a WeEkly journal 0F Practical Information, art, SCIENCE, MECHANICS, CHEMISTRY and Mandeactures.

	NEW YORK, OCTOBER 31, 1874.	$\left[\begin{array}{c} \$ 3 \text { per Annuim. } \\ \text { With Postage, } \$ 3.20 \end{array}\right.$

THE TANITE COMPANY'S NEW MILLING MACHINE.

THE TANITE COMPANY'S NEW MILLING MACHINE The Tanite Company, of Stroudsburg, Pa., have now on exhibition at the Fair of the American Institute in this city and at the Franklin Institute, Philadelphia, a new machine, in which ar emery wheel is used, for the first time, for surfacing files and sad irons, finishing anvils, nuts, gibs, keys, slide valves, straps, slides, crossheads, and in short, for ac complishing the majority of work now surfaced on the ordinary planer, milling machine, or shaper. It will be remem. bered that the emery wheel made by the above-named corporation is of the solid type, and a brief review of the advantages claimed for it may appropriacely precede the mechanical description of the large and fine engraving, herewith presented, of the machine above referred to.
The solid emery wheel performs the office of a rotary file, the cutting edges of which never grow dull: in other words, it retains its efficiency as a cutting tool until literally worn out. It is hard, and cannot be broken by a fall or blow; it travels uniformly and steadily at a high speed, the latter exceeding, with safety, that of the grindstone, while the emery cuts faster and lasts longer than the sand. Being composed of an artificial mixture, its grit is more even than that of the natural substance; and the waste of material and time lost in making changes is said to be less than is the case with the wooden wheel. Finally, the solid wheels are successfully used for putting the cutting edges on tools of all descriptions, and they may be produced of any shape, fitted for any special work.
The size and clearness of our illustration will enable the forming of an excellent idea of the details of the machine.

The latter at its left hand extremity carries another belt eading to at ite shaft attached to the for detached, and lying on the right of the machine), whence a third belt returns to the pulleys, C, and a fourth to the blower shaft, D. Through suitable mechanism, the pulleys, C, actu ate the slotted crosshead, E , the revolution of which com municates, by the rod, F , reciprocating motion to the main shaft, B, and thus imparts to the emery wheel, represented on the right hand extremity of said shaft, a transverse movement across the sad iron, which is shown secured in the chuck on the table, G. In addition to performing this labor, the gearing, immediately driven by pulleys, C, also rotates the vertical shaft, H, which in turn transmits power to the cones on its r ght. These again (through the medium of a belt, other cones, and further suitable interposing mechan ism) revolve a vertical rod, I, the lower end of which is fitted with a globe joint. Its upper extremity carries a pinion, which, by means of the handle, at J , may be thrown into action with one or the other of two racks under the table, G, so that the latter, by manipulating the handle as required, may be caused to travel automatically to and fro under the emery wheel, and over such distances as may be necessitated by the dimensions of the work. The hand wheel, at K, allows of similar movement to be imparted to the table by hand, in circumstances where the automatic motion is not deired.
The mode of operation consists in adjusting the work in
the chuck to the proper elevation and starting the machine.
The surface of the sad iron, for example, is thus carried
under the wheel, and at the same time the latter is drawn across it; and this continues until the motion of the table transports the object out of the action of the grinder. The workman then gives the handwheel, shown at L, a part of a turn, thereby moving a fine screw which passes through an arm on the table, thus slightly elevating the latter, so as to arm on the table, thus slightly elevating the latter, so as to
give new surface for the tool to take upon. The handle, J, being shifted, the work travels back under the wheel, and so the operation is repeated as often as is desired, or else a new article is substituted after one passage under the emery. To avoid injury to tools and workmen, a small suction blower, with the necessary pipes and an enlarged receptacle in rear of the wheel, is provided, and so arranged as to draw away all dust, while at the same time to be easily removed for setting the work. For keys and similar small articles, a different chuck (see sample in the foreground of the engraving) is needed.
Themachine, it is claimed, allows of using the wheel to its full capacity, while protecting the same against uneven wearing, thus rendering the employment of the diamond tool unnecessary. The cut made is much deeper than has hitherto been considered possible to accomplish by the emery grinder. The manufacturers also claim that in those articles in which first quality iron is used, on account of its being more easily worked, the use of their wheel will soon save enough valuable metal to pay for a machine. From a careful examination of the apparatus, these advantages appear to us to be well substantiated.
These machines are manufactured only by the Tanite Company, who may be addressed as above.

Srientific Ammitam.

MUNN \& CO., Editors and Proprietors PUBLISHED WEEKLY AT
NO. 37 PARK ROW, NEW YORK
O. D. MUNN. A. 世. BEACH.

TERMS.
One copy, one year, postage included..
One copy, six months, postage included
ClubRates
Ten copies, one year, each $\$ 270$, postage included.
Over ten copies, same rate each, postage included.

a panic at the patent office.

General Leggett, the Commissioner of Patents, some time ago announced his resignation, to take effect November 1, 1874; whereupon some of the lady clerks, with natural feminine impulse, made it the occasion of presenting to the General a teatimonial of esteem from themselves and associate employees. The General has been instrumental in introducing female labor in almost every department of the Patent Office; the clerical work of nearly all the examining officers is now done, and very acceptably too, by women. The ladies procured donations from the various examiners and assistants, with which a handsome tea set was obtained and presented to the retiring Commissioner.
It is not perhaps strange that the General and his corps of ladies should have overlooked the law which forbids such doings; but that disinterested persons, like the Assistant Commissioner, members of the Board of Appeals, examin-ers-in chief, and other legal minds connected with the office, should have been so unobservant seems remarizable. The provision of the statute is very stringent, and is as follows:
"Be it enacted, etc.: That no officer or clerk in the United States Government employ shall at any time solicit contributions of other officials or employees in the Government service for a gift or present to those in a superior official
position, nor shall any such officials or clerical position, nor shall any such officials or clerical superiors re-
ceive any gift or presentoffered or presented to them as the ceive any gift or presentoffered or presented to them as the
contribution of those in the Government employ receiving contribution of those in the Government employ receiving
a less salary than themselves; nor shall any officer or clerk a less salary than themselves; nor shall any officer or clerk
make any donation as a gift or present to any official supemake any donation as a gift or present to any official supe-
rior. Any officer or clerk violating any of the provisions of this bill shall be summarily discharged from the Government employ."
We believe it is not pretended that this staitute is unconstitutional, or that for any reason it is to betreated as a dead letter. In refusing, summarily, to discharge the Commissioner of Patents and all the subscribers to this tea party, both the Secretary of the Interior and, through him, the President of the United States, are open to the charge of neglecting their plain duty.

A considerable time has elapsed since the knowledge of the above transgression of the law was made known, but the officers of the government have not as yet dismissed one of the offenders.
It is rumored that they are all to be discharged, and then all immediately reappointed. But this would amount prac tically to a nullification of the statute. The evident intention of the law was to place the seal of public condemnation upon all such transactions, and wholly to remove from the public service those who should be guilty of them.
In no other way can the observance of law be promoted

To dismiss and then reappoint would be to trifle openly with the law, a course which would assuredly meet with public condemnation.
There is but one way for the President to deal with this matter, and that is promptly to discharge all the parties involved from the public service, as the law specifies. To dismiss them in a body would be disadvantageous to the public service, and therefore unwise; but it should be done as rapidly as possible. He should begin with the most prominent offenders first. General Leggett, the Commissioner, should be at once dismissed, and a new commissioner appointed. Mr. Thacher's removal should follow, and so on, down, until the law has been entirely vindicated.
The removal of the Commissioner, the Assistant Commissioner, and some of the examiners would be of little personal inconvenience to them, as they can readily set up in patent business and make a living. But the affair will prove more serious to some of the other employess, who are, for the most part, honest, faithful, and deserving ; and dismissal will be very inconvenient, especially at the approaching inclement season of the year. We deeply sympathize with them, and for their sakes wish that they could be excused. Let us hope that the effect of this general change in the personnel of the Patent Office will be a benefit to that institution. Among its officers are many intelligent and valuable persons, whose departure will be a disadvantage to the country. On the other hand there are a number of officials whose ignorance, tardiness, and illiberality towards inven tors make their removal greatly to be desired. By an en tirely new organization, if intelligent care is taken in the se lection of individuals, the Office will be likely to be benefit ted rather than damaged.
Competent persons who desire employment at the Paten Office may, we think, properly file in their applications. We assume that nothing but a special act of Congress can relieve from dismissal or properly re-instate the present offenders; and if any are to be re-instated, only the very best and ablest of those now in the Office should be reappointed.
The poor material must be eliminated. All who have ex hibited indolence or sluggishness in the discharge of duty all examiners of every grade who have failed to act promptly on their cases, all who have suffered their work to get behind, all who have tried to set up their dictum against the
most liberal interpretation of the laws in the grant of patent to inventors: all such persons should be rigidly excluded from the service.

ECONOMY IN EATING

Like the steam engine, the human organism is a machine for the development and application of power. Like the steam engine, it derives its power from the combustion of organic products. But, unlike the iron mechanism, man has other ends than the performance of work, and there is no one food which will meet his physical requirements, as coal or wood will those of an engine. His fuel is necessarily complex, and, still more, its complexity must be varied time to time to meet the changing demands of the seasons, of age, occupation, and other life conditions.
In choosing his source of mechanical power, the engineer takes into account the relative cost and efficiency of the different sorts of fuel to be had in his locality, and selects that kind, or such a combination of two or more kinds, as wil furnish the power he needs at the smallest cost, and with the least wear and tear to his machinery. He will not burn coal where wood is cleaper, nor green wood when he can get dry.
While it is immensely more difficult to make the corresponding selection for the human machine, it is obvious that, since health and happiness, as well as working force, are in volved, it is of vastly greater importance that the selection be wisely made. Yet there are multitudes who take, or would take, pride in running a steam engine economically, who not merely give no thought to their own machinery, but rather pride themselves on its apparent capacity to run well under all conditions, or in spite of maltreatment. They "can eat anything"; and so long as their food is savory and they can get their fill, they do not care what its elementary composition may be, or how much unnecessary labor it puts upon their digestive and alimentary organs to dispose of it Mention economy in eating to them, and they straightway call to mind the pint of beans or pound of oatmeal that ig orant theorists have proclaimed as sufficient for their daily eeds, and more or less politely decline to eat by rule. Others to whom the cost of supplying food for a numerous family is a matter of serious moment, are ignorantly proud of set ting as good a table as their neighbors, unconscious that their neighbors have as vague an appreciation of what is and that the mone the to provide an abundance of food, at once better suited to their needs, more enjoyable, and, in many cases, much more wholeome.
The fact is that the much misused word "economy" is neve more severely warped fromits true meaning-judicious man-
agement-than in its application to domestic matters. To be economical in one's diet is commonly thought to imply the use of cheap food in preference to the costly, to restrict one's self to one dish when appetite would suggest a dozen, of the amount thather than meat: in short, the redin mum. On the contrary, true economy in eatiog requires us to select and combine the greatest variety of food so as to furnish the maximum growth or power most enjoyably, with the least waste of substance and the least tax upon the sysem, in assimilating what is useful and rejecting what is use
system requires under the varying con ititions of life, but also the chemical constitution of different foods, their dy namic power, and how to combine them so as to develop their highest utility with the smallest functional expenditure. For example, a laboring man requires daily, to sus tain his bodily temperature under ordinary conditions, to nable the vital processes of respiration, digestion, and the rest to go on well, and to meet the demands of muscular effort, an amount of power equivalent to about 4,000 foo tuns, or enough to raise a man of average weight abou eleven miles, vertically. To maintain these conditions, it is found by experiment that a daily diet furnishing about 300 grains of nitrogen and 4,800 grains of carbon is required.
To obtain these 300 grains of nitrogen from bread, the aborer would have to eat rather more than four pounds, containing nearly twice as much carbon as would be needed The carbon of about two pounds of the bread would thus be not merely wasted, but worse: the excretory organs would be taxed to get rid of it. To add butter to the bread would only increase the disproportion of carbon. On the other hand, if the laborer undertook to supply the wants of his system with lean beef, he would have to eat six pounds of it to get the requisite amount of carbon; but in six pounds of beef the nitrogen is over a thousand grains in excess of what is needed, and excess of nitrogenous matter in the blood is a fruitful source of disease. The nitrogen of nearly five pounds of beef would thus be wasted.
It appears, therefore, that neither bread nor beef is econo mical eating alone; but properly mixed, we should have, say 14,000 grains (2 pounds) of bread, containing 4,200 grains of carbon and 140 grains of nitrogen; and 5,500 grains (about three fourths of a pound) of beef, containing 605 grains of carbon and 165 grains of nitrogen; total 4,805 grains of car bon and 305 grains of nitrogen. There can be no question that a diet of bread and beef would be more enjoyable than either singly. It is demonstrable that it would be cheaper and, at the same time, better suited to the wants of the sys em : in short, more economical.
In a similar manner, more complex diets can be adjusted, and the scientific correctness of diets, contrived to meet spe cial conditions by long processes of trial, can be brought to mathematical demonstration.
In time our works on dietetics will tell not merely what foods re good and how to prepare them, but what is the dynamic value of each by the ounce or pound, and how they may be most economically combined to meet the varying require ments of youth and age, and the different conditions and callings in life. The researches of Payen, Frankland, Pavy, and a host of others have lately made rapid approaches toward this desirable state of things. For instance, a glance at one of Frankland's tables shows that the working force of a pound of butter oxydized in the body is equal to that of nine pounds of potatoes, or twelve pounds of milk, or over five pounds of lean beef. A pound of oatmeal will furnish as much force as two pounds of bread, or over three pounds of lean veal. A pound of lump sugar has the dynamic power of two pounds of ham or eight pounds of cabbage. Knowing the prices of these substances, their comparative values as sources of power can be easily calculated. Their relative value as food is a more difficult matter to determine, since in that case their relative digestibility and other elements enter to complivate the problem
An extremely interesting and valuable feature of Pavy's recent work is the calculation of the dynamic values of dif ferent dietaries. For instance, Playfair's "subsistence diet," found by taking the mean daily allowance of nitro genous matter, fat, and carbo-hydrates in the dietaries of London needlewomen, of the convalescents in the Edinburgh Infirmary, of the inmates of several prisons, and of the peratives during the cotton famine in Lancashire in 1862 diet which barely suffices to sustain life-has a force pro ducing value of 2,453 foot tuns a day, or enough to raise a person of light weight to the hight of seven miles. From observations on the carbonic acid excretions of several per sons, Dr. Edward Smith found that the power expended daily in maintaining the body's heat is, on the average, enough to raise the body six miles. Professor Haughton calculated the power required to perform the necessary vital functions of respiration, digestion, and the rest, to be, speaking gen rally, enough to raise the body to the hight of one mile, The seven-mile power of the "subsistence diet" would therefore be used up without work or active exercise.
The average diet of adults in full health and with moderate xercise was calculated from the dietaries of the English, French, Prussian, and Austrian soldiery during times of peace Its dynamic valueis 4,021 foot tuns. The average of the dieta ries of European and American soldiers during the great wars of recent years gave the diet assigned to active laborers. Its force value is 4,458 foot tuns. The diet of hardworking laborers, determined from the actual amounts of food con sumed by railway navvies, hardworked weavers, blacksmiths, and others, is equivalent to 4,849 foot tuns. A simi ar calculation for the diet of a body of Royal Engineers actively engaged, gives the high dynamic value of 5,532 foot tuns, or enough each day to lift the eaters over fourteen miles vertically. In food value, this full diet compares with the subsistence diet above mentioned (salts omitted) as fol ows

Total $\overline{14: 86}$ ozs.
Total 30.21 ozs.
With these it may be well to contrast the standard diet of Moleschott, which is generally accepted as a fair representa-
combination of alimentary principles for the daily support of an ordinary working man of average hight and weight. is as follows :

Albuminous matter.
Fatty matter.
Salts.

Total $\overline{22 \cdot 859}$ ozs.

Thus about 23 ounces of dry solid matter, one fifth nitro genous, may be taken as sufficient for the daily needs of an average adult workman. Ordinary food contains about 50 per cent of water, which would swell this amount of dry matter to 46 ounces of solid food. To complete the diet, we must allow from fifty to eighty ounces of water in addition, daily.

Of course, the varying requirements of youth and age, hot weather and cold, indoor and outdoor occupation, individual idiosyncracy, taste, and a thousand other conditions combine to vary the proportion of the several elements needed in any case; nevertheleas, all such average determinations are helps toward the developed science of dietetics, which the coming years will see.

DEMONIACAL POSSESSIONS.

The devil dies hard, and the fifteenth century lingers in other quarters than Italy and Spain.

In the middle ages the unfortunate victim of morbid or insane impulses was looked upon as the sport of demons. T'ne history of medicine records the successive steps of progi ess in knowledge by which this delusion was dispelled, and the true cause of these maladies was found to be organic derangement or vicious education.
A man of kindly disposition suddenly manifests an irre sistible desire to kill somebody. He may say that his grand mother's ghast or the spirit of George Washington has ordered him to shed blood; but intelligent people know better. They do not assume, as of old, that some evil spirit has caught his soul abroad and has slipped in and taken possession of the vacant body for diabolical purposes. They say that something is wrong in his physical organization, a tumor on the brain, may be, and treat him accordingly. When he dies, the surgeon's knife will lay bare the cause of the difficulty, which had been slowly developing, perhaps for years before the crisis came. Does any one wonder why, at this late day, we soberly set down what every civilized child is supposed to know? or soberly discuss a theory that died with witchcraft? Simply to spring upon the intelligent reader the surprising fact that belief in witchcraft and the theory of demoniacal possessions is not dead, here, in this land of common schools and newspapers: not among the illiterate, but among newspaper readers: worse, among the editors of newspapers which profess to lead the advance of civilization.
How does this sound for the nineteenth century? We quote from a family paper bearing date October 8,1874 :

A favorite scoff against religion has been founded on the instances, recorded in the gospels, of persons who were possessed with demons. Perhaps two items of news published recently may throw some light on the demoniacal possessions on which infidels have long exercised their wits." The paper goes on to describe the case of the Pomeroy boy of Boston, and that of a girl in this city who felt a strong desire
to burn an infant she was nursing, but fortunately confessed to burn an infant she was nursing, but fortunately confessed
the desire before attemptingits execution; then it continues: "These are two of the latest startling items of news. Do they not look as if the devil had more power over human nature than he is ordinarily credited with? In view of them, can we say that demoniacal possessions are impossible?" This is from the Christian Observer, and is quoted approvingly by another Observer, which puts; New Fork as part of its title, but is presumed to be Christian all the same
We do not know the circumstances of the last mentioned case, nor the history of the girl whose homicidal desire was kept from being carried out. Cases of the kind, however, are not uncommon, and not unaccountable, without the devil's assistance. As regards the Pomeroy boy, there was never a clearer case of moral warping by vicious influences, systematically brought to bear on the child in utero as well as in infancy. Had the mother's desire been to breed a monster of bloodthirstiness, her course could not have been more surely adapted to accomplish that end. And the mother's morbid pleasure at the sight of blood was not only inherited but cultivated by the child, who was a butcher by instinct, tak ing up his father's trade almost as soon as he could walk. Yet we are gravely told that this boy's horrid desire to see how a child would die was due to his momentary possession by the devil!
This is worse than the experience of a medical friend, who, calling the other day to learn the effect of a prescription for a sick child, was greeted by the mother with the triumphant exclamation. "I don't think baby will have convulsions any more!" "Ah!" said the doctor; "why not?" "I've burned his shirt!" The lady is the wife of a wealthy merchant and a member of polite society. Very likely she reads the Observer: possibly both of the papers of tha name.

REPORTS ON SMALL ENGINES.

We have been much gratified, of late, by the receipt of letters giving particulars of small enginesand boilers. Data of this kind are extremely valuable, showing the results of actual practice, and we hope to receive many more letters of
the same kind. These accounts would be more interesting and useful, however, if they contained fuller details of the
performance; and we propose to give some account of the manner of making a test. The apparatus needed is quite simple, and can be readily constructed by the young mechanic. The following embrace the principal points that are generally of interest in regard to engines and boilers: Diameter of cylinder, length of stroke, diameters of piston rod, connecting rod, crank pin, valve stem, fly wheel, and shaft; lengths of connecting rod and crank pin, weights of whole engine and of fly wheel, size of ports, stroke of valve, point at which steam is cut off, number of revolutions per minute, clearance at each end of cylinder, pressure of steam in boiler, dimensions and weight of boiler, diameters of steam pipe and safety valve, number of pounds of water evaporated, fuel burned per hour, and power of the engine. Many of these data are obtained at once, by direct measurement or weight. The diameter of the cylinder should be measured when it is at the temperature at which it is ordinarily maintained while running. The point of cut off can generally be ascertained by removing the cover of the valve chest, and observing the point at which the steam valve closes when the engine is moved by hand. This should be done when the parts are heated. The clearance at each end of the cylinder includes not only the space between the piston and cylinder head at the end of the stroke, but also the volume of the ports. A simple and accurate manner of measuring the clearance is to fill the cylinder with water, when the piston is at one end of the stroke, snd then measure the water carefully in a cylindrical or rectangular vessel. The difference between the volume of the water and the volume of piston displacement (area of piston multiplied by length of stroke) will be the clearance. In measuring the piston displacement at the front end of the cylinder, the volume of the piston rod (area of section of rod multiplied by length of stroke) must, of course, be deducted.
The number of revolutions of the engine per minute can be determined approximately by observation; but errors are pt to result, especially in the case of small engines moving t a high rate of speed. Small shaft counters can be obtained t a very reasonable price, and measurements made with hem are far more likely to be accurate.
Many small boilers are not provided with steam gages, so that the pressure of the steam cannot be observed directly; but all such boilers have, or should have, safety valves, and the pressure of the steam can be determined from them. Secure the valve stem of the safety valve to the lever, with wire or string, and attach a loop to the lever, into which pats the hook of an accurate spring balance, arranging the oop so that it is directly over the center of the valve stem. Then take hold of the upper part of the spring balance, and ift the valve slightly, noting the reading of the balance. Measure the lower diameter of the safety valve, and find its area; divide the reading of the spring balance by the area of the valve, and the result will be the pressure, in pounds per square inch, at which the steam will raise the safety valve. Suppose, for instance, that the diameter of the safety valve is 1 inch; its area will be about $\frac{7854}{10000}$ of an inch. Now, if the tension of the spring balance in raising the alve is 120 pounds, the pressure at which the valve will ise is the quotient arising from dividing 120 by $\frac{7854}{10000}$, or 53 pounds per square inch. It will be easy to make a table for any particular case, giving the pressure corresponding ance; and by calculating in advance the reading of the balance for any given pressure, the weight can be adjusted on the lever until that tension is obtained, and the valve can thus be graduated to lift at any required pressure. It may be added that this simple method is applicable to any safety valve, and affords a ready means of testing the accuracy of the graduation; but at present we are treating of this mehod only with a view to explain how the steam pressure in he boiler may be ascertained at any time. Having determined the pressure at which the safety valve will rise when the boiler is cold, raise the valve by means of the balance, from time to time, when the engine is working, and observe the tension. Find the pressure corresponding to this tension, and subtract it from the pressure at which the valve will be raised by the steam. The difference is the pressure in the boiler at the time. For example, suppose that in the last case the tension of the balance, on raising the valve when the engine was working, was 50 pounds. The presure corresponding to this will be 50 divided by $\frac{7854}{10000}$, or about 64 pounds, so that the pressure in the boiler at the time would be the difference between 153 and 64 , or 89 pounds per square inch. By preparing a table showing the pressure in the boiler due to each pound of tension in the sring balance, the pressure at any time can be read off as oon as the indication of the balance is observed.
The amount of water evaporated per hour and the fuel burned can, of course, be readily determined by measurement, drawing the water from a tank of known dimensions, nd observing its state at the commencement and close of a rial, being careful to leave the water in the boiler at the ame hight at which it was at the commencement, and maintaining this hight as constant as possible during the experiment. In measuring the fuel consumed, it is best to draw out the fire at the commencement of the trial, rekindling it as soon as possible, and charging all the fuel used from that time, hauling and quenching the fire immediately at the cose of the trial, and weighing back all fuel that is uncon sumed. In the case of small boilers heated by lamps, a meaurement of the oil used between the beginning and end of he trial will generally be sufficient; and if gas is employed as fuel, it will be necessary to attach a meter to the pipe, to determine the quantity consumed in any given time.
To ascertain the power of the engine, the most convenient method is, generally, to attach a friction brake, shown in the
accompanying engraving, to the band wheel. Hollow ou two pieces of wood, B and C, so that they will fit the circum erence of the band wheel, A, and attach light plates of metal, D and E, to the sides, so that the pieces of wood cannot slip off when secured in position. Provide two belts, F,
G, countersinking the heads, H and I, into the upper piece

of wood, so that they cannot turn, and put nuts and washers, K and L , on the other ends, so that the two pieces of wood can be clamped on the band wheel as tightly as is necessary. Make the upper piece of wood somewhat longer than the other, and pass a rod, M, through the end. On this rod weights, N , are to be placed, and the lower end of the rod is hooked to the piston rod of a small cylinder, O. The piston, P , fits loosely in this cylinder, which is filled with oil or Pater ; and the piston has small holes in it, so that it can move up and down without much resistance, if moved slowly, but offers considerable resistance to sudden motion. The action of the apparatus will doubtless be apparent to our readers. By tightening the nuts on the bolts, F, G, there will be considerable friction between the band wheel and the pieces of wood. The rod, M, must then be loaded with sufficient weight, so that the engine can just move at its regular rate of speed, and keep the upper piece of wood in a horizontal position. The friction on the band wheel will cause it to become heated, unless some arrangements are made for cooling, either by keeping a stream of water running upon it, or immersing the lower part in a trough is which the water is constantly changed. The small cylinder, 0 , and piston, P, serve to counteract the effect of sudden shocks, which would otherwise throw the arm of the piece, B, from a horizontal position. Now it will be plain that, as the band wheel revolves (constantly maintaining the arm, with the weight attached, in a horizontal position), the effect is the same as if it were lifting this weight by means of a rope running over a windlass, and the distance through which it would lift the weight in a given time is the same as the weight would move if the whole apparatus were free to revolve. If, for example, the wheel makes 300 revolutions in a minute, the distance from the center of the wheel to the center of the weight is 1 foot, and the weight is 10 pounds; this weight, if frea to revolve, would move in each revolution through the circumference of a circle whose radius is 1 foot, and in a minute would move 300 times as far, or about 1,885 feet. The work of the engine in a minute, then, will be that required to lift 10 pounds through a hight of 1,885 feet, or 18,850 foot pounds; and as one horse power is the work represented by 33,000 foot pounds per minute, the engine would be developing a little more than half a horse power.
In making experiments with the friction brake, the apparatus should be placed loosely on the band wheel; and before the weights are attached, a spring balance should be secured to the arm, at the center of the hole for the rod, M, and the reading noted when the arm is in a horizontal position. This reading must be added to the weights that are afterwards attached. The horizontal distance from the center of the wheel to the center of the rod, M, should be carefully measured. Then start the engine, with the throttle valve wide open, and screw up the nuts, K, L, gradually, adding weights at N. It will then only be necessary, when sufficient weights are added, to keep the wheel cool, and occasionally adjust the nuts, K, L, should the brake bind or become too loose from any cause. Should it be difficult or inconvenient to maintain the arm in a horizontal position, note carefully the position it assumes during the test; and for the radius to be used in the calculation, measure the distance, $a b$, from the center of the wheel to the center of the rod, M, in a direction perpendicular to the direction of the rod.
Instead of the weights, N , and cylinder, O , a spring balance may be attached to the end of the rod, M, and secured to some fixed support, its readings during the trial being used in place of the attached weights. In this case, also, the weight of the apparatus must be first determined, and added to the readings of the spring balance. The plan represented in the engraving is, however, the best.
We have thus described, in detail, the methods to be pursued in preparing a report of the performance of small engines and boilers. Although they are far from fulfilling all the requirements of a scientific test, they will give very accurate results if carefully conducted. Should any of our readers make the experiments referred to in this paper, we shall be glad to receive the results, with full particulars.

The Phylloxera.-R. J. writes to assure us that 1 pint slaked lime, mixed with balf a peck horse manure, put round the roots of each vine, will ensure a speedy cure for the disease, protect the plant from frost, and give it a vigorous growth. This remedy, which has been tried and found successful, should be applied in the fall of the year. He offers us half the reward.

IMPROVED DRAFTSMAN'S RULE.

Professor C. W. Maccord, of the Stevens Institute of Technology, has recently published the following in the American Artisan :
In making mechanical drawings, it is often required to lay down a series of lines radiating from a single point, as, for instance, in drawing a bevel spur wheel, or a spur wheel whose teelh have radial flanks. This looks like a very simple thing to do with a common straight edge; but the necessity of adjusting the ruler with reference to two points, for every line, renders the task very irksome; and the same is true of drawing a series of lines tangent to a circle, asin the case of the teeth of a ratchet wheel.
These operations are facilitated by the use of the centrolinead, the common form of which consists merely of an arm carrying a needle point, to which the ruler may be clamped at any desired angle, so that the prolongation of its edge shall either pass through the needle point or be tangent to a circle of which the needle is the center. This is very simple and convenient, but it is open to the objections that lines can not, by its aid, be drawn through the center, and that there is danger of defacing the drawing by wearing a hole in the paper; and it evidently gives no assistance in the division of the circle, which must be effected previously by independent means.
The instrument here shown, which may be called a protracting centrolinead, is designed to obviate the objections above named, and to add to the utility of the apparatus by enabling the user to divide the circle and draw diameters at the same time. This is effected by jointing the ruler, by transverse pieces, to two paral lel bars, which, rotating about fixed centers, compel the ruler to move in a similar manner.
Fig. 1 shows the instrument complete, adjusted for drawing radial lines; Fig. 2 shows it as set for draw ing tangents, and with the graduated disk removed. From the latter figure it will be seen that since E and F are the extremities of two similar and parallel transverse bars, the line EF will be always parallel to the center lines, A B, C D, of the parallel bars to which ACE, BDF are jointed; also that as these center lines can only turn about the centers, G, H, which are simi larly situated with respect to them, the line EF, and consequently any rigid body pivoted to E and F , must rotate about a corresponding center, I. The ruler is pivoted directly to F; and if it be placed, as in Fig. 1, with its edge passing through I, the action as a centrolinead requires no further explanation.

In order to render the instrument capable of adjustment, E is pivoted to the triangle, ELM ; this triangle is composed of the two bars, EL, LM, and a radius rod, EM, the latter sliding through a socket pivoted to $\mathrm{E} ; \mathrm{M}$ is pivoted to the ruler; and by means of binding screws at E and L , the triangle may be made rigid at pleasure. This, with the ruler, constitutes a rigid triangle, MEF, every part of which must, therefore, like EF, rotate round the center, I. Consequently, the edge of the ruler may be inclined to EF, or its parallel, I K, at any desired angle within limits; and when this is done, it must, in all positions, be tangent to a circle of which I is the center, as shown in Fig. 2.
The centers, G and H, are fixed in a three armed plate seen below A B and CD; the under side of this plate is previded with elastic pads, by which adhesion is secured without defacing the paper with holes.
Above the bars, A B, C D, is a disk, held in place by the screws, G and H, which pass through short ferules supporting the disk; the screw, G, is in the center of this disk (which is indicated by the dotted circle in Fig. 2), and the bar, AB, has its upper edge passing through G, thus enabling the user to read with ease the angles measured by the divisions on the chamfered edge of the disk shown in Fig. 1. These divisions extend through only one third of the circumference, since the range of motion in the instrument, shown in Figs. 1 and 2, is limited to 60° in each direction from the position here given. This, however, is sufficient to make it a most convenient addition to the labor-saving devices at the draftsman's command, which, at best, are but few enough; since, besides enabling him to draw tangents at any required intervals, it is at once a centrolinead and a protractor, with the center of the circle always accessible-an important feature not possessed even by the separate instruments heretofore used for the purposes accomplished by the one which we here present for his consideration.

Pre-Glacial Man in England.

The human remains found in Kent's Hole, in deposits at tributed to pre-glacial times, have a rivalin antiquity in the human bone discovered in Victoria Cave. The Committee o the British Association for assisting in the exploration of this cave describe minutely the condition under which the bone was found, and express the "inevitable conclusion" that man lived in Yorkshire with elephas antiquus, rhinoceros tichornus, ursus priscus and spelceus, hyæna, bison, and red deer long before the existence of the great ice sheet in Northern Britain and Ireland.

Local Remedy in Diphtheria.
Dr. James A. Hopkins, of Milton, Del., in The Physician and Pharmacist, says: Many have been the remedies used in the local treatment of diphtheria. Some have vaunted argentinitras, in solid form. Others advise the preparations of potassa and its combinations. Carbolic acid has its votaries, as well as muriatic acid and the muriated tincture of iron; externally the oakum poultice has some reputation, and no doubt is of more importance than we are ready to admit.

Terebinthine liniment, as well as kerosene oil, stands prominent in the list of external remedies.
But above and before all is the acid tannate of iron. This is a remedy not known to the pharmacopœia, yet it stands second to none amonglocal remedies, and \mathbf{I} believe is the only one that bears a shade of semblance to a remedy in this fearful disease, and thus far exceeds any that has become known to the professional world. It may be prepared by the addition of one ounce of the muriated tincture of iron to one of a strong solution of tannin, and applied by means of a brush to the diseased throat, or elsewhere, as the case may be; or, what I believe to be a better way, apply the muriated tincture of iron in full strength to the diseased part with a brush, wait a few moments, then apply the solution of

MACCORD'S PROTRACTING CENTROLINEAD
tannin in the same way, thereby forming a union of the two at the point of disease, having at the same time the advantage of chemical action, if there be any. On examination a few hours after, you will see the line of demarcation disinctly drawn by the discoloration of the diseased tissue showing exactly the extent of the disease, the very thing desired, with a tendency to reparation, which will go on rapidly if the system be properly treated with a nourishing diet and tonic and stimulating remedies.

A SIPHON FOR POISONOUS LIQUIDS AND ACIDS.

In starting the ordinary aiphon, by sucking on the longer eg or on a tube attached thereto, it is almost impossible to avoid inhaling the vapors of the liquid, even if the liquid itself does not enter the mouth. A new form of siphon, in vented by Professor Weinhold, avoids this difficulty, inasmuch as the suction is produced by blowing, somewhat on the principle of the Sprengel air pump.

Fig. 1 represents a section of Weinhold's siphon on a re duced scale; Fig. 2 is a full sized drawing of the essential portion of the apparatus. By blowing strongly into c, the liquid will flow out of b, provided the pressure to be over come is not more than 12 inches of water, and that the diameter of the siphon is not too great. It is very importan that the dimensions be exactly right ; the opening at a should be 1.5 millimeters (one sixteenth of an inch); the opening at b, as well as the diameter of all the tubes, should be 5 milli meters (one fifth of an inch), and the distance from a to
should be 25 millimeters (one inch).
The so-called French siphon has legs of equal length, turned up at the bottom to prevent its emptying itself when taken out of the liquid. This would probably be more used han it is, were it not so difficult to fill; besides, it gives a sirting or oblique stream. Both disadvantages may be
avoided by giving it the form shown in Fig.
s started by closing the opening, b, and sucking on a, as in he old-fashioned poison siphon. The stream is, of course, elivered downward from b. The three pieces of tube at the ower end of the left leg are not arranged in one plane, as shown in the engraving, but in the form of a triangle, $\circ \circ$, so as to be as close together as possible. A French siphon must be lifted out of the liquid slowly and carefully, to pre vent the liquid running out.

English Enamel for Cast Iron.
A brilliant white and very adhesive enamel is formed on cast iron articles in the following way: After heating them to a red heat in sand, and keeping them thus for half an our, they are allowed to cool slowly, and are then carefully cleaned with hot dilute sulphuric or hydrochloric acid rinsed with water and dried. A ground is then laid on by coating them with the following mixture, after ward drying them at a high temperature, and then heating them in separate muffles to vitrification of the coating: 6 parts of flint glass, 3 of borax, 1 of minium, 1 of oxide of zinc, mixed and finely pulverized, and heated for four hours up to a red heat, and finally rendered semi-fluid by increase of temperature; the mass is then quickly quenched in cold water, and one part of it is mixed with two parts of bone meal, and formed into a pap by triturating finely with sufficien water. Upon this ground the two following mixtures prepared like the first, are then laid in succession, the first of 32 parts of calcined bones, 16 of kaolin, 14 of felspar, 4 of potash stirred up with water, dried, cal cined, and suddenly cooled in water, and the powdered mass triturated with water to a fine paste with 16 parts of flint glass, $5 \frac{1}{2}$ of calcined bones, and 3 of calcined quartz; after this has been laid on and well dried, a second coating is laid on of 4 parts of felspar, 4 of pure sand, 4 of potash, 6 of boras, 1 of oxide of zinc, 1 of saltpeter, 1 of white arsenic, 1 of the best chalk; these ingredients are mixed, calcined, suddenly cooled in water, and triturated with $5 \frac{1}{2}$ parts of cal cined bones, and 3 of quartz. The dried article is finally heated in a muffle, in a furnace similar to a porcelain furnace, when both coatings fuse and mix, thus forming the enamel.

More Fulgurites.

We recently published in the Scientific AmerICAN the results of certain analyses, by Professor Albert R. Leeds, of a curious mineral which was forwarded to us from Fayetteville, N. C., and proved to be a " lightning tube," or " fulgurite."
A correspondent from Orange, Texas, Mr. W. D. Street, sends us fragments of two more fulgurites. While close y resembling the Fayetteville fulgurites, Professor Leeds tates that they have some interesting points of differ ence. Like the former, one side is highly vitreous, curved nto innumerabie small, semi-globular forms, stained with bluish black streaks, and presenting, in its glassy and vesicu lar character, the appearance of complete fusion. The Or ange fulgurite differs in being almost white, and very slightly stained with oxide of iron. The rugosities on their exterior or convex sides, where the sand was remote from the source of heat, are somewhat hidden by the greater mass of partly cemented, adherent white sand. The fragments are of two izes, the thicker pieces, whose interior surfaces are stained black, coming from one lightning tube, and the thinner unstained pieces coming from a second, located in the sand at a distance of six feet from the former. The tube-like character of these fulgurites has so strongly impressed our correspondent that he is surprised to find nothing visible coming through them. If other correspondents will forward specimens or information concerning these remarkable phenomena, we shall shortly be in a pasition to know more about them than has been known hitherto.

A New Theory of Electricity.

Professor Edlund, a Swedish physicist, expounds in a recent work a new theory of electricity, the substance of which is as follows: He supposes the existence of a highly subtle and elastic ether, everywhere present both in vacuo and in ponderable matter. Two molecules of this ether are mutu ally repelled along the line of their connection and in inverse ratio to the squares of the distances. In good conductors, the molecules are displaced easily from point to point, it being presumed that they can be moved with little force If the body be a non-conductor, this mobility is arrested and depends on the molecules of the material body. A molecule is at rest from the moment when it is equally repelled on all sides. If the repulsion be less at one side than at the other, the body will move if it be free in the direction of the resulting forces.

An Ancient Chip.

At the recent meeting of the British Association, Professor H. A. Nicholson exhibited and described a silicified chip of wood from the Rocky Mountains. At the Brighton meeting, the same specimen was shown, the opinion then being that ts woodlike appearance was due to mineral structure, that t was in fact merely a specimen of the hornblendic minera known as rockwood. Subsequent examination has shown conclusively that it is a genuine chip of wood,silicified. The ge of the chip and the circumstances of its production were hought to present many points of interest, the accepted conclusion being that it is a prehistoric relic, produced by the stroke of a copper ax, such as the mound builders used to hammer out of native copper.

THE FAIRMOUNT PARK BEAR PITS

The bears cooped up in the dirty and narrow cages, in the temporary quarters provided for the animals in our Central Park, have good cause to envy their brothers of the Philadelphia Zöological Society's collection. The unfortunate brutes in the first mentioned menagerie, are dependent upon public enterprize, and doubtless will die as they have lived, in their confined boxes, unless some unwonted celerily in our city officials results in the establishment of the proposed zöological grounds, at a much earlier date than now seems probable. The Philadel phia bears are, however, the happy property of a society of private individuals, who rapidly pushed forward their undertaking from its beginning, until, in July last, it assumed a nearly completed shape, and the public were admitted to examine a collection of animals, which, in course of time, it is hoped will rival that of the renowned Zöological Gardens of London.
Our illustration, extracted from the pages of the Fancier's Journal, published in Philadelphia, represents the bear pits in the grounds of the Philadelphia society ; and between such commodious quarters as are here depicted and the ordinary menagerie cage, the difference need hardly be pointed out. The structure is strongly built of pointed stone work, iron, and cement floors; and in the center of each pit is erected a very strong cedar pole, on the summit of which the bears perch as if enjoying the view of the sur rounding scenery

The pit nearest the foreground of our engra ving contains a fine grizzly, purchased in Omaha. Pit No. 2 serves as a dwelling for three brown, one black, and one cinnamon bears, all young and not'yet full grown. A pair of black bears, male and female, inhabit the third pit. The entire building was planned with much skill by Mr. C. P. Chandler, and serves greatly to add to the comfort of the animals, as well as to maintain them in healthy condition. The beauty of the surroundings, as well'as the artistic appearance of the structure itself, is well represented in the picture.

l Quick Telegraphing.

Several instances ef quick telegraphing have been brought under our notice of late, but the following shows the perfection to which the cable telegraph service has been brought. A message was sent from New York to London, and in thir ty minutes, actual time, the answer was received in New York. Another dispatch was sent to London, to which a repls was received in thirty. five minutes, actual time. In neither of these instances was any special effort made to hurry the answers, but the party addressed sent the reply to the London office by the messenger del original message.
To fully appreciate this wonderful achievement, we must consider that the distance from New York to the cable station at Heart's Content, N.F., is about 1,300 miles, that of the ct.v... "hont 2,000 miles, and of the land lines and cable from Valentia to London about 300 more. Each message, therefore, was transmitted about 3,600 miles, and passed through the hands of eighteen persons, all told; consequently, the message and reply, in each case, passed through the hands of thirty-six persons and traveled over 7,000 miles in thirty to thirty-five minutes.-The Telegraphic Journal.

MILK COOLING CAN.
This is an ingenious device for cooling milk during transportation. The car is provided with an ice chamber, which

s suitably covered with non-conducting material, and the bottom of which is slightly inclined so as to keep the ice which is placed therein in contact with the main vessel. Recesses in this bottom conduct the water through a perforation to an annular receptacle, A, formed by soldering a sheet metal strip of suitable shape around the can. One end of this channel is closed so that the water is obliged to pass
at a point opposite that of its entrance. In this manner the full cooling capacity of the ice water is utilized without increasing to any large degree the bulk or cost of the cans. Patented through the Scientific American Patent Agency, June 23, 1874 , by Mr George W. Fluke, of Mount Pleasent Henry county, Iowa.

Stuttering
Stuttering frequently disappears for the time in whisper-

Engineering Two Thousand Years Ago.
Perhaps some of the most remarkable remains of ancient engineering are those which were discovered by excavations made some ten or twelve years since, a short distance from Rome, and near the ruins of the ancient city of Alatri. This city was surrounded by massive walls, and located on a mountain, or elevated point, and ill provided with water About 150 years before Christ, as we learn from a Roman inscription, an immense aqueduct was built to bring water from a neighboring mountain better supplied with that element. We are furthermore told that this aqueduct was 340 feet high, supported upon arches and provided with strong pipes The topography of the country, moreover, as sures us that the water supply could not have been conducted into the city, even over such high supports, except by pipes-an inverted siphon-the lowest point of which must have been some 340 feet below the point of delivery or under a pressure of at least ten atmospheres, 150 lbs. per square inch.
The excavations already alluded to show that the aqueduct must have been of large size, as the piers of the arches are not less than 5 fee 9 inches in breadth, while the total length of the siphon must have been between four and five miles. The question naturally arises: How and of what material, was this syphon built As iron pipes of large dimensions, if of any di mensions at all, were not known at that era, we can look only to masonry or woodwork for the material of such construction. Possibly a clue has been found to the mode of their construc tion by a subsequent discovery, near the same locality, of a field, supposed to have been the site of an ancient parade ground near this onc walled city of Alatri. A complete system of underground drainage has been revealed at a depth of about 7 feet below the surface of the field, effected by a well constructed system of pipes made of fire clay, each about 18 inches in diameter. It is possible that such a pipe, of larger dimensions, and strengthened on its ex terior by a strong and massive bulwark of ma sonry, may have been the means of conveying the water into the city. But however that end might have been attained, the work was cer tainly a most wonderful feat of engineering considering the condition of the mechanic arts of that early day. The excavations and dis coveries thus brought to light, and so fully con firming the truth of the ancient inscription were conducted by order of the present Pope and under the immediate supervision of the well known Italian scientist, Father Secchi. Iron.

LIGHTS FOR GREENHOUSES.

J. L. N. publishes, in the English Mechanic, an account of a novel mode of titting lights in greenhouses and forcing frames, which facilitates the transmission, removal, and put ting together of horticultural buildings. It consists in ma king the lights in two or more rows for the roof of a green house, each light being capable of being raised, and if ne cessary, turned over or removed, by means of a hinge joint one part of which is fixed to the framing of the roof or the garden frame, and the other to the light, the connection be garden frame, and the other to the light, the connection being made by a removable pin. Iron "set-opens" are at tached to each light, to keep it open to any required degree, in a house can be opened simultaneously.

Fig. 1 is a section of a well known and very useful horticultural appliance, showing the light partly open, and also, cultural appliance, showing the light partly open, and also,
by the dotted lines, how it may be thrown completely over by the dotted lines, how it may be thrown completely over
when required. Figs. 2 and 3 represent top and side views of the hinge, as applied to greenhouse roofs, by which it will be seen that the lights may be thrown over completely, removed altogether, or partially opened, with the minimum
expenditure of labor. The lights being interchangeable facilitates the removal of the structures when necessary, and also renders them more easy to repair. The invention, it will be seen, is a very simple thing, but it will, says the author, be found an improvement in the construction of garden frames and other horticultural appliances.

SPIDERS' WEBS AND SPINNERETS

The exterior parts of the silk-producing organs of spiders are called spinnerets. They are four, six, or eight papillæ, or sometimes, instead of papillæ, flat plates, situate on the under side of the end of the abdomen, in a little depression adapted to their size and shape. As far as I am aware, no British spider has a less number than six. On the ends of each spinneret are little funnel-shaped tubes, a and b, Fig. 1, from which the silk is emitted, and which I call silk tubes, being ignorant of their proper name. The spinnerets lie in pairs, and are naturally divisible into two sets, an upper and a lower. There are two pairs in the upper set, one above the other, which I therefore name the first and second pairs, the one pair in the lower set being distinguished as the third pair. The spinnerets of the first pair have two joints, and their silk tubes are situated sometimes on the end of the second joint, and sometimes irregularly down its inner side. The second spinneretshave butone joint. They are smaller than the first, and have the silk tubes on and around the ends. The construction of the third pair differs a little from that of the other two. Like the first they have two joints, but the basal joint is always much larger than the terminal, which is very short. Their silk tubes are on a retractile plate at the end of the second or terminal joint, which, when not in use, is drawn inwards until the tips of the silk tubes are nearly level with the end of the spinneret. This plate has a thickened rim, and on the interior margin, where the rim is broadened for the purpose, are a few holes and two silk tubes of unisual size. The exact use of these I have been unable as yet to determine. The spinnerets of a spider are mobile, and their movements are effected by longitudinal muscles.
The first and second spinnerets always produce plain or non-adhesive threads; if the spider be of a species that spins viscid threads, these are always emitted by the third pair. There is one family of British spiders which has an extra and very remarkable pair of spinnerets in the lower set, which produce threads of a peculiar character; they are described further on
Fig. 1.
Fig. 3.
Flg. 4.

SPIDERS' WEBS AND SPINNERETS. In Fig. 1, a and b are silk tubes of first and third spinnerets of $t e$ genaria domestica. Fig. 2 shows the web of the same $\times 150 ; a$, first threads, c, third threads. Fig. 3 shows the under spinneret, with glands attached, $\times 38$. a are the common silk tubes; $b b$, ducts ; $c a$, glands; d, silk tube of unusual size. Fig. 4 represents the silk size. Fig. 4 represents the silk
tube, duct, and gland of the first spinnerets, $\times 38$. Fig. 5 represents the gland of third spinnerets ; a, gland; b, bag or case ; $c c$, coating of epithelial cells. As may be supposed, I selected the commonest spiders for observation, and house spiders happened to come handiest. The web of a tegenaria, and I believe of every spider, contains three sorts of threads, not two only, as usually stated. Two of these are plain, and stretched taut from point to point (a, Fig. 2), and they differ in nothing but size, being spun by the first and second spinnerets, of which in all spiders the first is larger than the second, although in some instances it has a fewer number of silk tubes. The third thread (also shown on Fig, 2) is exceedingly elastic, and studded with viscid globules, or, if these be absent (as in
the web selected for illustration), it is slack, irregular, and ometimes much curled.
The apparatus by means of which a spider forms its silk is a series of glands within the abdomen, near and attached to the spinnerets, and immediately beneath the liver and intestinal canal. The glands of the upper and lower sets of spinnerets differ somewhat in character and shape, as is noted below. Fig. 3 is a drawing of one of the third spinne rets of tegenaria domestica, with its glands, of which only a few are shown. These communicate with the silk tubes by ducts, b. They vary in size in different individuals, but in a large tegenaria $\frac{1}{100}$ of an inchis an average length. Each gland has its own duct and silk tube. On the first pair of spinnerets there are about 60 silk tubes; on the second pair although the spinnerets are smaller, about 80 . The silk tubes on these two pairs are alike; but they differ in shape from those of the third pair and are much larger (see Fig. $3, a$ and b). There are nearly 220 tubes on the third pair, thus making altogether about 360 on the six spinnerets.
The glands, likewise, which are proper to the first and second pairs of spinnerets differ from those belonging to the third. Fig. 4 represents one of them with its duct and silk tube, drawn to the same scale as Fig. 3, for the sake of comparison. It is a simple sac, closed at one end, and terminating at the otherin the duct, which carries the secretion to the silk tube. On the surface of the gland is a coating of cells, probably epithelial, which are surrounded by a very delicate membrane. The points of difference in the silk glands of the third spinnerets are these: They are smaller (about one quarter the length), of a different shape, and chiefly, they are enveloped by a bag or case interposing be tween the actual gland and the epithelium (see A, Fig. 5, b and c), which bag is wanting in the other glands; while the epithelium is apparently without the membranous covering by which, in them, itis always surrounded. This case, continued as a tabe, surrounds the duct for some distance, in all proba.'bility as far as the silk tubes, but I have not been able trace it so far
It has been argued that the drops of liquid silk coalesce as they emerge from the spinnerets, and so form a simple, homogeneous thread, but various observations have con vinced me that such is not the case. The following also tends to contradict this theory, namely: When a garden spider has caught a fly, as every one knows, she very expeditiously binds it in a covering of silk. Until I saw the exact process, I often wondered how she could manage to accomplish this so quickly. She places the tips of her six spinneets almost in a line, at the same time seeming to erect each separate silk tube, and thus puts forth, not a single thread, but a broad band of many detached threads, which is rapidly wound round the unfortunate fly. The examination of the web of a house spider, under a high magnifying power, will show that many of its main threads are frayed, like a rope worn by use; this could not occur if they were homo geneous.-H. M. J. Underhill, in Science Gossip.

C゙orregypudemfe.

The Scientific Treatment of Criminals. To the Editor of the Scientific American:
Your remarks on the "Scientific Treatment of Criminals," on page 224 of your current volume, strike me as being, in the main, profound and sensible. You omit, however, to take account of one grave fact, which is a weighty factor in determining society's method of the treatment of criminals. It is this: Each one of these " ill-regulated machines" is a generator of other and worse regulablemachines, and gen erally the prolificness is in inverse ratio to the regulability. This is a state of facts which the modern theory of dealing with the criminal class takes no account of. We send a badly constructed locomotive to the repair shop, and if it can be tinkered up at all it may have some degree of utility. The case, I imagine, would be very different if each locomotive were the spawner and perperuator of its own defects to all futurity. The mode of dealing would then be the sum mary breaking up in the shop for the sake of the old mate rial. This is just what human society has done in all pas time with its own failures, and to this process of "moral se lection" we unquestionably mainly owe the advance which the race has made in moral evolution. It is only in the most recent times that the retrograde course has been adopted, chiefly for sentimental reasons under false theories. Having reached a plateau of comparative security, society kicks down the ladder by which its moral eminence has been in part attained, and ignores the horrid depths from whence it ommenced its ascent toward the light.
It is highly questionable whether, sentiment aside, the profit to society from the maintenance of costly prisons and reformatories is greater than the old, simple, and inexpen sive methods. For cases other than the most incurable and hopeless failures, however, there seems to be no reason fo abandoning the reformatory and punitive modes of treat ment, simply on account of a better philosophical hypothe sis. The presentation, by society, of powerful motives of action has been, next to selection, a most efficient agent in moral evolution. Now, on the mechanical theory, or any other, it is certain that these motives act, namely, fear of punishment, hope of reward, love of approbation. This is a mere matter of observation. Where, then, does human esponsibility to society cease? To be alarmed on this score is to imitate the consternation of the old lady, who, when told that red flames 10,000 miles high had been discovered n the sun, exclaimed: "Now we shall all be burned up live!" The truth is that the machine is just what it always has been, complex beyond calculation, full of numberless ntagonistic springs and cöordinating devices, adapted to be
played upon by the minutest objective and even subjective phenomena, and capable, to a certain small extent, of a choice of motives. In this lies its responsibility. It is clear that some of the motives by which the components of society have in the past been powerfully influenced and molded may become less potent or disappear. Such transformations are continually going on as society progresses; but there can be no fear that, while the machinery remains constituted as it is, that portion of it which is so wonderfully susceptible to the influence of motives, namely, the imagination and the passions, will, as in the past, be also the prolific generator of new motives sufficient to control the action of all for the general good.
H. H.

Washington, D. C

Small Boat Engine

To the Editor of the Scientific American :

I have taken an interest in the small engine question, and I wish to say that I have a small engine in a boat 17 feet long and 5 feet wide. It is an upright engine; the cylinder is 2×3 inches, and drives a propeller 18 inches in diameter. The boiler is a common upright one with 22 tubes. I can un for four hours with one fire; in a whole day's run, it consumes about 4 buckets of coal. The boat's general rate of speed in still water is about $6 \frac{1}{2}$ miles per hour.
Barrytown, N. Y.
J. Aspinwall.
[In descriptions of engines, further particulars would be useful-such as dimensions of boiler, pressure of steam, pitch of screw, and revolutions of engine per minute.-Eds.]

Ice Lenses of Unlimited Size.

To the Editor of the Scientific American:

If you had lived in Minnesota and seen our ice, you would not think me foolish in suggesting the possibility of freezing filtered water so as to make a perfectly achromatic lens of unlimited size, to be used in a telescope during the winter months; but as you are used to New York ice, I shall only xpect you to think that I am somewhat visionary in this ast thought.
C. Ridgway Snyder.

Minneapolis, Minn.

Remarkable Boiler Explosion

To the Editor of the Scientific American:
A fatal boiler explosion occurred in this city at $9 \mathrm{~A} . \mathrm{M}$. on October 2, in the factory of the Dubuque Cabinet maker's Association, The engineer and another man were nstantly killed, and a third severely scalded. The cause of the explosion cannot be ascertained. The boiler was new not much over a year in use); it was 15 feet long by 4 feet diameter, with 38 four inch flues. It burst in a queer way both heads remained on the flues, but the shell of the boiler

burst along the rivet holes nearly all around both heads, eaving a wreck as shown in the engraving.
Dubuque, Iowa.
M. A. Keller.

Hardening and Tempering Tools.
To the Editor of the Scientific American:
Upon the above subject permit me, in conclusion, to say that, since I withdraw the tube from the fire before inserting he tap, the products of combustion do not interfere with my operation of tempering; and since the tube is shorter han the tap, some part of the latter is at all times exposed to the air, as here illustrated, at A, it being obvious that the to the air, as here ind entrated, at A , m med the tube as well as re volved in it. By this means the teeth of the tap, which be

come heated more quickly than its middle, impart the heat to the body of the tap, making its temperature, and hence its temper, even all through, the color of the temper being plainly, at all times, discernible; and perfect access of the ir is permitted. The sand bath process I have objected to rom the first, for reasons then stated, to which Mr. Haw. kins has given his endorsement.
In tempering dies, I do not permit them to lie more than a few seconds on either face, excepting at the end of the peration, when I lay the back edge (the one furthest from he teeth) for several seconds on the hot iron, making the back a little softer than the teeth, and thus strengthening he die.

Joshua Rose.
New York city.
To the Editor of the Scientific American:
Enclosed find a tap, or rather the pieces of a broken tap, quarter inch in diameter, with twenty threads to the inch, with a very deep wire thread (round top and round bottom This tap has tapped over two hundred thousand hot forged
nuts. It broke in tapping a nut which was too small in the nuts. It broke in tapping a nut which was too small in the
hole, otherwise it was good for several thousands more. It ran constantly at 480 revolutions per minute for 48 days. This tap I believe to have been well made and properly tempered; and if any of your readers can improve on it, I should be glad to hear from them. It was made from W. Jessop \& Sons' best English steel, swaged at as low a heat as possible, the screw end being a sixteenth of an inch larger than the size, in order to true up to size; the shank was forged and swaged as near the finished size as possible, and it was then heated slowly to a cherry red and imbedded in lime until cold; it was then centered and straightened. The shank was filed bright in the lathe, then reversed and The shank was filed bright in the lathe, then reversed and the screw end turned straight and parallel for about two diameters, or half an inch from the end of the thread; and
from that to the point, the tap is given the amount of taper from that to the point, the tap is given the amount of taper
that will allow a nut of the proper size to go on the tap flush that will allow a nut of the proper size to go on the tap flush
with the end. The lathe is then set to chase a straight parallel thread; the tap, when chased, is passed through a hardened steel gage, and is then ready for the milling machine. It is' milled with three deep half round grooves; it is afterwards filed with a little clearance on the top of the thread, then passed through the same steel gage as before (but this time in the reverse way, namely, shank end first), and unwound through the gage. This is done to remove the fine burr made by the milling and filing, which is very necessary; though sometimes the burr is scarcely perceptible, yet it would make a material difference in the size of the nut. The tempering is done thus: Heat the tap slowly to a cherry red, and dip endways and straight into clean cold water; and when perfectly cold, clean off the oxide or thin scale, with soft brick or an emery stick, until bright. The cleaner you make your tap, the higher and brighter will be your color. Then draw the temper to a purple borderingon your blue by placing the tap shank on a piece of heated iron and drawing the shank as soft as possible, drawing the temand drawing the shank as soft.as possible, drawing the tem-
per towards the point. When the shank is soft, roll the per towards the point. When the shank is soft, roll the
tap backwards and forwards over the hot iron, until you tap backwards and forwards over the hot iron, until you
havean even temper and color all over the body of the tap; havean even temper and color all over the body of the tap;
then drop it into oil to cool. The taps are kept sharp by grinding the top of the thread where the nut starts; for the scale in the nuts soon wears a step on the tap and the starting point must be kept sharp or the tap would have to be forced into the nut. This is all the grinding or sharpening iven these taps, and, in my judgment, is all they require. iven these taps, all of which run at a high rate of speed, and am using taps all of which run at a high rate of speed, and the average amount of work got out of quarter inch taps is ninety thousend nuts. Lhave sent a quarter inch tap, as a small tap is a more delicate test of quality. Large taps
never break if properly made and used, and they last a long never break if properly made and used, and they last a long
time before they wear out; whereas a small tap, if not carefully and properly made, would either snap off or burr up, perhaps with the first nut. I also mentioned machine taps because you can never judge the results or gage the work done by hand taps. One particular point in making a taper tap is to be sure and have the thread parallel, giving the taper only to the outside or top of thread. By so doing he taper only to the outside or top of thread. By so doing Pittsburgh, Pa T. J. B.
Pittsburgh, Pa .
T. J. B.

The Engines at the American Institute Fair. To the Editor of the Scientific American:

In your issue of October 17, a correspondent who signs his name " Esor," makes some remarks xipon the engines at the Fair which seem to display a hypercritical spirit, and have the further disadvantage of being in one or two instances incorrect in point of fact. For example: He says that " the Wright engine has its eccentric straps a quarter of an inch apart, and are not locked together by the bolts at all, but merely hang on the shaft; they are the only ones in the Fair possessing this defect." When I saw the bolts this morning, there was a head on one end and a nut on the other, and the eccentric straps were held together by them. "Esor" must intend to convey some other impression than that naturally attaching to his expressions. As to the straps being open a quarter of an inch, he is correct; but it is not a defect to have them so, but standard engineering practice, not necessarily faulty because disapproved of by your correspondent. He further says that a small rod on this engine (meaning probably the Wright engine though he has just referred to one or two others previously) "is about ten inches long and connects one end of the rocker arm to the arm of the shaft working the cut-off, the movement of each end of the rod being part of the circumference of a circle, the plane of one circle being at right angles to the plane of the other, and said rod having the bore of its brasses at each end trumpttshaped from the center to each face of the brass, so that the rod has a right-about-face and 'slantindicular' movement, in all directions, merely hanging on its journals, since its faces will be free, and unconfined by flanges,collars, or other guides common to a respectable connecting rod."
In point of fact, and in few words, this rod has a ball and socket joint; how it can be "trumpet-shaped." under such circumstances is more than I, or any one whom I have asked, can discover. It is an old device, not new or claimed to be, by the makers of the engine. As regards the "thump" of the engine, your correspondent, before pointing out such a thing, might have reflected that it is not possibie or desirable to go to the expense of putting down as heavy foundations for an ongine at a Fair as they would be if intended to be permanent. The slight pound is caused by the springing and settling of the supports, and is in no way attributable to the tling of the supports, a
connecting rod brasses.

Intelligent criticism is always in order and desirable, es-
ospondent's remarks can only be accounted for by a want iliarity with the subject he discusses.
42 Cliff Street, N. Y. Egbert P. Watson.
[We were glad to observe, on our last visit to the Fair, hat the exhibitors of the engine, acting on the hints of "Escr," had re-adjusted the machine and stopped the pounding. This is practical. But the charges of "hypercritical spirit", "crudity", " ignorance of the subject", etc., raised by the above correspondent, appear to be a waste of adjectives.-EDs.]

The South American Boxer

To the Editor of the Scientific American:
The boxer of South America is so called by English and American settlers on account of its pugilistic propensities. It is of the grasshopper family, light-made, long limbed,and of a beautiful green color, and is an inhabitant of the south temperate zone. Those which I saw were brought in by gauehers (herdsmen) from the camp (country) and given to the major domo (foreman) of the salerado (salting establishment) at Port Roman, situated on the east side of the Uruguay river, about forty miles above Independencia and in about latitude $34^{\circ} \mathrm{S}$. They were brought in to show as curiosities. The major domo, with whom I was well acquainted, placed one of these little fighters on a table and said to me: Tease him, and see what he will do. So I put my forefinger against him and pushed him lightly back; he was then in his natural position, on all fours. He faced around toward me and moved back about an inch. I then touched him lightly again, and he retreated again,as before; and we observed a sort of nervous movement in the hands, or rather the lower extremities of the fore legs, which we will call hands. I followed him up again; but this time, instead of retreating, he raised himself up,his body being nearly perpendicular, and drew his feet up, placing himself like a Turk in sitting posture, at the same time clinching his fists and putting himself on guard as a boxer would do.
I then made a pass at him with my finger, which he turned off as well as Yankee Sullivan could have done; and as long as I continued teasing him in this way, he warded off and gave blows as regularly as any fugilist could do. Soon after I ceased teasing him, he came down on all fours again and walked off leisurely across the table. The major domo told me that he had seen plenty of them, and that they all showed fight when teased, the same as this one had done. Stratford, Conn.

Truman Hotchkiss.

To the EVditor of the Scientific American:
Your correspondent, Mr. I. B. Hodgkin, is correct as to In childering with potato bugs.
In childhood, in the country, I frequently ran bare-legged among potato vines, and nearly always was blistered on my ankles by contact with these same bugs. I am not sure that crushing the insect was necessary ; contact sometimes seemed to raise a blister. Generally a sac larger than a buckshot occurred, which (unless attended to) caused an irritat ing sore.

It was a well known fact; but the bug was rarely used in blistering, in consequence of the acridity of the poison, and consequent difficulty in healing. The Colorado bug, common
come this season, should rather be called a grub; it will be recognized by most persons who have seen it as similar in form and movement to the blood sucker of the brooks (leech), but different in color and not active. The common impression is that it is in some way poisonous. It is as tough as rubber; a sharp knife will scarcely cut it. Most people hereabout now what it is like to their cost.
R. H. A.

Baltimore, Md.
[For the sclentitc American.]
SOME NEW GALVANIC BATTERIES
Several new forms of the galvanic battery have lately been brought to our notice, a short description of which will inrest our readers.
I. A copper pot is filled with dilute sulphuric acid, inside of which is placed the ordinary porous cup, filled with a strong solution of sal ammoniac in water, in which is placed the amalgamated zinc. The action of this battery seems to be as follows: The sulphuric acid, entering through the porous vessel, decomposes the chloride of ammonium, setting free the hydrochloric acid, which, in turn, attacks the already oxydized zinc, forming water and chloride of zinc.
II. In a jar, of about'six inches diameter by ten inches hight, is placed a carbon plate, within a bag of unoiled leather; the bag is surrounded by peroxide of manganese, closely packed; the jar is then filled with a strong solution of sal ammoniac to which a few drops of hydrochloric acid are added ; a plate of amalgamated zinc, of the same dimensions as the carbon plate, is placed in juxtaposition with the carbon. The action in this closely resembles that of the well known Leclanché cell. Constan
force are claimed for it.
III. A copper pot or cylinder is taken, inside of which is placed a porous cup filled with a strong solution of sal ammoniac in water and a plate of zinc (amalgamated). The outer vessel is filled with rain water, in which is placed a quantity of lucifer matches surrounding the porous cup. This form of battery is simple yet powerful. The matches seem to furnish a supply of ozone which is really its motive
power.

Labor is the duty man owes to society; rest is the duty he owes to his person; recreation is the duty he owes to his
mind.

It is with the deepest regret that we announce the death of Charles M. Keller, the eminent patent lawyer, which occurred at his country seat at Milburn, N. J., on Thursday morning, October 14. For a year past Mr. Keller was in delicate health, and it was very evident to his friends that he needed rest from the arduous labors of his profession. Early last spring he was directed by his physician, and im plored by his friends, to withdraw for a time from active work, and to devote himself to the restoration of his health To these entreaties he gave no heed, insisting that his du ties to his clients and to his cases were paramount to all others. At last, the feared result came; and about ten days before his death he was assailed by the complication of dis eases which ended his life. He died in harness, working and consulting, on the last day before his attack, upon a diffi cult argument. And almost his last words were an expres sion of pleasure at the decision of an important case in his favor.
Mr. Keller was born in France, but came to this country with his parents at an early age. His father was employed in the old Patent Office; and at the early age of twelve years, young Keller began bis career in the Office. He had a emarkable talent for mechanics, which he developed by as siduous and extensive study. His value was appreciated and for many years he was an examiner under the organi zation of the Office prior to the act of 1836. In 1834, he con ceived the idea of reconstructing the system of patents, and drew the act which was passed in 1836, and which is the foundation of the Patent Law of today.
A few years afterwards, Mr. Keller determined to leave the Office and to commence the practice of the law. For two years he studied, after office hours, until he deemed him self equipped for his new profession. So wide was his reputation that, before he opened his office, he was besieged with retainers, and with his first case he stepped to a fore most place at the patent bar. Since that day he has been en gaged, on one side or the other, of most of the importan patentl itigations which have occupied the courts; and his practice was attended with singular success.
Mr. Keller's life was that of a purely professional man He was fond of social pleasures, and was a charming and genial companion; but his thoughts day and night were on his cases, at which he labored with wonderful assiduity No one has ever equaled him in his skill and perspicuity in explaining machinery in court, or in describing and claiming it in patents. To this talent he added excellent attainment in the law. His knowledge of equity, of pleading, and of the theory of the law of contracts was thorough and complete; and his method of preparing his cases for argumen was so good that some twenty years since, the Supreme Court of South Carolina, in adopting a rule to regulate the form of briefs to be used before that court, printed with heir rule a brief of Mr, Keller's as a model.
All friends of the mechanic arts will deplore the great loss they have sustained by his death. He was wise and prudent, learned and modest in consultation, earnest in ar gument, and always truthful, sincere, and just. His mem ory will long be cherished as that of one of the Fathers of the Patent Law

Transformation of Sandstone to Marble

J. Corvin, an engineer residing atDresden, Germany, has nvented a method of giving the ordinary sandstone, found in abundance in many localities, the exterior appearance of
marble. He accomplishes this by impregnating the well dried stone with aolable silica and alumina. The thus prepared sandstone becomes much lighter in color, some kinds being intensely white and translucent, while it is capable of the highest polish, equal to that on the purest marble. He has even succeeded in imitating marbles of every color by adding mineral colors to the liquid used for impregnation. The famous quarries near Pirna, in Saxony, produce a sandstone especially adapted to this process, and Mr. Corvin now makes colored stones from this sandstone, adapted to the most elegant architectural structures. The price is considerably below that of marble; and the new ma erial has the important advantage that it is much more fire proof than marble, which, when exposed to the fire, rapidly burns into quicklime and crumbles to dust.

Distilling Sea Water.

The author of a book lately published in England, entitled Two Years in Peru," thus describes a simple contrivanc ecently devised by an English resident of that country for procuring fresh water from sea water through the direct action of the sun's rays:
'The apparatus consists of a box of pine wood, 1 inch hick, and which is about 14 feet long, 2 feet wide, and an verage depth of 6 inches. The upper part of this box is closed with ordinary glass, which has an inclination of $1 \frac{1}{3}$ nches.
"At the lower edge of the glass, there is a semi-circular channel, destined to receive the fresh water which is con densed on the interior surface of the glass. The salt water is let into the box to about 1 inch in depth. It is then ex posed to the rays of the sun, the heat of which is sufficient o raise it to 160° or 180° Fah. A very active evaporation then begins, and it is proved that $10 \frac{1}{2}$ square feet of glass will condense daily two gallons of pure water."
The author says he saw the apparatus in successful opera tion at Callao. There are many places on the coast of Perc, as in various other parts of the world, where fresh water is
only to be got by distillation, and in such localities the device cannot fail to be exceedingly useful.

IMPROVED SELF-LOCKING PADLOCK.

The novel form of self-locking padlock represented in the engraving is the invention of Mr. D. K. Miller, of Philadel phia, a well known safe and bank clock manufacturer and a ock expert of some celebrity. In points of workmanship and construction the derice possesses the merits of simplicity and convenience ; while its durability is enhanced by its being made entirely of brass. The pins at all movable joints are wrought of that metal, so that deterioration from the effects of weather is amply provided against.
Flg. 1 shows the exterior of the lock and its key. In Fig. the outer plate is removed in order to exhibit the mechanism. A is the dog, which is so pivoted as to fit into a recess of the latch, B, when the latter is pushed down. The end of the lower arm of the dog is formed with an angular projection, C , which, en with an angular projection, C, which, en
gaging against a properly shaped shoul gaging against a properly shaped shoulder at the bottom of the recess, holds the
latch in the position mentioned, in opposilatch in the position mentioned, in opposi-
tion to the upward tending force of one arm of the spring, D. AtE are the tumblers, either six or seven in number, according to the size of lock, all of which are pivoted on a single pin, and each provided with a bent wire spring, as shown. The upper portion, F, of one of these springa, instead of taking, as do the others, against the projecting part in the shell, is brought forward and under the straight arm of the dog, so that its tendency is to force the lcwer arm of the latter against the tumblers, causing the projection, C , to enter notches in the tumblers when the same are brought into proper position.
It will be readily understood that, owing to the angle of the notches in the tumblers, and to the dog being in a solid piece, it is only when all the notches coincide that the projection can enter them; and hence, if each notch were placed in exactly the same position on the edge of the tumblers, then any square bit of metal pushed in through the key aperture, at G, would lift all the tumblers together until the coincident notches met the projection. But this evidently would at once defeat the purpose of the invention, for one of its main features is that no two locks are alike: the key that fits one must be, and is, entirely useless to open another. The important advantage, how. ever, is easily secured by varying the positions of the notches on the tumblers; so that in order to render all the notches coincident, a key having peculiarly formed projections and recesses at its extremity must be employed, which, acting on all the tumblers simultaneously, lifts each the exact distance required.
The key is merely pushed into the proper aperture, freeing the dog as above described, and al lowing the latch to be acted upon by the spring, D, and so lifted upward into the position indicated by the dotted lines in Fig. 2. Motion in this direction is then limited by the catch, H which is held against the side of the latch by the upper arm of the spring, D. The angular projection shown on the left hand lower corner of the latch engages in a corresponding projec tion in the catch, the lower part of the latch being guided in its ascent by the dog on one side and the straight part of the catch on the other.
We learn that this invention has, after thorough testing, and against a number of competi tors, been adopted by the United States Government. The present device was patented in this country July 26, 1870, and October 21, 1873. Similar protec
tion has been obtained in England, France, and Bel. gium.

For particulars regarding sale of foreign patents and other information, address the manufacturers, the D. K. Miller Lock Company, 712 Cherry street, Philadelphia. The locks are for sale by the hardware trade generally.

IMPROVED DISINTEGRATOR.

Among the industries based upon the utilization of waste products, that of grinding bones, in order to prepare them for use as fertilizers, is believed to be one of the most profitable. Immense quantities of material are obtainable in the neighborhood of cities, and especially in the cattle raising districts of the Southern and Western States, and this, we are informed, at a cost which, including the expense of transportation to almost any locality in the country, renders the erection of mills and machinery, for its preparation, no small inducement to investors.
The disintegrating mill, which we illustrate in the annexed engraving, is especially adapted to the treatment of bones as above mentioned, and also to the pulverization of a large variety of other substances. Among these may be noted Peruvian guano, alone and mised with other mate
rials; South Carolina phosphates, also either alone or mixed and slaughterhouse tankage, bone ash, salt cake, carbonated soda, cracklings, coal, corn and cob, sugar, oyster shells, clay for fire and building brick, animal matter in almost all conditions, mortar, cement, and numerous others. The machine consists of several cylindrical cages, formed of round bars secured to disks and annular rings, one inside the other, and made to revolve in opposite directions, presenting, however, no scrubbing or grinding action. The materials to be disintegrated are received into the inner cage, and, by the rapid revolving of the cages, are projected through the latter by the creation of a powerful centrifugal force. The ef-

MILLER'S IMPROVED SELF-LOCKING PADLOCK.

Compressed Air as a Street Car Motor.
Some timeago, in discussing the question of a cheap and effective motive power, for street cars and for use under similar circumstances, where opportunities exist for replacing the stored-up force after its employment for a given time, we intimated the possibility of some mechanism be ing devised whereby, for the purpose, the power of a strong spring might be advantageously employed. The suggestion, like many others which have appeared in these columns, se one person, at least, thinking; the train of thought led to experimenting, and this, in the end, has culminated in the invention of a novel plan for the adaptation of the natural spring of compressed air to the impulsion of street railway cars.
We have recently inspected a working model of a vehicle provided with the new machinery, and have obtained from thein ventor, Mr. Henry Bushnell, of New Ha ven, Conn., an outline of the proposed plan. The project will, in a measure, call to mind the fireless locomotive, inasmuch as it $r e$ quires the use of relay stations at which the power expended, in making the inter vening journeys, is restored by filling the reservoirs with new supplies of the motor. At these stations the air is compressed into strong receptacles (by means of machinery devised by the above named inventor through which he is enabled to secure a pressure of over 2,000 pounds per square inch), and is drawn off as required into me tal tubes 18 feet long by 8 inches in diameter, four of which are located under the flooring of every car. We are informed that a force, equal to two mechanical horse power, capable of driving the vehicle for three hours, is thus stored. From the tubes the air passes through a regulating device located at one end of the car, by which the pressure, transmitted to drive the ct is to disintegrate the substances by a system of free engine located at the opposite extremity, may be adjusted lows from which no friction ensues.
The strength, durability, and capacity of this mill arevery great. No skilled labor is required for its running, and the operations of sharpening or dressing are, of course, done away with. As ordinarily constructed the machine, it is claimed, will pulverize the hardest known ores. In bone grinding, where large pieces of wrought iron (that is, large than $\frac{8}{4}$ or $\frac{5}{8}$ metal, pieces of which do no harm) are found in nearly every lot of bones, the disks of the mills to be used fo the purpose are so reinforced that the entrance of a large frag ment of iron can do no more damage than to break a few pins, and these last, owing to peculiar construction, may be quickly and readily replaced.
For grinding coal and pitch for coke and patent fuel ma as desired. In order to avoid the effects of the extreme cold due to the expansion of the air, the valves and cylinders of the engine are completely jacketed, and a pump is employed o compress air within the jacket to a pressure of some 75 pounds. The model exhibited ran quite rapidly over abou 80 feet of track, and we were informed that it iwould readi y ascend a grade of one foot in six. The invention has no yet been tested under actual practical conditions, so that its economical value remains, as yet, undetermined.

The Telegraph between Great Britain and Ireland. Telegraphic communication with Ireland is maintained by means of four submarine cables, submerged between differ ent points in Great Britain and the Irish coast. These ca bles contain in all twenty-two separate wires.

DAVIS' DISINTEGRATOR.
king, the apparatus is also well suited. Many of the machines of three feet in diameter, and a few of four feet in similar dimensions, are, we understand, in successful use by brick makers in disintegrating wet, dry, or frozen clay. The stones found in the material are pulverized as thoroughly as the clay itself. Sand may also be mixed with the latterdu ring the operation, or a small stream of water may be run into the mill for dampening the clay. We are informed by the manufacturers that the mill, three feet in diameter, will disintegrate clay sufficient for 3,500 bricks per day, and they report a very large sale of their machines, during the three years which have elapsed since their introduction. Parties ordering mills will be supplied with complete drawings for foundation and for the erection of mill and machinery. If speed of shaft, from which the machine is to be driven, is given, the size of pulleys and other useful particulars wil be furnished. Manufactured under the patent of Mr. G.B Davids, by Messrs. Denmead \& Son, North and Monumen streets, Baltimore, Md.

One of the latest discoveries in the excavations at Rome a magnificent bust, in perfect condition, of the Empress Plotina, wife of Trajan.

One of the largest cables-that between Holyhead and Dublinhas been laid since the post office acquired the control of the tele graphs, and all of them have been under repair during the same period. The rocky nature of the bottom along the Anglesea coast has, it appears, serious ly affected the condition of the Holyhead and Dublin line, the newest of all the Irish cables; in many places the outer iron wires which form the chief protection of the core have been complete ly chafed through from constant friction. Quite a new feature has also developed itself in counection with this fault, namely, the eating away, by a kind of worm, of the gutta percher cov ering of the core, in much the same way as wood is bored and eaten away by these deriructive insects. The post office can hardly be congratulated on the possession of these lines to Ireland, as they have been a possession of these lines to Ireland, as they have been a
constant source of trouble and expense ever since the transconstant source of trouble and expense ever since the trans-
fer of the telegraphic system to the govern ment.-London Times.

The Passivity of iron.
M. de Régnon, in order to produce in a certain manner the somewhat capricious phenomena of passivity, uses rods of fencing foil or iron wire, the surface of which is protected for a certain length by a glass tube or a layer of mastic. The free extremity, to a length of 0.9 inch, is plunged entirely in the acid. The conclusions recently reached by the above means show that most of the causes which produce passivity in iron may be reduced to a voltaic force carrying the oxygen to the iron and polarizing it on thesurface of the metal. Most of the causes which destroy the passivity of ron may be reduced either to a voltaic force of the contrary direction, or to a current, due to the polarization of the oxygen and by which it is exhausted: or, lastly, to an absorption of thepolarized gas by a body that bas avidity for oxygen. These phenomena of passivity are believed to be more experiments was nitric, marking $35^{\circ} \mathrm{B}$

THE ENGLISH CHANNEL STEAMERS.

We have already alluded to the oscillating saloon steamer, and some time ago we gave an illastration of her peculiar saloon, designed by Mr. Henry Bessemer to overcome the seasickness so prevalent in crossing the English Channel. She is now nearly ready for service, and is 350 feet long by 610 broad. She is fitted with two sets of paddle wheels, 106 feet apart, and is double ended. The saloon,suspended on pivots and controlled by hydraulic gear, is 70 feet long by 35 feet wide. Twenty miles an hour is expected of her but it is doubtful if she attains it. We hope to publish a view of the ontire ship in a few weeks.
Mr. Bessemer's experimental vessel will, however, be tested by competition with a formidable rival, the Castalia, built on the largest scale and at great expense for the same traffic. This is a twin ship, propelled by paddle wheels placed betwéèn the connecting girders; and she is especially placed between the connecting girders; and she is especially ever rough. The engraving, reproduced from the London ever rough. The engraving, reproduced from the London
Graphic, gives the reader a clear idea of her appearance on the water and the extent of heraccommodations. She is 296 feer long and 60 feet wide over all, each hull having a width of 17 feet; she is also double-ended, to avoid the necessity of turning in entering or leaving a harbor. Her cabins and saloons are handsomely appointed; and she was much com mended as a successful sea boat in her preliminary voyage from the Thames, where she was built, to Dover, her in tended point of departure for the continent. Thirteen knots an hour is to be her speed, according to the expectation o her designer (Captain Dicey) and the builders and engineers By the latest advices she was waiting at Dover for a heav sea to thoroughly test her capabilities. We shall shortly know the result of her further trial, and hear, we hope, of her success.

Launch of the Bessemer.

The Bessemer saloon steamer was recently launched from the yard of Earle's Shipbuilding and Engineering Company Hull. According to the London Times, she has very much the appearance of a breastwork turret ship. She is shaped alike at bow and stern, and for 48 feet from each end she has a freeboard of about 3 feet only. Her total length at the water line is 350 feet, and the raised central portion, rising 8 feet above the low bow and stern, is 254 feet long, and extends the whole width of the vessel, 60 feet over all. The swinging saloon, 70 feet long, is in the center, and the engines and boilers which drive the two pair of paddlewheels ares stowed in the hold at either end of the raised portion of the vessel.
The whole of the machinery is on board, and the after pair of engines is completely fitted. The nominal horse power is 750, working up to 4,600 , sufficient, it is esti mated, to drive the vessel 18 or 20 miles an hour. Th
two pairs of paddlewheels are placed 106 feet apart, and each wheel is 27 feet, 10 inches in diameter, and fitted with 12 feathering floats. The saloon is entered from two staircases leading to a landing, connected with the saloon by a flexible flooring. The saloon itself is upheld on its axis by four steel supports, one at each end, and two close together in the middle. The aftermost of the two central supports is hollow, and serves as a part of the powerful hydraulic machinery which will regulate the motions of the aloon. Without entering into a long technical explanation, it is enough to say that Mr. Bessemer has constructed some machinery which will cause the valves, the opening and shutting of which will adjust the saloon, to work automatically. The interior of the swinging saloon measures 70 feet long, 35 feet wide, and 20 feet high.
As to the question of the double set of paddlewheels and heir effect upon the speed as compared with a single pair of wheels, Mr. Reed's view is as follows: When a ship is being propelled at a uniform speed by the exertion of a given constant power of engine, all that the engine does is to prevent the speed from decreasing, as it would do if the propelling power were removed. Were that power removed, the ship would not suddenly stop, but be gradually and slowly brought to rest by the resistances opposed by the water to her proress through it. In point of fact, therefore, in the case of a paddlewheel steamer at full speed, the ship herself carries the wheels rapidly past the surrounding water; and before the wheels can begin to propel at all, the engine must cause them to revolve with a corresponding velocity. If, for example, we take the case of a steamer going at a uniform speed of 14 knots an hour, with 36 revolutions of her engines, we may assume that 30 of those revolutions were required for enabling the wheels to overtake the ship, and that the remaining six only are useful for propulsion. These six revolutions no doubt impart a sternward velocity or race to he water of corresponding amount; and if another wheel has now to be brought into action in order to apply increased power, and has to be set to work in this race, it is obvious hat it will require to be turned 36 times before it will begin to propel, and the few revolutions necessary for propulsion must be added to this number. The difference between the wo wheels will therefore simply be that the sternward wheel will require to revolve a few revolutions more than the other before it begins to propel, but after that the two will be upon equal terms, excepting as regards any losses from friction, etc., due to the extra speed of revolution. This is Mr. Reed's view, and, if he be correct, the speed realized by the Bessemer will probably prove at least equal to that of the fastest paddle steamers in the world; although, at the same time, the designer considers the very light draft and reat beam of the ship, and the extra weights which have been found necessary in connection with the saloon and its
machine beyond what he was called upon to design for will in some degree detract from the speed which has been predicted by the admirers of the vessel.

THE EARLY HISTORY OF WHEELED VEHICLES AND RAILWAYS. number 2.

"Men of genius have a hard time, 1 perceive; and must expect contra-
dictions nexert to unendurable.--the plurality of blockheads being so ex-
treme! "-CARLYLE
The struggle, however, between the friends and enemies of improvement was by no means over. One hundred and fifty years after John Crasset wrote his "reasons," a new motive power, which was to produce an unprecedented revolution in human affairs, to enable immense navies to advance in the face of wind and tide, and vast armies to traverse under lofty mountains and across deep rivers at a pace which far outstrips the fleetest race horse, made its appearance, and the conflict was again renewed with increased vigor. In truth, the opposition made to the railroad in its early years stands peculiarly alone. On the one side was a little band of merchants and manufacturers headed by George Stephenson the self-educated "Killingworth brakesman." On the other hand were the rich monopolies whose interests were about to be affected by the railway: the coach companies now about to be ruined, the canal companies about to avenge on the railroad the opposition they had experienced in time past; the nobility, the preservers of game, the celebrated engineers and famous doctors, the landed gentry, the small farmers, the public press " backed by the opinion of the nation," every profession from the clergy to the engineer, every trade, every rank of society from the peer to the Northumbrian miner, was bitterly hostile to the steam railway. Against this array of public-spirited obstructives ready to choke the new invention at its birth on the ground of the public good, it struggled hard to gain a footing, scarcely daring to lift itself into notice for fear of ridicule. The civil engineers to a man rejected the idea of a "locomotive railway." The idea of traveling at a rate of speed double that of a stage coach was too preposterous for any engineer to risk his reputation by supporting it. Such a thing, they said, " did not fall within their general experience." Mr. Nicholas Wood,C. E., of London,in 1825, speaking of the powers of the locomotive, remarks: "It is not my wish to promulgate to the world that the ridiculous expectations, or rather professions, of the enthusiastic speculator will be realized, and that we shall see engines traveling at the rate of twelve, sixteen, eighteen, or twenty miles an hour. Nothing could do more harm towards their general adoption and improvement than the promulgation of such nonsense." "What," says a writer in the Quarterly Review for March 1825, "can be more palpably absurd and ridi-

culous than the prospect held out, of locomotives traveling twice as fast as stage coaches! We will back old Father Thames against the Woolwich railway for any sum." No engine, it was claimed, could be made to move when attached to a heavy load. "The wheels will but slip round on the rails"; besides, even admitting that the engine would move, ' no railroad could be so constructed as to bear the weight of forty tuns running at the rate of twelve miles an hour; be cause the more rapidly a body moves the greater the momentum generated, and no railroad could stand this increase of momentum." Moreover, it was vehemently asserted that the engine running at twelve miles an hour could never be bend straight, or the machine leap the track.
When engineers, high in their profession, whose experience had been large and whose opinions on such matters was held to be of great moment, advanced such ruinous views, with nothing to refute them but the evidence of a self-educated mechanic of Northumberland, it is not surprising that men of other professions began to find objections based on their wn professional learning. Sanitary objections were now urged against railways; and many wise doctors (never to be outdone at such a_{i}^{*} time) strongly inveighed against tunnels. Sir Anthony Carlisle insisted that "tunnels would expose healthy people', to colds, catarrhs, and consumption", and others believed the noise would be injurious to hearing. But worst of all was the "destruction of atmospheric air", as Dr. Lardner termed it. This learned gentleman made elaborate calculations to prove that the provision of ventilating shafts would be altogether insufficient to prevent the dangers arising from the combustion of coke, producing carbonic acid gas, which was fatal to life. There was not, however, the same unanimity among the doctors as among the engineers. Indeed, the proverbial disagreement of the doctors was, in this case, productive of much good. Solemn documents in the form of certificates,signed by many of the most distinguished physicians of the day, attesting the perfect wholesomeness of tunnels, were prepared and published. There were not wanting some, however, who, in default of reasons of their own, carried the statements made by others to the last extreme, and asserted that the air along the routes of the railroads would become unhealthy, that birds would drop dead as they flew over the locomotive in consequence of the $\mathrm{C} \mathrm{O}_{2}$ discharged: and that the noise would cause cows to cease giving milk and women to miscarry!

Nor did the clergy and country gentlemen fail in this extreme. So violent was the antagonism of many patient and long-suffering men "of the cloth" to even a survey being made on their grounds, that the expedient was resorted to of performing this piece of work while the clerical gentlemen were in their pulpits.
By far the most persistent opposition, however, was undoubtedly that met with among those classes whose pleasures or interests wore directly interfered with, or whose prejudices had been aroused through ignorance and false representations. For the opposition resulting from this latter cause, the press must to a great extent be held responsible. Thus in 1825, when the Liverpool and Manchester Company were preparing to introduce their bill to Parliament, the Leedf, Liverpool, and Birmingham canal companies appealed to the public to oppose the measure, and a Birmingham paper invited all to resist it to the last; and subscriptions were taken up to render this opposition more effectual. The farmer was told that his cows would be prevented from grazing and his hens from laying; that his sheep would no longer fatten, his horses would start and shy when at the plough, his houses and barns would be burned to ashes by the fire thrown from the engine chimney, and the air polluted by dense clouds of smoke; his hay and oats, usually so saleable, would rot in his fields and granary, his agricultural communications be destroyed, his lands thrown out of cultivation, and himself reduced to beggary. There would no longer be any use for his horses, and the breed, nay the very species, would soon become extinct! The poor rates would be largely increased in consequence of the number of laborers thrown out of employment. Every calling was to be utterly ruined. Hundreds of excellent inns would fall into decay; and in a shrot time, not a solitary house of this description would be found within the four kingdoms; posting towns would become depopulated, turnpike roads deserted, and the institution of the English stage coach destroyed for ever. The noble sport of the chase, the love of which was born in every true Englishman, must be ended for all time in order that a few merchants and cotton spinners might build railroads, aud send their engines screaming through the heart of the fox covers and game preserves. It was another deplorable illustration of the leveling tendency of the age. It put an end to that gradation of rank in traveling which was one of the few things left to distinguish a nobleman from a Manchester bagman. There was, however, one consolation left none but fools would trust their persons to the conduct of explosive machines like the locomotive, and the canals would beat them after all.
It may well be believed that such a doleful picture of evils as this was not without its effect on those most inter ested. In the large towns, meetings were held denouncing the railway system as a delusion, similar to the many other absurd projects of that madly speeulative period, when balloon companies proposed to work passenger traffic through the air at forty miles an hour, and road companies projected carriages to run on turnpikes at twelve miles an hour, with
relays of bottled gas for horses. In the country, however, where not one man in five hundred knew anything about the railroad, other than that he had been told it would assuredly pass through the heart of his cabbage patch and his bean field, the fury of the opposition lead to blows. Whe

Mr. Stephenson was making the preliminary surveys for the projected Liverpool and Manchester railroad, many of the nobility stoutly refused him permission to enter their lands. At Knowsley, Mr. Stephenson was driven back by the keeper nd threatened with rough handling if found there again; Lord Derby's farmers turned out all their men to watch the surveyors; guns were discharged over the property of then Duke of Bridgwater, and men armed with pitchforks,were stationed at the gates; while at St. Helen's, as a chainman was clambering over a gate, a laborer ran at him with a pitchfork and thrust the prongs through his clothes into his back; others of his party coming to his assistance, the laborers, who had now gathered in force, poured in a volley of stones and finally completely demolished the harmless theodolite. Finally, in order to protect both his surveyors and his instrument, Mr. Stephenson was forced to make his surveys at night with the aid of dark lanterns, and to employ a " noted ruiser" to carry the theodolite.
Forty-nine years have passed since George Stephenson finished his first railroad, and all doubts of the merits of this great invention were set at rest forever. Fifty years ago it was the dream of a mechanic; today it is a great, almost the greatest, achievement of human ingenuity and human skill, the great civilizing agent of the nineteenth century, increasing the means of public intercourse, removing national and provincial antipathies and binding together all the branches of the world family
Never did so marvelous an invention pass through more vicissitudes, or struggle up through more bitter opposition to a more glorious triumph never was courage tried by more reverses and disappointments that was George Stephenson's; yet that background of disaster only sets in brighter relief the spirit that bore up under all, the faith that never gave way, and the patience that never was weary.

Premium for Fireproof Construction

The Merchants', Farmers', and Mechanics' Savings Bank, of Chtcago,Ill., offers a premium of $\$ 1,000$ for the best. plan for two fireproof buildings, subject to conditions, among which are the following:
'One building shall be a dwelling house of not less than 18 feet front, with 5 rooms, and shall contain not less than 5,500 cubic feet; of which a complete building as per plans must be erected, at expense of the bank, by the successful competitor; also a building of not less than four rooms for dwelling, with store on ground floor, of a cubic capacity of not less than 30,000 cubic feet, subject to the same requirements as the foregoing. The successful competitor will be required to erect, at prices specified in his plans, one or fifty buildings, at the option of the bank, anywhere within the corporate limits of Chicago. The model erected by the successful competitor shall undergo a thorough test as to its fireproof qualities, and also as to the action of water upon the material when heated. All damages resulting from such est will be at the expense of the successful competitor.
The main purpose of this offer is to secure an approxi mately fireproof cottage; but other things being equal, pre ference will be given to the best arranged building in the matter of symmetry, convenience, ventilation, heating, ard of employees, falls in price not above is mainly for the benef ccupancy.'
The competition will be open till January 1, 1875. W re curious to know if the bank really expects to have al the specified conditions filled, for one thousand dollars. Guess not, gentlemen.

A Question for American Steel Manuracturers. The ordnance bureaux of both the war and navy depart ments have just ordered from Mr. B. B. Hotchkiss, the in entor of the well known rifle projectiles and of the revolv ng cannon not long since illustrated in these columns, two f his new breech-loading metallic cartridge steel field guns, with equipments complete, the same to be exported from Europe. The trials of these weapons, we understand, are to be held in April next. Mr. Hotchkiss informs us that he cannot obtain steel blocks,large enough for the manufacture of his guns, from any foundery in this country, and that herefore he is compelled to have resort to foreign pro ductions. It strikes us that the necessity existing, of making arms for service of the nation outside our own borders, is ondition of affairs to which American steel manufacturer may profitably devote their serious consideration.

Recent Walking:Feats.

A walk of thirty-two miles, in seven and a half hours, from New York city to Bronxville, N. Y., and return, was ately performed by James A. Crozier. The wager was $\$ 250$ nd eight hours time was allowed.
E. P. Weston lately completed in this city his third at empt to walk 500 miles in six days. On the second day after about 200 miles had been walked,one foot was attacked with erysipelas, and he had to rest for a day for treatment At the end of the six days he had walked 346 miles.

The New York Christian Intelligencer saya: Among al our exchanges, none is valued more highly than the ScIEN iffic American. We never open its pages without finding omething useful, instructive, or entertaining to reward us for so doing. It is a most valuable educator to youth; while o those who have a practical advanced knowledge of mat ters relating to art, science, mechanics, chemistry, and manu factures, it is an invaluable aid, keeping them thoroughly posted on whatsoever is doing, or has been accomplished, in hose important branches.

Invisible Ink.

If we write with a very dilute solution of chloride of copper, which has scarcely more color than pure water, the characters are invisible; but if gently heated, they become distinctly yellow, and are easily read. Let the paper cool, and they vanish ; and they may be made to appear and disappear an indefinite number of times. If heated too strongly, the compound is decomposed, and the writing becomes perma nently brown from the deposition of the copper. The chlo ride of copper may be conveniently made by mixing solutions of ammonic chloride (sal ammoniac) and of cupric sulphate (blue vitriol).
The changeof color in this and kindred cases is due to the removal of the water of crystalization by the heat. In chemical combination with the water, the salt is transparent; with out the water, it is opaque. The salt, being very deliquescent, rapidly absorbs moisture from the air when cool. Boston Journal of Chemistry.

DECISIONS OF THE COURTS.
Supreme Court of the United states.
he great corn planter patents.-George w. brown, appellant, vs RUFUS B. GUILD, EXEC
vs. JAMES SELBY et al.
Appeal from the Clrcuit Court of the United States for the Northern Bradley, Judge:

NEW BOOKS AND PUBLICATIONS

The Transit of Venus. By George Forbes, B. A., Profes sor of Natural Philosophy in the Andersonian University Macmillan \& Co., 21 Astor Place.
This work gives a most lucid explanation of the expected observations of the transit, pregnant as it is with results of the highest importance to phystcal sclence. The particulars of the various parties of observation and the engravings of the instruments, many of which latter are especially designed for this occasion, are replete with interest, and w
student, as well as the general reader, for a careful perusal.
a Fourth Catalogue of Double Stars, giving Forty Seven
ham.
ham.
In December, 18is, Mr. Burnham published his third catalogue of the double stars, and shortly afterwards followed up with the present publica Lon, first given to the public in the June issue of the Royal Astronomical tance, made with a 6 inch Clark refiector, the exception being tau Orionis a star so distant that the $181 / 2$ inch re
The american Educational Annual, a Cyclopædia or Volume I., 1875. New York: J. W. Schermerhorn, 14 Bond street.

Inventions Patented in England by Americans, [Compiled from the Commissioners of Patents, Journal.] From September 18 to September 28, 1874, inclusive.
ANvil Bed.-A. Hitchcock, New York city.
Clectric Alarm.-A. S. Howe', Utica, N. Y.
Heating Feed Water, eto.-R. Berryman (of Hartford, Conn.), Newcas. Heating Fred Water, et
tle-on-Tyne, England.
Horseshoe.-R. F. Cooke, New York city.
Enititing Machine.-J. Bradley, Lowell, Mass.
Making Aspialtum Mastic.--R. Skinner, San Francisco, Cal.
MAEING GAS.-F. H. Etchbaum, Detrott, Mich.
(rdnance, etc.-R. R. Moffatt (of Brooklyn. N.Y.), Liverpool, England. Reverbrratory Furnace.-E. Hellige
Telegraph.-M. Gally, Rochester, N. Y
Tilitina Coal Wagons, etc,-J. W. Upsan, Tallmadge, Ohio.
Weaving Fringe headings.-J. t. o'Rrien et al., Brooklyn ,N.Y

Improved Tobacco Press.
New Albany, Ind.-This invention consists of the molds and follower for pressing tobacco into plugs, arranged between upper and lower rollways, slightly converging, and provided with means
for forcing the mold and follower along, and wedging them powerfully tofor forcing the mold and follower along, and wedging them powerfully together between sald rollways. There are cross partitions between the
ends of the molds, contrived to recede before the ribs of the follower and thus allow sald ribs to extend the whole length of the group of molds Whereby the necessity of fitting the ribs accurately to the molds, which
would otherwise exist, is obviated; and moreover it allows of shifting the molds for making plugs of different lengths, and employing the same ribs with molds of any length. A contrivance of the end partitions is added for removing them and the mold bottoms and sides, for changing them
to any required length. The inventor has furnished us the figures in deta of the capacity of his machine for making plug tobacco, of various sizes, In one day. We have not room for his statements; but if they are ac-
curate (which we do not doubt), his invention is very important to the tobacco manufacturers. We shall probably publish engravings of the press,

Improved Fire Arm.
James B . Thomas, to fire arms of any size or kind a measuring instrument bs in attaching to fire arms of any size or kind a measuring instrument by which the army officer or the sportsman being thus enabled to make the precise allowance for the rise or fall of.projectile that characterizes his fire arm at
varying distances. The surveyor or backwoodsman can also thus convevarying distances. The surveyor or backwoodsman can also thus conve-
niently carry on his shoulder his means of defence and a perfect instruniently carry on his shoulder his means of defence and a perfect instru-

Improved Car Pusher.

Edward Little, Alva S. Bailey, and Frederic L. Clarke, Paxton, Ill., as-
signors to Edward Little and Alva S. Balley.-This is an mprovement on the car pusher for which a patent has been granted to Alva S. Balley,
under date of June 3,1873 , so that the car sill may be held firmly, without under date of June 3,1873 , so that the car sili may be held irmly, whithout clutch part gripes firmly the rall and slides readily along the same with the motion of the car. The invention consists, first, in providing the upper
end of the slide beam with a pivoted sill clamp, which is readily adjusted end of the slide beam with a pivoted sill clamp, which is readily adjusted
to every thickness of car sills; and, secondly, in an improved spring rai

Improved Fertilizer Distributer and Seed Planter. Mark Cooper, Greenvile C. H.,S. C.-This is an improved maehine said furrow, and coverit with soil. It also opens a shallower furrow above
the fertilizer, distributes the seed in the furrow, and again covers it with the fertilizer, distributes the seed in the furrow, and again covers it with soil.
Improved Miter Box.
Edwin Knock. Vermont, Inl.-This Invention relates to boxes for gulding the saw in sawing miters and other angles in dotng woodwork of various
kinds. An adjustable plate is moved toward or from a main plate by sultable mechanism, according to the width of the plece to be sawn, other desired.
Improved Iron Ship Builder's and Boiler Maker's Gage. James McPhall, Ellis, Kan.-Two gulde rods have a gage head sliding on is held on the rods, having a plate and hinged clamp. A slotted hole gage The holes may with itbe adjusted to any desired distance from each other. The boiler plate is secured against the previously adjusted guide, so as to bring the lap edge in position to have the location of holes determined by
the hole gage. The movable plate is moved to or from the gage hole, and the whole instrument is then moved along the lap edge untill the hole in
said plate comes where the gage hole had been, and thus the places for sald plate comes where the gage hole had been, a
hole after hole are indicated at uniform intervals.

$$
\begin{aligned}
& \text { Improved Pile Cutter. } \\
& \text { Ooklyn, N. Y.-In this invent }
\end{aligned}
$$

Improved Pile Cutter.
Isaac E. White, Brokivn, N. $\mathrm{F} . \mathrm{-}$-I this invention, the saw frame is made Independently adjustable in a shifting frame, so as to permit the
adjustment of the saw shaft or of the frame, or of both. Improved Track Clearer.
Thomas C. Churchman, Sacramento, Cal.-A scraper ratses the snow from directly over the ralls and delivers it to a vertical rotary cylinder, ter of the machine outward, beat the snow off at the sides, and at the same time screw it upward, so as to pack it into the sides of the cut when the snow is as deep as the hight of the cyllinders, or throw it to the top when
not so high. The cylinders are hollow, perforated in the shell, and have a steam pipe entering the interior chamber through the top journal, for de-
livering steam to heat them. Below the scraper is a perforated pipe cetving steam from the boller through conducting pipes, to heat the scraper for softening the snow.

Improved Fare Box.
Rochester, N. Y.-This box
Cassius M. Cooledge, Rochester, N. Y.-This box is designed to be car-
ried by the collector to the passengers, who are to deposit the exact fare therein. Glass in the side and top enables the collector to see that the passenger deposits the proper amount. The money is placed upon a wing through an opening and slides to a lower compartment, betng allowed to
do so by the conductor turning a handle and so moving the partition. By do so by the conductor turning a handle and
the same operation a bell is caused to ring.

Improved Potato Diggel. ylerville, N. Y., assignor to hims

Paul Dennis, Schuylerville, N. Y., assignor to himself and David Craw, same place.-The plow is placed in a dlagonal position, and its ends are nclined so as to be paraliel with the length of the machine. The rear end
of the plow is provided with a guard, to prevent the potatoes and soll from passing off at the same end, and the forward end also has a guard for the same purpose. The lower side of the plow is made nearly flat, and in its
rear partis a longitudinal T groove, in which works a bar, to which are atrear partis a longitudinal T groove, in which works a bar, to which are at-
tached fingers. The throw of this shaker bar is to be adjusted as the contached fingers. The throw of this shaker bar is to be adjusted as the con-
dition of the soll may require. A lever, operated by the driver from his seat, operates a shaft to which 1s attached two cams, which, when the free seat, operates a shart to which lever is moved to the rearward, press down upon the axle, and thus raise the frame and its attachments, throwing the machine out of
gear. To the shaft is also attached a hook, which, when the free end of gear. To the shaft is also attached a hook, which, when the free end of
the lever is moved forward to allow the frame and itsattachments to move downward to throw the machine into gear, will pass around and beneath downward to throw the machine inte
the axle, and lock the frame in place.
lmproved Adjustable Pitch Board.
Joseph Noll, Poughkeepsie, N. Y.-This pitch board is made of metal,
with sliding and slatted sides. It is arranged in such a manner that the pitch and width of tread may be adjusted along the slatted sides of a rectangular corner plece, and set rigidly, by sultable clamplng screws and

Improved Lawn Mower.

Alvah P. Osborn, Seneca Falls, N. Y., assignor to Eugene A. Rumsey, same place.-The stationary cutter or cutter bar is provided with curved
and projecting guards that prevent the grass from getting beyond the ends and projecting guards that prevent the grass from getting beyond the ends
of the knives before itis cut. In order conveniently to adjust the cutter with respect to the rotary knives, it is plvoted to the head, and fastened at the upper end of the guard by a screw bolt and nut.
Improved Car Coupling.
George D. Burton. New Ipswich, N. H.-There is a socketed buffer and a
solld headed one for entering the socket. The former is bell-mouthed, so solid headed one for entering the socket. The former is bell-mouthed, so
that the latter will enter readily for self-coupling; and it has vertical shoulders just Inside of the mouth for locking the solid buffer after enter ing the socket by means of notched pawls which are pivoted to side re-
cesses just behind the head. The forward ends enter freely, and have cesses just behind the head. The forward ends enter freely, and have
springs to push them out as soon as the notehes pass the shoulders. To
unfasten the pawls, they are connected by a cord with a shaft extending up to the platform or to the top of the car, and arranged to turn for wind ing the cords on and off.

Improved Revoiving Harrow.
IUHenry N. Dalton, Pacheco, Cal. - Mechanism is provided which causes the ollers to revolve uniformly; and as the harrow is drawn forward, one roll-
er will be revolved by the revolution of the other roller, so that they will er will be revolved by the revolution of the other roller, 80 that they will
tir the soll evenly. Levers enable the harrow to be adjusted to work at any desired deptr in the ground, or to be raised away from the ground for mproved Mechanism for Propelling and Steering Boats.
Andrew J. Emmons, New York city.-This invention consists of a ver tically adjustable cylindrical compartment at the stern of the boat, which is rotated by a lever or tiller, and provided with a steam cyllinder for rotating the screw shaft, supported in bearings connected to the compart-
ment. The lever may be geared in any suitable manner, and the boat ment. The lever may be geared in any sultable manner, and the boat
ointly propelled and steered by means of the screw. For entering locks or for other purposes the compartment may be turned under a full right angle from its exact position, and thereby the se
belng protected against injury in this position.
Improved Current Wheel.
Michael McCarty, Pueblo, Col. Ter.-This invention consists of a current Wheel arranged at the outside of a float which is arranged in a slip in the river bank, or between two piers at right angles to the current, so that it
can be floated out to extend the wheel into the current, and back to withdraw it therefrom, for stopping and starting the wheel, and regulating it found on page 223 of the current volume of this journal.
Improved A erial Propeller Wheel.
Lewis A. Boswell, Talladega, Ala. -This is an aerial propeller wheel in Which the fans are mounted horizontally on a hub of a vertical axis, so as to revolve on their own axes independently of each other. An arm moves against a stationary cam and turns the vanes edgewise tolthe wind at the
time of begining the return movement, so as to offer little or no resistance while going backward, and a spring and chain are combined with each vane arm in such manner as to turn the vane back so as to take the wind
when the vané begins the forward movement, at the moment the arm escapes from the cam.
Improved Machine for Welding Together Sections of Tubing. James Sadler, New York city.-This machine is for welding boller tubes When they are to be repaired by attaching pleces of tubes to their ends. It consists of two short cylinders on the ends of two rotating shafts. The
tube is welded between the said rotating cylinders. The upper cylinder is made adjustable and governed by a pressure lever and spring attached to made adjustable and g
an adjustable bracket.

Improved Seed and Fertilizer Sower
James Codvilie, Woodstock, Can.-The invention consists of a hopper onveying the seed to the sliding seed-dropping bar, to which motion is mparted by the supporting wheels, Intermitting pinion, and crank rod,
jointly with pivoted weighted elbow pipes. Said silding seed bar has feed cups for regulating the quantity of seed, and feeding it to the swinging the ground.

lmproved Car Coupling.

consists of a rest for the lower end of the coupling pin in advance of its hole in the drawhead, a lower end of the coupling pin in advance of its hole in the drawhead, a
Hitle shoulder in front of the hole, and a spring rest on the front of the
car above the drawhead. car above the drawhead. The whole is so arranged that the pin, befng set on the rest for the foot and leaning against the spring rest, will be thrown
into the hole to fall and secure the coupling link self-actingly as soon as the buffer is pushed back against the spring under the car by contact with the buffer is pushed ba
the car to be coupled.

Impreved Lubricator.
Martin V Osborn
Joseph W. Reed and Martin V. Osborn, Kalamazoo, Mich. -This invention relates to providing air openings in connection with a discharge pipe and regulating cock or plug; and also to a non-heat-conducting substance
interposed between the case or cylinder and its lining. When the plug has been turned for lubricating, the oll descends into the cylinder by fts own gravity as the plug is turned to open the ports and bring the air passages
to register with each other to admit air to the cavity.

Improved Heating Stove.
Anna Wheeler, Brownville, Neb.-There are two hot air chambers on opposite sides of the fire chamber, from which the hot air is led away for
heating different rooms. The air enters these chambers from heaters or fating different rooms. The air enters these chambers in them heaters or
fides, and, to some extent, over the fire, so as to make very direct application, and through pipes, partly at the sides and partly under the fire. The cbambers are divided horizontally by a partition, and
the air from the lower portions, which are more exposed to the heat than the air from the lower portions, which are more exposed to the heat than
the upper portions, is allowed to pass directly into otherchambers through openings. There are two sets of pipes, each recelving the atr from one
heater, and conducting it down and through the fire chamber to the hot air chamber of the opposite side. The partitions separating the chambers have a hole with a damper, to be opened or closed at will, to pass the hot
air from one to the other, as may be required in different cases ; and the escape passages have dampers to regulate the escape of heated air whereby it can be directed into conducting pipes.

Improved Water Wheel.
Abisha B. Reniff, Bingham'sMils, N.f.-In this turbine wheel, the wate ${ }_{r}$ is admitted through a horizontal annular stationary chute rim to a horizon
tal annular bucket rim of the wheel. The buckets are arranged radially to the axis of the wheel between two circular plates which converge from the top downward a third, or a little more, of the width, and then continue parallel to each other to the bottom, either with or without converging side
plates to the chutes. The buckets incline forward about one third of their length, and backward the rest of their length in straight lines.

Improved Toy Dart.

Edwin B. Morgan, Paterson, N. J.-This is a dart to be thrown by a spring onnected to the handle by an elastic cord, which serves both for the sald pring for throwing the dart and for a recoll spring to return it to the ope-
rator, and thus to save running for the dart each time it is thrown. The object is to provide an entertaining toy for children.
Improved Car Axle and Bearing.
John Baile, Milwaukee, Wis. - This invention has for it
John Bailie, Milwaukee, Wis.-This invention has for 1ts object to im-
prove the construction of the axies and bearings of cars, locomotives, and other vehicles in such a way as to prevent lateral motion in sald vehicles, and the consequent end friction and wear of sald axles and bearings. The peripheral concavity formed longitudinally upon the arc of a circle and he other a bearing block, the under side or wearing surface of which is longitudinally convex correspondingly.
Improved Portable Screen.
Henry L. Leach, New York city. This Invention consists of a box frame nd with hinged and detachable doors at the rear eud for getting at the dust, and emptying the same, as required. An illustrated description of this device will shortly appear in our editorial columns.
Improved Pruning Hook.
Edward E. Stedman, Ravenna, ohio.-The blades are made of a single plece of steel, which is bent in the center at right angles for the space of
one inch, to allow it to be attached to the end of the handle. The two cutting edges face each other, thus allowing the pruning hook to be worked up or down, or by pushing or pulling. The blades are parallel to the staff
or handle, but in different planes, and have a curved edge. This arrangeor handle, but in different planes, and have a curved edge. This arrange-
ment adapts the implement for use in such a manner as to often prevent

Improved Letter Box.
William D. Dann, Phœalx, assignor to Wells M. Peck, same place.-This together with contrivances by which the cover of the orifice through which $\mathrm{t}^{\text {he }}$ letters are dropped In to the box will be made to cause the bell to strike When the cover is moved to open the orifice for dropping the letters in, and
thus give notice of the arrival of the mail.

Improved Device or Turning Locomotive Crank Pins.
ndrew J. Schindler, Hornellsville, N. Y.-This is a tool carrier, called a uartering tool, mounted on a boring bar, which is arranged in such relahon to the center of a lathe for turning and boring locomotive wheels eing revolved and fed along by the boring bar, turn off the crank pin exactly parallel with the axis of the wheel. This is done whether the

Improved Combined Desk, Seat, and Table,
David Francis, Birkenhead, England.-In constructing this article of welded and riveted together. A bar of extra strength is ingeught iron upright portion of the back, to give greater strength, and to form a knuckle, to which a movable top is hinged. The movable top is furnished With plates formed in L iron, with ratchet and tongue, the latter riveted on. Plates are secured to the top by four strong iron screws, and to the
standards by a bolt running through the sald knuckle, a longltudinal slot tandards by a bolt running through the sald knuckle, a longitudinal slot and is secure at the other by means of a split pin, with ends turned round the bolt. By means of the longitudinal slot at the end of the tongue, the the cant. By moved to any angle, and secured in position by meang of the
teeth and ratchet. The seat is secured to each standard by flat roundheaded bolts and nuts. To make the desk and seat more rigid, and freer from rocking, stays are ind nut, and to the seat by bolt and nut and strong
the standard by bolt and nut

Hermann Lücke and Phillipp Briummer, Worcester, Mass.-The clamp is formed by bending and doubling over an extension of the main plate. A
spring, which curves over the clamp, latches in the hook, which secures spring, which curves over the clamp, latches in the hook, which secures
the device to the clothing, and protrudes through the clamp. A point is he device to the clothing, and protrudes through the clamp. A point is
cut from the clamp, which extends through an orifice in the plate to puncture the ticket, and prevents it from betng withdrawn. There is also a spring hook, at the lower end of the matn plate, upon which oaggage
checks and similar articles may be safely confined. A pencll holder is beides added, it befng a lateral extension of the plate, bent in a circle to form an eye and hold the pencil by friction. A thread cutter is provided, formed
of a plece of metal, separate from the plate, but attached thereto by means of solder. having a curved slot thereln. In the slot is fixed a steel blade. of solder. having a curved slot therenn. In the slot is fixed a steel blade.
The thread to be cut is forced down 1ato the acute angle of the opening, and is severed by its contact with the edge of the blade.

Improved Reciprocating Winnower. Henry Keller, Sauls Center, Minn.-This invention relates to improve-
ments in the reclprocating winnower or fanning mill patented by the eame
inventer under date of June 24, 1873, by which the grain may be separated as to fineness and dellvered directly to sultable measures, and also the
whole mill stiffened and braced in a more perfect manner. The present Whole mill stiffened and braced in a more perfect manner. The present
device consists mainly in the arrangement of spouts supported in the frame below the fan box for delivering the winnowed gratnin connection With the lower separating screens supported in the shoe, and provided with spout-connecting gutde straps. The grain is thus continuously and Improved Ditching Machfne.
Jordan W. McAlister, Woodson, Ill.-The ditching wheel is made with three or more flanges upon its face. The central flange is attached to the
center of the outer ends of the spokes. The tyres are then put on, and erward the stde flanges. This construction leaves the face of the whee tions in removing the soll from said wheel. In bearings in the no obstruccal bar of the frame, works the rear end of the draft shaft, the forward part of which passes between four vertical angle tron posts of an upright
frame. To the latter is bolted a horizontal plate, which is slotted to correspond with the space between the posts of the frame, so that the siaft
may not be obstructed in 1ts up and down movement. The forward part of the plate passes through a slot in the bolster, and has four pairs of fric tion wheels plvoted to it , which rest agalnst the front and rear sides of the sald bolster. The plate and vertical frame may be moved laterally, to keep
the ditching wheel in line with the ditch, should the bolster, axle, and the ditching wheel in line with the ditch, should the bolster, axle, and
wheel deviate from said line. The ditching wheel may be raised from the ground for passing out of and into the ditch, for turning, and for passing ditching wheel and its frame to be inclined to one or the other side to keep them vertical should the surface of the ground, and consequently the bol ster plate and frame, be inclined.
Reginald H . Earle, St. John's, Newfoundland.-In this device there are slotted pleces penned to the foot plate, which are pushed apart or drawn
together to grasp the boot by a suitably pivoted lever acting upon a long1. tudinal plate through inclined slots, in which projections on the flanged moving a screw in the shank of the skate; and the entire mechanism is such that the skate may be easily adjusted or removed without requiring

Improved ©val Lathe for Finishing Hats.
Carlos W. Glover, Danbury, Conn., assignor to the Tweedy Manufacturing Company, same place.-There is a hollow arbor, the journals of which re-
volve in uprights, and which carries a fly wheel. The ends of a crosshead work in bearings formed in the fly wheel, and to it is attached a spindle, than the caylty of sald arbor, lating movement therein. The end of the spindle has a screw thread cut upon it to recelve the hat block. The screw thread also carries a crank
arm, the crank pin of which enters a hole in a ring, which fits into, and works in, a ring groove in a plate. With this arrangement, when the crank is in a vertical position above the spindle, as it moves through the first
quadrant, the spindle moves downward, bringing the center of the spindle Into line with the center of the hollow arbor. As the crank moves through the second quadrant, the spindle moves upward, and again moves down ward through the third quadrant, and up ward through the fourth quadrant having thus two upward and two downward movements during each revo
lution. The effect of this is to keep the upper side of the work always in the same horizontal plane.

Improved Brake for Steering Wheels.

John P. Getsler, Dubuque, Iowa.-A swinging bar is so arranged as to be
pressed by a lever, through the medum of a triangular block, a aganst the pressed by a lever, through the medium of a triangular block, against the
rim of the wheel. When the pllot presses with his foot on a treadle, the rim of the wheel. When the pllot presses with his foot on a treadle, the
long end of the lever will be raised and the brake will be applied. The amount of pressure which he thus applies determines whether the whee suddenly stopped or simply retarded. The back motion of the lever is produced by a spring. When the brake is applited. the opposite
side of the rim of the wheel bears against the end of a timber, which prebratse. The parts of this brake are duplicated to allow the pllot to stand
brake. brake. The parts of this brake are dupiscated to
either to the right or left in operating the wheel.

> Improved Life Raft. at Barrington, Mass.-Thit

Bernard Almonte, Great Barrington, Mass.-This raft is composed of four, more or less, sections, higed to each other and to a central keel, and each keel is an air chamber of waterproof material, These sections, belng thus hinged together and to the keel, fold up when not in use. Latches When on the water. When launching the raft, one of the sides is let loose rom the davit hook, allowing it to unfold and hang by the side of the vessel, where the latches are adjusted so that, when it is launched, it is ready

Improved Harrow.
ar bar of the series and rom the teeth of the other bars. The result is that the teeth of the rear t Shen the others are out of action altogether
(6) C. M. C. says: I
witha a moperating ander engine
8\%/ Inches by 14 inches stroke ; the bed frame sits fair on top of botler. There are two 6 feet
driving wheels ; the crank shaft $183 / 4$ nches in diamedriving Wheels; the crank shaft is $3 / 1 /$ Inches 1 d dame-
ter ; the bearings of the crank shaft are 5 tnches in
 engine hasa thump that can be heard 200 yards of of at
all speeds up to about 160 revolutlons ; above that speed all speeds up to about 160 revolutions; above that speed
the thumpappears to cease; but as soon as the speed slacks, It commences agaln. If I tighten up the connecting rod brasses, they heat and cut in spite of all
the oll that we can put on them if I leave them slack, they cut without heat. The main journals will also heat if a little tight, and cut if flack. I have tried tightened up and slack. I have lengthened my main
rod and shortened it. I have put in liners untll the rod and shortened it. I have put in liners untll the
strap key would hardy enter. I have tightened $m y$ cyllnder rings, and I have run them loose, and all to
eftect. What shall I use for it? A. It appears from your account that the valves are not set properiy.
Possibly the plston may be loose. An: indicator daagram wo
trouble.
(7) J. W. . . asks: 1 . If I have a number of blocks of ice, about 2 feet square and 1 foot thlck
frozen all round 1 or 2 Inches in thickness, there still being 8 or 10 inches of water in the center, and I store these cakes all together in an ice house, will they
freeze solld? If so, will they keep as well as if they were frozen solld before betng stored? A. They will
not freze soldd. 2 . Is there any book published on ice, or the proper constructlon of ice houses? A. We do
not know of any. See answer No. 29, p. 251, vol. 31 .
(8) H. C. asks: Please give me a formula
 altrate of potassa 3% ozs ; water 10 oz. Mix the acld and ter, gradually stirring with a glass rod untll the lumps disappear and the mixture becomes transparent. Place a thermometer in the mixture, and when it Ind dates
between 140° and 100° Fah., the cotton should be im. ersed. Take 60 granns clean cotton, separate it into cor 12boins, and immerse the bolls separately; and
leave the whole in the mixture for 10 minutes. The temperature should fall to 1400 . Float the cup on bonl
ing water, and malntaln $1 t$ between $1900^{\text {and }} 150$. At ing water, and matntain it between 140° and 150°. At
the expltatition of 10 minutes, 1 Ift the cotton with lags rods, and squane ous ine quickiy; and dash the thg the mass so as to wash it thoroughly and qutckly;
complete the washing by 1 mmersion for several hours dry spontane.
(9) G. H. R. asks: What is the method o box or pocket sextant? Is there any work whtch e platns the use of the sextant? A. You will ind the
information you desire in Loomis'"Astronomy."
(10) B. A. C. asks: How is lead pipe made?
It st forced over a die by hydraulco pressure
(11) H. M. asks: I am about building a cistern to the required dilmensions, and then to cement
directly on the walls withont the use of bricks It two or more coats? If it can be done, would 1 l the eonstruction of a cistern on the plan you yropopse
but if your soll is hard enough to stand to the line Whet your excavation is made, you can line it with a Inch wall of brick lald up in cement and plastered with
the same on the face. If this is lald hard up to the bank, tit will make a tight cistern. 2. I wish to ratse the water with a pump; can I construct a pump byrab
beting the sides together, using square buckets? If you inquire the price of pumps, you will find it more
economical to buy one than to make it and risk the
(12) H. D. S. Says: I am building a smal engine, 1 ix inches. What sized botier should 1 use, to
run it, driving a sewing machine? Would copper o

 mer being more durable of the two.
(13) G. A. B. asks: Suppose a rope is
(tretched moderately tught between two trees, and welght of 1401 ibs. 18 suspended from the center, whal welght? Is it 70 or 140 ? A. If $t=$ tenston of rope, w
$=$ wetght, $a=$ angle between parts of rope on each side of the welght, then $t=\frac{w}{2 \cos \cdot \boldsymbol{a} \text {. }}$. From this equation you will see that the tenston of the
the welght when the angle is 120 .
(14) D. H. . E. asks: Will a stream 3 inches
square tn cross section under 8 feet or 6 feet head, at
(15). M.A.asks: If a wheel rolls down an in is its axis, theoretically? A. The axis 18 a 1 ne passing through the center of inerta of the wheel, which gen
erally nearly colncldes with the geometrical center.
(16) F. O. S. -In general, machinery can be
driven with less power by belting than by gear wheels
(17) H. W. G. asks: 1 . What does the best filt and crown glass cost per ib., sucn as 18 used in the the
best achromatic object glases?
A.Chance's 1 Int glass, such as 18 used dn makting small object glases for tele.
scopes costs 82.50 , and crown glass of the same qualty scopes, costs 88.50, and crown 1 Iassof the same quailty
83 , per pound. Camera glass, which is less expensive 18 used for cheaper achromatic lenses and photograph
er's tubes. ${ }^{2}$. To calculate the earth's distance from the sun by the transit of venus, does not Venus
distance from the sun (or what 1s morellikely, from the earth) have to be known before the problem can be
solved? A. The relative distances of the planets from solved? A. The relative drstances of the planets from
the sun beting eomputed from their times of revolution the sun beng e emputed frem their distance is to Venus'
by Kepler's third law, the earth's dist
 from the earth and sun 1s as 277 : 723 , and Venus' paral.
lax measured on the sun's d Ifs is in miles $2 \cdot 61$ times the lax measured on the sun's disk 18 in miles $8 \cdot 61$ times the
distance in latitude between $t w o$ observers on the earth. The linear value of a second of arc at the sul
being about 460 mites, the solar parallax,or angle which the earth's radus saibtends at the sun, will be about (18) J. H. S. asks:
tificate as an engineer? How can I obtain a certhicate as an engineer? A. You must apply to the 1o-
cal supervising inspector in your district. 2 . To whom cal super isisng ingpector tin your district. 2. 2o who
should complaint be made of a steamer, run, on an

(19) M. M. asks: What is the best way to
regild parts of a mirror frame? A . See p . 96 , vol. 30 . How is it that when the moon 1s yisible the aurora is
not? Has the moon anything to do with the appearance of theaurora, or is it merely a cotnctdence? A. A. IstDle except on dark nlghts.
(20) D. B.- The cost of an analvsis would
be larger than such a recipe would be worth. $\underset{\text { ear where the water emerges from the ground, Ifound }}{(21) \text { T. C. asks: In a sall }}$ a crab simlar to the salt water crab, but of a darker
color. Can you tell me how tit came in such a place?
A. eena fresh watershrimp.
(2) H. W. W .-Filtering water through brick
done, and is a most efficlent method. (23) H. I. H. asks: What is the rule for
nding the number of square inches in any crrcle?
A. (24) C. S. B. says: I have discovered a new
uule for the solution of a certain kind of equation which I think preferable to the one usually given in the text books. It 1s applicable to all equatlons which can
be reduced to the following form: $\left(\mathbf{x}^{2}+a \mathrm{ax}\right)^{2} \times \mathrm{b}\left(\mathrm{x}^{2}+\mathrm{ax}\right)$ =c. Tho rule usually given lin books is this: Reduce by aspection the given equation to the above form; then
consider the compound term as a single quantity, find tos value by complettng the square and extractng the square root of both sides of the equation, from whtch
the value of x xs easily found. My rule e this: Extract
the the Con as lon as far as possible, which will show you a numerr-
al quantity that must be added to the left hand mem. er of the equation to complete the square, add thi
uantity to both sides of the equation extract the santity to both bildes of the equation, extract the rom which the value of x is easily found. The advan. age of this rule above the one usually given is that it
sometimes very difficult to reduce the elven equation othe above form, whereas that necesssty it ob obvated
by the last rule. A. We do not know that we under. and your method thoroughly. We append two exam. les which are readily solved by the ordinary method.
if you will send us solutions in accordance with your rule, we shall be better able to compare it
vith the old method. $1 \cdot \frac{4 x^{2}}{7}+\frac{2 x}{7}+10=19-\frac{8 x^{2}}{7}+\frac{58 x}{7}$ $\mathfrak{a}^{2}+b^{2}-2 b x+x^{2}=\frac{m^{2} x^{2}}{n^{2}}$
(25) J. G. W. asks: Where can I get any
formation that will ald me in foretelling the weather by the ald of a barometer? There are times when the
mercury ts well up in the tube, and yet considerable an falls without much falling. of the barometer. At rain. A. Read T. A. Jenkins' pamphlet on the baromeer, thermometer, hygrometer, etc.
(26) M. A. asks: 1. Why is it that the conmakes the current jump, very nearly stop, and then
jump again? Is it because the platinum is not good? jump again? Is it because the platinum is not good?
. The spring and face of the hammer should be perectly clean, as should also all connections. The troue maylie in your battery and not in the coil. We do
ot understand yourother question. Copper, not fron,
(27) S. K. S. asks: How large a tube would A. From 3 to 4 feet long.
I made a storm

I made a storm glass according to the rule given on quid remaining cloudy all the time. On the lowering fate temperature, it would form crystals like snow
akes. A. Your trouble is probably due to impure chemicals. These glasses are not considered as abso-
ute indicators. Some claim that they are affected by ate indicators. Some claim that they are alleted by
electrical disturbances.
What is meant by the power of spy glasses, $10,15,25$, tc. ? In the last instance, does it mean that an object nly one mile distant with the naked eye? A. Yes ut this is not absolutely true, as the intervening atmoaken in
(28) I. T. O. says: I tried to make marine the atter the recipe you give in your book; Ifirst put
he rubber in one bottle and the shellac in another and then poured, as I thought, enough ether on each to dis-
solve it; I put them on a warm stove, removing the corks to let the gas escape. Both bottles took fire and burst. A. Fill your bot tles with ether, stopper tight-
y, and keep in a cool spot for forty-elght hours. The y, and keep in a cool spot for forty-elght hours. The
bottles, because of their extremely volatile and inflammable contente, should be kept cool, and at a safe disancefrom
(29) O. S. C. asks : 1 . How can a permanent it with a certain percentage of copper.
a. How alloying
a pectfic gravity of metallic lead be increased? A. The pecific gravity of pure lead is unalterable, but an al-
oy of lead with elther gold or platinum may be made, he specific gravity of which will be greater than that
(30) H. D. M. asks: 1 . How can I apply Saturate with solution of paraffin in naphtha. 2. How melted and then digested for a short time with is first ly powdered or brulsed anacardium nuts, the frutt of
the anacardium orientale. This nut contains a black vegetab
afll.
(31) L. L. G. asks: Why does a piece of certain solls? A. There are many mineral salts which,
when dissolved in water or when brought into contact an a motst condition with lead, corrode it. Which salts our pipe runs could only be determined by analysis. (32). H. F. asks: What is the specific grav-
y of ordinary vulcanite, vulcanized for 2 hours under temperature of 320° ? A . We will determine the spe-
ficic gravity of such a plece of vulcante; but we have achaplece or
(33) C. G. H. asks: 1. If a man built an en-
ine, boller, and boat, and put them together, would he e considered fit for an engineer, to run sald boat? A. nspector. 2. What does s boat's certifcate cost? What

(34) D. O. asks: In what part of Europe
drthe firsi locomotive engine run?
A. In France, in
(35) L. P. asks: What proportion should
the cooling surtace of a condenser beart to the heating surface of a boller? A. From one half to two thirds
 I send you a spectmen of boller scale. Of what 1 s 1 t
copposed? A . The scale seems to be formed from wa composed? A. The scale seems to be formed from wa
ter contanning galts of lime. It it probable that the
use of tannate of sode would
(36) M. M. asks: How should a square pis-
on or abutment of a rotary engine be packed,and what kind of material is best tor the packing? A. This 18 a matter that has engaged the eattention
many years, and $\mathbf{1 s}$, as yet, undected.
(37) G. L. M. asks. Is there a simple solu
tion of this problem: The area of a segment and the thon of this problem: The area of a segment and the
radius of a cricle eneng 1 iven,to find the chord? A. We
(38) J. C. sans: 1 . I wish to make a flat
bottomed sail boat, about 15 or 16 feet long, with center bottomed sail boat, about 15 or 16 feet long, with center
board. How wide and how deep phollul make t to be
nicely proportioned and safe? A. She should be 6 feet WTde and 2 feet deep. 9. How can 1 bend the boards for the sldes, having no steam box? A. You can etthe
do it by making sam cuts, or by working it out in the proper shape tn short lengths and jotning to gether. ${ }^{3}$.
About what sized sall could she carry for speed and safe. ty? A. About feet high on the mast, with boom 11 feet long. You cal
boat will stand it.
How 1 g gold letterlng done? A. Attach the gold lear
to the leather by pressure, then take the required let terse (whichmust te of of rasss and heethed, prequired them
singly hand heavily on the gold leaf, having frrs smeared
(39) J. B. asks: What quantity of water dimensions: 2 cyllnders each 16818 finches, working
with 55 liss. per square tinch, at 100 revolutions ute? A. You do not send suffictent data. You should
state the point of cut-off.
(40) B. W. D. asks: Are there any self-reg-
ulating mills in use, so that, when the wind gives a high
 flat surface to the wind, and conse
motion, and vice versa?
A. Yes.
of 1 mine an J . asks. . If the wind has a velocity
 feet square, will the pressure be more than 25 times as
great? A. Multitly the pressure per suane foot by
the number of suare feet in the surface whember of square feet in the surface.
Kentucky? A. See p. 221 , vol. 25.
(42) J. R. W. asks \because. When was ammonia
gas irrst applied as a motive power? A. We could not IIve you the date of the first patents, without a search 1859 was, we belleve, the date of the earllest patent for
an ammoniacal engine that attracted much attention. What 1s the principal difficulty in ustng compressed
atr a a motive power? A. Its cost. Tests with this
(43) H. F. . . . asks: What sized engine will
be required to propel a boat 70 feet long by beet beam at the end and:12 in the center, agalnst a current of 2 or
3 miles per hour at low water, and 4 or 5 miles at high
hig Water, the boat drawnin 6 Ineneses of कater with consid.
erable rake at bow and stern?
The boat 1 to go empty up and come down
inder $12 x 12$ inches.
(44) J. C. K. asks: What should be the diameter of an upright iron shatt 3 feet long, if feet 6 nch es between bearrings, with 4 levers each 10 feet long
with a horse hitched to the outer end of each? The
shaft should be of such size as to resist torsion. A. Allowng the each horse will exert a force of of ono
1bs., the diameter of the shaft, to resist \mid wrenchng,
(45) W. S. F. asks:
ndicheap boot blacking?
A. Take tyory black 2 gozs.
 What colored liquald preparation (red preterrede can I place tn small quantities in a bottle of alcoholand
have ti a always remain on the surface and not become mixed with or dissolved in the alcohol? A. We know of none.
If a bagmade of white rubber were filled with oll, What effect would the oil have on the bag? Would dt
sook through the rubber or rottitin tite? A. This de-
pean
 petroleum would d 1 ssolve or destroy it in a very short
(46) B. C. W. Says: 1 . I have a hydraulic
 tonable? Will glycerin dluted with water do? If so, In What proportion? A. The solution you speak of 18,
much used.Where titis necessary for the liquid employed
mut un ostand 10 degree of temperature. An aqueous so-
lution of glycerln of specific gravity 1.024 , contalnnng about 10 per cent of glycerin, freezes at si 30 Fah. With
60 per cent of glycerin, of spectic gravity 1 127, the
(47) S. W. asks: 1 . During what period, to a msunderstanding of the theory of the Jullan year) year? A. For sis years. 2. In what year was the inter.
calary day chan yed from its position between the 2 4th calary day changed from its position between the 24th
and 25th of February to the end of that month? We cannot give you the date; but it was probably in readers can furnish the information.
Which do you constider the e best work (not too costly)
on astronomy, containling the mathematical formule and tables for calculating the planetary motions, and tables of the lunar perturbations? A. We do nons thlnk
there is any single book that covers this ground there is any single book that covers th1s ground. We
can recoumend Norton's and Bartlett's works on as-
tor
(48) M. C. asks: What will remove fruit not successful, try lemon julce; if again unsuccessful,
(49) J. H. F. asks: Would an achromatic
object glass 113 inches in dameter, and of 30 nches fo
 meniscus described by B. on p. 7 , vol. 30 ? A. It mould
be muen better. Cheap achromatics are made of came be muen better. Cheap achromatics are made of came.
ra glasss and the lenses ground several at once upon
the tool.
 dutles the same as other clergymen who eat very little
food, and that of a llght kind, till the Sabbath is over When they take a full and substantial meal. Which ts best for health? A. This 18 best solved by experiment. As a general rule, men of well marked billous tempera-
ments require more food than those of the nervous ments require more food than those of the nervous
temperament. The best rule, however, 18sto eat at Segular hours.
some telegraph posts produce a sound which is
much llike that of a steamboat's whistle in the distanee. The sound can be heard when the weather is perfectly still and at a distance of from five to ten yards. These
posts are cedar and stand in a sandy soll. Their wires re connected with the post by glass nnsulators. What proauces the sound A. The wire forms a mammoth
zolian harp and when drawn unuanall titht, an al-
most mperceptilibe breeze will cause it to to flve of this most 1 mpercepp
low murmur.
(51) H.J.J. .says: I am running 5 fifty horse power tubular boilers, 0 our water 18 hard; ;and for three
months in the year (the time I use the hard water) I nonths in the year (the time I use the hard water)
find that scale accumulates to the thickness of $1-16$ of an Inch. I am pumplng all of the feed water from a
arge hot water tank, contalining one half water from the well; when the exhaust water from the trap does
not heat tit to 100 , I use a little direct steam. Yet the eale continues to form. Would you recommend the use of sal soda in the hot water tank to soften the wa-
ter before pumplng the same to the boilers? If so, in What proportion to every 100 gallons of atater evapo-
rated ? A. We thnt that the ooda, even it effective ould be a
heater m of heater might be better, or perhaps you could trap
more of the condensed steam. We advise you to con-
(52) O. M. says: Olmsted's "Astronomy", ember 8, 1874 , while all late accounts say $1 t$ will occur on December 9. Possibly both are correct, according from whtch it tic viewed. Is this the case? A. Yes. day behind the civil day. The transit of Venus comnences astronomically at Bombay on December 8 at
18 h .42 m. Irkutsk, on December 8 at 20 hh 40 m .4 P Pekln
 Om., Melbourne, December 8 at 23h. 28m., Auckland
(New Zealand) December 9 at lh. $24 \mathrm{~mm} .$, Honolulul, Decem. er 8, at 3 h .4 m ., and 18 not half over at sunset. At he Cape of Good Hope, Alexandria, and Kazan the transit
commences before sunrise. See Comer's "Navigation simplified."
(53) S. S. asks: 1 . What is the power of a
field glass of 274 inches
dlameter of about 8 nches focus? How far could I recognize a person with it? A .
Perhaps ten times as far as with unassisted viston Yerraps ten thmes as far as with unassisted vision.
Short focus field glases cannot equal telescopes in power. 2. What is the rule for computing the power
of a glass? A. Divide focal length of objective by fo-
(54) C. P. says: I read that, as alcohol can
be converted into steam with much less fuel than water could, it would be economical to use 1t, provided a
method of saving it by condensation could be devised. Is it safe to use it in a a bolleen used for heating purposes anly, Where all the vapor is condensed in the radiators
and plpes and returned to the boller? Should you deem It safe to use naphtha tnstead of water in the boller, and
would the steam, gas, or vapor made by heating it cause an explosion, at there were no actual contact of flame or fire? A. Both of the Hquids mentloned would
be dangerous if used with ordinary apparatus. The
 (55) J. W. W. B. asks. . Is there any process by
which fine grit of filnt or quartz can be removed from fine earth or chalk deposits? A. By agitation in pro per evsels with water and decanting of the the pura-,
holding only the finest particles in suspenston from the
 ter, and add molasses to keep it soft. Let cool, and you
will see if it be of the right consistence. More molass es will be needed if it be too stiff. More glue is neces-
sary in warm locations, as the compositlon readily sot ens as the temperature rises. Some makers use gly erin in combination with the molasses.
(57) S. C. asks : 1. Which is the best' work
on he hedical use of electro-magnetism?
vanism A. Gal. Vanism, Animal and Voltate Electricitty," by sir w. s .
Harris 18 both cheap and comprehensly
 of a magneto.electric machine? A. In the former the
(58) H. asks: Can the following problem $=x y$. A. It cannot be solved by any of the ordinary rules of algebra, stnce there is only one Independent equa-
tion for two unknown quantities. Moreover, from casual Inspection, we are tnclind
(59) O. K. asks: How can I prevent rust
on polished steel tools? (60) E. D. E. asks: What is the process
or crystailzing fowers, grasses, etc. ? A. One process is to thoroughly dry the filwers and grasses, and
allow them to soak in a strong solution of alum.
w What are the ingredentens sand proportion of the com-
ound used for marking the name or brand on un pound used for markling the name or brand on un.
bleached cottons? A. Iodide of potasstum 1 oz., lodine 6 drams, water 4 ozs., dissolve. Make a solution of 2
ozs. ferrocyanide of potassium in water. Add the todine zas. ferrocyande of potassium in water. Add the 1odnn
solution to the second. A blue precipptate:will fall which, after filtering, may be dissolved in water, forming a blue ink.
(61) M. C.asks: By what part of their bodies were the slamese twins connected? A. The
connecting link was an extension of the sternum of
 lignite formations. In another place Ifind it under the
head of resins, and described as procured from the veg. head or resis, and described as procured from the veg-
etable kliggom. It has been elsewhere described as procured by diving, the divers tearing it from a reef.
Is there more than one klnd of amber? A. Amber ocCurs often In beds of wood coal, but is cheitily found af-
ter storms on the coasts of the Baltic. between Koniggberg and Memel. It consists of a mixture of several re
sinous bodes stnous bodies, which have not been accurately exam-
ined. There is but one vartety.
(63) J. B. asks: How can I make a lac or
paint to turn German sllver black, and stand handling Without losing gloss or color after drying? A. There
is one simple sone simple method by Which artists may be enabled
oobtain all the different tints they reauire. Infuse ozs. of gum gutte in 32 ozs. essence of turpentine; and
4 ozs. dragon's blood and 1 oza annatto, each in a sepaate dose of essence. These infusions may be easily made in the sun. Atter 15 days' exposure, 'pour a cer-
tatn quantity of theese llquors Into a a alask; and by varying the doses, different shades of color will be obtanned Black japan varnish, we think, would answer your pur-
pose very well, and may be made as follows : Bolled oil pose very well, and may ye made as follows Boiled onl
1 gallon, umber 3 ozs., asphatum 3 ozs., oll of turpen. 1 gallon,
tine as
ence.
A barrel of cider vinegar near:y 3 years old was foun to have turned black, the cause of which 18 attributed
to the barrel having been burnt too much when new. to the barrel having been burnt too much when new
What will make the vinezar clear? A. If the supposi-
(64) W. B. says: I find that my tea kettle will become one quarter inch thick, if left unds turbed. Is the water (from a well) likely to produce
gravel, if drank without belng bolled? A. There is no gravel, if drank without betng botied? A. There 18 no
danger from this source. 2 . How can I soften it fo danger from this soorce. 2. How can 1 goften it for
Washing purposes, as tit hai been so dry here that we
and render it softer, by expelling the carbonic acti and de positing the carbonate and a portion of the sulphate o
(65) A. M. T. says: 1, How can I make an
 ter, which 1s to be turned by means of a glass handle. The plate should revolve between two sets of cush10ns
or rubers, of leather or silk, one set above the axis nd the other below, which can be pressed by means of The plate also passes betcen two brass red desped Hike horseshoes and provided with a serites of polnts on the sides opposite the glass; the rods are fixed to larger
netalic cyllnders: whlch are called the prime conduc netallic cyllnders: Which are called the prime conduc the ground. 2. Will it do to make tt of insulated wood placed to the prime conductor be of any value? A.
Yes. 4 . Which is the simplest way to make one? A. es. . Which is the simplest way to make one? A
It consists simply of a wide-mouthed bottle, lined in side and out whe withtinfoll. A stopper of dried wood closes the mouth, through which passes a brass rod surmount-
ed by a brass bell. A fine wire connects se thide coating of the jar with the end of the brass rod. 5 .
What 18 the rubber composed offand how can I I amalganate it? A. The cushions may be made of sllk stuffed gamon them. 6. How can I fix the axis firmy to the plate? A. The axis may be of light wood; the hole in
thecenter of the glass plate should be square. 6 . In Carre's electrical machnne,described on p. 402 of vol. 28 A. You will find that condenser described on p. 363 , vol A Leyden jar would pernaps answer your purpose,
 chne? A. The distance 18 not mentioned. 10 . How
are the ebonte disks made?
(66) Q. A. S. Says: Imagine an engine made Ike an ordinary steam engine, but with an opening in could go in freel, ty to be driven by armospheric pressure. Te enhast
rangement with two drumectoa or chambers, whitch are
heated to produce a vacum. The
 aylinder from in front of the piston head, alternately nd 1nstantaneously, so that the atmosphertc pressure
of 15 lbs. to the square tnch can drive the piston head back and forth, as steam does. How much actual pressare would there be on the piston head to drive it, pro.
ylded a vacuum existed in front of the piston head? I know that a perfect vacuum only extstst theoretically,
nut suppose that the drums are made so large and heet ed in such a manner as to suck the air out from in fron of the piston head raptaly, and strongly, would this
suction add to the atmospheric pressure and give the gitine more power, or would there remaln in the cylin er in front of the piston head a certain quantity of air
hich would offset the atmospheric pressure on the back of the plston head to the extent of 4 or 5 libs.
pressure, and leave an actual working atmospheric ressure of only 10 libs. to the square tnch? A. Atr ex pands about 1.491 of its volume for 10° Fah. that it is
heated, and its pressure is inversely as its volume. Ko wing, then, the temperature of the arr in the drums, ou can easily calculate the pressure, which will be the
back pressure in the plston. There is, properly speakIng, Do such principle as auction. If the pressire on
he ste of the plston 18 less than that of the atmowill tend to move the pliston
(67) E. A. W. asks: How many cubic feet \%. A. Webster gives the same figures; but a "rod,
ole, or perch ${ }^{1} 185 \% / 1$ nearmeasure, which makes $30 \% / 4$ superfictal measure,
solid in any respect.
(68) J. G. P. asks: : How can I make a good
broze on
polshed steel or tron, such as harcware rimmings and the llike P A. To 1 pInt methylated fin . sh, add ozs. gum shellac and y yo oz. gum benzoln: put
he bottle ti a warm place, shaking it occaslonally. When dissolved and settled, decant the clear liquid and ceep 1 t for fine work. Stratn the restdue through a fine
cloth. Take $1 / 1 \mathrm{lb}$. powdered bronze green, varying to ult the taste with lampblack, red ocher, or yellow ocher. Take as much varn1sh and bronze powade as reLured, and lay it on the artlcle, which must be thorough. r. Touch up with gold powder according to taste, and
(69) P.T.B.B.asks: How can I produce a verde
onze on brass?
A. Dissolve 2 ozs. ntrate of iron and ozs. hyposulphite of soda in 1 pint water. Im.
merse the artucles till they are of the required tint, as Imost any shade from brown to red can be obta1ned; then wash well with water, dry, and brush. One part
perchloride of iron and 2 parts water milxed together, and the briss immersed in the tiquid, gives a pale or deep olive green, according to the time of inmersion.
If nitric acld 18 saturated witti copper, and the brass ipped in the liquitd and then heated, the article assumes
(70) G. W. H. asks: Can you describe the
aghts used in the late ritie contest at Crecimoor, be tween the, Irlsh and American teams? A. The back
sights were disks with small holes in them, moved verically on parallel bars by means of a screw. The bars itached to the stock of the rifie. The foresights were shaded by'an almost circular cover. 2. Can you ex-
plain the plan of scoring? A. The scoring was accordg to the wimbledon system, namely, 4 for a bullseye (71) T. C. says. in answer to W. F. M. (No. ort distance from the spring and then adding a $1 / 2$ inch
 heremainder of the distance, you will havea larger
(72), M. P. B. Says, in answer to F . A. A.
McG.s
query: why does a belt run to the highest polnt? A belt, In passtng over a pulley, fncllines to the
outline of that pulley. This outline on a taper pulley rosses the line of the belt obliquely, which throws the
rrst polnt of contact hagher on the pulley than it 18 at he central point. As the first contact soon becomes
he central point, the belt runs up. (73) M. . . S. Says. in answer to J. B. G.
who asks now to make music by rubbing the fingers on the top edges of goblets: : I have in my possession a mu
sical tustrument of rare purity and sweetness of tone called an harmonicon, whth was made by my father
very many years apo. The sounds are producea by thin fint llass hemispheres, supported by glass stems, and
varylng in diameter from $2 \Downarrow$ to 7 inches, ing an absolutely perfect and unchangng tone. The
nstrument has a compass of thre full octaves, with Instrument has a compass of three full octaves, with
the semitones, (and is enclosed in a mahogany case aking a handsome plece of parlor furniture. Any
by a skillful perfoimer. The tones far surpass in del-
cacy and sweetness any known instrument, uniting of the æollan harp to the power of lin. The pitch of each glaps is determined in the
lowing, and can be but slightly varied by cutting the lass lower at the edge. Water deadens the sound,and robs it of all its exquisite timbre. Many thousands
f glasses had to be made before the perfect instrunent was produced. It may be interesting to mention to divide a semitone into sixteen clearly defined in. tervals, the difference between any two successive
 or supports for top. Take two 12 inch boards, 12
eet long and 1 inch thick, for sides; nail the side boards firmly on to the ends of the 2×5 cross pleces and
put on a top of sultable material, and you havea bench put on a top of sultable material, and you have a bench
without legs. Then take four pieces of 2×5 inches stuff che ches across each pair of legs, 6 inches from the bot-
m of the leg, putting the legs at the proper distance artfor width of bench. Cut a fork or slit in the top ends; puta $3 / 2 \times 3 / 8$ inch bolt through each leg and the Ide board, and you have a good solld bench, that can
e takendown in five minutes by simply removing the four bolts. It can also be taken through any door or
window, or down or up stairs, or to any place required, hus saving a greatdeal of worry inctdent to trying to
nove the old style of bench. Besides, it is more easily
made than any other form in use.
(75) G. M. says, in reply to A. O. W.'s
query: Is there anything to make spelter fow more asily on copper? To do this, and on thin brass also, I
(76) A. S. says, in reply to N. S.' query Ing needles, without molds? Make a narrow trough
of sheet iron about two inches in length, and punch a In the bottom. Affix a handle. Pour the solder from
the ladle (quite hot) through the trough, at the same me moving the ladle and trough together rapidly over

Minerals, etc.-Specimens have been re ceived from the following correspond $\oplus n t \xi_{1}$, and examined with the results stated
F. C. R.-No. 1 is a quartzite, containing hematite No. 2 is princlpally fron pyrites and h matite. -J .B
Your minerals and fossils were not recelved. -R . Z -No. 1 is decayed shale, with red ocher. No. is a carbonate of ron. No. 4 is specular fron ore 5 is menaccanite. No. 6 is tron pyrites. No. 7
hematite. No. 8 is aragonite. No. 9 is shale naining red oxide of tron, with seams of carbo is magnetic oxide of iron. No. 2 is titaniferous iron
re.-H. W.-It is iron pyrites in quartzite.-T. T. R.No. 3 is a quartzite, depending quartzite.-T. T. R.-
and ayer of dark ron pyrites distributed in gray quartz rock. No. 5 is a
schistose rock containing tron pyrites, quartz, and
$\underset{\text { D. }}{\text { D. }}$ R. says $\overline{\text { that }}$ a man $\underset{\text { recently }}{\text { recter }}$ bringingit home, a child got hold of some matches,
and tried to ignite them by scraping on the barrel head e succeeded in igniting one, and in exploding the bar
el with a report which was heard four miles off. How came an explosive gas in a whisky barrel?-C. A. G
asks : How can I take oil stanins out of brown stone or reestone?-J. C. M. asks: Can you give me a recipe
or razor strop paste that will not cause the strop to be ome glazed in cold weather?-E.M. asks: 1 . How do
lumbers burn two pleces of lead pipe together, with oit and without the use of solder? 2. How do plumb ers make a nearly square bend on the end of a large
pipe?-E. B. G. says: Nearly every black bass I have caught sinee last spring has been full of worms in the
ulls, and all through the flesh ; they appear like small white specks curled up in the filesh,but, when taken out are alive. Fifteen years ago I caught a three pound
bass full of wormsabout half an inch in length. Some ishermen tell me that they are always so. Can any give me information on this?-I. asks: Will
oldfish breed in an aquarium?-A. P. asks: How an I deodorize rubber?-s. T. W. asks: Where can I
and tables of the variation of the needle at pltals for the last fifty or one hundred years ?-J. K cing cloth or paper that will allow of its belng washed
orcleaned afterusing in a machine shop.-B.C.W.asks Is rubber ever used
hydraulic presses?

COMMUNICATIONS RECEIVED

The Editor of the Scientific American acknowledges, with much pleasure, the receipt of original papers and contributions upon the following subjects
On Plumbers. By C. C. D
On the Sczaroch. By C. R. S.
On the Crystallization of Carbon. By
On a Small Engine. By H. D
On Life and Matter. By R.L
On the Phylloxera. By J. L.
On Machinists' Tools. By C. M. B.
On Practical Mechanism. By R. E. W. On the Jewish Race. By S. E.
Also enquiries and answers from the following:

HINTS TO CORRESPONDENTS.
Correspondents whose inquiries fail to ap pear should repeat them. If not then pub lished, they may conclude that, for good rea sons, the Editor declines them. The address of the writer should always be given. Enquiries relating to patents, or to the patentability of inventions, assignments, etc. will not be published here. All such ques tions, when initials only are given, are thrown into the waste basket, as it would fill half of our paper to print them all; but we generally take pleasure in answering briefly by mail, f the writer's address is given.
Hundreds of enquiries analogous to the following are sent: "Who makes watch and clock springs? Where can sharpeners for cotton gins be obtained? Who sells celestial maps? Where can hand machines for ma king cordage be bought? Who sells artifi cial insulators? Which is the best battery for telegraph sounders? Where can smal malleable iron castings be procured? Who sells glass oil cups? Who makes a cow milk ing machine? Where can filters for ma ple sirup be obtained?" All such personal enquiries are printed, as will be observed, in the column of "Business and Personal," which is specially set apart for that pur pose, subject to the charge mentioned at the head of that column. Almost any desired nformation can in this way be expeditiously obtained.

[OFFICIAL.] Index of Inventions por which
Letters Patent of the United States were granted in the week endina
September 29, 1874,
and rach bearing that datr. [Those marked (r) are retssued patents.]
grist,
Arm ptt shield, H. D. Lockwood................. 155,529
Bale tie, Botsseau.................... 155,413
le tie, J. Colley................................ 155,423
Baton, policeman's, E. D. Bean................... 155,360
Bed bortom, spring, Lord \& Blanchard............. 155,530
edstead, cabinet, C. S. Trevitt.................... 155,476
edstead, invalid, H. Bull........................ 155,417
en hive, A. G. Hill 155,443
Hive, S. Tillotson.......................... 155,475
Blood, treating, E. H. Huch 155,517
ot sole edges, burıshing, L. Hussey........... 155,447
t tackIng machine, H. G. Thompson.......... 155,554
het holder, J. Boyd......................... 155,415
6
Box, butter transporting, Guilbert et al........... 155,373
Brick, repressing, A. R. Stout.................... 155,474
pg and vent, E. M. Cranda1...................... 155,425
ung starter,E. B. Ripley......................... 155,387
俍
stle, A. M. Weber........................... 155,480
ton, A. E. Newcomb........................ 155.383
on, o. D. w
ndle holder, C. Eettel......................... 155,450
brake, G. B. Bryant.......................... 155,991
Car coupling, J. Carpenter...................... 155,422
r coupling, S. Dalley.............................. 155,502
coupling, J. H. Nutting...................... 155,52
coup11ng, P. Oswald............................ 155,544
ar heater, J. C. T. Mousseron.................. 155,540
Car wheel, Z. S. Durfee........................ 155,433
rs, dumpling, T. S. Bishop.................... 155,48i
er, H. A. Chaptn (r) 6 ,0,000
ding engline, H. J. \& W. D. Davies............ 155,503
rlage, chlld's, S. G. B. Blackm
age, chlld's, G. P. Stetnbach.................... 155.551
5
2
6

[OFFICIAL. $]$

 Index of Inventions
Or which

Patent of the United States

 September 29, 1874,and Rach bearing that datr.
[Those marked (r) are retssuea patenta.]

Clock-wlnding ratchet, G. H.
Clothes pounder. B. F. Frey..
Clutch, rope, T. . B. Byrne
Cock, electro-magnetic stop, Coe \& Fisk Column, metallic, J. L. Chapman. Cooler, water, J. W. Taylor. orset spring, W. B. Cargill.
Cultivator, corn, A. Canfeld
Curtain fixtures, E. B. Lake..................155,522,

Dental engine hand plece, Edson \& E Door fastener, J. Blake..............
Dress protector, H. M. Macdonald.
Drill, seed and grain, A. Canterbury. Elecvator, J. B. Sweetland.
Elevator, water, E. P. Le Blanc
Engine, electric, H. Van Hoevenburgh Engine, electric, H. Van Hoeven
Fan, automatic, I. S. Eastman.
Freplace, etc., J. Robertson
Flower pot, J. E. Landers..
Friction brake, E. C. Sanders
Fuel from coal dust, Whiting \& Blyle
Furnace, Belgian zinc, T. Hertz.
urnace, lead, J. V. Woodhouse
Furnace, steam boiler, R. Huff....
Gas light extingulsher, R. T. Booth.
Glassware, B. Bakewell, Jr.
Grain btnder, Lenz \& Witt
Grain binder, Lenz \& Wittt
Grate, C. E. Holt....
Grinding and polighing
Harrow, w.s. o'Brien.
Hat box cutting knife, W.
Hatchway, self-closing, G. Muller
Hay fork weighing attachment, M. Scot
Heater, car, J. C. T. Mousseron..
Heating apparatus, E B. Aldrtch
Horseshoe, G. Bryden..
Horseshoe, R. A. Goodenough
Hubs, boring, J. H. Crispell.
antern, T. Langston
Latch for sllding doors, w. Sellers.
Lath, attaching metallic, P. E. La
Lock, combination, Barger et al.
ock, seal, A. D. Hoffman
Lubricator, T. C. Pearson.........
Measuring apparatus, astance, s. McElro
echanical movement, J. Benno
Mllk carrier, A. W. Clifford
Milker, cow,F. W. Kordena
Mill applianee, rolling, J. L. F
Millstone dress, C. R. Hinson.
Mop and brush holder, A. P. Seymour
op head, C. B. Clark
Mot1on, converting, G. W. Hight.
Motion, link, J. Sandall, Jr........
Motor, spring, W. H. Van Keuren
Mustc leaf turner, G. S. Rickan
Nut lock, J. U. and H. W. Fishe
on wells, casing head for, R. R. Armo Organ attachment, reed, s. B. Shoninger. xidizable metals, treating, H. P. Decher Pantaloons stay, E. S. Yentzer
Paper bag machine, c. Woodhull. Paper box, A. E. Turnbull
Pictures, device for suspending, C. Mason Ptman, W. D. Winton....
Planing machine, A. Bean....
Planing machine, L. M. Coll
Planing machine, L. M. Colilins.
Planing machine, W. H.
Planing machine, W. H. Doane..
Planter, corn, Ball \& Mole.......
Plow, gang, H. Bumgarner.
Plow, subsonl, I. M. Griffn.
Plow, gang, H. Bumgarner
Plow, subsoll, I. M. Griffn
Pocket book, G. Jasmagy.
Pocket book, G. Jasmagy..........
Printer's chase, Finch \& Megill.
Pump, E. R. Bohan
Pump, double-acting steam, C. Rogers Purifier, middlings, A. R. Gullder.. Raft, life, J. Cone.............. Rallroad frog points, die for, J. W. Close Rallroad frog polnts, making, J. W. Close
Rallroad frogs, brace for, J. W. Close... Rallroad signal, H. C. Crosby.

```
Rallroad bridge turntable, R. W. Smith
```

aillroad metallte the, H. L. De Zens
Rake and tedder, ho:se, Smith \& Willet
ake, horse hay, C. Edgar.......
Refrigerator, C. D. Hicks (r)
Rope-serving apparatus, J. A. Dayton
and and gravel heater, S. s. Dalsh
Saw mill dog, H. D. Dann (r).........
Sawing machine, lath, S. C. Web
ctissors sharpener, J. H. Beardsley
craper, W. Thompson..............
cythe fastening, D. W. Marsto
eeding machine, J. F. Winchel
ewing machine treadle, J. Sigwalt
Shaft coupling, E. Weible.......
hutter,
skate fastening, C. o. Luce
parz arrester, M. Rumely
park extinguisher, W. F.
Sike extractor, W . Devine
pinning machine, C. Z. Mattiso
pinning machine bobbin holder, J. Wellens
Steam trap, J. Anoney....
Stone, art1ficial, J. McLea
tove, parlor cooking, E. M.
tove, portable, F. Schmidt
able for paper hang ers, folding is in D . Farra

Table, Ironing, W. G. Donnell..
Tobscco, treating, P. M. River
Tobscco, treating, P. M. R1ve
Toy catapult, T. M. Fitch....
Treadle motion, J. H. Thayer....
Tripe, etc., preparing, L. S. Fale
Vehicle seat, T. Fleming
Vehicle spring, w.Evans................
Vehicle tongue support, F. C. Brooke.
Vehicle wheel, W. Zierath
veneer cutter, C. Munn
Ventilator for bulldings,
V. R. Barker.
Vessels, steering, F. E. Stckels (r)
Wagon brake.s. Shultz........
Wagon, buck board, R. Knapp
Walls and cellings, or namenting, P. J. Hardy
Washing machine, N. W. Brewer
Washing machine, J. K. Hunt
Water regulator for clsterns, A
Water regulator for cister
Whip socket, G. L. Lafin.
Whips, manufacture ol,
Windmill, W. H. Wheeler
Wrench, plpe, J. Bedman.....
Yoke clasp, neck, W. D. G1bb
APPLICATIONS FOR EXTENSION
Applications have been duly filed andare now pending
or the
ingsupon the respective applications are appointed for
the days heretnafter mentioned:
31,030.-SaUsage Stuffer.-A. Nittinger. Dec. 12
31,133.-Cultivator.-D). S.Stafiord. Dec. 30.

EXTENSIONS GRANTED.

30,191.-Paper Bag Machine. \sim H. G. Armstrong.
30,215--HARvesters.-T. N. Foster. Two patents,
30,233.-Martingale Ring.-De W. C. Lockwood
30,234.-Planing;Valve Seats.-C. B. Long.

DISCLAIMERS.

rmstrong
102,462.-COoking Stove.-R. M. Hermance.

DESIGNS PATENTED.

7.

,7789.-PRNTIN to
7,782-SHITR.-H. Heath, Brookilyn, N. Y. Y.
7, 783 and 7 , 884. -PRINTING TYPE.-H. Ihlenbur

TRADE MARKS REGISTERED.
-FErtilizers.-Baugh \& Sons, Philadelphia, Pa
2,001. - Flax Websing.-Boston Mills, Boston, Mass.
2,002.-Hat Tips.-Christy \& Co., London, England.
2,003.-Eve Balsam.-W. M. Ollife, New York cit
2,005.-WHisky.-Shlelds \& Co., Cincinnati, o.
SCHEDULE OF PATENT FEES.
On each Caveat....
On fillng each application for a Patent (17................... years) On 1ssuing each original Patent..
On appeal to Examiners-1n-Chief.
On appeal to Commissioner of Patents..
On application for Reissue..................
On application for Extension of Patent.
On application for Extension
Ongranting the Extension..
On flilng a Disclaimer
On an application for Design ($3 \times$ years)
Onapplication for Destgn (7 years)..

CANADIAN PATENTS.

List of Patents Granted in Canada,
September 3G, to October 6, 1874.
3,880.-E. F. Herrington, West Horsick, Rensselaer coun
ty, N. Y., U. S. Improvements on harvester pitman guldes and holders, called "Herrington's Harvester Pltman Guide and Holder." Sept. 30, 1874.
3,881.-I. E. Thompson, Stanbridge, Missisq P. Q. Improvement in apparatus for cooking vegeta bles, etc., called "'Thompson's Vegetable Steamer." Sept. 30, 1874.
Se82.-A. V. M. Sprague, Rochester, Monroe county,
N. Y., U. S. Impover N. Y., U. S. Improvement on can ope
Sprague Can Opener." Sept 30, 8874 .

Sprague Can Opener." Sept 30, 1874.
3,883.-T. A. Williamson, Knowlon, Broome county,
P. Q. Improvements on milk vats, called "Williamson's Packed Pan." Sept. 30, 1874.
3,884.-H. A. Mandersen, townshtp of Maria, Bonaven-
ture county, P. Q. Improvements on sletghs and carture county, P. Q. Amproverndined, "Manderson's Comblned Sletgh
and Carrlage." Sept. 30, 1874.
385.-I.Lund, township of East
Ont. Improvement Ont. Improvements on corn h
Corn Husker." Sept. 30, 1874 .
Improvementin a machine for turnton county, P. Q
"Barlow's Cheese Turner." Sept. 30, 1874.
s,887.-A. Rodgers, Muskegon, Muskegon county, Mich1 gan, U. S. Improvements in circular saw mills,
"Rodger's Circular Saw Mill." Sept. 30, 1874.
3,888.-J.W. Jones, London, Ont. Composition of mat
s,88.-J. be used in the preservat
ter to ber
"Jones' Eggnolia." Sept. 30,1874 .
3,889.-W. W. Clay, J. Kay, and T. McCash, Paris, Bran county, Ont. Improvements on wood-drying appara
tus, called "Clay, Kay, \& McCash's Wool-Drylng Appa ratus." Sept. 30, $18^{\prime} \mathrm{i}^{4}$.
3,890.-A. O. Kittredge, W. H. Clark, and W. I. Clark
Salem, Columblana county, O., U. S. Improvement on a machine for marking lines of bend of sheet meta for molding, called "Kittredge, Clark \& Clark's Im Metalfor Molding." Sept. 30, 1874.
Me89.-G. Scott, Montreal, P. Q Improvements on a machine for lifting wheeled vehtcles and other heavy
wetghts, called "Scott's Carriage Lifting Jack." Sept. 30, 1874.
$3,892 .-T$. H. Foote, New York elty, U. S. Improve ments in telegraph instruments, called "Foote \& Ran dall's Improvement in Telegraph Instruments." Sept.
30, 1874.
3,893.-G. Pye, St. John, St. John county, New Bruns,
wick. Improvements on harvesters, called "Pye's Harvester." Oct. 1. 1874.
3,894.-C. S. Fuller, O. M. Morse, H. J. Burdick. Oswego, N. Y., U. S., and S. Howes, A. Badcock, N. Badcock, and C. Ewell, Silver Creek, Chatauqua county
N. Y., U. S. Improvements in middlings purifers
, called "Fuller's Improved Middilngs Purifier." Oct. 1,1874.
$3,895 .-0$.
1, 1874. M. Morse, C. S. Fuller, H. J. Burdick, Os-
wego, N. Y., and S. Howes, A. Badcock, N. Badcock
andC. Ewell, Silver Creek, Chatataqua county, N. F .
U. S. Improvements in middlings purifiers, called U. S. Improvements in middlings purifiers, called
"Morse's Improved Middlings Purifier No. 2." Oet. 1, 1874. .
1, 1874.
3,896.-H. J. Lingenfelter, Glen, Montgomery county
N. Y., U. S. Improvements on portable furnace called "Lingenfeiter's Portable Furnace." Oct. $\xrightarrow{18,897 .-A}$
,897.-A. F. Audrews, New Haven county, Conn., U.S.
Improvements in annealing and toughening iron, called "Improvements in Annealing and Toughening Iron." Oct. 6, 1874.
3,898.-A. Redgers, Muskegon, Muskegon county, Mich.
U.S. Improvements in devices formorige ing logs, called "Rodgers' Log Mover and Barker.' ing logs, cal
Oct. $6,1874$.
3,999.-A.
,899.-A. Rodgers, Muskegon, Muskegon county, Mieh.,
U. S. Improvements in U. S. Improvements in grate bars, called "Rodgers
Grate Bar." Oct. 6,1874 . ments K. Dedertck, Albany, N. Y., U. S. Improve "The P. K. Dederick Horse Engine." Oct. 6, 18i4. Salem. O. Kittridge, W. H. Clark, and W. T. Clark, Salem, Columbiana county, O., U. S. Improvements
on a mallet for smoothing sheet metal, called "Kiton a mailet for smoothing sheet metal, called "Kit-
tridge, Clark \& Clark's Improved Mallet for Smoothing Sheet Metal." Oct. 6, 1874.
$902 .-$ J. Bradley and W. sex co. Bradley and W. H. Pearson, Lowell, Middlesex county, Mass., U. S. Improvements on knitting
machines, called "Bradiep's Vartety chine." Oct 6,1874 903.-A. Schuite and Myer Stern, New York city, U. S. Improvements on head and face protectors, called "Schulte's Head and Face Protector." Oct. 6, 1874. 904.-H. T. Hotchkiss, Rock Island, Stanstead county,
P. Q. Improvements on mop wringers, called "Hoteh. kiss's Mop Wringer." Oct. 6, 1874 .
 STATIONARY STEAM ENGNE OF

PLANING \& MATCHING,

The Phrenological Journal

$T H E$

Stap File and Binler,

ADAPTED FOR THE SCIENTIFIC AMERIC
AND OTHER ILLUSTRATED PAPERS. This File and Binder consists simply of stiff covers in loth, with a flexible back, and broad heavy leather straps
cross the back at the top and bottom of the inside, be. tween which are stretched stout cords, for holding six or twelve months' numbers of a
ilustrated by the following cut:

The Flle is used by merely opentng a paper to its cell
tral fold, and slipping one side under the first vacant ord on the right, allowing the cord to rest in the cen
ter of the fold.
For the conventence of our subscribers, Fply of Files constructed as above, holding fifty-two papers, and lettered "Scientific American" in gilt oil he stde.
Price at this Office...............................1.25
MUNN \& CO.,
pU BLISH ERS SCIENTIFIC AMERICA
37 Park Row, New York.

October 3I, 1874.]
§nientifit Gumricau.

Watson's Modern Practice of American Machinists and Engineers,

 Watson.-A Manual of the Hand Lathe:

 HENRY CAREY BAARD, 406 Walnit streblisher,
$\overline{40}{ }^{\text {F }}$
 C PEAPEST PO WER-Just patented-The

A NEW PATENTOR SALE-In Locks

 A POLDEN HARVEST for arents. Brooks's

 Bills Prices. Send tam, fin cirenars

LAMB'S KNITTINC MACHINE

$\mathrm{I}^{\text {sthane only }}$ Machine
 caw and widen 1 t nar that
can shape and com

Established 1858

The best and cheapest Paint in the the Trade everywhere. PRINCE'S METALLIC

Iadies at Home

H. WESLEY PERKINS, "SCIENTIFIC" ENGRAVER 31 PARK ROW

MAGNETS-Permanent Steel Magnets

HAS NO EQUAL FOR VARIETY, QUALITY, AND ECONOMY OF ITS WORK. Hor Car Builders, Planing Mills, House Builders, Sash, Door and Blind Makers, Agricul
HORIZONTAL AND UPRIGHT BORING MACHINES, SUPERIOR TO ANY IN USE.
PLANING AND MATCHING MACHINES, and other Wood-working Machinery.
Send for Catalogue and Price-List. BENTEL, MARGEDANT \& CO., Hamilton, Ohio.

 $\frac{\text { Important to the Trate. }}{\text { Inder }}$

Niagara Steam Pump. CBAB. B. HABDICK,

$\mathbf{W}^{\text {OOD.WOREING MACINERY GEN. }}$

THE Union Iron Mills, Pittsburgh, Pa.

Planing and Matching
 PATENTS F. T. H. RAMSDEN, Bryan Block, ntroduced. Manufacturers' Agent.

 $\$ 10$ to $\$ 1000 \begin{aligned} & \text { lnvested } 1 \text { In Stocks } \& ~ G o l d ~ p a y s ~\end{aligned}$

RICBARDSON, MORIAM A CO.

 PORTABLE STBAM ENGINES, COMBIN-

AGENTS WANTED.

card on which to send your addres
costs but one cent $\begin{aligned} & \text { Write at ance } \\ & \text { F. M. REED, } 8 \text { TH ST., NEW YoRK. }\end{aligned}$.

BL

FRMAStone and Ore Breaker Chune and Ore Breaker

 For legal advice concerning

Corrugated Iron,

 Niagrara soin harmok

Fifth and Last Gift Concert Public Library of Kentnckyl

November 30, 1874
DRAWING CERTAIN AT THAT DATE.
LIST OF GIPTS

One Grand Cash Gift.....................8250,000,	
One Grand Cash	
One Grand Ca	
One Grand C	
Cash Gi	20,000 each.... 100
10 Cash Gi	14.000 each.... 140,000
15 Cash Gift	10,000 each.... 150,000
20 Cash Gifts,	5,000 each.... 100,000
25 Cash	4,000 each.... 100,0e0
30 Cash Gifts	3,000 each.... 90,000
50 Cash Gi	2,000 each .. 100,000
100	1,000 eack... 100,000
240 Cash	500 each... 120.0
500	100 each... 50,000
00 Ca	50 each....950.00

Whole Tickets	\$50 00
Halves . .	2500
Tenths, or each Coupon	500
11 Whole Tickets for	50000
221/2 Tickets for	1,000 00

 THO. E. BRAMLETTE, Agent and Manager. Public Library Bullding, Loulsville, Ky

B ANERUPTS SALE OF HORIIONTAL

CoLD ROLLED SHAFTING.

 SHINGLE \& BARREL MACHIRERY

 WROUGHT $B R A S S$ WOND CAST
IRON PIPE,
BFOR OR ORK
IUMBERS, STEAM AND GAS FITTERS. Machinery.

 ine oy measur rement. as the eetter press. Advertisements
must berecenved at tubication oftce as early as Friday

Salamander

Felting $\begin{gathered}\text { the only indestructible covering for boller } \\ \text { steam and hot- blast pppes. } \\ \text { A. G. MILts, Manager, 23Dey st., N.y }\end{gathered}$

N FARLY 1000 NOW IN USEE-BUF

 Hubbard \& Aller,啋 Engines, Boilers, and Machinery Shafting and Pulleys a Specialty:
MPORTANT FOR ALL LARGE CORPO-

RLAREMS Sidicimipup

HARTFORD

STEAM BOILER

 Inspection \& Insurance COMPANYW. B. Franklin, V. P’t. J. M. Allen, Pres't

Munn \& Co.'s Patent Offices.

Established 1846.

The Oldest Agency for Soliciting Patents in the United States.

tWenty-eight Years, experience.

 MORE PATEN' \bar{S} have been secured through this agency, at home and abroad, than through any other in SIXTTY THOUSAND inventors have availedthemselves of Munn \& Co.'s services in examining their in ventions, and procuring their patents.
They employ as their assistants a corps of the most ex perienced men as examiners, specification writers, and
draftsmen that can be found, many of whom have been sedraftsmen that can be found, many of who
ected from the ranks of the Patent Office.
ected from the ranks of the Patent Office.
MUNN \& CO., in connection with the publication of the Scientific American, continue to examine inventions
confer with inventors, prepare drawings, specifications, and assignments, attend to filing applications in the Patent Office paying the government fees, and watch each case step by
step while pending before the examiner. This is done through their branch office,corner F and 7th Streets, Washngton. They also prepare and file caveats, procure design
patents, trademarks, and reissues, attend to rejected cases (prepared by the inventor or other attorneys) procure copymatters of infringement, furnish copies of patents: in fact n foreign countries.
Patents obtained in Canada, England, France, Belgium Germany, Russia, Prussia, Spain, Portugal, the British Colonies, and all other countries where patents are granted.
all invention in made in the Scientific American of all inventions patented through this Agency, with the
name and residence of the patentee. Patents are often name and residence of the patentee. Patents are often

by such notice

A pamphlet of 110 pages, containing the laws and full dipertaining exclusively to Foreign Patents, stating cost for each country, time granted, etc.., sent free. Address MUNN \& CO.,
Publishers SCIENTIFIC AMERICAN,
\qquad

SUPER-FIPATERS

\section*{Pyrometers. | For teatng OVens, bo |
| :---: |
| er tues, Blast turace |}

dain
INDEPENDENT
BOHER FEEDERS SEND FOR Illustrated catalogue COPE MAXXEL MFG.CO
 MURRILL d KEEZER. 44 Holliay St. Bat.

MORRIS, TASKER \& CO.,

PASCAI IRON WORIS: PHIIADFIPHIA,

TASKER IRON WORKS, NEWCASTLE, DELAWARE

STEAM BOILER AND PIPE

THE PULSOL

 PORTLAND CEMENT A Practical Treatise on Cement furnished Frerp.
S. L. Merchant © Co. 76 South St., New York.

TRON PTANPRS,

PORTLAND CEMENT,

 AMERICAN SAW CO.

TRENTON, N. J.
GREAT REDUCTION ${ }_{\text {ı }}$ PRICES mOVABLE-TOOTHED
CIRCULARSAWS. Senat or newt Price Lut. ed

HUSSEY, WELLS \& CO.,

CAST STEEL,

Including the " Granite" brand for Edge Tools.
Particularattention given to 'the manufacture of CAST STEEL TEETH,

TANNATEOFSODA, BOILER SCALE PREVENTIVE-Jos. G. Rogere \&
CO.,Madison, Ind. Agencies: R. H. Lee, Titusville. Pa.;
Owent

WIRE ROPE.

B

Todd \& Rafferty Machine Co.

Manufacturers, Syracuse, N. Y BURLEIGH
Rock Drills and Air Compressors,
the burleigh rock drill co.,

M1R 100

SCIENTIFIC AMERICAN. FOR 1875. the most popular scientific paper in the worid.
thittiett pear.
VOLUME XXXII.-NEW SERIES. The pyblishers of the SCIENTIFIC AMERICAN beg new volume commences. It will continue to be the alm of the publishers to render the contents of the new
volume more attractive and useful than any of ats pre volume mor
decessors.
It is the Most Popular Paper in the World ! having the large clrculation of nearly 50,000 per week hundred engravings of new machines, useful and nove inventions, manufacturing establishments, tools, and

To the Mechanic and Manufacturer !
No person engaged in any of the mechanical pursuits
should think of dolng without the Scientifio AmeriOAN. Every number contalns from six to ten engravings in any other publication.
The SCIENTIFIC AMERICAN is devoted to the inter
ests of Popular Sctence, the Mechantc Arts, Manufac ests of Popular Sclence, the Mechanic Arts, Manufac-
tures, Inventions, Agriculture, Commerce, and the ndus trial pursults generally; and it is valuable and instrucin the Household, the Library, and the Reading Room By the new law, the postage must be paid in advance
in New York, by the publishers; andthe subscriber then receives the paper by mall free of charge.
One TERMS.
$\begin{array}{lll}\text { One copy, one year(postage included).......... } & 83.20 \\ \text { One copy, } 81 \times \\ \text { six months (postage included)...... } & 1.60\end{array}$ One copy, three months (postage included). One copy ofsclentinc American or one year,an" one copy of engraving,
One copy of Sclentific American for one year, and one copy of "Sclence Record" for 1874...... 5.50 Remit by postal order, draft or express.
Address
Address all letters and make all Post ofllee orders and
MUNN \& CO.,
37 PABR ROW, NEW YORE.

