

A We ekil fournal 0f practical information, art, scievce, mechanics, Chemistry and manufactures.

	NEW YORK, AUGU'ST 1., 1874.	

THE GARTSHERRIE IRON INDUSTRY.

The career of Mr. James Baird, principal of the great Garteherrie iron-making firm, illustrates, perhaps more forcibly and vividly than any other, the immense development of the pig iron trade of Scotland, and the avenues to affluencs and power which it was the means of opening up.
Born in 1802, Mr. Baird is the fifth of a family of eight sons and one daughter, whose ancestors for several generations had been farmers in the parish of Old Monkland, and whose father was a tenant on both Drumpellier and Rosehall estates of the farmers of Kirkwood, Nuwmains, and High Cross. All unconscious of the great destiny that was defore them, the elder members of the family aided their father in agricultural operations until agricultural operations until they had passed maturity. The father, Alexander Baird, die at the age of 68 , after having
seen his sons established in the seen his sons established in the
Gartsherrie Works and on the Gartsherrie Works and on the
high road to fortune. Seven of the brothers became partvers in these worke, the eighth brother, John, having preferred to atick to agricultural pursuits. Al of them, with the exception of James, have long since met the shadow feared by man and gone over to the great majo gone
rity.
By industry and economy exercised almost to the vergeo parsimony, the Messrs. Baird wera enabled to make some lit tle money out of their little collitry, albeit at that time coa owning was not nearly such profitable occupation as it is in our own day. Other pits were afterwards opened out in Maryston and Gartsherrie, but no works of any consequence had yec been started in this country -now the Black Country of scotland-for the manufactur of ir n. Indeed, the iron trad of ir n. Indeed, the iron trade appeared to concentrate rathe on and towards the fast coast where the Carron Worke wer carried on. As for Coatbridge which is now environed with a crescent of blast furnaces, it was, to all intents and pur poses, a purely pastoral locali ty.
The Gartsherrie Ironworks were commenced in the year 1829 , and the first furnace was put in blast in May, 1830, or simultaneously with the invention of the hot blast.
From time to time the Gart sherrie Works were extended until they reached their present exceptional proportions. They are now, says the Practiral Magazine, to which we are indebted for the engraving, with perhaps the solitary exception of Dowlais, the largest works of their kind in the world. They comprise sixteen blast furnaces, placed in two parallel rows. The two rows of furnaces are placed face to face, with their pig beds bordering the canal, and the lines of rails for the supply of raw materials placed at a higher level behind each row. A railway bridge connects the two lines of rails crossing the canal and the lower level of the works. The blast is heated to about 800° in hot blast ovens of the pistol pipe form. Thi is an invention of Mr. James Baird. It was adopted firsta these works thirty-five yeara ago, and led to a higher tempe rature of blast than had up to that time been reached in the Scotch furnaces. Since then the pistol pipe hot blast oven has come into general use throughout the rest of Scotland. The stoves are fired with slack. They are placed behind the furnaces at the level of the railways supplying the coal. Originally Nr. Baird placed the hot blast stove on the top of his blast furnace, and tried to utilize the flames escaping from the latter for heating the blast; but this mode did no prove a real success in Scotland until Mr. Ferrie's furnac was devised.
The ore used at Gartsherrie is pure black band, which is deli vered from the mines in a calcined state. A very large stock of iron ore, varying from 80.000 to 120.000 tuns, is always kept in stock at Gartsherrie. Besides the native black band there is generally a considerable quantity of hematite used, and the firm work hematite mines of their own near White.
haven. The black band is calcined in open heaps of about 2,000 tuns, covered over with a small material, so as to ex clude an excessive supply of air. Before being charged into the blast furnace, the calcined black band is carefully sorted, and all foreign and impure matter is extracted by hand.
It is probably due to the care bestowed upon the purification of the ingredients used in the blast furnace that the Gartsherrie brand is so much esteemed. It is more like the assaying of precious metals than the rough and ready mole of treat ing the materials used in the furnaces of Cleveland and oth. or districis. When thus carefully picked and purified, the Gartsherrie ironstone contains a very large percentage of

JAMES BAIRD, OF GARTSHERRIE. SCOTLAND.
when in full going order, from 1,200 to 1,500 tuns of iron per day. At the present time the output of pig does not exceed 800 tuns daily. Altogether, the firm employ upwards of 9,000 men and boys. And here it may be remarked that the Gartsherrie iron is more valuable than any other brand in Scotland, that of Coltness alone excepted. As a well known engineer has putit, " a tun of pig iron marked Garteherrie will command a price in the market which is above the ave rage of the general quotations, but which is also entirely unaffacted by the smaller fluctuations in the prices of pigs, the general variations between supply and demand having no influence upon that select brand. The same pig iron, taken to any distant port, will find itself in a similar position by virtue of its brand: and the act of effacing this brand, al though it could not possibly alter the intrinsic value of the material, would reduce its mar ket price by 10 or 12 per cent."
From these premises wemay almost draw a conclusion which will be tolerably cer tain and safe as to the proba ble profits of the Gartsherrie firm. Assuming that their total annual production were only 200,000 tuns-and it has often been much above thisits value, at the present quotations for pig, would be $\$ 7,500,000$. It is no secre that something like one half of this enormous amount finds its way, in the shape of pro fits, into the pockets of the Gartsherrie firm
From first to last Mr. James Baird has bien the most ac tive, practical, and plodding member of this great firm, and he is now the only one of his name that is associated with its management. With a constructive and inventiv genius that was eminently genius that was eminently sound and correct, if not ver brilliant, he devised many im provements in blast furnace practice. We have already al luded to the assistance he ren dered in the perfecting of Neil son's invention of hot blast But that was only one of his many achievements. It was he who led the way in Scot land to the adoption of the modern shape of the blast fur nace, which is very much less in bulk and cost than those used in the early history of the trade, when square base and other cumbersomeand un necessary features, now obso metallic iron; and it only requires 32 cwt. of ore to the tun lete, or nearly so, were in vogue. It has been said that Mr
of iron, or even less.
The weekly production of the Gartsherrie furnaces is about 160 tuns each; they are tapped every twelve hours, and produce each about twelve tuns of iron at each cast. The pro duction of the works for 1872 was over 120,000 tuvs, about 80 per cent of this being "No. 1 (iartsherrie," which is the highest quality of foundery iron made, and at the prese
tun.
Besid the ablishmer at Baird acquired the Lugar, Fylinton, Portland, and Blair Ironworks, all in Ayrshire, and in 1856 they acquired the Muirkirk Ironworks, also in Ayrshire, which, after the Clyde and Carron, are the oldest ironworks in Scotland. In 1864 the firm acquired the Portland Ironworks, with five blast furnaces, to which one has since been added. In 1852 the Blair Ironworks came into the market. These works were started by the Ayrsh re Iron Company, which became bankrupt through the mismanagement of its affairs. The works of the company were increased at a rate out of all propor tion to the capital. I:on was bought on credit and sold for cash at a ruicous sacrifice, and when insolvency followed it was found that there vere $\$ 1,250,000$ of liabilities, without ny assets except the worksat Dalry. These works, which originally cost $\$ 450,000$ or $\$ 500,000$, were ultimately sold the Messrs. Baird for $\$ 100,00 \%$, or $\$ 350,000$ less than it cost to build them. At the present time, therefore, the Gartsher rie firm own forty-two blast furnaces, capable of producing
lete, or nearly so, were in vogue. It has been said that Mr-
Baird excelled in suggesting and applying different modes of saving labor in every department; and so skilled was he in all the various processes of manufacture, that the work men all regarded him as a master of his handicraft.

Protection rrom Yellow Fever.

In a report on yellow fever, recently published in the Uni ted States, it is shown that this disease has never appeared n any climate at the hight of $2,500 \mathrm{fect}$. In the island of Dominica. a hill top not more than 1,500 feet high is alway bealthy, even when the fever is epidemic at its base. In San Domingo, similar observations have been made. The highest levation at which yellow fever has occurred in the United States is 460 feet, in Arkaneas; and the medical $m \in n$ of this ountry now hold that the stratum of air infected by the poison is heavier than pure air, and therefore sinks, and they ecommend that in unhealthy districts houses and hospital hould be built on tall piles, so as to be above the fever stratum. But where hills are near, the best remedy will be to carry the patients up to a hight of 500 feet.

From the experiments of W. F. Donkin, it appears that he Sprengel pump may be made to give an exhaustion down o Tooberon in its simplest and most convenient form, amely, without an air trap and with an india rubber joint immersed in glycerin; but that if a very complete exhaustion is required, the air trap must be used, and the vessel to be exhausted must be sealed hermetically on to the pump.

Stimutific ${ }^{\text {g mmerican. }}$

MUNN \& CO., Editors and Proprietors. published weerly at NO. 37 PARK ROW, NEW YORK.
o. D. MUNN. A.E. BEACH.

TETMM
One copy; oufe year
One cony, six monins
7500
150

volume xxxi, no 7. [New Series.] Twenty-ninth Year
new york, saturday, august 15, 1874.

A NEW THEORY OF THE FORMATION OF DIAMONDS The natural history of the diamond is one of the puzzles of geology, the place of its origin being until recently as great a mystery as the manner of its formation. Happily, however, the first part of the problem has been solved; the diamond has been tracked home; and though the process by which it attained its crystaline isolation remains as obscure as ever, a clue, at
of its development.
We need hardly remind our readers that in South Africa diamonds are found under two very dissimilar conditions: first as water-worn pebbles associated with pebbles of quartz, agates, zoiolites, and the other common attendants of the dia mond in other localities; second, in circumecribed pits or shafts filled with a chalky or clayey earth, more or less har dened. The famous Colesberg Kopje is a fair example of the latter sort, several of which have been discovered in the Vaal River country. In all these cases, the diamond bed is surrounded by a rim of rock dipping outward from the center, but attaining within a short distance the horizontal position characteristic of the rocky strata of the district. Irside the rim or "reef," as the miners call it, the diamonds are found at home and untraveled; outside they are absent or occur only iu layers of gravel, it
ducts of running or dashing water.
That the gems within the shaft have rested undisturbed since their formation, save by the pick and shovel of the miner, is attested by the nature of their matrix, which at Colesberg has been mined to the depth of two hundred feet without any apparent decrease in the richness of the gield, by the sharpness of the edges and angles of the crystals and still more by the tendency of the gems thus found to check, flaw, and even explode with violence on being brough to the surface and subjected to the action of light and air. No such accidents occur to diamonds found in drifts, for the simple reason that they are the survivors of a similar process of natural selection, all their sensitive comrade having been eliminated by exposure in past ages.
Obviously, if we can decipher the geologizal history of these singular diamond beds, a very long step will be taken toward the solution of the question how the diamond originated.

The record begins apparently at a time when the great in terior basin of South Africa, in which they occur, was the bed of a vast inland sea. The physical geography of this region reminds one of our own Utah basin. There is first a mountain ridge from 4,000 to 10,000 feet high, roughly following the line of the coast, except where it crosses the
continent toward the equator, broken only by the Orange and Limpopo rivers which drain the basin. Toward the sea the Limpopo riverswhich drain the basin. Toward the sea the
descent is abrupt, of ten precipitous; inward, the slope is gradual, sometimes almost imperceptible, the bottom of the basin lying several thousand feet below the average crest of the rim. Everywhere throughout the interior are abundant and unmistakable proofs of the former presence of water, filling the basin as a vast inland sea, at one time the scene of great volcanic disturbance, more recently of a process of desiccation like that which turned the Sahara from a sea to a desert, or that which dried up the sea of fresh water which, but a
little while ago, geologically speaking, filled the now arid little while ago, geologically speaking, filled the now arid Utah basin to the brim.
The period of diamond production appears to have been while the sea prevailed, their distribution in the gravels resulting from the subsequent movements of water,to which the widespread gravel beds bear witness. While the sea yet filled the basin, volcanic action wasgoing on more or less vigorously, evolving gases, rending the overlying rock, and producing all the other well known effects of igneous disturbance. Among the minor effects we can imagine the formation of vents or crates, to be filled, when the violence was passed, by the silty deposits of the sea bed, washed in by returning water.
Here, then, we have the conditions of future Colesberg Kopjes-minus the diamonds.
Let us follow the process a little further. A constant product of volcanic action, we know to be carbonic acid gas, which contains the basis of the diamond combined with oxygen-a gas capable of being liquefied by the pressure of a column of water less than fourteen hundred feet high, and the ancient South African Sea was several times that depth. We know that this same gas is frequently imprisoned in the soft mud of stagnant pools, where it lies unabsorbed, escap ing as bubbles when the mud is disturbed. It is not unrea sonable to assume that the less energetic discharge of this
gas from the heated depths below the sea bed might be stopped in the muddy filling of the vents, where, liquefied by the rressure of the superincumbent water, it might remain until deprived of its oxygen by some process of Nature's chemistry, leaving the free carbon to crystalize as the sparkling gem so eagerly sought for by the miner
This, of course, is a mere hypothesis, for we know of no process by which the oxygen could be so withdrawn; but in overy olker respect the supposition is based on known con raw material of the diamond could be so readily distributed in crystalizable condition throughout these natural diamond factories. The matrix in which the diamonds are found is factories. The matrix in which the diamonds are found is
unquestionably of aqueous origin; and we know, from the vegetable and other substances found enclosed by diamonds, that they could have been formed only in the presence of water. The two seem, therefore, to be contemporaneous.
It is a well known fact also that diamonds sometimes con tain cavities enclosing a transparent liquid. We have seen it stated, but are not sure of the authority, that diamonds of this sort have been brokeh and their contents found to be carbonic acid: a fact which, if true, would add materially to this new theory of their formation.

THE EXPLORATION OF THE LIBYAN DESERT.

 Nearly a year ago the staid citizens of Leipsic gathered in which in their streets to stare at two queer-looking wagons slowly dragged through the city en route for the Austrian port of Trieste. These were the water carts of the great expedition, soon to start for the exploration of the Libyan desert under the command of the intrepid German traveler Gerard Rohlfs, of Weimar, and under the liberal patronáge f the Viceroy of Egypt. From the European journals of he day, we gleaned a brief account of what the explorer proposed to accomplish, which, in the first number of our last volume, we laid before our readers, mentioning, at the same time, the departure of the caravan for the oasis of Koufra, in the center of the desert. Brief notes of progress ave since appeared, but in so disconnected a form that little could be learned from them. Mr. Bayard Taylor, in a recent letter to The Tribunc, now states that the expedition has returned, and gives an outline of its journey into th interior of the vast but little known A frican continent.By New Year's eve, the party had reached the oasis of Farafrah, hitherto unvisited by any European since Cailli aud in 1819. Here they celebrated the holidays, and asto nished the natives by kindling a magnesium light; and then, fter a rest of three days, started on the more arduous por tion of their journey. A week's travel brought them to a sudden and astonishing change in the scenery, the chronicle of which reads morelike a page from the Arabian Nights han a sober scientific statement of facts. "On both sides," says the writer, " arose detached limestone rocks, increas ing in hight as they advanced, and assuming the wildes orms. It was a labyrinth of lions, sphinxer, pyramids, obelisks, even semi-human statues, extending for miles Then followed a colossal gateway of rock, the summits of which were 1,500 feet high. When this was traversed, they ntered a second and still grander lajyrinth, terminating in second gateway, the towers of which overhung the cleft between them. The way then widened ; the tremendous wall of rock fell apart, and the path descended toward a sandy plain. In another hour there came a fresh surprise: the nal descent to the level of the oasis lay before them; the vast, mournful, sandy landscape vanished as bs a miracle,
and wheat fields of deepest green, dark palm groves, white walls and minarets sparkled in the light of the sinking sun."
Thi
This was the oasis of Dakhel, a large area of garden land
nhabited by 17,000 people. Near the town a large number of powerful springs burst from the earth, the water being at a temperature of 110°, and carried by irrigating canals over many miles of soil. A stratum of chalk underlies the whole oasis, and, wherever pierced, there a spring rises. This water, it has been supposed, came from the Nile; but the ex. amination of the explorers upset the theory, and proved its derivation from an independent source.
Four days' journey fr,m this favored region brought the expedition to a poor camel pasture, destitute of water or trees, which was believed to be the supposed oasis of Zer zoora. A further march of two days to the southwest showed that no further progress could be made. Nothing but moun tains of shifting sand was before it: nowhere a foothold even for the broad-footed canel. Several attempts were made to penetrate this terrible region, but without avail ; so the expedition skirted along the sand sea to the northward, seeking a crossing place. This was found in lat. $25^{\circ} 11^{\prime} \mathrm{N}$. seeking a crossing place. This was found in lat. ${\text { and long. } 27^{\circ} 40^{\prime} \mathrm{E} \text {., and the locality was named Reyenfeld }}^{\text {and }}$ and ong. ${ }^{\text {rain field) on account of a steady two days' fall of rain }}$ there encountered. Steering a course by compass and astro there encountered. Steering a course by compass and astro
nomical observations (there was not a vestige of a trail), the nomical observations (there was not a vestige of a trail), the
explorers continued onward. The weather, it is said, became explorers continued onward. The weather, it is said, became
unexpectedly cold, varying from 29° to 23° Fah. in the mornunexpectedly cold, varying from 29° to 23° Fah. in the morn-
ing; ice was formed upon vessels of water. Finally on the 20th of February, the oasis of Jupiter Ammon in Northern Libya was reached.
The journey from Dakhel to this point occupied thirty-six days, during which period not a single well was reached although a distance of 500 miles was traversed. The iron tanks carried contained a plentiful supply of water for men and beasts during all this time. When it is considered that no other traveled route in all the Sahara has a longer space than a seven days' journey without water, the possibility of pene trating almost everywhere by the aid of Rohlf's device be comes evident.
The oasis of Jupiter Ammon was found to have a depres ion of 100 feet below the Mediterranean level. From thi point the expedition went to the great oasis of Kharieh, 100 miles south and east, where photographs of the Egyptian temples were made. The inscriptions on these ancient monuments, it is said, give the names of eight Libyan rul ers which have never hitherto been found recorded.
By April 15, the expedition had returned to Cairo, after traversing 1,700 miles of desert, two thirds of which distance was before totally unexplored. The oasis of Kufrah was not reached, nor is it believed that the same exists; and even if did, the vast sand sea would prevent its practical connec tion with Egypt.
The results of the labors of the expedition are, in detail, said to be rich in scientific discovery. In general, however the problem sought to be solved has only been negatively answered ; that is, it is proved that the Libyan desert is ab answered; that is, it is proved that the Libyan desert is ab-
solutely uninhabitable, and cannot be explored without the most careful preparation, and good luck added thereto

CAN YOU SWIM?

We do net mean: Can you swim for fun, or for sanitary refreshment; but can you swim for your life, with your boots on?
Swimming as an accomplishment is common; we should like to say common enough, but that would not be true so long as there remains a single individual who cannot swin at all, and unhappily such individuals are numerous. We can say, however, that swimming as an accomplishment is common compared with the art of swimming as a safeguard gainst drowning
This is a distinction with a difference. There are multi udes, who are quite at home in the water in Nature's cos tume or with a light bathing dress on, especially when the now how far it is to the bottom and how far to the shore who would go to the bottom with discouraging haste if uddenly pitched overboard in a strange place with their usual clothing on. The conditions are entirely differen rom those of ordinary swimming; and to one unaccustomed to the feeling and effect of clothing in water, the difference is very apt to nullify for the moment all bis experience as a swimmer. The consequence is a sudden loss of self-con rol, which too often results disastrously, whereupon the friends of the victim marvel that such a good swimmer hould drown so easily.
An accident of this sort occurred but a few days ago The victim was the master of an excursion steamer, a good wimmer, his numerous friends say ; yet when he found him self in the water unprepared for swimming, he acted as
wildly as one wholly unable to swim. With all his swimming, he had probably never been in the water before in ful ress; and the confusion of mind which ensued, when he found his limbs muffled with clothing, his buoyancy reduced,and all the usual conditions of swimming changed, kept him from making good use of the knowledge he possessed. So be tired himself and strangled himself with frantic struggles, and went to the bottom before a boat could reach him, though it was near enough to have saved one who could not wim at all, had he been cool enough to keep perfectly still. The moral is plain. With all your swimming practice, on't neglect to accustom yourself to conditions such as you will be pretty sure to find yourself in should you ever have occasion to swim for your life. When you can keep your self afloat with heavy boots on, when you can tumble out of boat in ordinary dress and strip in the water, and not waste your strength in suicidal attempts to overcome the resistanswer in the affirmative the question: Can you swim?
There is a forceful proverb about teaching old dogs new
the suggestion we have made. But the boys will, if they have half a chance. And we would urge upon parents the pro. priety of allowing their sons to vary their watery sports in the way we have described. They cannot put their old clothes to bytter use. We can say from personal experience that the boys will like the fun, and that they will never regret the saving knowledge they will gain by it.
Of course we would not exclude the girls from such know. ledge, if circumstances are at all favorable. At least let them learn to make the most of the temporary advantage their clothing offers for buoyancy, and also how to relieve themselves of entangling skirts in casa of emergency.

PROFESSOR HUXLEY AND HARVARD.

The rumor that the Faculty of Harvard University are endeavoring to secure Professor Huxley as the successor of Agassiz is making, it appears, quite a breeze among the English scholars. The Academy, one of the ablest literary periodicals, hopes there is no truth in the statement, and asks, " are the English universities so rich in really eminent professors, and so poor in money, that they can or must allow Professor Huxley to go to America to find leisure to work?

The universities are so rich that they could beggar the whole world. Will they allow themselves to be beg. gared by Harvard?"
We donot agree with our contemporary in its intimation that money would bo the mainspring of Professor Huxley's action, should he consent to occupy Agassiz' vacant chair. The work of such men is not to be measured in pecuniary compensation, nor does it belong to any country, but to the entire world. We greatly mistake the spirit of our great modern investigators if, should they determine that they could accomplish greater ends and achieve greater triumphs in the cause of Science by changing their abodes to the re motest corner of the earth, either a feeling of patriotism or a desire to make money would deter them from accepting the duty. Professor Huxley's decision, we venture to say, will be based on the question of where he can do the most good, not on the matter of pecuniary gains.

DISASTROUS FLOODS.

The two heavy floods which have recently occurred at Eureka, Nev., and Pittsburgh, Pa., have been so terribly destructive to life and property that they may be fairly classed among the extraordinary calamities of the year. They are beaile phenomenal in their nature, one being due to a greatiy overcharged cloud breaking against a lofty range of moun tains, and the other to the meeting of two vast masses of vapor which united in a deluge which is described as resembling the descent of a torrent. Both storms appear to have been local in destructive effect, although heavy rain and freshets have taken place over Ohio, Indiana, and Ken tucky, and have everywhere caused damage.

The report of the Nevada deluge states that, within ten minutes after the beginning of the rain, Eureka was flooded. The water poured through the streets for half an hour, tearing up houses and uprooting trees, damaging property in the end to the extent of $\$ 100,000$, and killing twenty peo ple.
In Pittsburgh, the destruction was much more extensive.
From the descriptions given of the rising of the storm, two great black clouds appeared at opposite points of the compass and slowly approached each other. Blinding flashes of lightning shot between them as they neared, until the gra dually narrowing space appeared a mass of fire. The meet ing was heralded by a terrible thunderclap, followed by a few heavy rain drops, and then down poured the delug with fearful fury. Pittsburgi lies at the junction of two rivers, and its suburbs, built on the hillsides and valleys ad joining the streams, are traversed by gulches and natura water courses, which form channels for the rain to run off Several ravines empty into Butcher's Run Valley, about two miles north of the center of Alleghany City, along which numbers of houses had been erected. Here the damage
began, and the flood rushed down the bed provided for it by Nature, sweeping away everything in its path. In other valleys deluges appeared, working like disaster, and smal streams suddenly became roaring torrents. Over one run, two new iron bridgesand five wooden ones were carried off. Large salt works, refineries, and factories were destroyed, and barges and vessels in the rivers were torn from their fastenings and swept away. The total loss of life is placed at 219 persons, and a rough estimate places the pecuniary loss at $\$ 3,000,000$
Both floods, $\mathrm{b} \rightleftharpoons$ sides being owing to the phenomenal circum stances mentioned, were also greatly due to the situation of the towns, Eureka, at the foot of the mountains, receiving the deluge pouring down their sides; and Pittsburgh, also in a valley surrounded by high land, lay in the path of th torrents which naturally sought to empty into the rivers.

tides in the gulf of mexico.

A correspondent asks us whether it be true that at Pensa cola, Florida, there is but one daily tide, and inquires whether, if such be the fact, how it is that at Havana, Key West, and other points in proximity, the tides take place wice a day in the ordinary manner.
Professor Bache, in his coast survey reports, mentions that the tides of the United States are divisible into threedistinct classes. Those on the Atlantic coast are of the ordinary type, ebbing and flowing twice in twenty-four hoars, and having but moderate differences in hight between two suc cessive high or low waters, one occurring before and the other after noon. Those on the Pacific coast also ebb and
flow twice in twenty-four hours, but the morning and
vening tides vary considerable in hight. The intervals also between successive high and low waters may be very
unequal. The irregularities are due to the moon's declinaunequal. The irregularities are due to the moon's declina-
tion, as, when the moon travels to the north of the equator, tion, as, when the moon travels to the north of the equator, the vertex of the tide wave follows her, giving the highest point of one tide in the northern, and the highest point of the opposite tide in the southern, inemisphere. Hence, when the moun is in northern declination, the tide at any place in the northern hemisphere caused by her upper transit will ba higher than that caused by her lower transit. This variation in the hights is called the diurnal irregularity, and has a period of one lunar day.
The effect of this phenomenon is to materially modify the tides, more especially on the Pacific coast and in the Gulf of tides, more especially on the Paciic coast and in the Gulf of
Mexico. In the lattsr, however, the tides vary greatly acMexico. In the lattgr, however, the tides vary greatly ac-
cording to locality. On the coast of Florida, from Cape cording to locality. On the coast of Florida, from Cape
Florida around to St. George's Island, near Cape San Blas, the Florida around to St. George's Island,near Cape San Blas,the From St. George's Island, in Appalachicola Bay, to Derniére Island, they happen but once a day, that is ebbing and flowing oncein 24 hours. At Calcasieu entrance, the double tides reappear, and exist for some days about the period of the moon's greatest declination. The tides are double at Galveston. At Aransas and Brazos Santiago, the single day tides are at per fectly marked as at Pensacola. The probable cause of these discrepancies is the formation of the islands and entrances. If the tides arrive at the same place by two different channels, and one of them is retarded six hours behind the other by traveling a longer route or through shallower water, the semi diurnal tides will be destroyed through interference of the waves, the high water of one being opposed to the low water of the other; the diurnal inequality will, however, no be destroyed, but merely modified in hight and time, leaving a single tide in the lunar day outstanding, which is small in amount. This is doubtless the case at Pensacola, where the mean tide is but one foot, and the extremes of rise and fal ne and a half feet and four tenths of a foot.
In this connection, we may add that to the difference in tides of the Atlantic and Pacific oceans is due the erroneous idea that the level of the latter body of water is the higher At Panama the tides rise over twenty feet, while at Aspin wall about as many inches is the limit. The mean tide, how over, of both oceans is the same.

FRACTURE BY LONG-CONTINUED JARRING.
In one of the articles recently published in the Scientific american, the well known fact, that a long continued suc cession of even moderate shocks, or jarring, sometimes pro uces rupture in even large masses of iron, was illustrated by the account of the breaking of one end of a very large shaft at the Morgan Iron Works, while the other end was under the hammer. We are now indebted to the same authority for the account of a similar incident, which occurred at the West Point Foundery some months ago.
In forging masses of iron of such shape that they are dif cult to handle, it is usual to weid to them a porter bar, by which they can be moved about conveniently until they are nearly finished, when the bar is cut off and laid aside until again required for a similar purpose. The same bar is often sept in use many years.

The above sketch represents a porter bar thus used at the West Point Foundery, as nearly as can be ascertained, about wenty years. The large mass of iron, A, measuring, in section, two feet eight inches by one foot nine inches, and our feet and a half long, weighing over four tuns, could no well be handled on account of its weight and its awkward in the. This porter bar was therefore welded on it, as shown in which it was nearly balanced when the point of support came at C, ten feet from the larger end and fifteen feet from the smaller end. While the hammer was at work upon the forging, the bar suddenly broke at a point ten feet from the maller end, B.
The appearance of the fracture is described as highly crystaline and a clean break. The piece thus broken off weighed, probably, a tun and a half. The force which, ap off by the extremity, would have been required to break it tuns. The cause of this remarkable accident is, as has al ready been explained, the gradual separation of particles by successive shocks, each of which forces them a minute distance beyond the limit of elasticity. This action continually repeated must, sooner or later, produce rupture. although the effect of each shock is quite imperceptible to the senses. The most singular and least understood phenomenon is the structure of the metal at the surface of frac ture. It is by no means well established that what are de
scribed as crystals are true crystals, or even that wrough scribed as crystals are true crystals, or even that wrough
iron can have a crystaline structure under any circumstance as a crystal has usually, if not invariably, definite axes and facets, making fixed angles with each other, and the crystal, as a whole, is without a semblance of ductility. This phe
nomenon is not an uncommon one ; but it is not yet well un derstood, and demands careful investigation by the use of the best known appliances and the application of scientific me thods. The subject is one of great importance. The breakage of railroad axles in this manner has probably accrificed many lives and much valuable property.
Could it be definitely ascertained what amount of deformation carries those particles which are most strained be yond their limit of elasticity, and could rules and formulæ be obtained which should express the existing relation in such cases, between the resisting power of the material and the forces of impact and inertid which thus attack it, a most valuable addition to our knowledge would be made. At present we can only adopt, as a genoral principle, the rule to make parts, exposed to shock, of such form as will distribute resistance as uniformly as possible throughout the piece, and to adopt every practical method of reducing the violence and frequency of shocks and jars. The most elastic materials are best fitted to withstand this kind of stress.

ENGLISH FOOD ADULTERATION.

The English Adulteration Act imposes a fine for the selling of any adulterated article as pure; and also provides that any mixed materials, such as mustard, cocoa, etc., shall be designated by a label setting forth the fact. A large number of dealers have attacked this law, stigmatizing it as unfair of dealers have attacked this law, stigmatizing it as unfair
and coercive, and a parliamentary committee is now inquir and coercive, and a parliamentary committee is now inquir-
ing into its workings. The evidence thus far adduced is not ing into its workings. The evidence thus far adduced is not
only interesting in itself, as showing the many falsifications of the commonest articles of food, but is of especial import ance to American dealers, inasmuch as it is stated that it is a common practice for the owner of a spurious article on the other side of the Atlantic, on finding that it is in danger of seizure under the law, to lose no time in getting it aboard a steamer for New York. In this way, it appears, from the statements of the New York IHerald's London correspondent, that shipments of spurious teas, adulterated wines and spirits, and fraudulent packages of Roman cements, togethe with a number of other commodities, all more or less adul erated, find their way to our markets.
Tea is doctored in order to improve its appearance, increas its bulk, and add to its weight. For the two last mentioned purposes, finely ground quartz and iron or steel filings are mployed. Catechu gum, an astringent substance, is als used, but the favorite ingredient seems to be " lie" tea, or old tea leaves once used and then worked over. This is mixed with low grades of new tea, and placed in cylinders under steam, together with a quantity of carbonate of magnesia Dutch pink, and Prussian blue. The adulteration with "lie" tea is usually done in China before export, but the " facing," as the coloring is termed, is performed by people in England who become skilled in the fraud as a business. The dealers face the tea to render it back or green, according to the de ires of customers. Out of $170,000,000$ pounds of the com modity annually consumed in England, it is asserted tha one fifth, or about $35,000,000$ pounds, is open to suspicion. British wines, according to the testimony of several ana ysts, are largely adulterated with potato spirit; sherry is doctored with sulphuric ether, and to other liquors fusel oil and French treacle or brandy, which is often nothing mor

pan beet root spirit colored and flavored. Beer is now com
paratively pure, and the main adulteration is simply water. In butter, often as much as forty per cent of water is found; patents have recently been obtained for a compound called " butterine;" and two other artificial mixtures, known s "Australian" and " Dutch" butter, have appeared in the markets. The Australian stuff is bone fat extracted by teaming refuse bones. It sells for fifteen cents $p \not r r$ pound, and smells horribly. Dutch butter is a mixture of genuine butter and American lard. There is, beside, a French buter, compounded of drippings and kitchen stuff colored with nnatto
Corn flour, a material largely used for food for cbildren, is described as generally worthless and unhealthy. Thirtyhree out of seven thousand grains, a pound, one analyst tates as the proportion of nutritious matter contained, where there should be at least eight or nine hundred grains. The article is nothing more than starch, a fact proved by the cir. cumstance that a dog fed upon it died of starvation.
Other well known adulterations in bread and milk are noted; but as these commodities do not come under the head of possible exports, allusion to them is unnecessary.
J. H. says: "Please call the attention of your numerous read. ers to the great danger of buying cheap cans, for fruit, vegeta bles, etc., as a mixture of lead and tin is used for their manufacture (instead of the bright tin), by unprincipled manufact urers.'

IT is only by the thorough study of details and their masery, that one can hope to attain eminence or position in any profession.-Grahıam Smith.

IMPROVED VERTICAL BOILER.
We give herewith an engraving of a vertical boiler, exhibited at the recent exhibition of fuel aaving appliances at Manchester, England. The Engineer, from which we select the illustration, states that the details of construction will be obvious at a glance. Fig. 1 and plan ehow an ordinary boiler; Fig. 2 and plan show a boiler in which the wholeout. er shell is enveloped in a smoke box which can be lifted off in a moment. Internally the boilers are nearly alike. Vertical water tubes are fixed in the fire box. This has been done before repeatedly, but not as in this case. The tubes, instead of being bent and fitted directly into the tube plate,

These figures all refer to January 1, 1873. Of the capital 38 per cent is obtained by loan in England, and 48 per cent in merica. Bondholders in the United States obtain an average revenue of 6.7 per cent against 4.25 per cent in Eng. and. Dividends distributed to stockholders represent in The difference of these capures obligations, in place of $5 \cdot 14$. irregularity in value of capital in the two countries. But in America, says M. Malézieux, railroads give such additional value to land, mines, and natural resources that capitalists whose funds are engaged in the most, varied enterprizes are content with the smallness of the revenue. But he con-
inventors, Messrs. Allen Wright and Albin F. Tew, of West field, Chatauqua county, N. Y., propose making the handle purt of the bar tubular and of sufficient diameter to suit the hand naturally. The tamping attachment, B, crow, C, and claw, D, are all provided with screw shanks, so that they may be readily attached to the handle. A head is secured to the upper portion of the latter either permanently or detachably, and serves the ordinary purposes.

The Great Centennial Exhibition.

The Director of the Centennial Commission officially an nounces that the exhibition will open April 19,187(s, and close

Fic. 2

SECTIDNAL PLAA OF
FIC.E

FIGA

ria,

HILL'S VERTICAL BOILER.
are fitted into malleable castings, as shown, in groups. These castings are tapered and ground at the outer ends or legs, and these tapsred ends are drawn into slightly conical holes in the fire box, by the bolts and nuts passing through the outer shell, as shown. Any tube, or rather any group of tubes, can be taken out by removing the nuts on the outside of the boiler, and, on withdrawing the bolts, allowing the group of tubes to descend into the fire box, whence it can be taken for repairs or renewal of tubes.
It will be seen that the arrangement is cheap and simple, and we understand that several of these boilers which are at work have given very satisfactory results. The malleable castings appear to stand very well, and give no trouble of any kind. The facilities for manufacture are obviously great, and the boiler deserves extended adoption.

English and American Railways Compared.
The French government sime time ago directed M. Malé zi \in ux, chief engineer of roads and bridges, to prepare and submit a thorough report upon the condition, cost, operation, etc., of all the Engliph railways. This work has lately been completed, and published in the official journal of the Frencb Engineers,the Annales des Ponts et Chaussées. Its interest to American readers is enhanced from the fact that a couple of years ago M. Malezieux vieited the United States, and compiled a report upon American engineering structures, and that in presenting this, bis second report, he has drawn largely upon the knowledge gained across the Atlantic to institute comparisons between the railway systems of England and the United States. The results of his examination into the comparative cost of working shows that 57,040 miles of railroad in the United States produced, during the year 1872, an average gross receipt of $\$ 5,160$, which sum is just balf that gained in Eogland. This amount is divided between passengers and freight in the proportion of 28 to 72 , in place of 44 to 56 in the latter mentioned country. It will be noticed that the passenger travel in England is as exceptionally large as is the freight transportation in the United States.
The working expenses, which in England may reach 50 per cent of the gross receipts, in the United Sates are 65 per cent. The net earnings then are but 35 per cent in the lat ter country agsinst 50 per cent in the former. Thie, however, represents $5 \cdot 20$ per cent of the expense of construction in the United States and but 475 per cent in England,which the author ascribes to the fact that the cost per mile averages $\$ 55.683$ in the United States, while in England it is $\$ 170,645$.
siders that, without the aid of land subsidies and the contri butions to loans to the roads by cities, the development of American railways would not have been so extraordinarily rapid.

IMPROVED CROW AND TAMPING BAR

To workmen who, in the course of their labor, find it necessary to transport a kit of heavy tools from place

to place, the invention herewith illustrated will prove quite convenient, as its object is materially to reduce the weight of the implements, while, at the same time, caus ing them to be less expensive and to occupy less space. The $\left.\right|_{\mathrm{Y}}$

Ctober 19 following, and has issued a circular containing the general regulations for exhibitors. Articles to be entered are divided into ten departments, as follows: 1. Raw materials, mineral, vegeteble, and animal 2. Materials and manufactures used for food, or in the arts. the result of ex tractive or combining processes. 3. Textile and felted fabrics-apparel, costumes and ornaments for the person. 4. Furniture and manufactures of general use in construc tion and in dwellings. 5. Tools, implements, machines and processes. (i. Motors and transportation. 7. Apparatus and methods for the increase and ciffusion of knowledge. 8. Engineering, public works, architecture, etc. 9. Plastic and graphic arts. 10. Objects illustrating efforts for the improvement of the physical, intellectual, and moral condition of man.
Application for space must be made to the Director Gen eral. There will be no charge for the same, but exhibitors must provide their own show cases, shelving, counter shafts, etc. Transportation,etc., is at the expense of the exhibitor. Goods will be received from January 1, 1876, and none will be admitted after March 31, 1876 For heavy ar ticles requiring foundations, arrangements should be made as soon as the buildings are begun. Patent medicines, empirical productions of any nature, and dangerous sabstances aro excluded. sketches, drawings, or photographs of en tries will not be permitted, except by joint assent of the exhibitor and the Director (deneral. Goods must remain until the cose of the exposition, but eubsequently must be removed before December 31, 1876. All communications should be addressed to the Director (ieneral, International Exhibition 18 $\mathbf{7}$, Philadelphia, Pa.

The New York State Agricultural Fair.
The New York State Agricultural $S_{o c i e} \cdot \mathrm{y}$ annources that its thirty-fourth annual fair will be held at Rochester. N. Y., from September 14 to 18 next. Entries close on August 15. A very large number of premiums are offered, especially for fine cattle. Manufacturers of agriculıural implements will doubtless find it to their advantage to exbibit, as the fair will attract a large gatbering of farmers from all parts of New York, Ohio. and Canada. We notice that a gold medal is offered for a combination of machinery, driven by steam, for plowing or otherwise preparing the ground for fowing. The requirements are that such macbinery shall do as good and as cheap work as is now commonly done by horse power, and shall be adapted for use in the State of New York.

A WATER BELT FOR TRANSMITTING MOTION. A curious mode of transmitting motion by means of a water belt is represented in the annexed engraving, which we extract from the Rerue Industrielle. The device is that of an English inventor, Mr. J. Robertson, and is said to work with perfect freedom from noise and vibrations. The piston of the engine is connected with the driving shaft, A, on one extremity of which is attached a large hollow pulley, B. The outer face of the latter is cutawa; from the center so as toleave only a flange of the width shown at l. Through the opening passes the shaft of a fan blower, D, on which, and inside the hol. low pulley, is a pallet wheel, C. 「he pallets on the latter do not touch the inside of the hollow pul. of t
In operation the water, a, of which a small quantity is placed in the pulley, B, is caused, by centrifugal force, to spread itself against the inner periphery, and to be cariied around with the wheel. Into this water, as shown in the sectional view on the left, the pallets on whetl, C, dip, and are thereby acted upon by the force of the eame, causing the wheel, C, to roiate. The hollow pulley is of sheet iron, and is revolved at the rate of 500 tuins fer minute. No water whatever, i : is stated, is

WATER BELT FOR TRANSMITTING MOTION.

oon attained a great altitude. The unfortunate inventor had constructed a pair of wings made of cane and silk, each 37 feet long by 4 feet wide, and also a tail 18 by 3 feet in dimensions. The wings were inserted into two hinged frames, which were attached to a wooden stand, upon which the aeronaut stood and manipulated them by means of levers. The theory was that, when started from any high altitude the machine would reach the earth by a very gentle incline passing over a great distance and eventually landing with out concussion. At a first trial of the device, on being
the small amount lost by evaporation to keep the device in working order.

American Inventive Genius.
In Switzerland no patent lawexists, much to the disgust of native inventors, who are obliged to seek protection for their improvements in this and other countries. Mr. Adolph Ott, a native of Switzerland, but long resident in New York, is now at home, laboring to procare the passage of patent laws by the Diet, and has lately published at Zurich a pamphlet on the subject, in which he makes the following tribute to the inventive genius of America.
" No nation can boast of having accompliphed so much towards the generel progress of industry as the American. If you make inquires about the origin of the most important improvements in any branch you please, you will find in five cases out of ten that it was made on the other side of the ocean. In our boasted watch industry the substitution of machines for manual labor took place only through the impulfe given by Americans. The modern system of grain mill is of Yankee origin, and so is the whole india rubber industry, The present system of the construction of iron bridges is the result of American genius. Look at the boring machine that performs its work at the St. Gothard tunnel uninter ruptedly; it came to us from the other side of the ocean, and so did the 85 stem of electric blasting. As to the printing tel egrap's, it is due to Profeseor Samuel F. B. Morse, an Ameri can who died recently. The system of railways like that on the Rigbi Kulm, which promises to be of so much importanc to Switzarland, was invented by Mr Sylvester Marsh, a New Evgland man. With regard to fire arms, the United States has presented us with the most important improvements. The best wood-working machinery is of American origin, this being also the case with numerous agricultural implemente, not to speak of household machines. 'To a western man, Mr. Samuel Danks, we owe the mechanical puddler, an invention in the manufacture of iron which is only second in impor tance to that of Bessemer. In an article in the Journct of the International Exposition, the well known engineer Perels calls the American machines for making tools sent to the Vienna Ex hibition "perfect instruments of precision," and according to him the hand saws are distinguished by a truly astonishing form and raccuracy. In the making of scientific instruments, the United States are equally advanced. To Professor Jno. W Draper we owe entirely new self.registering meteorological instruments, which, though more simple, are not less accurate than the best in use in Europe. The American watches com pete already to a considerable extent with the Swiss and En glish. In view of this entirely unparalleled inventive activity an American was not quite wrong in saying, in the Interna tional Patent Congress in Vienna: "It has been stated from the opposite side tbat a German bad invented printing when there was no patent law. This is true, but it required three centuries thereafter to invent the printing machine. Surely n America, it would not bave required over five years.

The Perils of Flying.

M. De Groof, the flying man, lost his life recently at London, Eoglaod. He had ascended in a balloon, and his part of the performance was to fly down to the earth after the bal-

on the to lose control repetition of the expermaras collapsed and fell, dashing the man to pieces on the street pavement below.

A NEW SECTIONAL BALLOON

Mr. James Hartness, of Detroit, Mich., has recently pa ented a novel form of balloon, the main object of which i to prevent accidents due to bursting while in the air. In

Fig. 1.

tead of making a single globe, he constructs the body of the balloon in sections, exactly similar to those of an orange each one of which is intlated separately, and all joined to ether complete the sphere. A section is shown separatel in Fig. 2, and several joined together in Fig. 1. An axial open ing left at the extremities, at the middle of which the sec tions, the inner edges of which aremade of suitable shape for the purpose, are connected by straps, b. Through this opening a rope ladder extends, so that the aeronaut may have access to all the valves, one of which is arranged in eash section. The poles shown passing up through the aperture are designed as a support for the balloon during the process of inflation.
It will be seen that, owing to the small amount of pressure which each section has to withstand, the fabric may be made much lighter than would be nec sesary in a balloon of corresponding rize constructed in the usual way while, as in compartment ships and sectional boilers, a rupture occurring a avy point is contined to a single section, ing their buoyancy.

Patented Car Improvements.

There were one or two points in the proceedings of the Car Builders' Association, at its late meeting, in which a peculiar sensitiveness was developed about disoussing the merits of patented devices. The impression seemed to pre rail with many of the members that such devices were not only inadmissible as legitimate topics for discussion, but that committees, in making their reports, must not indorse or recommend any such devices for adoption, no matter what might be their actual merits. This, in our judgment, is a mistake which cannot be too soon corrected: nor do we think that, in order to do so, any alteration of the constitution of the Asso. ciation is necessary. That instrument, as it is now, merely forbids the admission of patentees or their agents to advocate their claims at any of the meetings of the society, but does not prevent the members from freely expressing their views in the regular course of dis. cussion upon any in. vention or device, whether patented or not. To suppress all discussion with respect to patents would seriously bamper the Association in the orcise of itg prex functions, proper functions, and so far It must necessarily be progressive, or disband. It is not the business of the Asso. ciation to make or mn. make the fortunes of inventors or patenters, or to discrimi. nate between rival claims, except on the score of actual merit, and as the interests of railroa 3 s may be affected thereby. If the Miller platform or the Westinghouse brake is a good device now, let it be indorsed and approved; but as soon as either is surpassed by something better, let it be condemned. There is no evading this obvious duty. The Association has got to recognize patented inventions and pronounce upon their respective merits, so far at least as they apply to railway cars, or be exposed to comment and criticism, such as may be found in the Scientific American of July 18. - National Car Builder.

Solls and Fertilizers.

Turfy loam, being rich in decomposing vegetable fibei forms a aoil acceptable to almost all families of plants,forming, as it were, the staple or ground work to which other soils or ingredients may be added. Some cultivators, says a correspondent of The Garden, prefer using turfy loam as soon as it is taken from the field or pasture, to form the principal ingredient in the formation of vine borders, and for melon culture, etc., justly considering that many of its useful properties are wasted, by its retention, of perhaps years, in the soil yard, before it is supplied to growing plants. It is obvious, however, that it would be inconvenient for the cultivator to have to repair to the field or pasture supposing that he had permission to do so, whenever he might require even a small portion of this soil; and most plant grower will only be too glad to take an opportunity ; when it offers itself, to lay in a stock of this soil to last them for several years.
When this is carted into the soil yard, it should be stacked up in the form of a ridge, and might, with advantage, be thatched with some littery material, so as to prevent it from becoming saturated with cold rains during winter, or from being desiccated during dry summer weather. If a portion of good farmyard manure can be secured simultaneously with this soil, a layer of the same might be made to alternate with a layer of the loam, and thia would form a most useful compost for many purposes; as. when it had laid some six or more monthe, it would then be found to be in excellent condition, without further additions, to use for the potting of fruit trees of various sorts, strawberries, roses, and other kinds of plants requiring a rich and somewhat tenacious oil ; while, to render it suitable for other varieties of plants, river or silver sand, leaf mold, peat, etc., could be added in the proportions required.
peat, leaf mold, and other materials.
In establishments where collections of heaths and other hard-wooded plants are cultivated, "fibery peat" soil is in dispensable; and, in many parts of the country, peat, of the desired quality, is exceedingly difficult to procure. The black bog soil, which is sometimes substituted for it, is ab. solutely worthless, and any attempt to cultivate hardwooded plants in such material will be sure to end in failure Where good peat cannot be luund, it is always advisable to purchase it from nurserymen or others who may be in a position to supply it, and this can always be done fur a trifling outlay. The best description of peat gemerally contains more or less silver sand; but, if found to be in any degree deficient in this respect, sand canthen be added to
any desirable extent; and as regards silver sand of the best quality, there are only a few placesin which it is to be found. It can, however, always be purchased, and is not expensive; while, for many purposes, sharp river sand, where it can be obtained, forms a good substitute. Leaf mold, or soil composed entirely of decayed tree leaves, is also an essential ma terial in every garden establishment; and, generally speaking, there is little excuse for a gardener not having an abundant stock of this always on hand. It is seldom, however, in good condition for potting jurposes until it is two or three years old ; and, even then, it should seldom or never be used alone, but mixed with loam or other soils. The eaves of the oak and the elm are generally preferred to those of the ash, horse chestnut, walnut, and others, whose leaves are of a softer tissue. Every soil yard ought, also, to contain a portion of clay, or the runnings of a clay pit; this improves wilh keening and is exceedingly useful where the natural soil is inclined to be of a light or sandy character the latter will be considerably improved by an admixture clay, which will be found to render it more suited to the culclay, which will be found to render it more suited to the cul-
ture of fruit trees and strawberries in pots, melons, etc. Adture of fruit trees and strawberries in pots, melons, etc. Ad-
vantage should also be taken of any opportunity which may vantage sbould also be taken of any opportunity which may
occur to secure a quantity of lime rubbish, from any old occur to secure a quantity of lime rubbish, from any old
buildings which may be about being removed or under rebuildings which may be about being removed or under repair, as this material is of service to soils deficient in calca-
reous matter, and in the formation of vine borders. Of reous matter, and in the formation of vine borders. Of
well rooted stable or hot bed manure, I need scarcely say well rooted stable or hot bed manure, I need scarcely eay portion of dry cow, sheep, or deer dung; decayed mushroom beds, composed chiefly of horse manure; also a quantity of broken bones, charcoal, soot, etc., all of which should be kept separate, and in readiness in the soil yard.

RAILWAYS IN NEW YORK CITY.

"The statistics of the horse car companies now in operation in this city, when compared with the figures furnished by the London underground railroads, show that there will be immense profits from a properly managed steam road in New York. The total length of our horse car lines is seventy-six miles. They employ 11,086 horses, moving cars at the busiest hours at the rate of one every forty-five seconds. The speed per hour is five miles; the cost of construction, three eighths of a million dollars per mile. Last year, the passenger travel amounted to $192,000,000$ persons, being two and a half millions per mile. One some roads the ratio was still larger. The Sixth Avenue road carried four millions per mile, and the Third Avenue line, below Central Park, carried five millions. The average fare on the different lines and their connections is $5 \frac{1}{8}$ cents, while the total expense per passenger is $415 \cdot 100$, leaving a net profit of $98-100$ cent. The business of the horse roads has increased 255 per cent in en years.
In London, there are $193-10$ miles of underground roads. The motive power employed is 70 engines. Trains run every four minutes, during the busiest hours of the day, at an average speed of fifteen miles. The cost of construction per mile, afterdeducting sales of surplus real estate, is three and a half million dollars. Sixty-five million passengers were carried last year, at the rate of three and a half millions per mile. The average fare is five cents, and the total expense per passenger $231-100$ cents, leaving a net profit of 269-100 cents for each passenger carried. In the underground roads, the increase of business in ten years has been 360 per cent. A comparison of these statistics gives a most favorable showing the truipment is While the expense of con, struction and equipment is larger in the case of the latter the operating expenses are very much less. The expense of transportation per passenger by the steam engine is about one half of that reported by the horse roads, while the net profit is nearly trebled without any advance in the fares. At the same time the apeed is fairly trebled. The steam road is popular, too. Rapidly as travel has increased on the surface lines in New York, the increase on the London underground railway has been half as large again. The people have had practical proof of the speed and safety of the latter, and patronize it accordingly.
This comparison shows the large profits which lie within the reach of any corporation that shall be the first to go to work and give New York the benefit of rapid transit. There are no estimates in the figures just presented. They exhibit work that has been done and profits that have been pocketed. According to these statistics, steam roads might acquire a net profit of over five million dollars, annually, by carrying the same number of passengers that now yield the horse roads a profit of less than two millions. A competent engineer, who has carerully studied the subject of rapid transit, estimates the gross revenue of a road to Forty- sixth street at $\$ 4,319,400$ per annum, with $\$ 1,916,000$ as the annual cost of operating, leaving a net income of $2378-1 \hat{0} 0$ per cent on the calculated cost. There would also be added to this the extra fare for carrying first class passengers, baggage, express par cels, or the mails.
This exhibit appears as reasonable as it is gratifying. If it be also taken into consideration that the population in the city limits will be largely increased as soon as rapid transit becomes a fixed fact, the probability of large returns on investments in this direction becomes a certainty.

A golden harvest awaits the corporation that shall ente upon the work. Labor is ripe for it, and capital will not hesitate to lend a helping hand in due time. There is no such opportunity for enterprize and profit elsewhere in the land. It were a waste of time to enlarge upon the benefit of underground rapid transit to the community. The profit it promises is the argument of the hour.'
The above is from the Daily Graphic of this city. It is gratifying to be able to add that the Legislature, at its recen
ession, granted some additions to the charter of the Broadway Underground Railway Company, which it is expected will, before long, enable that corporation to begin the work in earnest. The authorized first section of the road is from the Battery, at the extreme southern end of the city, under Broadway to Central Park, with a side branch to the Grand Central Depot at 42d street. Considering that it now takes the passenger a dreary hour, by horse car, to traverse this distance, $4 \frac{1}{2}$ miles, and considering that by the underground railway it may be done in ten minutes, it requires no great stretch of the fancy to predict that the new road will enjoy an enormous patronage.
Railway men, who have examined the matter, say that the Broadway Underground Railway route is the best railway ine in the world. It passes through the heart of the city, in he center of all travel and traffic, the resident population along its line being greater than that of any corresponding distance in London, or any other city in the world.
Surveys for the Broadway Underground Railway, made to accommodate the enlarged works authorized by the late Legislature, have lately been executed, and we hope before long to place before our readers some of the plans and estimates of the work.

Correspondente.

A Novel Experiment in Magnetism

the Editor of the Scientific American

A good deal of amusement and some information can be obtained from a magnetic needle monnted in a disk of cork, of which I inclose you a specimen. If put in a basin of water, it is far more free to follow its own sweet will than when suspended by a thread; and as it is a new way of mounting a magnet, at least to me, I commend it to your at tention. I would especially beg you to notice its queer move ments when a small horseshoe magnet is laid in the bottom of the basin with from one to three inches of water over it and to see how it will sail around the poles when placed as in the upper figure, finally assuming a position across the horseshoe at about one third of its length. When placed at A, its action is sometimes atill mora strange. g.o vou will per haps see.

With a bar magnet, its motions are different, but amusing nd instructive; but in any mode of experimenting with it, its perfect freedom to assume its proper position serves to show the lines and centers of force with far more clearness han any form of magnetic toy I have ever seen.
Another very pretty experiment (see the lower figure) is to put one of the magnets in the basin with about one eighth of an inch of water over it; take a small file and a bit o iron, and let the filings drop on the water over the magnet. This is a much better way than to put the filings on paper and the magnet underneath. The way the filings sail into position is very interesting ; they like to enter into position from the outside and near the center, and float down the middle, as in the direction of the arrows; and as they accumulate, the first ones are forced out beyond the poles, in the well known curves. Filing them is better than sprinklin filings over the water, as they fall each one separately. In sprinkling filings on the water, they fall in aggregations in which they are not as free as when each atom of iron i

Pittsburgh, Pa
Remarks by the Editor: We have tried all these ex periments, and, although the movements we observed ar not precisely those described, they are still very amusing and interesting.

The Largest Locomotive in the World.
To the Editor of the Scientific American:
I see in a recent issue of your paper that a correspondent makes the statement that the largest locomotive is one on the PLiladelphia and Reading railroad, which has two cyl inders, 20×26, and twelve driving wheels; and that the whole weight is sixty tons. He probably has never heard of the "Janus," constructed by William Mason, of Taunton Mass. It was built for the Union Pacific railroad, but could ot be used there; and where it is now, I do not know. Sandwich, Ill

Geo. H. Frizzell.
Remarks by the Editor.-We are much obliged to our correspondent for reminding us of the Janus, which, as he states, was built at the celebrated Mason Machine Works, Taunton, Mass. Mr. Mason informs us that the Janus has and no other wheels. Its weight, when the tanks and coal bunkers are full, is 84 tons. It is now working on a coal
oad in Pennsylvania. If anybody can produce a larger locomotive, we hope they will trot it out.

Hardening and Tempering Tools.

To the Editor of the Scientific American:
You have been talking to us in your " Practical Mechan ism," by Joshua Rose, in a way that we can understand, and upon subjects in which we are directly interested, and, as I think, to our benefit. But please keep out the oxides. We do not want them in the shop; we know of straw and blue colors as different tempers because we always find them so in practice. If a straw may be a blue, and a blue a straw, temper, because of films of oxide and the time they were coming, our present system of tempering is gone, with no new one to take its place. I never yet found a blue as hard as a straw, nor a straw as soft as a blue, whatever time it ok to draw them
New York city.
Tools.
Compound vs. Oscillating Engines.
irectio Risdon Iron Works, San Francisco, Cal., under the the steamer G. W. Dickie, M. E., the oscillating engines of compound engine substituted, by which an important saving in fuel is gained. The engine, of 337 horse power, is known as an annular compound; the high pressure cylinder being 19 inches diameter by 28 inches stroke, and the low pres sure cylinder $43 \frac{5}{8}$ inches diameter by same stroke; expansion of steam, eight to one, the smaller cylinder being con tained within the larger one, jacketed with high pressure ateam, and both cylinders operated by one balanced slide valve, cutting off at three quarters of the stroke.
The consumption of fuel for the new machinery is claimed to be 1.6 lbs . of coal per hour per horse power This, we think, must be a mistake, as it is considerably less than the average of the best compound engines. With the old oscillating engines, the steamer made nine knots an hou n a daily consumption of 22 tuns of Sydney coal. With he new engines, she makes the same speed on 5 tuns of coal.

Whitworth steel.

Some idea of the solidity of compressed castings of Whit worth metalmay be gleaned from the fact that, five minutes after the application of pressure,-about twenty tuns to the square inch,-a column of fluid steel becomes shorter by 12.5 per cent, or $1 \frac{1}{2}$ inches to the foot. Sir Joseph Whitworth, as a writer in Iron states, holds the proportion that for certain purposes a metal must be used having a certain tensile strength and a certain percentage of ductility. Hence the metalcast at the Whitworth works is classified according to its possession of these qualities, and arranged for convenience in four groups, distinguished by colors, red, blue, brown, and yellow, and by numbers,No. 1 of each group representing the most ductile metal, and No. 3 the least so. Of Low Moor wroughtiron, the tensile strenglh per square inch is 27 tuns, and ductility or percentage of elongation, 38. In good cast iron the same qualities are represented by 10 and 0.75 . Various samples of Whitworth steel similarly tested gave from 36 to 72 tuns tensile strength, and from $33 \cdot 3$ to 14 per cent elongation. There is shown a singular relation between the tensile strength and ductility of the metal, the one generally in. creasing as the other decreases, a circumstance which, it is suggested, may possibly deserve investigation.

The Polyspheric Ship.

This is the name of a novel vessel, recently invented in England by Mr. Charles M. Barnes. The bottom is flat and fitted with three inclined planes with square ends, the effect being as though three ieeth of a gigantic saw were moved hrough the water with the sloping portion of the teeth irst,
The inventor has tested the device by means of small models impelled by rockets. A 7 pound model was driven, by a 3 pound 3 ounce rocket, a distance of 105 yards in 3 seconds, or at the rate of 63 knots per hour. The motion is said to resemble sliding over ice. There is scarcely any water disturbance, and the decks were apparently motion. less. When drawn slowly over the water, the vessels offered more resistance than models of the ordinary shape; but when the equilibrium, between the horizontal pressure of the inclines forward and the pressure of the water in the contrary direction, is destroyed, the model at once rises in the water and passes over the mass of hitherto obstructing fluid.

Valve for Gases and Corrosive Liquids.
This valve is adapted to cases where liquids have to be forced into vessels under pressure. A piece of glass tube, about $3^{\prime \prime}$ long and $3^{\prime \prime}{ }^{\prime \prime}$ internal diameter, has a bulb blown in the middle, and the ends are cut off square. A piece of ndia rubber tube $3^{\prime \prime}$ long, and of such a thickness that it will just pass into the bulb tube, has one end tied with string or platinum wire. Just below the ligature a transverse slit is made, so that the end is nearly cut off. The uncut part serves as a hinge. A small pellet of cork or india rubber is put into the end beyond the slit. Thetube is then stretched on a piece of glass tube, and the whole forced into the bulb tube, till the valve occupies the interior of the bulb. Any pressure in the tube raises the valve on its hinge, while any back pressure closes it tightly. For pressures up to 30 lbs. n the square inch it is perfectly airtight. Beyond this the author
Neros.
A mouth without grinders is like a mill with sui a stone A diamond is not so precious as e teoth. -..Don Quixote

PRACTICAL MECHANISM

number VI.

TAPS AND DIES.
Taps should be forged of hammered square bar steel, and forged to as near the finished size as possible (so that they are large enough to true up), for the reasons already given with reference to tool steel.
The threads of taps of the smaller sizes should be finished by a chaser, so as to insure correctness in the angles and in the depth of the thread
The taper tap should not be given more taper than the depth of the thread in the length of the tap, or it is liable to be used upon holes that are too small, which places more duty upon it than is necessary and than it should be required to perform; rendering it, in consequence, liable to break from the excessive strain, and causing the square end of the tap, where the wrench fits, to twist and the corners to be come rounded.
A tap which has clearance placed upon its thread, by the screw-cutting tool or by a chaser, will cut very freely, and will answer for rough work : but such a tap does not cut a really good thread, and generally leaves the diameter of the thread in the hole larger than the diameter of the tap itself, because the tap is liable to wabble, and the least excess of pressure, on one end of the tap wrench more than on the other, causes the tap to lean towards the end of the wrench receiving the most pressure, and hence to tap a hoie larcer than itself. Especially is this liable to occur if the tap wrench has more than one square hole in it so as to enable the same wrench to be used on more than one size of tap; for in such a casa, the holes being not in the center of the wrench, the weight of the wrench and the pressure placed on the end of the wrench will exert more presure on one side of the tap than the other, in consequence of their greater distance or longer leverage from the tap. The same effects (from the use of such wrenches) are experienced in using taps having no clearance in the thread; but the thread in this latter case is so much nearer a fit to the hole that it serves as a guide and keeps the tap steady.
The only clearance necessary is to ease off the tops of the teeth of the tap back from the cutting edge, which will give the teeth sufficient clearance to make them cut clean, and leave the sides of the thread to fit the thread being cut, and thus prevent the tap from moving laterally.
The plain part of a tap, that is, that part from the thread to the end of the equare where the wrench fits, should be turned down a little smaller in diameter than the bottom of the thread (unless in the case of very small taps), so that the tap can pass right through the hole in all cases where the hole passes through the work, thus saving time by obviating the necessity of winding the tap back, and furthermore preserving the cutting edges of the tap teeth by avoiding the abrasion caused by their being rubbed backwards against the metal of the hole. For special work, where the holes to be tapped do not pass through the work, and it is therefore compuleory to wind the tap backwards to take it out of the hole, the plain part of the tap may be left larger than the diameter of the thread, the advantage being that the squares of several different sizes of taps may be made alike and therefore to suit one tap wrench.
Taps for use in holes to be tapped deeply should be made slightly larger in diameter than those used to tap shallow ones, because in deep holes the tap is held steady by its depth in the hole, and because whatever variation there may be, in the pitch of the threads in the hole and those on the bolt is, of course, experienced to an extent greater as the length of the thread (that is, the number of threads) increases.
It is an excellent plan to finish the threads of a tap by passing it through a sizing die, that is, a solid die kept for that special purpose; but very little metal must be left on the tap for the solid die to take off, or it will soon wear and get larger. In making such a solid die, let its thickness be rather more than the diameter of the tap it is intended to cut, and make allowance for its shrinkage in hardening, for all holes shrink in hardening, while taps swell or become larger from that process; an allowance for this must therefore be made both in the case of the tap and the die. In the case of the solid die, it will be found that not only does the hole be come smaller, but the external dimensions of the entire die have become larger by reason of the hardening, so that while the term shrinkage is correct, as applied to the hole, it is incorrect as applied to the die, the fact being that the metal of the die (the same as the metal of the tap) has expanded, extending its dimensions in all directions, and therefore in the direction of the center of the hole, hence causing a decrease in its diameter or bore.
Three flutes are all that are necessary to small taps (that is, those up to an inch in diameter), which leave the tap stronger and less liable to wabble, especially in holes that are not round, than if it had four flutes. Taps of a larger size may have more flutes, but the number should always be an odd one, so that the tap will do its work steadily.

ad.justable dies.

that is, those which take more than one cut to make a full thread, should never be used in cases where a solid die will answer the purpose, because adjustable dies take every cut at a different angle to the center line of the bolt, as explained by Figs. 31 and 32.

Fig. 31 represents an ordinary screw. It is evident that the pitch from a to B is the same as from C to D , the one being the top, the other the bottom, of the thread. It is also evident that a piece of cord wound once around the top of the thread will be longer than one wound once around the
bottom of the thread, and yet, in passing once around the

Fiq.3.1:

thread, the latter advanced as much forward as the former that is, to the amount of the pitch of the thread. To illus trate this fact, let $a b$, in Fig. 32, represent the center line of

the bolt lengthwise, and $c d$ a line at right angles to it: then let from the point, e, to the point, f, represent the circumference of the top of the thread, and from e to g, the circumference of the bottom of the thread, the lines, $h l$, repre senting their respective pitches; and we have the line, k, as representing the angle of the top of the thread to the center line, $a b$, of the bolt, and the line, l, as representing the angle of the bottom of the thread to the center line, $a b$, of the bolt, from which it becomes apparent that the top and the bottom of the thread are at different angles to the center line of the bolt.
The tops of the teeth of adjustable dies are themselves at he greatest angle, while they commence to cut the thread on the bolt at its largest diameter, where it possesses the least angle, so that the dies cut a wrong angle at first, and gradu ally approach the correct angle as they cut the depth of the hread.
From what has been already said, it will be perceived that he angle of thread, cut by the first cuts taken by adjustable dies, is neither that of the teeth of the dies nor that required by the bolt, so that the dies cannot cut clean because he teeth do not fit the grooves they cut, and drag in conseuence.
dies for use in hand stocks
are cut from hubs of a larger diameter than the size of bolt the dies are intended to cut; this being done to cause the dies to cut at the cutting edges of the teeth which are at or near the center of each die, so that the threads on each side of each die act as guides to steady the dies and prevent them from wabbling as they otherwise would do; the result of this is that the angle of the thread in the dies is not the correct
angle for the thread of the bolt, even when the dies are the angle for the thread of the bolt, even when the dies are the
closest together, and hence taking the finishing cuts on the closest together, and hence taking the finishing cuts on the thread, although the dies are nearer the correct angle when in that position than in any other. A very little practice at the tops of the threads on a bolt, cut by them, are larger than was the diameter of the bolt before the thread was commencel to be cut, which arises from the pressure, placed on the sides of the thread of the bolt. by the sides of the thread on the dies, in consequence of the difference in their angles; which pressure compresses the sides of the bolt thread (the metal being softer than that of the dies) and causes a corresponding increase in its diameter. It is in consequence of the variation of angle in adjustable dies that a square thread cannot be cut by them, and that they do not ut a good V thread.
In the case of a eolid die, the teeth or threads are cut by hub the correct size, and they therefore stand at the proper angle; furthermore, each diameter in the depth of the teeth of the die cats the corresponding diameter on the bolt, so that there is no strain upon the sides of the thread save that due to the force necessary to cut the metal of the bolt hread.

Recent Researches on Flame
M. G. Hirn has been experimenting upon the optical proper es of flame, and theorizing upon the incandescent bodies of the sun's atmosphere. (Ann. Chim. Phys., xxx, p. 319.) In considering these researches we must remind the reader of substance be ignited to a sufficiently high point, let us say $1,000^{\circ} \mathrm{Fah}$. , it becomes luminous,while gaseous matter requires a much higher temperature. But if solid particles be intro. duced into a gas of a high temperature, they inatantly begin to throw off light in all directions; and as the temperatureo tions of the colors of the spectrum. Thus, commencing with
ticles riseso does the color vary through all thegradaa redheat, it passes through yellow and what is termed a white heat, while a very intense heat produces violet rays. Such is Davy's theory, which, to a certain extent, is accepted
at the present day. It has, however, been qualified by the researches of Dr. Frankland, who was first to point out that we can have highly luminous flames which do not, or would not, probably, contain solid particles. As examples, let us take the pretty familiar experiments of the combustion of phos-
phorus or bisulphide of carbon in oxygen. Most of our read ers who have attended a course of lectures upon chemistry wil remember the dazzling light given off in these experiments. So rich are the lights obtained in this manner in actinism that they have been used very successfully in taken instantaneous photographs.

The researches of Dr. Frankland may be generalized as fol-

 lows: That gaseous substances have a point of incandescence which depends chiefly upon the density of the gas, and it follows that gases of low density become luminous much more readily than those of a high density; also, that gase which are not luminous at all at our ordinary atmospheric pressure (let us say hydrogen, for instance), when submitted to increased pressure become luminous. Thus a jet of hydro gen, burning in a vessel in which the pressure was increased gave a light, by which a newspaper could be read two feet from the Hame, on producing a pressure of two atmospheres.Some connection may be observed, between the theory of Davy and the experiments of Frankland,from the experiment of Dr. Andrews, who has lately demonstrated the continuity of the liquid and gaseous state; or in other words, that, when operating upon gases capable of taking the liquid form with great pressure, a certainstageis at last reached where there is no perceptible phyeical difference between the liquid and gasseous conditions. Dr. Draper, of New York, in experimenting upon Davy's theory, has, however, found that, if, on heating a strip of platinum to a temperature of $1,280^{\circ}$ by the voltaic current, a red heat wasobtained which extended up to the line F (yellow) in the solar spectrum, at $1,325^{\circ}$ the spectrum wa proionged into the bluish green; at $1,440^{\circ}$, beyond the line proionged into the bluish green; at $1,440^{\circ}$, beyond the line far as H in the violet, was obtained. These high tempera tures were measured by the expansion of platinum wire it self.
Now, it is extremely easy " in the mind's eye" to conceive the intense actinic power of the rays emanating from the incandescent vapors of the sun, whose beams are the storehouse of actinic power which actuates, we may safely say, this world of ours. We may extend these theories on luminosity to the sun itself without a great stretch of imagination; for it would seem to be merely one gigantic mass of incandescent elements similar in every respect to those we meet with in our earthly experience. But here the temperatures which we would consider intense are only to be compared to the color spaces observed upon the face of the sun; the red and white observer upon the ace of the sun; the red and white
heats of our forges would appear black by contrast to the intensely ignited mass beyond if placed upon the face of the sun. What were some few years since thought to be breaks in the photosphere of the sun are now known to be incandes. cent clouds of rapor of a lower temperature than the brilliant background. There is hardly a gaseous element, even at a low pressure, which is not capable of becoming intensely luminous; in fact, we can conceive no limit to the phenome non.
M.
M. Hirn acceptsthe theory of Davy, and believes that the greater part of the luminosity of flame is due to solid particle being formed or precipitated into the incandescent flame. If there were opaque solid particles in flame, light would be reflected and would become polarized. Arago, years ago, observed that light from a flame is not polarized, and M. Hirn has confirmed these observations. Therefore, the latter named experimenter comes to the conclusion that the solid particles, as they became incandescent, become perfectly transparent and the rather curious observation that a flat flame, such as w meet with in a fishtail gas burner, radiates light quickly in al directions, although so irregular in shape, is thus explained. The real shadows produced by particles of carbon, says M Hirn, which have escaped combustion, or the fumes of burn ing phosphorus, when compared with the striated and feebly colored shadows given by flames of very considerable solidi ty, show that the precipitated particles do not affect the transparency of flame, and, consequently that, when they be come incandescent,they become at the same time diaphanous transparent).
A slight contradiction is noticed in connection with the mag. nesium light, which projects a real, and not simply a striated, shadow. Were this radical change in the optical proper ties of the solid particles not to take place-that is to say, the change from opacity to transparency-it is obvious that not only would such particles hinder the transparency of flame, but they would only illuminate from a very thin envelope.
It is easy to perceive the importance which these facts ac quire when the temperature of an incandescent body, such as the sun, is studied. If the particles were opaque, they would serve as screens, one for another, of all those situated in a straight line. Only the nearest to us would send out light ; and these, besides being under less pressure, would be really less luminous.
It must also be recollected that other investigations than those referred to above tend to show that the upper layers of the sun's atmosphere are the coolest, and consist of hydrogen, sodium, and magnesium; that we have layers of iron and calcium at a higher temperature; and again, layers of nickel, cobalt, copper, and zinc a t a higher temperature still. M. Hirn' observation about magnesium is curious, and hardly seems to agree with the observation of Mr. Lockyer in the examina tion of one of the bright stripes called "faculæ." In thi bright surface upon the sun's disk, Mr. Lockyer observed cloud which his spectroscope determined to consist of magnes ium vapor. We, however, see at once how the different lay re of vapors pass rays through their diaphanous or transpar parent brethren, and thus we get the full effect of the incan escence of those metsls which are so rich in chemical force -British Journal of Photography.

IMPROVED METAL OUTTING AND PUNCHING MACHINE The novel apparatus which forms the subject of the an nexed illustration differs from machines designed or like employment in that, instead of consisting of a single movable jaw (the upper one), which acts in connection with a rigid bed, it is virtually a huge pair of shears, in which both of the blades partake of the motion. In order to communicate power to the arms of the shears, there is an ingenious and quite novel mechanical combination which, togethe with a solidly built frame, completes the device.
Power is applied to a belt pulley on the opposite end of the shaft which carries the fly wheel, A. Also on said shaf is a pinion, which engages with the large gear wheel, B, and thus, rotating the crank at C, moves back and forth the connecting rod, D. The latter is pivoted in the upper end of a double curved bar, E. The lower extremity of said bar is also pivoted to the lower shear arm, F. The upper shear arm passes through the bar, and within the latter and immediately below the arm is a roller upon which the curved por tion of the arm rests. The pivot pin which secures the roller also holds the upper end of the bar, G, the lower extremity of which is pivoted to the frame
The arms of the shears do not cross, but are provided with projections, which lap, and through which the pin, H, passes. By this arrangement, opening the arms forces the cutting edges together.
In operation the to-and-fro motion of rod, D, is communicated to curved bar, E. When the latter is thrown outward or to the right, its roller, acting against the curved portion of the upper ehear arm, raises the same, while the lower end of the bar necessarily forces dowa ward the lower shear arm, F. It is hardly necessary to explain that the com bination of bars, E and G, with the shear arms, is calculated to admit of the application of very strong and uniform force to the jaws of the shears.
But little power is required to operate the machine, and its work is rapidly accom. plished. It is stated that an apparatus weighing 1,700 pounds will cut bar iron one inch thick by three inches wide. The jaws, instead of carrying cutter blades, may be constructed to hold a punch and die, thus ren. dering the machine available for punching, as well as cutting purposes. The device is ted to be operated by hand power in which calso construc ted to be operated by hand power
as described is suitably modified.
For further particulars regarding sights, purchase of machines, etc., address Mr. H. C. Richardson, 59 and 61 Grand street, Brooklyn (E. D.), N. Y. Patent allowed through the Scientific American Patent Agency.

HOLDEN'S IMPROVED LOOSE PULLEY.

The essential feature of the improved loose pulley repre sented in the annexed engraving is that it, with the belt, remains in a state of rest except during the few seconds when the belt is shifted from loose to fast pulley. By this arrangement the belt revolves only when actually in use, and hence the wear of the same, together with the expenditure of lubricating material, otherwise required for the bearing, is saved.

A, Fig. 1, is the driving shaft, and B, the fast pulley. The loose pulley, C , is mounted on a bearing, D , projecting from a box, E, supported by the hanger. Through this bearing and box, the driving shaft passes. As shown through the portion broken away at F, the adjacent edges of the periphe-
ries of the two pulleys are beveled, so that, when it is desircu to shift the belt from loose to fast pulley, both pulleys may be caused to revolve together by forcing the pulley, C lightly toward the pulley, B, by means of the shipper, G After the belt is shifted, pulley, C, is drawn back on its bear ng, and again comes to a state of rost. In shifting the belt rom fast to loose pulley, the latter is not moved, as the belt is carried over by means of the ordinary shipper, H. The bearing and hub of the loose pulley are clearly shown in sec tion in Fig. 1. Fig. 2 is a pillow block with a projection to receive the loose pulley, and Fig. 3 is a box and bearing, the ame as in Fig. 1, shown removed from the hanger. Patented May 5, 1874, by Messrs. W. H. Holden and T

REYNOLDS' METAL CUTTING AND PUNCHING MACHINE.

Starting from the Hippodrome in this city, in the afternoon at 4 o'clock, the final landing was made the next day at 6 P. m., near Saratoga, N. Y. The party consisted of fiva per sons, Donaldson and four reporters of the daily journals S:ops were made at various places on the route. The jour ney lasted 20 houra, during which time about 400 miles was raveled. The higinest altitude reached was 9,000 feet

The Requisites for Good Mortar.

To obtain a good mortar, says Graham Smith, as much depends on the character of the ingredients and the manner of mixing them as on the goodness of the lime itself. It does not necessarily follow that, because a lime is good, the quality of the mortar will be good also. The best lime ever burnt would be spoiit by the custom, common among some builders, to mix with it alluvial soil and rubbieh taken from the foundation pits of intended build ings. The sand should be hard, sharp, gritty, and, for engineering purposes, not too fine; it should be perfectly free from all organic matter, and with no particula smell. Good sand for mortar may be rubbe between the hands without sciling them The water should also be free from all or ganic matter, and on this account should never be taken from stagnant ponds. The presence of salt in sand and water is not found to impair the ultimate strength of most mortars; nevertheless, it causes the work to " nitrate," or, as it is commonly termed, "raltpeter," which consists of white frothy blotches appearing on the face of the structure. It also renders the mortar liabl to moisture, and for these rensons should never be present in mortar intended for ar chitectural purposes, although for do chitectural purposes, although for doc walls and sea works it may generally b ed with advantage aud ϵ conomy.
Sand is used to increase the resistance of mortar to crushing, to lessen the amount o shrinking, and to reduce the bulk of the more costly material, lime. Water is th agent by which a combination is effected and, as sand does not increase in volume by moistare, it necessarily follows that no more of the aqueous element should be employed than is absolutely necassary to fill the inter stices between the sand, and render the whole into a paste convenient for use; and
C. Sheldon. For further particu
\& Co., Box 327, Fitchburg, Mass.

The Music Stool Battery

Lanel and Water publishes the following item, but declines responsibility for its truth by vaguely ascribing it to "a local paper.
"A valuable invention has just been patented by a post office official. It is an improvement in turret. ships, the principal feature being that the battery rises and falls. Like many other inventions and discoperies, thisone had its origin in accident. The inventor was out shooting one day, and both barrels of his gun went off simultaneously, the rebound causing him to spin round with coneiderable velocity. When he turned home he happened to sit on the music stool, and this piece of furniture also spun round in the well known manner. The movement reminded this clever official of his earlier spin. He was a gentleman capable of putting two and two together. Therefore he fastened his double bar reled gun to his rotary piano stool, and banged away in his back garden, obtaining eventually a result which places him in the enviable position of being able to treat with two governments for the sale of his patent, for both England and Russia are anxious to become possessed of the rising and falling battery of this sharp post office official."
This invention bears a striking resemblance to the revolv ing cannon mentioned by Mr. Orpheus C. K’rr. That valu able weapon was pivoted in the middle and loaded at both ends, and, when fired, revolved with astonishing rapidity causing promiscuous slaughter in both armies. It was intended to test the gun before a congressional committee; but as the individual deputed to fire it mentioned that he had a large family dependent upon him for support, the trial was indefinitely postponed

Action of Earth and other Substances on Organic Matter.
At a recent meeting of the Chemical Society, a paper on the ac tion of earth on organic nitrogen, by E. C. Stanford, was read in which the author gave details of his experiments on mix tures of earth and decomposing animal matter. From these it appears that the earth is but an indifferent dryer, the mix ture continuously losing nitrogen, which is evolved as ammonia principally ; the earth also does not act as an oxidizer and no nitrification take place. Dr. Frankland stated that when decomposition was in the direction of putrifaction, am monia was always produced from the nitrogenous matter but much nitrogen also escapes in the elemental form. The action of charcoal is very different; seaweed charcoal mixed with excrementitious matters and allowed to dry is found to retain almost the whole of the nitrogen. These facts are of in terest to sewage economists and the advocates of the dry earth system.

Four Hundred Miles in a Balloon.

Professor Donaldsun, the aeronaut, recently accomplished a very successful voyage in his new balloon "Barnum."
the greater strictness with which this is adhered to the mor compact and durable will be the mortar.

DAVIS' IMPROVED HUB.

The invention, engravings of which in section we herewith The invention, engravings of which in section we herewith
present, is a simple and novel form of hub, composed of present, is a simple and novel form of hub, composed of
few paris, which may be quickly adjusted together so as firmly to retain the spokes. In Fig. 1, A is an inner metal ube forming the axle box and having a head at B. C is a arger and outer tubs, into which tube A is screwed, as clear y shown. The middle portion of the hub consists of two collars, D, fitted on the tube head, at B, and binding the spokes between them. The spokes may be made large at the parts clamped between the collars, so as to fill the whole in termediate space, as shown to the right of Fig. 3, or the nds may be constructed smaller to enter grooves or mortise ormed in the faces of the collars, as indicated at the left of

the same figure and in Fig. 2. The tube, A, is cored out on its middle portion to form an oil epace, and the ends which form the axle bearings are cast inchills to render them hard, smooth, and durable.
The plain form of collar, the inventor states, will prefera
bly be used when the spokes are to be adjusted in a single plane, and the slotted faced when the wheel is to be built staggered. Patented through the Scientific American Patent staggered. Patented through the Scientific American Patent
Agency. June 30, 1874. For further particulars regarding Agency. June 30, 1874. For further particulars regarding
sale of rights, etc., address the inventor, Mr. John W. Davis, sale of rights, etc., address the in
Newton, C'atawba county, N. C.

the chilian exposition.

The second International Exposition of the Republic of Chili, a brief mention of which has already appeared in these columns, opens at Santiago on September 10, 1875. The large South American trade which yet remains undeveloped, and the constantly increasing demand which the progressive republics of that continent are making for American productions and inventions, will, we think, offer great induce. ments for our manufacturers and inventors to contribute to this enterprize. Special arrang arhibition at low the transportation of articles for exhibition, at low rates; and the passage of mecbanics and special workmen, in charge of
goods, will be in part defrayed by the Exposition Commitgoods, will be in part defrayed by the Exposition Commit-
tee. No rent is charged for space, and storage and power
ence of the magnetic telegraph, and brings into bold view the feeble beginning of the marvelous progress of this peculiarly American work. After the patient but persistent efforts of Professor Morse for several years, Congress in 1843 made an appropriation of $\$ 30,000$ for an experiment with the Morse telegraph between Washington City and Baltimore, and it was this line that was completed in the spring of the followiug year. The money, grudgingly granted in the midst of scoffs and jeers and references to "animal magnetism," etc., has been frequently referred to as a munificent gift in the interest of Science and the diffusion of intelligence. Perhaps it was, but it may serve at once to illustrate the magnitude of the growth of the telegraph, and how greatly the government profited by its generosity, to say that yuite recently, within a period of five years, the Western Union Telegraph Company alone paid to the Treasury in taxes $\$ 850,000$, and in gold duties, on imports of telegraphic wire, 328,000 more. Thus the investment of that $\$ 30,000$ repaid itself in those two items alone, in those five years alone, and from one company a lone, more than thirty fold.
Going back to the forty miles of wire between Washington Going back to the forty miles of wire between Washington
and Baltimore, which measured the whole dimensions of the
marvelous change and the vast and wonderful system that pion brought it about is, as the decease of the builder of the pioneer line sharply reminds us, the growth of but thirty years.-Public Lectyer.

A Wonderful oll well.

The Titusville (Pa) Iferuld thus describes a wonderful il well that has bsen opened recently in that vicinity.
The road leading to the Parker well from Petrolia is in moderateiy good condition; and soon after leaving Central Point, the traveler observes the words "no smoking perwitted here" in conspicuous places. After about two and a half miles a ride, the top of a hill is reached, where a loud, roar ing noise is distinctly heard, and eighty rods further on brings us in sight of the well. A dense fog or mist envelopes the derrick, engine house and tanks, while fully one thousand persons are there, gazing on the wonder of Armstrong county. persons are there, gazing on the wonder of Armstrong county.
The derrick has conspicuously placed upon it, in large letters. "Bozs Well," and "Creswell City." There are two 250 barrel tauks full of oil ; also two 1.200 barrel tanks, one of which is full. Three dams, one below the other, catch the dripping; and the rivulet beyond, we are told, for ten miles

BUILDING FOR THE GREAT EXPOSITION AT SANTIAGO, CHILI, 1875.
are offered free. The Exposition closes December 31, 1875.
The condition and number of general premiums have not, The condition and number of general premiums have not, as yet, been determined, but three liberal special prizes are
to be awarded as fullows:
First. One thousand dollars, in gold, for the best style of narrow gage railroad, not exceeding three feet, shown by
fixed and rolling stock, including locomotive and tender sufficient to accommodate and carry 6 to 100 tuns up gradients of 1 in 50 , with curves of 164 feet radius
Second. One thousand dollars, in gold, for the best system of measuring and distributing water for purpozes of irriga tion, in specified or proportional quantilies. The invention must be accompanied by the necessary apparatus to demon strate its applicability to the requirements of Chili.
Third. Five hundred dollars, in gold, for the best explo. ring drill, adapted to mining operations of coal, iron, cop per, silver, gold, etc.
The city of Santiago in Chili is situated in a most pictur esque valley at the foot of the Andes, and is a dorned wita beautiful parks containing lakes, gardens, fountains, theaters, libraries, amusements of all kinds, observatories, etc. In one of these parks, the size of which is two square miles, the Exposition will be held. The structures include sereral buildings, the main one of which covers over 60.000 square feet of ground. It is over eighty feet in hight, is constructed of stone, brick, and iron, and contains many spacious galleries. An efficient fire brigade will be constantly in attendance during the Exposition. The street railways which pass round the park have branches extending within the edifice in order to facilitate the conveyance of heavy me. chinery and other cumbrous goods.
Full particulars can be obtained of the Chiliau consuls at New York. Baltimore, Washington, and Philadelphia. We give herewith an engraving of the main exposition building, which is of considerable architectural beauty.

The Builder of the First Telegraph.
A few days ago a telegraphic derpatch from Maine announced the decease in that State of Mr. G. E. Smith, who constructed for Professor Morse the forty miles of magnetic telegraph from Washing ton city to Baltimore, which consti tuted the original of the vast system of telegraphs now ex tended throughout the world. That line was completed for use in the laet week in May, 1844, the first news despatch having been sent over the wire on the 29th of May. The quite recent death of the constructor of that line naturally carries the mind backward over the thirty years of the exist-
able to appreciate the two hundred thousand miles of wire which form the immense network of the telegraph over the United States to day. Of these two hundred thousand miles nited States to day. Of these two hundred thousand miles
of American wires, which would encircle the globe more than eight times, about one hundred and seventy thousand belong to one company. In Juace, 1844, thare wera two operators at work; in June, 18i3, there were nine thousand nine hundred and thiriy persons employed by one American company, and about twelve thousand by all the A merican companies. In this exhibit of the growth of thirty yeara, we imit the figures to the statistics of our own country, leaving the Old World out of view aitogether.
In soms other respects, the change wrougint by the telagraph in less tha: the period of one generation is still more striking. It requires no strain unon the memories of even the junior partners of aome of our oll busineas houses and ottices to recall the anxious times when they were more or less at the mercy of shrewd and active men who used carriser pigeons, relays of fasc horses with their hardy express riders, semaphore signals from hill top to hill top and along the coast, and other similar expedients for getting advanca views of important events, with all the resulting advantages. In those days fluctuations in the prices of commodities in the great markets of the world were frequently secrets known only to a few, who sold their knowledge to another few, and thus a amall knot of men in every commercial center were enabled to bay the property of their uninformed neighbors for far less than its value, or sell their own for far more than its value. Now all business men get their information simultaneously, and, if they wish it, they can get it from all the markets and money centies of the world. The merchant at our Commercial Exchange is in immediate communication with corn, cattle, cotton, produce, shipping, and commercial exchanges everywhere in our own country and abroad. The banker on Third street has his wire extending
from his office to New York, Chicaco, San Francisco, New Orleans, London, Paris, Frankfort, Berlin, Amsterdam, Con. stantinople, Bombay, Calcutta, Rio Janeiro and Sbanghai, and all cities and countries between. He sits there with instant knowledge of the financial, commercial, political, and other important current events of Europe, Asia, Africa, Australia, the East and West Indies, aad South America, as wellas of his own country. The telegraph, the Associated trate and the newspapers within that organization concenpublic simultaneously at least twice every day ; and all this
of a circuitous route to the Allegheny River, is covered with onl.
'There are two 2 inch pipes connected with the well one of which is shut completely off, and out of the other flows a steady stream of oil with immense force. There is no per captible intermission in the flow; and as it gushes into one of the 1,200 barrel tanks, the foam and spray envelop the whole surrounding atmosphere in a dense mist.

A trustworthy gager informed us that he had gaged the well three times aince the stream was t:arned into the 1,200 barrel tank, and he found it doing 1. 7 \%0 barrels, and he estimated the leakage to be at least 50 barrels per day. He fur ther stated that in his opinion the well'started off out of the two 2 inch pipes at the rate of 2,500 barrels perday. He also cleimed that, although this was almost incredible, he be lieved that, if the full stream were turned on now, it would do 4 , least 5.000 barrels.

The well is claimed to be the largest ever struck in the lower region. A farmer walked up to us and offered to sell his adjoining farm of 100 acres for $\$ 100,000$, which ten days a co, for farming purposea, would not have brought $\$ 1,000$. The surveyors are at work laying out Creswell City.
"Tine Parker will stands two and one eighth miles due eas of the most eastern well of the fourth sand development, and about two and three quarter milis east of Petrolia. The num ber of wells drilling on this belt, east of the most easterly wel on the McGarvey farm, are six, namely: Two on the Snow farm ; one on the Steel farm : the Gushford well, 1,000 feet deep; the Crawford well, 300 feet deep, and the Prentice well, 1,450 feet deep. The latter is half a mile due west of the Parker well, and is due next week."

The Reason Why

It is always desirable that facts should be supported by a ason. The editor of Arthur's Home Mayazine give the fol lowing questions and answers, which are pertinent to this sea son of the year:
Why is fruit most wholesome when eaten on an empty tomach
Because it contains a large amount of fixed air, which requires great power to disengage and expel it before it begin o digest.
Wby is boiled or roast fruit more wholesome than raw ? Because, in the process of boiling or roasting, fruit part with its fixed air, and is thus rendered eatier of digestion. Why are cherries recommended in cases of scurvy, putrid fever, and similar diseases?

On account of their cooling and antiseptic properties, and because they correct the condition of the blood and othe Huids of the body when thereis any tendency to putres cence; at the same time, like all fresh fruits, they possess mild aperient property, very beneficial to persons of a biliou habit.

What effect have vegetable acids upon the blood:
They cool and dilute the blood, and generally refresh the system. All fruits contain acids and salts, which exer cise a cooling and invigorating influence. Apricots, peaches, apples, peare, gooseberries, and currants contain malic acid Lemons, raspberries, grapes, and pind apples contain citric acid. The skins of grapes, plums, sloes, etc., contain tannic acid, which has a bitter taste.
Why should salt be a pplied to vegetables intended for pick ling, previously to putting them in the vinegar
Because all vegetables abound in watery juices, which, i mixed with the vinegar would dilute it so much as to destroy its preservative property. Salt absorbs a portion of this wa ter, and indirectly contributes to the strength of the vine gar.

Why is bread made from wheat flower more strengthening than that made from barley or oats?
Because, as gluten, albumen and caseine are the only sub stances in the bread capable of forming blood, and consequent ly of sustaining the strength and vigor of the body, they hav tion from those which merely support respiration. Whea contains eight hundred and twenty five parts of starch, three hundred and fifteen of gluten, albumen, and caseine, and sixty of sugar and gum; while barley contains twelve hundred o starch, one hundred and twenty of gluten, albumen and caseine, and one hundred and sixty of sugar and gum; hence wheat is much richer than barley in the food of nutrition.

The Discovery of oxygen-celebration of the on

 Hundredth AnniversaryThere was a large gathering of American scientists a Northumberland, Pa., on July 31, to celebrate the owe hun dredth anniversary of the discovery of oxygen by Joseph Priestley. The proceedings commenced in the main hall of the village academy with an address of welcome by Colonel Taggart, of Northumberland. Professor Charles F. Chandler, of Columbia College, New York, was called to the chair and Profeasor A. R. Leeds, of the Stevens Institute, Hoboken, N. J., was appointed secretary; telegrams were ex changed with Birmingham, England, where a statue of Pnd Professor H. H. Groft introduced the business an Prear a H. "The Life and Labors of day by reading a paper on The Life and Labors of Joseph Priestley," in which he rapidly but clearly traced Priestley's greatlife and works. His fondness for chemical dabbling was pursued, like all his work, on a plan of his own, regardless of the schools; his wonderful discoveries, embracing at least two thirds of the now known gases, showed conclusively the compound structure of the air. He traced also the the ological wars in which Priestley's controversial propensity kept him constantly engaged. Like Ishmael, his hand was against every man, and every man's hand was against him and, though his powerful intellect vanquished one enem after another, and the volumes hurled against his foes numThe Church banned him, society thrust him out, until at the age of sixty one, feeble, worn out, his house burned from over his head, his books and papers destroyed by howling mobs, injustice and opprobrium heaped upon him, he fled to Amprica, where he met a joyous welcome, which must have sounded passing strang.s to his ears, accustomed to years of constant strife. Sume of his family having settled at the Forks of the Susquehanna, he followed them here, and found a land of peace and restfulness. The third and fourth generations of the great chemist's descendants still reside in

保n.
Professor J. Lawrence Smith, of Louisville, Ky., offered nad adopted the following resolution:
Resolved, That a committee be appointed to confer with the committee of the Centennial Exhibition, to correspond with the chtmists and professors of cognate sciences in Europe, in order to induce a large representation of them to isit this country in 1876
Professor T. Sierry Hunt,of Boston, read a paper on " The 'entury's Progress in Theoretical Chemistry." The lecturer traced the progress of the art from its earlest stages, and defined Stahl's phlogistic hypothesis, in which Priestley placed such unwavering faith. The three great chemists o the century just expired were Scheele, Priestley, and Lavoi sier. Of these the two first were great experimentera, but failed to interpret their discoveries properly. Priestley, though the founder of a new school himself, adhered firmly to the old philosophy, and died the last defender of phlogiston. Lavoisier seized, with a marvelous comprehension, the true significance of the facts made known by his contemporaries, greatly enlarged the field by his own researches, and like an other Newton, showed the great harmonies which governall the cbanges of matter in the mineral, animal, and vegetable kingdoms. Lavoisier justified by the aid of the balance the old doctrine of Hermes, that in the changes of matter nothing is lost and nothing is gained. With Wenzel, he made chemistry a quantitative science, and the great laws of defi nite and multiple proportion made known by Dalton showed that all things were ordered by weight, by number, and by measure.

A second session was held in the evening of the day, at which Professor Joseph Henry was to have presided; but beisy $l^{\text {leventel by ill health, Dr. Henry Coppie, President }}$ of the Lehigh University, filled the chair, and delivered in
the open air an eloquent, and glowing tribute to the chemis n whose honor the ga° rring was held. In the lecture hal Dr. J. Lawrence Smith reviewed the wh
chemical science during che past 100 years.
n_{n} the following day,August 1, Professor Silliman read an essay on American contributions to chemistry; and variou other papers on the history of the subject were given, and many interesting letters and other relics of Priestley were exhibited.

Another New Comet.

Now that Coggia has passed for ever from our view, it is gratifying to know that a new comet has just made its ap pearance. It was discovered at Marseilles, France, July 26 nd first observed in this country by Professor Swift Rochester, N. Y., July 30. He says: "It is quite large and right for a telescopic comet, and has a strong central con ensation, but, as far as I could judge by observation, both in ihe solar and lunar twilight, it has no nucleus or tail. It is the fourth coil of Draco, and moves at the rate of abou one degree a day.

MPORTANCE OF ADVERTISING

The va usiness or hating for sale a new artcle, or wishing to sell a patent, or fin We work it : upon such a class, we would impress the impor hrough which to do it.
In this matter, discretion is to be used at first ; but experience will soon determine that papers or magazines having the largest circulation, among the class of persons most likely to be interested in the article for sale, will
be the cheapest, and bring the quickest returns. To the manufacturer o kinds of machinery, and to the vendors of any new article in the ical line, we believe the the por
 Scientific Ambrican.
We do not make these suggestions merely to increase our adver
patronage, but to direct persons how to increase their own business The Scientific American has a circulation of more than 42,000 copte
ter week, which is probably greater than the combined c
he other napers of its kind pubitshed in e woria.

DECISIONS OF THE COURTS

United States Circuit Court.---Eastern District of Pennsylvania.
atent fire extingishier.-The nokihwibtern fire extingitishe IIn equity.- Before Judge McKennan.-Decided April, 1874.|

here
hill
As
As
ue

 Mpleted.
What, then, did they claim to have invented? This is very clearly de-
ribed in the relssued patent in controversy.

 It was urged, however, that the efforts of Or. Graham are to be treated as
bandoned exprimento an exerment mayba trial ether of an in
complete mechanicat structure, to ascertain what chaves or additions
 Or.
But if the experiment proves the capacity of the machine to effect what
to inventor proposed, the law aseigns to tim the merit of having produced

[Edmund Burke and Keller \& BLake, for complatiants.
Chas. B. Collier and D. . Collier, for defendants.
zerent gumetican and foxcign teatents.
Improved Railway Rail Joint.
$\begin{gathered}\text { Bartholomew C. Crowley and John D. Kelley, Renovo, Pa.-The chatr } \\ \text { plates, citps, arrd fish plates, are made of wrought metal, in one plece, the }\end{gathered}$ plates, cilps, ard fish plates, are made of wrought metal, in one plece, the plates being long enough for extending across two thes and resting at the
ends on them, while the clips are of the usual length, and located at the
middle, where the ralls meet in them, thus combining the chair and fish middle, where the ralls meet in them, thus comblning the chair and flish
plates. The knee-shaped guard chairs, of cast metal, are bolted up to the plates. The knee-shaped guard chatrs, of cast metal, are bolted up to the
fieh plate on one side by one of the bolts used for fastening them, and also the shoulders bearing against the flange of the rall and edges of the chair, are rounded, to allow the chair to be closely bound to the several parts,
and st the same time allowed to move forward and back, as the rall expands and contracts, without cramping unduly.

Improved Steam Pump.

William Atkinson, Gardner, Ill.-This invention relates to means whereby greater slimplicity, less llability to stoppage, and greater economy in the
overation of pumps, may be secured. This is coneldered by experts to be o veration of pumps, may be secur
a very noticeable improvement.
Improved Lint Cotton Opener, Cleaner, and Straightener.
James B. Wendel, Memphis, Tenn. -This invent James B. Wendel, Memphis, Tenn.-This invention relates to and consists an means whereby lint cotton may
Robert L. Cohen, Phitladelphia, Ga - Machine.
oo the construction of the blower or devtce for forcing atr through the carburetting liquid, whereby such uniformity of pressure 1 i produced as
ensures a steady, un wavering flame, in place of a flickering one, as in most ensures a steady
other machines.

Improved Leather Glazing Machine

 Wright Walter, Yonkers, N. Y. This invention consists of a rotarywheel, carrying the agate glazing rolls on its face, to revolve agalnst the norocco, leather, or other substance to be dressed, lo ring below the wheel band of metalat the middle of the spazces between the arme of the spring on whitch the band is stretched. Under each roll ts an adjustable spring,
bearer, to regulate the pressure of the glazing roll on the leather. These bearers are adjusted a little short of the band, so that when the rolls first strike the leather on the table the band will yield more readnly, and thus
not deliver blows as heavy as if directly supported by the beams. The beams are also provided with adjusting screws by which to cause the

Improved Gate Hinge.
Jr., of Seymour, assignor to
William S. Whiting, Jr., of Seymour, assignor to Frederick L. Allen and Willain H. Richardson, Waterbury. Conn.-By this Improved gate hinge, the gite may be readily swung to elther side without difflculty, and closed
or shut by its own wetght. The tnvention consists of a supporting bracket fastened to the gate post, and provided with curved V or wing-shaped slot for gulding the pintle of the bracket plate of the gate, and preventing the
gate from getting out of place. The platle plate swings by side recesses gate from getting out of place. The pintle plate swings by side recesses
around fixed pins of the supporting plate. When the gate is in closed posttion, the pintle is in the vertex of the blot, and both recesses are in contact
with the gulde pins. By swinging the gate to elther side, the side recesse and platle swing around the correaponding and slotted part until the
extreme mit of motion is obtained.

lmprovement in Laying Cement Pipes.

Jacob Loettler, New York clty.- By this invention, a continuous and solid plpe may be constructed directly on the ground, dispensing with specta
places of production, loss of breakage by shipment, and other diffcultes The invent tou consists of a molding flask, constructed of detachable exte-
rlor sections, suitably supported ou the ground, and cecentrically adjustable core sections, which are flanged in such a manner that an overiapping olnt of the pipe sections 18 produced as they are formed consecutively, one sections, by contracting them, by means of a central shaft and cam eccentrics.

Improved Ventilator Cap
Gerald Kavanaugh, New York city.-This invention relates to the construction of caps for ventllator pipes or flues, and conststs of pyramidic shaped and overhanging sections connected with the top of the flue, com.
bined with a central section consistingof two pyramids, the bases of which re connected, the sections betng supported by means of straps or atays.
It is claimed that this cap will allow a curient of heated impure air to escape, while admitting a current of cold fresh alr to enter.

Improved Self-Adjusting Dam for Dental Use. Jacob L. Chevaller, Newark, N. J.-The frame of the device is formed of
wire bent into a coll, and with Its ends bent outward. To the ends are wire bent into a coll, and with tis ends bent outward. To the ends are
attached U-shaped frames of such a length as to embrace two or three teeth. The inner arm of the upper frame is made the shorter, on account of the curvature of the roof of the mouth. The outer arm of the upper
frame is made with an extension bow, that it may bextended or contracted. The arms of the frame are covered with rubber bage, stuffed, to formpads, which stuffing may be readily adjusted. To the inner arm of
the lower frame of the side dams is attached a rubber flap to rest upon and prevent the tonguc irom coming in contact with the tooth being operated upon. Five
the frout.
Improved Washing Machine.
John Contrell, New York city. -In a box of rectangular form are placed on edge chree movable ribbed plates, to which ls glven a horizontal lougltadinal motion. The clothes to be wasted are placed between the rectpro
cating plates. The proper quantity of water belng tin the machine, the cating plates. The proper quantity of water betng in the machine, the
clothes will be forced between the ribs of the plates, and, being thus held will recelve an alternate back and forward motion nearly tdentical with wand motion. The rectiprocating ribbed plates are connected at their end
by perforated flexible dlaphragms, to prevent the clothes from gettlog between the box and the ends of the plates. Tubes are artached to see tlons, arranged near the bottom of the machine, which extend to a
generator, by means of which a circulation of water is maintained.

Improved Iron Truss Bridge.

 Ed \ddagger-shaped rolled beams, jointed together at the end and strasght in themiddle of the truss, from a polnt one and a half panel lengths from the end of the truss; from this point to the end, the chord is bent in a circular arc down to the shoe. The arc is held in shape by two or more tie rods enter-
ing at the bottom chord pin, to distribute and transmit the load from the point to the arc. The top chord is spliced and connected over the pin th a wrought iron plate, bent in double angle form to fit the web of the beams boued on the ends of the two beams so that its flanges project aownward to recelve the pin, for connection of the the rods and struts of the truss.
This plate is bolted to the under side of the chords by two short bolts, making a temporary connectlon to the top chord. On top of the chords,
at the joint of the sections, there is a cast block, fitting into the trougho the $=$-beam, which is bolted down, by two bolts, passing through the bloc to the web of the beam and the wrought iron connecting plece. The block
has lugs cast on the top, in which the top lateral ties are secured.

William Sandin, Improved Earth Auger.

thanged auger of the usual construction, provided with a pivoted and ex clangeabie bit for productng wells of different dlameters, and connected with a cyllidirical sand box, having band springs applied at the outer side for retaining the box stationary in the well. Small rollers at the uppe
curved ends of the band springs are carried through slots of the box between two disk-shaped collars of the auger shaft. on which the collars
turn, whitle also ratising and lowerlng the box with the auger. The ends of the ound wriags are attuched by ropes or chans to the auger shaft to pre-
vent the cutcting on projecting parts of the well during the ratiligg of the suger and sand box.

Improved Glass Melting Pot.
Robert Richardson, Brooklyn, N. F .-The pot is made with a cover about the same as the ordinary covered pots, but with two or more large
openings at the junction of the cover with the sides of the pot, and with ratsed portions of the cover projecting over sald openings, 80 as to into the pot. A small opening is made through the top of the wall surrounding the mouth of the pot, to pernitt of the escape back tnto the fur-
nace of any portion of the heat currents that may. In consequence of draft nace of any portion of the heat currents that may, In consequence of draft
through openings, tend to come out at the opening in the furnace wall through openings, tend to come out at the o
tbrough which the glass is taken from the pot.
Benjamin F. Ulmer, Savannah, Ga.-This Compound.
sition composed of ground dandelion, ground butternut af a compo na mark, ground ground corlander seed, mixed together and molstened with pure glycerin, ater,cologne spirts, and sirup prepared from the domestic black root o Se Southern States. The remedy is administered as a liver

Improved Tyre Tightener.

the class of tyre tighteners in which a wedge is employed to draw the two both ends of the tyre with lengthwise slots and the felly withradial slots, one to recelve the wedge and the other to permit adjustment of a screw
, clamping bolt; ;econd, to a $U-$-shaped bar or staple applied to the slot
end of the felly, to operate in conjunction with the tightening wedge.
Improved Manufacture of Enameled Dial and other Plates. made of thin sheet tron, which ts stamped out made of thin sheet iron, which is stamped out ly means of a press and
suitable dies, with the edges turned up all round, so as to form a kind o shallow tray to hold the enamel on the face of the plate. The necessary holes are punched at the same time. The plate, having been made chem altpeter, borax, and ground filnt. These substances, having been al educed to powder, are mixed together, melted in a cructble, and run into
cakes, which are afterwards pulverized. A sumflent uantity of the dr pulverized enamel is sprinkled on the face of the plate, which is the placed in a muffle. When the enamel is fused, the plate is withdrawn from
the mutfe and allowed to cool and when cold, it will have a hard, white, the mutfe and allowed to cool; and when cold, it will have a hard, white
glazed surface, and ts then ready for recelving the lettering and figuring.

Improved Vehicle Seat.
James A. Curts, Greencastle, Ind., assignor to himself, Robert Rentck gasper Renick, same place.- This inventon consists of a silang bact asten it at any point. The levers extend from each side to the middle of the eeat, where a locking bolt is contrived for binding them against the ways by turning it so as to cause a cam to press down on the levers. The front or jump seat is provided with short swiveled legs connected with
longer legs of the same, so that, when the seat is thrown forward, the horter legs will be detached from their sockets and turned on their plvot

Improved Pocket Book.
Alexander M. Le Vino, New York city.-This invention relates to an im provement in pocket books, by which they may be manufactured withou
titching, in a neater or more durable manner ; and it consists in the con ection of the partitlons, which are made of a continuous blank, with sec tor-shaped extenston slde flaps or tongues, arranged symmetrically at each
sectlon thereof, with the outer side flaps or guseets. The main advantage of a pocket book constructed in this manner consists in the extension of the partitions across the full width of the same, and tis exposure to wea and tear at the outer edges of the partition, betng the points of great
est resistance, while the sections of the side flaps or guseets are folded o crimped to the inside, and thereby fully protected.

Improved Rotary Engine

Edward Myers, New York city.-The cylinder is provided with heads in the ordinary manner, and with a central partition. The shaft passe
rough the centers of the three heads. In the tnner sides of the two oute eads, and in the opposite sides of the central head, are formed circula cavitles, concentric with respect to each other, eccentric with respectito
the heads, and tangent to to thner surface of the cyllnder between the ports. Hollow drums are made to fit into the cavitles and abut againgt th heads. In the ring ends of the drums, close to the circumference of sald
ends, and extended longitudinally through said shell, are formed round holes, in whtch are placedcylinders which are slotted longitudinally to re cetve the shanks of the plstons, Which recelve the shaft and carry the same
with them in their revolution. The outer end of the platons is made with flanges upon its opposite sides, atting into a recess in the face of the dr ma and its outer surface ts curved to correspond with the inner surface o the
eyllnder. The steam chest has two branch ports leading into the cyllnder upon the opposite sides of the central head. As the steam is admitted through one of the ports, It forces the plston around the inner surface of through the other port. The movement of the piston will rotate the shat and drum about their separate axes. The eccentricty of the drum an to sald axes, gives space for the steam as it expands. To avold this usele welght, the head of the plston may be made separate from Its stem, an ecured to it by screws, so that the head may be detached and the stem in-
serted and withdrawn through the interior of the drum; or a portion of ane end of the dram, around the hole for the sloted cylinder, may be f at and replaced by a pleee secured by screws, so as to be readlly detached
and replaced. This allows the piston and cyllnder to be removed together rom the drum, the piston stem passing out edgewise

Improved Plow.
Moses F. White, Douglaserille, Texas.-This invention relates to tur plowe, and conststs in several features of improvement, by whtch the pre-
paration and tillage of the soll may be done at less than the usual expense, an with more than the uasual conventence to the farmer. By this inven ion, he cutter may be easily cha
held at any point of adjuatment.

Improved Plow

Moses F. White, Douglesile Texas. The object of this invention o provide an improved plow for cultivating cotton or other crops which
are grown in rows or drills of the requisite distance apart. The improvement consists in the arrangement of a plate or share with an adjustable ba hich forms what is commonlydesignated the point,and a grooved standar having 1
tached.

Improved Windmill

John A. Jelley and Josiah N. B. Parrin, Atalissa, Iowa.-This invention Selates to that class of windmilis which automatically adjust themselves to the wind. It consists of a set of vanes Journaled upon a revolving plate, to
which is plvoted a large main tall having a smaller supplemental tall at or eariy at right angles to it. When the wind blows too hard, it forces around
the emaller tall, which, by means of a projecting arm, changes the direction of the maln tall, and causes the revolving plate to turn and present the anes more obliquely to the wind, hereby correspondingly reducing thet rate independent gearings of ropes, which are fastened to the same and pass around sheaves,contained within arms attached to the revolving plate, and are fastened within reach of the workmen below.

Improved Screw and Pivot Chair.
Doremus, Xew York ctty.-The chair seat rests upon the rubWer springs, which are seated on a cross bar and bolted thereto. In the passes through a plate and into the pedestal. By suitable construction thit screw is securely connected with the base, so that it will be firmly held
This construction also enables the pedestalto be madelow, to better adap This construction also enables the pedestalto be made low, to better adapt
the chair for belng upholstered ; and also enables it to bemade lighter than

Improved Corn Planter.
John Clarridge, Mount Sterling, o.-To the free end of a lever whtch
overns the droppling valve, and to the projecting side of the distributor verns the dropplng valve, and to the projecting side of the distributor ached to a sllde. By suitable construction, as the slide moves forward nd the valve 18 clo ard, the distributor ts turned to recelve seed for another hill, and the valve is opened todrop the seed previously removed to the ground. The
silde moves forward and back between four friction rollers pivoted to a silde moves forward and back between four friction rollers pivoted to a
plate attached to the front cross bar of the frame. To the end parts of the work upon. The cross sllde is held down upon the blocks by keepers. In the lower side of the cross silde is formed a cam groove to recelve a pin
sttached to the silde, so that the latter may be moved back and forth lon studinally by the transverse movement of the cross slide.
Improved Cooking Stove.
James R. Willamson and John L. Willams, Jessup, Ga.-The stove divided, by vertical partition plates, Into compartments, of which the outer
ones are arranged as fireplaces, with grates, ash boxes, front dampers, and ivided into the lower and upper sections, the lower sections being used a ovens, and provided with a door, hinged so as to swing in horizontal posi-
tion, to be supported thereln by chains of sutficient s trength to suppor e bake pans thereon. The upper sections connect recesses of the part别 plates with the fireplaces, and draw the flames through the same the door of the ovens. A chamber extends below the ovens, connecting y slotted apertures with the fireplaces and with the chimney. Pivote me ore serve to open or close apertures, and admit thereby the fire to hea
the ovens or exclude the same, as desired. The chamber may easily be eaned by taking off the door. The rear wall t sprovided with draft open cooking may be carried on in all the pots and ovens, or in any part hercof.
George w Can for Cooling Milk During Transportation
 capacty of the tce or water which was allowed to run off in the mulk can
as in the tmprovements patented by same inventor under dates of Marc in the improvements patented by same inventor under dites of Marc
and May 19,187 . The present iuvention consists of an ice water recept le, placed circumferentially around the milk can, and below and in con nection with the bottom of the tee chamber or receptacle at the side of the charge by an extt perforation at the upper part and near the end or part
n of the water chamber.
mproved Horse Power.
Andrew Jackson Plerce, Cherryvale, Kan.-Thts is an improved horse
pwer so constructed that it can be conventently taken down, set up, carried from place to place, and which will allow as many horses to be iy tached to it as the work to be done may require. This conslsts of a po
gonal center block fastened to the ground, from which radlate a number sills. Each sill can in which are a number of vertical flanged pulleys. An endless chain passes
around all the pulleys and also around a large gear wheel. From the latter otion 18 imparted to the mechanism to be driven.
ached to the endless chain in any required number.

Improved Car Coupling

John Pendergast, Spring Grove, Minn.-This Invention consists of a draw ead with curved jaws which are fulcrumed to a slot of the drawhead back the link cavity, so that the overlapplng ends of the jaws pass throug he link. The rear arms of the jaws are attached to a strong elliptic bay pring, which is agin aplied at its rear part to a connecting bar alding a a longitudinal gulde perforation of the drawhead, and projecting be ond the front part above the mouth, so as to close the jaws when betn arried back by the concusslon of the drawheads, and be locked in thing
osition byia plvoted spring lever catching into a notch of the sllding

Improved Clover Separator
Zephaniah Miller, Canal Fulton, o.-In operating this machine, the clo n and over a cylinder to the teeth of the stemmerconcave, when the stem re torn from the heads, and both are carried to a statlonary conducting pron, and then to the separator, the broad teeth of the apron preventing
ny stems or pods from falling into the cyllnder case. The feed bottom catches the heads which have fallen through between the slats of the sen rating belt, whence they are carried by the slats of sald belt into the cylin der case, and then to the hulling teeth, by which the seeds are thrashed rom the heads, when both are thrown over into the seed and pod con eyer. Theyfall thence into the seed separator, and are prevented from
rising on the cyllinder above the statlonary toothed apron by tis broad
 performed by one beater cyllnder. The pods and seeds pass from the con-
eyer to the platformand belt, by which they are dellvered to the winnow ag mechanism located under the platform.
Improved Sewing Machine Table.
James M. Baird, Wheeling. W. Va.-The object of this invention is to nish an improved fastening of the same to the table; also to extend the able in such a manner that the cover may be placed in the rim like a leaf and thereby out of the way. Beveled lugs silde into grooves at the inside the table and fits into a corresponding groove of the cover, securing th box firmly to the table. In the direction of the arm and needle bar ar have the width of the table, and rest thereby on extension pieces, llke th eaf of a folding table.
Improved Cotton Cultivator
Theodore C. Burnham, Waco, Texas. - To the axle is attached a cone
chain wheel, around which passes an endless chain, which also passes round chann wheel, the Journals of whichrevolve for the frame. To the ront cross bar of the frame lasecured a rod, which is hinged to the end of
block that rides upon the axle in a cavity formed in the side of the con chain wheel, the sald rod having a bend formed in it to pass around the 1 m of the sald wheel. To the chain wheel are attached bevel gear wheels, han gear with vertical shafts. To the lower ends of the latter are a ilghtly concaveupon their lower side, and in one side of each of which 1 rmed a semictrcularnotch about six inches in diameter. The cutter
re so arranged that the notches of the two cutters may be directly op osite each other, so as to leave an uncut space a bout six inches in diame er every time the notches of the cutters come together as the machine is
rawn forward. Plows are attached to the forward part of the frame, drawn forward. Plows are attached to the forward part of the frame, in
proper position to bar off the plants in front of the cutters, whitch cutters will thus have to cut only through the ridge of soll left between the fur lows to guard the plows. Guards are supported at the inner sides of gainst them. Sultable means support the cutters and plows of the sail rame away from the ground, for conventence in turning and passing from Improved Railroad Track.
Henri A. Corbin, Parls, trance.-The ties by which the
Henr1 A. Corbin, Paris, France. - The ties by which the rails are connected lie composed of a rod and tube, hie former passing through the latter, an of the tube abut against the inner side of the ralls and thus hold them rigidly apart, while the screw rod equally prevents thetr separation
The ralls are made of angle fron, one side or tange of which forms the base The ralls are made of angle tron, one side or fange of which forms the base
that rests on the ground. They are connected tn sections by fish plates hich are riveted or bolted to the ends of one pair of ralls, and plvoted

※usimess aud sersonal.

Old Battery Zinc Bought-7c. per pound
pald for old zinc battery plates.. Parties out of town
 will plea ese end he above
celve promot sttention.
Willtamburgh, Ne Work.
Annealer Wanted-To take charge of the
furnaces in a malleable fron foundry; ; must be able to give reference, and state where and how long he has
been enpaged in the bustiness. Address John H. Thomas
 work 33 cts. per H. F. Shaw, Cordo va, ill Wanted-The address of manufacturers in
Ohio wio will manutacture and sell, on royalty, a cheap and useful agriculturul Implenent., If preterred, Coun-
ty Kights will be sold. Jas. P. Parsons, Batavia, N. Y. Manufacturers of small stelel wares, wieh
ing to ettimate on a new article, addrese w. E. Cass,

To Engine Builders and Boiler Makers-
A practical Boller Maker desirea a location for a small shop. or would purchase an interest in one already
established. Address J.C.,P o. Box 2728, , St. Louls, Mo. For Sale, Cheap- One 18 in. Engine LLathe,
ft. bed, nearly pew For partculare, address Thos. E. Welig, sandy Hill, N. F .

Lyman's Univerasal Screw Cutting Trable,
withrule for Comoound Gearin, Price 10 cts. Address Lyman, C. E., Nes Haven. Conn.
A Situation want as as Foreman of a Boiler
 H. Beloe, Sacramento, Cal., wishes to com-
muncate win makers of knite eharpeners and other Inventors I I wanta ta small saleable machine.
or artcele of metal. Whill buy the Patent or manuacture on a rogally. William A. Sweetser, Brockton, Mass. Safe Investment.-For Sale-Big Mudy
Coal. Timbre and Farm Ianois. The whole or one inter.
 from surface: five tmproved Farms, with 2 26 acres under
fences; Timber. euch as White and Purr Oak, Walnut

 for fis per acre, and take halfor one third tityerest.
Address Dobscautz Abend, Owners of three Mtines in Address Dobschutz \& Abend, Owners of three Mines in
St. Clair Co. Iulinols, Belle ville, St. Clair Co., Ille. For Best Process for Seasoning Wood, ap.
py to Barbaroux $\&$ Co, Loulisville, Ky. One man, standing erect, works "Mater's
Lever Cross cut saw;" t two feet stroke top and bottom of log; no stooptng. Addregs Champlon Drag Saw
Workg, No. 31 rrd Street, Loulsville, Ky. $\underset{\text { Mineralogical Cabinet for Sale-A sys. }}{\text { Mat }}$
 ic Institutlon, many fosilis, geme, etc., on the appratise.
ment of jugges. Apply to Lewls Feuchtwanger, 180
 W.L. Chase \& Co., 98 \& 97 Liberty St ., New York. For Sale-The Patent Right of Sinclair's
Double-scting Ratchet Drill.
 Tornado Windmill Co.,Elba,Genesee co., N.Y. Electric Bells for Dwellings, Hotels, \&c.-
Mostrellabe and cheapeat Hotel Annunclator. Cheap Moes rellable and cheapeat Hotel Anपunclator., Cheap
telegraph outats for learners. Ins'ts for Prlvate Lines, For Sale, Cheap-Second hand Machinist's
Tools. D. Frigble $\&$ Co., New Haven, Conn. Spinning Rings of a Superior Quality-
Whitinavile spinning ring Co., whitinsville, Mase, Diamonds and Carbon turned and shaped
for Scientict purposes ; Iloo, Glazzers' Damond manufactured and reeet by J. Dtckluson, 64 Nassau St., N. Y Wanted-The Manufacture of "Specialties" I am now furnishing Iron Roofing, coated
with the best Metallic Paint, for only $(\underset{i}{ }$ Seven Dollars jer square. Orders solicited. Address Abram Reese.
Plttomurgh, Pa.
The Pickering Governor, Portland, Conn. The Pickering Governor, Portland, Conn.
Portable Engines 2d hand, thoroughly over. The Improved Hoadley Cut-off Engine-The
Cheapest, Best, and Most Economical steam-power in
 Mechanical Expert in Patent Cases. T. D.
stetson, 23 Murray st.. Ne York. Gas and Water Pipe, Wrought Iron. Send
for price list to Batley, Farrell \& Co., Pittsourgh, Pa. Forges-(Fan Blast), Portable and Station
ary. Kestone Portable Forre Co., phlladelphia, Pa,
 For Surface Planers, small size, and for
Box Corner Grooving Machnee, ell, Mass.
The "Scientific American" Office, New York,
ts itted with the Minatiare Electric Celegraph.
 signalig are ene the persons in the various department
of the eatablithment. Cheap and effective. Splendid

 All Fruit-can Tools, Ferracute,Bridgeton,N.J. Brown's Coalyard Quarry \& Contractor's Apcable. W. D. Andrew \& Bro., dit Water St., New York.
For Solid Emery Wheels and Machinery, Lathes, Planers, Drills, Milling and Index
 vertisemeot. Address Unloa Iron Mills, PIttsourgh,
tor 1 lthograph, ete.
Hydraulic Presses and Jacks, new and

Peck's Patent Drop Press. For circulars,
address Millo, Peck $\&$ Co., New Haven, Conn Small Tools and Gear Wheels for Models
List free. Goodnow W Wightman, 23 cornhlll, Boston,M8 The French Files of Limet \& Co. are pro-
ounced superior to all other brands by anl who use them. Dected excellence and modera
these goodid popular. Ho Hor Foot
or A merica, 20 Platit Atreet. . Wew
$\underset{\text { Mrrigating Machinery, for }}{\text { Minin, Pule or rent. }}$ Seing advertse
nent. Andrew's Patent, inside page.
Automatic Wire Rope R. R. conveys Coa
Are. \&c.. without Trestle Work. . Co . 34 Dey street, N. P
A F. Havens Lights Towns, Factories, Ho Beat Philadelphia Oak Belting and Monitor thened. ©. W. Arny. Manufacturer,
Temples \& Oilcans. Draper, Hopedale, Mass Buy Boult's Paneling, Moulding, and Dove
talling Machine. Send for clrcular and sample of works.

Haci's Co... Battie Creek, Mich.. Box 22 .
Engines, Boilers, Pumps, Portable Engines
 Hand Fire Engines, Lift and Force Pumps

Price only three dollars-The Tom Thumb

 Can be put in operation by any lad. Includes battery
key and wires. Neatily packed and sent to all parta he worid on recelpt of price. F. C. Beach \& Co., 26

E. T. C. can remove rust stains from calico
y the proce ne his ale by the restpe eiven on p. 75 , vol. 31 - -G . w.

 forward any description of the invention on which he
asks an oplnion, but merely testimonials as to to tro.w. P. B. and many others will find booksellers' ad.
 S. T. B. says: A French chemist, says: "By
fabricatng cove, ittrogen can be made." eaning of favricating coke? A. It means the makting
f coke by expellling from coal the princtpal gaseous and Houtd matters that tit contains. In the manufacture of the gas passess out of the
he retorts is called cobe.
F. B. C. asks: What are ocher and umber Common colors are yellow and red, the latter betng col-.
ored by seaquiloxide of tron, and the yellow rariety by he hydrated sesculoxide. Umber is an ocherous ore
f Iron, of a brown or blackisk brown color conslating f oxide of tron wor blackisis brown color, con sisting and water. They sre found princlpally in Europe, al.
hough they are wldely distributed. The ocher 18 found in beds some feet tit thlcknese. Which He hen gereally
bove the oolte,and are covered by sand oze sands, more or less ferruglious, and are accoumpa. nted by gray plastle clays, of a yellow or brownish
color: all of them subetances which contribute more or less to tits formation. There are many large mines of
itin this country, at Bennington, vt., and In rarious
 the tiland of Cyprus, and also to this country ti large
quantites. They are used as plgments, and as dryers . varnish; $;$ also, sometmes, In coloring porcelatn.
J. C. W. asks: 1 . When a person is writing
everal hours everry day, Inhalling the atr from Ink which d drylng so near him, does he recelve into the lungs nd the 1000 ans thing from the tin which may have a
deletrious effect upon tre heart or any other organ ? deleterious effect apon the heart or any other organ?
A. Not trom any of the common Inks. . It If only pure water eraporates from 10k, would that molisture be
ikely to affect the lungs of an person bending ove the drying paper from morning till night? A. ${ }^{3}$
According to the sense of gmell, when tink is rree. According to the sense of smell, when thik 18 free.
1 y used, the tindtcations are that something more than pure water rises from ink in drytng. If injurious to
health, what would be its specific effect? A. Not in urious to health any more than minute particles of duat and saline matere, or traces of organic matters re-
celved from other fources. P. H. S. Asks: Can a calcium light be
made so as to be carried tin the hand on a fogky day?
 the continuous flowof gases neceesary
bo can a pattern of a pot be drawn, the bottom the pot 7 tinches high? : A. This question is some. that confunced. See Warne's "Sheet Metal Worker's
Asitant." Assitant." $\begin{gathered}\text { Can colored candles be made to burn with a flame }\end{gathered}$ of the same color? For intauce. Ior red, nitrate or
trontum might be dissolved in bolling alcohol and the wick sosked in 1t. Boractc acld mikht be used for rreen. Can the colora be intenstited in any way?
We doubt very much as to whether the oblect destres We doubt very much as to whether the oblect desired
Can be accomplishee, for various reasong, and certannly not tn the way you speak of, from the fact that stront1um nitrate 18 nearly insoluble to alcohol, consequently
very little effect would be produced bya wick steeped
 edge or border of the filme.
How can I deposit a thin coat of platinum on metal by a plating procese? Can I put It on as a wash, a fter
diseolving in nitro-muratic acid A. dis8olving in nitro-murlatic acid? A. Your best meth-
od would be that of electroplatiog; the best solution to employ ts the nitro. murratic, to which sufflcient sode is added to render it neutral. The object to be coated should be cleansed by potash before the process 18 com.
menced. A mine platinum
 wire in connection with the 2 Inc or negative pole, and
also placed the solution. If the battery be not to also placed in the solutlon. If the battery be not too
strong, in a few minutes the object will be coatea with
W. H. C. Sr. says: There is a man in our
eligborhood who says that.ff a poller with both heads out were ee up on end in a body of water (it mattera not on what depth, provided the upper end d 8 bove was.
ter and the lower end sunk tin the mud deep enough to revent water from leaking in), when the boiler

 be made with a plece of tin plpe
D. K. S. says, in answer to J. J.K.'s question
reeard tc the brittis man of war sunk at Hell Gate bout 1772 : I would state that it has been vist ted by ivers for several suceessive years; ;ith what suceess
s to mones obtained, I cannot tell.
$I t$ In the mud and difilicult to get at, and can only be visitt ad th good weather and at certatin times of tide. I have
veral reltc in m poosessilon whtch were taken f foo
J. O'D. asks:I have often felt the want Je companies did not do something to wards remedylig he evil. But 1 am not surprised now, havilog read yout
rticle on the subject tin rticle on the subject in a recent number. I was not uccess. Would 1 not te well for the companies to of:
era prize for a
succesesful tinvention, that would bring all the Inventive talent to bear on the subject? We
hould then, I Delleve, soon have a good method of Yentlation. A. The suggestion of our courrespondent
 J. H. McD. asks: The follower on a steam steam boat), pulled off the follower boits, nuts, and gatenlngs with it, and broke the cyllider, as the episton
was coming up with the steam under it and was coming up with the steam under it, and a vacuum
of 26 toches over it (on the follower). It is a disputed nestion whether the vacuum on the top of the followe remove to of tits seat. A. It did not have any tendencs o pull the follo wer, but did render it easter for the to S. F. R. asss: If there is a certain quantinonved into steam, would there be the same ainou of water when condensed it there were no means of escape? Is there any decrease in water by bolling it? A .
Tnere would be the eame amount atterwards as before, H.
H. L. K. asks: 1. Is an artesian well sunk frive well? A. Jot generally. Artealan wells are Sa bring dided as trequire hie hole to be bored by a bring destgned for the purpose; whereas the hole
of a drive well 18 commonly made by driving the tube sto the ground. 2. Is the same ktnd of plping used in
oth? A.No, the pipe for artesian wells 18 put togethe
 neend beting closed and polnted so as to enable $1 t$ to

W. H. K. Jr. asks: What ought be the tacks, respectively 100 feet and 140 feet hlgh, each havgan 8 nch guare fue for the entre hight? A. For
he 100 feet stack, make the walls 8 feet thlck at bot tom nd 16 Inches thick at top, the brick work being of hard
A. L. D. M. asks: I have a boiler 56 inches nches dlameter; the dome 1816×20 inches, of fron nch thick. How many pounds steam will be safe to
work at highest rate? A. About 50 lbs. per square
M. H. R. says: To become a surveyor, is it
necesary to study at a unversity?
If not, what enould neceesary to stuay at a anversity? If not, what ohould
Ido to become one? A. It would be netter tor you to obtain Bome instruction at a good engineering school. But many surveyors learn their profesion by actual
practice in the field (which, of course, would be neces. sary atter learyng school, (thout the prelilminary ed ecome a good survesor, you are pretty certain to suc
H. C. T. asks: I wieh to suply a tank,sit
uated on top of a ievee, with water from a rlver, the ank betng 100 feet from the river, the levee sloping at an angle ot to. hat winter he cheapest way or
supplyng the tauk, by machinery? A. An ordinary steam pump, If the quantity of water required is small,
nd a centrifugal pump, or well dealgned pumpling e ne, for small quantitles
F. G. H. asks: If a toy balloon were cut
oose to
go whitherit would be blown, what would be 10ose to go Whitherit would be blown, what would
the reault?
Will balloons burst if they
rise as high as posiblie? A. Yes; but they seldom reach a sufflctently agh altutude, becauee of the loss of gas.
R. K. asks: The lightning rod on my house antage to put a wheelbarrow full or wrought or cast ron turnings at the end of the ro, ;, letting it bed itself
n them? A. It would undoubtedy of your house if you place a mase of conducting mate. rala, as you propose, Into connection with the lower
ead of your lightnung rod. Better dig a trench and end of your ligntning rod.
J. J. S. asks. Is magnetic iron sand worked
practicaily as any place in the C nted Statates? mont we could obtatin large quantitles dally. Beling
very pure, it would be an Inducement to eetabiliah very pure, it would be an Inducement to establiap
works. A. Not to any extent. Much fron sand is tit. aniferous, and 1 t would be necesesary before mintng to
see whether twas all magnetite, or contained an Hous mether it was all magnetite,
E. C. M. asks: Would a boiler be subject what extent? The blast is to be used for the purpos fmeltug ore. A. It lis not ueual to employ a blast
 themselves. First, that the dlast would increase the rapladty with which the boller would burn out. Sec-
nad, thatif your blast were mised winh the products
combustion, tit would be injured so far as its further
employment in the smelting of ores was concerned.

You agal

M. P. S. says: Your repeated cautions in hrough your columns upon the following polnts: Lave crected at my conntry restence a water tank and
axtures of rather novel construction. At one corver or the house, , have placed an old cyllnder boiler, about 30 feet long and 3 feet dameter, standing on end. resting
on brick foundation. The upper head has been re.

 tank illed with water by force pump from the well. It
is uow empty, hewever. From this tower, fron water Ppes lead to the kitchen and bedchamber e, and also
he cast
hon
 he opposte side of the house. 1.Is this a arrangemen angerous? A. The arrangement as described is no nuch better by a little chayge. 2. Would llghtung be
 with the ground, it is quite possible that 1 lightnin might strike it or some of the plpes running fromit th the house tn prefereuce to to lightring rods. 3. If
truck, would the lightning tollow the mass of iron to he ground, or pass through the pipes toto the well, o
nter the chambers through the discharce plpes? the tank or 1 He conections were struck, the lighthing
ould, without douvt, po to the earth and not into the ouse. .t. Would it be advis thele to put a lightntug rod
 metallic conoection with the tank, and need not exten
pelow tho upper edge. Let ine tank ard water plpes, in ther words, be the lower part of the rod. 5. Woul not this last tend to attract the lightulng, and in fuch
case mould not the eleciricty be likely to leave the rot and enter the botler with same effect as if no rod were
there? A. Both your suppositions in th1s parazrapl are correct. 6. Will not this large mass of iron reet ting
on the ground and this indrect water cond
 vellis tn perfect mecallic connection throuphout, with
oo rust or cement joints. Red lead is an admirable in In the way ol advtee we would syy: Conne all jourlightning rods together, and also to your iron
tauk and wster, gas, or other plpes, not by
geparate connections, but so that there Is some coonectlon be-
tweer all as high as possille. If you have a mietal roof connect all rods with it. If not, connect them oby a
good slized conductor running along the ridge of the oof. Bear tn mind that, to carry off the heavitest light

 orial J.
J. E. J. asks: Will adid dissolve resin with
ut destrosing Its natural (uallties?
If so so what kind of actd? If not, what will? A. Rostu, or collophone
is a maxture or several rysinous acids, uamely phe sylvic, colophontc, and somettimes also pinearic actd.
It 18 soluble $i n ~ n i t r i c ~ a e c i d, ~ b u t ~ i n ~ d i s s o l v i n g ~ s u l t e r s ~ d e . ~$ composition. It is onubie in alco ohol and may in tht

 applying a gentle heat. Ihave been readiug that if the tc., und great care saould be, tuken not to pour it out with a flame below it, otherwise ani explosion of a
dangerous character might ensue. ". Milx xed with certaiu proportions of atr, it forms a highy explosive com.
 If it is so dangerous, and would he greaty obifed to
hear from you further about It. A. There is is no neces. ity in ths experiment of pouring the ether out over pronducann efirict. Place he ether in botlles, into
whtch drop, respectively, the requiste quantites of

hellac and caoutchouc.

C. D. F. asks: 1. Why is it that, when Closed, the armatire touches the magnet, tit (the arma
lure) wwill sil sich to the are) win still stick to the magnet when I break the
crucut? A. Because of the residuary magnetiem in The ooft iron cores. The armature should never be al.
 your paper, short, t tick cores in electro-magnets siv greateratt ractive power, why are such cores uted
telegraph tinstruments?
A. They are used for the very reason stated, namely, becauee of the better results ob-
ninied. 3. In making a blue vitriol solution for a Dan of water? A. As uuch as it will dissolve. t. Will a battery make more electrictit? A. The porous cup is
only an accessory to the battery, and takes no part in he generating of the current. A cell t in which the cup
sof unolited leather is sald to have less inter wal re. is used.
S. F. says: I wish to suggest a form of ballon which may be worth experimenting ou, and which
belleve has not yet been proposed. I have frequently obscrved that metallic shell ware, and all descrip tions
of sheet metal work constructed with a w view to 1 Ilyt. rength,are dependent upon he hes of carved cated, or corrugated surfaces for then power to sus-
taln pressure. It is wonderful what an en en rm uns pres.

 o ascertain he relative restiting powers of varlous
metallic shells. Now this appears to me to be f feasinle suggestion to make: That a balloon be constructed In the globular or oval form, from sheet metal ae thin
a s possiole

collapse, it will of course rise from the ground. This
18, tin other words, the same thing as asing: Cannut a
 thlcknes, if if crcular, or of proportional thl ckness if
elliptic, sufilicently strong to resist unou the out ide or

 balloon constructed on some such plan as to be
 ahead with aeronautucs, and not bef ore. A. One of the
earluest fyling macllines ever made had four sheet cop.
D. M. asks: What can I coat sheet rine

 N. L. T. asks 1 . I have a horizontal boiler
of copper 1 tooc long by 10 inenes dometer, the copper

 dameter, and with the wight at the end of the ever it
tassesil ozs. (avorrauposs) upward pressure to ratse it. How many los pr cesure are there? A. More data are
requirelt, numely, the welpht and dimentions of the lever. the wethyt of the valve and ball, and the distance
ot cach from the fulcrum. J. II. B. asks: How can I clean off the rust
from a revolver, and preveut it rusiting hereatter? A. from a revover, and dreverut it rusting hereatter? A.
Clean the usty marts wth brick dust, hen brown the
parts

 power of an engine, and in soule cases you answer that
sutliclent data

 pressure, ruontog at 85 rerolutions per minute, ustng
common slide valve? What have we omitted in this
When example,to tuply the necessary data? A. The ordina.
ryrule for ilding the nommal harese power of a non.
conden $={ }^{3} 1$ stroke in fect \times (dianeter in inclles) $)^{2}$. Hence surficlent dita are given. The actual horse po wer. however,
derents upon intilal pressure, point of cut-ott, amount of wire drawne, back pre esure and comproselion, onne
of whtch data are furnishest you siyt that an e engine whithy in inches stroke runnIng 90
 $\times 2=44 \div 12=4 \times 90=360$. $\Delta \mathrm{m}$ I right? 1 . You are
right.

 be. be elevated 25 feet and let falli(of its own welght). What would be the force of the blow struck in lbs.? Witil
you give us the formuls forthescexamples? A. We do examples.
G. M. asks: Does clearance between piston
head and cylinder, more than sutticlent for the sate head and cylinder, more than sufticlent for the saie
working of the engine, help to keep the engine from knocking when it passes the ends, or does it do any S. D. Jr. asks: What are the rules for pro-
portioning engines? Will a boller of 3% ninches dlameter $\times 15$ taches length be of suttletent capacity to drive
an englue of 11 inches bore $x 2 y / 1$ inches stroke? The
Boller is heated with 3 or 4 gas burners. Λ. It 18 diticult to give defnitte rules for such mmall boflere, as a great
deal depend s upon the manner in which they are con structed and set. Allow from 15 to 20 square feet of
efficlent heating surfece for efficten
gine.
$\underset{\text { long sirikes once } 4 \mathrm{n} \text { a second, how long would the pen- }}{\text { W. T. }}$ long strikes once in a second, how long would the pen-
dulum have to be to strike oncefin a minute? A. 11,700
C. D. asks: Please give me a simple rule
for calculatting the pressure on safety valves of steam for calculating the pressure on safety valves of steam
botters. For instance, what would be the pressure of valve with weleht of lever 4 lbs., length of lever from
fulcrum to welght $223 / 21$ laches, from fulcrum to center
of valve $2 / 2 /$ inches and welght on lever 20 lbs.? A. You of valve $21 / 2$ inches and weight on lever 20 lbs . ? A. You
do not send enough data, the weight of the valve and
stenn and sever bellig requitred. But neglecting the weight of the
lever
valve, and supposing the center of gravity of lever to be mid way betwen the fulcrum and wetght: Pressure
on valve $\times 2:=4 \times 11 \cdot 25+20 \times 22_{2}$. Whence pressure on on valve $\times 2$:
valve $=19 \mathrm{~s}$ lhs.
E. S. W. says: All books say that an arti-
ncial hortzon, to be used with the sextant on
land, should be made of mercury, or some other flutd Would plac, do on the ground and leveled by a omall spirtt level?
A. When one considers the error caused by even a very silight diterergence from the prop caus leved by in mevena very
the altitude of an object millions of milles away, and remımbers that it is very probable some tinaccuracy of adjurtmont will occur, he will oe very likely to agree
with a frlend of ours, who sald that the method reWith a irten of ours, who sald that the method re-
minded him of the farmer who guessed at the wetpht
of a stoie, after uslug it to ascertaln the welsht of his of a
pig.
J. A. H. Jr. asks: Is it necessary that par
ties running a stean launch or small steamboat for thelr own pleasure or conventence, and not as puhlic
carriter3ishould comply with the steamboat law requiring the employment of a cap
gincer? A. We think not.
G. R. C. asks: What would be the effect
on a voume of sleam gong through a on a vo.ume of sleam gong through a plpe if it came
to a place where the plpe turned a right angle? A The
pressure would be reduced, on account of the restst. ance due to the bend, and some of the stean would,
in general, be condensed.
H. P. C. says: I have made a very nice kind potash, and prusatate of potagh, and for a while th
Works well. But now th has grown thick as mud, and molds. What can I put in it to keep it thin and 11 and d d
to due to e eraporation, Your bottles should be kept we toppered. Try a ittle carbolic acla.
H. B. T. asks: What power of engine will To distance of 85 feet throung a plpe, the frrst 60 feet
obe forced at an angle of 45°, and the remater fet, to be forced perpendicularly Into a tank? depends entirely upon the quantity of water required
to he forced up the plpe in a glven time, which quantity

 and Its number of strokes per minute; this latter wil | $\begin{array}{l}\text { pump piston or plunger as compared to the area of the } \\ \text { steam piston. The more the area of the latter exceeds }\end{array}$ |
| :--- | the areas of the former (the lengtho of thelr trokes be Ing equal), the faster the pump will run; the area of stum piston; If the water requires iliting only for for.

pump cing, the steam area may be made twice or three tmes
the pump area. Your irat element is therefore the the pump area. Your irrst element ts therefore the
quantity of water per minute required to be forced up
I. D. MeC. says:
foating on perfectly stil water, and that the boat has a sall in the fore part and a large bellows in the back part. Now if air if forced upon the salt from the bel.
ioms, would it cause the boat to move?
would not meve boat But by remoring the eall and discharg thg the air from
the bellow
C. W. J. asks. In the case of mill rocks,
When the lowerrock I 18 stationary, the upper dotng the
 the rock 18 in motion? Does it require a greater
strength of support to sustan the weight of the upper rock when In inotion than at rest? It It contended by
gome that the weight 1 s less and they endeavor to some that the weight is les8 and they endeavor to
mantinal therir argument by citing, as an illustration, henenvernor balis or a steam engline, stating that the welght of the zovernor. A. The weight desree, the she
whether the stone same, G. A. N. asks: 1 . Would a boiler made
from $3: 16$ iron, 10%
inches in dlameter and 26 iuches hngh, with 26 tubee 12 tinches long and of 1 inch dame.
ter, ter, with tube sheets $1 / 4$ inch thlck, be of sutt clent stroke A.1.. 2. What will be the fire surface of
such a boller? A. It such a boller? A. It will depend upp the manner to
which tit s set. The free surface may be the surface of the tubes and one end of the boller, and may
surface tin the shell of the boller, In addition.
 the known means (for example, by a pump) to a press
ure of say 90 ibs. per square inca, without tincreasing the temparature, and have any much expermenteasever
been made? A. It can be done by making provelor or removing the heat of compresston by some methon of refrigeration. We do not know of any experiment
P.R.asks : In case of shutting down for 1 or
weeks, is it injurious to the boller not to blow off, but io le the water stad till startung ap again? A. A. it the
water is pure, it may be lett in the boller; but if it con.
 with h pressure of steam or not? A. The best plan, if
 does oll going in with the feed water have on the boll
. It frequently causes priming. What is meerschaum? A. It 18 a h ydrous
magneela, occurring chielty in Asta Minor.
Thave suffered for the last elght years with a bunlon
or something of the kind on my toot. How can I get rellet? A. shoes made byaman whe understands the anatomy of th.
of this kind.
A. . V. asks: Would a sewing machine ma-

king a sitch sillar to hand sewing be more popular than the present kind? A. Some people might pre. | fer it. |
| :--- |
| Suppose I had a hollow tron ball, 1 foot dameter with | the shell $1 /$ thich thick, what force would it require to hold dit 3 feet under water? A. You can readilymake

the calculation. Thie welght of the ball tends to keep it down. The welght of an equal volume of water
 la on a smallscale for castng small artucles. Could I
do it economically? A. Not unless you have had some practical experlence tn the matter.
Is there a reward offered for an a
$i \mathrm{~g}$ cheating on the part of conductors on rallways ${ }^{2}$ street care? If so, by whom, and how much is it? A
There is no reward publlcly offered; but the managers of rallway companies will doubtless be willing to com. pensate any one who brings them a useful invention or the purpose set forth in your question.
Would it not be a
A. No.
Where can I get a book on chemittry for beginnere

A You will ind notices of publishers of such works our advertsing columa
J. S. S. asks: : Is it economy to keep 60 liss.
presere of stean In boller when 40 ibs. will do the work pressure of stean in botler when 40 ibs. willdo the worr
required? I Am running a steam grist mill and tol be. 10
18 economy to keep 60 ibs. In boiler. A. You do send sufflelent data. If you have an automatic cut-of englne, it would be more economical to malntalin the
higher boller pressure.

S. R. says: A man was killed in a well last
summer by gas. The well was completed, belvg lat din

pump were fxed to the
sme, and the well was proba. pump were fixed to the s3me, and the well was proba.
biy sirtight with the excention of a very small crack bly artight, , 1th the exception of a very small crack
betweentwo planks. The irst cold snap that came, a efharp whistling sound could be heard. Our nelghbors the well and the outslide atr rushed in through the
crack. We placed straws across the crack, and they sucked down. Can you explainitit? $\begin{aligned} & \text { I. The crack prob. } \\ & \text { ably } \\ & \text { annect }\end{aligned}$
 other localltes, opportuntty ts givea for the wind
blow torougg them.
M. S. C. Jr. asks:
the
tusually make narrow gage rallroad engines
 more can a rallway engline draw than a road engine of
the esame horse power? A . From 8 to 10 times as much. englne, and how much does it cost, more or less, tha road engtin? A. It ts about the same as the cost of
B. G. says: I have a pump barrel,, 316 inch
thici by 5 tichese dlameter, length 10 tinches. WWil it be strong enough to make a cenllnder for as amall engtine. will be aste for it? . You can use it for preselures rom 20 to 23 lbs .
T. S. S. asks: Do the drive wheels of some
ocomotves have a linlug of wood underneath
 Wheels are made th th1s way, but we are not fure wheth.
er the plan ts employed in the case of locomotive L. G. K. says: I am running a twenty.five Which 1 so bard that we cannet run more thaz three or
Our days without blowing out ary and flling up the boller agalu. Willa little lime tin the tank from which feed the boiler be of any use in checkitug the boild rom foamtng? If not, what will prevent it? A.A
feed water heater, arranged to deposilt the mineral substances of the water before
be serviceable in this case.
W. R. asks: Will an iron wire $\frac{1}{4}$ inch in diwhich would require the strength of one horse to pull? The wire ta to be supported on rollers 100 feta apart, each
roller to be removed as the load reaches tit; the wire to be wound around a large statlonary wheel turned bs
water power. If the 44 wire will not answer. what bize Fill?
n. It
nulameter
C. F. D. asks: Will you give me a rule for
nning up propeller shafte?
A. We copy the tollowing rule from the "Cadet Englneer," by Long aud Buel:
Put two stralght edges on the sildee, one at each end; run a line through their center points, and continue i : ed ges, making one cdge of the blade cut the center
polnt. Then erecta $\begin{aligned} & \text { perpendicular, at the ceuter of the }\end{aligned}$ shatt, tothe hine previousis run, by locking it out of
wind that, when vewed from a distance, ,t covers the edgo ol the T square for the whole leupthi, Then swing tile
crank, disconnected from the rod, on the centera and
 hetwo lines. If they rary at difirent polnts, the
shaft tis not in IIne, and must be adiusted untit the dis. ances are the eame for all pontin of the revolution.
I have heasd engineers speak of workivg up tndraa tor cards. What workng up is there to do atter the
card has been taken? A. It tis usually destrable to as. ertaln the mean pressure, back preseare, point of cut
 dheres to tron castligs? A. Place your castlngs in have rematined there two days, wash them with clean
 nch fues; and I want to pul in its place a boller 11 n dlameter, with a dome 24 nchese diameter by 28 hinch. ting, the 10 wisl to know $\mathbb{I f}$, with equal dratt and set tug, the
tina the long one with less fuel. 1 drive now ent ines
It With my present boller, 10×16 Inches, making 16 c revolu-
tions, cutting offat Z stroke: but I liave t, burn toe Hons, cutting offat 2 stroke: but 1 have th burn too
much fuel. One boller maker tells me that the ehore tubular boller will make more steam than the old one, With a great deal less fuel, and another bofler maker
ays that the short ooller is too emall and will have e crowdea too much to do the same work as the long wo flue boller. Please give me your optinion. A. We it is serviceable. We incline to the opinton of "another"
G. L. D. L. asks: What would be the proper speed of an emery wheel, 13 Inches 1 da dameter,
with 2 tinches face, to do the most efflctent service w 1 th About 1,200 revolutions a minute.
J.E.P. asks: Would not a single cylinder
engine of such proportions as to allow the datited steam to expand to atmospheric presare be as econo.
mical and effective, other things being equai, as one of
J. A. says: I Ihave at my house a large un-
derground brick cistern. Water comes from a Frech oor, with the upper part tinned, sldes slated. conduct. ors (bright tin) Inilde to the ground, and glazed earthen
itpe in the ground. The water is drawn out of a tight brick box, serving a a a fiter, through a block tlo pipe. When the cistern was bullt, the top of the roof had had
several coats of lead palta. I then had all the palnted several coats of lead patat. It then had all the palntee
tin and palited eaves troughs covered with one of the bea solld coastlog The clstern has now been in use
 silghtly of cement: but is odorless and soft. $A \mathrm{Am} 1$ saff
in using the water tor drink 1 n without fear of polson trom the roof? A. The water ts probably affected by particles distiteerated from the brick and cement mor tar; probably the sand used in the mortar was loamy We do not think that the lead palnt, if covered with a
coat of elate paint eince become hard and frm ruch affect the water. An additional iliter at the discharging end of the pipe might be used to advantage,
and the present filter cleaned outt and supplicd with
 ressure per sinare tnch to 601 be.? A frlend contends
hat there is no loss, proriding the engine is larg enough for its work. A. If you suppose steam of 190 10 make the mean pressure 60 lbs., and (23) to be wire.
or
ond the cyllider without expanelon: The 10es from witr requrred in the two cases, which you can readily cilculate for any glven ase. In such a case the los8 from
Fire.trawing would he excessive. In general, howerer, the eteam st exponded, as well as wrredrawn,which modilies the loss, though tit 18 always more economical
o expand the steam than to redice the pressure by
I. E. W. asks: How many square feet are
 Wlath of the screw is 3 foches, and the dameter of
crem and saaft together $19 \% /$ inches.
About 10.1
L. \& J. ask: Should an architect charge
 st the erchitect? We havea case in hand on our ne oflce, and thtnk there is no justice in the attempt of
hearchitect t) charge for such service, not having rendered any. The work disputed on is such as the digIng of cistern, catch basin, celllog aroend elevato Verhead In basement, laylng brick flooring, etc. The
eeroal agreement was a certain percentage on con tract prices. There were no changes in plans or bpec
cattons to archtect. We feel that having ordere and superintended the work ourselves, we sould not
pay commission on tit. Your answer will settle the ueston sathtufectorlly to both of us. A. You do not
 ails into compensation for oftize work and for supertin endence, from 2% th $3 / 2$ per cent for the former and 5
percent for the whole. Offce work to constdered the urntshing of plaus aud spectifcations, and sometime rorking draw Ings; the percentage for this should be
aken on th": whole cost of the buldug, unless so great in andition is unde to it as te tnvolve the necessity for
in addtional plan and spectitcation for said addution rom other partles. But In respect to superntendence
lie case ts different; that part only should be taxed Whith is actaully sup sint tended by the architect.
J. S. W. asks : I am constructing a bath ouse tha running stream of fresh water; ann Ibulld
he foundation wills and the botom with bricks and commou mortar, providng that 1 allow the morrar in te wans to thoroughly dry before turnng in the wa
er. so that it will be sound and substantila? I know that there is a cement used for walls whth hare to be ti
udatated, but I destre to use common mortar if it it racticshle. A. It will not be safe touse common 11 m nortar for brick work under water. You should use
ood hydraunlic ce nenent and clean, sharp sand, tree from It a hole or an inct in dilm meter be drilled through a
 the same size? A. The bord re will shrlnk with hon ret
rence to the hole, and the result will be that the hole D. \&. W. P. E. say: Our houses are sup The tastde with gas tar; but although the pipe has been
aid y yearr. the water, having litte or no mineral
 the tank suppilsing the water. which will remove the oucan do unysthng that will be successful with the present
We have.
We a
rame building, roofed with shingles which hare been opened by the sun In large cracks ; as our
nill 1 c closs erouzh to be burnt it this bullding was, re would like to agk if there is any cement or compositon with which to till the cracks, which will be fre
oroof and at the amme time not be disloged by raln o
 ellp plcal reservolr, 20x50 feet and about We have n elliptlcal reservor, 200500 feet and about 4
feet de en; the stdes are composed of ordinary 18 inch nor ar wall, banked on on stide wth dirt, and corvea Iof sand; ; but last winter the frost cracked oft the Ike a slere. What would be best to do to make th light? Λ. It will probably be necessary todraw off th (f. W. C. says: G. Y. S. can straighten a
 barrel must be smooth and clean. Hold it up, and let
he bow haug under the barrel; and you cau easily see where the crook 19 , and with a blacksmitth's hand ham. mer, on an antill or the
stral h hten your barrel.
G. M. says, in answer to H. E. K., who asks
for the best way to make putty of the colo ent woods, walnut, ash, etc.: In my experlence, I hary
fond With lineeed oll, and then work in dry color or colors mall quantities as it ts needed, with verylittle trouble. B. W. says, in reply to H. P.: If a mixture nto apste.and added to aspoonful of powdered alum,
e put into 200 gallons of water, $1 t$ will soften the wa
 ocan grean corn: Thc following method cannot be
xcelled: Dtssolve 2% ozs. tartaric acld in a plint or waer. of this solution, use one tablespoonful to every
pint of corn while the corn ts at bolling heat. When

Minerals, etc.-Specimens have been received from the following correspondents, and examined with fhe results stated:
J.s. NeC.-No. 1 ls a readily fusible amphitoole, wtil
 -The powder contalns common salt and a number of
other substances in manall fuantittes. Itis nut terly use Ces for the surpose for which it is soll. As 1 d does no
prevent in the ellghtest degree the e esploston of twes
 S.-We are una ble, wthout having the entre plant, to
IdentIfy tr to toe whether any notice of tits possessing a aber had been taken hitherto.-G. H. G.-It is palena arsulphlde of lead.-F. W. -It consists princlpally of
hydrated seaquiloxide of tron, with a small amount silca and clay

 be orercome, very large business might be done in
drying salmon in Californata. It would hardily do to exract the oll, but It might perhaps be neurralized with . What kind of tealing wes is best to use in gealling glass jars? I have lost much frult by the wax not ad
hering to the glass. \because. Why will tomatoes not keep

Welltuglass?-J. n. I. asis: 1. Is the disease calle
plp among chiccens on the tongue? 2. Will it roroduce
death unless cured?

COMMUNICATIONS RECEIVED.

The Editor of the Scientific American cknowledges, with much pleasure, the re ceipt of original papers and contributions upon the following subjects

On Tempering Steel and Copper. By J.S.M On the Nickel Plating Patents. By A. D On the Atmosphere. By H. W
On Moles. By W. S. N
On Hardening and Tempering Tools. By J. P .

Also enquiries and answers from the following:
A.D. H.-W.E.K.-F
-N. M. - A. D. - R. Y

HINTS TO CORRESPONDENTS Correspondents whose inquiries fail to ap pear should repeat them. If not then pubished, they may conclude that, for good reasons, the Editor declines them. The address of the writer should always be given.
Enquiries relating to patents, or to the patentability of inventions, assignments, etc., will not be published here. All such questions, when initials only are given, are thrown into the waste basket, as it would fill half of our paper to print them all; but we generally take pleasure in answering briefly by mail, if the writer's address is given.
Hundreds of enquiries analogous to the following are sent: "Please to inform me where I can buy sheet lead, and the price? Where can I purchase a good brick machine? Whose stram engine and boiler would you recommend: Which churn is considered the best? Who makes the best mucilage? Where can I buy the best style of windmills?" All such personal enquiries are printed, as will be observed, in the column of "Business and Personal," which is specially set apart for that purpose, sulbject to the charge menioned at the head of that column. Almost any desired information can in this way be expeditiously obtained.

[OFFIClal.]
 Index of Inventions

 pos whicaLetters Patent of the United States July 14, 1874, and each bearing that date. [Those marked (r) are retssued patents.]

Alcohol, purifylng, L. Louragny.. Amalgamator, J. P. Comins....... Amalgamator and ore washer, w. W. Hubbell.

 Auger, earth. D. Page.... Basket, flower, Van Allen \& Carroll Beam end protector, N. McLellau Beeft, cooked corn, L. D. Chemtou Beel, door, W. E. SparksBilge water gage, w. G. Coliklin
Blower, steam Boiler, sectional steam, G. Higgin Botler, wash, W. S. Johnston
Bollers clear of scale, keepting, w. OBrlen. Bolts, maklug split, S . M. Wilso Boot legs, cuttung, D. Lynahan Boots, tacking, Thompson
Boots, lasting, pocock et al
Brush holder, Masock et

Butter worker, S. L. Latta Button fastening,

Cabinet for ladies' use, M. M. Crummer Cage, biru, G. T. Peters
Cage feed cup, brd, Osb
Can holder, B. F. Bean.
Can, selfe measuring, J. Mcskimin
Cau stopper, oil, J. F. Donkin
Candy. manufacture of, D. G.
Canes, umbrellas, etc., ferrule for, O. M. Smith
Car brake, T. McBride Car coupling, F. J. B. B
Car coupling, w. Coulte
Car coupitng. J. J. Lahaye
Car coupling, W. Hi. Wilso
Car coupling, A. Zetgler
Car, rauroad, J. Coyne.
Car starter, J. A. Davis
Car starter, J. H
Sherma
Card stripper rack and platon, J. F. Foss
Carpets, cleaning, Coulter et al...
Carrlage, child's, $\boldsymbol{\Lambda}$. Hetm
Corrile opa, operating, A. McKenz
Cartridge primer, O. F. Winchester.
Chair, cradle, and lounge, C. H.
Churn, W. Brower...
Churn, R. B. Wilson....
Clamp, S. S. Van Wago
Clothes frame, J. Kra
Clothes wringer, G. S. W
Compound for cleanting Letals

Conformator, J. W. Miller.
Cooler, corpse, J. J. Slevin.. Cultivator and harrow, combined, w. Spurgin. Curtains, device for $\begin{gathered}\text { Prygince }\end{gathered}$ Door and drawer plate, E. S. Hotham..
Doors, securing knob roses to, J. Kedey Drawing frame stop, P. C. Dawson..
Drawing frame stop, D. W. Hayden Drawing frame stop, D. W. Hayden Drawing ptn, H. Esser. Egg and frult carrler, w. Wets. Elevator for wells, water, w. Ma
Elevator, water, J. Chenoweth Elevator, water, water, E. Evans..
 Explosive or dynamite, C. L. Ka Fare box, H. R. Glllingham
Firearm, breech loading, A. Firearm, breech loading, O. Snell. Fire escape, J. B. Gathright
Fire escape, A. M. Smith
Fire escape, A. M. Sm
Fireplace, H. Bleska
Fireplace, H. Bleska
Flower pots, bracket for, M. D. Jones (r).
rlutlng tron, C Anderson.
Fluting tron, C. Anderson
Fork, table, J. B. Smith...
Frult can, A. Stewart (r)...
Frult jar cap, G. H. Perkin
Fruit jar cap, G. H. Perkin
Frutd dryer, A. W. Sweeny
Frult jar cap, T. Hipwell....
Furnaces, boiner, L. Stevens.........................
Gas retort, etc., Itd, J. Dunsetth
Gate, farm, A. Hall..............
Glass panes, polishing, J. Schuste
Governor, E. Adams
Grate, fireplace, J. Bawd
Grate for fireplaces, etc., J. A. Kernochan
Gun lock, J. M. Grisham
Halter claap, pastern, J. c. Ford
Hame, J. Thornton.
Hame staple, J. Thornton
Hame strap attachment, J
Hammer, tack, S. Barker.
Harvester, Cortag
Harvester, Corning \& Curtis..
Hat Ironing machine, R. E. Bra
Hat roning machine, R. E.
Hatchway
Hatehway, self-closing, A. B.
Hay loader, J. J. Gregory
Hldes, Roftening, J. D. Marshall.
Holeting machine, J. Rush worth
Hoops, cutting locks in, Albertson
Horse power. O. Himmelberger
Horse power. O. HImmelberger.......
Horse shoe, india rubber, A.J. Dean.
House, portable, J. W. Justice
ice, production of, Ne
ndicator, M. H. Plper.
Iron and steel, C. J. Eame
Knitting burrs, ad justing, G. Campbell.
Knitting machine, J. Leonard.........
Lantern, D. Lordon..............
Lathe tool post, T. and E. Bonner.
Lead, desilvering and refning, G. Luc
Lead, refining, etc., A. H. Everett....
Lead, reffnng, etc., A. H. Everett...............
Leather, etc.. waterproofing, A. C. McKnight.
Looms, selector for hatr cloth. W. H.
Lozenges, shaptng, T. Kober son..
Lumber settlog gulde, P. Berry
Mall bag, H. Gross................
Mall bag fastening, H. Dempsey.
Match safe, L. Jarchow......................
Matchee, makiog friction, J. J. Machade Matches, maklog friction,
Medical compound c. Austin
Medcal ompound, H. M. Hoyt
Medtcal compoun,
Medical compound, L. Hutter
Medical compound, L. Hatter.
Medical compound, J. W. Mille
Medtctnal extract, C. A. B1h1
Mercury, mantpulating ores of, Eames et al Mildew and decay. preventing, Gender et al M11k atrainer, J. F. Donkin
Moldings, making metallic, w. H. Wiggin
 Motlon, tranemitting, A. H. Kennedy (r)
Ores, stamplng, W. J. \& S. Willoughby. Organ, pneumatic action, T. Winans. Packing, pliston, R. Wetherll Padlock, F. Egge.
Paper, perforating, L. A Ung et
Photorra phic pictures, R. H. Chinn.
Plano action, A. Moeller................
Plano sound Insulator, W. R. Miler.
Plano sound A.
Plano stool, G. A. Ramseyer.............
Plpes, etc., manuracturing,
PIston for steam cylinders, S. D. Keens.
Plane, L Shane...............
Planter, corn, G. W. Brown.
Plow ging w,
Plow point, J. A. Peek.
Pocket book.D. M. Reed
Press, copying, P. S. Abbott.
Press, cotton, G. W. Grader
Press,
Press, tobacco packing, M. J. Farmer.
Printing, etc., rellef plates for, M. Joyc
Propeller, screw, J.C. Crose
Pump attachment, chain, E. A. Parke
Pump, rotary, G. Greind........
Pump, steam vacuum, w. Burdon
Radiator, $\begin{aligned} & \text { seam. S. R. Wilmo } \\ & \text { Radator, }\end{aligned}$
Railroad switch, Adams et al.
Rallroad switch, A. N. Rankin...............
Railload trucl: and locomotlve, R McCully Rake, horse hay, C. C. Bradley.
Rake, horse bay,
Rake, horse hay. D. P. Sharp..
Range, cooklng, G. W. Whtt
Range, cooking, G. W. White.
Register, hot alr, E. A. Tutte
Retn, driving, S. E. Mathew
Roof, tireproof F. J. Howt
Rooofs, , battening for, A. P. Anthony
Roois, composition for, J. C. Hyat
Roois, composittion for
Roofing the, L. Hamel
Sad Iron, Rathbun \& Shaw............
Saddles, safety stirrup for
Sash cord fastener. C. B. Clark
Sash fastener, D. C. Goodrich
Sash fastener, D. C. Goodric
Sash fastener, A. N. Rankin
Sash fastener,
Saw, M. Chase
Sal
Scaftold, L. A. Sleepe
Scale beams
Scale beams, polse for, J.
Seat for lawns, schools.
Separator, middulings, Brennan et al.

Sewing machine embrotderers, I. M. Rose..153,116, 153,1
Sewing machne, wax thread, E. E. Bean Sewing machines, operating, J. H. Race... (r) Sewing machines, operating, A. G. Brewer
Shade cord fastener. M. De Penhoel Sheep shearing machine, A. H. Kenne........
Shoe Dlacring apparatua, B. Dutton, Jr....... Shoe laces, making, W. E. Smith Sign, L. Nielander..
Spark arrester, locomotive, J. E. Wootten.
Splrits, rectifyling. M. Dondé.
Spoke socket. S. Mitchell.
Squares, tempering blades
Squares,
Stamps, perforating, Ellaworth \&
Stand and evaporator, c. D. Page
Stereotype composition, Macro
Stene, artificial, J. L. Rowland
Stone, artificala, J. L. R. P. Hall
Stove and furace, W.
Stove lining composition, E. H. Richter
Stove plpe flue, H. C. Jchnson.........
Stove, reservoir cooking,
Surface try, H. A. M1les.
The
aole, rolding, J. D. Hall.
Table silde, extension. A. Z. Boda.
Telegraphs, electric, Foote \& Randall.............. 53,
Tobacco cutter, T. H. Gregory.
Tongs, blacksmith's, D. Kunkel
Tool holder, G. W. Schofleld
Tool holder for sharpening, H. Bar
Toy, D. Mintch.
Treadle mechanism, C. L.
Tuck marker, F. Henry..
Turbtne wheel, S . Walt
Tyre tightener, E. H. Wright...
Valve plug and seat, G. A. Hine
Vehtcle axle, Arnold, Chase \& Arnol
Vehtcle axle, R. W.\& A. W. Davis
Ventilator and chimney, Hinckley et al
Vessels, propelling and steering, J. C. Small
Violins, combination tool for, F. w. White
Vise, bench, J. B. Wardwell.
Wagon brake, Fulkerson \& Guseman.
Wagon, dumptng, o. Gunnuldson
Washing machine, J. C. Burgner
Washing machine,
Watch key, A. C.
Water supply regulator, J. Kelly
Wedge, expansible, R. Nesitt.
Whip forming mold, J. J. Bohler
Whip rack, Murphy
Windmill, S. M. Abbott
Window sash, reversible, J. McNamee........................... 155,93100
APPLICATIONS FOR EXTENSIONS.
Applications hava been dulyfled and are now pending ings upon the respective applications are appointed for
30,398.-burglar Proof Safis.-J. r. Floyd. Sept. 30

EXTENSIONS GRANTED

29,137.-Car Covch.-W.

29,180.-Hoistima Apparatus - - . Lemman.
29,200.-Striring Vrssels.-F. E. Sickels. DISCLAIMER

29,180.-Hoisting apparatus--J. Lemman DESIGNS PaTENTED.

7.535.-BAs Relirf.-T. Kappeler, Cambridge, Mass.
$7,536 \& 7,537 .-$ Murfs.-G. H. Prindle, Philadelphia, ${ }^{\text {Pa }}$
 West Merlden, Conn.
7,541 to 7,546.-CARPETS.-R. R. Campbell, Lowell, Mass.
7.517. -Carprt.-C. S. Lilley, Lowell, Mass.
$7.548 \& 7,549 .-$ Carpers.
D. McNair, Lowell

7,550 \& 7,551.-GLassware.-D. Bennett, Baldwin town-
ship, Allegheny county, Pa.
7,552 to 7,557 . - CARPETs.-R.
R. Campbell, Lowell, Mass. $7,558 \& 7,559 .-C A R P E T s .-D$. McNair, Lowell, Mass.
7,560 to 7,563
co, Cal.
TRADE MARKS REGISTERED
1,872.-HATs And Cafs.-J. S. Fayerweather \& Co., Dan-
bury, Conn.
1.873-ALE.-C. P. Hawktng, New York city.
1,874.-BEVERAGE.-G. N. Irish, Brooklyn, N. Y.
1,874--BRVERAGE.-G. N. Irish, Brooklyn, N. Y.
1,8i5--Flovr.-Metzger \& Co., Platte City, Mo.

1,873.-CEEWING GUM.-Curtis \& Son, Portland, Me.
1,899.-Flovr.-Ba1n et al., St. Louls, Mo.
1,880 -Cutlery.-Hermann \& Co., New
1,880.-Cutlery.-Hermann \& Co., New York city
1,881 -Tobacco--Beck et al., Chicago, Ill
1,881.-ToBacco.-Beck et al., Chicago, Ill.
1,882.-Books.-McNair et al., Philadelpha,
GCHEDULE OF PATENT FEES

On each Caveat.. On each Trade Ma

On flifng each application for a Patent (17.......
On 1ssulng each original Patent.
On appeal to Examiners-In-Cber
On appesl to Commisioner of Paten
On application for Reissue................
On application for Extenelon of Patent
On application for Extenton of Patent.
On granting the Extenston...............
On granting the Exte
On fillng a Disclatmer........................
On an application for Deeign ($3 \not 1 /$ years).
On application for Design (7 years).......
On application for Destgn (14 years)......

CANADIAN PATENTS

Libt of Patents Granted in Canada
July 16 то 20, 1874.
3.658.-D. M. King, Mantaa Station, Portage county, O.,
U. S. Improvements on potato diggers, called
U. S. Improvements on potato diggers, called
"King's Potato Digger." July 16, 1874.
"King's Potato Digger."
3659.-L. Dauze, Montreal, Mentreal Dlist., P. Q. 1 lm -
provements on cooklug stove, called "Mechantc
Stove." July 16, 1874
3,660.-D. Zetgler, Lewistown, Miflin county, Pa., U. s.
Improvements "Zeigler's Improved Mechantcal Movement." July ${ }^{16}$,
3,661.-W. G. Dunn, Greensburgh, Decatur county, Ind
U.S. Improvements on joints of ralls for railways
called. "Dunn's Adjustable Combination Rallway
Jotnt." July 16,1874 ,

3,662.-E. E. Bean, Boston, Suflolk county, Mass., U. S.
Improvements Ingasilghting apparatus,colled "'Bean's
Pneumatic Electric Gas Lighting Apparatus." July Improvements ingasighting apparatus,celled "Bean's
Pneumatic Electric Gas Lighting Apparatus." July
16, 1874.
 guns, called "Todd's Improved Dog Gun." July 16,
1874,
3,66t.-W. Briggs, Montreal, Mentreal Dist., P. ©., and 3,66t.-W. Briggs, Montreal, Mcntreal Dist., P. Q., and
L. Senécal, Coteau St. Augustin, Hochelaga county, L. Sene cal, Coteau St. Auguetin, Hochelaga conty,
P. Q. Improvement on manure and hay forks, called
"Bre P. Q. Improvement on manure a hay aork." July 20,
"Briggs' Combtned Manure and Hay 1874.
3,665.-E. A. C. Pew, welland, welland county, ont. Improvements on peat machines, called "Pew's Peat Coal Mach1ne." July 20, 1874.
provements on chisel pointed cut nails and machine provementr on chisel pornted cut uni!s and machines
for making the same, called "Stacy's Chisel Pointed Nall." July 20, 1874.
3,667.-T. W. Shaler, Brooklyn, Kings countr, N. Y.,U.S.
Improvements on signal lanterns, called "Shaler's Sig. Improvements on signallant.
3,668.-W. Baxter,Jr.. Newark, Essex county, N.J.J.U.S.
Improvements on compound englues, called " "Baxter's Improvements on compound englies, called "Baxter's
Improved Compound Enyine." July 21,1874 . N. J.,U. S. Improvements on steam generators,called "Kelly's Sectional Boller." July 20, 1874. 3,670.-G. Forsyth, Seaforth, Huron county, ont. Im-
provements in the manuf provements in the manufacture of picket fences, called
"Forsyth's Improved Wire Picket Fence." July 20, 1974.
3,671.-R. Dunlop, St. Thomas, Elgln county, Ont. Improvements on steam and pas fitting wrenches, called,
"Dunlop's Improved Steam and Gas Fitting Wreuch." "Dunnop's imp
3,672.-J. E. HarrIman, Bangor, Penobscot county, Me..
U. S., assignee of M. L.Norton, same place. Improve men son lath machues, cazl La th MachIne." July $20,1874$. 3, 673. - . Palmer, westmact,
1mprovements on a maccine for destroylng potato
bugs, called "Palmer's Potato Bug Killer." July 20 ,
1874. 1874.
$3,674 .-$
s,674.-C. E. Patric, Springfleld, Clark county, o., U.S.
Improvements on a machine for sowing grain broad cast, called "Patric Brcadcast Seeding Machine." July 20,1874 .
3,675.-R. Benner, Hamilton, Wentworth county, Ont. Improvements on the art or process of veneering,
called "Bennett's New Process of Vencering." July 20 , called "Bennett's New Process of Vencering." July 20 ,
8,674. provements in self-opening gates for rallway cross ings, called
Gate." July 20, 1574 . 3,677.-L. O. Cant1n, Montreal, P. Q. Improvements tn
machine for burnishing photographs, called "Cantin's Photograph Bu is her.", July 20,1874 .
3,678.-J. Rourk
3,678.-J. Rourk
provements in
in gston, Frontenac county, Out. 1 lm -
mospheric englnes, calledid "Rourk's Automatic At no spheric Engine." July 20,1874 .
 Oakum." July 20, 1874.
3,680.-T. J. Blake. Plttsburgh, Alleghany county, Pa.,
U. S. Improvements to the manufacture or smooth
, Dack shovels, called "Blake's Smooth Back Shovel." July 20, 1874.
3,681.- G. B. C
3,681.- G. B. Cornell, Chicago, Cook county, IIl., U. S.
Improvements in wrenches for inseritig bung
 sor.
provements in moth proo f fur cases, called " Jerome's Mcoth Proof Fur Cases." July 20,1874 .
3,688.-R. P. Colton, Gananogue, Leds
Improvements on harrows, cultivators, and analogous Implements, called "Gananogue Improved Harrow." July 20, 1874.
3. 684. J. M. Foss
3,684.-J. M. Foss, St. Albans, Franklin county, Vt.,U.S.
Improvements on rall way locomottve englnes, called Improvements on rall way locomotive eng1nes, called
"Locomotive Draft Regulator." July 20, 18i4. 3.685.-T. Ford, Plattsville, Oxford county, ont. Ma-
chine for cutting the tapering plug end of well tube chine for cutting the tapering plug end of, well tube
jolnts, called "Ford's Pump Tube Jolnter." July 20, Jonts
1844.
U. S. Improvements on spriogs, called " hichard son's Tensile Sprlng.'" July 20,1874 .
3,687.-J. Ruthven, Levis, Levis county, P. Q. Improve-
ments on carbureters, called " Ruth ven's Improved
Gas Machine."
U.S. First extension of No. 2.524 , for" "The Quecen of the Harvest Separator." July 20, 1874.
3,689.-O. K. Wood, West Chazy, Clliut
U.S. Second extension of No. 2,521. for "The Queen
of the Harvest Separator." July 20 , 1874.

gaduertisements.

Engravings may head advertisements at the same rate per
line, by measurement, asthe letter press. Advertisements must be received at publication oftice as early as Friday
morning to appear in next issue.

to inventors and patentees.

E electrical INDUCTORIUM-A powerfu

\%
To Electro-Platers.

BLAREER STMEAMSE, PMMP

MAGNETS-Permanent Steel Magnets
 RISDON'S IMPROVED TURBINE.

Cooper's Engine \& Mill Works, Finst-Class Stationary Engines,

 FRENCH BHIRR SPRING GRIST MILLS AND BOLT.

MPORTANT FOR ALL LARGE CORPO-

E. M. MAAYOS PAT. BOLT COTTEER.

\$10 to \$1000

BLAKE'S PATENT

1Stone and Ore Breaker

\$475
A lcott lathes

 T HEECHAMPION SILVERSTEEL

Geo. W. Read \& Co.,
 $\stackrel{\text { exf }}{?}$ Enclose tas mp for Catalogue and Price Latt.

A Set of 12 Steel Lathe Dogs,

FOR SALE-AN UNFINISHED IRON,

Breadth of Beam. Depin to Matin Dectr

Depth to Main Deck
Dspplacement at 2 feet draught....
Area of Midship Section...........

Number of Transverse Bulkheads.
Two parrs, each pair driving one Screw.

Stroke of Pistone........................ ${ }_{12}^{43}$
Surrace Condeneers, area........... 12,56
prameter
P.ten
Pum.
scarws.
Number of Blades..
BoILers.
Ten in nu
Tubular Type.
BoILERs.
; Ordinary
H
Total Heating Surface.
Grate Surface.........
This vessel was intended to be comple

Hobovenrs. W. W. Silippen,
has been apolnted to effect such sale.
Bids endorsed

R. H. THURSTON,
ng Engineer to the Co

Consultina Engineer to the Com
Hoboken, New Jersey,

Hinale AND BARRELMMCHINERT

P ORTAALE STEAM ENGINES, COMBIN.
 RILLESE-CLAREER REEVER \& CO

Machinery,

 Sturtevant Blowers.
Cold Rolled Shafting.
 Niagara steam Pump. CEAS. B. BARDICR,

the joun hardick

PUNCHING

TTONE SAWING MACHINERY DERRICKS \& TRAVELLERS, $\mathrm{M}^{\text {ASONS PATMT FRICTION CLUTCHES }}$
P. BLAISDBII \& UO., Manuaturers of the glatadel Patant. Uprght vrille

Andrew's Patents.

 Patent
Planing and Matching
 $\mathbf{N}^{\mathrm{EXT}} \mathrm{JULY}$, WELL KNOWN FIRM

SHINGLE \& BARREL MACHNERY
hean cuttres, jointers, equalizers, an

1832. SCHENCK'S PATENT. 1871

WOOD WORKING MACHINERY

THE Union Iron Mills, Pittsburgh, Pa.

 B ank vertical Steam Engines. Also, new and second Mand Machis's Tools. Send for circulargal
THE YALEE IRON WORKS, New Haven, Conn

 $\left.\begin{array}{c}\text { WOODW ARD'S } \\ \text { national }\end{array}\right\} \begin{gathered}1,000 \text { Working Drawin } \\ \text { Plans, Detrils, }\end{gathered}$
 MONCKTON'S NATIONAL $\}$ SIX Dollars, post

PATMNIS

forelgn countries for more than a quarter of a cen.
cury. More than FIFTy thousand faventors have avalied themselves of their services. All patents 86 -
cured through this agencyrecelve a spectal notice in the Scientifio Ambricas
chasers for the paten.
Inventlonsexamined, and ad viceas to patentabillty free
Patents obtained in the best manner, and with as litthe delay as possible.
Caveats prepared from elther model or drawings, sud Special examinations as to the patentabilty of inven.
thons made, at the Patent oftice, on recelpt of model drawing and description ; cost for this search and re-

Trade Marks.-The necessary papers for securing
protection to manufacturers and merchants in this country ane abroad fre propared at this oftice.
Design Patents, for protecting artists and designers of any new ornamenta work, are quickly and cheaply
obtalned through this owtce. obtained through this oftlice,
Copyrights obtained.
Forelgn Patents are solicited in all countritee where
patent laws exist. Pamphlets, contalning the cost and full particulars, malled on application.
Canada Patents.-Canada is one of the best countries for patents. The cost depends upon the length of time
for which a patent is destred. Full particulars by mall on application.
We shall be happyto confer with inveutors, examine
. their models and drawings, and advise with them as to
obtaining patents without cousultation fee. Every kid Send for pamphlet 110
arections for obtaining patents. Address
MUNN \& CO.,
Publishers SCIENTIFIC AMERICAN,
BRAN Park
Bashington. D. C. C.

THIN ISABARBERSSPATENT BIT BRACE

T at mmall cut, and saye fuel aliso, address
HARTFORD
STEAM BOILER Inspection \& Insurance COMPANY

PRATT'S
ASTRAL
0 II.

BLIND SLAT REGULATOR.

Asbestos Materials.

BESSEMER

SteelWireRopes

E ond Band Portable Bond Station - New and Sec

JULY,

 STATEMENT TRAVELERS.

21 STREMELEANEGAL STATEVENT OF THE artford, Conn., July 1, 184.

Clatms unaduatcida ard not dues.

Surplus as regards policy-holders....... \quad| $81.968,253358$ |
| :--- |
| 968 |

Genbral accident Policies, by

written by Agents, without delay.
Life and endowient insurance, of all form

Jas. Cl. battersion, Presiden
Rodney dennis, Secretary.
New York Otlloe 207 Broadway

THE HEALD\& SINCO

 Patent Centrifugal Pumps,

 $\frac{1}{\text { End }}$

AMERICAN SAW CO.
TRENTON, N. J.
GREAT REDUCTION m PRICES movable-Toothed
CIRCULARSAWS.

TILES,

 nan manema , M m MillFurnishingWorks

H. S. MANNING \& CO., Agents,

E
 TO' INVENTORS. AND MANUFACTURERS
 ind

$\$ 200$ A MONTH TO AGENTS

 WIRE ROPE.

TRON PLANERS,

Iubllif

 Machinery, CHICAGO.$\mathrm{E}^{\text {Naines and boilers, New and } \mathrm{Sec}}$
 nURRILL \& KEIZER. 44 Bolliday St. Bal2 GEORGE BARNES \& CO.,

Manufacturers. Syracuse, N. Y. $\mathrm{F}_{\text {Burn }}^{\mathrm{OR} \text { STEEL } \mathrm{STAMPD}, \text { Patern Letters, }}$

NEW YORK STATEFAIR, Steam power furnished for the exthbition, of machinery
in motit ENTRIES CLOSE AUGUST 15 TU. ENTRIES CLOSE AUGUST 15TH.
STATE AGRICULTURAL SOCIETY
ADBAHy, N.
 MaHIMISIS Dols

$\overline{\bar{S} T A N D A R D ~ B R I C K ~ M A C H I N E-M a d e ~ b ~}$

 TOOLS,
 N.Y.Steam Engine $0_{0} 0$. 98 Chambers St.

HOUSTON'S PATENT
TURBINE WATER WHEEL

Rifles, Shot Gunds, Revolvers
 PORTLAND CEMENT

DOUBLE ACTING

SteamPumps
 THE PUSSOMETER.

 Branch Dopote: Hemberon saure. Boston, Mas.

Printing Press Men.

 boring and murivig milis.

NITESTOOL WYORKS Rues of the
SCIENTIFIC AMERICAN. THE BEST MECHANICAL PAPER IN THE WORLD. TWENTY- $\overline{N I N} T H$ YEAR.
VOLUME XXXI.-NEW SERIES. The pablishers of the SCIENTIFIC AMERICAN beg
to announce that on the fourth day of July, 18i4, a eew volume commences. It will conninue to be the aim volume more attractive and useful than any of th pre The SCIENTIFIC AMERICAN is devoted to the inte ests of Popular Sclence, the Mechanic Arts, Manufa trial pursults generally . And it ts valuable and instru tive not only in the Workshop and Manufactory, but also In the Household, the Library, and the Heading Room.
One copy, one year
One copy, sis mont
One copy, four month
One copy of Sclentific American fo................ 1 .10
one copy of engraving, "Men of trear, and One copy of Sctenufic Amertcan for one year,and
one copy of "Sclence Record" for 1874, Remit by postal order, draft or express.
The postage on the Sctentitic Americas is ifve cent
per quarter, payable at the ofllice where recelved Can per quarter, payable at the o, we where received Can
ada subscribers mustremit, with subscription, 25 cents extra to pay postage.

MUNN \& CO.

