IMPROVED MACHINE FOR TURNING CARRIAGE AXLES.

Thereare few operations in the manufacture of wagon more trying and tedious than the setting of thimble skeins on theaxles, since even the most skillful workman is unable to give to all of the latter the same " pitch and gather." Like very many other jobs, difficult to accomplish by hand labor, this it is now possible to do by the aid of ingenious machinery; and a novel apparatus for the purpose will be found represented in the annexed engraving. The device turns the axle to a pattern, making a perfect fit. Should the shell of the kein be of uneven skin be of uneven thickness, the axle is turned to correspond, o that not only to one but to any number of sets of wheels will be imparted a precisely similar pitch añ gather. The axle is made to fit the inner surface of the skein throughout its whole lencth out its whole length, which cannot be done by hand labor, thus in. uring a much more efficient support, while, in addition, the machine will bore the holes and screw in the ekein bolts at the rate of forty wagons in ten hours.
A is the driving pulley, which rotates the mechanism supporting the knife in the standard, G. B is a curved cutter bar, to the outer end of which is secured the knife, C, and which enters the sliding block, D , as a thertin by the feed gearing shown at E . At H is the clamp Δ, which are suitably shod on their forward ends. The which holds the axle while it is operated upon, and at I handles are supported by means of a crotched bar, B, which
is the pattern, just below which is shown the end of the bar, B projecting which, torminating in a friction roller, enter B , projection thereby guiding the knife in its revolution, thus necessarily causing the axle to be turned to an accurate fit. In turning other forms, the pattern is of course changed and other requisite alterations made.
The invention, we are informed, is to be exhibited in ope ration at the Chicago Exposition. It was patented May 28, 1872 , by J. G. Aram, and is manufactured by Messrs. Williams, White \& Co., of Moline, Ill., of whom further information may be had.

To Destroy Rose Slugs.

A correspondent of the Country Gentleman reports that nothing will so thoroughly destroy rose slugs as wood ashes. The ashes must be sifted on early in the morning while the leaves are damp, the branches being turned over carefully, so that the under sides of the leaves, to which the young slugs cling, may get their share of the siftings. If the night has been dewless, in order to make the work thorough, first sprinkle the bushes, and the ashes will then cling to the slugs, to their utter destruction. This may be repeated without injury to the roses as often as the pests make their ap. pearanice.

School of Millwrights.

Professor Isham Walker, of Lexington, Tenn., suggests that various State organizations of millers and the National Association unite and subscribe funds for the building (at Chicago, Ill.) of a model school flouring mill, at a cost of $\$ 150,000$. He shows that such an institution, supplied with the best examples of modern wachinery, and exhibiting the latest improvements and examples of practical science in milling, would be of immense instructive advantage to millwrights throughout the country, while the stockholders, he thinks, would realize handsome dividends every year.

Recently on the Chicago \& Northwestern road the engine Wabansia (No. 22) brought a train from Clinton, Iowa, to Chicago, 138 miles, in 153 minutes. Throwing out the time lost in three stops, the actual running time was 142 minutes-being a fraction less than a mile per minute.

WHITFORD'S IMPROVED POTATO COVERER.

The object of the implement represented in the annexed ongraving is first to form two parallel furrows into which the seed potatoes are dropped. Then, by reversing the ap paratus and making suitable changes of the handes, etc., row, molds thereon a uniform ridge of earth. Our illustrarow, molds thereon a uniform ridge of earth. Our illustra-
tion represents the device as adapted for cutting the furrows,

ARAM'S MACHINE FOR TURNING CARRIAGE AXLES

 that it can be turned without dificulty. county, N. Y.Cast Nickel Plates.
For some years back much attention has been drawn to
horse to assist in lifting the machine clear of the ground, so
Patented August 4, 1874. For further pariciculars address the inventor, Mr. Leroy Whitford, Harmony, Cbautauqua the galvanized plaring of metals, especially iron, with nickel, and larger plates of metallic nickel have been much wanted for the anodes of the galvaizing nickel salt baths, The extraordinary re The extraordinary re fractory nature of pure metallic nickel has been, till lately, a great
hindrance to the casthindrance to the cast-
ing of large plates. ing of large plates.
Borchert, however, has lately succeeded in casting nickel plates 18 incheslong, 14 inch es broad, and $\frac{1}{6}$ thick. The nickel litberto used, Saxon Würfelnickel of 98 to 99 per cent strength, is fused in crucibles in a sim ple brazier's furnace, by a coke fire. The fusion requires continual and laborious attention, the metal not $b \in$ coming fluid till after at least six hours' firing. As soon as it becomes fluid, it must be cast without delay into the sand molds, for as soon as the fire drops a littie, the nick el is liable to solidhandles are supported by means of a crotched bar, B, which is hinged to one transverse piece of the frame, and the upper end of which enters a socket on the handle brace, and is secured therein by a screw. The front portion of the handles is attached to the other transverse bar in any desirable way Also secured to the frame, on the opposite side from the fur row guides are two steel plates, C.
After the furrows are made and the seed dropped, the handles are removed and the thills disengaged. The imple ment is then turned over, bringing the plates, C , down, and the handle and thills readjusted. The machine being drawn by the horse so as to bring each furrow midway between the ridging plates, the soil is gathered between the latter a their front ends, and delivered at their contracted near extremities, thus forming a neat ridge.

The inventor informs us that the device is excellently adapted for hilling and hoeing, as it works over the row in stead of in the space between the plants. It is also recommended for ridging for root crops, sweet potatoes, etc., and for depositing manure previously spread broadcast into the furrows. The guides and plates, being secured to the frame by set screws, may be adjusted so as to alter the width of ridge and space between the furrows. When it is desired to change the direction of the implement, as at the end of a furrow, it is simply necessary to lift slightly on the handles, when the tongue, D, will enter a recess formed in the front end of the handles, and, bearing against it, will enable the
, ify again into a solid mass, in which case a renewed fusion
in the same furnace is impossible.-C, A. Borchert.

Pictou Coal.

Mr. Edward Gilpin, F. G. S., communicates to Saward's Coal Trade Journal the following interesting details regarding the uses of the above named fuel as applied to steam and gas generation: In domestic grates, the coal burns readily, and remains lit for a long time; but the quantity of light, bulky ash left renders it undesirable for household employment. Coal from the works of the Acadia company gave a percentage of ash of $8 \cdot 3$, which was light, candy and with little clinker. The practical evaporative power of aach pound of fuel, in pounds of water from 212° Fah., was equal to 7.34. Another trial gave $7 \cdot 69$ pounds. Under more avorable conditions', an evaporative power of 9.6 to 9.7 was obtained for coal from the Albion main seam. Compairing these figures with those denoting the evaporative power of Liverpool, Newcastle, and a Scotch coal, the latter show under the same circumstances $7 \cdot 84,8.66$ and 6.95 pounds respectively. The steamers of the Allan mail service and the Grand Trunk Railway of Canada are large consumers of the Albion mines coal. The following table exhibits the relative values for gas purposes

| | | Cubic feet | Candle |
| :---: | :---: | ---: | :---: | :---: | :---: |
| power | | | | Coke

* Not worked at present.
\dagger Supposed westward extension of main seam.

Ordinary tests failed to show the presence of sulphur in ${ }^{30}$ me seams of the eastern groups, while the average present in the lower seam is not above $0 \cdot 5$, much of which can be re $m_{\text {oved }}$ by careful screening.

The Chinese rebel against the sewing machine, because they say, it cheapens labor and deprives their tailors of work. At Hong Kong several Chinese tailors, who lately undertook to use machines, were assaulted and expelled from the native community. In America, Chinese cheap labor is opposed and ridiculed. In China, American cheap labor, by machinery, is equally repudiated.

MUNN \& CO., Editors and Proprietors published weekly at
NO. 3ry PARK ROW, NEW YORK.

o. D. MUNN

A.e. beach.

TERMS.

One copy, one year, postage included.....
Clubrates:
Ten copies, one year, each $\$ 270$, postage included.................. $\$ 2700$
 nd the subscriber the

FOLIJME XXXI, No. 14. [New SERIEs.] Twenty-ninth Year.
NEW YORK, SATURDAY, OCTOBER 3, 1874

CANDLE FLAMES AND STREAKS OF CLOUD.
Professor Tyndall ends his most suggestive address as President of the British Association with a half regret that
he must quit a theme too great for him to handle, but he must quit a theme too great for him to handle, but which would be handled by the loftiast minds ages after he and his hearers, like streaks of
into the infinite azure of the pas

With what had previously been said still ringing in their ears, this simple figure must have carried to those that heard it a deeper meaning than it would seem to bear when standing alone. At another time, or coming from another speaker, the words might be taken to imply no more than the prospect of human forgetfulness, the oblivion in which the names and deeds of so many human generations have been lost; but in Professor Tyndall's system the failing memory of man forms no essential part of the "infinite azure" to which all human kind is hastening. Indeed the immortality of fame is endless in contrast with the speedy dissolution that a waits us when the environment masters the organism which alone determines the activities that make us what we are.

The cloud melts and disappears, not to continue a ghostly existence in another world of immaterial sky and cloud, as savages have imagined, but to cease utterly and for ever as that particular cloud, while its dissevered elements remain to form other combinations, to assume other forms, to perform other functions, in the ever changing sky and earth.
So man, equally the product of molecular activity, "derived in his totality from the interaction of organism and environment through countless ages past," may or may not make himself a connecting link in the chain of organization and thereby impress his personality upon the future; but whether he does or does not, his individuality ends with the physical frame which gave it being: a product of material conditions, he ceases to exist when death puts an end to those conditions, and fades into the "infinite azure," not lost, but no longer an integral part of the Universe.
It is a striking commentors on the limitations of human thought that precisely the same conclusions were arrived at by the path of experimental philosophy in India thousands of years ago by pure contemplation. The theology of India
was underlaid with pantheism. In the Vedas-those books was underlaid with pantheism. In the Vedas-those books
of incalculable antiquity-God is the material as well as the cause of creation, "the clay as well as the potter." Later, the "clay" took on the attributes of the "potter" and became the motor as well as the matter of the Universe. Cen turies before Democritus conceived the existence of atoms,or Lucretius detected in the potency of matter the sufficient cause of all things, without the help of the gods, the school of Canade had developed an atomic system as comprehensive as that which Professor Tyndall, with the rest of the modern scientific world, holds today. By the unaided concurrence of atoms, those dusky scholars explained every phenomenon, mental as well as physical, animals, men and gods.
But this was not the highest reach of Indian thought. From the contemplation of matter endowed with "the promise and potency of every form and quality of life," to that of pure force without any association of substance, the step is long but inevitable. Faraday took it when he conceived of a body not as an aggregation of substantial atoms but as an assemblage of "points of force." In like manner Gotama, the founder of Buddhism, took it, basing his system wholly on the idea of force. In other respects, his views of man and Nature are in philosophical accord with those which underlie the last results of modern Science. His fundamental priaciple is the supremacy of force. He asserts an impelling power in the Universe,a self-existent and plastic principleg but not a self existent, eternal, personal God. He rejects inquiry into first causes as being unphilosophical, holding that finite minds are capable of dealing with phenomena alone. Like the modern scientist he denies the interposition of any such agency as Providence, maintaining the omnipotence of law. Equally opposed is he to the possibility of chance, saying that what we call chance is but the effect of an unknown, unavoidable cause.
When called on to account for the spirit of man, whence it comes and whither it goes, the reply, in oriental imagery, calls up the flame of a lamp, and asks in what obscure condition it lay before it was kindled, and what becomes of it when it is blown out?
Translated into terms of modern Science, Gotama's answer is as one with Professor Tyndall's. The flames of our nightly lamps, the streaks of morning cloud which warn us to put them away, are alike fleeting products of physical conditions, temporary manifestations of ${ }_{2}$ molecular force. Their en
" When a fire is extinguished, can it be said that it is here or that it is there?" replies the philosopher Nagasena to King Milinda, when asked whether the All-wise Buddha still exists. "Even so our Buddha has attained extinction. It can not be said that he is here or that he is there: but we can
point him out by the discourses he delivered. In them he lives.'

Science has no further word to offer.

THE RELATION OF MECHANICAL ENGINEERING TO INDUSTRIAL OPERATIONS
The popular estimate of the engineering profession is somewhat hazy; and this is due to the very general definition which is given to the term. Just as one who has facilities for erecting a dwelling house advertises himself as an architect and builder, so every one who has charge of a boiler or an engine calls himself an engineer. From this it follows that many persons do not see any difference between those whom they employ to run their engines, and those who are styled consulting engineers, except, indeed, that the former may be the more reliable of the two, since they are practical men, while the latter are mere visionary theorists. The public is not always right, however, and it may be well o revert to the definition of Mr. Tredgold, who says that "engineering is the art of directing the great sources of power in Nature for the use and convenience of man." What sources of power in Nature are used by man in industrial pursuits? Familiar examples may be found in falling water and the heat generated by combustion, the one being employed to move water wheels, and the other to heat water or air for use in engines. The winds and tides furnish motive power, and electricity is also employed to produce useful work. Now in the application of these powers of Nature intelligence in design and construction are required, to suit the machinery to the power, and skilled attendance is needed for the operation of the machinery. It is also necessary to obtain the fuel for generating the heat of combustion, and this calls for the employment of skill in designing the plant and superintending the operations of the workmen. It will appear from the foregoing that, in carrying out any engineering project, the duties of the engineer are varied. A design must first be prepared for the work, which design must afterward be carried out in actual construction, and finally the completed machinery must be managed properly, so tha it will fulfil the purpose for which it was designed. Some other facts will be evident in this connection. A man who has acquired sufficient skill and experience to design machinery and superintend its erection has done this generally by gaining knowledge in every branch of the profession by education, supplemented by work in the shop and drawing room, and by practicalmanipulation of the machines that he is called upon to design. He cannot, however, in general devote himself so much to any special kind of construction as to be come a practical manufacturer, because, in modern engineer ing, manufactures are thought to be most economically managed by attention to specialties, while the consulting engineer is required to deal with all branches. It is difficult, also, for the manufacturer of one class of goods to be entirely unpre judiced, since the mind of man is so constituted that he ordinarily has a pretty good opinion of his own devices.

The successful consulting engineer, however, should be sur rounded by such influences that he can, in contracting for constructions, always select the best, uninfluenced by per sonal considerations. If the foregoing propositions are cor rect, it would seem proper to divide the class commonly called engineers into engine drivers, manufacturing engin eers, and consulting, designing, and superintending engineers This classification, already well established in the profession is gradually gaining a foothold among the general public. The process is necessarily slow, since it is only of late years that public attention has been directed to the higher branches of engineering as a distinct profession. It will not be diffi cult, however, to show that the community have considerable interest in a true conception of the matcer, and a few simple illustrations may be given.
With the introduction of iron bridges a class of builders rose, who, finding it easy to convince ignorant highway commissioners that a bridge built of iron, however pro portioned, must be strong, take contracts at such low fig ures that representatives of the best bridge-building com panies in the country are usually conspicuous by thei absence from a highway bridge letting. A railroad company or any large corporation, desiring to contract for structures of this kind, usually pursues a very different course. The directors, good business men but lacking the requisite technical knowledge for work of this nature, employ a compe tent engineer, who advertises for proposals, taking care to draw his specifications in such a manner as to preclude bid from the highway contractors, who are known in the profes sion as "tin pan" bridge builders. This action is fully justified by the excellent character of the important railroad and public bridges in the United States.
Another illustration may be given, more general in its application, in reference to the purchase of machinery. Any one who has need of engines or other machinery naturally desires to get the best quality-that which will perform the most economically, require the least attendance and repairs, and be the most durable. Under the competition of the trade, such men are marked by vendors of machinery; and if the representations of the latter are to be believed, each ne of them has the best article in the market. This they can honestly claim, as already remarked, from a well defined rait in human nature; but it would require no argument to show that an unbiassed consulting engineer, well acquainted with the merits of each machine, could make a much better selection than the unprofessional purchaser, who is unable to judge of the value of the representation made to him by interested dealers. The engineer, also, after contracting fo the machinery, is frequently called upon to test it when completed, and see whether it fulfils the conditions of the contract. Numerous suits between purchasers of and dealer in machinery attest the correctness of this position. Suffi cient has been said to show the importance of engineers work in the various industrial pursuits.
In this brief notice, nothing like a comprehensive view of engineer's work has been attempted. The salient points only have been touched upon; but the hints given may be of interest and value to those who require professional assist nce, as well as to those who look forward to entering thei names on the list of engineers, and desire to know something of the duties which they will be called upon to perform, and he preparation needed to qualify them for the proper per ormance of these duties.

CO-OPERATION IN GREAT BRITAIN

The number of cöoperative trading societies in England and Wales, according to a recent parliamentary return, is 46, with a membership exceeding three hundred thousand and a share capital of nearly fifteen million of dollars. The annual business of the societies amounts in payment to upwards of fifty million dollars in gold, and in receipts to nearly fifty-seven and a half millions, the net profit from all sources being in round numbers four million dollars in gold. In a long discussion of the principles and prospects of cöoperation, published in the Contemporary Review, Mr Thomas Brassey, M. P., mentions these enormous sums a convincing proof that the principle is convenient and practi cable in its application to the distribution of commodities and, what is more important, the working of the system is the source of considerable profit.
On the other hand, the fact that the annual withdrawals from the societies are half as many as the additions would seem to prove that the management of cöoperative stores is not without serious difficulties, which will have to be removed before the plan can be pronounced perfectly successful.
Still more difficult are the problems to be solved in the matter of cöoperative production, the societies of this sort being few, and the failures more numerous than the suc esses. Among the successful are the Paisley Manufactur ing Society, the Hebden Bridge Fustian Society, the Eccles Quilt Manufacturing Society, and the Lurgan Damask Manu facturing Society, all small establishments whose success is probably due in great measure to the wisdom of the promoters in not attempting their operations on too ambitious a cale. Still, the flourishing condition of the Manchester Printing Society shows that a large undertaking can be suc cessfully conducted on the democratic system, certainly where the range of production is limited, and individua exertion on the part of the workmen is of more account than of great executive skill at the head. The Cöoperative Print ing Society, recently established in London, however, has not urned out so well.
The most important experiment in cöoperative production hus far attempted in England is that of the Ouseburn Engine Works. Its experience has not been favorable to the system when applied to varied and complicated undertak.
ings. Great difficulty has been experienced in dealing with the difierent classes of workmen, and in the adjustment of
rates of wages. Men brought up to one trade naturally find rates of wages. Men brought up to one trade naturally find
it hard to estimate the dues of those practising an entirely different trade; and when they are required to assign higher wages than they can hope to receive, to men whose superi ority they are unable to appreciate, the difficulty becomes all but insurmountable. The practical result in the Ouseburn Works has bsen a strike for higher wages in one of the departments-one of the evils which cöoperation was specially expected to prevent. The society also suffered severe losses through mismanagement, the taking of orders at too low a price, and other errors, due to lack of technical and practical knowledge on the part of their chief adviser, wh was more of a philanthropist than a man of business.
As in other countries, so in England, success in cöoperation seems to bo limited to moderate undertakings. When the business is of a kind that cannot bo carried out advantageously on a modest footing, the cöoperative principle is best applied to the execution of parts of the work; in this way the system can be made available in the largest under takings, after they have been suitably subdivided, the gene ral administration remaining in the hands of an individua wner or company
As Mr. Brassey observes: Where no special personal influence is needed for the purpose of securing clients and customers, and where the internal economy of the establishment can bo conducted by a regular routine, there will be no dis advantage in the management of a board or council. But when no transaction can be completed without long and difficult negotiations: when an undertaking is of a kind that cannot be conducted in accordance with fixed rules, and the emergencies which must, from the nature of the case, arise are always unforeseen, and must be met on the spot by an administration upon whose skill and conduct all will depend; in such a case the cöoperative system pure and simple becomes impossible, and the attention of masters and workmen wishing to work together in friendly alliance should rather be employed to devise schemes whereby the equable distribution of profits among the workmen may be combined with the necessary concentration of authority in their employer.
Perhaps the most noteworthy alliance of this sort is that in connection with the collieries of Messrs. Briggs. To avoid, if possible, the delays and losses incident to strikes, this firm voluntarily took their miners into partnership some yeard ago, dividing the profits above a certain amount annually among the workmen, in proportion to their several earnings. Last year nearly seventy-five thousand dollars in gold were so distributed saz che workmen's share of the profits, several receiving as much us thirty pounds ($\$ 150$) each. A bout half of this sum has been returned to the company in premiums on shares applied for by the miners. Inasmuch as the owners raceive as high a rate of interest on their investment as they had ever made in their best years before the workmen were given an interest in the profits, while the risks and annoyances formerly arising from strikes and labor quarrels are entirely avoided, it is clear that the alliance is mutually beneficial to all concerned.
The experience of Messrs. Fox, Head, \& Co., who adopted a similar plan eight years ago, has been quite as favorable to this mixed system. Their plan secures to every person employed a pecuniary interest in the success of the business, as far as possible in proportion to his services. Every one engaged, whether as laborer, clerk, foreman, manager, or partner, is paid at the rate customary in the district for his particular work. The capital employed is remunerated by a specified rate of interest. Provision is made out of the
profits of manufacture for keeping the works in repair, and prosts of manufacture for keeping the works in repair, and
to cover renewals and depreciation, and a fund is maintained as a provision against losses by bad debts. This done, the surplus profit is annually divided into two parts; one to be paid to the capitalist, the other to be divided among those employed, in proportion to theirearnings. The sums already divided among the workmen amount to between thirty thousand and thirty-five thousand dollars. A superior class of work men are secured, and they stay longer at the works than ordinarily.

hints to architects and builders.

The late Lord Jytton, in " The Coming Race," pictured a condition of society in which mere manual labor was performed by machines, so that the only duties devolving upon men and women were those requiring the use of the intellect. Although in practice we are far from the realization of that idea, it is in strict keeping with the spirit of modern pro gress, and also agrees with the laws of true philosophy. It will be generally admitted that the reasoning powers of man are his most valuable possessions, and that undue muscular
effort is not favorable to their development. It will likewise be generally conceded that the invention of machinery which lessens manual labor and cheapens the operations in which it is employed, contributes directly to the prosperity and intellectual advancement of the human race. The savage carries on commercial affairs by transporting articles of trade drawn by beasts of burden, and vessels moved by the force of the wind, mark a second stage of progress. Then come railroods and steamers, still further facilitating the operations of trade; and it is not impossible that these modes of trans.
port may be displaced by still greater improvements. With each of these changes the world becomes better and richer, so that there is great encouragement for showing how im provements may be made, wherever it seems possible.
No one can have walked through this city with observan
eyes and have failed to notice the tendency, in constructin
new buildings, to place the foundations a little lower, and new buildings, to place the foundations a
raise the roof a little ligher, than in former, structures. An ther fact will also strike him : that it frequently takes nearly as long to make the foundations (meaning the part below the idewalk) of a modern building, as it does to complete the superstructure; and he has doubtless often considered whether it might not be possible to devise some method by which this operation could be quickened and cheapened. Of late years many improvements have been adopted in the building trade. The pleasant occupation of the son of Erin who told his friend that in this "illigant country" all he had to do was to "put some bricks in a little box, and go with them up a high ladder," is fast disappearing. The elevator, which has done so much in increasing the hight of modern uildings, has been introduced to carry up the materials of construction, so that it is now not uncommon to see one or two horses or a small engine doing the work that was for merly performed by a score of men. This is very well as
far as it goes; but further improvements are demanded. far as it goes; but further improvements are demanded
Take, for example, the case of the basement of a building which requires an excavation to a depth of thirty or forty feet. Ordinarily, the hole is dug in shelves or terraces, so that the workmen can throw the excavated material from the lower part to the shelf above, whence it will be thrown by another set of workmen to the next shelf above, and so on until it reaches the surface, and is shoveled into carts to be carried off. In this manner the bottom is finally reached and then, as each successive shelf is cut a way, a platform of boards is put up; and upon this the dirt is thrown, to be
transferred as before, by different sets of laborers, to the carts. If any one who has a little time to spare will witness an operation of this kind, taking pains to notice the contents of a cart, and the various manipulations these contents pass through before they are ready to be carried off, a very simple um in arithmetic will convince him that this excavation is tolerably expensive affair. Take, for instance, the case of a foundation forty feet below the surface, in which the mateials will have to be transferred, from platform to platform at least six times, and then once more into the carts, makin seven transfers in all, and requiring seven times as many men as would be needed if the dirt could be shoveled di rectly into the carts. This mode of stating the problem wil doubtless suggest the idea to the attentive reader to let the dirt be shoveled directly into the carts, and avoid all these ransfers. It would not be difficult to accomplish this. Usually, in such an excavation, as soon as the bottom is reached in the center, a crane is set up to be used in moving foundation stones, etc., into their places. Now, when th exca vation is made to such a depth that a transfer of dirt is required before it can be thrown to the surface, let the crane be brought into requisition. A small steam engine connected with the hoisting gear will furnish the power for raising and lowering weights. Let, then, the cart bodies be so arranged that they can be detached from the axles, lowered to the place where the workmen are excavating, and, when filled, be hoisted and again connected to the wheels. An arrangement of this kind would effect a radical change in the time and cost of deep excavations, and it seems strange that it has not been adopted ere now. Of course, a mere outline is attempted in this article, without much attention to minor details. It might be found better, for instance, instead of detaching the cart bodies, to shovel the dirt into boxes, so that it could be hoisted out and dumped into the carts; or still some other method might be preferable. It is only intended to lay stress upon the principle that it is always better and cheaper to perform work by a single operation and with a single gang of men than by several. It is quite likely that there are many other details of the builder's trade that could bo improved. No matter what they are, however, they will be performed correctly if they conform to the principles of using he cheapest power and the fewest number of operations possible. Architects and builders are deeply interested in carrying out these principles, since the cheapening of construction is sure to increase their business. It may be added that the principles given above are equally applicable to all operations in which muscular effort is required; and the most successful business men are those who appreciate this fact.

pNEUMATIC bURIAL

Graveyards existing in the midst of thickly populated disricts have been pronounced by sanitarians the world over a ource of disease, and hence a standing menace to the people in their vicinity. In many of the cities of Europe, where buryng grounds within the corporate limits are much more com. non than in the newer towns of our own country, the effect of the promulgation of the above knowledge has been a holesale removal of the dead to new cemeteries situated ar in thesuburbs. This proceeding has resulted in a largely ncreased outlay necessary to defray the expense of a pro-
ession and more extensive funeral paraphernalia; while in Roman Catholic countries, where it is customary for mourn rs to follow the body to the grave bareheaded, it has caused much personal inconvenience, owing to the length of the journey, in inclement weather. Accordingly, various schemes have been suggested to avoid the above mentioned difficulies, among which plans is that of transporting the dead by means of pneumatic tubes. This idea has been ingeniously nd ably worked out by Mr. F. Von Felbinger, an accom plished engineer, and Mr. J. Hubetz, an architect of Vienna, and by them submitted to the municipal council of that city. We have been favored by Mr. Von Felbinger with copies of he working drawinge, and a description of his plan.
It is proposed to erect a great monumental hall or temple, which is to be divided into three portions, a middle hall and two smaller ones, the former to be devoted to the use of
and Israelites. These apartments will bo subdivided into chapels suitably furnished and decorated.
On a funeral taking place, the body in its coffin will be deposited in a sarcophagus in the center of one of the chapels, and the ceremony proceeded with. At the conclusion, he chief mourner touches a spring, when the sarcophagus inks noiselessly through the floor. This corrssponds to the public burial, as, so far as the mourners are concerned, they have nothing further to do with the body. On its arrival, owever, in the cellar, men stationed for the purpose attach check to the bier, showing to which cemetery it is to be forwarded, and place the body, with three others, in an iron car which fits in a subterranean tube, running on tracks placed therein, after the plan described by us as followed in the construction of the experimental section of the pneumatic railway under Broadway in this city. This tunnel in Vienna will be 15,000 feet long, and the carriages will be propelled through its entire length, by means of a blast of compressed air, in about ten minutes.
The tubes are so arranged that the car can be started off to any cemetery by a separate rosd. On reaching its desti. nation, a small building erected as a terminus, the bodies are removed and buried by officials in the places previously designated by the relatives of the deceased.
The estimated cost of establishing this plan in Vienna is 500,000 . This provides for a tunnel about five feet in diameter, a 150 horse power engine, and all the neeessary machinery, and buildings of remarkable architectural beauty The latter it is proposed to locate in a prominent portion of the city, and to surround with a large and handsome gar den, so that the gloomy aspect and associations generally peculiar to funereal edifices will be avoided.

COMPRESSED AIR MACHINERY.

A paper on compressed air machinery, recently read by Mr. William Daniel before the British Institution of Mechan cal Engineers, is a valuable contribution to our knowledge of a class of mechanism, regarding which trustworthy in formation is not abundant. A very complete series of experiments was conducted by the aid of an air compresser having two steam cylinders, each 16x30 inches, working compressing cylinders of like dimensions, and the whole mounted on a receiver 24 feet long by 5 feet diameter, which formed the bed plate. After the compressed air was led to a portable engine and there cooled, it was admitted to two cylinders, 10 by 12 inches, which drove an engine working a friction brake. By means of indicator diagrams, taken from this last mentioned engine, as well as from both the steam and air cylinders of the compresser, a record was obtained of the losses of power which took place at various stanes From the data a table was completed, the results of which show that, when working with air at 40 lbs. pressure, the usual effect obtained on the brake was only $25 \frac{1}{2}$ per cent of the power indicated on the steam cylinders of the air com resser, while with 34 lbs . pressure the efficiency reached 27 per cent; with 28 lbs., 28 per cent was gained; with 24 lbs., 35 per cent, and with 19 lbs., $45 \frac{1}{2}$ per cent. The loss of efficiency due to increased pressures may be ascribed to he conditions of the experiment and the increased loss of heat from the air, attendant upon the higher degrees of com ression.
Mr. Daniel advocates the use of compressed air machinery for mines, and points out the economy which must result from the fact that, when the motor is idle, there is no loss except the interest of money expended on the machinery, which is much less than that incurred where animal power is employed. He also suggests that the ventilation of the mines would be improved by the discharge from the engines, while the air, being always available in the pipes, could be used to dilute an outflow of gas.
The discussion of Mr. Daniel's paper elicited a number of practical suggestions. Mr. C. W. Siemens pointed out that the development of heat during the compression of air might be avoided by the injection of water into the air compressing cylinder, this water taking up the heat as fast as it appeared; while the formation of ice in the engine cylinders might be prevented by similar means, the water in this case giving up heat to the air during the expansion of the latter. Mr. Firth stated that he had got rid of any difficulty with ice by en. larging the exhaust openingg. Mr. Brotherhood described his three cylinder engine, as used for working the Whitehead fish torpedo. This had three cylinders, each $1 \frac{3}{8}$ inches by $1 \frac{1}{2}$ inches stroke, driven by a pressure of 450 lbs . per square inch, admitted through a reducing valve from a revervoir of air, stored at 900 lbe. per square inch. This engine had run at 2.225 revolutions per minute, developing $2 \frac{1}{2}$ horse power, or 28 horss power for each pound of its weight. Mr. Cowpe: uggested that radiating ribs, cást on the cylinders of air compressers or of engines using compressed air, might serve the purpose of facilitating the emission or absorption of hea,
a Cheap Galvanic Battery.-Mr. W. M. Symons pro. poses a cheap but convenient galvanic battery; each of the zinc plates was two inches square, and covered with fustian or other fabric,outside which thick copper wire was wound to form the other plate; the exciting liquid was weak chloride of zinc. Pairs of plates thus made could be arranged in length of time.

Perd, with three millions of people (a large part Indian) As twenty-six newspapers. These are published at Lima, Callao, Cuzco, Iquique, Tacna, Puno, Arequipa, Trujillo,
Piura, Chiclayo, Cajamarca, Tarapaca, Ica, and Ayacucho.

HORIZONTAL COMPOUND ENGINE.
Nearly every day we hear of some novel application of the compound principle in steam engine building; and the interest of the engineering profession in this construction induces us to publish (on the opposite page) a plan and elevation of a horizontal compound engine, recently built by Mesers. Hathorn, Davis \& Co., of Leeds, England, for use in a large cement factory on the bank of the Thames. We also give herewith complete details (in section) of the condenser.
The Engineer, to which we are indebted for the engravings, says: The engine is of the fly wheel type; the high pressure cylinder is 12 inches in diameter, the low pressure cylinder is 28 inchesin diameter, length of stroke is 3 feet. The valves of the two cylinders are outside. The high pressure
with these gages show, however, that, as the best makers abundance of hydrogen at tiat epoch. Our sun, Aldebaran have always affirmed, the pressure is reduced to $\frac{1}{\frac{1}{2} 0}$ part of an atmosphere, that is, to a quarter of an inch of mercury, and even less. It is possible to reduce the pressure within one fiftieth of an inch, without resorting to the Torricellian mode of producing a vacuum, which, excepting the presence of mercurial vapor, may be regarded as perfect.

The Lights of the Heavens.
The spectroscopehas explored the far-off space of heaven. The light of hundreds of stars has been analyzed,and nebulæ, scarcely visible, have had the quality of their iadiations revealed by its aid. The light, in some cases very feeble, with

Arcturus, are among the yollow stars. In their spectra the bydrogen lines are less developed, but the metallic lines are fine and numerous. The colored stars are not so hot and are
older. In consequence of their age, they emit less vivid ligh ${ }^{\wedge}$. In them there is lit e or no hydrogen. Metallic lines akound, but one also finds channelled spaces like the lines of compounds. The temperature being lower, these latter can exist whether they consist of atoms joined to others of the same kind, or whether they contain groups of heterogeneous atóms.

As to matter, it is everywhere the same, and the hydrogen of water we meet with in our sun, in Sirius, and in the

HATHORN \& CO.'S COMPOUND ENGINE-THE CONDENSER.

cylinder has an ordinary main valve and an expansion valve, with a hand wheel adjustment, so that the cut-off can be altered when the engine isat work; the high pressure valves are actuated by a separate shaft worked by a small fly crank. This engine has both injection and surface condensers.
In the surface condenser the tubes and tube plates are of gun metal; the tubes are packed-as shown in the illustra-tion-simply with india rubber rings. This engine has been working for upwards of nine months, with an average consumption of $2 \frac{1}{2}$ lbs. of coal per horse power per hour. The boiler is a 50 horse power Howard, and supplies plenty of steam to drive the engine when indicating 150 horse power.

SOLAR RADIATION THERMOMETER.

For the purpose of measuring the intensity of sunshine, various kinds of thermometers have been, and are still, employed by meteorologists. The thermometric fluid is always mercury for these instruments, because spirit is too volatile at great heat. An ordinary thermometer would merely indicate the inten. sity of solar heat at the instant of observa. tion ;hence, self-registering maximum thertion;hence, self-registering maximest degree
mometers, which show the highest of heat during the interval of exposure, are generally used.
Notwithstanding the progressive modifications made in solar radiation thermometers, even those in vacuo frequently give discordant indications in the same conditions of exposure as regards time and place.
In 1873, Messrs. Negretti and Zambra invented a special contrivance, shown in our engraving, taken from Engineering, for depriving the instrument of all uncertainty regarding the extent of the vacuum. It consists of a small mercurial tube and cistern gage (a miniature barometer) inserted in the jacket. • This gage shows at any time the pressure of any air or vapor which may be left inclosed. Asits tube is very small, the mercury will be depressed a certain extent by capillary action, and so it will indicate too little rather than otherwise. Possibly the presence of mercurial vapor in the vacuum may prove objectionable; for, by continual heatings, the mercury will vaporize out of the cistern, and may condense in some other parts of the jacket. Instruments fitted
lines like the solar spectrum, and this fact proves to us that
the constitution of these stars is like that of our sun. Aldebaran sends us records of hydrogen, magnesium, and calcium, which abound in solar light, but also those of metals which are rare or absent, as tellurium, antimony, and mercury.
Nebulæ,twenty thousand times less brilliant than a candle at a distance of 13,000 feet, have still given a spectrum; for their light, although feeble, is very simple in its constitution, and the spectrum which it gives consists only of two or three bright bands,one of hydrogen, the other of nitrogen. Tbese nebulæ, which give a spectrum of bright lines, are those which the most powerful telescopes cannot resolve; there is an "abyss" between them and resolvable nebulx, which, like ordinary stars, give a spectrum with dark lines.

What an effort of the human mind! To diseover the

NEGRETTI AND ZAMBRA'S SOLAR THERMOMETER.
these movements which appear to us inseparable from atoms are also the origin of all physical and chemical force.- M Wurtz.-Proceedings of French Association.

White Opaque Glass.

One of the most interesting and important kinds of colored glass, says Philip Fischer, in the Glashutte, is the so-called " bone glass," and yet very little has been said about it in glass literature. Its name hints at its composition and nothing more, especially since cryolite has come to be used in the manufacture of glass. This kind of glass is' used for lamp sbades and globes to protect the most important organ of the human body, the eye; and formerly it was both. rare and expensive. Cryolite, however, has effecteds as great revolution in the manufacture of white glass as petroleum has in the means of illumination. What part the chief constituent of the bone, the phosphate of lime, played in the manufacture of the bone glass was not exactly understood, and a still thicker veil is drawn over the action of the fluoride of lime, soda, and alumina, known as cryolite. It is to offer some explanation of this action that Fischer takes up this interesting branch of the glass industry. Phosphoric acid is, at high temperatures, a very powerful acid-so much so that no other acid is able to displace it. Hence we may reasonably suppose that the phosphate of lime remains suspended, as such, in the molten mass of glass. This, too, is indicated by the fast that when an excess of bone dust is added to the glass, or on suddenly coojing it, it is rough on the surface; but if the glass has the proper constitution, it remains constitution of stars of which the distances are unknown, perfectly smooth. How may the action of cryolite be exof nebulæ which are not yet worlds; to establish a classification of all the stars, and still more to guess their agesah , tell me , is not this a triumph for Science? Yes, we have classed them according to their ages. Stars colored, stars yellow, stars white; the white are the hottest and the youngest; their spactrum is composed of a few lines only, and these lines are dark. Hydrogen predominates. Traces of magnesium are also met with, of iron, and perhaps of sodium; and if it is true that Sirius was a red star in the time of the ancients, it owed perhaps its tint to the greater
plained? The power of hydrofluoric acid to etch glass and render it matt is well known, and depends on the decomposition of the silicates, taking from them a part of the silica, and the soda or potash, so as to form a compound known as fluosilicate of soda or potash, and then flying off in form of a vapor. We all know that this takes place, to a greater or less extent, in every cold, completely formed glass; how much easier and better would this process take place under the ægis of heat? Thus the phenomenon appears to a greater degree in the process of fusion.

DENTISTRY:IN THE UNITED STATES.

ntumber 3.

dental fillings.

Of the various materials used to fill cavities in teeth, the rincipal ones are gold, tin, amalgams, and cements. Of each of these there are different qualities and makes. Of gold foil filling there are three principal manufacturers, whose goods are so nearly alike that there is but little choice. The dentist prefers the softest metal. Many practitioners, not inding the foil sufficiently soft for their taste when pur chased, anneal it over the flame of a spirit lamp before using t. When thus manipulated, it is more easily packed, can e condensed better, and the particles adhere to each other as though welded; thus making a filling almost as solid as if the metal had been melted, and poured into the cavity. Another kind of gold used for filling is the "crystal sponge gold," so called from its having the appearance of a crystal ized sponge. This is used principally for "building up" teeth which have the crown destroyed. For a successful operation, this gold must be condensed by either automatic plugger or hand mallet process. Any attempt to condense it by hand pressure will fail, as the particles will "bridge," thus leaving the filling sufficiently porous to absorb the acids of the mouth, which would thus find their way to the walls of the cavity and continue their destruction. This metal can be condensed to a great degree of solidity. A patient who had the six central teeth built down with it (he had broken the natural ones) used the gold front teeth for cracking shell barks, in preference to the natural back one; and they stood this rough usage for four years, and no doubt would have continued to do so longer, had the patient ived. Tin as a filling is used as in foil and in amalgams. As a foil, it requires as much manipulating as the gold though it is not as durable; and the profit to the dentist not being in proportion to that on the use of gold, it is seldom used. A filling of tin foil will not retain its bright ppearance and smooth surface, on account of the corroding action of the heat and acids of the mouth. Tin united with silver makes a good amalgam for temporary fillings. There is quite a number of different formulas for making amalgams, which are, as a general rule, composed of silver and tin. Some are of silver and cadmium,others of cadmium and tin. The metals are melted together, cast into an ingot, and made into fillings, which are sold to the dentist. Having prepared the cavity to be filled as for other fillings, he then mixes a small quantity of the fillings with sufficient quicksilver to make a thick paste, which he puts in a cloth, and by pressure queezes out all the superfluous mercury. The silvery looking mass that remains in the cloth is plastered into the prepared cavity as quickly as possible, and in a few minutes sets ufficiently hard to receive a burnishing. This filling, when properly propared and used,makes a good temporary filling; but unless done by an expert,it becomes a useless,crumbling ass. Though this is called a temporary filling, and is used as such by the profession generally, I know of two lower molar teeth still in use, that were filled with this amalgam fourteen years ago. The bone cements are usually nothing but chlorides, sulphates, and oxides of zinc. They are tech nically termed "os artificiel" or artificial bone, and are put into the cavity like mortar, with a spatula-shaped instrument intead of a trowel. In a short time, the material sets, and, as iu the case of amalgams, if inserted by a competent person, it is a success. Otherwise it is a failure, as it will in that case shrink from the walls of the cavity, be acted upon by the secretions of the mouth, and sometimes wash out during the process of cleansing the teeth. There is but a triting difference in the amount or quality of fillings used in the various sections; the gold being predominant, and the amalgams and cements standing side by side There are about forty gold fillings to one plastic filling. One dental depot sold of gold foil in one year 957 ouncer, which, at the usual rate of $\$ 36$ per ounce, makes $\$ 34,452$ paid for gold plugs by the dentist. As each ounce of this mass will average twenty-three fillings, and the cost of fillings averages six dollars, we find that the public paid for useful and ornamental repairs to the teeth (made with what was sold in one year, iny one business house, of one single article) the sum of $\$ 132,066$. About $\$ 1,000$ was als $_{\text {a }}$ also paid for amalgam and cement fillings, according the usual proportion. Some practitioners utterly refuse to use anything but gold; and if the walls of a cavity will not sustain the pressure of inserting a gold filling, they will cut off the crown of the tooth, and set a pivot tooth, or build up with sponge gold. The plastic fillings are used principally by the lower classes, chiefly on account of the price; the proportionate rate of chargea being $\$ 1$ to $\$ 100$ for gold, and from 25 cents to $\$ 5$ for plastic filings per cavity.

Conrespmademte.

Locomotives and: Steam Cars.
 To the Editor of the Scientific American

In your issue of August 22, it was stated, in an article under the head of " Steam Cars," that the locomotive ought to be more of a guide for builders of steam cars and other steam vehicles, on account of its low center of gravity, its excellent boiler, etc. The great problem, of course, is to so proportion and combine the various parts that the machine shall do the most work with the least possible repairs and fuel To this end some of the following are essential
First, and most important, is a low center of gravity, as above stated.
Sconnd: The connecting bar between the piston rod and crank sh:a'd be as long as the machine will possibly admit-
rom eight times to ten times the length of crank, if possi ble-in order to reduce the pressure of the slides upon their guides, and hence their friction and wear, to a minimum.
Third: The length of the piston should equal half it diameter at least; if its length fully equalled its diameter, its durability and economy would be still greater. It should be cast in one piece, and made hollow or in cup form, to insure proper lightness. It should be fixed permanently to the piston rod before the last chip.is turned off; then it should

be fitted as snugly as possible to the bore of the cyhnder, and yet it must work without chafing. A good practice is to surface such pistons with a shell of hard Babbitt or other composi tion not liable to chafe, and which may be easily renewed. I packing rings are used, they should be of the simplest possible make: two simple rings of steel or some other hard material, sufficiently elastic to admit, after being cut at one point, of being sprung into a single groove midway of the piston, the rings, of course, being placed so as to break joints.. They may be held in position by a single dowel pin set in the piston beneath each ring. The loss occasioned by the escape of steam around a piston of the above description would be far less than the loss resulting from friction in at tempting to keep a piston steamtight by set screws and springs (the old way), or by steam pressure.

Fourth: The bearing surface of the slides should be am ple. A good rule is to make their combined upper and low er surface equal the piston area. For instance, a piston of seventeen inches diameter has an area of two hundred and twenty-seven square inches; one fourth of this is about fifty six square inches for each of the four faces of the slides as usually made.
Fifth: In the slide valves, considerable economy would doubtless result from a slight modification in the valve system. It now takes, to fill the passages, a (Fig. 1), between

the valve, b, and the ends of the cylinder, about five per cent of the steam used; if the valves were arranged as shown in Fig. 2. this five per cent of steam and fuel would, of course, be saved. (This illustration was drawn from a stationary engine in Worcester, which has this new system of valves.) It will be seen that there are two simples piate
discharge valve, $d ; f$ indicates the piston and its rod, the view being a central section at one end to show the arrange. ment; the valves, c and d, are driven by the rockers, g which work in the top of two standards, H, the valve stems being jointed, at c, to the links, h. The arrangement is simple and perfectly applicable to the link motion of the present locomotive; it would only be necessary to connect tha valve rod to the point, i, of one of the rockers, g. This arrangement would not only cause a direct saving of five per cent of the fuel now used, but would render the action of the steam upon the piston more direct and efficient; it would also reduce the steam pressure upon the back of the valves to less than half its present amount.
Sixth: Much better provision should be made for free ing the boiler from sediment; the narrow water space around the fire box and the bottom of the cylinder of the boiler un der the tubes are liable to become so clogged with foul mat ter as not only to destroy much of the most valuable gene rating surface, but to cause irreparable damage to the boiler from excessive heat. One or two blow-off cocks are of very little use. Their influence extends but four or five inches either way from their openings; hence it would require a least 8 or 10 two inch cocks around the base of the fire box, and as many more in the cylinder of the boiler under the tube to insure anything like a tolerable freedom from sediment and even then, I think that in many localities sedimen would still accumulate between the cocks. But as ther are serious objections to numerous blow-off cocks, the only safety seems to be in screw plugs judiciously placed and used. Two plugs should be placed at each corner, even with the bottom of the water space around the fire box, so tha a scraper may be passed entirely through from corner to cor ner, both laterally and fore-and-aft. A screw plug should also be placed exactly beneath the tubes in the cylinder of the boiler near the fire end, and another in the tube shee under the tubes in the smoke chest. The most important item, in connection with this screw plug system, is to cause these plugs to be removed from three to six times a year, or as often as the nature of the water demands, and, by means of a scraper and a powerful jet of water, to thorough ly cleanse the boilers from sediment; this should be one of the most imperative duties of the men in charge.
Again, as you state, a low center of gravity is of the ut most importance in the make up of a first class steam car and this applies with equal force to all rolling stock. The narrower the gage of the track, the more imperative is the necessity of a low center of gravity. The reason is obvious The lower the center of gravity of a car, the more steady will be its progress upon the track; and the less the lateral strain upon the rails and running gear, the less the liability of its leaving the track, and the less the liability of its overturning when it does leave the track. These facts are sufficiently trite and self-evident to need no comment.
Our present passenger and freight cars are susceptible of much improvement in this direction. The roof and the up per portion of the body might doubtless be reduced in weight one third and yet have ample strength for all that is re quired of this portion of the car, namely, protection of pas sengers and freight from the weather, and the safe passage of the brakeman from car to car on the roof. The running gear and the base of the body is none too strong or too heavy now, perhaps; but from the base timbers, the weight of the frame ought to diminish quite rapidly to the roof, not by offsets, but by gradual taper. The diagram (Fig. 3) presents this idea to the eye. Our car builders and intelligent railroad men recognize this idea, of course, but they do not carry it out perfectly in their practice. When this point shall b gained, an important economic result will have been at tained.
If the body of a car could be dropped so as to bring the floor within two or three inches of the axles, this economic esult would, of course, be still further enhanced; the wheel would not project through the floor sufficiently to interfer much with the seats or the loading of freight. A simple iron cap over each wheel would make all safe inside the car This change would, of course, require some alteration in the ruck frame and the housing of the wheel boxes; neverthe less it seems to be an alteration which is perfectly practical Any change in our present system which seems to indi cate an important improvement in the stability, safety, and economy of our rolling stock is worthy the candid cqnsider tion of railroad men.
F. G. Woodward.

Tides of Lakes and Lakelets.

To the Editor of the Scientific American:

致It is said by most authors on tidal theories that there can be no tides on lakes, for the reason that the moon's attraction is equal over the whole surface of water. I hold that there is a tideraised from every body of water on earth. It is impossible for the moon to raise a body of water from the earth by its attraction, but it counterbalances or neutralizes a portion of the earth's attraction for the water, in conse quence of which the water becomes lighter and the lower portion not so much compressed. Hence, on account of the elasticity of the compressed water, the diminution of comprescion is followed by an expansion which drives the super incumbent water upward. Thisis a natural principle which belongs to all bodies of water, although the effect is impsr ceptible if the water be shallow and not connected witi very deep water.
By this theory (of my own) I account for the very consid rable tide that rises on Eagle Lake in the northern part o his State. The lake is very deep and has never been fa bomed.

La Fajette Lillafid.
Califoria College, Vacaville, Cal.

Hardening and Tempering of Tools.
To the Editor of the Scientific American:
I have not heretofore objected to any of Mr. Rose's processes, as such, but hava stated merely that, in any of the usual methods, the elements of time and access of air are important ones. I do now, however, object to the tube method, the sand bath, and to the heated iron in contact with the piece to be tempered.
A tube heated to redness in an ordinary forge fire, or in fact in any sort of fire, if not long enough to project at both ends beyond where it is possible for the products of combuation to eater, will vitiate a reault predicated upon the

color produced by the entrance of these gases. If it be long enough to exclude the gases, and its diameter is in any reasonable proportion to that of the article to be tempered, it will be very inconvenient for observation of the color without withdrawing the piece often. Any one at all accustomed to tempering well knows that, to bring to a nice shade of color any article by a process which requires its repeated removal from the source of heat, is very difficult; as there can be no nicer gradation arrived at than may happen to have been produced by one of the periods during which the piece was subjected to the heat. If the rube be so large in diameter as to permit of the colors being readily observed, there remains the objection (which applies to all processes which require that the color.be observed, almost exclusively, under the light emanating from red hot iron or the yellow rays from a fire or a gas light) that the colnr does not appear the same as it would if observed under white or daylight. The colors dealt with in tempering, being principally of the yellow and blue order, are much modified in appearance by the yellow and red rays from the above mentioned sources. To we sure, an expert at tempering, one who makes it almost exclusively his business, can by continued practice decide what particular shade in the red hot tube would correspond to a required shade as seen by daylight; but our object is, or should be, a method by which any workman may arrive at a color, correct for a given tool as ordinarily seen.
My objections to the sand bath are precisely those which Mr. Rose now admits to be its weak points: the difficulty of determining its temperature, of maintaining it at a given temperature if such could be determined within reasonable limits, and the difficulty of insuring a uniformity of temperature throughout its mass; and, failing to use it successfully because of the three difficulties, the absolute uselessness of attempting to use the color test with it while excluding the air from the tool by immersing it in the sand.
The use of a red hot piece of iron in contact with the tool n be tempered, as advocated by Mr. Rose in tempering dies is ojectionable,not only because the surface of the die or other tol in contact with the hot iren is, during contact, exclued from the air, and the progress of the color formatiol modified thereby,as advocated in my original com. mulcation, but there is also the objection which applies veryarticularly to dies; that the end convolation of the threa, nearest to the hot iron, is liable, and in fact almost certail to be made hotter than the body of the die, as indicateby the color of the side exposed to view; and as this particu.r part of the die has to bear the brunt of the work wle in use, it is of the last importance that it should not be s'ter than the workman will be likely to regard it as deterined by the color of the body of the die; and this objection , plies of course to any article having thin or projecting mabers.
The $\mathrm{pro}_{\mathrm{ss}} \mathrm{I}$ desire to suggest for drawing the temper of taps, ream ${ }^{8}$, and similar forms, and which I have used with unifor success, is shown at Fjg . 1. It consists of a phe ce of iror wrought iron preferably-although cast iron is mach cheapand answers very well-made in the form of a heavy flatten tuba 5 or 6 inches in hight, made thin at the curves and cu ut as shown in the figure. The opening requires to be inidth at least twice the diameter of the piece to be tempered, aidin the bottom several channels are cut or cast leading to the ide, shoom at a, a, a. These channels are for the purpose admitting air to pass in and establish a current upward rough its inside. The channels require to be quite emall,shat the upward current shall be sufficiently slow to insurce air being heated to a very high temperature, it, the be in Fig. 1, being heated to a bright red heat. The tap other piece may be held in a suitable holder made of soron wire, coiled so as to take the shank within it and exted long enough to form a ring-shaped handle at the end; wire holder is allowed to rest in one of the depressions ihe ends of the apparatus, thus supporting the tap or mer in the center of the opening, in which position it n be rotated, moved endwise, or tilted in or out of the oper, as may be found necessary to estab.
lish a uniform color throughout its length; or the tap may be held in the tongs by the wrench end, the shank laid in the V -shaped opening, and the threaded part only tempered, leaving the softening of the shank, etc., to be done afterward. Fig. 2 is simply a thick circular tube similarly grooved in the bottom, with which dies and other short piece may be tempered. They may be also held in a wire holder or in tongs (with points turned inward,forming a pair of cen ters upon which the die may be rotated by a piece of wire in the other hand). Other moditications of these may be used o conform to the tool or piece required to be tempered.
Of course, where a number of similar pieces are to be tempered by this method, it is necessary to have two irons in the fire, or,rather, one in the fire while the other is in use.
It will readily be seen that in this method there is per fectly free access of air, while the operation may always be performed in a situation where the colors may be seen by daylight; and it will be found that, owing to the fact that the heating of the piece to be tempered is effected principally by the heated current of air, it will be very uniformly done; in fact it is superior, even in this respect, to the tube process.
An ordinary flat piece of iron may be used,for many forms of tools, to advantage, as for instance in hastening the draw ing of a cold chisel which has been dipped too far or for too long a time, if care be taken to keep the two from contact. If Mr. Rose will give the above methods a trial, as he has promised, I am persuaded that he will thereafter give them the preference over the methods he has illustrated.
The element of time I have not pretended to be able to control to any considerable extent, as Mr. Rose would seem to infer; but I do insist that, with any process whatever in which the color is taken as a guide, it must be taken into account, and the proper allowance made if the operation from any cause undaly prolonged or hastened.
62 Cannonstreet, New York. JoHn T. Hawkins.

To Draw a Parabola.

To the Editor of the Scientific American:
A very convenient way to draw this curve is as follows: On the principal diameter, Fig. 1, lay off the proposed di rectrix, $\mathrm{D} d$, and focus, F . With F as a center describe arcs $a c$, at convenient distances from each other. From a, set off $a b$ equal D F, and draw $b c$ perpendicular to DF b. Then will the intersections, c, be points in the required curve.

While geometrically accurate, this method has the advan tage of being applicable where the usual methods are no convenient.
Another equally convenient method is as follows
Lay off $\mathrm{D} d$, and F (Fig. 2) as in the first instance, and make the distances, $\mathrm{F} a, a b, b c$, on principal diameter equal to 2 DF . From F $a b c$ draw perpendiculars to principal diameter. With F as a center, describe $\operatorname{arc} \mathrm{D} n$; with a as a center, describe $\operatorname{arc} n o$; with b as a center, describe arc $n p$, and on continue as far as nA -

cessary. Then will n op be points in the required curve Having determined D F, and drawn the perpendiculars, $\mathrm{F} n$, $a o$, and $b p$, the points $n o p$ may be determined without drawing the arcs, by taking the root of every fourth num ber, beginning with one, from a table of square roots, as shown in the following table, in which $\mathrm{DF}=\mathrm{X}$ is taken as the unit
F $n=\sqrt{1}=1 ; a o=\sqrt{5}=2 \cdot 236 ; b p=\sqrt{9}=3 ; c g=$ $\sqrt{13}=3.605 ; d r=\sqrt{17}=4 \cdot 123 ; e s=\sqrt{21}=4.582 ; f t=\sqrt{25}=$ 5 ; $g u=\sqrt{29}=5.385$.
By the aid of this table, sufficiently extended, and the principle illustrated in Fig. 1; we may readily draw any desired section of the curve, on any scale, as shown in the fol lowing example: On the principal diamoter (Fig, 3), the
point, a, is 95 inches from focus, F ; and at this point the width of the curve, $a m=14$ inches. Required the curve be yond (at the right hand) of $a \mathrm{~m}$.
We first determine the radius $\mathrm{F} a$ (Fig. 1) by taking from table of squares

F $a^{2}=95^{2}=9025$
a $m^{2}=14^{2}=196$
$\sqrt{\overline{9221}}=95.98$ nearly.
Therefore, D F $=9598-95=0.98$; and, therefore, the per pendiculars must be $0 \prime 98 \times 2=1 \cdot 96$ inches apart. To de termine the position of the first one, divide $\mathrm{F} a=95$ by 196 $=48+$ a fraction. We now multiply $1 \cdot 96$ by $48+1$, and obtain 96.04 inches as the distance of the first line, $b n$, from t, or $96.04-95=1.04$ inehocfrom $n m$. Thi: being तो кn,

the other lines may be laid off I.96 inches from each other as described-
As $b n$ is the 49th perpendicular from F, its length will equal $\sqrt{49 \times 4+1}=\sqrt{197}=14.035$ units (not inches) as in this table
b $n=\sqrt{197}=14.035 ; ~ с \quad o=\sqrt{201}=14 \cdot 177 ; d p=\overline{\sqrt{205}}=$ 14.317: e $g=\overline{\sqrt{20}} 9=14.456 ; f r=\sqrt{213}=14.594 ; ~ g s=$ $\sqrt{217}=14 \cdot 730 ; h t=\sqrt{221}=14.866$.
Proceed in this manner as far as required, bearing in mind that the unit of this table is D F (Figs. 1 and 2). This last method, though requiring considerable calculation, is the most accurate in practice, and therefore the best for such cases as the example given.
F. H. R.

New Britain, Conn.
Vesicatory Potato Bugs.
To the Editor of the Scientific American.
In your article on bugs on page 17 of your current volume, you say, referring to the alleged fact that potato bugs are a good substitute for the Spanish fly: "This is interesting but, unfortunately, not authenticated." Begging pardon for putting in my oar where there is no rowlock, I have to say that your error consists in not discriminating between different bugs. That the Colorado bug is valuable for blistering purposes, I am not aware; but any one who has to deal with the long striped bug, somewhat resembling the lightning bug (cantharis vitatis), will find to his grief that they are an exceedingly active vesicant. During the war, when ("down South ") we were obliged to utilize our home productions,we found this insect to answer all the purposes of its Spanish cousin. Any one who does not believe this can easily test it by visiting Virginia in July, and mashing one of those bugson his arm. If it does not blister, I will pay his expenses for the trip
Alexandria, Va.
J. B. Hodgern

Bees and Honey.

To the Editor of the Scientific American

I think that H. W. S. (Scientific American, page 148, current volume) will have very little trouble in finding a market for strained honey, if he will be very clean in all his operations, and, when it is convenient, invite in some of his probable customers to see him manipulate, explaining the advantages of getting clean honey from the comb, with an occasional cell of bee bread in it.
I have kept bees solely for the pleasure of studying their habits, and should keep them if I never got an cunce of honey from them. I am a mechanic; but I have had no trouble in disposing, out of work hours, of a barrel of strained honey in a very short time, to persons who, I afterwards found, were anxious to buy again.
I think that if apiarians considered the value of comb, they would be more saving of it than they are. . Probably each pound of comb represents ten pounds of honey, which should not be wasted (to be replaced each year) when it might be saved. I have thought the bees might be saved the trouble of making comb, wholly or in part, by making it of paper and waxing it. If we could not make the whole comb, the partition in the middle might be made by indenting paper, waxing it, and suspending it in the frames. This would ensure straight combs at least, which are very important; and with these, an emptying macbine, and good prame hives, I think that bee-keeping would be in its sim. plest form.
Bridgeport, Conn.
The Correlation of Forces.-Of the various forms of energy existing in Nature, any one may be tray eformed into any other, the one form appearing as the other disappears. This is what is meant by "the correlation of forcess." Thus the rotary power of a wheel, if applied to turn a magnet, is converted into electricity; and this electricity, if employed to drive a wheel, is changed back into rotary power.

IMPROVED SOAP CRUTCHING MACHINE

The invention herewith illustrated is an improved machine for mixing or crutching soap. Instead of carrying its contents, a defect which existed in the older apparatas of the same manufacturer, this machine simply crutches, keeping the soap in a body. The vertical wrought iron shaft, which is rotated by the gearing shown beneath, carries a number of cast iron wings, smaller extensions of which pronumber of cast iron wings, smaller extensions of which pro
ject to the inner periphery of the containing vessel. Withi ject to the inner periphery of the containing the latter are also a number of fixed bars
which are rigidly secured, and through which are rigidly secured, and through
sockets in the inner ends of which the shaft freely turns. The wings are constructed in a spiral form and work as a double acting screw, raising and mixing the heaviest material from bottom to top. No air is crutched into the soap, as the stirring is all within the substance, so that it cannot get a spongy appearance or become filled with air holes and blisters. The product, we are informed, looks like the best hand-crutched soap, and is perfectly smooth and firm.
In operation the soap is let into the top of the tank, and run by steam power for from four to ten minutes; the sliding door in the bottom being then opened, the material is conducted directly to the frame, placed, as shown in the engraving, to re. ceive it. All clippings and trimmings can ceive it. All clippings and trimmings can The wings quickly cut the pieces up so that they dissolve. This is an advantage of im. portance, since it saves throwing the frag. ments back into the kettle.
The machine is of iron, weighs about five hundred pounds, and is made of any size, holding from eight to twenty hundred pounds. It may also be used as a complete mixer for all mineral and liquid compounds.
The apparatus is manufactured under two separate patents, issued to Charles Lehrmann, dated March 29, 1870, and September 29, 1872. For further particulars address Willis Humiston (sole manufacturer), Troy, N. Y.

DAVIDSON'S IMPROVED FLOOR CLAMP.

This is a novel and simple form of floor clamp, which will find a ready appreciation from carpenters, builders, and others. The lever bar, A, and the ratchet bar, B, are provided with spurs at their lower extremities, to take against each side of the joist. Between them is a connecting screw, C, having a nut, which is used to adjust the implement accord-

ing to the thickness of the joist. D is the fastening lever, secured, as shown, to the bar, A, and provided with a slot through which passes the bar, B, a step, E, serving to engage in the teeth of and hold the latter at any desired point. F is a plate for protecting the edge of the flooring, and G a pawl for holding the apparatus after clamping up the same. In operation, the bars are placed on the joist and fastened The upper end of the clamp is then pressed forward so as to force the flooring together by the plate, F. The device can be made to weigh but little; and judging from a model which we have tested, it appears to be an efficient and handy implement.
Patented through the Scientific American Patent Agency

January 6, 1874. For further particulars address the inventor, Mr. Robert C. Davidson, Evanston, Uintah county, Wyoming Territory.

Breeding Terrapin and Freezing Fish.

An establishment has lately been started near this city, for the purpose of supplying to our markets an abundance of hat greatest of marine delicacies, the terrapin, the artificial
sometimes for eleven months, remaining perfectly fresh and only requiring thawing out to render them ready for cooking. It is estimated by the Tribune, from which we extract the above facts,that at the present time fully 250,000 pounds of fish are thus stored in this city, for next winter's use.

Self-Propelling Steam Fire Engines.

Steam engine No. 32, of the New York city fire department, stationed at Burling Slip, is provided with a very simple device whichadaptsit perfectly for selfpropulsion. On one end of the crank shaft operated by the steam cylinders, and outside of the heavy fly wheel, is secured an iron flanged pulley, the periphery of which is corrugated. In line with this, on the rear axle and inside one of the rear wheels is a similar though larger pulley, to which power is communicated from the one first mentioned by means of a strong endless chain. This is the only point of difference between this engine and that of the ordinary form drawn by horses. In fact, by merely removing the chain and attaching the pole, animals can be at once harnessed to the machine. The working of the steam cylinders of course propels the rear wheels, and a man in the driver's seat governs the ordinary hand steering wheel, and so directs the apparatus.
This engine weighs about 8,500 lbs., and is of great power; and since it would be a heavy load for two horses, the device above described has been fitted to it. It travels at a speed about equal to that of the mo derate trot of a team.

A NEW GRAPNEL
A novel and ingenious form of grappling iron has recently been patented through the Scientific American Patent Agency by M. J. B. Toselli, of Paris, France.
The device, which will be readily understood from our engravings, consists in a number of curved arms, A, provided with claws at their lower extremities.

Lerhmanns soap crutching machine.

success thus far encountered, appears to be a very successful one. The animals are caught at various points along our Southern sea, coast and shipped directly to a fish dealer at in a hure Bay, near Long Branch,N. Jh Here they are placed enclosure is under water and the bottom is sloping so as to leave a depth of some eight feet in the deepest part. As many as 10,000 terrapin are placed in this receptacle at a time. For some years past the proprietor has noticed that large numbers of eggs were laid on the unsubmerged sand, but that very few were successfully hatched, as. one terrapin would quickly destroy and devour theeggs of another, while the young were sure to be killed as soon as they appeared. In order to supply an artificial breeding placa where the eggs could remain undisturbed, another pen has recently been constructed further inland, one third of the surface of which is dry sea sand. Every day the surfacelof the larger pen is raked and the eggs (carefully removed) transplanted in the new enclosure in regular rows, at a depth about equal to the length of a good sized terrapin's body. As many as 5,000 eggs were thus placed at one time during the past summer and left to hatch by the warmth of the sun. At the begin ning of the present month, the young terrapin began to ap pear; every day now adds to their numbers, and all seem to be healthy and doing well. Some difficulty is anticipated in keeping the animals over winter; but this surmounted, and the operation conducted on a larger scale next summer, there remains little doubt but that a new and important here ource of supply has bon en and he terrapin subsists, fish, crabs, and clams, is easily and cheaply obtained'in the vicinity of the pens, so that the cost of maintenance will be small; while (judging from the fact that terrapin readily command from $\$ 8$ to $\$ 15$ in the mar kets), the enterprize will doubtless prove a lucrative one.
Freezing fish for winter use has almost attained in this city the dignity of a separate branch of trade. During the summer months, the markets are glutted with finny food, which, unless preserved by some means, would engender an immense waste, while causing a dearth of the commodity during the cold months. Salmon especially are very abund ant during summer and extremely scarce in winter, so that this valuable fish, perhaps more than any other, finds its way into the great freezing rooms of the dealers.
The operations preliminary to the freezing process are the selection of the finest fish, and their careful cleaning. In large establishments, the entire first floor forms a gigantic refrigerator, having double walls of zinc, and divided into three sections, in each of which are two compartments. Ice and salt, ground together in a mill, are introduced into the spaces between the walls throngh openings in the floor of he second story, these apertures being so arranged that any number of the compartments can be cooled without affecting others. After the fish are cleaned, they are placed in pans, the latter being piled above each other in layers, packed in ice and salt, and covered up. Here the fish are left until thoroughly frozen, after which they are thrown into the huge refrigerators where they are kept. Within these receptacles the temperature is maintained at about 12°, and the fish are consequently rendered about as hard as solid lumps of ice In this condition they are kept ordinarily six months and

These arms are pivoted to lugs on a supporting frame, through the center of which loosely passes a shank, terminating below in a weight, C, and above in a disk provided eneath with a ring, D. These parts are shown in section in Fig. 2.
To set the apparatus, the arms are raised, and catches, E, hereon hooked, under the ring, as represented in the last mentioned figure. The grapnel is then lowered until the portion, C, strikes the object to be grasped. The shank is hen forced up, carrying the disk and ring, D, so rel easing the eatches, E, when the arms fall'by their own weight and clutch whatever is beneath them. In order to secure speci-

mens of the botom, in making soundingdie clawn may be made scoop-shaped and provided with ds , so thet frag. ments of rock, sand, shell, etc., may nbe washed away when the apparatus is raised to the suce ; por horizontal ribs may be placed upon the arms, wh, when the latter are closed, would form a perfect cage fapecimens.

New Fulminate.-M. Prat says: rate of lead has the property of detonating when struck, a may serve as a substitute for fulminate of mercury in pe ssion caps. He also gives an account of an explosion whicecurred in his laboratory on triturating together chlorate dotash, picrate of lead and amorphous phosphorus.

We illustrate herewith a type of double bogie tank locomotive, constructed on the Fairlie system, which has been introduced with much success by Mr. William Mason, the well known locomotive builder, of Taunton, Mass. In this engine the ordinary form of boiler, with single barrel, is retained, and only one steam bogie is used, the hind end of the engine (at which the tank and coal bunkers are situated) being supported by an ordinary carrying bogie. Mr. Mason has built some of these engines with four wheels and some with six wheels to the steam bogie, and they are well adapted for use in cases where the entire weight of the engine is not required for is not required for adhesion, or where
the heating surface the heating surface
demanded is not greater than can be advantageously obtained with the ordinary form of boiler.
We have now be fore us, says Engi. neering, from which we extract the engraving, reports on the working of some of the engines constructed according to the arrangement we illustrate; and their performance is spoken of in high
terms, it being especially stated that they are very easy on the road, as might indeed have been expected. On the Howland and Aspinwall Railway, a line of 3 feet 6 inches gage, engines of this type are doing good work on a gradient of $296 \frac{1}{2}$ feet per mile, or about 1 in 17.7 ; while others are in use on the American Fork Railway (the gage of which is 3 feet), on a line of 4 feet 1 inch gage belonging to the Calumet and Hecla Mining Company; on the Utica, Ithaca, and Elmira Railway, and the Toledo, Wabash, and Western Railway, both of 4 feet $8 \frac{1}{2}$ inch gage; and on the Virginia and Tennessee Railway, the gage of which is 5 feet. Altogether the type is a very good one, and we expect to see its use largely extended.

APPARATUS FOR RAISING SUNKEN VESSELS

We illustrate herewith Sowerbutt's patent system for raising sunken vessels and their cargoes, for working which a company has just been formed in England.
The principle upon which sunken ships may thus be raised is easily exraised is easily explicable by the sim plest principles of
hydrostatics. The hydrostatics. The
ship and its loading ship and its loading of as much water as is ex pelled by its water draft, and when it becones heavier than that it sinks. Again, so many pounds as the cabical contents of the timber of a wooden vessel is heavier than an equal cube of water, will she buoy. up, even though full of water. Heavy nonbuoyant bodies are also much lighter in water than in air. On these principles the practice has been, by means of divers, to attach pontoons or casks to sunken vessels, being first filled with water that they may be more easily sunk down to the wreck. The water is afterwards displaced and air substituted. This has been effected in several ways, but all of them involve trouble, delay, and risk of miscarriage. The simplicity and self.acting character of the apparatus about to be described gives it a great superiority over all the methods previously employed. In blowing up wrecks, the charges are laid by the divers, and exploded by electricity. The apparatus at present under consideration may be described as follows: A number of pontoons and casks (A A), from 3 feet to 20 feet long, and from 3 feet to 12 feet in diameter, strongly made and sufficiently heavy only just to sink when filled with water, are attached to the sunken ship by a strong chain (A A A). Each of the pontoons contains a metal re. ceiver filled with compressed air, sufficient when expanded
to fill the pontoon at a pressure to be regulated at will. Th pontoons, having been lowered to the wreck from a tug, are attached by divers to the ship, as shown in the diagrams. If necessary, other smaller pontoons or casks, constructed on the same principle, may be stowed in the hold or cabin of the ship (D D). In each of the pontoons there is a tap-which may either be turned by the divers or by self-acting mechan ism-by means of which a valve is opened in the receiver and the air thus set free expels the water from the pon toon; and the required buoyancy having been obtained, the
the study of proper remedies. For this purpose, Dr. George M. Beard, of New York city, has prepared a printed series of questions for answer by patients, the results of which are expected to be of value. All who are troubled with hay fever, and all who are personally familiar with the disease should send for this series and supply such information as they can.

New Magneto-Mechanical Separator.
A new form of magnetic separator, for the removal of fine particles of iron that become mixed with turn ings and filings of copper and brass from workshops, as recently been devised by M. Va rin, of Paris. Two superposed hollow cylinders turn in the same direction, and upon them the material to be separated is scattered through a hopper The surface of the cylinders consists in bands of soft iron which re kept in a mag netic state. The particles of iron are attracted to hese cylinders, and at a certain

MASON'S DOUBLE BOGIE TANK LOCOMOTIVE.

 ship rises to the surface, whence it may be towed into har- period of revolution are brushed therefrom into a receptacle bor. There are several obvious advantages in this system The invention brings into operation a natural principle, sim ple and certain, and the water is expelled from the pontoons without employing pumping apparatus at the surface; and the pontoons being filled on shore, all that remains to be done is the arranging them about the wreck, which, from their ex treme lightness under water, is a matter of little difficulty -Iron.Prospective Profits of English and American fits of Engli
Railways.
The Springfield Republican says that the English roads seem destined to eat themselves up. Their earnings have increased 100 per cent since 1860, their working expenses 135 per cent. How many decades it will take for the ex. penses to catch up with the earnings is an unsolved prob. lem. The English roads have cost three times as much per while the scraps of other metal fall to the bottom of the apparatus. The machine is said to be capable of separating 1,100 pounds of material per hour. It has also recently been employed by M. Mangon, for detecting titanic iron in arable earth, with remarkable precision, the iron, in such small quantities as 15 or even 7 grains in 22 pounds of earth, having been readily separated.

The Utility of Machines.

The following, translated from a volume recently pub lished in France by M. Menier, entitled "The Tax on Capital," furnishes some suggestive facts for the consideration of those conservative individuals who cling to the sophism that labor-saving machinery is on the whole a misfortune to the skilled workman, since its supersedes the manual labor (of which he has, through experience and practice, obtained a kind of monopoly) by work with which in point of cheapness and accuracy he can never compete. "Ho mer," says the au thor, "mentions 12 female slaves as crushing, between stones, sufficient grain for bread fo a day for 300 peo ple. These twelve women, badly fed as they were, consumed themselves a large portion of the corn which they ground while one woman's labor, at the mat labor, at the most, flour sufficient for more than twenty five persons. There was evidently then an enormous absorp tion of circulating capital to produce this small result. To day, a single mill in France, containing twenty stones, at tended by twenty workmen, produces sufficient flour to support 72,000 men or, in other words, each workman feeds 3,600 bodies. In the time of Homer th time of Homer, th
mile as the American, largely on account of the heavy land damages, and their gross receipts are from two to three times as much per mile and their working expenses twice as much. The proportion of net earnings to capital is nearly equal in both countries, and less than 5 per cent.

Hay Fever.

From the best statistics that can at present be collected there appear to be over fifty thousand persons in the United States who are annually subjected to this distressing complaint. In the opinion of the most intelligent physicians, it is to be classed among the nervous diseases, such as neuralgia, rheumatism, etc. An effort is bsing made in medical circles to obtain particulars from sufferers, and thus promote

The French Association for the Advancement of Science meets next year at Nantes, France, under the presidency of
M. D'Eichthal. M. D'Eichthal.

hydraulic mining.

An excellent example of the hydraulic system of mining for gold, consisting in the washing of gravel deposits, may be seen at the works of the Spring Valley Mining and Canal Company, at Cherokee Fiat, Butte county, California. The claim comprises 1,500 acres of ground, containing pay grave to an average depth of 300 feet. The company has expended in the works, flumes, ditches, reservoirs, and water privi leges, over $\$ 1,000,000$. They have on the line of their ditch about four miles of iron pipe, 30 inches in diameter.

a great siphon.

One section of this pipe conducts the water across the west branch of the Feather river. It is laid in the form of an inverted siphon, and has a vertical depression of 856 feet. The accompanying diagram will give an idea of the position of the pipe, which is somewhat similar to the pipe used by the company which furnishe water to Virginia City and Gold Hill. A is the ditch which leads the water to the pipe; B is a ditch on the opposite mountain which re ceives it. This pipe has a depression from the level of the discharging arm of 856 feet. The receiving arm has a head of 180 feet vertica pressure. The length of the inverted siphon is t wo and a half miles, and the pipe is 30 inches in diameter.
There are ten miles of sluices, varying from four to six feet in width, and twenty-three un dercurrents from 10 to 40 feet in width. For the year ending July, 1874, the sum of $\$ 476,112$ in gold was washed out and shipped. They employed 160 hands all the year round, and expended $\$ 125,000$ during the same time, of which $\$ 85,534$ was for labor. The quicksilver alone used by the company for the year cost $\$ 13,309$. For iron pipe they paid out $\$ 8,839$. The Mining and Scientific Press says that the water used is brought by two ditches, 60 miles in length, from Butie Crsek, and from he head waters of the west branch of the Feather river The ditches are six feet wide at bottom and eight feet wide on top. They are four feet deep and run a constant stream of 2,200 inches of water.
Ths mine turned out last year the largest gold bar ever made, bsing valued at $\$ 71,273.15$, and it has been said that they will send a bar worth double this amount to the Centennial Exbibition.
A rather peculiar feature in this claim is the fact that diamonds are found in the washings; most of them, however, by the primitive method of rocking. One diamond, worth $\$ 250$, was cut in Boston in 1864, and last year several were tested in Amsterdam and Paris, and pronounced diamonds of the first water. Professor Silliman has examined these sands carefully, and enumerates the mineralogy of the Cherokee washings as yielding gold, platinum, iridosmine, diamonds, zircon, topaz, quartz in several varieties, chromite, magnetite, limonite, rutile, pyrites, garnets, epidote and al madine. One of the diamonds found weighed two and a half carats.
THE PROCEEDINGS OF THE BRITISH ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE
The following are abstracts of the various subjects discussed:
living death.
A paragraph in Professor Redfern's paper on biology, read before the above Association, furnishes a curious con firmation of the exiom, "we die daily." Referring to the blood, it is said that the duration of life in any of its particles is but short; they die and their places are occupied by others, and so continues a substitution which only ends with death. After every meal an amazing number of white corpuscles are added to the blood; breakfast doubles their proportion to the colored corpuscles in half an hour; supper increases their proportion three times, and dinner makes it four times as great. They come from such solid glands as the spleen. In the blood going to this organ, their proportion is one to two thousand two hundred and sixty; in that returning from the spleen, it is as one to sixty. Perhaps the most stupendous miracle of organization is the steady maintenance of but slightly variable characters in the living and moving blood, which is every moment undergoing changes of different kinds as it circulates through each tissue and organ in the body.

EXTRAORDINARY REFLECTION.
Professor Curtis remarks that it is a notable fact that while so much is written about extraordinary refraction of light, nothing is said about extraordinary reflection, though Huggins' theory is applicable to both alike. Of light falling upon a crystal surrounded with air, part will be reflected at the bounding surface and part refracted, the latter portion being split into two rays, whether the crystal be uniaxial or biaxial, each of which rays will suffer double reflection at the point where they again reach the bounding surface of the crystal. In the case where the bounding surfaces are parallel, the planes of polarization are the same as those of the other. This is not true of the intensities, as one of the four intensities may be zero while the others remain finite. When the incident light is not polarized, the number of reflected rays will pass from four to three, and from three to two, as the crystal is turned around a vertical axis. With polarized light, the reflected rays may be four three, two, or one.

PYROMETERS.
It appears from a report of a committee charged with exIt appears from a report of a committee charged with ex-
mination of theabove instruments, that, by means of the Sie
mens electric pyrometer, changes of resistance amounting to about ${ }_{10} \frac{1}{000} 0$ of the quantity of heat to be measured can be detected without much difficulty

improved telescopiclenses.

Professor Stokes says that, if opticians can manufacture glass containing terborate of lead or titanic acid, lenses made therefrom will greatly decrease secondary dispersion. Phosphatic glass might answer the same purpose, but it has the objection of being too perishable and too soft.

He Decomposition of egas,
according to Mr. William Thomson, is due to three agen cies: First, a putrid cell capable of being developed within ome eggs, no watter how effectaally their shells are pro ected by varnished coverings. This is generated in the yolk, in which the minute granules assume a morbid vitality, ab-

orb oxygen, and liberate carbonic acid gas. The second germ is a vibrio. If the shell of the egg be allowed to get wet, the dried bodies of these animalculæ existing in the at-
mosphere develope in the water, assume vitality, enter the shell, and set up putrefaction. The third cause is a fungus, also derived from the atmosphere, which, settling on the shell, sends myriads of filaments through the same, converting the white into a strong jelly. It is strange that this fungus acts on the air like animalculæ, absorbing oxygen and liberating carbonic acid gas.

HASH.
At last Science grapples with this mysterious compound. The attention of the average New York boarding house keep er is directed to the words of Professor Redfern, who con demns "the process of cutting up meat into small blocks, and then stewing it, the effect of which is that the albumen in the outer surface of each block becomes firmly set, and the whole affords about as indigestible a mass as can well be imagined."
recent experiments at high pressures,
conducted by Professor Andrews, show that the compressi bility of liquid sulphurous acid (unlike that of water) dimin ishes as the pressure increases. In a mixture of three vol umes carbonic acid to four volumes nitrogen, even at 2° Fah., carbonic acid cannot be liquefied under any pressure In short the critical point (a term introduced into this branch of Science by Professor Andrewa) of carbonic acid becomes lowered many degrees when that gas is mixed with a nonliquefiable gas, such as nitrogen.

THE FLIGHT OF BIRDS.

Professor Guthrie, in relation to the hovering of birds, states that, when the bird desires to hover over a given spot, it moves by an expenditure of muscular force until it finds a regien where one layer of air is moving, say, from right to left and another from left to right. Then placing its body and most of its right wing in the lower stratum, it tilts its body so that some of its left wing is in the upper layer. By altering its hight, by turning one wing in its socket, and probably also by turning some of the pen feathers on their axes, and altering ${ }_{5}$ the inclination of its wings, the bird so governs the pressure on the two wings that the sum of the vertical revolved parts is equal to the bird's weight, while the horizontal revolved parts are equal and opposite.
a self-registering apparatus for measuring the chemical action of heat
is described in a paper by Professor Roscoe. The tint pro duced by the exposure of a certain prepared sensitive paper By this means can be determined, with a great degree of ac curacy, the relative amount of chemical action falling upon the earth's surface from the sun and the variations which take place from hour to hour, day to day, and season to eason in that action.

Ether.

Physicists recognize heat as a mode of motion, and that it mes under the cognizance of our perceptions by the vibra ions of atomic matter or ether: of ether, that fluid material perfectly elastic, incoercible, imponderable, which fills al he immensity of space and the depth of all bodies. It is in this fluid that the stars describe their orbits; in this fluid toms perform their movements and describe their trajecto ries. Thus the ether, the radiant messenger of heat and
light, conveys and distributes their radiations through ald
any train, and that each is only to be put down when an approaching train is, by any electric signal from the cabin behind, announced to the man in charge of that semahore as having entered on the block section behind, and when, further, that man has, by n electric signal sent forward to the next cabin in advance, inquired whether the secabin in advance of his own cabin is clear, and on in advace in clear, and has recelve in ng: " The lineclear; you may put down your debarring signal, and let the train pass your cabin." The main effect of this is that, along a line of railway, the signals are to be regular ly and ordinarily standing up in the debaring position against allowing any train to pass; but that just as each train approaches, and usually before it has come in sight, they go down almost as if by magic, and so open the way in front of the train, if the line is ascertained to be duly safe in front; and that, immediately on the passage of the train they go up again, and by remaining up keep the

- Universe; and that which it loses in vibratory energy wen it penetrates a cold body, which it warms, it communi cates to the atoms of this body and augments the intensity of their movements; and that which it gains in energy by contact with a warm body, which it cools, it withdraws from his body and diminishes the intensity of their vibratory movements. And this kind of light and heat which comes rom material bodies is transmitted across space to other ma terial bodies. -M. Wurtz.

The Block System of Railway Signals.

Professor Thomson states that the latest development and pplication of the block system is one which has been made in Scotland, on the Caledonian Railway. It consists mainly in arranging that, along a line of railway, the semaphore arms are to be regularly and ordinarily kept up in the regularly and ordinarily kept up in thi-

 road closed against any engine or train whose approach has not been duly announced in advance, so as to be known at the first and second cabins in front of it, and kept closed, unless the entire block section between those two cabins is known to have been left clear by the last preceding engine or train having quitted it, and is sufficiently presumed not to have met with any other obstruction by shunting of carriages or wagons, or by accident, or in any other way.

DECISIONS OF THE COURTS.

United States Circuit Court--EAStern District of New York.
[Decision rendered July 8, 1874.]
| Benedict, Judge.

zerent guncrican and foreign edatents.

Improved Hay and Cotton Press
Evilee $\mathbf{~ T . ~ A r m s t r o n g , ~ B a k e r ~ C i t y , ~ O r e g o n . - T h e ~ c a s e ~ c o v e r ~}$
Evilee T. Armstrong, Baker City, Oregon.-The case cover is arranged to front portion of a movable frame, which slldes forward and backward in the front portion of a movable frame, which sides forward and backwardin the
case,and carries a windlass. The windlass moves the frame and the follower by winding ropes on it, the ropes being attached to the press head. It also
turns the tying cord reel to wind the tying cords and take up the slack caused turns the tying cord reelto wind the tyling cords and take up the slack caused
by the moving of the follower and the reel toward the press head, the cords by the moving of the follower and the reel toward the press head, the cords
oelng adjusted before the operation begins. The top of the press case is deoelng adjusted before the operation begins. The top of the press case is de-
tachably connected to the follower in a groove, so that it can be taken of readily after the bale is pressed, for tying the cords and detaching the bale. When the cover is removed and the bale thed, the hooks are detached and the head turned down to allow the bale to be discharged, by pushing for-
ward in the same direction that the follower is moved to press the bale. The frame and the windlass are then moved back, and the windlass turned backward to unwind the cords. The press, being arranged th this manner

Improved Weft Stop Mechanism tor Looms. Thomas Isherwood and Liam Stop Motion Company; of same place. The Natlonal Fancy woolen Loom-Stop Motion Company; of same place.to the weft and comb it against the weft fork or latch to insure the proper action when the weft is present, and so prevent the stipper from being
thrown off. It cons:sts of a new arrangement of devices for causing the thrown off. It conststs of a new arrangement of devices for causing the
tripping of the shipper lever when the weft is not present, by which an tripping of the shipper lever when the well is ispensed with.
improved Mode of Compressing Cotton. the plain faced platen and follower, belonging to a cotton press of a sultable device pivoted to the sides of the follower, and adapted to hold the bale bands.

Improved Instrument tor- Measuring Distances. imple and efficient instrument for measuring distances, the same being easily portable, and yet enabling the work to

Improved Pianoforte Sound Insulating Attachment William R. Miller, Baltimore, Md.-This invention consists in means for connecting a musical instrument with its legs so that the trans
mission of souud to the floor shall be arrested and effectually prevented.

Improved Bee Hive.

Thomas Robisson and George W. Robinson, Lumberport, W. Va.-This
invention consists in a sectional bee hive that entirely dispenses with the usual honey frames, has a slatted base, sls, tted sections, and cover, provided with a ventilator and cap, so that the bees, through the slats and ventilator,
have always a circulation of pure air, while the honey is readily taken have always a clrculation of

Improved Rail Drilling Device.
John S. Lane, Falls village, Conn.-This invention conslsts in construct ing the sliding head of a drill clamp for railroads so that, by reversing its
position, the clamp may be applied to either the head or flange of the rall.

Improved Sash Fastener.
Samuel W. Couch, Cold Spring, N. Y.-A lever paw
aits upper end, to take ho dof the teeth of a bar let into the sash, and held forward against Eaid toothed bar by a spring attached to the window frame. The pawl is operated by a key which is inserted through a notch
in the inner side of the window casing. A bolt, placed in a case, is let into and secured to the top bar of the lower sash, and is made with a shoulder
agatnst which rests the end of a colled spring, the other end of which rest azaiuss the case to hold the bolt out. The forward end of the bolt enter a hole on the eide bar of the upper sash. The bolt 1s pushed forward by the
aver pawl, the u oper end of which rests aganing tis outer end.

Improved Car Coupling.
William Clendening, Van Werd, Ohio.-When the pin is ratsed ready for
 ad back and the entering link coupled. On rassing the pin, the weigh

Lmproved ceed Water Heater and Condenser.
Ent G. Frykuery, G'lpin's Point, Md.-This invention consists in ators and gutders for caustng the contact of the opposing elements of heat hat cold as the substance to be heated or cooled passes along the separawo parte, bolted together, one part having its end closed by a head bolted cach othor at the ends by doubling the arc of different sizes and shorter than the shell. The gulding part consists of a serles of hollow cases, bolted
to both en is of the sliell, arranged in the spaces between the different parts of the separator.

Improved Bottle Stopper.
Edward Clark, Newark, N. . - - Chst invention consists of a stopper for still liquors, made of a ball of cast metal, having a wire spring passing
transversely through the upper portion, and a packing disk, of elastic matransversely through the upper portion, and a packing disk, of elastic ma
terial, with a hole in the middle, stretched over the lower portion, into an annular groove a little above the bottom. This is pressed down airtight into the nozzle by the spring being jointed at one end to a wire fastened to the neck of the bottle, and at the other end sprung under a hook of eald
wire. The wire has twisted projections on opposite sides of the neck. Wire. The wire has twisted projections on opposite sides of the neck
extending upward sultably for so connecting the spring. The ball is made extending upward sultably for so conne

Improved Means for Propelling Canal Boats. Chales near one side, extendirg the whole length of each level and firml secured at each end. When the commerce is large, two such chand can can
sind used, one at each side of the canal. These chalns are kept in position The propelling wheel is placed on the side of the boat, near the bottom. The periphery is grooved to ming in its groove, the boat is propelled by the turned while the chatn is lying in its groove, the boat is propelled by the
traction of the wheel on the chatn. The wheel is also so constructed as to
allow the boat to pass the spars asd guy chains without hindrance. A bind
 Ing wheel is used whenever great traction is needed. For steering, a regu-
lator, to which the tug line is attached, is fastened on the side of the deck over the propeling wheel, so that the boat has perfect freedom to swing around on this center of power, and to be quite eas!ly governed by her
helm. There is also attached to sald regulator a lever, by means of which motion puls the boat's head around to right or left when desired. In order mapply (to the side of a boat that is so wide as to fill the lock) a projecting
wheel, the wheel is made to slide in automatically fush with the side of the whecl, the wheel is made to slide in automatically flush with the side of the
boat while going through the locks, and to move back to its projecting positon withoat any attention of the crew. The shaft is in two pieces. The outward and allows it to be pressed in by a shifting lever. To render it self acting, when struck or pressed from the outstde, the driving wheel is
placedin a case. The wheel is secured to the shaft, but the case is loose taciesi. On the periphery of this case is a cam entering a groove in the
bat, thus keeping the case from turang while the wheel is in motion. Whenever the flange is pressed on tits outer edge, by going into a lock o
otherwise, the wedge-like form of the flarge shoves back the case an wheel into the circular recess and flush with the outside of the boat.

Improved Medical Compound.
Shadrach Dixon, San Marcos, Tex.-This invention corsists of a composiof yellow j jssamine, oil of sassafras, and sott water. It is said to be a diarrhœa, flux, ete.

Improved Sewing Machine.
Edwin D. Smith, New York city, assignor to Howe Machine Company, of Bridgeport, Conn.-This is a graduated scale, applied to the adjusting
evice by which the headis adjusted forsetting thencedles of difterent sizes proper relation to the shuttle race. The mark on the adjusting device corresponds to the size of the needle in the bar requiring to be adjusted to he race, and is so placed that, when it stands at the Index polnt, the needle

Improved Sulky Plow.
William Starling, La Prairie, Ill.-One wheel may be adjusted to keep the
nachine level while the other wheel runs upon the surface of the ground, achine level while the other wheel runs upon the surface of the ground, or in a furrow of a greater or less depth. The tongue may be readily altered djusted to take more or less land, or to cut a wider or narrower furrow, as may be desired. The cutter may be adjusted to work deeper or shallower
in the ground. A jointed lever enables the rider, with his foot, to hold or the ground. A jointed lever enables the rider, with his
lock the forward end of the plow beam down or to raise it.

Improved Manufacture of Whips.

Dexter A very and Charles C. Pratt, Westfield, Mass.-A tapered mold is sed, consisting of a tube of sheet metal somewhat larger than the com-
plete body of the stock is to be, with overlapping edges not fastened ete body of the stock is to be, with overlapping edges not fastened
gether. The material of which the body of the stock is composed is laced into sald tube, and the latter is then pressed to compress the matelal, which consists of the vegetable fibers bullt on the core, etther in the
form of loose fibers of jute, flax, or hemp, laid lengthwise, or a triangnlar ece of woven cloth rolled on and gether in a solld mass when dry.

Improved Mit ering Machine.

Edwin Everett, Andover, N. Y.-A strip slides in grooves in the slide ars of the machine frame, and is moved to and fro by a screw and nut.
o its forward part is attached a square block placed diagonally. To the orward corners of the frame are attached triangular blocks, the inner edges of which are exactly parallel witin the forward edges of the square
block. To the upper side of the square block are attached two parallel lock. To the upper side of the square block are attached two paralle1
trips, parallel with, and equally distant from, the central line of the sllding strip. The strips thus form a deep groove directly above the central ne of the device. The strips of molding are clamped, while being sawn,
between the forward inclinededges of the square block and the inclined edges of the triangular blocks, by tightening the nut upon the screw, and when sawn. the two inclined ends of the molding are brought together
and clamped in the same way. They are thus held securely, while being

Improved Churn.

 George Shoup, Williamstown, Mo.-This invention consists in inclinedplates, made convex upon thetr outer edges, concave upon their inner
edges, and provided with holes and channels, fastened to a cross bar ttached to the lower part of a dasher shaft. Upright flanges are attached round, the lower end forward, which causes the milk to pass up the plates to the flanges, by which it is projected against the cover and sides of the churn, and thrown into violent agitation. A portion of the mill that falls
back, and a part of that that is passing up the plates, pass through the holes the said plate into the space behind them. The milk is also carried out ward, so as to leave a clear space around the shaft down to the bottom of
the churn through which space, when raised by the plate, it passes back to the bottom of the sald churn, to be again raised.
Improved Lamp Trimmer.
Daniel B. Altenderfer and Joseph C. Wright, Monocacy Furnace, Pa.Daniel B. Altenderfer and Joseph C. Wright, Monocacy Furnace, Pa.tube of a lamp, to extend it above the cone. The tube has its edges split
or a short distance down from the top, so that the sides can be pressed ogether. Thewick is raised through the tube so as to project above the op about as much as it is required to be cut off. It is firmly compressed
between the sides to hold it for trimming by another shorter tube, with converging inside walls, so adjusted that, when puton the top of the extenion tube and pressed down, it will spring the sides firmly on the wick, and thus hold it securely for trimming.
lmproved Construction of Hulls of Ships, etc.
Carl G. E. Hennig, Paterson, N. J.-This invention is based on the princtCarl that wetght acting on an inclined plane promotes locomotion. The essel is provided with a series of inclined projections below the water ine, placed in such a manner as to bring the same in a position to receive
he pressure of the waves, and thereby cause a forward motion, and so hat these projection shall wor much to water retatance.

Improved Car Coupling.
Greut Barrington, Mass.-This in
Bernard Almonte, Great Barrington, Mass.-This invention is a bail, by neans of which the link is supported at any desired hight, usually in 8 posing car. The ball is conined to the drawhead, and is adjusted to the desired hight by means of the ratchet blocks on the two sides of the drawhead, with which hooks engage. When the link is supported, the cars will
coupleautomatically. Previous to coupling, the pin 1 drawn up and is couple automatically. Prevlous to coupling, the pin 1s drawn up and is
supported on a lip of the bumper. When the cars come together, the supported on a lip of the bumper. When the cars come together, the bum-
per is pushed back by the link, which allows the pin to drop. At the same time the bail ls pushed back on pins, which disengage the hooks from the ratchet block, and thus allow the ratchet blocks to drop to nearly a vertic ${ }^{2} 1$
postiton. The baill, when disengaged from the ratchet blocks, is supported bye pins until it is again raised for the adjustment of the link.

Improved Stamp Case.

Paul J. Lefebvre, Opelousas, La.-This consists of a number of light rames, of the size of a sheet of postage stamps, hinged together at one
ide, and having cross bars crossing the interior space, at sultable interals apart to hold sheet of stamps between the frames. The object is to provide post office offlcials and others requiring to keep large quantities of tamps on hand with means of preserving them from damage by sticking ogether.
Improved Thrashing Machine. rasher for which letters patent No. 104,503 were schnebley, June 21, 1870. To the framework of the machine is attached a ave holes formed through it for the grata to escape through. To the frame at such a distance above the floor as to give sufficient space for the passage of the unthrashed grain and the straw, are pivoted two rock shafts,to which ore attached cranks to which power is applied. Spring bars, the rear ends which are attached to the floor near its rear edge, are so formed as to and up a little from the floor. Flalls, which are rigld bars, are so formed uated to come down upon the straw with a whip blow. The graln may be hrashed when thin as well as when thick, and the straw comes stralght
and whole from the machine, and may be readily bound into bundles.
Improved Addressing Machine.
resses, it is inked and rocked over a stiff strip of cardboard two inches Wide and twenty-four inches long. This operation prints the addresses on he gage strip. This strip and galley are then numbered witha correspond
ing number, and always used in connection with each other. In malling the gage strip is slipped into grooves on the side of the mailing board, the papers to be addressed folded into quarters and placed on the board,and the top edge of each paper placed to a name on the gage strip. This leaves
about half an inch of thetop margin of each paper exposed. The galley orrespondingin number with the gage strip used is then taken and rocked ver an inking cushion, then placed on the papers and roeked forward over

Improved Carriage Curtain Eyelet.

William H . Stickle, Miamisburg 0 , tdisk is secured between annular metal plates applied to opposite sides
of the curtain. The annular metal plates are secured by staples which pluded.

Electro-Magnetic Governor for St eam Drying Apparatus.
Julten M. Bradford, Portland, Me., assignor of one third his right to working a cut-of valve and a throttle valve of steam heating appar for with automatie apparatus for opening and closing the valves, also for re versing and stopping and starting the englne, controlled by electric currents. The latter are closed and broken by the variations of the heat
through the medium of thermometers in the heated room, the arrangement being adapted to ensure a uniform temperature of any
August Dietz, New York city.-This invention relat
rotary engines withyariable With radial spring sildes which are sultably packed and acted upon by the liptic piston, rotating tightly theretn by means of combined spring and eam-packed strips. The piston is keyed to the hollow shaft through
hich the steam enters, and provided with variable cut-off and distribu on valve at one stde, and with an exhaust valve at the opposite side, both eing closely pressed against the cylinder heads by spring and steam pack gdevices. The ports of this distribution valve conduct the steam through causes the rotation of the spring slldes
 piston at opposite sides from the parts acted upon, and is then conducted rough the exhaust valve and ports of the opposite cylinder head to the xhaust plpe.
Improved Car Mover.
Noah A. Lewis and Ell Orerton, Utica, N. Y.-A lever and stud are he stud is inclined forward from the stem, while the long end of the lever is ratsed from the horizontal to any destred angle. A jaw projects
rom the under side of the lever, to which is aftlixed a polnt. On the end from the under side of the lever, to which is afllixed a point. On the end
of the lever is a fixed point. When the implement is applied for moving a car, the fixed polnt is forced into the wood and holds fast, whille the pres tself and assists in holding the mover and prevents it dropping when the perator is getting a new point of leverage with the stud.

Improved Ash Sifter.

Alfred A. Liscomb, Jersey City, N. J.-This invention consists in a sift
g drum rotating in a box. The latter has a stationary wing plate ng drum rotating in a box. The latter has a stationary wing plate con ecting with the side tube of the drum, and an inclined wing plate pivoted
near the circumference of the drum. This allows the passage and sifting of the ashes when the drum is turned in one direction, while producing
pon reversing the direction of rotation, contact with the stationary win plate. The unburnt sifted coal particles are then conveyed along the latter the side tabe, whence they issue to the outside by an inclined connectgh perforation of the casing.
Improved Furniture Spring.
William T. Doremus, New York city.-This is an tmproved spring for furniture and other uses, so constructed as to be elastic under a heavy o
light weight. It will take the lighter springs out of pressure before they re compressed enough to injure their elasticity, and may be adjusted to
regulate the elastictty, as maybe required. There is a tubular rubber block the:base of which rests upon a rigid disk, upon which, around the base of he rubber, is formed a tubular case. A nut in the latter is screwed up so
as to regulate the compression of the rubber. The disk has a tubular pro ction to enter the rubber block, and it rests upon the upper end of ano er tubular rubber block similarly entering the same. A rigid disk forms ring seat for the said rubber tube, aid in turn resis upon another rubber
lock. The lower end of the latter rests upon another rigid disk which erves the same purpose as the disks before mentioned. A guide bolt may pass up through the center of the spring, to connect the two objects be

Improved Combined Harvester and Thrasher.
Alfred Collins and Arsd Maynard, Janesville, Iowa.-The concave of the hrasheris secured to the frameso as to be adjusted as required. The con-
cave is provided with spikes, and its forward edge is grooved longitudilks, and bring their heads into proper position to be ope ated upon The thrashing cyllinder consists of a series of radial wings, to the edges of which are attached teeth bent backward, to prevent thrashing the grain before it has come upon the concave. The wings of the wheel are made
vide to cause them to act as the wings of a fan wheel for causing a blast for clearing the grain. The wheel ts partially covered with a hinged lid to enable the blast to be more readily controlled. The rear part of the wheel frolling the blast. The thrashed grain and the chaff pass from the concave a screen which is jarred by a lever actuated by the drive wheel.

lmproved Pianotorte Attachmenc.

M. Waldo Hanchett, Syracuse, N. Y.-This is a mechanical attachmen t uited to all pianofortes, whereby it is designed to enable a performer to
ustain or permit the continuance of the sound of a single one, two, or more strings or unisons after a key or keys by which the vibrations wer produced have returned to thelrplace of rest. The attachment consists o
a bar suspended near the ends of the dampers, so as to swing forward and a bar suspended near the ends of the dampers, so as to swing forward and
from them, and having a series of any desired number of tongues attached stances apart as the latter, the bar being connected with a pedal, so tha after the dampers have been raised they may be caught by the tongues and held off the strings after the keys go back. This 18 effected by causing
the bar to swing forward by the pedal and swing the tongues under the the bar to swing forward by the pedal and swing the tongues under the
dampers. When the bar is allowed to swing back, the tongues will withdraw, and leave the dampers unaffected by them. The tongues are also all under them without obstruction, while holding other dampers up. By this improvement, the sound produced from a single unison of the pianoforte may be prolonged after the key has returned to its normal position,
aud the key by which the sound is thus prolonged may be struck repeatedly without interrupting the tone; thus rendering possible a smooth organ. The sustaining of the sound of a single unison, we are assured the inventor, interferes in no way with the use of the remaining tones of the instrument, which may be played with or without the damper ped b_{6},
producing the same effect as before. The ordinary damper pedal may be producing the same effect as before. The ordinary damper pedal may be
sed in connection with the sostenuto pedal, producing the same eifects as present upon all the unisons of the instrument, except sach as are af ected by the sostenuto pedal, which will continue independent of the dam er pedal. By the application of the sostenuto attachment, the plano is almed to approximate the adpantages of the pedal brass of an organ nd the damper or harp pedal are attll at liberty to produce melodies changing harmonies, legato and staccato passages without the necessity We hope to illustrate, by engravings, at some future time, this novel inven We hop
tion.

Improved Process for Treating Copper Ores. ess by which argentiferous, auriferous, or other copper ores may be treat es etther Independently or in auxlliary manner to other processes for the extraction of gold, silver, and copper therefrom. It consists of a comblation of operations, namely, smelting of the ores in a reverberatory fur egration; oxidation of the disintegrated mat in a furnace similar to a bove the desired degree; repety adapted to prevent the heat from rising ished, and the product of it has been soaked with water; dissolving the sulphate of copper formed during said oxidation in a tankwith water, and, after removal of the solution, dissolving the copper atill left in residue With a solution of sulphate of iron, this lstter process to be repeated as long as any copper is left in the residue, and the copperin solution to be pre-
cipitated with iron. The residue, containing paroxide of fron and all the cipitated with iron. The resldue, containing paroxide of fron and ail the
gold and silver, being much reduced in bulk, can be treated by any known
method for the citraction of the eold and silver, or used as gux forsmelt. ing the ores, and to eccumulate the bullion as far as deatired.

gutiness and cersimat.

 Models, and all kinds of new Machinery and Work, made to order in best manner, at lowestBest Philadelphia Oak Belting and Monitor
stitched. ©. W. Arny, Manufacturer, 301 \& 303 Cherry St., Philadelpha, Pa. Send for new circular.
Direct Steel Castings-Solid and HomoreDeourect Conestive Cower four times greater than Cast
Cast Iron. An invaluable substitute for expensive forgings,
or ron Castings requirng great strength. For corrcular and price 1 st , address McHaffee steel Co., cor. Evellina First Class Tools and Tool Chests. For
descrittive circular, address J. T. Pratt \& Co., 53 Fulton t., Ne

Stew Lathe Doss, 14 sizes, and 7 sizes of
steel Clamps. The Best ana Cheapest. Send for Circular $\&$ drice list to Phila. Hydraulic Works, Evelina St.,Phila. Shafting, Pulleys, and Hangers at the low-
est prices. . Frisote $\&$ Co., New Haven, Conn. Address Strange's. Cylinder Sa wo and Ma-
chine Co., Taunton, Mass., for Price List of the Comblchnne Co., Taunto
nation Foot Lathe
The Patentee of the U. S. Patent Auto-
graphic Safety Inclisons for prevention of alteration of

 Manufacturers. Glue, Salt, Extracts, \&\&., in.
vited toussect Dutchess Rotary Evaporator, Fair Ame. vited toinspect
rican Institute.
To Manufacturers or Investors, wishing a
small article in in inn, can secure the sole right to one of
 100,000 Standard Receipts, selectede from the
est Authorttes. Avy one receite sent tor 30 cts., two for

Walrus Leather, tanned, for polishing all
lnd of Metals. Greene,Tweed \& Co., 18 Park Place,N.Y. Baxter Engine, three Horse Power, Wanted.
Address G F. F . Lewis, cieveland, 0 ... with price for cash. Cotton Compresses, Agents of, may be benTo Rent-Cheap Room with Power. Ad-
dress Box 679, Brmmgham, Conn., D. . . Brinsmade. Millstone Dressing Diamond Machines-
Simple, etlective, economical and durable, glving uni-
versal satisfaction. J. Dickinson, $6 \pm$ Nassau St., N.T. Babitit Metals-For the best, sond to Co-
nard $£$ Murray, Iron and Brass Founders, 30th \& Chestnut sts., Phuliadelpha. Pa.
For Durkee Saw Mills, address the Manu-
facturers, T. B. Balley \& Vall, Lockport, N. Y. Man Wanted, the Management and Manufacture
n England of American Inventions that have been In-
 Horsfall, 123 Atlantic Ave.,. Brooklyn. N. Y.
Johnson's Universal Lathe Chuck. Address
Lambertvile Iron Works, La moertylle, . . J. The Whitmore Patent Engine- 4 to 10 H.P.
Cheapest, best, and safest. Send for Price List. Love. The Lane M'f'g Company, Montpelier, Vt.
will exhibit Crcular Saw-Mill, Rotary Bed surfacer, and
 may also be seen at w . L. Chase $\&$ Co.'s, 95 Liverty St .,
New York City. Tingue, House \& Co., 69 Duane St, N. Y.
Manufacturers of Machine Bianketing Felts,and Cloths, Endless or In plece, for Printers, Engravers, Pollshers
Piano Forte Makers, Paper Makers, Callco Printers, Punching or Washer Cloth, Filter and strainer Cloth
for all kinds of liquids. Sample sent on application. Double-Acting Bucket Plunger Steam Pumps,
Manut'd by Valley Machtne Co., Easthampton, Mass. N. Y. Store, 45 Cortlandt St.; Philla. Store, 132 N. 3rd St. Hydraulic Presses and Jacks, new and se
cond hand Lathes and Machinery for Pollshnng and Buf. ting Melals. E. Lyon, 470 Grand Street, New York.
Deane.s Patent Steam Pump-for all pur-
poses-strictly frrst class and rellable. Send for clrcular. W.L. Chase $\&$ co., $9 \&$ \& 4 Liberty st.. New York.
Inventors con get small plates of sheet steel
very cheap, at the saw factory, 108 Hester st., New York. The "Scientific American" Office, New York,
1s itted with the Minature Electric Telegraph. By
 signa19 are sent to persons in the various departments
of the establishment. Cheap and effective. splendid
for shops, oftces, deeling. Works for any distance
 The Improved Hoadley Cut-off Engine-The the United States. Send for circular. W. L. Chase \&
Co.,95\& 97 Liberty st., New York.
Telegraph Inst's. M. A. Buell,Cleveland, 0 . Soap Stone Packing, in large or small quan-
tities. Greene, Tweed $\&$ Co., 18 Part Place, New Yors. Compound Propeller Pumps, for Mines, Quar-
ries, Canals, and Irrigating purposes. CIrculars on ap. ries, Canals, and Irrigating purposes. Clrculars on ap-
pitcation to Hydrostatic and Hydraulte Company, 913 For Solid Wrought-iron Beams, etc., see ad-
vertisement. Address
Union Iron Mills, Pittsburgh, Pa., for 1ithograph, etc.
Portable Engines, new and rebuilt 2d hand,
a spectialty. Engines, Boilers, Pumps, and Machinst's Tools. I. H. Shearman, 45 Cortlandt St., New York.
For Sale-Two Steam Saw Mills and three Farms, by C. BrIdgman, st. Cloud, Minn.
Spinning Rings of a Superior Quality-
Reting Whitinsilile spinning Ring Co., Whitinsviile, Mass The Pickering Governor, Portland, Conn.
Mechanical Expert in Patent Cases. T. D. Gas and Water Pepe, Wrought Iron. Send
for price list to Bailey, Farrell \& Co., Pittsburgh, Pa. Frogeses - Fan Blast), Portable and Station-
ary. Keystone Portable Forge Co., Phnladelphia, Pa. Brown's Coolyard Quarry \& Contractor's Apparatus for hoisting and conveeving materials by ron
cable. W.D. Andrews \& Bro.. 411 Water St., New Fork. Saws made \& repaired at 108 Hester St., N. Y Incrustations-Winans' Boiler Powder $(11$
Wall St.,N.T.), 19 years practical use proves-No injury no foaming, and positive prevention of scale

Mining, Wrecking, Pamping, Drainage, or
trrigating Machinery, tor sale or rent. See advertiseAutomatic Wire Rgpe R. R. convieys Coal
Ore, wco.. without Tréstle A F. Havens Lights Towns, Factofios, HoTemples \& Oilcans. Draper, Hopedale, Mass, Buy Boult's Paneling, Moulding, and Dove-
talling Machne. Send for circular and sample of work: . C. Macis Co., Battie Creek, Mich... Box 227.
Rue's "Little Giant" Injectors, Cheapest
and Best Boller Feeder in the market. W. W. Chase \&

For Surface Planers, small size, and for enl, Mass.
For Solid Emery Wheels and Machinery, Lathes, Planers, Drills, Milling and Index For best Presses, Dies and Fruit Can Tools,
Bliss $\&$ Willams, cor.of Plymouth \& Jay, Brooklynn,N.Y. Price only three dollars-The Tom Thumb
Electric Telegraph. A compact working Telegraph ap. paratus, for sending mesages, making magnets, the Can be put in operation by any lad. Includes battery.
 Sroad way, New York.
Blake's Belt Studs are the Cheapest and
most rellabee fastening for Rubber or Leatner Belts. Engines 2 to 8 H.P. N.Twiss, New Haven, Ct. All Fruit-can Tools,Ferracute,Bridgeton,N.J• Peck's Patent Drop Press. For circulars,
ddress Milo, Peck \& Co.,New Haven, Conn Small Tools and Gear Wheels for Models. The French Files of Limet \& CO. are, prothem. Dectided excellence and moderate costhave made these goods popular. Homer Foot \& CO., Sole Agenta
for America, 2 P Platt Street, New York.

C. H. B. is informed that liquid glass is sil.
 tons for cleansing cotton waste in No. $7, \mathrm{p}$ p. 202, vol.31.
 structions for destroying trunks of trees in answer No.
72, of that
ast as to the cut-ofif of h19 engine.-J. C. D. .an make a
 will find a rectipe for dissolving rubber on p. 363 , vol. 30 .

 a steam engine ts toocomprenensive to be answered in
these columns. Working drawing of engines and bollhe use of the square tn any work on starir bulladng.-
J. D. H. can polish hls wooden handles by following the nethod described on p. 315 , vol. $30 .-$ A.P. W. W.s difficulty can only be eettied by experiment. Ahe device he speaks
of tis patented. - . A. should apply to the pubishers
who Who advertise in our columns, for catalogues.- C . W.
will ind directions for marbling in Spon's " Workslop Recelpts." M.J. H. will find that bronzlng 1s described
in the same work. - An anonymous correspondent caa produce a lack finsh on brass by following the methrections for makling plekles on p. 181, vol. 27, -P. C. H.

(1) W. T. W. Says: The water for use in

 all
ally than n bet hauling tit? A. Fou must use a pump, whtch might, perraps, be worked by a windmill. You
an obtant the tools you speak of at a
(2) J. H. E. says: I want to run a wire
along the ralls of a rallroad, and make a conneetion beween this wire and each rall. I propose to drill a hole th the flange of each rall and make the connection be
twen wrie end rail by tastenng the wrre to arass
lug and driving this plug through the hole drilled in俍 and driving thls phag through the hole drilied In connection? If not, do you know of any metal that
would answer better for this plug?
A. You can easily would answer better for this plug? A. You can easily
make an arrtight jotnt between the plug and the rall by
(3) S. E. J. asks: Is it a common practice for machinists to put ints of tin, smanl pleces of iron, ajdustable, or only partially so ? A. It is a 18 a
practice, generally approved by good workmen.
Is it common for foremen and other superinte Is it common for foremen and other superintendents
of machnne shops to determine first what kind of a tool man shall use ona dathe or planer. provided it perorms the work it was intended to do in a good and-
proper manner? A. It is not usual for a superintend-
 good work. The right of the matter seems to be as fol-
lows: If the men are engaged on plecework, they can ise such tools as they thic if en, provater hat thell men are pald by the time they make, the e apperintend-
ent can direct the manner in which work tis to be perent can direct the manner in which work 18 to be per-
formed, and the tools to be used. The propriety of exercisising this arbitrary rlght over skilled workmen ts,
(4) F. H. W. Says: Suppose a red rubber qual texture and elastictty throughout; and the bal1oon to be tnfiated with the gas commonly used for bal-
1oon inflation, and the balloon set free. Would the ballon rise to a position where it would remand suspend-
ed, on account of the approximate densittes of the a, on account of the approximate denstites of the egas
and the extreme atmosphere, or would the gas expand unth the internal pressure would cause the balloon to
perature would cause motsture to condense upon the
balloon and the balloon to fall, untll it reached a potnt balloon and the balloon to fall, untll 1 It reached a point
whiere tit would begin to re-ascend? Please inform me,
 Which, any,
if any, of then these 18 usual with the ordinary balloons, Whatch are of on unequal texture. A. If the gas in the
balloon does not become heated, the tendency to burst by expansion' will not be great. The balloon will rise

 ascapting, so that after a tlme the balloon will fall
he ground.
(5) H. W. S. says: As to the speed of the
teeth of a large anda small saw, both being flrmly fas teeth of a large and a small saw, both betng firmiy fas-
tened to the same shatt, I clamm that the teeth of the large one go very much faster than those on the small
lat
 this is a farr statenent of the case, and I have but one
cmment to make: To deny this principle 18 to den comment to make: To deny this princtple is to deny
the principle of multuplying speed by large and small

 aw go any quickernan net teeth in the 12 fnch saw
H. W. s. 1 s right. A matter of this kind 18 easill se tiled by experiment. Secure a pencll to a tooth of each
saw. Hold two boards so that one will bear agalnst the saw. Hold two boards so that one will bear against the
pencll, and revolve the saw arbor once. Then measure the path descrived be by awach tooth, ance. Then measure oards, multtply each distance iby 400 , and the resu
will be the veloctles of the teeth of the two saws. When a wagon wheel roils on the ground the top goe farter than the bottom, and the eason why 18 that the
ground 18 the fulcrum, not of the wheel but of the
(6) C. F. Says. I am somewhat at a loss t
econclie twe current volume, In answer to B. B' question concerning
the asymptote. You say: " The stralght Ine tis contin hally dividing the distance between tiself and the curve so that. between two successive equal lengths of the stralght line is on only a r raction as great as as it was before;
but as there will always be some distance to divide the Sut as there will always be some distance to divide, the
two Ines will never meet." And on p. 133 , in an artclele
 to suppose that, if the division be carried far enough,
 cannot be subdivlded without lostng thelr properttes as
parts of the given substance." Now, as substance and distance are terms which denote actual and concrete may reach an ulttmate division, and in the other we must fail so to do. A. There is no contradietion in the
two statements. It is not diffcuit to concelve of the infinte esubivtition of a quantity. The researches of
chemtsta, however, lead them to belleve that, In making this division in practice, a partclele or molecule will at last be reached whith, if again divided, will cause the
substance to be resolved into tts constituent elements. Tnus, if the ulttmate particle of water were reached hydrogen and oxygen, and the last divtiston would glve
(7) C. F. T. says: A saw file or three cor-
nered fle Is sometimes called three square. I say that nothng
are right.
What preparation is there that I I an put on an oper How can Iprevent ants from getting into cellars,etc.,
(8) F. A. McG. asks: What is the cause of mill burr getting out of a true face? It was in true face and in rue baince when ast put down. What
the cause of a burr getting in wind A. A mill burr mon betng that the hub 1 not a close fit to the shaft, or
that the key does not bed properly, in which case drlv. Ing up the e ey will throw the stone out of true. wind also wear oun of true if there are unuunally poft
places in the stone. If the burr 1 p properly fastened to
the shast places In the stone. If the burr is properly fastened to
the staft and still gets out of wind, the cause probably
(9). J. H. says: In reply to S. F. You say copper balloons attached to the corners. 1. Was the
air pumped out of them, or were they inflated with gas With hydroal way? A. We believe that they were fille degree of rarity, pumping out the air or inflation with gas? A. The former method. . . Wourd it be peosithe
to construct a balloon of any constiderable size of thln

(10) W. C. asks: Can an ice boat go faster (11) J.W. P.-There are several feed water
(12) T. G. asks: What are the principles t overcome the pressure in the boiler? A. The steam
enters the injector at a high veloctty, and, belng condensed on mingling with the water, imparts its momen
(13) W. C. A. asks: If a machine at 50 revis required to run it 100 revolutions? A. It 18 impossi-
ble to answer a question expressed in such general terms; and 1 n most cases the
determined by experiment.
(14) L. H. P. asks: How can zinc be preof obtanning zlinc colour? I I kow that evaporation 18
one way, but that takes too long. A. Metallic zinc has never been thrown down from its solutton, because of
ts hiphly electro-postlve character for whlce property Is heads the list. Its value as the postitive element tin vanic batterles s due to this propert
(15) D. H. P. Jr. asks: What is the weight

500 Fah. about 17672 granns.
How are magnets made? A. Fou do not tate what
Kind of magnet 1 s required.
 bringing down, on one of 1ts extremittes, elther of the
ends of a bar magnet. If the north end be brought ends of a bar magnet. If the north end be brought
down on the steel bar, it must bo drawn slowls along
 hall possess south magnetic force; this operation mus
$\underset{\text { electric machine, using a cyllnder of wood covered with }}{\text { (16) }}$ tn toil for a prime conductor, and a baill covered with
same for the negative conductor a by the use of common bottles. 1. How can I bore some through the bottoms of bottles so as to use onetrs or
astenting them to the artenng them to the stand? A. Wet to on ordinary drill
with petroleum or benzine; tnrpentine will answer but With petroleum or benzine; tnrpentine will answer, but
not so well ; It will then bore common glass nearly as raplaly as steel. The sand blast 18 now used for thth
purpose. 2 .What can I use to stick the tin foll to the cyl. Inder and Dall, which are made of wood? I Int end drir ng plugs into the neezs of the bottles by which to fast. en on the conductors and journals for glass wheel
what kind of glue can be made to fasten these wooden lugs to the glass bottles so that they will hold? A
ry ordinary glue. 3. Can you tell me how to make Try ordnary glue. 3. Can you tell me how to make
Leyden jar? How tis the baked wood, used as a lld, ob
 Coating of tin toll is pasted upon both the ineer and outer surfaees, to withln 3 or 4 tnches of the neck. A
wire surmounted by a orass knob, and supported by a smoth plug of dry wood, serves to convey the charge to the inner coating, with whith it is in contact. Any ${ }^{1} \mathrm{dry}$ d.
(17) A. V. K.-The London Underground

(18) J. W. D. E. asks: What is the cause
 densed Into the space of one, together with the heat
generated by the piston of the arr pump? A. It 1s due to the work of compression. 2. Is the amount of heat Present tin any yiven number of compressed atmospheres
he same at all seasons?
. The temperature of com an How many compressed atmospheres would be re 221 lbs. above atmosphertc pressure without loss of (19) B. C. \& C. ask: What is there that con
e put on polished iron that will not change the color
(20) A. M. C.- You cannot gain power by
he use of a machine: but you may gain force or press ure at the expenditure of distance passed through by lightly, you should have the same pressure at the rack
 er attained by any steamer in the United States? Has 25 miles per hour been made? A. We have seen it
tated that the speed mentloned has been attained by
(22) H. M. L. asks: I have a boiler, 26 feet
 very wet and the power poor. What should r gain if take steam from front end? The feed water goes in without knowing further parttculars. fors. Posiblyst the steam drum is not large enough. We advise you to con-
(23) A. B. C. asks: 1 . Is not water raised in
slphon by means of atmosphertc pressure?
A. Yes.

Can water be ralsed in a siphon above 34 feet? A.
o.
(24) J. E. P. says: I have a barn 100 feet ises a huil, the top of which is half the hight of the bullang. Can I protect the building from lightning by erectlig an upright pole (on tne top of the hill, hig ner
han the builiding) and attaching thereto a lightning rod aving the rod terminate well tin the ground at the base,
connection with a tun or two of tron buried he surface,and thereby draw the effect rather from than to the bunliling? A. Ahe method you propose would not
bellikely to glve you protection. The afer way will be be likely to give you protection. The safer way will be
to place conductors on the bullding, and connect them
(25) J. McI. asks: What is the proper way shall be correct? A. Place the new plass in adjustment
as nearly as possible by the eye, put the level on a plane surface, and bring the bubble to the center of the tube,
byralising or lowerng one end of the surface. Then rn the level end for end, and if the bubble runs a way lass and the other halt by rasing or lowertng one end of the surface. Conttine thls operation, turntigg the
evelend for end and adjusting, untll the bubbe will ain in the center of the tube
(26) T. \& D. ask: Please tell us the necessteel and of best fron, drilled and double riveted, to stand with safety 600 ibs. hydraulc pressure. A. The
hleckness of plate should be about $1 / 4$ of an inch, to ave the boller just strong enough to withstand the
ressure. Using factor of safety of 4 , the thickness ressure. Using a factor of safety of 4, the
hould be 1nnch, of $6,1 \%$ Inches, and so on.
Can you give me any account of the trial of steam
bollers at Pittsburgh last year? A. See p. 97 , vol. 30 .
(27) H. W. J. asks: What is a lathe dog?

What book
nd tits Uses."
What kind of wood tor in modng models for small castlings? A. Mahogany is the best.
Would a mall kitchen boller, about 3
Would a small kitchen botler, about 3 feet high, an-
wer the purpose of boller for a small engine with a ould not be large enough.
What are students in the German colleges exammed n,for admittance and graduation in chemistry? A. You (28) E. B. Jr. asks: Can the degree of 'MasLer Mechanic" or "Mechanical Engineer". be accuired
at any school or untversity, or is it necessary to have
 hat confer the degree of "Mechanical Engineer" up
(29) T. F. says: A Ariend of mine recently
ontended that there is a gun in the Untted States Which welghs 100 tuns, mannafactured at the Fort Pitt ow in course of construction at Woolwich will be the largest in the world. We agree to abide by your de
clison. A. We think that T. F. 1 is right.
$\xlongequal{(\text { (30) W. M. B. asks : }}$: How can I make sand conat the surface of the paper with glue, upon which the
grade of sand or emery required is immediately sifted. grade of sand or emery required is imediately sifted.
I have a supply of gutta percha buttons, too thin for I have a supply of gutta percha buttons, to thin for
my use. By bolling them in water they thicken alltte,
 nd hard when cold, and ready to receive a high pollsh, as they are ow? A. Your best method would be that
of hottenng them by means of heat and while in this of softening them by means of heat, and
tate molding them to the required form.
Is there any process of making peach brandy? A. The Is there any process ofmaking peacin braay?
peaches are mashed with pestes in a trough, the jutee
pressed out, collected, fermented, and distiled. The

(31) W. G. M. asks: What degree of heat
s required to decompose water or steam? A. We believe that this has never been determined.
What degree of heatis caused by burning hydrogen? A. This depends wholly upon the supply of oxygen
also upon the amount of gas burned in a aliven time. A lecturer heated a spoon; and whine 1 In it floated on high temperature, he water aroppel opon to coola a lit.
a cooat of fteam; but upon eing allowed
tle, the globules exploded with considerable noise. He also satid it was an anotedf act that tn En Enland boiliers far more frequently burst on Monday, after having been
1dle on Sundan, than at any other time. r don't under stand the explosion. A. What you speak of was an
illustration of what is known as the spherotial state. Not only does the water not boll, but tits evaporation 11 only about one ifth as rapid as if it did bill. As the
spoon cools, a polint It ireached at which it 18 not hot enough to keep the water in the spheroldal state; it it enough to keep the water the spurd. When this nap
accoratngly motsened thy that
penst the water, before quite, bursts into steam with al. pens the water, before qulet, bursts into steam with al
most explosive violence. Many steam boller exploions have been attributed to this cause.
(32) W. B. B. asks: Howcan Imake grease soap? Bolllng them tozether will not do it. It always
leaves so much prease in the soap as to make it unfit ear use. A. Harr soaps are made by bolling olls or fats with a lye of caustic soda. In soft soaps, the lye 1s pot-
ash. Resin is used in yellow soaps, as it saves fat. Sillcate of soda is iow frequently used instead ; ;t gives a
white soan which has no oftenstye sell
 olitre oil, and 1 s mottled by tron.
nsing a a arger percentage of lye.
(33) G. L. H. asks: Can water be dissocia-
tea nuto hydrogen and oxygen at the rate of 10,000 cu bet feet of hydrogen per minute? Will galvantic bat
teries do the work? An It can ee done by rent. but the cost will prevent its betng readlly accom.
plished. We would recommend you to read some good
(34) G. R.P. asks: How is potassic sulphocraanate formed? A. It a mixtrure of dried prostatate or
potassa 18 fused with sulphur and carbonate of potassa redness, untll the me, anr
 phuret of iron. The salt is dissolved out by bolling
water, and crystalizes on coolling. The best proporgotash, and 32 sulphur,
How can I preserve eggs from October to March ?
Warious experment Various experiments have been made in France on the best method of preserving eggs,a a abject of much mpor.
tance there. Among the different processes, the best,and tance there. Amo ong othe dhe slmplest, was found to consist tn rubbing vegetable ofl (linseed especially) on the egg,
thuus preventing any alteration for a sufflient time,and trus preventing any aliteration for a sufflctent time,and
provingmuch more satisfactory than any other plan hitherto recommended.
of sewing machine oll? A. We think pure ollve of
(35) J. W. P. asks: How should I make apmathematics to hold, a position as eng tneer in the navy?
A. We think that those enterng the engineer corp of
the the navy are oblige to commence as cadet engineers a the adressing the Chy Chef of the i Bureau of Steam Eng1
thering Washnngton
 not be well to spend a 1 Ittle time in perfecting the afrst
model of an alr ship the hot alr balloon of Mongolder and De Roster? It seems, being open at the bottom, to
 charge of ballast. With the fnel used by the first ex. pertmenters, there was of course great danger; but
with condensed fuel (petroleum, or some of the carbon olls, fordinstance) icould not gas be mate and uned
cheaply forneatling purposes, and the apparatus be sup. ported long enough for extended voyages? A. The plan 18 deserving of constderation, and we are glad to
recelve your letter. Perhaps our readers can suggest (37) E. A. D.- Venus' mean distance from
the sun $=69,000,000$ miles, and that of Juplter $=196,000$.
 (38) R. asks: : 1 . Is there any back pressure
in the high pressure cylinder of a compound engine? A. The back pressure in the high pressure cyllnderer
generally
little more than the intital pressure in the 10w pressure cylinder. 2. What is the recelver, between
the blgh and low pressure cylliders? A. It tis the reser. vorr into which the high pressure cylinder exhausts. Wherecan I get any Information about compound en
stines? A. Conumt modern works on the steam engine
and sclentifc periodicals.
(39) A. . H. W. W. asks: What is the best clock? A. We think that boxwood or dogwood will
answer.
What is the meaning of the word " balloon framing," and what is the difference bet ween It and common fram-
ing? A:A balloon frame is made of light studs, nalled tenon.
On a
are tramway, $2 \nmid 2$ miles In length with large
lirves, curves, what would be the least grade at which loaged
cars descending on one side would rase empty ones on cars descending on one stde would ratse empty ones
the other? A. You do not esent the wetghts to b hauled and the wetghts avallable for hauling them; and
the term "large curve" "1 very indefnite. Hence it mpossible for us to answer this question.
(40) J. J. Hi. asks What will harden. Bab.
mitt metai?
(41) B. B. B. B. B. asks. 1. What sized engine
 $33 / 2$ Inches 1 n dameter, 5 Inches stroke, 100 lbs . per squar inch pressure,bolier 36 Inches dameter and 46 high,wth 2
 engtineer and pllot? A. The engine you describe would not be large enough; ; Indeed, it 11 doubtful whether the
boat could carry the machinery;for such a speed. Ever vessel propelled by steam must carry a licensed enginee nd pllot,
(42) I. G. asks if small steamers for the wners' use only are required by law to carry 11censed thon some time since to the effect that if the boat is used by the owner alone it 1s not necessary to employ a 11 -
censed engineer. But if passengers are carried or the boat 18 let to other partltes, the case comes under the
United States law). " I showed your dectson to the United States law). "I showed your dectsion to the
government inspector, but he says that the Scirsmiric AMRRIOAN, Which I consider such good authority, is
mistaken. A. Our answer was based upon the practical working of the law in this district, at the time the ques tion was asked. The laws are very precise in requiring to be subject to goverament inspection, under heary
penaltes for a violation. The secretary of the Trea ry, however, has power to remit all ines.
(43) T.T. G. asks: 1. I am building an en A. A platin calinder boller will answer very well. 2 Would copper do for a botler, or would galvantzed froin
cheaper and as good? A. The tron would be chead er, but not so durable. 3. You say in a previous Issue that the burnnng of small bollers depends greatily yupon
the setting. How should it be done to make ti last? the setting. How should it be done to make tit ast?
A. It might be placed wth the fre underneath, and a casing around it. 4 . In testing a boiler by fllling it with
ater and then heatiog it, how would it act if the pres Wre were ratsed highen than the boller coull d tand press.
uhere would be a rupture of the weakest part of the

uare nech? A. To about 100 ibs. per square tinch.
(44) O. H. P. asks: How are ferrotype perfectly freed from dust, coated with a thin flim of collodion, and placed in the silver bath for a feem min.
utes.
It it is then placed in the camera for a short time. utes. It 1s then placed in the camera for a ahort time.
It 18 then removed and flooded with a solution of sul. phate of iron in water, untl1 it 1 sf fully developed. When
it 1 s thoroughly washed and placed immediately in the bath of hyposulphite of sod far a a few minutes. This
latter operation is termed dinng. The plcture is then
wished e would refer you to one of the numerous works of

(46) F. H. S. asks : I hear that the seeds of okra and gumbo (hibibecus scculentus) are used as a sub.
stitute for coffiee. Are they roasted like coffee? Are bstance resembling Dugdale of Grimin, Ga., that a substance resembiling
coffee in appearance and taste may be made by separa.
tng the seeds from the puip of persimmons, cleansing ting the seeds from the pulp of persimmons, cleansing
them, and afterward roasting and grinding in the same them, and aftermarar roasting and grinang ine
manner as cofiee. Imitation coffee has also been obalned from grape seeds, but we have never heard of coffee from the source you speak of
What is essence of petroleum, and how is it manufa tured? A. It 18 a trade
mation on the subject.
(47) T. J. S. asks: I saw in Paris coal bricks The Parisian ormolded charcoal, introduced about 15 years ago oy Popeller Ducarre, Is an an artificial fuel fuel com. posed of charcoal refuse with coal tar. The smanl
umps and dust of charcoal are mixed with 8 to 12 per Lumps and dust of charcoal are mixed with 8 to 12 per
cent of water, then rround to powder, and to 200 ibs.
of the powder agma is thorouphly incorporated, and Lext molded in. O cyllinders. These are dried and finally carbonized tna
 coal, better itted for transport, burns better than coke,
and, even when slightiy kindeded, continues to burn in th is not the case with cok
(48) J. F. L. asks: The following mortar Leached wood ashes, 1.16, slackeed lime 1.6, sand 4.6 . Want your oppnion on the above, and to know if you
are a ware of any better composition. A. There ts very Ittlie difference between the mortar you name and com.
mon life mortar. Furnace brick are eet with fire clay,
which
(49) J. L. says: I have driven a pipe well,
 feet, and put on an ordinary pump with no result. 1
then put on a force pump with no result. What is the then put on a orce pump with no result. What 1s the
reason? Any ordinary pump to sald to tift 33 feet. but
nelther of these would ilft 88 feet and yet the values are tn good condition, and there ts no leakage tn any of
he joints. A. Ordinary pumps do not l1ft more than rom 24 to 26 feet, on account of tmperfections. It 1 possible, also, that you mat have some leaks in the
connecting joints. By going down a few feet more
with the pump, you will probably overcome the trou.
(50) F. G. B. asks: Will a boiler 12×36
 Indenenent freplace of tis own? A. Yees. 2. How
much power could I get from the engIne? A. You nuch power could I get from the engine? A. You
night get half a horse power with such an arrange.
(51) J. C. asks: As there are so many ways gine, you will greatily oblige me by telling me your mode
of making the calculation. A. Multiply mean effectff maklng the calculation. A. Multiply mean effect.
vepressure on the pliston in pounds by twice the length f stroke tn feet, and by the number of r
annute, and divlde the product by 33,00 .
 no such machine on record, except in anclent legends.
If such an invention ever existed, tits construction 1 s cer-
tannly one of the lost
(53) R. L. . says: I have directions for ma
sing an ashomatic astronomical telescope with an achromatic object glass of 30 tnches focus and an Huyghenian eye
nagnifyling yling power to 120 . Would it be best and cheapest to Jo this by Increasing the diameter and focus of the ob-
ject 1 lass, or the focus alone of the object glass, or by
decres hese? A. A set of eyepteces made to tht a tube, one Inch Instide dameter, 18 most conventent. Etinher pene sectlves to view double stars on the finest nights. 1. In what place is the best telescope in the world
ituated? A. At the Naval Observatory. Washington, D. C. It 18 of 26% Inches clear aperture. 2. What is
Its magnify ying power? A. Perlaps 1,500 or more, in (54) H. M. P.-The trouble was probably
(55)W.H.H.asks: How'can I make crimson ulphur 17? 2; charcoal1 $1 \cdot 7$; black sulphuret of antimony 7. According to MM. Designolles and Castelhaz, most
rrillant colored fiames are obtained from picrate of mmonia in the following proportions: For yellow, p1 50 parts. For green, plcrate of ammonta 48 parts, ni. tate of baryta 52 parts. For red, picrate of ammonia
(56) S. A. N. says: Please give me a good diluted prussate of potash become vistble when molst
ened with a solution of sulphate of fron. As to the power of your engine, you do not send suffclent data.
(57) J. F.McC asks: 1. What kind and how
much oll is there in 48 lbs. of untolted white corn meal? A. Accordng to late determmations, the a ver age composition per cent of American corn meal is a
follows: Water from 115 t to 132, , starch from 50.1 to $4 \cdot 8$, fat or fatty olls from $4 \cdot 4$ to $4 \cdot 7$, cellulose from $14 \cdot$

 | tached a plpe $\begin{array}{l}\% \text { Inch in dameter, standing in water } 10 \\ \text { feet ioelow, and will it require more force if the water }\end{array}$ |
| :--- | be 30 feet below, to cause the water to rise into the ves. Ifting the welg of course, more power will be neeled if more water it Ifted. orlf it it is 1 ifted higher. To thts work must be

added that used up in overcoming the friction of the water in the pipe, In giving the water vilecoltr, and in
wercoming the friction of the moving parts of the pump.
(59) C. B. asks: Which furnishes the light
est aratt, the venicle w with wooden axles and thimble
 the two cases, as friction is proportional to the press-
ure, and depend upon the nature of the rubbing sur arees. The work required to overcome friction, how ever, increases as the diameter of the axil is increased;
and if the tron axles are the smallest, and are strong
(60) W. J. B. says: I have one $12 \times 30 \mathrm{cyl}$ the boiller is 40 Inches by 22 feet. It makes plenty of
steam, but we want to dispense with the gearing and steam, but we want to dispense with the gearing and
attach another 12x30 cylinder, direct. Will the boller make steam enough for the two cyllinders, running at team, after the change is made, but not a great dea
(61) C. T. S. Says: A mechanic of Cleve ish fre: and the thought occurred to him to try the ef ects or steam. A Amall pipe was made to conduct dry
team from the top of the boller to to the upper part on he furnace, where it entered in two small jets striking downward on the burning fuel. No soon was the steam ijjected Into the furnace than the slugglsh, smoky fre
sprang up into a clear, bright, yellowish a and intensely hot flame, flling the whole furnace with a loud roar The man found he had not only secured a strong draft, What do you thunk of this plan? A . We have not muc falth in it, and we think it probable that the appicatio if the steam was made in some other way. Still, if any
if ourreaders feel incll ned to test the method, we hope
(62) J. B. F. asks: Is there anything that ng its essentual properties? A. Ae know:of no metho
of accomplishng the result without destroying th
(63) J. H. B. asks: Whatacid will dissolve
or burn iron quickiy? A . If destred for analy tical pur

(64) J. P. asks: Can you give me the meth and how te separate the oll from the condensed steam
A. The quantity of volatile ofl ylelded will depend up in the part of the plant employed, the season and the er the cllmate, the richer are the plants in onls. Thes should be gathered, as a general rule, immediately after
blossoming, and distlleed if possible, while fresh. It 1 better to macerate the plant one day before distilling. Roots, barks, etc., should be coarsely powdered. Part.
whtch yield no oll, as the stems of mint. sage, etc., should be detached. The larger the quantity acted up.
on the better; the quantity of water employed should he suffictent t to the quantity of water employed shoun Water causes loss by dissolving a portion of the onl
When the plants are abundant the distllate should be is a good plan to use the water of a previous distillatio For the same pant, as it tisaliready saturate d with the onl If the in is heavier than water, sea a saturated solu
ton of salt. If lighter, the Florentine recectver. The
(65) C. A. G. asks: Is there a compound

(66) J. N. asks: Can a 1 horse engine and
ofier turn a rrindstone that requrse two
strong men
$\underset{\text { (67) M. E. J. asks: What is the process or }}{\text { or }}$ meth od of tempering anvilis? A. The faces of anvilis
are hardened by heating and quenching, the metal be-
ing brought to a verylow red and quenched in tepld sagh brough
(68)G.W.M.asks: 1.What kind of fabric is gapparel, such as as capes, opercoats, leggings, et Any kind of ery close woten cloth will answer.
How 1 sit applied to the cloth? A. There are various thods. The cloth may be prepared by steeping it in
strong solution of paraffin in naphtha. 3. Can ng matter be mixed with it without impairing its wa-

(69) G. C. D. asks: Can you give me a simA. A mixture of powdered starch and indigo (finely期

How i s stove ponilsh made and how is it made tnto a
ake? A. Use finely powdered graphte, which can ressed into a solid mass.
(70) S. K. H. asks : How can I make oxygen ain class of oils known as drylng onls, of which 11nseed
oll 1 s a type, have, under certain circumstances, the operty of absom hg oxygen from are ar es of the y heating them with about one twentleth of the weight of litharge,which becomes completely dissolved by the oil. Oxide of manganese may be used for the
production of a similar effect; linseed oll which has een thus treated, is technically known as "boiled
(71) L. S. asks: What is the botanical azel is hamamelis virginica.
What is blology? A. Biology is the sclence of life and the different forces of life.
(77) C. W. J. asks: 1. Suppose I were to theretn $1 / 2$ pint of chemically pure sulphuric actd, and
curely stop up the hole. What effect would the actid ve on the wood? Some contend that the stump and ery root thereof will be totally rotted. Is it true No; although a part of the stump would undoubt
be destroyed. 2. Is there not an effectual meth od of gettingstumps out of your way by means similar to the
above? A. Try the following method: In the autumn re a hole 1 to 2 inches in diameter, according to the irth of the stump, vertically in the center of the latozs. saltpeter; fill the hole with water, and plug up
close. In the ensuing spring, take out the plug, and pour in about $1 / 2$ gil of kerosine oll and ignte to the
(73) X . L. R. says: An old $\mathrm{man}_{\text {an }}$ has in-
 y sclentific reason for such an acion? A. We believe
(74) J. E. J. asks: Will any acid dissolve now of nothing that will dissolve it without entering (75) C. H. C. asks: Is water from the botom of a well (drawn by a chanin pump, for instance)
ust as healthy to use as water taken from the top with (76) G. W. S. asks: If glass is a non-con-
nctor of electricty, would a bolt of lightning go Have carrier pigeons ever been taught to carry mes. sages both ways? A. This has never been accomWhat is the meaning of the word turbine, and whence itts origin? A. The turbine is a horizontal water
Fheel, and is similar to the hydraulic tourniquet. But stead of the horizontal tubes, there is a horizontal
um, containing curved vertical walls. From the Latin urbo, turbinis, that which whirls around like a top. (77) J. L. D. asks: Some wine makers draw
helr wine into new casks in February, after the vintto do that or let it remain on the lees till it is bottled have some on the lees (vintage of 187\%) and I think it
improving. Please give your views. A. The princtpal fermentation converts or separates the sugar of the must into alcohol and carbonic acid. Unless the tem-
perature is considerably decreased, a fresh fermenta ton is likely to arise, known as the after fermentation. prevent this the wine, after the disappearance of the bubbles of carbontc actd upon the conclusion of the from the lees into casks, the object being to cut off com The casks at first should be nearly filled and loosely bunged, but af ter a few days they should be filled com-
pletely. Wines casked in December will of ten continue ermenting till February or March. Strong wines, rich n alcohol, can be kept in casks until they become quite
clear; but weak wines must soon be bottled, as the oxvgen of the air is liable to convert the hydrate of the
oxide of ethyl or alcohol into trioxide of acetyl or Inegar.
Is it the Is it the best ground connection for a lightning rod lightning strokes are less numerous , in the city of Ber. (78) L. F. says, in reply to I. S., who asked
there were any instrument by which tue correct distance of an object could be ascertained: I have a pris-
matic field glass (of French invention) with a fixed sta dia, which gives the mostaccurate measurement of dis-
tance, when the hight of the object is known, or the ight of that object when the distance is known; the ance. fficer, and used during the Crimean war.
(79) B. W. says, in reply to R. G. R., conbove the boiler, with an eighi inch sheet fron pipe lead the pipe so that it will ditcharge under the fire
grate; leave no sharp angles in 11 ; insert a fan blower grate; leave no fharp angles in in; insert a fan blower
about sil feet from the lower end. Give the fan 800 volutions per minute, and it will consume the smoke save a large percentage of fuel, and give a good draft.
This plan is certainly a novel one, and we would be
glad to hear something on practical experience with it. glad to h
-EDs.]
(80) J. S. S. says, in reply to E. H. H., who
asse: Is there any machinery for cutting files in use tha is working successfully, and what has been the principal trouble with machine-cut files? There are several
machines in use cutting files successfully. The princimachines in use cutting flles successfully. The princicalled at a machine shop; and the conversation turned
upon files, when I asked if they used a certain machine made file. The answer was "No. We have tried them but have given them up. Machine-cut files are a fail
ure ; but we are using now a file which is the best we ever had in our shop." He handed me a half-dozen with thename of a firm whose files were cut by ma chlnery in the very room that I was foreman of. You
state that "machine-cut files are not equal to hand-cut state that "machine-cut files are not equal to hand-cut
either in regularity of cut or quality of the cutting edge of the teeth." I will cut a flle by machinery that
will compete with any hand-cut file in the world for regularity. As for the cutting edge of the tooth, that
is determined by the shape of the chisel which cuts the is determined by the shape of the chisel which cuts the
file; and if the tooth is not sharp and of the right shape, it is the fault of the operator and not of the fact of its being machine-cut. A badly shaped chisel will make a bad file, whether in the hands of a skillful hand (81)S.T.says, inreply to G.H.M., who asks: Find, by single pulley and cord, how many pounds your ber will be the numerator of a fraction whose denominator is 33,000 or 1 horse power. Any two springs of same size and workmanship will have different lifting
forces, and therefore this question must be dectded by the particular spring.
(82) J. S. G. Says, in answer to several cor-
espoudents, who ask how to temper cast steel: Heat the plece of steel to be tempered to a bright red; throw ake a loaf of hot bread of the required size to hold the toolsthus cooled, stick them into the loaf, and let pers that has yet been discovered.
Minerals, etc.-Specimens have been re ceived from the following correspondents, and examined with the results stated
F. X. L.-It contains no silver.-T. H. P.-It is mar casite, commonly called white iron pyrites. It is com-
posed of tron 464 , and sulphur $53 \cdot 6$ in 100 parts. - B.S.S It is talc, and is composed of sllica 628 , magnesta $33 \cdot 5$ and water $3 \cdot 7$ - -W. E. H.-The amount of hardened clay ther test whether it could be used for brick-makipg etc.-J. A. G.-No. 1 is galena, a sulphuret of lead. No
is iron pyrites, or sulphuret of iron.-W. w. B. Jr.It is carbouate of iron. No chromlum was de
the sample sent.-J. .s. K.-It is iron pyrttes.
C. A. asks: How can I stain poplar wood the color of red cedar for the manufacture of cigar
boxes?-H.K.asks: How is the word boillingor bubbling McK. asks: When the sun and moon are both on the same side of the earth, wbat causes the tide on the op-
posite side? - F. A. McG. asks : Why does a belt run to posite side ?-F. A.
the highest point ?

COMMUNICATIONS RECEIVED.

The Editor of the Scientific American cknowledges, with much pleasure, the receipt of original papers and contributions 'lpon the following subjects:
On Electric Railway Signaling. By W. R.
On Small Printing Press Engines. By F. C. S.

On the Spiritual and the Material. By E. Also enquiries and answers from the following:

HINTS TO CORRESPONDENTS. Correspondents whose inquiries fail to appear should repeat them. If not then published, they may conclude that, for good rea sons, the Editor declines them. The address of the writer should always be given.
Enquiries relating to patents, or to the paentability of inventions, assignments, etc., will not be published here. All such questions, when initials only are given, are thrown into the waste basket, as it would fill half of our paper to print them all; but we generally take pleasure in answering briefly by mail, f the writer's address is given
We have some queer correspondents: One writes to know if we will not be so good as to send a messenger to an address which he gives-distance two and a half miles from our offlce-to make certain inquiries for him. It would require one and a half hours' time to do the errand, and not a stamp inclosed. Another wants us to write a letter and tell him where to get a combined thermometer and barometer. Another: "Will you be good enough to give me the names and addresses of several of the makers of the best brick machines"; another wants water wheels; another threshing machines; each writer de sires our written opinion as to which is the best device, with our reasons, and not one is thoughtfuz enough to inclose a fee, or to re flect that to answer his request will consume considerable of our time. Another party wishes us to write to him the recipe for ma king ornaments out of coal tar, where he can buy the mixture ready for use, and how much checkermen will sell for in the New York market. For this information he sends us the generous sum of three cents in postag
tamp. Mr. C. wants us to tell him of some aluable invention, of which he can buy the atent cheap, that would be suitable for him to take to sell, on his travels out West, by owns, counties, etc., three cents inclosed. Others want us to put them in communica tion with some person who will purchase an interest in their inventions, or manufacture for them, or furnish this or that personal inormation, our reply to be printed in the Scientific American. We are at all times appy to serve our correspondents, and when hey present enquiries which we consider of eneral interest to our readers, we give space or them in the above columns; but if eplies to purely personal errands are expect ed, a small fee, say from one to five dollars, should be sent

Index of Inventions

FOR WHICH
Letters Patent of the United States September 1, 1874,

and each bearling that datr.

Arr, navigating the, M. Dyer..

 Antmals, shear!ng, HamiltonArtist's kit, E. G. Chorman. Auger, earth, S. R. Rood.. Bag fastener, s. Wellington
Basket for corks, J. M. Otto
Bathing apparatus, R. S. Gee Bill file, W. H. Foye
Blow-ofi, surface, R. Waug
Blowpipe, Barber \& Price..
Bobbin and spindle, o. Pearl
Boller float, A. Moon...........
Bolt for doors, etc., J. Peyer oot and shoe, T. K. Reed.. Bottle, nursing, L. . Perkins Brick for angles, J. E. Billing Bridge gate, draw, J. Ladwig.
Bridge, iron, A. Burneson
Brush, dusting. J. H. Blshop Burlal casket, A. H. Ed wards Canal boats, propelling, J. R. Parks
Cap, mask, P. Goldmann
Car axle box, A, G. Cummings
Car coupling, C. H. Ames.....
r coupling, C. H. Ame
r coupling, A. L. Moyer
ar pusher, Little, Bailey \& Clarke
ar replacer, E. Willard
Car spring, R. Vose
ar step, J. Medina
arpet beater,S. H. Merritt
Carriage stay end, die for, D. Wileox...........................
hain, drive, w. D.E wart.
Chair, reclining, W. Donoghue
hurn, G. R. Nebinge
Cigar, U. Behrend
Cigar, W. A. Webs
Cisterns, building, J. H. Wines.
lock crusher, W. P. Anderson
 orset, J. G. La Fonte.
tton gins, B. D. Gull otton plants, applying Paris green, C. H., Levy
or Cotton worms, destroyin
Culttvator, W. P. Dale..
altivator, M. F. Dale.
cultivator tooth or hoe, Granberry \& Elliott.
esk, school D. , J. H. D'Lamatter
Doors, track rail for sliding, E. Parker (r)
Dumptng and loading, A. McCrelght
Eggs, packing, S. Kuh
Elevator, hay, J. R. Fettzhous
levator, J. A. Holzwarth
mery wheels. tool for turning,............
ngine labricator, C. M. Prescott
Engine valve, Cole \& Bowdish
are box, T. Hostetter.
elt skirts, ornamenting, J. W. Bl................ Fifth wheel for carriage
Filter, J. G. Fulghum...
Ilter, Griffith \& Dura
ire extinguisher, A. H. Angell...
re extingalsher, Mack \& Parke
Tour packer, S. Taggert (r).....
Furnace, U. B. Stribling
Gages, float for steam boller safety, A. Moon.
Galvanometer, W. E. Davis
Gas, illuminating, M. W. Kidder.....................
Gas heater tor cooking oysters, A. W. Manning
Jenkins
un, machine, w. B. Farwell
un magazine attachment, B. B. Hotchkis
Harvester, w. D. Ewart....
Harvester, c. C. Schneider
Harvester, C. P. Wing.
Harvester rake, M. Gtbbs.....
Hinge, spring, C. Fe
Hoop, G. V. Grifith
orses, detaching, W. H. Bass
ose, hydraulic, C. B. Street..
dicator, revolution, E. Brown

Knit good8, holding, W. Martin
Ladder, fireman's, J. R. Conway
Ladder, fireman's, H. Fox
Lamp, solderlng, F. Reitz
Lathe dog, W. Grout...
Lead, matificlal, bite D. Leach....
Level, spirit, A. F. Hyde...
Locks, seal for, J. Kinzer.
Looms, filling guide
Mill, cider, A. C. Stevens
Mill, apple and cider, P. Eby
Motion to tools, giving, A. W.
Muzzle, dog, C. R. Desilles
Napkin holder, Decker \& Dyer.
Oll stills, feed plpe for, McGowan \&
Ore washing machine, C. P.
Packing for piston rods, Noland \& N
Paddle wheels, feathering, C. F. Volk...........
Paper, sizing and waterproofing, Avil \& Pugh
Pain
Paper pulp screen, J. S. Warren
Penct1, lead, P. Hufeland
Petroleum, etc., storing, J. N. Reynolds.
Photographic camera, S. A. Holmes...... Fick, S. Lynch.
icture frame and mat, L. Bushnell.
Pinking fron, E. P. Welch
Planter, corn, J. and W. Campbell (r).......$~ T u r n b u l$
Planter, cotton seed, c.
Planter, seed, J. C. Barlow...
Press, baling, Littlepage et al
Prunng shears, Smith \& Miller
Pump, double-acting, J. Robertson.
Pump valve, H. т. C. Krauss.
Purifier, middlings, G. H. Rich
Radiators, connection for steam, J. H. Millis.
Regulator, water supply, D. and T. Morris.
Reln holder, check, A, H. Rockwel
Roller, field, G. Wiard
Rolling pin, T. B. Carrol
Roofing, metallic, S. Cox.
Saccharine juices, bleach
Sash balance. o. Davis
Sash balance, L. Fegley
Saw- flling device, C. H. Matchett.
Saw fling vise and guide, C. H. Matchett.
Sclssors, H. S. Breede
Scraper,foot, C. W. Reed.
Seal, metallic, C. J. Brook
Seeding machine, M. L. Gorham.............
Sewers, construction of, J. M. Thompson.
Sewers, construction of, J. M. Thompso
Sewers, ventilator for, W. H. Chase....
Sewing machline tucker, J. H. Clevelan
Sheet metal elbows, forming, J. S. Dennis
Ships, etc., construction of,
Shoe, wooden, A. Edwards.
Smoke stack, J. McLane
Soldering iron, . Hagerty
Stereoscope, J. Pagltugh
Stove, coal oll cooking, H. M
Stove drum, O. D. Spalding
Strap loop, S. C. Talcott.................
Telegraph wires, ingulating, T. L. Reed..
Thll couphng, o. c. Cornell..
Tobacco, making plug, T. C. William
Toy, automatic, W. A. P. La Grov
Toy race course, E. A. Thompson
Track clearer for locomotives, c. W. Patton.
Trunk, T. J. Massic.
Truss, M. M. MacDonald ..
Tub, bath, A. C. Brownell
Tub stand, J. C. Hollis........
Valve, throttle, E. A. G
Vehicle running gear, C. Cottre
Vehicle running gear, w. A. Ehrgott
Vehicle spring, R. Walker..................
essels, construction of, N. G1bson
Wagon brake, A. Hogue.
Wagon, dumping, J. Mills
Watch case back, H. Blrnn
Watch case, Willlams \& vooke...........................
Water wheel,turbine and undershot, J.D. Ha
Water wheel, turbtne, McCor
Wheel fender, H. F. Eberts.
Windmill, L. Baker.
Windmill, J. L. Rust
Window screen, A. Altenburg
Wencb, Joslyn.............................. 154,680
APPLICATIONS FOR EXTENSION. Applications hava been dulyfled andare now pending
for the extension of the following Letters Patent. Hear ngs upon the respective appica
30,802.-Clothes Wringer.-G. J. Colby. Nov. 18.
30,850 .-Photographic Camera.- Wing. Nov. 13. 30,850--Photographic Camera.-S. Wing. Nov. 13 .
31,001 .-Straw Cutter.-W.Gale. Dec. 2.

EXTENSIONS GRANTED

 30,023.-Rock Drilling Machine.-L. M. Gllmor DISCLAIMER. 26,013.-Girth Buckle.-L. C. Chase.DESIGNS PATENTED 7,715 to 7,721.-Carpets.-R. R. Campbell, Lowell, Mass.
 7,724 to 7,726. -Carpets.-W. Kerr, Philadelphia, Pa. 7.727 and 7,728.-CARPETS.-. H. S. Kerr, Philad
$7,729 .-$ CARPET.-W. Kerr, Philadelphia, Pa. 7,729.-CARPET.-W. Kerr, Philadelphia, Pa. 7,733--CARPET.-D. McNair, Lowell, Mass. 7,734 and 7,735-OIL Clotes.-C.T.Meyer et al,,Be r,736.-Stove.-J. V. B. Carter, Detrott, Mich.
, 737 .-Fire Shovel.-A. W. Hirschfeld,W. Meriden, Ct

TRADE MARKS REGISTERED.
CARPET WARP.-E.W.Holbrook \& Co.,Troy,

> 1,952.-FERTILIZERS.-W. W. Leman, Macon, Ga
1,933.-WHISKY.-Shields \& Co.. CIncInnati, o.
1,954.-PAPER BAGs.-Chatfield etal
> 1,954.-Paper Bags.-Chatifeld et al., Cinclnnati, O.
> 1,955 to 1,957.-Clocks.-F. Kroeber, Hoboken, N. J.
1,958 . -WHisk - -B. M. May, Cinclnnat1, O.
> 1,959.-Ammonia Mantre.-J. J. Turner \& Co., Balti
> 1,960\& 1,961.-MEDICINEs.-A.Vogeler \& Co.,Baltimore,M
> 1,962.-Plaster.-A. Vogeler \& Co., Baltimore, Ma
> SCHEDULE OF PATENT FEES.
> On each Caveat......
On each Trade Mark
> On each Trade Mark...
> On 1ssulng each original Patent..
On appeal to Examiners-in-Chief
> On appeal to Commissioner of Patents.
> On application for Resssue..
On application for Extension
> On granting the Extension.
> On fillng a Disclaimer......................
> Onapplication for Design (7) years).
On application for Design (14 years).

CANADIAN PATENTS.

List of Patents Granted in Canada
August 31 to Sept. 12, 1874.
3,800.-E. P. Hildebrand, Indiana, Indiana county, Pa.
U. S. Improvements in coal stoves, called "Hilde brand's Improvements in Coal Stoves." Aug. 31, 1874 brand's Improvements in Coal Stoves." Aug. $31,187 \mathrm{t}$
$3,801 .-\mathrm{J}$. Brow, Brantford, Brant county, Ont. Im provements on a device to protect the person from
the effects of the sun and rain, called "Brown's Excelthe effects of the sun and rain, called "Brown's Excel-
sior Sun Shade." Aug. 31, 1874. sior Sun Shade." Aug. 31, 1874.
B,802.-G. M. Seymour and J. C. H. U. S. Improvements in horse powers, called "Sey-
mour \& Haight's Improved Horse Power." Aug. 31 , mour
1874.
3803 -J.
803.-J. Fowler, St. John, New Brunswick. Improve
ments on springs for carrriger and other vehicles, called 'FFowler's Patent Carriag Spring." Aug. 31, 1874.
S04.-I. Abell, Woodbridge, York county, Ont, Safety
cover forcouplings of revelving shaftecalled "Abell's cover for couplings of revelving shafts, called "A
Cover for Shaftigg Couplings." Aug. 31, 1874.
Machine for drying grain, called 'Seegmiller's Grai Dryer." Aug. 31, 1874 .
006.-T. McBride, Philadelphia, Philadelphia county,
Pa., U.S. Improvements on hydraulic ratroad Pa., U.S. Improvements on hydraulic rallroad car
brakes, called "The McBride Hydraulic Brake." Aug. $31,1874$.
$3,507 .-F$.
A. Balch, Hingham, Sheboygan county, Wis U. S. Improvements on a machine for separating
cockle from wheat, called "The Bauger State Cockle cockle from wheat, called
Separator." Aug. 31,1874
ments in Earle, St. John's, Newfoundland. Improve ments in lce
col.-G. Dunning and C. B. George, Waukeg an, Lake
county, Ill., U. S. Improvements on horse shoes county, Ill., U. S. Improvements on horse
called "Dunning's Horse Shoe." Aug. $31,1874$.
3,810.-W. D. Farrand, New York city, U. S. Improve
ment on spark arresters, called "farrand's Spark Ar rester." Aug. 31, 1874.
and.-P. Mutter and T. Evans, Hamilto n, Wentworth
county, Ont. Improvements on car couplinga, called Mutter \& Evans' Self Acting Shuttle Coupling.' Aug. 31, 1874.
Ont., assignee of J. Mceng, Guelph, Wellington county Ont., assignee of J. McFarlane, Otterville, Oxford
county, Ont. Reissue of No. 1,115, a new and useful carrlage spring, called "The Improved Elliptic Solid Cast Steel Carriage Spring." Sept. 12, 1874.
davertisemanty.

GE0. A. PRINCE \& C0.
Origans $\&$ Ilealonans.
54,000
trumated the same
Send for Price Lst
Address
BUFFALO, N. Y.

HoLTS PARLOR TELERRAPG,

PATENTS F. T. H. RAMsgEN, Bryan Block,

BAIRD'S goors

For pracical iner.
 his address. HENRY CAREY BAIRD, INDUSTRIAL PUBLISHER,
406 WALNUT STREET. Philadelphia
ValuableBooks Heat, Steam, The Steam Engine. Box-A Practical Treatise on Heat: As ap

 Colboun-The Loconctive Encine: Including
 Main and Brown-The Marine Stean Engine, Main and Brown.-The Indicator and Dyna-
 Norris.-A Handbook for Locomotive Engi-

 Roper.-Hand Book of the Locomotive, inclu
ding the Constructo , Runnlng, and Management o
Locomotive Engines and Bonlers.
with Illustrations Locomotive Engtnes and Bollers. With Illustrations.
By Stepnen Roper. Tucks.................50 Templeton.-The Practical Examinator on Steam and the steam Engine:
neees relative thereto, arranged for the use use of engi-
neers, students, and others. By Willam Templeton Watson.-The Modern Practice of American

 Williams.-On Heat and Steam: Embracing Qro The above. or any of my Books, sent free of post.
agee the publicalion prices. My new and revised cat
ALOGUE OF PRACTICAL AND SCIENTIFIC Books 96 pages ALOGUE OF PRACTICALAND SCIENTIFIC BOOKS-96 page
his - sentines. free of postage, to any one who will furnis ENRY CAREY BAIRD,
406 INDUSTRIAL PUBLIS

 HOLMES' Patent Metallic Lath and Studding

 DAVIS \& DUBOIS
GOMBBATONTLILOW CUP

GOOD-WORKING MACHINERY

 HAS NO EQUAL FOR VARIETY, QUALITY, AND ECONOMY OF ITS WORK Hor Car Buiders, Planing tural, Cabinet, Carriage and Whagon Works. HORIZONTAL AND UPRIGHT BORING MACHINES, SUPERIOR TO ANY IN USE. PLANING AND MATCHING MACHINES, and other Wood-work \& CO., Hamilton, Ohio. Send for Catalogae and Price-List. BENTEL, MARGEDANT \& COL

 PATE
 Planing and Matching
 10BLAKE'S PATENT Stone and Ore Breaker
 A FORTUNE For Aus in the Ruber Stamp
 Geo. W. Read \& Co., ALL KINDS KHARD WODS , IN LOGS
 Whe best and cheapest Paint in the the Trade everywhere. PRINCE'S METALLIC PARNT CO., Manufacturers, ${ }^{\text {a6 Cedar St., New York. }}$ CAUT1ON. - Purchasers and consumers are cau-
 Machinery,
 Sturtevant Blowers.
 Cold Rolled Shaftig.
 Niagara Steemm \quad Pump.
 Niagara steam Pampump.

 DROP PRESSESS, MDDLLETOWN. CONN. $\$ 5$ 영․ $\$ 20 \begin{gathered}\text { per day at home. Terms Free. Address } \\ \text { Gro. STinson \& }\end{gathered}$
 WHE Union Iron Mills, Hitrsburgh, Pas. The attention or Engineers And Archtecrif is called to

 bear our name and trade mar
package. Send for a circular.

PATENT COMBINED LOOKING GLASS

For Leraa apyice concerning

 FOR SAIE,
T HE manufacturing pronerty, known as the

5000 AGENTS WANTED. Samples sent free

FHill F IRT CLASS STATIONARY ENGINES
To Electro-Platers.
B ATTERIES, CHEMICALS, AND MATE

$\overline{\mathrm{O}_{\text {PIPES }}^{\mathrm{UR}} \mathrm{COERERING} \text { Fores Twenty }}$

Asbestos ${ }_{316}$ Feliting ${ }^{2}$ Co.

 Small Lathes Englines, S1de Rests. \&c. Catalogues free
GOODNOW \& WIGHTMAN. 23 Cornhhl, Boston, Mass.
B ANKRUPT'S SALE OF HORIZONTAL
SHINGLE \& BARREL MACHINERY
$3+7 x^{2}=2$

MAGNETS-Permanent Steel Magnets

OTIS' Manch iome Machinery.

E. M. MA YO'S PAT. BOLT CUTTER. Andrew's Patents. Kolseleng, Friletion Grooved, or Geared Hoist Allulthrifimple, Durable, and Eonomieal. \triangle NDREWB \& BRO.

$\mathbf{R}^{\text {ICHARADDON, MERAM }}$ \& CO.

LAMB'S
 KNITTING MACHINE

 S IMGLLE AND BARREL MACHINGRY.-

AIOTHER CHANCE

Fifth and Last Gift Concert Public Library of Kentacky

November 30, 1874
drawing certain at that date.

WOOD WOREING MACHINERY

 Bran on Do ot it

 Asbestos Materials.

BOILERPENDENTERS SEND FRR ILUSTRATED CAATOCUE COPE\&MAXWELL MFG.CO. HAMLTIN.DHID

Mond

SCIENTIFIC AMERICAN.
FOR 1875.
THE MOST POPULAR SCIENTIFIC PAPER IN THE WORLD.

THIRTIETH YEAR.

VOLUME XXXII.-NEW SERIES.
The publishers or the SCIENTIFIC AMERICAN beg
to announce that on the first day of January, 1875, a new volume commences. It will continue to be the alm of the publishers to render the contents of the new
volume more attractive and useful than any of its pre

It is the Most Popular Paper in the World !
having the large circulation of nearly 50,000 per week A year's numbers contain over 800 pages and severa
hundred engravings of new machines, useful and nove
inventions, manufacturing establishments, tools, an
processes.
To the Mechanic and Manufacturer ! No person engaged in any of the mechanical pursuits
should think of dolng without the Scientifio american. Every number contains from six to ten engravings of new machines and inventions which cannot be found in any other publication.
The SCIENTIFIC AMERICAN is devoted to the inter ests of Popular Sclence, the Mechanic Arts, Manufac tures, Inventions, Agriculture,Commerce, and the indus hil pursults generally; and it is valuable and helral in the Household, the Library, and the Reading Room By the new law, the postage must be pald in advance recelves the paper by mall free of charge.
Onecopy, one year (postage included) One copy, silx months (postage included). One copy of Sclentific A merican for one year, one copy of engraving, "Men of Progress".. 10.00 One copy of Sclentific American for one year,and one copy of " Sclence Record " for 1874....... 5.50
Remit by postal order, draft or express. Address all letters and make all Post Off

MUNN \& CO.,

37 PARK ROW, NEW YORK.

