

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIEXCE, MECHLNIC'S, CHEMISTRY ANJ MANUFACTIRES,

BALANCED SCREW AND REVOLVING COTTON PRESS. The several points of merit claimed for the improved cot ton press herewith illustrated are simplicity of construction, rapidity, and reliability of action, and the saving in time of pressing effected. These, with other advantages below noted, combine to render the device suitable for employment by cotton raisers, or applicable to the pressing of tobacco, hay, hops, cioth, paper, hair, hemp, moss, cider, wine, rags, straw, and, in brief, to any operation where inventions of similar nature are now employed.
The apparatus, as shown in the illustration, revolves on the pivot, A. The screw, B, having a crosshead which travels in the guides on the upper part of the frame, extends down through a nut, C , on the revolving portion. To the up. per portion of the screw is attached a cord which, passing over suitable pulleys, car ries a barrel of stones or similar counter poise.
The nut, C, is made in two sections which, by means of the lever attachment, D, may be closed together or opened a, will. When the parts are cloped and the lower portion of the press rotated on its pivot, by means of the handles shown, the acrew, acting on the nut, is necessarily caused to travel downwards, eo forcing down the follower and compressing the material. When the pressure is finished, instead of it being necessary to turn the press in the opposite direction, and so waste time in raising the sciew to its former position, the sections of the nut are opened, releasing their engagement with
the screw, which is then lifted bodily by the screw, which is then lifted bodily by pulling down on the counter weight, as represented in the figures on the left. It is claimed that, through the economy of time thus effected, one third more bales per day can be pressed. After the cotton box is filled, the follower block does not require to be turned down three or four fett before reaching the point at which pressure begins, but is lowered or dropped at once, so that the real work commences with the first revolution of the machine. The press, if desired, can be run by steam power, a belt bting placed on the steam power, a cotton box. It can be lo
drum under the coton cased in the lint room or erected as showin the engraving, by framing a supporting beam into the gin house and allowing toa apparatus to stand near to and outside hs the buildings. The frame is of iron o wood, as desired, is portable, and occupine no extra space. Five hundied pound balea are readily made with two hands, or anif mal power may be applied if required.
By a slight clange in the adjustment of the nut, the machine can be converted into a tramper press, the screw and follower being used to pound the lint in the box down into its place, thus obviating the injury to the health of the workers who enter the receptacle and tramp the material with their feet.
The invention was patented April 10, 1871, since which time it has bean modified and improved in many rarticulars. It is now in successful use in many localities in the South, and gained a premium at the late St. Louis fair. The manufacturers state that other forms of the press, arranged so that the screw works upward, so that the bale may be removed from the top will shortly be offered. July and August being the months in which cotton presses are principally used, planters and others desiring further particulars regarding eale of State and county rights, or for presses, should lose no time in addressing J. H. Woolfolk, Box 295 , Vicksburg, Mise. The special agent for Texas, Louisiana, Mississippi, and Alabama, is Dr. D. R. Lemman, New Orleans, La.

More Machine Honesty.

The "knockdown" fystem, as the appropriating of fares collected by stage drivers and car conductors is termed, is not, it seems, peculiar to this country. The employees in the London street car lines have been resorting to the same means of increasing their wages. From the fact that people pay fare according to the distance they travel in most of the London conveyances, it will be seen that it is a very eary matter for the conductor to collect a certain sum for the long. est ride, but to hand in the amonnt necessary to pay for the shortest, pocketing the difference.
Mr. Wrir, has recently devised an apparatus which, the London Times says, works excellently, and which will proba-
bly come into general use in that city. A bronze door is placed across the entrance of the vehicle, so arranged that but one peraon can pass through at a time. Then in a small locked metal box is a registering apparatus which consists of a slip of paper which is pricked at the entry or exit of each passenger. The needle which makes the mark and the band of paper is set in notion by the opening of the door, so that each passenger is indicated by a separate puncture. In order to denote exactly how many people paying a certain fare are to be accounted for, at every station on the line at which a change in price is made a projection is fixed in between the tracks. Against this, as the car passes over, a small wheel

absorbed by the charcoal varies with the degree of carboniza
tion; the higher the heat, the more gases it will absorb.
The absorption with stic\}s of charccal is not eo quick as
with ground charcoal : bence the spontaneous combastion of stick charcoal does not occur so often.

Fighting Fire with Explosives.
Western settlers, when a praitie is in flames, find that the only and bert means of protecting menaced property is to plow up the ground around the latter for a width of several rards. Orer this the fire cannot pass, for the simple reason hat it finds nothing upon which to feed. The sole $\in f f e c t i v e$ method by which the ravages of any grat conflagration can be check.d (and the truth was amply demonstrated in Boston and Chicago) consists in following the aame plan; and in crowded cities, by destroying buildiogs adjacent to the iurning locality, the latter can ie entirtiy isolated from o her portions, so that the fire may be con fined to a limited area, on which may be concentrated the entiry force of the extlo gaiehing apparatus. The value of this be roic remedy is becoming widelyrecogrized, and in this city a corps of sappers and miners bas been organized, comprising fifty-:ix persons selected from the officers of the Fire Brigade, who are being regu larly instructed in the use and nature of explosives, electric fuses, etc.
The first public experiments of the or ganization recently took place on Waid Island, in the neighborhood of this city A number of brick walls were erected, of rarious thickness, having a depth below the ground of one font, and built upon a timber foundation. The first wall attacked was 20 inches thick, and the objeci of the experiment was to show the comparative effects of mining powder and dynamite suspended in cubical boxes against it. Fifty ponids of mining powder barely blackened the l-ricks, while six pounds of dynamite in a box is by 5 inches, cut a hole tbrough t 'e wall of about the aize of the box. Then experiments followed in cutting down ma sonry varying in thickness from 8 to 36 inches, with cartridges containing from one to five pounds of dynamite, the effec being to divide the walls at the marked places with great accuracy. Floors wer also torn up with the same powerful mate rial, and finally $s \in v \in n$ walle were blown to fragments by a contiouous line of cartridges arranged in rubber tubes and covered with bags of sand.
The trials were mainly very successful, and showed that by the use of explosives not only could whole buildings, auring great fires, be quickly demolished, but, in
connected with the registering mechanism by a pneumatic apparatus strikes, so that, by suitably moving the indicaiors, a blank space of some length is left after the last puncture denoting the lower fare. At the end of the juwney, the slip of paper is removed, and gives the exact number of fares of every amount for which the conductor is responsible. The conductor is provided with a peculiar key in order to let himself out of the vehicle to make his collections, and an indicator marks each time that he does so. The above appears to be a rather complicated method of making conductors honest. but it may do for London.

The Spontaneous Combustion of Charcoal.
Professor F. Hargreaves states that the kinds of wood gen erally used for the manufacture of gurpowder charccal are the bleck dogwood, the willow, and the alder. Tbey are all well adapted for the manufacture of charcoal, although the dogwood is always used for the best sporting gunpowder The wood is converted into charcoal by heating it in iron cylin ders.
After the charcoal is taken from the cylinders, it is placed in iron coolers provided with tightly fitting lids, and allowed to stand for 14 bours, by which time it is generally quite cold, when it is sent to the charcoal mill to be ground, and af terwards to be mixed with the other ingredients for gunpowder.
But there are examples where the charcoal has spontaneous y taken fire on the day after grinding. This is owing to the fact that charcoal absorbs mechanically within its pores a large quantity of oxygen gas from the atmosphere; and the con deneation of all gases liberates heat, and, charcoal being a bad conductor, the heat cannot escape. The amount of oxygen
maller conflagrations, the dynanite cartridge could be ad vantageously used in φ aining rapid access to edifices through walls. This proceeding now requires lengthy labor with walls. This proceeding now requires lengthy lator with
axe and pick, the flames in the time thus lost oft $: n$ makia, serious head way.

The Solar Eclipse of April 16

A total eclipse of the suct was observed by Mr. Stare, En. lish Astronomer Royal at the Cape of Good Hope, on :! a $16 \cdot$ of April last. The lide of totality passed over the southern extremity of Africa, beginning at Port Nolloth on the weit coast of Cape Colony, somewhere about 250 miles frcm Cape Town, and took a curved path, witb the convexity turned to ward the nortb, ending at sunset about half way across
The day was eqpecially favorable for obserration, and the sky was entireiy free from clouds. Mr. \cdot S:one states that the rose-colored flames $t x t e n d e d$ very $n \in a r l y$ around the moon, althougb, of course, of uvequal hights at different parts. The sperirum near the moon's limb was carefully examined in order oo discover fresh lines, but none appeared and hence there cannot be any medium capable of producing sensible absarption of lightaround the moon.
At the inatunt of totality the whole field appeared full of bright lines, ali tree principal Fraunbofer lines being re versed. Mr. Stone's observatiors tend to confirm those of the eclipses of 1869,1870 , and 1871, and their most impor tant portion is that referring to the visibility of the Fiann hnfer lines in the spectrum of the coronal atmonhere, show ing therely that that reflects the light of the photosphere.

A deate from bydrophobia recently occurred in Philadel phia about four months after the bite was given.

MUNN \& CO., Editors and Proprietors. PUBLISHED TEERLY AT
NO. 37 PARK ROW, NEW YORK.

a. D. MIINN	\triangle E. BKACB
TERME	
Jne copy; our gear.	$\begin{gathered} 8300 \\ \cdots \quad 150 \\ \ldots \end{gathered}$
	2500

VOLUME XXXI, No. 2. [New Series.] Twenty-ninth Year.
NEW YORK. SATURDAY, JULY 11. 1874

Contents:	
Reck lond	
18, fit	
er ana engine, proportion of. $26.1{ }^{6}$	
B $)$ sines 8 and personal..............	
${ }^{\text {i }}$, eas	Par
Cıиse18*....	
*	
1	
Diving bell a mavigatee	
Electro-ubll arl y 17 sea	
de	Sum
Faty materincis iron	
e. fin the with ex	
Fir $\mathrm{i}+88$ iocomolive,	
Furce ot a liug pudies...........: ${ }^{26}$	
10	
8ง	
ciratiation cumpass the'........ ${ }^{\text {a }}$ 19 ${ }^{\text {w }}$	
Ice as a medı:ine \qquad 21 Zincugrapay \qquad	

GOVERNMENT AID TO SCIENTIFIC INVESTIGATION.
Those who had the good fortuve t, bea: the closing lecture of the suries delivered by Professor Tyudall in this couctry will not soon forget the eloqueut tribute he paid to scienticicinvestigators, intent on the discovery of truth regarilese of ite beariog on practical ende, or the earnestness with which he inststed on the public duty of supplying them witb m ans for their work.
The appea] was as plausible as eloquent. At first sight nothing would seem more r asonable than that the public at large, whose iudebtedrers to Scंedc』 is so great, should do something towarde supporting those who carry on the work; or that any mears which shonld honorably relieve original investigators of the daily drudgery of earning a living, and at the same time supply them with the fullest apparatus for their researches, would immensely increase their productions.
But when we remember that in every age there bave been plenty of scientific men who have had at command all that monty or position could give, yet have remained comparatively barren, while the great discoveries, more enpe cially the original views opening up net lines of thought and giving new directions to human industry, bave ueually come fiom seemingly less favored workers, we cannot escape the surpicion that original thinking is quite as likely to be hindert d as helped by easy cirsumstances. Besides.the best work in Science has rarely been done by men either depend freedom from class pro judice being au essential condition of independent thinking
Nodoubt a good deal of honest work migbt be furthered by aiding the right men at the right time: but such men are rarely the ones that would be reached by public enactment, even if it were possible for them to maintain intellectual in dependence in conrection with perronal dependence. Radi cally new tratus are inevitgbly urpopular, and none bu popular men would derive much assistance from the public funds. The endowment of science would therefore act very much as the endowment of religion has always done, by creating a class of nominal " leaders" whose instincts would be opposed to progress. Having risen to place and powe by the adrocacy of certain views, how could they give their countenance to men laboring to overthrow such views?
Run over the list of names-from Copernicus to Darwinof those whose influence has been greatest on the progress of human thought. How long would their owne:s hav been allowed to continue their work at public cost, in the facs of popular clamor against their heresies? Had Profes or Tyndall's plan been adopted a few bundred years ago, the wor'd would etill be flat, the center of the Universe, and only six thousand yeara old.
In applied Srience, the case is equally ptrong. How long would Fulton have been allowed to equander public money in his "ceszy" attempt to propel shipping against wind and wild project of drawing wagons acrose the land the equally
travagant rate of twelve miles an hour? What administra tion could sustain the sarcasm of the opposition party after supplying Draper with money to waste in foolish experi ments for puinting with sunshine, or Morse with means to develop his impious scheme of annihilating time and spac,? What commitiee of wise men, having to render an account o their expenditures, would have dared to aid the experimente of Goo year in rubber, Young's attempt to make candle out of shale, Bessemer's scheme for making steel direct from the ore, or any one, in short, of the great achievements which, until the events proved their practicability, w
visionary, if not impossible, by practical men?
There is another fallacy underlying Professor Tyndall's proposal-one that he has strikingly exemplified in his own person quite recently-and that is the assumption that abundant and complicated apparatus is required for, or a least helpful in, the work of discovery. In some cases it may be; but ordinarily it is quite as apt to absorb the ex perimenter's attention so that he misses the point of the phenomena entirely. Tha' was a brave array of steamers, fog whistles, artillery and the like, which Profoseor Tyndal took down to the coast to study the effects of different at mospberes on the transmission of sounds; but he had scarce ly published the results of his ccstly observations when Profeseor Reynolds made known a few experiments with a hand bell which upset entirely the conclusions the govern ment-aided observer had no jubilantly arrived at.
As a rule, the greatest discoveries are made with the sim plest apparatus, the keys which have unlocked the grander mysteries of the Universe being mental rather than material or, if material, bave proved effective through simplicity and Ekillfulbandling rather than becaupe of their complexity.

FOUR FOOTED MOTION

The present exhibition of paintings of the Royal Academy in Eng!asd contains a picture, by Miss Thompaod, entitled "Tle Roll Call", which depicta a muster of soldiers on the day after a battle.
From the drawing of a horee in the pain'ing, a very inter esting discuseion has arisen, extending even to eminent na turalists, regarding the motion of four footed animals whil walking. The horse, in the picture, is represented wolking, and has its luft foreleg raised, bent, and nearly extendrd, its right forel $\stackrel{g}{ }$ on the ground and perpendicular to the same, ite left hind lfg aleo on the ground, full for ward, and ite rig't hiudleg on the ground and well back. With Pro fesenr Garrod'e able elucidation of the aubject, pulliehtd in extenso in Nature, as a guicie, the problem quickly loses
its perplexing fatures. its perplexing fiatures.
Lat two men be supposed to place themsel linder ode has his hands on the shoulders of the man in font,and that both walk in step-S:a'e's prison gait. Reverting this to the horse, we bave the amble, a mode of progres sion natural ts the giraffe, but cnly arquired by apecial train og in the horse. Again, suppose the two men to put the out of step. This will exmplify the trot Suppose, how ever, the two men to walk out of step; but instead of the diagonally opposite feet being set down at the same moment, imagine the first man to begin bis step a little in advance, so that, by the time the forward man has got bis right leg entirely raised, the rear man bas just begun to lift his, al tbough they kesp the same number of steps. Then the se quence of steps would not be right front and left hind, left front and right lind, coupled; but right front, left hind, left
front, right hind, separate and distinct. Professor Garrod front, right hind, separate and distinct. Professor Ga
has a simple and graphic way of expressing this, thus:
A

The dark daehes mean the times of contact of the right foot, the dotted lines eame of the left foot. The two upper horizontal rows refer to the fore legs; the lower, to the hind. The dotted lines, beginning exactly where the continuous ones end-considered horizontally-indicate that one foot is lifted exactly when the other is put down.
From this it will be seen that, in walking, the horse never has more than two legs on the ground at a time. Draw a vertical line through any portion of the diagram, as at A, and it will be clear that only two of the horizontal foot lines are cut. The same line shows the picture referred to in the beginning to be correct, with the exception of one elight error. Following line A down, we find the frat dotted line at the op, meaning the left fore foot not cut, hence it is off the round. The next line is divided equartly in the middle ground. The nest dotted line below is just met at its beginning, consequently the left hind foot is about to commence its step; and the next line being at its rear endindicates that the right foot has just finished, and is being remosed from the ground. If the reader will compare this with the foregoing description of the painting referred to, he will find that the correspondence is complete, excepting as regards the right hind foot, which, inssead of being on the ground as represented, shou!d, according to our diagram, be just leaving it. This also would be in accordance with the rule that no more than two lege can be down at a time, al.d thus the mistake which the ar ist makes in fixing tbree would be avoided.
We would commend the diagram herewith presented as a very simple guide for artists and draftamen generally, as, by
following its indication, they can bardly fail to depict the orse correctly. A general idea of the position of the anima being first settled upon, it is only neceseary to draw perpen dicular lines at various pointe, and try the results until suitable pose is nbtainfd. The figure very clearly solves a question over which many heads, wise and unwise, have often puzzled.

THE RAILWAYS OF THE UNITED STATES

The seventh annual "Manual of Railways of the United Statef," by Henry V. Poor, 68 Broadway, New York, has just been publisbed. It is a work of over eight hundred pagee, and contains a large amount of carefully prepared in formation, including official particulars of all railways in op eratiov, their extent, cost, capital, earnings, dividends, in debtedness, names of officers, directors, etc. The tabulated eneral statements concerning the American railway syatem fford valuableand instructive information
The inauguration of railways in this courtry may be said date from tbe year 1830, when railwaye were in operation o the extent of 23 miles. At the close of 1873 there wer seventy thousand, six hundred and fifty one miles of railway in operation. This great increase, during the brief time o forty three jears, is sometbing marvelous to contemplate The grand average cost is put down by Mr. Poor at $\$ 60,000$ per mile, or upwards of four tboueand millions of dollars in the aggregate. The total earnings were over $\$ 5 ? 6,000,000$ and the operating exp:nses 65 percent thereof, or $\$ 340,600$ 000 , leaving as $n \in t$ earninge the pum of $\$ 183.810,000$, out o which interest on bonds and stock dividends were paid. The average of the latter were $3.45 \mathrm{p}-\mathrm{r}$ cent $n \mathrm{n}$ the capital stock the aggregate of which is one thousand nine hundred mıl lions of dollars.
During the year 1873 the increase in railway construction was 3,916 milep, againat 6,167 miles fr $\mathbf{1 8 7 2}$. Tbe $+x p e n d i$ ture for construction in 1873 is less by 50 per cant than in 872. This eudden great contraction in paymente, a wount ing to more than $\$ 120,000,000$, was disastrous in its effects upon the various branches of industry connected with railway building. But as soon as Congress shall fix upon aome decisive rettlfm\&nt of the national finnncer, whertby lower rate of iltereat for the Amrrican indebredness can be established, then ra'lway bonde will iøprove in ralue, and e more extensive construction may be txperid. As compared with Europe, the U, ited States are considerably in advance in the matter of railway mileare.
The aggregate of rail ways in 1873 in the various countries of Eurnpe was as followa: Germany, 12207 milen; Austria 5,865; Franca. 10 333; Russia, 7.044; Great Britaio, 15,814 Belgium, 1,201 ; Netherlands, 886 ; Switzerland. 820 ; Iialy, 3,667: Denmark, 420 ; Spain, 3401 ; Portugal, 4533 ; Sweden and Norway, 1,049; Greeie, 100

United S'ates.
 70,650
 40,232.000

SOME OF THE USES OF PAPAFFIN.

In addition to the properties which bave brought it intn such extensive use for illuminating purpores, paraffin bas qualities which give it an excerdingly wide range of usefu applications. White, clean, iucorruptible, odorlees, tastelese plastic, water rupellent, a non-conductor of electricity, and but slightly affected by most chemical agents: it needs only to be better known to become the most variously usfful o the hydrocarbons.
For waterproofing fabrics for wearing apparel, military equipment, and the like, it is mucb better than rubber, since it is odorless and does not become sticky with heat. Among the most gratefally acknowledged of the many gifts sent out to Livingstone in the wilds of Africa, were boots and blankets thus prepared, the one enabling him to travel through mud, the other to sleep in it with comparative com fort. For the waterproofing of tent cloths, ground sheets for soldiers, and other articles of the sort, it has been found equally serviceable.
A more generally useful application of paraffin is for the lining of casks and other wooden vesstls, to ktep them sweet and to prevent either the absorption of their contents by the wood or their ercape through the pores. Already it has been largely applied to beer barrela, wine carks, and other vessels of the kind, with the happiest results. It keeps them from becoming musty and foul; and still more, by fill ing the pores and joints of the staver, it prevents the escape of the life of the liquor, carbonic acid gas. Water buckets, butter firkins, and other wooden articles of domestic use might be similarly treated ; and as the material is cheap, eapi y obtaintd, and easily applied, it can be tried on as large or mall a scale as one may feel disposed.
Being indifferent to most chenicals, paraffin serves the same purpose equally well in the laboratory of the cbemist and chemical manufacturer. In the manufactura of gun cotton, for example, wooden tanks lined with paraffin bave been used for holding the mixture of concrntrated sulphuric and nitric acids employed in that process, the protection of the wood beंng complete and lasting. Woodin boxes, protected in the same way, have been fimilarly employed in the construction of voltaic batteries. As a non conductor of electricity, paraffin it further useful, as an inpulator, for which it is now extensively employrd in electric telegraphy; also in connection with batteries for medical use, fepecially as an acid proof coa'ing to insulated conducting wires. In surgery, it has been found an excellent material for covering or aplints in cases of fracture.
Thure truu bled with loorely fitting plater of artificial teeth, wing to absorption of the gums, can eacily remedy the deect by dropping apon the plate a little melted parafin, from
a lighted candle or otherwise, replacing the plate while the paraffin is yet warm. Being clean, tasteless, plastic at a low temperature, and unaffected by saliva, this substance will be found much superior to wax or any other material for the use, a few drops rightly placed making a perfect fit with a plate otherwise unwesrable.
In the laundry, paraffin rubbed on the hot flat iron imperts a beautiful gloss to etarched goods, greatly lightens the labor of ironing, and leaves no greasy stain. For this use it is much superior to spermaceti. Friction matches are now prepared with paraffin in place of the sulphur formerly emploged : it burns without odor and goes out instantly, great ly reducing the dangers of accidental fires. Dissolved in naphtha, parafin has been applied with excellent effect to decaying brick and stone work, filling the pores of the brick or stone and putting a stop to the destructive action of the weather. Fine wood work exposed to the elements might be protected in the same way. Heated with sulphur to a moderately high temperature, paraffin is decomposed, with the evolution of aburdance of sulphuretted bydrogen. A steady and copious flow of this indispensable reagent in the laboratory is thus easily and cheaply obtained.

REFRIGERATING MIXTURES AND THEIR
 PHYSLOLOGICAL EFFECTS

All solid bodies when becoming liquid, all liquids when assuming a gaseous state, absorb heat. The chemical compounds known as refrigerating mixtures are based on one or the other of these changes of condition. The Carlé ice ma cline, it will be remumbered, operates tbrough the liquefac tion of ammoniacal gas and the reiurn of the eame to a gaseous condition. At the moment of vaporization of the liquid, a lowering of temperature takes place, sufficient to cause the formation of considerable quantities of ice. Hydrated sulphate of soda and hydrochloric acid, and ordinary iee and palt, are examples of freezing mixtures, of which perhaps a score more could be cited, the effects of all of which are well known to chemists.
There is one of this class of compounds, which, although not a stranger to the chemisal laboratory, has recently been found to possess graater frigorific capabilities than any other mixture yet diecovertd. We allude to ica and sulphuric arid, into the properties of which M. Berthelot, of the French Academy of Sciences, has recently made some interesting investigations.

It is well known that, in winter, crystals of hydrated sul phuric acid ($\mathrm{S}^{2} \mathrm{O}^{4}, \mathrm{H}^{2} \mathrm{O}+\mathrm{H}^{2} \mathrm{O}$) are easily obtained. These M . Berthelot mingles with ice, and he calculates the resultant cooling, first from the ice liquefied, and second by the acid also liquefying and the disengagement of heat due to its mingling with the water. On using $1 \cdot 7$ ounces of acid and 4.5 ounces of water, the investipator calculates the fall in temp erature to be $125^{\circ} 6^{\circ}$ Fah. If the misture be made, not a the ordinary temperature, but at eay 68° Fah., the mercury should fall fully 140 , so that ai the end of the experiment the thermometer will mark $-112^{\circ} \mathrm{Fah}$. These are calculated results, but M. Berthe lot is of opinion that, according to his theory, be will be able to reach - 148° Fah., and perhap absolute zero, about- 516° Fah.
Substances when brought to such extremely low temperatures act very energetically as a rule upon the body. Soli lified carbonic acid at a temperature of $-111 \cdot 6^{\circ}$ produces serious burns when compressed between the fingers, it.jur ing the akin in a manner similar to a red hot iron. Late
diecovery has, however, found that this frigorific effect varies strangely with the nature of the cold object which is brought in contact with the sixin or mucous membrane. Melsens, a well known Belgian chemist, has recently called the attention of the Academy of Sciences of Belgium to the fact that brandy, frozen to a temperature of from 22° to 31° below zero Fah., by means of a mixture of ice and chloride of cal. cium, can be eaten wich. impunity and possesses a flavor superior to that of the liquor in its ordinary state. The temperature of any alcoholic beverage may thus be reduced without the material hurting the tongue. A wooden spoon must be used, as a metal one burns the mouth very quickly. The investigator says that not until the liquor is cooled to 76° below zero is any sensation of cold experienced ; and it has been eaten at - 95°, causing no more uneasiness to the eator
than a mouthful of rather hot soup. It is remarkable that brandy at 95° placed on the arm, makes only a slight irrita tion, while ether paste or solid carbonic acid burns briekly. The only explanation which seems plausible regarding these exceptional conditions would appear to be that the alcohols, when thus rendered extremely cold, remain en veloped in a certain quantity of vapor which hinders their contact with the organs, in like manner as a layer of steam prevents the contact of a drop of water with a heated plate. M. Melsens if, we understand, prosecuting further investiga tions, the results of which will doubtless throw more light on the curious phenomena.

PROGRESS OF THE FIRELESS LOCOMOTIVE
On the New Orleans and Carrolton Railway, they employ the new fireless locomotives to draw the cars from Napoleo avenue to Carrolton, 3 t miles. From Napoleon avenue to Canal street, in center of New Orleans, horses are still in use The company are now running eighteen of the fireless lo comotives, with much success and economy. General G. T. Beauregard is the president of the company. The fireless locomotive has been heretofore illustrated and described in the Scientific American, having been used to some extent in this vicinity. It is now employed in Brooklyn, N. Y., on the East Now York \& Canarsie railway. It consist of a hot water tank, which is charged with very highly heated water at the starting station, and the steam which
rises from the water is used to drive the engine in the usual manner. No fire is required in connection with the locomowater with which it was originally charged. The object i to provide a substitute for horses in the propulsion of street cars, and to get rid of the gas and other objectionable features of the ordinary steam locomotives. The fireless loco. motives of the New Orleans and Carrolton Railway Company have each a pair of $4 \frac{1}{2}$ inch cylinders and 11 inch stroke fitted with link motions and slide throttles. Each machine has one hot water tank 3 feet in diameter and 6 feet long steam dome 12 inches in diamter and 18 inches higb. The tanks are so thoroughly jacketed, with felting, asbestos com position, and wood, that they only lose 3 pounds of steam pressure per hour from radiation. A locnmotive charged with hot water at 6 A . M., and left standing until 9 P. M. 15 hours, will then yield steam pressure sufficient to move The male or more.
The water is supplied to the tanks of the locomotives from tationary boilers located at Carrolton, and each machin makes a round trip of seven miles upon one charge of hot water. One minute is required to charge each locomotive. The water is supplied at a temperature of 375° Fah., which produces a steam pressure of about 175 pounds to the inch a starting, which becomes reduced, by the time the machine has run 7 miles, to from 40 to 50 pounds. The charging boilers are arranged in two batteries of two boilers each, and these boilerś are 26 feet long and 3 feet diameter, built o the best materials. Two boil rs only are required for use a once. These fireless loconotives, as substitutes for horses are found to effect a saving of $\$ 4$ a day for each street passenger car. The new machines are easily worked, and give much satisfaction. The engineer who works the locomo tive is also conductor of the car. He simply stands at one end of the car, with one hand on the throttle lever and the othe on the brake. The patent fare boxes are used to receive th fares. The fireless locomotives draw their cars at the rate of 8 or 9 miles per hour.
NEW LAW CONCERNING COPYRIGHTS FOR LABELS.
Heretofore it has been the practice, under the copyrigh law, to grant certificates of copyrights to every applicant on
furnishing a printed copy of the title of his book, work, or print of any sort; and under this practice it has become cus tomary for medicine dealers and others to file in the title of labels used upon bottles and other articles of merchan dize. This has proved to be a very convenient and economi cal method of obtaining a registration, though it was not considered to be of much value. At its recent session ongress passed an amendment to the copyright law whic anges the place of $\mathrm{r} \cdot$ gistration for labels from the librar Congress to the Patent Office; and raises the official fee n label copyrights from one dollar up to six dollars. Tbe mmediate effect of this increase of price will be to reduce the number of copyrights taken; while another feature of the bill, that which provides that the Commissioner of Pat ents shall only grant copyrights for labels that are not trade marks, will doubtless serve to introduce official red tapeism vexation and delay into the businers of obtaining copyrights, rom which it bas heretofore been free.
This last provision of the bill appears to authorize the Commisaioner to refuse copyright for a label, provided tha officer takes a notion that such label is a trade mark. If beld o be a trademark, the applicant must pay $\$ 25$ in order to pply for trademark registration; and the application for rademark will be then officially examined, subject to the sual liabilities of rejection.
The examinations and opinions of the Patent Office in re pect to trademarks or copyrights are not what the people require. They want a simple, quick, and free method o obtaining registration for labels and patterns of every kind with liberty to contest before the courts, in the usual man er, all issues pertaining to infringements. This is aleo wha necessary in respect to patents. When will our legislator learn that the true and proper way to encourage authors and inventors, thereby promoting the progress of useful arts, is o make the matter of registration simple and easy, instead of surrounding it with the perplexities and expenses of off cial inquisitions?
The new law goes into effect August 1st. The following is the text of the bill:
bill to amend the laf relating to patents. trad MARKS, AND COPYRIGHTS
Be it enacted by the Semate and House of Representatives of the United States of America in Congress assembled, That no person shall maintain an action for the infringement of his
copyright, unless he shall give notice thereof by inserting in the several copies of every edition published, on the titl page or page immediately following, it it be a book; or if a map, chart, musical composition, print, cut, engraving, pho tograph, painting, drawiog, chromo, statue, statuary, or mod el or design intended 10 be perfected and completed as a work of fine arts, by inscribing upon some visible portion thereof
or of the substance on which the same shall be mounted the following words, namely: " Entered according to the Act of Congress, in the year - ${ }^{\text {Coled }}$, by A. B., ia the office of the Li brarian of Congress, at Washington;" or, at his option, the word "copyright," toget her with the year the copyright was
entered, and the name of the party by whom it was taken out hus," copyright, 18 -, by A. B.'
Sec. 2. That for record ng and certifying any instrument Congress shall receive from the pers ms to whom the servic iongress shall receive from the pers ins to whom the servic one dollar; said fee to cover in either case a certificate of the record, under seal of the Librarian of Congress; and all fees to be received shall be paid into the Treasury of th United Stater.
Sec. 3. That in the construction of this act the words eng ra ing, cut, and print shall be applied only to pictorial illustra-
tions or works connected with the fine arts; and no prints or
labels designed to be used for any other articles of manufac
ture shall be entered under the copyright law, but may b ture shall be entered under the copyright law, but may be
registered in the Patent Office; and ine Commissiontr of Patents is hereby charged with the supervision and contro of the entry or registry of such prints or labels, in con formity with the regulations provided by law as to copyright of prints, except that there shall be paid for recording the title of any print or label not a trade mark six dollars; which shall cover the expense of furni hing a copy of the
record, under the seal of the Commissioner of Patents, to the party entering the same.
Sec. 4. That all laws and parts of laws inconsistent with
the foregoing provisions be, and the same are hereby, rethe foregoing provisions be, and the same are hereby, re

SCIENTIFIC AND PRACTICAL INFORMATION

new meat preserving process.

M. Sacc bas obtained excellent results by using acetate of oda in powdered form. The meat is placed in a barrel and he acetate placed in, when it is left for forty eight hours Thus prepared, the meat, it is said, will keep for any length of time, and may be prepared for cooking by soaking for 12 ours in water, to every quart of which a quarter of an ounc f salammoniac is added
new relations of planetary orbits.
Professor Daniel Kirkwood announces the discovery of me remarkable relations of the asteroid orbits to those of the larger planets. Near the close of the last century, La lace noticed a relation between the mean motions of Jupi or's first three satellites; and from the results obsained by that astronomer, it occurred to Professor Kirk wood that sim lar relations might probably be found in the zone of mino planets interior to the great masses of Jupiter and Saturn The invertigation has led to interesting discoveries, which the author promises shall soon be published in full. As secimens of the correlations detected, he states the follow ing:

1. Five times the mean motion of Concordia minus nine teen times that of Jupiter, plus fourteen times that of Saturn, equals zero. 2. Five times the mean longitude of Concordia minus nineteen times that of Jupiter, plus fourteen times that of Saturn, is equal to a semi circumference, or one hundred and eighty degrees.
These discoveries, while tending to tbrow light upon the gnesis of the solar aystem, may, according to Professor Kirkwood, be explained by the nebular hy pothesis of Laplace or equally well by the accrettion theory advocated by Proctor, so that they do not tend to confirm the comparative trath of either supposition.

CURIOUS EXPERIMENT IN ELECTRO CAPILLARITY
M. Bécquerel notes another interesting experiment in elec-ro-capillarity. A tube of glass is closed at one of its ex. tremities by a membrane of collodion. With the tube is placed some sulphate of copper, and it is plunged in monosulphide of sodium. Crystallized copper is deposited with. in the tube, and sulphide of copper outside. Eventually the membrane becomes dissolved and difappears, but without interruption to the phenomena of deposit. The crystaline crust takes the place of the collodion without interrupting the functions. It becomes constantly thicker, metallic copper continuing to form on one side, and the sulpbide on the ther. It is suggested that this experiment may be of importance from a geological or mineralogical point of view. reflecting power of flame.
Recent experiments by M. Sorel prove that carbon retains its reflecting capacity even at the highest temperatures. A sunbeam becomes reflected by diffusion and is polarized in exactly the same manner, whether it falls upon a brilliant flame or upon smoke.
A simple method of removing the teeth of children The operation consists in simply elipping a rubber ring over the tooth and forcing it gently under the edge of the gum. The patient is then dismises and told not to remove the appendage, which in a few days loosens the tooth and causes it to fall out. Grown children, who shrink from the shock and pain of the dental nippers, may also have their teeth removed by means of the rubber, which is a mild form of treatment.
adulteration in india rubber.
The Bulletin Thérapeutique says that, in order to use old and worn out pieces of india rubber scraps left from factoies, manufacturers having easy conecifnces wash the matethen, when dry, pulverize between cylinders. This powder, placed layer by lajer between sbeets of new rubber and beated to a certain degree, forms a homogeneous mass, in which the fraud cannot be detected. The mixture is, how ver, weak in tenacity and elasticity, and is unfit for surgi. cal use, while dangerous for belting or other industrial employments.

strength of glass tubes.

M. Cailletet bas found that a tube of thin glass, $20 \frac{1}{2}$ inches n length and $\frac{8}{4}$ of an inch in diameter, was cruehed by an xterior pressure of $1,155 \mathrm{lbs}$. to the square inch, while simlar tubes were burst: by an interior pressure one half less. In making use of very thick glass, capable of resisting a pressure of four or five hundred atmospheres, he found the glass to sustain no permanent change of form. Upon this act, he proposes the construction of a very sensitive and very simple manometer.

The roadway of the great steel bridge over the Mississippi finished and a train has passed over it. The formal opening of the structure will take place on July 4.

THE EFFECT OF AIR PRESSURE ON ANIMAL LIFE.
In our issue of June 20 we described the important dis coveries recently made by M. Bert, in relation to the influence which modifications in barometric pressure exercise upon the phenomena of life. M. Bert's investigations bave necessarily been directed to two diametrically or posite conditions, the diminution of pressure and the augmentation of the same; and in our former article weexplained the results obtained by researches conducted under the first mentioned circumstances. From an industrial point of view, the examination of the effects of compressed air upon the system, which we now propose to follow, is especially interesting because of the many cases, as in bridge building, divirg, etc., in which workmen are obliged to labor in such an atmosphere A careful distinction M. Bert says, must be made between the of fects of the mere com pression itself and those of a sudden decom pression. To illustrate the influence of the lat. ter proceeding upon animals, the apparatus shown in Fig. 1 was constructed. This was a large cylinder of sheet stet into which air was forced by the pump, C, actuated by the gearing at A. At D a worm coil was placed in cold water in order to refrigerste n order to refrigerate the air, and at E a re cipient for the cundensed moisture in the blast. b is a manome ter, and c a large valve which, on being opened, allows the compressed air to escape, producing a sudden decompression within the cylinder
Inside the last men rioned receptacle a dog was placed, and air forced in to a pressure

The practical industrial utilization of M. Bert's discoveries oadily suggests itself. Divers, it has been noticed, expe rience pains in the chest when some 160 feet beneath the urface, and the same sensations are felt by laborers working under a pressure of five atmospheres. These troubles ar incontrovertibly due to an excess of oxygen, and it only re mains to supply air poor in that gas. The mechanical ar rangements to this end are easily constructed for caisson and fixed structures, but some irgenuity will be needed to devise apparatus for divers who work under constantly changing pressures. Hydrogen or nitrogen could be used to dilute the air.
The author deduces from his investigations a number o
standing twenty-five atmospheres, a bag containing oxygen, a compressing pump, and pipes enveloping the latter, so a to cover it with a current of water. A bird was placed in the cylinder, and air forced in to ten atmospheres, without appreciable effect. When, however, for air, oxygen was substituted, the animal was taken with strong convulsions and quickly died. To obtain the same result with air, twen ty.five atmospheres' pressure was required. Conversely, how ever, if air at the above pressure was used, deprived in grea measure of its oxygen, it became harmless. These experi ments, exactly counter to those described in our previous ar ticle, tend more conclusively to show that mortal convulsion physical the tension of the oxygen and not to the physical compression, and that oxygen, in certain quantities,

Fig. 1.-APPRATUS FOR SHOWING THE EFFECTS OF COMPRESSED AIR. past and present con ditions of life upon the eartb, which may be briefly summarized a follows

1. Temperature be ing left out of conside ation, there is for ani mals and vegetables upon high mountain an impassable limit, which varies with the apecies. This is one of the causes of geogra phical distribution gov rned by latitude. 2 There would exist like limit at shallow epths in the water of epths in the water coned the same itrogen in solution ac cording to Dalton's law. A stream of air rusbing from the bottom woul xtinguish all life me on its upward course The varying i ichness in oxygen of the different currents, at different depths, bas perhaps ome influence on sub marine geographica of eight after maintaining thi pre three or four minutes, the escape cock was opened, allowing mosphere was much stronger than it now is, the conditions like substances, which excite the spinal nerves.
equilibrium with the exterior air. The animal was then removed, but exhibited no distress, running about the labora tory as if perfectly uninjured. In a short time, however, its motions became feeble, its hind portions appeared to be paralyzed and dragged upon the floor, then the other members became similarly affected, and respiration ceased. On openng the body the vessels were found filled with a mixture of gas and blood, and the heart contained clots. The gas, on examination, proved to be nitrogen with a small admixture of carbonic acid
From this experiment M. Bert concludes that, under the influence of compres sion, the nitrogen of the air becomes dissolved in the blood in increasing propor. tions, just as carbonic cid juecos taten up in water in ma up in the in king the so called soda water. On sud-
denly removing the compressing force the gas passes to a free state, its bubbles become more numerous, rendering the blood foamy, obstructing the circulation, causing paralysis, and finally death. Nor is the blood alone thus charged with the gas, for the latter pemor of the body, even to the tissues, the in. terior of the eyes, and the liquid which bathes the spinal mar. row.
When the pressure is at about seven atmospheres, the results are not sograve.

Fig. 2.-appratus for showing the effects of oxygen and air.

This is not because the quantity of oxygen undergoes a notable augmentation in the blood, for M. Bert's analyses have shown that, from the normal pressure, but little more than 1 volume of oxygen to 100 volumes of blood is added by each additional atmosphere of compression. Hence the first cause of the deadly effect does not lie in alterations of the blood. Nor, in fact, are the results only observable upon larger animals; not only are creatures, both cold and warm blooded, having diffused nervous systems, as articulates or mollusks, thus affected, but even the vegetables do not es cape. The terrible action controls microscopic animalcula,
 A paralysis of the posterior portions and often sharp pain ensue, but the effects may be passing. If, however, the pressure be stronger, the gas is disengaged so suddenly that death is instantaneous. Thus an explanation is found for the compressed air, and for the paralysis which frequently happens when the pressure is above three and a half atmo spheres.
Passing from these reqults of sudden decompression and compression, we are led to consider thosedue to compression tself. To this end M. Bert has devired another apparatus, hown in Fig. 2, which consists of a cylinder capable of with- he oxygen acts upon the elementary particles of the body so as to arrest or modify injuriously the chemical functions of which they arethe agents. Hence the general accidents, con vulsions, and death.
It would seem that the phenomena produced in overdose of oxygen would consist in strong oxidations; that the tis eues of the body, in other words, would be burnt up. Strange to say, just the reverse takes place. Animals become rapid ly cooler, and produce little carbonic acid and urea; and, in brief, oxygen in excessarrests oxidation.
genized air
AIR.
\qquad
The Society of Arts offers the gold menal or 20 guineas ((\$100) $^{(10)}$ for an improved lamp for illuminating railway carriages. It must be capable of supplying a clear, steady, durable, and safelight. Specimen models, suitable fortesting, must be sent in not later than November 1, which in effect means tha they must be at the Scciety's honse, London, on or befor Saturday, October 31.

Lutecine or Paris Metal - MM. Le Mat, Picard, and Bloch give the following proportions for this alloy: Copper 800 , nickel 160, tin 20 , cobalt 10 , iron 5, zinc 5 . Total 1,000 .

IMPROVED STEAM ENGINE.

The novel form of steam engine herewith illustrated operates upon the compound principle; but ins:ead of having its high and low pressure cylinders separate, the former is placed within the latter. The smaller cylinder, into which live steam is adcuitted, constitutes also the piston head, and is moved both by the entering steam reacting against an auxiliary stationary piston placed within, and also by the expan sive force of the steam which is used in the previous stroke, which is allowed to pass into the outer and larger cylinder. This will be rendered clear by the following detailed description of the engravings.
A is the small cylinder which constitutes the piston head of the engine, and which is closed at both ends, and travels in the at both ends, and cravels in the the piaton rod, passivg through the the piston rod, passing through the
right hand end of the latter, as right hand end of the latter, as
shown. B is the auxiliary piston, shown. B is the auxiliary piston,
which is perfectly motonless, and which is perfectly mot onless, and
is secured to a hollow rod which is is secured to a hollow rod which is
fastened, as shown, in the cylinder head, and connects with the pipe, C , through which the steam enters, as indicated by the arrow.
The bead of the auxiliary piston is hollow ; and leading out at each end of it are ports, D, which are provided with a rocker valve, to which is attached the operating rod, E, extending out through and beyoud the piston rod. At each end of the bore of the cylinder, A, and of the bore of the cylinder, A, and
underneath, are passagee, F and G, underneath, are passages, F and G,
'eading to rotary valves, from 'eading to rotary valves, from
which pass other conduits through the next adjacent end plate and opening into the main cylinder. Each of the rotary valves is so constructed that, when either is in the position shown on the left, it will open communication between the port, F, and the adjacent passage, the two forming a bent or V shaped conduit. When resolved in another position, the valve will, as represented on the right, close the port, G, and establish communication, by means of the other passage,through from the main cylinder to the annular space around the head, A and between the flanges of the latter.
The two valves just described have bent arms, H, extend ing from them, as shown in dotted lines, Fig. 1, and in the transverse section, Fig. 2. These arms are connected by a rod jointed to both. Another arm, I, Fig. 2, is attached to the inner end of a shaft, which shaft is arranged within the exbaust passage leading out of the main cylinder. The object of this shaft and bent arm mechanism is to trip each of the valves connected with the arms, H , at the proper time, which it is caused to do by suitable apparatus operated by the engine in connection with the exterior crank. Similarly the rod, E, moving the rocker valve on the auxiliary piston, is also properly actuated to travel back and forth as is neceseary.
The operation of the machine may now be readily followed Steam being admitted into the small cylinder or piston head, A, the latter will be drawn in one direction lengthwise the large cylinder. On the head arriving at the end of such movement, the valves are tripped so as to open communication between the space that receives the live steam and that part of

the main cylinder next adjacent to the end of the same to ward which the piston head has advanced. It will be ob served that in Fig. 1 the head has just finished its stroke to the port, F, has opened a way through the latter and into the large cylinder. At the same time the rocker valve in the auxiliary piston is tripped so as to cut off admission of steam to the space into which the steam first entered, and to allow the steam to operate from thereverse side of the piston. This is clearly shownin the engraving. The head will now travel to the right, impalled not only by the action of the second quantity of steam but by the pressure of the first amount expansively in its rear.
The first quantity of steam, on escaping from the head into the main cylinder. will expand in both while the former is in motion, and, by pressing against the outer surface of one end of said head, will there exert a greater amount of force than it will on the etationsry piston, B. Hence it is the excess of pressure whichoperates to drive the head.

The space in front of the latter, it may be supposed, con tains steam used expansively in a previous stroke. Thi must be withdrawn from the front of the head and exhaust ed, an operation accomplished by the valve, in the passage, G, becoming placed as shown in Fig. 1, thereby establishing connection with the right hand or forward portion of the cylinder and the annular space around the head, which, as represented in Fig. 2, connects directly with the exhaust port.
Among the other advantages claimed by the inventor, for this machine, over the ordinary compound engine, is a small er loss by radiation. The heat radiating from the steam en tering the hollow piston rod aids in keeping the outer cylin -
M. Toselli, an ingenious Italian ing bell.
veed a novel an ingenious Italian inventor, has lately de herewith, diving bell, an engraving of which we present nd w, by means of which he can proceed to the bottom
 , surface, with perfect safety. He has already descended 4 , thes to the bottom of the Bay of Naples, a depth of foet, and finds the device admirably adapted for sub g of sunken ships.
As shown in the illustration, the apparatus is a kind of urret divided into four compartments. The bottom division A, contains lead, and serves to hold the bell in vertical position. B can be filled with water by pening a cock communicating from without, or may be rendered entire y empty by aid of the pump. Con equently this chamber serves t augment or diminish the weight of the machine and to determine its up and down travel, serving the same purpose as the natatory vessels in fish. In the large compartment, C the operator and the observer ar tationed; and finally, F is a reser voir, into which air is compressed in a quantity sutficient to last du ing the time which the bell is to be submerged. I is a cock which admits air from this chamber into he main compartment. G is th pipe for carrying off the foul at mosphere, which communicates with the tube, H , and a float, g. The lat er has a valve, $l l$, to prevent en trance of water. The bell has a rud

DAVENPORT'S IMPROVED STEAM ENGINE

der warm, while, by jacketing the latter, there would b comparatively little waste of steam due to condensation. the use of double crank and connecting rods, saving not only the wear and tear necessary to overcome back pressurein th smaller cylinder, but also the extra expense of construction The invention can be applied to any ordinary engine by re moving the cylinder and substituting the one described. Patented January 1, 1867. Further particulars may be ob tained from the inventor, Mr. S. F. Davenport, Hallowell, Me

THE GRAVITATION COMPASS.:

A new mariner's compass, remarkably devoid of compli cation in its various parts, has recently been invented by the Earl of Caithness, F. R S., of London, and patented in th United States. The ordinary compass is mounted upon gim bals, that is to eay, upon two axes at right angles to each other, for the purpose of allowing the compass box the power of swinging freely in all directions, the necessary result bsing that the bottom of the compass box is kept, by the force of gravitation, parallel, to a great extent, to the plane of the horizon, while its mountings move in various dire tions, as influenced by the motion of the ship.

The essential feature of the Caithness compass is that, in stead of its being mounted upnn gimbals, it is mounted upon the top of a pendulum, which swings in a ball and socket joint. The gimbals of the ordinary compass are intended to give the compass box the power of moving in a true circle but they do not absolutely give that power, and never can, since there are two points in the performance of the circle, in which there is a slight catcb, which tends to make the box oscillate. first to the right and then to the left, or vice versâ, as the case may be.
The new Caithness compass consists of a ball close underneath the compass box, working in a socket fixed at the top of a conical support. The pendulum is about two feet in length, and is attached to the small ball, which bas thus the power of giving a perfect rotation. It works in a per fect circle, and it does not matter how much the ship rolls. The Earl of Caithness calls it the gravitation compass, because the pendulum always points to the center of the earth. He says that it will bear very great rolling and pitching of the vessel-in fact a roll of more than thirty degrees.
In the course of a voyage across the Atlantic, made about the middle of Octobar last, in the Java (Captain Martin), by the Earl of Caithnese, he tried experiments with the compass on a large scale, the result being that the maximum vibration of the compass card was about a quarter of a point, while heavy standard compasses on board gave much larger vibrations.-The Engineer
M. Neyreneuf has ascertained by experiments that negative electricity attracts flame, which positive electricity repels.
der and a screw, not shown in the
Ilustration, the screw being worked by a hand crank by one man, and driving the machine at the rate of about 25 fee per minute.
M is the manometer, which indicates exterior pressure and hence the depth of submersion. N is another manome er, which shows the pressure of condensed air in the cham ber, F. R is a life line connecting the bell with the ship This contains a wire by means of which telegraphic de patches may be sent to the instrument, $Q U$ is the man hole, allowing access to the interior of the machine and closed with a double door. V are heavy glass deadlights, and Z is a seat.

The ingenuity of the inventor will be made apparent by considering the simple way in which M. Toselli avoids the dangers common to machines of this class. Thus, should the tube, H , which carries off foul air, break or choke, water would be pumped immediately out of B, the bell would ascend, and meanwhile the bad atmosphere would be allowed to escape through the extra pipe, f. In case the electric wire in the life line should part, preventing the passage of sig nals, the machine would again ascend and communicate with the vessel through the speaking trumpet, L J. If the line remained intact, the bell could be instantly hauled to the sur face by those on the ship, in case of a breakage of the hy draulic pump, on aignal being transmitted. If pump, wire and life line sbould all break down at once, then the opera tor would unscrew a nut and free the lead underneath, when he would immediately ascend to the ourlace. Finally, if by
some extraordinary circumstance the ship should break the line and lose sight of the bell, or if the vessel itself should sink, the operator would first, by unscrewing a nut within cast his bell loose from the life line, and would then ascend. As soon as he reached the surface, he would be enabled to view his surroundings by means of a camera obscura at r, and by revolving the same by its tube, W, he could sweep the entire horizon. Lastly, having determined his course ho could proceed in the proper direction by means of his screw and rudder.

Coxrespoudeuce.

Notes from Washington,

To the Editor of the Scientific American
Congreas has adjourned without enriching the lobby so much as usual. In fact it is generally conceded that our Solons have left Washington with cleaner consciences, in this respect, than any of their recent predecessors, and that there never were fewer jobs put through by any Congress for many years past. The patent lobby fared especially badly, not a single extension case, so far as I can learn, having passed, notwithstanding all their efforts. Whether thi is owing to a slight spasm of returning public virtue, the approaching elections, the efforts of the press, or fear of the Grangers, is more than I can tell; but probably all these in fluences had their effects, and so the work of the lobbyiste went for naught, although they mustered pretty strongly the last days of the session, trying, both by persuasions and tbreats, to forward their respective schemes. One of these -a second Gto:ge Francis Irain-even went so far as to threaten the Sanators and Representatives with the opposi tion of the Internationals, of which he represented himself a tionigh officer, if ther did not pass the extension case for which he was working, and that. he would take the stump which he was working, and that. he would take the stump
against the members of the committees on patents, if his against the members of the committees on patents, if efforts failed. Of course the Senators were immensely frightened at this fearful threat, but somehow they yet live, and
have gone home without helping the client of Train secundus.
The bill to reorganize the Patent Office also failed, and a bill, introduced a few days since by Mr. Conger, amending Sections 23, 25, 33, 53, and 64 of the Act of 1870, as a sub stitute for the first bill, likewise failed to pass. The only act completed, so far as I can find, relating to the Patent Oftice, is one introduced by Mr. Wadleigh, which allows the usual sentenc s indicating that a work is copyrighted to be substituted by the words "Copyrighted, 18-, by A. B.," fixes the fees for recording or furnishing a copy of an assignment of a copyright at one dollar, and enacts that labels shall not be copyrighted, but registered at the Patent Office, for which a fee of six dollars is to be charged. This act takes effect August 1, 1874. The object of the change in the first sec tion is to allow the use of the short sentence on small works of art, photographs, etc., that would be defaced by the use of the long rigmarole now employed.
Many curious schemes have been brought before Congress, some of which never got any further than the committee rooms, among which may be classed the application of some wquld be philosopher for an appropriation to test his method of artificially produciog rain and another case where an in ventor wanted a law enacted that every election district in the United States should have his patent ballot box, to receive the votes for President, Vice President, and members of Congress, at a cost of fifteen dollars for each box. The committee to whom this case was referred contented themselves with recommending its adoption to the different State authorities, and so nipped this pretty little scheme in the bud. I endeavored to find out this patent, but could find none under the name of reputed inventor; but judging from the description I received, it must have been similar to one patented in 1853, and used in your city some years ago, as it was said to be composed of iron and glase. Occasional.

Leveen on the Misaisalppi.

To the Editor of the Scientific American:
Please tell your readers who reside on the banks of the the lower Mississippi that the proper way for them to build levees is to build them on an average a mile back from the banks of the river on each side. They will thereby show 8 little respect for the river, and give it an opportunity to discharge the waters of the vast valley which it drains; and will secure the remainder of their country from periodical overflow.
This line, a mile back from the river, should not follow the meanderings of the stream, but should average a mile on each side. In places where there are high banks on one side, as at Vicksbargh,the river should be permitted to overflow the low ground on the opposite side for two miles; and if, for any other reason, as at New Orleans, it would be im practicable to permit the river to overflow on both sides, a similar space on the opposite side should be left for the river to spiead itself a little whenever it might have business of importance to transact.

Sioux Rapids, Iowa.
W. T. Crozier.

White Ants.

To the Editor of the Scientiffc American

The white ants of the torrid zone are somewhat smaller than the large black ants, which are sometimes troublesome here and are rather voracious, eating their way through a wooden box to obtain sugar, of which they are very fond, and of which they will consume a large quantity

But the white ants of the torrid zone throw the black one entirely in the shade as regarda voracity. Pernambuco

South America) is on about the 8th southern parallel; and heinhabitants build houses and make furniture of the na live wood, which is bard and heavy, and proof aguinst these ants. In one instance, a family moved from the South to Pernambuco, taking their housebold goods with them. Among he rest was a mahogany bureau with white wood inside work, as usual. This bureau, containing linen and cotton goods, was placed in a room but little used, and was not vis ited for somedays. The lady of the house unlocked an upper drawer, and to her astonishment the front piece, of mahog ony, fell to the floor, and on looking in she discovered tha the inside work was nearly all eaten out, and her goods were in one common mase, resting on the floor, in a mixed condi tion but otherwise uninjured. The depredators bad depart ed, butwere soon discovered cutting out the interior of an other piece of furniture. They proved to be the white ant of the torrid zone Truman Hotcheiss.
Stratford, Conn

The Wentinghouse Brake

To the Editor of the Scientific American
I notice in a recent number of Engineering an illustrated article upon the Westinghouse brake, commending the sim licity and equable action of its lever arrangement, etc. Whatever merit, of simplicity or otherwise, there is in its use of levers, it certainly has (in common with almost all the brakes now applied to cars) the defect of giving very unequal tress or pressure upon opposite wheels of the truck

Let $k f j i$ represent the lever that operates the brake blocks, o. I use the delineation and letters employed in the article referred to. The lever is held up by a pulley at k, which travels back and forth on a rod, as shown. Power is applied to the lever at the point, f^{\prime}, through the medium of he rod, $f^{\prime} f$, in the direction indicated by the arrow, one pai of the brake blocks being operated by the rod connected to the lever, at j, and the other pair by the rod connected at i he pull being in the direction indicated by the arrows, and the leverage three to one, that is to say, the distance from to j is one fourth of the distance from i to k. Hence a pull of 500 lbs ., applied to the rod, $f^{\prime} f$, will cause a pull of 1,500 bs. upon j, and a pull of only $1,000 \mathrm{lbs}$. on the rod i.
This unequal stress upon the brake blocks may not be very serious matter, but it is a universal characteristic of the lever arrangement now applied to car brakes. The fault might be easily mended by connecting the rod, j, to the sus pending bar of the brake block 3 a little above the usual point and the rod, i, a little below the usual point, as at n.
Worcester, Mass.
F. G. WOODWARD.

ASTRONOMICAL NOTES.

Observatory of Vassar College.
For the computations of the following notes (which are approximate only) and for most of the observations, I am indebted to students.

Planete for July, 1874
Mercury
At this time, June 20th, Mercury can be beautifully seen fter sunset, below Venus, and a little further north.
On the 27th of June, Mercury will be at its greatest elong tion, east of the sun. July 1, Mercury sets at 9 P. M. July 31 , Mercury sets at 6 h .25 m . P. M.

Venus.
Venus, which has been so bsautiful all through the month of June, increases in apparent diameter, bat sets a ittle earlier in July.
July 1, Venus rises at 7 h .11 m . A. M., and sets at 9 h 33 m . P. M. On the 31st, Venus rises at 8 h .17 m . A.M., and ets at $9 \mathrm{~h} .00 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.

Mars.

Mars is very unfavorably situated. It rises early in the morning, and sets at $7 \mathrm{~h} .42 \mathrm{~m} . \mathrm{P}$. M., or nearly with the un, on July 1. On July 31, Mars rises at 4h. 14 m . A. M. and sets before 7 in the evening.

Jupiter.

Jupiter's diameter is becoming perceptibly less, and it set before midnight. It comes to the meridian, the position best adapted to good observation, in the afternoon, so that we have only a few hours of darkness in which to watch its changes.
July 1, Jupiter rises at 10 h .51 m . A. M., and sets at 11 h 15 m . P. M. On the 31st, Jupiter rises at 9 h .15 m . A. M and sets at 9 h .26 m. P. M.

Saturn.
The month of July is the best of the year for observation on Saturn; and although Saturn is very low in altitude, it will be an intereating object
July 1, Saturn rises at 9 h .29 m . P.M., and sets at 7 h .21 m . A. M. July 31, Saturn risen at 8 h . 25 m ., P. M., and net.
at 5 h .12 m . A. M. It is among the small stars of Capricor nus. Saturn does not attain an altitude of more than 31 during the month.

Uranue
Uranus rises in the morning and sets early in the evening, and is therefore not well situated for observation.

Neptune.

This planet can be seen only by means of a good telercope. It crosses the meridian in the morning at 7 h .15 m . on the 1st, at an altitude of 58°

The Comet.

Clouds have prevented good observations upon the comet It is bright enough to be seen very easily with the naked ye, and with an opera glass is a beautiful obj ct. On the 3th of June an observation, made during partially cloudy weather, gave R.A. $7 \mathrm{~h} .4 \mathrm{~m} . \pm$, Dec. $+69^{\circ}$. At that time its apprent motion was very slow.
It does not set, and is very readily found. On the 13th it made a nearly equilateral triangle with the pole star and the brighter star of the pointers. The same position would enable one to find it as late as the 18th of June, and probably it has not changed its position very much. To the eye, it is an elongated hazy star. With a glass, the nebulous center and the atreaming train are very interesting objecte. It passes the meridian at present (June 21) at 1 h . 20 m . in the morning, below the pole.

Sun Spots

The record is from May 15 to June 16. Fourteen views have been photographed during this interval. Spots have generally been very small, only two groups appearing which contained good sized spots. In some instances the cbanges rom day to day have been very marked ; in others, only such as result from the sun's revolution on its axis. The daily motion of one group is shown for five days, from May 27 to June 1. While the group as a whole remained recognizable, there was a decided change in the arrangement of the con stituent spots. Faculæ have been unusually extensive and stituent spots. Faculæ have been unusually extensive and
are beautifully marked in one of our pictures wbich hapare beautifully marked in one of our p.ctures which hap-
pened to be very clear. The same picture alao shows the pened to be very clear. The same picture also shows the
mottling of the sun's surface, which is usually shown when mottling of the sun's surface, which is usually shown when
both the weather and photography are good. Very bright both the weather and photography are good. Very bright
faculæ accompanied a group which was near the eastern limb on June 15. They were less prominent on the nest day as the group was more distant from the limb.

barometer and Thermometer.

The meteorological journal from May 17 to June 20 gives the highest barometer, June 15, $30 \cdot 27$; the lowest barometer, June 1, 29.58; the highest thermometer, June 9 , at 2 P. M., 86°; the lowest thermometer, May 20 and May 22, at 7 A. M., 50.5°

Amount or Hain

The rain which fell between the evening of May 17 and he afternoon of May 18 amounted to 028 inches.
The rain which fell during May 20 amounted to 0.17 ackes.
The rain which fell during May 25 amounted to 0.48 aches.
The rain which fell during the night of May 81 and the morning of June 1 amounted to 0.45 inches.
The rain which fell during the night of June 3 amounted o 0.16 inches.
The rain which fell during the afternoon of June 12 mounted to 0.15 inches.

Spectrum of the Comet

Father Secchi has observed the spectrum of Coggia's comet, and finds the lines of carbonic oxide and carbonic acid very brilliant. The same astronomer notes a curious phenomenon which recently happened in Jupiter's first sat. ellite. The atmosphere at the time of observation was quite clear, and the diak of the planet, while plainly defined, presented a slightly wavy surface. As the satellite neared the edge of Jupiter, and had advanced so that a distance of bout one of its diameters separated it from the same, the ob. erver was surprised to see the diek apparently extend itself toward the satellite, touch it, and then retract. This to and froward the satelion continued until the satellite was completely ob fro motion continued until the satellite was completely ob-
scured by the planet, a period of four or five minutes. Fascured by the planet, a period of four or five minat and disk take place at the time of the passage of Venus, there will bestrong elements of uncertainty in the obsorvations, and that it would be desirable to employ means which will educe to a minimum these effects of atmospheric oscilla. tion.

Fatty Matters in Cast Iron.
An experiment made long ago by Proust revealed the fact that fatty matters can be extracted from cast iron when the latter is dissolved in certain acids. M. Cloez has recently separated these materials in a pure state, and their analysis reveals the interesting fact that they consist of carburets of hydrogen of the series $\mathrm{C}^{2 \mathrm{n}} \mathrm{H}^{2 \mathrm{n}}$, and present all the terms hereof at least from $\mathrm{C}^{6} \mathrm{H}^{6 \prime}$ (propylene) to $\mathrm{C}^{16} \mathrm{H}^{16}$. This is a veritable organic synthesis, realized by the aid of substances purely mineral,and is surceptible consequently of important pplications. In the Science Record for 1873 will be found n account of the extraction of similar matters from me. teoric iron.

The Sandy Hook boiler experiments, which have been uspended since December last, will be resumed about the eginning of August. The recording instruments used last year were found to vary considerably in the forms made by different makers, and careful tests are now being corducted in order to ensure absolute uniformity and correctness of indicationa.

pRACTICAL MECHANISM.

Number iv.
by joshea mose.
sCREW CETTING TOOLS.
Lathe tools for cuttivg screws have necessarily, from the nature of their duty, a comparatively broad cutting suiface, rendering them very subject to spring. Those used for V threads, being ground to fit the V of the thread, are, in consequence, weak and liable to brtak, to avoid which they should only be given enough bottom rake to well clear the thread, and top rakesufficient to make them cut clean. They are used at a elow rate of cutting speed, and may therefore be lowered to a straw-colored temper (as reducing the temper strenglhens a tool). Firmness and strength are of great importance to this class of tool, so that it should be fastened
with the cutting edge as near to the tool post as is conve with th nient.
For use on wroughtiron, it is sometimes given side rake but this is not a necessity and is of doubtful utility, bećause the advantage gained by its tendency to assist in feeding it selfis quite counterbalanced by its increased liability to break at the point. It should always be placed to clit at the center of the work. For use on brass, it must be ground on the top face to an inclined plane, of which the cutting point is the depressed end, that is to eay, it must have negative top rake.

For cutting square tbreads, the tool shown in Fig. 14, with the sides ground away beneath sufficiently to well clear the sides of the thread, is used.
If the pitch of the screw to be cut is very coarse, a tool nearly one half of the width of the space between one thread and the rext should be employed, so as to avoid the spring which a tosl of the full width would undergo. After taking several cuts, the tool must be moved laterally to the amount of its width, and cuts taken off as before until the tool has cut somewhat deeper than it did before being moved, when it must be placed back again into its first portion, and the process repeated until the required depth of thread is at tained.

Fig. 24 represents a thread or acrew during the above de scribed process of cutting. $a a d$ is the groove or space ta ken out by the cuts before the tool was moved; B B repre sents the first cut taken after it was moved; c is the point to which the cut, B, is supposed (for the purpose of this illustration) to have traveled.
The tool used having been a little less than one half the proper width of the epace of the thread, it becomes evident that the thread will be left with rather more chan its proper thickness, which is done to allow finishing cuts to be taken upon its sides, for which purpose the side tool (given in Fig. 22) is brought into requisition, care being taken that it is placed true, so as to cut both sides of the thread of an equal angle to the center line of the screw.
In cutting V threads of a coarse pitch, the tool may be made less in width than the required space between the threads demands, so that it may be moved a little laterally in order to take a cut off one side of the thread only at a time, by which means a heavier cut may be taken with les liability for the tool to spring in; but the finishing cut is bet er if taken by a tool of the full width or shape of the thread
The most accurate method of cutting small V threads to use a stout cbaser fastened in the tool post, and then feed it with the screw.cutting gear of the lathe, the same as with a common screw cutting tool. Such a chaser should be wade hollow in the length of the tooth, possess a minimum of top rake, aud be placed to cut at the center of the work; and it should be so placed in the tool post that the teeth stand ex. actly parallel to the line of the cut.
chasers.
An outside chaser for cutting wrought iron by hand should be made hollow in the length of the tooth, and have top

42925

rake, as sbown in Fig. 25, to enable it to cut easily; for the strain required to berd the shaving out of the straight line will hold the teeth to their cut. Top rake may, in fact, be appl:ed to such an extent that the chaser will cut well of it self withous baving any force applied to it except sufficient to keep it level, but if made so keen, it soon 1oses its edge and is sery apt to break. The bottom edge of the treth is rounded off so that the chaser will slide easily along the rest. It is an error to make this tool very thick. For cutting 14 threads to an inch, the chacer should be one quarter of an inch thick; and for cutting 8 to an inch, the thickners should be five sixteenths of an inch, so that the fulcrum off which the teeth take their cuts may be c'ose to the cuts, in which case the chaser will be steadier and more under control. The leading toJth should always be a full one and come just level with the edge. When finishing the thread boing cut, hold
the cbaser horizontally, or it will, in consequence of the top the cbaser horizontally, or it will, in consequence of the top
rakp, cut a thread deeper than itrelf. For use in the tool rake, cut a thread deeper than itatif. For use in the tool
poet, with the rest fed by the proper gear for the pitch, less top rake is required, and the thicknese muat be mucb in creased to gain strength aud avoid epring; for the fulcrum off which the tool thus used takes its cut is at the pont a, described in Fig. 11, instead of being directly bentath the cut, as in the case of a hand ctaser.
An inside chaser, that ia, one for cutting threads in a hole or bore, should be, if to be used for cutting a right banded thread, cut off a left-handed hub, otherwise the cbaser will have its thread sloping in the opposite direction to the thread to be cut, as may be demonstrated by placing an inside and outaide chaser (both having been cut off the same hub) to gether, when it will be seen that the teeth of one will not fit in the teeth of the other, as they sbould do; the cause being that, after an iuside chaser is cut by the hub, it has to be turned around to be flaced in a position to cut, which tuin ng reverses the direction in which its t. eth slant.
All chasers should be tempered to a brown color and bs used at a slow rate of cutting speed.

toal steel.

The cutting tools for all machines should be made of hammered (which is tougher and of finer grain then rolled) steel Even in a bar of hammered steel, the corners, from rectiv og the most effect from the action of the bammer, are of betfer quality (that is, more refined) than the rest of the bar This fact is clearly demonstrated in the manufacture of the celebrated Damascus swords and gun barrels, in which the quare bars of metal are, after being hammered, twisted and hen hammered square again; the twisting process is then epeated, and the bar again torged square, the whole operaion being repeated until the body of the entire bar is com pletely intersected with metal which has, at some time du ffect forging process, formed the corners of a square. The fect of this treatment becomes apparent upon immersin metal in acid, which will eat away those parts which ave not formed a corner at some stage of the process of manufacture, more rapidly than the rest of the metal, ard that to such a degree as to give to the whole the appearanc of having been engraved, thus evidencing that the parts that ave received the most hammering are of finer quality tha he rest of the bar.
For cutting tools, it is highly necessary to gain every at tainable superiority in the steel; and if we cannot take thre months of time to prepare bars for this special purpose (a they do in the above process), we can at least employ well bammered steel, and thus secure the best known practicable esults.
The test of tool steel is the speed at which it will cut and the length of time it will last without being ground, concern in which it is difficult to get data. unless by actual exper ment with different kinds of steel upon work of the same iameter and texture of metal, because the cutting speed em loyed by workmen varies as much as 8 feet per minute upon the same diameter of work. The proper cutting speed for work is. however, to be hereafter treated upon, hence noth og further upon the subject need be now said. The use of more than one kind of tool steel in a workebop should al ways be avoided, because different kinds of atteel require dif ferent treatment, both in forging and hardening; and when more than one kind is in use in the shop, the whole of them are liable (from not noticing the particular brand) to wrong

Mushet's "special tool steel" makes an excellent tool for oughing work out on the lathe or planer, and will undoubt edly stand a higher rate of cutting speed than other steel Its peculiarity is that it is hand of itself, and therefore re quires no hardening. Immersing it in water when it is heated causes it to crack. The advantages claimed forit are its high rate of cuttiog speed, and that it is easily ground, ince it will not soften by heating during the operation. It is, on the otber hand, d:fficult to forge in coneequence of its excessive hardening ϵ ven when heated; it must not be forged at so great or so low a temperature as other steel, or it will crack; and as it is not adapted for general tool purposes, its disadvantages, indeperdent of its increaced coest, render its introduction into the general machine shop unadvisable.
forging tools.
In forging a tool, it should be formed in as few heats as pos sible, for steel deteriorates by repeated heating, urless it is well hammered at each heat; and if the tool has a narrow dge, care should also be taken to hammer it on that edge before the metal has lost much of its hrat, and to strike it more lightly as it gets cooler, for striking a narrow surface of steel when it is somewhat cool has the same injurious of fect upon it as striking it endwise of the grain (which is termed upsetting it), destroying its cutting value and strength.
In using American chrome steel, be careful to forge it ac cording to the directions supplied by its manufacturers, its treatment being almost the opposite for that applicable to English tool steel, the former requiring to be heated to a ure for hardening, than the latter.
tool hardening
The degree to which a tool may be hardened is dependent in a great measure upon its shape. Stout tools, such as are shown in Fig. 6, may be made as hard as fire and water will make them ; so also may the tools presented in Figs. 8, 9, 18, 19, 20, and 23; while slight tools, such as are given in Figs 14 and 22 , should be lowered in temper to a light straw color, which leaves them stronger than they would be if hardened in the water, without being taken out until quite cold.

The practice of lowering stout toold to a straw color i The practice of lowering stout toold to a etraw color is undoubtedly advantageous to make the tool as hard as it can e made, so long as it will brar the strain of the cut, which possible and easy of accomplishment with Jessop's, Moss' anderson's, or other similar grades of tool stetl.
If a tool so hardened is found to break, it is in consequence ither of its being bad sterl or else it has been heated to to reat a temperature in the process of forging or Lardenirg nless it has been given too much rake for the duty to which tas been a lotted. Toolsteel may be forged at puch a tem perature that it is not positively burnt d,and yet bas lost part fits virtue; and while under such circumstances it would break if bardened right out,it will cut and stand modera:ely well if the temper be lowered to a straw color.
This is simply eacrificing the degree of bardness to cover the blunder coomitted by overheating, and it is frcm such causes that the variation of cutting speed employed by me chanics arises; for a youth who has learned his trade in a hop where the toils were overheated, and consequently anderhardened, settles down to the rate of cutting speed at ainable under hose circumstances and adh - res to it; while h who has been accustomed to the use of tools properly forged and hardened right out, upon entering another shop wher the tools are overbeated in forging and underhardened to ompensate for it, finding he cannot get the cutting epeed up o his customary rate, breaks off the tool point to see if it bas been burned, and, inding that the grain of the metal doe not appear granulated, sparkling, aud coarse, as it would do if positively burned, condemns the quality of the steel.
The grain of properly forged and bardened tool steel ap pears, when fractured, close and fine, and of a dull, whitish tint, the fracture being tven on its eurface.
American cbrome tool steel may be made unusually hard by using very clean water and adding a piece of fuller's earth nd a piece of common soda, each of the size of a hazel ut, to a pailful of water.
In all cases where a tool can be ground to sharpen it, it should be hardeued before grinoing. for steel hardened with the forged akin on is stronger and better than that in which the skin is removed before hardening. Heat the tonl the distance that it is necessary to harden it, and plunge it into the water sudder:ly to the dietance it requires hardening; and if it is intended to harden it right out, hold it atill a moment, then dip it a little deeper, and withdraw it again to the amount of the last dipping, repeating this latter operation until the tool is cold; for by this means the junction of the bard and soft steel in the tool is graduated and not sharply defined, th \rightarrow result being that the tool is less liable to fracture either in hardening or in using. If the tool to be hardened bas a thick part to it. let that part enter the water first and mmerse the tool slowly, so that it will be cooled as nearly equally as possible and thus be prevented from cracking in hardening.
Tuols heated by cbarcoal are much superior to those heated by common coal, and need not be made quite so hot to harden. To harden steel, never gft it hot enough to cause it to pcale. Thin pieces of steel, and tads, dies, reamers. drifts, and imilarly shaped too's, should be dipped endways; for if dipped otherwise.they are pure to warp in hardening. Very slight tools may be preventfd from cracking by making the water quite warm before immersing them, and then holding them still in the water; in fact, all water for hardeniog purposes should bave the chill off it by heating, before beirg used, or the artic'es hardened in it are very liable to crack. used, or the artic es harcened in it are very liable to crack.
If the article requires to te hardened all over, immerse it If the article requires to te hardened all over, immerse it
(suspended on a wire hook) so that the water may have free (suspended on a wire hook) so that the water may have free
and equal access to the who'e surface of the steel, which is and equal a ccess to the who'e surface of the steel, which is
not possible with tonge in consequence of their jaws coverng part of the steel.
The best method of lowering the temper of taps, reamere, or other round steel is to beat a tube in the fire and hold the article in the center of tbe tube; and it is well to let tbe tube be rather shorter than the tap or reamer, so that the end. which is made square for the wrench to fit, may be kept longer in the tube than the rest of the tool fo as to make it rather softer. The tool sbould be revolved slowly in the tubs to make the temper even. Care should be taken not to make the tube too hot; for the more slowly a tool is lowred, the more even the temper will be
Fiat pieces of at-el, as dies, etc, ehould belowered (that is tempered) by placing them on a plece of heated iron and turning them over and over to temper them evenly.
The colors produced upon tre sulface of a piece of hardened steel by lowering it are from very ligl t straw, deepan. ing successively as it lowere, to yellow, bright brown, purple, and blue. As a general rula, tools which are stout and easy to make and to grind should be hardened right out. Those slight in proportion to the strain placed upon tbem sbould be tempered to a brown. All screw-cutting tools, such as taps, dies, etc., also reamers, flat cutters, revolving cutters, and spring tools, should be tempered to a brown color; drilles should be tempered to a bright purple, and chip ping chisels to a blue.

Railmay or Sea Alarm-Air is compressed in a cylindrical reservoir from which a tube conveysit, to three organ μ ipes (giving $d o, m i$, $8 o l$), which can be sounded separately or to gether. In fog the do is counded; and whenever an engine driver hears it in an advancing train, he sounds his $m i$, then the other driver sounds his $m i$ if he is on the right line, then both sound sol.

Composition for the Destruction of Bugs and their Eggs, Fleas, etc.-This misture, which bas been patented France, consists of 80 parts of bisulphide of carbon and 20

TAIER SLEEVE PULLEY AND WHEEL FASTENER.
Oar engraving illustrates a simple device for fastening pul. leys and wheels uponshafts, perfectly concentrically with the latter. It possesses the merit of simplicity, and seems to be a valuable improvement, equally as well adapted for wooden pulleys as for those of metal. We also represent the im proved wood and iron pulley, obtained by the use of the fastener and its attachments.
The appliance is shown in connertion with a metal pulley in Fig. 1. A is the holder, made of truncated conical form, with a cylindrical bore ard split open from end to end. This travels upor the sbaft and extends tbrough the $h u b$ in the orposite side of which it is met by a nut, B, which screws upon the thread cut on the smaller end, C, of the leeve. The nut draws the holder as far into the hub as possible, besides contracting it against the shaft, thus securing it to the latter as well as to the hub, and thereby fastening both hub and shaft tightly together. The hub is bored slightly tapering to fit the holder. As the pulley in Fig. 1 is supposed to be a very heavy one, the larger extremity of holder, A, has a right hand screw thre ad, and is provided with a nut, D, fitting the same. The object of the latter is to crowd the pulley off the sleeve witbout necessitating the use of a hammer or sledge. In moderately heavy and light pulleys, this last mentioned thread and nut are dispensed with (see Fig. 2), a few blows on the hub with a wooden mallet being sufficient to start the wheel off mallet being sufficient to start the wheel off the sleeve in ca
ing the nut, B.
ing the nut, B.
Where the device is to be used in connec tion with a wooden pulley or wiih one hav ing no bub, an artificial hub is made by mean of a pair of annular plates, E and F, Figs. 2,3 , and 4. The shoulder, G, on plate, E, is the centering shoulder or bearing on which the web of the pulley, shown (with the outer portion kroken awsy) at H, fits. This shoul der is of tie squye size or diametar in all siz+o it Hancé, ur tor large and smallshafts. This will be evident from Fig. 3, which also shows that where greater power is necessary a corresponding buaring for the sleeve is g:ven in the length of the hub.
'i'he portion, I, Fig. 2, is a centering shoulder for the aperta:e or female flange, J, and projects far enough through the web of the wooden pulley to enter the latter. The parts being brought together, the nut is set up on the holder, as already described, by means of the wrench, K. This instrument, it will be seen, is adjustable through the whole range of ordinary line shafticg. The final operation of setting up, with the wood on pulley in position, is represented in Fig. 4. The pulley consists of eight segmental pieces, in each of which the grain of the wood is in a radial line from center to circumference. In smaller pulleys the flanges have only t wo pins; but in larger ones, four of the latter, as shown in Fig. 3, are employed. That the irons may be absolutely interchangesble, the same number of holc:s is bored in all wooden parts, whether all are to be used or not. The pulley, thus made of wood and iron, is claimsd to combine the maximum of strength with the minimum of weight. There are no keys or key seats to mar the lubs or shafting, no set screws ; while the pulley is readily detached and applied to another shaft when desired.
Paiented through the Scientific American Patent Agency, is Augustus Newall, of Chicago, IIl., Feb. 6, 1872. For fur ther particulars address the manufacturers. A. B. Cook \& CJ. corner 13th and Peaci streets, Erie, Pa. [See advertisement on another page.]

A NEW WATER PITCHER.
Unsightly spots and wet places are often made upon tables

pon which pitchers of drinking water ard placed, owing to the water, dripping from the spout, condeasing on the cold
exterior and running down, or becoming accidentally spilled in filling glasses.
The device herewith illustrated consists in forming around the base of the pitcher a gutter or channel, A, which communicates with a cup at B, in which a sponge is $k \neq p t$. The lat ter not only catihes the water which may drip from the spout above, but also takes up such as may flow down the sides and accumulate in the gutter. When the sponge be comes soaked it is simply necessary to remove it, squeez it dry, and replace it. From its position, it is always hand to absorb water which may be accidentally spilled, thus

for the olive, pink for the red, and green for the green series.

Equine Mechanics.

From recent calculations by H. Fritz, of Zurich, Switzer and, it appears that the useful work performed, per day of ten hours, at speeds of from 2.9 to 9.7 feet per second, for horses attached to agricultural implements, is as follows: Single horse to mower, $27,324,000$ foot pounds; two borses to mower (each), 17,496,000 foot pounds; same to combined to mower (each), $17,496,000$ foot pounds; same to combined
reaper and mower, $23,760,000$ foot pounds; single horse to reaper without automatic binder, $30,132,000$ foot pounds: two horses to similar implefoot pounds; two horses to similar imple-
ment, $20,979,000$ foot pounds; and finally, two horses to reaper with automatic binder, $23,960,750$ foot pounds. This, on the average, gives about $23,000,000$ foot pounds to the horse, or some 638 foot pounds per second.
The fact of the animal's gait, it appears, must also be taken into consideration, as, at a walk, the body is supported always by at least two members, while, at a trot or gallop, there is an instant when the horse is suspended in the air, to accomplish which the entire weight must be overcome. M. Sanson, who has also lately carried on Sanson, whictions into the subject, on somo in orig to gallop or trot the animal that, in order gallop or trot, the animal develops an avage energy of about 1 the weight of its body; while it walks, this is reduced to 0.05 . On weighing over a thousand horses, the above author finds that the average weight of animals, varying from 48 to $5 \cdot 4$ feet in hight, is about $1,201 \cdot 2$ pounds. Hence the necessary effort for a horee to displace his own weight, at a walk, is 12012 $\times \cdot 05=60 \cdot 1 \mathrm{lbs}$.; at a trot, $1,201 \cdot 2 \times 01=$ 120.1 lbs . At an average walking speed of 32 feet per second, the horse accomplishes, therefore, per day of ten hours, 601×115,$200=6,923,520$ foot pounds or at a trotting apeed of 7 feet per second per day of four speed of 7 feet per second, per day of four houre, $1201 \times 100,800=22,106,080$ foot pounds. Coneequently, to produce a usefu labor of $23,000,000$ foot pounds, the horse
must, when walking, develop a total power must, when walking, develop a total power
foot pounds, and, when trotting, of $35,106,680$ saving the employment of napkins for that purpose. It de-
sired at any time, the sponge can be entirely removed and $\begin{aligned} & \text { of } 29,523,520 \\ & \text { foot pounds. }\end{aligned}$ sired at any time, the sponge can be entirely removed and the pitcher used as an ordinary similar vessel. The gutter below gives it an enlarged base, and thus, in a measure, lessens the danger of upsetting. The invention might also be applied to receptacles for chemical solutions, the spilling of which would cause stains or corrosions.
Patented through the Scientific American Patent Agency. April 28, 1874. For further particulars address the inven tor, Mr. J. B. Cox, Mount Laurel, Burlington county, N. J

Sea Weeds.

At this season, when many of our readers are looking for health and recreation at the seaside, a few hints may be found useful concerning the gathering and preservation of alge or seaweeds. They rank among the most beautiful natural ob jecte, while the work of collection and mounting are delight ful occupations for the leisure bour
The best time to collect is when the tide has just commenced to flow, after the lowest elb, as the seaweeds are then floated in, in good condition. All specimens should be either red, green, purple, black, or olive; no others are worth preservation. Mounting is done by immersing a piece of paper just below the surface of the water,and supporting it by the left band; the alga is then placed on the paper and kept in its place by the left thumb, while the right hand is employed in spreading out the branches with a bone knitting needle or a camel's hair pencil. If the branches are too numerous, which will be readily ascertained by lifting the specimen out of the water for a moment, pruning should be freely resorted to, as much of its beauty will depend upon the distinctness of the branch ing. Pruning is best performed by cutting off erect and alternate branches, by means of a sharp-pointed pair of scis alternate branches, cy means of a sharp-pointed p
When the specimen is laidout, the paper should be raised gradually in a slightly sloping direction, care being taken to prevent the branches from running together. The delicate species are much improved in appearance by re-immersing their extremities before entirely withdrawing them from the water. The papers shouid then be laid flat upon coarse bibulous paper, only long enough to absorb superfluous moisture. If placed in an oblique direction, the branches are liable to run together.
They should be then removed and placed upon a sheet of thick white blotting paper, and a piece of washed and pressed calico placed over each specimen, and then another layer of thin blotting paper above the calico. Saveral of these layers are pressed in the ordinary way, light pressure only being used at first. The papers, but not the calico, may be removed in six hours, and afterwards changed every twenty-four hours six hours, and afterwards chot wasbed, it frequently adberes
until dry. If the calico be not to the alga, and if the calico be wrinkled it produces corres ponding marks on the paper.
The most convenient sizes of paper to use are those made by cutting a sheet of paper, of demy atze, into 16,12 , or 4 equal pieces. Ordinary drawing paper answers the purpose very well. For the berbarium, each species should be mounted on a eeparate sheet of demy or cartridge size. Toned paper shows off the specimens well, a neutral tint answering beat

Among the objects which attracted the greatest attention at a recont soirée of the Civil Engineers, London, was the Whitworth steel cylinder cover for Her Moj-sty's ship Rover, having a diameter of 6 feet 4 inchea, a depth of feet $9 \frac{1}{4}$ inches, and a thickness of $1 \frac{8}{4}$ inches. Its woighti three tuns, and tensile strength 44 tuns to the square inch, the elongation of the metal extending to 27 per cent before breaking.

A NOVEL NEEDLE.

The novelty in the need le represented in our illustration consists in a hole drilled longitudinally into the head of the implement for a distance of about one quarter of an inch. The interior of this orifice is screw-threaded, so that a wire sinew, or thread may be screwed into the hole, and thus securely attached in the manner shown in Fig. 1. For heavy work, such as sewing canvas or leather, where a palm thim ble is used, the usual ears may be formed on the end of the needle, as in Fig. 2, to prevent the thread from cutting.
For surgeons' use, this invention is claimed to be especial y valuable, as it allows of the employment of a smalle needle and of a single thread, thus avoiding the pain often caused to the patient, through the enlarging of the orifice made by the needle, by the passage of the double strand The finest silk thread, we are informed, may be used, with no other preparation than waxing the end.
Patented March 31, 1874. For further particulars address

VARIOUS METHODS OF COOLING AIR.

Ice, as a refrigerant, might either be placed within or without the ducts that bring in fresh air. In the first case, generally preferred by the inventors, it melts, and afterwards nerally preferred by the inventors, it melts, and afterwards
evaporates in the fresh air. The cold resulting from the fusion and warming of the water produced not being more than a sixth of that due to evaporation, it therefore follows that the amount of moisture introduced into the air is about one seventh-nearly as much as that of evaporation alone.
In the apparatus shown in Fig. 1, the air conduit, C C passes through a casing, A B, formed of a double lining. The interior space, D, surrounding the air conduit, contains ice. The next space, B, is filled with a non conductor of cold. A tap, R, lets off the water formed by the melting of the ice into a receiver, M. The air conduit, CC , is fitted with mechanical fy wings, $a b$, which increase the contact of the air with the sides refrigerated by the ice. These metal the air with the sides refrigerated by the ice. These metal

Fig. 1.-ICE REFRIGERATOR

but in different planes, which multiplies the surface over which the air has to pass. This contrivance, which manifests ingenious details of construction, may have been ap. plied with success, but it is far from being sufficiently inexpensive.
By causing currents of air to pass through vaults built at a depth of six or eight feet below the surface, they will be perceptibly cooled in summer if they are of any considerable lengih.
In ascending to the attics of dwelling bouses, the immoderate heat developed by the sun's rays is very perceptible, especially in cases where the roofs are covered with metallic substances. Now, the question is, how to turn the heat to account for the introduction of pure air. The mode of doing so is very simple. A ventilating chimney is placed on the top of the building, to which abut side props, forming a double ceiling, and baving communication by vents in the cornices. The fresh air coming from the cellare ϵ nters the room by hollow pil-

Fig. 2.-Ventilating chimney. lars or vertical props, according to circumstances; and at night, the natural heat of the sun not being available, artificial heat is employed.
Another method is the imitation of the effect of rain; it is susceptible of being used almost directly to most edifices and dwellings. Water ap. plitd in the morning and during the heat of the day not only obviates the heating of roofs, but, as long as the temperature of the water is less than that of the air, it can maintain the interior wall at a temperte
 Fig. 3.-ammonia refrigerator
denser, E, by the two pipes, F, G; the receiver, E , is also perfectly isolated. Around the serpentine circulates well water. No matter what the temperature may be outaide the apparatus, it is evident that the interior pressure would be superior to that of the atmosphere; the ammonia would therefore vaporize as well in the chamber, $b b n n$, as in the tube, $m m \mathrm{~m}$. The gaseous current being thus formed, sweep. ing through the interior atmosphere of the tubes and serpen. tines, would carry before it the air, which would be expelled by turning the tap, l. By means of an india rubber pipe placed upon the nozzle of this tap, this current would be

COOLING THE AIR bY MEANS OF Water vapor. An apparatus, upon which has been bestow ϵ d the name of An apparatus, upon which has been bestowed the name of MM. Nézeraux and Garlandat. It is composed of two distinct parts, the condenser, A, properly so called, and the re frigerator, B; the condenser is a series of tubes asiembled between two plates, forming part of a cylindrical casing hermetically closed, a pump which serves at once for circulation and evacuation, and a chimney, K, by which the air saturated with water, escapes (Fig. 5). The refrigerator is formed of a metal plate pierced with holes of small diame-

Fig. 4.-air refrigerator.
received in a vase containing water. The air would escape, ter, and of a ventilator, the current of which passes through the ammonia would remain in the water, and, when the ab sorption was complete and no more bubbles were formed on the surface, it would be seen that all the air had es. caped; it would then be nec9ssary to close the tap, l. This being done, nothing would remain in the interior but the li. quefied ammonia, the vapor of which, immediately attaining the maximum of tension, would at once fill the space left empty by the expelled air. If, then, by any accident, the temperature of the generator, B , became higher than that of the condenser, E , vapor would at once be formed in the re ceiver, B, which would proceed to condensation in the receiver, E, until the densalion in the receiver, E, until the This action would be all the more rapid
the orifice, I. The steam escaping from the cylinder pene trates to C, disperses through the space between the tuber, condenses itselt by contact, and produces a vacuum. The water, which has just condensed the steam, passes above the perforated plate, B, upon which a current of air is continually in action from above and beneath, which divides the water and instantly cools it; it falls into the tank, D, whence it is pumped by means of the tube, M, and brought back by E; thence it passes uniformly through all the tubes over the whole extent of the refrigerating surface by means of little uted pluge, or similar contrivances at the base of the appa ratus at H, by means of a pump, to be restortd to the feed ing tank. Applied to ordinary condensers, the refrigerator effects a considerable economy of water, and producesother

Fif. 5.-VEntilating apparatus.
in proportion to the rapidity with which |advantages, which it is unnecessary to mention here, not con the vapor is induced in the vacuam; cerning the subject under consideration. and would be also in proportion to the If the steam boiler and steam be suppressed in this appa condensation. Thence there would be a relation between the force of the condensing action in E , the promptitude of vaporization in B, and the energy of refrigeration of the body passing in the tubes, $x x$, and round the casing, B. Now, this body is no other than the at mospheric air freely entering at the orifice, A, and penetrating the tubes, $x x$, drawn by the increase of density communicated to it by refrigeration, and causing it to descend the chimney. If the surfaces are sufficient the temperature will remain equal between B and E ; therefore if the water which reaches the condenser is at 50° Fah., the air which emerges at the lower part will have that tomperature; descending the chimney, A A, this air passes by the conduits, S S, to freely distribute itself in the localities wher it is necoseary to produce a cooler atmosphere. This arrangement is jngeniously concetved but compllcated.

If the steam boiler and steam be suppressed in this appa retained, the apparatus shown in Fig. 5 is made.
Through the perforated plate, either of metal or some other material, P , from beneath to above, the ventilator, V , set in motion by the hand, or, in the case of a more considerable application, by some mechanical motor, keeps up a current application, by some mechanical motor, keeps up a current of air which passes through the numerous holes of the plate.
Above this plate cold water is invroduced by the pipe, T, furnished with a regulating tap; the water passes into a water pipe, whence it issues in a uniform manner over the plate, which is slanted in such a manner that the thickness of water hall not exceed certain limits; in some cases ice or chemical solutions, as those of phenic acid, may lop substituted, accord ing to the application of the apparaius. The pressure exer cised by the propelled air suffices to maintain the water on the surface of the plate, and prevents it passing to the lower part. The water flows slowly on to the plate, and, after hav ing passed over and given its coolness to the air whioh pene
trates it，finaily reaches the other pipe，by which it runs to the issue at t ；in mcst cases this water is again useful for other purposes．As to the cooled air，it penetrates into the upper part of the apparatus，escaping by the tube，E，and reaches the places whare it is wanted．

MEDICAL NOTES．

An Antidote for Mercury and Lead Wanted． It is well known that the doctors of the regular or allo pathic school insist on the free use of mercury，especially in secondary eyphilis，that dreadful scourge of civilized coun－ tries．Many of our Western and Sjuthern doctors po ur in the calomel and blue pill for almost everything，as freely as the profession used to do in former times．Since this is so， and since the other medical schools bave not yet furnished a practical subatitute for merculy，the great want in medi－ cine is a counteractor for a remedy often as bad if not worse than the disease．Chemistry and experiment must help the doctors，and still more the sufferers from mercurialization if it be possible．Chemists and physiologists long ago found two，and only two，efticient agents，capable of rendering mer－
cury in the system harmless；and these two substances， cury in the system harmless；and these two substances，
namely，iodine and sulphur，happened also to be the beat neutralizers of another common cumulative poison，lead． But the difficulty was and is to cause the assimilation of iodine and eulphur，or either．Sulphur is nearly insoluble in any menstruum capable of being taken into the stomach． Iodine is very soluble in alcohol，oil，etc．，and even in water to some extent，but largely soluble as iodide of potassium， a drug now used to excess．Unfortunately this iodide，also the tincture，are but slightly assimilated，passing off by the bladder．The small amount of iodine contained in that well known organic substance，cod liver oil，would be likely to prove more effective as an antidote to lead and mercury than a large quautity of iodide of potassium，because the organic oil enters into the blood and tissues．We put forth the sug． gestion that some vegetable may be found which is rich in iodine，also other plants，and harmless ones，may contain sulphur in an assinnilable shape，for sulphur is an exceeding ly common element of organisms in general．If we could have strong extracts of such plants，the object spoken of would be accomplished．In that case，our calomel givers could salivate their patients to their hearts＇content，and have them live through a dozen courses of mercury，a mat ter of profit and pleasure to every regular doctor．
Thousands of cases of chronic rheumatiem，as well as consumption and other fatal diseases，have been traced to the use of mercury．Lead poisoning has become alarmingly prevalent of late years，producing colic，constipation，hard oned liver，neuralgia，nervous dyspepsia，and paralysis， which sometimes attacks people even in the prime of life． We will not discuss the question of lead in water pipes far－ ther than to observe that every decent chemist knows that pure water acts on lead with astonishing quickness．To
have water pipes，as used at present，coated internally with have water pipen，as used at present，coated internally with
a sulphide or sulphate seems to be the only good practical preventive of lead poisoning．But in the case of lead pipes kept for weeks in hogsheads and barrels of ale and cider， there the solubility is certain and its effects destructive or pernicious to no smail degree．Such dangerous nuisances should be abated by law．Again，soda fountains where the water，highly charged with carbonic acid，acts on lead，and sometimes on copper iu old fountains，are things deserving of legal attention．Many of the hair dyes in market，and some of the cosmetics，are well proven poisons．

Ice as a Medicine
The great value of ice in certain diseases is not fully re－ cognized by the medical proiession，or by the public．Many years ago，it was found by one of the best English physi－ cians－we think Dr．Marshall Hull－that small pieces of ice thrust into the rectum proved a safe and spetdy remedy in cases of dysentery，where opiates and sugar of lead had been tried without effect．Very recently，that distressing com－ plaint to which old people，travelers，and others are liable， retention of urine，has been relieved by the same uee of ice as mentioned above．This plan is due to M．Cazenave． Common experience has shown that the swallowing of ice instead of ice water by people，in hot weather，is perfectly safe．

Effects of Uric acid．

Dr．Gigot－Suard has given uric acid to dogs in doses of from 3 to 61 grains in 24 hours，and continued it for one or two months．The acid occasioned remarkable morbid lesions， throwing light on a large number of chronic diseases．The alkalinity of the serum of the blood was of ten diminished， and it contained crystals of the acid and urate of soda．The organs und tiseues upon which uric acid exerted its action are， in order of frequency：the skin mucous membranes and their glands，the lungs，kidneys，liver，pancreas，brain，lymphatic glands，articulations，splenn，enveiopes of the spinal cord and heart．Various forms of disease appeared in all these parts．Cancerous and tuberculous degeneration was pro－ duced several times in the lymphatic glands．These ex． periments are very interesting，and may lead to a more ac curate view of the cause and cure of consumption and sev eral other grave diseases．

The New Electric Light．

On the evening of the 5th of May，some interesting experi－ ments with MM．Ladygin and Kosloff＇s electric light were conducted at the engineering works of Messrs．Warner， Euston Road，London．To obviate the difficulty of carbon be－ ing consumed when burnt in contact with oxygen，M．Lady gin p＇aced sticks of carbon in a closed glass chamber filled with a gas not containing oxygen；but owing to the use of me－
tallic connections，the carbon was subject to fracture．

Kosloff succeeded in overcoming the difficulties by using a special metal of which he forme the bolders for the car
rods，and these are placed in the closed glass chamber．
The lamps which were experimented with were nine in number，six of them having two carbon rods，either of which could be placed in connection with the current of tlectricity． The carbon rods were all $\frac{8}{4}$ of an inch in length，and one in each lamp was $\frac{1}{12}$ of an ioch in thickness，the others being a trife less in thickness．The other three lamps contained each a carbon rod，three inches in length，$\frac{1}{12}$ of an inch thick，and also connected with the main current．The first experimen consists in burning a carbon rod in contact with the atmos phere，the rod being consumed in a few minutes．Th current was then turned on the thicker rod in each of
the six lamps，and a brilliant and steady light was pro－ duced，which improved as the current was incrased in intensity．The reason for lighting the thicier rod first，was that it might consume the oxygen in the lamp，by which the rod was slightly reduced．The current was then directed through the second rod with equally satisfactory results in all the six lamps．The three lamps with the longer carbon rods were then lighted and successfully exbibited，changes be－ ingfrequently from the six to the three lamps and back again． The apparatus used for producing the current was Gramme＇ magneto electric machine．With the nachine running at about 200 revolutions a minute，a moderate light was obtained， which wascgreatly improved at 300 revolutions，the maximum of intensity being obtained at 450 revolutions．The strength of the light depends upon three things－on the power of the machine and the number of its revolutions，on the length and hickness of the carbon rods，and on the quality of the carbon． The experiments showed that，with the same strength，of cur rent and the same number of revolutions，double the amount of light was obtained with three long carbon rods as compared with the six short ones．The experiments demonstrated satis－ factorily the fact that the electriccurrent could be subdivided， and hence，if practice confirms experiment，which it is be leved it will，there is a wide field open for the application of Kosloff＇s system．－Telegraphic Journal．

An Unfortunate Discoverer．

W．T．writes to say：＂In No． 24 of Volume XXX of the Scientific American，Mr．John Hepburn，of Gloucester， N．J．，states，in his communication on zodiacal light，that he was the diecoverer of the glacial epoch theory，which Pro－ fessor Agaesiz only proved to be true．I do not deny that Mr．Hepburn discovered that theory；but it is a fact that Agassiz adopted it from Karl Schimper，the late brother of the African traveler Schimper，who was released by the English－Abyssinian war．Karl died in February，1868，in Schwetzingen，near Heidelberg，Germany，of dropsy and of the ill treatment by a malicious neighbor．Schimper men－ tioned this fact to me，and complained that all his discoveries had been stolen from him，and he had no power to defend himeslf against the lions of Science．In fact，they left him nothing but his law of the position of leaves．When he was dead，a valuable collection of stones，curiously shaped by the action of water，was destroyed．He was trying to find a law for such shapes；but he never told me more about it，for fear I would misuse the information，although I was an in timate friend of his．

The State of New York has appropriated $\$ 50,000$ for the rection of a monument at Saratoga to commemorate the surrender of the British army under General Burgoyne to he American forces under General Gates，October 17， 1777. The monument is to be 230 fett high．
The new aquarium，now in process of construction at Manchester，England，will be a splendid affair．The tank rontage will have a length of 750 feet．

To our Friends and the Publ c： After the full statement heret

Tith the Cust in If the whole aunories，and the sub：equent exbanstive examination In the entire remodeling of the＂Motety＂and＂Stizure Acts，＂we had not lanation Fould be necessary to add anyining further in the way of ex－ the closing hours of Congress by General Butier，certain charges were pre－ Ferred by him in his character as a Representative，upon the floor of the House，against our firm，so definte and with so niuch of apparent autho
Ity that we feol caller upon，in justice to ourselves and the pubilic，to make once more a brief statement．
The charges specifically preft rred were，in the main，
First．That we had，as a irm，attempted to defraud
vade the tatuary．In reply to importing metals，in the form of works of art and to whith General Butler referred were made before the Arm of Phelps $\mathrm{m} f \mathrm{~m}$ bers of the firm bu came connected with the metal tmoorting business the sentor member of the firm，William \mathbf{E} ．Dodge，being at the time en－

NEW BOOKS AND PUBLICATIONs．
THE Brooklyn Council of 1874．With Documents and au Brooklyn Council of 1874．With Documents and au
Otticial Report of the Proceedings．New York：Wool－ Oticial Report of
worth \＆Graham．

Sixth Annual Report on the noxious，Beneficial，and Other insects of the State of Missouri．By Charle V．Kiley，State Entomologist
Th＇s is a document to be read att．ntively by the scientist，naturalist，and the farmer；and its value is not conined to the eaterprisiing srate withen pub－
Hishes it．Professor Rilley has a profound and minutely accurate bnowledge of the intereating and complicared sclence to whicu his life has been devo ted；and hls reportase part of the contemporary history of our country， and should be circulated everywhere．
The Law of Design Patents，with Digests and＇Treatise By William Edgar Simonds，Counsellor at Law．Price
$\$ 4.50$ ．New York：Baker，Voorhis \＆Co．， 66 Nassau street．
The Supreme Court baving recently passei，somewhat fully upon a desten patent cause，the author has deemed the present a it：ooportunity to col late cases on the subject of design patents，and to present them digested
and supplemeuted with deductive comments in the volume above named． The status of these patents has heretofore not been unattended with doubts；and hence the present work，alming as＇t does to cover the entire
field，and to glve a clear comprehension of the dectsions of the courts on the subject，will doubtiess meet with a ready welcome at the hands of the profeston
OLD and Nrw．The July number of this admirable magazine，edited by Edward E．Hale，opens a new volume，the teutn．For vigorous thought，
entertalning and useful contente，the magazlue has no auperior．$\$ 1$ a year Boston ：Roberts Brothers．
atrow＇s New Yore：City Directory for 187f－75 gives bome interestin statistical information regarding the fucrease in population of the metrop．
olis．Last year，thenumber of names contained was $228.161-$ this year it 2i8．Last year，thenumber of names contalaed was $2: 28.16$－this year it in
229，503．Estimating eamh name as the representative of tive persons，an agmentation of $\overline{, 000} \mathrm{nn}$ population in incated．The volume contains newly engraved and excellent map of the eity，includiug the two new
wards recently added．The arrangement of names，etc．．is the same as in former years，and therefs a very large number of advertisements of proml nent business houses．Published by the Trow City Directory Cumpsny， 1 University Place，New York．Price six dollars．
Inventions Patented in England by Americans． ［Complled from the Commissioners of Patents＇Journal．］
ar truck and axle box．－a．Higley，Cleveland，Obio．
Clothes Wringre．－T．G．Corilise，New York cli＇y．
Folding Brdstrad．－E．E．Everitt et al．，Philadelphia．Pa．
Harness．－I．M．Singer（of New Yors city），Palgnion，Englan Making Paper Boxes．－H．R．Heyl．Pnilade．phia．P」
Making Stench Traps，ftc．－W．a．Butler．New Yo

zerent simerican aud fortigu zeatents．
John R．Wilds，Brookiyo，N．Y．－This ingenious invention is something which is much needed upon city horse car llues，where it is a dally occur rence for cirs to run of the track，causing vexatious delays to the pabsen gersand very severe work to the horses．The device is simply an iron plate
grooved beneath to fit the rall，and havlug finges to secure it thercto． From themiddle of the replacer au irregular shapod groove tuclines down－ Ward to the rall in each difection．The plate extends over the outside of
the rall，and has two oblique channels which totersect the grooves．This the rall，and has two oblique channels which intersect the grooves．This
part of the replacer is supported on the pavemant．The c：annuels extend from the center of the replacer，and toelline downward in each directlun
fo as to terminate at the bottom outasde of the＂tread＂of the rall，to re－ 8o as to termingate at the bottom outstde of the＂tread＂of the rall，to re－
ceive the flange of the wheel of the displaced car，and to conduct it uo to ceive the flange of the wheel of the displaced car，and to conduct it up to
the canter，and then down the longitudtal groove to the rat1．By Bllf htly modifying the form of the grooves and the rails may be rtpiaced in the same manner．Thetnvention may be applle
or to the T ralls of locomotive roads．

Impreved Watchmaker＇s Tool．
Julius F．Young，Owatonua，Minn．－The cbject of this invention is t furnish means for reducing the tension and elasticity of hatr springs of watches，so as to vary the time or action of the watcl movement trom
fast to slow，as may be desired．There is an adjuatable rest，which is de fast to slow，as may be desired．There to hold between it and a stationary stand any diameter of watch balance wheel with the hair spring and darts conn cted therewith．Th1
b rest is adjusted by a fuger scre w ．The balance wheel with the hair spring
betng thus con ined，the end of the hair cpring 16 taken hold of wita a palr betng thus confined，the end of the hair epring 15 taken hold of wita a palr
of pliers and is gently drawn along under spring clamps which are screwed
 of any suitable kidd，the hatr spring mas be reduced so as to alter the run． ning of the watch from five minutes to an hour and a balf int wenty．four hours．When the clamps are raised，the hair spring is allowed to slip back
by its own tension，so as to assume its former diameter，and ts readily by its on
recolled．

Improved Hog Trap．
James M．Overshiner and George M．Overshiner，Elwood．Ind．－This is an mproved trap for catching and holding hogs．In using the trap，the end ls opened；and toe hog beting driven into the trap，the lower end of a
lever is moved out ward to open a space large enough for the passage of the bog＇s bead．As the hog attempts to eac ipe，tne lower end of the leve
is moved fimard，clasping the eog＇s neck and holding him securely，a paw is moved inward，clasping the nog＇s neck and holding him securely，a pawl
locking said lever in place．The hog can zow be conventently operated locking sald lever in place．The hog can tow be convenienily operated
upon as desired，there belng suntable devices lor placing the aulual in

James J. Martn. Houst $\mathrm{n}, \mathrm{T} \mathbf{r x}$.
metal box adapted to be fastened to the side of the platiorm of the car. The box ts open at the top and at one end so that the stanchion cad be curned down on its plvot by the slde of the platform to be out of the way
a spring is arranged in each box to so act on the atanchion as to hold it the upright positic n; also to hold it when down. The invention also con sists of a metal bar on the laside of the stanchion, extending from the plat. form nearly to the top, and having a screw boit at each end passing torough for clamplng side boards to the stanchion when a temporary box 18 wanted
for the platform. Tnis bar draws back into a grcove in the side of the for the platform. Tnis bar draws back into a grcove
post, flush with the surlace, when it 18 not to be used.

Improved Thill Coupling.
Eli Quatntance and Remus D. Hale, Transtrille,
Eli Quaintance and Remus D. Hale, Transitilile, Ind.-This invention thon of the plates shall enter and be embedded in the rubber spring. It also conetsta in a novel mode of holöng the rubber by a tongue projecting
from the cross bar of sxle clip. The ends of a T journal pin form jeurnals from the cross bar of axle clip. The ends of a T journal pln form journals
in jaws. One Jaw of cach parir sioted from the top to the journal hole In Jaws. One Jaw of cach par is slotted from the top to the Journal hole
Iron plates, when the tongue or shaftsare turned to an upright position, will pass througla the slots and allow the tongue or shafts to be detached. Betwe, n the jaws and back of the journal pins are pleces of indla rubber which are for the puroose of preventing ratiling, and are held in place by
means of the tongues of the cllp bais and narrow ribs on the back side of means of the tongues of the clip bars and narrow ribs on the back side of
the T journal pins. When the tongue or ehaftsare in use, it is imposible the T journal pins. When the tongue or ehaftsare in use, it is imposible
for them to for them to become detached. B.
are difconnected in a mument.
Sylvanus bartlett, Westport, N.H.-The sim set.
Sylvanus bartlett, Westport, N. H. -The ssw set is of the usual shape and
material. A U.shaped gage plece is applied around the rear and atdes of the anvil, aujusted by a screw bolt and set nut, and is Hxed frmly in position by a set serew, so that the stdewlse projecting front ends of the gage lmproved Railway Rail Joint.
ansou B. Johnsen, Washington, aesignor to L. Jonnson, Vincenues, ind. -The ends of the ralis ase curved outwardly, and in the apace thus formed fs placed a metalinc tongue. The latter has central projecting shoulders
whith form a support for the top part of the ralls. The top part of the Whtch form a support for the top part of the ralls. The top part of the
tongue forms continuuas connection with the top part of the ralls, and llows the smooth passage of the car wheels, without battertng or otherto the crosstie by spikes placed into grooves of the base flanges of the ralls
and tougue, in the usual manner, passing through perforations of the base plate.
Improved Washing Machine.
James L . Austia, Little Rock, Ark. - In using the machine, the driving oller is ralsed out of the suds box by means of levers, and the clothes to e washed are sprtad upon the exposed part of an endless apron. The rlea between aprous and two other sets af rollers. The clothes are made to pass bencath the driviug roller, and are again carried in between the
endiegs aprona, and will thus contunue to circalate until thoroughly cleansed.
lmproved Combined Lamp Collar and Shade Holder. George W. Hadteld, Brooklyn, N. Y.-The collar is applited in the usual
way. The shade holder to atfyed by supports to a base ring. which is made way. The shade holder is a filised by supports to a base ring. which 18 made
of such a size as to fit upon the coilar. Upon the outer surface of the latter is formed a screw thread, into whtch fits the screw thread cut upon the inner surface of the base ring of the shade holder. By thismeansthe shade as to be entirely indeptndent of the burner, and allow the burner and chim. ney to be conventently attached and detached and replaced with new ones without disturbing the shade holde

Improved Clothes Frame.
Oleau, N. Y.-This Laven
 parallel bars joined by horizontal rods. The two clothes-suapending frames
may be set in an fuclined position, the upper and overnanging frame being not in use.
Improved Hat Ironing Machine.
ux, Oravge, asd Louls Drovou, Newark, N.
Antolne Giraux, Oravge, and Louls Drovon, Newark, N. J.-This iuven. thon consists of frons suapended from balance lerers by fiextble Jofnts, and of levers arranged on swinging supports in such a manner that the labor
of presenting and holuing the frons to the work is imaterially lessened, and theironscan be applied and the pressure regulated to better advanand
tage.
Improved Mitten.
John I.. Whitten and J. Hermon Whitten, Burlington, $\mathrm{V} t .-T h e$ essential feature of this invention is in so cutting the parts as to form the mitten
or giove without a seam on the paimo or luner side of the thumb, and so as to bring the seam on the outside of the finger, and aoove the ball of the thumb.
lmproved Satety Guard Watch Chain. Robert A. Johuson, New York clty.-This is a useful device for connect.
Ing a watch with a guard or chain in such a way that the watch cannot be
detached by twistlag oft the ring frum the stem. It consists of a short extra chato, one end of which to attached to the guard near the ring, and
its otuer end ts secured to the stem. By thits construction,stould a plekits otuer end ts secured to the stem. By this construction, should a plek-
pocket get hald of the watch and twist oft the stem rig, the safety chain
will not be carricd off. This will prove of vaiue to people who are obilged to not be carritd off. This will prove of vaiue
do much craveling in New York atreet cars.
Improved Sewing Machine Treadle.
Dantel E. Lill:, Jackson, Mich.-A
movable footboard is attached to a cranked rod, so a to shift on it crossmise the length of a slot, in whitch is a binding cirew for holding it in any adjustment. Guide rods attached to
the footooard side thercon. The adjuatment is made to allow the operator to so place his feet upon the board as to work it elther by a swinging leg movtment or by an arkle movement.
Denuts Warner, London, O.-A rubber oulb clasps the
with its open end, and bas a difecbarge tube placed at one side and near the front end. The latter bas walls parallel on the inner side througbout tos eugth, the cnd vetng a flat surface or a little concave, and at a right angle
to the axis ot the buib. The device drops by pressure, the same sized tube and callterdropplog equally well all degree of fluldty, from sirups to ethe and chloroform; it also enables the operator to time the frequency of the drops, so as to make an accurate count.

1mproved Excavator.
Ignacto Arcos, San Aotonto, Texas. -This invention consists in a scoop
sugpende d in ajustable supporta by chains to a crank axien suspend d in acjustable supports by chains to a crank axle provided with
arms, to the exiremitles of which are attached ropes that are wound around a windlass. Sald scoop is raised or lowered through the agency of the
 vided with shafts.

Improved Apparatus for Steaming Grain. wheat is subj cted to the action of steam as it passes downward through cylinder. Iu the latter is first a hopper, then a conical plate, apex up ward then another hopper, another plate, and so on,through and over which por
tions the grain passe s, alternately contracung and expanding in its flow. I the tube which supports the contcal plates are made apertares throug which steam is conducted to the interior of the cylinder.

Improved Candlestick for Christmas Trees. George W. Reessing, CEicago, Ill. This is a candiestick, the socket
which is composed of a coll and the fastening device of a stem, the latte beling arranged to cr
port for the casdie.

Improved Miner's
Nells Larsen, Mill Clty, Coll. Ter.-A Andle in is riveted in one spring, and passes through the other extremity so that the spring can pread or move outward freely. An elongated curved end of the spring the blades of a penknite are a ha thus provided with a conventent combination instrument.
Improved Miter Box.
$\begin{gathered}\text { Calendar Potter, Blomsburgh, Pa.-The object of this invention is to } \\ \text { construct a miter machine which may readily be set to any desired angle }\end{gathered}$ construct a miter machine which may readill be set to any desired angle out loss of time. The invention consists of a plvoted saw gulde, which is whtle a second lever c?nnection, operated from the opposite side, adjusts he stops which deane the angle of the saw galde with the central axis for cutting the miters.
Improved Pump.
Willagn Urquhart and John U. Livingaton, Weat Hoboken, N. J.-The pumpa may be double or single acting and of any approved kind; but it it They are seated on a plate, which bolts to standardsand has a slot throuph which a suction plpe projects : also branches connecting the suction with the outside pumps, fastening them by a washer and nut applied to the
Improved Can for Cooling Milk duriug Transportation.
George w. Fluke, Mount Pleasant, Iowa.-Tris is an improvement on George W. Fluke, Mount Pleasant, Iowa.-This is an Improvement on a
milk can patented by the same inventor, March 3 , 1874, No. 148,14, by which milis can patented by the same inventor, March 9 , , 884 . No. 148,114, by which
the ice chamber may be made in smaller size, saving space in shipplng the ment consists in proviting the ice chamber of the millk can with an inside Ilinng of wood at the slde wall. top, and bottom of the same, with the ex-
ception of the portion of the main can inside of the ice chamber. The in. ception of the portion of the matn can inside of the ice chamber. The in-
clined false bottom is grooved at the under alde for conducting the meited water to the extt opening of the true bottom
Improved Inking Apparatus.
Gilbert E. Jones, New York ctty.-This improveme
Gllbert E. Jones, New York clty.-This improvement consists in the substances, which find thetr way into the ink fountain, are apt to collect on the under side of the knife and form pads which press against the roller od wipe off the nk from the surface thereof. The effect of the movemen of the blacesadded between the roller and knife is to dislodge the pade
before mentloned, thus insuring the supply of an even flim of tnk to the

John E. Slelton, Hickman's Mills, Mo.-To a ahor.
cured two parallel disks, in which are formed numerous small fquare holes. The outer edges of the disks are connected by short vertical bars. To which aresecured plates, which are made of such a size as to turn freely between the disks. The latter are also perforated. By thls means the milk is anely divided, and is thrown into numerous currents and counter currents, bringing the butterin a very ahort time.

Improved Illuminating Roof Plate.
Niels Poulson, New York city.-This invention is an improvement in
illuminating plates for roofing purposes, and consists in providing the Illuminating plates for roofing purposes, and consists in providing the
shauks of the bull's eges with lugs incllined upon their upper side, to adapt them to be firm
are Inserted.
Willam O. Strong, Ypsilantit, Mich.-Egg carriers formed of siltted and Interlocked paper strips soon become useless in consequence of the pro-
Jecting ends of the strips becoalng broken. And when the slits of each strip are on one alde thereof, instead of belng alternately arranged, it is imposible to ralse the carriers from the trays in which they rest without
disconnecting all or part of the strips. To remedy these and other objec tlons, theinventor connects the projecting ends of the strips to the side of
the exterior cross strips by means of linen, muslin, or other suitable the ext
fabric.

Improved Plow

Jullus Hartmana, Gllmmu's Point, Ky. The mold hoarda are hlaged to the one side or the other, the moldboards are thereby adjusted at ditteren agles, one coact as a landside, the other to turn the furrow like an ord nary moldvoard. These parts
of a lever and notched arc bar
Improved Composition for Emery Wheels and Whetstones nation of the ashes of Dark with a cutting grit and cementing material, 1 the manufacture of emery wheels and whetstones for the purpose of form ing a stone of effictent cutung power, the friable ash performing the away, and thus leay ing exposed a sharp cutting surface

Improved Rub Roll for Condenser Cards.
解 place.-This inven socen on it, and so constructed that it fits on the spindieof the rub rolle nicely. It ti stcured by a nut or other meana, so that it can be readlly
taken off and another put on. A new feather can also be put on when the old one is worn out, without disturbing the spindle.
Improved Hay Cart.
John Rumrill, Salina, Kan. - This invention relates to means whereby hay, after having been cured in winnow, nayy be raked and carried to the stack by one c nntinuous operation, thereby greatly lessening the usual
labor and the customary waste by hauling it or by dragging it with horses and circumjacent ropes or chains.

Improved Railroad Bed.

George Potts, Unionport, O. -Thls invention consists in a continuou
elastic bed for a rallroad rall, which alspenses with sil ordinary forms of fasteninge for the same, and allows it free vertical movement. To this end, the fron rails rest lengthwise on wooden sleepers, and are secared by
chairs which are bent in ward at the top to form flanges that bear on the base of the rall. Thus the rall te
chairs and the wooden sleepers.
Martin Kurtzeman, Crestine, 0 . - This invention rel
Martin Kurtzeman, Crestine, O.-This invention relates to that class o drawheads of two cars come into collision, and are automatically coupled
dita the object betng to relleve car couplers from the usual perll of their occu-
pation. The invention consists in an uncoupler of a very peculiar con struction, and which seeme admirably adapted to accomplish its pur

Improved Screw Plate.
George D. Dean, New York ctty, assignor to Frank G. Green, same
place. The object of this invention 18 to furnish a conventent and effctent neans for cutting screw threads on gas pipes, in the operation of putting such pipes into bulldings. The invention consists in a screw or die plate,
in which are comblned all the standard aizes and threads used for the parin which are combined all the standard sizes and threads used for the pur
pose, with a gulde for each die, the dies and guide holes being arranged in pose, with a gu!de for each die,
conventent and compact form.

Harvey M. Kelley, Irving, ill.-A Atrong ring fit
mffletree, and apon the end of the Opon the formand and eye formed upoa the one side to recelve a hook long and fitting upon the whifletree, which have upon their ends in wardly projecting prongs, which enter the wood and prevent the clip from being closely upon it near the ends of the straps and closely confine the asme in
place. It to secured in place by a place. It it secured in place by a acrew. The eye of the hook ts made
open, and with its ends tapering and overiapplag each other. The itag open, and with its ends tapering and overlapping eac
oye,and atraps are casc of malleavie 1 ron, in one plece.

Willam H. Grimproved Corn and Cotton Planter. ad, same place-The corn part and the cotton part of the to M. J. Strick rated by a partution. In the cotton bopper there are two samp oo a hort. seed through and preventing the throat from clugging. By the side of these sa wi is a spised conical block, also on the shait. to woris the cotton seed down to tne sams. This shaft has a pulley putside of the hopper, on
whtch a belt works from a pulley on the drum shaft, to turn sald shaft.

Improved Planter, Cultivator, and Stalk Chopper. formed a bow, so that it may readily pass over tall plants without break Ing or injurtng them. Beams are secured to the ax'e and pass dacis paral
lel with each other, and at right angles with the axle for a abort distance and are then bent outward at an obtuse angle. The rear parts are held by an arch, in the top of whtch the hanales are ingcried. The rear parts of
the handles are held at the proper elevation bya U-shaped brace, the bow of which is secured to the arch. The farrow is opened to recelve the sfe and the plows, which are bolted to standards which swing upon the axil plows enter the ground,may be regulated at will. In aduasting the machin for use as a cultivator, the furrowing plows, the shattsand hoppers, an thetrattachments, are detached, and three, or more standards, provided
with suitable plows, are placed upon each of the beams. To the rear ends of the beams are detachably attached standards, having outwardly pro.
jecting journals formed upon thetr lower ends to recelve the small wheels by which the rear parts of the machine are supported.

Improved Horse Power-Improved Baling Press. tion patented by the same inventor, June $25,197 \%$, which was a plan fo
 bore of sald wheel was made large and fitted on a hollow stationary centic or Journal. In the present inventlun thesame plan ts made avallable for
further simplify further simplifying sucl machines, and economizing space by greatly
enlarging the central opening or the hollow stationary center circle, so that the drum itself is placed within the hollow jouraal, and the hight of the machine thus materlally lessened. Hence, the invention consists of statlonary circle or hollow center within which the drum ts locat ed, and
which forms the journal for the wheel. The sanue inventor Which forms the journal for the wheel. The same inventor bas also de hsed an improved baling press, which is particularly adapted to baling
cotton, in consequence of the pressed materal being open to recetve the cloth after passing from the press box. The cotton is deposited into hopper. whence it falls of its own gravity into a press bix and is forced against a head by a plunger, which is operated by an eccentric through a
connecting pltman. Any cotton overlapplig the plunger is folded down Dy a roller sugpended by springs in the end of the hopper, and passes be This operation is repeated until the bale is built up in sections, having all of its sides clear of all obstructions for putting on the cloth. The bale. after being ted off, is removed by slacking back ou the friction head, which
is then placed againat the frout of the press box, ready for the next operation.
Improved Seed Planter.
John Johnson, of Perry, and Lather W. Ingram and John Harper, of
Naples, ill.-This tnvention tmproves the construction of the seed planter Naples, Ill.-This invention improves the construction of the seed planter for which letters patent No. 28,490 were 1ssued to John Johnson, May 29 ,
1860. The front frame consists of two cross bars, connected near their ends by two longitudinal braces, to the ends of the former of which runners are bolted. The lower parts of the latter are recessed to recetve rotary utters, which cut through roots, sods, and otber obsiructions, and thus
revent the seed-dropning device from catching upon them. revent the seed-dropning device from catchtng upon them. Dion the runners are formed double share plowa, by which the furrow is opened to
re:etve the seed, which is introduced through a vertical hole in sald runers. The seed then falls upon the wide flat part of the furrow before an oppers , in. The upper parts of the runnersare recessed to end of the rod passes to the dropper's seat, and is secured by a nut. By sultaole mechanism a boy, stting upon the seat, can readily vibrate the
hoppers to drop the seed. The bottom of the hopper has two holes formed through it, of such a alze as to contaln enough seed for a bill, and is recessed to recelve a small circular plate, which has two notches cut in its edge, at a intlle distance from each other, to allow the seed to pass through
the holes in the hopper bottom. The part of the plate betwecu the to the holes in the hopper bottom. The part of the plate between the
notches is placed directly over the hole, through whtra the seed pasies to the ground, so as to serve as a cut-off, to prevent any more seed belng opper. The sides of the furrow are pressed in at the rear of the plows by he concaved rims of the

Improved Cotton Planter.
William T. Huff, Atlants, Ga.-The rear and lower end of a shoe rests in
notch in the upper part of a spout, which pasees down between, is ecured to, and supported by bars pivoted to the rear uprights. The bars rest in inclined grooves in the sildes of the apoot, are clamped to the same,
and are bent inward and forward, so that thetr forward ends may be upon wheel at a little distanc om its which are passed ars drop from one pin to another, which jars the spout and shoe, and causes the seed to pass out regularly

Improved Churn.

Asa Palmer, La Cygne, Kan.-This invention relates to an oscillatiog hurn box, having vertical spring supports, and secured thereto by ciampag devices. Alteveris detachably secured to the upper ends of the springs er down, and at the same time hold the cream bor in place upon the springs. The dasher is formed of a serles of slats, aet inclined. In operativg from one end of the box to the other through the dashe , ithe inclination fthe slats throwing it into numerous currents and into violent agitation, allght push being all that fery required to keep it in motion. Improved Folding Cot Bedstead
Werdell Wright, Phoulcia, N. Y. - The legs at each end are connected by
tranaverge rall, and are plvoted to the side ralis so that they will readily old back against ine inner sides of the side ralls. When the bedstead is in use thelegs stand bractng, and are supported by the hend and foot boards, The foot board is pivoted, so that it will fold down between the side rafls. The head may also be pivoted so as to fold in a similar manner. By means fa projection on the head and foot boards, the legs may be more perfectly upported than they would be by the ralls.
Improved Truss.
William Sutelds, Mount Sterling, int,-The is a conventently and easily pplled aral truss or bandage for

Jmproved Oro "Separator.
ell, Brigham ctty, Otah Ter
Pentecost J. Mitchell, Brigham city, Utah Ter., aesignor to himself and e, which is suspended in the vat from a rock shaft, drops, when let fall, on bars supported by sprit. gs. Below
the steve the vat is hopper-shaped, with passages through it, having an the sleve the vat is hopper-shaped, with passages through it, having an
adjustable gate. Belowthe vat is a recelver, into which the matters fall car. The matertals then pass thrompartment of a descend nog reciprocatiog gamator and Into a baotn, over the top of the lower end of which the light matters pass off with the water, leaving ores not previously collscted depoitied in the bottom of the basin. The sieve may be lifted ap at any time
above the top of the vat by a lever, and be apung forward over the gide of

Wusintes and etersonal.

The Pickering Governor, Portland, Conn Patent for s.ale low! Brouks' Stean, Clothes
Water.

 halance in fastening. One pulley sent on trial to any
part of the U. S . For desirlption and address, see th1s
number Sceenurici Amer rican.

 A first clase Machinist and Tloolmaker wants

 Chesturt Sts., Pulaselppla, Pa. Write for circulars. For Small sizes of screw Cutting Engine
 Mechanicel Expert in Petent Cases. T. D. Sure cure for Slippiog Belts-Suttor's pat
ent Pulles Cover is marranteato to do doutee the work

 . Woilers and Engines, Second Hand. Egber

 touching iltele butons on the deasg of the managere
 for shops, offles, dwellings. Works for any distance.
Price 55. F. C. Beach \& Co., 263 Broadway, New York, All Fruit-can Tools, H erracute, Bridgeton,N.J Brown's Coalyard Quarry \& Contractor's Ap-
paratus for hotsting and conveying materials by iron For Solid Emery Wheels and Machinery, Lathes, Planers, Drills, Milling and Index
Machines. Geo. s. Lincoln \& Co., Hartord, Conn. For Solid Wrought-iron Beams, etc., see ad-
vertisement. Address Union Iron Mills, Pittsburgh, Pa., for lithograph, e
Hydraulic Presses and Jacks, new and sec-
ond tand. E. Lyon, 470 Grand Street, New York. Peck's Patent Drop Press. For circulars, Small Tools and Gear Whee is for Models. The French Files of Limet \& Co. are prothem. Dectded excellence and moderate cost have made there America, 20 Platt Street, New York.
Mining, Wrecking, Pumping, Drainage, or Irrigating Machinery, for sale or rent. Dee advertise-
ment. Andrew's Patent, inside page. Automatic Wire Rope R. R. conveys Coal
Ore \&c.. Without Trestle Work. No. 34 Dey street, N. Y A. F. Havens Lights Towns, Factories, Ho-
tels, and Dwellings with Gas. ${ }^{34}$ Dey street, New York. Bert Philadelphia Oak Belting and Monitor
sttched. C. W. Arny, Manufacturer, 301 \& 303 Cherry Temples \& Oilcans. Draper, Hopedale, Mass. Dean's Steam Pumps, for all purposes; Engines, Bollers, Iron and Wood Working Machinery
all descriptions. W. W . Chase \& Co.. 93, 95, 97 Liberty streec. New York
Emerson's Patent Inserted Toothed Saws,
and Saw Swage. See occsaiongl advertisement on outand Saw Swage. See occasional advertisement on out.
side page. Send Postal Card for Circular and Price List. side page. Send Posta, Bard er Calls, Pa.
Emerson, Ford \& Co., Beaver Fore
Iron Roofing-Scott \& Co., Cincinnati, Ohio. Price only three dollars-The Tom Thumb paratus, for sending messages, making magnets, the electric light, giving alarms, and varlous other purposes,
Can be pat in operation by any lad. Includes battery key and wires. Neatly packed and sent to all parts of the world on recelpt of price. F. C. Beach \& Co., 263
Broadway, New York. Millstone Dressing Diamond Machines-
stmple, effective, economical and durable, glving untSimple, effective, economical and durable, giving unt-
veraal satisfaction. J. Dickinson, 61 Nassau St., N.Y. Rue's "Little Giant" Injectors, Cheapest
and Best Bonler Feeder tin the market. W. L. Chase $\&$

Keuffel \& Esser, largest Importers of Draw
tng Materialgs have removed to 111 Fulton St., N. \mathbf{Y}. Portable Engines 2d hand, thoroughly over.
anuled,at X Cost. $1 . H . S$ shearman. 45 Cortlandt St., N. \mathbf{Y}
 Buy Boult's Paneling, Mrulding, and Dove-
alling Machine. Send for circular and sample of work.
 For best Presses, Dies and Fruit Can Tools
Bilis\& willame cor. of Plymouth \& Jay,Brookly Protect your Buildings-Fire and Water-
proot! One coat of Gllnes' siate paint is equal to four

 Oo., 6 Cedar St., P. o. Box, 1761, N. \mathbf{y}.

2ncticis

$\underset{\text { A. G. says: I have a small sectional steam }}{\text { bot made of galvanized sheet tron } 1.16 \text { of an tnc }}$ thick. It is made in the best manner, of good iron, thoroughly soldered and rivetel. How much pressur to the square inch will it stand? How large a cylinder
can I make for my englne, to run 200 revolutiong a min. large a balance wheel should I have? A. The boller
will safely sustatn a presture of 40 lbs . per suare if well bullt. Calculate the number of square feet of oring surface that it contains,and allow 15 square fee
for a horse power in the enkine. You can then propor for a horse power in the engine. Yo
thon your engine accordingly, by r
frequently given in former answers.
J. B. asks: What is considered a good re-
sult as the temperature at which the products of combustion escape into the stack? A. With natural dratt,
the gases should leave the boller with about the temperature of the steam. Your other questions can only T. J. M. asks: 1. Where is the greatest
pressure on a boller? If take a barrel and dill it with water, and then put in several pounds of gold in the runit up fifteen feet to the bottom of a reservolr full of water, where would the greatest pressure be? A
On the botrom in each case, that ts, if we have the cor
M. F. K. asks: Will it take any more pickgo across the base of the same mountain? The picket dicular over the mountain. A. No.
W. A. W. asks: 1. How, when, and where
did the April fool custom originate? A. There are many different opinions on this subject, the most com mon one being that it originated from a custom of the
Hindoos. 2. Can you tell who was thefirst black man and where he lived? Was it the climate that mace hitm
black, or was the color natural? A. We expect that no ellow can find answers to these questions. W. J. R. T. asks: 1. Is it known to be true
that the moon has no influence upon the tides of our globe? A. No. . Has it any on the vegetable king
dom, orin any other respect? A. Not drectly. . It
the former is correct, what then causes the tide in the he former is correct, what then causes the tide in the
Bay of Fundy to rise to such a great hight? Is the Guif Stream the reason of ft,by expansion by heat? A. It is
on account of the furm of the coast. 4. It would shorten he seaway coustderably to certaln ports of the Pactifc
Ocean if the Isthmus of Panama were cut through ; why as this not yet been done? A. There are many in favor

een wanting

W. N. J.-Lava in cooling absorbs water
C. B.'L. asks: 1 . Are aniline colors poison-
ous in any was? A. Anlline ts potsonous, but tis salts are generally considered harmless. 2 . I saw in your pa-
per a iectpe for keptitg per a recipe for keeping glue soft, by mixing a little ni
 your paper? A. We think not. As to your other ques-
ton, we have repeatedly given rules on the subject, D. M. M. asks: Can you explain to me the
princtples and workings of the hydraulic jack? Can I construct a small one? A. It works on essentally th same principle as the hydraultc press. By addressing
manufacturers you can obtain illustrated circulars, ex plaining the construction. You can construct
Jou do not employ any of the patented detalls.
C. W. W. Says: I am constructing a small square, and perpendicular to the surface of the water, hat is, ilke the end of a drygoods oox, will the helm act,
or will it be powerless unless a portion of the under part of the boat's stern ts cut away? A. For an ordinary rudder, you must cut away so that the water can get at
it. But if you are very deasirous of bullding the square
stern, you can steer with a rudder placed like an oar, 0 as to act at
E. W. R. says: 1. I am tending three en-
gines. One is an 85 horse power, of which the silde valve is beginning to wear. Is this the fault of the engineer, or is it incldent to all engine watch are in constant
use? A. It is not necessarily the fault of the enginerer. Cate be due to poor construction. 2. In Bourne's Ct foot of of team at a given pressure would just fndt
cate one half the pressure if the cate one half the pressure if the space should be doubled.
There arehere 6 bollers 1 de by side, three in a set \cdot each has three gages of water. I let the fire go out under 3
of them, and blow off the steam. The other 3 have 60 ibs. pressure. I open the connectiog valve, allow the
steam to gan the same presure in each sta and the
steam if so, please explain. A. Bourne's rule is approximate y correct. As we understand your mode of making the experiment, three of the bollers are forming steam al
the time, having fre in them, and the other three ale the time, having fre in them, and the other three also
make some steam, because the water has a greater temperature than that due to a pressure of 48 lbs . per square inch. 3. Comstock's "Phllosophy" says that if you stand a pork barrel on end, insert a 2 inch plpe 50 feet
high, and fill it with water, it would break the barrel ine saida a Inch pipe would do to tuast as quickly as a 12
inch plpe. Is he right? A. Yes.
w. H: S. F. F. ataks: ways dion your igsue of May

 to point out the true csuse of this occastinal phenome.
non. I have known surveyors to be greatly puzzled by it. It has happened often in my own experience, and is due to frictional electr'ctty, produced by rubbing the ther, when there glisitlle motsture in the air and none on the fingers. At snch a time, should the surveyor tu the woods find any small leaf, plece of a twig, or bark from
a tree, fall upon his glass near the point of the needle,
 elactricty, and he is surprised to tind the needle glued
ast to the glase, where it will remain for a long time uless he happens to know the cause and the remedy of the
rouble. The glass must at once be moistened; there is no water at hand, he should spit upou it and
rub it all around with the tinger, whereupon the needle will be Instantly relleved. I have often intentlonally electritied my glass in this way for the amusement of
the curious. So far as my experience teaches, this is the only cause of the phenomenon, and G. F. S. or any
ther surveyorcan prove the correctness of the soly other surveyorcan prove the correctness of the solu
ton on any day when the required conditions exist, by
R. asks: What amount of coal is used in 24 verpool trade in ordnary weather: A. It varites from
2 to 60 tung a day according to the size of the vessel nd the power and conatruction of the eugine. R. L. M. asks:
weight welghing 50 lbs. strike on falling a distance of
 op proportional to the moving force or the momentum of the welght, whith is found by multiplying the weight
Inound by the velocity in feet per second, and divild. ing by 32.2.
I?. W. B. asks: How are tables of logaror instance, log. $2=0 \cdot 301030$. By what calculation is the
 such calculations are made is the development Into a
sertes, by means of the binomial theorem. It would oc cupy too much space to give a full explanation in these
columns. You will flid the matter fully explained ti Law's " Treatise on Logarithme," Weale's serles.
D. G. asks: Is there any means by whic
gas can be obtained and ueed for light while the coal betng used for heating purposes? Is it possinle to do it ? A. Yes. In the manufacture of gas from coal, the coa s used to heat the gas retorts; and the remainder is
sold in market as fuel. The gas compantes here sell argequantities or coke.
$\underset{\text { W. W. S. says, in reference to the " blowing }}{ }$ p" question: "If the person lying down does not in
nale all he can, and hold his breath, and the lifters do not both inhale and exhale (no matter if they do work
together) it is impossiole to raise him without straining the fingers while lifting: so it is not imagination that prevents the hiftera i om feeling the weigl.t. If pozsi-
ble, please tell me why we can raise a person by . So fa
dify our as
previous answer, belleveng that the princtpal benenit
the Inflation is to makeall the lifters act together. J. F. asks: 1. Does the outside of a belt run
faster than the inside: A. Yes, when an engine is on the up or down center, the plston is not exactly in the middle of the cylinder. I Bay it must be in the midddle of the cyllinder when it is on the
up or down center. Which is right? A. Your friend. up or down center. Which is right? A. Your friend
3. Is the Science Record printed every year? A. Yes
As to youreugine and boiler questlou, you do not seni
B. B. B. asks: 1. How large a pipe is needed cets, from a tank 40 feet above the place supplled, all
the faucets to be on the one pipe? A. It should have narea at lesst a squaretnch at bottom of sald plpe? Is there a work on this subject that will answer all such questions? A. Divide the hight in feet by $2 \cdot 3$, which will give, approx nch. 3. Is there a work that treats on steam piping and heating by steam? A. We do not know of any ant. We can, however, recommend Trautweln's "En. Fineer's Pocket Book," and
Ventllation and Warming."
W. H. S. asks: What is a sill level with
when you use a correct spirit level on it? A. It is level $\underset{\text { graphy used in America? A. Yes. } 2 . \text { Is this process }}{\text { W. T. asks: }}$ patented in the United States? A. No. With a boring bar (not having a sliding head) on a slide athe, sald cyllinder betng bolted to the carrlage and fed shears? I contend thatit can be done only when the
barand shears are parallel It bored when the bar is bar and sheark are parallel. It bored when the bar
not in line, the cylinder uas be straight but cannot be round. A. A cyllnder bored by a bar cut of true with
the lathe shears will be true whether the cyllinder feeds o the bar head or not, the only result of the bar belng out of true is that the cylinder will be thinner at oppo-
ite ends on opposite sides; the bore will not be true with the outside of the cylinder but true of itself, ne-

H . W. S. says: We have a boiler carrying
10 lbs . steam. If we put tn another bolter of stimilar ize, connected, would 55 lbs. pressure on each boller do he same amount of work? If so, how would youcal-
culate the horse power of an engine under such ctr cumstances? A. It would not, under ordinary circumstances, with the same engine. We have frequently
given rules for calculating the horse power of an en-
R. Z. J. asks: What kinds of lenses are used in a wonder camera. What is their size,and how many are here of them? What are their focal distances, and vex lene will do. Its size, focal distance. etc., depend upon the screen. How it of tived in the to tube can be seen by inspecting any photographer's camera. The
wondercamera is now sold by opticlans and wondercamera is now sold by opticians and in many
tos tores, and can be purchased a t prices ranging from
\& to 81.

 thoned in your remarks. ana that B can only perform
about 1.6 of a circle avout J. There about 1.6 of a circle avout J. There is evidently some.
thing about it which I do pot understand. Will you explain in your answers in correspondents how B can rected from D and E? A. The circles were drawn for
nete
the eake of the explanation, and not to indicate that B me sake of the explanation, and not to insicate that B chade a complete revolution. That a clrcle can be
changed into a stratght liue is manifesily impossible
with the device with the device. Its ooiect is simply to do perfectly
that which Watt's and other What which Watt's and other like mechantim does in-
perfectly, that ts. to convert curvilinear motion into $\underset{\text { S. K. asks: }}{\text { S. }}$. What is the new parallel ectilluear motion, or vice versa. In any machine, suita. ble moditications betng made in its form to suit varslog
circumstances. 2 Is the walking beam still used on circumstances. 2 Is the walking beam still used on
steamboats? A. Yes. 3. How is the parallel motion f theplston transmitted to the beam? A. There are Engine," or any other standard work on the same sub.
E. W. B. asks: How shall I make a sand
wheel for wood? what kind of sand shall I user, and how shall I fasten it on? A. Make an ordinary wood hen coatit with glue (about a foot at a time), and cover It with sifted white sand (sea saud will do) while the
glue is hot, pressing the glue on with a piece of board. eleather may be recoated as G. C. U. asks: 1. If the equatorial diameor?
or or? A. Beccuse the source is further from the center
of the earth's gravity than the mouth. 2. What is used to petrify human bodies? A. See p. 22, vol. 29. 3. Can
you give me a rectipe for stickligg paper together? A. se a stiff mucilage of gum tragacanth. 4. Who found d the order of Free-masonry, and in what year? A.
Theorigin of the order is tooanclent to be deflitely
L. B.-This cone pendulum is a heary ball
and rod, suspended from a tripod of brass tubes by four bits of watch spring, of which two are at right augles ot the others; so that the ball may swing in a circle. The
clock hasa brake wheel, which Is controlled by an elecromagnet, so that the pendulum must rotate once in

 hat size and welghtshould the ty whcel be? Areports \% x s inch to Iarge for such an englue? A. It wiil be
ufficlent to make it of such a well proportloned to the rest of the machine. The
team prefsure and size of ports will probably auswer ery well. 2. Is the D valve used in locomotives? A.
No 3. Can a perfect cut-oft be obtained at any point With link motion, by having a cut-off liver? A. No. \&.
Woult you have given a ditierent answer to my previus questions, concerotng steam engine eccentrice, had
sald "belng link motion engines in both cases? A. No. $\underset{\text { artesian well after coming to water, so that the wa }}{\text { W. H. }}$ er will flow out at he top? If Istrike water at 40 peet
 G. J. L. says: I an building a small steam moothly andfast until water st turaned on to the pump,
hen fit draws the water nutil the water cylinder is full, hen it draws the water until the water cylinder is full,
and then stops. This trial was with a block tin boiler, er cylinders are both the s amesize. The steam and wand 1\% inches stroke; both have sllde valves alke; it is
oright, about 9 inches high, turnin? a balance wheel inches in diameter. The steam cyl ider is at the top. Is it possible for me to get it t_{n} th ow water at all
with both cylinders of the same $\begin{aligned} & \text { ow } \\ & \text { If po, by wbat }\end{aligned}$ neans? CGuld it be run well with a veryhigh head of
team? What pressure of steam would run it? Would botler and furnace combined, 14 tocaes hiph and 8
nches in dameter, do? The furnace takes up 7 of 14 nches, leaving the boiler 7x8 inches, with 12 one inch
lues. The total heatiog surfa tit of the luding the top, which would have considerable beat on it, on account of all the heat and smomber elle.ecting
there to get to the smoke stack) would be 2 square feet. This is the largest size of boller I can put to it. A. We
sueject that the trouble arises from improper adjuet. ment of the water valve. The present boller is very
mmall, and so ts the oue that you propose. Still, you F. J. says: I wish to suggest a change of manufacture of low pressure engines. Pass a etream
of water from the tender on the cyllider from whtch the steam 18 transferred to the condenser. This will di-
minish resistance, and the steam will be condensed with peric pressure. Hoitzontal cylinders would no atmo equally heated.and the heat of the outside of cylinder would be disposed of. The cylinder would not con-
ract. The beat of the piston would radiate, diminishrictlon tilly to cleave to the cylinder and reducin ritction. A. This would be golng back to old practice.
t ts desirable to prevent, as much as possible, all con-
M. D. says: : I have a vat of 300 gallons of
inuid which I wieh to keep below 70° Fah. Having a Istern 6 feet square with 3 feet of water, I propose to
 allons vat through the plpe, back in under the 300 galon vat. I can fix a pump to raise this 150 gallons of wa-
er, and runt through the plpes, using 2 , coo foot lbs. to
 J. A. S. asks: What is the best process for andit timber? I bave a steam chest which I ase, but
annot accomplish a eatifactory iob. I often see the most fragile wood which bas been bent without the
least crack. I have reference to fork handles, shovel handles, wagou tongues, etc. A. It is done by pecuring
the piece to be bent a t timilate, and bendir it little
by little, aftersuccessive steamings, if necessary.
D. S. Hasks: 1. What fraction of a horse
 be boller c coor pound for 4 or 5 hours. Does this mean sision of
horse power? A. Yes. 3 . What tis the beta applitanc to prevent telts sllpotng on a wooden puliley? A.
make the face of the pulley as smooth as poseltle.
$\underset{\text { F. M. says: A frest of mine, in speaking }}{\text { cosich }}$ ing without friction according to the laws of mechav
 Torm a couple, ench moring with a force in the tivers at gravity. Whereas, in our solar syatem, there are many bodies, the moving ferce of each is one of a
couple, the other beting the mass of the primary on the oppusite side of the center of gravity; there belng,

J. W. C. asks: How can I stick the bottom the goblet will make a atandard tor the globe, and the joint be wateroroot? A. Use some of
ot the drug stores for cementing glase
J. C. W. asks: Can salt be used more than
once it making tee cream, or does contact with the tre chemically change it tito a different artucle from chlor Ide of sodum? A.It 18 not ctan Ded. The
cecovered by evaporation and used agaln.
J. D. L. asks: With Mr. Ericsson's floating he elde of it, would at not draw the ball over to that F. M. F. asks: 1. Can you give me a recipe
that will preserve a minnow, so that tit will be texibe, to he used for bait? A. Try dipping it into glycertin.
e. Wull m:neral water keep if caretully sealed? A. Yes. L. M. asks: Is there a material, a a good non-
conduct or of heat, that is sultable for covering glase blowers' tools? A. Po
liar to that mentlooed.
J. E. L. asks: 1. What will be the best
metbod for reftratag solder? A. Re-meltiog. 2 . What

B. W. S. asks: 1. Is the atmosphere heavier
or lighter on a cloudg, lamp day?' A. The latter. 2,Why is that smoke arises so much more slowly on a camp day ? A Because the welght of the column or air
which isgues rrom the chlmney and contains the emoke is equal to or greater than the welght of an equal bulk $\underset{\text { Mhtcknees of ice, when freezing, occur on the ouper or }}{\text { M. }}$ Wower side of the tce? A. On the lower side.
J. A. H. says: An almost insuperable ob by parttes for thetr private ase ond pleasure it the re, lcensedengi cerra and ploto. Is there such a law so, Whydoesit not apply equally to New York as to
Georgia and Florida?
 let to other partles, the case comes under the United
F. H. A. asks: How is the gilding put on
 parts water with 5 or 6 caustic soda, and rinse in free water. Thun ateep for hali a minute in a pleckle of 1
part sulphuric acid in 10 water, and rinse with bolling
 per or brasa un 1111 is covered with a merallic coattig,
whicn will be the work of a few momente. If the de. posit ts black and dull, scratch-brush it, and dip again
H. J. F. asks: Can you give me a recipe Injuring it? A. When we know the character of the
Aediclue, arecipe can be given for removing the stail
 ,
H. A. B. asks: How can I soften finished sh? A. Place the fintisued work in a box made alritigh with clay, and nuck around the work shavings and turn ngo of the same metal as the work 1talfif let the bos be
kept in a furnace sumflelent time to heat the work to dall red, when the furnace fre may be allowed to go
out, and hence the box to cool gradually ; or otherwlbe, take the box from the furnace and cover it with ashes 114 me or sand, so as to cooll gradually, and your rind
work will be ooftened withouc losing Its fnish.
F. C. B. asks:
core of an indaction or Raumkorit coil be to produce
 A commutator s sreses to break contact or send the cur.
rent in etther colls ncheres in diameter and 6 tnchees long give? A. Thls depends upon the s'ze and qual
aloo upon the constructlon of the coll.
A. asks: Please give me a method of mix
 ng in initation of the growth. . Cannot get the white
shade behtod the penclltog. A. Grounds for grainlog are made of white lead colos pose

 is it for use.
H. W. D. asks: What is good for a pain in been aflicted with a pain in the lo wer part of the spine tor about eight years. Wonld Dot electricty, applied
by a good operator, be good? The splal marrow and nervea appear to be affected. Would not electracity
nend to trritite and excte the nerves?
A. Electricty under the dircection of a physiclan skilled in these ma J. S. asts: How can I bend glass tubing? tipe, tin the fame of an ordinary gas burner. It should
be held tn the aame direction as and not across the be held in the same direction as and not across the
dame. When it softens take it out, and bend very gent. I. Repeat until the proper curvature 18 obtalined.
This method gives a beautiul curve. When coll, wipe

 out and
in the
in 1 recelve my ghare of water. In order to have the wa
ter run out of te hole ter run out or the hole,.I put in a stratght compression
cock, in the plpe leading from the tub: and closing sait cock would back up the water and make it run as I de
ared for a tew dayasthen nediments of some kind wour
 mould get more than my share of water. The wate er at the spring. Can I make a filter of some kind to put in at the epring.which would be better than a strai ou can overcoreth matter in the pipe? A. Probabl will give the full opening of the plpe.
T. M. J. asks : 1. Water is composed of be separated? A. Yes, by the galvante current. 2.Are
ginger dring tinjurlous to the health? A. No, 18 no aken Immoderately.
G. B. S. asks: In your answer to L. E. R. for a polish for walnut, you say: "Melt 8 or 4 pleces
sandarac of the size of a wallut, and add 1 plnt bofled Oll and dram Venice turpentine," etc. You must use all. You can disolve it in alcohol or turpentine, bu
it will all curdie up as soon as it 18 mixed with the ont A. Melty yo
ing hot oil
P. S. asks: 1. Will it do to run lightning rods into a clatern of water outside a house? Would in
nume the walls of ihectetern? A. The walls of youn clttern would probablyrematn intact unt11 the llghtning ald drawn together and down one rod to the clitern A. There would be nothlng galned by multiplying the potnts 1 in the way you speak of. The
oodsconsitst malny in thelr toutness,
P. says : I have a piece of machinery with
polisbed irco shafts. It tand in a damp place. What varilsh will etlectually prevent rust, without injuring varibh wine enectually prevent rubt, without inuring
the pollined surface?
buy P. V. J. asks: 1. In working a telegraph
he keys and recelvers of which are ${ }^{\text {of of a m mile apart }}$, do I need an intensity or a quantity battery, and ho zinc of one cell with your copper or platinum of the second cell. 2. In what proportion ehould 1 mix sul. huric accld and water for a G
D. H. H. asks: 1 . Is the black lead known
German lead (not piumbago found anywhere eiles than in Germany (Bonempa)? A. Yes, in many place
in this country. 2. Is it suppoeed to exist in sufficlen quantity to supply the large demand for it for found last mavy years.
F. E. W. says: Some lime ago I noticed tokmarks? Your anaw er was, I thnk, that jou knew
of nothing. I have just come scross the following: Rub well with a aelve of pure acetic actl and lard, the Fith ha solution of potasb, and finally with hydrochior
 Whille. When the new ktIn grows the marks will hav han the Indian ink stalns. They amount to oan ahbo R. 1
R. F. L. asks: 1 . What preparation can ing up on the face? A. There ts no effective method of wheels. 2. What ktnd of paper is need for small trit Hon wheels, and howls it used? fanges, with or without glue, or is it put on in layer
with
gup with glue? A. Paper friction wheels are of thick brown
paper, put together in layers withont glue, under hy
F. H. . . aeks: Will you give me a rule for
and In any part of the world, as clocks. require longer or
shorter rods according to locallty? A. We euppose you refer to the leugth of the seconds pendulum. Tit leng in feet $=8 \cdot 26058-0.008318 \times$ the cosine of twice the lath
tude of the place.
Having found the length of the sec onds pendulum, that of any other can r radilly be calct Iated by observing that the vibrations made by two pe dulumg, In a given tit
roots of thelr lengths.
S. R. L. asks : What sized boiler shall I use wetght and tize of the fin wheel? Ah Calculate the probablepower from the proposed speed and presure,
and allow from 15 to 20 oquare feet of heatung surface
 er. welkhing from 50 to 60 lbe.
F. H. asks: I am using a powder, for weld caustc sod the welding properties of the powder? It Is very bad
for the health of those using it; and if you could inform ne of some fux that It could use for welding steel rall ta very hlg h heat, to keept hem from cracklng, 1 would in the market, but we know very yltte in regard to the mertis. If you tnsert a notice in our "Businesg and
Personal" column, you will probably hear from the manufacturers.
 here be any difference in power if each engine had a separate ex baust, and does not the exhaust of one engtine
hrow back presare on the other? A.It dependa a deal upon the eize and arrangement of plpe. II proper
I y proportioned one 1y proportloned, one plpe will answer as well ast tro.
As to your query on water plipes, you do not tend sulf clent detalls.
G. A.N. asks: Will a boiler $10 \frac{4}{4}$ inches di aneter 22 inches high, with 26 one tiden tubes 12 nche of sufflecen capactity to drive an eng Ine of 2 Inches bor 7 Inches stroke? What presure would such a bot
arry with safety? A. The boller is rather emall.
W. H. S. says: In an argument on cannons world were made to England. This the American would not admut, ,8aying that the 20 Inch guns at the Ripraps or
Fortress Monroo, were the heavieat A We belleze

 th urine or of of turpentine.
E. W. eays that W. E. M. can bleach tallow keep it hot at least 50 minutes, then dash water tinto it nd stew the water and tallow for a few moments. correctiy done, the tallow will be in small lumps like
hot, or butter
ske he tallow and melt it again, remove all tre water an str the tallow while coollng: this makes good tallow
tor some purposes. I do not know much about an en Bne eyllinder; but for launchlog a ahlp, the tallow mus ee freshly rendered beef tallow. Five per cent of mut ion tallow will spoll lavochng tallow. Mutton tallow
will not sllp like beef tallow. Tallow can be heated untll It will scorch $\frac{1}{}$ feather with out apparently injur ing lit but 1 t will not silp after that, but will dry like
ingeed oill. For riction, use beef tallo wrendered inneed oil. For friction, use beef tallo $\begin{aligned} & \text { rendered be- } \\ & \text { fore decas commences, }\end{aligned}$ mith but Ilttle bolling; for belte
 it will not sllp.
J. H. J. says, on the subject of draining a
 ng in below the wall. In such a case the cellar wall
hould be bullt on a trench flled with broken stone. That tile or a broken stone drain to an a ajolning 10 ground. My walls not having been so bullt. I proceed
d thus: I made a allght trench at the lnner foot of t. uter whll, so as to catch the dranage, which was all made an outside draln, five feet deep to one foot deen的 whtch Ilatd a brick dratn (brick on edge covered
 nformant to the ontrall of the covered dran, take my cane, removes few leaves which had gathered upon he opening, and forthwith a bright stream of water would dow out. At the same time when I made these
dratng, Id da a well t one of my cellars to the gravel bed below (12 feet) walled it with bricks and covered it ecurely. Into thls well are made drains, 10×12 tnches ilied with broken stone and covered with parth, which keep every apartment dry. I have no need of cenien
and prefer the dry clay. Beds of solld clay have drain age seams in them, which would not be suspested
Many years ago I purchased a lot adjoining my ow rounds; this lot had on it a small brick house, ude Which was a cellar so frequently filled with water tha tern. Withtu my own grounds I made a large cave covered with logs and earth, for storivg vegetables in
winter. At times the bottom of the cave would be a most filled with inflowing water. To remedy this, Idu
and walled a well in one corner of the cave down to the gravel. The remedy was complete, and after that the
cellar spoken of, distant sixty feet from the well, was

Minerals, htc.-Specimens have been re ceived from the following correspondents, and examined with the results stated
W. S. V.-No. 28 does not contaln tellurlum. It con talns silver, copper, arsentc, and antimony, and the
green color is due to the second and fourth of these substances. No. 26 is a variety of the rare mineral or hite, having a spectif gravity of 8.74 . No. 271 sa var ety of serpentine of unusual harduess and high spectic varlety bowente; No. 29 is prehnite.-P. S.-No. 11 muphibole. No. 2 is ferruginoas sand rock. No. 3 quartz. No. 4 is quartzite with yellow ocher. No. 5 is
minute rock crystalis on bluith quartz. No. 6 is pe magnetic oxide of tron.-D. B.-An analysis of the clay
hows sillica, sillcate of alumina, and lime (very smal quantity). It will not burn to a stone when kept make heat forn to a monne?
S. C. H says: I have a drawing in Indian ak on tracing cloth. I wish to mount it by pasting o a paper background, and then varnish the surface. What
kind of paste and varnish should be used?-W. C. asys: in your last Issue E. H. R. asked : In the driving whee
of a locomotive, where does natural phillosophy plac the fulcrum, the power, and the welght, respectively think that the axle bearings are the fulcra, the pres
are of steam in the cylinder the power, and the locomo tive the welght. [This general idea is correct, but some modifications are required. Perbaps one of our read rs will point them out.-EDs.]-J.A. asks: What is th og to stop water in rock boring? The bore of the pre nt hole is $5 \$$ Inches dlameter and 500 feet deep; we are
going to bore 500 feet more of $2 \Varangle$ inches dlameter. $-W$. Cilnk that will not rub off formula for a jet black sten cll ink that will not rub off when handled or exposed tc
the weather?-F. W. M. asks: How can I stain bamboo and rattan a black color?-M. J. S. aske : How can luk ribbons for band stamps be saturated with inks of ciff ferent colors, and how are the inks prepared ?-R. S
asks: How can I take the moldiness out of hams? What willpreventa ham from molding without injuring its laste ?-W. H. G. asks: What will protect gold jewelry rom the stain caused by beat of the blaze while soluern the wrong place.-J. S. W. says: We all know that
when a fresh green board or plank is frstexposed to the air, it will shrink from ite original size. Now if hole be drilled in the middle of it, say of an inch in diameter, will the hole reman of the same size? Will it
shinnk longitudinally or transverse? y with the shap of he plank, or both? W. F. W. asks : How can I glaze ares?-O. P. B. asks: How can I paint an outalde doo

COMMUNICATIONS RECEIVED.

The Editor of the Scientific American cknowledges, with much pleasure, the re cipt of original papers and contribution pon the following subjects:
On Railway Earthwork. By J. B
On the American Log. By S. B.
On Cobalt and Nickel. By G. W. B.
On Raiding Ants. By J. S. D.
lso enquiries and answers from the following:
C. W.-W. N. W.-H. W. D.-F. W.-F. H. D.-G.
B. S.-G.S.R.-T. H.W.-R. A.

Correspondents whose fnquiries fall to appear should repeat them. If not then published, they may conclude
that, for good reasons, the Editor declines them. The hat, for goos reasons, the Editor declines
addre: of the writer should al ways be given.
Several correspondents request us to publish replle
o their enquiries about the patentabllity of thetr venitons, etc. Such enquiries will only be answered by letter, and the partes should glve their addresses. Correspondents who write to ask the addreas of certatn
manufacturers, or where specifled articles are to he had, also those having goods for sale, or who want to find partners, should send with their communications a me head of " Bust co cover the cost of publication under devoted to such enquirles.
[OFFICIAL.]

Index of Inventions

Letters Patent of the United States
were granted in the week ending June 9, 1874,
and rach bearing that datr.
[Those marked (r) are retssued patente.]

Fire kindler, Long \& Coates..............
Flax hackling and comblng, , C. C. Todd
Fleece from a card, dividina, E. Bede... Fleece from a card, divlding,
Floor. fireproop, A. Beckwith.
Flou bolt, Flo in bolt, J. T. Fertig Food, preserving, J. P. Sc
Frutt dryer. E. Bradfield Frult jar. C. G. Imlay
Furnace for reduclng lead ores, E. Bassett.... Furnace for roasting ores, P. J. Mitche Furace, hot alr, J. V. Mathive
as, water, w. F. Browne
Gas, hydrocarbon, G. Olney............. Gas regulator, vulcanizer, G. M. HopkIns

Gate, farm, M. Willey.
Grate and hearth, fre place, F. stith... Grate bar, J. B. Larkin.... rinding and polishing wh Hammer, claw, C. Parker.
Harness, breast collar for, G. P. Cole...
Harness, spreader for double, W. Truax
Harvester, , potato, F. M. \& W. Bush
Harrester rake, g. H. Cllinton...
Harvester rake, P. J. \& M. M. Ley...
Hay tedder, J. Taylor
emmer, Terry \& Waterbury
Hloge. bliod, B. D. Wash burn...
Hose nozzle, W.J. Baldwin
Hoze plpe nozz.e, s. C. Wentworth
ce, a aparatu for gathering, 1. Cos
Ice cutifr, C. Finger
Ivory, ornamenting
Klln, lumber dry!ng, H. E. Well
nittlog machine. Platt \& Stanber
Ladder, step, J. D. Winslow
amp, J. II. Irwin.
Lamp extiogutsher, E. Platerman
La-d, cooilig, A.M. Warthman. Jr
tins, R. C. Schenck, Jr...
 Locemotive drive wheels, bulancing, H. F. Shaw ubricating device, S M. Feeziler.... Iarble, imitating, D. K
Mildew to fabrics, preventing, A. Davi........
ilde ω, preser ling setaes, etc., from,R.Marc
Irror bracset, H.s Wood..
Molding apparatus, W. J. Reagan.
Moldings, pollehiog, G. G. Cochran
otion, converting. T. Worswick.
Motor, wind and water, J R. Howell
cickel plating, H. T. Brownel
hlers, etc, securing necks of, c. H. Hall
Pant, fireproof, o. s. Beale
Paints, lead, C. C. Rueger.......
Paper bag machine, G. Dunham
Paper puip grinder. F. E Hitching Paper pulp, spool heads from, J. C. Coburn
icture holder, stereoscope, J. L. Bates... Picture holder, stereoscope, J. L. Bate
Pipe, rallway tank water, 1 . . Crane. Ptman coupling, Z. M. Drew Plane, B. F. Burllngton ..

Plow, M. Barry .

Plow, J. W. Thomas
Pow, G. B. Vaugha
Press, cotton. H. B. Hardy
Pater's furniture J. J. A. Karner
Ra11way frog. C. c. Shelb
Razor strop. O. B. Howara
Ruler, parallel, P_{*} O. Soper
adale tree, G. Theobald.
Saw gummer, J. H. Martin.
Saw mill head block, M. Albertson
ande beam, F. Fairbaaks
Seat, school, G. H. Grant......
Sewing machine for quiltiog, M. A. King
Sewing machine feed, D. M. Smyth
Shawl strap plate, H. Speer.
Shingle machine, E. Anderon
Shlpe, etc., iron, W. Donaldson
Sart bosom stretcher, W. Harris..
Shot, sample case for, c. B. Tatham
Signal apparatus, electrle, J. Buchte
zere., rom ore, extracting, Doaglas et al
Skate, roller, J. H. Fento
arner, bob, J. Llt
Sod cutter, cled crusher, and harrow, H. Poo
Sona warf, etc., apoaratus, J. Mathews
Spring. ellptic, J. E. Jeffrey.............
Sprinkler supporter,
Squares, stamping carpenters', C. s. Bement.
tamp, perforatiog, J. Sigwalt,

tove, base-burning, H Greent
stove grate, C. Fulton (r)
Storeptpe shelf, Chamberiln \& Douglas

CANADIAN PATENTS.

ibt of Patents Granted in Canada May 29 to June 10, 1874
,498.-I. Atkinson, Hamilton, Ont. Improvement in proved Process of Treating Meat by Compression. May 29, 1874.
U.S., G. G. Reby U. S. Improvements on lubricators for steam en
gines, called "Mc ciog's Steam Lubricator." May 29 1000.-T. Lalor, Toronto, York county, Ont. Machin for locking cells and other gates, called "Lalor
Slmaltaneous Locklng Apparatus." Mey 23,1844 . s.501.-A. E. Sallsbury, Martin, Ottawa county, O
U. s. Improvements on barrel heaters, called " A. E. Sallsbury's Barrel Heater." May 29, 1874 . ,502.-J. Lydiatt and E. R. Kent, Hamilton, Ont. Im.
provements in glass furnaces, called "Lydiatt's Improved Glase Furnace." May 29, 1874.
county, Smith and G. H. Comer, Oskland, Bran county, Ont. Improvements on h
"Smith's Hasp Lock." May 29, 1874 .
ty, o., U.S. Improvements on combined thrashin grain- 8 eparating, and clover-hulling machlnes, called
"Bradley's Oscllating Board." May 29,1574 . 505.-L. K. Drew, Magog, stanstead county, P. Ment on Carriages." May 29, 1874.
Wis., U.S Immphrey, Sharon, Walworth county "Alpine Arufficial Marble." M3y $29,1874$.
s,507.-H. Cotrell, Newark, Essex county, N. J., U. S,
Improvements on machinery and tools for cutting turning, molding, saming, and polishing atone, called
"The cottrell Dlamond Stone Cutting Machinerg." May 29, 1374.
s.58.-s. P. Ol
Improvement on a machine for gumming saws, called "OIney's Saw Gummer." May 29, 1874.

$$
\begin{aligned}
& \text { oft, Wayne county,MIch., U. S } \\
& \text { eesters, called "Howe's Eure }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Harvester." May } 29,1874 . \\
& \text {, } 15 \pm 0 \text { - E. A. Sreet. Lynn, Essex county, Mass., U. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Improvements on hydraultc hose, called "Street" } \\
& \text { Hydraulic Hose." May } 29,1874 . \\
& \text { B,511.-E. E. Wheeler. South Norwalk, Falrfeld county }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Con. Improvements in wheels, called } \\
& \text { Imp.ovtments in Wbeels." May } 23,1874 .
\end{aligned}
$$ the construction of gang plow frames, cal

klingon's Gasg Plow Frame." May 23, 1874. 3,513-J. H. Blessing and F. Townsend, Albany,
conty, N. Y., U. S. Improvements in steam called "Blessing's Steam Trap." May 99,1874 . ${ }^{5}$. 3,514.-E.Erans, Lynn, Essex county, Mass., U.S. Im-
provenente on attachment to gas burners, called
'Evans' Gas Burner." May 23, 1874. 515--J. L. Spragae, Hermon, St. L.amrence county,
N. Y., U. I. Improvements on mllking stools, callpa
" Sprague's Comolnation Milking Stool." May 29 , "Spragae's Comolnation Milking Stool." May 29,
1874.

3,517.-A. D. Cable, Montreal, P. Q., asignee of
Murray, Cambrldgeport, Suffolk county, Mass., U. S .
Improvements on fancets, called "Murray's Improve
Fancet.". June $8,1874$.
518.-A. D. Cate
518.-A. D. Cable, Montreal, P. Q., assignee of L
Dauze and E. H. Boyce, same place. Improvement
Danze san e. H. Boyce, same place. Improvemen
on lifting jacks, called ". The Young Samson." Jun
on 11844.
8, $189 .{ }^{2}$.
prove. M. Jones, Brockrlle, Leeds county, Ont. In
provement on tucking devices, called "Jones' Tuck
ing Device." June 8,1874
tog Device." June 8, 187
ments on the manufacture of steel, and welding stee
ments an the manafacture of stee, and welding steel
and ron, called "Absterdam's Process of Manufactur
log Steel and Welaing Steel and Iron." June 8, 1874.
,521.-T. J. Reynolds, Irvington, Washington county
III., U. S. Improvements on ralloy switch count
'Reynolde' Rallway Switch." June 8, 1874.
Me., U. S. Whiswell, Portland, Cumberland county,
"Wiswell's Canadian Automatic Benefactor.", June

fer dams, calied "Lister's Improved Coffer Dam."
June 8, 1874.
ments on locking nuts or bolts, called "Ellis' Lock
Nat. J. Gune 8, 1 and E. S. Coon, Watertown, Jefferso
county, N.
county, N. Y., U. S. Improvements on spring be
bottoms, called "Glli\& Coon's Improved Bed Bottom.
June 8,1874 .
Improvements in corsets, Pled "Eanty, IJwa, U.
Corset." June 8, 1874
527.-H. Gross, ClncInnati, Bamilton county, o., U. s.
Improvements on mall bags, called "Gross' Mall Bag."
June 8, 1874.
3.523.-F. W. Bectswith, Merrickville, Leeds county, Ont
Improvements on washtng machines, called "Th
3,529.-J. Benvett, St. John s, N. B. Improveruents o
paper files. called "The Parallelogram Paper Fille.
Jnue 8 , 874 .
June 8, 1874.
3,530.—B. Ward,
530.-B. Ward, Dundas, Wentworth county, Ont. Im
provements in spring needie circular kntting ma
cnines, called "Ward's Improved Presser for Circula
Knitting Machines." June 8, 1874
,531.-E. Newcomo, Westbrook, Cumberland county,
Me., U. S. Car replacer, called "Newcomb"s Cer
Me., U. S. Car replacer, called "Newcomb's Cer Re
8,532.-J. Bradley, New York city, U. s. Improvement
In apparatus tor ventliactog rallroad rars, stes mboat
dwelling places, and other like places, called " Brad
dweling places, and other like places, calied " Brad
les's iaprovements in Ventllating Windows." June
1874.
3.583.
Improvements in hatchwass
Improvements in hatchways for hoist wave in stores,
factories, and other buildings, called "Meaker's Im
provement in Hatchwayd." June 10, 184
s54. - S. Scholifeld, Providence. R
mente on sawe for logging,
ming Saw." June 10, 187 .
,535. -J. Dawson, Greenwood, McHenry county, Ill
U. S. Improvements on machines for cutung bolt
called "Dawson's Improved Bolt Cut ter "
called "Dawson's Improved Bolt Cutter." June 10,
1874.
3,566.-A.C. Rand, Minneapolis, Hennepin county, Minn.
,536.-A.C. Rand, Minneapolis, Hennephn county, Minn
U. S. improvements ou gas retorts,
Improved Gas Rentort." oune gas 10. 1874 .
U. S. A new car coupling, chlled "Barker's Improve
Car Coupling." June 10, 1874.
,538.-F. Hungerford, Rochester, Monroe county, N. Y
U. S. Improvement on furnaces for burning onl an
otber llquids for generating steam, called "Hunge
,5s9.-G. G. Felland, Hudson, St. Crolx county, Wis
U.S. - Improvements in antomatic registering grain
meter, called "Felland's Improved Automatic Regl
tering Grain Meter." June 10, 1874.
3,540. - G. J. Colby, Keading, Hillisdale county, Mich.
U. . Improvements on washing machines, called
"The Coloy Waeher." June 10, 1874.
gavertisfuruts.

Engravings may head advertisements at the same rate per
linee by measurement. as the letter press. Advertisemen
must be received at publication ofice as early as Friday
Planing a and Matching

SHINGLE \& BARREL MACHINERY

 MPORTANT FOR ALL LARGE CORPO

FOR SALE-One half in terestin a rich bed LEILNER, Ge evas. w. R. R,Ga.

Mahogany,

Mazaw w wawqua

PIPE FEITTING

Last Chance

 AII EASY FORTUNE!Fifth and Last Gift Concert Panlic Librarar of Kenticky.

JULY 31st, 1874 .

hist of gifts.

Agent and Manager.

Paid
BLAKEES STEAMTPUMP
R. BAII \& CO.,

WOOD WORKING MACHINERY.

July in, 1874.]
Šrientific Antericatu.

New and Important Work on Paints.
JUST READY:

A COMPLETE GUIDE FOR COACH Painters,
By M. Arlot. Translated by Fesquet. 12 mo 81.25 Sign Writing and Glass Embossing. By Painter, Gilder, and Varnisher's ComPas Theadove.
 HENRY CAREY BAIRD, INDUSTRIAL PUBLISHER,
40f WALNOT STREET, Phladelph

Cooper's Engine \& Mill Works, First-Class Stationary Mngines,
 Third - Steam jack ted cilinders, itted with patent
 PORTABPIFEM' ton coal, of $8,10,20$, and 25

 LATHE \& MORSE TOOL CO.,

MACHINISTS' TOOLS

The best and cheapest P a

THE PRATT \& WHITNEY CO., Hartford,

$\$ 70$ andir The Toll-Gate! Prize Plecure eson treet An
 Tho A mercicung Tarbino Wator

PO WHELTION OF SPEED ON WATER
 $\overline{\mathrm{K}} \mathrm{KYOLITE}, \mathrm{FLUORSPAR}$, FLINT, SI SI

 1832 ${ }^{\text {suncNu }}$

PATIENTS

The publishers of the Soirntific Amrrions hav orelgn conntries for more than a quarter of a cen
ury. More than firty thousind inveniors have varled themselves of their services. All patents se
cured through this agency recelve a spectal notice in the cientific American,
inserstions examined, and adviceas to patentability free. Patents obtained in the best manner, and with as itt Pedelay as posible.
Caveats prepared t
Caveats prepared from either model or drawings, and
filed in the Patent Offce at short notice.
Special examinations as to the patentability of inven special examinations as to the patentability of inven
thons made, at the Patent Offce, on receipt of mudel o drawtng and description; cost for this search and re-
port, \&5.
Trade Marks.-The necessary papers for securtng Trade Marks.-The necessary papers for securnng
protection to manufacturers and merchants in thit Dealgn Patents, for protecting artists and dealgners
Deatry and abread are of any new ornamental work, are quickly and cheaply btalned through this offlce.
Copyrights obtalned.
Forelgn Patents are sollcited in all countries where full particulars, malled on application.
Canada Patents.-Canada is one of the best countries
for patents. The cost depends upon the length of time for which a pate
on application.
their models and drawings, and advise with them as to obtaining patents without conaultation fee. Ever
kind of information ktnd of information pen
abroad cheerfally given
Send for pampnlut, 110 pages, containing
directions for obtaining patents. Address
MUNN \& CO.,

MAGNETS-Permanent Steel Magnets

E. M. TAYO'S PAT. BOLT COTTER
$\mathrm{W}^{\text {HETHER YOU WISH TO BUY OR SELL }}$

RISDON'S IMPROVED TURBINE.

Portable sitai enarives CoMbin
䢒
I RON BRIDGES-CLARERERERERS R Co

Machinery,

Sturtevant Blowers.

Cold Rolled Shafting.
 Nuagara Steam Pump. CHAS. B. BARDICK, THE JOHN HARDICK

DUNCHING
DR.OP PNDESSE

 WIDALEN TCRBINE NO riske to purcharer

THy Union Lron Muivs, Finlobuggu, Fa

 $\$ 5$: $\$ 20 \begin{gathered}\text { per day at home. Termb Free. Address } \\ \text { Gbo. Stinsons }\end{gathered}$

BOILERS AND PIPES COVERED

ASBESTOS PBLTING COMPANY,

COLD ROLLED
 SHAFTING

MACHINERY

An deutldie ©refinder.

Diefe große und thätige ©raffe unfrer $\mathfrak{B e}$ botiferung maden wir befonders baraui aufmertiam, bā̃ unfre §irma durd ifre ßer binbung mit $\mathfrak{Z B c}$ chington und ben europaiifden \mathfrak{b} aupttädten; befondere Borthoile gur Erlan. gung bon ine und auslanditiden Batenten bietet.
Seber Ærfinber, gleidpiel melder શationalität angehörig, ift burć bie liberalen $\mathfrak{\text { Patentge }}$ fegze ber ßerein:gten Ctaaten zum ßatentidut fïr ©rinbungen beredtigt. Unfre firma i bereit, geftiugt auf 26 jährige ©rfagrung, beutid
 Preifen rafd und pünttlid ßatente zu erlangen
Die Deutide Section if in ben §anden fähiger ocutidfer $\mathfrak{I n g c n i e u r e , ~ : w e i d f e ~ i n ~ b e r ~}$ Dffice periönlid mit Erfinbern vertegre werber.
Der ,,Scientific American" wirb in feinen Epalten bie bebentenberen ©rfinbungen be ipreden.

Correfpnidenz erbeten und prompt beant wortct. Wamphlite in beatider Sprade wer. ben auf Berlangen franco zugefandt.

Morefinire

$\mathfrak{E} \mathfrak{I} \mathfrak{u} \mathfrak{n}$ \& $\mathfrak{E} 0$.
,.Scientific American" Patent Agentur.
P. BLAISDEIT \& CO.,
 NEW \& IMPROVED PATV'ERNS.-MA.

Andrew's Patents.

 Superior to any modidi
 and Cheap.
喓 Send for Circu Address T. L. Clase \& Co. $95 \& 971$ iberty St.,

 E DISON'S INDUCTORIUM-A powerful

SCIENTIFIC AMERICAN. tHE BEST MECHANICAL PAPEE TWENT'Y- $\overline{N I N T} T$ YEAR.

VOLUME XXXI.-NEW SERIES

The publishers of the SCIENTIFIC AMERICAN beg ew olume commences. It will continue to be the a of the pablisbers to render the contents of the new olume more attractive and useful than any of ita pre-
The SCIENTIFIC AMERICAN is devoted to the inter asts of Popular Sclence, the Mechanic Arts, Manufac trial pursuita generally; and it ts valuable and instruc tive not only in the Workshop and Manufactory, but also
in the Household, the Library, and the Reading Room.

> To the Mechanic and Manufacturer I

No person engaged in any of the mechanical parsuits should think of dotng without the soirntipio Anrif-
and. Every number containg from six to ten engraving new machumes and inventions which cannot be foun in any other publication.

One copy, one year...
TERME.
One copy, six months
One copy, four month

| One copy of Sclentidc A merican forone ye.......................00 | 1.00 |
| :--- | :--- | :--- |

one copy of engraving, "Men of Yrogress"..
Oneíopy of Scten 1
one copy of "sclence Record" for 1874..and
Remil by postal order. draft or express.
The postage on the Sclentific Americas is inve cents per quarter, payable at the offlee where received. Can extra to pay postage.
Address all letters and make all Post Ofllee orders and

MUNN \& CO.,
87 PARE ROW. ERTP YORK Bown York City.

NILESTOOLWORKS

Manufacturers, Syracuse, N. Y. MillFurnishingWorks

MORRIS, TASKER \& CO.

 PASCAI IRON WORIS: PHILADETPEIA TASKER IRON WORKS, NEWCASTLE, DELAWARE

FIETH

Gincinnati Industrial Exposition, 1874.

Under the direction of a Board of Commissioners appointed by the Chambe
Board of Trade and Ohio Mechanice' lustitute.
Open to the Public from September 2d to October 3d.
Open for reception of goods from Aug. 3d to Sept. 1s

This GRAND EXPOSITION, the largest ever held in the Ulited States, bas achieved its popularity, no only as the foremost Industrial Fair of America, but as the only enterprise which is without a Stockholdin
interest. and contributes nothing to any private profit. It is supported by a Pablic Guarantee Fund of a QUARTER OF A MILLION of Dollars, and is in no sense a Private Enterprise.
The Exposition will be held in balldings espectally erected in the heart of the City, presenting an avall The Exposition will be held in bulldings espe
able exhibting space of eight acres under roof.
Arrangements have been made for riduced rates of Fare and for the Cheap Transportation of Article Premtum Letse and Rales upon application to
W. P. ANDERSON, SECRETARY, Cincinnati, 0

POKI'LAND CEMENT,

TO INVENTORS AND MANUFACTURERS
 and

SUPER-FPATPRS

PORTLAND CEMENT
 ENCAUSTIC TILES

W ANTED HYDRAUIC PRESSES.

Todd \& Rafferty Machine Co.

 Grant's Lightring Scerer Plate.

 J. G. ROGERS \& CO., Madison, Ind., are

 THE AMERICAN TWIST

> Workeing Models And Rypremul

 S

 SteamPumps 20 Horse Pown

 R. A. Verpalan's Brich Machinges,

TRON PLANRRS,

Machinists' TooLs, OFALL KINDS, N.ISteam Engine Co. 98 Chambers St. New Yore TILES, x Circular furnished fre DAVIS \& DUBOI

WIRBROPE

Esurezempentoond

Nashille Indastrial Exposition MANUFACTURES, INVENTIONS, ART' Opens Wednesday, Sept. 16, 1874, Until Saturday, Oct. 1.

