a Weekly journal 0f practical information, art, science, Mechanics, Chemistry and manufactures.
NEW YORK, SEPTEMBER 26, 1874.

THE AMERICAN STOVE PLATE DRESSING MACHINE.
This machine is designed to obviate a large amount of work upon stove castings, now performed by hand labor, with the cold chisel and file. A well made stove should have very joint nearly perfect, the doors so nicely adjusted that a strip of tissue paper inserted at any point cannot, when the door is shut, be withdrawn, and the edges of the holes smoothly ground over the entire surface. It has also become the practice lately to give a fine polish to the outside edges of the tops and bottoms. It is hardly necessary to point out that all this extra work, when done by chipping with a cold chisel and moothing with a half ound file, necessitates not only an expenditure of ools but of time rendering the operation obvious. y an expensive one.
The present device is so constructed that the cast ings may be at once ad justed in proper posilion and at any angle against a grinding wheel, which, acting against either their inner or outer edgen, speedily removes irregu larities and produces nicely finished surface
The operation consists in placing the work, afte the gate is broken away upon the table and setting the latter at the proper angle. This last is done by loosening the two hand nuts, which engage with the semicircular braces, B B, as shown in our engra ving. The stove top o other piece is then carried rapidly around with i:s interior edge in contac with the emery whe \in l, which renders the por tions ground smooth and bright. For this work, so lid emery wheels are ex clusively used.
In order to polish the outside edges, an additional table, A, secured to the front of the main table is used, and the stove top is laid bottom side up on a small form, made from inch board and having a hole for the pipe receiver. This form is placed on the table, and the work thereon brought in contact with the wheel, as already described. After the edges of the casting are roughed off, the solid wheel is re moved, a covered one substituted, and the plate finely polished.

The vertical adjustment of the table, which allows of the work being brought against any desired point on the face of the wheel (so as to insure evenness of wear of the latter) is effected by turning the crank, C, which operates the cams, F, through the pinion, D, the wholebeing controlled and held in position by the dog, E. By using a shorter spindle and cup-shaped wheel, the machine may be advantageously em ployed for surface grinding.

Application for patent now pending. For further parti culars address the Northampton Emery Wheel Co., Leeds, Mass,

The Swatara.

Owing to the haste necessary in despatching the Swatara with the transit of Venus observing party on board, it was impossible to give her engines, which were the first of the compound type fitted in a United States man-of-war, the benefit of a trial trip.

It appears, however, that under steam and sail she made the passage from this port to Bahia in 35 days. The official report of the engineer has not yet arrived; but from other sources, the Army and Navy Journal learns that with fires under six boilers and with an average speed of six and a balf knots, she consumed about fifteen tuns of coal per twentyfour hours. The temperature in the engine rooms cannot, it is said, be kept under 130° or steam higher than forty-five pounds.

Nitrous Acid in Plants.

Schönbein first detected nitrousacid in the juices of differ ent plants, by the common reagent for that acid, a solution of potassium iodide, starch, and sulphuric acid, which gives to the liquid containing nitrous acid a fine blue color. Subsequently, however, he was led to attribate this bluing to
he presence of active oxygen and no longer to nitrous acidIn order to determine whether or not Schönbein's second conlusion was a correct one, a series of experiments has been made at the laboratory of the Illinois Industrial University, paper on which M. P. Genadius contributes to the American Chemist. The conclusion drawn from these tests is that ery strong evidence is offered of the presence of nitrons cid in plants; for the formation of nitric acid would be preceded necessarily by that of nitrous, the latter being, as it were, a stepping stone to the former. So that the bluing, which the experiments obtained from the juices of the differ-

HE AMERICAN STOVE PLATE DRESSING MACHINE.
desired elevation within this limit. The operation is easily performed by one man, as indicated in Fig. 1 of the an nexed engravings.
The upper ends of two upright posts are bound with iron stirrups and bolted firmly together. The lower ends are secured by bolts and angle irons to a foot piece. Between the two posts is a back, A, which extends for a suitable distance from the foot piece upward.
Working in metal boxes in the upper part of the posts is an iron shaft, B, one and a half inches thick, to which two chains, carrying a heavy hook, are attached. On this shaft, and clase to the inner side of one of the posts is a ratchet wheel, C, Fig. 2 , with which engages a pawl pivoted to the post. Outside of the latter, the end of the shaft is formed into 8 six-sided nut to recive the wrench lever by which the shaft is turned and the chains wound thereon. On the other end of the lever is formed a steel tamping bar, D, used for tamping the cross ties.
The device is placed close to the rail, under which the hook engages (dotted linef, Fig. 1). The lever is then worked un. til the rail is elevated to the desired hight, where it is held by the pawl in connection with the ratchet wheel. The chains have short links and are of T^{7} inch iron. The weight of the entire machine is from 45 to 50 pounds, and by its 50 from 8,000 to 10,000 pounds, it is stated, can be readily lifted by one man. It is adaptable to a variety of uses, is easily adjusted and replaced, and can be made withot
nt plants, is probably caused in large measure by the nitrous \mid difficuity at small expense by any railroad shop. acid present in those juices, with which, as soon as the oxy- Patented July 8, 1873. For further particulars regardgen of the air comes in contact and the chemical changes fermentation and decomposition) begin, this acid is either destroyed or changes into nitric.

KINZEL'S RAILWAY TRACK LIFTER
This is a simple device for lifting railway tracks which, it

is claimed, will accomplish its work in half the time re quired with the screw jack or other apparatus, while neces any hight up to 18 inches, and is held by the machine at any
ing sale of rights, etc., address the patentee, Mr. Geo. J. Kinzel, Knoxville, Tenn.

New Electromagnetic Station Indicator
Mr. Charles W. White; of New York city, has patented, August 18, 1874, through the Scientific American Patent Agency, a quite ingenious station indicator, by means of which the names of places printed on an endless band are caused to appear and change by the action of mechanism, controlled by electromagnets. The rollers over which the band passes are geared to each other, and are rotated by a spur wheel, which is itself turned by a ratchet in which a pawl engages. The latter connects with levers vibrated by the movements of the magnet armatures, so as to cause the pawl to turn the ratchet, and so cause the band to move around the rollers. There are two sets of this gearing, in order that the band may be turned in either direction. In addition to this, there is a check pawl, which is lifted when the carrying pawl is operated. This locks a ratchet, so that the band is firmly held at any point until again set in motion by the mechanism. The indicators are placed in any convenient position in the cars, and from each set of magnets an independent circuit is led to the point whence the machine is to be controlled, where a suitable closer is placed in eack circuit. Upon one circuit being closed, the indicating ribbon is unwound from the top roll, and wound on the lower one; the other circuit established, the reverse takes place.
The mode of locking the mechanism and the ratchet arrangement for turning the rolls are novel, and embrace efficient improvements in the electromagnetic principle for operating station indicators.

Pacific Ocean Telegraph Survey

The survey ordered by the United States government, to ascertain the practicability of laying a telegraph cable through the Pacific Ocean, between this country, China, and Japan, has just been successfully completed by Commander G. E. Belknap, of U. S. S. Tuscarora. The greatestdepth of water measured was 4,037 fathoms or $4 \frac{1}{8}$ miles. Nothing to interfere with the working of a cable was discovered.

grixutific ${ }^{2}$ mmerican.

MUNN \& CO., Editors and Proprietors PUBLISHED WEEKLY AT
NO. 37 PARK ROW, NEW YORK.
o. D. MUNN. A.E. BEACH.

TERMS.
One copy, one Year, postage included......
One copy, six months, postage included...
ClubRates:
Ten coples, one year, each $\$ 270$, postage included...
. 82700 W\% By the new law, postage is payable in advance oy

VOLUME XXXI, No. 13. [New Series.] Twenty-ninth Year
NEW YORK, SATURDAY, SEPTEMBER 26, 1874.

ANIMALS ARE AUTOMATA

One of the most interesting features of the recent meeting of the British Association was the address of Professor Huxley on "The Hypothesis that the Animals are Automata, and its History." This title at once arouses a lively interest, since, among other things, it holds out the promise of a solution of those curious phenomena of sagacity orinstinct in the lower animals, which sometimes lead us to question seriously whether the reasoning faculty be totally absent. The begin ning of the address is mainly historical, or, more correctly, it is an explanation of the biological propositions of Descartes, and comparison therewith of modern ideas, showing the similarity. By Descartes, the hypothesis above mentioned was evolved, the supposition (reduced to its simplest forms) being that animals are absolutely machines, that-to illustrate-a dog neither sees, amells, nor hears, but that the impression which gave rise to those states of consciousness in a dog gave rise, by a mechanical retlex process, to actions which correspond to those which we perform when we do see, do amell, and do hear.
And this is susceptible of apparent experimental verifica tion. Professor Huxley mentions the case of a frog in which the anterior portion of the brain is destroyed. The animal may live for years, and yet it is certain that it neither sees nor hears. It will sit forever in the same spot and yet when urged against obstacles, it will turn to avoid them. It will swim in water or balance itself on the hand, as that member is slowly revolved. Something evidently passes through the sensory nerve, acts upon the frog's machinery and the nervous system, and causes it to adapt itself to the proper position.
A still more curious instance cited is that of a French soldier wounded in the left parietal bone. Although he recor ered from the lesion, the man leads two distinct lives. For two days in the month he neither sees nor smells, and, in fact, is destitute of every sense except that of touch. Yet he avoids obstacles, eats (though he is utterly destitute of any discrimination in point of taste), performs a large number of actions on mere suggestions, and, stranger still, shows a totally different moral nature; as, while at other times he is inflexibly honest, when affected he becomes an inveterate

With this brief reference to his illustrations we may at once come to Professor Huxley's conclusion, in which, howver, he fails to concur wholly with Descartes. He says: Taking into account the incontrovertible fact that the lower nimals which possess brains at all possess (at any rate, in rudiments) a part of the brain, which we have every reason o believe is the organ of consciousness in ourselves; then it seems vastly more probable that the lower animals, although they may not possess that sort of consciousness which we have ourselves, yet have it in a form proportional to the comparative development of the organ of that consciousness, and foreshadow, more or less dimly, those feelings which we possess ourselves." In other words, an animal is, accord ing to Professor Huxley, a sensitive, conscious automaton its sensations, its volitions, and its thoughts are but the pro ducts and consequences of mechanical arrangements. A certain molecular change in the nervous system determines a sensation; the emotions thereby excited leave in the brain,
in turn, molecular changes which constitute the physical foundation of memory. These changes give rise to volitions, which, in the animal, will be simply states of emotion which precede its actions; it is a conscious machine. And this, Professor Huxley says, "applies in its fullness and entirety to man;" and he expreases no fear of the logical consequences. Yet he does not-indeed, we fail to see how he could-avoid the admission that these very logical consequences of his doctrine, rather than the theory per se, will excite controversy and the imputation that he is speeding oward fatalism, atheism, and materialism.
It strikes us as a remarkable fact that Professor Huxley, by an entirely different road-a tunneling through the de the, as it were-brings us face to face with one result which Dr. Hammond, in his discussion of morbid impulse, reached by a surface path. A man, for example, commits a murder. If we turn to the morbid impulse theory, we may dofend him on the ground that there is a flaw in his brain organism, which leaves him in a state when " he is impelled, consciously, to commit an act which is contrary to his natural reason and to his normal inclinations." This is "concious mechanism," pure and simple. There is no will employed in the matter. Huxley's doctrine, however, car ries us further, and allows the accused to plead the broader defence of "unconscious cerebration." He was injured, he may say, he struck, he killed; the power which impelled him to strike was the same which caused him to raise his arm to guard himself, a purely involuntary action. Practically, of course, no such defence would be admitted; but it leads us, from both the doctrines above referred to, to a closer investigation of how far man is responsible for \mid his own ctions.

PROFESSOR TYNDALL'S ADDRESS

There ars utterances which mark epochs in human history: not because they give voice to anything new, not because they suggest any original line of thought or investigation, but because they strike, so to speak, the intellectual key note of the age, announcing from some high position the irrepressible conflict of the coming years.
Of such a nature is Professor Tyndall's address before the assembled scientists of Great Britain. It contains no new thought, it announces no new truth; yet in asserting th irresistible sweep of Science upon the remaining stronghold of religious dogma, it is calculated to stir up a grand com motion, not merely in the class so neatly described by the senior Draper as the only example, in the fauna of the world of that non-development which they so loudly affirm, but mong progressive scientists themselves. The timid can no onger blink the fact that the drift of scientific thought, cer ainly in the minds of its highest representatives, is towar he complete subversion of the fundamental doctrines taugh by the ecclesiastical world. It is no longer a question of the
earth's form, or position, or age which marks the conflict of earth's form, or position, or age which marks the conflict of
Science and religion; no more is it a question of man's place Science and religion; no more is it a question of man's place
in Nature, his relation to other forms of life, or the origin of his physical frame; these outposts have been carried, and the citadel itself is entered; the distinction between mind and matter, or matter and spirit, is denied, and with it the personal immortality of man, the personal dominion of the universe, and all that these involve.
In the words of this spokesman of British Science, we may ee the workings of British thought: "Trace the line of life backward, and see it approaching more and more to what w call the purely physical condition. We reach at length those organisms which I have compared to drops of oil sus pended in a mixture of alcohol and water. We reach the protogenes of Haeckel, in which we have 'a type distin guishable from a fragment of albumen only by its finely granular character.' Can we pause here? We break a mag net and find two poles in each of its fragments. We coninue breaking; but however amall the parts, each carrie with it, though enfeebled, the polarity of the whole. And when we can break no longer, we prolong the intellectua vision to the polar molecules. Are we not urged to do something similar in the case of life? Is there not a temptation to close, to some extent, with Lucretius, when he
affirms that 'Nature is seen to do all things spontaneously of herself, without the help of the gods'? or with Bruno when he declares that 'matter is not that mere empty capa city which philosophers have pictured her to be, but the niversal mother who brings forth all things as the fruit of er own womb'?'
In its unexpected frankness, Professor Tyndall's answe o. these questions reminds one of the reply given by a canny times feel sorely tempted to forget the " sawbath day" and
" Na, na," gravely 'responded Sawney, "I's no temptit; I joost gang!"
So with Professor Tyndall. Where men of less resolution pause and shut their eyes to the inevitable, he "joost gangs." "Abandoning all dieguises," he says, with a fearless honesty that will command respect if it fails to command assent, "the confession that I feel bound to make before you is that I prolong the vision backward across the boundary of the experimental evidence, and discern in that Matter which we, in our ignorance, and notwithstanding our professed reverence for its Creator, have hitherto covered with opprobrium, the promise and potency of every form and quality of life." In other words, we are what we are, all things are what they are : not because it has been the pleasure of an artificer, "fashioned after a human model and acting by broken efforts, as man is seen to act," to so create us, but because of the potency of what we are wont to call lifeless matter, whose nature it is to evolve all that we see around us or feel within us, all things that have been or will be, through the play of molecular force. We live because matter lives. We think and feel because it is the function of material combinations such as compose us to think and feel, all the phenomena which we distinguish as physical or mental having their unsearchable roots in what he ventures to call a cosmical life.
To those familiar with the history of human thought, there is nothing startling in this confession. Precisely the same view of the potency of matter has been widely accepted in Germany. "Consciousness itself is nothing but an attribute of matter," says Moleschott, and others are equally outspoken. But for a philosophically conservative body like the British Association to listen to such assertions from its president is something altogether unexpected, something which will not end with the hearing.

VIVISECTION

The question of how far we have the moral right to torcure and mutilate the lower animals in the course of scientific investigation is again brought to public attention through a letter addressed by Mr. Henry Bergh, President of the Society for the Prevention of Cruelty to Animals, to Dr. Austin Flint, of the Bellevue Medical College of this city. This subject has been in controversy for nearly two centuries, and through its recent agitation in England has elicited the published opinions of many of the ablest British physiologists of the present day ; so that we have abundant authority to guide us in drawing the line between that sacrifice of brutes which is both justifiable and proper through the magnitude of the ends which are secured thereby, and the wanton cruelty which impels the destruction of life uselessly.
We have so great an admiration for the philanthropy of Mr. Bergh, and so high an appreciation of the results of his efforts in behalf of the long-suffering animals, that it is with difficulty that we can bring ourselves to the task of pointing out the errors into which he falls through a laudable zeal in his self-imposed labors. But we cannot admit his assertions that " the most eminent physiologists have pronounced viviaction a scientific failure," or that " lifeless bodies furnish all necessary evidence.'
Harvey owed the demonstration of the truth of the circulation of the blood to experiments upon living animalsexperiments which he details with great minuteness in his famous work. John Hunter studied the terrible disease of aneurism, and perfected the surgical operation for its cure upon brutes. Sir Charles Bell gave us our knowledge of the nature of the sensatory and voluntary nerves, and their double origin in the spinal cord; and Marshall Hall demonstrated the equally important discovery of the excito-motory action of the nervous system, through the same means. In both of these last instances, it was impossible to use anæsthetics, and the agonies of the animals were doubtless terrible; but they sink into utter insignificance beside the weapons which they placed in the hands of the physician wherewith to combat the pain and suffering of millions for ages hereafter. We might continue and adduce scores of cases similar to the above. Majendie's investigations, and the new remedies which they gave to Science; Blake's studies on saline matter in the blood; Gadden's localization of the cere. bral function; the labors of Ferrier, Goltz, Michael Foster Lewis, Hitzig, Fritz, Brown-Séquard, Bert, Dalton, and the ecipient of Mr. Bergh's letier, Dr. Flint, are well-known xamples which occur as we write.
But while Mr Bergh is, perhaps, as we have endeavored to show, too sweeping in his wholesale condemnation of vivi section, he is undoubtedly right in inveighing against the infliction of unnecessary torture on the unfortunate brutes; and in this respect we earnestly endorse the ground which he takes. It is a common practice in many medical colleges to sacrifice scores of animals yearly for the repetition of experiments which have proved well settled and thoroughly undertood facts. The insertion of a canula into a dog's stomach in order to submit a bit of meat to the prolonged action of the gastric juice, or the placing of bullets in a pig's leg to show the growth of the bone, are common examples, which since they are useless, are certainly cruel. Nor is there any necessity of following the practice of a distinguished physiological lecturer in this city, of interrupting the thread of his explanations to seize a wretched cat, cut its throat, and composedly hand the reeking viscera about his class for exami nation. For such unnecessary torture there is no excuse.
A committee of the British Association, in 1870, considered this subject quite fully, and produced the following report which we would recommend to faculties of medical colleges throughout the country, and incidentally to the notice of Mr. Bergh

1. "No experiment which can be performed under the influence of an anæsthetic ought to be done without it.
2. "No painful experiment is justifiable for the mere purpose of illustrating a law or fact already demonstrated; in other words, experimentation without the employment of
anesthetics is not a fitting exhibition for teaching purposes. anesthetics is not a fitting exhibition for teaching purposes.
3. "Whenever, for the investigation of new truth, it is aecessary to make a painful experiment, every effort should be made to ensure success, in order that the suffering inflicted may not be wasted. For this reason, no painful experiment ought to be performed by an unskilled person with insufficient instruments and assistance, or in places not suitable to the purpose, that is to say, anywhere except in physiological and pathological laboratories, under proper regulations.
4. "In the scientific preparation for veterinary practice operations ought not to be performed upon living animals
for the mere purpose of obtaining greater operative dexterity for the mere purpose of obtaining greater operative dexterity.
"Signed by M. A. Lawson, Oxford ; G. M. Humphry, Camridge; John H. Balfour, Arthur Gamgee, Edinburgh; Wil liam Flower, Royal College of Surgeons, London; Georg Rolleston, Secretary, Oxford."

american beacon lights.

It might naturally be supposed that the United States, with its immense coast line, and the reputed enterprize of its citizens, would be likely to occupy a prominent position among the nations in respect to the scientific construction and management of its beacon lights. But from all the facts that can be gathered, it would appear that we are considerably behind the age. We hope the members of the Light House Board will read the Scientific american hereafter and so keep posted in respect to all new and useful improvements in the production of lighting apparatus.
Major G. H. Eliot, United States Engineers, Secretary of the Light House Board, has recently published a report, which is the result of careful examination of the light house systems of European countries. For this labor the writer was afforded exceptional facilities by and through the English authorities, in return for the same courtesy afforded with the inspection of our fog signals. Major Eliot points with that, while the English and French aystems closely out that, while the English and French systems closely
resemble our own, there are points in which we may take them as models with advantage. Among these, he mentions the use of gas and the electric light in positions of importance, the use of azimuthal prisms in certain localities, the use of fog signals and revolving lights on light ships, the character of the lamps, and, lastly, the class of keepers, who are retained in service until superannuated, who are eligible to promotion, and whose lives are insured by the Government for the benefit of their families. The English and French lamps, it seems, are superior to ours, in that their
light may be governed by the keeper to suit varying condiight may be governed by the keeper to suit varying condi-
tions of the atmosphere-whether foggy, more or less dark, tc. It is stated that the first order sea. coast lights of Eng land may be raised from an equivalent of 342 (their mini mum) to 722 candles, while the inaximum power of our first class light is uniformly the equivalent of only 210 candles.
While the English and French lights have been in recent While the English and French lights have been in recent years increased in power, the actual consumption of oil per unit of light has been decreased by improvements in the sup. ply of oxygen to the flame; and it is suggested that if the modifications described in devail should be adopted, the illu minating power of our lighthouses would be augmented by more than fifty per cent, thus vastly increasing their efficiency in thick and obscure weather.
Mineral oil is rapidly replacing vegetable and animal oils, and by every nation (with the exception of ourselves) the lamps are being changed for its use. It is more cleanly than the lard oil at present used, and not affected by cold ; while the lamps do not require trimming during the longest nights, thus leaving much less to depend upon the vigilance of the keeper. It is estimated that we could import a fine quality of Scotch oil (though there is no reason why our own refiners should not make a sufficiently good article), and save $\$ 50,000$ a year, besides gaining more valuable lights, by substituting mineral for the oil now in use.
It would seem that the suggestions made are quite practicable, and if carried out would render our lighthouse system probably the finest in the world. As it is, vessels can cruise for 5,000 miles along the Atlantic and Gulf coast without losing sight of a light; and there is a large number of houses on the remaining 5,000 miles of our seacoast. Our present Lighthouse Board controls 591 lighthouses, 35 fog signals, 363 day beacons, and 2,838 buoys.

alaska and the icelanders

When Mr. Seward completed his bargain with Russia for that out-of-the. way corner of this continent now known as Alaska, there was a general expression of opinion. that figure to pay for 580,107 square miles of territory, was nevertheless an excessive price when that territory was, to all appearances, unfit for any but seals and Esquimaux to exist
upon. This rather unfavorable impression at the outset was upon. This rather unfavorable impression at the outset was
hardly of a nature to engender any widespread public interest in our new acquisition, so that the far-off addition to our domain has heretofore received little attention from any one save from a few hapless government officials who may have been ordered to duty in cold, rainy, and generally disagreeable Sitka. An expedition was sent thither in 1865 to survey a route for a Russo-American telegraph; but the completion ject. Then the territory has been made a military and colject. Then the territory has been made a military and col-
lection district. Frederick Whymper in England has pub-
lished a book about it, and Mr. W. H. Dall, to whom we are indebted for valuable archæological investigations among the Aleutian Islands, has produced a similar work. From
these volumes the public has read all about Alaska that it these volumes the public has read all about Alaska that it
cares to, has tossed them aside, and has straightway again consigned the territory, with its seals and its bears, its mountains and its glaciers, and its thousands of square miles, explorad and unexplored, to further oblivion.
Nevertheless, to a few thoughtful people the question continues to present itself: " What are wegoing to do with a political division with a population of 29,097 souls, of whom only 1,300 pretend to have fully acquired the blessings of civilization; where there are 150 rainy days in a year at most places, and sometimes 285 days of incessant downpour
at Sitka; where the temperature descends to - 70° Fah., and averages about $+44^{\circ}$ througbout the year? The productions are abundance of timber, some coal, a little gold and silver, ditto copper, plenty of sulphur, and furs worth about $\$ 85,000$ per annum. In such parts of the country as we know anything about-and that is only along the coast line of,000 miles-it appears that there are resources well worth would doubtless consider any investment in this direction procarious.
It would be an odd coincidence if the inhabitants of one out-of-the-way country, as little thought of as Alaska until the recent celebration of its one thourandth birthday drew the attention of the world to its bleak and rocky shores, should be the means of reclaiming our far northern purchase
-should discover its mines, hew its vast forests, and popu--should discover its mines, hew its vast forests, and populate its towns-perhaps some day ask for its admission into our family of States. The Icelanders are gazing toward Alaska. Four or five hundred immigrants have arrived in Canada and the United States; and already a petition, signed by fifty Icelandic names, has been forwarded to the President, asking for Government cöoperation in exploring the the territory with a view to its colonization, The reasons why they thus turn to the most uninviting portion of our
domain are cogent, forcible, and convincing. It is too far domain are cogent, forcible, and convincing. It is too far
north and too cold for any civilized person but an Icelander north and too cold for any civilized person but an Icelander
to exist in comfort. Its climate is excellently suited to the raising of hardy Icelandic cattle, allowing of an abundant supply of beef, butter, and cheese to the Pacific coast; its fisheries and timber production would supply a large por tion of the country. The Fish Commission tell us that our Eastern fish are getting scarce, while that there is a general
feeling of uneasiness at the widespread destruction of our orests is well known. May not the sturdy fishermen and lumbermen of Iceland aid us in supplying the deficiency from sources now undrawn upon? May not shipyards appear in Alaska as well as in Maine? The Icelanders say that their colony would supply seamen for the naval and merchant marine, and thus they offor both ships and me o aid in restoring our now depleted carrying trade.
We think that this proposition should meet with favorable consideration from the Government. The Icelanders are a hardy, brave. loyal people. Education among them is prized to a degree greater than among any other mass of people on
earth, and we know of no nation whose emigrants could be earth, and we know of no nation whose emigrants could be
incorporated in our own people with greater advantages to ourselves. In case they meet with no encouragement from
our Government the nucleus of the coming colony will our Government, the nucleus of the coming colony will probably be formed in Canada, and the advantage of increased population will accrue to England instead of to ourselves. There seems to be little question as to the expedience of affording the moderate national aid asked by these people, when considered in connection with the probability, on the other hand, of leaving our territory virtually in the hands of savages for an indefinite period to come.

QUEER RAINS.

An ant rain recently happened in Cambridge, England. The Chronicle, a journal of that city, in detailing the circumstance, says that at about six o'clock in the evening, shortly after a rise in temperature had taken place, a shower of ants ments. The milions settled in the streets, covering the pavemica fusca), together with two other varieties, one large without wings, and another of intermediate size with wingg. It appears that the creatures must have taken wing or emerged from ground nests; but how far they had traveled, or by what atmospheric phenomenon they were transported, remains an interesting subject for investigation.
It is said that in the early part of this centary similar showers occurred in various parts of England and in the was seen passing over Cambridge; but there is believed to be no record of an ant rain of such magnitude as this last one.
In

In examining into this subject of queer rains, we have found a large number of singular cases of downfalls of fish and other animals from the sky, a reference to which will be of interest in the present connection. Showers of fish have been numerous, and are generally explicable by the occur-
rence of water spouts, which draw them up into the clouds, whence they are carried by strong gales to the land. In Scotland rains of herrings have frequently occurred, the fish in some instances falling far inland, miles from any body of water. A shower of frogs fell near Toulouse in 1804, and in 1827 an immense number of black insects appeared in the tion in Lapland that mice of a particular kind have been known to fall from the clouds. The rat shower of Norway has passed into a historical fact. This was a most extraordinary though perfectly explicable occurrence, since it was
traced to a whirlwind, which, overtaking an enormous army
of the rodents during their annual journey from a hilly re gion to the lowlands, whisked them up and deposited'them in a field at considerable distance.
Immense showers of dust have repeatedly happened in the South of Europe, covering, in oneinstance, the entire surface of Italy and Sicily, or about 100,000 square miles. Darwin states that a rain of this kind, which took place in 1824, cov ered the enormous area of $1,648,000$ square miles in Northern
Africa. Ehrenberg has found the dust to consist of infuso Asica. Ehrenberg has found the dust to consist of infuso ganisms have been recognized in it.

the fair of the amebican institute.

The forty-third annual extibition of the American Insti ng was formally opened on September 9 , in the same buildcity) in which it has been held for ceremony consisted in the usual chorus of hammers,mingled with other noises indicating busy labor, with which the voice of Mr. Nathan C. Ely, Chairman of the Board of Managers, ondeavored, though somewhat unsuccessfully, to compet for a brief interval in an effort to deliver an address. The latter, which the speaker, evidently in deference to the strain upon his vocal organs, cut as short as possible, was merely a setting forth of the advantages of induatrial expositions, followed by the formal declaration of the opening of the Fair. Then the band pitted itself in an heroic struggle against the hammers, and the visitora wandered around and admired theextent and variety of the packing boxes and the S vista of unoccupied tables.
So far as we are able to judge of the Fair, in its present chaotic condition-and we have long since despaired of ever
finding it otherwise on the opening day or during the fortnight following-there are indications that the exhibition will be a very interesting one. The machinery departmen is again superintended by Mr. John T. Hawkins, a gentle man who won well deserved praises for his ability and energy in the same position last year. This portion of the Fair, mainly through the efforts of Mr. Hawkins, is much the furthest advanced. Both of the main engines-one by Hampson, Whitehill \& Co., of 100 horse power, and the other by William Wright \& Co., of 75 horse power-started promptly on time, and the sbafting throughout the building was in motion at the hour fixed, although not a tithe of the machines were connected therewith. The list of entries in the department shows about the same numbor as at the Fair of 1873, with not very many novelties. Two exceptionally large and fine displays of machine tools, by the New York Steam Engine Company and Messrs. George Place \& Co. respectively, are the prominent features. These include the latest mechanical improvements and refinements, and, as they will be exhibited in actual operation, will be well worthy of study. We shallallude in detail to the new in ventions in these collections, in a subsequent article, addin here only a word of credit to both exhibitors for thei promptitude in having such heavy goods in position and (with some exceptions) in running order, which is in marked contrast with the tardiness which characterizes the proprie tors of the wood working and other light tools.
Of the numbers and variety of the goods to be exhibited in the main hall, no satisfactory idea is yet possible. The arrangement of the tables, we notice, has been altered from that in previous Fairs so as to render articles more easily found, while affording them a better chance of display. The addition of a very large and elegant fountain in the center of the hall is a marked improvement. As a work of art it is worthy of the highest praise, while it serves as a grateful relief to the eye, which is disgusted at the scenic atrocities which still remain in the arches at each end of the building. Thereis an alarming eruption of red, white,and blue paper muslin rags all over the roof, which reminds us partly of the colored tissue paper stuck on the ceilings of lager beer saloons for the benefit of flies, and partly of the festoons on a political stump platform. The taste which dictates the obscuring of the noble arches which span the area by such cheap and ugly so-called decorations is simply execrable; while the presence of such inflammable stuff in such quant ties, situated high up above the innumerable gas flames and in close proximity with the thoroughly dry wooden beams, above which is a tar and gravel roof, seems to us to offer a premium on a wholesale conflagration. This part of the
Fair will, or at least should, excite the interest of the Fire Department.
For the present, we leave the exhibition to extricate itself from the reigning disorder, deferring our usual comments on the novelties displayed until the show is complete.
The hay in some parts of Iowa is so very abundant and cheap that it has been found more economical as a fuel for steam purposes than peat or any other substance. One en-
terprizing inventor writes to us to know if he can obtain a terprizing inventor writes to us to know in steam boilers. He thinks it new in the annals of steam engineering to use hay for firing.

The attempt to export young American shad to Germany for stocking the rivers, has proved a failure. Although hundred supplied with fresh Croton water, all the journey.
a Correction.-In the description of the vapor burner of Mr. F. A. Sawyer, page 122 in No. 8 of our current volume, the statement that the burner tubes are provided "with
pans to catch the drip" should read "pans to prevent cold air rushing up and chilling the tubes." The error exists
in the patent specification.

IMPROVED ADJUSTABLE CLAMP.
This is one of those simple and yet very effective little de vices which is sure to meet with a ready application from all having occasion for its use. The shape, clearly shown in the annexed engraving, is such as to insure strength, stiffners, and convenience in handling, and the material used is malleable iron. The socket on the upper extremity of the frame is threaded to receive a screw, A. Through the lat ter passes the clamping rod, B, along the sides of which are cast a series of projections, as shown at C. These enter grooves at the side of the rod orifice through the screw, so that the rod may be moved up and down through the latter with ease. In use, however, the object to be clamped i

placed between the frame and the enlarged lower end of the rod. The latter is then pushed down against the object and turned to the right. The projections, C , then enter notches made along the sides of the grooves in the screw, and consequently carry the latter around with the rod, thereby forcing the same tightly down upon the work. The sectional view, Fig. 2, will render the arrangement of grooves and projections clearly understood. A quarter turn to the left disengages the projections on the rod from the notches, so that the rod can at once be drawn back.
It is unnecessary to point out the advantages resulting in saving of time in turning down screws, as well as the firm ness with which the clamp holds its work. The invention is made in various sizes, and is, of couree, applicable to a va riety of uses, by cabinet makers, carpenters, and others. A ise for wood workers' use has also been introduced, we un derstand, constructed on the same principle. The present invention is sold by the trade.
Further particulars may be obtained by addrassing Ham mer \& Co., Branford, Conn.

FURNACES, THEIR CONSTRUCTION AND MANAGEMENT read before the edinburgif and leitio engin
mr. charlus fairbairn.
Dr. Joule, in some experiments conducted some time ago, ascertained that a grain of zinc consumed by a galvanic battery generated sufficient power to raise 1456 lbs. 1 foot high. Now it has been proved that a grain of coal consumed in combustion exerted a power of nearly 1,400 foot pounds. This is nearly ten times the power given out by the zinc. It is said, however that thermo-electric engines utilize the initial force supplied about four times better than heav engines, which would make a grain of zinc give about two fifths of the power of a grain of coal. But zinc costs from forty to fifty times as much as coal, while it gives only two fifths of the efficiency.
During a number of years I have been trying experiments with furnaces, with a view to the ecnnomy of fuel. As opportunity occurred, the furnaces I experimented on have been of various kinds, but lately they have been what are known as reverberatory furnaces, chietly used for puddling and reheating iron. I do not suppose that any person who has not had an opportunity of seeing a furnace in operation could believe that the effect would be so powerful; the inner lining actually acquires a white heat, thus sarving as an accumulator, which is given out again when tie temperature of the fire is reduced (as in the case of a fresh charge of fuel), and at the same time assisting to bring the fresh fuel into active combustion more rapidly; the heat is again returned to the fire bricks, and kept ready for future use.
Doctor Siemens, in his celebrated gas furnace, has been very successful in economizing fuel in very large iron manufacturing establithments. The Siemens furnace requires great care in its maragement, and is said to be more useful for heating large masses of iron for forgings or long bars
than for puddling or the intricate processes of iron manufacture. However suitable for large establishments where a great uumber of furnaces have to be supplied with gas,it is clearly too cumbrous and costly for smaller places, and the question arises-can we not effect, approximately at least, a similar result in single furnaces to what is done by the Siemens fur naces? I thinkso. Regarding the quantity of air required in the ordinary furnace for the combustion of coal, I suppose that very few people have any idea of the magnitude of the demand. It is generally given as 300 cubic feet, or 24 lbs . of ir to 1 lb . of coal. Lat us place this in another light. In my own establishment in Gateshead I have seven furnaces. each of which uses about one tun of fuel par day, in all about seven tuns; therefore $7 \times 24=168$ tuns of air required. Again, a pound of coal requires about 300 cubic feet of air. If we imagine the 168 tuns of air made into a long stream of one equare foot in area, the total length will be 21,381 miles in length. Another great cause of the loss of heat, as before stated, is the quantity of heat continaally passing away to the chimney. One difficulty-that is, regulating the supply of air to the furnace-can only be overcome by artificial means, either by a fan blast or steam jet. I believe the time is fast approaching when the supply of air to furnaces will be regulated in this way as the most efficient and economical, and as obviating a great many of the faults of our present furnace. The idea is old enough. However, the ar rangement of furnace I will describe presently may or may not be new. I never saw it before, nor am I aware that anything of the same kind has been tried, and to it I have added a supply of air by means of a blower, In this furnace, of which the drawing is a longitudinal section, the coal is introduced from the top, and is always on the top of the incandescent fuel, at the side of the furnace furthest from the place where the flame makes its escape. The hearth is of fire brick, and during the meal hours all the ashes and clinkers are removed by the hole in the side of the furnace. The area of the hearth is abouttwo thirds of the area that it was previously; the blast was introduced above the new coals, and passes through them. As the coals begin to ignite, all the inflammable gases are forced through the fire, and at the same time mixed with air. The advantages with this kind of furnace seem to be the follow. ing: (1) The whole of the gaseous products are made available; (2) there is entire absence of smoke, in consequence of perfact combustion; (3) there is a smaller quantity of air required, probably about one fourth less, that is, about 18 lbs. to 1 lb . of coal; (4) no increase of temperature above the external air is required in the chimney, and the escaping heat from the furnace can be used for other purposes; (5) a higher temperature in the furnace, and more rapid circula tion of heat; (6) the perfect control which the attendant has over the furnace as regards temperature, gett'ng the fire lighted and into operation in less time, when they have not been in use. There is also another very important point in connection with this method of making reheating furnacesthat the air can be so nicely adjusted by means of the blast and damper as to insure that nearly all the oxygen will be taken up by the carbon and gases, in consequence of which the iron is heated with scarcely any loss from oxide or scale. The balance of pressure can be made so that, even where there are unprotected inlets to the interior of the furnace, the flame can be made to come to the edge of the open space. I believe the efficiency of the furnace might be largely increased by using hot air, which might be done by passing it through pipes or brickwork placed in the flues; for if we have the heat of the furnace at 2500°, and the entering air heated to 500°, the result would decessarily be a great saving. On th's point we have the experience of blast furnaces as an indication of what might be saved by this means alone

FAIRBAIRN'S FURNACE
The application of this method of constructing furnaces is | was liable to break. more difficult to existing steam boilers, and this we can only accomplish by constructing a separate combustion chamber, in which the gases could be properly ignited before passing elow the boiler.
[We are indebted to Engineering for the engraving.-EDs.]

STARLING'S FERRULE AND HOOK FOR WHIFFLETREES This is a simple device for attaching lugs or traces to whif fl -trees, the operation of which is clearly indicated in the annexed engravings.
The ferrule is fitted to the end of the whiffletree in the usual manner. Upon the forward side is a slotted lug, A, shown enlarged in the end view, Fig. 2, to receive the eye of a hook, B, which is secured by a pin, C. The portion of the lug through which the pin hole is formed, and between the aperture and the ferrule, is constructed thick enough to give sufficient strength. The part, however, in front of the pin hole, and upon its inner side, may be made thin, as said parts serve only as a guard to cover and protect the point of the hook when it is extended forward or swung inward, as shown in Fig. 1. This thin portion does not project along the outer edge of the lug; so that, when the hook is swung outward, its point will be uncovered and the trace readily attached.
When used in plowing, the iron pin may be replaced with a wooden one, so that, should the plow strike an obstacle

the pin may break and thus prevent injury to the plow. Pa tenttd through the Scientific American Patent Agency, June, 2, 1874. For further particulars address William Scarling, Hallock, Peoria county, Ill.

New Prussian Guns.
?The Gazette of Cologne, Germany, says, of the new Prussian field guns: They are of the same diameter and caliber as the former pieces, but weigh 391 kilogrammes instead of 260 , while the new projectiles weigh $6 \frac{1}{2}$ kilogrammes instead of $4 \frac{1}{4}$, and have an initial velocity of 500 instead of 360 meters. Tue trials made with the new gan against the old one were highly satisfactory; at the distance of 1,500 metres, the number of pieces of shells in the target was in the proportion of 25 to 1 , and balls and pieces of sharpnels 3 to 1 ; but these advantages have been obtained at the expense of lightness and handiness. The whole, gun, charge, and carriage, weigh $\$ 1,725 \mathrm{ki}$ ogrammes, instead of 1,575 , a diminution of mobility equal to abjut one twelfth. In order to test the importance of this fact,it has been ducided that the horse batteries, attached to cavalry divisions, which are to execute grand manœuvres to ward the end of September, shall be supplied with the new pieces. Tne manœuvres are to take place at Frankfort-on-Oder, Magdebourg, Haguenau, and Brumath.

French Saw Making.

The Paris makers have almost a monopoly, we understand, in the making of ribbon saws, and of late years they have given much attention to the production of all kinds of saws and other articles made of sheetsteel. Among others, M. Dugoujon, who has steam works at Paris, has patented a number of improved modes of manufacture. The blades, after being rolled cold several times, in order to render the grain close and the metal homo. geneous, are heated in special furnaces, from which the air is carefully excluded, and when at the proper temperature are plunged in a bath of colza oil; this is done in a dart chamber. The tempering is effected with the aid of machines, which cause the blades to pass between cast iron plates, heated to a fixed temperature, according to the nature of the article to be produced. The teeth of the saws are cut by machinery, which require only laborers to attend it. Since the war, which deprived the establishment of some of its best men, M. Dugoujon has effected the planishing and grinding of circular and other saws and many similar articles by machinery, and, it is eaid, with great advantage with respect to regularity and stiffness.
Another introduction is the mechanical reduction of the joints of ribbon saws. The breaking of the joint is the only inconvenience about this useful instrument. The workman, in reducing the wrlded part by means of the file, scarcely ever left it of exactly the same thickness as the rest of the blade; thus it either created extra friction or

By the new method the reduction is made by grinding instead of filing ; and as that is effected longitudinally, instead of across the blade, the thickness is rendered perfectly uniform. This invention is said to ase 60 per cent in wages, besides the cost of files.

IMPROVED RUDDER.

The ordinary balance rudèer, as is well known, is pivoted near its middle, and can, with a large rudder area, be easily put over to large angles. But it has certain dieadvantages which have prevented its being adopted in any except a few very large sttam veseels in the Royal Navy. It stops the way of the ship at slow speeds, and is uncertain in its action when the vessel is under sall. This is supposed by many to be due to the fact that the fore part of the rudder is on one side of the ship while the after part is on the other side; and the idea of Mr. Gumpel's rudder is to retain the advantage of the ordinary balance rudder as to ease of turning with a large rudder area, and to obviate ite drawbacke by keeping the whole of the rudder on the same side of the vessel for any degree of inclination.
The means by which Mr. Gumpel accomplishes this an best be described by reference to the engraving, which is taken from a photograph. The fore part of the rudder is kept in the middle line of the vessel by he guide rod at its upper fore corner, which is capable of sliding forward and aft in a groove or slot under the vessel's counter. The inclination of the rudder is obtained by making itsaxis, which is near its center, nove round on a crank on what usually forms the rudder head. A spindle goes down through the rudder center, round which the rudder is capable of revolving, and this spindle, with the arms at the top and bottom form the crank, which carries the rudder center out of the middle line; and the direction of the plane of the rudder is regulated by the guide rod at the fore end being compelled to slide along the middle line. I will easily be seen that the advantage which this rud der has over the common rudder in point of power is mainly at large angles.
The chief objection, says Engineering, from which we extract the engraving, raised to Mr. Gumpel's rudder is that it seems complicated. It certain ly does appear more complicated on paper than when seen firted to the vessel; and the ease with which it could be worked, although the steering wheel was small, and a half turn of it put the rudder hard over, was a subject of much remark on the trial. That it would be of great advantage to river steamers and other craft requiring good steering powers, there can be little doubt; but it woald be premature to pass an opinion on it for sailing vessels, The tendency appears to be rather in favor of small rudders for sailing vessels of the mercantile marine, although in yachts they are sometimes of considerable area in proportion to the size of the vessel. It is obvious that the advantage of a balanced rudder of any kind is fel chiefly where large rudder area is required.

ON LIFEBOATS

Mr. Charles H. Beloe, C. E., recently read before the Liverpool Polytechnic Society an exbaustive and able paper on the above important topic. Excluding such appliances as rafte, buoys, belte, and similar apparatus, he confines himself solely to the aingle subject in question; and dividing the boats into two classes, namely, those used off shore and those kept aboard ship, he proceeds o discuss the peculiarities and valuable improvements existing in the many types now in use. In general, the qualities which should be presont in every vesrel of this description are summed up by the Royal National Life Bjat Inatitution as: (1) Great lateral stabili y or resistance to upseting. (2) Speed against a heavy sea. (3) Facility of launching or taking the shore. (4) Im mediate self discbarge of any water breaking into her. (5) Self-righting if upset. (6) Strength. (7) Stowaye room for a large number of paseen. gers. From the descriptions which follow, taken from Mr . Beloe's paper, and by the aid of the annexed diagrams, for which we are indebted to the Engineer, the reader will be able to examine comparatively the principal varieties of life 1 in use in England: Fig. 1 represents the north country or improved Greathead plan, and is now nearly obsolete. These are the widest rowing life boats in existence, some of them having as much as $10 \frac{1}{2}$ feet to 11 feet beam, with a length of 30 feet. These wide boats require long oars, with two men to each, to pro pel them, thereby risking a large number of lives in every boat. They do not possess the property of self-righting and it was in one of them that twenty lives were lost in 1849. The airtight compartments are marked A. These side air cases contribute vastly to the stability of the boat, by leav ing a very small space for the water to occupy, when one gunwale is thrown level with the sea, and that space but slightly on one side of the center of gravity, consequently
the water shipped would have but little tendency to weigh the boat down. The continuation of the air cases to the gunwale is objectionable, as they occupy space which is valuable for the slo wage of shipwrecked persons. A water tight deck, marked B, extends a arose the boat, a little abore the level of the sea outside; and any water that may be shipped is discharged through tubes into the sea bejow.

GUMPEL'S RUDDER.

boats, which are nearly as ancient in model as the one just described. The extra buoyancy is obtained by means of cork fenders outside the gunwale and by side air cases, occupying a large portion of the interior of the boat. With regard to stability, these Norfolk boats retain more water when inclintd to leeward than some boats, as shown by Fig , but a large portion of it is to the windward or higher side of the center of buoyancy, where it serves the purposes of ballast, and thereby adds to the stability. They are almost entirely ballasted with water. One great advantage of this plan is that the boats are so easily bandled in launching or beaching, as they are launched empty; but as soon as they are cleared of the beach, the plugs are withdrawn, and the water admitted to the outside lovel. In addition, they are

LIFEBOATS.

furnished with iron keels. They are exclusively sailing boats, being nearly un manageable under oars. They measure from 39 feet to 46 feet in length, and from $10 \frac{1}{2}$ feet to 12 feet in breadth. A plan and sections of the self.righting life boat f the Royal National Lifeboat Institution are shown by Figs. 3, 7, and 8. This is the result of all the expe rence gained by the institution in the management of its arge fleet, now consisting of 235 lifeboats.
On the plan, Fig 8, A represents the watertight deck, B the relieving tubes, C the side air cases, D the end air cbam bers, E the ballast, F scattles to admit of a free current of air under the watertight decks when the boat is asbore, G another scattle for air, and to receive a pump. In the cross section, Fig. 3, A represents the sections of the side air cases;

B the relieving tubas, of the same depth as the space be t ween the dectse and the buat's floor ; C C C C are spaces be neath the deck, placed longisudinully at the midsbip part of the boat, and filled with cases packtd with cork, forming portion of the ballast; D, scuttle for ventilation, having a pump fix6d in it, by which any leakage beneath the deck an pe pumped out when afloat. The extra buoyancy is entirely by means of air cases. When the lee gun ale is level with the sea, there is more space inside to leeward of the center of gravity than in Fige. 1 and 2 the air cases having the corners taken off to afford room for the stowage of passengers, and to prevent the side buoyancy being placed too high for the purposes of self-righting. The self-discharge of water is provided for by the relieving tuber, B, for, as the waertight deck is always slightly above the level of the water outside, any sea that is shipped must flow out throush these tubes, which are furniehed with very imple self acting balanced valves, that afford no obstruction to the free egress of water, but, closing by the pressure of the sfa outaide, effectually prevent the admission of any. The actual time occupied by one of these boats in freeing itself from water is about 30 econds. A large portion of the balla•t is compored of cork or wood, as shown at CCCC. The really distinuishing feature of these boats is the property which hay possess of self-righting. The best proof of the safety of the boats is the fact that during th, e last twenty two years the Institution has only lost from ll causes, twenty-nine persons from its own lifeboat crews, and many of these lives were lost by the men being crushed against wrecks, falling overboard, etc. The method by which this peculiar property is obtained is by attaching a heavy iron keel to the boat, and otherwise providing a sufficient weight of baliast, by giving a considerable amount of sheer, and by enclosing the bow and stern by airight chambers. These chambers have sufficient buoyancy to support the whole weight of the boat when upset, with the keel at a considerable hight above the water; it is then floating on two points, with the ballast far above the center of buoyancy, thus forming an unstable equilibrium. In this position the boat cannot remain; and as soon as the keel falls to one side or the other of the center of gravity, the weight of ballast drags the boat round, the water escapes through the relieving tubes, and she is again ready for service. The following are the requirements requisite to insure self righting: (1) Ballast. (2) Enclosed air chambers at the bow and stern, placed sufficiently above the center of gravity. (3) Limited beadth of beam. (4) Limited side buopaacy.
In order to insure strength and elasticity, these boats are now built of fir, on the diagonal principle; formerly they ere clinker-built, of oak
Figs. 10 and 11 represent two boats built on the tubular principle. One is stationed atRbyl, and the other at New Brighton, both being under the control of the Lifeboat Institution. The lat'er boat towa and sails adminably, though a trifle heavy under oars. A sect'onal elevation of her is sbown in Fig. 10. Her dimensions are follows: L-ngth over all, 40 feet; diamt ter of tubes, 3 feet; distance apart, 3 feet 6 inchts. The Mersey Docks and Harbor Board has a boat built on this principle, but with a difference in the mode of construction. The tubes, instead of being circular, are flat on the inner sides, see Fig. 11; the ends of the tubes are not brought together, but the inner sides remain parallel throughout, and have a sort of bow or cutwater at one end. One object of this plan is to prevent the water thrown off by the bows of the tubes being thrown in between hem, where the space is confined, and where it undoubtedly retards the boat. By the altered plan, it is contended that all the water thrown off by the bows shall pass away freely outside the tabes. This boat is undoubtedly faster un. der oars than the New Brighton one, but not equal to her in buoyancy and strength. Her dimensions are as follows: Length, 36 feet; breadth, 10 feet 2 inches outside tubes; breadth, 9 feet 8 inches outaide gunwales; diameter of tubes, 3 feet. The objections to this class of boat are: The prejudices of the fishermen and boatmen respecting a boat so unlike anything to which they have been accustomed; their great weigbt, the clumey carriage which they require, their unsuitability for launching off a lee shore, and their great cost.

In order to improve this most important description of boat, in February, 1870, the Society of Arts offered its gold medal for a ship's lifeboat, suitable for the mercantile marine, under the following conditions, mentioned in the second division of the discourse. Mr. Beloe said that all ships'
lifeboats should have these requiremerts: (1) Buoyancy sufficient to insure that the boat be manageable, when, in addition to the number of persons and additional dead weight (if any) she is intended to carry, she is filled by sea. (2) The fittings or appliances by which such buoyancy is obtained to remain efficient under all circumstances of climate and temperature, as well as under exposure to sun, weather, and salt water. (3) Fitness for use as an ordinary ship's boat. (4) Strength. (5) Durability. (6) Lateral sta bility, or resistance to upsetting on the broadside. (7) Relief of water to the outside level. (8) Cheapness. (9) Simplicity of structure. (10) Lightness. It will be seen at once how different are the conditions from those of a shore life boat, and how the ordinary boats of the Institution would fail to somply with them, especially with requirements Nos. 3, 8, 9 , and 10. Self-righting is not considered as essential ; in fact boats in an open sea are far less likely to be upset than in the heavy breakers near the shore. The council of the So ciety of Arts has awarded two gold medals, one to Messers. Woolfe \& Son, for their wooden boate, and one to Mesers. Hamilton \& Co., for their iron boats.
Messrs. Woolfe \& Son's lifeboat was 25 feet long by 7 feet beam, was built of wood, and had end and side compartments of the proportions recommended by the committee. There is no special peculiarity in the shape of the boat, except that she is very flat-floored; the top of the air cases being flat and level with the thwarts, they afford additional accommodation for passengers. With the crew on board and the water ad mitted to the outside level, this boat has a freeboard of 20 inches, and with fifteen additional passengers the freeboard is reduced to 12 inches. It takes eight men to stand on the gunwale to bring it awash. The air cases are easily removed, thus rendering the boat available for service as a cargo boat. The seas breaking into her are ejected to the outside level by means of two plug holes in the bottom, the remainder being baled out after the plugs are again inserted.

Messrs. Hamilton \& Co.'s metallic lifeboat is a counterpart of Messrs. Woolfe's boat, having the same length and breadth; and the proportions of the air cases are identical.
The two points of difference between Hamilton's and The two points of difference between Hamilton's and
Woolfe's are in the material (one being built of galvanized corrugated iron, and the other of wood) 'and the means of ejecting the water. The two plug holes, 3 inches in diameter, are placed in the center of the boat, and a watertight bulkhead is fixed on each thwart, on opposite sides of the plug hole, see Fig. 12. Each of these bulkheads is furnished with a simple flap valve, opening inwards. In the event of with a simple flap valre, opening inwards. In the event of
the boat shipping a sea, she is turned head to wind; and as the boat shipping a sea, she is turned head to wind; and as
the bow rises to the waves, all the water contained in the the bow rises to the waves, all the water contained in the
forepart of the boat passes through the valve in the foreforepart of the boat passes through the valve in the fore-
most bulkhead, but cannot pass the second one, consequently the water is heaped up in the space between the two bulkheads. As the bow falls again the valve closer, and the water in the center would be higher than the outside level if the plugs have been left in; on withdrawing them it would fall to the level of the sea. The same process is repested as the stern rises, and a few movements of the boat are sufficient to free her from water, with the exception of are sumieient to free her from water, with the exception of
about one inch in the bottom. The larger the central space, about one inch in the bottom. The larger the central space,
the more rapid will be the discharge of water; but on the other hand, the greater will be the residuum left in the boat.
Messrs. Lamb \& White's lifeboat was the first real ship's lifeboat that was ever adopted, and has undoubtedly done a great deal of good service. A cross section of it is shown by
Fig. 5. It is built of two thicknesses of plank, with pre. Fig. 5. It is built of two thicknesses of plank, with prepared waterproof material of an adhesive nature interposed.
The whole of the internal work, comprising the watertight compartments, bulkheads, and decks, is of the same construccompa
tion.
Combe's cork and cane lifeboat, Fig. 13, is composed of two baskets, placed one inside the other, and secured to a d cep wooden keel, the space between the baskets being filled with cork. No provision is required for the ejection of water, which paeses freely through the basket work and between the cork, the bottom of the inner basket or floor of the boat being above the outside sea level. One of the best which the stability of the boat is increased by the water being retained on the windward or elevated side, and discharged retained on the windward or elevated side, and discharged
on the leeward or lower side. This is effected by leaving a on the leeward or lower side. This is effected by leaving a
central space in the bottom, extending fore and aft, which central space in the bottom, extending fore and aft, which
is not filled with cork, and by lining a portion of the bottom of the boat and the sides of this central water space with a waterproof material, by which means the water is retained on the side which is lifted up, and its weight acts as ballast on the side where it is wanted, and tends to right the boat. One great advantage of this form of construction is its lightness, a boat, 25 feet long, 8 feet beam, and 3 feet 4 inches deep, only weighing one tun.

The St. Gothard Tunnel.-It appears, from a recent report made to the Swiss Federal Council, that at the close of June the contractors had completed nearly one seventh of the whole distance of nine milep, 2213 feet. The progress made during July was about evenly balanced, but the advance on the Goeschenen side was rather more rapid than that effected on the Airolo side.

Smoking by Clockwork.-A new toy, lately patented, consists of a figure of a dandy with a cigar holder in his mouth. In the pedestal there is a small bellows, operated by mouth. In the pedestal there is a small bellows, sperated by
clock work and spring. A small cigar is lighted and placed clock work and spring. A small cigar is lighted andine holder; and when the spring is set in motion, the
in the dandy puffs away, as natural as life, until the cigar is consumed.

Contegyondence.

Practical Mechanism.

To the Editor of the Scientific American:

I have carefully read Mr. Joshua Rose's essays on practical mechanics, and also the controversy upon hardening and empering tools. Mr. Rose is elucidating a perfection of hundred. It is an easy matter to run a lathe; but to get the atmost attainable duty out of it is quite another thing, and this Mr. Rose shows exactly how to do. I have worked in hops where the work was let out by the piece, and have found innumerable cases where one man in a particular branch, with the same tools, did much more work than others. How is this? It is done by little, fine points in the manipulation of the work and the tools, which only a few succeed in perceiving. For instance, in one essay Mr. Rose ays: "So much side rake may be given a tool that it will feed itself without the aid of any feed motion: for the force required to bend the shaving (in heavy cuts only) will react upon the tool, forcing it up and into the cut; while the mount of bottom rake, or clearance, as it is sometimes called, may be made just sufficient to permit the tool to enter
the cut to the required thickness of shaving or tool feed, and he cut to the required thickness of shaving or tool feed, and
no more; and it will, after the cut is once begun, feed itself, and stop itself when the cut is over." Such a tool as is here described is the very perfection of a tool for heavy cuts; there is absolutely nothing beyond it, that is, provided always hat it is forged and hardened as Mr. Rose directs. Not a "wrinkle" has he omitted.
Mr. Hawkins says that "if a tool be dipped at the lowest temperatare at which it will be hard at all, it will be harder when ready for use than if dipped at any higher temperature, if required to be drawn in temper at all." A tool for ordinary work, such as shown by Mr. Rose in his Fig. 6, treated by either of these methods would be utterly worth less for the work assigned to it by Mr. Rose, that is, running 36 or 27 feet a minute with a feed of 20 or 25 . Nine out of ten expert workmen discard the feed motions of small lathes and feed the tool by hand, when doing short work, because the feeds are so fine as to prevent getting out a satisfactory amount of work. The employer of a fine feed is incapable of judging of the merits of a tool, since his practice never puts a tool to a full test. "The temper of a tool, made just hot enough to harden at all," is altogether indefinite, and practically useless. Mr. Rose gives special instructions for
taps, etc., and he gives the colors in combination (as patent taps, etc., and he gives the colors in combination (as patent
awyers say) with the conditions ; 60 that both being observed he result is uniform and correct. What result may be ob. tained by other conditions is another thing. I know of no better plan than Mr. Rose's, and I do not believe there is one in use. Mr. Hawkins appears to have varied his conditions, and his results have therefore become varied and indefinite in consequence. The latter says in one place that a work man may dip a chisel too little, and the chisel will be soft,
in another place he may bungle and make it too hard, and that this is an everyday shop practice: "an unprofitable shop experience," he calls it. He afterwards says that the chemical action which produces the colors in tempering is a subject not, in his opinion, beyond the American mechanic's capabndy to comprehend. The capability to comprelend question. No mechanical motive, no fair motive called fortb, such a remark. I do not believe that it is American shop practice to make the blunders Mr. Hawkins charges, but I do believe that, were such a deplorable state of things true, the first duty of American mechanics would be to learn to heat and dip a tool properly, so that the chemical action of tempering, whether it be oxidation or carbonization, may be put into proper operation, without which considerations of Greenpdint, N. Y.
W. H.

The Plague of Locusts.

To the Editor of the Scientific American:

The grasshopper or locust plague of the Western States is an ovil which threatens the entire country, and steps should be taken to stop it. In order to do that, we must get at the regetation. Every acre of land producing wild or cultivated vegetation supports its equivalent of animal life; and when
the balance of power is violently disturbed, it will revenge itself. When a man steps on the teeth of a rake, the handle will rise up and strike him. If we destroy on the plains one knd of animal life, another kind will spring up which we cannot destroy. Millions of buffalo have been killed for sport, and millions for their hides or tongues. Every one who sees a buffalo shoots at it. If it does not fall then, it whers with the wounds till death relieves it. Every one who has crossed the plains knows that few are the apots which are not dotted over with decaying and decayed car cases. But the greatest slaughter of animals is done by poisoning the wolves and coyotes. Each hunter spread poisoned bait over a large track of country, and every morn ing rides round to take the skins; and each dead animal left
to rot is in turn a bait to slay thousands of vultures, crows, ravens, hawks, and birds of all kinds, forming a carpet of their feathers for yards round each carcass. It is no wonder, then, that the hoof of the buffalo and the sharp bill of the near the surface of the ground, waiting for the warm, dry days to come, that it may be hatched out and fly.
The vast plains, while waiting to be used as the abode of man and his dependents, should not be deprived of their beasts and birds. Every prairie chicken and bird consumes
bear feed on the locusts before they can fly. By these agents, clouds of these plagues would be prevented from rising to strike the Western farmer with want and famine. The locust must now be consumed or abolished in some way, or he will possess the land. We must improve the means of gathering them and using them for fuel or fertilizers, and laws must be enforced which will protect the beasts and birds of the wilds. If large brilliant fires were kept burning at night in the line of their flight. they would come to the light, and, getting their wings burnt, would remain.
Chicago, Ill.
John Whiteford.

Passage of Gas through Heated Cast Iron.

To the Editor of the Scientific American:
It is generally supposed that the products of combustion will, under some circumstances, pass through heated cast iron. My impression is that experiments, made in Paris several years ago, lead to this conclusion. I remember reading something of the kind at the time, but I have never been able to find an authorized statement of the investigations which lead to this conclusion. Can you put me in the way of finding an account of these experiments? In case you are unable to do this, will you kindly inform me what you think the facts in the case are?
Montclair, N. J.
[ANSWER-We have heretofore published the reports of experiments to which our correspondent refers, wherein it was claimed that carbonic acid gas, resulting from the combus. tion of the fuel in cast iron furnaces, will pass directly through the iron plates; and the recommendation was there fore made that wrought iron should be substituted for cast ron in the manufacture of hot air furnaces, stoves, and other domestic heaters. But this conclusion we regard as erroneous, for we think that the quantity of gas that thus passes through the cast iron plates is too small to be ordinarily appreciable. In fact, Dr. Hayes, of Massachusetts, in a note published in the Scientific American last year, stated that that he had conducted a series of special experiments which fully confirm the above view.
We are aware that the escape of gas from our stoves and furnaces is a subject of serious and common complaint. But the trouble is principally due to the badly fitted joints of the cast iron plates, to the improper closing of dampers (thus orcing the gas out at the joints), and also to defective draft in the chimney. It would be difficult to find any cast iron tove or heater in use that is not more or less visibly open at some of its plate or pipe joints, through which gas may,
of course, freely flow out. Until some method is invented of course, freely flow out. Until some method is invented os seal these openings, tie subject of the issue of gas through o remain in abeyance.-Eds.]

The Small Engine Question.

To the Editor of the Scientific American:
Some years ago I built a small engine, with a cylinder 2×5 inches, and a balance wheel of 3 feet diameter and 100 bs. weight. The boiler is 15×36 inches and has fifty $\frac{8}{4}$ inch ues. It is set horizontally, with the fire box at one end The fire returns through the upper flues, superbeating the team. The cylinder is on top of the boiler. Fifteen galons of water are required to charge the boiler; and when the engine is running at 50 lbs . pressure and 300 revolutions per minute, it evaporates about 2 gallons per hour. The amount of fuel is about the same as required by a good sized cook stove. It runs 12 feet of 2 inch shafting, a 6 inch circular saw and cuts 2 inch lumber well: or it runs a wood lathe to turn stuff 6 to 8 inches in diameter. The engine has been run, more or less, for ten years without repairs f any importance, and is in good order now.
Brunswick, N. J.
N. T. W.

To the Editor of the Scientific Amerrcan.
I have a vertical engine, $2 \frac{1}{2}$ inches stroke $\times 2 \frac{1}{4}$ inches bore. The feed pump plunger is $\frac{5}{8}$ inch $\times 2 \frac{1}{3}$ inches stroke. The boiler is horizontal, 24 inches $x 12$ diameter, with 12 flues, each $1 \frac{1}{4}$ nches in diameter. Boiler is set in a heavy sheet iron case with fire box 12×14 inches; the fire passes under the boiler, back through the flues, and over the top of the boiler, and out of smoke stack. No part of the boiler is exposed to the air. The feed pipe passes into the boiler front through the fire, and delivers the water in the back end of the boiler at nearly the boiling point. I have the engine in a boat 16 feet long $x \&$ foot beam, turning a 14 inch wheel. It makes steam very freely; in fact I run with the door open two thirds of the time. I have run 60 miles in 9 hours with 4 men, burning 48 lbs. of coal. It is the most perfectly working engine ever saw, large or small.
Manistee, Mich.
N. G. Neer.

The Speed of the Mary Powell.

I'c 'le Editor of the Scientific American:
In your issue of September 5, I see you mention that the Mary Powell ran to Piermont, a distance of 28 miles, in one hour. On investigation, I fail to find your statement of the distance to Piermont confirmed. I make it about 22 miles New York city.
L. H. Rossire.
J. Frauenberger, of New York city, has recently pat ented a composition for producing artificial corals, ivory, and similar articles, made of caseine, mixad in the proportions described, and boiled under suitable heat, with a varnishike solution of copal in concentrated liquid ammonia and alcohol, to be colored and prepared for the various applica-
tions in the arts.

PRACTICAL MECHANISM.
 number Ix.

by jobita robe.
vise work-pening.
The operation termed pening is stretching the skin on one side of work to alter its shape, the principle of which is that, by atriking metal with a hammer, the face of the metal struck stretches, and tends to force the work into a circular form, of which the part receiving the effect of the hammer is the outside circle or diameter.
Fig. 38 represents a piece of flat iron, which would, if it
riq.3s.
were well hammered on the face, a, a, a, with the pene of a hammer, alter its form to that denoted by the dotted lines Fig. 39 represents a brass which, if struck with a ham-
mer (along its bore at a) or mer (along its bore at a) o
other piece of metal for driv ing it in while fitting, would gradually assume the form denoted by the dotted lines. Fig. 40 represents a rod con nected at the end, a, with a double eye and pin, and requir ing to descend true so as to fit into the double eye, b, at the other end ; if, therefore, it is pened perpendicularly on the

face, c, of the rod, the stretched skin will throw the end around so that it will come fair with the eye, b. Connecting rod straps which are a little too wide for the rod ends may be in like manner closed so as to fit by pening the outside of the crown end, or, if too narrow, may be opened by pening the inside of the crown end; but in either case the ends of the strap alter most in consequence of their lengths, and the strap will require refitting between its jaws.
Piston rings may be made of larger diameter by pening the ring all round on the inside, and there are many other uses to which pening may be used to advantage, such as setting frames, refitting old work, taking the twist out of work, etc., but it must be borne in mind that if, after a piece of metal has been pened, a cut is taken off it, it will return to its original shape, as the effects of the pening do not extend more than $\frac{1}{64}$ of an inch in depth. When, therefore, a brass or other work requiring to be bored is driven in and out by a piece of metal or a hammer, it stretches the skin; and when the brass is bored, the stretched skin being cut away, it assumes its original shape and hence becomes slack or loose in the strap or block. A light hammer having a round pene should be used; and light blows should be employed for pening, as they are the most effective.

Fitting brasses to their boxes.
The pattern for a brass which is hexagonal upon the bottom or bedding part should not be made of exactly the same shape as the hexagonal part of the box upon which it beds, becaase the brass, in casting, shrinks in the direction of the diameter of the bore to such an exient as seriously to alter the angles of the bottom of the brass as compared with the angles on the bottom of the pattern. Tocompensate for this change of form, the angles on the sides of the pattern should be made more obtuse than those on the sides of the box, as described in Fig. H, the dotted lines being the angle of the box. The shrinkage referred to is

Eig.H.

 not merely that due to the contraction of the metal in cooling, but is an alteration of form which takes place in all castings of more or less egmental circular form, especially in the case of light castings. In cast ings of 4 inches or less diameter the rapping (given by the molder to the pattern to loosen it in the sand, so as to be able to extract the pattern without damaging the mold) is about equal to thisalteration of form but in larger castings an allowance must be made for it.In fitting a brass to its box, first fit the sides of the brass to the box, keeping them at an equal angle to the joint or top face of the brass,so as to let the brass down evenly and not with one side or one bevel lower than the other. To find if the brass is level, use inside callipers as a gage, applied from the top face of the brass to the top face of the box. When the brass is let down so that it approaches the bottom of the box, rub upon the bed of the box a coating of marking; and then upon the end of each bevel, and upon the bottom and near each corner (of the bevels and bottom), place some small pellets of red lead, mixed stiffly; then when the brass is driven home upon its bed and again taken out, the pellets of red lead will adhere to the box because of the marking. and (by their respective thicknesses) denote how nearly the angles or bevels of the brass fit to the box; because where the brass touches the bed of the box, the pellets will be smashed; but if the pelletsareintact,it demonstrates that there is space between the box and the brass. It is obvious that the brass requires chipping in those places where the pellets are crushed, and in proportion to the thickness of the pellets that are the least crushed. The pellets should be removed and replaced each time before driving the brass home, and
removed when they appear of even thicknesses, the fitting being completed with marking only. All brasses must be being completed with marking only. All brasses must be
fitted to their boxes more tightly than they are intended, when finished, to be, because they go in from the process of boring and are consequently an easier fit after than before being bored.

ITTTING LINK MOTIONS.

The planing and boring of thelink, of the die, and of the ccentric rod double eyes being completed, the faces of the links may be filed up to a surface plate. The slot of the link should then be filed out to a gage of sheet iron of the proper sweep, the sides of the slot being kept square at all parts with the face of the link : each end of the slot at the termination of the stroke of the die should be eased off a little, so that, when the link and the die are hardened, the latter will not bind bard in the ends of the former, as would otherwise inevitably be the case. The die may then be fitted, to a rather tight fit, to the slot of the link, putting a very light coat of marking upon either or both of them, which will serve as a lubricant to prevent them from cutting, and will show the high spots upon both the link and the die, which spots must be eased off until the die fits to a working fit, providing the link and die are not intended to be hardened. f, however, they are to be hardened, the die must be made of a somewhat easier fit to allew for the expansion of the metal, which takes place in hardening. To fit the double eyes (that is, the eccentric rod ends) upon the link (or quarant), a bolt and washer should be provided, the pin being fit to the hole in the eye and to the hole in the washer the head of the pin and the washer being the finished diameter t theoutaide oot tho efe. The ond of the pin is pasead through one side of the eye, then through the washer, and

hen through the other side of the eye,as illustrated in Fig. I, being the pin, B , the washer, and C , the double eye
The underneath faces of the pin and washer will, if revolved by hand, mark the two faces (against which they bear) true with the hole of the double eye; and when those aces are finished, the pin may be turned end for end, and the other two faces trued in the same manner. The object of making the head of the pin and the washer of the same diameter as the double eye is that they may be used as gages o which to file up the outside of the double eye, for which purpose they should be hardened so that the file will not cut hem. The double eyes being filed to fit the link, the washer having been used, as above described, as a gage to keep the aces true to the hole) must then be clamped to the link,care being taken to make the hole of the link as true as possible with the hole of the double eye, and to slacken the bolt of the clamp if the double eye requires moving to come fair with the hole in the link. If the clamp were not slacked, striking the double eye to move it would probably spring one jaw out of true with the other. A hand reamer may be passed through the double eye, taking out a light cut, and thus making the holes through the link and doable eye paralel and quite true with each other
If, after the link has been hardened, the die is of too tigh fit, place oil and fine emery in the slot, put the die in its place and (with a piece of wood, through the hole of the die) force it back and forth from end to end of the slot, or in such parts only as it may be too tight; this will grind ou the tight places. If the link is tight at the extreme ends, as is sometimes the case, a piece of flat copper shaped and used as a file may be used with grain emery and oil to grind out such ends. If, however, the link has altered so much as to make the grinding a long and tedious operation, it may be opened by placing a bolt and nut in such a position in th slot that the head of the bolt will rest against one side and the end face of the nut against the other side of the slot; the head of the bolt should then be held stationary with a wrench or spanner, and the nut, being unscrewed, will force open the link. Another method is to take two keys, such a connecting rod keys, both having an equal amount of taper on them and place them in the slot of the link as here shown

being an end view of the link, and
B and C the keys referred to. The operation is to place a hammer against the head of one key, as here shown, to prevent it from driving out of the link, and to drive in the other key. The advantage of this method over the screw and nut is this: The link will spring considerably before it will alter its form, so that, when applying the bolt and nut, it is difficult n the second operation (providing the first has not effected the desired opening of the link), to find exactly how much to unscrew the nut. In using the keys, however, lines may be drawn across the keys to denote exactly how far they were driven in during the first operation, which lines will guide the judgment as to how far to drive them in the second operation. If a link opens, that is, if the slot becomes wider during the process of hardening, it may be closed by clamping, or even by a strong vise.

FITTING CYLINDERS.
A casual cylinder or pair of cylinders (there being no tem plates for marking the holes, etc., should be fitted up as fo
cylinder has a portion cut away to give room for the steam o enter (as is usually the case), mark a line across the inside flange of the cover, parallel to the part cut away, and then cribe each end of the line across the edge of the flange. Then mark a similar line across the cylinder end, parallel to the steam port where it enters the cylinder, and scribe eac end of this line across the cylinder flange, so that, when the cylinder cover is placed into the cylinder and the lines on the flanges of the cylinder and the cover are placed parallel to each other, the piece cut away on the cover will stand ex. actly opposite to the steam port, as it is intended to do The cover may then be clamped to the cylinder, and holes of the requisite size for the tap (the tapping holes, as they are commonly called) may be drilled through the cover and the requisite depthinto the cy linder at the same time. Concerning the correct size of a tapping hole in cast jron, as compared to the tap, there is much difference of opinion and practice On the one hand, it is claimed that the size of the tapping hole should be such as to permit of a full thread when it is tapped; on the other hand, it is claimed that two thirds or even one half of a full thread is all thatis necessary in holes in cast iron, because such a thread is, it is claimed, equally as strong as a full one, and much easier to tap. In cases where it is not necessary for the thread to be steamtight and where the depth of the thread is greater by at least inch than the diameter of the bolt or stud, three quarters of a full thread is all that is necessary, and can be tapped with much less labor than would be the case if the hole wer small enough to admit of a full thread, partly because o the diminished duty performed by the tap, and partly be cause the oil (which should always be freely supplied to a tap) obtains so much more free access to the cutting edges of the tap. If a long tap is employed to cut a three quarter full thread, it may be wound continuously down the hole, without requiring to be turned backwards at every revolu tion or so of the tap, to free it from the tap cuttings or shav ings, as would be necessary in case a full thread were being cut. The saving of time in consequence of this advantage is equal to at least 50 per cent in favor of the three quarter full thread.
The cylinder covers must, after being drilled, as above, be taken frcm the cylinder, and the clearing drill put through the holes already drilled so that they will admit the bolts or studs, the clearing boles being made $\frac{1}{16}$ inch larger than the diameter of the bolts or studs. The steam chest may be either clamped to the cylinder, and tapping holes drilled through it and the cylinder (the same as done in the case of the covers), or it may have its clearing holes drilled in it while so clamped, care being taken to let the point of the drill enter deep enough to pass completely through the steam chest, and into the cylinder deep enough to cut or drill a countersink nearly or quite equal to the diameter of the drill. If, however, the steam chest is already drilled, it may be set upon the cylinder, and the holes marked on the cylinder face by a scriber or by the end of a piece of wood or of a bolt, which end may be made either conical or flat for the purpose, marking being placed upon it; so that, by putting it through the hole of the chest, permitting it to rest upon the cylinder face (which may be chalked so as to show the marke plainly), and then revolving it with the band, it will mark the cylinder face. This plan is generally resorted to when the holes in the chest are too deep to permit of being scribed. To true the back face, round a hole against which face the bolt head or the face of the nut may bed, (in cases where such facing cannot be done by a pin countersink or a cutter used in a machine), the appliance here

shown may be employed, a being a pin provided with a slot t one end to admit the cutter, B, which is held fast by the key, C, and is also provided with a square end, f, by which it may be turned or revolved by means of a wrench, and with a thread to receive the nut, E, d being a washer; so that, by screwing up the nut, E, the cutting edges of the cutter re forced against the cylinder, g, and will, when revolved ut the face, against which they are forced, true with the hole in the cylinder through which the pin, a, is passed.
Rich beds of magnetic ore have been developed in the outhwestern portion of Bethlehem Township, Hunterdon County, N. J. The ore is of uniform and excellent quality, containing as impurities manganese, alumina, silica, and lime, being free from sulphur and phosphorus. It is well adapted for making Bessemersteel, and is used by the Bethlehem Iron Company, and the Pennsylvania Steel Works at Harrisburg.

Lead Poiboning.--MM. G. Bergeron and L. L'Hate state that twenty-six persons in the department Seine-et-Marne were attacked with symptoms which were at first af cribed to bilious typhoid fever, but were subsequently traced to lead poisoning. The lead was found in the brine used for falting butter, where it was present as chloride. Two of the case proved fatal. A notable quantity of lead was found in th anteatines, the liver, and the brain of the dead.

Contributions to the Early History of Steam Navigation

On the 9th of February, 1811, letters patent of the United States, No. 25, were granted to Robert Fulton of New York for " constructing boats or vessels which are to be navigated by the power of steam engines." The State department a Washington has had occasion recently to make searches among its archives for records pertaining to the early patents and among the curiosities thus brought to light is a letter from Robert Fulton, bearing date of New York,May 25, 1812 n which he requests Mr. Monroe, then Secretary of State o give a positive order that his patents for steam boat should not be copied or examined except in case of disputes n law between him and other persons, of which, he says, there were none at the time; and intimates that the doing so enables speculators to contrive, not real improvement but means of evasion, to the ruinof useful inventions.
Two letters of Henry Spencer have also been found, one bearing date of Albany, August 3, 1798, and the other of Albany, September 3, 1798, both accompanied by drawing and written descriptions of an invention, which he claims to have made, on boats made use of in inland lock navigation and which may be applicable, he says, to the navigation of the great seas, and of a screw and other means of propulsion to such boats.

Measurement of the Chemical Action of Solar

 ightDr. T. L. Phipson, F. C. S., in a note to the Chemical News, says: Many ycars ago I made some experiments on this sub ect in Paris, and described a method which I believe capable f giving more accurate results than any hitherto obtained Having discovered that a colorless solution of molybdate of ammonia in sulphuric acid became greenish blue when ex posed to the sun, and colorless again during the night, and that the amount of chemical action exerted to produce this tint may be accurately determined by a dilute solution of permanganate of potash, it suffices to operate always upon the same quantity of substance, and to expose it to the light or the same period of time, and in every respect in the same conditions, in order to possess a perfectly accurate process by means of which the problem of the chemical intensity of solar light may some day be solved in a completely satisfac tory manner.

LORDON'S IMPROVED LANTERN.

The lantern herewith illustrated is constructed so that the heated air from the flame passed up through an oil eservoir, and thence is conducted down below the wick hamber, the object being to heat the oil in the latter, and thus afford a clearer and brighter light.
The wick chamber is represented at A, below which i another compartment, B, from which extends the tube, C upward inside the glass globe, through the oil reservoir, D and finally terminates in a funnel, E , over the pipe, F through which the hot air from the flame rises. Oil is sup plied to the wick chamber by the tube, G, in the upper por tion of which is a piece of wick which may be adjusted from the filling orifice, H , to allow the oil to flow to the wick chamber faster or slower, as may be desired. It will be ob served that the tube, C, conducts the hot air down under the wick chamber, thus warming the oil in the latter. At the

base of the lantern is a series of holes connecting with the hollow space, I, for purposes of ventilation.
ratented through the Scientific American Patent Agency July 14, 1874. For further particulars address Daniel Lor don, Fremont Center, Mich.

The recent eruption of Mount Etna was predicted by Pro fessor Silvestri, who has made a special study of such phe nomena.

THE FIRE ON THE HEARTH.
While it has been and still is our g neral rule to decline the publication of engravings of stoves in our editorial columns, we believe it to be to the interest of our readers hat our regulation in the present instance should be suspended. We make Ithis exception on account of both the

novelty and the unquestionable merit of the heating appa ratus to which the above appropriate name has been given. regards the mechanical construction of the stove, little need be said, since it is plainly represented in the sectional view, Fig. 2, while the exterior appearance is shown in Fig.

Fig. 2.

There is a large drum above the fire, surrounded by a jacket so arranged that a constant supply of fresh air may be continuously brought into contact with greatly expanded urfaces, which absorb the maximum quantity of heat, and impart it rapidly to the inflowing currente, thus preventing overheating, and at the same time supplyiog the room with an abundant, genial, and invigorating atmosphere. It will be observed from the sectional engraving that two distinct currents pass through the stove. One enters beneath
the grate, ascends to the chamber above, passes over th diaphragm therein, and thence goes to the chimney, furnish ing the draft. The other enters under the stove, and be comes heated by contact with the hot surfaces; and rises through the jacket, thus compelling a constant circulation through the latter. The fire is entirely open, so that a large supply of additional heat is radiated therefrom. The construction, evidently, is such that there is no opportunity for leakage of the deadly carbonic acid; nor is there any contact of highly heated plates with the air of the roon to generate carbonic oxide. Purity of the air-which is the most important requirement-being thus insured, the maintenance of proper circulation is provided for, as already described, so that the stove becomes an efficient ventilator, constantly changing the atmosphere, while distributing at the same time, throughout all parts of the apartment, a moderately warmed, fresh current. In this last respect its advantage over the ordinary open grate in the mantel will be obvious, not only in point of better utilization of the fuel and consequent economy in the same, but in the fact that the old objection to grates, of "roasting the face while the back is freezing," is effectually done away with.
In addition to the advantages which we have enumerated are those of simplicity, there being no intricate flues to become clogged and foul, no dampers to get out of order, and no grate set far into the interior, to dump or clean which is a constant aggravation. The latter is easily shaken, and clinkers readily removed.

It will not require the complimentary testimonials, which the manufacturers submit, from Mr. Lewis W. Leeds (than whom no engineer has more carefully studied the subject of ventilation and warming) and other excellent authorities to demonstrate the value of the invention. It will be a veritable blessing in schools, churches, factories, and all similar apariments where large numbers of people are confined, for lengthy periods of time, for study or work.
Patented by Mr. W. L. Phillips, July 13, 1874. For fur ther particulars, address the Open Stove Ventilating Com pany, 107 Fulton street, New York city.

Detection of Fuchsin Adulterations.

It has become quite common for French wine merchants and confectioners to use fuchsin to highten the color of their wares. The poisonous properties of this substance have been repeatedly demonstrated, so that, in addition to its being a mere adulteration, its consumption in other substances is directly detrimental to health.
The presence of the substance can be readily recognized in the following manner: Place about $1 \frac{1}{2}$ ounces of the suspected compound in a vial, and treat first with 150 grains of subacetate of lead, and then with 300 grains of amylic alcohol. If, after agitating the mixture, the alcohol which separates appears colorless, no fuchsin is present; if the alcohol is colored red,the reverse is the case.

ROWLAND'S WAGON JACK.

The annexed engraving represents a simple and inexpensive form of wagon or lifting jack, which is applicable to all kinds of vehicles.

The upright standard, A, supports an inclined bar, B, both being secured to a substantial base piece. To the upper extremity of the bar, B , is pivoted the lever, C , the forward end of which is similarly attached to the notched bar, D. The lower portion of the latter connects with the bar by means of the pivoted connecting bars, E. To the lever, C, is pivoted the rod,F, the lower end of which is hook-shaped, to engage in the teeth of the bent ratchet bar, shown attached to the rear side of the standard, A.
In using the jack, the free end of the lever, C, is raised and the machine is moved forward until the axle of the wagon rests in one of the notches of bar, D. The lever is then carried down until the load is raised to the desired hight. The hook, F, is next swung forward from the position indicated by the dotted lines in the engraving, and caused to engage upon one of the teeth of the ratchet bar, thus holding the load

suspended. By slightly pressing down the lever, C, the hook readily dropm away from the ratchet, thus lowering the arle or other object supported.
Patented through the Scientific Americsn Patent Agency, June 16, 1874. For further particulars regarding purchase of State and county rights, address (during next two months the inventor, Mr. James S. Rowland, Cambridge, Ohio.

IMPROVED BRICK; PRESSING MACHINE.

We publish herewith an illustration of this machine, by which its construction will be at once understood. The bricks to be compressed, in order to give them a greater density than they acquire in production, are allowed to harden in the air for a few days before being pressed. The machine consists of a sliding block moved to and fro by a connecting consists of a sliven by gearing from the pulley, as shown, and of a revolving barrel containing four chambers, in each of which revolving barrel containing four chambers,
is fitted a sliding die containing the marks to be stamped upon the brick. The front of the sliding block is also furnished with a stamper. On the top of the machine is a plonger fitting the recesses in the barrel, and moving up and down intermittently by means of the cam shown in the ketch, which is connected to the plunger by means of the four bars shown plunger by means of the four bars shown bolted to he crosshead of the plunger. The action of the machine is very simple. A brick is laid on edge upon a table between the front
of the sliding block and the barrel. The of the sliding block and the barrel. The
sliding block advances and pusbes the brick from the table into the recess in the barrel, which is immediately opposite, compresses it, and then retires, leaving the table clear for another brick to be laid on. Meantime the barrel has advanced a quarter of a revolution, carrying the pressed brick with it until it arrives oppo. site the plunger before mentioned, and this, descending, forces out the brick, which drops upon the endless traveling band beneath, and is carried forward to the taker off. In this way, says Engineering, to which we are indebted for the engravings, 10,000 bricks per day can be pressed.
The machine was exhibited by Messrs. John Whitehead \& Co., of Preston, England at theresent show of the Roya Agricultural Society at Bedford.

NOVEL ENGINE AND BOILER.

The neat little engine which we illustrate herewith re quires scarcely any description to make its construction in elligible. The boiler is fitted with internal vertical tube arranged in groups of three, secured at each end in malleable cast iron caps, and fixed to he fire box by nuts and bolts. The boiler is covered outside by a sheet iron smoke box, so that lagging is not required, and through his casing all the pipes are led.
The engine it will be seen, is bolted di ctly on to bill This is ther tance (says The Engineer, from which we oxtract the engraving), perhaps, in which a horizontal engine has been secured directly to the boiler and not to the base plate; and he arrangement has a good deal to recommend it for small powers, as the amount of pace occupied is reduced to a minimum, as s the quantity of material used; and the cost is, of course, diminished accordingly.

Ways to Success.

Over fifty years ago, a youth, working on farm, asked his father to give him money enough to buy a gun. The old man could not spare it, but the boy, nothing daunted, found an old piece of iron about the place, and in the course of time contrived to make gun barrel out of it, with the very meager facilities afforded by a country blacksmith's hop. He had not the materials to make a lack and stock, so he walked to the nearest town and traded for the necessary attachments, and was encouraged by the smith for having made so good a shooter: this gave him the ambition to make another, so he went to cutting out grindstones from the na. ive rock to raise the money for gun materials; in a short time there wes a considerable demand for guns of his make. During he French war with Prussia, he was called upon to furnish guns for the army, and in less than eight months he madeand delivered o the government of France rifles of a particular pattern, costing five millions of dollars, which amount was duly paid. The same man furnishes rifles now for the United States, South America, Rome, Spain, Egypt, and Japan. The farmer's boy who wented s gun is Eliphalet Remington, of Ilion, N. Y. His manufactory covers four acres of ground, and he employs twelve hundred men. Not satistied with this achievement, he has recently completed a sewing machine, which is reported to represent the latestand most perfect advance in the improvements of this im. portant adjunct of domestic economy. This is the type of a boy who, when thereis not way for himself.

Many a youth would have sat down and pouted, think ing over what a hard thing it was that he could not get a gun, with hard thoughts against the father for being so stingy. Not so with young Remington; he wanted a gan and was determined to have it; the very necessities of
his situation stimulated him to the exercise and consequent development of his powers of planning and devising; in ther words, of thinking for himself. And such are they, he world over, who achieve noted success. Those who think or themselves plan for themselves, and upon themselves ean. So it was with Fitch, and Goodyear, and Howe. Their arly history was the history of a struggle with privation, and want, and litigation, and almost despair ; and the im. and want, and litigation, and almost despair ; and the

WHITEHEAD'S BRICK PRESS.

patience, and courage, and indomitable parsistence. ave " gemington had been supplied with a gun he would dle, loafing, aimless life, a burden to himself and a benefit o nobody. The very necessity of effort has been the mak ing of many; while many more, who have had their wants gratified with the asking, have sunk into insignificance, and their name and memory have long since perished from the

HILL AND MASSEY'S THREE HORSE ENGINE AND BOILER.

Printing without a Press.
A photo carbon print on glass is first obtained in the usua way, says the Bulletin Belge, which is then varnished with rather weak gum dammar varnieh made with pure benzine The print should be surrounded then with an edging of mas varnish, and in the meantime the following solution pre pared by the help of the sand bath:-Gelatin, 1 part; gum arabic, 1 part; glycerin, 2 parts; with the least possibl quantity of water. This mixture is poured warm on to the carbon print after slightly heating it to prevent the ρ lass from cracking. It sbould form a thick coating on the top of the image, and when sufficiently congealed the whole is detached from the glass. The mass of gelatin forming the bed of the separated print, as it were, is then placed upon any plane surface at hand and the image is ready for being printed from. The usual law goserning the ac tion of the gelatin matrix causes the ink applied to its surface to adhere where the insoluble gelatin has retained the pig. ments, and to be repelled where the soluble gelatin still retains its moisture-absorbing properties.

When wishing to print from this image, ordinary lithographer's ink, slightly thick, is taken and thinned with some oil or oil of turpentine, indeed, with any oil except boiled oil. A ground glass large roller is the best to ink with, the ordinary printer's roller producing a stickiness that causes adhesion to the surface of the image and tends to tearit. The roller is covered with ink in theusual way, namely, by working it over an elastic surface, such as a bed of gelatin would be, until the ink is distributed with perfect uniformity. In almost the same manner it is applied to the image until it is sufficiently inked. If over-inked, the surplusage may be removed by a moist rag.
If the ink used be too thick, it will adhere only to the deep hadows, and must be thinned if half tones are to be in cluded. This peculiarity may be utilized either in order to give a greater depth to the shadows of a picture or to obgive a greater depth to the shadows of a picture or to ob-
tain prints in different tints at the same time from the same plate. In the former case rollers with inks of different consistence are used, and in the latter rollers covered with different colored inks, also of different viscosity. The plate is inked first with the thickest of these, and so on, the thinner ink refusing to overlay those first applied, and which adhere to the deeper shadows, and only filling in what they leave out. Pictures on a colored ground can thus be easily produced
The printing is very simply done. A smooth surfaced paper, either glazed or coated with non coagulated albumen, is laid on the plate and pressed down on to it, either by means of an india rubber scraper or a roller covered with flannel. The impression thus taken is carefully removed, and the printing proceeded with in the same fashion as described, only that the plate must be moistened between each impression
The negative used should be one on which the image has been obtained through the glass in the camera; and if such a plate be not at hand, the carbon print forming the matrix should be taken on stearin paper. This paper is made by placing a sheet of ordinary albumenized paper on a bath composed as follows:-Ordinary alcohol, $3 \frac{1}{2}$ ounces; stearin, $3 \frac{1}{2}$ drachms; common resin, $\frac{1}{2}$ drachm. Dissolve the stearin in warm alcohol, and add the resin afterwards. A print developed upon this support is then re-transferred to the glass coated with gum dammar varnish.
The facility with which curved surfaces can be printed upon in this way makes it an admirable plan for printing upon vases, etc., with vitrifiable colors; and it is, in fact, a handy plan, if not for commercial photographic printing, at least for trying all kinds of experiments, and one by which amateurs might amuse themselves without much dif ficulty and at small cost.

Modern Cast Iron

The Philadelphia Trade Journal, in an editorial on improvement in cast metals, recapitulates the advantages gained by the modern scientific manipulation of cast iron, in a concise and forcible manner. In the past 40 years the gross weight of our cast iron articles has been diminished fully one half. Half a century ago the iron frame of a Washington printing press weighed nearly 1,000 pounds; and although it was an arch of metal 9 inctes wide by 3 inches thick, so poor was its quality that it was often broken by the pull of one pressman's arm. Our present smooth light castings show an actual elasticity under strain which approaches the service of wrought iron, allowing a large reduction in weight of metal and in the consequent expense.

dentistry in tid and New."]

mounting of artificial teeth.
The material used for the bases, or plates, upon which the teeth are attached, are various. The best is gold, after which follow silver, aluminum, continuous gum, and dental vulcanite. The iridio-platinum,whalebone gum,and several other bases, being entirely new, no decided opinion can be given upon them. Gold being the most expensive, not only in intrinsic value, but in the amount of labor necessary to make it up into plates, is not now as generally used as it was before the invention of the dental vulcanite base. A patient having a set of teeth made on gold pays not only for the amount, or weight, of metal received from the dentist, but usually, also, for all that the operator purchases from the dealer. When purchased from the shops, it is cut to a pattern which is made from the wax impression; but after being " struck up," that is, shaped to correspond to the up. per or lower jaw, there is a great deal of filing, scraping and finishing to be done, all of which takes from the weight of metal. Though the patient pays for these scraps, they are never demanded of the dentist; but he takes good care they are not lost. His fnishing is done over a leather apron or " jewellor's drawer"; and, as a second "catchall," he has "Aladdin" by exchanging, not " uew lamps for old," but new carpets for old, giving a trifle in addition, much to the satisfaction of the dentist, and more to my own, as I have in one year cleared sixty-five dollars for the trouble of burning the old carpets in crucibles. This amount, of course, is very small compared with what the dentist saves in his apron. The first cost to the operator for gold enough to make an ordinary sized upper plate is about twenty.five dollars; and if the patient should try to sell this same plate after using it only once, or even after it has been "struck up" before using, it would only yield about twelve dollars in currency, which is the difference in weight and price in buying and selling.
Aluminum, the lightest in specific gravity of all the metale, is very seldom used, on account of the inability of the best mechanic to make a perfect fit with it, as the metal will shrink in the casting; and the slightest imperfection in a plate ruins it for service. Experimentally (that is, in mak. ing general models, or the like), this metal will answer for base plates; but practically (that is, in fitting a cast to any particular mouth), it is a failure. The manufacture of the continuous gum work is rather a hazardous undertaking, and requires a great outlay for furnace and tools, besides the ap prenticeship, which is indispensable for becoming an expert in its manufacture; which facts have been a stumbling block in thr way of its general use. Nor is this the only drawback. As its name indicates, in this work the plate which covers the mouth and the teeth is in one continuous piece, all being of the same kind of body; the various colors and enamels necessary to a natural appearance being applied to the biscuited set, after which it is fused. It is during this process that the operator has his "heart in his mouth"; for he knows not whether even one out of the three sets which he has in been formed. When successfully made, the set has all the appearance of the natural gum and roof of the mouth; but the patient has in his mouth quite as much as he wants to carry, for the set is a trife heavier than one on gold. Should it by accident drop, and strike upon a hard substance, it would be useless to pick it up, as nothing can be done with
the pieces. Some operators can repair a set when merely cracked; but even when this is done in the most scientific manner, the repairing will show; and the second fusing which it gets in repairing is liable to warp it out of shape,and beyond redemption. For these reasons it is mostly ostra cized by the profession. Silver requires as much labor, to swedge, solder, and finish, as gold, without as much proft or as satisfactory results, as from the use of gold. It cor rodes, and produces sores in the mouth if constantly worn so that it does not answer for permanent sets, though it is frequently used for temporary ones, where gold is to be used or the permanent sets.
The dental vulcanite. or, as it is more commonly termed, rubber," has for the past few years been almost universally used, and is every day gaining a firmer foothold in the mouth (so to speak) of our people, as well as abroad. This is no from its real merits, but from the dentists' pushing it. I have seen the time when dentists 'considered it a greater honor to save a natural tooth than to successfully extract it and replace with an artificial one; but the influence of this "mercurialized gum" has been adverse to the point of
honor, and tro many of them look only to profit. This ma honor, and too many of them look only to prom. This ma three inches wide, five inches long, and three sixteenths of an inch thick. It is sold by the pound, each sheet being sufficiently large for one plate and part of another. It is very pliable, and, if slightly heated, can be pressed between plaster molds,and forced into the finest crevices. When the teeth have been placed in the base thus molded, the mold
containing the gum and teeth in position is flaced in a copper boiler made for the purpose, called a vulcanizer, heated to 320° Fab., and kept at that point more than an hour and a half; then it is taken out, and the plaster removed. The "gum," now vulcanized, has the appearance of a piece of
Virginia pine bark, and can be cat, filed, and fitted to the mouth and cheeks, as casily as a piece of such bark, the difference being that the "plate," as it is termed "fter the above process, is susceptible of a high polish. As previously
stated, this material is not pushed by the dentists on its
merits, but on account of the profit derived from making it up. That this composition is deleterious to the health of those wearing it, there can be no doubt, as many can testify who have tried it. I know two patients bo heve worn gold with comfort. The rubber plate salivated them, beside "par boiling" the roof of the mouth. When rubber was first in. troduced, there was a great deal of controversy among dentists about it. As a class, they condemned it, because there was mercury in it-a statement which it is easy to prove by burning a piece in a spirit lamp, and seeing the "liquid metal" ooze from the mass. But suddenly their objection were overcome; and now they say "there is nothing like rubber." A single set, for which the patient pays twentyfive dollars, does not cost the operator, exclusive of rent and labor, more than six dollars, which pays for teeth, rubber, wax, plaster, varnish, tin, and wear of tools. As it is well known that an active mechanical dentist can make a set on this plan in a short working day, it gives him a good price for his knowledge and labor. I know four cases made by different practitioners,the time of making which varied from five to five and a half hours, from the taking of the impression until the patient was pronounced "fitted.
In kind and quantity of material used for plates in the different sections of the country, there is but a slight differ ence, the Eastern using about four fifths vulcanite base, th the remaining fifth being divided among the other materials, and the Western and Southern holding about the same propor tion. The amount of waste in base plates varies with the kind of material used. Rejected gold or silver plates can be remelted, and used over. The continuous gum is made on a platinum plate, which can be used again by re rolling; but for the vulcanite there is no redemption. A plate rejected is a dead loss. The teeth may possibly be removed by patiently sawing and cutting the vulcanite away from the pins; but this usually costs more than the teeth are worth, and is seldom attempted. The inability of the operator to adapt the plate made for one mouth to another compels him to require a cash deposit, sufficient to cover all expenses, from the patient who orders the set; and by the amount required as a deposit, the patient can generally judge of the cash cost of the set.

MEDICAL NOTES.

Rickets and Softening of the Bones.
C. Heitzmann has shown by experiment that rickets and of tening of the bones may be produced artificially in animals by giving them lactic acid. In carnivora, the continued use of this acid causes first rickets and then mollities ossium while in herbivora it produces mollities at once without rickets. On the other hand, lactic acid is probably absent in cases of ossification of old age and of some diseases. Lactic acid is formed by the action of nitrogenous food on sugar of milk, sugar, and perhaps starch. It exists in considerable quantity in the juice of muscle, and must be connected with either its formation or action.

Inhaling Sal Ammoniac

Muriate of ammonia, in vapor, has latterly been added to the list of medicines taken by inhalation. Dr. Liebermann has effected several surprising cures of clergyman's sore throat by this method. The cures were obtained in from two weeks to six months, with four inhalations daily; each lasting five to ten minutes. The clergymen under treatment are compelled to avoid alcoholic drinks, tobacco, and spices. Public speakers and singers were likewise cured of the infliction. When the disease extends to the nasal membrane, the patient should pass the vapor from the mouth through the nostrils, as some do tobacco smoke. If the malady oxtends into the Eustachian tube (often causing deafness), the patient should close the moath and hold the nostrile tightly, and then blow as if to blow the nese, and the vapo will pass into the tubes. Deafness is either ameliorated or cured.
In nervous asthma, with no pulmonary emphysema or diatation of the heart, two cases were permanently cured out of six, and the others had the intervals between the parox ysme prolonged. In bronchitis, the inhalations were taken six times daily. In twenty two chronic cases, the cure was effected in from seventeen to thirty eight days. In twen-ty- six cases associated with pulmonary emphysema, the secretion and cough were greatly benefited, and the cure was effected in from six weeks to two months; the emphysema, however, remained. In twelve cases of pertussis, the parox ysms of cough were much relieved in seven, and the disease cured in from three to five, weeks ; in the others there was no result. This vapor gives rise to more or less irritation of the mucous membrane, with loss and renewal of the epithelium, and local hypersecretion. Such temporary ag. gravation of symptoms is soon followed by relief. The pulse is increased, a sense of heat and moisture of the skin is often felt, and there is sometimes profuse perspiration with increase of urine, improvement of the voice, and relie of the cough and tickling sensations. In severe cases, gene ral treatment should accompany the inhalation.

Croton and Chloral

Dr. Oscar Liebreich, in the British Medical Journal, makes ome important observations on the use of this new anæesthetic. He says it differs from chloral widely in some of its effects. A drachm of croton chloral, dissolved in water and swallowed, produces in fifteen to twenty minutes a deep sleep, with anæsthesia of the head. He has experimented on maniacs during an attack of mania. They remained sitting on their chairs in a deep sleep for two hours together. If basthesia had reached so high a degree through the use of
their chairs, and their pulses and respirations would have been considerably retarded. In some cases of tic douleureua, the remarkable phenomenon is exhibited of pain ceas ing before sleep sets in. But the remedy only acts as a palliative in this dreadful disease. However, its action is to be preferred to that of morphia. He has never observed any unfavorable effects of croton chloral on the stomach or any other organ in frequent experiments. The indications for the use of this remedy are to be found: 1 . In cases where hydrate of chloral is inapplicable on account of heart disoase; 2. In cases of neuralgia in the region of the nervu trigeminus; 3. In cases where very large doses of chloral are necessary to produce sleep. He there recommends the addition of croton chloral to hydrate of chloral.

Prurigo and Pruritus.

In the London Medical Record, Dr. Rothmund states that he internal administration of carbolic acid in pruritus oxcels every other method. He has tried also the hypoder mic injection of it with marked success, there being no local irritation produced, as one would expect. Solutions of pure carbolic acid are better than those of carbolate of soda.

A Cure for Hydrephobia.

It is stated that this most dreadful and most incurable of diseases finds its antidote in a plant, or rather tree. An infusion of the stems of nottoria grandiflora has been suc cesssully employed in the East Indies, especially in the neighborhood of Bombay. Major Wheeler cites fivecases of mad dog bites cured by this infusion ; the sixth would not use it and died. This is from the Archiv. der Pharmacie.
Kite Navigation.-Mr. John T. Lacey, of Bridgeport, Conn., has recently made a voyage of twenty-two miles on Long Island Sound, in the space of three and a quarter hours, in a row boat towed by a kite. The boat was twelve fee long and the kite ten feet high by eight feet wide. About six hundred feet of cord was let out. The speed of the boat is stated to have been considerably greater than that of a small sailing craft which attempted a race. This was probably due to the greater velocity of the wind at the elevated position of the kite. The towage of boats by kites very old amusement, but it is a slow method of naviga tion. The boat and kite can only travel in one direction, directly before the wind; whereas the ordinary sail boat can move obliquely, in various directions.

decisions of the courts.

United States Circult Court--southern District of [In equity.-Before Blatchford, Judge. -Dectided June 20, 1874.)

nEW BOOKS AND PUBLICATIONS.
The Psycholoaical and Medico-Legal Journal. Con ducted by W. A. Hammond, M.D., assisted by T. M. B.
Cross, M.D. New Series, Vol. I., No. 1. Five dollarg Cross, M.D. New Series, Vol. I., No. 1. Five dollars
per annum. New York: F. W. Christern, 77 University per ann
Place.
The prëeminence of Dr. Hammond as an authority on neurology and nental disease gives interest and value to this publication, which is a con tinuation of the Journal of Psychological Medicine, some time since dis.
continued. It contains Dr. Hammond's recent address, as President of the Neurological Soclety, on "The Effects of Alcohol on the Nervous System," a document of great value on a diffcult subject, usually discussed with more acrimony than sense. The opinions of Dra. Lente, Willard Parker, on current ilterature germane to the subject, with an address to the reader, closes the book.
Gazetteer of Railway Stations in the United States and the Dominion of Canada. Price $\$ 1$. Philadelphia:
National Railway Publication Company, 233 South Fifth street.
This compendious volume glves the telegraph, express, post and money order ofices, and their locations as to county, state, and line of railway, with the population, and the name of the expres Boluway

Sciences, with the Reports of Committe of Natural apolif, Minn.: Johnson and Smith.

Inventions Patented in England by Americans. Complled from the Commissloners of Patents' Journal.]

From August 14 to August 22, 1874, inclusive.
attaching Picers, etc., to Handles.-C.A.Hardy, Philadelphia, Pa., et al Boot, rTC.-J. L. Joyce, New Haven, Conn Car Spring.-G. Godley, New York city.
Cab Where.-R. N. Allen, Hudson, N. Y .
Gage coor.-T. A. Weston, Ridgewood, N. J.
Mafing Cast Iron.-G.G. D. L. Byron (of New York city), London, Eng Molding Cement Piprs, rtc.-J. M. Stockwell, Portland, Me.
Regibterina Fink.-O. M. Chamberiain, New York city.
Regibtering Faris, etc.-E. Chesterman, Philadelphia,
Roller Composition.-J. H. Oggood, Boston,
Roller SEAte-W. P. Gregg, Boston, Mass.
Sewing Machine.-J. Hayes et al., New Forkctit.
Sewing Machine.-J. T. Jones, Milon, N. Y.
SUspendrras.-B. I. Greely, Boston, Mass.

zecent ©antican and fureign Fatents.

Improved Car Coupling.
Benjamin B. Harris. Lockport, Ill, assignor to himself and willam B.
 a slotted spring silde and recessed balance welght back of the latch for bearing theretn, and holding it in coupled and uncoupled position. The
ink is carried against the drop latch, which is placed in position in the slot Iink is carried against the drop latch, which is placed in position in the slot
in front of the silding spring plate. The drop plate is forced back thereby, In front of the silding spring plate. The drop plate is forced back thereby the sameand swlagg back, allowing the entrance of the link to the cavity, and simultaneously therewith the forward motion of the sllding plate into Its former position. The link strikes then the balance weight, and causes
thereby the pressure of the front end on the shoulder part of the drop thereby the pressure of the front end on the shoulder part of the drop latch, so that the same is earried down on the sliding plate and frmly
bound thereon. The link slldes along the drop latch up to the shoulder bound thereon. The link sildes along the drop latch up the and has thereby suflletent play for the oscllations of the cars. For uncoupling, the sliding spring plate is connected by means of aide slot of the drawhead and rod with a suitable lever mechanism, released, and on swinging forward uncouple the link

Improved Mode of Securing Plaster to Walls. for preventing the plastering from becoming detached from the laths Antwork of wire cloth or other sultable material is lald over the plas This wire is placed over the last coat of mortar, and the coat of hard finish This wire is

Improved Process for Pulping Paper Stoek.
r J. Lahousse, Prague, Bohemia, assignor to h1mself and penstats in if and Howar pulpand the bleaching liquor to the action of a grinding mill, in lieu o the ordinary beating engine, for reducing the knots and joints, and for
ratsing the temperature to the required point. From the mill the stock aising the temperature to the required point. From the mill the stoc can be conducted to an air blast, so that it may be cooled, and to com
the bleaching operation by belng brought in contact with cool alr.
Improved Mole Trap.
Thomas Braninan, Carrolton. Ill.-This device consists in a square up ght frame, through the upper bar of which passes a rod carrying at it laced lengthwise upon the mole track, and the and up unt11 the spikes pass freely through the ground. The drop is then ralsed and held by a slide, a trigger resting firmly upon the ground. With his arrangement, as the mole comes along in either direction, when hil
ose strikes the trigger the drop falls, driving the spikes through him, kill nose strikes the t
ng him Instantly.
Improved Burglar Alarma.
Abraham Neviling, Glen Hope, Pa.-There is a lever to hold the escape ment of a clock mechanism from working, and a slide to ratse the lever and allow the escapement to work. This 18 so comblned with a clock mechanism andar alarm bell that the slide may be set by a door or window, so as
to be moved in case the door or window is opened, and lift the lever off rom the escapement and allow the bell to sound. The connection of the slde and lever is such that they can be disconnected and allow the sllde to e pushed back trom t the bell to sound

Improved Compost Distributor
Edwin R. Coxand Gray C. Garriss, Goldsborough, N. C. -One wheel ig loose on the axle of an ordinary cart frame, and the other is fast to the
same. On the axle thus rotated a manure-distributing wheel, the arms of which are provided with cutters to divide and with a hook to drag for

Improved Manufacture of Bone Black. Solomon Billitz, New York city.-This invention consists of the ar reeng the bones of the fatty, ficsuy, and tendonous matters, and the ca cining hearth, into which a suitable number of cylindrical retorta with sliding bottoms are placed for discharging the bone black into vessels
below and charging from above without interrupting the fire. The fire is below and charging from above without interrupting the fire. The fire it drawn by flues from the calcinng hearth to the scouring boller, and thence
to the chimney, while the vapors or gases are conducted by plpes from o the chimney, while the vapors or gases are conducted by
the cylindere, to be cooled offin a coll for further utilization.
Willam Kennedy, New London, Pa.-This inven
sand trap and water condult, the latter havelaces to a com ure that communicates with the opening in the tub or engine, and a lon
 located in front of the roller, a current is created to quicken the speed the mingled water and stock. The stock, betng thus exposed to th the roll in a good and uniform condition.
lmproved Ash Can Receptacle.
mand Louls F. Winter, New York cit
Louis Greenbauman 1 ranged with a false silding bottom for the ash can, to be ratsed and lowered by a swinging baill with sultable lever connections. The receptacle and ash canare closed by a hinged lid at the level of the pavement. The
bottom of the receptacle is concaved and perforated for carrying ofl bottom of the receptacle is concaved and perforated for carrying of
water. The unsightly ash can is thus located entirely out of the way, and

Improved Sash Holder.

 thelowercorner of the sash with recessed grooves, inclined toward the corner, of which the lower one has an adjustable slide plece. The latter is
carried along gulde plosiof the horizontal sash,on which a rubber ball rests ntll raised by the lifting of the slide from beneath for binding the sas by wedg1
casing.

Improved Sheet Metal Ash Barrel.
Thomas M. Bell, New York city.-This invention relates to an ash bar-
rel provided with a corrugated metal plate secured to the side thereof. By el provided with a corrugated metal plate secured to the side thereof. By this construction, the barrels, when betng emptied, will always rest upon
the corrugated plates, which will prevent them from being oruised or in. jured by the rough contact with the edges of the cart bodies, to which they are exposed by the careless handing to which they are subjected.

Improved Wire Straightening and Cutting Machine. of gripers and a lever combinedin such manner that the gripers are caused to gripe the wire at two pointe, and then pull it for straightening it by ten sion. Shears between the gripers cut the wire in pleces of any length re quired after it is straightened, so that the present process of cutting an and cheapened.

Improved Apple Parer.
Solomon E. T. Dodson, Steubenville, Ky.-This invention consists of driving whieel on a revolving reel, to be presented in succession to th ting others on some forks, while others are performing work. It also consists of automatic trip and spring mechanism which throw the forks and
utters out, and stop them when the apples are pared, and release the apples an its stop mechanism, to allow it to be shifted to remove the pare apples and present others to the cutters to be pared. There is also a con when it is shifted; and a sllding carrier for the knives, worked by a crain shaft gearing with the driving shatit, and mounted on the trip silde, by hange the forks.
 hich alms not only to prevent the backward rotation of a nut under the nfluence of Jars and johs, but do automancaly take
mproved Combined Cake Steaming and Washing Machine G. W. Mitchell, Baltimore, Md.- Ths invencion relates to the preparatio ill cohering flour, dust, and discoloring matter, and giving them a cleaned ollshed, and attractve appearance.

Improved Valve Motion.
George Rickert, Eckley, Pa.-This invention consists of an air pump so ambined with pistons for working the steam valve that air is compressed the cylinder of the valve pistons on both sides until the moment it is re-
uired to have the valve shift. One side of the valve piston is thenopened the exhaust, and the piston is instantly thrown by the compressed at ne other side, thus pr

George Küller and Charles Toelcke, Hoboken, \mathbf{N}. -This invention con hey extend above the pivots, and carry a slotted cross bas in which the rist of a crank turned by clock spring worksimpartsthe vibratorymotion
the swing. The machinery is hidden by a case, so that toy figures alone the swing. The machinery is hidden by a case, so that toy figures alone
mproved Carpet Lining.
Edward H. Balley, Brooklyn, N. Y.-This invention consists of fastening e made by slips of sultable textlle materialinserted in silts made through he fabric, and bent over or down on both of its stdes, and pasted to the abric. In practice the slips will be inserted by mechantcal means. This ode of fastening does not, like stitching or tufting, draw the fabric toge er,but heaves itha the same tate ol elach

Improved Cutter Head.
 de by side, and separated by a disk of thin metal projecting from the fac of other disks, all so contrived that the cutters may be used for cutting e gains in the end of the felly for the ferrule by which they are connect d. The disk of thin metal between the cutters runs against the ends of
he felly, to gage the cutters to the felly lengthwise, and the disks from erelly, to gage the cutters to the felly lengthwise, and the disks from

Improved Permutation Lock.

sts of a comblation lock with a sultable number of tumblers, whtch are set by a perfo-
ated combination disk and adjusting screw, in connection with a recessed liding bolt carrled into the tumbler slots by a key operating a pinion and ack of the bolt. The corresponding numbers on the dial plate of the
nob produce the combination for setting the tumblers and throwing the

Improved Device for Moving Railway Carrlages. Carisuan Anderson, Paxton, M.-This livention consists of a littl rame of metal adapted to be readily connected temporarlly to a car. It chain to work on the chain wheel, and a griper at one end. It is carried ong the rall in advance of the car, and attached for holding fast, whlle he car is dra wn along by winding the chain wheel. This, by holding fas
o the chain as it rolls along it, pulls the car readly to the polnt where the chann is fastened to the rall. The frame also carrles a box below the chat heel into which the slack chain fal
Improved Cern Harvester.
John I. McClintic, Monroe City, Miss.-The forward ends of guide bar re attached to a U fender, the arms of which are bent forward to form ngers to ralse the cornstalks that may have been bent down outward
uiding them into such a postition that, when cut, their top may fall upon an nclined platform. The fender may be adjusted to bring its fingers closer o or further from the ground. Guards attached to the forward parts of the beams project upward so as to prevent the forward ends of the cut talks from falling against the fender into such a poition as to
with the entrance of the standing stalks into the guide passage.

lmproved Roofing Paper.

Rowell Colby, Freeport, mill. - Thls is a covering for roofs and walls of re cemented to the paper, which is r , ndered waterproof, so of coppe orm one sheet, convenient for handliag, packing, transportation, and pplication to roofs and walls.

Improved Pelerine.

Jefta Popovits, New York city.-This invention consists of a pelerine Wich is cut of one plece of sultable fur, provided with shoulder-protect on, so as accurately and comfortably to fo the the body.

Improved Wheel Harrow
James F. Sayer, Macomb, N. Y.-The harrow is suspended from a truck rame, at its center, so that it may vibrate. At the front end the harrow has a tongue projecting into the zigzag cam groove of a large roller, at the y traction. The tongue is adjustable, as to hight, to correspond with th cam wheel, by a elotted wedge, and it is fastened by bolts in slotted holes allow it to be shoved backout of the cam groove when it is not desire to have the harrow vibrated by the cam.

Improved Ship's Pump.

Leonard Egleston, Seneca Falls, N. Y., assignor to Rumsey \& Co., sam place.-This is a double cylinder lifting pump, the Distons of whfch ar perated by means of leversin a vibrating socket beam, to which the pls
on rods are attached. There is a conical tube at the foot of each cylin der, the lower ends of which extend down tnto reservoirs, and are alway mmersed in water. These tubes have each a surrounding fange, by meang of which they are supported in the base on ledges. and are held in place by the cylinders, with packing, between, to secure watertight joints. The
water in the reservoir always stands above the lower ends of the conica water in the reservoir always stands above the lower ends of the contca
ubes, and serves as a constant priming, the pistons always bringing wate abes, and serves
t the first strike.

Improved Mill Burr Dress.
John D. Mines, Moffett's Creek, Va.-This invention consists in burrs o sisting of an annular concavity with square shoulder
Improved Machine for Forming Sheet Metal Pans. Ide an improved machine for bending or forming the edges on tin to pro Whichare intended for use in the manufacture of rectangular pans and ther analogous articles of tin ware. The improvement relates to making re detachable ore from the mace are detachable one from the other to vary the length of the former
according to the kind of work required to be done. It also relates to means for regulating the depth and shape of the flange formed on the edg of the tin sheets, and to providing a shallow groove in which the edges of Improved Cut-O
Peter J. Jcecken, Cleveland, Ohio.-This invention consists in novel and ffictent means for connecting a governor with a sllde valve, so as to grad

Martin Christianso
 Improved Fifth Wheel.

號 latter is formed on the lower plate of the fifth wheel. The office of the occasioned by the swaying of the tongue as the front wheels encounter ot
arructions.

Improved Rein Holder
Alphonso Applegate, Philladelphia, Pa.-This is rmed of plvoted jaws which turn on pivots by act retn-holding device,
 hold on the retns. By pulling back the Grigsby E. Thomas, Sr., Columbus, Gallar.
Grigsby E. Thomas, Sr., Columbus, Ga., assignor to himself and James er the collar is made, on the side of a standing collar for nech wear, contrived that it projects downward over the necktie, preferably at the back, as a:holder or guard, to prevent the the from working up above the
collar. The said holder is itself held against turning or swinging up by vest collar, to which it may be pinned or buttoned. Improved Limekiln
Im, Iowa.- The stack, in
Francts Strayer, Clinton, Iowa.-The stack, in which the lime rock to be rrned is placed, is bullt of stone or brick, and is entirely surrounded by
the arch and ash pit, forming the base. This base is divided into two com. partments, the upper one betng the arch, and the lower the ash pit. Onen-
ings through the partition allow the ashes to escape into the ash pit. ere are openings from the fire place through the wall of the cupola. When the kiln is in operation, the fuel is pushed to the right and left, and
istributed around the cupola, so as to heat the lime rock in the cupola stributed around the

John W. Hayes, Chicago, Ill, assignor to himself, Thed

John W. Hayes, Chin, assignor to himself, Thomas W. Twombly, lvance of the piston, and the ports for employing the , d dise piston ss made hollow, recelves the steam into a hollew space, losing the ports are effected by a stud pin. pro mitions for opening and the cylinder into a spiral slot in the plston. The stud for causing the acilation of the piston is formed on the end of the steamplpe. The shaust plpe is adapted for the application of a suction plpe, and the plsrce pump by reversing reversed endwise to convert the engine into a vention also consists of an oll facket surrounding the cylinder, with a alve for admitting the ofl into the cylinder as it is needed for lubricating he piston.

Improved Gas Apparatus.
Joseph D. Patton, Trevorton, Pa.- This invention consists of a condenasses directly from the retort to be cooled, and for separating the mat ters subject to condensation. The sald condenser is a vertical plpe or cylinder, one or more, into which the gas discharges, with a surrounding
water jacket, connected by pipes with the water chamber of the gas holder, in such manner that a circulation of water will be set up, as soon as the condenser is warmed by the heat taken up from the gas, py
owing out at the top and the cold water in at the bottom.
Improved Mirror Holder.
William Simpson, Berlin, Canada.- This invention relates to an improve
ment in the mode of fastening the mirror holder, patented by the same ment in the mode of fastening the mirror holder, patented by the same
inventor under date of July 15 , 1873 , to the frame, so that the required fric. ion of the pivot heads of the wire ho!der in Its fastening clamps is readily resent invention consists of a hinge.shaped fastening clamp, in which the nd of the wire holder is placed and firmly held by a binding screw, attach ing the clamp to the mirror frame and bearing sidewise over the round

Improved Tachometer

Robert H. Ellott, Atlanta, Ga.-Y nd a mercury gage combined with a pipe extending through the hull of a he suction, and with sultable cocks, so contrived that elther gage can plan connection with the water pipes for using water or mercury for or very low speeds. which will not effect much change in the mercury, ad very hich epeeds, which will effect too much change for a water gage practical length. The invention also consists of a filling attachment to egage tukes for supplying water or mercury, and allowing air to escape, me, as may b

Improved Food Steamers and Boilers. Leroy S. Bunker, Newell, Iowa, assignor to himself and O. H. Hazard, of arnace boilers so that the maximum of heat may be conveniently utllized The base contalna a passage for conducting the heat for a furnace in a tor
mproved Sulky Cultivato
William M. Coston. Quttman, Mo.-Several holes are formed through the side bars to recelve the bolts or axles, so that the sald bolts may be ad-
usted to enable the driver's welght, whether he be light or heavy, to xactly balance the machine. The ends of the side bars are held by cross attached a cross bar, to which attached a rearwardly projecting arm, which has also a number of holes that the sald seat may be moved forward or back to adjust it so that Improved Chair.
William Goforth, Windsor, Mo.-This invention relates to constructing the Wair reat with rearward extended side bars, so that the seat can be attached
to the back by inside as well as outside ecrews. The rear legs are brought orward at their top ends and attached about one fourth the distance to the front from the back ends of the side rails of the seat, so that they serve
s braces and supporters of the seat. The lower ends of the back pleces re attached to the back leps by means of screws. By puting together the
chalr in this manner, it is rendered firm, durable, and superior in strength. Improved Wood Type Cabinet
Theodore C. Hacker, Brownshile, Neb., assignor to himself and Edgar W. Gibson, of same place.-The body of the cabinet is made with close top,
ides, bottom, and back, and with an open front. The shelves are divided to compartments of various sizes, according to the sizes of the type which they are to contann. To the ends of the sleeves are attached gudgeons aid sides, and so that they may be conventently removed. To the sides of aid sides, and so that they may be conveniently removed. To the sides of as to support the shelves in proper position, both when open and when dge of the front of each lower shelf rests against the bottom of the next upper shelf, so as to effectually exclude dust and dirt.

Improved Cooking Range.

Peter J. Ackerman, Paterson, N. J.- By sultable construction, the pro-
ucts of combuation may be made to pass over as well as uader the oven ad then into an exit flue, or they may be made to pass around the end through other flues, thence over the top of the oven, and into the exit flue.
Thus the heat may be distributed wherever wanted about the oven, and very quickly.

Improved Artificial Ivory, Corals, etc.
Julius Frauenberger. New York city.-This is a composition for pro
ucing artifictal corals, fory, and similar artcles, made of caselne, mise in sultable proportions and boiled, with a varnish-1ike solution of copal in oncentrated liquid ammonia and alcohol, to be colored and prepared fo

Improved Toe Protector for Boots and Shoes.
dore Cook, Trenton, N. J., assignor to himself and J. F. Willams f same place.-Toe protectors for boots and shoes are made with a raised rcular rim and a skived or tapered welt, the former project ng beyond the upper, and the latter being secured between the inner and outc: soles.
The invention fo this case consists in constructing the welt with a dovetail slot to adapt it to contract and exp ${ }^{\prime}$. d, and thus fit boots and shoes of dit-
terent sizes.

Business and wersonal

$\frac{\text { The Charve or Insertion under tut thead is } 81 \text { a Line }}{\text { Matson's Combination Governor-Sold un }}$ For Durkee Saw Mills, address the ManuA. R. Houghton, Jefferson, O ., wishes to com.

 roduced in Amerrea and are patented ti Enpland. MaHorafall, 123 Atlantic Ave., Brooklyn. N .

The Whitmore Patent Engine- 4 to 10 H.P. grove \& Co., Philadepplis, Pa. Harnes and hioe Makeris Clamp. Revovivn Patanter,
 arre Pace, New Yor
 E. H. Jones, Milwauke, Wis, desires to to
ommuncate mith parties mho suply Machnery, and $\underset{\substack{\text { tnow } \\ \text { matches. }}}{ }$
 The Lane Mr'ty Company, Montenplier, Vt,

 rellable, with upright and hor. Bollers, Steam Pumps,
aid miscellaneous machic ery: reasonable figures. 8 H.P. ard miscellaneous machic ery: reasonable figures. 8 H.P.

Baxter Eng., Atr Compresser, Vacuum and Alr Pumps. Wanted-100,000 of Davis' Hay and Cotton | Preases made |
| :---: |
| land, oregon. |

Tingue, House \& Co., 69 Duane St., N. Y. Endless or In plece, for Printers, Engravers, Pollshers
Plano Forte Makere, Paper Makers, Callco Printers, Punching or Washer Cloth, Filter and strainer Cloths Baxter's Adjustable and S Wrenches by the
Case. Greene, Tweed $\&$ Co., 18 Park Place, New York.
To Manufacturers and Amateurs-S Solutions either by Electro Plating or chemical process, always on
hand, with rellable direction for use. Address Alb. hand, With rellable direction for
Lovie, 222 N . 4 th St.. Prilladelpha, P
$\underset{\text { cturers. Milton Church, Plttsburgh, Par. }}{\text { Ler Manu }}$ Double-Acting Bucket Plunger Steam Pumps,
Manurd by Valley Machtne Co,
Easthampton, Mass. Diamond Carbon, of all sizes and shapes, for
drilling rock, sawting stone, and turning emery wheels; Electric Bells for Dwellings, Hotels, so telegraph outats for learners. . Ins's for Private Lines Hydraulic Presses and Jacks, new and see
cond hand La fing Melals. E. Lyon, 40 Grand Street, New York. Best Oak Tanned Leather and Rubber Belt-
tng. Gireene, Tweed $\&$ Co., 18 Park Place, New York.
Pattern Letters and Figures, to put on patInventors can get small plates of sheet steel The "Scientific American" Office, New York, touching little buttons on the desss of the managers, Bignalis are sent to persons to the various departments
of the establishment. Cheap and effective. Splendid Yor shops, offles, dwellings. Works for any distance.
Price $55 . \quad$ F. C. Beach \& Co., 265 Broadway, New York Makers. Send for free illustrated Catalogue.
The Improved Hoadley Cut-off Engine-The
Cheapest, Best, and Most Economical steam-power in the Uutted Statee. Send for circular. W. L. Chase \&
Telegraph Inst's. M. A. Buell,Cleveland, O. Compound Propeller Pumps, for Mines, Quar-
ries, Canals, aud Irrigaing purposes. CIrculars on ap. plication to Hydrostatic and Hydraulc Company, 91 For Solid Wrought-iron Beams, etc., see ad.
vertusement. Address
Unlon Iron Mmlle, IItsburgh, Pa., Portable Engines, new and rebuilt 2 d hand,
a spectaly, Eng , 45 Cortlandt st., New York. $\underset{\text { Farms, by C. Bridgman. St. Cloud Mind Mills and three }}{\text { For }}$ Deane s Patent Steam Pump-for all pur-
poses-Strictly trrst class and rellable. Send forclrcular. Spinning Rings of a Superior Quality-
Whtingville ${ }_{\text {Splning }}^{\text {King }}$ Co., Whitnsville, Mass.
Send for sample and price list.
The Pickering Governor, Portland, Conn. Mechanical Expert in Patent Cases. T. D.
teteon, 23 Murray st.. New York. Gas and Water Pipe, Wrought Iron. Send
for price list to Balley, Farrell \& Co ${ }^{\text {., }}$ Pittsburgh, Pa. Forges-(Fan Blast), Portable and StationBrown's Coalyard Quarry \& Contractor's Ap.
paratus for hoisting and conveying materials by cable. W. D. Andrews \& Bro., 414 water Sti,, New Yor
For Solid Emery Whells and Machinery,
Lathes, Planers, Drills, Milling and Index Saws made \& repaired at 108 Hester St., N. Y!
$\underset{\text { Irrigating Machinery, for sale or ring, Drainage, or }}{\text { Ming }}$ Automatic Wire Rope R. R. Conveys Coal
Ore. ©c... without Trestle Work. No. 34 Dey street, N. \mathbf{P}
 Temples \& Oilcans. Draper, Hopedale, Mass Buy Boult's Paneling, Moulding, and DoveC. Mach's Co.. Battle Creek. Mich. Bor 22
 For Surface Planers, small size, and fo
 Price only three dollare-The Tom Thumb
Electrc Telegraph. Δ compact working Telegrapt ap paratus. for sending mesaages, making magnets, the jectrrl lignt, glying alarms, and varlous other purposee, rey and wree Neatly packed and ent to all perto :he worla on recelipt
Broadway, New York.
all Fruit-can Tools,F erracute,Bridgeton,N.J Peck's Patent Drop Press. For circulars, Small Tools and Gear Wheers for Models The French Files of Limet \& Co. are pro
 hese goods popular. Homer Foot \& Co., Sole Agente
or America, 20 Platt Street, New York.

S. will find directions for making black find directions for cleaning brass on p. 102, vol. 25, and
Cor brozzing 1 on p. 331, vol. 29. For removing mildew.
 copper his iron wire by the p.oceces deseribed on p. 154,
 vol. 28, and for red on p. 189, vol. 28. Directions for ma
sing rubber stamps are (1) G. L. . H. asks: Of what is the composi-
tion made that lis used by dentiss in flling teetn, in place of gold ? Is it of such a nature as to make an
electric battery of one's mouth, if gold tis used also ? What is the probable effect upon the health? A. Im. proper union of metalis the the filling of a tooth 18 free
quently a mource of trittation to the dental pulp. Tin he operation fintaned with gold. In many, not inan Instances, this composition produces a galvantc action,
which, if not removed, will quickly destroy the pulp.
(2) N. A. W. Says: I have a small spring for craw flah, notwthstanding my earnest efforts to exhe spring an Indication of pure or Impure water? Crawfish or cray fish (astacus fuviahis) are found not only in springs, but more or less in every brook and
river. In the Mammoth Cave of Kentucky, a species has been discovered. They are not conitered injur.-
ous to the water, and their presence 18 not an Index
whether founder the water is pure or not, frequently in pure water.
foun
(3) S. A. T. asks: How can I make an nt, described on p. 599 , vol. 30
What can I put in paste to keep the swarms of small
nes from breeding 1 it ? iesfrom breeding 19 it? A. Alltile carbollc acld.
How can I coat nalls with copper? A. A saturated solution on funphate of copper in water ris wast 18 usu-
ally emploved for this purpose. The articlest to be cop. ally employed for this purpose. The articles to be cop-
pered should first be freed from grease by mmersion in ye water, washed, and 1 mmersed
for a short tume.
C Can nickel plate an article after it has been cop-
pered, slmply by dipplng fora quarter of a second? We can find no record of such nickel plating as you peak of.
(4) E. R. asks : I am using a lamp that has furning alcohol, for singeling the long thers of cloth A8 the alcohol Is expensive, what oll can I 1 substitute
or tit that would be gafe, cheaper, and yet make ittle or no smoke?
 heaper than the method you now employ.
(5) H. S. B. Says: I have been studying,
nethods of decomposing kainit tinto Epsom salts, sul. hate of potasb, and common salt. Can you assist me magneala 32 p.50, sulp phate of potash 23 52, chloride of so.
mol dum 20.55 , chlorlde of magnesta 421 ; the rest 18 Insolu-
le residue. A. Your best plan would be to state your

uggest themselves would reqnire too much space.
(6) D. S. H. gays: 1 . I have a spy glass Jupiter well. Will a telescone with 5 glasses, of the
apterne ame length, do as well? A. No. C. Could one be made Ject glass must be made in two pleces, one each of crown
and flint glass, or the tmaze has colored fringes, 18 dis. orted and Injures the eyesight.
(7) E. G. asks: What is the easiest and
cheapest way of cleaung dirty cotton waste? A. Boll It tna strong solution of common soded on waterer and
ave the reamers wet when boring Iro
(8) E. J. K. asks: What is the right pro-
cess tor tempering steel to make it cut French burr
 English steec, at a moterae red heat, but not hat redness. Heat it to to low red heat ; for hardening, dip
 to brown, dipplag it according to the instruction
Iven by Mr. Rose on p . 21 of our current volume. ou are using A merican chrome stel, heat it to a yel Wifan heest for forging,toa low red for hardenlig, and
(9) L. M. D. asks: What is animal char-
 ontingeoloring matters from oiganic solutions ; it ts used for thls purpose by the su
and manufacturing chemists.
and manufacturlng chemists.
What 18 antimal
lycerin? . It is obtained by the ctlon of alkalles on natural rats. Stearin, for in-
 oow produced In very large quantltees and perfect pu.
fy in the decomposition of fatty substances by means it superneated steam. Glycerin 18 a nearly colorless oaction on vegetable colors.
(10) P. M. S. O'F. asks: A. Are a perspective
rawing and photograph, of the same object, from the ame polnt of view ordistance, dientically allike? A.
(11) B. B. B. asks: 1 . Why does some wa ter eat or corrone the lear plpesin welis? What prop.
erty must pe in the water in order to diseolve lead? Is waterdrawn through lead poisonous? A. Lead is a upon by distilled water and by ratn water. Water
by reason of its aflinty for the oxide of lead, acts 11 k . n actld upon metallic lead. Lead plpes through whic such water passes in a short time become covered wit
pellicle of carbonate of lead, which 18 an energet polson. The presence of a very small quantity of for elgn matter in the water, and espectally of sulphate
ume, usually arreats sthisaction, and renders the use me, usually arrests this action, and renders the uie galvanized iron plpe injurlous to
which is insoluble tn water, and, tor this reason, pro ict the best through which to draw water for drinklpe urposes? A. Plpes 11 ned with block tin.
(12) J. W. S. acks; How are photographi to be printed from? A. Osborne's process is to take negative on glas8 coated with collodion, as usual.
plece of gelatinized paper is mow exposed to the actio of light under the eegative. The copy to covered wit
 costing of such ink. The paper, thus blackened,
coll made to foat upon the surface of bolllng water, the
 off. A stone is now sllg bity warmed and put in the press; upon It 15 placed the positive print (Inverted) after it has been dampened. The whole ts theu pressed On removing the paper the 1 nk 18 found attached to the
stone and areverse picture 18 made on the stone. Are gelatin prints more readily transferred to ston than silver prints? A. Yes. You shonld cona
practical lltohgrapher as to your other questions.
(13) E. V. W. says: About a year ago I re plpe. To mygreat annoyance, this tron plpe has almost closed with a hard substance resemblling tron ore. How flled with carbonate of lime, magnesta, tron, etc., de of lime and iron. It it is practicable, murlatic acid 18in the med to dssol ve the deposits s . But the trouble isint the mineral consituents of the water and not to
the tube. In the excees on 1 Ile and other salts which the water containg were previously prectpitated out o
it (as 18 sometlmes done by the addition of In a settling reservorr), the difflculty might be
(14) (14) J. A. asks: 1. Will a current from a in an electro-magnet? A. Yes. 2 . If 8o, how does it
compare in power with the Daniell battery current? This depends upon the size of the machne used
If a magnet supports 5 lbs, in contact with it p poles
 respectively? A. The attraction would vary Inversely
as the square of the ditance from the poles. 4. In Dantell battery, having 3 square feet of copper surface
 how much zlinc will be required to keep it in 1 ts most
ho mertul state of action for a week? A. Enough sul
po pate of copper to keep the outer solution constan 1 saturated. Sulphate of zlac 18 not necessary. 5. How
long must the silk-covered No. 22 copper wire (cover Ing the ron cores of an electromagnet) be to obtalin
the greateat mannettc force of such a battery? The satery 18 to be but 2 feet from the electroma.
You have forgotten to state the e 1 Ize of core.
That 2equols 1 ? Let $x=1$ and $y=1$. Then $x=y$ and $x^{2}-y^{2}=x y-y^{2}$. Dividing the last equation by $x-y$, equation, $x+y=y+\frac{-2 y^{2}}{x}-y$ and not $x+y=y$. $-y^{2}=x y-y^{2}$ divided by $x-y$ is equal to $x+y=y-$
(15) W. R. asks 1 . To be a machinist
and tant that you should understand the art of drawing. Whlch branch of tiguresought I to study? A. For fa
cliltating calculatiton, you should master arithmetic What books shall read ometry, and logarithms. What books shall read on mechantcs. etc.? A. Yo
willind a good elementary treatise on mechanics slllman's "Phy 81 ces,"
(16) R. K. says: In Mr. J. Rose's recipe for quantity of bone, etc. Would a certatn quantity of gal ammoniac do as well? A. The urine is the best, and
the hoof and leather process is better than the bone
 might be well for you, however.to
"Bustness and Personal" " columa.
(18) X. X.-The electrical treatment under beneft you.
(19) J. H. H. asks: What ought I I to do in
order to be a good englineer? for you to have education and practice, to become a siving the former, and shops for the latter.
(20) F. L. asks: At what speed should a 50 A. Between six and seren hundred revolutions a min
A.
$\underset{\text { on vise }}{\text { (2) }}$ J. J. says: Mr. Rose in his late article
 (22) W. S. J. says: I sugest the following
or car ventilation: atr to be recelved at the head or evgine by funnel -shaped apparatus, and carried back to
the cars by proper connections. Sultable means for dis. The cars by proper connections. Suitable means for d18 too much draft. In winter the alr could be passe Whough the engine furnace for the purpose of warming
t. What are the objections to this? A. The Idea 18 nor place tis sug
One
em. In drawing water whith water by the Holley gys
 sitauteda a mile from town. How long does it take to
ransmit the above pulsation? A. It 18 instantaneous. Can you give an exponanatlon of the duplex system or
(23) G. says: I send you two specimens of yre turnings (one from eachend of a plece 5 feet long, Which broke at the pontne tndicated turned from 1 loco any knowledge of longer turnings? A. Your specimen ness. We have seen lont one ut considering the coarse teed your shaving was cut a unusually he spectmen.
(24) W. J. W. asks: 1 . Is it a practicable that 18 movable, the boller belng stationary? A. Yes.
. How far can tit be carried, out of doord, with the mical to carry it any distance without covering it well.
(2J) E. C. H. says: The balloon Buffalo as-
cended rom that clty on July 4 . $\begin{aligned} & \text { estimate that the }\end{aligned}$ cost of filling this balloon (99.000 cublc feet) with
adrogen gas would be upwards of $\$ 2,000$. Is this a corr
Inflat Inflated with, and what did it cost? A. Balloons are
ordinariy filled with illuminating gas, which costs ordinarliy filled with illuminating gas,
bout threedollars a thousand cubic feet
he amg iand saw, shin), or at an hagle? A. At an angle.
1, What
1, What is the history of the gyroscope? A. See p. explanation of ft? A. No.
Is there any machine, for cutting up the oddsand ends clgars, that works satisfactorily without first press-
(26) J. H. H. asks: What is the amount of at a certainp ressure per square inch, sala steam betng
Arst ralsed to that pressure? In other words, what mount of coal must be used to restore the heat lost by diation only? A. This is a question that must be de-
(27) C. E. T. asks: Can malleable cast iron
(28) F. L. P. asks: What distance will a n hour up stream, and the current is four miles an
(29) J. M. C. says: I have a number of id in new cement, after chiseling out the old, which was crumbled to powder; but they loosen again. Can
you suggest any composition to reset them in, that would be impervious to water and would harden firmly enough to keep them steady? A. Put a little lime into
the cement mortar, that it may not set too soon, and grout it in ; that is to say, have it so thin that it will
low into all the interstices of the adjolning tiles. ou lay the latter, press it down upon the mortar, but leave the face of it projecting about $1 /$ of an inch above
heother tiles; as the mortar hardens, press the tule own, so as to bring it even in the (30) C. P. says: Suppose that the roof of a
building has a span of 100 feet, length 200 feet, and pltch Wat is the rule to find and trusses to sustain It? A. For form of truss and bolts of which it is constituted, consult Hatfield's (31) D. B. T. says: I propose to serve comow served, only that the airwill be undera pressure it 500 ll hat to the inch, more or less. At this pressure,
iting power far superior to that of ice, whenallowed to expand in contact with any ar-
ticle which it may be desired to freeze. The mechantal energy contained in the air may be used at the same time that its frigorific po wers are expended, which will
make it doubly valuable for domestic purposes. The fotlest places in our cittes could be rendered delightfully cool, at a small cost compared with the use of ice
for the same purpose. It would soon be as common to see persons turn on the air to cool their houses, as it is ou have such a successfula alr compressor, you will ind large demand for for operat
(32) W. J. W. says: I am putting up an enwell, but the water is brackish. What effect will it have an the boller? A. It will probably make scale in the
(33) I. H. L. asks: 1. When waterworks ase a stand pipe, is the water forced to the top of the
pipe to get the necessary pressure, or 18 the upper end t tret pipe (or the street pipes (or elevated to a reservorr) by com-
pression of theairin thestand pipe? A. A stand pipe is closed at the top. 2. Can you explaint the princtple of
the Chicago water works, which use a stand plpe and a the Culcago water works, which use a stand pipe and a
small reservolr bullt of boller fron, but not nearly as high apparently as the stand pipe, nor large enough to
contain one tenth of the water used. A. In Chicago the water flows through the mains from the reservoir $\underset{\text { men wishing to }}{\text { (34) }} \mathrm{R}$. B mechanical engineers. Is the Cooper Institute of New York a good place to get a thorough
training? Could we get employment in the trade to en traling? Could we get employment in the trade to en ing at the Institate? A. The instruction at the Cooper Institute is free, and Is given in the evening, so that if you could get a situation in this city you could pursue
your studies very well.
(35) F. W. asks: 1. Will you give me a rule
ordeetermining the pi ch of a propellers
ocrew? A. It
 Wheel in sultable for an eng tine with eylinder of 8 Inches
bore and 10 inchese stroke? A. One about 30 inches in in
eo driving? A. One 40 feet long.
(36) C. W. M. says: I send you a piece of a
fue taken from our sengine for you to give your op oplon as to the cause of tis beng eaten a away in the namner
shown. All the flues and the boller are more or less in. ured in the same was. A. We have seen simllar accondensers with copper tubes was fed Into the bollers. You do ono send enouph part
an explanatiou of your case.
 run her by steam, th swift water. Can you give us pro-
portion of engines to run her well?
A. The boat is (38) J. S. W. asks: Can a telescope be con-
ructed to magnify yas you draw out the two sections.

 iery small; but if I draw one section out, will the ob telescope has the pancratic eyeplece; the pair of eye
lenses recede from the inner pair, thusincreasing the lenses recede
magnifylng power
(39) J. W. says: I made a telescope on the
plan given in the Soirntific American, p. 7, vol. 30 . 1. My meniscus is $13 /$ inches in diameter, of 48 inches
focus. The eyeptece is $2 /$ Inch in diameter, and $21 / 2$ nches focus, and is made to sllde. 1 use a 6 inch double
convex lens, but 1 an disappointed, as it does not in any way answer. Would an achromatic objective im-
prove th at all? Is the object lens too small? A. A 3 or prove th at all? Is the object lens too small P. A. A 3 or
$3 / 2 /$ nch achromatic about 4 feet focus is recommended.
The best eyepteces do not screw in, but sllde into the rackwork tube or sliding tube, as the case may be, and cost wo each Powers from 80 to 150 or 200 . The foct of
the two lenses, in a simple instrument, should meet as heu describe. 2. I have a mind to make another tele
you scope; but before I begin, I would llke your opiniton in
regard to lenses. What should be the focus of a 3 or regard to lenses. What should be the focus of a
$3 / 2$ Inch achromatic objective to obtant the best result?
Also nhat is the best kind foran eyentece, and what Also nhatis the best kind foran eyedece, and what
hould be the focus? A. See our remarks to G. J. J. o. i7, on this page.
(40) A. W. H. asks: Can you give me a reit non-porous? A. There is nothing we know of that
will render plaster Lon porous without injuring at the same time Its hardening properties.
(41) J. T. M. says: I have a small refract-
ing telescopr, a good one for 1 ts size. Could I use the ng telescopr, a good one for its size. Could I use the
eyeplece (:onsisting of 4 glases) in connection with an object glass of longer focal distance, and make a
good serviccable glass of it with a longer or larger tube? A. An eyeplece which is adapted for a short
telescope may be used for a long one. The converse,
(42) P. J. K. asks: I propose to make a tel
escope, and I thilut that a 4 4/a nch mentscus lens, with about 72 inches focus, with a $\%$ inch eyeplece, with
about 1 tnch focus (plano convex) would make a good about 1 inch focus (plano convex) would make a good
lustrument. De you think this would answer? Would an object glass (double convex) of same size and focus,
with double concaveeyeplece, be better? Would such Saturn's rings and moons, and the planets Venus and
Mercury? A. You would have to place a cardooard creen over the lens with a hole in it an Inch and a quar ter in dlameter. Get an achromatic spy glass instea
and unscrew the two front lenses of the eyepiece. (43) C. W. S. asks: I made one of those paper last winter, aud I now wish to make one with an
object glass of, say, 4 or 5 inches in dlameter. What would the glasses for such an instrument cost, and
what should be the inside diameter of the tube, length of the same, and length of focus? Could I make the
tube of wood, as done in the smaller one? A. A fine American instrument in our possession, made in 1866 ,
is 4 inches aperture, 60 inches focus. It is equatoritaly A 4 inches aperture, 60 inches foccus. It 18 equatortally
mounted on hollow cast fron axes, and is ad justable for mounted on hollow cast tron axes, and 18 ad justable for
latitude on a tripod of black walnut 5 feet 2 inches high, with 3 inch circles. The heur circle is divided to minutes,
and the declination circle reading, by vernier, to two minutes of arc. Object glass cell is provided with col-
limating screws. The tube is conical, of polished dlack walnut in 3 strips glued together, and 184 feet 2 nches
long. Length from cell to end of rack tube, closed, a eyeplece, and five Huyghen an ones, whosa powers are
$60,96,160,20$ and $320 ; 96$ is the power most in use. A $60,96,160,210$, and
dagonil prism a a a finder telescopene, one inch aper
ture, are also attached. The cost was $\$ 296.50$. The necessary parts would cost: Lens $\$ 100$, and 2 eyepteces 88 work, $\$ 30$, and tripod with fronwork, $\$ 35$, should be
added. (44) S. L. G. says: In Spencer's "Psychol-
ogy, vol. I, p 520, he speaks of the vast catastrophe of
which the star Epsilon Coronce was lately the seat," etc. What was the catas rophe referred to ? A. Very
hot and therefore dissoctared oxygen and hydrogen, hot and therefore dissoclared oxygen and hydrogen ter, with ev \boldsymbol{n} lution of heat and light. At one period of
its evolution, a star consists of a more or less continu ous liquid film surrounding a bubble of glowing gas. If
this flim be suddenly ruptured by pressure from within his fil cools down to the combining or burning temperature,
and explodes. Such explosions constantly take place and explodes. Such explosions constantly take place
in the sun. Tongues of flame dart $100,000 \mathrm{miles}$ from it surface with a crash that may be dimly imagined by
those who have set fire to oxyhydrogen soap bubbles.
(45)W S asks :1. When, in what constellation
and by whom was the comet lately vistble discovered? A. It was discovered by M. Coggia, at Naples, a prill 7 ,
187, in the breast of Camellus. 2. Has it ever appeared
before? A. No $\$$. before? A. No. 3 What is its inclination to the eellip
tic? A. 60°. 4. Where does it cross the ecliptic? A
It crossed the ecllptic on July 24 , between Gemini and Cancer. 5 Dtd it pass through, its perinhelion before or
sfter crossing the ellptic? If so, where? A. Its per after cossing the ellpttc? If 80, where? A. Its per
thellon passage was on July 8, $60,000,000$ miles from the sun. On November 4 it will be near the star Alpha
Camaeleontis, in the soouthern hemisphere, and about
(46) F. D. H. asks: 1. What form of bat
tery is used in exploding powder, gun cotton, etc. $? ~ A ~$ tery is used in exploding powder, gun cotton, etc.? A
The Grove, in connection with a small coll. 2. What
the arrangement of the wires, etc. ment of the terminal wires in much a manner that th
spark leaps through the discharge thus igniting it.
(47) M. B.says: 1 . I have a telescope which arranked tn couples, in two smbil cyllinders. Please
tell me the respectlve names of each of these lenses A. The glass nearest the objectlve 18 the oblect len
the next ts the amplify 1 lens, then comes the feld lene, and, Inally, the eeve lenes, next the eye. 2. Whe
the instrument 18 open as far as possible, the first len
 focus 1 多 inches distant. Please describe the objectiv
which would give the greatest power, and tell me th required power. The lens should be 1% :nches in diam A. As we bave before stated in answers to correspondents, the magnifying power of telescopes 18 equal to
the tellarfocus of the objective divided by that of the yeplece, thefocus of the common negative eyeplece is the best way to find the focus of the lens? Is it by getting an inverted image? A. Practically the princ pal focus is the distance at which the lens gives the
sharpest image of the sun. college than in an offce? A. For civil engineering, bot kinds of training are necessary. A snowledge of Gllles ple's "Land Surveylng" will enable you to survey, wit
good instruments. Send to Cornell University, Ithacs or to Rensselaer Polytechnic Institute, Troy, N. Y, fo catalogue. 2. What are the requirements of a good civil enginecr? A. From 4 to 6 years mental training (with
subsequent practice), costing, including board, etc.,from $\$ 500$ to 81.000 per year. $3 . A$. are the wages of a good civil engineer? A. From (48) G. W. L. and others ask: What is an
easy way of making mirrors of different sizes? A. The process, improperly called silvering mirrors, is rather
delicate operation ; and inasmuch as the chances fallure are so great, as also the amount of time con-
sumed,few amateurs will have thetr first efforts crowned with success in this direction. The process consists in posterior side of the glass plate. To do this requires
perfectly smooth level table (marble is usually em ployed). The foll is placed perfectly flat on the table,
every wrinkle smoothed out. Teplate betng in read ness, perfectly clean and pol:shed, a little mercury is a first poured on the foll, and carefully spread with
wooden roller. Mercury is then poured on the foll to depth of about 132 of an Inch. The plate is now sild on to the table in such a manner that the supernatant
mercury is carried off, thus preventing air babbles from mercury is carrled off, thus preventing air bobbles from
destroyingthe coating; at the same time great care mus be taken not to disturb the foll. After this, a welght 1 tapped so as to allow the superfluous mercury to run off The plate is then covered with cloth, and very heavy remain for 24 hours. The wetghts are then graduall removed and the angle of the table gradually increased still adhering to it. The edges are then trimmed. Many days are consumed in these operations, espectally with
large mirrors; in some cases a month is required before
(49) M. E. L. says: In your answer to G.F. per lightning rods amounts to nothing. So do I; but 18 same, superior to the z inch solld fron rod recommended by you? If not, why do you crown your solita
Iron rod with a copper point? A. Copper is a better Iron rod with a copper point? A. Copper 1s a better
conductor of electrictty than fron, in about the ratio are undoubtedly desirable, but the fron rod referred to fully answers all requirements, at the same time being
supertor for strength and stIffness. The placing and connections of the rod deserve as much attention as it
composition and conductivity. It is desirable to have the rod's connection with the earth as intimate as pos
sible surface a few feet, the fiuld not fliding a sufficten anode to the earth in this direction, will find its path
through the building and its metal work, thereby renbullding.
(50) T. C. P.-Steam canal boats are in
common use. (51) G. B. S. asks: 1 . Are creosote and par
afln made from paratiln onll
A. Creosote 18 made from wood tar, from which parafin 18 also obtained. 2. What
is parafln oll used for? What is its thickness comIs paraffin oll used for? What is its thickness com
pared with lard oll? A. Paraffo ofl is one of the pro ducts of the distillation of Boghead cannel coal. It it ts admirably adapted, slnce it does not become oxidzzed or thick
but slowly.
$\underset{\text { wooden tank }}{\text { (52) }} \mathbf{\text { Pr }}$. W. asks: If an anderground water by a force pump from a nelghboring pond, how long will it keep good, for stable and barnyard use
Will it spoll under these circumstances quicker than raln water? A. It can be used for your purpose, and $1 t$
(53) W. L. B. asks: Can I have the same
power with my zinc cup by coating it witn quicksilver? have to use the battery so frequently that it is ver
troublesome to keep it clean, and the sulphate consumes the zinc so fast that it soon eats a cup away.
Yes. The zinc should be always kept properly amalg
(54) J. A. L. asks: 1. Is it necessary to a spark sufflclent to light gas? A. It 1s not always nec
essary; but this depends upon the number of cells em loyed. 2 Is it best to have the secondary current?
(55) N. C. asks: How are carbon plates
made for electric battertes? A. They are made elther of the graphitoldal carbon deposited in the gas retort or by calcining in an iron mold an intimate mixture of
oke and bituminous coal, finely powdered and strongl mpressed.
(56) J. N. B. asks: What sort of metal can vessels be made of, so as not to be acted upon by sul-
phurous actd gas and its aqueous solution? A. Vessels (57) C. M. N. asks: How can I wind Cut a thread upon a lead mandirlit tapered at each end,
wind your spring uponit in the usual way; then, when wind your spring uponit in the usual way; then, when
you heat the spring to harden it, the mandril will melt
(58) S. W. asks: In the winter when vege
tation is not active, what becomes of the carbontc acti gas which is exptred into the air? A. It 18 retained in
the alr. Analyses made of the air, during both ine e air. Analyses made of the air,
mmer and winter, show nelther inc ease nor decrease
of carbontc acta, the total variation betng inappreclable Fhen compared with the tncredible bulk of the terres
(59)
H.
H. . Phen
P. asks: What will harden or or the chin, to make it less sensitive oughen the skin of the chin, to make it less sensitive
when shaving? A. This is due to a very thin and sensiwhen shaving? A. This is
ive skin. There is no applit
ware that will be of benefl
(60) G. R. B. asks: Can you tell me of a
paint or varnish of a dead black color, which will not listen in the brightest sunlight? Hunters are often discovered to game by the glistening of their guns,
Fhich such a varnish would prevent. A. We know of othing that will ans
(61) H . L. C. asks: If a rubber bag, connder water, will it are be sealed arrtight and place
nesed by the water to a smaller bulk than it had before it was immersed? If
so, to what extent? A. It would; and the compression pilfting pow at a depth of 10 feet than at a depth of only 1 foot
(62) J. B. T. asks: If we weigh the materihen wetgh the vessel full of air, what would be the difless if the air was exhausted from it than the materlals would weigh before the vessel
ould be no difference in welght.
Why do springa afford more water in the summer o ot.
onths than they do in the winter? A. They do
ot Are not never falling springs produced by the heat
from the central fre, passing through subterranean queducts and bringing the water to the surface or the
arth A. No. Is heat or cold on any particular part of the suriace of the earth belng governed by the vertical or oblique 1. Howe sun? A. No.

1. How long will it take an fron ball2 2 feet in diametor, depend upon the temperature of the surrounding atmophere. 2. Is it not the water that it gets from the air artlally. 3. How long will it take it down? A. Only iameter, brought to a white heat, to cool down if kept on) is kept to a white heat? A. Under these condi-
(63) A. H. K. asks: $\underset{\text { eaches from decaying and fallug off fust previous to }}{\text { What }}$ ecoming fully ripe? A. The dropping of your fruit to due to the curcullo,or more properly speaking, canotra-
helus nenuphar. The best remedy is jarring the trees, catching the larva in sheets, and burning them. See catchta
Packer
2.

By wh

By what meansor marks can I distinguish the male fom the female mocking bird at the age of about 7 or stingulsh them at that age.
(64) R. W. C. asks: If a machine for aeriwould be the moral result upon our race? Do you hink it would tend to the advancement of hight and
ruth, or that the good would be overcome by the peretraltcould not be other than elevating.
What is a perpetual motion? Is it a machine that
all never wear out, or one that will run untll it weal ut? A. The latter is probably the better definition. g paper for the reception of photographic images? . The paper is steeped in a solution of chloride of soium in water, dried, and immersed in a solution of ni-
rate of silver in water, and dried in a darkened room . What time is required for the impression? A. This isdepen
ation.
(65) W. W. D. asks: Is a bed, lounge, or
hair, standing onglass casters and in the center of the room, a perfectly safe place for a person during a thun-
derstorm? A. No. The lightning seeks a pathway to derstorm? A. No. The lightning seeks a pathway to
heearth throukh the best conductors; and as the hudinary articles of fur uaggest will bellifely to be struck if the electrical fuid
enters. The glass insulators offer no protection. The nters. The glass insulators offer no protection. The
only real security is a good arrangement of lightning ods upon the exterior of the bullding to prevent the
(66) H. L. D. asks: How is the phosphoresent safety lamp, used in powder magazines, etc., in
France, constructed? A. Take a plece of phosphorus not larger than a pea, place it in a phial of the whitest
and clearest glass, with enough bolling hot sweet ofl nd clearest glass, with enough bolling hot sweet oll
upon it to fll a third of the bottle; put a cork in and allow the alr to enter the phial, then cork it again, and the part of the vessel not flled with ofl will become as
luminous as a large lamp. It can be used for six months luminous as a large lamp. It can be used for six months
without replentshment. Use white phosphorus and re oll.
(67) T. S. says: A hot metallic leapot was
lacedupon a waiter. In consequence of it, the paint aced upon a waiter. In consequence of it, the paint
rother composition with which the waiter is covered ts original color and brightness? Shall I use ordinary lead paint mired with bolled linseed oll? What kind
of varnist must I add that will neither peel off nor stick of varnist, must 1 add that whll nelther peel ofr nor stick
when fligers, cloths, or slightly warm dishes are placed ter and a litlie rottenstone ; then dry by wiplng and
exposure at the fire. Mix a quantity of good copal varexposure at the fire. Mix qua, and apply with a brush to the denuded parts. After whtch set the tray in an
oven, at a temperature of 212° to 300° Fah., unt1l the varnish is dry. Two ceats will make it equal to new.
How can make labelsadhere to tin? A. Use flour How can I make labels adhere to tin? A. Use flour
paste, with two tablespoonfuls of coarse sugar in every
(68) C. M. H. asks: Can you mention any abstance having the following properties: Light in
color, soluble or slightly soluble in water, hard at at. by a heat from 200° to 500° Fah.? You can perhaps men tion some gums or resin, salts or alkalles, etc., Dossess dassic carbonate, phosphate of soda and ammonta, gum
(69) A. G. asks: What is the crmposi-
 then ammanted to a certala extent, and arterward
peaten out with a hammer. 2. How can it be made in. to solder? A. The allos of tin and lead tin equal parts

 verial exclude all didea of 1 t having been turned to

 and ow to make one. I have tried to make one anter

 Tash, ghould equal the conjugate focus of the lens
when it 1 t ocussed upon the toreground). Your lens

 tance, y ou asy finy our last umber that Borellis comet
 so many degrees east or west of some other star. A

 or the compass should not be ueded tir etering to eel.
 Decinatione.expresed in + or - derreses, minutes, and see
onds of arc, indicates the distance of a atar north or
 the exact place of a s oody in the heavene or or upon the

 It still be toward the earth? A. All stars are drifting about in space, the sun (at the rate of 4 miles every sec mote arrival of Arcturus, we shall be traveling else
 distant. Will you please give me good authority on the
fact? A. The mean hight of clocds is much less than
 of the Andes.
Has a balloon ever ascended to a hight of 10 miles? A
The greatest hight on record is that attalned by Mr
Glaigher
miles. At this hight it was dificult to sustann life.
(77) G. J. J. says : 1 . I have a meniscus of
48 inches focal length. Which will be the better for an object glass, this, or a double convex lens of 4 or 6 nch
es diameter? What would be the focal distance of such a lens, and would its magnif fing power be much greate han that of the meniscus? A Both would be useles such a lens (double convex) require? A. With a double
concave eyelens, it would form the Gallean telescope. Does the focus of an object glass fall before, behind
 within the Huyghenian or negative eyeplece, and be hind the Galliean or do able concave eye lens. 4. Can
you recommend me to some treatise whichepplains the

Astronomer.

What preparation or starch is used to give a fine glos
to shirt bosoms? A. A lump of paraffin is melted in with thestarch. Can you qive a rectpe for bleaching skeleton leave Can you give a rectpe for bleachnng skeleton leaves
and flowers? A. Bleach with chloride of soda. after (78) T. C. K. says: I have tried the cheap
Iescope described in your paper. I could see distant objects in the daytime very well, and the moon at night
but for the stars it wasa complete fallure. All that could see was a little round ball, colored red or blue ary youtell me the cause? An optician says that
double convex lens would ve better than the menticus What should be the size and focus of two double con vex leoses, which will show to a certaintryapter
moons, Saturn's belt, etc? A. An achromatic object glass of 50 inches focus and $1 \frac{1}{2}$ Inches diameter, with power of 50 , will show sun spots (on a white surface snd planets in the daytime. A double convex lens of 4
fen focus must not be over 1 inch in aperture if we locrease the aperture to 2 Inches, we must leng then the

（79）R．W．says：I have about 4 gallons of sons，the Editor declines them．The address sulphate of nickel and ammonia that I sponiled by put．
ting in a vat lined with pine pitch．The cyanle and ammonia seem to be affected，which spolis the con－
ducting power of the solution．When I put articles in the bath to be plated，they all turn black．Is there any
way in which I can recover that solution？ A ．Various methods have been tried，but they are so tedtous and require so much labor that you could not recover the
nickel and convertit again tito the double sulphate nickel and convertit again into the double sull
economically，on the smallquantity of 5 gallons．
（80）W．H．says：You once gave a recipe
or waterproot glue as follows： 12 ozt．glue with sumf． cient water to dissolve it．Add 3 ozs．rosin，melt．
down in a carpenter＇s glue pot，and then add 4 ozs． urpentine or benzine．It does not mix well．I also tried softening the glue in water，then dissolving in
Inseed onl ；but it curdled and is too slow in drylng．In should llke to have a plue as nearly colorless as poss1－
ble． A ．A glue which ts sald not to be affected by molsture may be prepared by dissolving 1 oz．sanda rac and 1 oz．mastic in halif a plit of alcohol，and hen to be made，to which some sisinglase The alcoholic solution is to be heated to bolling in a Vessel，and poured pradually，with constant stirring， Into the warmed glue，untll the whole 18 int 1 mately
mixed together．The mixture is finally to be atralned mixed cogethor，sh 1 then ready for use，and 18 to be applied liot．It dries quickly，becomes very hard，and pleces of wood united with it do not separate in wa－
（81）J．H．J．asks ：Is there any process by
which small tron castings can be changed into malleable which stailtron castangs can be changed
tron ater they are cast，so that they can be welded or
 as made at present，cannot be worked llike wrou 1ron．They are only rendered less lable to crack．
How much coaldo ocean steamers，from 3,000 How much coaldo oceen stememers，，rrom 3，0
tuns，burn In a day？A．From 40 to 60 tuns． （82）H．S．asks：How is the brown imita－
too of bamboo on fishing rods made？A．By charring
（83）J．E．E．of Pa．says，in answer to A．A．， cular well of very fott－hurnt bulliding brick in the cen－

 through the brick．Take your water from the tnide of the well for your bollers．Should the pores of the brick occaslonally fill up so that the water will not soak through rast enough，use a scrub thush to clean off the
outside．This makes a cheap fiter for almost any 1 m －

Minerals，etc．－Specimens have been re ceived from the following correspondents，and examined with the results stated：
C．W．J．－Your impressions are very imperfectly
made，espectally the Roman cotn．The one of the date 311 ls a Spautsh coin，but doubtless not of date oman．Their age shows nothing very important． Coins older than these are to be found in clrculation at olumbus discovered Λ merica，and obtained in tratfic by the Indians；and，betng considered of value by them，
were burted with them，as was their custom．－J．W．H． ome quartz，etc．The pure magnetic oxide of fron should contain over 72 per cent of iron．What it does actually contain，whether it has any constituent which nd extent of the ore，must be ascertalned by a technical chemist．
W．W．says：In the locality of Bingham－
ton，N．Y．（lat． $42^{\circ} 06^{\prime}$ N．，long．about $76^{\circ} 14^{\prime} \mathrm{W}$ ．）I prove conclusively that，ior a long series of years pre－ was eastward，at the average ratio of $8 \cdot 72 \%$ per annum， that at that perlod（variously and indefinitely stated by authors）the eastern motion ceased，while the directive tendency of the needle was 2° 49 west of the pole．
Subsequent to that，the declination has been westward， about the same ratio，showing now an accumulated sastronomicalexpertment．Now what I wish to learn 18
as this：Whether the period of revolution of the needle，
from east to west and vice versa，is a regular or uniform rom east to west and vice versa，is a regular or uniform
period，I mean of about the same number of years？I it 1s，what is the extent of that period？For your scru－ iny and crittctsm，allow me to state that the diurnal westerly motion of the needle is only to be discovered full force between the vernal and autumnal equi－ much in winter in ummer（as aeveral authors of ebrity have stated）seems to be doubtful：as from the most minute observations I have been able to make du－ ing the tlme I have mentloned，the diurnal variation ass been found to be $13 \prime$ or 14 ；while between the au
umnaland vernal equinox，variation has been carcely appreciable．［Will some of our readers who a study，please this subject in particular or have made H．asks：What do sign painters use to produce that oriliancy in gold letters or gold leaf which they apply
on shop and store windows？

COMMUNICATIONS RECEIVED．

The Editor of the Scientific American acknowledges，with much pleasure，the re ceipt of original papers and contributions pon the following subjects
On Tender Bones．By Z．M．P．K
On Railroad Rolling Stock．By F．G．W． On Measuring the Width of a Stream．By H
On Creeping Rails．By A．S．M．
On a Novel Projectile．By C．R．S
On Practical Mechanism．By T．W．P．
Also enquiries and answers from the follow－ ing：
S．R．－E．E．－L．F．－C．G．－X．Y．－N．F．P．－D．T．W
－L．M．B．－Q．－F．R．S．
HINTS TO CORRESPONDENTS
Correspondents whose inquiries fail to ap pear should repeat them．If not then pub lished，they may conclude that，for good rea－
sons，the Editor declines them．The
of the writer should always be given
Enquiries relating to patents，or to the pa－ tentability of inventions，assignments，etc．， will not be published here．All such ques tions，wheninitials only are given，are thrown into the waste basket，as it would fill half of our paper to print them all；but we generally take pleasure in answering briefly by mail f the writer＇s address is given．
Hundreds of enquiries analogous to the following are sent：＂Please to inform me where I can buy a machine for turning broom handles，also for cutting barrel heads？Where can＇I purchase the best water wheel？Which work on modern architecture is considered the best？What are the prices of best Ger man silver instruments？Where can I ob tain printed sheets of playing cards？＂Al such personal enquiries are printed，as will be observed，in the column of＂Business and Personal，＂which is specially set apart for that purpose，subject to the charge mentioned at the head of that column．Almost any desired nformation can in this way be expeditiously obtained．

Index of Inventions

por whice

Letters Patent of the United State were Granted in the week ending

August 25，1874， and rach bearing that date． ［Those marked（r）are relisued patents．］

Alloy，ant1－friction，M．H．Campbell Animal fats，etc．，treating，Churchil

 auger，earth，J．O．SmithBaker，J．т．Wilso
Bed bottom，spring，J．W．Case ．．．
Bed bottom，spring，Grafton \＆Cra Bed bottom，spring，c．MM11
Bedstead，sofa，J．McGrath． Bedstead，sofa，J．McGrath．．．．．
Bell ringer，steam，C．H．Hudso Boat－detaching hook，G．Utley． Bobbin，w．Ingham
Bonler leg，Taylor\＆Quin
Boot and shoe last，G．Khuttlewo
Bottle stopper，W．Morgenstern
Bottles，etc．，packin
Brick，I．Gregz，Jr．
BrIdge，Iron truas，
Broller，J．Willging

Brush，paint，F．H．Jordan．．．．．．．
Buckle loop，metallic，H．A．Pot

Car axle，J．M．May

Car coupling，A．Kimber
Car coupling，H．E．Sm
Car，sleepling，J．T．Smdth
Car spring，W．P．Hansell．
Car wheel gage，F．Collins．
Cars，etc．extra seat for，C．E．Bal．．．．．．．．．．．．
Carbon black，making，A．
Carriage，child＇s J ．A．and
Carrlage hub，S．Mitchell．
Carrlage hub，S．Mitchell．．．
Caster，furniture，C．B．She
Caster，furniture，c．B．
Chair，w．W．Crawford．
Chicken coop，J．H．Van Arnu
Chuck for holding nipples，A
Clothes dryer．C．A．Meekina
Clothes pounder，Shelden \＆Reynolds．．．．．．．．．．．．．．．
Coal，etc．，screen for．P．and W．B．Hayden．
Corset，J．L．Follett
Counting apparatus，R．H．Webb．
Culttivator，J．Lux ．．．．．．．．．．．．．．．．．．．．
Cultvators，evener for，v．K．George
Dentist＇s use，gold leat for，C．E．Blake
Drill jotnt，J．H．Bauser．．．．．．．
Eaves trough，C．D．Woodruf
Egg beater，J．F．and E．P．Mon
Egg carrier，J．Perkins．
Electric commutator，
Elevator，hay，W．Adams．．．．．．．．．．．．．．
Elevator，windlass water，J．Keth
Engine governor，steam，J．Judson
Engine governor，J．D．Lynde．．．
Engine cut－oft，D．A．Woodbury
Engine piston，J．M．Paimer．．．．
EngIne silde valve，o．J．Byrud．
Fan attachment，W．S．Burton
Fan，automattc，P．Ma
Fan，automatic，P．Magnus．．．
Fan，automattc，Smith \＆Bogy
Fan，automatic，Smitt
Fare box，w．S．Clapp
Faucet，L．J．Birgler．．．．．．．．．．．．．．．．
Fence，flood，D．T．Deffenbaugh
Fence，Iron，J．B．Maurer
Fence，Iron，J．B．Maurer
Fence，portable，J．Hafer
Fire arm，breech－loading，E．
Free extingulsher，F．Latta
Fire extinguisher，F．Latta．．．．．．．．．．
Frire extinguishing machine，A．E．
Flat tron heater，C．A．Stevenson．． Flat fron heater，C．A．Stevenson．．
Flour bolters，W．F．Cochrane（r）．． Fork，manure，J．G．and J．G．Rankin．
Furnace grate bar，Hanford $\&$ ．Holla Furnace，anneallig manfard \＆Holladay．．．．．．． Furnace blast valve，J．M．Hartman．．．．．．．．．．．
Furnaces，delivering plles into，s．w．Kimble． Furnaces，delivering piles in
Gage，bevel，w．E．Skinner
Gage for shingles， Gas，purifying，w．H．St．John．．Schramm Gas carbureting machine，B．F．
Gas holder，portable，J．McHenry Gas holder，portable，J．McHen
Gas purifler，w．H．St．John．．．．
Gate，W．Flynn
Gate，W．Flynn．．．．．．
Grate bar，G．M．Bill．
Hame，S．Thornton．．

Harvester，H．F．Long．．．．．．．．．．．
Harvester binder，B．F．Witt（ Heater，washstand，Herlehy \＆
Heater，steam air，J．T．Bon． Hemp brake，Dean \＆For
Hook，sister，T．Witmer Horseshoe，L．W．Grisw
Hose coupling，H．Wolf．．．．．．．
Hose coupllings，band for，E．
Hydrant cover，J．McKnight
ydronette，etc．，W．B．Robbins．
ndicator， 10 w water．C．N．Myers
Injector，steam，J．Tree
Insect destroyer，W．G．
Iron and steet，annealing，J．E．Atwood．
Iron plater，stralghtenng，H．J．Merren
ack，drilling，Metcalf \＆Regan
ack，hydraultc，E．Biddle
Journal box，etc．，self－otllog，Chapman et al．
Kitting machine，stop for，R．and F．J．Cooke．
Knob or closet pin，c．H．Thurston
Lamp bracket，C．H．King．．．
amp，cooklug，G．P．Housto
Lamp lighter，J．C．Gould．．．．
Latch，locking，Sherman $\&$ Ha
Lathe dog，J．H．Stimpson．．．．．．．．．．．．．．．．．．．．．．．．．
Lock，seal，J．Sweeney
Loom，R．W．and G．P．
Marble sawing machine，L．B．Clog
Medical compound，J．P．Edinger
Meter，fuld，B．Huber．．．．．．．．．．．．．．．．
Ool for dressing，J．Norma
Miter box，E．Knock
olding machine，w．F．Wing
Vall plate feeder，J．Cornforth
Nuts，die for making，J．H．Sternbergh
akum，making，T．H．Dunham．
ordnance projectile，R．P．Parrot（r）．
Organs，pneumatic action for，T．Wina
veralls，J．Greenebaum
Paper，perforating，w．Braid wood
Plano，C．Boerner．．．．．．．．．．．．．．．．．．．．．．．．
Plano strings，covering，C．Rlen warth
Pano strings，covering，
Pipe cut－off，J．Hambitzer．
Planing machine，W．C．Margede
Planter，corn，Askew \＆Sangster
Planter，corn，G．W．Brown．
Planter，corn，Miller \＆
Planter，corn，H．Olson．
lanter，corn，J．Selby．．．
Planter，corn，H．A．Thom
Plate lifter，O．I．Foster．．．
Plating，nickel，I．Adams
Plating，nickel，I．A．
Plow R．W．Banks
Plow clearer，Deal \＆Hobbs
Plow，rotary，Jones \＆Yar
Plow，sulky，M．Grove．．．．
Press，cotton， $\begin{aligned} & \text { P．Byrne．．．} \\ & \text { Printing roll，F．E．James }\end{aligned}$.
Pump，W．Adair（r）．．
Pump，J．P．Flanders
Pump cock，B．S．Church．．．．．．．．．．．．．
Purifler，middlings，G．W．Delinnger
Rallway wheel fender，Fulk \＆Good
Railway cattle guard，Ruin \＆Weng
Rallway rail，compound，I．Thom
Railway switch，B．Bacon．．．．．．．
ake，horse hay，A．P．Masse
ash holder，J．M．Hor
cales，platform，W．B．Wood．．．
Seed drill，E．Mosher
Sewing machine，G．Frame．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Sewing machine hem stitcher，E．L．Howard．
Sewing machine rufler，w．H．Lewitt．．．．．．．．．．．．．．151499
hack le for blocks，elastic，J．Edson．．．．．．．．．．．．．．．154，381
heeep－shearing machines，M．C．Davis（r）．．．．6，023，6，024
Shoe，woven，E．B．Phullp
Shutter fabtener，
Slutce wayn，adjustable，J．L．McD．．．．．．．．．．．．．．．．．．．． Smoke stack and spark arrester，J．W．Nesmith
Soda water bottle stopper，H．S．Carley Soda water bottle stopper，
Soda water retort， 0 ．Knapp
Olderlng tron tip，J．Sears
tair rod holder，I．Baniste
Steam and water power，A．Huffer
Stockings，darning，o．S．Hosmer．
Stove foot，E．Smitb
Stove，heating，J．E．Kendall
Stove，heating，S．Cook．
Swing，J．R．Davis．．．．．．．．．．．．．．．．
elegraph，duplex，C．H．Haskin
oy plpe，wap bubble，A．Barbari
Trap，animal，A．Davis．
Trap，animal，J．Jildine．
Trap，moueon，H．Knapp．．．
Truck，T．J．\＆G．
Trunk fastentng，w．J．Henr
Tyre tightener，s．H．Hodg
Valve，safety，P．Mooney．．．．
Vehtcle spring，S．E．Foster．
Vehtcle，traction，C．V．B．
Ventllator register，H．A．Gouge
Vessels，propelling，E．Matteson．．．．．．．．．．．．．
Vessel，wave power utillzing，P．S．Devlar．
Wagon，etc．，dumping，G．Peterma
Wagon body，B．Rankla
Wagon tongue support，E．Jarrell．
Warping machine stop，T．C．Entw
Watchmaker＇s tool，J．C．Link．．．．．．
Water F．W．Tu
Water wheel，current，
Whiffletree，A．J．D1bbl
Windmill，R．E．Mason ．．．

APPLICATIONS FOR EXTENSION Appications hava been duly flled and are now pending
or theextension of the following Letters Patent．Hear－ ngsupon the respective applications are appointed for he days heretnafter mentioned：
，719．－Paprr Folding Machink．－C．Chambers，Jr
November 11． 31，330－Collars
January 20.

EXTENBIONS GRANTED

9．917．－
ery．
laning Machine．－H．D．itover．
DESIGNS PATENTED
709．－Harness Roserte．－J．V．Waldron．N．Y．city

TRADE MARES REGISTERED
1，945．－Baking Powdrr．－Cloud \＆Co．，Evansville，Ind 1， $1,44$. －CLDCCKs．－F．Kroeber，Hoboken，N．J．
$1,948$. GIN．－M．Lheman \＆Co．，New York ctty．
$\frac{\text { I，}}{\text { 1，949．－PLows，ETC．－A．Speer \＆Sons．Plttsburgh，Pa }}$ On each Caveat．．．．．．．．．
On each Trade Mark．
on filing each application for a Patent（17 years）． On 1asuing each original Patent．．．
On appeal to Examiners－in－Chief．
On appeal to Commissioner of Pate
On application for Reis $\begin{aligned} & \text { Bue．．．} \\ & \text { On application for Extension }\end{aligned}$
Ongranting the Extension
On aing a Dlaclaimer．．．．．．．．．．．．．．．．．．．．
On an application for Design（ $3 \Varangle$ years）
Onapppliction for Design（7 years）
on application for Design（14 years）
CANADIAN PATENTS
Libt of Patents Granted in Canada
AUGUST 22 то 31， 1874.
3，776．－T．A．D．Forster and E．L．Stowell，Philadelphaa Philadelphla county，U．S．Inprovements on tooth
paste，called＂The Sphinx Tooth Paste．＂August 22 ，
1874．－ ．Robertson，Yorkville，York county，Ont．Im provements on cloth shrinking and drying machines，
called＂Robertson＇s Cloth Shrinker and Dryer．＂Au－ called＂Rober
cast 22,1874
gust $22,1874$.
$3,775 .-$ L．Richards，Phlladelphta，Phladel Pa．，U．S．Implement for cutung and gaging butte
and lard，called ${ }^{\text {＇The Complete Butter and Lard Cut－}}$ ． ter and Gage．＂August 22， 1874.
3，779．－J．Johnson，Brooklyn，Kings county，N．Y．，U．S．
Improvements in ball casters，called＂Johnson＂s Uni－ Improvements in ball casters，call
versal Caster．＂August $22,18 i 4$ ．
3，780．－W．H．Weagant，Morrisburgh，Dundas county 3，iso．－W．H．Weagant，Morrisburgh，Dundas county．
Ont．Improvements on window blinds，called＂Wea－ gant＇ß Improved Window Shade．＂August 22， 1874 ．＇
s， $81 .-$ E．Osborn，Spencer，Tioga county，N．Y．，U．S． Improvements on runntng gear for wagons，etc．，called Etc．＂August 22，1874．
ent
ent 3，782．－H．B．Sherwood，Mill Point，Hastigs
Ont．Improvements in tool handles for flees，chisels，
drawing knives，etc．，called＂Sherwood＇s Improved drawing knives，etc．，called＂g
Tool Handle．＂August 24， 1876 ．
3，783．－H．P．Becker and N．Underwood，Jr．，Dixon City； Lee county，III．，U．S．Improvements on machines
for scouring and polishing rain，called＂Becker＇s for scouring and polishing grain，called＂Becker＇s
Grain Scouring and Polishing Machine．＂Angust 22 Grain Scouring and Polishing Machine．＂August 22
1874．
$3,784 .-$ W． H．Taylor，Baldwinsville，Onondaga county， ， 84. －W．H．Taylor，Baldwinsvine，Onondaga county，
N．Y．，U．S．，and C．Potter，Schenectady．Schenecta－
dy county，N．Y．，U．S．Improvements on harness Heres Pad Tree＂，au

Mass．，U．S．Improvement in Middlesex county roads，walks，floors，water works，etc．，called＂Im．
proved Composite Concrete and Mode of Applying the Same．＂August 24， 1874.
，i86．－T．Sparham，Brockville，Leeds county，Ont． ireproof palint
August 24，1874．
3，787．～O．Thompson，East Flamborough，Wentworth
county，Ont．Improvement in railway car couplers called＂Thomporovement in rar Coupler，Augu 22， 1874 ．
$3,788 .-E$ ．L．Fenerty，Hallfax，N．S．Improvements on the heel fastennggs of his improved skate fastening
under letters patent No．180，bearing date Dec． under letters patent No．180，bearing date Dec． 15 ，
1899， 1869，called＂Canadian Club Skate．＂August $24,1874$.
3，899．－J．Sharp，Horton，Renfrew county，Oont．Im ＂Sharp＇s Improvements in Spinning．＂August 24， 1874 3，i90．－G．R．Prowse，Montreal，P．Q．Improvements on the construction of fire extingulshers，called＂Prowse Improved Fire Ext1ngulsher．＂August 24， 1874
3，F91．－G．K．Smith，Waterloo，Black Hawk c 3， 791. －G．K．Smith，Waterioo，Black Hawk county
Iowa，U．S．Improvements in the composition and process of making a metal for casting plows，called
＂Smith＇s Composition for Plows．August 24,1874 ． process of Laking a metal for casting plows，calle
＂Smith＇s Composition for Plows．August 24,1874 ． 3，792．－S．Moore and $⿴ 囗 ⿱ 一 一 力 八$ ．Rogers，Sudbury，Mass．，U．S
Useful manufacture of preparation of leather or lea－ articles，called＂Resinated Leather or Leather Board．＂ August 24， 1874
3，793．－K．Corbet，Owen Sound，Grey county，Ont．Im provements in the art or process of ratising，heating，
and distributing hot water simultaneously，called ing Hot Water．＂August 24， 587
，994．－William Harkness，Providence，Providence coun ty，R．I．，U．S．Improvements on apparatus for and
methods of making illuminating gas，called＂Hark－ methods of mparat ins．＂Aug．24， 1874 ．
ness＇ ty，Eng．－Improvements on voting apparatus，called ＂The Voting Machine．＂Aug．31， 1874.
3，796．－T．Rowan and J．R．Reld，Glasgow
ty，Scotland．Improvements on floor cloths，coun ty，Scotland．Improvements on hoor cloths，calle 3，797．－I．E．Moye，Clifton，Welland county，Ont．Com position of matter to be used as a liniment for the
cure of rheumatism，sprains，etc，called＂Moye＇s Sta cure of rheumatism，spralı
Liniment．＂Aug．31， 1874.
Liniment．Aug． 1 ，Hoffman，Nem York city．Improvements on
grates，called＂Hoffman＇s Furnace Grate．＂Aug． 31 grates，called＂Hofman＇s Furnace Grate．Aug．s1
1894．
3， $79 .-$ J．Thompson，Bramley，simcoe county．Ont Improvements on gates，called＂Thompson＇s Improved

September 26, 1874.]

gadvertisements.

FOR SAIE,

T HE CRHAMPIONSILVERATEEL

THI MONTH A WELL KNOWN FIRM

Sixentific gmaxicun.
 BOOKWALTER ENGINE.
The Ioweat-priced good EngIne eve
constructed; Boller and Engine mad

shops.
TOOS \& JAYNE
The Toll-Gate! Prize Picture sent free! An

Planing and Matching

 FLUORSPAR, FELSPAR, Soluble Glass

TONE SAWING MLCHINERY
DERRICKS \& TRAVELLERS, THOMAS ROSS, Rutland, Vt.
 \& FINISHING MACHINERY,
Tools complete formaking gnens sew-
c., to model, turnished to order by gmanines, etc., to model, furnished to order by
THE PRAT \& WHITNET CO., Hartiord, C
BLAKE'S PATENT BLAKE'S PATENT
tone and Ore Breake

Ge0. W. Read d Co., ALL KINDS OF HARD WOODS, IN LOGS ALL KINDS OF HARD WOODS, IN LO
PLANK, BOARDS, \& VENEERS, 186 to 200 Lewis St., Foot Sth \& 6th Sts.
 Cearr, and white Holly,
男 Orders by mail have prompt and careful attention
S475 A MONTM TO AGENTSS. Addresic. M
PaTENTS $\begin{gathered}\text { F. T. H. RamsDEN, Bryan Block, } \\ \text { Child and }\end{gathered}$

FOR SALE-AN UNFINISHED IRON, T THIN SCREW STEAM VESSEL

Length bet ween Perpendiculars..	390 feet.
Breadth of Beam...............	45 "
Depth to Main Deck.	24% "
Lisplacement at 22 feet draught.	6,000 tons.
Area of Midship Section.	890 sq. ft.

Area of Midship Section...............
RNGings.
Two patrs, each pair driving one Screw.

Stroke of Piston...
Surface Condensers
area........
schems.
Dlameter......................................
Pttchber
Number of Blades....
Bo.............
Bolvrs.
Ordinary

R. H. thurston, Hoboken, New Jersey
5000 AGENTS WANTED States of Amestica.

To Electro-Platers.

SHINGLEA AND BARREL MACHINERY.-

PORTABLE STEAM ENGINES, COMBIN-

RON BRIDGES-CLAREE, REEVERS \& CO,

Machinery,

Wood and Iron Working of overr Gird. Leather and Rabber Beltung, Emery

Sturtevant Blowerg.
Cold Rolled Shafting.
 Niagara Steam Pump. OHAS. B. HARDICK,
THE Jon
NARDICK
Namp.
 WV OOD-WORKING MAGHINERY GEN.

THE Union Iron Mills, Filisbburgh, ras

B ank vertical Steam Engines. Also, new and second B and Vertical Steam Engines. Also, new and second HINGLE \& RARREL MACHINERY

A Set of 12 Steel Lathe Dogs

 MAGNETS-Permanent Steel Magnets

 ,

sAFETY Hoisting
Machinery.
oTr,

E. M. MA MO'S PAT. ROLT COTTER.

Andrew's Patents.

ANDREFR8 \& BRO
414 Water Street

$\mathbf{R}^{\text {ICHARDDOON, MERLAM } \& \text { CO. }}$

hossers national
Cottage Architecture.

 Monckton's national six iollare dont

P. BLAISDELL \& CO.. Manaractruert of the glatalel Patent Upright Drull FARALE-TWOVALUALLENVENTONS, Chasp ANOTHFR GHANGH
Fifth and Last Gift Concert Public Library of Kentacky

November 30, 1874
drawing certain at that date.
LIST OF GIFTS.
One Grand Cash Gift.................. 5250,000
 One Grand Cash Gitt................... $\begin{array}{r}\mathbf{5 0 , 0 0 0} \\ \mathbf{5 0 , 0 0 0}\end{array}$

15 Cash Gifts, $\$ 220,000$ each.... $\mathbf{1 0 0 , 0 0 0}$ $\begin{array}{ll}10 \text { Cash Gifts, } & 14,000 \text { each } \\ 140,000 \\ 15 & \text { Cash Gifts, } \\ 10,000 & \text { each.... } \\ 150,000\end{array}$ $\begin{array}{llll}20 & \text { Cash Gifts, } & \mathbf{5 , 0 0 0} \text { each.... } & \mathbf{1 0 0 , 0 0 0} \\ 25 & \text { Cash Gitts, } & \mathbf{4 , 0 0 0} \text { each... } & \mathbf{1 0 0 , 0 0 0}\end{array}$ $\begin{array}{lll}30 & \text { Cash Gifts, } & \mathbf{4 , 0 0 0} \text { each.... } \\ 50 & \mathbf{9 0}, 000\end{array}$

 $\begin{array}{lr}\mathbf{2 4 0} \text { Cash Gitts, } & \mathbf{5 0 0} \text { each... 120.000 } \\ 500 \text { Cash Gifts, } & 100 \text { each... } \\ 50,000\end{array}$ | 500 Cash Gifts, | 100 each... |
| ---: | ---: |
| 19,000 Cash Gifts, | 50 each.... 950,000 | GrandTotal,20,000 Gifts,all cash,2,500,000 Whole Tickets. Whole

Halve

Halves, $\quad . \quad . \quad 2500$
Tenth, or each Coupon \cdot
11 Whole Tickets for

THO. E. BRAMLETTE, Agent and Manager.
Pubitc Library Bullding, Loulsville, Ky
1832. BCHENCK'S PATENT. 1871 WOODWORTH PLANERS

WOOD WORKINGE MACHINERY

$\mathrm{M}^{\text {ASON'S PATTT FRICTION CLTCTCES }}$

気avertisements．	
must be received at publication offce as early as Briday mornino ぃ appear in next 8884 ．	
$\xrightarrow{3}$ THE	
Pants＇Strotcher	
（OVER $2 \overline{20,000} \mathrm{IN}$ USE）． Enclose $\$ 2$ for sample． P．DEL VALLE BALSET，	

PRATT＇S

ASTRAL 0 IT．

EVERY VARIETY STEAM PYMPS SEND FOR ILLUSTRATED GATALOGUE HAMILTON，OHIO．
 COLD ROLLED

 Hed

Todd\＆Rafferty Machine Co．

The Chilean Exposition

PATENTS acted as solicitors of patents in the Onited States and
forcign countries for more than a quarter of a cen ury．More than Firty trousand inventors have availed themselves of their services．All patents se－
cured through this agency recelve a spectan noticein the Scirntific Amprions，which frequently attracts pur－
chasers for the patent． chasers for the patent．
Inventlons examined，and ad Fice as to patentability free
Patents obtained in the best manner，and with as ilt－ Patents obtained in the best manner，and with as
tle delay as possible． Caveats prepared from elther model or
aled in the Patent Oflce at short notice．
Special examinations as to the patentabillty of inven－ drawing and description；cost for this search and re－ port， 85.
Trade Marks．－The necessary papers for securing protection to manufacturers and merchants in thio Design Patents，for protecting artists office． of any new ornamenta work，are quickly and cheaply obtained through this offlce．
Copyrights obtalned．
Foreign Patents are solicited in all countries where full partculars，mailed on application．
Canada Patents．－Canada is one of the bent countries for patents．The cost depends upon the length of t1me for which a patent is desired．Full particulars by mall we shall be
heir moaels and drawings，and advise with them as to obtaining patents without consultation fee．Every
kind of information pertaining to patents，at home or kind of information pertaining to patents，at home or abroad cheerfally given
directions for obtaining patents．Address
Pubushers BCIENTIFIC AMERICAN

TANNATEOFSODA，

 SUPFR－FIFATHERS

 saper－heated Steam on

 THTANTE MUPT COMPANY ${ }^{2}$ EmeryWheels \sim TAMITE ${ }^{2}$ EmeryGinders TROURSBLIR

Working Models

 Machilis is unis
CHASA．OHEEVER N
 MACHINISTS TOOLS，

$\bar{B}_{\text {CEARTDS＇}}^{\text {OGATENT UNIVERSAL EC }}$

 Ritites，Shot Gnans，Revolvers

COVERING

 THE HEALD \＆SISCO Patent Centrifugal Pumps，

 OFFICE $\triangle N D$ $\boldsymbol{C A} \boldsymbol{A} \boldsymbol{T} \boldsymbol{S T E} \boldsymbol{E L}$,

HARTFORD

STEAM BOILER

Inspection \＆Insurance COMPANY．

W．b．Franklin，V．P’t．J．M．Allen，Pres＇t

 J．b．Pigrcs，Sec．hartrord conn．

IRON PIANERS，

Mill FurnishingWorks

POKTLAND CEMENT，

 AMERICAN SAW CO． TRENTON，N．J．
GREAT REDUCTION ${ }_{\text {ı }}$ PRICES MOVABLE－TOOTHED
CIRCULARSAWS．

GEORGE BARNES \＆C0．

Manufacturers．Syracuse，N．Y． WIRE ROPR．
Minerore

GREATEST INVENTION of the AGE． ELECTRIC \＆VAPOR CHAIR．

 F OR SALE－2nd hand Portable and Sta．

 Machinery， Crane Bros．Mfg．Co．， CHICAGO．

KEYSTONE PATENT FOBGES

H．S．MANNING \＆CO．，Agents BコSSMMER
SteclWireRopes

HOUSTON＇S PATENT
TURBINE WATER WHEEL

Asbestos Materials． $2=$

PORTLAND CEMENT

PR

SCIENTIFIC AMERICAN． FOR 1875.
the most popular scientific paper IN THE WORLD．

THIRTIETH YEAR．
VOLUME XXXIL－NEW SERIES． The pablibhers of the scIENTIFIC AMERICAN beg owrolume commences．It will continae to be the of the publishers to render the contents of the new rolume more attractive and useful than any of its pre It is the Most Popular Paper in the World ！ having the large circulation of nearly 50,000 per weel
A year＇s anambers contaln over 800 pages and several A year＇s nambers contain over 800 pages and severa undred engravings of new machines，aseful and novel
inventions，manufacturing establishments，tools，and

To the Mechanic and Manufacturer l No person engaged in any of the mechanical pursuits ons．Every number contains from six to ten engravings of new machines and inventions which cannot be found any other pabication
The Popr Scican is devoted to the inte arts，Manufac
tures，Inventions，Agriculture，Commerce，and the indua rial parsults generally；and it is valuable and instruc the Household，the Lbbrary，and the Reading Room By the new law，the postage must be paldid in advance
in New York，by the publishers；and the subscriber then recelves the paper by mall free of charge．
TRRMS．
One Copy，one year（postage included）．．．．．．．．． 83.20 $\begin{array}{lll}\text { One copy，} 811 \text { months（postage included）．．．．．．．} & 1.60 \\ \text { One copy，three months（postage Included）．．．．} & 1.00\end{array}$ One copyof Sclentific A merican for one year，and one copy of eagraving，＂Men of Progress＂．． 10.00
Onecopy of Sctentific American for one year，and Onecopy of sclentific Amertcan for one year，and
one copy of＂sclence Record＂for 18i4．．．．． 5.50 Remit by postal order，draft or express． Address all lette
drafts payable to

MUNN \＆CO．，

THE＂Scientific American＂is prinued writh

