform me ker's yeast, without using stock from previous ma-
king? A. Fownes states that if wheat flour is mixed with water into a thick paste, which is to be slightly
covered in a moderately warm place, it begins about the third day, to emit a little gas and a disagreeably
sour odor; about the sixth or seventh day the smel changes, much gas is evolved, accompanted by a distinct and agreeable vinous odor; and it is then in a state to nce used for that purpose, or formed into cakes,dried,
nd preserved for future use. Wort fermented with it

Minerals, htc.-Specimens have been re cived from the following correspondenta, and examined with the results stated:
A. C. S.-It is fron ore, containing a notable quantity cuniary advantage.-G.A. F.-A qualitativs analysis made upon 100 grains of this pyrrhotine, which closely eesembles the niccoliferous pyrrhotine of the Gap
Nickel Mine, did not demonstrate the presence of nick 1. It should an properly ansised. Anence of nick It should be properly analyzed. A large quantity
might show a valuable percentage of nickel.-W. H. McC.-It is a variety of kaolinite; it might be used
perhaps, in the manufacture of pottery.-H. L. It perhaps, in the manufacture of pottery.-H. L.-It Is
magneticpyrites.-G. F. B.-They are tourmaline, musovite in quartzite, and biotite.-M. W. H. - No. 1 is on per cent nor iron pyrites; it is mica. No.2 containe 5 per cent of lead.-H.S.-No. 1 is galena and blende.
No. 2 and No. 3 aro galena. No. . 4 s calctte or carbo-
ate of lime. No. 5 is ferruginous quartz. No. 6 is
E. D. K. asks: How can I dye morocco nd other leather?-S. R. S. asks: How can I parefruit
heating?-G. W. S. asks : How are broomsticks by heating?-G. W. S. asks: How are broomsticks
painted, striped, and waved?-H. K. asks: What prepainted, striped, and waved?-H. K. asks: What pre-
aration is used to put a hard and glossy flintsh on ax

COMMUNICATIONS RECEIVED.

The Editor of the Scientific American

 cknowledges, with much pleasure, the re ceipt of original papers and contributions apon the following subjects :On Automatic Cow Milkers. By J. E. G. On Scorpions. By D. E. R.
On the American Institute Fair. By L.H.R On the Retrogression of the Sun. By On the Retrogress
On the late Charles M. Keller. By A. M. On Steam Engines. By W. P. P
On Cooking Oatmeal. By W
On a Calculating Machine. By E. K. W. On Railroad Employees and their Pay. By B. G. G. J

On the Phylloxera. By L. W. G.
On a Boiler Explosion. By S. H. H
also enquiries and answers from the follow
ing:
Q.-W.M
-N.T.D

HINTS TO CORRESPONDENTS

Correspondents whose inquiries fail to appear should repeat them. If not then pubished, they may conclude that, for good rea sons, the Editor declines them. The address of the writer should always be given.
Enquiries relating to patents, or to the paentability of inventions, assignments, etc., will not be published here. All such questions, when initials only are given, are thrown into the waste basket, as it would fill half of our paper to print them all; but we generally take pleasure in answering briefly by mail, f the writer's address is given.
Hundreds of enquiries analogous to the ollowing are sent: "Who sells the best stove or heating a workshop? Who manufactures knives, and gold and silver trinkets? Who makes steam indicators? Who publishes a book on making glass? Who makes carbon plates for batteries? Who sells a book on wax fruit and flowers?" All such personal enquiries are printed, as will be observed, in the column of "Business and Personal," which is specially set apart for that pur pose, subject to the charge mentioned at the head of that column. Almost any desired information canin this way be expeditiously
obtained.

Index of Inventions FOR WHICH etters Patent of the United States WERE GRANTED IN THE WEEE ENDING October 6, 1874,		
AND EACH BEARING THAT DATHE [Those marked (r) are reissued patents.]		canadian patents. Lrey of Patents Granted in Canada
		October 6 to 8, 1874.
		d
		r.,
lounge, arano \& \% Tlicell		
kneellin and foot, w. Canlil 155:060		
er		
Boots and stoes, making, F. D. Ballon........... 155,564		
Boots and shoes, masing, it.	$\stackrel{\text { Rol }}{\text { Rol }}$	
	, 661	
gas, F		
${ }_{\text {carar }}$		
Car		
Car, spring, G.F.	Sepenter	e.
Coal, pparatus for minning, P. Steldon		
Collar, A. B. KIngsbury., M......................155, 15.38		
Condenser, , erator, etc., steam, w.A. Lighthall		
Crank, w. H. Pr		mid
Cultrator, E. I. Eno........................... 155,172		
vator J. . . Pept		prove.
		ments on a paper fileand binder, called "The Yankee ments on a paper Binder." Oct. $8,1874$.
Diger, potato, A. F. Rounds..................... 155,59		
Digeer, potato, \mathbf{G}. w. Rue 15, 15,622		Ratuetistment
		Back
Ear		
ar, stump, e. Frarser		nnto oappear in mextisusue.
	Ventele epring, M. Veeell....................... 15.5 .66\%	
Funes, machine for making, S . A. D	5	
Gas pariner, E.E.C.H. Hillaeirand...............155,532		
	We	
Hammer, tee, lemon squezeer, ete, T. T. Hagerty. 15.55 .59	atin	FOOT La THES with J
\%ow, E .		
and		
or rain condactors,		
Huops, cutting, A. F. Skidmo Hose pi pe nozzle, A. Hallowe		
15,0,		
He ecourer, H . A. .	ACHINE	
Pp,		IUDIOW VALV
Lemer		
Loom weft stop, W. Taylor.	designs pate	
	,	
Mal bag holier, Chamberlain \& Wright.......... 155.709	,	
dere, quart, , ,		
		Minerva, Stiatk ${ }^{\text {co }}$
		$\mathrm{F}^{\text {IRST CLASS STA TiON A A P ENGINES }}$
		Yingtonirox works, Bloomingto
		dren

PLANING \& MATCHING,

TONE SAWING MACHINERY.

 IDERRICKS \& TRAVELLERS, THOMAS ROSs, Rutland, Vt.

P. BLAISDEIL \& CO..

$T H \dot{E}$

Strap File and Binder,

AND OTHER ILLUSTRATED PAPERS. This File and Binder consists simply of stiff covers in
loth, with a flexible back, and broad heavy leatber straps cross the back at the top and bottom of the inside, between which are stretched stout cords, for holding six
or twelve months' numbers of a weekly periodical, as

The File is used by merely opening a paper to its cen
tral fold, and slipplng one side under the first vacant
ter of the fola.
For the conventence of our subscribers, we have had a
倍 supply of Files constructed as above, holding fifty-two
papers, and lettered "Scientific American" in gilt où the side.
Price
at thts Offce..
MUNN \& CO.,
37 Park Row, New York,

BOURNB'S Recent Improvements in the Steam Engine.

Prosthe abore, or any on my Boaks, ent by mall, tree
 HENRY CASEY BAIRD
 406 WALNUT STREET, Philadelphta.

$\mathbf{R}^{\mathrm{ICRAARDDON}, \mathrm{MERLAM}}$ \& CO.

I RON BRIDGES-CLARKE, RARVES \& CO

Anarew's Patents.

 AliLfintury.

Work

 TOR all Wee send valuabe package of Important for all large coreo

童E PORSTEP and flat ROOFS.

EST'B'D 1856.
Samplis s circularis Reabr foodite co. of N.Y 64 cortinuot st
$\$ 475$ Amosh ro

HAS NO EQUAL FOR VARIETY, QUALITY, AND ECONOMY OF ITS WORK

HORIZONTAL AND UPRIGHT BORING MACHINES, SUPERIOR TO ANY IY USE. Send for Catalogue and Price-List. BENTEL, MARGEDANT \& CO., Hamilton, Ohio

A Rare Chance to Alvertise.

Cheapest and Best Mode of Introducing NEW MACHINERY AND INVENTIONS.

ToAdvertisers.

During the month of December, we shall pubiish a spacial edition of 100,000 copies of the SCIENTIFIC AMERICAN, which willcbe malled in separate wrappers and the postage prepald to every post offlice in the United States, Canada, and adjoining provinces
It is intended that a copy of the paper shall reach the principal manufacturers, workers in lumber and
ron, railroad shops, and the works of other mechanical and chemical indusiries in the United States Advertisements will be taken for this extra edition, at the following rates: namely, 75 cents a lin inside, and $\$ 1.50$ a line on last page. A few notices, in the Business and Personal column, not exceeding four lines in length, will be inserted at $\$ 150$ a line. This affords an unusually favorable opportunity for
advertisers to reach a class of persons not accessible in the ordinary cbannels of advertising. The names have bees selected with care, and the pub ishers guarantee the number issued to be full 100,000 ; th
postage on these copies, which is Two trousand DoLLARs, will be prepaid, thus insuring the prompt postage on these copies, which is rwo tho arding of the papers to their destination.
gratultously among non-subscribers, and that the same is for a special Edition, which is to be circulate gratuitously among non-subscribers, and that the same advertisements which appear in the regular edition,

ENGRAVINGS

in this paper or in other publications will be recelved for insertion in this Spectal Edition on reasonable terms. address

MUNN \& CO., Publishers, 37 PARK ROW, NEW YORK

Niagara Steam Pump. OHAS. B. HARDICK,
 W OoD. WORKINQ MAUHINERY GEN.

Planing and Matching

Iadies at Mome
 H. WESLEY PERKINS,
"SCIENTIFIG" ENGRAVER

${ }_{3}^{3}$ PARAR Row N. Y .

MAGNETS-Permanent steel Magneti

BLAKE'S STTEAMP PMP

 $\sim_{\text {Bottles, }}^{\text {LASS }}$ M Ink Stands,etc...madeby

 B ank vertical Steam Engines. Also, new and second ANOTHER CHANCE!

Fifth and Last Gift Concert Pablic Library of Kentacky?
November $\mathbf{3 0} \mathbf{1 8 7 4}$
drawing certain at that date.

Minin \& Co.'s Patent Offices.

Established 1846.

The Oldest Agency for Soliciting Patents in the United States.
twenty-eight years experience.
MORE PATENTS have been secured through
SIXTY THOUSAND inventors have availed themselves of Munn \& Co.'s services in examining their inventions, and procuring their patents.
They employ as their assistants a corps of the most ex craftsmen that can be found, many of whom have been seected from the ranks of the Patent Office
MUNN \& CO, in connection with the publication of the Scientific American, continue to examine inventions,
confer with inventors, prepare drawings, specifications, and lonfer with inventors, prepare drawings, specifications, and assignments,attend to filing applications in the Patent Office step while pending before the examiner. This is done ngton. They also prepare and file caveats, procure design (prepared by the ingentor or other attorneys) procure copyrights, attend to interferences, give written opinions on
matters of infringement, furnish copies of patents: in fact matters of infringement, furnish copies of patents: in fact
atteni to every branch of patent business both in this and attenid to every branch
n foreign countries.
Patents obtained in Canada, England, France, Belgium Germany, Russia, Prussia, Spain, Portugal, the British
Colonies, and all other countries where patents are granted.
a special notice is made in the Scientific Amedicas all inventions patented through this Agency, with the sold, in part or whole, to persons attracted to the invention by such notice
A pamphlet of 110 pages, containing the laws and full diections for obtaining United States patents, also a circular pertaining exclusively to Foreign Patents, stating cost for
each country, time granted, etc, sent free. Address granted, etc, sent free. Address
MUNN \boldsymbol{E} CO., Publishers SCIENTIFIC AMERICAN,
37 Park Row, N. \mathbf{Y}. Branch Office-Corner F and \%th Streets Washington, D. C.

nn
Engravings may head advertisements at the same ratepes as the leter press. Adver as must be recevved at publication

THE TANITE COMPANY'S New Milling Machine,

the tanite company, Stroudsburg, Munroe Co., Pa.

PRATT'S
ASTRALTI.
 Asphalte Roofing Felt.

 Hubbard \& Aller, 0 涊 Engines, Bollers, and Machinery Shafting and Pulleys a Specialty.

HARTFORD
STEAM BOILER Inspection \& Insurance COMPANY.
w. b. Franklun, v. Ptt J. M. Alles, Prest

HJTVNTIMachinery, ane Bros. Mfg. Co., chicago.

Water Wheels.

 Springifild, ohfo, \& 190 Lib.
erty St., New York city.
 HUSSEY, WELLS \& C0., OFFICE AND WORSS PENN AVENUE \& 1TTH ST

CAST STEEL, Including the " Granite" brand for Edge Tools.
Particular attention given to :the manufacture of CAST STEEL TEETH, CAST SNEEL TEETH,
of any pattern for HORSE RAKES, for which or-
deras sare solcted A1 Rake Tecth wil be manufac.
tured under the SIMONDS and FERSON Patents, retured under the sIMONDS and FERSON Patents, re-
cently purchase, by Fhlin process perfect untrormity
or shape and superior excellence os temper are au-
tatned.

TANRATEOFSODA,

"The Best is Always the Cheapest."

THE BAXTER STEAM ENCHINE

(as made by colt's arms co.)
. All parts duplicated. Is safe against Fire and Explosion
WM. D. RUSSELL,

SUPER-HEATERS

Pyrometers. $\begin{gathered}\text { For testrig Denen, Boil } \\ \text { er tues, Blast turnaces }\end{gathered}$

 MURRLL \& KEIZER. 44 Holldayst, Bal

TRON PTANERS,

MillFurnisking. Worlks

PORTLAND CEMENT,

AMERICAN SAW CO.
TRENTON, N. J.
GREAT REDUCTION ${ }_{\text {w }}$ PRICES MOVABLE-TOOTHED CIRCULAR SAWS. Send tor new Price Libit. at

S AVE YOUR BOLLERS, SAVE FUEL

© STEAM BOILER AND PIPR

为

portland deient

Branch Dopots:
merton square, Boston, Ms

STEAM GOVERNORS WITHOUT GOST,
 STEAM GOVERNOR IN THE WORLD

WIRE ROPE.

ENGINES AND boilists New and Sec

HAMILTON,OHIO.

B

 of White and ELem stot. New Yors. ELECTRIC \& VAPOR CHAIR.

TRONGUTTERS.

Wherope

THE HEALD \& SISCO

Patent Centrifugal Pumps,

GTASS OIT CUPS

 ROOFS F FLET, CEMENT, AND PAINT FOR

Asbestos $\frac{\text { Felting }}{316-322} \mathbf{~ C r g i t . . ~}$

SCIENTIFIC AMERICAN. FOR 1875.
THE MOST POPULAR SCIENTIFIC PAPER IN THE WORLD. THIRTIETH YEAR.
VOLUME XXXII.-NEW SERIES.
The publishers of the SCIENTIFIC A MERICAN beg
to announce that on the first day of January, 1875 , a new volume commences. It will continue to be the aime
of the publishers to render the contents of the new volume more attractive and useful than any of its pre To the Mechanic and Manufacturer ! No person engaged in any of the mechanical pursuits
should think of doing without the Soikntifio Amerishould think of doing without the Soirstifio AmerioAN. Every number contains from six to ten engravings
of new machines and inventions which cannot be found in any other publication.
The SCIENTIFIC AMERICAN is devoted to the interests of Popular Sclence, the Mechantc Arts, Manufactures, Inventions, Agriculture,Commerce, and the Indus tive not only in the Workshop and Manufactory, bnt also ti the Household, the Library, and the Reading Room By the new law, the postage must be pald in advance
in New York, by the publishers; and the subscriber then in New York, by the publishers ; and the subs
receives the paper by mall free of charge.

One copy, one year (postage included)........... 83.2 One copy, , six monthe (postage included)......... 1.6
One copy, three months (postage included)....
1.00 One copy, three months (postage included)....
One copy ofsclentific American for one year,and one copy of engraving, "Men of Progress"..
One copy of Sclentific A merican for one year,and
 Remit by postal order, draft or express.

Address all lette drafta payable to

THE " Scientific American" is printed wnth

