

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

IMPROVED PATENT SECTIONAL BOILER

The essential features of the boiler represented in our engraving consist in its construction in sectional form, and in the sections being of cast iron, of a shape calculated to economize space, to afford a large proportion of heating surface, to be durable, and to be readily cleaned. The inventor con siders that cast iron, owing to its granular owing to its granular
formation, allows of the passage of heat through it morereadi. ly than does wrought iron, which is fibrous; and, at the same time, it affords a means of building a means of building the boiler at a much decreased expense. Two forms of the generator are represented.
Each section in Fig. 1 consists of the curved tube, A, and of ane or more smaller tubes, B , which are made on arce of concentric on arcs of concentric circles and are cast in one piece with the larger pipe. The lower extremity of the tube, A, in each section, is, by means of a suitable screw connection, attached to a horizontal base pipe, C, two of which pipes extend longitudinally through longitudinally through the lower portion of the generator on each side, and are connected at the back by a trans. verse pipe, not shown. On the exterior of the main tubse, A, at D, and opposite to the ori. fices of the smaller tubes, are made apertures, closed by screw pluge which are acpluga, whe are accessible through the outer casing, for removal, in order to insert the necessary instruments for cleaning. The upper extre. mities of tubes, A, are closed, and meet to form the arch, as represented. On the upper side, however, and near these ends are also screw connections, which communicate with the steam drum, E. It is hardly necessary to point out that a large amount of heating surface is secured, while the construction is such that an explosion is confined to the single section, which, through the two screw connections mentioned, is readily taken out and replaced. It is claimed that a perfect circulation is always maintained. The greatest heat is generated in the top of the furnace, through the rising of the light gases, and there is a ready escape of steam into the drum, preventing priming or lifting of the water from the hot surfaces.
In Fig. 2 the boiler is represented somewhat differently constructed. A bridge wall, F, passes longitudinally through the fire box, along which extends the pipe, G, from which rise vertical tubes, H, which connect directly with the steam drum. To flanged projections on tubes, H , are connected the curved tubes, as shown. To the base pipes, I, are fastened large tubes, J , which line the arch of the furnace, having closed upper ends and abutting against the verti:al pipes. These tubes have each a screw connection with the drum at K, and, with the various portions, are so joined as to admit of free circulation throughout the generator

It will be noticed that both forms offer ready means for blowing out the sediment which may accumulate, as the same will sink naturally to the base pipes, where it may be ejected or removed. In Fig. 2 the feed water is admitted to the base pipes.
In connection with the boiler, in Fig. 1, a simple superheater is shown, consisting of a pipe, L , which extends down through the fire box, completing a parallelogram, of which the steam pipe, M, forms the upper side. By coosing the valve, N , the steam passes down through this pipe, and thus becomes superheated. In case this is not desired, communi-
cation with the attachment is cut off by means of the valves, O, on the vertical branches.
We are informed that the castings are tested at not less han 250 lbs , to the square inch in hydrostatic pressure, and heir peculiar form in curves, concentric as above noted, obviates greatly the dangers due to unequal contraction and
 erves to evaporate eleven and a half pounds of water. Larger boilers, it is said, show even better results.
The device is covered by ten patents, the most recent of which are dated October 21, 1873. Further information may be obtained by addressing the manufacturers as above.

Gas Pressure Alarm.

When two neigh boring buildings are illuminated by gas derived from the same source, it fre. quently happens that the extinction of the lights in one building causes the pressure of gasin the other to become greatly in creased, and some times to result in ac cident. M. Launay proposes, asan alarm to give warning of this over pressure, a bisulphate of mercury battery, in which the liquid is in com. munication with the gas by means of a siphon, so that the pressure of the gas in varying, raises or lowers its level If the pressure is above a certain fixed limit, the liquid is raised ao as to come raised so as to com in chic th metallic portion o the battery, estab lishing a current which sounds an electric alarm. M. Launay also suggests that a simple method of determining leaks in gas pipes through out a building is to out a building is t force some strongly odorous smoke into the supply pipe. The fumes of incense, for example, escaping in any room, would be readily distinguished from gas, and the loRENSHAW'S PATENT SECTIONAL BOIIER.
expansion. The manufacturers, Messrs. Dougherty \& Broome, $\left.\right|^{\text {quickly found. }}$ of Nos. 143 to 147 Bank street, New York city, state that they use one of these boilers in their foundery, and that, in a amall 15 horse generator, an average of one pound of coal

Old Hats Paradise.

The grotesque fancy of savages for the cast-off habiliments of civilized races is a source of amusement to travellers the world over. It is rare, however, that the fancy rises to such a passion for a singlearticle as is exhibited among the Nicobar islanders. Young and old, chiefs and subjects, in these "Summer Isles of Eden," alike endeavor to outvie each oth er in the accumulation of old hats, priding themselves on the extent and variety of their collections as other people do on their wealth of gold or jewels or works of art. Curiously, second hand hats are most in request, new ones being looked upon with suspicion and diafavor.
The singular passion is taken advantage of by the traders of Calcutta, who make annual excursions to the Nicobars witi cargoes of old hats which they barter for cocoanuts, the principal production of the islands. A good ta!l white hat with a black band fetches from fifty-five to sixty-five prime cocoanuts, sometimes more, as, during the intense excitement which pervades the islands while the trade is going on, fancy prices are often asked and obtained. When the market closes, by the exhaustion of the stock of hats for sale or cocoanuts to buy them with, the traders usually land with a cask or two of rum, and the entire population, clad in their new possessions, with perhaps a rag about the loins in addition, celebrate the occassion by getting thoroughly drunk.
What is believed to be the longest rope in the world has been recently on view at Messrs. Frost's walk, Shadwell, England. It is a grapnel rope, 10,030 fathoms long without a splice, and has been made for the Siemens Telegraph Company. It is made of three strands, the diameter of the completed rope being 2 inches.

Šrientific Ammerican.

MUNN \& CO., Editors and Proprietors. poblished weekly at
NO. 37 PARK ROW, NEW YORK.
O. D. MUNN. A.E. BEACB.

One copy, one year...
300
One copy, six months
150
2500
250
VOLUME XXX, No. 24. [New Series.] Twenty-ninth Year.
NEW YORK, SATURDAY, JUNE 13. 1874.

ELEVATION OF THE ELASTIC LIMIT BY BTRESS.
The Scientific american first published,on page 336,volume XXIX, the novel and unexpected discovery by Professor Thurston of the "Elevation of the Elastic Limit by Streas," as the discoverer has since called it, which was commonicated to the American Society of Civil Engineers, in a note published in the transactions of the Society for November, 1873.

The Journal of the Franklin Institute, in the last month's issue, contains an interesting statement of the results of experiments made subsequently by Commander Beardslee, United States Navy, at the Washington navy yard, independently and by a different form of apparatus, which led to the re-discovery of the same important fact. The editor of the Journal presents the paper as furnishing "most con slusive confirmation of the discovery of Professor Thurston."
In these experiments of Commander Beardslee, the iron was generally of poor quality, the tests were made by tensile strain, and the results were recorded from observation instead of by automatic registry, all of which circumstances differ from those of the earlier researches, and the confirma. tion which is given of the phenomenon referred to is thus rendered the more conclusive. Samples were taken in pairs and subjected to a strain which exceeded the elastic limit. One was removed from the machine and laid aside; the companion specimen was left under the loai in the testing machine. In the former case, four tests gave an average increase, in sixteen hours, of 10.00 per cent. The latter method, with six specimens, gave an average of 11.30 per cent, or, leaving ont one exceptional result, $12 \cdot 20$ per cent. These
specimens were of $\frac{1}{2}$ square inch section. With smaller specimens were of $\frac{1}{2}$ square inch section. With smaller
pieces of $\frac{1}{2}$ square inch section, the same treatment gave, pieces of $\frac{1}{2}$ square inch section, the same treatment gave,
by the two method $=8 \cdot 20$ and $13 \cdot 40$ per cent, respectively.

The (at first sigh!) very singular fact, that an increase of resistanceshould be developed when the specimen is taken out of the machine after giving a set, is, we presume, readily explained by the fact that the set, produced by the refusal of some of the particles to return to their original positions, holds other groups of particles separated, and, as explained by the discoverer, allows a flow to take place, relieving inby the discoverer, allows a flow to take place, relieving in-
ternal strain, and permitting nearly all portions of the piece ternal strain, and permitting nearly all portions of the piece
to act together in resisting external force. The set thus holds the piece under strain somewhat as does the machine.
The subject loses neither interest nor importance by investigation, and we shall hope to learn more of its practical bearings. We have already given much of our space to the discussion of these new facts relating to the strength of materials, and shall from time to time endeavor to present our readers with the latest results of research in this field. There is no subject which is of more direct importance to every mechanic and engineer than that of the strength of the materials upon which he is compelled to rely in all his constructions.

There are many facts still unknown to the public, or to the engineering profession even, and of which no knowledge can be gained by reference to boozs. For example, one of these is the resistance of iron to compression at different temperatures.
Many of our readers can undoubtedly furnish facts of interest and importance; and we hope that those who find themselves in possession of such facts, which have evidently escaped the observation of acknowledged authorities, will assist their brother workmen by sending them to us for publication.

THE GEOLOGICAL SURVEY OF JAPAN.
We have received from our countryman, Mr. B. S. Lyman, who was appointed, by the government of Japan, Director of the Survey, a preliminary report conta
some of the results of the first season's work in Yesso.
It is a pamphlet of 46 pages, excellent in typography and appearance, published and printed in English by the Kaitakushi at Tokei. The work, according to the instructions of the Hon. K. Kuroda, Jikuwan of the Kaitakushi, was conof the Hon. K. Kuroda, Jikuwan of the Kaitakushi, was con-
fined to the four southwesternmost provinces, Oshima, fined to the four southwesternmost provinces, Oshima,
Shiribets, Iburi, and Ishcari, about one third of the island. a number of fossils were collected at several places, but they were too few to justify the employment,at least for the present, of a foreign palæontologist. Besides Mr. H. S. Munroe, an American, Professor Lyman was assisted by eleven natives. They are not only the first Japanese but the first Asiatics to undertake the study and practice of geology; and although the training of native geologists in India has been begun nearly at the aame time, Professor Lyman trusts that the Japanese will continue to take the lead, and that Japan will become in a few years independent of foreign Japan will become in a fe
countries in this direction.
In determining the importance of the points to be more carefully surveyed, regard was had chiefly to their mining value, and many places were visited where valuable minerals had been supposed to exist, but where they proved to be deficient either in quantity or quality.
Along the principal and many of the smaller rivers are rich alluvial plains, which would be admirable farming sites, were it not for the lack of roads at the present time. The soil indeed seems to be very good, even on the uplands, and supports a rich growth of wild plants. The chief exception is in the neighborhood of Tarumai volcano, which so recently as the first of March, 1867, was in active eruption; and where for many miles around, even the low plains
by the seashore have been so covered with pumice as very much to lessen their fertility. Yet even here a rich black soil, in some places aix feet thick, exists at the depth of volcanoes that atill have active sulphur vapors seems to be mostly along the shores of Volcano Bay and the adjoining coast. Besides these, thare are many more that seem to have long been quite extinct. The highest, most symmetrical, and beautiful of them all, is Shiribets Mountain, perhaps 6,000 feet high above the sea, and almost a regular cone. The useful minerals of chief importance in the field gone over are: Coal, iron sand, sulphur, limestone, gold, and rock tar and mineral springs ; and traces of silver, lead, zinc, manganese, and copper.
The Kayanoma coal field covers about half a square mile, and has six workable coal beds from three to eight feet in thickness. The coal is what is strictly called brown coal, probably of tertiary age, though closely resembling bituminous coal in its appearance and in many of its qualities. Of ron, the whole amount of pure ore in the principal workable deposits is perbaps 125,500 tuns, containing 91,000 tuns of iron. Only 5,500 tuns of the ore (containing 4,000 tuns of iron) are of the easily smelted kind. The sulphur occurs mostly within the craters of now inactive volcanoes. Hot sulphur fumes rise through small crevices and deposit yellow sulphur on the cold surface of the ground, forming a crust more or less impure, with a mirture of partially decomposed rocks. The shape of such deposits is extremely irregular and often inaccessible in many parts; so that the precise ex tent can hardly be measured except very roughly. The whole quantity of sulphur to be got from the places thus far visited is possibly five hundred tuns. The gold occurs in the form of small grains and scales in alluvial gravel. No gold-bearing quartz has been discovered. The amount of gold in all the fields surveyed would seem to be less than two millions and a half of dollars, and in none of them to be abundant enough to give much encouragement to working. The oil is all black, and so very thick as to deserve better the name of tar; moreover it has not as yet been found in noteworthy amount. Mineral springa are abundant; and of the twenty one which were examined, thirteen were sulphur springs with temperature from coldness up to boil ing; six iron springs, from 27° to 91°; one cold spring, with copperas; and two nearly pure springs, 30° and 50° hot
Though scanty, these details are sufficient to interest us in the future development of Japan, and it cannot be long be fore representatives of our commerce will follow where
those who have represented our Science have alresal led the those
way.

THE INCREASED USES OF THE MEMBERS
We doubt if the human body has ever in any instande a tained the acme of its possible development; and by this we mean that while certain sets of muscles or organs have, in individual cases, becomesubjected to the will so as to per form feats impossible save through education, we do not be lieve that the being ever lived who could controlevery mem ber so as to cause it to operate to the extent of its capabili tien. Whether in future agee such a condition will mark a
higher stage in the dovalopment of the rece : whother, an tha
human mind expands, or, as the saying is, the "world grows wiser," it is reserved for physical culture to keep pace with such mental growth : is a subject for speculation, which, in riew of the doctrines of evolution and the constant approach of organic species toward more perfect individualism, is by no means devoid of present interest.
We have discussed at some length the question of the use of the left hand, and we have pointed out that, by a mistaken notion, children are taught to discard the use of the mem ber, and hence to lose half the powers which Nature intended they should have when she formed the body as it is. We have also suggested that, so far from restraining the infant from using its left hand, its tendency to employ both members indiscriminately should be encouraged. Now, we propose to advance a step further, and to ask why should not a child be taught to utilize both hands at once, and at differ ent occupations. The idea may seem somewhat chimerica at first, but it is not without the bounds of pessibility. The reader has doubtless seen jugglers who, in performing their dexterous tricks, become so expert that, without any apparent difficulty, they can keep half a dozen knives or balls constantly in the air or in each hand. The falling and rising of these objects are not uniform, and hence to all in tents the performer accomplishes a totally different result with each momber. In similar manner great pianists- Ru . binstein is a very striking example in point-use eithe hand upon the keys with equal dexterity and both together, in playing music of tremendous difficulty which requires a power of perception and a control of the muscles of each in dividual finger which is simply wonderful. Again, an or ganist, in performing upon a grand instrument, has several things to think of at once: both hands on the keyboard, both feet on the pedals, with stops on either side, couplers and the eparate devices for crescendo and other accidental effects re to be looked after. Here are four members of the body cting different parts at the same time.
We could multiply instances of this kind with little trou ble, all going to show that, even when advanced in life, it is possible to educate a certain set or even sets of muscles to perform hitherto unnatural work. Cases there are where nen, on being disabled in the arms, have had recourse to their toes, and used those members for writing and even handling tools. We have visited the studio of quite a celebrated French artist whose exquisite paintings were entirely produced with brushes handled in the above manner. But while an individual member, or even the body, may be educated to perform feats apparently impossible, it requires a higher order of training to compel the members to perform different operations at once-a training, we think, only to be fully imparted in beginning at the earliest years, but still fully possible. With our dual brains, the right lobe is now the most developed, and with it the dexter side of the body. Let means be taken to develop the left side equally, and the body is symmetrical in its powers. Each side, governed by both brains, will be capable of work for which now, when controlled by, say, three quarters of the brain power, it is nadequate.
We need not point out the advantages to a person who can thus use both hands in connection with the brain. We have known an artist who could draw tivo different pictures have known an artist who could draw tivo different pictures
at once; and in a former article, we alluded to a very eminent professor of natural history who, while watching a specimen through the microscope, sketches with one hand while writing with the other. Now, if a person advanced in life can become so elucated, how much easier it would be to impress the same on the plastic mind of a child. Once taught, the person could write upon two different sub jects at once, could make two copies at the same time, could write up two sets of books, could make stenographic notes and write them out in long hand simultaneously, and per form in brief a variety of operations productive of lucrative results. Moreover, he would do each understandingly, and not semi-automatically with one hand. Nine tenths of ordi nary pianists who have to "learn a piece" play the treble with their brains aad the bass with their muscles. The left hand learns certain fixed skips and jumps by practice, and performs them automatically at certain times, while the right hand carries the expression as weil as the air of the composition, and is much more directly under the control of the performer.
We began by speaking of a possible future of the race Is it then improbable that at some time man may have every faculty educated to its utmost, and thus become raised to a creature mentally and physically infinitely the su perio of such as we now are, as much beyond us as we are beyond the monkey? Traits developed in the parent may be trans mitted to the child and there intensified, and thus an ap proach to human perfection ultimately attained. But mean while, who is to begin? To whom among the scores of thousands who will peruse these lines-who may perchance give them a second thought-will it occur that the idea may e carried into practice with the very yellow-haired young ster, perhaps at this moment clambering upon his knee?

THE NEW THEORY OF QJANTIVALENCE.
The theory of quantivalence, by which the modern chemistry differs so radically from the science laid down in the old text books, thus far used and still taught in most of our scientific institutions, is based on close comparisons concern ing the nature of divers chemical combinations; and these have taught that each elementary atom possesses a certain definite number of bonds, by which alone it can combine with other atoms.
There are two material conceptions by which we may assist our imagination to realize this abstract idea: One is to
the combinations are held together, so that, for instance, the hydrogen has one hook, oxygen two, nitrogen three, carbon four, phosphorus five, manganese six, etc. A combination of two or more atoms is called a molecule; and in the molecule of a compound, every atomic hook is attached to another hook, either of another atom or of itself. The other material conception reslizing this idea is that of regarding these atomic bonds as poles of a magnet, with the difference that, unlike a magnet, which has only two poles, the differ ent elementary atoms possess one, two, three, four, or more attracting poles, by which they have the capacity of uniting other atoms to themselves, so forming the compound mole cule, having totally different properties from the com ponent atoms: so different, indeed, that every chemica compound is to all intents and purposes a body totally dis ferent from the elements of which it is made up.
Chemists have ayreed to distinguish the elementary substances (by their capacities for combining with one, two three, four, five, six, or moreatoms of other elements) as uni valent, bivalent, trivalent, quadrivalent, quinquivalent, sexivalent, etc., or otherwise as monads, diads, triads, tetrads, pentads, hexads, etc., and to accept a modification of the ex isting chemical symbols by representing the bonds, hooks, or poles, by as many dashes. After this idea, the univalen elementary atoms are written with one dash, in front, over or under the eymbol, thus: $\mathrm{H}-, \mathrm{Cl}-\mathrm{F}-, \mathrm{K}-, \mathrm{Na}-\mathrm{Ag}-$ meaning that hydrogen, chlorine, fluorine, potassium, sodium and silver, are univalent; in other words that, when each is combined with a single atom of another element, its chem ical affinities will be satisfied. The bivalent atoms are writ ten thus: $-\mathrm{O}-,-\mathrm{S}-,-\mathrm{Ca}-,-\mathrm{Mg}-, \mathrm{Hg}-,-\mathrm{Zn}-$; or $\mathrm{O}=, \mathrm{S}=, \mathrm{Ca}=, \mathrm{Mg}=, \mathrm{Hg}=, \mathrm{Zn}=$, meaning that oxy gen, sulphur, calcium, magnesium, mercury, and zinc are bivalent, and thus will combine with two univalen atoms, or one bivalent atom. So oxygen will combine with two hydrone or ath ath two hydrogen atoms to form water. This is expressed in the ordinary way by $-\mathrm{H}_{2} \mathrm{O}$, but after the new method by $\mathrm{H}-\mathrm{O}-\mathrm{H}$, indicating how the oxygen atom has two bonds, while each
hydrogen atom is only attached by one bond. On the other hydrogen atom is only attached by one bond. On the other
hand, one atom of oxygen will combine with one of zinc, hand, one atom of oxygen will combine with one of zinc,
thus: $\mathrm{Zn}=0$, both being bivalent, having two bonds, and in the same manner one atom of hydrogen will combine with only one of chlorine, thus: $\mathrm{H}-\mathrm{Cl}$, both being univalent,

Among the principal trivalent atoms, we will mention nitrogen, phosphorus, arsenic, antimony, boron, and gold, and their symbols may be written :

In each of these elements, every atom will combine with three of hydrogen, chlorine, or three other univalent atoms, For instance: $\mathrm{H}-\mathrm{N}_{-}-\mathrm{H}$ or $\mathrm{Cl}-\mathrm{N}=\mathrm{O}$, or $\mathrm{Au} \equiv \mathrm{P}$

Finally we will mention a few quadrivalent substances Carbon, silicon, tin, platinum, of which the atoms are represented thus: $=\mathrm{C}=,=\mathrm{Si}=,=\mathrm{Sn}=,=\mathrm{Pt}=$, or,

and the quadrivalent elements will combine with four univalent or two bivalent atoms, or with one trivalent and one univalent; so we have the combinations $\mathrm{CH}_{4}, \mathrm{CO}_{2}$ and Sn Si , expressed thus :

$$
\begin{aligned}
& \mathrm{H}-\mathrm{C}-\mathrm{H} \\
& \mathrm{H}-\mathrm{O}=\mathrm{C}=\mathrm{O}, \text { and } \mathrm{Sn} \equiv \mathrm{Si} . \\
& \hline
\end{aligned}
$$

It is especially in the organic compounds, in which carbon plays the most essential part (in fact so much that this element has been called the great organizer), that the law of quantivalence finds the most extensive application. It ought o be stated here that this quantivalence of the atoms is not totaily invariable; but it is remarkable that, if variations take place, they are according to a law which allows a quadrivalent atom to become bivalent or sexivalent, so that a quantivalence expressed by an even number will always be even, and one expressed by an odd number will always be odd. Atoms of the first class are called artiads, of the the second (with odd numberp), perissads; and this classifioa ion appears to reat on a fundamental law.
This is a short explanation of the fact tbat a definite quantivalence of the atoms of each elementary substance is one of its most important inherent properties; and it is therefore the most distinctive feature in which the new school differs from the old. It is the chief cause of the recent revolution in chemical science. The old fashioned authors and teachers did not question how the elementary substances were united in a compound; but now it is con sidered of the utmost importance to investigate and deter mine the exact manner in which the atoms are united in order to buila a molecular structure. It has long since been suspected that the quality of a chemical compound depends as much on the manner of structure of its molecules from the atoms as in the nature of the atoms themselves; and now it has been proved that a compound may be totally changed by simply changing the relative position of the atoms in regard to the nucleus of the molecule, which itsel may change without any alteration in the number or qual ity of the individual atoms.
It ought to be considered that the above is not merely the expression of an hypothesis, but is the result of actual expe riment. Not a shade of doubt clings to it, notwithstanding that the actual view of the atoms constituting a molecule i far beyond the range of the most powerful microscope
Nevortheleas, although it has been proved that the molecule
of nitro-giycerin, consisting of 20 atoms, $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}$, can ot be larger than the twenty-five millionth part of an inch position almost as positive about the interal the struc ture, position, and arrangement of the bodies in our plane tary gystem.
The theory that heat is a mere mode of wiotion, residing in he molecules or atoms of bodies, may be considered to be as firmly established as any in the field of Science; and the theories that rise and descent of temperature are nothing but increase and decrease of this molecular motion, and tha the absolute zero point of temperature, that of 460° below the zero of Fabrenheit, corresponds with absolute molecula rest, are necessary consequences of this theory. Every sub stance must be composed of moving molecules, of which the atoms themselves are in constant motion; every complex molecule therefore resembles a planetary system, not only in he arrangement of its different members, but even in the motion of its atoms, which is rotary as well as progressive. It is, indeed, a grand idea that the same force which, on the infinitesimally small scale is called chemical affinity, and holds the different constituent atoms of matter in well bal anced and unalterable groups, so securing the stability of compounds, prevails also throughout the immense distances of the heavenly bodies, wherein we call it gravitation, whic secures the stability of the systems of worlds which make up constellations and galaxies.

farmers' health.

The State Board of Health of Massachusetts are doing ad nirable work. Their fourth annual rep rt, published las year, was a model volume of its kind, and copious reproduc tions from its pages found place in our columns. Its succes sor, now before us, is every whit as valuable. It is not a dry mass of undigested statistics, nor a bundle of official plati udes which nobody understands and no one takes the trou ble to read; but a series of papers, plain, practical, and ful of common sense on sanitary questions which are of the nearest importance to every one. We commend the work as exemplifying what a report addressed to the people should be; and it seems to us that an immense amount of good would be done if the general government, among the tuns of documents supplied to our representatives for distribution to their constituents, would provide similar volumes on simila subjects, and compiled in a similar manner

Some papers in the book before us, we have already embo died in articles on there topics. At the present time we de sire to direct attention to the very important subject of the sanitary condition of farmers, who, though popularly con sidered the healthiest people in the world, have, it appeara, yet something to learn tending toward their improvemen and to the prevention of dangers incidental to their calling. The basis of the views presented is the opinions of the country doctors all over Massachusetts, and no better foun dation could be obtained. A paper based upon their com bined experience cannot be otherwise than insiructive. The farmers in the above State constitute one eighth of the in dustrial population, a less proportion than in the Weater Stater, as in Illinois the farmers with the farm laborer make up one half of all persons having occupations; so tha no further argument is necessary to prove that their sanitary welfare is that of a very large proportion of the entire popu lation of the country
The first question considered is that of longevity. A table collated over twenty-eight years shows the average age of farmers at death to be $65 \cdot 13$ years, figures far in advance o all other callings, and greatly exceeding the lifetime of active mechanics (not in shops), who, ave raging 52.62 years, appear next on the list. The opinions of the physicians consulted also go to show that the farmer's chances of long life are somewhat greater than those of any other class. As
regards general healtb, there appoar to be divided views, the large mejority of doctors, however, holding that farmers and their families enjoy better health than most people, while a respectable minority advocate the reverse. This leads to a more direct examination of the causes which tend to impair the health and ehorten the lives of the agricultural classes. First of these is overwork, that is, not the nature but the amount of labor performed, combined with exposare to the weather. Labor carried too far oxhausts and enfeebles the frame. During a short season, however, when the ear's operations are crowded into a space of five months, and when wages are high, overwork on the part of the farmer is too common. In spring he works at the plow from morn gg until night, to hurry through the planting; in summer produgies of mowing and pitching of hay are done, which too requently tend to cause serious rupture or other physical njury. Inwinter, there is a continual series of hard work in hauling wood and doing similar exhausting labor, causing sudden changes of temperature in the body. The result of the whole is that rheumatism becomes by far the most prevalent disease. Again, farmers' wives work even harder than their husbands, and, it is said, are the most likely to be overburdened. The remedy for such excess of labor on the part of farmers and their families is a better comprehension of sanitary laws. It should be understood that it is not true conomy to lay up money when the process of accumulating it makes the farmer's wife an invalid, and necessitates the expenditure of a much larger sum for sickness. More laborsaving machinery should be introduced. For small farme, where the more expensive machinery is not available, cheapar aubstitutes would doubtleas be invented, were inventive genius turned that way through the liberality of agricultural ies

It is a nomewhat singular fact that farmers live so little upon their own productionat They sead kheir frenli regeta
bles, fruits, eggs, and poultry to the market, and live themselves upon salt pork, pies, and saleratus bread. The re sult is dyspepsia and a train of kindred diseases. It is im portant that good cooking should be cultivated. It is actu ally easier to cook well than badly, provided the work is not done in a hurry. In the bad cookery, the overwork is again raceable, and it is the very pressure of labor which cause he preparation of the food to be done in any way so long s the materials are rendered eatable. A pork diet is not healthy. The meat is slow of digestion ; it contains an excess of fat; it may, if improperly cooked, produce trichiniasis and tapeworm, and it increases the liability to consumption and scrofula. Farmers should live on plenty of fresh meat, use ess tea, avoid frying as a means of preparation, eschew pies and cake in excess, and provide for their own tables an abundance of vegetables and fruits, with wholesome, well kneaded yeast bread.
As a rule, it is said, farm houses are very badly located, vorse so than city residences. Farmers should comprehend he necessity of choosing a dry and airy locality, and the dangers resulting from living on damp soil or in a low, shut n situation. Where the house is placed low, house draine are sluggish and imperfect, and fogs are frequent; when shu in by higher ground, the air is stagnant, and the effluvia from the house and outbuildings are not blown away. Too many ees conduce to dampness and shut out the sunlight.
Uncleanliness of surroundings is a prolific cause of disease Typhoid fever and summer bowel diseases abound in the vicinity of putrescent animal matters, which poison both ai and waters. Faulty drains and neglected privies are the nost dangerous, while foul cellars and barnyards are also deleterious. No farmhouse should be without a commodious covered cesspool several rods from the house, on lowe ground, if possible, and connected with the kitchen sink by a well constructed covered drain. In default of a brick cess pool, an inverted hogshead will do, if the soil be porous, bu a barrel never; it is too small to be of any use. The drain hould then be kept free, so that the cesspool can be so used hat not a drop of dishwater, slops, or any kitchen refuse whatever shall find its way out upon the surface of the round from the back door or window. Everything sbould go into the cesspool, except what the pigs can consume, and the back of the house should rival the front in cleanliness and tidiness. Privies should be thoroughly disinfected by he combined use of earth and copperas. The latter can be bought for from two to five cents a pound, and it should be kept constantly on hand. The place should be perfectly in odorous, otherwise the disinfection is not accomplished. In winter the earth closet should be used indoors, and the wast will be found a most valuable addition to the compost heap. Bad drinking water is another cause of sickness. As a rulf well receive drainage fom a auperficial are whose di meter is from one to three times the depth of the well, vary ing with the character of the soil. To keep the latter area in thoroughly purified condition is a good and safe rule to follow. A well, for example, twenty feet deep should have no privy, pig pen, barnyard, drain, nor should slops or gar bage be thrown upon the surface, within thirty feet of it in any direction.

Mr. Salem H. Wales, after a connection with this paper more than twenty years, withdrew some three years ago, and was appointed by the mayor one of the Commisaiomer of Public Parks in this city. Mr. Wales was subsequently chosen President of the Board by his colleagues, which office he held to the satisfaction of the public until a few days ago In a pithy letter to the mayor, resigning his office, Mr. Wales animadverts very pointedly to the acts of our city comptrol ler, for interfering with the Park Commisaion in the appoint ment of its employees. On Wednesday evening, the 26 th ult., a score and more of Mr. Wales' friends gave him a complimentary dinner at the Union League Club; and on the following Saturday he sailed, with a member of hia family, for Europe, for a few months' rest and recreation on the continent. His friends every where will join us in wish ing him a pleasant voyage, improved health, and a safe return.
isolating Material for Steam Pipes.-The committee for the trial and inspection of boilers of the State of SaxeAnhalt, Germany, recommend the following composition for the above purpose: 132 pounds limestone, 385 pounds coal, 275 pounds clay, and 330 pounds sifted coal ashes. This is finely pulverized and mired with 660 pounds of water, 11 pounds sulphuric acid at $50^{\circ} \mathrm{B}$., and 160 pounds of calves' hair or hog bristles. The compound is applied to the pipes in coats of 0.4 inch thickness, repeated until a thickness of an inch and a half is obtained, when a light covering of oil is given.
The spring or summer season opened with unusually hot weatherin Europe, but soon afterwards severe cold seems to have set in. The sudden change is accounted for by M. De Fonvielle, a French savant, by the fact that the earth is passing behind a ring of asteroids, which absorb a portion of the sun's warmth, due to us while it remains above the horizon. The temperature will not resume its ascensional movement until the annual rotation shall have carried our aphere from the shadow of the multitude of amall plantes which is always projected on the same point of our orb.
M. Pasteur, the distinguished French chemist,has recenty been awarded the sum of $\$ 2,400$ by the National Assembly of France in recognition of his eminent services and discovories.

THE man who has thoroughly mastered a scientific priael: bolde a key which opoing many lockn.-Tyndall.

solidified téa.

A novel mode of preparing tea for the retail trade, consisting in compressing the leaf into blocks of the size and shape represented in the annexed engraving, has been patented February 24, 1874, through the Scientific American Patent Agency. The advantages of the solidified tea, as it is termed, consists in a gain, claimed to be from 30 to 40 per cent, in the process of solidifying, both in strength and flavor. The reason ascribed is that the enormous pressure brought to bear on the leaf crushes the small cells, which contain the essential strength and real flavor of the tea, which is, to a great extent, wasted in using tea not so treated. Theine, the essential property in tea, has a tendency to prevent the decay of bone, hence the natural craving after tea by most elderly persons. Now the inventor considers that the process of solidifying thoroughly brings to the surface roughly brings to the surface the theine in tea, thus render-
ing it medicinally superior to ing it medicinally superior to many properties thus set free, also insures, it is believed, an efficaciousantidote to nervousness. As much strength is obtained in five minutes from the solidified tea, it is claimed, as can be drawn out of the same tea, not solidified, in five anthracite, theamount of heat which could be drawn through hours. The tablet, weighing four ounces, is divided into half ounces, so that the consumer can calculate how much should be used in a week or a month. Thus prepared, the tea is necessarily genuine, and cannot be adulterated. It is sold in a form that makes waste, deterioration, or loss of aroma, it is claimed, impossible. To travelers going abroad, it.s advantages are plain, as it occupies only one third the space of ordinary tea; and to families, hotel keepers, and institutions, the saving effected by the invention will probably be large.

State and county rights for sale. Address James Spratt, 54 Knowle Road, Brixton, London, S. W., England. Samples of the solldified tea may be seen at this office.

IMPROVED WHEAT STEAMER AND DRYER

Many millers, after having tried various improvements for steaming wheat, have been compelled to abandon them in consequence of the grain passages clogging up with dampened wheat. The feed of the burrs being thereby altered, the constant watching of the miller is required to keep his mill grinding evenly, and to prevent the result of the wheat not being uniformly steamed. By reference to the illustration, it will be noticed that, in the device represented, the grain passage widensdownwardly, to afford a greater space for the grain as it swells by the effect of the steam. This is very im. portant for a wheat-steaming apparatus, and the patentee proposes to employ such form, whether the passage be annular, as shown, or otherwise. This apparatus may be placed between the stock hopper and burra, if more convenient, or may be used as asilent feed, as shown. The tube, A, passes through the feed lever and is raised and lowered in regulating the feed of the stones
with perfect facility. The steam connection is made by means of the flexible rub. ber steam hose, B, which connects with the steam pipe. The latter conducts the steam into the upper or steaming chambers, C , the walls of which are perforated. D is a branch pipe which conducts the steam into the lower or drying chambers, E. G is an escape pipe for condensed steam from both upper and lower chambers. The walls of the inner and outer chambers, C, are perforated, so that the steam may pass into the grain for steaming it from both sides as it descends in its passage. Below there perforations, the grain is subjected to the hot walls of its conduit, by which the surface dampness is dried off, after it has been sufflciently moistened to toughen the bran. H and I are stopcocks, to shat off the steam entirely from the upper or steaming chambers. J represents the grain passage, which widens downwardly, and in this example is of annular form. Above the passage is the hopper from which the wheat fiows into the former. If the apparatus is to be used for drying grain which is too damp for grinding or does not require steaming, the steam will be shut off from the upper or steaming compartments; or by closing the globevalve shown, the steam is shut off altogether.
Patented through the Scientific American Patent Agency, March 24, 1874. For further particulars address the inventor, Mr. Pardon B. Hunt, Council Bluffe, Iowa.

The Gas Wells of Now York.-.. New Plan of Heating the Canals in Winter.
The novel proposition of Mr. R. A. Cheseborough to keep the Erie canal open in winter by means of steam pipes laid in the canal, at a cost of $\$ 1,500,000$ per annum, is now seconded by Professor Charles Plagge. The latter suggests the possibility of greatly reducing the cost for fuel by making use of the immense national supplies of gas which this State contains.
According to Professor Henry Wurtz, there are at leas threebelts of gas wells running across the State of New York,
from east to west. Professor Wurtz assumes the average tension of compression of the gas contained in the threegas charged horizons (the Salina, Marcellus, and Genesee), at 20 atmospheres. Estimating the porosity of therock at only 5 per cent of its volume, the whole gas contained in the rock will assume at the surface the volume of the rock itself. If, therefore, the three New York belts are 200 miles long, and equal in mass to ten miles wide, and of 100 feet thickness (a moderate allowance), they will supply more than three thousand wells, each discharging 500,000 cubic feet of gas per 24 hours, for over 100 years. As, practically, 20,000 cubic feet of marsh gas (the principal constituent of the gas of natural gas wells) may be assumed to be equal in heating capacity to one tun of

out the middle tier of counties in Western New York is equal to 75,000 tuns of anthracite per day, or to $27,375,000$ tuns per year. Although the line of outcrop of the Marcellus formation, from which the West Bloomfield gas comes, lies south of the line of the Erie canal, Professor Wurtz has also shown, in the same memoir, that the gas found in boring at Buffalo comes from strata lying far deepir and cropping out many miles further north than the Marcellus; and that on the general line of the canal, the Hamilton and Salina will be found for great distances, so situated as to be reached by borings not far therefrom, and at depths which will ensure their having retained their original gaseous contents unimpaired by outcrop leakage. It may therelore be accepted, with implicit confidence, that there are throughout that part of the State large districts within which, by judicious explorations, an immense number of natural gas wells may be developed, furnishing a fuel which raises itself out of the mine, and which may be made to transport itself to any point required. This almost inexhaustible source of fuel is the more valuable for the warming of the water in the canals, as the apparatus required can be constructed at a comparatively small expense and in such a way as not to need any extra hands for its attendancs; so that the expence of keeping navigation open all

HUNT'S IMPROVED WHEAT STEAMER AND DRYER.

winter will be confined to little more than the interest on
first cost of plant, which will probably not be greater than first cost of plant, which will probably not
that as estimated above for artesian wells.

Colonel A The Samoan Islands.

. B. Steinberger, late United States special agent Ocean, has recently Navigator's Islands in the South Paclic esting information concerning that little known section of the globe. The entire group orer which his examinations extende is between $13^{\circ} 27^{\prime}$ and $14^{\circ} 18^{\prime}$ south latitude, and reaches from $169^{\circ} 28^{\prime}$ to $172^{\circ} 48^{\prime}$ west longitude. The islands are of volcanic formation, which eveiywhere gives evidence of great antiquity, and seem to have been lifted from the ocean bed by a mighty convulaion of Nature.
With the political character of Colonel Steinberger's mission, we have nothing to deal. In scientific intelligence, however, and notably with referencs to the structure, climate, etc., of the islands and their inhabitants, the report offers profitable reading. In the writer's graphic description of this remarkable land, we read of strange structures, ap. parently the ancient works of man, regarding which not
even tradition is extant. The smoothness of the xicating drink which is hemp. The ava yields an indiating drink, which is prepared from the dried root by r disgusting process of mastication by young girls, and
strained through cocoanut fibers into a large bowl hewn from the trunk of a tree, the inner side of which, from constant use, attains a beautiful pigeon blue-colored enameled surface of high polish.
The report, we notice, puts forward as a strong point the discovery of a living dodo, a fact which, if true, would be of the highest scientific importance. But, unfortunately, both the writer, as well as several of our cotemporaries who have commented upon the fact, are mistaken. The didunculus strigirostris, or three toothed pigeon, is rot an extinct bird, and never has been considered as such. It constitutes the first subdivision of the columbar, and is allied, it is true, to the real dodo (didus ineptus), which is actually extinct, and is the type of the second division. Professor Richard Owen, F.R.S., describes the didunculidas with considerable minuteness and classifies them as above. He states that they exist only upon the Navigator's Islands, and that they are trained and kept as pets by the natives. The bird is of interest as showing the living connection of the pigeons with the dodo, a question at one time a matter of considerable dispute among naturalists, but it is far from even closely resembling the true fowl. The three toothed pigeon, for instance, is about the size of a partridge, while the dodo was as big as a swan; besides, there are a variety of other positive and distinct differences which it would be idle to particularize. If Colonel Steinberger had ever consulted Appleton's "Cyclopedia," he would have been spared the mistake of confound. ing the d. strigirostris with its larger rela. tive.
The flying fox, which is abundant, enters into the structure of the native religion. Specimens of this strange animal have been found measuring four feet from tip to tip of the wings.
The temperature of the islands is remarkably uniform, averaging for four months about 80°. The equability of the climate, rarely varying over more than 7° from sun to shade, renders the body extremely sensitive to its changes. The people are Polynesian Malay. symmetrical in form, and simple in their habits. They are readily taught, and few, it is said, cannot read and write their own language. The population is about 35,000 . Ie, the Samoan "fine mat," enters more largely into their political organization than any creed or custom they have ever held. Families count their wealth, and all real and personal estate is counted, by mats, and the sacredness of the cloth is everywhere venerated.

The trade of the country consists in cotton and copia, or dried cocoa nut, that in the former being insignificant, and in the latter amounting to a home value of over three mil. lion dollars.

A Golden Chicken.

The Vallejo (Cal.) Independent describes the following singular search for a gold mine: A short time ago Smith and Barr sold a chicken to a customer. A day or two ago the customer returned and was anxious to learn from whom Smith \& Barr had purchased that chicken. At first he declined to tell why he wished to know, but finally told that he had found pieces of coarse gold in the chicken's crop,and was satisfied that there must be plenty of it where the chicken came from. The chicken was traced to a man and his wife who brought down a lot from Lake County, and the cold hunter started off in quest of the chicken raisers. He is going to scour the country until he finds them, and then he expects to see gold lying around on the ground loose and in great abundance.
Red Coloring Matter of the Blood.-M. Béchamp has isolated the red coloring matter of blood, which shows the presence of iron.

A NEW PARALLEL MOTION.

Parallel motion is the conversion of circular motion into rectilinear or the contrary, the best if not the most familiar example of which is found in the action of the beam and piston of the ordinary steam engine. Watt's parallel motion is to be found, in principle, embodied in almost every device of the kind; but that it is not mathematically exact, has long since been proved.
Professor Sylvester, in a recent lecture, a report of which we find in Iron, states that an absolutely perfect parallel mo tion has been discovered by M. Veaucellier, a young French officer of engineers, who gave to it the name of compound compass. The invention is illustrated in the annexed engraving, from which the reader can readily construct a model for himself in order to verify its action. It consists simply of six pieces jointed together, and A is the fulcrum around which the entire apparatus moves. B is the power point, and C the weight point. The figure formed by the four short arms, between B, C, D, and E, is the rhomb, and A D and D E , the connections. The form of the rhomb and the actual length of the connectors is immaterial, the only conditions being that the latter are equal, and that the three points, A B C, lie always in the same line, no matter what the position of the machine may be. A moment's consideration will show that if the near point, B, be brought to A, the further point, C, will recede, so that the path followed by C, when it is moved, will be inverse to that of B in respect to A. If by any means the point, B, be made to travel in a determinate course, the curve described by C will be equally definite and invariable. At B, the bar, B F, is added, forming the radius of a circle, which B will describe about $F F^{1} F^{2}$, as centers. If now the center of this circle be fixed at F^{2}, so that the circumference falls inside the point, A, then C will describe the external or convex circle, marked 1 . If the radius be lengthened so as to reach F^{1}, and to be greater than half the distance, A B, then the orbit of B will contain A within it, and C will move in an arc of a circle concave to A marked 2. It requirea no mathematical reasoning to show,

for it is self-evident, that the curves thus described will grow flatter and flatter the nearer the center of the circle of B is to the actual center of the line, A B ; and as Nature never acts per saltum, there must be a point in the process of change from one kind of curve to the other where the inverse path of C ceases to be a curve, when it theoretically describes two arcs of infinite radius, each looking to a center infinitely distant: in other words, a straight line. This clearly cannot happen when the radius, B, is either greater or less than half of A B, and therefore it can only be when F actually coincides with the center of A B. But in this case B, in its orbit, will evidently pass through A, and, by geometrical laws, the inverse, described by C, will be a straight line, so that the result is not merely practically but theoretically a perfect parallel motion. It gives us the means of converting circular into rectilinear motion with perfect accuraoy, without friction and without any necessity of packing or any other faulty contrivances which have been inseparable from every system hitherto desired for the purpose of producing the same result.

Absorption of Hyarogen by Gray Pig iron.
Mr. John Parry lately read a paper before the Iron and Steel Institute on the above subject, also on the probable absorption of zinc, cobalt, cadmium, bismuth, and magnesium, by gray pig iron heated in vacuo, in vapors of the same. This was exclusively a chemical paper; and so far as the experiments detailed'can be as yet considered conclusive, it adds, to our previous knowledge of the strange absorbent and occluding power of iron for gases, that it possesses the like power in reference to a number of metallic vapors, among which that of metallic arsenic is remarkable from the circumstance stated by the author, that its vapor when once absorbed is not again evolved upon heating the iron.

By the new postal treaty, letters of half an ounce may be sent from the United States to France for 9 cents.

IMPROVED CAR BUMPER.

Mr. Richard Lloyd, 265 Walker street, Cleveland, Ohio, has patented, April 28, 1874, through the Sclentific American Patent Agency, a novel bumper for railroad cars, which is claimed to be more durable and elastic than those now in use Our engraving exhibits the device in perspective and also in section.

A is a shell of cast iron, surrounded by a flange by which it is bolted to the timber of the car truck. Within the shel is a spfral or rubber spring, B, and on the interior of the former is a shoulder, with which the head of the bumper block, C, projects sufficiently to engage. The head and shoulder are held in contact with each other by the spring except when the cars come together; then the spring is compressed. The two bumpers, thus coming in contact, prevent the violent concussion and jar, alike disagreeable to passengers and de structive to the vehicles. The shell and block may be of any form and size. The deviceis stated to be cheap and durable, and may be easily applied to any car. Further informatio may be obtained by addressing the inventor as above.

THE NEW ATLANTIC TELEGRAPY CABLE-HOW IT WAS MADE.

As the new Atlantic telegraphic cable, which is to extend from Ireland direct to the United States, landing on the New Hampshire coast, is nearly completed and is soon to be laid we have thought that our readers would be interested in knowing just how the great conductor was manufactured. We take the following description from the Engineer. The cable was made at the works of Messrs. Siemens Brothers, Charlton (near London), England.
The new cable is rather peculiar in construction, and we append a full sized section and elevation of a portion of the core, Fig. 1. It will be seen that it consists of one thick central wire, round which are spun eleven fine copper wires, the core passing first through a peculiar composition, which, when cold, serves to bind the whole copper rope, as we may call it, strongly together. By this arrangement the largest vailable sectional area of copper is got with a given diame er. It is evident, however, that all elasticity, except that due to the strecching of the internal wire, is lost; whereas in an ordinary stranded wire rope, there is always a small amount of resilience due to the spiral lay of the strands. The wire, having been coated with gutta percha, is then "served" with manilla fiber to a diameter of $\frac{8}{4}$ inch, and this is in turn covered with ten iron wires spun on, each wire being itself first covered with hemp; after this the rope passes through two tar troughs, tar being continually poured on it by an endless chain. It is then wound with twine in a very open spiral, to hold the main strands in close contact till the tar is cold; and the rope then passes to one of three or four enormous tanks on the premises until it is wanted on board ship, the onl further preparation it goes through being to coat it with pow dered chalk to prevent the coils from adhering to each other by the aid of the sticky tar. We need hardly say that during

FIC. 1

the whole process of manufacture testing is carried on almost continuously, so that a fault cannot escape detection.
We cannot leave the subject, however, without describing
process is exquisite and totally different from that employed when gutta percha is used. At the time of our visit some cable was being made, for what locality we do not know. The core consisted of six thin copper wires, spun together with a long twist; all the wires were tinned separately before spinning. The india rubber, which comes over to this country in large lumps or bottles, is masticated and washed, and worked between rollers, in a way too well known now to need description. It is finally reduced to a thin sheet, a lit tle thicker than the air balls sold as children's toys in the streets. Strips of this, about $\frac{5}{8}$ inch wide, are cut out and wound on a reel or bobbin; this is mounted on a spindle on a disk, as in the annexed sketch: A is a piece of iron tubing about 3 feet long, revolving on bearings at B and C, and fitted with a disk, F, which carries the inclined stud, which can be shifted on F. This supports the bobbin, G, round which is wound the strip of india rubber, H , a thumb screw adjusting the resistance of G. The wire is shown at I, and passes from one reel to another down the tube, A; at K a long slo is made in the tube, through which the strip of india rubber passes. It is obvious that if the wire is prevented from ro tating, and proceeds from coil to coil, while A and F rotate round it, that the strip of india rubber will be wound off G and on the core. In this way the core receives its first coat For the second, it passes through an elegant little machine the principle of which is sketched in Figs. 3 and 4. Here C is the core, with its first coat of india rubber put on as just described; B B are two small rollers through which it passes and D D are two strips of thin india rubber about $\frac{8}{4}$ inch wide, one over, the other under, the wire. These are drawn in with the wire, which next passes between the edges of the grooved disks, A A. These compress the edges of the rub ber and coat the wire equally. If there were nothing more the wire would appear as in Fig. 5, two fins of rubber, A A sticking out at each side. It will be seen, however, from Fig. 4, that the lower disk has a thick edge, against which rotates the sharp cutting disk, x; this shears off the super abundant fin, A A, Fig. 5, and so the wire comes out coated with three coatings-for it passes through two machines like Fig. 3-pink, round, and smooth, and ready to be served with canvas for use.

Cumegumuleuce.

The Zodiacal Light

To the Editor of the Scientific American:
On page 320 of your current volume, Professor Wright is redited with being the discoverer of the cause of the zodia.

al light. It seems that he has satisfied himself of the fact that the said light is "derived from the sun" and reflected to us from solid or meteoric material, "small bodies," as he calls them. Now I told your readers all that, and much more over five years ago, as can be seen in your issue of January 8, 1869. Then I stated substantially what I say now : That the zodiacal light is not on two sides of the sun, neither is it all around the sun, nor is it a solar atmosphere, nor a nebulous vapor; but, on the contrary, it is ever on one side of the sun only, his hinder side, if you will, and is purely meteoric.
I said, further, that the said light was and is a longitudinal appendage or tail of the sun, and is so long that it stretches some $37,000,000$ miles beyond the earth's orbit. I said also that the earth either passes through it or by it, on about the 14th of every November. In addition to that, I say now tha the earth passes through it every 33 years, and by it, at more or less distance from it, in the intervening years, the cause be ing that the plane of the terrestrial orbit is but slightly out of the plane of tbe solar orbit.
Professor Wright is doing for me, in his practical way, in reference to the zodiacal light theory, what Professor Agassiz did in reference to my glacial epoch theory: he is pro ving my theory to be true; but that he is the discoverer of the theory, I claim, is not the fact.
That the zodiacal light is solar light reflected to the earth from meteorites, is undoubtedly the fact. But one thing re mains to be settled; it is this: Is the zodiacal light a ring or a longitudinal tail of meteors?
The zodiacal light is seen after sundown, in this latitude in April and May ;and before sunrise in October and Novem ber. If it were a ring, it could be seen at evening and morning of both periods. Any person can prove the fact by a diagram such as the one annexed.
In the figure, $a a^{\prime}$ represents morning, $b b^{\prime}$, evening. From which it may be seen that, at a, a person could see the tail but while at a^{\prime}, he could not see it. So while at b he could see it, but at b^{\prime} he could not see it. At the same time, if the
aaid light were a ring, he could see it evening and morning, at $a a^{\prime}$ and $b b^{\prime}$ of both seasons. It cannot so be seen, and therefore it is not a ring, as is supposed by Professor Wright and others.

John Hepburn.
Gloucester, N ,
The Recent Boiler Explosion in Philadelphia. To the Editor of the Bcientific American:
We have read, in your issue of May 30, the article of W. Barnet Le Van on the boiler explosion at the mills of Mr. Henry Hoppen, Philadelphia. In his allusion to the work of the Hartford Steam Boiler Inspection and Insurance Com. pany, the impression is carried that it was careleasly and inefficiently done. The facts are these: We formerly had charge of Mr. Hoppen's boilers; but at the inspection which was made in June last, we pronounced the boiler which exploded unsafe antil repaired, and declined to assume any risk or responsibility, either pecaniarily or morally, until such repairs were made and the boiler re-inspected. The repairs were not made under our supervision, nor were we called to make an inspection after they were made. We had issued no certificate, and had no responsibllity whatever in the matter. The intimation that the boiler was under our care and considered safe by us is antirely gratuitous.

Hartford, Conn
J. W. Allen, President of the

Hartford Steam Boiler Inspection and Insurance Company.

A Carious Freak or Nature.

To the Elditor of the Scientific American:

A few days since there was hatched under one of my hens a double bodied chicken, having but one head. The two bodies were perfectly developed up to the point where the vertebræ of the neck began. There was but one breast bone, which ramified towarde each body. There mere two com. plete backbones, four perfect feet, and four wings. Unfortunately this curiosity was accidentally killed. A dissection showed but one heart, one liver, and one gizzard. There was
but one bowel leading from the gizzard. T'his extended about but one bowel leading from the gizzard. This extended about
one inch from the gizzard and there ramified, giving the two bodies each a full set of bowels. The epecimen is now preserved in apirits in one of our physician's offices.

Louisville, Ill.
C. H. Murray.

Rerraction or Sound.

Professor Osborne Reynolds, in a recent paper read before the Royal Society, shows that sound, instead of proceeding along the ground, is lifted or refracted upwards by the atmosphere in direct proportion to the upward diminution of the temperature.
The lifting of the sound is shown to be due to the different velocities with which the air moves at the ground and at an elevation above it. Owing to friction and obstructions the air moves slower below than above, and the bottom of the cound waves will thus get in advance of the upper part, and the effect of this will be to refract or turn the sound upwards; so that the rays of sound which would otherwise move horizontally along the ground actually move upwards in circular or more hyperbolic paths, and may thus,
be sufficient distance, pass over the observer's head
It was found (as indeed it was expected) that the condition of the surface of the ground very materially modified the results in two ways. In the first place, a smooth surface like snow obstructs the wind less than grass; hence over snow the wind has less effect in lifting the sound moving against it than over grass; and it is inferred that a still greater difference would be found to exist in the case of smooth water. Under ordinary circumstances, the sounds which pass above us are more lonse than thene we The general conclusions drawn from experiments are 1. The velocity of wind over grass differs by $\frac{1}{\frac{1}{2}}$ at ele
ions of 1 and 8 feet, and by somewhat less over snow. tions of 1 and 8 feet, and by somewhat less over snow.
2. That when there is no wind, sound proceeding over a rough surface is destroyed at the surface, and is thus less intense below than above; owing to this cause, the same sound would be heard at more than double the distance over snow at which it could be heard over grass.
3. That sounds proceeding with the wind are brought down to the ground in such a manner as to counterbalance the effect of the rough surface (2), and hence, contrary to the experiments of Delaroche, the range of sound over rough ground is greater with the wind than at right angles to its direction or than when there is no wind. When the wind is very strong, it would bring the sound down too fast in its own direction, and then the sound would be heard farthest in some direction inclined to that of the wind, though not at right angles.
4. That sounds proceeding against the wind are lifted off the ground, and hence the range is diminished at low elevations. But that the sound is not destroyed and may be heard from positions sufficiently high (or if the source of sound be raised) with even gre
5. In all cases where the sound was lifted, there was evi dence of diverging rays. Thus, although on one occasion the full intensity was lost when standing up at 40 yards, the sound could be faintly and discontinuously heard up to 70 yards. And on raising the head, the sound did not at once strike the ear with its full intensity nor yet increase quite
gradually; but by a series of steps and fluctuations in gradually; but by a series of steps and fluctuations in which the different notes of sound were variously represented, showing that the diverging sound proceeds in rays separated by rays of interference.

On one occasion it was found that, with the wind, sound could be heard at 360 yards from the bell at all elevations,
standing up, and not so far at the ground; and against the wind, it was lost at 30 yards at the ground, at 70 yards although it could be distinctly heard at this latter point at few feot higher.
It is argued that, since wind raised the sound simply by It is argued that, since wind raised the sound simply by
causing it to move faster below than above, any other cause which produces such a difference in velocity will lift the sounds in the same way. And since the velocity of sound through air increases with the temperature-every degree from 32 to 70 adding 1 foot per second to the velocitytherefore an upward diminution in the temperature of the air must produce a similar effect to that of wind, and lift the sound. Whereas Mr. Glaisher has shown by his balloon observations that such a diminution of temperature exists; and further he has shown that, when the sun is shining with a clear sky, the variation from the surface is 1° for every 100 a clear sky, the variation from the surface is 1 for every 100
feet, and that with a cloady aky it is only half what it is with a clear sky. It is hence shown that rays of sound, otherwise horizontal, would be bent upwards in the form of circles, the radii of which with a clear sky are 110,000 feet, and with a cloudy sky 220,000 feet, so that the refraction is doubly as great on bright hot days as it is when the sky is cloudy, and still more under exceptional circumstances, and comparing day with night.
It is then shown by calculation that the greatest refrac ion- 110,000 feet radius-is sufficient to render sound from a clift 235 feet high inaudible on a ship's deck 20 feet high at $1 \frac{8}{4}$ miles, except such sound as might reach the observer by divergence from the waves above; whereas when therefraction is least- 220,000 feet radius-or where the sky is
cloudy, the range would be extended at $2 \frac{1}{2}$ miles with a simcloudy, the range would be extended at $2 \frac{1}{\frac{1}{2}}$ miles with a sim-
ilar extension for the diverging waves. It is hence inferred that the phenomenon which Professor Tyndall observed on July 3, and other days-namely that, when the air was still and the sun hot, he could not hear guns and sounds from the cliffs of South Foreland, 235 feet high, for more than two miles, whereas, when the sky clouded, the range immediately extended to three miles, and as evening approached, much farther,-was due, not so much to stoppage or to reflection of the sound by invisible vapor, as Professor Tyndall has supposed, but to the sounds being lifted over his head in the manner described.
There are many other phenomena connected with sound, of which this refraction affords an explanation, such as the very great distances to which the sound of meteors has been heard, as well as the distinctness of distant thunder. When near, guns make a louder and more distinctive sound than thunder, although thunder is usually heard to much greater distances. In hilly countries, or under exceptional circumstances, sounds are sometimes heard at surprising
distances. When the Naval Review was at Portsmouth, the volleys of artillery were very generally heard in Suffolk, a distance of 150 miles; the explanation being that, owing to refraction, as well as to the other causes, it is only under exceptional circumstances that distant sounds originating low down are heard near the ground with anyching like observer or of the source of sound above the intervening ground causes a corresponding increase in the distance at ground causes a corresponding
which the sound can be heard.

The Measurement of Flowing Water
There is probably no point which has occasioned more dispute and litigation than the conflicting rights of persons entitled to take water power, in certain proportions, from a common source, where the demand exceeds the supply. Tie have been, many of them, conducted on a small scale, and the results are not regarded as entirely conclusive, as the causes of contraction and other phenomena in a vein of water a ninch in diameter would hardly bear the same pro-
portion to the waters of a river discharged through a sluice. As a consequence, persons having charge of large works have endeavored to form rules based on their own experience. English engineers, on their own account, have made many experiments to determine the difference between the and the actual discharge (computed by the laws of gravitation) tardation, reaction of adjacent fluid, and other causes of diminished velocity and volume, and consequently of quanity. The French government also, some twenty-five year ago, appointed a commission to determine the question,
and elaborate experiments on a very extensive scale were made by competent engineers, and the results of these experiments have brought the question within narrow limits. In the "Philosophical Transactions" of the Royal Society of London, we have the following conclusions, which have been deduced from the experiments just referred to: 1 . That the quantities. discharged in equal times, are as the areas' oriunder different hights, are to each other nearly in the compound ratio of the areas of the apertures and of the square roets of the hights. The hights are measured from the centers of the apertures. The mean result, also, of several 1.20 of ants, all the openings being formed in brass plates 1.20 of an inch thick, showing that, for round, triangular, and rectangular holes, the average of the numbers showing the proportion, between the theoretic discharge of the water calculated as a falling body, and the actual discharge as
measured, was $6 \cdot 1$, and for the rectangular holes it was 6 . It has also been found that the effect of gravity may be represented by 64 feet 4 inches, or 643 -that is, the hight in feet through which the body falls, being multiplied by $64 \cdot 3$, will give the equare of its velocity in feet per second. For
product of the altitude or head of water in feet, the area of the orifice in square feet, and the time in seconds, by 64.3 , then extract the square root, and multiply by 6 . It is found also, that with small orifices the effect of a bigh head is to contract the vein and to diminish the discharge, so that the nearer the orifice can be brought to the surface, and yet the water be kept running with a full atream and without causing auy eddy or depression of the surface, the greater will be the discharge. But with larger apertures, as, for instance, one with 34 feet in length by 1f feet in width, or $5 \frac{8}{8}$ square feet of area, the discharge increases with the increase of head.
As to the diecharge of water from open notches in dams it is found to be equal to $\frac{2}{3}$ of the discharge from an orifice of the same size with a full stream under the same head. The proportion between the theoretic and the actual discharge from the open notches varies with the depths, the factors used being less with the greater depths. An Eng. ish handbook of tables gives 214 cubic feet per minute a he quantity which would run over every foot in width of a regular notch 1 foot in depth from the water's surface. The amount discharged depends very much on the form of the notch or aperture. A plain rectangular notch, cut with square edges in a three inch plank, will discharge very
much less than one which has its inner edges beveled or rounded off in the parabolic form of the contracted stream or vein of water. If the aperture be small, the difference may amount to a fourth of the whole quantity. Care should also be taken to form the wing.walls to sluices with curved or trumpet-shaped approaches, conformed to the natural contraction which may be produced in the overflow or slaice way.
To obtain the quantity which passes through a parallel channel in a given time, the sectional areas should be multiplied by the mean velocity, the latter element being obtained by adding the velocity of the water at the surface and that at the bottom of the current and dividing the sum by two. As it may not be convenient, in every case, to ascertain the velocity at the bottom, the mean velocity may be determined, with accuracy sufficient for practical purposes by ascertaining the surface velocity in inches per second in the middle of the stream, and the mean velocity will b equal to this velocity less the square root of this velocity minus five. If, for example, the surface velocity in the stream is equal to 36 inches per second, the mean velocity will be found by subtracting 5 from 36, leaving 31, then ex racting the square root of 31 , which is 55 , and subtracting this last figure from 36, giving 30.5 inches per second for the mean velocity. Maltiplying this number by 60 and dividing by 12 , or, which is the same thing, multiplying it by 5 , will give the velocity in feet per minute. In the case just supposed the velocity per minute will be 152.5 feet. If, hen, the water course be 4 feet wide and 2 deep, the amount of water discharged per minute would be 1525×8 or 1,220 cubic feet.
When the overfall is a thin plate, it will discharge a greater proportionate quantity when the stream is only one inch deep than with greater depths. When the overfall is of two inch plank, the flow of water is more retarded, a greater head is requisite, and the maximum discharge is given by a head of seven inches. When the length of the overflow plank is ten feet, the coefficient is greater with a depth of five inches; and when wing boards are added, causing the atream to converge toward the overfall at an angle of 64°, the coefficient is greater even when the head is less, showing the utility of proper wing walls on sluices.
To determine the hight of the waterfall in a running stream, a small temporary dam, unleas one exists, must be made, so as to secure a still surface. Take two poles sufficiently long to reach from the bottom of the water to the required line level. Make a plain mark or notch on both sticks, at a distance from the upper end equal to the distance of the intended line level above the water, marking that d!stance in feet and inches. Push the poles down through the water into the earth at the bottom until the notches are both at the level surface of the water, care being taken to have the poles plumb and at a convenient distance apart. Sight across the tops of these two, and set as many more as may be desired to run the line of level to the desired point, and the tops, being ranged accurately by the first two, will show a water level so many feet above that of the water. It is estimated that this is a more accurate way than the use of the ordinary spirit level.-Boston Lumber Trade.

-Comparative Economy and Intensity of Electrie

 Light and Gas.The London Daily News says: Somecurious and useful information about the lights displayed from the Clock Tower of the Houses of Parliament is given in a report just mude to the House of Commons. It appears that the two semi-lanterns, which a spectator at Westminster sees 250 feet above him in the Clock Tower, are in the hands of two rivals-one of whom employs gas, and the other electricity, as the source of illuminating power. The Wigham light has three burners, each composed of 108 jets, piaced one abjve another on the same axis. The electric light is produced by an electrowagnetic machine, worked by steam power, the currents being conducted from the machine to the lantern along 1,700 feet of copper wires. The report is decidedly favorable to the electromagnetic process. Thus Mr. Douglas states that the olectric light has a superior intensity of 65 per cent when one 108 jet burner is used, and of 27 per ceut when three are em. ployed. So, again, as to cost : the electric method produced a aving of 162 per cent, measured in cost per candle per hour, when a 108 jet gas burner is used, and of 133 per cont when When a 108 jet gas burner
throe burners are used"

PRATICAL MECEANIBM.

Numbre I.
 Introduction.

The education of the machinist in the science governing the daily practice f his art has not received its proper share of attention at thrhands of those authors who have written books upon mechnical subjects : and the artizan is, in conse quence, deprivedof the aid derivable from the experience of the thousands wo have trodden the same path before him. Hence it takes yars of practice and observation to acquire knowledge whih could be gained in a comparatively shor space of time b the aid of a little book learning.
To conversentelligently with the artizan, it is necessary to employ langage and terms with which heis familiar; and in cases wherecalculations are required. they should be of as simple a nsure as possible, because the practical machin ist is not usualy versed in algebra; and if he finds that the information d which he is in pursuit is treated only in for mulas whosemeanings are a mystery to him, he become discourcged ind abandons the task of their elucidation. When, on the other hand, the mechanic is encouraged by the easy acqirement of the desired knowledge, it proves an incentive which leads him to higher paths of study, into the pureuit of wich he had at first no idea of entering.
Practical rorkmanship is not a merematter of accustoming the fingers t perform mechanical movements; but is gov erned by a eries of distinct principles, simple and complex the employnent of which depends at all times upon the per ception and udgment of the artizan. Nearly the whole distinc tion betwee an expert and an indifferent workman consist in their reldive capability to perceive the principles applica ble to partiular work, and in their readiness in overcoming the innumeable little obstacles which present themselves rendering adeviation, at times, from a common rule eithe highly advantageous or absolutely neceseary.
The inexjerienced or unobservant mechanic frequently fails to recopnize the very principles he applies to his work, although cosscious of a large class of conditions under which he would poceed by the same method; because experience has forced itupon him as indispensable in such cases. Being deperdent upon the information which he may be able to gather from the particular pieces of work which chance to fall to his lot and to such scraps of disjointed instruction as a fellow workman may feel disposed to impart, it oftenfoccurs that, when h encounters a difficulty, the more experienced hand who hdps him out of it neglects to explain the principle governing the means by which the difficulty was overcome, so that the uninitiated gains nothing by the experience, and fals to perceive the numerous applications of similar remedes to parallel obstacles.
The machinst is to iron what the carpenter, joiner, cabi net maker, wleelwright, etc., are to wood, with the disad vantage that bo has to deeign and determine the shapes and temper of his ools, which vary so much (to suit the work) that the tool suitable for one piece may be totally inadequate to perforn the same service upon another, although the proportions the texture, and the metals may be alike in both instances. We cannot, therefore, tell a good machinist by his tools, uness we know for what particular piece of work those tool were used. Nor can a machinist be judged rom his shavinge, because there are many kinds of work for which a tool keen enough to cut a thick and clean shaving cannot be used to advantage. Even the speeds, given in mechanical books, at which to cut metals tend to mislead, because the natureand size of the work, the depth and nature of the cut, and numerous other influences render the varia tion of the cutting speed at times one third greater or less than the given speed. A knowledge, however, of the general rules, together with an intelligent understanding of the principles goveraing the exceptions and deviations, will enable the artizan, vhen a difficulty arises, to at once perceive its precise cause, and to apply an adequate remedy, the conditions anly requiring to be understood to render the application of the principles governing them palpably necessary and eary of accomplishment; thus rendering the learning of the trade more a matter of understanding and less a matter of unintelligent labor.
The aim, therefore, of the author of these papers is to de velop fromtbe promiscuous practice of the workshop its in herent scierce, and to present it to the mechanic so arranged that he willind each formula the natural sequence to its predecessor; and while explaining its positive conditions, to o present itsnegative ones that the mind will instinctively seek the remely which its successor will supply

Machine Tools.

RONT OR TOP RAKE
The principal consideration in determining the proper shape of a cuttirg tool for a machine is where it should have the rake necessary to make it keen enough to cut well, and this is governed by the nature of the work on which it is to be used. It is always desirable, when practicable, to place nearly all the rake on the top face of the tool, as shown in Fig. 1

The line a represents the top face, the rake being its nclinein the direction of the arrow. In those cases (to be hereaftr specified) in which top rake is, from the nature of
the work to be cut, impracticable, it must be taken off and given proportionatoly to the bottom face, as nhown in Fig. 2 ,

In which the line a represents the bottom or side face of the tool, the rake being its incline in the direction of the arrow The tool possessing the maximum of top rake, as showh in Fig. 1 , is the strongest, because its cutting edge is the best supported by the metal beneath it, and is so presented to ihe metal to be cut that the tool edge crits freely, having no ten dency to scrape.
The shaving, as it is cut off, exerts a pressure upon the top ace of the tool, the line of force of this pressure being a bout a right angle to the face. If, therefore, the top face of the tool possesses much rake, this line of pressure will be a direction to force the tool into its cut (causing it to spring into the cut and break), as shown in Fig. 3.

A represents a shaft, B the tool, C the shaving being cut off and the dotted line D the line of force of the strain placed upon the tool by the shaving, from which it will be seen that if the tool springs in consequence of this pressure, it will enter the cut deeper than it is intended to do. A plain cut (either inside or outside) admits of the application of a maxi mum of front or top rake, and of a minimum of bottom or side rake; but a tool of this description, if used upon wor having a break in the cut (such as a keyway or slot), would un in and break off from the following causes:
If the strain upon the tool were equal in force at all times during the cut, the spring would aleo be equal, and the cut therefore, a smooth one; but in taking a first cut, there may be, and usually is, more metal to be cut off the work in on place than in another; besides which there are inequalities in the texture of the metal, so that, when the harder parts come into contact with the tool, it springs more and cuts deeper than it does when cutting the softer parts, and therefore leaves the face of the work uneven. If less rake be given to the tool on its top and more on its side or bottom face, a is represented in Fig. 4,

being the shaft as before, B the tool, and C the shaving, the dotted line D is the direction of the strain put upon the tool by the shaving, which has but very little, if any, tendency to spring the tool into its cut.

STRAINS ON TOOLS

The strain referred to is not alone that due to the severing of the metal, but that, in addition, which is exerted to break or curl the shaving, which would come off, if permitted, in a straight line, like a piece of cord being unrolled from 2 cylinder; but on coming into contact with the face of the tool (immediately after it has left the cutting edge), it is forced, by that face, out of the straight line and takes circular form of more or less diameter according to the amount of top rake possessed by the tool. A glance at Fig. 3 will show that the shaving comes off the tool there represented at such an acute angle that but little force is required to bend it out of the atraight line into circular form. Au in spection of Fig. 4 demonstrates that the shaving comes off the tool there described at almost a right angle to the straight line, and the grain of the metal (already disintegrated in the cutting) fragments from the force necessary to bend it to such a degree.
It follows, then, that, if two tools are placed in position to take an equal cut off similar work, that which possesses the most top rake, while receiving the least strain from the shaving, receives it in a direction the most likely to spring it into its cut. It must not therefore, be used upon any work having a tendency to draw the tool in, nor upon work to perform which the tool must stand far out from the tool post, for in either case it will spring into its cut.
Especially is this likely to occur if the cut has a braak in it with a sharply defined edge, for example, when turning a shaft with a dovetail groove in, as presented in Fig. 5. For when the edge, a, of the dovetail strikes the point of the tool, B, it will spring it into the cut and break it, more particularly if the point, B, of the tool is placed above the center, in which position it cuts, in ordinary cases, to the best advantage. It is apparent, then, that tools for the above description of work must be given the form described in Fig.

, not because it is the best tool to cut the metal, but be caues it is the least liable to epring into its cut.

Petroleum Fires Extinguished by Chloroform.
Some of the fiercest and most destructive conflagrations on ecord have been occasioned by the burning of large quantiies of petroleum. It is hardly necessary to recall instances; the frequent fires in the large oil works in Brooklyn, the reat conflagration in Philadelphia some years ago, and the earful disaster on the Hudson River Railroad, due to the ignition of an oil train through collision, are within every ones ocollection. Various processes have been suggested for ren lering the petroleum incombustible principally however
 and their subsequent removal before using the material. and their subsequent removal berore using the material. ournal a new means, which, he states, renders the oil abso lutely proof against fire. He states that petroleum mixed in proportion of five to one with chloroform cannot be ignited it becomes not only uninflammable but incombustible so ong as the major part of the chloroform remains unvola tilized.
It is a remarkable fact, that if a quart of petroleum be poured upon a large shallow dish so that its depth will be about 0.3 f an inch, and in surfaces about three inches square, and hen ignited and allowed to become well kindled, about ne tenth of a gill of cbloroform will extinguish the flames nd if attempts be made to relight the petroleum, the iquid will put out the match. Another experiment tried on a larger quantity of oil,though retaining the same superficial rea, showed that the same amount of chloroform sufficed to repeat the result. Mixtures of explosive gases mingled with the vapors of chloroform also lose, it is stated, in a grea easure their inflammability.
The chloroform must be pure and free from alcohol. If ho wever, the vapor of boiling chloroform or the liquid in a pure spray be introduced into the flame of burning alcohol, he latter becomes exiinguished.
The composition of chloroform gives an explanation of hese facts, which, however, are nevertheless very remarka ble,inasmuch as most chemical treatises admit the inflamma bility of the substance. The formula $\mathrm{CH}, \mathrm{Cl}^{3}$ leads to the de composition by heat,with the formation of $\mathrm{Cl}^{2} \mathrm{H}$, and Cl and C become free. An ælopile, covered externally with alcohol and internally with chloroform, gives off clouds of carbon companied with intense fumes of hydrochloric acid
From the preceding it would seem that,for use aboard vessels or in large storehouses where great quantities of petroleum are massed, a reservoir of chloroform would furnish a means of keeping down conflagrations, the ravages of which at the present time it is almost impossible to check. This reser voir, A bbé Moigno suggests, might be so arranged tbat,in case of a fire occurring in the oil at a certain point, its contents would there be conducted and discharged.
We should imagine that a system of tubes, one leading to each tank, could be connected with some electromegnetic or other fire annunciator, the action of which, caused by the heat, would open a valve and so admit the chloroform. It is true that the high cost of the latter would be worthy of considoration, but a suitable provision oncemade, at an expenee o few hundrsd dollars, would, if properly enclosed, last indefinitely; and besides, the expense would be trivial baside the saving effected, of a ship and her cargo or of a large ware-

The author says that if his experiments, conducted on a still larger scale, prove equally successful, as he confidently expects them to do, the resources of chemistry should furnish a means of making one or the other chloride of carbon very cheaply. In fact, already the tetrachloride of carbon, CCl^{3}, may be easily produced through the sulphide. The difference between the tetrachloride and chloroform is that the latter, $\mathrm{CH}, \mathrm{Cl}^{3}$, boils at 140° Fah., and its density is $1 \cdot 48$. CCl^{4} boils at $172 \cdot 4$ Fah. and has a density of 1.6 . The tetrachloride is transformed partially into chloroform by reactions indicated in chemical works.

The Largest Gas Meter in the World.-The Gas Meter Company, Limited, have lateiy erected, at the Independent Gaslight Company's Works, Haggerstone, London,a station meter which is the largest yet made. Its capacity is 150,000 cubic feet of gas per hour, and its measuring drum delivers for each revolution 1,600 cubic feet. The cast iron tank, with its pilasters, cornices, etc., is of the Grecian order and of the following dimensions, namely: 19 feet 8 inches square, and the total hight from floor line to the top of pediment is 20 feet 2 inches, and when filled to the working waterline contains 21,000 gallons of water. The inlet and outlet connections are 30 inches diameter. The meter works well at three tenths of an inch pressure.

A NEW process for heliographic engraving is given in the L'Année Scientifique. A photographic proof is appliea to a sheet of zinc, when the silver, transferred from the paper to the plate, produces a metallic layer which enables the zinc to be attack ed by very dilute acids.

WIRE WAY FOR TRANSPORTING ORES, ETC
The invention illustrated in the annexed engraving is another of the modern useful arrangements for lowering and raising buckets or cars from or to an elevation, for the purpose of transporting water, minerals, merchandize, etc. The receptacle travels down the way, which may be at any angle to the horizon until it reachos a desired point ; there, by mechanism below described, the bucket is caused to descend perpendicularly to a convenient hight from the ground for emptying or filling. On returning, the bucket is first lifted up to the way, and then hauled to the elevated point from which it started. This is all done automatically by a moto stationed on the eminence.
In our engraving is show a general view of the inven tion, and in Figs, 2 and 3 principal principal portions in detail. The bucket ready to descend is affixed to the hook, A, which is attached to a pulley which slides freely on the rod, B. The forward portion of the latter is hook-shaped, and is pivoted to a suitable support The rear end rests upon pulley, C , in a similar arm pult,, , in arm Both supporting arms are pro vided with wheels above to run on the wire, as shown, and
are connected by a rod, D, are connected by a rod, D,
pivoted to both. The lowering and hoisting rope, E, in the large view is, as represented in Fig. 2, attached to the rear end of $\operatorname{rod} B$.

An empty bucket, starting on its downward course, is lowored by the rope, E, until the point at which the filling is to take place is reached. On the
way, and directly at such point, is secured a crossbar, F, which the hook end of rod, B, strikes against. The effect of this is to disengage the rear end of rod, B, from the pulley, C, through the action of rod, D , and to allow said extremity to descend. The bucket of course slides down by its own gravity, leaves the rod, and reaches the rope, being finally lowered as represented to the left in the large engraving.
As soon as the receptacle is filled, the motor commences to pull on the rope, and in so doing would naturally drag the car along the ground. This tendency, however, is immediately prevented by resistance of the hook end of rod, B , which, having caught over the crossbar, F, as the opposite extremity descended, retains its hold until the ascending bucket has reached the rod, B. The gravity of the receptacle causing it to descend to the hooz end of rod, B, its weight lisengages the hook from the crossbar, leaving the car free to be pulled up the incline.
In Fig. 3 is shown the mode of holding up the wire, G being the support. Adjacent to this, in order to allow of the passage of the car, is a short railway, on which the outer wheels of the traveling pulleys, which are threefold, revolve. These being a trifle larger than the middle wheel, the wire will be relieved of the weight of the buckets while the same are passing the supports, and the opening, H, permits the parts which form it to pass with their pendent burden.
The apparatus is adaptable to various uses, and may, it is suggested, be profitably employed when obstacles of any kind exist between localities from one to the other of which the transportation of materials is necessary.
Patented June 24, 1873. For further particulars address J. Whitson Rogers, manufacturer and proprietor, Peekskill, N. Y. [See advertisement on another page.]

A WIRE CLOTH BOOT

Quite a novel form of shoe or boot has been patented through the Scientific American Patent Agency, by Mr. Ro-

bert Sommerville, of Sandusky, Ohio. Instead of making the whole covering of leather or other material in common use, the inventor proposes to employ wire cloth or gauze for the upper. The sole and heel are of course of leather, and the wire portion is secured to the former by means of a strip of thin metal fastened to the top of the sole by screws, and to which the upper is soldered. The principal advantage claimed is that the shoe thus constructed gives the foot free ventilation, while the pliability of the material is such as not to interfere with the free action of the member. We presume that the inventor designs'it specially for Southern lati tudes or for summer wear.

Iceberg Alarm.

M. Michel lately presented a paper before the Academy of M. Michel lately presented a paper belore the Academy of
Sciences, Paris, describing as new an apparatus for vessels
to be used for giving notice of the proximity of icebergs. It consists of a metallic thermometer placed outside the vessel. The moment the vessel enters water that is below a certain limit of heat, an alarm is sounded. This alleged French im. provement is set forth as one of importance, and as having originated with the gentleman referred to. But the device is of American origin, well known here. It is the invention of Mr. Charles Dion of this city, was described in the Scientific American, April 23, 1870, and was published in various papers throughout the country about that time. This is
kiss \& Stiles, which are claimed to adematerially to its eff ciency. It will be noted that the devic belongs to the class of tools in which the hammer is raisd by a stiff belt or board passing up between two friction alls. The hammer instead of being attached to the board bja rigid connection, has an elastic or flexible one, as shown atA, the object being to prevent the sudden jar and probable lestruction of the ame, owing to the repeated shocke
Referring to the sectional view, Fig. 2, mtion is communi cated between the rolls, B, by means of the two cog wheel shown. The teeth of thi gearing are alays engaged, and hence the reolution is constant; but in cder to cause a griping. of theooard, the shaft of one wheel, ad consequents ly the roll, wheh also work thereon, is move up closer to the other. Thi teeth of the cogs are of suffient length to allow of this moement, which need be but very slight. The sliding motion o the movable roll is effected b: an eccentric C, connected witl a lever and rod, D, the actio of which is clear from our illustration. The rod, D, whichby the screw connection at E , rig. 1 , is ad justable as to len $\ddagger \mathrm{h}$, is shown in Fig. 1 at the rght, and its lower extremity rats upon the top of a vibratig arm, F which is pivoted, is shown, to the frame. On tb hammer, at the same side, wll be noticed a wedge-shaped pojection and on the vibrating siece, a shor pin, which may e located in either of the hols shown.
Referring agail to Fig. 2, G

WIRE WAY FOR TRANSPORTING ORES, ETC

only one of many examples in which descriptions of new American inventions are translated from our papers by and credit for the origination claimed on behalf of the trans lator.

THE HOTCHKISS OR FRICTION ROLL DROP HAMMER.

As we have already directed our readers' attention at som length to the value of the drop hammer as a means of forg ing small articles in dies, it is hardly necessary to enume rate the capabilities of this class of tool, and the advantage

which it offers to the machinist. It possesses an accuracy and rapidity in operation hardly attainable by other means, and in its special work is, in many respects, more desirable especially in point of economy, than the forms of hamme operated by the direct action of steam.
The machine represented in our engravings possesses cer tain improvements, covered by the patents of Messrs. Hotch--

G are two clamp, up through
which the board passes, and which are so arnnged that a the hammer ascends they will freely open of themselves, but on descending they will close and hold the hammer; how this is done is obvious from their shape. Gnnected with one of the clamps is a lever, H, which, passing to the rear of the machine, is attached to a rod and thus communicates with the treadle. It will be readily understoor that, by press ing down the latter, the operator raises thilever, H, and hence the clamps, holding the same in such poition as long as he chooses and thus either freeing the board tom their gripe or preventing the pair of clamps acting for ay desired time. To the right of the machine (Fig. 1) is show a handle con necting with and moving a rod, I. This acts in addition to the rod, D, to open or close the rolls at will. The lower end of rod, I, has a slot, so that the action of the iammer willnot disturb the hand lever, thereby preventing the hand being injured as otherwise might be the case
We can now, before proceeding with furtier datail, follow the operation of the working parts. The lammer, we will suppose, as represented in our Fig. 1, is inthe act of rising. This it will continue to do until io strikes :n adjustable col lar, J, on the rod, D, raising the latter up. As soon as its lower end is lifted above the vibratory ara, F, a spring on the latter pulls it under, and thus the rod,D, is supported in the position to which it is lifted. The cossequence of rais

ing the rod, D, however, as we have abore shown, is to open the rolls; hence the hammer falle, to be caught, however, instantly by the clamps, G. These are held open by the pressure of the foot of the operator on the treadle, and therefore the of the foot of the operator on the treade, and therefore the
hammer is free to deliver its blow. This it does, but on dohammer is free to deliver its blow. This it does, but on do-
ing so its wedge-shaped projection strikes the pin on arn, F , and pushes the latter:out from under the rod, D. The rod falling again, by its own weight, closes the rolls, and the hammer is once more lifted. This operation is repeated just as long as the clamps are held open by the treadle, by eleasing which, at any moment, it will be noted, the clamps will be thrown in action, and hence the hammer arrestedat any point on its down stroke. It will be clear, from the above, that a continuous series of blows may be maintained jy simply keeping the treadle down; and the force of these strokes
depending upon the fall of the hammer, is regulated by adcusting the collar, J , to cause the opening of the rolls sooner or later. For governing the motion of the head more accurately, delivering longer or shorterblows or drops of varying hight, the hand lever provides a simple means. By this the rolls can be brought together or separated at any moment. The hammer can be held up at any point below the collar by simply bringing the lever into action when the head attains the desired hight, so that the next blow can be given from a state of rest of less hight than that for which the collar is set. A gentle pressure upon the treadle, slightly relaxing the grip of the clamps, will allow the hammer to descend slowly; and by removing the pressure, an instant stoppage and suspension of the head is effected. The clamps, in holding up the hammer, keep the board from touching either roll, and prevent the same from being worn. By means of the set screws, shown on the back roll and on the clamp in Fig. 2, these portions are made nicely adjustable to different thicknesses of board or belt.
The machine, we learn from parties using it, is reliable and efficient in practical operation, and its construction, while simple, is of durable and strong material. It needs no explanation to show that the entire apparatus is completely under the control of the operator, as much so, in fact, as thesteam hammer, and hence the blows may be graduated in force and rapidity, to an extent, it is claimed, unattainable by other devices. It is manufactured only by the Stiles and Parker Press Company, of Middletown, Conn., to whom letters for further information may be addressed.

Coffee as a Disinfectant.

Roasted coffee, says the Homœopathic World, is one of the most powerful means, not only of rendering animal and vege table effluvia innocuous, but of actually destroying them. In proof of this, the statement is madethat a room, in which meat in an advanced degree of decomposition had been kept for pome time, wás instantly deprived of all smell on an open coffee roaster being carried through it, containing one pound of newly roasted coffee; and in another room, the effiuvium occasioned by the cleaning out of a cesspool, so that sulphureted hydrogen and ammonia could be clearly detected, was entirely removed on the employment of three ounces of freshly burnt coffee. Refrigerators sometimes get musty from flesh, fowl, or fish, kept too long in them. No remedy for purifying such receptacles, so simple as burnt coffee, can be employed.

THE TODD AND RAFFERTY HOISTING ENGINE.

The above named machine is so plainly represented in the annesed illustration that but few words are needed supplementary thereto. It is, in brief, a double reversible hoisting engine with drum attachments, the two drums, winding and unwinding at the same time, being geared to the actuating mechanism by spur wheels. The engines are of a well known type, and are constructed, as is the entire apparatus, with a view to economy, simplicity, and durability. Self-packing pistons are employed, the link motion is used for reversing, and every device which experience can suggest has been added in order to produce a strong and reliable machine.
The manufacturers are the Todd \& Rafferty Machine Company, of Paterson, N. J. They inform us that since its introduction the hoister has met with a wide appreciation, and a sale in numbers counted by hundreds. It is largely em. ployed in the mines, mills, and furnace establishments of Pennsylvania, and no less than sixty machines are in constant use by the great Thomas Iron Company. We need hardly add that the repatation of the manufacturers is the best guarantee for the excellence of their work, and hence
urther recommendation at our hands is unnecessary. The reader interested can obtain further information by address ing the Todd \& Rafferty Company, as above, or at their ware rooms, 10 Barclay street, New York city.

THE CORAL FCHMEA.

This plant (achmea fulgens) is extremely elegant in habit, requires but little attention to grow it in perfection, and forms a very decorative plant for the greenhouse, stove, or drawing room. Some of the species are hardy in constitution, and remarkably tenacious of life; indeed, they may be grown with less trouble than any other class of plants, if we except succulents. The plant illustrated, says The Garden, to which we are indebted for the engraving, forms a striking object in a conservatory or drawing room vase, especially when bearing clusters of coral-colored,'purple-tipped flowers The leaves are bright green, robust in character, and grace

fully recurved. Its flower spikes continue in perfection for several weeks at a time, and form conspicuous objects. Nearly all the species grow vigorously in good sandy loam to which a little leaf mold may be added, and they should be liberally supplied, when growing, with water at the roots. A little clear manure water, too, strengthens them in a marked degree, and assists them in producing strong flower spikes. They are easily propagated by taking the offsets produced by the old flowering plants, and potting them at once in emall pots, which may be plunged in a gentle bottom heat until well rooted, after which they may be encouraged to make good growth, and will generally produce flowers the second year; but, for decorative purposes, this plant is always hand some either in or out of bloom.

New Researches in Wines and their Colors. M. Duclaux, has recently submitted to the French Academg of Sciences, two notes, in which he gives the results of recent investigatipns into the nature of the coloring matter and volatile acids of wines. Some interesting facts regarding the effect of the latter constituents are given, as well as in relation to the peculiar substance to which is due the rosy hue. The latter is a transparent mass having the color and consistence of currant jelly. It is soluble in water and in alcolol, to which it gives a violet reddish tinge which quickly turns to bright red on the addition of a trace of acid. Left for some time to the influence of the air, and especially in a for some time to the influence of the air, and especially in a
heated place, the substance absorbs oxyen, darkens in color,
and becomes more and more soluble in water. It finally is deposited in pellicales, which, when the solution is completely evaporated, remain in the form of a coherent paste, quite opaque, and finally hardening and becoming detached in scales after cooling, In this condition, the substance is not soluble in water, but remains so in alcohol, which it colors a fine purple even in the absence of acids.
This is Nature's coloring, but art frequently adds other ma. terials to darken the hue,or to mask the fraudulent additions of water. The commonest substances used are mauve, phytolacca decandra, and cochineal. These can be distinguished, M. Duclaux tells us, as follows : For mauve,the coloring ma terial under the action of oxygen acts in reverse manner to the true substance, that is, instead of becoming insoluble, it becomes more soluble in water. Cochineal may be detected by the characteristic absorption bands in the spectroscope, which are essentially different from those of wines. Lastly, phytolacca is found by means of the nascent hydrogen, which causes it to discolor quickly, while it does not alter the tinge of pure wine except very slowly.
With reference to the volatile acids in wines, M. Duclaux atates that, when the latter are healthful, they contain acetic acid in very slight proportion, mixed with from one twelfth to one fifteenth butyric acid. He notes the existence of valerianic acid, of which the quantity does not exceed 0.1 grain per quart, and also, in proportions almost infinitesimal, a superior fatty acid, of which he is as yet unable to ascertain the nature. The various causes of deterioration in wine carry to the composition of this mixture of acids various modifications. Thus when the liquor is turned, nearly squal quantities of acetic and melacetic acids are formed. Bitterness develops acetic acid, butyric acid, and the fatty acid above develops ac
referred to.

An Amusing Chemical Experiment.

Placefive glasses in a row, then pour into the first a solution of potassium, the second a solution of corrosive sublimate, the third a small quantity of iodide of potassium and some oxalate of ammonium, the fourth a solution of chloride of calcium, and the fifth some sulphide of ammonium. Now of calcium, and the fifth some sulphide of ammonium. Now
pour part of the contents of the first glass to the second, and a scarlet color will be obtained; next pour the second into the third, and the mixture will be colorless; again, pour the third into the fourth, and the contents will be white; finally, pour the fourth into the fifth, and the mass will be a dense black. Then you willhave had two glasses colorless, one scarlet, one white, and one black.

Refraction of Compressed Water.
M. Mascart followed M. Jamin's method, sending light hrough two tubes filled with water, and counting the interferential fringes which passed a point of the spectrum whee a difference of pressure was produced. A change of pressure of 1 meter mercury caused the displacement of about seventy fringes; and as the tenth of a fringe could be measured, there was much precision in the arrangement. The number of fringes displaced by corresponding variation of pressure is not ringes displaced by corresponding variatio. The author deconstant but increases with the pressure. and the liberation of heat produced by compression of water.

AT a recent soirée of the Royal Society, Dr. R. Norris, of Birmingham, exhibited experiments to illustrate a form of contractive energy which displays itself in various subtances. Among other things the doctor showed that the tatement that india rubber contracts by heat is incorrect; this substance, it is true, contracts in the direction of its ength, but it expands in breadth at the same time, thus resembling the so-called contraction of muscular fiber.

SCIENTIFIC AND PRACTICAL INFORMATION.

black phosphorus.

The essential feature of this body, says M. Blondlot, is that in a atate of fusion it does not differ from normal phos phorus. At the moment of solidification, howerer, it euddenly becomes black. On re-fusing, it again turns white, and so indefinitely.
imple leveling ingtrument.
M. Goulier proposes for the above a pendulum hung by a double point, which carries, rigidly attached, a collimator formed of a small tube hermetically closed at one extremity by a piece of ground glass. At the other ond is a conver ging lens, 18 inches in diameter and 54 inch focus. The radi ging lens, 18 inches in diameter and 54 inch focus. The raditimes less than that of the interior face. At the principal focus is a diaphragm pierced with a hole 0.06 inch in diameter, across which is a thread of black cotton. By suitable construction, the pendulum being at rest, the plane passing through the thread and the optical center of the lens is horizontal. On looking through the lens, the observer sees the thread as a horizontal line, which marks on the field the intersection of horizontal plane through the instrument. By placing the eye in proper position, the thread and exterior objects may be seen at the same time, and the mark on a leveling rod may be adjusted to coincide with the thread, so obeling rod may b
taining a level.
dangers of methylic alcohol
Serious maladies, says the Lyons Médical, have been engendered among the workmen in two industrial establishments by the employment of methylic alcohol, that is, wood naphtha, or alcohol derived from wood. The material is used in the finishing of felt hats and of silk fabrics. Its action is directly upon the mucous membrane exposed to its emanations, snd also, through the nervous system, upon the entire organization.
The effect is first noticed upon the ocular conjunctiva, which becomes inflamed and injected, producing a sensation of sand in the eyes. A copious flow of tears and extreme sensibility to light (photophobia) follow, incapacitating the sufferer for work. Further symptoms include intense corsza and inflammation of the pharynx and bronchial tubes, together with trouble of the digestive organs. Severe headgether with trouble of the digestive organs. Severe head-
aches and feelings of heaviness and depression are always aches and feelings of heaviness and depression are always
present. The rigor of the malady depends upon the extent to which the person is exposed to the alcoholic fumes. The workman who finishes the bottom of a hat is attacked more severely than the one who prepares the rim. It has also been noticed that cabinet makers who use the material in varnish are frequently attacked with tetanic convulsions of the fingers, unknown previous to the employment of the alcohol.

THE COMMERCE OF THE WORLD.

Les Mondes says that the eleven principal nations of the world, Great Britain, United States, France, Germany, Belgium, Austria, Russia, Italy, Spain, Holland, and Sweden, have more than doubled their aggregate conumerce in less than twenty years. The foreign trade of these countries amounted in 1855 to $\$ 4,251,700,000$, and in 1872 to $\$ 9,272$,000,000 , showing in 17 years an increase of $\$ 5,034,300,000$,
or 118.5 per cent. The increase in population during the or 118.5 per cent. The increase in population during the
above period is $40,177,000$ souls, or 14.8 per cent; and during the firstmentioned year the commerce per capita was $\$ 15.62$, in the last year $\$ 29.76$, or an increase of $\$ 14.14$ to each person.
Mr. Gladstone, we notice, recently stated that during the last half century Great Britain had accumulated more wealth than during the entire period of her history. The figures above given would seem to prove this view.

The Warmth of Clothing.

In a careful study of the subject of the warmth of clothing, recently published, Dr. Max von Pettenkofer has pointed out that the permeability of stuffs to air is a condition of their warmth. The London Medical Record gives the following abstract: Of equal surfaces of the following materials, he found that they were permeated by the following relative quantities of air, the most porous, flannel such as is used ordinarily for clothing, being taken at 100 :-Flannel. 100 ; linen of medium fineness, 58 ; silk, 40 ; buckskin, 58 ; tanned leather, 1 ; chamois leather, 51 . Hence if the warmth of leather, 1 ; chamois leather, 51 . Hence if the warmth of from our bodies, then glove kid must be 100 times warmer from our bodies, then glove kid must be 100 times warmer
than flannel, which every one knows is not the fact. The whole question, then, is resolved into that of ventilation. If several layers of the same material be placed together, and the air be allowed to permeate through them, the ventilation through the second layer is not much less than through the first, since the meshes of the two form a system of conmovement of the air through these is effected merely by the resulting friction. Through our clothing, then, passes a stream of air, the amount of which, as in ventilation, depends upon the size of the meshes, upon the difference of temperaure between the external and internal atmosphere, and upon the velocity of the surrounding air. Our clothing, then, is re quired, not to prevent the admission of the air, but to regulate thes same so that our nervous system shall be sensible of no movement in the air. Further, our clothes, at the same time, regulate the temperature of the contained air, as it passes through them, so that the temperature of the air between the The hygroscopic property of different materials used for clothing essentially modifies their functions. This property varies ing essentially modifies their functions. This property varies
with the different materialn: wool, for instance, takes up
more water than linen, while the lattor taken up and gives off ite watery contents more rapidly than the former. The more the air is displaced by water from the clothes, the less will be their power of retaining the heat; in other words, they conduct the heat more readily, and hence we are quickly chilled by wet garments.

Transparent Photographs.

A laundress's flat iron is, perhaps, the most converiont thing that can be made available for mounting the print upon the glass-using a piece of bibulous paper between the iron and the print to absorb the superfluous paraffin. Such a mounting may be very usefully employed for securing the soft effect produced by placing a second picture behind the transparency.
In this method of manipulating it will be necessary to melt the paraffin, and perhaps the following mixture may be utilized with advantage,as it is fluid at ordinary temperatures, or, if not so, the warmth of the hand will render it liquid. The small quantity of Canadian balsam is introduced for the purpose of making the print more adhesive to the glass; but we really have grave doubts as to its proving of any great advantage in practice, because even this substance is, to a certain extent, amenable to the action of the light and oxygen : Paraffin 2 drachms, benzole 5 fluid drachms, Canadian bal sam half a fluid drachm.
The paratin should be melted, removed some distance from the light, and four fluid drachms of the benzole added during the light, and four fluid drachms of the benzole added during
agitation. The Canadiau balsam is to be dissolved in the agitation. The Canadiau balsam is to be dissolved in the
other drachm of benzole, and the whole is then to be mired together. Paration and Canadian balsam do not mix very well; but with interposition of the inenstruam, benzole, they seem to blend perfectly.
The advantages of such a mirture as the above are that it
can be applied cold with a brush, and that it drys in a very short time if the benzole be of good quality. To perfect the adhesion, however, we would recommend that the warm iron should be passed over the surface after it is quite dry. Such an operationalso ensures the volatilization of any traces of the benzole that might remain. The same solution might, perhaps, be used with advantage to preserve prints from atmospheric influence.-Britush Journal of Photography.

Transmission of Power by Wire Ropes.
At a meeting of the Institution of Mechanical Engineers, London, Mr. Morrison described the mode of transmission in troduced by the Brothers Hirn, and now extensively used at Schaffhausen,on the Upper Rhine. It appeared that theg first used flat metallic bands to transmit the power; but these being found objectionable, round wire rope waes subsequently adopted instead. The rope is usually made of fine steel wire, as it must be very tough and flexible. This wire rope, which is about 1 inch in diameter, and contains 72 strands, is un at a high velocity, over pulleys of large diameter. The total loss of power by friction, etc., was stated to be $2 \frac{1}{2}$ per
cent, and it appeared that, of 120 horse power existing at the cent, and it appeared that, of 120 horse power existing at the motor wheel, 100 horse power was utilized at 2,200 yards dis these figures had been arrived at. It was also estimated that iron shafting, capable of transmitting the same power, would involve the use of 3,000 tuns of material. Various maerials were tried for facing the grooves of the pulleys, such as copper, leather, etc., as there either was excessive wear in the groove, or the facing destroyed the rope. The best ar rangement was found to be a dovetail groove, filled in with gutta percha, in which the rope soon made a channel eys run at the rate of 50 miles per hour, and the ropes last from $1 \frac{1}{2}$ to 2 years.
Dr. C. W. Siemens, F. R. S., remarked that there was no doubt that, by running ropes at from 30 to 60 miles per hour ver pulleys, a large amount of power could be transmitted ith but little waste.
Mr. Willism Smith said that in 1837, soon after his father had invented wire rope, it was used very similarly, and in 1839 and 1840 it was introduced on the Regent's canal for towing barges through the tunnel beneath the Harrow road, and it was also taken $3 \frac{1}{2}$ or 4 miles along the bank of the unning he bargeman simply threw a catch line over the against the screw, duck foot propeller, and others, but was not found to be economic. He had many times seen a simiar application of the principle; the fly rope of an ordinary opery was an illustration, but that had long since been ob as a novelty, the introduction of endlese the paper claimed as a novelty, the introduction of endless wire ropes for trans-
mitting power to a distance; if so, he doubted whether the claim could be substantiated. If the novelty merely con sisted in the running of the ropes at a high velocity, which was all he could see in it, there might be something in the claim.

IT appears from the soundings made by the Challenger expedition, from both the New York and the Halifax sections that the true Gulf Stream or Florida carrent is a limited
river of superheated water, of which the breadth is about ixty miles near Sandy Hook, while near Hulifax it has sepa. rated into divergent atreams forming a sort of delta; its depth (as determined by the use of the current drag) being nowhere more than 100 fathoms. This river rests upon the istinguie stratum of 60°, Festern Atlantic be tween Barmade and Azores, while at leas than double the depth
water.

Permanence of the Hydrocarbon Gas.
A very natural doubt has existed in the minds of some of our best gas engineers whether the hydrocarbon gas could have the same permanence under the influence of low temperatures as ordinary coal gas. Considering the ease with which air or even poor coal gas which has been naphthalized parts with an important portion of its illuminants at a low temperature, it has been argued that the non-luminous substratum of combustible gases, got from water by the hy. drocarbon process, would in like manner part company with the illuminants derived from the bituminous coal distillation as soon as the mixture should be powerfully refrigerated. Experiment, before which all preconceived notions must bow, completely disproves this hypothesis, and we are able to declare most positively, say Professors Silliman and Wurtz, that the hydrocarbon gas is far more permanent under the influence of extreme cold than any coal gas we have been able to put to the same severe test.
The results of many careful experiments by these gentlemen show a loss of from 10 to 40 per cent of illuminating power for street gas under the influence of cold, and no loss for hydrocarbon gas.

The policy of the Russian Government is to compel all its subjects to worship under the forms of the Greek Church, otherwise to leave the country. A large and flourishing body of Russian Baptists, known as Mennonites, have been obliged to leave, and are now coming to this country. They have purchased large tracts of lands in Nebraska and Kansas. The advance guard, 185 in number, arrived here a few days ago with $\$ 60,000$ in coin. The total number to be expected is about 25,000 . They are industrious, reliable peo ple, and will be gladly welcomed here. All despots who have rimilar good people to spare will please ship them to the United States. We have eight billions of acres of good lands n reserve, from which they may choose homes.
MM. Crouzet and Colombat have just brought bzfore the no ice of the Paris Academy a method for rendering ehips insubmersible through a new application of compressed air. They propose that the hull be divided into two parts by a bridge across at the water line, in such a way that air cannot penetrate from the lower to the upper part. If a hole be made in a hullthrough a collision, the water will immediately enter; but it will not wholly fill the lower compartment, for the inclosed air, not having any outlet, will be compressed, and will ere long equilibrate the external force. From this moment the ship will cease to sink. It will, in fact, be in the position of a diving bell.

Phosphorus as a Cure for Cataract.-Dr. Combas gives a case of a girl, aged twenty-four, of nervous, lymphaic temperament, suffering from capsulo-lenticular cataract hardly able to discern light from darkness; suffered frequent headaches. Two or three drops of phosphorized oil were dropped into the eye daily, and frictions of the same used ver the forehead. After four montbs of this treatment, which was used perseveringly, the pye improved, colors could e distinguished, and the opacity of the lens so far diminished that it could not be discerned at a distant of two or three paces.
M. Alvergnat has devised an ingenious apparatus which hows that an electric current will not pass equally well in wo directions. Two glass tubes are connected together at the ends by arched pieces, and in one the points of a number of small glass pipes are turned in the opposite direction from hose in the other tube. The current instantly passes through the tube in which the points are apex toward the negative poles. The tubes are filled with hydrogen, showing the oscillation of the luminous zones with great clearness.

An old and dirty sponge may ba cleaned by first soaking it or some hours in a solution of permanganate of potass, then queezing it, and putting it into a weak solution of hydrochloric acid-one part acid of commerce to ten parts water.

decisions of the codrts.

United States Circuit Court--District of New Jersey. [In equity.-Before Nixon, Judge.-Decided April, 1874.]

Improved Cotton Bale Tie.

James H . Lane, Waco, Ter.-This invention relates to an improved form provided with a hook at elther or both ends, and with one or more hook located intermediately at the ends. These hooks are made by cutting away the ends of the plate so as to have central tongues, which are bent Improved Building Blocks.
Thomas B. Rhodes, Leetonia, Ohio.-Hollow spaces est Thomas B. Rhodes, Leetonia, olio.- Hollow spaces extend through the blocks from bottom to top, to makc hollow walli. The parts by which the
t wo sides of the bocks are connected are arranged suffictently distant from the ends to form grooves thereln, in which tongues on other blocks will fit to lock the blocks armly together. These grooves and tongues may be in dovetall form. The parts will, in some cases, extend to the top of the
blocks, and in others not; and in such cases binders may be used to lock blocks, and in uthers not; and in such cases binders may be used to lock
the blocks together by placing them on the apper ends of said parts, so that the adjacent parts of the two blocks to be locked together are recelved be tween the parts of the binders. It is proposed to deepen and otherwise form the grooves. both horizontally and vertically, so as to use long bind
ers of wood or fron, extending from end to end of a wall at the top, or from ers of wood or iron, extending from end to end of a wall at the top, or from
bottom to top. It ts also proposed to arrange the openings in the top blocka $s 0$ that hot alr admitted to them may circulate throughout the spaces in connect sald spaces with furnaces or other heating apparatus for the intro duction of heat. By molding these blocks they can be readily and cheaply made, in any approved form and size, both plain and ornamental, and thus afford desirable bullding materisi for less cost than bricks or wood. Hole may be formed in the blochs when molded, to make continuous passages,
where the blocks are jolned, for conducting water from the eaves rough to the ground: also for speaking tubes, and the like. In laying up a wall with these blocks, each layer is temporarily enclosed in a easing of wood, and hot cement is p.
Lmproved Middlings Purifier.
Reuben Royer, Ephrata, Pa. - A reel recelves the mi
Pa in the chest, cutting omainge through middings are taken off. A fan blowsinto the chest upon the reel to coo the middlings on the rectprocating sleve, and for preventing the blast the midalings on the reciprocating sleve, and for preventing the blast
from the fan below from blowing up into the reel space. The blast from the upper fan also alds to prevent the blast from the lower fan from pasa ing upward. The fanat the bottom of the chest blows in through one alde of the chest, up through the sleve, and out at the other side through a
passage, which is regulated by a valve, to control the blast. The second fan and the passage are as long as the steve, to cause the blast to act allike very effictent in separating the light fuzzy matters which do not contain very
flour.

Improved Auxiliary Heater for Steam Fire Engines.

 rranging an auxillary heater on the hearth or foot plate of a steam in engire, and so connecting itt heating coll with the boller thereof that the the functions of a steain Are engine of the ordinary kind in a more effectiv
Improved Saw Grinding Machine.

Willam Dreyer, Newark, N. J., asoingor to himself and George B. Sharp,
New York city.-The stone is mounted in the middle of the frame near, one end, between the parts of the housing frame, whereon strong blocks,
having the galde ways for the rectprocating frame, are mounted. The
ways are outside of the blocks, where the grit from the stone will not gtt in and cut them and the alldes out to any material extent. The sildes of the asw-carrying frame are geared to the crank shaft in a simple and Inexpensive arrangement. The wrists are adjustable to change the length of
the throw, and the connecting wriats are also adjustable along the alldea, the throw, and the connecting wriats are also adjustable along the alldea,
to change the bar, to which the saw plates to be ground are attached, to ward or fron the stone. There it a presser block above the stone for pressing the saw down on it, which is attached to a long bar itted to silde the ends of the block are aprings for holding the block off the atone when the sam plate is removed.
Improved Bale Tie.
$\left.\begin{array}{c}\text { Abram B. Hagaman, Jackson, La.-This is a band for baling cotton and } \\ \text { other commodities or articles, whereby a separate buckle or tie tis dle- }\end{array}\right]$ pensed with; and it consists in one or more projections on the edge or edges of the band. in combtnation with silts for locking the band around
the bale. In locking the band, the end in which are the amall silts is passed the bale. In locking the band, the end in which are the amall silts is passed projections. The friction thus produced keeps the band in place, and protecis the joint as the bale is tumoled about, and also tion of locking the band.
Improved Shaft Conpling. eccentric recess, forming a seat for the wedge to silde on along the circam ference of the recessed part. The curved wedge is of eccentrically bored shaped, of less length that the recess, and is provided with grooves fiting
into corresponding ribe of the body, to prevent the silding of the same on the shaft in longitudinal direction. A wedge-shaped key is driven in ait the broader end of the recess, and forces the wedge around the shaft,
securing a rigld connection of the parts in elther direstion. The parts may, however, be quickly and easily detached on taking out the key whic gires play to the eccentric wedge and shaft.

Improved Mitering Machine.

Benjamin Bernsteln, Max Hambarger, and Achille Kletn, New York
city.-Iu the frame are formed two grooves to recelve brackets, sald grooves belng arranged at right angles with each other, and at an angle of
forty-Ave degrees with the length of the table. The said brackets may be revolve the mandrels, to which the sams are secured. By this construction the saws, as they become smaller, may be so adjusted that their forward
sides may meet. By sultable construction, by pressing a treadie downsides may meet. By suitable construction, by pressing a treadle down-
ward, the table will be ralsed, pressing the molding upward against the saws, so that the saws will degin to cut apon the face of the molding,
causing the same always to present a clean smooth causing the same always to present a clean, smooth cut, and preventing all
breaking out or splintering of said face. A gage may be moved forward and back to adjust it to the width of the molding to be mittered by moving a rack outward or to ward longitudinally, the arrangement of the operating
mechanism keepling the beveled ends of the parts of the gage all the time close to the saws.

Improved Harvester Rake.

Jacob Graybill, Akron, Ohio.-The essential feature of shit invention is that the rake head is drawn across the platiorm, sweeping the grain before not to disturb the grain, the roller of a slotted gulde acting as a falcrum to support it.

Improved Pocket Book.
noor to Morris Rabens, New York izes, so that the stitching bitherto emploced for the connection of the folding side fisps with the partitions is entirely done away with, and a neater, stronger, and more durable connection of the same substituted.
The invention consists in the construction of an inside ining for the folding The invention consists in the construction of an inside lining for the folding
side faps of the pocket book, cut or stamped in such shape that. on folding, a semictrcular or semi-oval plece, with as many folded projecting fisp or tongue pleces, is produced as parctitions are used. The connection of the
latter with the folding side fiaps is obtalned by gluing the semtcircula latter with the folding side faps is obtained by gluing the sem!circular
pleces to the side $f_{3} p$ and the tongues between the double p:rition pleces to the side f_{3} ps and the tongues between the doable p ritition
atrips, so that, on foldtog them fnto regular shape, a strong and sunerior

Henry Buchter, Louisville, ㅍy.-This machead. o curved wings, formed with a vertical shank, for attech head having rel or head block of a lathe, and having a removable center. These winga hank plates for balancing the extra cutters the size and patien and Wings may be in any frm so as to cut a rosette of any dealied style when
revolved on a lathe or mandrel. Other cutters of triangular form, for cut. revolved on a lathe or mandrel. Other cutters of triangolar form, for cut-
ting rosettes of differentdiameter, maybe attached to the winga, and plates ting rosettes of difterentdiameter,may be attac
may be secured so as to counterbalance them.

Improved Coffee Pot.
Alexander P. St. John and William P. St. John, Moblle, Ala.-This in ention conolsts of a coffee pot or urn with an upper and a lower com.
partment, so contrived that, when ateam to generated in the lower com partment, the water will be forced ap through the coffee into the upper compartment. When the bolling ceases and the steam condenses in the ower chamber, the vacuum formed will cane the hot water to pass
through the coffee again into the lower chamber, from which it will be oured for use; or, if need be, the operation can be repeated by setting poured for use; or, if need be, the operation can be repeated by
be pot on to boll again to increase the atrength of the decoction

Improved Mitten.
John L. Whitten and J. Hermon Whitten, Burlington, Vt.-The object ad gloves, and consists in the pecullar arrangement of the back and palm pleces, and the ball and back pleces of the thumb. A seam starts at he wrist, and runs entirely around the hand and ninger part of the mitten,
and over the sides of the thumb to the wrist plece. The ball plece of the thaver the sides of the thumb to the wrist plece. The bal piece of the
thumb is attached by this seam to the back pleces, and to the palm plece by anothat seam. The later seam is carrled dewn from the thumb toward
by be palm of the hand, so that it does not affect the crimping of the lea ther at the curve under the thamb, and is consequently not subjected to
Catrick F. Slavin, New Cork for Glass Syringe.
yringes, so constructed that it cannot be pashed into the barrel of the yringe. The inventlon consists of a cap formed of the cork and a metalinc tube havigga fanke formed upon ho apper end, the end of which ing the lower end span outward to overlap the inner end of the sald

Improved Starting Bar for Link Motions. Fredenck Wellington, salle alot, to allow it to work forward and backward along the bar by the vibration of the link. The swivel is plroted to the yoke to allow the link
to tarn on the awivel, and the bar is prolonged beyond the link for a hanotarn on the swivel, and the bar is prolonged beyond the link for a han-
die by which to work it for shifting the link. To stop the engine the link de by which to work it for shifting the link. To stop the engine the link it is saifted elther way along sald coupling, according to which way the engline is to be worked.

Improved Ash sifter.
Marcus P. Nichols, st. Panal, Minn.-Tas invention is an improvement nash sifters of the class in which the ash holder has a reticulated or
in ere bottom, and is attached to and revolved on a vertical shaft or axis. Neve bottom, and is attached to and revolved on a vertical shaft or axis, langed ring supported by radial ar

Improved Gnide for Spooling Machines.
Lewls Leigh, Mansteld Center, Conn.-This a water-circulating at heating of the galde by friction, so as to burn the thread. The invention aso conslists of a contrlvance of backets for utilizing a small quantity of water for cooling the gulde. by shifting the buckets relatively to each
other in respect of their hight, so that whenever one bucket has emptied her in respect of their hight, so that whenever one bucket has emptile to the other the water will be returned again from the full to the empt

Improved Domentic Boller.
Ernest B. Beaumont, Ann Arbor, Mich.-The handle is hinged to the or bars to brace it and to prevent its spreading.

Improved Car Conpling.
Moses A. Keller, Littlestown, Pa,-The top part of the drawhead is re cessed at the insid the aples, ainghtly curved at the lower part, and provided with a slot at
it upper part. The slot is arranged under some inclination toward the onger axls of the pln, so that the same 18 prevented from detaching, when coupled by sudden Jars. A lever is plvoted to the drawhead, swinging in
longitudinal slot of the same, and arranged with a hook- Ahaped projec tion at its front part, and with a curved arm at its rear part. The hook a pendent link is pivoted back of the fulcrum of the lever, being weighte by a roller at the lower end thereof, with the curved arm passing through
sand link. When the latter link is pending in vertical position, it pressen aild link. When the latter link is pending in vertical ponition, it presses he arm down, ralagg thereby the hook part. The pin illdes on the arm inver is secured. When the link is swang back by means of a connecting readle chain, so that a roller strikes the curved arm, the hook is thereby carried down, detached from the pin, and the link ancoupled. In what.
ever poition the lever may, therefore, be placed, whether in position for ncouping or coupling, the entering link will, with equal certainty and arm and engage the pin, which, on being locked by the hook, produce ment be performed by carrying the lever back and releasing the pin.

Improved Dentist's or Barber's Chair.
d back are coupled toge her by a universal joint, so that the seat may be turned almultaneously
Ith the back, and by it, the back belng turned by hand. The back is fas ened by a spring boit and the seat by another spring bolt, which engage projections respectively. Both can be pulled back by pulling on the pro jecting part of the bolt. The foot rest is supported on lonk arms held at
the front by an adjuating screw. This adjusting screw is connected, by a aiveras joint, with the crank shaft, which extends out through the chat or about the right hand rear corner, where it is mon convenient fo rate it.

Improved Reed Organ

Tbomas H. Pollock, Richmond, Va. - Valves are arranged directly above the reeds in an organ operated by suction from below, so that the wind
will have the most direct and unobatructed flow to the reeds, and, particuarly, so that the passage from the reeds to the wind receiver will be en Hrely unobstructed, and the full measure of the sound will be atilized
 more powerfultones are produced. A plate or bar is placed under the leversat the stands, arranged on pirots, so as to swing down and let the
levers fall, to be out of action while the other sertes is in action. Means avers fall, to be out of action while the other serles is in action. Meas
will be sued with sald bar to restore the levers agaln whenever required In order to throw the other set of reeds out of action while working the
eeeds governed by the levers, there t a sliding stop to cut of the supply of air to them. Devices are added to bring the wind receiver near to th bled, to receive the sound directiy rom the reeds the fall power of the reeds is obtalned. The bagging leather
by valves heretofore used, which nap against the seata when the suction begina and make considerable noise, are diapensed with, and aprings,
which always close the rigld valves againat a little pressure of air, are sub tituted. These prevent noise, and keep the valives closed and prevent
hem from falling, as the leather valves do. The tremolo fan is in the wind recelver at the iseues of sald pipes, which glves adaitional merit to the
remolo artachment. The explonive swell conalats of valves on the wind
. recelver, elther back or top, to be suddenly opened at any time, by any
agitabio sotion, to produce exploilve sound.

Improved Clothes Hangor.
Robert MaCoy, New York city. The common practice in laundries is to hang the shirts up by the gaps on hooks, which are thrust through them
The houks are somettmes large and clumay, and make large holes, and the faps are sometimes torn and damaged, particularly when the shirts are frequently $s o$ hung. Thepresent invention is a spring hanger, in which
the garments are held between jaws. The tension of the latter is reguImproved Car Conpling.
Levi Sutton, ottawa, O.-The ends of the coupling bar are beveled upon their upper stdes, so that, as they enter the carity of the drawhead, they
may raise the coupling bolt, and pass beneath its lower end, allowing it odrop through the slot in sald drawbar. To the upper end of the bolt is awiveled a rod, which passes up through gaides to the platiorm or top of the car. One of the guides is tubular, and has a notch formed in its ests a pln attached to the rod, so that by turning the rod the pin may ide up the Incline and thus ralse the bolt out of the dra war, thus anby which the rod may be conventently turned. A colled spring placed upon the shaft reats upon the upper end of the bolt, and against the keeper, so as to force the bolt down when the rod is released, and prevent satd olt from being jarred out of place. A lever is piroted to the end of the car in such a position that lto formard end may rest beneath a toe formed
upon the boit, so that the latter may be ralsed to uncouple the cars by a apon the bolt, so that the latter may be ralsed th uncouple the cars by a
person standing upon the ground at the side of the track.

Improved Clothes Ponnder.

Michael W. Fry, Gupandotte, West Va.-This invention relates to meane bereby water and soapsuds or washing futd may be forced through clothes
nd the dirt ellminated therefrom without using the ordinary washboards or rubbers. The invention conalsts in a clothes pounder whose parts are combined in a novel and peculiar manner.

Improved Green Corn Cntter.
ention consists of a ertes of three longitudinal concave knives, of different sizes in respect of their corves, arranged on a support, in comblnation with concare
guides, to which the ears of corn, being held by 4 fork thrust into the butt of the eob, are presented endwise againet the edges in succession, begin aing with the knives having the hargest curve, and pasing to the others
n the order of their decreasing size. The effect of this is to divide the corn into two or more parts by the knives in advance of the hindmoat one, and to remove the remalning part from the cob by the last one, a bout third or a quarter of the ternela betng removed at one operation, and ach ear belng presented three or four times, and turned partly around each time.
Improved Zinc Molding for Comins.
George s. Eaton, Williamsburgh, N. Y.-This is an improved abell mold ing for use apon coffine and for other uses, which is so constructed that it
may be bent around a curved surface without wrinkling at ita edges Strips of zinc are made a ilttle wider than the curved surface of the displus metal may be forced inward by the fiat surface of the cavity of the de to morm fanges. This may be bent around a curved surface, and beting without elasitity, will at apon sald surface without any tendency to apring off
Improved Sash Fastener.
Bernard Almonte, Great Barrington, Mass.-This lock, which is mortised into the frame of the sashes, conalata, of a casing of metal, to which is at-
tashed the stcp wheel, which is revolved on a central plvot. By raising tashed the stcp wheel, which is revolved on a central plivot. By raising
a lever a stop is thrown back, so that the wheel can readily revolve. When the lever is down, it is beld in position by a apring, and the stop
baris held in position by a pivoted inger connected with the lever. The nd of this inger works agalnat the prolecting fange of the stop bar but is raised when the finger lever is raised to unlock the sash. A cast metal rack is attached to the Jamb casing of the window, with which the Wheel engages. The lock to attached to etther the lower or upper sash.
When the lower sash to down, or the upper sash up, they are securely fas. When the lower sash is down, or the upper sash up, they are
tened, as well as when they are in any intermediate position.

new books and publications.

Leveys South american, Asiatic, and Oceanic Busi ness Directory of the Principal Cities and Towns in the West Indies, Mexico, South America, Australia, New New York: The Foreign Directory Company, 2 Wall street.
The raptdly growing demand for American productions, espectally for eccianical devices and toois, has rendered a directory of merchants and ers and shippers ; and laborious and costly as the work must inevitably be, it has been thoroughly done by Mr. Levey in the volume now before us
The names and addresses of the dealers in each class of merchandize, in he princlpa! importing countries of the world, are given with such detall d completeness as to ralse wonder at the labor expended in the compila. on of the book; and each section is preseded by a copy or the tar eople. We recommend this work to all who have goods for which they are seeking a market
Sanitary Arrangements for Dwellings, intended for the Use of Officers of Health, Architects, Builders, and
Householders. By William Eassie, C. E., Author of "Healthy Houses," etc. Price \$2.25. New York: G. P. Putnam's Sons, Fourth avenue and 23 rd street
This book is a concise treakise on one of the most important subjects on hich sclentinc men and the pablic can bestow their attention. It cannot too carefully read by those to whom in especialy adaressed, partien train of evil smelis and tainted food, and the consequent zymotic diseases he Stepping Stone to Architecture, a Catechism of the Principles and Progress of Architecture from the
Earliest Times. By Thomas Mitchell. Illustrated. Earliest Times. By Thomas Mitchell. Mlustrated
Price 60 cents. New York: A. J. Bicknell \& Co., 27 Warren street.
A much needed ilttle handbook for
dom anderstoud by ordinary readers.
Researches in the Life History of the Monads. By
Rev. W. H. Dallinger, F.R.M.S., and J. Diysdale, M.D. R.B.M.S.

These treatises, reprinted from the Monthly Microscopical Journal and
ccompanied by the original illus trations, are very interesting accounts of ersevering investigations of the nature of the lowest forms of life. W cordially commend them to the reader, not only on account of their gene-
al interest, but in the bellef that they will encourage the use of the most mtroncope
The Engineer, Architect, and Surveyor. Nos. $1 \& 2$ Volume I. Subscription $\$ 2$ a yea
and Moore, 168 Washington street.
The prospectus of this new claimant for pubic support states that it is sent forth to ill a vacancy existing in the engineering literature of th Which the puolication will be ealted, but also as to the very extensive field
\qquad
Proceedings of the annual Convention of the ameri CaN Institute of Architects, held in Chicago, Ill.
October 15, 16, 17, 1873 . A. J. Bloor, F.A.I.A., Editor. an interesting account of the annual gathering of one of our most valua

Wusiutss aud setwonal.

rhe Charge for Indertion under the head is $\mathbf{\$ 1}$ a Line
$\underset{\substack{\text { For } \\ \text { venter, P. O. O., Prorldence, R. . } \\ \text { Si. }}}{\text { Cie Patents. In- }}$ Pleasure Steamer for Sale-Sidewheel.
Length 21 feet, widch 6 feet. Engine reversee. Cyllinder
 by applytng to Lewle T Burnham, Waltham, Mase. Fountaing brought up the Hill (see engrav-
Ing. "Wire Ways"). Cheaper than pumps, and more Magic Lanterns for Public Exhibitions,
Proltable Busines, requiring small capttal. Cataloguee
 Address Frank Mockil, Galveston, Texas.
Steel Tempering-Portable Furnace, with
竍
 For Sale-Parties wishing to buy the right. man, or J. E. Ulber, Port Huron, Michigan.

 monopoly in one of the princtpal articles in dally uese, and now in anceessfun operation in New York. Princl-
pals, address C. B. M., os E . 5 d St, New York ctry. Nickel Plating-Pure Salts and Anodes of
all sizes on haud ; Pollbabing Powders also for sale by
 Forges-(Fan Blast), Portable and Station
ary. Kegstore Portaole Forge Co., Phuladelpha, Pa. Silicates of Soda, Soluble or Water Glass
manutactured by us in all quantutes for Pant, Artia clal stone, Cements and Soap.
ger, 180 Fulton St., New York.
Boilers and Engines, Second Hand. Egbert
P. Watoon, 42 culf tit., New York. Mills \& Machinery for m'f'f Flour, Paint
Printigg Ink, Wrugs,\&c. L. \& J. W. Feuchtwanger, Chemists \& Drug turers of Sillcates of Soda and Potash, Soluble Glass,
etc.; Hydrofuortc Acld for Etchng on Glass ; Nickel Salte and Anodes for Plating.
For the very best Babbitt Metals, send to
Conard \& Marray, Iron and Brase Founders, , soth and Chestnut Sts., Philadelpha, Pa. Circulars rree.
To Inventors A manufacturing company,
with the beent facilities for introducling. will take thie
 frte class inventions w wil be considered. Address Lock

Box 18, Providence, R. I. Taft's Portable

Taft's Portable Baths.
Bath co., 156 South Street. New Yorks city. To Patentees and Merchants-The manu-

Iron Planers, Lathes, Drills, and other Thols,
new and second hand. Tully Wlide, 20 Platt St.. N.Y. Amateur Astronomers can be furnished with
 for particculars, to A. Davils, Lowell, Mass. For Surface Planers, small size, and for
Box Corner Grooring Machlnes, send to A. Davis, Low ell, Mass.

The "Scientific American" Ofice, New York,
isted with the Minature Electric Telegraph.
B

touching little butions on the desks of the managers,

For best Presses, Dies and Fruit Can Tools,
Bilsa $\&$ Willame, cor. of Plymouth $\&$ Jay,Brooklyn,N.Y. All Fruit-can Tools,Ferracute,Bridgeton,N.J. Brown's Coolyard Quarry \& Contractor's Ap-
paratus tor holeting and conveying materials by iron paratue for hointing and conveeting materalis by iro
cable. W. D. Andrew \& Bro., 414 Water St., New Fork. For Solid Emery Whbels and Machinery, Lathes, Planers, Drills, Milling and Index
Machines. Geo. s. Lincoln \& Co., Hartord, Conn. For Solid Wrought-iron Beams, etc., see ad
vertisement. Address
Union Iron Mills, Plttsburgh, Pa., for IIthograpp, etc.
Temples \& Oilcans. Draper, Hopedale, Mass. Hydraulic Presses and Jacks, new and sec-
ond dand. E. Lyon, 470 Grand Street, New York. Peck's Patent Drop Press. For circulars,
address Millo, Peck \& Coo, New Haven, Conn. Small Tools and Gear Wheels for Models,
Lat tree. Goodnow wighman,2s Corsnill Boston, Ma The French Files of Limet \&\& Co. are pro-
nounced superior to all other brands by all who use
 Mining, Wrecking, Pumping,
Irrigating
Machtinery, Ior sale or rent.
Dee advertiseBuy Boult's Paneling, Moulding, and Dove-
alling Machine. Send for clrcular and sample of work. B. C. Mach'r Co., Battle Creek, Mich... Box 22 .
 Engines 2 to 8 H.P. N.Twiss,New Haven,Ct Automatic Wire Rope R. R. conveys Coal
Ore, \&c., without Trestie Work.
 Bet Phildelelphia Oak Belting and Monitor
Stiched. C . W. Arny, Manu facturer, sol \& 303 Cherry

 Portable Enginees 2d hand, thoroughly over
hauled,at $\$$ Cost. I.H.Shearman, 45 Cortlagat st.,N. \mathbf{Y}

Dean's Steam Pumps, for all purposes; En-
 itree. New York.
Steam Fire Enginas-Philadelphis Hydrau-
lic Worke, Phlladelphila, Pa. Bone, Mills and Portable Grist Mills,- - Send
or Catalogue to Tolly \& wilde, zo Platt St., New York. For descriptive circulars, and terms to James H. White, Newark, N. J., Manufacturer of sheet Emerson's Patent Inserted Toothed Saws,
nd Saw Swage. See occasional advertisement on out. ide page. Send Postal Card for Clircula
Emerson, Ford $\&$ Co ${ }^{2}$, Beaver Falls. Pa
Hoisting Engines, without brakes or clutch-
H: one
Hone lever operates the engine, to onotat, lower, or
 Ash Holtarer," on steambulpe, ratiling soo ibs., up to the
and Quarry and Mine Hotiter, rasisning rom 6,000 ot ot 60,0001 1bs. Man't's Company, ofice 165 Pearr st., New York clty.
Irg Roofing--Scott \& Co., Cincinnati, Ohio. Price only three dollars-The Tom Thumb paratus, for sending meesagee, makling magneta, the lectric ught, glving aiarms, and various other purposes. an be put in operation by any lad. Includes battery,
sey and wires. Neatly packed and sent to all parts ot the world on recelpt of price. F. C. Beach \& Co., 263 Broad way, New York.
Millstone Dressing Diamond Machines-
 Enines, Boilerg, Pumpis, Portablí En. Enines Rue's "Little Giant" Injectors, Cheapest
nd Best Boller Feeder in the market. $\mathrm{W} . \mathrm{L}$. Cbase

F. M's lightning rod 'query is answered

 S.J. S. 1 is informed that making billard balls of hard
rubber 18 a very old idea - - . F . S. is informed that his

 xplatined? A. By the well known facillty with which
ignorant and credulous people can be made the victims
 those who are operated upon? A. Yes, by allowing
themselve to be decelved. s . There has been A ellow
around who clasm to around who clalms to ha ea power to control which 1s
not meamerism, but he calls it animal magnetism and "ot meemerism, but he callis it an anal magnetism and
"meemmerism tampored." Is it not mesmerism ? A.
J. P acks: 1 W
J. P. asks: 1 . What pressure will a boiler,
Inces \% Inches in diameter, , tand, the shell and fues be. Ing of galvanized sheet Iron 1.92 of an Inch in thickness,
with 6 hoops of the same iron 2 inches wide? The hoops WIth 6 hoops of the same Iron 2 Inches WIde? The hoops
and boller are soldered and locked together trrongly. The bollier will sately sumatin the 10 or 1515 bs. you gepak
or. 2. Would such a boller ve apt to burn out in 6 or 8 monthe, asing the bonlier 15 or 16 hours a week with 耳ood
as fuel? A. Whether or not it will burn out will de. pend greatly upon the manner 11 whtch $1 t 18$ set. s. Will
he boller make steam enough for an eng Ine 2 inches in diameter by 5 Incheses stroke, makting 150 revolutions per
minute, the pressure beling 10 or 15 lbe. to the square tnch? A. Probably. 4. In case it will stand that press-
ure, will team ports $\%$ tich long and $\%$ tich wide be steam ports you mention will answer very well.
A. X. \& C. R. ask: What is the best kind
T. C. says, ir reply to A. B., who asks in

 tally by multiplytyg the evelocity by half of tiself and
 per square foot.
W. T. Y. S. asks: Why daes a body pro-
jected vertically ninto the alr not return to the gerth jected vertically 1 nto the alr not return to the earth?
with as great veloctit as at it had on leavigg the earth? With as great velocity as it had on learigo the earth?
A. Because it encounters the resistance of the alr in
S. A. T. asks: 1 . What is meant by "parts," that is, in in parts, 6 parts, etc..9 Doesit mean parts by
weight? A. Yes, unless otherwise expresed. you glve me a method by which I can mate an a trac.
tive light in a store window? A. UBe a mall carburet. er and a silvered refector. ${ }^{\text {s. Can }}$ Can you give me a rectipe
 p. 37, vol. 30 , learing out the Prusastan blue. 4. I have
heard that Rusala leather was red because the tannligg
 ce rame
djed do any
the tannıng.
N. L. T. asks: 1. Would a candle burn in a boiler with a pressare of steam, provided it ald not
melt ? A.No, because steam extlingulshes a candle. 2.1 nade a plaster cast for a a tereotype, which I I dried 2 or 3
days on a store; but mhea the melted type metal
 ing. What caused them? A. The motature remalnng in the plaster.
G. E. F. I wish to ascertain the pres-
sure of the waves on a breakwater placed at right ngles to the direction of the sea. Can you suggeat a
nelf regitering gage the thil be strong enough to withstand the or oe brought agalinst 1t. and not be affected by the water? A. The pressure
of the waves Is approximately equal to twice the prese ure due to their hight. It might be practicable to ar.
ange a platon agalingt which the waves would strike prodactng compreassion of some subatance in the cyllt
der, whtch would be registered on or recording gage.
A. B.D. asks: What is the best manner of
applying the blowipe to the lamp alame and to the
 sertit a short dis
fame is wanted.
$\xrightarrow[\text { P. C. says: We have a condensing engine }]{\text { for which we use clty water; there } 18 \mathrm{a} \text { atream } 1 \text {,000 feet }}$ rom us and 10 to 12 feet lower than our condenser.
Could we draw the water titat distance? II so what
nit be done, but we sarcely to onk puch etc. Found be adve abie. It mignt be better to construct
Teservor, near the condenser, lower than the ounce of reservorr, near the condenser, 1ower than the oource or
supply,: and conduct the water to that. We can, of supply, :and conduct the water to that. We can, of
conrse, give but a meager oplinion,knowing so little ot the detalls; and we can assure you that it 1 ta generally true eco
gineer.
 nd large enouph for an engine of 1 Is Inch bore and 3%
inches stroke? A. The bolier would not be large nough
E. A. C. says: According to Seyditz, one Δ friend of mine pretend 1 it 1 equal to 60 geographical in es. IB here a difference bet ween a geographical mine
in Europe and in Amertca ? A. You and your rriend are ooth right, a German geographical mile beiog equal to Your English geographical miles. It 18 to be obser ved
that the length of degree of longitude referred to to the mean length at the equator
J. P. S. says: 1. I am driving light maWhat sized engine shall 1 require to do the work? A.
You have omitted one very important particular, the peed of the belt. 2. How can I get rld of insects on
ne
A. A. A. asks: 1. Why is dried beef called
jerked beer? A. It appears to have no connection witu the original roots from which the verb "to jerk" "18 de Fea, and the etymology throws no 1 lght upon 1 . 2.
What property of water is removed when it turns to ice? A. A portion of tits heat, which is rendered latent
or hld den when water changes from the solld to the it. or hldden when water changes from the solld to the 11
uld condtiton, and is
 than water? A. Because, ti freezing, water expands.
Do you know of any way of making vinegar from a maDo you know of any way of mak'ng vinegar from a ma-
terial so that the vinegar will cost from 3 to 10 centa per allon? A. See p. 58 , vol. 30 .
F. O. G. says: 1. I put a little nitrate of silsome muriatic act1, and there was somethlng tin the bot ie resembling chalk. Can you tell me what it 18 and
what tit 18 good for? \mathbf{A}. It was a prectpptate of chloride of silver. If tig good for senstitzling photographlc paper Fhen auttably appled. 2. What anbetances mixed to
gether willmakea blue color? \mathbf{A}. Perchloride of tron and yellow prusstate of potash, both in solution.
A. S. asks: 1. What would be the effect of A. None, if the lightning is carried off by proper connectlons with the ground. 2. Ie it dangerous to be
about machinery during thunderstorms? A. There te

J. E. E. says: : I have in my possession an
atograph ietter written by Charles sumner more than ne year ago. By the use or a Boivent (spirits of tur-
pentine) I Iucceeded In making two dim preas contes arely readable. Every trace is perfect on the paper.
 oroght ont 8 as to be moreprominent and readable
Cover the letters with solution of ferrocyanlde of
 changet e a deep blue color. To prevent the color from spreadthg, the ferroc cyande
the dllute aclic added upon 15
F. O. B. asks: 1. What is the gurest method
of preserving egge for a period of 6 or 8 months? A.

 sufflelent conasitence to foat an egg. It it sald that
his treatment will preserve the egge perrectly sound
 ertiles for puritying and preserviling as animal charcoal? A. No.
T. J. P. asks: What chemical, if any, is best calculateed to clarify sugar cane slray durlig, its
nanufacture? A solution or common ume has been ased in South Caroinina, but without much improvement
ln the transparency of the sirup. A. The method men. toned 18 the one generally recommendeu. Sut care
should be taken to add the lime in quantity just gufli. clent to neatrallze the free acla, which 18 known by tis
J. H. K. asks: 1. Of what dimensions 1ght, run fati, and be easily manared, to be? Can 1 removed from boat when not in use? A. We could not answer this question without an extenced article, and ou can doubtesa 0 otaln all information from a bullder.
2. Will a clitern 10 by 25 feet hold waterenough to run a Wull a cistern 10 by 25 feet hold waterenough to run
2h horse power engine for 3 montha? A. No. $\mathbf{3}$. Could pppe be connected with the eecape pipe of the en
Rine so as to condense the steam and lead it baci to the elistern? A. No.
K. asks : 1. What is the reason that AmerOf 8 or 10 threads per (neh) whlle the Englili ones have
 change wheels (Whitworth) are»2 in a set, ranglig from
20 to 120 teath by 5 . The Amertcan lathes appear to
 avariety of threade as the English ones? A. If the pitch of the lead serew 1 la ner, it will not require so
muchintermediate gear for fine work, and for the same
T. S. R. asks: Does a column of mercury et 200 lba. presaure, would require a might or 40 feet?
 tiona, corrections for temperaturie end for the pressure
of the atmosphere should be applited.
L. P. O. says: My circular slide valve cats
ort the steam at x stroke. The fengti of of stroke 18 2 24 1nches, and the exnaustc closes 2 Inchene before the stroke
18 completed (that 18, , 22 nches) and opens ee. Is thts an economical arrangement, or 18 there any
well settled polnt at whlch the exhaust should close and open to glive the best results? . A. You do not tend sur.
niclent data ; but it your engine works smoothly, the ficlent data; but 18 your eng Ine works
arrangement probably answers very well.
 foot lever, so that he will have to go three times
around with the aweep whlle the stump lift two feet perpendicularly, the change of motion to be got by
bevel coga. How many hore
 Constructed give How large shound the cogs be to
stand the straln? How many pounds would the ma. chnne lift? $\begin{aligned} & \text { Of what tize should the shart that bears the } \\ & \text { welght be? } \\ & \text { The latter } w i l l \\ & \text { not be over }\end{aligned}$ feet loag. A. welght be? The latter will not be over 3 feet long. A.
You can readily calculate the theoretical lifting force You can readily cal culate the theoretcical iliting iorce
of the machine by the relative distances passed ofer by Che berse and lifter, which are about as 94 to 1 . Of
course, friction and other prefuadiclal reilitances will prevent the lifting of a weight 94 times as great as the
tractive effortor the horse. But you can design your tractlve effor tof the horse. But you can destign your
machine on this supposition. 2 . Which is beat for a per. son when angry, to keep ble rage pent up withln hlm or (to use a common parase) to "splt it out?" I reter to the
effects upon the health or body. \mathbf{A}. We belleve that Mr. Meag les'advice to Tatycoram, to take time, when
she was ankry, and count ive-and-twenty before acting,
H. C. asks: 1. How can I produce on small Anish like that on curtatn fixtures? A. By bath of
sulphate or copper. 2 Where can fuor spar be had sulphate of copper. 2. Where can fuor spar be had
R. S. F. Aasks: What is the rule for calcu-
iatigg centrifugal iorce?
Would 1 lb on tne periphery of a wheel 1 oot 1 n dameter, runntng 100 revolutlons
 ber of revolution to the same time? If I place 11 b. on the perlphery of a wheel and 2108 . on the oppogite
side, ball way between the perlphery and center, would
 square of the veloctity in feet per second. and divlde by
the radus expresed in feet. Calling r the radua, \mathbf{v} the the radtus expresed in feet. Calling r the raduas, v the

this rol you can really

J. K. W. asks: How can I find, on the surstriksing any given molding? A. Double a plece of pa-
per, cut out the form of a section of the glven molding, an the rorm or a section or he given molaling, ction of the cutting tool.
H. H. D. asks: 1. Is a carbon battery more the usaal blchromate bolution? A. Yes. 2. Please
ve me instructions for constructing an induction coll. See answer on $\mathrm{n} x=$ page. s. To mhteh current shonld he condenser be connected, and how many square feet should it contatn? What effect does it produce ? A.
To the induced. some of the large colls eontan as
 produce greater Intenity oo the secondery current than
a leas numer? It mould certan a less number? It would certainly;develop more magnet Which 18 most effectual asan insulator, paramn or shel-
lac? A. Parafla. 6 . Is the insulation of the primary coll with shellac or paratiln as important as the carefu

 only in the center? A. From end to end. 8. Would it
not be a oood plan to wind the primary coll only at thy not be a good plan to wind the primary coll only at th9
end of the core. thereby enabling the secondary to ap. $\underset{\text { sugar ? }}{\text { H. A. To one quarter lb. canar add about one halr }}$
 vertisling columns for booksellers' addresses. Fowne's
 Lea, Phlladelphia, Pa. In answer to your other ques-
tion: We cannot recommend you to use any drugs
H. H. C. asks: What is the best material
 absorbtng the cyanlde solution, and leakage? The ma. lerial must be durabie and not affect operation of pla.
J. N. P. says: In Auchinclosg' treatise on
cink and Valve otions," on p. 27 , he says :. The cir le from remote ages has (though not wisely) been diIded into 360 equal parts," but he falls to say why it 1s
owise. Will you be k tnd enough to do so? A. Because it the divisions were made on adectmal system, so that
here were 100 degrees in the circumference, 100 minutes n a degre, 100 seconds 1 n a minute, reduction would be
much easer. For intance, to reduce degrees to minates, 1 t would only
J. H. P. asks : What is the best sized pipe
or an engine placed a nundred feet away from the
 long. I contend that we can get the most power through
$2 \nsim$ Inch plpe, but $m y$ emploger gayg that we can get more power through a 2 tnch one. Which 18 rlght ? A . It ts well to \mathbf{a} e as small ap' pe as can be employed with-
out reducling the pressure, if the plpe tis not covered. We would recom mend the 2 is tnch plpe to your case. 2. ure engtine, and why does it take leas steam for the low pressure than it does for the thg . A. One condenges
the exauast team, and the other does not it there be less back pressure, as in the case of the condensing en-
gine, of course less steam will be required to produce

$$
=
$$

H. W. S. A. asks: 1 . What is the rule for cal culating the revolutions of englies or circular sawh?
A. There 18 no rule ; but a counter can be attached that will regster the revolutions. 2. How can I calculate
 the diameter of the dirivin pulley, increased by the thickness of the belt, and divide by the diameter of the
 a a smilar manner.
T. F. H. asks:
for making the best lubrtcator tor large the ievel gears ex Yor making the best lubricator for large bevel geara ex.
posed to the weather A. . liack lead and tallow will answer very well. 2. What is the best material for pre
serving timber exposed to sun and rain? A. Bethel's process of forcling the vapor of creosote into the pores
of the wood is largely employed for the preservation of
ralliroad thes and wooden superstructures.
A. V. K. asks: Is there any way to con-
dense steam without using a continuous stream of some dense steam without using a continuous stream of some
cold liquid? A. The steam must come in contact with
something having a temperature lower than tis own. Possibly a solld, such as ice, might be employed. G. W. H. says: 1. What is the power re-
uired to pump 2 gallons of water per minute ? A. You do not say how hlgn the wateris to be lifted. Ordinar
dil, it ts well to allow at least twice asmuch power as nly, it is well to allow at least twice as much power as
would be required to uft the water only, neglecting the power produced by one of the best turbine wheels?
A. About $\%$ per cent of the power of the water.
A. R.asks: How can I turn grooves in soft
 if the rol.
W. F. asks: 1. What is the proper temper-
ature of water when fit for bathing? A. A. few dogrees below the ordinary temperature of the human
body. 2. What can I use to make wood adhere to glase?
A. Dlamond cement.
W. C. D. asks: How can I procure a perfect
acuum in a common bottle for an experiment? A.This vacuum in a common bottle for an experiment? A.This
cannot be obtained with a common bottle alone. As
near an approach to a porfect vacuum as can be obtained y mechanical means can be effected by connecting the bottle with an anr pump. The method resorted to in
certain physiological laboratorles in Germany when a so-called perfect vacuum is desired is to flll a large jar
with mercury, invert with mercury, invert it (the rim of the Jar always re-
maining below the surface of the mercury), and then, When the mercury has alleen to the hight in the jar at
which it would be eastaned by atmospheric pressure, to connect a bottle, or other vessel in whtch it is de-
alred to produce a vacuum, with the vacuum thus proJ. S. asks: 1. How can I make an electro-
plating battery2.
\mathbf{A}. see answer to \mathbf{A}. P., on this
 Ographs. A. Consult Sclence Recora ing, p. . 214.
What is a good remedy for a fogging negative ilver
bath? I have had much trouble with fogging baths, bath? I have had much trouble with fogging baths,
and can find no remedy. A. Fogging may occur from so many causes that any general rule cannot be given.
Sun, filter, bring to proper strength and give proper re.
action, and then the trouble will probably disappear. T. S. asks: How can I make a fluid ink of lime soluti
A. E. P. says: I have a barometer in which
the mercury has become separated. How can I get it torether again? A. By inverting the barometer with great care, filing it entirely with pure mercury, and
then restoring it to tis proper position, taking precauH. E. B. asks: I make great quantities of
chips impregnated with oil. I extract part of the oll by means of steam, but still a great deal is lost, and what
is draine of is sometimes so thick with fron rast and sarained off is sometimes so thick with iron rust and
scalc as to be amost uneloss. I have alio great quanti-
tee of olly waste, that I have found it imposibibe to thes of olly waste, that I have found it impossible to
clean in a thorough manner. How can I use bisulphtde
of carbon for the above purposes? A. The bodies to be of carbon for the above purposes? A. The bodles to be
cleaned are to he treated in closed tanks into which the bisulphide of carbon is drawn.
W. B. asks: Is there a marking fluid which is customary for this purpose to use any good black
B. M. H. asks : I find that old car springs
are the best rubber I can obtain for erasing lead pencll marks. Do the propertles that make it so belong to
that kind of rubber, or do they reasit from the mechanical action, compression and vibration, to which it has
been subjected? A. Tnis is due to the quality of rub-
R. W. H. asks : I. What are the chemical properties of common sorghum molasses? A. At is cane
sugar in a non crystalizable conditinn. 2. What is the sugar? A. The conversion of the non-crystalizabie into the crystalizable cane sugar. 5. What is the best pro-
cess of making vinegar without apples? A. By the purifcation of wood vinegar, a body wh
by the dry distllation of certaln woods.
J. J. C. asks: Is the electricity generated
by an electrical machine of a kind to form an electromagnet, and is it generated in sufficient quantity to
W. D. M. asks: Can you tell me what kind permanent for some time, say six months at least, and
have power enough to run an electric alarm bell, such as is used in the burglar alarm telegraph ? A. Into a
porous cap about 5 inches hlgh and 3 inches in diamete place a plate of carbon, such as is used in the ordinary
Bunsen. Fill the cup with best manganese peroxide and seal with asphaltum. Place it in a small jar half full of strong solution of sal ammoniac in water, Into which
also place a rod of amalgamated zinc. In this battery the action is wholly upon the carbon, the zinc remain-
ing unaltered and contituting the negative element of ing unattered and constituting the negative element on
the battery. When the fuid becomes milky, add a few crystals of the salt. Two or three such cells will an
swer your purpose. When properly set ap, it will run for from 6 to 12 months.
J. S. asks: 1. Please give me a simple pro-
cess of silver plating artlcles with a battery. A. see p. 170, vol. 28. 2. Would an eugine with a cylinder 1×2
inches, running at 150 revolutions per minute, with steam at 50 lbs. pressure, be suffictently
$\underset{\text { comes from the earth, contain anything poisonous or }}{\text { J. D. Asks }}$ Injurious to the human system if introduced through
the blood? A. No. 2. What is the difference between crudepetroleum and labricating oll? A. Crude petrole densittes and bolling polnts. Lubricating ofl consisti tain of the volatlle constituents.
C. asks: How can rubber tissue be made?
A. Ordinary gom rubber has a stratifed composition. A. Ordinary gom rubber has a stratifed composition.
Rubber manufacturers say that rubber tissue is made
by aimply separating these layers. by simply separating these layers.
A. B.akks: 1 What two or three metals or of heat? A. Zinc, lead, and tin, zinc expanding 0.000C-
$294 i 7$ of its leagth for each degree centigrade, when heated between the freezing and bolling points of wa-
ter; lead $0 \cdot 00002875$, and $\operatorname{tIn} 0.00002173$. 2. Is the mole cular rotation
alike? A. No.
J. A. H. asks for information on the subject carbureting hpdrogen gas. A. Hydrogen gas, the
chief constituent of coal gas, upon which our large chief constituent of cos gas, upon which our large
cittes depend so much for their light after sunset, bas,
as is generally known, no illuminating power of its own, is generally known, no tlluminating power of its own,
at depends wholly for its value as an illumina tor upo he amount of carbon assoclated with it; and attention with carbon the already partially carburetted coal gas and to the problcm of carbonizing the bydrogen ob-
talned from peat and from the action of actids on some of the metals. The result is that hundreds of patent have been granted for various devices and machines for
carbureting, carbonizing or entiching hydrogen and common coal gas up to the full measure of its light-giving
quallts; but if supersaturated, the light becomes smoky, and consequently disagreeable. This latter trouble has been one of the drawbacks. The discovery
of petroleum has afforded an apparently inexhaustible of petroleum has afforded an apparently inexhanastibl
supply of cheap gas-producing or carbonizing material in the form of flghly volatille mineral hydrocarbon olls,
such as gasolin, naphtha, benzole, etc., of specitic grav Ittes rangling from 0664 to 0 . 785 . The us. Thaal method o carbonizing is that of dividing the liquid into a minute face as possible. For instance, a large metallic recelver constructed snd filled with pumicestone: it is the me
one of the other oils spoken of is poured on to the tlons are now made in such a manner that the gas to b carbureted passes directly through the pumicestone emerging from the machine saturated with the heavy
hydrocarbon vapor. Another and perbaps a better hydrocirbon vapor. Another and perbaps a better
method ts that of suspendiog a large equantity of wwlck be used, and carefully closing all joints. The action
here is the same as in the preceding, except that the wicking is kept saturated by the action of capillary at traction. The vapor from these oils is much heavier
than the atr, and for this reason it sometimes forms in layers in the lower partof rooms where the oll has been
standing or used, and when mixed with alr forms a ter ribly explosive mixture. If by any means an innited
match is thrown on the fioor in a room containing or that thas contained any of this liquid gasoline, it is suf
fictent to explode the mixture with disastrous conse quences. The principal danger of using these carbu
reters, then, Hes in the highly explosive character of the material used ts accomplish the desired result. The
only safcuard agannst accldents seems to be in the rule: Never attempt to fll or charge these machines on
reservoirs within doors, or in the vicinity of fire of any kind, but place them underground at some distance
A. F. S. asks: 1. Can you give me a recipe
or a glue that will not soften in molsture?
A. Take rive 12 ozs., water sufflcient to dissolve it; add 3 ozs. benzine. This should be done in a carpenter's glue pot to a vold burning. 2. Do you know of any way of con
atructing a good and cheap frictional electric battery . Perbaps the cheapest instrument of this characte Volta's electrophorus, consisting of a plate or cake
resin, set in a wooden mold lined with tin foll netallic plate with an insulating glass handle serves to
B F B
B. F. B. Jr. asks : How can I dye silk a light
slate or drab color? A. For 100 yards silk, boll together 41bs. fustlc, 3 o ozs. Cudbear, and 6 ozs. logwood. Cool
to $0{ }^{\circ}$ Fah., enter the goods and winch for 20 minutes,
air out and repeat: take a little of the liquor from the boller, dissolve in it $11 / \mathrm{oza}$. copperas, reduce it to
handling heat with water, and give one or two shots
G.T. B. says: 1. I want to make an induc hon coll to use with a smbll Daniell's battery, to take No.32, about 500 feet for second ary current and ? A. Abent 100 Peet for primary. 2. How longshould the coll be ? A.
About 9 inches. 3 . How large should the hole be? A. About one haif ninch. 4. What \&ize of soft tron wire
should I use in the core? A. No. 20 wwill answer. 5. The zinc plates of my Smee battery are $21 / x 3 y /$ Inches square and a half inch thics. How large a plece of silv
should I use? A. As large as your zinc plates.
J. W. C. asks: Does the water of the Mis-
disippi river run up hill? A. No.
J. A. S. says: I took hydrochloric acid, and rayon should have passed off in the form of a gas, but it falled. I then added chalk to trry the experiment, and
it worked successfully. What 18 the chemical difference between chalk and crayon? A.If the crayon were chalk
it should have dissolved with effervescence. If you end a plece which will not dissolve, we shall have it T. W.-You
T. W.-You can find a full description.
M. C. B. asks: 1 . What is the process for A. Coat them with graphtte or black lead. 2. What is the best hand book on metallurgy? What book gives
the best description of the different modes of silver mining? A. "A
A. P. asks: 1. Which is the best battery for ing the same? A. For small purposes, the Dantell will ows : Take for the outer jar, one of earthen or stonewareflled with saturated solution of sulphate of cop. the for the inner porous cell, a colmmon fower pot with
hoped or sealed. Fill this with water and laceit inside of the larger jar. Place a rod of amalgamated z inc in the inner cell, and the sheet copper in the
outer, so as to surround the porous cell. A few drops oter, so ast surround the porous cell. A few drops
of sulphuric acid added to the water in the porous cell minsamce to develop the full power of the battery. as the electropolon; it consists of the ordinary Bunsen, the exciting quid betng a solution of bichromate of po-
tassa and sulphuric actid. 2. What is the best book on thesa and sulphuric acid. 2. What is the best book on
the subject P A.Roselear's "Galvanoplastic Manipula
J. S. McK. asks: Is there any known methdof obtaining the exact square root of any numb
other than the perfect squares? Could they be e pressed in numbers? A. To both questions: No.
A. B. O. says: An inveterate tea drinker sensation in the throat after drinking, and thinks it must be adulterated. Is there any way to detect the
adulterations of tea? A. Yes, it is posalble to detect the adulterations. In the very itttle pospectmen which you sent we fcund none, but it was
tity for a satisfactory examination.
G. W.D. asks: 1. What is the difference between carbonate of potash and hydrate of potash?
A. The first is a compound of carbonic actd and potask, A. Pecond of water and potash. 2. What is the crude
potash of commerce? A. Impure carbonate of potash mixed with potassium, ash, organic matter, etc. 3. What water-
proof composition will adhere to elastic rubber and at the same time to the cuticle? A. Melt together in an ron pot equal parts of common pitch and gutta percha,
sept liquid under water, or soldd to be melted when anted.
C. H. M. asks: 1. Is electricity employed esDecially in any chemical works for inducing, accelerat
ing, or alding crystalization? A. No. 2. Does any ap. ilcation of electricity promot
zation of substances? A . Yes.
A. A. B. says: 1. I have a kerosene lamp 45 minutes, it becomes very hot and begins to puff and sputter so that we cannot use it. What is the cause?
A. The burner is so badly arranged that it allows the heat to be conducted to the contents of the lamp. 2 and on paper? A. A solution of isinglass in water.
Still better: for fixing gold lear on wood, paper, etc. Stll better: for fixing gold leaf on wood, paper, etc.,
use a solution of linseed oll and lead plaster in oll of ase a solution of linseed onl and lead plaster in on of
turpentlue. This is made by frst saponifylng linseed oll with caustlc soda or potassa, and precipitating the lead us solution of the soap with a solution of sugar of oll of tranpentine. 3. What is the best varnish to use stain ordiscolor it, but leave it clear and white? A.
White plcture varnigh. 4. What is the best flling to be used on black walnut before putting on oll? A. Bees.
wax hardened with sealing wax and colored with umber wax hardened
may be used.
J. P. D. asks: What will prevent the dampcourses of brick laid in cement or a strip of galvanized courses of brick in melted asphalt and two courses up-
on chese in hydranilic cement, covering the exposed surthese in hydranlic cement, covering the exposed surW. asks: What length of time does it take
orip a plece of spring steel 6 feet long by $4 / 4$ inch thick uch a sam be made? A. The periphery of the saw hould run about 20,000 feet per minute, and oupht to melt (as it really does) through at least one foot in
length per minute. The saw must be perfectly bal-
anced and bammered very open in the hat the center will be looe inorder to allow the pert phery to expand by centrifugal force caused by tis own
veloctty.
J. H. says: You state in your paper that
plaster of Parts mixed with 8 per cent marshmallow laster of Paris mixed with 8 per cent marshmailow
oot, powdered, would harden in one hour, and could be olled out into plates and polished. I have tried this harden at all; it will ser several times, and ill whumble a way if you handle it. What is the matter? A. Exper ment demonstrates that: 1 . The only effect marshmal
ow root scems to exert upon gspsum is to retard its low root seems to exert upon gspsum is to retard it
setting or hardening. 2. That when set or hardened it becomes very brittle: and where a large percestage of
marshmallow root is used, it elther falls to a powder or

umbles when touched

S. F. M. says : 1. I am making a foot lathe driving wheel faces are 24 and 25 incoes diameter. ant the driven pulley to be 3 inches diameter for the ol. 11 . 2. What with of belt would be most suitable?
A. Make the belt from an fnch to one and a half inches
B. says: I wish to drain the bottom of a
ellar, on which I propose to lay a concrete floor. The method I have adopted is to sink longltudinal trenches
10 inches $x 12$, and all loosely concrete. The trenches siart near the footings of the party wall. Do you think this will effeet the object? If not, can you advise something? At certain points in
the foundation bottom, several springs and quicksand have been discovered. A. The plan you have adopted
is a good one, provided that you connect the main
trenches with lateral ones, and discharge the whole into
S. B. McC. asks: What is the solid content
S. B. McC. asks: What is the solid content
a stick of timber, the base of which is 14 inches square and the top 10 Inches square, and length 20 feet? What is the rule for obtalning the same? A. This stick two bases parallel. The rule for calculating the solld the is as follows : Add together the area ot the the lower base and the area of the upper base ; extract the squsre root
of the product of these two areas. Multiply thit sum by one third of the perpendicular distance between the wo bases. Applying the rule to the case in question,
we have area of lower base, $14 \times 14=196$; area of upper areas, $\sqrt{196 \times 100}=140$. Perpendicular distance between $196+100+140) \times 80=814,880$ cubic inches. Contents in cublc feet, $184,880+1728=20 \frac{8}{9}$. .
$\underset{\text { ancing the reclprocating parts of an engine, for which }}{\text { J. B. H. asks: }}$ Mr. Main received from the Secretary of the Navy the
um of 8600 ? A. As weunderatand
and not a true counterbalance, but consists of welghting one of the cranks, which can hardly be considered
novel. Indeed it is sald to give so ittle satisfaction rom the cranks of many marine engines.
C. M. asks: What is dry steam?
fuch heat that it will absorb moisture from any
P. J. asks: How can I dissolve gutta percha
as to make a thin waterproof varnish, capable of being lald on with a brush ? A. Take 4 ozs. clean gutte inseed oll varnish, boilling hot.
S. D. asks: What will restore the color of
riclean colored leather? A. Use 1 oz. oxalic actid dis-

 larger How far diltant tis the tatr trom the earth at

 years to come here. 2. What is the greatest depth that man has ever attained, and where? A. One of the deep-
est holes we recollect is the "Road to Heaven" sllver
lead mine lead mine, near Frelberg, Saxony, 2,000 feet down to the
S. says: I wish to construct a telescope for
a riffe. Can you inform me how many lenses will be rearifle. Can you inform me how many lenses will be re-
quired, and what the diameter and focus of each lens should be, and in what manner they must be mounted focus 24 inches or as long as conventent. Eyeplece may be a single lens of low power with cross spicer lines
ixed in its focus. The target will thenappear inverted. fixed in its focus. The tarket will thenappear inverted.
The lenses are enclosed in a brass tube with a hinge or The lenses are enclosed in a brass tube with a hinge or
ball joint at the breech or eyeplece end, and slldes at the muzzle, to depress the object glass, for increased eleva
tion. The two points of attachment to the barrel are the be an ordinary fore-and-leal sights.
T.S. C. says : In your answer to N. L., you
say that "the shrinkage of wood end wisc is very slight, if any." It 1s probable that if the wood were perfectly
straight grained, there would be no ehrinkage endwise I have seen places in board fences where the board was displaced endwise 3 inches from where it had been orig. Inally nalled; and I have seen the top ralls (2×4, oak) in plcket fences drawn apart 8y, inches in a fence 150 feet
long. I have, however, always attributed this to the long. I have, however, always attributed this to the
lumber not belng at all times sawn parallel with the grain of the wood.
J. M. says, to help B. and J. out of their Itrouble or babbining in casting zinc: Do not overheat
it men melted, pour at once, and you will find you can get a sharp model in quite molst sand. I stir
witha pine stick untlla all the metal is thoroughly 11 quened. I have used varions sizes of zinc, and since
ing the above directions I have had no trouble.
$\underset{\text { o breaking gage glazees: If you get good fint glass }}{\text { R. S. says, in answer to A. A. W.'s query as }}$ long, time Instead of taking them out to clean them take the nut off the top cock and pour a little ofl down
 rumber of years ago the Royal Soctety offered a gold
nedal and one hundred gulneas for the explanation of the phenomenon mentioned bybim. The tollowing was the explanation which recelved the prize: Supposing
the dlameter of the disks to be to that of the hole as 8 the dameter of the disks to be to that of the hole as 8
to 1 , the area of the former to the latter muat be as 64 to 1 . Hence, if the disks were to be separated (their that of the air blast, a column of alr must meanmblie
be Interposed, slxty-fourtimes greater than that which be interposed, sixty-four times greater than that which
would escape from the tube in the same time: conse. quently, if all the air needed to preserve the balance be
supplied from the tube, the disks mast be separated with a velocityasmuch less than that of the blast as the column required between them is greater than that
yielded by the tube. It follows then that, under the circumstances in question,the disks cannot be separated
with a velocty greater than one sixty-fourth the blast. Ot course all the force of the blast will be expended on the movable disk and the rigg of air between the disks;
and since the aforesald disk can only move one sixt ; and since the aforesald disk can only move one sixty.
fourth the velocity of the blast, the ring of air munt out in currents radiating from the common center of tabe and disks.
 their toggues have to be split, or that arter thelr
tongues mere spltt they could talk. Among common
birds, this has been asserted of the crow and lay, Is this true, and if so, how is the splitting done? How far
would the bird's tongue have to be split? I cannot see would the bird's tongue have to be split? I I cannot see
how this operation would enable them to ppeak.-X.X. how this operation would enable them to speak. -X.X.
o. asks : How can I make a burnlshing liquid to pro-
duce a lightstraw coloron sole leather? How can I dye anilline scarlet on mixed goods?

[^0]

 May 12 to May 19, 1874.
 county, Eng. Improvements an automatic soupling
for rallway and other earriages, called "Grean" Anto matic Coupllings for Rallway and other Carriagee." Mas $12,1874$.
s.4ss.-G. A. D. Dinet, Parris, France, and X. C. E. Fenillant,
same place. Improvementa in the process of preerrt, same place. Improvements in the process of preserr.
Ing antmal and vegetable subatances, called "Danet $\&$ Feullant's Improved Process of Preserving Animal and Vegetable subbtancees." May $12,1874$.
3,433.-J. P. Woodbury, Boston, suffolk county, Mass., U. S. Improvemente on plannn machtnes, called
Woodbury's Planing Machne. 2444,-G. Selertige, st, John N B Improve harness for horses, called "Selfridge's Breechang Round and Chape.", May 18, 1874 .
3,45s. - G. Forosth, Seaforth, Ont. Improvements in the manufacture orportable wire fencees, called "For
Improved Portable Wire Fence." Mas 1s, 1874.
o.4s6.-D. Allard, St. Albans, Frankill county, Vt., U. s, s,
Improvements on smoke tacks of rallway locomotive

 3,488.-D. Bradiord, Hamilton, Wentworth county, Ont.
Improvementa in ear couplings, called "Bradford" Improvementas in car coaplings, called "Bradford"
Improved Automatic Car Coupling." Ma 1s, 1874 . 3,459.-8. Wright, Hillsborough, Jefferson connty, M1ses. called "Wright"A Self Adjusting step Ladder." Mas $18,1874$.
s,40.

 Hin.-William J. shllling Brooklyn, King N. F.. U. S. Improvements In 10cks, call
Improved Circular Lock." Mas $15,1874$.
,412.-C. W. Woodford, Montreal, P.Q. Improvemente plon." May 13, 1874.
, ims.- stacy, Holborn Clrcus, London, Eng. Im provements in revoiving tools applicable to stone
dreasing, hammering metals, and cruabing mineral and Vegetabie sabstancess, calied "stacy's Revolving Ham mer,
signee of A. M. Putnam, Peterborough, N. H. U. U. Improvements on pumps, called "Thompıon's im proved Pump." May 15, 1874.
 Apparatus for sapplying a water closet with water
called"'The Riley Water Closet Hydranlion." May 18 (
1874.
s.446. s . W. France, Hamilion, Went worth connty, Ont Improvement in feed water heaters for steam bolleri
called "Comblaation Feed Water Heater." May 10
gadvertisements.

Back Page - - - - - - 81.00 a line. lnalde Page - - - . - - - 75 centa a llino. Lngravings may head advertisements at the same rate por line, bymeasurement. as the letter press. Advertisemonts morning to appear in next tesus.
SHORT HAND. ${ }^{150}$ weeras. per minute tion stam tor Circular. J. A. GRAY. P. O. Box 4.847. N. Y.
ne mil ba dantit with mormina
eD 2 ticulars free. J. Worth \& Co., St. Louls Mo.
DESIGNER AND ENGRA VER ON

RLAKERS STMEAMTUMP
L. \& J. W. FEUCHTWANGER,

DRUGS, CHEMICALS, OILS, \& c.

I HAVE FACILITIES for Manufacturing Cast, Wrovght iron. Wood and hachine IRE, with Yard and storage roon
Woald like to write with partles having such work
F. W. PUGSLEE,
 The Amorican Tarbino Wator

PIPE FELTING.

Todd \& Rafferty Machine Co.

LATHE \& MORSE TOOL CO., MACHINISTS' T00LS Tix

the Trade everywhere. PRNCEr' ME1 MLLIC
PANT CO., Manufacturers, 96 Cedar St., New York.

BAIRD'S HOMS
For Practical Mer.
 hls add

HENRY CAREY BAIRD, 406 WALNUT STREET. Philadelp

TTONE SAWING MACHINERY DDERRICKS \& TRAVELLERS, THOMAS ROSs, Rutland, Vt.
 $\$ 2400$

Last Chance

AII EASY FORTONE

 Fifth and Last Gift Concert Public Library of Kenticky. JULY 31st, 1874 .

PATENTS

The publishers of the Soirntipio Angricion have
acted as solicitors of patents in the United states and acted as sollctitors of patents in the United states and
forctgn countries for maore than a quarter of a cen orign countries for more than a quarier oirs have
tary. More than firty troossiv invenpors
avalied themselves of their services. All patents availed themselves of their services. All patents se-
cured through this agency recelve a special notice in the
Scientritic Ampions, which frequently attracta purscirntific Amprican,
chasers for the patent.
Inventions examined,and advice as to patenta billty free
Patents obtained in the best manner, and with as lit the delay as posaible.
Caveats prepared from etther model or drawings, and
led in the Patent led in the Patent Offlce at short notice. Special examinations as to the patentability of inve
tions made, at the Patent offlice, on recelpt drawing and description; coat for this search and re port, 85 .
Trade Marks.-The necessary papers for securtng
protection to manufacturers and merchants in then crotection to manufacturers and mercial
country and abroad are prepared at this oflice. Dealgn Patents, for protecting artists and designer
of any new ornamental work, are quickly and cheaply btained through this offlce.
Copyrights obtained.
Forelgn Patents are solicited in all countries where ull particulars, matled on application.
Canada Patents.-Canada is one of the best countries
for patents. The cost depends upon the length of time or which a patent is deaired. Full particulars by mal We shall be b
their models and drawings, and adrise with them as to obtaining patents without consultation fec. Ever
kind or information pertaining to patents, kind of information per
abroad ctheerfally given.
Send for pamphlat, 110 pages, containing
directions for obtaining patents. Addres
Mublishers SCIEN \& CO.,
$3 y$ Park

COLD' ROLLED SHAFTING

四

S ImaLE AND BARREL MACBINGRF.-

PORTALSE STEAM ENGINEE, COMBIN-

$\overline{\text { RON BRIDGES-CLARKRE RRERES \& }}$

Machinery

Sturtevant Blowers.

Cold Rolled Shafting.

Níagara Steam Pump. CHA8. B. HARDICK,
$\mathrm{H}^{\text {and }}$ saw mill-silif brind

Niagara steam Pump.
porcinid
DROP PRESGR

Milling Machines.

BOILERS AND PIPES COVERED
ASBESTOS FBLTING COMPANY,

 BLAKE'S PATENT tone and Ore Breaker

N EXT JULY, A WELL KNOWN FIRM Not Eng ineers and Machinery ARenta, with large

 PAGE'S Water Flame Coal Lime Kiln, with

MACHINERY.
\qquad

GRMAT BARGARN.

 cb

WOOD WORKING MACHINERY.

P. BIAISDEIT \& CO., Manafactarert of the Bialdelll Patent Upright Drllls NEW \& IMPROVED PATT'ERNS.-MA.

Andrew's Patents.
 8motat bring id ithoilort

PERFECTION OF SPEED ON WATER Dor, WHEELLS Eecured by She Rotary Hy drault Gover.

Superior to any modifi cation of the trip ham-
mer. Simple, Efficient (07 Send for Circu and W. L. Chase \& Co., New York

MOM

OF THE

SCIENTIFIC AMERICAN.

the best mectanical paper IN THE WORLD.
TWENTY- $\overline{N L N T H ~ Y E A R . ~}$
VOLUME XXX.-NEW SERIES.
The publishers of the SCIENTIFIC AMERICAN Dos new volume commences. It will continue to be the aim of the pablisbers to render the contents of the coming essors.

To the Mechanic and Manufacturer I -No person engaged in any of the mechanical parsuite CAN. Every number contains from six to ten engravings of new machives and inventions which cannot be foun in any other publication.

TERMS.

One copy, one year....
One copy, alx monthe
83.00
1.50
1.00

One copy, alx months,
One copy, four months
One copy, rour months............................ 1.00
One copy of sclentinc American for one year and One cope copy of engrating, "Men of Yrogreas".. one copy of eagranng, "Men of Progreas"... one copy of " sclence Record " for 18;4..
Remit by postal order, draft or express
Remit by postal order, draft or express.
The postage on the Sclentific Americas is The postage on the sclentic a wheren is ive eent ade subscribers must.remit, with subscription, 2 cents extra to pay postage.
Address all lette
MUNE \& 00
87 PABE ROW. MEW YORE。

 PASCAI IRON WORIK：PHILADEIPFIA TASKER IRON WORKS，NEWCASTLE，DELAWARE．

 masememe

TOR STEEL STAMPS，Pattern Letter

 the only practical，low－priced＂Lock Stitch＂Sewing Machine ever invented．Address．JoHNSON，CLARE，
\＆Co，Boston，Mass．；New York City；Pitsburh，
Pa．；Chicago，Mll．；Louisville，Ky．，or St．Louis，Mo．

Spy Glasses．

annwaw

Machinists＇ TOOLS， OF ALL KINDS， N．Y．Steam Engine Co． 98 Chambers St． New York John w．Mason \＆Co．． 43 Broadway New Xork．

SCHOOL APPARATS

In four parts，viz．1st．MATHEMATIOAL NALSAL

 MACHINISISTOOLS
 IRON PLANERS，

 Pyrometers．For tertang oren，Roin

 THE PUULSOMETER．

 Branob Dootri

MillFurnishingWorks
 Portland Cement．

Protect Your Buildings with genuine
FIRE AND WATER PROOF PAINT．
No tar is used in this composition，one coat of which is
equal to six of ordinary paint，and STOPS EVER Y
LEAK．Filling up all holes in shingle，felt，tin or iry
roofs ；never cracks nor scales off；and is only 80 cents a
gallon，ready for use，with a liberal alscount to the trade．
AGENTS WANTED IN EVERY TOWN． $\begin{aligned} & \text { ETHO gallons will cover } 100 \text { sq．} \mathrm{ft} \text { ．of shingles，or over } 400 \\ & \text { Two } \\ & \text { tin roof．}\end{aligned}$
Offlce， 6 Cedar Street，N．Y．

FOR SALE．

The Harrison Boiler Works

 ping，and are in eyery way well apponted for machine and foundry work in conson，JR．，DECEASED
of bollers．For further information，address
ExECUTORS OF THE EsTATE OF Jos．HARRISON，JR．，

THITANBROPS

 Duiversal I rill Chinck A successe．Heartuly endorad by all batin 8 ti．stronger an

 DO 0 Steampumps

R．A．Vervalen＇s Brick Machines，

THE AMERICAN TWIST

Worlsing Models

 DAVIS AVIS ABUATION TALLOW CUP PORTLAND CEMENT，
 THE TANTE CMMPANY Emeryhees（TANIT TE．EmeyGGinders

American Saw Co．

GEORGE BARNES \＆C0．，

Manufacturers，Syracuse，N．Y．

 price of 10 cents per pound－less than one third price of
other preparations，and superorto all others．Address
orders to N．SPENCER THOMAS，EImITa，N．Y．
EくUエースーのトのトOO」の

 MURRILL \＆KRIZRR． 44 noliday St．，Bali．

[^0]: COMMUNICATIONS RECEIVED.

 ## The Editor of the Scientific American

 scknowledges, with much pleasure, the recoipt of original papers and contributions upon the following subjects:On Screw Propellers. By J. H.
 On the Climate of the United States. By J. S. McA.

 On Alkaline Waters and Fish. By G. A. F.
 On the Wisdom of Science. By J. A. B.
 On Acoustics of Public Buildings. By A. W. C

 OnAerial Navigation. By L.
 On a New Local Anæsthetic. By F. L. J.
 On the Moon's Axial Revolution. By C.H.M. On Lunar Attraction. By W. B.
 On Light Freight Cars. By H. S. B.
 Also enquiries and answers from the follow. ing:
 A.P.-H.R. C.-F.-J.E.-J.H.D.-W.D.-W.F.M

 Correspondents whose inquirles fall to appear should repeat them. If not then published they may conclude
 that, for good reasona, the Editor declines them. The adit, for good reasons, the Editor declines the
 Several correspondents request us to publish replies
 o their enquirles about the patentablilty of their in . entions, etc. Such enquiries will only be answered by etter, and the parties should give their addresses.
 Correspondents who write to ask the address of certain anafacturers, or where specified articles are to be had,
 also those harlug goods for sale, or who want to find partners, should send with their communications an
 amount sufficient to cover the coat of pabiccation ander
 the head of " Basiness and Personal," Which is apecially devoted to such enquirles.

