a Weekly journal of practical information, art, science, mechanics, CHEMISTRY and manufactures. Vol. XXXI.-No. 12.]
 NEW YORK, SEPTEMBER 19, 1874.

CLEVELAND IRON INDUSTRY AND ITS FOUNDERS.
The rapid growth of the iron manufacture in the North Riding of Yorkshire, England, is one of the most remarkable features of the history of the trade. It commenced in 1850 ; in the next year 187,950 tuns of iron were taken out of the mines; in 1856 the gield was1, 690,000 tuns ; and in 1870, 1,695,377 tuns of pig iron was made in the district. Under this remarkable development, it is natural to expect that large fortunes have been made, new towns sprung up, and industrial establishments of all kinds organized. Mid dlesbrough, a town in the center of the trade, has aggregated a population of 40,000 , while the whole district has in creased from 20,000 to 250,000 .
Bolckow and Vaughan have always been the chief iron-pro ducing firm in the Cleveland district. They employed for many years not less than 10,000
hands, paying $\$ 5,000,000$ a year wages, and running a large pro portion of the 150 or 160 blast fur naces in the neighborhood. The business is now in the hands of a stock company
Mr. Bolckow, who was elected, in 868, to represent.Middlesbrough n Parliament, was born at Sulten n Mecklenburg, Germany, in 1806. In 1821, when only fifteen years of age ${ }_{3}$ his parents placed him in a merchant's office at Rostock. Here young Bolckow's intellec was developed, and his powers of perception exercised. He had re olved to surmount the difficultie which threatened his further pro. ress; and if knowledge were pow er, then he would obtain it. It vas clear there was no royal road, and individual effort was bis only hope of success. He accordingly made the best investment of hi capital, which was his mind. He had resolved to make a mark in the world.
In 1827 he commenced business operations in conjunction with an intimate friend and companion, at Newcastle-on-Tyne, and wa known as a man who had a high regard for commercial morality and as possessing remarkable busi ness qualifications. His position onabled him to exercise the splen did abilities with which he was ondowed; and at the age of thirtyfour, in the meridian of human life, he decided to go in search of a larger field for his labors. Mid. dlesbrough was selected as the center of his operations, and he was fortunate in meeting with the late Mr. John Vaughan, a practi cal iron maker; and the two en tered into partnership in the iron trade. Their capital was not large, therefore their operations were limited, and it required great pru dence in the carrying out of their arrangements: The firm erected blast furnaces on a very smal scale, in 1841, and commenced th manufacture of iron. The ironstone had to be conveyed a considerable distance, which necessarily increased the cost of production. Just, however, as the matter was claiming the serious attention of the new firm, Mr. Vaughan discov ered the Cleveland ironstone. The two partners were de lighted with the discovery, but they did not allow their feel ings to overcome them. They had an object in view, and firmly united to perform it, the one undertaking the commer cial management, and the other the practical part of the bu siness. The firm continued to prosper, and as each year passed additions were made to their works; and although most of the firms were increasing their capital, few, if any, were doing this so rapidly as Messrs. Bolckow and Vaughan. It was their good fortune to prosper so that in the course o a short time they were enabled to multiply their works. Their policy appears to have been to make the most of their limited capital, to win the confidence of all with whom they came in contact, to increase their circle of friends, and, while exercising patience, to be industrious and frugal in their expenditure.
As an employer Mr.'. Bolckiow was generally respected.

Anxions i. aul umes to promote the well being of his workmen, he never lost an opportunity of doing good. He often expressed his regret at the improvident habits of his workmen, and endeavored by every legitimate means to impress the desirability of a different course being pursued. It is recorded that he had an intense desire to see every public house closed in the district, and frequently used his efforts to prevent the sale of intoxicating liquors. Whatever may have been his expression on this subject, it is certain his habits were temperate, and he has ever taken a prominent part in the promotion of social, moral, and religious reforms, having for their object the advancement of mankind.

Anxious to improve the educational facilities of the town
Anxious to improve the educational facilities of the town
e erected schools at a cost of $\$ 35,000$, for the accommoda
and New Orleans. The safe removal of soil is a matter of such sanitary moment, especially in large communities, that inventions for the purpose, proving really meritorious, deserve careful public consideration.

Manufacture of Plate Glass.

The manufacture of plate glass, as now conducted by the Thames Plate Glass Company, at Blackwall, London, is as

The principal successive operations necessary to convert a mixture in the pot into a finished sheet of plate glass are six in number, and may be described under the heads of melting, rolling, annealing, grinding, amoothing, and polishing The pots are of Stourbridge clay, made on the premises, and are filled with the mixture, the chief ingredients of which are silica, sand carefully dried, lime, sulphate of soda, broken white glass, and a little arsenic. The sand is obtained from Germany. After remaining in the furnace for about sixteen hours, the contents of the pot are fit for removal. The molten mass is then run over the surface of the rolling table, and the roller passed quickly over it. The glass conk mences to solidify almost immediately; and while in a thick te. nacious condition, and of a rich golden tint, is rapidly transferred into the annealing furnace. The rough sheet, as it may now be termed, is taken from the annealing furnace to the grinding room of these there are several, con taining about a dozen grinding stones, or, more properly, beds or tables, upon which the plate is laid flat, The grinding frames consist of wooden boards joined together and armor-plated, so to speak, at intervals over the rolling or grinding surfaces with strips of wrought iron. These strips, when first screwed on to the frames, are half an inch in thickness, and when removed measure less than one eighth inch. The frames are mounted upon a spindle, and a see-saw, semi-rotary movement is imparted to them by shafting running underneath the beds. They are also capable of being shifted by a simple slot connection, so as to work overany part of the surface of the sheet as required. The grinding beds are of stone, and measure aboat 16 feet by 11 feet. The materials used as the grinding agents are coarse sand, fine sand, and emery. A jet of water plays on the surface of the sheet during the whole of the operation.
Between the grinding and polishing processes thereis an intermediate process called smoothing, in which two sheets of glass are employed. One is laid over the other and caused to move over it

H. W. F. BOLCKOW, OF MIDDLESBROUGH.

tion of 1,000 children. Nor is this the only act deserving our admiration. Every charitable institution in connection with the town has had its funds augmented by his liberal ubscriptions. The greatest act of munificence howerer was the gift of a park to the people of the town wherein he had acquired his wealth. This cost upwards of $\$ 100,000$; and in thus granting so large a portion of his profits, it is an evidence that he was not unmindful of the masses who had contributed to his immense wealth.

The Odorless Excavating Apparatus.

We notice, with pleasure, that the odorless excavating apparatus, illustrations and descriptions of which were published on page 255 of our Volume XXIX., is meeting with success which appears to substantiate fully the important claims made by its introducers. It has received full indorsement in the reports of the Boards of Health of Washington, Baltimore, and Philadelphiq, and is now in constant employment in the cities of Boston, Providence, Pawtucket, New York, Brooklyn, Wilmington (Del.), Baltimore, Washington, Georgetown (D. C.), Charleston (S. C.), Savannah, Memphis,
in a manner similar to that in grinding. Emery is placed between the two surfaces. On entering the polishing room, the attention of a visitor is at once arrested by the reddish tinge of everything, extending to the dresses of the men and women engaged therein. This is due to the use of the red oxide of iron which is the polishing agent. The sheet to be polished is laid flat on a table, so as to be perfectly flush with the edges. The rubbers are of flannel and mounted on a frame, which carries them backwards and forwards over the sheet. The table, at the same time, has a lateral reciprocating motion, so that the whole. surface of the sheet comes successively under the action of the rubbers. The largest plates measure about 15 feet by 10 feet, and the maximum thickness is about $1 \frac{1}{2}$ inches. One eighth of an inch is al. lowed for loss in the operations we have described. A nest of six boilers, and three vertical steam engines, two of 70 horse power and one of 60 horse power, supply the necessary motive power.
On September 2, the volcano Etna, in Sicily, was in violent eraption, which showed no signs of abatement.

Srientific बAmprican.

MUNN \& CO., Editors and Proprietors. pUBLISHED WEEKLY AT
NO BY PARK ROW, NEW YORK.
o. D. MUNN. A.e. BEACH.

VOLUME XXXI, No. 12. [New Series.] Twenty-ninth Year
NEW YORK, SATURDAY, SEPTEMBER 19, 1874.

PROFiSSOR TYNDALL'S ADDRESS BEFORE THE BRITISH association
A most remarkable npeech from a most remarkable man. Masterly in thought, profound in learning, keen in logic, it is startling in the boldness and vigor with which its author declares his faith in a materialistic doctrine and in the hardihood with which, asserting that forms of religious opinioa have ever impeded Science, he claims for the latter unrestricted rights of research, while relegating the former to the aphere of the emotions. Such is Professor Tyndall's address delivered at the recent session of the Britiah Association for the Advancement of Science at Belfast; and its utterances, if we mistake not, will arouse as acrimonious debate and call upon the head of the author as fierce denunciation as did the publication of his famous opinions on the "prager gage." The time and place incident to the delivery of tho discourse give to it additional weight; for in addition to its beivg the personal views to which he, as an eminent scientist, has been led by lifelong thought and study, it is an ex cathedra pronouncement of the President of the greatest and most influential of British scientific associations, which, and most infuential of British scientific associations, which, un ess distinctly repudiated, renders that body, in the eyes
of the world at least, more or less responsible for its pronulgation.
To understand the position which Professor Tyndall has taken in this sudden invasion of the neutral territory lying between scientific and religious thought, the reader finds himself called upon to reconcile views which at first sight appear at wide variance. "Abandoning all disguise," says the speaker," the confession that I feel bound to make before you is that I prolong the vision backward across the boundary of the experimental evidence, and discern, in that Ma:ter which we, in our ignorance, and notwithstanding our professed reverence for its Creator, have hitherto covered
with opprobrium,the promiseand potency of every form and with opprobrium,the promise and potency of every form and
quality of life." quality of life."
This, standing alone, is unquestionably the most open materialism: but its force is modified when the assertion follows that " the whole process of evolution is the manifestation of a Power absolutely inscru table to the intellect of man. As little in our day as in the days of Job can man by search ing find this Power out. Considered fundamentally, it is by the operation of an insoluble mystery that life is evolved, specite differentiated, and mind unfolded, from their prepo-
tent eiements in the immeasurable past. There is, you will tent eiements in the immeasurable past.,
observe, no very rank materialiem here."
There is no negation of a creative power, while the affirmation of a sustaining cause repels the notion of atheism. The challenge is hurled at the theologians, the advocates of the science of divizity, and not the simply religious whose nature impels them to the belief in and leads them to love and reverence for their Creator.
Professor Tyndall demands for Science freedom of thought in every department of knowledge. He denies, in fact, the right of theology to compel us to accept in blind faith truths susceptible to the investigation of our own reasoning facal-
ties.

In thus noting the views of a distinguished thinker, we chronicle an event of no common importance: albeit it is one of which the wisdom will be widely questioned, and the ex pedience (of directly bringing into popular controversy thoughts likely to disturb the faith of many) denied, even by believers. It must not be lost sight of that the large ma jority of people never think, but receive the faith of thei ancestors unquestioningly; others are incapable of thinking for themselves, others too indolent and careless regarding the whole subject. These have regarded the agitations of the groat theories of evolution and the like, which have deeply moved the scientific world, with indifference, and classed them with the older doctrines of Comte, Spinoza, and similar writers, which they abhor as atheistical and subver sive of all religion and piety. On such people, the unmis takable utterances of Tyndall, diapersed broadcast by the
public journals and not buried in technical publications, public journals and not buried in technical publications, must have their effect; but whether the seed thus sown will fall on good ground and produce broader, wider ideas of the ineffable greatness of the Creator, or be choked by the tares of a belief undermined, resulting in skepticism and infidelity is a question which every individual must answer according to his own conscience.

A WOMAN WITHOUT BONES.

The social developments across the water show a lamenta ble state of affairs due apparently to no other cause than a deficiency of backbone in one or two individuals.
When such disastrous consequences proceed from the weakening of a part only of the human framework, we sincerely trust that there may be no spreading of the disease lately developed across the ocean in the person of an Iriah woman, who lived to see her entire skeleton waste away until it was but a fourth part as heavy as a new born babe. The case occurred in Dablin, and may truly be called extraordinary. The victim, forty-five years old, was a patient in an insane asylum. For five years she was confined to her bed, complaining of no pain, but gradually becoming weake while dwindling in stature until she lost half her hight.
As the disease progressed, her limbs were coiled up in every possible shape, the bones becoming extremely light, soft, was left of her skeleton, including the skull, weighed two pounds and a half. The number of fractures was prodigious. The ribs were in a hundred fragments. The head of the humerus was bent; the fibulæ were curved; the thigh bones and pelvis were huddled together; the bones of the vertebre were thinned and worn away across the front of their bodies the lower jaw was atrophied and broken into three pieces; the base of the skull was cribiform all through. Had she lived a little longer, it was thought that not a vestige of a bone would have been left in her body. What ailed her no one could tell, the disease being almost unheard of and difficult to diagnose, treat, or even name. Professor R. W. Smith, of Dublin University, who brought the case before the Pathological Faculty, looked upon the condition of the bones not as a disease but as a manifestation of a diseased condition as yet unknown, possibly related to rickets.

LIVING BAROMETERS

That is a curious instinct which a large number of animals possess, of predicting the weather and signifying the approaching change by peculiar movements or sounds. Some of their actions in this respect appear to be more governed by reason than by mere instinct, others are clearly due to the moisture in the air or various atmospheric influences, while some, which occur under conditions which prevent their being referred to the latter cause, offer an interesting field for the investigations of the naturalist. The presence of the barometer in almost every farmhouse, together with the weather bulletin or the dictum of "Old Probabilities," good for the next twenty-four hours, render such homely knowledge as that which governed the labors of the farmers and sailors of the last century almost superfluous in this advanced age; but the subject, like all topics which relate to the sagacity of the lower animals, is of itself an interesting one. And besides, it is not entirely impossible that some farmer to whom the barometer, if he had one, would be incomprehensible, and whose location prevents his obtaining the weather reports, may, by some odd action of his own cattle, of some insect, or of some bird, as described in the following lines, be forewarned of a coming storm in time, and ave perhaps a crop during the present harvest months.
We have said that certain movements on the part of the
animals, before a change of weather, appeared to indicate a animals, before a change of weather, appeared to indicate a
reasoning faculty. Such seems to be the case with the common garden spider, which, on the approach of rainy or windy weather, will be found to shorten and strengthen the supporting guys of his web, lengthening the same when the storm is over. There is a popular superstition in England that it is unlucky for an angler to meet a single magpie; but two of the birds together are a good omen. The reason is
that the birds foretell the coming of cold or stormy weather; and then, instead of their searching for food for their young in pairs, one will always remain on the nest. Sea gulls predict storms by assembling on the land, as they know tha the rain will bring earthworms and larve to the surface. This, however, is merely a search for food, and is due to the same instinct which teaches the swallow to fly high in fine weather, and skim along the ground when foul is coming They simply follow the flies and gats which remain in the warm strata of the air. The different tribes of wading birds always migrate before rain, likewise to hunt for food There is a large variety of actions of which it is hardly possible to give a satisfactory explanation. Coming rain is
foretold by the peacock uttering frequent cries, by the
woodpecker lamenting, by parroquets babbling, by pintados perching, and by geese running around uneasily. So also it is said that, when a storm is at hand, swine will carry hay and straw to hiding places, oxen will lick themselves the wrong way of the hair, sheep will bleat and skip about, hogs turned out in the woods will come home grunting and squealing, colts will rub their backs against the ground, crows will gather in crowds, crickets will sing more loudly, flies come into the house, frogs croak and change color to a dingier hue, dogs eat grass, and rooks soar like hawks.
It is probable that many of these actions are due to actual neasiness, similar to that which all who are troubled with corns or rheumatiam exparience before a storm, and are caused both by the variation in barometric pressure and the changes in the electrical condition of the atmosphere.

PLUMBERS' CARELESSNESS.

The Prince Consort of England was killed by typhoid ever generated by foul sewer gases, due to carelessness and gnorance in the plumbing work of his residence. The Prince of Wales nearly lost his life through the same insidi ous means, due to the same inexcusable cause. One of the grandest and most venerable of English cathedrals, that of Canterbury, was badly injured and nearly destroyed through sparks from a carelessly managed plumber's furnace ignit ing the roof. The magnificent Alezandra Palace, just com pleted and containing works of art of immense value, quite recently fell a victim to the flames, again originating among the plumber's working apparatus. Later still, the burning of the Liverpool landing stage, the greatest floating platform in the world, is now stated to have been due to the careless ness of the plumbers employed in joining the gas pipes beow the flooring. The dangerous qualities of carelessness and ignorance, which are inherent to the workman of the rade, are therefore very justly coming in for their full share of reprobation from the English journals.

Are we to spare a prince for every step of progress, or will our plumbers learn for the future without? They burn down cathedrals and music halls with unflinching impar tiality by means of a system of soldering long ago abandoned by other nations. Thivking a good 'wiped joint' the per fection of human ambition, the plumber takes a long time over it and admires it lovingly from every side before he can make up his mind to part with it. This choice produc tion of human skill is perhaps laid in the earth or built into wall, and has no need of this fine art finish. but gets it, nevertheless." So says a correspondent of the English Builder. We echo his remarks with a grim sort of satis faction, for it is not very long since we experienced one of the advantages of these lovely wiped joints, artistically molded by a bungler's paw. The completion of the work was the signal of a series of complaints (by the occupants of the build ing) that the water refused to run, except in a miserable little stream, from any of the faucets. Then we hired more plumbers to find out the mistakes of the first ones, and these overhauled pipes, and poked sticks and wires down them, and nosed around the cellar, and went on the roof, and ripped up the street. This was to the tune of something over a hundred dollars-still the water would not come; then the plumbers went at it again, and probably would have been struggling with wires and wrenches and spades and pincers up to the present time, had not some one suggested to look
at the joints, and then the evil was found. One important wiped joint had had the solder squeezed into it so as to block up nearly the whole bore, and of course but very little water could pass through.
We hired another of the craft not long ago to look after a furnace, from every register of which horrible smells were emitted. We had a man and a helper; the duty of the latter was to hold a candle and converse with the man on appropriate and interesting topics, for which we paid him some dollars per day. This pair of worthies we turned loose in the house, with instructions to find out and eradicate the trouble. They got into the furnace, and poked brooms up into the fiues, and took off the registers and poked brooms down. Then they pulled out several pieces of flue and soldered them over again,nobody ever could divine what for. Then they upset a furnace on a heap of kindling wood and nearly burnt the house down; and finally, after some days' tinkering, brought us an astonishing bill. We paid it, supposing that the work was thoroughly performed; but on lighting the furnace, again came the odor. On making a personal investigation, the first door that we opened (that in the brick casing of the furnace, which these individuals never thought to touch) revealed the cause in the shape of a bushel of dead rats. To make matters worse, the flues, which they had pulled out and fixed, had come to pieces, and we had to hire more plumbers to solder them with something besides rosin.
A few pages further on, in the same issue of the journal from which we clip the extract given in the beginning, is the report of the conflagration of some fine tenement houses in Edinburgh, due to a plumber's carelessness. The man left his furnace with a bright fire in it on the leads and went to dinner. A strong breeze blew it over, and the igniting of the building was the natural result.
We have no space to go over the series of outrageous botches which have been foisted upon us, coupled with enormous charges from plumbers, in this city. We have seen traps put in waterclosets, of not the slightest use in keeping down the noxious emanations. Water pipes run up the back walls instead of between the party walls, of course freezing at the first frost; new joints are made between floors, through which, the moment water was let on, the leakage poured out, to the ruin of our ceilings.
In fact mo often have we been ruthlessly victimized that
when we do obtain a plumber that does his work in an hon. est, workmanlike, and substantial manner, at moderate cost we shall be disposed to cherish him as a jewel of rare price.

QUICR $A S$ WINR

Our notions of the value of time are altogether relative Ordinarily a minute more or less is a matter of little mo ment. A would-be passenger, who arrives at a railway sta tion just in time to be too late, realizes that even a less in terval than a minute may materially affect his calculations. To the timer of a closely contested race, a second is impor tant; it may be a quarter of a second will make all the dif ference between fair speed and the "fastest on record." To the astronomical observer, a quarter of a second is a very long time, as an uncertainty of that amount might render worthless an observation which he can never hope to repeat, and for which he may have journeyed thousands of miles.
In some cases an interval so brief as that required for the movement which stands proverbially for instantaneous action may have a material effect on the accuracy of a calculation indeed it is at times not only necessary to know and make allowance for the time of movements as quick as winking, but to know substantially how much quicker one man wink than another.
Though the movement of the eyelid is so rapid that there is no apparent interruption of vision, the act really involves half a dozen distinct physical and mental operations, the duration of each of which can be closely measured. If the movement is reflexive or involuntary, time is required fo the transmission of the impelling sensation to the sensory center, time for its reflection to the winking muscle, time to overcome the inertia of the muscle-the period of latent excitation, as it is called-and lastly time for muscular contraction. That the sum of all these periods is something considerable can be roughly proved by counting the number of winks one can make
ticking of a watch.
The purely reflexive part of the act of winking has been ingeniously timed by Dr. Sigismund Exner, who chose thi act as the one best adapted to enable him to determine the time required for a complete refex action. His apparatus consisted of a very light lever of straw, terminated at one end by a bristle which was applied to the eyelid, the other end being connected with the usual contrivance for exactly registering the beginning of muscular contraction. The timulus was an electric spark, applied in two ways, by pass ng in front of the eye and thus acting on the optic nerve, or by exciting the nerve of sensation by striking dircctly on the
cornea. He found the interval between the spark and the cornea. He found the interval between the spark and the
beginning of motion (that is, the time occupied in the transmission and reflection of the sersation, with the period of latent excitation in the muscle) to vary, with the intensity of the stimulus, from about $\frac{1}{1} \frac{1}{8}$ to $\frac{1}{3}$ of a second, the stronger the spark the quicker the action. The period of latent ex-
citation of muscle in man has never been precisely deter. citation of muscle in man has never been precisely deter mined. Dr. Exner estimated it at about a hundredth part of purely retlexive part of the act of winking to about $\frac{1}{22}$ of a second for a weak impression, and $\frac{1}{27}$ of a second for a stronger stimulus.
For a voluntary wink, a slightly longer time appears to be required, since a measurable interval is occupied in the act of volition.

What makes the apples rot

Our worst enemies are the smallest. All the ravenou beasts in the world, mad doge included, probably destroy fewer human lives than are destroyed in this city alone by the ravages of those minute but virulent organisms of the genus micrococcus, to which we owe small pox, diphtheria and some other malignant diseases. Simularly, the thousand sturdy weeds which annoy the farmer, the caterpillers and grasshoppers which occasionally devour his crops, are relatively innocent and harmless compared with the numerous microscopic pests which rust his grain, rot his potatoes and fruit, and otherwise levy their burdensome taxes without making themselves visible.
Jast at this season, not the least interesting of these individually insignificant, collectively enormous, nuisances are the two forms of fungus growth which have most to do with the untimely destruction of fruit-mucor mucedo and pencillium gluucum.
Oar apples decay,not because it is their nature to,as Watte might say, but because it is the nature of something else to seize on them for subsistence, as we do, at the same time making of them a habitat, as wedo not. Kept to themselves, apples and other fruit never rot; they simply lose their juices by evaporation, shrivel, and become dry and hard, or, if kept from drying, remain substantially unchanged, as when securely canned. It is only when invaded by the organisms we have named that they lose color and quality take on offensive tastes and odors, become covered with white or green mold-in short, develop rottenness and decay.
Formerly this process was thought to be no other than continuation or exaggeration of the natural process of ripen ing, the chemical changes which produce the odor and flavor of the ripened fruit simply going on to their legitimate though less delightful end. But this theory overlooked the very common and important facts that fruit may rot without ripening, and that ripe fruit will not rot if properly pro octed.
It was not until the microscope was brought to bear o the problem, and the conditions of decay were so convincing. ly demonstrated, by Davaine, that the resl nature of the
process became clear. Now we know that, so far from being
the complement of growth, the antithesis of life, decay is in reality the taking on of a more rapid though specifically different growth. It is aynonymous not with death, but with intensely active life.
In general structure, the numerous microscopic fangi are very much alike, consisting mainly of a network of colorless cells and filaments, called the mycelium. This is the vegetative part. There is, besides, a reproductive part, in which is produced the seed or "spore," the structure of which is different in the different genera. In the mucor each reproductive filament bears a globular swelling at its superior xtremity, in the interior of which the spores are developed. In the pencillium glaucum the reproductive filament bears a uft of from four to eight branches, which, in turn, produce apon their extremities a chaplet of small oval spores. It is called pencillium on account of this pencil-like tuft of its spore. bearing filaments, and glaucum from their bluish green tint. The mold so frequently seen in oranges is produced by this ungus. It is comparatively of slow growth, and the alteraion it produces in the properties of the fruit it lives in and pon is not so marked as that caused by the mucor.
When a fruit is invaded by either of these fungi, the egetative filaments send their branches among and around the fruit cells, and rapidly envelop them in a network of mycelium, absorbing the substance and juice of the fruit, and producing the chemical transformation characteristic of decay. All this goes on in the interior of the fruit, the ructification of the fungus taking place only on the surface, in contact with the atmosphere. For this reason fruit covered we call corruption within-in other words, thoroughly decomposed by fungus growth-while no visible mold-the fructifying part-appears on the surface. On the other hand, thin-skinned fruits like the strawberry, which are easily pierced by the reproductive filaments, are often covored with an abundant fructification in a very short time for the fecundity of these microscopic fungi is sometimes as marvelous as the rapidity of their growth. For example: A ingle zöospore of the peronospora infestans, which causes he potato rot, will envelop the cellular tissue of a potato eaf with mycelium filaments in twelve hours, and fructificaion will be completed in eighteen hours longer. One square ine of the under surface of a leaf, where the fructification aturally takes place, may bear as many as three thousand pores. Each spore supplies half a dozen zöospores, individ ually capable of originating a new mycelium. From one quare line, therefore, there may come, in less than two days, nearly twenty thousand reproductive bodies, and a square nch may yield nearly three millions! No wonder the disease spreads rapidly.
In the case of fruit, decay may be originated in two ways and two only: by direct contagion or by wind-wafted spores With firm-skinned frait like applea, atill another condition is essential, namely, a break in the skin of the fruit to allow he parasite to enter and take possession. In every case of decay in apples, the center of disturbance will be found at a bruise, scratch, or puncture; and unless such a way be opened, the apple may hang until it is dry as leather, or it may lie for weeks in direct contact with rottenness, and remain perfectly sound.
To this it may be objected that the constant presence of the ungus in decay is no proof that it is the cause of that condition, on the contrary, the breaking down of the fruit tissue by violence, and subsequent chemical action owing to access of air, may rather make the growth of the fungus possible by preparing a suitable soil for its development. The objection has been met in the investigations of Davaine. The evi dence that the fungus precedes and causes the changes which we call decay is of the same character as that which estabishes the connection between a vaccine pustule and inocula on by vaccine virus. When sound fruit is inoculated with he spores of pencillium, decay begins at and spreads from he point of inoculation. Apples similarly wounded, but no noculated, remain the same.

fat in forage plants

To any one not a chemist or a quadruped, the last place to look for fat would be a hay mow or a stack of straw; yet it appears from recent investigations that fat is not only an assential constituent of hay, straw, and similar forn getation, but one of considerable economic value
In the lower leaves of oats in blossom, Arndt found as nuch as ten per cent of the dry weight to consist of fat and wax, the latter appearing as the bluish bloom so conspicuous on the leaves of luxuriant cereals. In fodder crops, genrally the greatest proportion of fat is found in young and hrifty plants. Thus Way found early meadow grass to conain as much as six and a half per cent of fat; whilein that of the same meadow, collected in the latter part of June, there was but a little more than two per cent. The proportion of at is increased by nitrogenous manures: the grass of a ewaged meadow at Rugby contained above four per cent of at, while similar grass, not sewaged, afforded less than hree per cent of fat.
The nature of this sort of vegetable fat was investigated some little time ago by the German chemist König, who found that by treatment with strong alcohol the fat of grass and clover hay could be separated into two parts, one a solid waxy substance, the other a fluid fat, soluble in alcohol. A frbl he considered the latter to be a proved that, though it contains the same proportion of carbon and hydrogen as ordinary fat, the fluid fat of hay is omething quite different, since no glycerin can be obtained from it.
König has since confirmed these results and carried for
ward the investigation, showing that the fat of oata, rye,and vetch seed is similarly constituted. In all these forms of vegetation, hay, oat straw, the grain of oats, rye. vatches, and possibly others, he finds oleic and palmitic acids, not combined with glycerin but in a free state; and as these acids in their combinations are well known as large ingredients of nutritive fats and oils, it is likely that they have a considerable-influence on the value of these plants for odder.
König also finds in hay and in oat straw the important ingredient of animal bile, cholesterin; still further,cerotic acid, a waxy body which forms twenty-two per cent of ordinary beeswax; and two fatty substances new to Science,one fuid, the other solid. They are distinct compounds, having the character of fatty alcohols. Another interesting discovery in hay fat is the presence of a hydrocarbon, the relations of which are not fully made out. In several respects, it agrees with some of the paraffins.

bCiEntific and practical information.

effective power of ancient weapons.

A curious and interesting series of experiments recently took place in France, under the auspices of the Directors of the Museum of St. Germain, which coneisted in tests upon ancient war engines constructed after the basreliefs found on Trajan's column.
An onager-variety of catapult-threw stone balls to a distance of 640 feet. Bolts from another kind of catapult traveled 960 feet in six seconds of time,showing a velocity of projection of 160 feet per second. The range and adjustment of the engines were readily calculated, and accurate shots were made at a distance of 480 feet. It would seem therefore that ancient Roman artillery included wespons of by no means contemptible effect, particularly since the muskets of seventy years ago failed to carry with accuracy over a distance equal to but little more than half that last mentioned. ew process for making silvered telescopic mirrors.
M. A. Nicole states that he has succeeded in producing elescopic reflecting mirrors cheaply and easily by the elec roplating procese. He takes the mold of a concave surface, made of a mixture which is either an electrical conductor itself or else a non-conductor metallized by the aid of nitrate of silver and phosphorus dissolved in sulphide of carbon. In either case the mold is plunged in a bath of galvanic siler, where the carrent, conducted very slowly to the mold determines a deposit of excellent quality.
When the silver has reached a thickness of 0.015 inch, the bath of that metal is replaced by one of copper, so as to obtain a solid backing. The mold is then dissolved or melted and the mirror removed, nothing furiher being necessary than a light polishing. M. Nicole adds that he has produced perfect mirrors of four inches in diameter in this manner.

combdetion of powder.

As the result of their extended series of experiments, details of which we have from time to time published, Messrs. Noble and Abel conclude that the expiosion of gunpowder determines a temperature of 4664° Fah., comparable to that of the fusion of platinum. The products of the explosion consist in 57 per cent of solid matters and 43 per cent of permanent gases, the later consisting of carbonic acid, nitrogen, carbonic oxide, and sulphuretted hydrogen. Small grained powders give less gas chan those of large grains: but generally the variations are so great that it is impossible to express the reaction by any chemical formula. The solid matters are mainly carbonate, sulphate, and hyposulphite of potash.
muscarine.
This is the poisonous principle extracted from a mushoom of the genus agaricus. According to Dr. Prevost, of Geneva, when it is administered in a very weak dose it acts with force upon the pancreatic and biliary, while lessening the urinary, secretions. It is known that the sulphate of atropine produces exactly the contrary effects, no that these two p
other.
Submitted to the action of fuming nitric acid at 47° B., or to that of a mixture of sulphuric acid and fuming nitric acid, parafin oxidizes and becomes transformed into an oily iquid, of a light yellowish green color, which M. Cbampion as named paraftinic acid, and to which he ascribes the formula $\mathrm{C}^{26} \mathrm{H}^{26} \mathrm{~N} \mathrm{O}^{10}$.
The composition of the paraffinic acid permits paraffin to o be certainly designated by the formula $\mathrm{C}^{48} \mathrm{H}^{50}$. It may herefore be regarded as a clearly defined compound,and not a a mixture of different carburets of hydrogen.
action of atmospheric vapor on the luminote and obscure heat of solar rays.
Father Provenzali, as the result of investigations on the above subject, finds that the luminous heat and the obscure eat do not maintain a constant relation, but that, while the ormer diminishes, the latter increases, and vice versa. The uminous heat diminishes in proportion as the quantity of apor in the atmosphere augments. Such is not the case with obscure heat; for during days of the greatest absolute umidity, the obscure rays are almost always the strongest. This is ascribed to the radiating power of the aqueous vapor, which, after having absorbed the luminous rays, emits them under the form of obscure heat.
The conclusion reached is that photometric observationa, continued over a long period, may be a useful moans of dotermining the hygrometric state of the superior regions of

NEW INVESTIGATIONS UPON SCORPIONS AND THEIR VENOM:

Some interesting and novel investigations have recently
been made by Doctor De Bellesme into the nature and efbeen made by Doctor De Bellesme into the nature and ef fects of scorpion venom upon the blood. We may hereob. serve that, although the name of the scorpion is common enough, it has become so more through connection with groundless fables and superstitions than fromany knowledge of the manners and habits of the insect. There are various species, of many of which the sting produces a painful wound; and among which there is one variety, however, the corpio occitanus, which, it is stated, is capable of inflicting a deadiy injury upon man. This insect is found in the south of Europe and probably ${ }_{6}{ }^{\text {in }}$ portions of Central Ame ica. It is nocturnal in its habits, avoiding the light and living in moist places, frequent ly under large stones, in little cavities dug in the earth.
While the sting of the less harmful variety of the insec results in no more pain than the similar wound of the wasp or hornet, that of the occitanus i followed by inflammation,swell ing, and tumefaction around the lesion, together with strong nervous convulsions, often re sulting in death. The insect strikes with its tail, or, more properly speaking, a prolonga properly speaking, a prolonga ion of its abdomen, compose of a number of rings, the sixt nd last of which constitute the venom sac, terminating in a sharp curved point, from which the poison escapes through two connecting glands. The mere bite of the scorpion is harmless since there is no connection be ween the venom organs and he mandibies When quie he mandibies. When quiet he ins in our upon its side, a t is represented of its natura ize. Once aroused, however ita whole aspect changes; the prehensile claws project for ward, and the tail is carried in lightning rapidity.
The natural prey of the scorpion is amall ingects and os pecially spiders, which it kills by its poison. The latter is its most useful weapon in its repeated struggles with other venomous insects, to the bite of which it would itself suc cumb.
Dr. De Bellermefinds that when the scorpion is aroused, a above described, the venom appexrs at the extremity of the sting in a very minute drop. By collecting an infinitesimal portion of the substance daily, he was enabled to obtain a sutficiency for his experiments. He noted that if the orifice in the scorpion's tail were closed with a drop of varnish, the sting became harmless, and, further, that the venom, once collected, preserved its poisonous qualities indefinitely.
A large number of experiments were conducted upon froge dogs, and pigeons; 0.009 of a grain of fresh venom, injected into the thigh of a frog, caused the skin to become violent y inflamed and the animal to die in great agony in fifty seven minutes. On examining microscopically a drop of rog's blood, in connection with a minute portion of venom he investigator found that the globules became deformed nd agcomerated into a viscons mass Fig 2 represent nd agglomat ince a niscent 2 represent cinning to usdergo alteration, and 3 , their apginning to undergo alteration, and 3, their ap-
pearance after five minutes' action of the pearan
The globules appear to lose their normal properties and to run into each other, forming clots which stop the circulation of the blood The sting of the scorpion is, therefore, of a ery serious nature, since there is no known emedy which will cause the globules, when thus agglomerated, to return to the condition necessary for the sustenance of life. We are indebted to La Nature for the engravings reerred to above.

The True Course for Employees.
The Mercantile Journal, of this city, has a sensible editorial on this subject, which we copy in part as follows
The true question for an employee is not how much he can get forthwith, but how he can keep steadily employed. The men who get rich are not usually the strikers who refuse to work for particular wages. Strikers are apt to waste in idleness, in the course of a year or two, time wherein they could have arned more than the amount for which they atrike. Those who increase their income are the men who accustom themselves to regular industry, who keep ateadily at work for such compensation as they can get, live within their means, save money, and invest it. Thus they keep up a good income and increase it from year to year; quite as fast, in most cases, as they become able to manage it with judgment. The em-
ployee who takes the most pains to find out exactly what service his employer wants, to render that service carefully and generously, and who, having mastered the details of his work, does notleaveit to go into someother employment where a larger but uncertain compensation is promised, is the man who is morally certain to rise. When hard times come, or when his employer is unfortunate and is compelled to retrench, he is the man who will not be dismissed. and who will not lose time in seeking work, when he would, of necessity, be eating up his savings till he finds it. When vacancies occur in the establishment, he is the one who will be intrusted with the most valuable work, which commands the highest pay. When his employer wants a partner, he is the man likely to be chosen. When others are discharged for

THE VENOMOUS SCORPION-(8CORPIO OCCITANUS).

Fig. 2.-frog's blood envenomed.
incompetency, he will be retained; for his knowledge of the work and his known reliability make for him a good position in which he is sure to be able to do well. True, this way of ife is not always easy; it requires self-control, conscience, nd steadfastness; but it is the way to self-respect, honora ble standing, legitimate wealth, and happiness.

HAND COAL CUTTER.

This machine is practically a combination of inclined cir cular saws mounted upon a revolving rod, so that the groove

Jones' hand coal cotter.

thoroughly under-cutting a seam. The saws are set on the rod obliquely, and provision is made for retaining them at a proper distance from each other, and in the most suitable position on the rod, the ond of which hasa screw thread cat into so
Speaking of bugs reminds us of a pieasant little anecdote told of Canon Kingsley, the celebrated English author, who has been lecturing through the country. While at Colorado Springs, in the midst of the delivery of a discouree, a bug, of some species of coleoptera new and strange to the speaker, alighted on his manuscript, and at once attracted his attention. Mr. Bug eat still for a moment or two, during which time Canon Kingsley-who is an enthusiastic and very clever naturalist, by the way-quietly proceeded to study its form and structure; but while these investigations were in progress, and his language rolling forth to the delight of his hearers, the insect began to expand its wings as if to fly away. The reverend speaker saw the motion, and deftly caught the bug in his hand. Going right on with his line of argument, he continued his examination for several moments, until, having settled everything to his own satisfaction, he let the insect buzz away aboutits own business. To any ordinary man the presence of such an intruder would have resulted in its being quickly brushed away; but the great Eaglish divine, trained to such close habits of observation and thought, could not forego the opportunity, even in the midst of his lecture, to study the points in a new species of bug, his`mental discipline enabling him to carry on in his mind two trains of ideas at the same time.

Salt as Manare.
Various experiments, says the Journal of Horticulture, have been made by M. Peligot and others, to test the value of salt as a ma. nure. The following summing-up seems to have been arrived at : Salt should never be applied other than in a pulverous state, and never employed on impervious, cold, and humid soils. The best manner to use it is to combine it with other manures, a dose of two hundred weight to the acre being sufficient. When selected to destroy insects, it should be applied before sunrise. In the case of cereals, salt strengthens the stems and causes the ears to fill better, and favors the dissolution and assimilation of the phosphates and silicates. It acts vigorously on potatoes, and can be detected in their ashes to the extent of cne half or one per cent. Asparagus is a veritable glutton in the presence of salt. A dose of three cwt. per acre acts without fail on beet, injuring its value for sugar purposes, but enhancing it for the feeding of cattle. Colza has as marked a predilection for salt as asparagus; and in Holland, where the culture of peas is so extensive, salt is something like a necessity. Mixed with hay in the proportion of 4 ounces to a 100 weight, the fodder is more appetizing; but the best way to feed it to animals is to allow them to enjoy it in the form of rock salt.
upon it, by means of which it is fastened into the spindleand bearings. Another form of cutting apparatus may be formed rom a flat bar of steel, with saw teeth along both of its out. or edges, and so twisted that the toothed edges are formed into spirals. By this arrangement the cutter readily clears tself from the slack which it cuts away. A revolving cutor of this kind may be worked in two ways. It may be cased to sweep in the arc of a circle into and out of the coal, so as to cut out a groove in it, the spindle of thecut. ter being for that purpose carried by a frame turning upon an axis, such axis being also traversed forward from time to time in a line parallel with the face of the coal operated upon. Alternatively the frame carrying the spindle of the cutter may simply be caused to move forward continuously in in a line parallel with the face of the coal, in which latter case groove will be produced of a depth equal to the length of the cutter. But if the cutteris caused to sweep round in the arc of a circle, a groove of any desired depth can be cut, irrespective of the length of the cutter itself.
The cutters can be driven either by hand power or by compressed air.-Iron.

Bugs.]

It is said that a chemical firm in Indianapolis has recent. ly advertised for 100 lbs . of potato bugs. The insects are stated to possess qualities which render them a good substitute for the Spanish fly. Thisisinteresting but, unfortunately, not authenticated. The man, however, who does dis. cover a mode of utilizing the potato bug may rest assured that his fortune is made
Another "shaky" item which is traveling the rounds of the press is about an insect which eats up iron pillars. This remarkable bug is about the size of a common house fly, and finds no difficulty in boring its way chips from the place of its

THE YELLOWSTONE HOT SPRINGS.
We publish herewith engravings of two of the most remarkable natural features of the Yellowstone region in W yoming Territury, for which W yoming Territury, for which
we are inde bted to the Illus. we are indtbted to the Illus.
trated London Nevos. This district abcunds in geysers or boiling fcuntains, and in marvelous ircrustations of calcareous or siliceous matter.
Congress, two years ago, passed an act reserving this portion of its dominicn, fiftyfive miles broad and sixty-five miles in length, from private miles in length, from private
agricultural or other occupation, in order that the wonders and grand beauties of its soenery may always be enjoyed by visitors from every part of the world. In the neighborhood of Gardiner's River, which joins the Yellowstone, are the Mammoth Hot Springs, the subject of one of our illustrations. Here the hot water flows down steep walls of rock from a terrace above, and fills the beautiful white basins it bas bollowed out in each ledge of the cliff. These basins are from 4 feet to 8 feet wide, and 2 feet or 4 feet deep, making perfect natural baths, of different denatural baths, of different degrees of warmth.
deposit covers the entire side of a mountain 1,000 feet high, and extending one mile in length.
Not far from this is an extinct geyser, which has built up a cone of lime, 42 feet high, and 22 feet in diameter at the base, formed of the successive deposits of matter from its old eruptions of boiling water. eruptions of boiling water. This cone, of which we also
give a view, is called 'The Cap of Liberty," from the fancied resemblance of its shape to

THE CAP OF LIBERTY, YELLOWSTONE REGION.
that of the emblematic head dress worn by the revolted slaves of ancient Rome.

Sounding the Pacific.

 Commender Belknap, of the U.S. S. Tuscarora, now engaged in deep sea soundinge in the Pacific Ocean, has recently transmitted a report to the Navy Department, from which it appears that the first effiorts made only served to prove the impossi bility of laying a cable over the bed of the Pacific ocean. The course last taken was on a great circle passing through the island of Tanaga, of the Aleutian group, from Yoko hama to Puget's Sound Hardly 100 miles of this route had been traversed when an extraordinary shel ving of the bottom occurred the lead making a descent of 1,594 fathoms in a 30 miles run. On the next cast no bottom was reached at 4,343 fathoms, or nearly five miles depth, at which point a heavy current tore the fine sound ing wire apart. This settled the question as to laying a cable in that direction; for it was evident that if the force of the current were strong enough to break the fine wire it would quickly destroy the large line.The Tuscarora then re turned to shore and started off on a new great circle from Point Komoto. Great depths were again encoun tered, at which such pressures existed as to crack and crush the thermometers sent down Currents also caused the lose of large quantilies of wire so that Commander Belknap abandoned the second at tempt.

The investigations thus

THESMAMMOTH HOT SPRINGS GARDINER'S RIVER; WYOMING TERRITORY.
far described, while of but negative value so far as the main object of the search is concerned, are of interest and impor tance to hydrographic siience, as establishing the fact of depths in the sea hardly to be expected in view of the numerous soundings of the Challenger and of the Tuscaror herself, over wide expanses of the Atlantic, Pacific, and In dian Oceans, and confirming the existerce of a very deep trough under the Japan stream, similar to that cut by the Galf Stream on our own coast.
Commander Belknap's third attempt has proved moresuc cospful; and in a telegram from Ounalaska, dated August 29 be announces the practicability of a sbore line along the cosst of the Kurile Islands. The greatest depth found was 4,037 fathoms, 80 miles from Aggalton; the next greates depth, 3 , 754 fathoms, 120 miles east of Kurile's Straits. A ridge is reported between Kurile and the Aleutian Islands, the least depth of which is 1,777 fathoms, and at Tenega fine harbor and beach exists.

Correspondence.

empering Tools

To the Editor of the Scientific American:
The query of your correspondent J. T. N., "is this true, referring to the colors produced on the surface of steel in the process of tempering) is very certainly answered in the affirmative, Nobili to the contrary notwithstanding, when it is remembered that these colors appear as readily upon pure (wrought) iron, in which, of course, there is no carbon, as upon steel. In facts similar effects are produced upon many other metals, and always during an elevation of their tem perature.
It is true, as he atates, that the hardness of a piece of stee varies with the carbon contained, but not no with the temper, the latter being rimply a degree of softening produced by elevation of its temperature, of which softening the color re taken as a measure; and this measure holds good for any grade of steel.
It is well known, also, that a coating of oxide upon the surface of any metal greatly retards the further rusting, in stead of accelerating it, as J. T. N. asserta. But for this fact the value in the arts of most of the oxidizablemetals would be greatly diminished, and iron would be one of the most perishable of substances, even at ordinary temperatures This fact, then, accounts for the protection afforded to metal lie surfaces by the presence of such a film, and does not equire that the infinitesimal quantity of carbon resident in teel should have any credit for it. JoEn T. HAWEINs.
62 Cannon street, New York city.
To the Editor of the Scientific American:
Mr. Rose's papers on "Practical Mechanism" come righ down to an intricate knowledge of practice and its theory. and in them solutions of things that had often puzzled me, and explanations of things which I thought I understood, bu now find I did not. In speaking of tempering taps, etc., Mr Rose gives three methods, which include all our present shop practiee, to which a Mr. Hawkins objects. What plan doe want to substitute?
We do not care why the color comes; but if there is a new way to temper, any better than the old one, I for one would
like to know it. New York city.
G. s.

Swimming with the Clothos on.
To the Editor of the Scientific American:
After perusing your valuable article on learning to swim, I gave swimming with the clothes on a trial, and I must say I fully agree with you as to its value. I felt nervous at first thinking that I would not be able to swim at all; but after making an attempt. I was astonished to find but little trouble in keeping upon the apper surface of the water. My elothe seemed to act an if they wero alled with air, assisting to keep me up rather than to pull me under. I find that con adence and coolness are of great value. Many good awim mers are lout for want of thene. W. A. Hutchinson. Albany, N. Y.

New Disinfectant

To the Editor of the Scientific American:

The deodorizing and disinfecting properties of the prote sulphate of iron have been long enough known, and immense quantities of it have been used for such purposes during the past three or four years. Still the odor of the city of Cologne can be dietinctly discerned in every town and city ; and there are few abodes of men where there is not still needed some chemical agent for making the air tolerable The stable, the pig pen, the privy, are all offensive, and probably will be until that scientific millenium comes, when cleanli ness and healtbfulness will be cared for first. I have had my attention drawn, to a new source for disinfecting pur poses, by an accident. Last winter I bad brought to me, in a load of bituminous coal, a bushel or two of that slaty sort which is filled with iron pyrites. I had it thrown into a heap at the time, upon some sod. It remained there some months, slowly decomposing into flakes and white efflorescence. At last a heavy rain came and washed a quantity away into the grass; and wherever it went it killed the grass, turning it black to the point. This led me $\frac{0}{}$ think of the chemical changes which had taken place, from which I concluded that it might be useful as a deodorizer, and I had the rest thrown into a privy vault, with the reault that the odor was so com pletely removed that no one would sugpect the place from it As this sulphide of iron is so abundant throughout the United States, and especially as it is got out in large quantities in
the great coal fielda (where it is not only worth nothing, bu
is an expense to cart away), it may become of some use in the way of a disinfectant and deodorizer. The iron sulphide becomes iron protosulphate when exposed to air and moisture, and then, uniting with more oxygen, becomes iron per sulphate. This latter change is what makes the protosul. phate valuable as a disinfectant; but as the sulphide has to be converted into the protosulphate by uniting with four atoms of oxygen, it will be seen that the sulphide will be the nore valuable, weight for weight
It is probable that the iron sulphide, found in masses a bundantly throughout the country, could be made available or this purpose by crushing it.
A. E. Dolbear.

Measuring the Distance of the Sun

To the Editor of the Scientific American
When one edge of the illuminated surface of the moon appears as a straight line, the line joining the center of thi ine and the eye of the observer forms a right angle with the line joining the centers of the sun and moon. If we can determine the exact lime when the edge of the illuminated surface appears as a atraight line, we can measure or calculate the angular distance between the conters of the sun and moon; and taking the moon's accepted distance from the earth as a base line, we have only to find the hy pothenuse of a right-angled triangle for the distance to the un.
To find the exact time when the right angle is formed The common telescope, with spider lines, is not suitable for the purpose, for the edge will appear rough and straighter han it does to the naked eye. I propose to use an in trument that will make the edge of the light appear, say, one thousand times as crooked as it does to the naked eye so that when the edge becomes exactly straight, in being made one thousand times as crooked it will still be straight. This instrument contains the same number of lenses as an stronomicel telescope, but the surface of the lenses must e cylindrical instead of globular, and rectangular insteatof ound. Such lenses will throw parallel rays of light to a ine instead of a point. In adjusting the instrument, these ocal lines must coincide. One spider lineshould be placed 0 as to coincide with the focal line of the eyepiece. This instrument will only magnify in one direction. It will make roand objects very elliptical. To determine whether a line is straight or not, the instrument must be placed in such a position that the direction of the magnifying power wil form a right angle with the line. The edge of the illuminated surface appears smooth when magnified in only one direction. By making observations at both the first and last quarters, and comparing the results, corrections can be made for the amall irregularity of the general curvature of the moon's surface, at the very moment that the edge of the il. luminated surface appears straight, as viewed through this instrument. The sun's and moon's right ascension and declination must be known, from which we can obtain the re quired angle. I hold that by this method the distance to the sun can be measured with greater accuracy than by th common method, because the base line is so much longer.

${ }^{d}$
D

a To the naked eye when edge of lightis not quite straight As moon appesrs through the instrument at same time. c To the naked eye when edge of light is exactly straight. d With the instrument when the edge of light is exactly traight.
e With the instrument, when the focal line is not quite pa rallel with the straight edgeof light.
California College, Cal.
L. Lillard.

The pul
The public has.been so frequently cautioned against the poisonous compounds sold under the name of liquors, at even the more pretentious drinking saloons, that warning are taken as a matter of course and set down as part and par el of the well known though incontrovertible arguments of the teetotallers. While we should scarcely expect to awaken new interest by reverting again to the quantities of unel oil, benzine, and kindred abominations entering into he composition of the liquids retailed, there is certainly ufficient of novelty and importance to arouse thought and attention in Professor J. F. Babcock's excellent article on esting wines and liquors, recently published in the Labora ory, particularly since the writer positively asserts that at ificial liquors may be made, the difference between which and the genuine, chemical analysis cannot detect, and which re excelled only by the very fineet brands.
Distilled liquors are at first colorless, because the coloring matter of the substances from which they are distilled, being non-volatile, remains behind in the still, while only water alcohol, and the peculiar compound ethers to which the dif ferent liquors owe their flavors pass over. By keeping in an oak cask, an amber tint is obtained from the wood, and aleo a small portion of tannin,angmenting the astringent proper 2 a smal
tios.

Pure brandy contains: Alcohol, water, traces of acetic倍, acetic ether, œnanthic ether, coloring matter, and tanin. It never contains over fifty per cent of alcohol by weight, and to this percentage it owes its intoxicating prop orties. The last five ingredients impart flavor. By testing the alcoholic strength of the liquor, we may find either the addition of water, or of spirit, or that it is of the proper atrength. By evaporating to dryness, the solid reeidue may be examined, and adalterations of glycerin. capsicum, etc., noticed; all brandies contain coloring matter and tannin, which are of course present in the residuum. But the determination that the alcoholic strength is exsctly right, and that the residue contains no foreign ingredien in, is no proof whatever that the liquor is not a gross imitation. Chemical analysis is powerless before the two common frauds of reduction and imitation. It cannot tell that perhaps twenty five per cent of spirit and watar, of the proper alcoholic strength, dosed with tannin and coloring matter, has been added, for the only effect is to impair the flavor. Experienced palates may detect the fraud by taste; but this is but a precarious reliance. So called British brandy is prepared by giving to proof spirits,made from molasses and possessing 49 per cent of alcohol by weight, animitation of brandy flavor. Oil of cognac, distilled from the lees of wine with water, and dissolved in alcohol, is often used in the spurious manufacture.
Professor Babcock gives the following formula for an ar ificial brandy, which, he ettates, contains nothing but what may be found in genuine Cognac. No chemical analysis can prove it to be an imitation; and for all practical purposes, he sees no reason why it should not have all the medical virues of the original:
Cologne spirit is diluted with water till it stands at proof. Of this 12 gallons are taken and mixed with 5 gallons of water; $\frac{1 \mathrm{l}}{\mathrm{l} .}$ of crude cream tartar, previourly dissolved in 1 gallon of boiling water, is added, together with 6 fluid ozs. of acetic ether, 2 quarts of wine vinegar, 5 lbs. of prunes (bruised), and a amall quantity of oil of Cognac, sufficient to flavor the mixture. After standing for a fortnight with occaaional agitation, the mixture is placed in a still and 15 gallons distilled. The distillate is put into a clean brandy cask, and a small quantity, say 1 lb ., of oak shavings is added to produce the desired astringencr. After standing for a week, it may be drawn of and colored witha solution of caramel. What has been said of brandy applies equally well to whisky, gin, and rum, which may all be successfully imi-

tated.

Pneumatic Telegraphy.
An interesting exhibition of telegraph machines, worked xclusively by air, was lately given in Jondon by Mr. Guattaris, the inventor. A number of different instruments were on view. The impulse is produced at one end of a tube by the operator, and performs the mechanical work at the other end, either by ringing a bell or turning a needle round a dial. The rapidity and precision can be made equal to the electric telegraph, the conducting tabe being able to be laid under or over cover in the same manner as the ordinary telegraph. Attached to each machine is a bell and dial, and the message is transmitted by the moving of a mmall lever which drives the air through a pipe to the other operator. As the lever is moved up and down, the dial, which atands where the message is destined for, registers whatever the words may be. Each dial is supplied with a needle: and as each spurt of air presses against the works of the machine, the needle is moved exactly the number of times that the lever is pressed. Each instrument can receive or send a message about 400 yards. The instruments exhibited were designed for intercommanication between large coffee houses, offices, hotels, and versels.

Nickel Minos in Australla.
The Sydney Morning Herald notes recent analytical tests of a rich vein of nickel, found at Noumea, Now Caledonia The substances present are oxide of nickel, magnesium, silica, iron, aluminum, and calcium. Thenickel ore is a silieate of nickel and magnesium, with certain impuritios, and the brown serpentine accompanying it is an impure silicate of magnesium, containing a emall proportion of oxide of nickel. The development of Australial mines of nickel will have no mall effect upon the quantity and consequent value of that metal now in existence. It will be remembered that, not long since, the German manufacturers of German silver petitioned their government not to use nickel for coinage, on account of its scarcity and the greater need which existed for its application to other purposes.

Ramway Statistics.-A Parliamentary return just published states that in 1873 there were in all 15.814 miles of railway in the United Kingdom. The total authorized capital amounted to $\$ 3,383,432,930$, of which $\$ 2,941,601,540$ was paid up. The number of passengers, exclufive of season ticket holders, was $455,320,188$. The total receipts from all sources amounted to $\$ 288.710,000$, of which fifty-five per cent was from goods traffic, and forty-one per cent from passenger traffic. Fifty-three per cent of the groes receipts was consumed in working expenditure, leaving \$134,945,760 for net receipts. This was 4.59 per cent on the total paid up capital.
G. R. B. says: "To restore the burnt steel point of a pick, drill, or any similar tool, do not touch it with a hammer; but while it is still emitting sparks,plunge it into cold water and let it remain until cold. Then reheat to the proper degre, and work it: you will find it as good as before it was
br.nt.

dentistry in the dnited states.

manufacture of artificial teeth.

No. 1.

An artificial tooth, says " an expert," in Old and Nero, is made of porcelain ("ceramic dentistry" is the elegant title to which some of the more elegant in the business aspire); which porcelain differs from the material of a stone pot, a china teacip, a Wedgewood ware match safe, or a Parian statuette, in the same way as they differ from each other. In its manufacture are chiefly used felspar, quartz, and kaolin; oxides of titanium, gold, manganese, cobalt, uranium, and silver; platinum; glass of borax; and sal tartar. The tooth is made somewhat as follows: Mix into a putty-like mass, with water, calcined and pulverized silex and felspar, and kaolin properly washed and dried, for the "body" of the teeth; with oxide of titanium or other selection or com. bination of oxides for coloring matter (there may be sixteen hundred different sorts and shades of colors). For the enamel, mix in like manner felspar, platinum sponge, and a flux of quartz, borax, and tartar. The teeth, either separate or in "sections," are shaped in a brass mold, which is about one fifth larger than the tooth, to allow for shrinkage. When the materials are all ready, the molds are greased; the platinum pins for fastening the teeth to their bases are placed in the holes made for them in the mold; the enamel is laid first in a thin coat on the inside of the mold ; and the " body" of the tooth, in a properly shaped lump, put inside of this coat of enamel; then the top of the mold is put on; the whole is laid under a press, which compacts the mass; and then mold and all are exposed to a slow heat until perfectly
dried. The teeth will now drop out of the mold when it is dried. The teeth will now drop out of the mold when it i opened, but are extremely tender. Next they are "carved," or trimmed and finished, and laid on coarse quartz sand on small slides or trays, of fire clay. These are slid into a "muffle" or firing pot: this is run into the furnace; and after it is in place, the muffle is closed and carefully luted hermetically tight; and the heat is put on. The only way to know when the teeth are done is by the judgment. If over fired, they are injured; if not fired enough, they must be quickly put back, and heated longer. There are many variations in combining the "body," the enamel, the flux, etc., and in the subsequent manipulations; but the above
brief summary will sufficiently show what sort of process is used.
The average annual sale of artificial teeth, in the six Now England States, in the three years 1870, 1871, 1872, was three hundred and forty thousand sets; though it does not follow that all these were made up and actually used. Two and sometimes three sets must be made and tried, before the patient is satisfied. As the set made for one mouth will not fit another once in twenty five thousand times (I know personally of but one case, and have heard of two more, about one of which I doubt), all these rejected sets are wasted A set is also frequently cracked or broken in mounting it on the base to which it is to be attached, which accounts for a further proportion of loss. Again, partial sets are some times required; and if the operator does not find a good match among his promiscuous teeth, he takes one out of some full set in order to make a perfect case. The chances are five hundred to one that he will not be able to use the rest of the set thus broken, along with any other sel,as size, color, or shape will fail in some minute particular; and thu another set is lost. These various losses reduce the number of sets of teeth actually put into use each year in New England, from three hundred and forty thousand to about two hundred thousand.
The Western division of the country yields a better crop to the dental farmer (if so he may be called, and indeed his operations of pulling, digging, transplanting, and so on may reasonably well admit it) than either New England or th
South. In the Weat, more sets are made up in proportion to the population, and fewer are lost out of the number sold. This greater demand seems to depend upon two circum stances. The Western people, as if they considered false teeth not merely useful and ornamental, but also as evidence that the wearer has money to invest in luxuries, are in the habit of informing their neighbors that they are using a set and they also mention the name of the dentist who made hem, and what they cost ; so that they advertise their " bene factor," and increase his basiness. Secondly,the Westerners are not so fastidious as their fellow countrymen about a fit or about their teeth looking "too natural;" and thus the operator can induce them, by honeyed words or positive as sertions, to accept the set he has made for them, and to pay for it. As the patient is thus generally satisfied, a large per centage of loss is prevented. It is not intended to deny tha the jrofession consists of honorable men in this more than in the other two sections; but taking them at an average they certainly manage to use their stock cleaner than in the Eastern or Southern sections. There are certainly also in this division more" butchers" than in the others; men who, instead of being benefactors to their patients, might be justly termed their despoilers. It is notorious that there are such persons, who will extract sound teeth, as well as loose and lecayed ones, for the aake of making room for a full set, as they are quacks, and cannot make a good partial set Estimates made from personal observation of the traffic in this section show the sales for an average year to be, in round numbers,seven hundred and twenty-eight thousand sets, with shrinkage in losses of two hundred and nine thousand, learing five hundred and nineteen thousand sets used. The Southern division, including, for the present convenience, the rest of the United States, is at this time, for the most part, an enirely new field for dental operators, though part of it he
been well worked over, insomuch that the amount of sales in it rolls up to one hundred and eighty two thousand sets, from which must be deducted a greater discount than else where for losses, for the reason that the work has been done by young and inexperienced dentists, or, indeed more properly, dental students. The "practising" of these enterprising young gentlemen has resulted in the loss of one hundred and seventeen thousaad sets, leaving only sixty-five thousand actually used
There are five extensive manufacturers of artificial teeth in the United States, besides numerous smaller ones. They turn out, in all, about a million and a quarter sets of teeth every year.

Carrier Pigeons.
"One of the most curious incidents connected with modern journalism," says Land and Water, "is the regular employment of carrier pigeons in collecting intelligence for the daily and weekly newspapers. In the competitive exertions o procure the latest intelligence, it has been found that or short distances newspaper reports can be sent readier, cheaper, and quicker by press carrier pigeons, flying a mile per minute, than by the postal telegraph. These aerial postmen are entrusted to resident correspondents in various aces, ready to be despatched at any moment, while others sent out by reporters to places where important events e transpiring. It is now no uncommon thing to see reporters at police courts, inquests, public meetings, etc., de
patch folio after folio of copy" by press carrier pigeons spatch folio after folio of "copy" by press carrier pigeons
tossed through the nearest window, or thrown out of a train or steamer going at full speed. The artachment of these birds to the place of their birth, and the ability to find their homes from marvelous distances, are, of course, their distinguishing characteristics. A "columbier," or home, is established at the various newspaper offices, and whenever a bird arrives with a message, the act of the pigeon entering its cot ets a call bell ringing in the editor's room, the bell machinory continuing in motion untilattended to.
Carrier pigeons, though as a rule only used for short disances, in competition with the electric telegraph, can be specially trained to distances of 500 miles, and frequently fly to England from Dublin, Brussels, Paris, Lisbon, and even Rome. The utilization of the instincts of birds for preas purposes is being carried even further than this. An ocean oming bird of great docility, intelligence, and spirit has 50 miles an hceland, and it fies at a meteor-like seed of land, from any part of the habitable world. A pair of these birds, a few days ago, brought despatches from Paris to a onely spot, congenial to their nature, in a wild and rocky part of Kent, within ten miles of London, in $1 \frac{1}{4}$ hours. Press carrier pigeons took the despatches on to the city, the whole distance from Paris to London, by actual parce mode of conveyance, being done within $1 \frac{1}{2}$ hours.
The New York Sun was the first newspaper, we believe, employ the aid of carrier pigeons for the rapid transmis sion of news. Thirty years ago, before the electric telegraph had come into vogue, the Sun concern had a large pigeonry upon the roof of its building, just over its editorial rooms, corner of Nassau and Fulton streets, in this city, where many carrier pigeons, of the best procurable breeds, were maintained. In those days the public were often surprised by the appearance of important news, brought by the birds, in advance of the ordinary mails. The advent of the telegraph superseded the Sun pigeons, and the department wa old out.
At the present time, the telegraph business here is in the hands of competing private companies, who take espeial pains to transmit the news despatches of the press with he greatest promptitude, and at very low rates. But when e telegraphs pass into the hands of the government, as in Great Britain, the press will no longer have the advantages of this promptness and economy. Lazy officials will
then govern the sending of telegrams on the red tape sysm, and our newspapers will doubtless find an advantag in using pigeons, as they are now doing in England.

Chrome Steel.

With the exception of eighteen pieces, all the metal used In the superstructure of the St. Louis bridge is chrome steel this alloy being selected by the engineor, Captain Eads, on ccount of extended experiments thereon showing the high st tenacity under tension and the utmost refractorines nder compression. The steel was made by the Haughlin process, belonging to the Brooklyn Chrome Steel Company,
Brooklyn, N. Y. The following details regarding the of Brooklyn, N. Y. The following details rega
metal, we find in the St. Louis Railicay Register:
The quantity of chromium required in the steel is so small, elative to the quantity of iron, that the cost of the alloy is not greater than that of the usual grades of carbon steel. In a pure and crystalized state, it is a grayish, very hard metal, not oxidizable by any acid nor reducible in any fur

It is quite probable that the mixture of chromium and iron is truly chemical. As far as can be learned, there is no gathering together into separate crystals, nor congregating in spots, as in the case of carbon; and it would, indeed appear that, after combination, separation in whole or in part is almost impossible. From this stability of the alloy
it is possible to grade the mixture in exact accord with pro portions of ingredients, and to judge of character with much precision.
The most useful property of chrome steel, next to its sta bility, is the ease with which it may be welded. No wrough ron excels it in this; and moreover, sand and borax may
for a white heat may be used without fear-are to glaze the surface with a film of chromium, which, being unoxidizable, presents no obstacle to the full and entire union of the parts. Such springs as those used in vises need, when made of chrome steel, no tempering, but may be put in place direct from the anvil. Watch aprings could, it is believed, be made from it, of extra quality. A s inch bar can be bent double when perfectly cold with the same certainty as with the best wrought iron. For anvil and hammer faces, and hammers and mauls, it is peculiarly fitted, because of its homogeneity and the exact equality of hardness over the surface. Blocks of four inches may be drawn out into a crowbar; any welding or upsetting necessary can be done, and the bar finished, with thesame facility as though formed of the clearest iron.
As a test of toughness, a bar of chrome steel five eighths of an inch square has been twisted cold until the angles of the bar lay around a cylinder, resembling a wire cable strand. Seventy turns to the inch made on a cold bar of teel is sufficient evidence of toughness. The results of tests made at the West Point Fcundery give for the material an average strength of 180,000 pounds to the square inch. This is considerably in excess of the figures given by authorities as the highest strength of carbon steel, namely, 131,909 pounds per square inch.

New Explorations in Central America.
Few persons areaware of the important exploration which has been going on for a year or two past in Costa Rica, under the direction of Professor William M. Gabb, a geolcgist and explorer of Philadelphia, well known for his excellent scientific work, especially in connection with the geological survey of California, under Professor Whitney. The special objectis an investigation of an entirely unknown region of Southeastern Costa Rica, inhabited only by aavages. but known to contain rich treasures of minerals, worked by the Spaniards in the early day of the conquest : this knowledge being only by traditions. Although the party has consisted only of Professor Gabb and four assistante, it has already gathered a great deal of important information and material in reference to the economical,scientific, and political history of the region investigated. In the course of his labors, Professor Gabb found the people less savage than had been supposed, and he has already succeeded in winning their confidence to such an extent as to induce their chief to accompany him on a visit to San Jofé. As might have been expected, the geological structure of the country has occupied a large share of Professor Gabb's attention, and enough has been discovered to warrant the belief that the mineral resources are of great importance. The greatest interest attaches, however, to the discovery of two previously unknown volcanoes, not less than 7,000 feet high, in the main cordillera just northwest of Pico Blarco. Of these he is about to make a thorough examination. The na+ural history collections made by the Professor are of unusual magnitude and value, embracing all departments of zöology, and efpecially rich in mammals, birds, reptiles, and insects. Of fish there were but few epecies, but all that could be found were ecured. •Ttie ethnology and philology of the country have been attended to very thoroughly. Material illustrating the manners and customs of the people was also gatherrd in great quantities, and important dis ioveries made of huacos, or prehistoric graves. In addition to these, Profeseor Gabb is on the track of an ancient buried city, of which no mention is made in any history of the country. The natural history and ethnological collections made have been rent to the National Museum, where they form a conspicuous feature in the Central American serien. The material thus colls cted by Professor Gabb will, on his return, be made the pubject of an elaborate work, in which he hopes to present the whole subject of the physical and natural history of the country in its fullest detail. An important geological dircovery made by him is that the appearance of ory land on the isthmus is of tertiary date, and that it is coeval with the period of volcanic excitement in the Californian sierra.-Naturc.

Trees for Avenues.
For avenue planting, those two near relatives, the cucumber tree (magnolia acuminata) and the tulip tree (liriodendron ulipifera), combine many excellent qualities. Tbey are rapid growers, beautiful in foliage and flower, of perfect form ; hardy, excepting in the extreme north, not particular about oil or situation, and comparatively free from insects and diseases. They are readily grown from seede, gathered and sown at once in the autumn, or, as some prefer, prestrved moist until spring. When two years old, they are generally sufficiently large to plant out with a protection; or if in tended for the street, they may be cultivated in nursery ows for three or four years, until they are tall enough to be beyond the reach of animals. A long line of either of these trees forms a magnificent sight when in bloom ,and for sbade, combined with beauty, will satisfy the most fastidious. One of the greatest mistakes in street plantirg is the selection of an improper kind-for instance, a first class tree, such as e have named, for a narrow strcet, and a emall slow-grow ng species for a wide avenue. Each is equaliy out of place, and never looks appriopriate, no matter \} ow handsome the individual specimens may be. - New York Tribune.

Erasive Soap, to Remove Grease and Stains from Clothing. -Two pounds of good Castile soap, half a pound of carbonate of potash, diseolved in half a pint of hot water. Cut the soap in thin slices, boil the soap with the potash until it is thick enough to mold in cakes; also add alcohol hal n ounce, camphor half an ounce, hartshorn half an ounce color with half an ounce of pulverized charcoal.

IMPROVED WATER WHEEL GOVERNOR. The apparatus herewith illustrated is used in connection with the governor, where there is a variable head of water and when it is desirable to keep up the head though at the sacrifice of speed. Its greatest utility is realized where steam power is employed in connection with water power. The water governor being ter power. The water governor being speeded to run the line a trifle faster than the steam governor, the engine is relieved
of its weight so long as there is an availaof its weight so long as there is an availa-
ble head for the supply of the wheel; but ble head for the supply of the wheel; but
when the water is drawn down to a given point, say from three to twelve inches, the governor automatically closes the gate suf ficiently to allow the water to regain the lost head, and, when at the available point, automatically resumes its natural action. dll this is accomplished by very simpl ll means, as shown by the engraving. Th reservoir is placed so that the high water
line in the flume is within three inches of line in the flume is with
the top of the reservoir.
Our engravings represent opposite sides of the apparatus; and in Fig. 2 is shown the reservoir and float in connection.
The operation is as follows: Wateris admitted from the flume through the pipe, I. The float, B, in the reservoir, A, rises with the water, and the cord is slackened, which leaves the governor to its natural action As soon as the water lowers to any given point (regulated according to length of cord), he pawl shifter, C , is drawn down, throw ing the closing pawl, F, into action, and the water is closed off. The machinery being all in motion, the gate would become closed, with a tendency to go beyond, but for a stop motion which limits the hoisting and closing of the gate, and which is simply a sliding bar inside of the bracket D, and operated by the worm, E .
Another feature of the governor is an ad justable weight connecied to an arm of the pawl shifter, C, but not shown in the engra ving (other parts of the machine being in front of it). By means of this sliding weight the speed of the governor may be changed from 140 revolutions to 165 -a great convenience in many establishments, particularly in the case of wheels driving paper machines, where an adjustable speed is indispensable.
These governors have been in use, it is sta ted, now about six years, in some of the largest as well as in the smallest establishments, and attached to all kinds of wheels (even over shot and breast wheels), with heads varying from seven feet to seventy eight feet, including he largest cotton mills in the world, in iron rolling mills, and down to one set woolen fac tories. The manufacturersadd that they have yet to learn of the first complaint of them.
The latest improvements of this machine were patented May 26, 1874, and the improved machines are manufactured solely by $\mathbf{W m}$. T Horrobin, Cohoes, N. Y., under the personal supervision of Mr. H. D. Snow, the patentee

How to take care of China and Glass Ware

In the average household few things suffer more from ill usage than porcelain and glass, especially the finer kinds of such ware We opy from the Boston Journal of Chemistry a few practical suggestions on the best method of cleansing and preserving these fragile ma terials

One of the most important things is to sea son glass and china to sudden change of tem perature, so that they will remain sound after exposure to sudden heat and cold. This is best done by placing the articles in cold water which must gradually be brought to the boil ing point, and then allowed to cool very slow y, taking several hours to do it. The com moner the materials, the more care in this res pect is required. The very best glass and china is always well seasoned, or annealed, as the manufacturers say, before it is sold. If the wares are properly seasoned in this way, they may be washed in boiling water without fear of fracture, except in frosty weather when, even with the best annealed wares, care must be taken not to place them suddenly in oo hot water. All china that has any gildin pou it mar on no account be rubbed with cloth of any kind, but merely rinsed first in hot and afterwards in cold water, and then lef to drain till dry. If the gilding is very dull and requires polishing, it may now and then be rubbed with a soft wash leather and a littl dry whiting; but this operation must not be repeated more than once a year, otherwise the gold will most certainly be rubbed off and the china spoilt. When the plates, etc., are put away in the china closet, pieces of paper should be placed between them to prevent

Fig. 1.

SNOW'S STANDARD WATER WHEEL GOVERNOR.-Fig. 2.
scratches on the glaze or painting, as the bottom of all ware \quad In a common dinner service, it is a great evil to make the has little particles of sand adhering to it, picked up from plates too hot, as it invariably cracks the glaze on the surhe oven wherain it was glazed. The china closet should be face, if not the plate itself. We all know the result-it a dry situation, as a damp closet will soon tarnish the ilding of the best crockery.
art ; "nobody broke it," it was cracked before" is injured, every time the "things" are washed the water gets to the interior, swells the porous clay, and makes the whole fabric rotten. In this cundition they will also absorb grease; and when exposed to further heat the grease makes the dishes brown and discolored. If an old, ill used dish be made very hot indeed, a teaspoonful of fat will be seen to exude from the minute fissures upon its surface. These latter remarks apply more particularly to common wares.

As a rule, warm water and a soft cloth are all thatis required to keep glass in good condition; but water bottles and wine decanters, in order to keep them bright, must be rinsed out with a little muriatic acid, which is the best substance for removing the "fur" which collects in them. This acid is far better than ashes, sand, or shot; for the ashes and sand scratch the glass, and if any shot is left in by accident the lead is poisonous.
Richly cut glass must be cleaned and polished with a soft brush, upon which a very little fine chalk or whiting is put; by this means the luster and brilliancy are preserved.

Household Hints.

The following recipes have, most of them appeared in this paper, but to the English Farmer is due the credit of printing them in the following order:
If you have been pickling or handling acid fruit and have stained your hands, wash them in clear water, wipe them lightly, and, while they are yet moist, strike a match and shut your hands around it so as to catch the smoke, and the stain will disappear.
Wet the spots of iron rust on muslin or white dress goods thoroughly with lemon juice, then lay in the hot sun to dry. Repeat the same if the color is not removed by one application. When dry, rinse in clear, cold water. Lemon juice cannot be used on colored goods, as it will take out printed colors as well as stains. It will remove all kinds of stains from white goods.
Dusting articles of steel, after they have been thoroughly cleaned, with unslacked lime, will preserve them from rust. The coils of piano wires thus sprinkled will keep from rust many years. Table knives which are not in constant use ought to be put in a case in which sifced quicklime is placed, about elght inches deep. They should be plunged to the top of the blades, but the lime should not touch the handles.
To remove mildew, make a very weak solütion of chloride of lime in water (abouta heap. ing teaspoonful to a quart of water), strain it carefully, and dip the spot on the garment into it; and if the mildew does not disappear immediately, lay it in the sun for a few minutes, or dip it again into the lime water. The work is effectually and speedily done, and the chloride of lime neither rots the cloth nor removes delicate colors, when sufficiently diluted, and the articles rinsed afterwards in clear water.
The white of an egg has proved, of late, the most efficacious remedy for burns. Seven or oight successive applications of this substance soothe pain, and effectually exclude the burn from the air. This simpleremedy seems preerable to collodion or even cotton. Extraordinary stories are told of the healing properties of new oil, which is easily made from the yolks of hens' egge. The eggs are first boiled hard, and the yolks are then removed, crushed, and placed over a fire, where they are carefuly stirred until the whole substance is just on the point of catching fire, when the yolk will yield nearly two teaspoonfuls of oil. It is in general use among the colonists of South Russia as a means of curing cute, bruises, and scratches.
At this season of the year, it is important for all housekeepers to be on their guard against the insidious attempts of the various species of ants and the detestable cockroaches to invade the kitchen and pantries or store rooms. Sprigs of wintergreen will make the amall red ants leave their cherished haunts. Borax powdered and put into the crevices where cockroaches abide will finally cause them to disappear; but we have found concentrated lye melted into a sort of paste and applied with a knife, a more expeditious mode of destroying these noxious insects. Scalding alum water is also certain death to cockroaches.

DISASTER IN LAUNCHING A TURRET SHIP ON THE

 THAMES.The ironclad man-of-war and steam ram Independencia just built for the Brazilian government at Dudgeon's yard Black wall, London,' is now lying, to all appearance, a wreck on the foreshore close to Cabitt Town Pier, with the tide at high water washing over her decks, having met with a disasterin launching. The ship is 310 feet long and very broad, having a beam of 63 feet, and she is of 5,000 tuns burden, build er's measurement, which is equivalent to a displacement of 10,000 tuns when armed and afloat. She has two turrets on deck; the decks are of iron covered with wood, and the sides are cov ored with a belt of 12 inch armor plates to a depth of about 14 feet. The armor being nearly all fixed while the ship was on the stocks, the weight of the hull was little short of 6,000 tuns, and the operation of launch ing was therefore felt to be one of considerable difficul ty. Hydraulic rams were employed to start the ship, which went safely down the slips for about her own length, and then stuck fast. The rams and all manner of appliances were brought to bear, but failed to move the ship further; and when the tide fell she settled down with her stern in the bed of the river, about a third of her length only having left the ways. Her position is a critical one, and the oute shell of her double bottom has given way in the bilge her as she remains fast on the ways, extracted from the $I l$. lustrated London News.

BURNISYING SURFACE COLORED PAPERS

Marbled and other papers which have color laid on one side have been hitherto burnished or glazed by rubbing with a polished flint or other stone, worked over the surface by hand. Many attempts have been made to substitute glazing rolls and other appliances for the tedious process, but no good result has ever been achieved. M. Alauzet, of Parie, exhibited at Vienna a machine for manipulating the burnishing stone, and thus economizing the cost without impairing the beauty of the imparted surface. This machine, which may be used for dyed and undyed paper, is double acting; the sheets of paper are represented by e, while a shows the burnishing steel or stone guided and moved by the bar, $b d t$, and the rod, g, which is connected with the crank, f. The weights, t and l, may be increased or diminished according to requirements.
We are indebted to Engineering for the engraving

Lawn and Pleasure Grounds.

A writer in the American Farmer for September reiterates, what we have often stated, that the love and taste for horticultural pursuits is rapidly growing in this country. He also states the generally known fact that, up to the present time; the great majority of thorough practical gardeners in the United States are foreigners, and even those, however well educated in that profession at home in their native land, have, under a different climate and other influences by which they are surrounded in this land of their adoption, to pass through another term of ap. prenticeship before they can make their services acceptably available; we speak here of thoroughly educated men in the profession, and not of that crowd of one-year pretenders by which the country is overrun. It has been often remarked that very few often remarked that very few
native born Americans take natio born Amoricans take to horticulture as a profession; and that when they do, it is usually to enter upon the higher or lighter branches,or follow it as a mercantile or money-making pursuit. Yet it is true beyond all dispute, that the love of horticulture is growing rapidly, as may be seen by the millions of fruit trees put out as orchards, and tens of millions of flowers used annually in the flower garden, together with the ornamental trees and shrubs which are sought after with avidity

The residences that formerly stood isolated on the plain are now seen nestling in groves of umbrageous trees, embracing the noblest and most desirable kinds to be found in all temperate climes; now this state of things is pleasing for all lovers of Nature to contemplate, and should not every laudable incentive be used to further its growth? As hav. ng a tendency in that direction, we would remind those

PAPER BURNISHING MACHINE.

Herb Cultivation
The London Garden contains the following account of herb raising for commercial purposes, at Mitcham, England, a place long celebrated for its herb fields, from which the London herbalists derive their mint, sage, licorice, and similar herbs. Of these, as a rule, distillations are made by the growers, and they are disposed of in a semi refined condition, or the herbs themselves are brought into market as soon as they are harvested.

THE FRIGATE INDEPENDENCIA AFTER THE ATTEMPTED LAUNCH.

Chamomile.-To this several acres are devoted, the double flowered kind being preferred on account of the weight of the produce; but both single and double sorts are grown, In March, old and somewhat spent plantations are broken up and the plants divided into good rooted slips, which are planted in well prepared ground in rows $2 \frac{1}{2}$ feet apart, and 2 feet asunder in the rows. A common practice, however, is to plant as thick again as this, and to thin out the plants afterwards to the distances just named. The plantations are intercropped with lettuces in spring. As soon as the blooms begin to expand, they are fit for gathering, and from that time, as long as they yield sufficiently to pay, the flowers are gathered several times in a season by women, who are either paid a regular day's wages, or a penny, or thereabouts, per pound for picking.
Lavender.-This is extensively cultivated at Mitcham, both farmers and cottagers bestowing special attention on it; and this district presents a lovely sight in the last fortnight of July, when the different fields of it are in full bloom, the air for miles around being loaded with its fragrance. Lavender is increased by means of rooted slips, planted out, in rows about 18 inches apart and half that distance asunder, in March or April. Sometimes the eets are planted as wide in the row as the drills are apart. For the first year the produce amounts to but little; and, therefore, parsley or lettuce is planted between the rows. As soon as the plants have grown sufficiently to become crowded, every alternate row, and also every alternate plant in the rows left, is liftedsay in spring-and transplanted into another field, so as to form a new plantation. Thus the plants stand 3 feet apart each way, or 3 feet one way and 18 inches the other. Cole. worts, lettuces, or other early and quickly matured crops, are raised among the lavender in the early part of the year; but, after June, all such catch crops are removed. The flow. ers are usually harvested in the first fortnight of August, and, as has been stated, are distilled at the farm on which they are grown.
Licorice.-This was once largely grown at Mitcham, but, although it is grown in considerable quantities, it is not now so extensively cultivated there as formerly, on account of the cost attending its culture. It entirely occupies the ground for three years, and during that time requires great attention in the way of cleaning, besides the ultimate cost of trenching out the roots, or, rather, underground stems. The ground, being deep, is heavily manured in autumn or winter, when it is trenched and laid up in ridges, in a rough state, till spring. It is then leveled, marked off in drills about 2 or 3 feet apart, and some 3 or 4 inches deep, and in these the sets are planted in March. The sets consist of finger length pieces of the old root stems, each containing an eye or two. During the first year the ground is usually inter. cropped, as is also the case in the earlier portion of the second year; but after the
plant tulips, hyacinths, narcissus, crocus, and lily roots; a sandy soil, made rich by well rotted cow manure, suits them best.

Wood the Most Costly Building Materlal Four fires on the 11th and 14th of July, in Illinois, Wi consin, and Iowa, destroyed wooden buildings, which cost originally $\$ 350,000$, and an aggregate of $\$ 5,080,000$ propertr. These buildings cost about $\$ 70,000$ less than brick ones would have done. The wooden buildings burnt at Chicago, July 14, first cost $\$ 150,000$, but carried with them property to the amount of $\$ 4,000,000$. The wooden buildings burnt in the great fire of 1871 , when the entire loss was $\$ 200,000,000$ were worth $\$ 2,000,000$, or one per cent of the whole. Wood were worth $\$ 2,000,000$, or one per cent of the whole. Wood
is thus shown to be one of the costliest of building materials
middle of the second summer and throughout the whole of the third year, the licorice requires all the room. When the stems are matured in the autumn of each year, they are cut over close to the ground ; and if time can then be spared, the soil between the rows is forked over, some well decayed manure being occasionally worked into it at the same time. The lifting of the crop, which usually takes place in the end of the third season, is a difficult operation, involving much abor. A deep trench is cast out, lengthways, alongside the first row, and by means of forks, pulling ropes being even ometimes employed, the root atems are extracted. In this號 cessfully lifted. The roots may then be stored in eand or pits, like beets, carrots, or potatoes. Growers of licorice do not always harvest the crop; on the contrary, they some-
times sell it as it stands in the field, and the purchaser lifts it himself.
Mint - Both spearmint and peppermint are largely grown at Mitcham, particularly the latter; indeed, this crop ranks econd in importance only to lavender. It is first plantedin rows 13 inches apart each way, and in the end of the next two seasons it is plowed in. The plantations are kept free from weeds during the summer by means of hoes; and about the end of the first week, or during the second week of August, is the usual time for cutting mint for distillation. In the Fulham fields, and in other districts in which market gar dening is carried on, mint is largely grown for sale in a green state. For this purpose the dampest piece of ground is se lected for its culture, if it is to be a permanent plantation but it will grow in almost any soil. It is planted in rows a foot apart, and the ground is intercropped the first year; but afterwards it runs through the soil in such a way that it becomes a complete mass of undergrown stems and roots. It is cut and bunched for market as required,the greatest demand for it being during the pea season. It is also forced in large quantities. "I have seen a range of 43 light frames filled with mint alone. These beds are made up in December or January, when the ground they occupy is excavated to a depth of 20 inches, and filled in with fermenting manure packed firmly. A few inches deep of soil are then added,and in this the mint roots are thickly planted. Linings of manure alao placed round the frames, the sashes during the night and in cold days being also covered with it."
Poppics.-Of the white kind, several acres are grown. They are sown in rows in spring, some 20 or 24 inches apart, and require no further care, beyond a little thinning and cleaning, till August, when their seeds ripen.
Sage.-This forms an important crop, which,under favora ble circumstances, is pretty remunerative; the stalks being cut over, bunched, and sent to market at once. New plantations are formed with rooted slips, obtained by dividing the old plants; they are inserted, late in spring. in rows 1 or 2 feet apart, and about a foot asunder in the row. During the the first season parsley or lettuce forms an inter-crop, which also occupies the ground during the earlier part of the succeeding ones. Except hooing and cleaning, the plantations need no care so long as they continue in a thriving condition and when the lines get brozen, and blanks and sickly plante occur, the plantation is broken up. Both the reddish and reen-leaved kinds are cultivated.
Squirting Cucumbers.-These are raised in frames, like vegetable marrows, and are planted out, about the ond of May, in rows some 4 or 6 feet apart, and 4 feet asunder in the row. They flower and fruit at the same time, and the ruits are gathered before they are ripe, otherwise a mere touch would burst them. The fruits are usually distilled by the growers.

The Physical Fallure of the Hawalians,
Dr. Nathan Allen, in an interesting paper upon the decadence of the Hawaiian race, makes the following observa ions: The census of 1872 returned the whole number of nhabitante, 56,897 -males 31,650 , and females 25,247 .
In 1820, when the missionaries first landed upon these islands, the population was estimated at from 150,000 to 200,000, but may not have exceeded much the first men tioned number. We have, then, in a little over fifty years, a loss of full two thirds of the whole inhabitants.
The efforts of the misfionaries were attended with remarkale puccess. A government of the people has become firmly established, education is generally diffused among all classee, and family instruction has for a long time been established upon a sound basis. In fact, all the advantages of a Christian civilization seem to be enjoyed in an unusual degree by his people.
But, notwithstanding these conditions, the population hae sept steadily decreasing every year. Now, what can be the cause? It cannot be from any fault or change in the climate, which has always been represented to be remarkably pleasant and wholesome. It cannot be for the want of good government or for any outward conditions that are unfavorable to growth. It surely has not been for the want of food, a there has never been any complaint from this source; food has been provided in abundance, a variety in kind-cheap and bealthy. There certainly have been no wars, pestilence earthquakes, famines, or calamities of that kind to account for this change. It is true the small pox, the measles, and the leprosy have prevailed there at times, carrying off large numbers, but by no means enough to account for the change.
There is no evidence that there has been any extraordinary mortality on these islands, especially among children, but there is evidence that there has been a steady decrease in the it seems likely to continue, till as a race hey become extinct
Dr. Allen believes that the great primary cause of this de generacy is not external to the body, but internal-affording trong evidence that the true law of propagation is based upon physical organization, and that external agents are only incidental conditions or secondary causes. The change of population going on at these islands affords a most fraitfu theme for study.
N. O. says: "Your plan for clearing telegraph wires of kitetails, etc., by burning has at least one serious objection, and that is that wooden tenemonts prevail where kitetails most abound; and in burning them off, there is danger of estroying houses: at least the writer found it so in New Orleans, where he tried it several years ago. It is also a
low process, for rage, when wrapped tightly, do not burn quickly."

In the seventeeth century faith in transmatation was un broken. Helvetius declares that he saw a atranger convert Glauber, the discoverer of the salt that bears his name, was believer in the attractive delusion, and it is said that the discovery was made while endeavoring to find the philoso pher's stone among the terra damnata of chemical opera tions. At last suspicion was generally aroused regarding the claims of the alchemists; and in a report read by Geoffroy efore the Royal Academy of Sciences at Paris, on the 15th of April, 1722, the tricks were exposed by which impostors had practised on the credulity of the public.
From this document we learn that the ordinary way of producing the appearance of transmutation was to employ a crucible or melting pot with a double bottom, the exterior being of some infusible material and the interior of suitably colored wax. In the space between these gold or silver was placed. Lead or quicksilver, the latter being preferred on ccount of its volatility, was then introduced into the vessel gether with the powder of projection. Heat being ap. plied, the wax and the base metals disappeared, and a button of gold remained at the bottom. Sometimes a true crucible was used, and the gold or silver introduced into the fused materials by means of a hollow wand or stirrer, the interior of which had been filled with the powder of the metal the production of which was desired. Lead, in which holes had been drilled and filled with gold and then closed ap, was also employed; or a piece of gold was washed with mercury and then transmuted into pure gold by an acid.
Where only a part of the baser ma to be converted najls, or bars, consisting half of gold or silver and half of iron or some other metal, were prepared, the gold or silver being painted to resemble the other metal. The removal of this coating or transmutation was accomplished ry means of alcohol or some liquid that could dissolve the paint. A nail of this description was at one time preserved in the museum
at at Florence; and the knife that belonged to Queen Elizabeth, which was half gold and half steel, was of the same nature. Such objects as coins, half gold and half silver, were at one time very common, and were distributed by alchemists as evidences of their power, in order to entrap the credulons.

The Austro-Arctic Exploration.

M. Sidoroff, says the Eastern ILudget, member of the Geo raphical Society of St. Petersburgh, has addressed a report oo the Russian Admiralty with regard to the Austrian Polar Expedition, of which nothing has been heard since August 1872. M. Sidoroff says in his report that the Tegethoff was last seen by Count Wiltczek in a gulf near Cape Nassau, whose outlet was then being choked up with ice. Since that time various seamen coming from Novaya Zemlaya have re ported that the quantity of drift ice in the Icy Sea had considerably increased, and that in the summer of 1873 it was extraordinarily abundant. Formerly the ice on the coast of the above island only extended to a distance of five versts in
the month of June, while in midsummer, 1873, the width of the month of June, while in midsummer, 1873, the width o
the icy zone amounted to about 100 versts. M. Sidoroff be lieves that if Cape Nassau had bsen free of ice, the Tegethoff would certainly have gone round the northeastern point of Novaya Zemlya, which is only a day's journey from Cape Nassau, and thus reached the Gulf of Yeniseisk with diff. culty. It is therefore probable that the expedition is frozen up and in want of provisions and M. Sidoroff accordingly recommends the Russian government to send food, etc., by
land to Cape Nassau, adding that he will contribute $\$ 500$ to the expenses of the undertaking. The Admiralty has approved of this proposal, and is now taking the necessary stepa for carrying it out.

The Lake and Cilty or Van.
The city of Van, on theextreme eastern border of Turkey in Asia, is a new station lately occupied by American misionaries. The Rev. Dr. Barnum writes home, to the New York Observer, an account of a journey lately made by himself and party from Harpoot, eastward over the Taurus mountains, a distance of 300 miles, to the city of Van. The author says:
Lake Van, along the shores of which we spent several days in going and returning, is a beautiful sheet of water, without any outlet, sixty or seventy miles in length, and perhaps twenty or thirty in breadth. It is irregular in shape, and is surrounded by mountains, so that in traveling the whole length of the lake' you obtain sectional views, which give one almost the impression of a series of three or four lakes, and remind one somewhat of Lake George and the talian lakes.
The city of Van lies at the eastern end of the lake, and is surrounded by a wail and moat. Just back of the city is a high bluff which is surmounted by the most picturesque castle which I have yet seen. On the rocks are several inscriptions in the cuneiform character, but in the Armenian language. The city is said to have been founded by Semiramis,nearly 4,000 years ago; but I believe this distingnished queen is coming to be regarded by historians as a myth. At any rate the city is very ancient, whoever may have been
the founder. Stretching away from the city and the lake for several miles toward the mountains on the east are beautiful orchards and gardens, and here the majority of the people live. The Armenian population of Van and its surrounding vilages is very largo.

To Restore Old Zinc White.-If kept for a long time zinc white becomes granular and gritty, and useless for painting. It may be restored by ignition in an oarthen crucible.-M. A. Speidel.

At a recent meeting of the French Academy, M. Marey ammunicated an account of nome new researches on human ocomotion. With his usual experimental skill he succeeds in recording the movements of the legs, on a rotating blackened cylinder (in reduced form, by means of wheel work). Weber supposed that, in walking, the leg was displaced merely by the action of gravity, and performed a pendulum movement. This has been variously disproved (by Duchienne and others) ; and now M. Marey demonstrates that the movement of transport is uniform throughout nearly its whole duration; in rapid paoes it commences and terminates with short periods of variable velocity. This uniformity is due, in great part, to action of muscles of the leg, but two other elements have to be considered: 1 , the angular movement of the leg about the pelvis, and 2 , the horizontal translation of the pelvis itself, that is to say, of the point of suspension of the leg while it oscillates.

A Monument to Liebig.

The pupils of Justus Liebig propose to erect a fitting monument to the memory of their master, and now appeal to the chemists of all nations to aid them in the effort to raise a sum sufficient for the purpose. It has been decided to erect one monument at Munich, where Liebig spent the later years of his life, and, if the fund subscribed shall suffice, to place another-perbaps a copy of the first-at Giessen,the cene of his earlier labors.
Subscriptions in this country may be sent to either of the undersigned, who will forward the sums contributed to the Central Committee at Berlin
Professor J. Lawrence Smith, Louisville, Ky., Professor E. N. Horsford, Cambridge, Mass., Professor Wolcott Gibbs, Cambridge, Mass., Professor C. A. Joy, Columbia College, East 49th street,N. Y.,or Professor C. F. Chandler,Columbia College, East 49th street, N. Y.

One Hundred and Twenty Years old.
There are certain portions of Virginia which have long been celebrated for the healthfulness of climate and the ongevity of the inhabitants. Here is the latest example Mrs. Katie Shepp, living in the Massanutten Mountain, near Keezeltown, five miles east of Harrisonburg, Va., has, it is stated, now reached her one hundred and twentieth birthday. Mrs. Shepp was married in the year 1774, at the age of twenty. Her husband, who has been dead about sixty years, was in his twenty third year at the time of his marriage, and he was a wagoner in the war of the Revolution. Mrs. Shepp remembers many of the iucidents then occurring in the vicinity. Her mind is clear, and she does the work of the family she lives with, as well as her own sewing, and has never used spectacles.

A Russian International Exposition.

A permanent International Exposition of machinery is to openat the Museum of the Imperial Polytechnic Society in St. Petersburg, Russia, on the 15th of October next. The object of the exhibition is to promote the introduction and employment throughout the empire of new and improved tools and machinery, whether of domestic or foreign manufacture, in demonstrating their advantages through public experiments. The enterprize is also intended to establish closer relations between the Russian manufacturers and those of other countries. Full particulars may be obtained by addressing Colonel Sytenko, President of the Russian Imperial Polytechnic Society, 2 Rue Panteley Mouskaia, St. Petersburgh.

Fishing by Means of Explosiven

A method of catching fish, employed for years by poach ers in England, is to fill a large stone bottle with quicklime, then to pour in water enough to nearly fill the jar, and cork it up, securing the cork to the neck of the bottle by copper wire. The bottle ie thrown into the water, and the pressure, caused by the working of the lime, explodes the bottle and stuns the fi
the water.

Phenic acid for the Presertation of Wood.-It is admitted that, if tar increases the durability of woods exposed to alr and moistare, this property is owing to its phenic acid and its creosote. It is, then, rational to believe that, in replacing the sap of the trees with slightly phenic water, they are protected from rot. But phenic acid is insensibly driven from the wood under the influence of water. M. Boucherie considers that phenic acid can only be rendered useful by mixture with sulphate of copper, to defend stakes driven into the sea against the attacks of the teredo.

The British government is spending $\$ 50,000$ at Woolwich on a new 80 tun gun, which, when finished, is expected to beat the world. With a sixteen inch projectile, weighing 1,650 pounds, and a maximum charge of 300 pounds of pewder, if will pierce the best iron plates, twenty inches thick, at 500 yards, sixteen inch plates at 5,300 yards, and will pitch a aixteen inch shell into a ship or fortress at a distance of 10,300 yards. The steel block forming the inner tube was the largest ever cast, weighing over twelve tuns; while the trunnion piece, about eighteen tuns, was the largest forging ever produced at the arsenal.

Utilization of Waste Soap Lyes and Oily Liquors.Instead of separating the fatty matters from the water by means of mineral acids, the author proposes to treat them with ealts of magnesia. Magnesian soaps are thus formed, containing 60 per cent of fatty matter, and which may be used Fohl.
II.

One Max Adeler Pescribory Chickens. ridding his garden of a neighbor's chickens. We copy the article from the London Garden, but we suspect it emanated from this side of the water, and we would not wonder if the Danbury News man was its author. It certainly reads like him ; but no matter where it originated, the invention is made and in Adeler's case it proved ueeful.
He says: "We had a good deal of trouble last summer with Pitman's chickens; as fast as we planted anything in our little garden, those chickens of Pitman's would creep through the fence, scratch out the seed, fill up, and go home. When the radish bed had been ravished in this manner for the fifth tinne, we complained to Pitman. He was not disposed to interfere. 'Adeler,' he said, 'I tell you it does 'em good; and it does them beds good to be raked over by chickens. If I had radishes, give me chickens to scratch around them and eat up the worms. Radishes that haven't been scratched ain't worth a cent.' Then we climbed over hands. We procured half a peck of corn law in our own hands. We procured half a peck of corn and two dozen
small fish hooks. Fastening the hooks each to a grain of small fish hooks. Fastening the hooks each to a grain of
corn, we tied wire to each hook. Then we scattered the corn, we tied wire to each hook. Then we scattered the
whole of the corn on the radish bed, and fixed the ends of the wires to the biggest oky rocket we could get. The rocket stood in a frame about 10 yards away from the hooks. Tha very morning Pitman's chickens came over, and instantly began to devour the corn. We were ready; and as soon as it was evident that the hooks were all swallowed, we applied a match to the rocket. It is regarded as probable that ever proceeded toward the azure vault of heaven with such rapidity as those did. A fizz, a few ejaculatory cackles, a puff of smoke, and Pitman's roosters and chickens were wishing around the celestial constellations without their feathers, and in some doubt respecting the stability of earthly things. Pitman never knew what became of his fowls; but when we read in the paper next day that twenty four underdone chickens, with fish hooks in their craws, had been rained down by a hurricane in New Jersey, we felt cer tain that that sky rocket had done its duty.

Gas Light.-A vorage Prices.

The following information, showing the average net price of gas throughout the United States, has been procured by he Washington, D. C., Gas Light Company

1. Maine............ $\$ 3.87$	20. Mississippi.
2. New Hampshire.. 3.96	21. Michigan.
3. Vermont. 4.80	22. Wisconsin.
4. Massachusetts 3.86	23. Ohio
5. Rhode Island..... 3.35	24. Indiana
6. Connecticut. 4.03	25. Illinois.
7. New York. 3.88	26. Kentucky
8. New Jersey....... 3.80	27. Tennessee.
9. Pennsylvania..... 3.46	28. Minnesota.
10. Delaware. 3.95	29. Iowa.
11. Maryland......... 3.59	30. Missouri.
12. Dist. of Columbia. 3.16	31. Arkansas.
13. Virginia. 3.89	32. Louisiana
14. West Virginia. . . . 3.11	33. Texas.
15. North Carolina. ... 6.67	34. Kansas.
16. South Carolina.... 3.80	35. Colorado
17. Georgia 5.07	36. Utah.
18. Florida. 8.00	37. California
Total average net price of gas in the Unit	

Proposed Statue to Daniel Webster

Gordon W. Burnham, a wealthy resident of this city proposes to erect in the Central Park, at his own expense, bronze statue of Massachusetts' late statesman, Daniel Webster. Mr. Burnham has a special taste for bronzes, and his residence on Fifth Avenue contains probably the choices collection in the country, The Central Park has already a handsome group (Eagles and Chamois) presented to it number of years ago by Mr. Burnham.
The Park Commissioners have, we understand, requested that a model of the statue be submitted to them before they will consent to set apart for it the conspicuous and appropri te site on the Mall, suggested by the donor. The form of a renowned and representative American statesman, whose fame belongs to this country, deserves, we think, at least as prominent a position as that of Sir Walter Scott. It is to be hoped that Mr. Barnham's generous offer will not be with rawn through any difference of opinion as to where in our everywhere beautiful Park his gift is to be displayed. The people will appreciate it, and heartily thank him for it, no matter whether it be located (as it should be) on the Mall, o half hidden in the shrubbery in some by-path of the Ramble

Rope Cordage.-Recently a very intereating experiment was made at Kirkaldy's Testing Works, Southwark street London, as to the relative strength of handspun yarn rope, machine yarn rope, and Russian yarn rope. Mr. Plimsoll, M. P., Captain Bedford Pim, M. P., and others attend d the test, which lasted over three hours. There were nine pieces of rope, each 10 feet long, being three of each of the above classes. The ultimate stress or breaking strain of the Russian rope was 11,099 lbs. or 1,934 lbs. strength per fathom; machine rope, $11,527 \mathrm{lbs}$. or $2,155 \mathrm{lbs}$. per fathom; handspun rope, $18,279 \mathrm{lbs}$ or $3,026 \mathrm{lbs}$. per fathom. The ropes were all of 5 inches circumference, and every piece broke clear of the rastenings. The prices paid per cwt. were: Rassian rope, all deacribed as beat cordege and London manufacture It will thus be seen that the handmade was cheaper by 75 cents per cwt., and broke at the testing etrength of 7,180 lbs. over Rassian, and $6,75 \%$ lbs. over machine made rope.
 sperr, and eabert mattiner
[In equa
Nixon, $\begin{aligned} \text { Judge: }\end{aligned}$

United States Circait Court---Southern District of New York.

Zerent Smeticam and farcign Zatents.

 is coupled with a casting or T. In the lower part of whtch is formed a cont.
cal valve seat, and with its lower arm is conled a plie leading to the
 arger ptpe. Which ha secured to a stand. Withnt the large nipe is placed a
maller ptpe, around the lower end of which is formed a ring tange, non Which ts placed a rubberring to form the valve. Rv this construction, when
the valve ts closed snd water admitted tinto the basin. it will rise tin the arge plpe until it reachea the level of the upper end of the small pipe, when
will now of through the same. When the ptipe ta raised. opening the will inw of through the same. When the pipe is raised. opening
alve, the water will flow off through the newer pipes. having a wholly unobstructed passagn, in which there fs nothing for hairs or other rubblish to bdge against and thus obstruct the outiow.
Improved Mechnnism for Oderating Punches, Shears, etc.
Cbarles H . Reyolds, Wullamsburg, N. Y., ass'gnor to himaelf and Enry C. Richardson, of same place.-In this macbine. When the free end of a lever is moved to the rearward,"the arm of the lower jaw will be
noved downward and the arm of the upper jaw will be moved upward, bring!ng the Jaws together with immense power. An tllustrated descrip-
tion of the apparatus will be found on Impreved Signal Light.
James C. McMullin, Chicago, Inl-The object of this invention is to fur-
ish a signal lamp fer railroad trains and other purposes, which indicates ish a signsl lamp fer rallroad trains and other purposes, which indicates
y the successive appearance of the light thrown through lenses of differnt colors or sizes from one burner, the distance of the llght to be deterIned by the gradual appearance and relative position of the lights. The
inention consists of a signal lamp whitch is provided with one or more nbulararms, with reflectors and lenses of difurent colors at thetr ends, spread at suttable distance, and lighted by one common burner. A signal
lamp is provided with one or more tubulararms. At the distance of one, amp is provided with one or more tabulararms. At the distance of one,
wo, or more feet, are a reflector and lens. The refector is preferably placed under an angle of forty-flive degrees to the axis of the arms, so that refected under the angle of incidence of the 1 ght . Lenses of different accted under the angle of incldence of the light. Lenses of difierent
colors or sizes may be employed, and thereby the distance of the train decermined by the successive appearance and position of the lenses. It has been foand by practical tests that in a signal lamp having red and white
eight inch lenses placed at a distance of thirty-four inehes from each other, elght inch lenses placed at a distance of thirty-four inehes from each other,
nothing but the red light is shown at a distance of one and one fourth nothing but the red light is shown at a distance of one and one fourth
milles. At a distance of one mille, red is shown with a rim or fringe of hite at that side where the white lens is situated. At three quarters of tance of half a mille a considerable space appears between them. Any
anmber of lenses can be illuminated at the same burner if placed at the number of lenses can be illum
onds of the connecting arms.
$\xrightarrow{\text { Improved Children's Carriage. }}$ Wheels by curved sllls or bars and strong lateral springs, frmly bolted to he body and also to the rear end of the bars, the fiont end carrying the axle of the front wheels. By placing the front part of the body on springs,
not only an up and down motion, but also a rocking motion, of the carflage is ootained, and the elastictty of the same \{ncreased. The hind par of the bedy is supported by two additional curved springs, of swan-necked shape, which are interposed between the usual elliptic supporting spring and the body. The front end of the spring is armly attached directly t he body of the carriage, or to an intermediate bracket-shaped casting. The rear part of the spring is attached to the back of the body, near the
upper part thereof. The support of the body by the springs is thereby stant upward jarring of the springs arrested

Improved Sleigh.

John A. Selgerld and Chester B. Borden. Seneca Falls, N. Y.-The knees
nd the hub are cast in a stigle plece, and the hub fits on the beam as an nd the hub are cast in a single plece, and the hub fits on the beam as an
rdinary wagon wheel fits on an axle. Traces are attached permanently the knees and to the under side of the beam, so that they may be rea Ily detached from the beams. The hubs are made about the length of or
inary wagon hubs, so that the wheels will fit on the beams in place of the unners. The beams then become axles. The change from runners to wheels and from wheels to runners ls very readlly made.

Improved Stop Valve.
New York city.-This invention
Richard S. Gillesple, New York city.-This invention is an improvemen pon doubleseated valves, some of which are provided with a headed pta
r spreader and two diske by the tutroduction of rollers that may act on e principle of a toggle joint. When a valve is forced down, a pin strike he bottom of the case and forces another pin up against the lower end of roed inward. As the valve stem moves further down, both pins are outward, forclng the faces of the valve against the valve seats. The roll rs thus operate as a dounle toggle jolnt,pressing outward in lines at right
ngles with the valve stem. In raising or opening the valve. the first move ment of the valve stem removes the pressure of the pins from the rollers the pressure of the rollers from the parts of the valve, and the pressure of he valve faces from the valve seats, so that the valve can be ralsed without any friction betw

> Improved Reading and Copying Stand. E. Wells, West Pawlet. Vt.-The book to be exposed
, Wetrawlet. V . -The book to be exposed on the rack securely fastened thereto, arter being placed on the projecting lugs at the wer end by carrying a top slide plece with top lugs down. The sllde nns having a lateral plece at their end with sliding book fasteners. Similararms with upward extending fasteners are applied along the lower part
of the rack. These rods are swung forward as required by the thickness of the book, and the fasteners then applied to hold the leaves till they are
turned over. As the fasteners rest only lightly thereon, the turning aud lacing in position of the leaves will occasion no difficulty

Improved Carriage Wrench.
Henry Cutler, Ashland, Mass.-The adjusting handle consists of two The eccentric Is governed in position, as it is revolved, by a pivot, whera it enters a hole in the stock head. The Jaws are levers, and the eccentric
operates on their upper ends, the fulcrums betng the ping. A spring be tween the Jaws keeps them spread apart; but when the eccentric is turned,
the outer ends of the jaws are forced toward each other to gripe and hold he mut. With thls wrench a nut may be removed and replaced withou uch
mproved Method of Retouching Photographic Negatives
Claude L. Lambert. Paris, France.-A large negative, after having been roperly exposed, developed, fixed, and fintshed, is covered on both side tha a sheet of thin paper or other semi-transparent material capable o etaintng the coloring matter to be afterward employed. Wherever neces ary, elther on the collodion side or on the reverse side, an Impalpable galnoplactc powder, or other anely puiverized substance answering the ame purpose, is applled with a stump. The eftects of light and shade may
hus be modiffed, toned, or hightened, and such a hith degree of fintsh im. parted as will render any subsequent retouching of the positive paper print nnecessary, the sharpness of the lines betng restored by the ald of a lead nnecessary, the sharpness of the lines being restored by the ala of a lead
pencll. The negative, after thus being treated, is placed in the pressure ramewith a sheet of ordinary sensitized paper, prepared either with salts sllver or of chromium, to obtain a perfect positive. Should the lines of he negative be too sharp or well defined, they may be softened in the posi-
Ive proof by arst partially printing it in contact with the large negative, ery thin glass between the negative and the paper.
Improved Seed Dropper.
Hermann Koeller, Camp Polnt, ill.-To two cross bars are attached runners and seed hoppers, to the middle parts of which is secured a tongue.
A slde recelves a rectprocating movement to drop the seed from the revoations of gear wheels, and may be adjusted to a longer or shorter stroke. To one small gear wheel is attached a wheel consisting of arms, the outer
ends of which are notched to receive a chain, and to the lower side of which is attached a ring to support the same. In uring the machine, in coming dropped last to the ground, after dropptng the last hill before turning. for
mark. He then counts the links that mark. He then counts the links that lic crosswise, and puts another pring ring in the link he wishes to begin to drop from, for a mark in startIng. After turning around, the fanged chain wheel should be set so that
the machine will begin to drop at the marked link. This will bring the check row.
Improved Combined Throttle and Governor Valve. Alan Talbott, Richmond, Va.-This invention relates to novel means
obe used in connection with a governor for starting, stopping, or intantly changing the speed of a steam engine without the employment of hifting belts or other mechanism.

Improved Bath Tub.

Aso C. Brownell, Brooklyn. N. Y.-Th is tub frame is soconstructed that ine sheet metal lining
of the body of the tub.

Improved Combined Check and Martingale.
Leais Barron, Woodstock, Vt.-The object of this invention is to prowhich, by an easy adjustment, is adapted to serve the purpose of a martin gale. It consista of a strap spititinto two other smaller straps, the single
strap fastening by mean of a ring to the check wate smaller straps passing through keepers on the crown plece of the bridle, connected by a sllding loop on the face of the horse, and faste
sitesides of the bridle bit by means of detachable fastenings.

Improved Wheel.
Lewis H. Rogers, South Avon, N. Y.-The object of this invention is to provide a wheel for vehtcles of such an elastic construction as shall faclli-
tate the easy movement of vehtcles, and which shall at once be strong, light, and durable. It constats of a metall hub hayn two be strong, threaded stems projecting radially from the same, to which are fastened small plates held to sald stems by a nut and washer, there belng between
the said washer and plate au elastic pad. Sald plates are attached on each side of the stems to metallic spring spokes, and sald spokes securely fastened to cllps that are riveted to a metailic rellis. Sald relly is preferably
made with a concave periphery, and between the felly and the tyre fa placed
stic substance.

Improved Portable Fence
Willam C. Kay, Como, Miss.-This invention relates to that class of wooden fences which are portable. It consiths of but two essentlally diferent parts, the rails and the improved connection for the same, n hich lat er consists of two symmetricelly formed sectlons, made of inclined stakes,
o which are attached strips of stuft varying in length from about three eet at the bottom to one foot at the top. Sald stakes cross each other at about elghteen inches from the top, a nd are braced by a rall resting in the
fork formed thereby. Said strips are securely fastened at one end to the stake; and as they incline toward the earth the strips of one stake cross
those of the other, forming locks thereby into which the ralls are placed.

1mproved Spring Chair

William T. Doremus, New York city.-To the front and rear parts of through slots in the end of a plate framed upon the head of a screw. Belta pass through holes in the bars and plate, through rubber block placed above and below said bars and plate, through small rubber biock interposed between the bars and the plate, and through washers place above and below the blocks, and have hand nuts acrewed upon their lower
ends, so that, by turning said hand nuts in the one or the other direclasticity to the chair. The small blocks operate as a ylelding but posilite stop to the forward movement of the chair seat, while the larger block allow it to have a greater and more elastic rearward movement. The screw
screws into a long socket which has a flange upon its upper end and a crew thread cut upon the outer surface of its lower end, to recelve nut. The pedestal is made in sectors, meeting in its center around the socket is so firmly supported that it cannot work loose.

Improved Combined Sulky Plow and Cultivator. framework of this machine has a space through which rows of plants of
grain can pass, so that the machine can be drawn over sald rows withou njuring sald plants or grain. Three plow beams are placed in each frame The ends of the beams are connected by bolts which pass through them an bars of the frames, so as to keep the sald beams in their proper relativ positions. The forward ends of the beams are plvoted to the frames, so may require, and enable the plows to be raised from the ground when ne essary. The beams may be adjusted at a greater or less distance apart according as larger or smaller plows are to be used. The plow standard yrastnginner standards and lesing the outer standards in working position, the machine will be adjusted for marking off the land

Improved Range Chimney Bottom Plate. Hamilton C. Garwood, Jersey Clty, N. J.-A rodextendsdirectly through the chimney bottom plate for effecting the ventllation. The rod it connected to the valve by a slotted arm and a stud pin.

Improved Shirt Bosom. York ctty.-This 18 a shirt bosom

willam Hay, New York clty.-Thls is a shirt bosom rëenforced or line and strengthened with a coarse materlal in such a way as to make the
bosom more durable. The side plattsare made of fine linen folded so as to be of three thicknesses. The central platt is formed of one thickness o fine linen in its middle part, but has its edges folded so as to be of three thicknesses. The middle plat is made in one plece with one of the side
platts, and has a strip of coarser material inserted in it, the edges of platts, and has a strip of coarser material in
which enter the edge folds of the said plait.

Improved Seal Lock.

Solomen Wright, having a stem upon which there is a spiral spring. This spring bears
againgt a partition plate. Another plate has an arm which extends to or past the bolt. There is a pin in the bolt with which the arm engages when the lever plate is turned upon its hinge. This action of the plate throws
back the bolt and releases the cap. The cap is a flanged bor having an aperture, and is rigidly attached to the hasp. The cap is placed over the box, thus confining the seal, leaving so much of it exposed to view as is seen through the aperture. When the cap is placed on the box, the edge
of the recess in the cap strikes and forces back the bolt; but when the cap reaches the bed flange of the box the spiral spring reacts, and the end of the bolt enters the recess and securely fastens the cap and confines the seal card. To prevent the card seal from befng replaced after it has been
cat and the lock opened, on the outside of the lever, ribs run longitudicut and the lock opened, on the outside of the lever, ribs run longltud1-
nally on the face of the plate, which force the card outward when it is cut nally on the face of the plate, which force the card out ward when it is cut
or torn. When it is desired to open the car, the seal is broken with the end orard mat be palled out, therebs drawing back the bolt and releasing the cap.

Improved Horse Detacher

Amos Barker, Nebraska Clty, Neb.-On the ends of the whifletrees are
wolugs or receive the tug eyes, and they have a hole formed through twolugs to recelve the tug eyes, and they have a hole formed through
them to recelve bolts, which also pass through the tug eyes, and thus con. them to recelve bolts, which also pass through the tug eyes, and thus con-
nect the horses. The bolts are pivoted to a lever, which is pivoted to the center of the whiffetrees, and to 1 it 18 attached a cord which passes back to the dashboard of the vehicle, so that, by pulling upon the cords or straps,
all four of the tugs may be instantly disconnected from the whifletrees. Stmilar arrangements are attached to the neck yoke for securing the
breast straps to it . By this arrapgement the tongues are disconnected from the whiffetrees, and the breast strap from the neck yoke, at the same time. The ring of the bridle bit is secured in place by a hook formed upon the end of a lever plvoted to a block. By sultable construction, as
the neck yoke drops, the strain will operate the lever to release the bit the neck yoke drops, the strain will operate the lever to release the bit tachng the cross retns and freetng the horses from each
time they are freed from the whifletrees and neck yoke.

$$
\begin{array}{r}
\text { lmproved Trunk } \\
\text { ath Brooklyn, N. Y. }
\end{array}
$$

lmproved Trunk.
William J. Large, South Brooklyn, N. Y.-This improved trunk is so constructed that the operation of ralsing the lid will also raise the tray
to give free access to the faterior of the body of the trunk, and will enable the ild to be locked in place when only raised suffictently to give access

Improved Ice House for Preserving Meats, etc. Dantel T. Conklin, Brooklyn, N. Y.-The roof is pyramidal in form
The sides of the ice box are provided with doors silding in grooves in that The sides of the ice box are provided with doors silding in grooves in tha
corner posts of said box, so that all or part of them can be ralsed, more or less, according as a greater or less cooling effect is required to be produced. The articles to be preserved are hung in the space between the
walls of the house and the ce box. The roof of the ice box is also made pyramidal in form, and its peak extends up to the peak of thc house. The
peaks of both roofs have holes formed through them for the escape of peaks of both roofs have holes formed through them for the escape of
impure alr, etc. With this construction the space in the upper part of the
ice house and ice box to be cooled useleasly is very greatly diminished, so ce house and ice box to be cooled uselessly is very greatly diminished, houses constructed in the usual manner. The corned beef vat is placed
between the forward end of the fce boxand the front side of the house. Improved Sawing Machine.
John M. Linnell, Monticello, Iowa.-A treadle plvoted to an ordinary
saw horse is extended to one side to project beyond the horge stamdard, saw horse is extended to one side to project beyond the horse standard,
and provided with an inclined lever arm which is connected with the b1furcated end of the sam frame. The rear part of an extension of the
lever ts connected to a crank wheel shaft and balance wheel at the opposite side of the saw horse. The balance wheel is weighted at one side for the purpose of carrying the crank wheel Into position to be readily moved by the treadleand arm, avolding the position of the same on one of the dead points for starting. A reciprocating motion is imparted to the saw
frame by the arm and extension. Said frame is made of curved shape with a saw blade cutting in both directions, clamped adjustably and detachably theretn. The machine is operated by rocking the treadle platform with ing with the other hand the sticks to the saw.

Improved Rotary Pump Hiram L. Houghton, Charlestown, N. H.-This

hollow cylinder with closed ends, containing a rotary disk in the middie portion. The disk carries blades in longitudinal and radial slots, both in tself and in the shaft. These blades are shifted forward and backward by cams on each end of the cylinder to cause them to press the cut-off and
rims over the suction pipe, and carry the water up to and deliver it at the discharge pipe. The suction pipe is divided, and a branch enters into that discharge pipe. The suction pipe is difided, and a branch enters into that
chamber in which the blades are thrown to pass the cut-off in the princt pal pumplng chamber; and; a passage is formed through the cut-oft to a branch of the discharge pipe, whereby
the blades in that chamber is utilized.

Improved Heating Stove.
Silas Cook, Magnola, Iowa.-In this invention the products of com o secure more perfect utilization of hest, that is to escape are, in the through the stove to be reheated, after passing through an extertor verti cal flue, and their course at starting directed upward from the grate, o ownward through the same.

Improved Bolting Reel
Moses French, Harrodsburgh, Ind.-The cloth has strips arranged along he seams to attach it to rods which are suspended from the ribs by othe rods. The cloth strips are connected to the rods by hooks, and the rods
are arranged to turn and roll the cloth on them for stretching it transversely. By this arrangement the cloth can be stretched tight at any ime after it has stretched so as to bag without unfastening and readjust
ing it. The inside is relteved of the ribs of wood which carry up the meal nd throwit down, so as to force through the brown and dark matter Which discolor the flour; and the bolting cloth, being entirely untouched
by the ribs, will not cut or be injured by insects which gather in the

Darwin V. Miller, Weedsport, N. Y.-This Seat.

proved spring seat formed of two sets of spring slats sloted at in an im and drawn together at their centers over a frame interposed between
hem. An upper set of spring slats are attached by dem. An upper set of spring slats are attached by cross bars to the mid
die set, eat from slipping off.

Improved Automatic Gas Lighter and Extinguisher.
George S . Dundar, Pittsfeld, Mass.-A metal case screws on the lamp post, and has a passage for the gas to pass along one slde of the chamber
to the burner, in which passage is a stop valve to shut off the gas and ex. the burner, in which passage is a stop valve to shut off the gas and ex
tnguish the light, when it is let fall, by a cam which is turned for the pur-
 gas passage into the chamber. The valve has a pressure spring above it for
pressing it frmly on its seat when the cam lets it fall. Strong clock spring urn the train. A wheel turns the cam baek to set at the same time that 1 winds up the springs. The extent to which it is turned back determines he time the clock will run before extinguishing the light, and the extent may be set for dropplng the valve at any predetermined time by shifting the collar to the mark on a scale corresponding to the time wanted. A bar Is provided with match-holding fingers to carry a match at the same time
that it is used to wind up the clock, and strike it against a striking plate, that it is used to wind up the clock, and strike it against a striking plate
and then present the burner to tgntte the gas jet ; thus allowing the windand then present the burner to ignite the gas jet; thus allowing the wind ng and setting of the cloc.
pllshed by one operation.

Improved Washing Machine.
Charles Bagnall, Amity, Iowa.-Levers are oscillated by working a ame. To the inner end of each of the levers is plvoted a bow. To the tubes. The shanks of presses are fitted into the lower ends of the tubes, and are held in place by colled wire springs placed in the upper part of the tabes. By this construction the presses can yield to accommodate them.
selves to the different thicknesses of the mass of clothes that may be in the bofler.

Improved Car Coupling
Charles F. Wilkinson, Reuben Mochamer, Jacob B. Ziegler, and Charles Snyder, of Latimer, Pa.-This consists of a draw hook with inclined front
part, ftted rigidly to the car frame, and set into a recessed bumper frame. part, fitted rigidly to the car frame, and set into a recessed bumper frame.
A link-shaped clevis is plvoted to the hook, and a curved latch plece closes over the end of the same. The link sildes, on the approach of the cars, over the hook, and drops into the recess back of the hook, forming therebs'
the intimate coupling. For uncoupling, the link ts swung up, aud taken en intimate coupling. For uncoupling, the link is swung up, aud taken on the outer side of the latter, ready for the detaching of the cars wit hout any chance of recoupling.

Improved Car Brake.
Edmund I. Hockaday, Pleasant Hill, Mo.-A Allding bar is applited to the der side or the car, provided at both ends with buffer heads. Its whole rder to with the brake mechanism by a chain with double end parts, so that the brake may be operated by pulling the silding bar in either direction. The tender is provided under the rear drawhead with a short sliding buffer rod, wich is operated, by means of a pulley and chan, from a brake shaft and wheel at the forward end of the tender. The buffer rod is gulded under in regular position, beyond the drawhead far enougb to take up nearly the entire slack space between the tender and first car. On the discovery of sudden danger, the engine is reversed, or its motion is retarded, so that the momentum of each car carries it formard the full length of its slack, and produces the action of the buffer rod of the tender on the silang bar and brake of the first car, which carries back that of the second, and so os till the whole train is acted upon by the brakes in a perfectly automatic man-
ner. In order to release the brakes and back the train, the engine is silghtly moved forward, and a brake wheel connecting chain is released, so that the buff
silding bar.

Improved Boot Blacking Machine.
Bartly Palmer, Armonk, shaft, which is rotated by a hand wheel or treadle, and provided with two
wheel-shaped brushes, of which one takes up the blackirg from a box Wheel-shaped brushes, of which one takes up the blackicg from a box
placed adjustably on a plvoted bracket, transferring it to the boot, while the other wheel, of rounded V shape or concaved cross section, polishes the ot when brought in contact therewith.

Improved Cotton Seed Huller.
Paul J. Marti, Paris, France.- This inedion relates to a construction cave in place, and for adapting them to be adjusted to waives of the conThe effect of the operation of the machine on the cotton seed, which passes from a hopper down between the stationary concave and revolving
cylinder, 1 to remove its fibraus outer covering or envelope by the grind ing or rubbing action of the knives or sharp-angled bars fixed on said con cave and cylinder.

Improved Roller for Winding Paper.

Brantley G. Read, Lyons, Iowa.-This invention consists of a rod fo fastentigg the end of a paper sheet to a roller on which the sheet is to be which are pivoted eccentrically to the roller, and so as to let the rod drop into a little groove in the side. The paper sheet is attached by raising the rod, folding the paper sheet over it, and letting it fall back into the groove. The tenion of the paper holds the rod in place as it passes under when the

Improved Washing Machine.
Dantel C. Mitchell, San Marcos, Tex -The suds bor has a false bottom Four perforated upright boards are hinged together to form a clothes box, be washed are placed in the clothes box and a crank is operated, the effect of which is to work the boards upon their hinges, alternately compressing
the clothes in opposite directions, and allowing them to become again the clothes in opposite directions, and allowing
saturated, washing them clean in a very short time.

Improved Chimney Cap.
David Boyd, New York city.-The fue has an enlarged portion attached thereto by making a series of small V-shaped openings in its lower end.
and then compressing the end to the fue. A collar surrounds this connec tion, forming a sort of cup to catch the condensed gases which run dow apon the fue, and discolor and stain whatever they touch. The Hiquid which adheres to the inside surface of the enlarged portio
passes through the opening into cups and is carried of.

Charles Clark, Mimproved Hot Air Furnace.
radiator, with top extension cones, exteuds at the top of the distributing ts full length, and is connected, by cylindrical or conically enlarged to or to horizontal drums, which are placed longitudinally side top radia are box. The front ends of the base drums are provided with doors fo ceaning. The rear ends carry a lateral radiator of pyramidal shape. The reardrum has a serles of air flues passing through the same in the longitu
dinal direction, and is also connected near its top part by a direct flue with inal direction, and is also connected near its top part by a direct flue with

Improved Churn.
James C. Babb, Knowiton. Wis.-Arrangements are provided so that s complete circulation of air is established through the millk betng churned tachments will be revolved in opposite directions, the millk will be thrown g the butter in a very short time, and developing all the butter there may e in the milk.
Improved Toy Pistol.
Charles Nelson, East New York, N.Y.-This is a toy revolver with a solld otating cylinder, having a number of annular side recesses, into whitch paper caps are securely placed and discharged in regular order by the ac-
on of a hook-shaped hammer striking thereon through a recessed slot of

Improved Axle Skein. Jeremiah J. Hutchins, Red Oak, Iowa.-This inve

w castmetal thimble sketn, rew on the axle for attaching the skeln thereto. The threads aremade nght and left for different sides of the wagon, in order to have the pitch so hem when the wagon moves forward.
Improved Burglar-Proof skylight.
Mar-proof grating, formed of bars of iron attached to the frame, wha burxed for covering one half of the opening. The other half is covered in a milar manner, but the bars are attached to a sllding frame, whtch, when closed, is secured by a hook. The windows on the sides of the skylight
swing to a horizon:al postion and are self-closing. The cover of the sky
倍 art of the Indow cords also extend ditch is operated by means of two cords. The more may be opened by night or day for purposes of ventllation. The
opentig in the roof may therefore be left open at all times and protected

Improved Hand Rest.

ace.-This hand rest and memoiandum book is composich W. Coe, of same ets, made of any suitable material, which are hinged together so that they en and close similar to a book. The rest is adjustable, as to thickness and throwing back one or more of the leaves.
Improved Medical Compound or Bitters.
Homer D. Torbit, of Waynesborough, Ga.-This remedy, for rheumatism
 aned with rye whisky.

Improved Artificial Flower.
Philipp Knorpp, York city.-The term brilliants is given to articles produced in a variety of difierent forms by a sultable alloy of lead and tin, the h, ane any concelvable design, so as to impart to the surface of the alloy the appearance of brilliants. In the present invention, leaves are made with a brillant surface, in any desired size, shape, and design, as described. A
sertes of such leaves are then arranged together and fastened at the center, and rows of smaller leaves arranged at the inside, with a pistll in the cen-
ter. To the under side of the flower is then soldered a pin, by which the er. To the under side of the flower is then soldered a pln, by which the
brillant flower may be readly attached to the costume.

Improved Whip.

Dexter Avery and Charles C. Pratt, Westfild, Mass.-This invention conpon a small center core of whalebone, and glued and compressed, the Whalebone belng in the upper part and projecting beyond the termination
$\begin{aligned} \text { Improved Neck } & \text { Yoke. }\end{aligned}$
connection the, We.-This invenion consists of slid he connection ther The object of this is to accommodate the animals, to some extent, to a The connections are coapled to an equalizing nd thg plate at the middle of the yoke, so as to cause them to shift alike, tage of the other in respect of the leverage of the yoke.

Improved Road scraper.

Peter C. Post, Paterson, N. J.- his invention consists of two scraping oled at the middle to draft bars, and connected at the front end by chains to
 justed to certain different conditions adapted for different conditions of the gutters along the slde up to the middle portion, for rounding up the road bed.
Improved Hub or Vehicles.
Motse L. Poirier and Dolphis Guimont, Green Bay, Wis.-This is an 1 m proved attachment for hubs and axles, which prevents the oil from escap-
ing from etther end of the hub and running over its outer side, and also ing from either end of the hub and running over its outer side, and also
prevents sand and dust from getting in and causing the axle arm and box to wear. It conststs in a band made with an in wardly projecting shoulder on the axle arm fit cape of oll. A cap made nto the flange of the band, so as to prevent the escape of or
of rubber also fits into a band at the outer end of the hub

Improved Subsoil Plow.
Andrew L. Manning, Boonevile, Miss.-The slotted rear end of a ba rests against the rear slde of the, standard, opposite the rear end of the
beam. The bar is then bent formard at right angles, ard extendsalong the Ide of the oeam, and is slotted so as to be secured to the side of the beam duastably, in order that it may be conventently moved forward and back, o adjust the pitch of the subsoller, as may be required. The subsoller can
ee readily raised and lowered to adjust it to work at any desired depth in the ground.
Ellas O. Long, Farmingroved Derrick.
orting part of suitable strength, to which is firmly secured a mast with Idding extension plece, having pivoted top arms and brace ropes swiveled cereto, and suitable steadying brace ropes connecting its top with the
round. When the derrick is placed in position for hoisting a rope ingover pulley blocks of one arm and the base part, raises and lowers the oad, as required, while the other is braced for relleving the side sirain.
For the purpose of transferring the derrick, the extension standard is owered downalongside of the mainmast, which causes also the swinging hen released with their stakes and sultably wound up, and the derrick may then be dramnamay to be placed into position at any other point, as
desired. For storing the derrick entirely out of the may, the standard
may be detached from the base part and bundled up thereon.

Susiness aud eerfonal.

The Charge for Insertion under thes head is $\$ 1$ a Line. ed Fishng Spear? Addre .
Westcheater Conuty,
Wanted-General Agency for small patent Wanted-100,000 of Davis' Hay and Cotton
Presses made on royalty. Address 0 a. A. Davis, ABh. Presses made
land, oregon.
Wanted-Circulars and Price Lists from For Sale-One N.H. Baldwin's Foot Lathes,
back geared and screw cutung, 10 in. swing, 42 tn. be: tween centers. Addess $\mathrm{Wm} . \mathrm{E}$. Lewls, Cleveland,Ohto,
Wairus Leather, tanned, for porishing all
all Babbitt Metals-For the best, sond to Co-
nard $\&$ Murray, Iron and Brass Founders, nut Sts., Phlladelpha, Pa.
Chromo Printing is very extensively carried
in Cluctinati by Strobrige $\&$ Co. Their work is

Bones Wanted for Manure (Cash). Write
Spratt, 51 K nowle Road, London, England.
 Sows 10 thmes more than any other; is strong, simple,
elegant, durable, and cheap. Address James Codville,

Bread Dough Mixer Wanted. Address M., care Mr. Wadugg, No. 22 FForsstht st., New York.
Tingue, House \& Co, 69 Duane St. N. Y. Tingue, House \& Co., 69 Duane St., N. Y. Endles or in plece, for Priters, Engravers, Pollshers
Piano Forte Makere, Paper Mare Plano Forte Makers, Paper Malers, Caltco Printers,
Punchtno Washer Cloth, Filter and strainer Cloths for all kinds of llquids. Sample sent on application.
 To Manufacturers and Amateurs-Solutions
 engn, With rellable directon for use. Addreess Alb.
Lovie, 222 N. 4 th St... Pliladelpha, Pa, $\underset{\text { facturers. Milton Cuuch, Pltteburgli, Pa. }}{\text { Wander }}$ The Patentee of the U. S. Patent Auto-
graphic Safety Incistons for prevention of alteration of

 Matson's Combination Goverror-Will ab. stream of oll Int the cyllinder. Sold un
tee. Address Matson Broa, Moline, Ill.
Double-Acting Bucket Plunger Steam Pumps,
 Portable Engines, new and rebuilt 2d hand
 Blake's Belt Studs are the Cheapest and
most revilioble tastentig for Rubber or teanner Belts. Saws made \& repaired at 108 Hester St., N. Y. Inventors can get small plates of sheet steel
very cheap, at tne saw factory, ws tester st., New York. The "Scientific American" Office, New York,
18 Atted with the Minature Electric Telegraph. By touchtng little butlons on the desss of the managere,

Makers. Sen for free Hinstrated cataiogue.
The Improved Hoadley Cut-off Engine-The
Cheapest, Best, and Moot Economical steamepower in

Telegraph Inst's. M. A. Buell,Cleveland, O . Vertical Tubular Boilers-all sizes.
for Price List.
Lovegrove $\&$ Co., Phlladelpula, Pa. Compound Propeller Pumps,for Mines, Quar-
rees, Canals, and Irrigating purposes. Circulars on ap. plicatlon to Hydrostatic and Hydraulc Company, 918
Ridge Avenue, Phlladelohat Pa For Solid. Wrought-iron Beams, etc., see ad
Vertisement. Addreas Union Iron Mllus, Pittsuurga, Pa for lithograph, e
For
For Sole. Trwo
Farms, by C. Brldgman. St. Cloum Saw Minls. Dene \& Patent Steam Pump-for all pur-
poses-Stricty trat class and rellable. send for clrcular
 send for sample and
Engines 2 to 8 H.P. N.Twiss, New Haven, Ct. Dickinson's Patent Shaped Diamond Carbon
Polnts and adjuatable holder tor working Stone, dress
 The Pickering Governor, Portland, Conn
 Mechanical Expert in Patent Cases. T. D.
stetson, 23 Murray st., New York. Gas and Water Pipe, Wrought Iron. Send
for price list to Balley, Harrell \& Co., Pittsourgh, Pa.

 For Solid Emery Wheels and Machinery Lathes, Planers, Drills, Milling and Index Hydraulic Presses and Jachs, new and se
ond nand. E. Lyon, 870 Grand Street, New Tork. Engines, Boilers, Pumps, Portable Enginos Price only three
Electric Telegraph.
Δ compact working Telegraph ap. paratus, for sending messages, mazing magnets, the
electric ugnt, 1 ITng alarma, and variona other purposes. Can pe put in operation by any lad. Incladee battery.
key und wrea. Neatiy packea and sent to all parta ot key und wires. Neatul packed and sent to all parte ot
the worid on recelpu of price. F. C. Beach $\$$ Co., 263 Broadway,New Yora.
All Fruit-can Tools,Ferracute,Bridgeton,N.J•

Makers of Hub and Spoke Machinery; ad Peck' Patent Drop Press. For circulars, Small Tools and Gear Wheels for Models. The French Files of Limet \& Co. are pronounced superior to ail other branas by al who use
hem. Dectlded excellence and moderate cost have made hem. Dectided oxcellence and moderate cost have made hese goods popular. Homer Foot $\& ~$
or America, 20 Platit street, New Yor
Mining, Wrecking, Pumping, Drainage, or
rrigating Machinery, tor sale or reat. Ant. Andrew's Patent, inside page.
Automatic Wir Rope R. R. conveys Coal
ore, te... without Trestle Work. No. 34 Dey street, N. \mathbf{Y} A F. Havens Lights Towns, Factories, Ho. Ho.
iels, and Dwellngs with Gas. 44 Dey street, New York. Temples \& Oilcans. Draper, Hopedale, Mass, Best Philadelphia Oak Belting and Monitor
stitched. \mathbf{G}. W. Arny, Manutacturer, 3014303 Cherry Buy Boult's Paneling, Moulding, and Dove
all B. C. Mach's Co., Battle Creek, MIch... Box 22 . Rue's "Little Ciant" Injectors, Cheapest
nd Beat Bonter Feeder rin the marret. W. L. Chase \& o., 98,95.97 Liberty Street, New Yor: For Surface Planers, ,mall size, and for
Box Corner frooving Machnes, send to A. DDivis, Low.

J. G. H. can keep his cistern water fresh
D the means described by M. A. G. on p. 156 of our cur ent volume. $-J$ P's mineral specimen has not reached
 of makng ateel direct from the ore on p. 35 , vol. 30 .-
C. A. B. does not send suffclent data as to calculating the power of a locomotive eng Ine.- -C. Will find direc-
tions for waterprooning cloth with rubber varnish on p. tions for waterproonng cloth with rubber varnish on p.
282, vol. 29.-A. A. Y. will ind directions for making description of the itrat locomotive He win and
 will ind a rectpe for 11quild glue on p. 250, vol, 30, an
 schaum on p. 155. vol. 31.-S. H. S. should consulta soapp
botler.-N.G. N. Bionld apply to D. Vas Nostrand for auchiccioss' book on "Llik and Nalve Motions."-w. N. can galvanize castligg by the process deicribed on
p. 59 , vol. $24 .-$ C. D. E. can kill ants by the means de p. 59, vol. 24.-C. D. E. ca.
scribed on p. 234, vol. 27 .
(1) A correspondent says: I have read with
nuch Interest the very able articles on Mechanlsm," written for four valuable paper by Mr. Rose ; and And that they contaln much information, worked for years at their trade. But I beg leave to dif ter from Mr. Rose on some points of the article pub
lished under date of Auguat 15, in which he says: "The Only clearancene necesastry 1 to to ease off the top of the eeth back wards from the cutting edge, which will give
the teeth sufficlent clearance to make them cut clean and leave the sides of the thread to ft the thread belng cut." I malntatn that 1 t 18 necessary to have clearance
on the top. bottom, and stdes of the teeth of a tap, in
 tical machnntists, who hare used taps with clearance only on the top of the teeth, as proposed by Mr. Rosese,
espectilly for tapplng steel, wlll agree with me on thls
 sack as to force them 10 and will frequently snap off in
he hole. In another part of the artucle, Mr. Rose says;
 which heave the top tronger and less llable to wobble,
speclally in holes that are not round than if it had espectally in holes that are not round, than if it had
four futes. Taps of a larger size may have more flutes, he tap may do tits work steadily." My expertence has autes is better than one

epresents the outinne of a hole not a true circle. B 18
section of a tap with three flutes. When in the postton shown, the polnt, \mathbf{A}, does not touch, and the diameter of the hole betng greater across C D than where
the other two flutes, F, r, of the tap are cutting, the tap will be forced back unt11 the polnt, A, touches, and each tooth in succession, as it comes around, will drop
Into the same place; thus the tap will follow the irreguaritles of the hole. A spiral form of fute is the best. A. Taps will cut freely and clean without having clear-
ance on the sides or bottom of the thread, as evidenced

In the celebrated Whitworth taps. If the teeth have tor in turning it back. Agann, a tap without clearance fiting thread. A tap with three flates only has more of the circumference of the thread gulding it in the hole, and hence is steadier in qising and less liable to wabbie
or to follow any inequalities in the coniguration of the hole. A spiral form of fiute is diffcult and expensive
to cut, and must be sharpened by hand instead of by the much
wheel.
(2) F.C.M.asks: What difference is there in the nature of the power disengaged by the acthon of dil
lute acld on the metallic plates, as in a cell battery, and that evolved by the friction machine commonly used for mealical purposes? A. There 18 still much uncer-
talnty as to the real effects of electrictit on the humal system, the cases In which it it to to be applled, and the best mode of applylng it. Practlcal men preter the use in a few casea, the stater er electrictry, and, excep ous currents. There ts, tnally, a cholce between the
current of the bastery current of the battery and that of Induction. Electri-
cal currents should not be applited in therapeutics without a thorough knowledge pot their varlous propertles. They ought to be used with great prudence, for
their continued action may produce serious accldents

 mencling, a feeble current must always be used. This
precaution now seems to me the more mportant, as ditd not think it so before seeng a p parapytut perason
selzed with almost tetantc convulision ander the action I a current mos etanc convisions underthe action contlnue the application too long, espectally if the current 18 energetcc. Rather apply a frequentiy interrupte
current tha but after 20 or 30 shocks at most, let the patlent take (3) G.R.Mc. .asks: Is there any simple methnoy which glass and china ware may be marked with
name or intitalis? A. Glass ware may be indellibly marke
(4) W. H. M. asks: What is the meaning of ing the castor oll bean in a cold or warm state. When pressed eold, 1 t 118 called cold pressed castor oll.
What work on chemstry do you consider the best
 latry," A mo
of Chemistry
(5) C.O.D. asks: 1. How can I keep the head what can I clean the fig dirt off without Injuring the head? A. Try a smanl quantity of po pdered rosin. 2.
Does it damage the strings to always keep them In tun. ing order, and to leave the bridge always in a atanding How can I remove fesh worms from the face? Bathnng the face with bay rum has been recommended,
but perhaps the better recipe would be to abstaln from but nerhaps the better recipe woula be to
intemperate diet and eat only platn food.
(6) I. I. Y. asks: 1. What can I use to
narden butter in summer tnstead of ce? devices for the production of a low degree of tempera.
ture by artiflial means have been fully described in the Scirntific Anrricañ, many of which might be made applleable to your purpose. 2. What can I use to color
butter yellow? A. Butter ts often artulial aly colore by ald of annatto, turmeric, or infusion of calendula
and
(7) C. H. M. says: You stated recently sometimes induce, and accelerate te the crystralization of substances. Please expl a an, more epecilicilly, under
what arrangement or ctrcumstance this What arrangement or circumstances th1s 18 the case,
and to what extent. A. Every metal is thrown down to a crystaline state, when there ts no evolution of gas (8) S g Mal
"(8) S. H. G. asks: Do the born blind ever with the thumb and finger on the closed eyellds can be made to produce sensations of color. These thts, In
certaln conditions of the nervous sgstem, are exquiste1y beautiful, and have no connection with the memory.
They are simply colored pletures evolved out of the darkness by mechantcal pressure upon the ball of the eye. Are the blind suaceptible of this? If so, they
may have ddeas of color without having may have Ideas of color without haring ever seen a
ray of light. A. Violent concussion will produce "stars" even in a bllnd person. You could obtain bet.
teranswers to the remalider of your question by conCan the locuast croop out west pe utllized us.
Can the locuast crop out west e unlized for stock, or
otherwse? A suare acre of solld lving meat ong to be worth something In this age of the world. A. As
(9) O. H. asks: Can you give me a recipe
for making gelatinn such as is usea in making molds for

 When the oolution 18 evaporated to drynesg, it leaves
the gelautu as a brownish yellow mass. Common glue Is an mpure form of gelatin, and 1 a generally emploged
(10) H. asks: Does the color black attract
heat? A. A black substanee is one which absorbs all

(11) F. H. asks: In a discussion on the adceeded in making alcoool from its elements. On belng asked what the substances used were, 1 named graph.
ite, hydrogen, and oxygen. One gentleman objected and sald graphite was not an element. I Insisted
was. Is graphite an element to the sense in was. It grtp disussion? A. No. Graphte, though a
used it in the form of carbon, Is not pure C , as most spectmens con-
tain iron. Instead of graphite, you should have sald
$\underset{\text { meter hangling on the wall; just under it, about } 4 \text { feet }}{\text { (12) }}$ meter hang tin on the wai; juat under it, about t fiet
awas, are the steam plpes which heat the room. As barometer does not indicate rightily, can the ateam
pipes underneath have any Infuence on it?
 struction, a correction must be made for temperature.
Mercury contracts and expands with different tompera-
 of the denstity of the mercury; so that, for differen atmospheric preesures, the mercurial column might have tue same hight. Accorangigl, in each observation the hight observed must be reduced to a determinate
temperature the chotce of this 18 quite arbltrary, but that of melting ice is always adopted. By the ald of
tables, whlch have been prepared tor tables, which bave been prepared for this purpose, the
hight of the barometer ts readlly reduced to sero.
(13) H. W. gays: I am told that a 1 inch horse power. I am nalig a 4 inch belt. Am I uaing 4
 mucha beit does tranamit, in any particcilar Instance,
without a test. See p . 257, rol. 28.
 (15) T. A. J. says: In silver plating German
inver spoons, the battery seems to work well; but when I come to burnish the spoons, the coating peelis off. Can you tell me how tomake a good job or it? A. Place the
articles to be plated in atrong lye water to remove all articles to be plated in atrong lye water to remove all
prease, and then for a moment In dllute sulphuric acid. Wase in clean Fater and place immediately in your as possible to plactlng taken to to bath bath
(16) C. H. M. says: We have a hand car worked by a perpendicular rod from a walking beam.
Will the car run any easier with this power appled at he end near the
end ? A . No.
(17) T. C.W. asks: Which is the coldest,ice inches thick, solld? A. The ice which 1s made from the coldest water will last the longest. 2. Does not lake
ice frozen in or near car oler than tee frozen in Kentucky?
A. Yes
When water is bolllng, can it be made hotter by hav. Wg a heary fire under it? A. No.
What 18 that llquid A. Borax lis commonly the princtpal ingredtent of the compound. Can a locomotive be constructed to run 75 miles an
hour? A. It tis doubttul whether the locomotye (18) F. D. B. asks: Can I make a miniature dameter? Will it produce electric sparks in infty (or less) rapld revolutions? A. If perfectly constructed, electrical action would undoubteady take place, as in ence of electrictity might be determined by the use or (19) B.A. J. says: I have a wire connection
between a water wheel and my house, whlch ts 500 feet distant. Do the wirestincrease the danger of the house rom 11 ghtning? A. Yes. You should have an exten-
sion from the wire into the ground, and the terminal face in the ground. As to
(20) H. H. asks: How are carbon cylinders charcoal 18 put 1 nto a mold, then plunged Into a concen-
trated solution of sugar, after which it 1 s dried, and exposed to an intens h heat in a covered vessel. As to your (21) J. McC. says: I am running 4 hydrau-
 pentom has arect about 10 feet. Sasety alve 1 1b., lever 2 ibs., with a
welght onit 30 Ibs ; distance of fuicrum 11/ inches; dis. welght on it 30 ibs ; distance of fulcrum $11 /$, inches; 118 .
tanceefrom center of satety
valve to welght 18 fastened on, $133 /$ Inches. Opening under the afety valve, \% \% Inch. Tre hydraulce press cylliders are
14% Inches in dlameter. How many lbs. pressure doea it take to ralse the safety valve of its seat, so as to al seat? How many lbs. pressure are there on the 14y inches press cyllinder, and how many to the square tich
whe
In above way, off tits bearing? A. You do not send quite
enoug (22) A. P. S. asks: What publication would We donot know of any work that will a1d you very
much. You will find many useful hints in Bourne's Catechism of the Steam Engine." We may add that a person who learns to run an engine by reading a book
will have to learn it over again when it comes to the ac. tual practice. At least, this is true in the present condition of the ilteratare of the subject.
(23) J. H. G. says: I have a lead.lined tank, Please tell me what kind of varnlas to use to prevent his, and also to prevent injurlous effects of lead in
(24)W.E.B. says: In your issue of August 29, mula: $\Delta^{\circ}=\frac{860 \mathrm{a}}{2 P i}$, and $\mathrm{C}=\sqrt{2 \mathrm{R}^{2}}-2 \mathrm{R}^{2} \cos . \overline{\mathrm{A}} . \overline{\text {. }}$ In place

(25). W. . M. K. says'in reply to B. H. S. ditameter: If you make your connections to the steam
drum 6 ninches, you will hat equalize the pressureln the three bollers. . We belleve that the best way to fx the bollers 18 as we have already
lndicated Arrane them so that the water cannot be
(26) H. L. M. says, in answer to I. S.N.,who of hard wood, one about 30 tiches long and thlck enough to stand the presaure required. Take off about halr an inc
full onthe
side agalin side agalinst tit. Then take the other plece of wood, 3 or 4
inches long and about $y /$ tnch thick, and put ft on the ther (the round) side of the barrel, and then put the mhole tin a strong vise, and screw up till the barrel 1
(27) C. B.says, in answer to T.S.S. who asked re drivers do sometimes have unings of woo beneath the tyres. According to a recent method the ditributed at short and reeular intervalis on the pert phery. Into the spaces between theese teeth are driven
locks of wood somewhat thicker than the lentt
(29) A.McQ. anys, in reply to G. W. S., Who ooller by a tube, and conveylng it under the grates of
the freplace to keep the fre down when the engine 18 toppea : In some steam fre engines, a small tube from he upper part of the bonler convers 8 team and discharges
tover the top of the fues for the purpose of checking extingulshing (as the case maybe) the fire in the fire
(29) J.A.M.says: To soften the tone of a vio
un, string it up to the required pltch; take a small gum
bridge; then stretch it over the strings close to the
bridge, carrying it down to one of the notches on the other side, and make it fast there. The tension of this small band, betng supported by the strings, produces al-
most the effect of the common mute, with the difference hat the power of the tone is preserved in its full purity hile which is more the result of ertction tharsh musical quality contained in the instrument. I have tried this effectually on all the different sizes of instruments, from the smallest down to the double bass, and find good players on any of the inatruments, nounced beautiful. The tone may be gradually diminshed by the use of additional bands, without lessening
(30) A. C. H. says, in reply to F., who asked There is a plant called the thousand gulden (not dollar) plant; it grows in Switzerland, and is used to a great
extent in medicine. The botanical name is erythrea centuurium. It has red or white flowers, and is about 1

Minerals, etc.-Specimens have been received from the following correspondents, and examined with the results stated:
B. B.- It is iron pyrites, of no value.-S. R.-If you
wish to know the value of an ore, you must send the ore, not the reduced metal. The specimens sent are re-
duced zinc.-H.V.-It ts granular sulphide of fron.-W. H. -It is an iron ore, containing a large percentage of dilica and sulphur, and a small percentage of manganhey are grasshoppers (Packard) or caloptenus zpretus Mr. Scudder states that a third (whether belonging to the same sjectes or not 18 still uncertain), has invaded at different times neariy all the country lying within Mountainsand the Pacific Ocean. The smallest on sent by you is probably the one referred to by Mr. Scud-der.-J. W.-They are rings from the fossilistems of
various spectes of crinolds.-I. H. S.-It ts a hard sandtone, inclosing scales of sulphide of iron. - T J
 prites. No. 2 is a amall and regular crystal of quartz.
$-A$ F. M. A. - The acorn-shaped mineral is a deposit arge percentage of your wen water must contain large percentage of iron.-A. J. H.-It, is laumontite,
or a hydrous silicate of alumina and inme.-C.H. W. \& o.-It is a very rich quality of iron pyrites.-D. R. B.-terthlizer.-A. V. v.-Ten of your spectmens are sul
fer phuret of lead distributed through limestone. No. 11
is sulphuret of lead in quartz rock. No. 12 is iron pyhite caot iron, known as aplegelefsen. It is largeis sed to the manufacture of Bessemer steel.-A. H.Magnetite is magnetic oxide of iron, of a certain crysrest vartetles 4 per cent of metollc trong, We re ret the loss of your specimens, but must again repeat you and other correspondents, that we report immediatily on all minerals recelved by us.-We have re-
celved a blue pasteboard box, 2×3 inches, without any abel or name. It contains many small spectmens of tered muscovite, of no practicaluse
P. J. K. asks: What is the best method to destroy : Who are the best writers on ventriloquism, ex. was by whicha person can tellif his own breath is of rusive?-A. B. asks : Can any one :give me information concerning the history, past and present, of the chlldren and gra

[^0]best? Who makes the best mucilage? Where can I buy the best style of windmills?" All such personal enquiries are printed, as will be observed, in the column of "Business and Personal," which is specially set apart for that purpose, subject to the charge mentioned at the head of that column. Almost any desired information can in this way be expeditiously obtained.

|OFFICLAL. \mid

Index of Inventions

 for whichLetters Patent of the United Staten August 18, 1874,
and hach bearing that date. [Those marked (r) are relssued patents.] Addressing machine, J. Blocher
Animal fat, treating, J. Hobbs Animal fat, treating, J. Hobbs
Axles, turning, W. K. Steven 8 .
Bale tie, cotton, W. . Bale tie, cotton, R. D. McIIFaine.
Ballot box, Omensetter Parker Bald box, Omensetter \& Parker.
Bed bottom, spring, W. H. Austin Bed bottom, spring, Comstock \&
Beefsteak tenderer, M. Trowbridge Bell, door. E. B. SIms.
Belt, W. Mullee.
Bleaching hemp, adjustable, W. H. Robarts. Boller attachment, wash, Henry \& Denn1s Boot heels, forming E. Ftea Boot soles, drying, J. T. Jeffers
Boots, making, Fearey \& Chicker
Bottle, caster, C. P. Crossman
Bronzing machine, W. D. Cook
Buckwheat scouring machine, J. Klaer Cap, H. Kuhlman
Caraxle box, J. s. Sanso
Car brake, C. Adams
Car coupling, W. H. Darling
Car doors,operating, A.C.Goodelli,Jr.................. Cap, safety passerg Overton Car shoe, safety, L. B. Stllison Car, sleeplng, J. Woodruff (
Car wheels, casting, Sax \& Kea
Carpet, measurlag, T. M. Brt, W .
Carpet, measuring, T.M. Brintnal
Carpet stretcher, S. C. Calhoon...
Carriage axle nut, E. W. Ives.
Carrlage spring, T. H. Wood (r)
Cartridge primer, T. J. Powers (r)
Case and sample box
Chalr, w. Gotorth.

Churn, K. Nolan

Corn husking implement, Cavender \& Dallis
Corn husking machine
Cullnary vessel, J. H. \& N. Wear
Cultivator, C. Kinsey.....
Curd worker, w. c. smith
curry comb, L. Sawyer .
Digger, potate, J. M. Whtman
Dis illation, treating grain for, A. Woolme
Door check, F. Lingel
Dyes, tresting anthracene, Rumpff et al
Egg cearter, D. D. Macka
Elevator, J. B. Chynowit
Elevator, ice, R. R. Reynolds......
Elevator, water, Reed \& Bly
Engine, rotary, A. Dietz.....
Engine, rotary steam, H. Boettch
Engine, rotary seam, H.
Engine, steam, J. W. Hayes.
Eyeglass holder, A. Wild.
Faucet, beer, L. Poh (r).
Feather renovator, L. W. Powl
Fifth wheel, M. Christanson.
Fire arm hook, I. Merrill (r)
Fishing rods, spring attachment for, B. Hill
Fishway, J. D. Brewer.
Fork for plattirg hedges, H. Hollingsworth
Furnace, L. C. England......
Gas apparatus, J. D. Patton
Gas process and apparatus, W. Elme
Glase mold, J. Zlhlman.
Glass ware mold,J.E. Miller
Governor, electro-magnettc, J. M. Bradford
Grain drill, P. Bostrom..
Grate, L. M. Chipley.
Grate, Lee \& Parker.
Harness, A. Macraken
Harness pad, G. W. Vosburgh
Harrow, J. Wheeler....
Harrow and seeder, R.
Harvester, A. R. Reese...............
Harvester cutter, B. C. Rockwell
Harvester rake, E. L. Hutchinson
Hatchways, closing, Spaulding
Hemp brake, Dulln \& Burgan.
Hops, preserving, T. A. Bretthau
House, wooden, J. R. Perry
Hydrants, stop-valve for, s, , a. Allen
Index, C. F. Thomas.
Indicator, electro-magnetic
Jack, 1fting, B. Harrison...
Kiln, brick, E. V. Wingard.
Lap board, J. E. Cotton
Lathes, chuck for metal, J. H. Vinto
Lathes, chuck for metal, J. H. Vinton

Lime Etln, F. Strayer...
Locomotive, T. B. Smith

Locomotive, T. B. Smith..........
oom shattle box, M. A. Furbush
Lubricating compound, Eggleston \& Rich Lumber, etc., drytng, G. Woods.
Marble, Imitation, J. H. Wright Marble, Imitation, J. H. Wright..................
Measuring machine, carpet, T. M. Brintiall IIll and press combined, cld Millstone friction gear, C. J. Shuttleworth Mitering machine, e. Everett
Motion, preventing back. J. .. Race Nail-driving macline, H. Dunha Nall extrastor, G. J. Capewell. Neck the box, s. Orth..
Paper barrels, making, J.
Paper box. F. D. Stone....
Pelerine, J. Popovits..................
Planoforte agraffe, Behning \& Dleh1
Plpes, exhaust trap for steam, s. Conrow...
Pipes, makking cement 1 nined, J.. . Halladay.
Planter, corn, F. Bolduc....
Planter, potato, H. J. Kent
Planter, potato, H. J.
Plow, B. C. Bradley.
Plow
Plow point and share, J. F. Herrin
Plow, rotary, W. E. Bleecker
low, sulky, W. Starling.
Pow gage wheel, Matteson \& Willamson
Plows, sulky attachment for, T. Weaver Press, copylng, S. Selden....................
Press for hay, cotton, etc., B. L. Robinson Printing, plate or die for, J. Dickson. ump and fire engine, A. Paget Pump, ship, L. Egleston
Pump, siphon, H. Coil...........
Pump, steam siphon, H. Coll.
Punching machine, metal, G. W. Vankirk Purifier, middlinge, Cole \& Marpole..........
Railway signal, automatic. s. Nunamaker. Railway, removing anow, P. and J. H. Baker Beln guard, Levy \& Christian.
Seln holder, A. Applegate.
Rooflig, metallic, S. Taylor
Sash fastener, J. Park.........
Sawing machine, J. N. Voris.
Sewing machine, E. D. Smith
Sewing machine bralder, etc., S. A. Davis ewing machine gulde, W. Baglin
Sewing machine shuttle, R. Blake..
Sewing machine table drawer, Ande
ewing machine wax thread, E. E. Bea
Shawl strap, W. Roemer..
Ship, etc, hull of, C. G.E. Hennis......
Skates, O.Edwards............................... 154,17,
Sear, casing, F. J. Fo
Spoke-tenoning machine, G. M. Comb Spoon, sheet metal, G. I. M1x....
Stamping apparatus, J. I. Quaid Steam brake, vacuum, J. C. Wıghtman Swing, A. Panyard..
elegraph insulator, c. L. LeBaro hill coupling, E. P. Jandell.
Toy, L. Schultze..........
Trap, fy, Dickson \& Cole
rells, house and garden, G. C. Setchel runk lid stay, C. H. Parllman.
Valve for hydrants, stop, s. H. Brown
Valve, poppet, J.P. Flanders
Valve, stop, C.F. Murdock
Vaive, stop, C.F. Murdock
Vehicle spring, w. H. Haskel
Vebicle spring, J. Smith.
Veterinary instrumenta, A. v. Rueff Walls and cellings, lining, W. Smith Walls, plastering, P. G. Hubert. Water trom the oeean, drawing, Whipg, manufacture of, Avery \& Pratt

APPLICATIONS FOR EXTENSION
Applications hava been dulyfled and are now pending
or theextension of the following Letters Patent. Hearigs upon the respective applicat
30,685.-SEED DRILL.-H. Moore.
EXTENSIONS GRANTED
29,760.-HAMMER.-R. 29,789.-Coltivator.-E. S. Huff
9,790.-Cattle tir.-G. Hull
DESIGNS PATENTED , 634.-RUBBRR OVRRBHOE.-E.F.Bickford,Malden,Mass 7,636 to
7,647 , 7 Fur
7

 7,680.-CARPET. - G. W. PIggott. New York city.

 ,70i.-Spoon HANDLE.-G. Wilkinion, Providence
$7,70 \%$ SKIRT.-J. W. Blackiam, Brooklyn, N.. .

TRADE MARKS REGISTERED.

1,932.-BERER.-CIn. Bottled Beer Co., Cinctnnati, O.

1,936-WATERPROOF
Boston, Mass.
1,941.-WINEs.-I. Bush \& OO., st. Lou1s, MO.
 1,944.-Whirisy.-Shields \& Co., Clnclnnati, 0.

SCHEDULE OF PATENT FERS.

 On issuing each orlginal Patent................... On appeal to Commissioner of Patents. On application for Relasue..
On application for Extension
On apppication for Extension of Patent........
On filing a Disclaimer.
Onan application for Design ($3 x$ years)
CANADIAN PATENTS
List of Patents Granted in Canad August 13 то 22, 1874.
3,758.-G. W. Harrison, Lansing, Mich., U. S. Improve man Connection." Aug. 13, 1874 .
3,759.-T. E. Mullins, Hopewell Corner, New Brunswick
Improvements on steam cooking apparatus, ealled red Family Steamer Condense, Aug. $13,1874$.
, $60 .-$ J. W. Herington and J. W. Stoakes, Mill Point Ont. Improvements on horse collars, called " Hering
ton's Improved Horse Collar." Aug. 13, 1874. 3,761--R. Christie, Hamilton, Wentworth, Ont. Im
provements on reaping and mowing machines, called provements on reaping and mowing machines, called
"Caristue's Improved Tllter and Guard for Reaping and Mowing Machines." Aug. 13,1874.
3,762.-J. N. Miller, Bellefontaine, Ohto, U. S. Improve ments on shiftug seat buggies or convertible car rlages, called "Miller's Convertlble Buggy." Aug. 13,
1784. ments on lumber drying kilns, called "Welle' Lumbe Drylng Kilns." Aug. 13, 1874.
析--R. Teate, Central City, Colorado, U.S. Improve ments on furnaces for roasting ores, called "Teats
Ore Roasting Furnace." Aug. 15, 1874. ,765.-S. S. White, Philadelphia, Pa., U. S., assignee o dental engines, called " s . S. White's Dental Engine. Aug. 13, 1874,
$3,766 . \mathrm{W}$. Wa
3,766.-W. Watson and D. Watson, Somerville, Mdddle-
sex county, Mass., U. S. Improvement on friction mechanism for loose pulleys or gears, called "Th Watson Pulley Friction Clutch. August 22, 1874 . 3,767.-W. Abercromble, Hamilton, Ont .. assignee of R.
L. Greenlee, Chicago, Cook county, Ill., U. S. Improvements in sash and door clamps, called "Green
lee's Sash, Blind, and Door Clamp." August 22,1874, 3,768.-P. Wallace, London, MIddlesex county, Ont.
Improvements on machines for making matches,called Improvements on machine for Macking matches,calle Machine." August 22. 1874.
,669.-J. Spratt, Fer EmIna, st. Martin's, Guernsey,
Channel Islands, and now of London, England. Im provements on solldined tea, called "Spratt's Solidifled Tea." Auguat 22, 1874.
3.770.-H. Harmer, South
Improvements on the working of ree eounty, Ont Improvements on the working of rallway switches,
called "The Safety Switch Guard." August 22,1874 3,771-.J H. Cleveland, Buffalo, Erie county, N. Y., U S
Imprui. mente on tuckers for sewing machinea, calle "J. H I "veland's Tucker." August 22, 187 3,7i2.-C. F. Gardner, London, Eagland, and E. Pocock
Paris, France. Improvements on nachines for last ing the uppers of boots and shoes, called "Gardner \& Pocock's Boot and Shoe Laster." August 22, 1874 .
3.773.-G. S. Lacy. New York ctty, U. S. and 0. C. Allen 3,773.-G. S. Lacy, New York city, U. S.,and U. C. Allen,
Glen's Falls, Warren county, N. Y., U. S., ass'gnees of in gas regulators, called "CCrondal's Improvement Regulator." August 22, 1874.
3,774.-H. Beauchamp, Montreal, Montreal Dist., P. \mathbf{Q} A Valve de la Pulisance." August 22, 1874 .
\& W. Pope, Crestitne, Crawford county, O., U. S. Im provements on knitting maclines, called "Franz \&
Pope's Improved Axtomatic Knitting Machine." Pope's Improved Automatic Knitting Machine.
August 22, 1874.

Saduettisements.

Back Page -:- lnside Page -

Engravings may head advertusements at the same rate per
must be received at publication office as early as Ertia
\bar{W} ANTED-A second hand Lathe. suitable

LAMB'S KNITTING MACHINE

Practical Draftsman's Book of AND MACHINISTS' \& ENGINEERS Drawing Companion
Forming a Complete Course of Mechanical

 ones. The Delinration and Develodment of Helice

 Prat Cutting and Shaping or Masonky.-Rules and

 steam engine. Deatilis of Construction; Movements of
the Distibution and Expansion Valves; Rules and
Practical Data.

 free of postake, at or any of my mobication prices, sent by mall,
 HENRY CAREY BAIRD, INDOSTRIAL PUBLISHER.
406 WALNUT STREET. Phlladelph C Lungspar, FELSPAR, CRYOLITE,

Cooper's Engine \& Mill Works, First-Class Stationary Encines, First - With otngle allde valve cutorit by lap at $\%$

 PORTABITE E ENG COMES, of 8, 10, 20, and 25
 ing APPARATUS. GRIST MILL AND BOLT. State what is wanted asit Cirgil ETC.

COLD RHOLLED SHAFTING

Planing and Matching

 TER, Counsellor at Law. 9 \& 11 Nassau st., Room 26, New
York. Counsellorand Adocate in Patent Cases.
 Tosion

 BLAKE'S PATENT Stone and Ore Breaker

A FORTUNE For Axitin ine rubber sump
Geo. W. Read \& Co., ALL KIMDS OF OF HARD WOODS, IN LOGS, PLANK, BOARDS, \& VENEERS,

 PATENTS F. T. H. RAMsDEN, Bryan Block

 SWAN QUILL Action! SPENCERIAN

STEEL PENS.

These Pens are comprised in 15 numbers; of the
NUMBER ONE PEN alone we sold more than

5,000,000

 IN 1873 ,

 number, by mail, on receippof 255 centu. ivison, blakeman, taylot \&e co., 5000 AGENTB WANTED. Sampleg ent free NOTICE TO MANUFACTURERS OF CAST Sealed PIRON WATEK PIHE.

 Trind

 By order of the Board of Water Cermumgisioners.
M. H. MU mPHY, Registrar W FOKGINGS or every degcription.
 M Hote
To Electro-Platers. BTRRIES ciemichls AND MATE

SHINGLT AND BARRBL MACBINERY. -
 PORTABLE STEAM ENGINES, COMBBN.

Machinery,

Sturtevant Blowers.

Cold Rolled Shafting.

 OHAS. B. HARDICE,

Niagara Steamm

 porchinif

THE Union Iron Mills, Pitraburgh, Pa

 Andrew's Patents.

 Allaghigylimple, Durable, and Economical.

FOR SALE-The manufacturing proper-

The best and cheapest Paint in the
world for Iron, Tin or wood. For sale by the Trade everywhere. PRINCE'S. METALLEY
PANNT CO., Manufacturers, 96 Cedar St., New York. CAUTION All genuine PRINCE'S METALLIC PAIAINT PANT.
bear package. Send for a circular.
FORBALEETWO VALITABLE IN VEN TIONS, Cheap
Address J. B., No. 2 N. Ford St., Rocleeter, N.

 Asbestos $\frac{F}{316-322}$ Frgr st, No.
 anomirir chice: Fifth and Last Gift Concert Public Library of Kentickik,

November 30, 1874.
DRAWING CERTAIN AT that date.

1888. SCEENCK'8 PATEN'. 1871

R. BAII \& CO.,

WOOD WORKINGEMACHINERY:

[^0]: COMMUNICATIONS RECEIVED.
 The Editor of the Scientific American acknowledges, with much pleasure, the receipt of original papers and contributions upon the following subjects :
 On Channeling the Bars of Rivers. By O. P. S.

 On Locusts and Grasshoppers. By H. J.S. On the Weight of the Atmosphere. By J. B. T.

 On Sea Sickness. Ry W. M.
 On Drawing a Parabola. By F. H. R.
 On Making Copper Alloys. By A. E. O. On Some New Galvanic Batteries. By L. B. On a Discovery in Missouri. By C.
 On Bees and Honey. By W. A. B. On Bees and Honey. By W. A. B. On Practical Mechanism. By W. H.
 On Small Engines. By N. T. W., and N. G.

 On the Locust Plague. By J. W Also enquiries and answers from the following:

 HINTS TO CORRESPONDENTS.
 Correspondents whose inquiries fail to ap pear should repeat them. If not then pubished, they may conclude that, for good reasons, the Editor declines them. The address of the writer should always be given.
 Enquiries relating to patents, or to the patentability of inventions, assignments, etc., will not be published here. All such quesions, when initials only are given, are thrown into the waste basket, as it would fill half of our paper to print them all; but we generally take pleasure in answering briefly by mail, f the writer's address is given.
 Hundreds of enquiries analogous to the following are sent: "Please to inform me where I can buy sheet lead, and the price? Where can I purchase a good brick machine ? Whose steam engine and boiler would you recommend? Which churn is considered the

