

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.
 quire the face c. . Le head or nut to be at exact right angles to the axial line, to insure accurate fits on finished work, it has been necessary to chase the threads on a screw-cutting lathe. To this operation there are many objections, among which may be noted the requirement of skilled workmen to grind properly and to set the tool, and also to watch the work, in order to obtain uniformity in size, through constant tests of each piece, as the chasing tool makes its last cut. With all these precautions, however, it is almost impossible to thread any number of bolts, in a screw-cutting lathe, to exactly the same diameter; variations of $\mathrm{s}^{\circ} \mathrm{ze}$ occur, to the detriment of accurate fitting, so that, in fine, the pro. cess is comparatively imperfect and slow, and, as a consequence, far from economical With the above facts in view Mr Aurin Wood, of Worcester, Mass., has recently applied, to a boltthreading machine, centers for holding the work exactly as it is secured in lathes, so that the finished bolts, while retained with the same axial accura cy as in last mentioned machines, may be threaded by the dies with the certainty of the line of the thread having correct relation to the axial line of the piece. By combining thisimprovemient with a bolt cutter of his own in cutter of his own in ention, Mr. Wood has produced the ap paratus represented in
our engravings,which, we are informed, has proved, in every particular, a complete success.

The reader conversant with this class of tool will require no explanation to aid him in perceiving the general arrangement and relation of the actuating mechanism ; so that with out considering details in this particular, we may at once pass to the notice of the important improvement above sug gested. Fig. 1 affords a perspective view of the machine, and in Fig. 2 the same is shown tilted, to exhibit more clear y the essential portions. A is the die holder, which supports he dies for threading the bolt in the usual manner. The bearing, B, which is caused to revolve by proper mechanism carries the head hrough which paad, hin ongitudinally a man drel, C, moving freely back and forth. D is the carriage which holds the bolt to be threaded, and which is so actuated as to slide to and from the cut ting head. Paralle to the axis of the lat er is a bar, E, which moves longitudinally in the supports shown This bar is connected to the mandrel, C, and also to the carriage, D by arme, so that, when the carriage travels toward the head, the

A NOVELTY IN BOLT CUTTERS

All machinists are aware that, in making bolts which re
 mandrel has a center or point, F, which is the actual center ful workman with a chasing tool in a lathe. It is also staof revolution of the head; and a corresponding point is ar- ted that from four to ten times as many bolts can be cut in a ranged in the carriage, both centers being in axial line with the cutting dies of the head. The center to the carriage is made adjustable by means of the screw, G.

The bolt to be threaded is first centered and turned in the or variation often noticeable in mationes in which the set of usual manner, as if to be cut in a screw-cutting lathe. It is the dies is given by leverstor other ${ }^{5}$ devices, uncertain in po hen placed on the centers of the machine and secured s:, as sitive results.
to be run into the dies, guided only by the longitudinal movement of the movable center, F, and the carriage, D. For dif ferent lengths of bolts, the arm, in connection with the car riage, is disengaged from the bar, E , and the carriage is moved to the desired relative position and again secured. In order to prevent the work from turning, an ingenious device provided in the forward end of the carriage, at H. The bolt is arranged upon the centers between the roughened faces of two cams, which, when two slides are adjusted rela

WOOD'S IMPROVED BOLT CUTTER

tively to the diameter of the piece, bear firmly against it. The tendency of the bolt to rotate with the cutting device causes, by contact, a corresponding motion of the arms, which finally, by their shape, offer a rigid resistance, and thus firmly hold the work. For considerable difference of diameters, a suitable bolt, joining the sides, allows of their proper adjustment, but ordinarily the apparatus forms a selfjusting dog.
It is claimed that, by the aid of this machine, an ordinary hand is capable of threading bolts as accurately and nicely as, be addressed.

Practical Use of Velocipedes.

 dies is givAnother feature of merit in this machine is the automa ic arrangement by which the dies, after being set to the desired length of thread, are instantly opened at that point, and the bolt carrier thrown back to receive a new bolt. This arrangement, besides insuring uniform length of cut, voids the danger of accident or breakage owing to running the holder against the dies, through inadvertence or inattenion of the workman. One operator, through this device readily keeps two or more machines continually at work.

This improvement, of adding centers, for the axial holding of bolts, to bolt threading machine, which we have now fully described, was patented in the United States by Mr. Wood, February 10, 1874, and similar pro tection has also been obtained in Canadaand peveral European coun tries. These machines, as at first patented in July, 1868, without the centers, were exhibited at the American Institute Fair of 1869, and there, we are informed, gained a gold medaloverseveralcompeting machines. They have since been successfully introduced in many prominent locomotive and railroed shops throughout this. country and Canada.
These machines are made in three different izes, ranging in cut from $5 \cdot 16$ inch to $2 \frac{1}{3}$ nches; and, with or ithout the new im oreme new imcrumed, are manuand Light Machine Company, of Worcester, Mass., to whom inquiries for further information may

The bicycle, after going entirely out of fashion as a toy, is now being put to some practical use. Messengers, called "veloce men," thus mounted, convey dispatches in Paris from the Bourse-or stock exchange-to the central telegraph bureau. The distance is about six miles, going and coming, and is accomplished in 25 minutes, at a charge of 50 cents. A company is being formed to place a very large number of velocipedes upon the streets and to supply messengers to go to any part of the city. The Parisian journals are also using the bicycle to obtain quick re cycerts. During the trial
ports of Marshal Bazaine, the Moniteur employed daily a large number of vehicles, running from the palace of Vereailles o Paris. The distance, bout 13 miles, was made n 45 minutes, and uicker than and traing on the ordina road. Carrier pigeons were also used by the papers, the birds easily traveraing the distance above mentioned on clear days at the rate of a mile a minute.
J. P. F. suggests using a reflector (a tin plate will do), ad justed in front of the farnace door of a t oiler, so as to throw light on to the flue sheets, when caulking leaks.

MUNN \& CO., Editors and Proprietors. published weerly at
NO. 37 PARK ROW, NEW YORK.
o. d. mUNN.
A.e. beace.

One copy, one year.

VOLUME XXX, No. 19. [New Series.] Twenty-ninth Year NEW YORK, SATURDAY, MAY 9, 1874.

THE CENTENNIAL SUBSCRIPTION.

The centennial managers are taking the right course to impress upon the people the importance of the great celebration of 1876. The address which we publish in another column is a business-like, straightforward document, which sums up the past progress, present condition and future needs of the enterprize in very few words. It is not signed by an impersonal committee, but by the President of the Board of Finance ; and with happy terseness, it condenses the gist of the most telling argumentsin favor of the plan into the fewest possible sentences. If anything will tend to reconcile the unfortunate differences and local jealousies which have presented themselves and have served to interfere with the unanimous support which the entire country
should give to the Centennial, it is such appeals to the peoshould give to the Centennial, it is such appeals to the peo-
ple as this. Memorials to legislatures or lengthy arguments more theoretical than practical, scattered through the press, are of little avail in securing the necessary returns of cash which are needed, not at some future and indefinite period, but now, in order to ensure the success of the scheme. The people, are told, plainly and succinctly, that if the United States is to commemorate its hundredth birthday by a grand gress, it must not be left to politicians to dole out such appropriations as will make up the requisite number of millions, but that individuals must personally open their pocket books and buy the shares. Ten millions of dollars is the total amount needed; of this, four millions have been subscribed, and a good percentage of the balance Congress, it may be expected, will provide for. The remainder, divided throughout the country, is a sum trivial in comparison with merely the benefits to be gained lo

patriotic considerations altogether.

There are scores of manufacturers who intend, beyond doubt, to be represented in the Centennial, who will partake largely of the advantages it offers and who are abundantly able to take up the remaining shares of stock without feeling the outlay. It is time that the jealous feeling against Philadelphia should die out ; in this city it has disappeared, and there is an earnest desire for the unequivocal success of the work. Philadelphia has fully made good her claims to be the site of the exposition, by the subscription of $\$ 4,000$, 000 , tenfold her quota and nearly half of the entire sum needed, supplementing, by magnificent energy, the justly important advantages offered by her situation and revolutionary associations.
It is too late also to continue an unseemly dissension over the question of a national or international exposition. By its official acts, which cannot be honorably recalled, the government has invited other nations to participate in our festival, and many have already signified their intention of so doing. It would hardly be just to invite guests to our feast, and, after they have begun their preparations and set aside money for their coming, to request them to stay away. The Centennial was inaugurated as an intern
such, we think, it should be carried out.
It is moreover to be the largest and grandest exposition
buildings are to cover $3,000,000$ yards, against $2,530,400$ and 481,500 square yards filled by the Vienna and Paris fairs. The time remaining is but two years, and the greatest activity will be necessary to complete preparations during that period. It is for this reason that the appeals now be fore the people are doubly urgent. W
sponse will be both speedy and adequate

the famine in bengal.

Accustomed only to unbroken plenty, it is happily impossi ble for American minds to form any adequate conception o a state of things like that now prevailing in Lower Bengal The haziness of our knowledge of Indian geography helps still more to lessen the effect of the pictures of huma wretchedness outlined in the cable reports. We are incapa ble both of estimating the extent of the troubles there, and of supplying from our own experience the unreported details. Benares, Patna, Baugulpore, Rajshaye, Burdwan-what are they but heathenish names, standing for we know not what Even when we translate them into familiar terms, and fin New England, packed with a population equal to that of th United States and British America combined, the appalling fact that its swarming millions are fressed by want, if not face to face with starvation, loses most of its significance through our ignorance of what famine really means.
As mapped by Sir Bartle Frere, the stricken district is shaped somewhat like a clumsy boot with a thick foot and an expanded top-the toe resting on the Hooghly, the heel on the Brahmapootra three hundred miles away to the north, the the leg covering the broad valley of the Ganges to the west ward, a distance of five hundred miles, with a breadth from one hundred and fifty to three hundred miles.
Throughout this vast area, protracted drouth last fall caused he almost total loss of the rice crop, the principal food resource of the people, who have been brought in consequence to the brink of starvation. Indeed had assistance from with out been less prompt or less generous, the victims of famine
would have been numbered by millions. Eren with the most untiring and liberal efforts of the government of India supplemented by the gifts of the charitable the world over deaths from starvation have already been numerous, and deplorable is the fact, that years of irregular and deficien rainfall rarely come singly. As of old, they occur in cycles and though the present disastrous season has been preceded by several years of short crops and scarcity, it is impossible to say whether it marks the culmination of the series or i the first of a new and worse one. The problem which the government has before it for solution is therefore twofold 1. To supply the present wants of its hungry millions; and 2, to make such improvements in their political and agricul tural condition as shall make the immediate or remote recur rence of famine an impossibility.
The first part of the task is more difficult to perform in Bengal than in any other part of India. It is at once the richest and most unfortunate province of the Empire, the victim of greater wrongs and more pig-headed politica blundering than any other. In no other part of India i there so great a lack of administrative machinery competent to grapple with the evils of scarcity and famine, the native system having been destroyed and nothing efficient putin it place. Means of transportation and communication are also lacking everywhere; so that, if left to itself, each petty district would be practically dependent on its own crops, and millions might starve while there was plenty all around or the simple reason that food could not be brought to them. To provide for the distribution, at the right time and in th right places, of the thousands of tuns of food, which the gov ornment has thrown into the suffering districts, has been an must be the most difficult portion of its gigantic charity.
The distribution of food is made still more difficult by the ystem of caste, stronger in rural Bengal than in any other part of India. The ordinary Hindoo is not only restricted to a very limited range of vegetable diet, but even that must not pass through the hands of one of lower caste. He will starve rather than touch forbidden food, though of the most empting and nutritious character. That so much has been done to restrict the area and the severity of the famine, in spite of these and a thousand other obstacles, will be a lasting credit to the present government of Bengal.
It has also grappled with the second part of the problem with considerable earnestness. Many extensive works of in ternal improvement-railroads, canals for irrigation and commerce, and local roads which had been suffered to lan guish through false economy-are being pushed to com pletion by the thousands of agricultural laborers thrown ou of work by the failure of the crops, and driven to the public works by need of food. Had these safeguards against famine beon completed in time, it is safe to say that the greate part of the existing distress would have been prevented. In the Deccan, and other parts of India formerly subject to fearful seasons of famine, the people are now as free from
that danger as those of any part of Europe, ample irrigation making the general destruction of crops an impossibility while good roads make it possible to import promptly food enough to supply any accidental deficiency. If the trouble in Bengal shall have the effect of compelling the govern ion will not be an unmitigated misfortune
G. W. P., M. D., writes to point out that Mr. R. B. Forbes suggestion as to calming the sea by means of oil originated with Benjamin Franklin, who saw the effects produced by the accidental upsetting of a barrel of oid, while crossing the Atla
tic. It is described in Franklin's autobiographical work.

eremacadsis versus butial and cremation.

Is there no other alternative in the disposal of the dead than our present practice of inhumation and the proposed cre mation? The shortcomings of the former, and the long cataogue of hurtful consequences, are conceded; but are the superior advantages of cremation established? Passing by he social, æsthetic, and religious considerations involved, can the advantages which are claimed for cremation, by those who profess to advocate it on scientific grounds, be regarded as proven? Is the immediate conversion of the highly organized and nitrogenized tissucs of the body into certain gases and water, the most economical method of returning to the earth the forces and substances needed for its fertiliation? No: on the contrary, cremation would prcceed in direct violation of well ascertained principles in the use and conomy of natural forces; for all the power exerted by the burning fuel, to break up the animal tissues into carbonic acid and water, would have to be put forth again in order to ecombine them into those compounds of carbon, hydrogen, and oxygen, which make up the cells and tibers of animals and plants. Nature, which has the vastly greater burden of disposing of all animals other than man, rarely resorts to he wasteful expedient of burning them by rapid combus ion. She effects this end by slow combustion, or, as Liebig termed it, eremacausis.
It would be well, then, before resorting to artificial devices and patenting improved forms of furnaces for most rapidly getting rid of the dead body, as it is feelingly called, that we hould turn to Nature and take from her a few preliminary essons. We shall find that she seldom applies the torch, while all the while accomplishing her end. There is not a otting log, a fallen leaf, or a dead insect, worm, or animal, which is not burning slowly, combining insensibly with the aygen which is present in the air or dissolved in water,and becoming converted into fertilizers. Regarded in this aspect he whole world is a cerietery, and the tropical forests along he Niger and Amazon are densely populated ones. Yet we do not find that pestilences make life impossible to the survivors. The ground is black with organic remains, and urnishes beneath its surface such stores of food that it supports a subterranean population, almost as vast as that which位合 above it. It is a magazine of vegetative power, sendbandman endeavors truriant hife, irificial means. Is it not possible for man to do safely what Nature does on mo much vaster a scale with impunity? Should he be compelled to vaster a scale with impunity? Should he be compelled to
destroy in hideous conflagration what Nature consumes so gently on her funeral pyres?
Our error is, and has been, that, in this as in other cases, we have done wrong by interfering with or only partially obeying the laws of Nature. While professing a belief in he immortality of the soul and the perishability of the body, we have acted as though the body should be immortalized; and, by placing it in stone vaults of Cyclopean masonry or n non-oxidizable metallic envelopes, have endeavored to hwart the operation of natural forces and prevent the retuin f the effete to the realm of the useful. In the burial of the ead, the coffin is sunk beyond the reach of infiltrating waters and frequently surrounded with impermeable clay, han which there is nothing better to exclude the operation of decomposing agencies. We rightly view with reverence he spot where a dear friend is laid, just as we do the ground where some great achievement was wrought, although we know that every vestige of his body has perished. Why then attempt to prolong by a few years the pitiful remains? This dea has had but the effect of populating the ground, and endering it necessary finally to desert it, and seek some ew cemetery. Instead of so doing, make the spot for ever hallowed, and let our cemeteries remain, while permitting Nature, untrammeled or assisted by mears which she herself teaches, to dispose of the bodies.
This is not an empty suggestion. Chemistry points out to us what must take place, and suggests a variety of subThe and means for accomplishing the desired result. ventually granite exposed to the action of air and raib years suffices. Great beds of limestone may be dissolved by the action of surface waters percolating through the ground. Cannot similar agencies dispose of the few pounds, mostly of carbonate of lime, making up the animal skeleton? It would not be necessary to employ chemicals having a violent caustic action, like lime or acids, which, in consequence, suggest operations repulsive to our sentiments of tender respect for the dead. It would suffice to surround the body with some ubstance which would carry oxygen to the tissues, and allow the products of the slow combustion thus effected to be distributed through the soil. Such a substance, for ex ample, is the hydrated oxide of iron. This is the same ma terial that gives the yellow color to the soil, and which Nature has diffused everywhere to sweeten the ground and ssist in the oxidation of organic remains buried in it. Ther is certainly nothing objectionable in the appearance of oxide of iron, a body which forms the coloring matter of yellow and brown ocher; yet, as Professor Wurtz suggested, it pro bably would be sufficient to lay the body in this, in orde hat every vestige should be destroyed in a few years.
We propose, then, that cemeteries should not be transient, or banished to distant spots, or allowed to be located in unsuitable places, or managed (as at present) as successful peculations, frequently in defiance of well known sanitary aws. Instead, let them be made permanent, bearing a defi aite proportion in size to the surrounding population: no restricted to the outskirts of cities, and swept away by the ad
vancing tide of humanity, but located upon sites well adapted
for them, whether in the midst of cities or in suburbs. Let the ground grow more sacred as the spot where were placed not one but many generations of those connected with us by the ties of filial love, and more beautiful by accumulated treasures of art erected as memorials of the unnumbered dead who have temporarily reposed there. We believe that some method similar to that which has been advocated above, and which is, to the best of our knowledge, brought forward for the first time in this place, is not open to the objections which are justly urged against our present methods of inhumation: that it is in accordance with the latest teachings of Science in this direction,and that it will serve to increase and not diminish the tender love and reverence for the dead, which has steadily grown with all that is most excellent and which has steadily grown with a
beautiful in poetry and religion.

the effective power of tubbine water wheels.

The failure of turbine water wheels to supply the amount of power expected is not less common than that of steam engines, and the causes are more numerous. Before purchasing turbines, it is necessary to ascertain the head of water available, and that there is an abundant supply; after which large allowance should be made for the friction of shafting, as well as for the power necessary to drive the special machinery, and thewhole determined in horse power. The selection of a wheel then becomes necessary. There are The selection of a wheel then becomes necessary. There are legions of makers, each of which is ready to warrant his to
be the best wheel made. All of them publish artistic tables of tizes and powers, always guaranteed reliable. The unin. itiated purchaser usually procures many of these tables, having voluminous descriptions and letters of commendation attached; and on examining them, he is surprised at the elaborate displays of figures, and often loses himself in contemplating the accuracy of the decimals. When comparing the tables of the various makers, he wonders why there is such uniformity of high powers iu wheels so different. In studying the details, he finds that Smith's Excelsior Concave Fluted Turbine of forty-eight inches diameter will give him 84.71 horse power ; while Jones' Scroll Flanged Buggy Wheel of the same diameter is fully warranted to yield 85.97 , that being a gain in favor of Jones of 1.26 horse power, besides the further advantage of running with or against the sun, as desired. In continuing his comparisons to other wheels, it is needless to say that le becomes bewildered among so many wheels so far excelling each other, and finds himself unable to decide which wheel is the best. He is forced to seek the advice of some competent engineer, and, to his utter astonishment, learns that the figures of the tables so nicely astonishment, learns that the Ggures of the tables so nicely
prepared are in almost all cases totally unreliable, there being prepared are in almost all cases totally unreliable, there being
scarcely a maker's wheel that, in a test flume, under the most favorable circumstances, ever for a single hourindicated the the power claimed, and almost none that in actual use approach the figures, many of them scarcely yielding half what is claimed. Under these circumstances, it becomes important, in selecting a good wheel, to be assured that it will furnish ample power. After ascertaining a reliable maker, in order to determine the exact size of the wheel it is necessary that at least one third should be allowed for variations in water levels, and for the loss consequent to the wear of wheels and levels, and for the loss consequent to the wear of wheels and
gates; and, in addition, figures should be made, based on but a little more than a half gate of water to the wheel. The best wheels afford almost all of their power at a five eighths gate or under, and a difference between a half and full gate is not more than should be the margin necessary to regulate speed. In use it will be found that opening gates seven eighths or fully simply amounts to a large consumption of water, generally without producing five or ten per cent additional power. Some good wheels give less power when at full than at part gates. The rule should be to bay a wheel amply at part gates. The rule should be to bay a wheel amply for over estimate of power. We think the experience of all who have placed wheels with a less liberal allowance will bear out and confirm this rule. Allowing one fourth for the friction of the shafting of a cotton or woolen mill, without adding one third more for a reserve when in actual use, will scarcely fail to cause a manufacturer to wish that he had bought a larger wheel. Actual tests, accurately conducted, of thirty-one styles of turbines show the comparative range of effective force, under the best possible advantages, to be as follows: At quarter gate, from 13 to 50 per cent; half gate, from 11 to 71 per cent; three quarter gate, from 81 to gate, from
82 per cent, and at full gate, from 52 to 84 per cent, the best wheels giving out about all of their power at from five eighths to three quarters openings; while the lower classes give but little power unless Hooded with water, and even then fall far short of the amount claimed for them. Another reason why large wheels shonld be used is that, almost universally, high and low points of the head and tail waters so reduce the force of wheels as to cause partial stoppages of machinery, unless there is surplus power when the water is at the ordinary stage. We are acquainted with a the water is at the ordinary stage. We are acquainted with a
mill using ten independent turbines of rarious styles. Exmill using ten independent turbines of rarious styles. Ex-
perience has here shown practically that the relative power of the wheels, to that necessary to drive the machinery under constantly occurring unavoidable disadvantages, has not been unduly stated, and that not meager allowances should be made as reductions from makers' over-estimates of the powers of their wheels, as well as farther liberal allowances for the friction of the shafting, loss of power in times of high and low water, and the margin necessary for the action of the governors. It has also been found true here that substi. tuting large wheels, operating at from one fourth to one half gate, for small wheels, requiring seven eighth gates,results in the use of much less water for a given effect. Were wheels accurately tested in places of use, and actual power ascer-
zained, such large fractions of allowances would not be
necessary ; and a less rate of proportion between that wanted and that claimed by makers is accordingly found satisfactory with wheels where such claims are based upon tests. It will always be found to be by far the most economical, with bot

ARMY ANTS.

It is a suggestive circumstance that, among the many varieties of animal forms, those which approach man most nearly in social and mental development are not his neares allies, but creatures of an entirely different order, and those which stand at the head of their class, the articulates, as nan does at the head of the vertebrates.
The closeness of formic mimicry of human civilizations is all the more surprising when we take into account the vast difference between the physical conditions of the two types of life. Wiltarity of structure, men and ants have fallen into lines of development so nearly parailel in many instances as to suggest the existence of something far more imperative in the tendencies of life, and at the same time a much greater limitation in the possibilities of development, than are com monly suspected. Especially to those who regard mind as an unmixed product of material conditions, and would measure mental power by weight of brain, nothing can be more perplexing than to see the almost microscopic cerebral ganglia of the ant evolving products so like those of the immensely more bulky brain of man that their practical identity is un But onable.
But our purpose is not to study the mystery of formic intelligence in general, but the peculiar manifestations of it by certain species whose modes of life have been recently investigated.
As a general thing, ants are found in settled communities, which change their habitations rarely, and then for causes not under their control. A remarkable exception to this rule is found in the ecitons, or army ants of Central America These, while existing in thoroughly organized communities, numbering myriads if not millions, never make permanen ettlements, but are constantly roaming about the forests in vast multitudes, scourging the insect world as the migrating
armies of Attila scourged the less warlike nations of Europe.
The
The traveler's attention is usually called to one of these predatory swarms by the twittering of birds which follow their course to feast on the flying insects which they scare up. Approaching, he will discover a dense body of ants, in a column three or four yards wide and of enormous length, moving rapidly and examining every nook and corner where their game may hide. The captured insects are speedily torn to pieces and carried to the rear, or to their temporary camp, by relays of workers. On the flanks and in advance of the main army, smaller columns of skirmishers are thrown out to fush the insects they are in pursuit of, many of which, in
their terror, bound right into the midst of the main column, their terror, bound right into the midst of the main column, to be torn to pieces instantly. The greatest catches occur in masses of brushwood. Here the cockroaches, grasshoppers, spiders and other insects take refuge among the branches
while the ants are occupying the ground below. But their security is brief. In a little while explorers are sent up, folsecurity is brief. In a little while explorers are sent up, fol-
lowing every branch and driving the refugees to the ends of the twigs, to fly into the air and be snapped up by the birds, or drop among the throng of ants below. In this dilemma the apiders alone have any means of escape; they can suspend themselves in mid-air and remain in safety until their
enemies have retired from the bushes and passed on to other conquests.
The individual:: of this species of ants (eciton predator) are of various sizes, the largest being about a quarter of an are of various sizes, the largest being about a quarter of an
inch long, the smallest less than an eighth of an inch. A much larger varisty (eciton hamata) pursue their prey in a similar manner, but vary their tactics somewhat as occasion demands. When on a general hunt, they spread their columns over a considerable breadth and sweep everything be-
fore them, crickets, grasshoppers, scorpions, centipedes, ore them, crickets, grasshoppers, scorpions, centipedes,
woodlice, cockroaches, and spiders falling almost certain prey. Exploring parties are also sent up trees to look for nests of bees, wasps, and probably birds. The moment a prize is found the fact is reported to the army below, and a column is sent up to take possession. Mr. Belt, to whom we are indebted for these observations, and whose " Naturalist in Nicaragua" gives more numerous and valuable additions to the science of natural history than any book of travel since Wallace published the "Malay Archipelago," describes these ants as pulling out the larve and pupx from the cells of a large wasp's nest, while the owners were hovering about, powerless, from the multitude of their invaders, to rende any protection to their young.
When hunting in solid columns, these ecitons were found to be generally, if not always, in search of the young of another species of ants (hypoclinea) which make their nests in fallen timber. When a log is found, the column spreads out over it, searching all the holes and cracks, the
smallest individuals pursuing the unfortunate hypoclineas to the furthest ramifications of their nests. The invaded ants rush out bearing their yourg in their jaws, and are despoiled of them so quickly that it is quite impossible to see how it is done. The ecitons do not harm the mature hypoclineas, to the only for the larve and pape, Wat they do with their plunder finally does not appear. It would seem that they cannot rear the young hypoclineas for sla res, as certain northern ants do with their prey, since no mention is made of any such addition to the membership of their communi$\stackrel{\text { ties. }}{\text { Wh }}$
When marching, these eciton armion appear to be directe
by numbers of individuale, of a larger size and a lighter color than the regular workers, scatered at intervals of two or three yards. They stop often, and occasionally run back a little and touch some of the other ants with their antennæ, as though giving orders. At the headquarters there are individuals of still greater size and more ferocious aspect, which soon make any one molesting the nest acquainted with the efficiency of their enormous jaws. The temporary resting places of these ants are usually in hollow trees or underneath large fallen trunks that offer suitable hollows. One which Mr. Belt found in a hollow log, open at the side, must have contained a cubic yard of ants clustered in a dense mass, like a swarm of bees. And these were but a part of the whole community, as many columns were outside, some bringing in the pupæ of other ants, others the legs and dissected bodies of insects captured on their foray. These incomers proceeded directly into the interior of the living mass through tubular passages, which were kept open just as though it were formed of inorganic materials. Like the hunting races of mankind, these predatory swarms are compelled to rake frequent removals to new hunting grounds. The migratory columns are easily known by all the common workers moving in one direction, the larvæ and pupæ of the community being carefully carried in their jaws.
Many observations and experiments were made by Mr. Belt, testing the individual intelligence of these wonderful creatures. Though inferior in some respects to ants which hunt singly, he does not hesitate to place them at the head of their order for intellectual and social development.

SCIENTUFIC AND PRACTICAL INFORMATION.

stenam life boats.

Mr.H. G.A. Mitzlaff, in a paper read before the Institute of Naval Architects, proposes the use of steam in life boats, and suggests the hydraulic propeller or rotary pump as best adapted for propulsion. He proposes the following dimen sions for such boats: Length 45 feet, breadth 11 feet, draft 3 feet. The boat is provided with airtight chambers to prevent ainking.

the heat of the sun.

Father Secchi, the distinguished Italian astronomer, has ecently published the result of his investigations in the solar temperature, made during last summer, and states that his efforts were directed toward the determination of the relation of the solar radiation with that of the electric light. The instrument used was a thermo-heliometer of the investigator's own invention, and the conclusion reached was that the radiation of the sun would be $36 \frac{1}{2}$ times that of the carbon points. If, therefore, the temperature at the surface of he latter is fixed at $5,432^{\circ}$ Fah., a number not exaggerated and supposing the radiation proportional to the temperature we obtain for the potential temperature of the sun 240.836° Fah.

ELECTRICAL FIGURES UPON CONDUCTORS

M. Schneeboli has investigated the conditions on which depend the dimensions of Kundt's electrical figures, which re ult from the adherence of a fine isolating powder on a me tallic conductor, from which a discharge is emitted. In the experiments, the discharge of a Leyden jar took place be ween a horizontal metallic plate sprinkled with lycopodium and an electrode in the form of a ball or cone above the plate. It was found that, the circumstances being equal, the diameter of the figure augmented with the distance from the electrode to the plate, but never in a constant ratio. The size of the figure augments also with the quantity of elec tricity which produces it. When the electrode is composed of a certain number of points, a regular circular figure is formed beneath each one. If in the path of the discharge a small plate of glass be introducel, a apace clear of fowder appears on the metal plate of exactly the form of the glass plate interposed. With electrodes of conical form, present ing an angle of 60° or 30°, it is stated that the electrical fig ure is larger as the angle at the summit of the cone is smaller. Finally, the diameter of the electrical figure is larger when the discharge takes place in a rarefied gas than at nor mal atmospheric pressure.

JAPANESE BRONZE.

A curious bronze is produced in Japan, which, when made in thin plates, resembles slate, and is covered with designs in silver. M. Morin has lately analyzed and examined the properties of the alloy, and finds that it contains, in addition to copper, from 4 to 5 per cent of tin, and on an average 10 per cent of lead. The combination is casily molded into hin plates. These are varnished, and through the covering the designs are scratched with a burin. The plate is then plunged in a silver bath, when the silver is deposited on the unprotected portions. Lastly, it is placed in a muffle fur bright.

CURIOUS PHENOMENON OF ENDOSMOSIS.

If the membrane which lines the interior of an egg shell be used to close the tube of an endosmometer, the latter be-
ing filled with sugar and water, and its containing vase with pure water, an odd circumstance will be noted. If the ex ternal surface of the membrane is toward the pure water, endosmosis is very rapid, and the water rises at the rate of some 4 inches per hour. But if, on the contrary, the interior surface is turned to the water, the phenomenon is almost annihilated. Matteuci, is appears, has noticed a somewhat similar peculiarity in the skin of a frog. It would seem that the phenomenon is worthy of study, ainge is ahown that a liquid does not tesperas the interlor of a cellule whth the same
facility outwards in as in the contrary diection
the vertical moltiplier boring machine.
We have already laid before our readers three applications of that ingenious combination of gearing, the vertical multiplier, to woodworking machinery. By ils use the band saw, the jig saw, and the circular saw have been adapted to run by the foot power of the operator, thus enabling the mechavic whose shop is not of sufficient extent to require the work of a steam engine to supply its place, on the machines most employed, by a device which affords a means of applying his available force at perhaps the best advantage.
We now present, in the annexed engraving, a representa tion of still another adaptation of the invention, recently made to the boring machine. The nature of the peculiar mechanism through which the power is communicated has already been fully described and explained in other connections, so that no further allusion to its construction is necessary. By its aid, however, in the pre sent machine, forty revolutions of the shaft, ac tuated by the treadle, correspond to 1,640 revo lutions of the bit, a four inch pulley being con nected with the latter, making a proportion of one to forty-one. The general arrangement of the boringmechanism will be readily understood from the engraving. A table is provided which, by a-slotted support through which passes a set acrew, may be adjusted at a hight suitable to the dimensions of the work to be operated upon. It has a longitudinal slot on ita surface in which travels a guide piece, against which the wood to be bored is held by the hand of the operator, as it is advanced toward the tool This guide piece, by means of a slotted semicir cular bar and set screw, may be placed at any desired angle so as to allow for the boring of inclined holes.
We recently had occasion to examine this machine, and found that the tool penetrated through knots or woods in any direction, with much facility and with the exercise of a quite small amount of effort on the part of the ope rator. It is evident that any sized bit, which can be adjusted to the shaft, may be used. Thi device will doubtless prove a useful addition to the shops of wood workers generally.
For further information, address the Combined Powe Company, 23 Dey street, New York city.

IMPROVED FUEL ECONOMIZER
Among many novel devices displayed at the recent exhibition of fuel-economizing appliances, held at Manchester, England, is a steam generator composed of three coils of cast iron piping, of four inches internal diameter. These coils are not cast whole, as stated in the inventor's descriptive circular, but are formed of a number of half circles, bored and turned to spigot and faucet joints. The ends of these half circles are reduced to three inches in diameter, and have ribs cast on the exterior surface. After the segments have been placed together an iron hoop or thimble is cast on over the joints, and, by the contraction of the metal in cooling, draws the ends of the pipe close to gether. The exterior of the gether. is of the same diame ter as the fipes, and thus a perfectly smooth joint is obtained for scrapers to travel over; the pipes are held securely togeth or, while all cement or rus joints are dispensed with.
Should a coil become fractured it can be repairad by split ting two hoops and removing the damaged segment.
The form of scraper will be readily understood by referring to the angraving. One half rests apon the pipe, embracing the upper portion of it, while the lower scraper is kept up to the pipe by means of a balance weight; these scrapers are weight; these scrapers ar pushed forward by arms or pro pellers fastened to a center shaft, driven by a worm and wheel at the top of the ma chine, and supported by a foot st 6 p in the center of each coil ; the scrapers follow the line of pipes until they reach the bottom, when, by the action of the reversing motion, they again ascend the coil to the top These scrapers will, undoubted y, clean the coils fronbted y, clean the colls from soot provided the pipes are cast tru ly cylindrical and the scrapers made to fit them exactly; bu in the apparatus exhibited at Manchester this was not the case -the pipes being very rough cantinge and far from cylindrical, consequently many por tions of the pipes wereuntouched by the scrapers, the points of which were frequently mor than an inch apart. Theinventor
tor to give as good results as an economizer comprising
 seventy vertical pipes.
states that this machine was not made in his own foundery
but that in all economizers now supplied by him he will guarantee the accuracy of the form of the coils.
Many advantages are claimed for this economizer over those with vertical pipes. The first is that the whole piping presents a surface for the heat to beat against, the back part of the coil being exactly opposite the front space. We can see no difficulty, eays the Engineer, to which we are indebted for the engraving, in arranging vertical pipes, so that those in the second row should be placed exactly opposite the spaces bet.ween the pipes in the first row, and so on alternately. An-
other advantage claimed is the rapid and continuous circulaothe

VERTICAL MULTIPLIER BORING MACHINE.
ion of the water, there being only one unbroken stream, fre from all sharp turns and angles, thus avoiding strains upon the pumps and joints. By means of this rapid circulation it is maintained that incrustation and deposit of scale on the interior of the pipes are avoided, and their heating surface kept uninjured. The feed water enters at the bottom of the coil furthest from the boiler, which is the coolest end; it passes in to the second coil at the top, and, descending through it, enters the third coil at the bottom, becoming gradually hotter until it enters the boiler at a temperature varying from 200° to 300°. From the absence of abrupt corners and bends, the coils can be well cleaned out by blowing through them with steam. It stands independent of all brickwork, and is self-contained in its own frame, which reduces the cost of fixing. The three coils are estimated by the inven cost

American aad European Locomotiv es.
American engines have, as it were, gradually crystallized into certain definite and fixed forms. Outside cylinders and nside frames are now universally used here, whereas, on the continent, cylinders and frames aro sometimes placed inside of the wheels and sometimes outside. The steam chests here re always placed on the outside and top of the cylinders; thus there are often placed on the side and inside the frames. Almost the only kind of pistons which seems to be used there is that made with solid heads, with simple grooves turned on the outside, into which steel, cast iron, or brass ringe are sprung Here the varieties of packing in use are numberless. For simplicity and cheapness the European is certainly very much superior to ours. Here the only valve gear now made is the shifting link motion worked from eccentrics on the main axle: there the shifting link, the suspended link, the Allen or straight link, the Walschaert, and several other kinds of valve gear are used Some of them are worked from eccentrics placed outside of the wheels; and in at least one engine we nutice that the axle bearinge are outeide of the wheels, and then the eccentrics are placed next the bearings, and a crank outside, to which the connecting rods are attached. All wheel centers are made of cast iron ; there, of wrought iron. In the tyres of our truck wheels we are imitating Europeans, and steel tyres are now much used here for that purpose. The springs in American engines are, if we except the Boston and Albany railroad, always placed above the ayles and frames. In Europe they are often be low. Here they are, excepting in four-wheeled engines, always arranged with equalizing levers; there this is not always the case. The use of plate frames is universal in Europe, whereas in this country they are now never used.
In the construction of locomotive boilers there is also a very great difference in their practice. The steam dome is there always placed either about the middle or near the front end or smoke box. The Becker pattern of boiler is also much used, espe ially in Germany and Austria. In this plan the outside of he fire box, instead of being arched, is rectangular, that is, he top of what we call the wagon top, instead of being ound, is flat, and is raised somewhatabove the barrel of the boiler. The corners are, however, rounded somewhat. The crown sheet, instead of being scayed with crown bars and braces, is supported by long stay bolts screwed through the outside shell and the crown sheet. Some of the engines which are to be built at the Grant Locomotive Works, for a Russian road, are to be made in this way. This is, we think very excellent plan, and is quite certain to be adopted in his country when its merits become known. Shaking grates are, however, seldom shown in the illustrations of European ongines: but grates very steeply inclined are still much used there It is very singular that in Europe the exhaust steam al. most universally is allowed to escape at the base of the smoke stack instead of the bottom of the smoke box as is the practice here. It will also be observed that there many of the smoke stacks are made conical; that is, the base of the inside of the stack is smaller than the upper part. We have seen it stated that it is found that the steam blast is much more effective with this form than with a straight stack. We do not know, however, upon what the assertion was based, and would be glad to get some further information in reference thereto. The differences in points of detail are almost numberless, and are well worth study. The reasons for many of these differences would be very interesting if carefully examined, and we intend to return to the subject again. A very striking fact, however, is the much great er variety in the methods of construction adopted in Europe than is in use here. The reason for this we believe to be, singular as it may seem, partly political. The suppression, or rather re pression, of individuality under republican governments has often been remarked. In this country, perhaps, no principle is more generally believed than that " the majority should rule." The re sult is that this axiom prcduces a kind of intellectual subser viency of the individual to the will of the majority, which thus, to a very great extent, become the standard of right and wrong
l, therefore, any new method of construction fails to be approved by a majority, it is abandoned. We will not undertake here to determine whether the suppression of individuality is a gain or a loss. It is quite certain that origi nality is very expensive when it exercises itself in the construction of locomotives or other railroad machinery, and that the Chinese virtue of uniformity has muchmerit, and is often profitable when greatingenuity and skill would not be.-Railroad Gazette.

Cotrespoudence.

An Electric Toy

To the Editor of the Scientific American:
I send you herewith a sketch of a scientific toy, which I have recently constructed and placed on a bracket in front of the desk in my engine room. The main belt of the engine is 30 inches in width, and about 120 feet, in length, and runs from south to north, at an angle of about 45°, and with a velocity of 2,500 feet per minute; it is highly electrical.

The idea occurred to me that the electricity so developed might be made usg of for mechanical or other purposes; and having seen an engraving of what is called an electrical wheel, I constructed one as shown herewith, but without the coils. A is a vial, about 6 inches in length by $1 \frac{1}{2}$ inches in diameter, the bottom of which is inserted in a cavity in the bracket, B. In the center of the cork is inserted the eye end of a darning needle, the point projecting upward about 2 inches, on which rests the wheel, C, which consists of two pieces of copper wire, 1-32 inch in diameter and 7 inches in length, placed at right angles to each other; their centers are flattened and soldered togerher, and half an inch of the end of each arm is bent at a right angle, all in the same direction, and filed to a point. D is a copper wire, one eighth inch in diameter, one end of which rests against the needle, the other running in front of and about 6 inches distance from the belt, and terminating in 5 or 6 points, 2 inches long, projecting toward it.
On connecting the conducting wire with the needle, my wheel immediately started off at a speed of 100 turns in 50 seconds. I soon ascertained that, by placing a good metallic couductor beneath the wheel and making an earth connection, I could add materially to its speed. Accordingly Iplaced a copper coil, $\mathrm{E}, 5 \frac{1}{2}$ inches in diameter, one inch below the wheel, connecting it with the gas pipe, which accelerated its speed to 143 turns in 50 seconds. Soon my wheel began to gyrate even to an angle of 20°. This annoyed and puzzled me. I eventually found that, by adding another coil, F, one inch above the wheel, and connecting it with the earth, I not only restored its equilibrium, but also increased its velocity to 173 turns in 50 seconds.

When the air is dry and frosty, I have had it running as fast as 280 turns per minute, and the ozone given off by the wheel is apparent to the senses at a distance of several feet. It also acts as a barometer, indicating (by increasing or diminishing its speed) atmospheric changes several hours in advance. It is especially lively on the approach and during the prevalence of a northeast snow storm; but with the wind anywhere from east to south, it will scarcely move at all.
The apparatus can be easily constructed by any person of ordinary intelligence, and it makes a very interesting scientific apparatus. It can as well be located in the counting rom oor fice as in the engine room
328 Delancy street, New York city.
Edwin Leach

Elasticity and Slipping of Belts

To the Editor of the Scientific American:
It is pretty generally admitted, though sometimes contest ed, that any belt running upon two pulleys, one the driver and the other the driven, must slip on both when any appreciable amount of power is being transmitted by it. It seems to be very evident that, if a belt is passing from a state of greater to one of lesser tension, or vice versa, in its passage around a pulley:in the former case it must un. dergo contraction, and in the latter case extension, in direction of its length; and we know that a balt always exists in a different state of tension in the parts entering upon and leaving the given pulley. If, then, in passing around the driving pulley, a belt undergoes contraction, and on the driven pulley, extension, there can be no point of the belt but must have a sliding movement on both pulleys, and thus result in fhe driven pulley having a lower velocity than would be mathematically due to the diameter of the pulleys. Thus, or two pulleys of exactly equal diameter, one driving and the other driven the latter must heve the lower velocity.
cases where high speeds are to be obtained by means of belts and the prime belt, that from the first driver, has a low ve locity, this may become an important consideration.
I recently, quite accidentally, observed a peculiarly delicate and interesting illustration of this property of belts, especially illustrative of the invariable slipping upon the driving pulley; and I think it will be of interest to your read ers, as it establishes that fact in a very beautiful manner.
I have, in my factory, a number of pairs of spindles running at about 5,000 revolutions per minute. Each of the pairs is driven from one countershaft by two separate driving pulleys, situated nearly close together, as in the illustration, and the spindle pulleys are so situated, one in advance of the other, as to take the belts from them. The countershaft be ing directly over the median line between the two spindles, the two belts were practically of equal length. The spindles are alike in all material respects, and carried 4 inch pulleys the drivers on the countershaft being 24 inches in diameter The work done by the spindles alternated regularly about 60 times per minute, the belt of one spindle having-while th other was at work-nothing more to do tban to turn the spin dle in its bearings; and while the feed mechanism of the ma chine containing the spindles was not in operation, neither belt had any more to do than simply turning the spindles, which was practically equal.
In this case: owing to the great disparity in the diameters of the driving and driven pulleys, and consequently in the area of surface wrapped by the belt (the distance from coun tershaft to spindle being less than four feet), and the fact that the drivers were directly overhead, bringing the weight of belts to their aid: it is certain that, but for the elasticity of and the consequent difference in the tension of the two halve of the length of the belts, whatever elipping occurred from the resistance of the work would take place upon the smaller pulley. Bat this experiment shows indubitably that these belts always slip on the 24 inch or driving pulleys as well eand, of course, most when the work is greatest.
It so happens that, of one pair of the 24 inch drivers, one is slightly larger in diameter than its companion, but so small an amount that it can only, with great care, be detected with the callipers; and-although not essential to thisillustration as the same cffect would be produced by a difference in the length of belt-but for this latter fact the following interes ing observation would prcbably never have taken place.
In the engraving, 1, 2, is the countershaft with its pulleys, a and $b ; \mathrm{D}$ and E are the pulleys of the spindles. The ob server is situated at A, and at W is a window. The holes in the belts made for the fastenings,-which, from use, had become sufficiently enlarged to permit the passage of the light -when situated as at $\mathrm{H}^{\prime} \mathrm{H}^{\prime}$, would aliow the passage of a ray of light through the downward side of one belt and the upward side of the other, as at A B; and as the speeds of the belts were such as to cause these holes to cross the line of vision in periods of time less than the duration of the im pression upon the retina, there appeared to be a permanen

opening through them. If the pulleys, a and b, were exactly of the same diameter, and the feed works of the machine not in operation, the pointe, H and H^{\prime}, would, after completing a circuit, reappear in the same position; but owing to the slightly larger diameter of the pulley, b, the ray of light, when both spindles were idle, had a very regular upward movement until cut off by the pulley, a, as shown at C A, and, after a short time had elapsed-a little less than a minute, by repeated timings-would reappear at B A; and as the belts were running at about 5,000 feet per minute, it will readily be seen how small was the difference in the diameters of the pulleys, a and b. Now, when the spindle, D, was at work. E being idle, the downward motion of the point, H, became at once retarded, and the upward motion of the ray would become suddenly accelerated; but when the spindle, E, was at work, and D idle, the point, H^{\prime}, became in turn retarded, and the ray would either come to a stand still or slightly descend, according as the material being operated upon by the machine offered more or less resistance to the cutting tools. The descent, however, was never so great as the ascent; and whether the ray passed upward regularly, as when the spindles were both idle, or intermittently, as when they alternated in their work, its recurrence at B A always took place in the same period of time. The intermittent motion of the ray of light could only be produced by the slip. ping of the belts on the upper pulleys, except that a small fraction of it might result from the stretching of the belts
ntering upon the other; but that this must be very smal will be evident from the fact that, during one second (the period of one alternation of work from one epindle to the ther and return) the belt would make about 21 complete circuits, or pass from pulley to pulley 42 times in that period; therefore the change in tension in the ıwo halves of the belt's length must take place principally upon the surface of the pulleys.
I think this example shows conclusively that, in any belt whatever, the side in contact with a pulley has a greater voocity than the surface of the pulley itself.
New York city. John L. Haweins.
Measuring the Width of a Stream.
To the Editor of the Scientific American:
In surveying, it is often necessary to ascertain the width of iver, pond, or other body of water. with the least possible de]a+

List a B represent the line of survey (the course belug aue north), striking the river bank at B. Have a flag set on this ine at C. Take your station at D, at a right angle with your ine, B A, at any convenient distance, with or without measurement. Set your compass at D , and bring it to bear on your flag at C. By observation you find the course N. $13^{\circ} \mathrm{E}$. Reverse your compass, taking your course S 13° E. Send a flagman back on the survey line, keeping in range with B C until he comes in range of your compass sight at E . Mea ure from B to E, and you have the distance from B to C.
Farmington, Iowa.
John Cross.

ttraction of the Sun

 To the Editor of the Scientific American:Permit me to correct a serious mistake contained in Dr. Vander Weyde's communication, published in your issue o April 18th. Your correspondent incorrectly asserts that I have constructed an apparatus for measuring the change of terrestrial attraction, consisting of a heavy iron globe floating in mercury; regarding which he remarks "that floating object is identical with a lever scale, as the liquid balances the floating body, and any change in the gravitation will equally affect both; so that such an apparatus would show no change whatever, even when transported to the moon or to Jupiter." Dr. Vander Weyde appends to his irrelevant remark the following unwarrantable conclusion 'It is, therefore, not in the least surprising that Captain Ericsson, according to his own showing, had no results." The reader will be surprised to learn that my apparatus, the principle of which Dr. Vander Weyde evidently does not the principle of which Dr. Vander Weyde evidently does not
understand, has been constructed for the sole purpose of understand, has been constructed for the sole purpose of
proving practically that, at the rising and setting of the sun, solar attraction exerted on a body resting on the sulface of the earth is exactly balanced by the centrifugal force acting in an opposite direction, called forth by the earth's orbital motion round the sun. The reader will find, en referring to my communication inserted in the Scisntific American March 14, 1874, that the result of the experiment with the floating iron ball was mentioned in my demonstration relat ing to solar attraction simply for the purpose of convincing Mr. W. B. Slaughter, by actual experimental test, that sola attraction is neutralized by orbital centrifugal force. The reader will also find, by referring to the said demonstration that, while the sun's attraction on the iron globe exerts a pull of fully 748 grains, and that while a tractive force of a few grains suffices to move it across the vessel of mercury in which it floats, yet the globe remains perfectly stationary on the surface of the liquid metal when subjected to the stated pull of 748 grains exerted by the attraction of the rising sun Consequently the instituted experiments with my appara tus, which in the opinion of Dr. Vander Weyde have produced "no results," prove incontestably that the centrifugal force called forth by the orbital motion of the iron globe, exactly balances the attractive energy exerted on its mass by the ou at the moment of rising and setting. I will not detain the reader by commenting on Dr. Vander Weyde's criticiem of my solar attraction apparatus, since it is based on the iurele vant fact that "a floating object is identical with a lever scale, as the liquid balances the floating body." Moreover, the reader cannot fail to perceive, without further discussion that, according to his own showing, Dr. Vander Weyde does not comprehend the principle of the apparatue nor its object
J. Erscasos.

ASTRONOMICAL NOTES.

Observatory of Vassar College.
For the computations of the following notes (which are approximate only) and for most of the observations, I am indebted to students.

Positions of Planets for May, $18{ }^{2} 4$. Mercury.

Mercury rises on the 1st a little after 4 A. M., and sets a little before 5 P. M. On the 31st, it rises about $5 \mathrm{~A} . \mathrm{M}$. and sets near 8 in the evening.
In the first week of May, it should be looked for before sunset, and near the last of May after sunset. It is too near the sun, in apparent position, to be seen between the 15 th and 29 th.

Venus.

Venus rises on the 1 st at 5 h .50 m . A. M., and sets at 8 h . 20 m . P. M. On the 31 st , Venus rises at 6 h .7 m . A. M., and sets at 9 h .21 m . P. M.
On the evening of the 3d, Venus and Mars will have very nearly the same right ascension, and will differ little in declination, Venus being a little further south in declination. Mars passes the meridian one minute later than Venus.

Mare.

On the 1st, Mars rises at 5 h .53 m . A. M., and sets at 8 h . 27m. P. M. On the 31 st , Mars rises at 5 h .8 m . A. M., and sets at 8 h .12 m . P. M.
Mars is very small at this time, but its raddy light will onable one to recognize it after sunset, and its nearness to Venus on the 3d will be a very marked phenomenon.

Juplter.

Jupiter rises on the 1st at 2 h .39 m . P. M., and sets at 8 h . 11 m . the next morning. On the 31st, Jupiter rises at 0 h . $41 \mathrm{~m}, \mathrm{P} . \mathrm{M}_{\text {. }}$, and sets a little after 1 the next morning.
Although we are moving away from Jupiter, and it is becoming smaller, it is still the great beauty of our evening skies, and its satellites, with their varied changes of position, can be seen with an ordinary ship's glass. On the evening of the 10th the second satellite will be invisible to glasses of small power by being between us and the planet until after 8 P. M., and the fourth will become invisible after 9 P. M., by the planet's passing before it, or between the satellite and the earth.

Saturn.

On the 1st, Saturn rises at 1 h .33 m . A. M., and sets at 11 h . 25 m . A. M. On the 31 st Saturn rises at 11 h . 38 m . P. M., and sets the next forenoon at 9 h .25 m .
Saturn should be looked for in the morning, as it comes to the meridian at 6 h .25 m . on the 1 st , and at 4 h .29 m . on the 31st. Although it is in southerly declination, and is only 31° above the horizon in this latitude, its ring can be seen with a glass of low power.

Uranus.

On May 1, Uranus rises at 10 h .45 m . A. M., and sets at 1 h . 10 m . the next morning. On the 31gt, Uranus rises at 8 h . 51m. A. M., and sets at 11 h . 15 m . P. M.
Neptune.

Neptune rises in the early morning and sets about 6 P . M. on the 1st and $4 \mathrm{P} . \mathrm{M}$. on the 31 st. It requires a very good telescope.

Sun Spots.

The record is from March 14 to April 18. Observations have been seriously interrupted by cloudy weather, and high winds have in some cases prevented good definition. Spots have, with one excoption, been small, and, like those of last month, have shown sudden and decided changes from day to day. This was noticed particularly on March 27, when there was not a trace of several epots which had been scattered over various parts of the disk on March 25. Again, all those seen on March 27 had disappeared by noon of March 28, and several new ones had broken out. On the other hand, a group whick appeared on March 30, just within the eastern limb, remained invariable in its regular passage across the disk as long as the weather permitted it to be seen. This group was quite large, so that it could be seen through smoked glass. Faculæ have usually been noticed.

Barometer and Thermometer.

The meteorological journal from March 15 to April 18 gives the highest barometer, April 13, 30.55 ; the lowest barometer, April 10, 29550 ; the highest thermometer, March 18, at 2 P. M., 62 '; the lowest thermometer, March 24, at 7 A. M., 11°.

amont of rain

The rain which fell beiwen the night of March 16 and the evening of March 17 anoounted to 0.57 incles.
The rain which fell between the morning of April 7 and the morning of April 9 amounted to 0.82 inches.

Amerisan Agricultural Machinery in Germ ny.

A German correspondent writes in the New York Herald that, until a very recent date, Mesers. Ransome \& Sims, with a few other English manufacturers of agricultural machinery. monopolized nearly all the trade of the European continent. Now American makers are running them hard. The imports of agricultural machinery from America into Germany commenced about seven years ago, and the busineas then has rapidly developed into an important branch of commerce. The chief depots of American agricultural machinery are Bre mowers and reapers. Lawn mowers are the largest item. Pitchforks come next. A very little has as yet been done in threshing machines.
In 1873 about 8,000 American mowers and reapers were sold on the Europzan continent. During the present year, it is estimated that there will be orders for at least 12,000 mowers
and reapers, which will represent a sum of $\$ 1,000,000$, or thereabouts, payable to the United States as a net result of the transaction.
The firms at present doing the largest business are: Messrs. Adriance, Platt \& Co., of New York; D. M. Osborne \& Co. New York; W. A. Wood \& Co., Hoosick Falls, New York.
The German manufacturers cannot turn out good agriculturThe German manufacturers cannot turn out good agricultur-
al machinery. Many attempts have been made by them to al machinery. Many attempts have been made by them to
copy American workmanship, but none have been satisfactory. Buyers on the European continent, though hard to convince, are now agreed that American cast iron is the strongest in the world. It has an advantage of twenty-five per cent over German cast iron in strength, and is nearly 16 per cen stronger than English cast iron. So the export of agricultural machinery to the European continent has become a prominent feature of American trade, and is susceptible of a still further development.
Wherever the emigration movement is active, a large number of agricultural machines are always salable. In the city of Breslau especially, where estates are large and farm laborers constantly becoming fewer, there is a promising market, which has already yielded good returns, and is likely to do so for a long time to come. The loss of hands in Germany during the French war, and the fact that the landlords have much money and few workmen, should induce American manufacturers of agricultural machinery to direct their at. tention to Germany with a careful and attentive eye. The profits of the business are satisfactory, and payment generally prompt or easily enforced, so that there is the smallest possible riak of bad debts.

Curious Origin of Fires.

Alfred Tozer, of the Chief Fire Station, Manchester, England, communicates the following paper, on the origin of great fires from a natural history point, to Hardwicke's Science Gossip.
At a recent meeting of the Lower Mosley Street Natural History Society, I submitted a piece of leaden water pipe, sent to me by Captain Drew, who received it from Mrs. Bakewell,St. Mary's Gate, in January last. It appears that Mrs. Bakewell's kitchen in St. Mary's Gate is infested with rats: they have, on several occasions, bitten through the water pipe and flooded the place. The pipe has been twice bitten through, and the hole soldered up. The rats, no doubt, being thirsty, bit through the pipe to allay it. Two instances have occurred at Phillips' warehouse, Church street, one in 1851, the other in 1856 : in both cases the rat gnawed through a leaden gas main pipe a few inches above the floor. Other similar instances have occurred of rats gnawing a gas in mistake for a water pipe: it has been thought they heard the water bubbling in the gas pipe, and have not found their mistake until they have penetrated the pipe. Phillips' warehouse was on both occasions damaged. by fire through some of the employees seeking for the escaping gas with a light.
A fireman, in the performance of his duty, of ten meets with many curious and interesting instances of causes of fires, a few of which I will give, which you may, perhaps, think worth while to find a corner for in your interesting Gossip on natural history, etc.
I have attended and traced several instances of fires occurring through ratsand micegnawing lucifer matches. Matches are now dipped in parafin wax instead of sulphur, as before; the rats or mice have carried them under the floor for the purpose of gnawing off the wax; in doing so, their teeth have come in contact with the phosphoras at the ends, and so fired them. In 1856 I attended a fire at the Sultan's Palace at Scutari, Asia Minor. After the fire, I gathered from under the flooring a quantity they had been gnawing. Some years ago a fire occurred in London, caused through a jackdaw getting at a box of lucifers, and pecking them until it set them on fire.
Fires bave
Fires bave occurred through rats and mice conveying, under the flooring boards, oily and fatty rags, which have afterwards spontaneously ignited. This is rather a common cause of fires in cotton mills.
The following is an extract from the Journal of the United Sorvice Institution, Whitehall yard, London, No. 52, for 1868: "One of the presents sent to the Museum of this In. stitution is a rat's nest and young. The nest was set on fire by a lucifer match, ignited bs the old rat as she worked itin. to her nest. Lieutenant A. H. Gilmore, R. N., states that a fire occurred on board Her Majesty's ship Revengefrom a similar cause."
Cats andldogs have caused fires in various ways; such as upsetting explosive and inflammable things into fires and lights, also through lying inside fenders and under fire places. Hot coals have fallen and adhered to their backs, which caused them to beat a hasty retreat, no doubt being anxious to get rid of the annoyance as soon as possible. They have sometimes succeeded by rolling or rubbing on carpets, curtains, beds, straw, shavings, and other inflammable things. The last in-
stance I recollect occurred at a baker'sshop in Albion street, Gaythorn. A dog was lying under an oven fire, a piece of chip fell from the fire on to his back; he immediately ran to some shavings, rolled upon them, at the same time setting them on fire before the eyes of his master. In 1863,three distinct fires were caused in one room of a gentleman's house in Canonbury, Islington, through a cat lying inside the fender, when some hot ashes fell out of the fire on to its back, which caused it to rush about the room, when the cinders were deposited in different places, which set fire to the carpet.
That mischievous animal the monkey has lentits aid to the devouring element. Fires haveoccurred through its agency, n a similar manner to cats and dogs, also through its playing with fire in various ways. In one instance a monkey upset
a charcoal brazier, and set a room on fire. Many-yes, very
many-fires have occurred through our domeatics huntii bugs and other small fry by the light of a candle or lamp. I their anxiety, especially, to hunt fleas, they forget they may
produce an enemy much more to be dreaded. Many fires produce an enemy much more to be dreaded. Many fires of bugs and various kinds of vermin.
A few instances have occurred through the concentration of the sun's rays upon glass fish globes. On the 16th October, 1845, at two P. M., Mr. Philbrook's residence. Mill street Worcester, was set on fire through the concentration of the sun's rays upon a water croft standing upon a table. Colored bottles in chemists' shops, cracks, and buli's eyes in glass have been knowa to focus sufficient heat from the sun to set buildings on fire.
Fires have occurred through the spontaneous ignition of pigeons' dung under the slates and tiles of houses. Professor Buckland traced two fires to this cause. See Builder, 28th September, 1844.
Birds' nests under the eaves and wooden crevices of houses have been frequently set on fire through sparks from a neigh. boring chimney, and have contained sufficient inflammable matter to set fire to the buildings.
Although I have given the dogs the credit of producing work for the firemen, still it would not be fair if I were to omit to mention that they have frequently discovered and given timely notice of fires; and many an anecdote can be told of the very great interest dogs take in and at fires.

Flexible and Wrought Iron Air Tubing for Mining Purposes.

A correspondent of the London Mining Journal states that air drifts have lately been driven by the aid of sheet iron tubes fitted into each other, spigot and faucet fashion. A great saving has thus been caused by doing away with the necessity of driving, in many cases, an expensive temporadrift as a return for the main drift, to be abandoned when the desired point is reached and the ventilation established.
The great difference in cost between driving an expensive air way and using the tubing will be appreciated by mining engineers; and in the case of the drift, it may not be required after the holing, while the tubes may be used over and over again. Good mining has often been done with a brattice wall, but the drift or heading has, in nearly all cases, to be made larger than eventually required, making the cost of the wall much more than the tubes, besides being a much slower and more tedious operation. In many cases these tubes are invaluable, such as opening places much broken and fallen, in which it is impossible to erect any of the ordinary modes of brattice. Being made of stout sheet iron (Figs. A, B, C, showing the lengths of pipe, angles, and

manner of joining), riveted and with well fitted joints, and having bends of all angles, we have an air way vastly improved over theold forms of brattice, either of timber or cloth, which cannot be made thoroughly airtight, being therefore, for long distances, quite useless, especially where strong currents of air are requisite to enable blasting powder to be used. The writer saw, in Belgium, a long single drift being driven to some workings on the oppositeside of a synclinal, or basin, in the coal measures. Iron tubes were led in of about 15 inches diameter, and air was propelled through them by a small engine driving a fan. The drift was driven by means of the Villepique perforator, which was worked by compressed air, advantage being taken of this power to work the small engine. Large quantities of gunpowder were daily consumed, and the immente amount of smoke generated thereby was efficiently cleared away by these means.
A very handy tubing (Fig. E) made of brattice cloth, kept in a circular form by means of hoop iron rings, was also used; to each ring is fastened a hook, so that the tubing is easily and rapidly hung up to the roof. Their portability is a great recommendation to miners, as they pack up like a concertina, as shown in the engraving, hundreds of yards thusoccupping a very small space.
Both of these air tubes are destined to be largely used in collieries ; and for mines where the wonden box has so long been used, they will certainly be a great boon.

Perils of Ballooning.

A party of seven persons, two females and five men, under charge of the aeronaut Barbier,essayed an aerial excursion re cently at San Francisco, in a balloon carrying 60,000 cubic feet of gas. A strong wind blew at the time. The ascension was a success,an altitude of 7,000 feet was attained. The descent was disastrous. The anchor rope caught on 2 building and the rope broke. Up darted the balloon 400 feet, when a crack was heard; the balloon burst open and down it came, thumping the passengers upon the ground with great violence, capsizing the car, entangling the passengers in the rigging and dragging them along the ground for a third of a mile. Finally they were rescued, bruised sadly, but no limbs broken.

THE MEETING OF THE NATIONAL ACADEMY OF SCIENCE.
The National Academy of Science, which held a meeting last October in this city, is again in session at the Smithsonian Institution in Washington. This body, as we before have had occasion to explain, is the highest scientific association in the country, and includes among its members all or nearly all eminent American scientists. The papers read are therefore of considerable importance, and in the ubstract
which we present below will be found a careful resumé of which we pres
Professor Joseph Henry presided over the deliberations, and recently rendered a graceful compliment to the President of the American Association for the Advancement of Science, Professor Le Conte, in calling upon him to open the proceedings with the reading of his paper on the classification of the rhiphophorus coleoptera. The American Association, by the way, is a body which is perhaps more popularly known than the National Academy; but we can hardly agree with a con temporary which alludes to it as a rival organization. The cause of Science is one that calls for cöoperation and not competition; and while societies may have distinctive names, they all strive for the same object in unison.
Professor Le Conte makes a division of the insects above named. into three series: (1) Haplogastra, having abdomen alike in both sexes; ventral segments not prolonged upward into a sharp edge. (2) Allogastra, abdomen dissimilar in the two sexes; ventral segments prolonged upward, forming a sharp edge. (3) Heterogastra, abdomen alike in both sexes ; ventral segments prolonged upward to fit into the elytral groove. Many other distinctive characteristics were given with a detailed description of the very numerous genera be longing to each of the series.
Professor Fairmsn Rogers followed with a paper on apparently an odd subject for scientific discussion, namely,
in automaton to play tit-tat-too
Babbage, he said, in speaking of his analytical engine, has suggested that a machine might be made which would play a game of combination, such as drafts, provided the maker of the machine himself would work out perfectly the sequences of the game. Professor Rogers finds that the sequences of tit-tat-too are easily tabulated, and hence an automaton may be made which will play the game as follows: The opponent to the automaton makes the first move in the game, and in so doing causes a certain cylinder or equivalent device to change its position. This, from the construction of the apparatus, causes the automaton to make that play which the proper sequence of the game requires, and at the same time moves the corresponding cylinder into position. The next play of the opponent moves the third cylinder, and the combination of the three cylinders determines the action of the automaton for the fourth; and so on throughout the sequence, If the player plays perfectly, the game will be drawn, as the automaton's play will be mathematically cor rect. If the opponent makes a mistake, the automaton, by a
simple device, takes advantage of it, and makes such a play as to win the game. The object of the speaker was to show that such mechanism, applied to apparatus for registering physical phenomena or for performing geometrical or mathematical operations, may enable such mechanical devices to have a use much more extended than heretofore.

THE FUNCTIONS AND MECHANISM OF AUdITION

was the subject of a paper by Professor A. M. Mayer, in which he shows that the significance of the anatomical relations of the parts of the ear is to bring the sound vibrations to act with the greatest advantage on the co-vibrating parts of the ear, and to cause these parts to make one half as many vibrations in a given time as the tympanic or basiolar mem. branes. This is demonstrated by an extended review of the functions and possibilities of different portions of the auditory apparatus. In the course of this train of argument, Professor Mayer advances the view that what are known as the hair cell cords, having swellings in the middle of their length which cause them to act like loaded strings, are probably so constituted that each hair cell cord is adapted to covibrate with only one special sound, and that a cord in the ductus of the ear will vibrate only half as often in a second as the basiolarmembrane to which it is fastened. In a second paper on

THE DURATION OF THE SENSATION OF SOUND
Professor Mayer said that experiment proved that the residual sensation only occupied one five-hundredth of a second in the case of 40,000 vibrations per second; but in the case of 40 vibrations to a second, the residual vibration was one eleventh of a second. He concludes that the whole ear vibrates as one mass, and the durations of these oscillations
of the whole ear are far too short to remain one thirtieth of of the whole ear are far too short to remain one thirtieth of
a second. He thinks that this explains our inability to distinguish the actual pitch of sound when that pitch exceeds certain well known limits.
the reflection of sound from flames and heated

glasbes

was the subject of another paper by the same author. Two similar resonators are placed with the planes of their mouths at righ \downarrow angles to each. Then in this angle Professor Mayer firmly fixes the tuning fork corresponding to the resonators, so that the proad face of one of its prongs faces the mouth of one resonator, while the space between the prongs
faces the mouth of the other. Complete interference of the faces the mouth of the oth9r. Complete interference of the
sounds issuing from their mouths is obtained, and the only sounds issuing from their mouths is obtained, and the only
sound that reaches the ear is the faint sound given by the fork's action on the air outside the angle included by the mouths of the resonators. If in these circumstances we close
cardboard, the open resonator will strongly re-enforce the
sound of the forks. If we now cover the mouth of this sound of the forks. If we now cover the mouth of
resonator with cardboard, we shall again have silence.
Now substitute for cardboard, when both resonators are open, the flame of a bat's wing gas burner, with one resona tor, and use something more permeable to sound than the cardboard with the other. By trying a series of more and more permeable diaphragms, it was found that tracing paper just equaled the effect of the gas flame in guarding the mouth of the resonator from the entrance of sound. A shee of heated air above the gas burner was found to be exactly equivalent to the gas flame. The passage of a sheet of cold coal gas over the mouth of the resonator produced a similar effect; and so also did carbonic acid gas, though in less degree; but cold, dry hydrogen closed the mouth of the esonator more effectively than either of the above gases, though not equal in this respect to the heated air above the bat's wing flame. Among other curious results, Professor Mayer has ascertained that there is an absorption of sound n the bat's wing flame; that the flame is heated by the sonorous vibrations which enter it as such, and issue as heat vibrations. He has endeavored to obtain a quantitative mathematical analysis of this absorption and hopes for exact result.
orton, of Yale College, referring to
tests of the strength of pine,
lace in the wood, and the effect of strain, after an interva of rest, to a great extent not only passed away but even left the stick with less set than it had a short time before. As one of the results obtained, it appears that a load equal to on fourth of the breaking weight produces a permanent set and that repeated applications of this load from day to day are attended with a continually increasing set. It results that such wood should never be subjected in any structure to one fourth of its breaking strain.
the functions of the brain and nerves
was the title of a very interesting discourse by Dr. Brown Séquard. The theory ordinarily assumed is that sensation is conveyed through the body by the nerves, as the bells rung in any part of a hotel have the sound conveyed along wires to a central office where the fact is recognized from where the call may come. This assumption is as false as it is simple. There is no necessity for more than a very few fibers to establish communication between the brain and the spinal cord. It is more like a telegraphic communication than a movement along a wire, by which sensation is con veyed from the periphery to the brain, or the brain transmits its orders to the periphery. If, said the speaker, a piece of ice is laid upon my foot,I have at once the sensation of a con tact, sensation of a temperature, the sensation of the exten of the surface of the ice that touches me, the sensation of he weight of the ice, and, if it is left upon my foot, the sen ation of pain, and the sensation of the skin to which the ceis applied. All those forms of knowledge are communi cated at once. I believe that all these impressions are com municated to the spinal cord, which as a single wire trans mits it to the brain
Now as to the two sides of the brain: The old view wa that the left side of the brain governs the movements of the right side of the body, and the right side governs the move ments of the left side of the body; and that there is a simi ar view respecting perception and sensation. Facts oppose this view. One third of one half the brain may be utterly destroyed without any symptom of the injury; then one hird of the other half, and still no symptom. Still another third of either half may be destroyed without any indication of ill health. There are hundreds of the first named cases. With reference to the location of intelligence in the brain, the lecturer said that most physiologists are agreed that it exists in the gray matter of the upper parts of the organ. There is no case on record where the gray matter on both sides of the brain has been destroyed without the loss of intelligence, and we must regard that gray matter as the seat of the intelligence. But vast portions may be removed before the loss of intelligesce becomes apparent. This the peaker had tested and proved by vivisection of the iower

By the application of gaivanism to certain parts of the brain, Dr. Ferrier has produced certain movements. This would seem to prove that there are in the brain certain centers of movement governing certain parts. But this is only a semblance. It is perfectly well known that the cutting away of a large portion of the brain does not produce the least alteration of voluntary morement anywhere. We now know that only a few fibers are necessary to make the con like the rest of the body, receives nerve fibers coming from other nervous centers, some along the blood vessels, for there are a great number of fibers starting along the blood vessels and going into the cellular tissue of the brain; some fibers coming from the sympathetic nerve; others coming from various sources. We find, for instance, that the prick of an exceedingly fine needle at the crux cerebelli will produce rotary movements, the animal whirling around with a rapidity
impossible in a normal condition. 'The activity of the heart may be stopped by the prick of a needle point; convulsions may be similarly stopped by the action of carbonic acid on the mucous membrane of the throat. With these facts under consideration, we may see the vast field of research that
yet lies before us, the mere questions arising from the actiyet lies before us, the mere questions arising from the activity of nerve cells affiording an almost boundless subject for inquiry. But it is evident that we cannot locate the centers of either sensation or motion in specific parts of the nervous

Professor Simon Newcomb gave a description of the pro ceedings to be taken by the United States in observing
the transit of venus
ext December. After referring to the various methods of observation and the difficulties pertaining to them, he said hat, about two years ago, circulars were sent to American consuls in almost every part of the world where the transit is visible, to ascertain the condition of the weather at those points in November and December, and every other source of imilar information was utilized.
The only satisfactory station in the southern hemisphere, in respect to weather, was found to be Hobart Town, in Tasmania. But from all the other proposed southern stations he accounts were very bad, notably at the proposed station t Hurd's Islands; the chances of observation there did not xceed two tenths. The most favorable station left at the outh was Kerguelen Island, and that was selected. A party will also be landed, if practicable, at Croisette. Instead of sending four parties to each hemisphere, we shall send three to the north and five to the south, to equalize the chances as to weather. It is hoped to get complete results from two parties in each hemisphere.
To each party there are detailed two officers from the Ob servatory, two from the Coast Survey, on ? from the navy, and two civilians. Professors Hall and Harkness go to Hoart Town. Among them are the celebrated astronomers Professors Watson of Ann Arbor, Mich., and Peters of Clinon, N. Y. The constitution of each party is such that in case of disability on the part of its chief, the second officer can take his place. Fach party will have three photographersa chief photographer, who must have been of long experience in the business, an assistant who has had practice, and a second assistant trained only for the occasion. Nearly all the secoud assistants' positions have been filled by students r graduates of various schools and technological colleges hroughout the country. The parties for the southern sta tion will sail, we expect, about June 1. . These are all ready; the photographers are to be in full practice here next week. The northern parties will go later and not all together. The Navy Department has furnished a ship, the Swatara, to go to the southern stations. The longitudes of the stations will be determined by occultations wherever telegraph communication is impracticable; but already there is such communication between Vladivostok and Hobart Town. Arrangements are made with the governments for exchanging longitude ignals, and the prospect of the extension of cables to New Zealand and other points gives fair hope that there will be ly a few points where occultations will be the sole resort Major J. W. Powell read a paper on the

colorado cañons,

giving an account of the progress made in the survey of the Colorado river and its tributaries, under direction of the Smithsonian Institution. Among other wonderful natural phenomena is the Grand Cañon, the most profound chasm known on the globe. Were a hundred mountains, each as arge as Mount Washington, plucked up by the roots to the evel of the sea and tumbled into the gorge, they would not fill it.
Perhaps the most wonderful of the topographic features of this country are the lines of cliffs, escarpments of rock eparating upper from lower regions by bold, of ten vertica and impassable barriers, hundreds or thousands of feet high nd scores or hundreds of miles in length.

Floats for Ships Boats.

The marine department of the London Board of Trade ave been making experiments with the boats of coasters, and find that any old boat can'be converted into an efficient ifeboat by using air casings outside. The marine depart ment have for this purpose used air cylinders, which they have specially designed, fastened outside the boat by a net ing; so that the boat can be used for an ordinary boat as ong as wanted, and converted into a lifeboat when occasion requires it. The material used for these cylinders, and aproved by the marine department, is a combination known as "Clarkson's." It consists of a layer of cork about a quarter of an inch thick between two layers of strong canvas. One cubic foot of air space in these cylinders will support about 00 lbs. The cylinders of this material are the cheapest,most fficient, and most durable means yet invented for convert ng an old boat into a lifeboat. Mr. Clarkson has made the experimental cylinders on models furnished to him by the marine department, and is, we believe, prepared to supply ny number demanded. Air cases to place inside lifeboats, also made of this material, have been supplied to some of he mail steamers, and are much preferred by the marine department to cases of copper, iron, zinc, or wood, as they are practically indestructible, are not affected by heat, and are very light.-Nautical Magazine.

Lemons Wholesome.

When people feel the need of an acid, if they would le inegar alone, and use lemons or apples, they would feel as well satisfied, and receive no injury. A suggestion may not come amiss as to a good plan, when lemons are cheap in the market, to make good lemon sirup. Press your hand on the emon, and rollit back and forth briskly on the table to make it squeeze more easily; then press the juice into a bowl or umbler-never into a tin; strain out all the seeds, as they ive a bad taste. Remove all the pulp from the peels, and oil in water-a pint for a dozen pulps-to extract the acid. few minutes boiling is enough; then strain the water with he juice of the lemons; put a pound of white sugar to a pin of the juice; boil ten minutes, bottle it, and your lemonade ready. Put a tablespoonful or two of this lemon sirup in a glass of water, and have a cooling, healthful drink.

THE WHITMORE TURBINE WHEEL

The essential feature of the invention represented in the annexed engravings consists in the arrangement of the gates, which are placed in pairs on opposite sides of the wheel, and so controlled that the pairs open successively. This construction is claimed to be much more advantageous than that in which all the gates are worked simultaneously to present larger or smaller apertures, because an equal force is at once applied to both sides of the wheel at the same angle, derived from the power of a solid body of water of the full dimen sion of the gate opened.
The guides are secured in the usual ma ner between the plates. The pivot bolts of the gates, A, Fig. 1, pass up through the up per plate and have attached to them adjusta ble levers, B, Fig. 3, by means of set screws, as shown. The ends of the levers, B, are provided with friction rollers which enter slots or cam grooves, C , in the under side of the cam wheel, D. The arrangement of these cam slots is such that, by turning the wheel, D , by means of the rack and pinion represented, the gates numbered 1 (Fig. 3), on the opposite sides of the wheel, will be first opened, and pairs 2, 3, and 4 will follow succ sssively.
In Fig. 2, the wheel is represented without the casing, and, as will be seen, is made in the form of a cone. This shape, it is claimed, adds to the strength and secures the best possible natural discharge, as it obviates downward pressure.
The manufacturers inform us that the apparatus is in successful operation in many localities. They state that they find that a 30 inch wheel, under a 14 foot head, uses, with all gates open, about 100 inches of water, but that with the gates half closed, requiring but 50 inches of water, the same speed is obtained, sufficient to operate a run of burrs and the mashinery of a grist mill. The object of the large wheel is to use the water down to a head of 7 or 8 feet in case of drouth; and in the instance where it has been applied, it is stated that three bushels more of grain, per hour, are ground than wos formerly done with the overshot wheel, for which the Whitmore turbine was substituted.
The gates may be readily adjusted in case of leakage; and in event of one becoming ob. structed, the rest may be closed until the difficulty can be removed. The wheel is built as represented in our engraving in sizes under 10 inches; above this, the 'difference lies in the position of the set screw, which is arranged in the gate instead of in the levers, B. Each turbine, we are informed, is carefally constructed of the best materials, under the immediate supervision of the inventor, Mr. Titus Whitmore. For further particulars

Fig. 3

address the manufacturers, Messrs. N. A. Beebe \& Co., Wa. terloo, Iowa.

Underground Telegraph Lines.

Mr. George B. Prescott states that the system of underground lines in England is both extensive and well constructed, embracing 3,000 miles of wire and nearly 100 miles of iron piping.

The conductors usually employed for underground lines consist of No. 18 copper wire, covered with gutta percha to the gage of No. 7. In order to keep the gutta percha from the atmosphere, the exposure to which would cause it to crack and decay, and thus destroy the insulation, it is tarred and then covered with linen tape and tarred again. The preparation of tar tbrough which the gutta percha and taped
wire is drawn, is composed of one quart of raw linseed oil to two gallons of Stockholm tar, and is applied warm.
The wires, when thus prepared, are cut into lengths of four hundred yards, and as many as are required to be laid in one tube are made into a loose cable, and tied together with tape at distances of sir feet apart. When the wires are drawn into the tubes the tapes are removed and the wires permitted to lay loosely in the pipes.
The tubes into which the wires are drawn are cast iron socket pipes of two, three, and four inches diameter-the size employed depending upon the number of wires to be laid
when dry, $4: 20$ per cent potential ammonia. They are best added to compost heaps. The deposits from fermenting liquors are always highly nitrogenous. Sugar boilers' scum contains both nitrogen and phosphates; the scum from beet root sirups appears the most nitrogenous, containing when dry 4.6 per cent potential ammonia. The liquors obtained by "retting" fiax and $h \in m p$ are nitrogenous, the solid contents yielding 2.7 to 4.0 per cent potential ammonia.

GARDNER'S IMPROVED WHEEL.

The novel form of vehicle wheel represented in our engravings is so constructed that, when broken or injured, any part may be easily removed and replaced, or the entire device may be taken apart and packed for shipping or other purposes. By suitable means below described, shocks and jars are, it is claimed, prevented from coming upon the spokes; and in fine, while a lighter and more graceful appearance is given to the wheel, its durability is considerably increased.
Fig. 1 is a perspective view of the device. Between the outer tyre and the inner and stronger tyre of iron, is placed a felly, A, of wood, india rubber, or similar elastic material, in order to form a cushion between the rims, and thus to relieve the spokes from shock. The latter are fastened by their outer screw ends into the inner rim, or may be driven into sockets on the same. Their inner ends are socketed in the lub, which is constructed of three sections (Fig. 2) or ringe, one central, B, and two outer ones, C. The central ring, Fig. 3, is provided at both sides with semicircular grooves, of which those on one side are placed intermediately between those of the other side, so that one half the spokes may be socketed on either face. The outer rings, C , are provided with semicircular grooves corresponding exactly to those of the central ring, embracing thereby the spokes, and giving to them a firm support. All the rings are placed upon a box, D, and are firmly bound together by the screw nuts, E.
The hub is placed over the axle and protected against the entering of dust by suitable clasps or covering. Any injured portion of the wheel may be taken out and a new piece replaced by detaching the screw nut, E, the balance of the wheel remain. ing unharmed, being thus rendered still useful.
For military purposes, for mounting artillery, it would seem that this wheel is espedown, the two inch pipe holding 25 wires; the three inch, cially suitable. There is no shrinking or swelling, we are 70 wires; and the four inch, 120 wires. The pipes are laid down under the flagstones at an average depth of twenty inches, and the joints are filled with lead.
The cost of laying down three inch cast iron socket pipe for underground wires is 90 cents per yard, or $\$ 1,650$ per mile. This includes the cost of the pipe and jointing with lead, the taking up of the pavement, putting the pipe in place and re-paving.
The cost per wire for drawing in the pipes depends somewhat upon the number of wires. The average cost of putting 60 wires in a pipe, including jointing and all other incidental work, is $\$ 280$ per mile.
The cost of conducting wire for underground lines, consisting of copper wire of No. 18 gage, covered with gutta percha to No. 7 gage, taped and tarred, is $\$ 85$ per mile.
No. 7 gage, taped and tarred, is $\$ 85$ per mile.
The total cost per mile for sirty underground wires is The total cost per mile for sixty
$\$ 7,030$, or $\$ 117.06$ per mile of wire.
$\$ 7,030$, or $\$ 117.06$ per mile of wire.
The underground system in England gives comparatively little trouble, and is more favorably regarded than the overhouse plan, the great defect in which is imperfect insula tion.
For tunnels, copper wires, insulated with gutta percha, and then tarred, taped, and again tarred, are laid in a wooden trough and attached to the wall. The trough has a cover, coated with zinc, and fastened with tie wire, instead of nails, to prevent injury to the wires.
In addition to the underground lines in the large towns, several others have been laid down between London and the chief commercial and manufacturing towns in Eng. land.

Utilization of Certain offal.

Professor A. H Church, 'in a paper published in the transactions of one of our agricultural societies, refers to certain waste refuse matters, for the purpose of showing the economical products that may be obtained from them. According to this, fresh blood contains 3 per cent potential ammonia, 5 per cent potash, and 1 per cent phosphoric acid. Dry blood is five times as rich. Blood may be utilized as a manure by mixing with dry peat, or by coagulation with 3 per cent of quicklime, and then drying, Flesh, fish, hair, and wool are best prepared for manure by heating with steam under pressure. Horn, when gently roasted, may be powdered. Glue refuse is a slimy matter, containing in the fresh state 1.75 per cent nitrogen, and when dry 3.8 per cent. "Trotter scutch," a refuse of skin and hair from tanneries is a cheap manure, containing in the fresh state $3 \cdot 58$ to $7 \cdot 60$ per cent of potential ammonia.
Refuse hops from breweries contain when fresh 1.91, and

Eiq. 3

or diminished by suitable construction, as circumstances may demand.
Patented through the Scientific American Patent Agency, March 24, 1874. For further particulars address the inven or, Mr. Stephen C. Gardner, Eagleville, Tollard county, onn.
Prize for an Essay on Steel.-The Academy of Sciences of Berlin offers a prize of $\$ 300$, payable in July, 1876, for the best essay recording experiments as to whether changes in the hardness and friability of steel are due to chemical or physical canses, or to both. Papers, in German, Latin, Eng. lish or French, are te be sant in before March, 1876.

CREMATION FURNACE

We alluded last week to thesubject of cremation, and in the course of our article briefly referred to Professor Brunetti's process for reducing the body to ashes. The large engraving, which we present herewith, represents the plan devised by Sir Henry Thompson, of London, which has been practically tested under the personal superintendence of that eminent gentleman. A cylindrical vessel, some seven feet long by five feet in width, is arranged in connection with a furnace, so as to be heated to about $2,000^{\circ} \mathrm{Fah}$. The inner surface of the cylinder is smooth, almost polished, and nothing is visible in the receptacle but a pure almost white interior, the lining being raised to a white heat. The body, in a metal coffin, is laid upon a lattice work of fire brick, and the doors being closed, the process continues for about fifty.five minutes, reducing the body to a mass of white ashes some five pounds in weight. It is proposed to construct a cremation house, large enough to contain two or three halls and, separated from them, several powerful furnaces of the above mentioned description. The mourners are intended to assemble in an adjacent hall, where the usual funeral ceremonies could be conducted during the incineration, after which the ashes, inclosed in a suitable urn, would be taken away by the relatives of the deceased.

There is one drawback to cremation which the opponents of the process will not hesitate to bring forward in the strongest terms. We allude to the impossibility of detecting evidences of poisoning, now found by post mortem examination, in case such investigation be deferred until after burning. As a necessary result, the opening of everybody and-examination of the vital portions would probably follow; but this would involve considerable expense, beside arousing the powerful opposition of the relatives of the deceased. It is very questionable whether the majority of mankind would be induced to consent first to the mutilation of the remains of those nearest to them, and then to their subsequent destruction by fire. The impossibility of otherwise proving the existence of fout play would be apt to lead to crime.

The Cremation Society, which has recently been incorporated in this State, has held a meeting and adopted a basis of organization. It binds itself to perform the act of cremation on the remains of any shareholder, provided he or she shall express such a desire before death, and in case of no opposition from immediate relatives. The strictest measures will be taken to prevent the cremation of any person who has comé to his death by any other than natural causes, and the process will be furnished at as near cost as possible. It is believed that the expense will be about from $\$ 5$ to $\$ 8$ for each body, and the company propose to erect buildings and furnaces, at a cost $\mathrm{Jf} \$ 10,000$, in the suburbs of the city. The ashes will be at the disposal of friends or re-
latives, who may choose to bury or inurn them. At the re cent meeting, Professor Barnard, Professor Seely, and other eminent gentlemen delivered addresses in favor of the."system.
There is little doubt but that this movement is exciting an increasing degree of popular attention. There is a sort of morbid fascination about it akin to that which causes a person to read and calmly discuss the horrors of the dissecting room, from which, were they palpably presented to him, he would recoil in disgust and dismay. Cremation will doubtless bring forth a multitude of inventions, in the way of fur naces, urns, and similar paraphernalia, and perhaps corpse cremation companies will, in time, appear with patented pio cesses for incinerating usin the quickest and cheapest man ner. At present, however, the movement looks very like grand sensation-to be talked about and argued-but to be scouted, we fear, when its actual practice is brought home to the masses.

The Hardness of Minerals and Metals.
In physics, one body is said to be harder than another when it is capable of scratching the specimen with which it is compared. In mineralogy, in which science the hardness is an important characteristic, ten bodies are usually taken as points of comparison-the softest being termed 1 and the hardest 10. These are: 1, talc ; 2, gypsum ; 3, carbonate of lime; 4, fluor spar; 5, phosphate of lime; 6, felspar; 7, quartz ; 8, topaz; 9 , corundum ; 10, diamond. Hence, when scientific works speak of the hardness of a body being 6,8 , 4 , etc., reference is made to the relative hardness expressed by the list above given.
The tenacity of metals is estimated by the resistance which wires of the same diameter experience when passed at equal temperature through the same hole of a draw bench. The following table gives the relative tenacity of various metals 88; blloys: Steel already drawn, 100 ; iron already 13 , brass already drawn, 77; gold at 0.875, anneale 0.75 steel anneal 58 ; sil co pher 0.875 , 54 ; brass annealed 46 ; iro annealed, 58 ; silver at 0875 , 54 ; brass annealed, 46 , iro
annealed, 42 ; platinum annealed 38 ; copper annealed, 38 fine gold annealed, 37 ; fine silver annealed, 37 ; zinc, 34 ; tin, 11 ; lead, 4

Sensitive Photo Paper.
Sensitive photo paper, which will keep for a considerable time without deterioration in any respect, is made by Mr. H. T. Anthony, of this city, as follows:

To thirty grains of nitrate of silver in an ounce of water add two grains of citric acid. After this is dissolved, add mmonia until precipitation ceases. Then re-dissolve with inic 10 that a mall proportion
of the precipitated citrate of silver remains. Let that settle perfectly, and then add ten drops of nitric acid to every two quarts of solution. Sheets of the ordinary albuminized paper may be sensitized by floating for a minute and a half. No trouble from bubbles. The paper is more sensitive in printing than the ordinary paper, and tones splendidly. The paper is fumed in the usual way with strong ammonia. Pa per made in this way will be found just as white at the end of five days as when first prepared.

Moritz Hermann von Jacobi,

We regret to hear of the death of this eminent scientist, which took place on March 10, at St. Petersburgh, Russia. He was born at Potsdam, Prussia; but his life was mainly pent in Russia, where his many important discoveries in the application of galvano-electricity to industrial purposes were made. He constructed a short line of telegraph in St. Petersburgh in 1830,and ten years afterward his book,entitled Die Galvanoplastik, was published. He was for a long time associated with Klein in the investigation of the electro deposition of iron, already described in these columns; and he suggested to the Czar Nicholas the formation of a regiment of galvanic engineers, to be trained in the management of electricity. This idea was carried out, and the learned doctor was made colonel of the galvanic regiment.
He constructed in 1834 the first electro-magnetic engine that was anything more than a model, and in 1838 he used it to propel a boat containing ten or twelve persons on the Neva. She was fitted with paddle wheels, and a speed of four miles an hour was maintained for several days. The power was supplied by a battery on the Grove principle, of 64 platinum plates, each having 36 square inches of surface.
His labors were highly appreciated in Russia, and were rewarded by many marks of imperial favor as well as by wide popularity

Simple Insect Catching Device

A writer in Les Mondes says that he is enabled to materialIf reduce the number of insects which prey upon the flowers and fruits of his garden, by covering the inside of an old tab with liquid tar, and at twilight putting a lighted lan ern within, leaving the whole out over night. The bugs, at tracted by the light, try to reach the lantern and are caught and held fast by the tar.

Doga as Smugglers.-Large dogs, bred and trained for he purpose, are taken across the Belgian and Swiss frontiers and are dispatched to French territory, under cover of the night, laden with tobacco and other colonial produce on which a high duty is leviable in France.

To the Peopte centennial exhibition.
It is right that the people of the United States should know that the day and year which closed the century of American Independence-July 4,1876-will be commemorated
with ceremonies expressive of the gratitude and pride of a with ceremonies expressive of the gratitude and pride of a
great nation; and, in accordance with the act of Congress of great nation ; and, in accordance with the act of Congress of
June 1, 1872, which created the Board of Finance, the following report is made over the signature of the President of the board:
The original law of Congress, enacted March 3, 1871, provided for "the celebration of the Centennial of American Independence by an international exhibition of the arts, manufactures, and natural resources of this and other countries, under the auspices of the government of the United States.'
And the act of June 1, 1872, fixed the capital to complete this great commemoration at $\$ 10,000,000$, which was by the Commissioners apportioned among the several States and Territories on the basis of population.
Of this sum the State of Pennsylvania alone, aided by a subscription of $\$ 100,000$ from the State of New Jersey, has raised, in the form of subscriptions to the stock and by appropriations from its Legislature and the Councils of Philadelphia, about $\$ 4,000,000$, or nearly one half the amount necessary to insure success. This provision having been made, designs for suitable buildings were approved, and other preliminary and incidental arrangements have so far advanced as to justify an immediate commencement of the work of construction.
The Commissioners have appealed to the Congress of the United States, on the basis of these subscriptions, appropriations, and preparations, to maintain the spirit of the two laws above referred to, and the correspondence of the State department with foreign powers has induced the governments of the Netherlands, Belgium, Switzerland, Germany, Sweden, Liberia, Ecuador, the Argentine Confederation, Chili, Mexico, Hayti, and the Sandwich Islands, to express their intention to participate, and they have every reason to believe that this appeal to Congress will be generously responded to.
Subscriptions to the stock have also been made by individuals in the States and Territories of Missouri, Illinois, Nebraska, Montana, Indiana, Nevada, Oregon, California, Louisiana, Florida, Maryland, Ohio, Wisconsin, Michigan, Arizona, New Jersey, Delaware, Rhode Island, Arkansas, Arizona, New Jersey, Delaware, Rhode Island,
Alabama, New York, Virginis, Iowa, and Kansas.
Such in brief is the condition of the organization for the international commemoration of the close of the century of American Independence.
The city of Philadelphia was selected as the most fitting locality at which to celebrate the birth of American Independence, for the reasons:

1. That from Philadelphia the Magna Charta of human liberty, the immortal Declaration was attered. The buildings in which the convention sat remain substantially as they were on that day; and
2. Of all the points of revolutionary interest, Philadelphia is the most central and accessible to the whole country. It is the Republic's celebration of its birthday at the very place of its birth.
The Finance Board earnestly urge their fellow coantrymen to keep in mind the great fact that the event to be commemorated is the grandest and most momentous in history, that the commemoration is to take the form of an exhibition of the stupendous progress made by the American people in the first hundred years of their independence, in everything relating to the natural resources of the country and their
development, and especially its progress in those industries, development, and especially its progress in the
arts, and institutions which beneft mankind.
How diversified are the objects which must enter into that exhibition-how vast the buildings and the space required to present them with full effect-are suggestions that need only to be mentioned to bring home to every American the colossal magnitude of the undertaking.
Consider for a moment the industries, products, and devices necessary to an adequate expression of the progress of your own State, and the space that will be essential to their full presentation, and you can hardly fail to perceive that your State alone will require an area in the exhibition build ings and grounds equal to that occupied at Vienns by England or France. This is true of not less than ten of the older States. The other twenty-seven States and ton Territories will each of them require space in proportion.
That the stock of the Centennial Board of Finance might be within the reach of every citizen, the Congress of the United States fixed every share at $\$ 10$, which will be represented by a handsome steel engraved certificate, executed by the Treasury Department of the Government, and fittingly designed in commemoration of the event. The board in soliciting subscriptions to its stock feels assured that there is a patriotic desire to render the exhibition worthy of the oc-
casion. casion.
Notice is hereby given that checks and dratts can be addressed to the Financial Treasurer, Frederick Fraley,No. 904 Walnut street, Philadelphia, for any number of shares at $\$ 10$ each, and certificates of stock will be promptly returned. The International Exhibition will commence on the 19th of April, 1876, and close on the 19th of October, 1876.
The undersigned, President of the Board of Finance, speaking for his colleagues, and, he believes, for the great body of the American people, does not donbt the answer of that people to this earnest appeal. They are not unmindful of the patriotic interest in the Centennial of their own inde pendence, nor of the high duty of honoring it as it deserves.
Philadelphia, the scene of the immortal Declaration, not
only in the old hall where it was written, and whence it was proclaimed, but in the extensive park where the exhibition is to be held, sacred as the resort of Washington and the revolutionary worthies, has given many times her share to the memorial. It is not her celebration-it is the nation's. History has simply designated that city as the spot where he national sentiment can be historically expressed.
Every other city and State is inspired by the same sentiment. Every man and woman, North and South, is stirred by the same impulse. All the peoples of the earth are earnest spectators and students of our progress. The work, therefore, is at once national and international. It reaches every class and every interest. It will be the most remarkable comparison and interchange of ideas and inventions, of art and science, of the products of the earth, the brain, and art and science, of the products of the earth, the brain, and
the hands-the most friendly and complete intercourse bethe hands-the most friendy and complete intercourse be-
tween the races of all countries in modern civilization. It is impossible to believe that any portion of the American people will hesitate to unite in what is a sacred memory and
sacred obligation.
JoHn WeLse,

President of the Centennial Board of Finance.

The March of Improvements.

The twenty-first anniversary of the London Association of Foremen Engineers and Draftemen was held in that city, March 14, Thomas Brassey, M. P., in the chair. A large number of distinguished men, engineers and others, members of the Association, were present. Sir Edward Belcher responded for the navy. Among other things he expressed the belief that every captain who commands an ironclad ought to be a thorough engineer, otherwise he cannot perform his duty as he ought to be able to do in such a ship, propelled by steam power.
Mr. Joseph D' A. Samuda, M. P., responded for the House of Common. He paid
At this moment I am only just reaching my sixtieth year, and yet I can recollect a series of improvements effected in my time which probably exceed in importance all the improvements witnessed for 600 years previously. I remember the first steamboat which ever plied between the Tower and Ramsgate; I remember when a boy going down to see it start from the Tower Stairs. I remember the rise of almost every great marine engineering establishment, and notably I remem. ber the first marine engine ever made by a firm now of worldwide reputation-that of Messre. John Penn and Sons. remember the first railroad ever used on our shores for the conveyance of passengers. I remember the first introduction of telegraphy, which has so completely united together in one family the whole of theseislands that you would scarcely believe that any distance separated the most remote and the nearest customers with whom we have to deal. I remember
still more the culminating point of that particular science to which I have last referred, which enabled us to lay under contribution nations-no matter how distant-by passing under the broadest occan the means of communicating with India and Δ merica, in about as brief a apace of time as we can with our neareet neighbors. All these circumstances have tended to developed that great industry the heads of which are represented here on this occasion-1 mean engineering in a
general comprehensive sense. It is to those great inventions which have so startled the world that we owe so much; and yet I am convinced that they have not reached their maturity, but are only on the road to increased triumphs. How important then becomes a Society like yours, which must exercise a rapidIy extending influence on the future of engineering for genrations to come!
Mr. Brassey said :-Well, I know when I address a body of oremen engineers that I am speaking to one of the most inteligent classes in this country-to a class of persons who have contributed,perhaps more than any other,to establish the fame
and reputation of our country. In whatever direction you look, you see monuments of their skill, their character, and their ability. The electric telegraph, the steam engine, the loom of Mr. Arkwright, and other improvementa, are English inventions which have been the means of revolutionising 10 enuity of man are applied, and which have eatablished the claim of England to the pre-eminence as an engineering country. Speaking for myself as one owing so much to the invention of rail ways, I think I ought to be,and I assure you that I am, foll of appreciation of themechanical genius of my countrymen. While reforring to rail ways, I would, before leaving that subject, just remark that,greai and important as have been the inventions connected with the railway system up to the present period, we are still greatly needing a further development of
ingenvity in order to make traveling by railways as safe as ingenuity in order to make traveling by railways as safe as we must anxiously desire to render it. And speaking as a railway director, I can say to you, who, I am sure, very many you, possess great capacities for invention, that if you ca only discover a thoroughly aatisfactory continuous brake you will confer an almost unspeakable benefit on your countrymen.
I feel that, although at the present moment we are possessed of greateminencein engineering industry, we are threatened daily with great competition from abroad, and I am afraid that the competition may come, not, as we readily anticipate, rom Germany, France, and other old countries of the world which command a cheaper supply of labor than we do, but possibly it may come from the United States, where, in spite of their most costly labor, they have the means, if they only phan we do; and they have also shown the most marvelons than we do; and they have also shown the most marvelous
facilities for mechanical invention. Let us not then suffer ourselves to be outatripped in the race-let due provision be made for the technical education of our workmen ; and if only
they have the same chance as their brethren in other countries,
then I have no fear of their holding their own. I hope for a great deal of aid from the Government in the direction I have ventured to indicate; but I also feel that we in England have very rightly sustained the principle of self. help as one of the most considerable of our national virtues; and I find in the existence of your institution, which is intended to contribute romething towarl the technical education of our engineers, a manifestation of the noble principle of self-helpfulness.

The Works at Crensot.

It is refreshing, in the midst of the financial difficulties of France, and considering the unsatisfactory state of trade, to hear of the continuous growth of the works of the Schneider
Society at Creusot. Society at Creusot.
The surface now covered by shops and other buildings helonging to the works exceeds 50 acres, and the entire area of the property, including mines, is 440 acres; the length of rail laid down at and from the works is 53 miles, of which two thirds are double ways; the number of workmen employed is 10,000 ; the steam engines are 234 in number, and of 12,700 horse power. The production amounts to 190,000 tuns of coal; 180,000 tuns of pig iron ; 90,000 tuns of wrought iron; 60,000 tuns of steel; value of the locomotives built, 100 per annum, $\$ 1,400,000$; and that of othor machinery, with bridges, $\$ 1,200,000$.
The new works and extensions lately carried out and in contemplation consist, first, of providing an additional water supply. M. Droillard, who carried out the former waterworks, has planned others to bring the waters of a stream called the Rancon to Creusot. The supply required at Creusot is a volume of 4,000 tuns, and the Rancon is calculated to sup. ply that quantity in the driest season.
The main conduit will be more than twelve miles in length, and has been planned to deliver 10,000 tuns at high water. It will be formed of cement, wherever the contours of the ground permit; but when the pressure surpasses fifteen or twenty meters, cast iron pipes will be substituted.

Now Treatment of Cancer.

Another treatment of cancer has been brought out by Dr. Hasse, of Berlin. An account of it is given in the Medici nische Central Zeitung, February 18. Dr. Hasse injects, with hypodermic syringe, pure alcohol, to which one per cent of ether is added, not into the new growth, but around its edges, thus obliterating, he claims, the vessels, especially lymphatics, which convey the infection, and causing the atrophy of the growth itself. The pain is rather severe, but is much reduced by ice bags, and lasts only about two hours, The injections are repeated every eight to fourteen days, and have no alarming reactions. He claims striking success in carcinoma of the mamma, and in cauliflower excrescence of the uterus, but has failed in epithelioma of the lip, which he attributes to the impossibility of obliterating by this means the large and closely adjacent coronary artery.-Medical and Surgical Reporter.

New Rallway Signal.

MM. Lartique and Laforest have recently invented a novel device, intended as a danger signal, which the Revue Indus. rielle states is now in successful use on some of the French railroads. A whistle is arranged on the locomotive so that it will, when once opened, continue sounding until shut by the engineer. - The same device which turns the disk aignal, so as to show the danger side, is extended to transmit a current of electricity to a little projection between the rails. When the engine passes over this spot, a metallic brush hanging between its wheels strikes on the projection and weeps over it, at the amme time transmitting the current to an electro-magnet which palls the whistle open. The latter, by continuously sounding, warns the engineer.
Industrial Exhibition of the Frankiln Insiltute.
The Franklin Institute of Philadelphia announces the cele. bration of the fiftieth anniversary of its foundation by an exhibition of arts and manufactures, to be held in the above mentioned city from the 6th to the 31st of October next. The plan is to secure as full a representation as possible of the mechanical improvements of the last half century, and all mecianical improvements of the last half century, and all artisans, mechanics, manofacturers, and inventors are in -
vited to contribute their best productions and to compete for he prizes which will be awarded to the most worthy. Facilities will be afforded for machinery in motion. All desiring to exhibit are requested to make early application for space, fower, etc.

Hountain and Lake Surveys in N Canvas Boat.

Mr. Verplank Colvin has recently submitted to the legis ature of New York State his report for the past year of surveying operations in connection with the Adirondack mountain regions. Among other resalts he corrects the hights of eeveral of the mountain peaks. Mounts Marcy and McIntyre, he finds, are correctly given at 5,000 feet altitude. He reduces Mount Dix to 4,879 feet, Mount Seward to 4,348 feet, and Santanoni to 4,607 feet. He finds Mount Haystack and Mount Sllylight to be higher than heretofore reported, and gives new measures of several other mountains of importent altitude.
Mr. Colvin aleo gives the mensures of some two hundred new lekes, covertag from forty to fifty square miles. He describes a novel partable boat used by him upon these lakes. The boat in made of canvas, and weighs only 10 pounds 8 ances. A now agm, of his own invention, visible at a great di
plorer.

DECISIONS OF THE COURTS.

United States Circuit Court---Northern District Hartister patent.-marsh ve. the dode.
[In equity.-Before Woodruff, Justice.

NEW BOOKS AND PUBLICATIONS

Handbook for the Artisan, Mechanic, and Engineer comprising the Grinding, and Sharpening of Cutting Tools, Abrasive Processes, Lapidary Work, Gem and
Alass Engraving, Varnishing and Lackering, Apparatus,
Matering, Materials, and Processes for Grinding and Polishing, etc Author of "'The Practical Metal Worker's Assistant," Author of The Practical Metal Worker's Assistant,
etc. New Edition. Illustrated by 185 Wood Engravings.
Price $\$ 5$. nut street.
ourapprectat volume is too well known to need eulogy from our pen, and ourapprectation of it ts best shown by the frequency with which we have
occasion to consult tis pages for detalls of technical processes. The arttoccasion to consult tts pages for detalls of technical processes. The art1-
san, desirous of learning the art of fintshing metal and brass work to the san, desirous of learning the art of finishing metal and brass work to the
highest perfection, will find it a compendium of the best modern practice both in this country and Europe; and its directions are rendered doubly valuable, for intelligibility and accuracy, by the profusion of excellent

A Mandal of Edeograpit, or the Art of Writing by Sound, being a Complete System of Phonetic Shor Hand, adapte.
This ittle handbook gives full explanations of an admirable system of stenography, one of the most useful arts which youths can devote their

Inventions Patented in England by American

[Complied from the Commissioners of Patenta' Journal.]
From March 27 to April 6, 1874, inclusive.
Brifich Loading Fire Ary.-A. Swingle et al., San Francisco, Ca Car brafe and Coupling.-H. E. Marchand, Pitteburgh, Pa. Crushing Ore, btc.-S. R. Krom, New York city. Culinairy Apparatus.-J. S. Kidd, Brooklyn, N. Y.
Dresbing Milistones.-D. Larer et al., Potitaile, P Embroiderer.-R. m. Robe, Willambburgh, N. Horse Hay Fori.-J. G. Williams, Fellowship, N. J. Loom.-T. W. Harrison et al., Boston, Mass.
Melitiga Steri.-A. C. Lewls, Brooklyn, N.

Plow.-
Pripaling Flour.-O. F. Cook, Grand Island, Cal
Stram Engine.-E. Cope et al., Hamilton, Ohio.
Stray Engine.-J. C. Nobles, Elmira, N. Y.
Transporting Cabre.-W.J. Retd, New York city.

Improved Copy Holder.
James B. Harper, St. John, Mo. This invention relates to copy holders whereby a newspaper or writiten sheet or strip may be held before the eyes of a copy ist or compoittor, and conventently unr
his work of transeribing or setting a typc copy.
$\underset{\text { Improved Comin Plate. }}{\substack{\text { Cinnton, Mass.-This invention }}}$
George Brabrook, Taunton, Mass. - This invention relates to a novel an to recelve the usual superccription, but also to hold the bouquet which is often placed upon the top of coffins.
Improved Piano Sonnding Board.
Frederick Nederheltmann, Alx-la-Chapelle, Prusia.-Tbis invention relates to a novel composition of matter whereby those properties of wood
which adapt tt to use forthe sounding boards of planos, gultars, and other musical instruments may be preserved for an indefnite period, such pre-
pared sounding boards not only retalning their peculiar quality, but un-
dergoing an actual change for the better.

Improved Mode of Propelling Street Cars. George S. Grier, Milford, Del.-This invention relates to the well known plan of propelling street cars by means of an endless chain or rope
placed below the cars or track, and actuated by friction pulleys, sprocket Wheels, or apike wheis, over which it is made to pass. These drive pul.
leys or wheels are. hemselves set in motion by steam or other power ap. leys or wheelsare. lhemselves set in motion by steam or other power ap-
plied through ordinary coanecting mechantem. This mode of propulition plied through ordinary connecting mechantem. This mode of propulsion
which has heretofore been tried and deemed impracticable is made, by Which has heretofore been tried and deemed impracticsbis

Improved Heating stove.
William Chellus, Paterson, N. J.-This is an improved heating stove, so constructed as to pass the air to be heated in thin sheets between two metallic surfaces, both of which are heated by the passage of the heated products of combustion, so inat or nearly all, the heat may be extracted from the products of combustion before they are allowed to pass off in to the chimney

Improved Middlings Purifer. nger, Ripon, Wis.-This invention con

George W. Dellinger, Ripon, Wis.-This invention consists in the combl
nation, with the suction fan and case, of the two oscllating steres, the top one made smaller than the lower one, to allow the upward passage of light particles of matter from the lower slive. These screens ill be self-cleaning, In consequence of the lively action of the flour or middings on them,
and thus the brushes, knockers, etc., used with ordinary middungs clean: urs and bolts will not be needed.

Improved Brick Machine.

Peter Harnist, Marine, Ill.-There are t wo mixing cylinders, which stand side by side, and are operated by means of bevel gears from the cam shaft.
The box into which the prepared clay is delivered from the mixing cylin The box into which the prepared clay is delivered from the mixing cyllnthe cam shaft, and drops by its own gravity, and in so dotng compresses
the clay in the trough. The sllding bottom is moved to the right and left altcrnately by means of a cord and working beam, which beam osclllates
on a central pin. A ledge on the silding bottom forces the clay into the on a central pin. A ledge on the sliding bottom forces the clay into the
molds, and vertical knves descend at the right moment and cut the brick to the proper length. At the next movement of the silding bottom in tha of binged boards connected by a rod. When the transferrer is full, it is acrrled away and deposited on the convejer.

Improved Speaking Tube. Theodore Niele, Pittsburgh, Pa.-This invention co

 tabe in which is placed at the throat or near the mouth of a speaking connected by a rod with a welght or knob. The gravity of the latte exerts a constant force through the rod, and tends to keep the valve closeduntll overcome by a greater counteracting power. By this means the at always finds a ready avenue of escape through the whistle. The Indicator is located with respect to the whistle so that it will be actuated simulta neously with the sounding of the alarm, and, belng ralsed, thus exhibit to
Tlew the prectse tube from which a signal has been given, The opening view the precise tube from which a signal has been given, The opening
of the valve, in order to answer the call has the effect of automatically clos ing the indicator.
Henry C. Work, Brooklyn, N. T., asalgal Movement,
R. I.-The object of this invention is to furnish a new combination of Wheels for producing a new mechanical movement for the application o team, or for elevating and forcing water, and for all the purposes fo Which it may be adapted; and it consists in a disk which rotates on central axis or arbor, with two gear wheels plvoted thereon eccentri-
oally to the center, which wheels engage or work together, with each a arm attached to the periphery thereof, or connected therewith, whic sweep the surface of an irregular scroll cylinder.

Improved Water Wheel

Dodge P. Blackstone, Berlin, Wis. This invention relates to improve
ments in turbines; and consiste, first, in forming a fume or free annula passage around the wheel, between its hub and the enclosing stationary gates for closing the chutes. The latter are hollowed out on the inner side, leaving only a bearing surface around the edge. They are provide
with stems which pass through slots in brackets of the gate-operating frame, and on these stems are placed spiral springs which bear against the brackets, and are adjusted to greater or less tension by nuts. The bracke slots are so formed as to allow the gates considerabie' play on their seats
or bearing surface, and the springs take off the pressure of the bead of or bearing surface, and the springs take off the pressure of the head on
water, so as to relleve the gates of much of the friction that would other

Improved Apparatus for Pressing Meat Scraps.
uel Booth, New York ctty.-This is a tub for the pressing of
scraps, having a surrounding jacket enclosing the tnb in a space for Ing it by steam, with pipes running through it from the orifices for the e cape of the fat, and projecting a little bey ond the outside of the jacket for
discharging the fat into the recelving pan below. The press follower is pro vided with holes fcr the escape of some of the fat through it directly from the surface of the scraps, whereon the follower acts. The object of the thet is to matntain the scrapsat the proper degree of heat for obtaining erable loss now sustained, both in the aratity of fat obtained and tim consumed, in consequence of the cooling of the scraps after betng pat into
lmproved Hay and Cotton Press.
George Mosteller, Walker, Ga.-This invention relates. generally to al
Kinds of presees for bulling cotton, hay, or straw, but more particularly to inds of presses for bullng cotton, hay, or straw, but more particularly t ling the crop to be baled without belng transferred to the barn.

Improved Machine for Driving Brush Handles
nAmes, Jr., Lansingburgh, N. P. This invention has for its John Ames, Jr., Lansingburgh, N. Y.-This invention has for its objec 142,137 were granted to same inventor August 26, 1873. To the table is at tached a frame, In which a plate sildes up and down in grooves, betng actu ated by sultable gearing. Means are provided to limit the downward
movement of the plate, and insure the driving of all the handles of all the brushes of the same lot to exactly the same point. To the plate is attached a bracket, to which is secured the driver by which the handle is forced into which is atted a thimble to receive and fit exactly upon the ferrule of the brush, and support it against the strain while the handle is being :driven To the lower side of the table, around the hole, is attached a downwardly projecting tabe which is slotted longitudinally, and surrounded by a col-
lar. The latter is made with a bar passing through the slots of the tube, lar. The latter is made with a bar passing through the slots of the tube,
and with a rod upon its center which fits into the cavity of the sald slotted tube. The rod is perforated longltudinally, and its upper end is con
caved to recelve the end of the brush handle, and hold it exactly centered while betng driven. From the opposite sides of the collar.two cords pase
over gulde pulleys pivoted to the apper part of the frame, and carry over gulde pulleys pivoted to the upper part of the frame, and carry
weights. A small rod passes longitudinally through the perforated rod weights. A small rod passes longitudinally through the perforated rod,
and its lower part fits into the cavity of the slotted tube when forced upward. To the rod ts attached a cross bar, to the ends of which are at which enters a notch in the side of the rod when pushed down keeps it from belng raised by the weights. The boit is held forward against the rod by a spring. To the outer end of the bolt is attached the lower end of a lover. In the upper end or the rod is formed a socket to receive a steel
polnt, which is designed to force its way and guide the rod through the center of the brush, when the rod is released from the bolt and is force upper end of the rod, and the sald rod is forced downward ontll canght and held by the bolt. The brush is then inserted in the thimble, and the leve is operated to release therod, which is forced upward by the weights, forc ing the steel point up through the center of the brush. The steel poin is then detached; the point of the brush handle is inserted in the socket in the upper end of the rod, and the driver is lowered upon its base, so tha
by forcing the driver downward the rod will be forced downward, the han dle following tt through the center of the brush. As the end of the handle passes through the brush, its end is received by the end of the perforated rod, which holds it accurately centered while being driven.

Improved Stock Feeder.
Lev1 P. Cox, Breckenriage, Hi-The box in which the corn is placed is formed of slats correspondingly notched and tongued at the ends, so that they cannot sldde inward, while they are enclosed by posts so that
they cannot slip outward. The table beneath the corn box is extended out on each side, so as to form, with the vertical edge pleces, a feed trough about the corn bor. The slats are vertically movable within the posts,
and may be held at any desired elevation bypins pasing through the posts and under the lowest slats. In order to render the feed automatic, the lowest slats rest upon metallic rods, whose ends project to a greater or These render within the trough, and are of a size easy to be handled. single person, who ratses one corner at a time and fixes a pin thereunde These rods also are moved by the noses of the animals in the trough, an

Improved Hand Nail and Bolt Making Tool.

William Franklin White, Orange, Ga. - This Invention consists of a couple of steel bars, having a series of round notches in one side, and square
onesin the opposite side, of difterent sizes, said bars being jointed together at one end by a link, which allows the bars to close both their notched sides together, to constitute dies of the notches in which to head nalls and bolts. The sald bars are held together by handles at the ends opposite the joint, and a dowel pin on one enters a hole in the other near the handled end, to insure the connclding of the faces. The notches are countersunk on one side to form tapered heads to the nalls and bolts, and fush on the
other sides to make fat heads. One series is countersunk upon one of the bars, and the other upon the other side, so that the bars are not onduly weakened on one side, as they otherwise would be. The sald bars are made of steel and duly hardened, to sustain the wear incidental to the hammering up of the heads in them.

Improved Electrolytic Apparatus.
Evans Casselberry, St. Louls, Mo., and Nathan H. Edgerton, Philadelphia, Pa.-This invention consists in combining with a suitable tank or tanks, for holding the liquid to be decomposed, electrodes having two or
more bifurcated divisions, upon the surface of which the decomposition takes place, increas!ng with the increase of the sald sarface untll the tota trength of the carrent is utilized.

Improved Shank Laster.
Edwin Campbell, Bath, Me.-This invention relates whereby they are caused to take a firm hold, or to release it . One has a long arm projecting from outside, and the other jaw is piroted to it. At the upper ends is a cam lever for forcing the lever ends together, and a pring is arranged between them to open them, to release the leather afte he work is done. A sultable distance from the jaws the arms are fitted nthe right and left band screws, and beyond herew they have a straining the leather, said rod being fastened in one arm and fitted to stralning the other. The screw rod has a handle by which to turn it for
silde in the
forcing the jaws to stretch the shank over the last. The arms are arforcing the jaws to stretch the shank over the last. The arms are ar-
ranged to project to the right of the jaws, so that in use they extend ranged to project to the right of the jaws, so that in use they extend
along the sole of the last to carry the operating screw and the guide rod along the sole of the last to carry the operating screw and the
out of the way, and permit conventent tacking of the leather,

Improved Station Indicator.
n. Locke, N. Y. -This is an improved
George A. Brown. Locke, N. Y.-This is an improved Indicator for indi ust itself automatically as the train leaves a station, and exhibit the nam of the next station. The endless belt on which the names, distances, etc. are inscribed, is provided with suitable rotary mechanism, and connected with a lever which projects down through the car. This lever has a fre
movement longitudinally with the track, but cannot move crosswise of the novement longltudinally with the track, but cannot move crosswise of the
track without rotating the roller in one or the other direction. Suitable neans are provided to bring the lever back to a vertical position, should it be moved by its lower end striking an obstruction. Driven into adjacent
ties of the track is a rod which may be fnclined with respect to the track, and in such a poestion that the lower end of the lever may strike it and ma be moved laterally to rotate the roller. One of the rods is destgned to be secured to the track upon each side of the station, so that
may be set as the train leaves the station in elther direction.

Improved Clod Crnsher.
列 farnish an improved clod crushing and pulverizing implement by which th ground may be completely broken after sowing, for the parpose of retainIng the moisture theretn. It consists in the arrangement of a main sup.
porting frame with a sertes of lateral knlves, which are attached at the porting frame with a series of lateral knives, which are attached at the
lower side thereof to step-shaped seats, so that each laife is back of and lower slde thereof to step-shaped seats, 80 that each knife is back of and
deeperthan the other, and breaks the clods by repeated concassions with

Improved Grain Dryer.
Pardon B. Hunt, Councll Bluffs, Iowa.-This invention consists in the arranging of two cylinders so as to form a grain passage in the shape of an nverted cone or funnel, and so that the grain passage will enlarge as the
grain swells, and the passage thus continue throughout to preserve the ame relative magnitude to the volume of grain.

Improved Pipe Tongs.

Anton Kotzum, New Tork city.-The object of this invention is to pro duce a simple and effective pipe tongs. Which may be quickly adjusted to tion conisists of Jaws with lever handles of the usual shape, of which on sildes upon a pivot in a slot in the other, for aajusting it to the width of the pipes, and is firmly fastened in the required position by a slotted plece

Improved Machine for Pressing Pantaloons.
George F. Pond, Boston, Mass. - This is a machine for use in forming and pressing the bottoms of the legs of pantaloons. The base board is secured haft, to the forward ends of which is attached a plate. The forward edge of the plate is so shaped as to give the proper form to the front of the Anger, the rear end of the plate through a slot in the end of the shaft, and its end is ply oted to a lever. The forward end of the lever is notched to recelve a pin attached to the forming plate, and which serves as a fulcrum to said leve By this arrangement the pantalion bottoms are stretched whille betng formed and pressed. The anger is held in place, when adjusted, by a se anger. The plate is supported, whle the bottoms are being pressed by stand attached to the end of an arm, the other end of which is pivoted to the base, so that the sald stand can be readily swung back when adjusting
or forming the bettoms. One end of a spring is secured to the base, and ts otherend pressesagainst the shatt to hold sald shaft and the plate in any position into which it mar be adjusted.

Improved Mosqnito Screen.

James P. Miller. Ridgeville, ill.-This invention relates to a self-closing swinging bar or frame having a netting attached, and operated by a weigh ion aleo tncluce a peciliar arragremt of cranked or bent plyot rod Tith the bar to which the netting is attached, whereby the bar is aupporte and the netting kept stretched without supplementary devices.

Improved Harness Makers' Clamp.
Jostah Smith, Southold, N.Y.. assignor to himeelf and Francls C. Landon of same place.-The Jaws are held together by a steel spring, the lower end apper end rests against the outer side of the upper part of the sald binge aw. The upper part of the hinged Jaw is drawn back, to allow the work to be inserted and released, by an arm and strap. To the lower end of the two
jaws is attached a horizontal bar or plate for:the operator to put his foot jaws is attached a horizontal bar or plate
apon to hold the clamp erect when in use.

Improved Hook and Clevis.
William Warne, Huntington Mine, Dillonton P. O., Canade The par Which distinguishes this hoots and clevis from others is the device for pre purpose two slots are made through the clev/s and near the wrist. On the sides of the hook, near the end, are formed two lugs, which, when the hook
is turned in a certain position, will pass readily through the slots, which is turned in a certain position, will pass readily through the slots, which
.
Improved Bottom Plate for Range Chimneys.
Hamilton C. Garwood, Jersey City, N. J.-This invention consists of a
 top efther directly into the chimney or into a plpe extending a short distance from the top and discharging into the flue. A valve closes and open vium, smoke, etc., arising from the cooking on the range below, than to afforded by the ordinary flat plate with a passage in it.
Improved Folding Clothes Horse.
Elias Kimball, New York city.-This invention consist
Elias Kimbali, New York city.-This invention consists in the jointed the sections of a clothes horse. In folding the horse, the sections of raised at the same time, which allows the horse to be folded up. When the sections are opened out, the braces drop, or may be forced down into lock ng position.

Improved Beehive.

Josiah Barnes and william Barnes, Topeka, Kan.-This Invention re ates to that class of beehives provided with main and auxiliary honey frames, and consists in a false bottom forthe main honey frame attached
to a riser; In a silding and reticulated false bottom ; in putting a strip ove the sllde to prevent waxing of the joint; in a superposed and open-topped case for the auxiliary honey frames, and in a detachable sllde between th two sets of honey frames.

Improved Midalings Purifier.

James A. Stewart, Atlanta, Ga.-The middllings are admitted into the reels. While atill in thetr reels. While still in their loose or disintegrated state, and as they fall
from one bucket to another of several attached to an endless chain the areacted upon by the blast of air driven up through the machine.

Tuginess and tertsonal.

 The finest Machinery Oils, combined from

 famord st the vienna Exposiltion.

 $\underset{\substack{\text { Parker, Mac } \\ \text { Newark, } \\ \text { N. }}}{ }$
 42 Clirst., New York.
Amateer A Astronomers can be furnished with
good totutruments at reasonable prices. Addreas L . w .

 Makers of Seine and Net Machines, please

 Borl, Masas.
ent

 for shops, ofllces, dwellings. Works for any distance
Price *5. F. C. Beach \& Co., 263 Broadway, New York
Makers. Send for free illuatrated Catalogue. Makera. Send dor free H1ustrated Catalogue.
Pattern Letters and Fir ures, to put

 All Fruit can Tools, H erracute, Bridgeton,N.J. Brown's Coalyard Quarry \& Contractor's Ap-
paratus for holsting and conveying materials by iron cable. W. D. Andrews \& Bro., 414 Water St., New York.
For Solid Emery Wheels and Machinery, send to the Union Stone Co., Boston, Mass., for circular Lathes, Planers, Drills, Milling and Indes For Solid. Wraughtirinon Beams, tetc, pee ad. tor tithoriaph, etc.
Temples $\&$ oicans. Draper, Hopedale, Mass. Hydraulic Preses and Jacks. new and sec
ond hand.
E. Lyon,

 separately or together. Complete connections and pamp.
Holske Machine Co., 279 Cherry Street, New York. 85. Aoverlis' Family. Washing Machine, Price

The best Horss) Power for the Worrghop or

 Circuit Court has decided, in favor of the Philadelphia
(Gardner) Fire Extinguisher Co.,the suit thought againgt them by the Baboock Company for alleged Intringe-
ment, declaring the Babcock patents invalid. Certifled coples of the opinion of the Court can be had of the
clerk, U. S. Circuit Court at Philadelphia. Phhladelphia ExtInguisher Co., 424 Walnut St., Philladelphia, Pa.
Price only three dollar- The Tom Thumb paratus, for sending messages, making magnets, the electric light, giving alarms, and various other purposes. Can be put in operation by any lad. Includes battery,
sey and wires. Neatly packed and sent to all parts of sey and wires. Neatly packed and sent to all parts of
the world on recetpt of price. F. C. Beach \& Co., 263 Engines, Boilers, Pumps, Portable Engines
Machinists Tools. Y.!
. Shearman, 45 Cortlandt St., N.Y. Automatic Wire Rope R. R. conveys Coal
Ore, \&c., without Trestle Work. No. 61 Broadway, N.Y A. F. Havens Lights Towns, Factories, Ho-
Ale, Best Philadelphia Oak Belting and Monitor
titched. c. W. Arny, Manufacturer, s01 \& 303 Cherry Rt.. Philadelphia, Pa. Send for circular.
Rues "Litle Giant" Injectors, Cheapest
nd Best Boiller Feeder in the market. W. L. Chase \& A Superior Printing Telegraph Instrument the First Premium (a Silver Medal) at Cincinnat1 Expo-
ition, 1871 for " Best Telegraph Instrument for private use"-1s offered for sale by the Mercht's M' 'rg and Con-
atruction Co., 50 Broad St., New York.
P. O. Box 496. Woolen and Cotton Machinery of every de-
scription for Sale by Tully \& Wide, 20 Platt St., N. Y. Dean's Steam Pumps, for all purposes; Engines, Bollers, Iron and Wood Working Machinery of
all deecriptions. W. L. Chase \& Co., 83, 95, 97 Liberty Street. New York.
Steam Fire Engines-Philadelphia Hydrau-
ic Works, Philadelphia, Pa. Bone Mills and Portable Grist Mills.-Send
Catalogue to Tully \& Whlde, 20 Platt st., New York. Waterproof Enameled Papers-all colors-
or packing Lard and other oily substances, Chloride of Lime, Soda and similar Chemicalls, Cartridges, Shoe Lin-
ings, Wrapping soaps, Smoked or Dried Meats, and Desiccated Vegetables, Shelf Papers, and all applications
where absorption is to be resisted. Samples on application. Crump's Label Press, 75 Fulton St., New York. For descriptive circulars, and terms to James H. White, Newarl, N. J., Manufacturer of Sheet
and Cast Metal Small warea. Emerson's Patent Inserted Toothed Saws,
nd Saw Swage. See occasionsl advertisement on out-

Fine Machinery Oils.-We believe that E. H. although costing a little more per gallon, are really the most economical for the consumer, for the reason of
durabillty and freedom from tnjury to machinery. If partles requiring olls will make known the uses for
which they are wanted, he will not only guarantee sat-
isfaction, but that the goods shall prove precisely as represented. These ofls are not only largely used and
deservedly popular throaghout the United Sitates, but manufacturers and agents.
Tor Teleg. Inst's and Elect'l Mach'y-Cheap. tel Annunclator-Inst's for Private Lines-Gas Lighting
Apparatus, \&c. G. W. Stockly, Scy., Cleveland, Ohio. Diamonds and Carbon turnea and shaped for scientific purposes; also, Glaziers' Diamonds manu-
factured and reset by j. Dickinson, 64 Nassau St., N. Y

J. C.'s query as to a boiler in the shape of a
ali moon, and E.P. J.'s, as to a vacuum, are incom-prehensible.-J. C. H. can remedy the dampness of the
walls by using the waterproof glue described on p. 8 , rames on p. 90 , vol. 80 .-L. D. Is informed that we re-
printed the recipe for mending rubber boots on p. 208 , ol. 30. Figured fabrics fade in washing because they re not printed in 1ast colors.-H. Ii. Jr. Will find the 17π, ze8, vol. 28.-R. M. H. will Hind a description of ma. WIll find a rectpe for aquartum cement on p. 222 , vol. 28 .
Wate Water colors are finely powdered plgments made into
cakes with wax. C . \& A. will find full descriptions of ckel platiog on pp. 187, 378, vol. 28.
J. W. Z. asks: How can I preserve eggs? oluding them from the alr. One of the cleanest and
eselest methods of dolng this is to pack them with the mall end downward in clean dry salt in barrel
G. F.P. asks : 1. Why does paint in Rock-
port, Texas, change color, white paint turning almost black in patches? A. The effects mentioned are phuretted bydrogen gas, and it would be well to invesigate the sewerage and drainage facilities, and any
apots where decaying and putreactble matters might ac. and
cumulate, In order to determinewhetherthere werre any ources of this deleterlous gas. 2. Are chromos printed uable? Are not the best printed on eloth? A. The
best chromos are printed on cloth, which is more dura-
S. V. C. asks : Is aluminum non-magnetic? needle? A. Aluminum is non-magnetic.
O. A. F. asks: Which kind of prussiate of
potash, white or yellow, did H . J. B. use in making hit exploaive powder? What kind of sugar is necessary?
A. The ingredients are yellow prussiate of potash and ordinary white cane sugar. They mcst be thoroughly
Q. V. asks: 1. How can I make good silver
ink parts ; powdered gum arabic, 20 parts; carbonate of
soda, 22 parte ; solution of ammonto, 30 parts. Dissolve the carbonate of sods, and afterwards the gam (by trit-
uration in a mortar) In the water, dissolve the nitrate ration in a mortar) in the water, dissolve the nitrate
of iliver in the ammonia and add to the carbonate of of silverin tion. Heat gentiy to the boillig point; the ink,
at arat turblid, becomes clear sad rery dark. 2. What
are decarbonized and Damascus steel? A. Damascus
steel ts steel made from an ore consisting of magnetic steel is steel made from an ore consisting of magnetic
oxide of frou and siltea, by the use of charcoal furnaces.
The name is also applide to tmitations of the origina The name is also applied to 1 mitations of the origina
Damascus steel. Decarbonized steel is steel from whtc a portion of the comblned carbon has been removed. 3 .
Is a breech-loading or a muzzle-loading shot gun the Is a breech-loading or a muzzle-loading shot gun the
safer? A. Both are dangerous in the hands of careless J. L.S. asks:
plete information
reapecting the can full and comand mounting of specula be obtained? A. We retterat that Professor:Draper's treatise affords the most avalla
ble information on the construction of specula. John be information on the construction of specula. Jond
Browning's pamph let illustrates the method of mount ing them. 2. Has Professor Henry Draper improved his
processes for the construction of glass specula elnce the publication of Vol. XIV., 1864, of the Smithsonisn contributions for the diffuston of knowledge? A. No
3. What is the method at present pursued by with, 3. What is the method at present pursued by With, of
Hereford, in the construction of silvered glass specula for Browning's telescopes? A. Extra thick glass is
used to avold flexure, and imperfect mirrors are repol lshed. 4. Of all the methods devised for the construc tlon of specula, which produces the best results in the
shortest time? A. The machine for local correction shortest time?
(Draper, p. 24).
O. C. asks: 1. Why is it that people talk
and write so much about the impossibllity of the sun and write so much about the imposibint or the
betng a body of combustble material in a state of in-
tense heat, alleging that, if such were a fact it would lense heat, alleging that, if such were a fact, it would
long ere this have been consumed and have left a blank long ere this have been consumed and have left a blank
in apace? There is no such thing as destructible mat being nothing more or less than the change of matte from one form to another without destroying one par ticle of it. A. The sun is really a combustible body.
slowly burning, but its condensation supplies more
heat. The oxygen and hydrogen, form the solar oceans, are disocolated by its high tem-
perature. Eruptlons throw these gases into the cooler chromof phere, they burn, and, forming water, show us
steam lines in the spectroscope. 2. As the attraction seam lines in the spectroscope. 2. As the attraction
of the sun is auflicient to hold all this matter within tit A. A veloctty of 380 milles per second is safificent to
carry ejected material clear of the sun's attraction The observed velocity of projection is 500 miles. S
therefore, are in constant interchange of mifsiles. J. A. asks: 1. What is the formula for find tig the ares of a lune when:the width of the lune and
the respective dismeters of the two curves forming the lune aregiven? A. Draw the chord corresponding to
the two arca of the lune; then multiply half of each ar y its radius, and subtract the least product (thearea the least circular sector) from the greatest. The re
mainder is the area of the lune. 2. Can tyou tell me o mainder is the area of the lune. 2. Can :you tell me of
some of the double stars? A. A few double stars are:
cen Gamma Leoris, orange and green yellow; Delta Corvi,
yellow and purple; Gamma Virginis, white and yellow; Zeta Ursce Majoris, white and green; Iota Bootis, triple
Pi Booti8; Epsilon Bootis; Xi Bootis, orange and purple it Booti8; Epsllon Booti8; Xi Booti8, orange and purple
Mu Bootiz, yellow and lllac; Delta Serpentis, Zela Coro noe, white and blue: Epsilon Lyra, multiple; Beta
C μ guit, yellow and blue. All double stars, nebule, an號 N. B. says: 1 . I have a 2 inches achromatic
object glass of construct a telescope. What size of eyeplece, and of glass have? A. Use a Huyghenian, or negative eye
plece, field lens about half an inch diameter, $\begin{aligned} & \text { Inch fo }\end{aligned}$ cas, the eye lens $1 / 4$ inch diameter and $1 / /$ inch focus, bot lenses plano-convex, plane side next the eye. The ey
lens is placed its own focel length within the focus the fieldlens, that is, theyare half an inch apart. An equivalent single lens would be half the focus of the
feld lens or fleld lens or $\frac{3}{3}$ inch focus; therefore 30 inches $+\frac{8}{3}$ inch $=80$,
the magnifying power of the eyeptece. 2 . What ts the difference (in construction) between a terrestrial and a
celestial eyeplece for a telescope? A. The terrestria eyeplece is provided with two additional lenses, to erec
the image.
$\underset{\text { suffctent power to show Juptrer's moons and Saturn' }}{\text { H. }}$ rings, with a donble concave lens, 4 Inches diameter and of 6 Inches focns, and 1 meniscus lens, 4 inches in diam-
eter and of 6 inches focus? 1 bave a double concave lens, 2 Inches in diameter and of 8 inches focus, akd
menlacus of the same size and focus; they are from magic lantern. I also have a double concave, $\%$ Inch it diameter ana of $1 x$ inches focus, and 1 double concase
lens, \neq inch diameter and of 1 inch focus. Would these lenses do better for a telescope or for a microscope
A. Your lenses will not answer, le your description 1 correct. A tolerable two inch achromatic object glass
costa $\$_{1} .5 \mathrm{~F}$, and a useful microscope, 86.00 . Wither would osts $8_{1}, 5 \mathrm{Sf}$, and a aseful microscope, 86.00 . Kither would
 why are they not in more general use? What is the counts of thorough teats of rotary englues, and there fore cannot give a decided opinion upon their advan-
tages. 2. Sappose the wheel of a rotary englne to have tages. 2. Suppose the wheel of a rotary engine to have
\% of a square inch effective pressure, and tis mean die tance from center of shaft to be $1 x$ inches, It being on der continual pressure; how will it compare with a ple ton engine having the same area of piston and a stroke
of $3 x$ inches under the same amount of pressure, maktng the same number of revolutions? Would such an that, for cheapness of construction, simplicity, and du-
rabilty, it will compare favorably with the pliston en gine now in use? A. If you can build such an engine
it will be worth your while to experiment. 8 . How wil gas do as a substitute for steam in experimenting on small scale? A. It is used in sexeral forms of en

Wh. F. M. asks: I. How can I protect iron cles? I have tried several paints now in market, bu
and that they allfall to keep the iron or and that they allf fall to keep the fron or wood free. A
The paint must be constantly renewed. 2. How can pitch or tar be reduced so as to make a paint, to be used
cold? cold? A. With turpeninge, we believe. 3. How can 1
reduce copper to the fineness of fiour? Can it be done
withactds? Withacids? A. By heating the copper in an atmospher of hydrogen. 4. Is the Sclence Record composed of the
coples of the Scirntiric Americas? A. No. 5. How much will it cost to have 1 year's copy of the Sorientific
AMERIOAN bound? A. In one rolume, 82 ; in two vol

ames, \&s.

J. H. P. asks: Can air brakes be applied to
a tratn of cars if the engine is loose, or can they be
appiled without the power of the engine A. In some In others, they can be managed on each oar, indepen In ethers, they can b
dently of all the rest.
C. A.J. says: I hate a cellar about six. feet

 ement. A. The reason the waterin fore pidect your you have taken to prevent it, is because of the exterior
pressure the former is subjected to. in being conflined in he clay surrounding their fonndations and rising around the house to a head equal to the depth of the
cellar. If youremove thls pressure and point up the breaks, you are very likely to overcome the diff culty To do this, excavate a trench outside the walls, down as hem, and fill in with stone of all sizes up to 18 inches lameter for about 2 feet in depth and 18 inches out from
he house; then refll with the earth excavated, tahing the precaution to place gravel or small stones against
the wallall the way up for a few inches out. Now,from his lower deposit of stone, provide one or more drains leading away from the house and discharging at a lower
level. Thesedrainsmay be also made of stonellike the one around the honse, and to prevent theirbeing filled up withdirt somestraw or carpenter's shavings may be
ald over the stones. In this manner the outward press. re may be removed; and if, when the trench is open, a
cat of cement be put on the outside of the fould ons in addition, put on the gutside of the foundae reasonably indulged.
A. B. F. asks: How many cubic feet of wa ow per tun for river steamboats, and for sailing ressels?
O. N. E. asks : 1. What is the best battery
or silver plating? A. Dantell's constant battery for silver plating? A. Dantell's constant battery is a
good one. 2. How can an old broken praphte crucible ged made orer into a new one? A. Powder flne, mis
whit waterinto a paste, mold, and dry or bake. 3. How wh water into a paste, mold, and dry or bake. 3. How incs for a battery? A. Zinc can be purifed by distilthe United States dollar? A.A silver dollar weighs 412% grains, and contalns 900 parts of pure silver in 1,000 ; therefore is of $412 \frac{1}{2}$ grains will give the pure silver by weight in a dollar=871, grains. As to your other quesIon, send to D. Van
J. W. B. asks: How can I grind a double
onvex lens accurately round, with a bevel on each alde, convex lens accurately round, with a bevel on each ilde,
to fit any ized frame? It it sow done by hand. Can it edone by machine? A. Yes, by an iron wheel fed with and and water, or a traversing emery wheel. Glase
disks are cut out by a rotating vertical metal tube, fed Jith emery and
J. K. says: It is generally considered by
clentific men that the sun is a body which emits heat as well as light. Now if the sun is a hot body, why are not degree of temperature than near the surface of the
arth? According to the laws of heat, it decreases as he square of the distance increases: and by this law the upperstrata of the atmosphere would be warmer
than near the earth, which we know is not the case. Again, the annual mean average temperature of the Again, the annual mean average temperature of the
arth in the warmest parts is 90°. The carth is 93,000 ,and miles, and Mercury $s 8,000,00 /$ miles from the sun. The
square of the earth's distance 18 more than six times quare of the earth's distance is more than six imes
hat of Mercury, nearly 62 times, which would make ercury must be in a state of fusion. I would like to now why itis colder as we ascend above the sea level
or a distance of inemiles, if the sun is a hot body? Is or a distance of ivemiles, if the sun is a hot body? Is
ot the heat which we derive from the sun caused by riction of the rays of light passing through our atmo-年here? A. The sun's riys are hotter st great eleva. ontll absorbed and radiated from the suriace. The atton.
M. J. T.-In reply to the answer given to
W. M. W., which was to the ettect that the end of the inphon that discharges the llquid should be on a lower
level than the end into which it ds drawn, M. J. T. says: level than the end into which it is drawn, M. J. T. says:
"I have always supposed that a siphon would draw waer to a level with the shortest leg. I don't see that it they are both of a length (or on a level). A. M. T. J.
is substantially correct. The liquid will run so long as the discharg
the liquid.
W. R. B. asks: How is danger to the oye
burning prevented in looking at the sun with a pow. erfult telescope? The eyeplece san glass will not prevent
the beat. Is it done by a dlaphragm over the object glass, or how? Of what kind of glass is the sun glass
made? Could not a large non-achromatic lens be conected by a amall over-corrected lens placed near the
ocus of the large lens? A.A solareyeptece may be made thus: Attach a short tabe, which fits your eyeplece, at
Hght angles to another which fits the eyeplece tube. race a innch plano-convex lens so that the center ithertube. Ten per cent of the solar light and heat will then be reflected up to h_{n} eyepiece, and 90 per cent will pass out of the lens. A diaphragm over the objecive may be used. Two sun glasees should be used to-
gether, a claretand a green one. The sun's image may ee recelved upon a white sheet of paper with the full
 ing power,we must find some way to increase the light:
the telescope this is done by edlarging the object lass." In constructing a cheap home made teleecope of 72 inches focus, be a higher magnifying power and achromatic lens 2 Inches in diameter and of 30 inches then bear a power of 100 only. 2. What 1 s apherical
aberration? A. Each zone of a spherical lens has a dif. ferent focal plane, the outer zones having the shortest
focus. 3. Is the sewing machine an American or an nglish in
X. X. O. asks: Can you tell me of any com-
tnations of chemtcals that will remove the reddish cast of hemlock sole leather and glve it the appearance of
oak tanilig? A. Try a neutral solution of perchloride
R. H. W. A. asks : 1. Can I use foil from Please me a rectpe for a cement for fastening glass to metal. A. Metals may be made to adbere to glase by a
cement composed of powdered litharge 2 parts, white
lead 1 part, bolled 11 nseed oll 3 parts, mixed with 1 part of eopal rarnish toa thick paste.
$\underset{\text { G. }}{\text { G. Eay that the earth turns on its axis } 965}$ to times in 365 dasy. I supposed that tit only turned 64 times, the esolar
day betng not a revolution of the earth once on its axis day belng not a revolution of the earth once on its axis,
but the return of the sun to a given meridian, which I think if lecs by about four minutes than a complete re-
volution (or sidereal day) on account of the enward mo ton of the earth in its orblt, which would necessarily make one day in a year if the earth did not turn on it
a gis at all. Am I not right? A. The tropical year, o interval between two successive passages of the sun through the mean vernal equinox, eq
soar days, or $366-24222$ sidereal days.
$\underset{\text { takes place between carbolic actd and todine, when they }}{\text { F. W. B. asks }}$ are mixed in solution? A. Little if any chemical ac tion. The fodine colors the carbolic acid a dark reddish
brown color. 2. Is it known whether the action of carbollc actd on lodine would produce such a change in the
lodine as would alter the therapeutic action on the sys tem? A. No.
J. H. B. asks: Can a man lift more with a rope over a large pulley than with one over a small pul
ley? A. In the case of a stiff rope, yes. It is harder to
bend a atiff rope over a small pulley than over a large
F. A. says: I am told that the coins of the
United States for one particular year are at present very scarce and valuable. Will you please tell me mhat year
that is, and also what are the several present values of silver dollars or 1796 and 1799 ? A. Dollars of 1 1004 ,
but three known. Dollars of 1794, veryscarce. The rest are casily procured at a small premlum, if at all rubbed
or Indented. No dollars were colned from 1806 to 1835. Haif domare of None colned from 1798 to 1800 , or in 1816. Quarter dol-
lars of 1899 and 1827 , very rare. Coined irregularly until 1831. Dimes: Very rare for the four following years,
varied in the order of their rarity: $1804,1797,1802,1803$ Colned yearly from 1827. Half dimes of 1802, but three
known. Of 1794 and 1803 , very scarce. None colned known. Of 1794 and 1803, very scarce. None coined
from 1806 to 1828. Three cent plecee of 1855 , very scarce, from 1793, except in 1815. Half cents of 1796, rare. No cotned in a regular sertes. But few of the gold pleces
are very rare. The quarter eagle of 1797 is most valuabie.
J. P. R. asks: : How much power has an en-
gine, 1 inch bore 2 tinches stroke, running at 2 200revolu. gine, 1 inch bore x 2 Inches stroke, running at 200 revolu
tons per minute? How large a bonller should I have, and what kind of metal would be best? A. See article
entitled "Indicating Steam Engines," in Scientiric Amprican for January 31, 1874. Allow about 20 square
feet of heating surface for a horse power. Ycu can feet of heating surface for a horse power. Ycu can
make the boller of copper or sheet or cast fron, whichI. S. S. asks: How thick should a cast lead
 diameter? A. For the sphere, the bursting pressure is
equal to the product of the tenactty of the material multiplied by the thickness, and divided by the diam ter. For a cylinder, the bursting pressure is equal to
the product of the first two terms, divided by the radiu of the crllider. From these rules you can find the ne-
W. D. G. asks: Why is it that in the block of one size) gives an Increase of power? A. It is not
true that every additional pulley increases the power, but it tends to inciease the space over which the force
acts in overcoming a given resistance; so that the same force can overcome more restistance, but requires a
longer time. Thus the power developed, which is composed of force o
mains the same.
X. Y. Z. asks: 1 . How can I make a small
cuctble? A. With fire clay, or a mixture of fire clay and plumbago. Your bent plan will be to buy one. 2.
What is laminated steel? A. It is a mixture of steel and iron. 3. Is $\frac{\text { dameter }}{180 \times 60}=$ the chord of one minute? A. No.
M. E. asks: Why is it that, after digging a
nole in the ground, the dirt will not fill it ap as com pactly as before? A. It will, if molstened and rammed C. E. M. is correct as to the weight of the
40 feet cube of granite. It should have been given at about 5,333 tuns.
G. McK. asks: 1 . How can I mend a hy-
draulic cylinder that has a very fine fisw in it? not see the crack when I have no pressure on It. A. Pos.
sibly you can secure a patch with bolts, and braze the Joint. 2. What is the best preparation for putting on a rope that bas to run on or wrap around a small pulley
under water, so as to make the rope last? A. Tar. J.
es smeter. What should be the size of stack to insure the best draft? We have 16 square reet grate surface.
Would that be enough to burn sawdust, provided the draft were strong enough? A. Make the area of chImney from $1 / 2$ to $1: 10$ area of grate. 2. Which saw will cut
the easter for both hard and soft wood, the one which is swaged suffictentiy for clearance, or one in which the teeth are sprung for set? A. This is a question be-
tween rival manufacturers. It can readly be determined by experiment. 3. How can I make the most duProbably cast fron will be as sultable as anything. $\underset{\text { chimneys get very hot when running, and others keep }}{\text { E. B. . L. says: }}$ chimneys get very hot when ranning, and others keep
quite cool. What are the cause and remedy? A. It is of unduly forclog the fires. 2 . Is there anything I can
of put on pine plank to make it ireproof orincombustible?
A. There are several varitties of paint that are sald to

make wood fireproof.

$\underset{\text { trees growing under some walnut young evergreen, but they do not }}{\text { J. B. says : I have sone }}$ thrive. Can you tell me the reason? A. The reason is
that the walnuts shade the evergreens and deprive their roots of proper nourithment. As an antldote, remove
the trees where each may have abundance of air, light, the trees where
and root space.
F. H. H. asks: Why does water form an ex-
eption to the law of contraction by cold? What are ception to the law of contraction by cold? What are
$t_{\text {he princtiples of its expansion when turning to ice ? } A \text {. }}$. - Bame etemperature. There is then an increase of one
tenth of the volume in passing from the liquid to the sold condition, the temperature remaining the same. But rreviously faxing themselves rigidig in certain po-
oltions so as to form crystals of ice \#nater take up relative pootitions with regard to
other, in which they occupy a larger volume.
A. T. R. asks: What is the principle on parts sufficient velocity to the water with which 1 . the pressure within the boller.
Z. Z. asks: 1. What is the coloring matter owers a re referred to three distinct substances by cerrain chemists, one of which is a blue or rose color, while the other two are yellow. The former is produced by a
compound which has been termed cyanin. Cyanin may ompound which has been termed cyanin. Cyanin may
e obtained from the petals of the violet or of the iris. To the yellow matter which is insoluble in water the name of xanthine is given, and to the yellow matter
which is soluble, the name of xantheine. See article Whch is soluble, the name of xanthetne. See article
Chromatology," Quarterly Journal of Science, 1873. Chromatology," Quarterly Journal of Science, 1873.
. Are not the metals of the highest specific gravity the carcest, and is not this caused by their sinking near the A. The rare metals, which are also noble metals, are of great spectifc gravity, and many geologists bave suposed that this had a close connection witn their silgh ${ }_{t}$,
iffaeion. But it is a theory diflicult of satisfactory deoonstration
J. C. M. asks : 1. How are the salts of nickel
and ammonia used for plating? A. See pp. 91,139 , vol. 29 . How is wood stained in imitation of ebony? A.steep he wood for two or three days in lakewarm water, in Which a ilttle alum has been dissolved: then puta handbill it down to less than half a pint. If a ilttle indigo
added, the color will be more beautiful. Spread layer of the colior will be more beautiful. Spread a an, which will give it a violet color. When it is dry, then boll verdigris at discretion in Its own vinegar, and spread a layer of it on the wood; when it is dry, rub it
with a brush, and then with ofled chamois skin. With a brush, and then with ofled chamois skin. 3 .
What is your price for binding two volumes (in one ook) of the Scientific Americax? A. Two dollars
W.T. says (in reply to J. H. P., who says: been gradually coollng, but the glactal theory necesst-
tates the bellef that the earth was once much colder han it is at present. Has any attempt been made to econclle the two theories ?) : Allow me to answer this
uestion, Such an attempt has been made, and, it seems uestion, Such an attempt has been made, and,it seems,
very successfully, by the celebrated geologist Oscar Von Heer. Astronomers tell us that the sun, with the earth
and the other planets, is steadily progresslog in space, movingin a very long perlod around its central body, ery probably the star Alpha Centauri. It is almost and that there are regions of the heavens where there are more celestial bodies in one given space than an-
other, and consequently these regions are warmer from the heat coming forth from the stars, which all are surrounded by glowing gases, as the spectroscope
proves. But in the regions in which they are lessabun. dant, the temperature is colder. O. Von Heer now sug-
eests that formerly, especlally during the eocene period, ne sun (with the earth) was in a region thronged with tars, and therefore the ellmate on earth was warmer
thanit is now; and by gradually progresing to glons, the cllmate became colder and colder, unt1l the lowest temperature was reached in the glacial period, and that it moves now to regions that are warmeragain. it is my opinion that the earth's heat has not affected ita
cllmate since the end of the jurassic period at least and perhapsvery much earller."
J. L. R. says, in answer to F. O. C. H., who not to leak: "I put one on a boller about two month ago, and it does not leak and never will. The patch was
24 boots long and 4 wide, over where the sheets were riv eted. The inside sheet was cracked from one hole to de other for that length. Proceed as 1ollows: Punch the holes to fit well for $\%$ bolts 1 K inches logg, with heads of 1 inch, made soild, and good threads. Put
rounds of candle wick with stiff white lead round each bolt and draw it tight. In putting the bolts in, have the heads square with the boller, anc hold them so ; be sure mer the heads down. After screwing and and screw again, aso hamme the patch after it is screwed tight. Caulk the same as a
new botler. It may leak a little before you get ap steam;
bit at when you get 301 bs
M.Y.R.says that P.and G.G.can make a good
invisible ink, that will appear apon the application of water, by dissolving powdered alum in the juice of a lemon; the density of the ink is procured by the amount
of alum used, but half a teaspoonful to the juice of one lemon is enough.
C. D. S. says to J. H. P., who asks if any with the theory that the earth was once in a molten state : The reason assigned by Benton for the change of of the earth may not have had the same tinclination to he plane of its orbit duing the glactal epoch as at present ; at the earlystage of the earth's existence, vol canicaction must have been much more frequent and acecaused an apheaval at some point of the surface,
accompanied dy a corresponding depression at an oppoite point, which would be sufficient to alter the center of gravity to such an extent as to change the inclina there is no trace of glactal action within the tropics
some hemspphere on which traces of glacial action are found may have occupled a position analogous to the poles of the earth at present. For a full and satisfactory expla
nation of this and many other points, read Benton's eology in Amertca.
S. T. says, in reply to H. C. R., who asks -'The frrst engine I ever handled was on such a boat on bow and stern decks, much as a barn door is hung, with the difference that the battens were of 588 timber and
24 feet long. The apron was 10 feet long. The apron boards were bolted to under stde of timbers, and long Iron hinges were bolted to apron and deck. This method
throws the timbers near each side of thie boat, out of the way of teams ; and a large clevis on deck, looping over end of timbers, secured the apron up when cross
ing. Onnearing shore, the clevis was dropped of, let ting the apron fall on shore. The steering oar had a pin
fast in its balance center, and a hole in the outboard of elther apron to receive it, so that both ends of the boa conla go ahead.
C. S. says
C. S. says that J. H. P. can cure the gapes
in his chicesens by taking a suif horsehair, some elght inches long, making a loop of it, putting it down the chicken's throat, and withdrawipg it quickly, two
three times, for as many days. Thts is a sure cure.
F. A. R. says, in reply to P.'s query as to
yddrogen : Probably your zinc is too pure; sometimes we are compelled to use very pure zinc and sulphuris acld, and then the hydrogen will come ort very slowly,
the pare zinc resisting the action of the sulphuric actd By adding a few drops of chloride of platinum, how. ever,the hydrogen will be produced very quictely, and or purposes as chloride of platinum.
$\underset{\text { asks bow to reverse an engine: First make a mark on }}{\text { W. X. says, in answer to }}$ the side of the eccentric, near the shaft, with a scribe
or small chisel ; make a corresponding mark on the shaft at the same point,then place one point of a pair o calipers on the mark on the shart, and with the othe Then, with acribe mark thls point the eccentric and move it around in the direction in Which the engine is intended to run, until the mark on
the eccentric comes into line with the second mark on the shaft; then make the eccentric fast, and the engine Fill run in the opposite direction. It does not mak

Minerals, etc.-Specimens have been re cived from the following correspondents, and xamined with the results stated

$\underset{\text { A. M. }}{\text { rock. }}$

W. N. L -These two spectmen are pyrites
J. W. Z.-No. 1 is clay fronstone; No. 2, sandston ; No. 4, brown ocher, This might be of service as a plgment.
M. D. W.-This material is shale.
J. P. M.-This is an impure elay.
C.J. H. -The specimen sent is limestone. In answe you can expertment.
G. w. s. - The sample is animpure silicate of alumina G. \& W.-One of these specimens is a fossil bone, and
he other argentiferous galena. The subscription price this Journal is $\$ 3$ per annum, in all parts of the Un d States.
W.R. Jr.
. R. Jr.-Your spectimen is an alloy consisting of
opper and zinc, in other words, brass. It is possible hat a plece of brass may have accidentally fallen int the stam
found.
M. R. asks: 1. How are sewing machines applited ?-O. S. asks : If 2,000 feet of 6 tnch iron pipe is supplied by a pump driven by 24 horse powcr, will it be and
horse power, at the other extremity of the main pipe in throwing water from a hydrant placedin the center?
if so, what?-J. C. C. asks: After being drowned, bow ng will a person lie under water before he will rise salt water? What is the cause of the rising? If it be
gas, what produces it? What is the theory of firing annons over the water where it is supposed that a per son has been drowned?-E. H. K. asks: In the drive
wheel of the locomotive engine, where does natural whelosophy place the fulcrum, the, power and the wetght
respectively?-E. C. B. asks: What dojewellers use for clcaning diamonds? Is it a solution of arsentc or pot
ash ? -J. A. McC. Jr. says: Take a tube, s-16inch in dt ameter, of any length, and cut a roond plece of paste

then cut a round plece of paper of the same size as the end of the tabe in the mouth. and the strongest lung cannot blow the paper off. Will you give me the phil-
osophy of it?-B, says: I see in the Scientific Amzeican that Dr. Brown Séquard advises people to culti thus exercising the left lobe of the brain, teaching it to think. He recommends learning to write with the left hand. Can any of the readers of the Soikntific Ampr
ICAN give directions for the proper holding of the pen and the pr
manshlp?

COMMUNICATIONS RECEIVED.
The Editor of the Scientific American cknowledges, with much pleasure, the re ceipt of original papers and contributions pon the following subjects:
On Steam Boiler Explosions. By W. M. D On the Attraction of the Sun and the Earth By A. D., and by A. F.
On a Problem, etc. By G. W. E
On an Aurora visible in Michigan. By
B. B.

On Preventing Scale in Boilers. By C.L.E Onthe Beech Blight. By D. E. R.
On the Chameleon. By H. A. H. G
On the Philosopher's Hunt. By T. H. C. On a Double Lamb. By J. H. P.
On some Useful Recipes. By C. B. L.
lso enquiries and answers from the follow
ing:
T. O'D.-E.P.J.-J. B.s. H.-G. N.-D.F

Correspondents in different parts of the country ask
Who makes back rests ior holding lumber in a lathe?
Who sells small brick-making machines? Who selle
lath-splitting machines? Whomakes artestan well bor
g machinery ? Makers of the above articles will prob-
promote their intereats by advertietng, in reply, in e somentipio Amprions.
Several correspondents request us to pubilish replites to their enquirles about the patentability of their in.
ventions, etc. Such enquirise will only be answered by letter, and the parties should give their addresses. Correspondents who write to ask the address of certain manufacturers, or where specifled articles are to be had,
liso those haviug goods for sale, or who want to ind artners, should send with their communications an nount sufflecent to cover the cost of publication under evoted to such enquirles.

[OFFICLAL.]

Index of Inventions

Letters Patent of the United Staten
April 7, 1874,
and each bearing that date.

Harness pad plate, G. H. Denis.....
Harness, snap hook for, J. G. Corbet
Harrow, rotary, D. L. Benson
Harvester, W. F. Cochrane..
Harvester, rake, F. F. Cochrane... Hat, E. L. Brad ley.
Hat-blocking machin
Hat-blocking machine, etc............... Turner et
Hcrse power, J. W. Jackson....
Horse power beam, S. W. Melison.
Horseshoe, Dunning \& Halfake
Horseshoe, P. M. Papin..
Hose coupling, C. Callahan..
Hose counling,
Hose nozzle, E. V. Bowen..........
Hydrocarbons, burning, w. Ryner
ice cream freezer, G. P. Herndon.
ce plck and scoop, N. Schroe
Injector, W. Randall......
Kettles, heater for, J. Va
Kalfe scourer, W. R. Hanks
Knob, alloy door, W. Morand...........
Lamp, J. S. Wood.......................
Lamp shade, reflecting, D. G. Fox.
Leather-splitting machine, C. s. Stearn
Life preserver, M. Ormsbee
ock, permutation,
Loom for plle fabrics, E. K. Davis.
umber cal
Matches, manufacture of safety, L. o. P. Meye
Matresur, H. E Smith
Measure, extension, J. T. Sherwin
Ced ical compound, \mathbf{H}. W. Epperly
Mill, pug, G. G. E. J. J. Heniy.
Milistone dress, K. Schwab...........
Mold ing machne, w. C. Marged ant.
Mortising machine, D. L. Gibbs...........
Mortising machines, table for, C. Bryant
otion, converting, F.
Nose jewel and animal marker, M. Kingman
nut lock, C R R Watrous
Nat lock, E. B. Wingate.
Ordnance, breech-loading, W. W. Hubbel
Organ attachment, parlor, H. Q. Staple
Organ attachment, parlor, H. Q. Stapl
Organ tremolo motor, A. Hitchcock..
Overshoes, strap fastener for, W.C. C. D.
Pad lock, combination, W. F. Rutter....
Pail, ralls, L. Frink
Paper, etc, hard atzing Smith \& Flood
Paper box, G. H. Vickery.
Paper, hard sizing, H. Karcheski
aper in the web, coloring, \mathbf{x}. Karcheski
Paper water-repellent, rendering, X. Karehe..... arasol handle, A. Lyon........ Photograph retouching machine, A. S. Johnson. Photographtc varnish, P. H. Dean. Picture frame clamp, Banks et al
ins, maklng wooden, Morgan et

Planing machine, w. C. Marged ant.
low, H. Jones.
Plow, F. J. Pettijean
Pow mold boards, trer "ng chilled, J. Olli...................
Power, hand and foot, J.............
Press, cotton, W. Rufll
Press, hay and cotton, r. H. Beveridge
Press, hay and cotton, G. Mostel
Pulleys, hanging loose, Lambert \& Hawk
Purifier, middlings, w. Dantels.
purifer, middilings, O. M. Mors
Ralifoad horse hay, c. Ederc
Reflector, A. Wilhelm.
Reffector. ventilating, S.
Rein hold er, R. P. Minshal Roof, fireproof Mansard, M.
Roofng tile, J. F. Graessle
awing machine, W. Heay
Scoop and sifter, flour, F. M. Pou
Seeding machine. J. Gallo way............
wing machine fan A. Clap
Sewing machine, table, and cabinet, H. R. Tra
shoe lacer, S. Jones.
Shoemsker's burnishing tool, E. T. Ducharme
Shoe nall extractor, Ged, Winslow \& Regers.
Shovel, Are, J. B. Firth
Sink \&, etc., outlet for, J.
Snow plow, J. M. Smith..
Sounding boards, treating,J. H. Bauer
speeder for dra wing roving, etc., T. Mayor.
Spring, door, T. C. Hou
Stamerfor potatoes, etc.,portable, McDonald et
Stocking supports, clasp for, E. Halses
tone, marbling, R. P. Sause
Stove, T. Murphy
Stove, base burning, J. Q.
Stove, coal, S. H. La Rue.
Stove, grate, T. Seari..................
Stove pipe shelf, H. W. Campbell.
Stove platform, H. L. Palmer.
Stove pollsh, w. T. Gray...........................
Sugar, etc., apparatus for drying, c. H. Hersey
Suspenders, J. Dunning...
Table, Ironing, w. H. Fint
Table, Ironing, P. O'Thayne (r).
Telegraph sounder, H. Splitdor
Thill coupling, W. W. And erson

Ticket box. conductor's, Pritchard \& A ustin.
Time record er, watchman's, F. H. Plaget....... Time recorder, watchman's, F. H. Plaget.
Top, J. Spencer...................... y, wind musical instrume
Trap, plgeon, T. H. Marsh....
Tread le for machtnery, F. Trea
Tree protector, D. Hitchcock...
Tubtng, machine for rolling, E
Tubing, machine for rolling, H. W. Hayden
Umbrella cases, fling rings to, J. C. Hurcem
Valve, balanced sild e, J. A. Touhill.
Valve, stop, C. F. Murdock
Vat, cheese, W. H. Obitt
Vat. fermenting, A. Langellie
Vehicle hub, J. E. Harriugton
Vehicle spring, O.Jenness.
Veloctped e, F. C. Schartr.
Wagon end gate fastening, D. B. Dorsey Wall pocket and calend ar, c. w. Bryan.
Washing machine, H. Doolittle.
Washstand, portable, M.
Water closet, P. A. Riley
Water closet, P. A. Riley............
Wedges, making, Morgan \& Foster
Wheels, mold for casting, J. Everingbam
Windmill, F. M. Goodhue
Windmill,T. C. McChesney
Windmill, C. Stewart.
Wire pollshing machine, c. Smith
APPLICATIONS FOR EXTENSION.
Applications have been dulyfled and are now pend ing
for the extension of the following Letters Patent. Hear for the extension of the following Letters Patent. Hear
ings upon the respective applicatious are appointed for the days hereinafter mentioned:
29,085.-Centrer Board Vrbsel.- C. E. Ketchum et al
29,126.-Revolving Fibe Arm.-A. J. Gibson. June 24.
29,200.-Strering Vissels.-F. E. Stckels. July 1. 29,200.-Sterring Vibsirls.-F. E. Stckele.
29,238.-Gridiron.-J.s. Brooks. July 8 .
29,409,-RALiond EXTENSIONS GRANTED. 27,781.-Clotirs Wrinarr.-E. Dickerman 27,809.-Wasing Machine.- J. Johnson.
27,821.-Extension LadDer.-G. B. Mickel et al. 27,899.-StREET SWERPING MAOBINE.-R. A. Smith 27,816.-Belting.-H. Underwood.
27,852.-HARvestin Machine.-B. F. Witt. 27,855.-NIGHT LIGHT Prot
27,860 .-Loon -J. C. Cooke.

DISCLAIMERS

2,781.-Clothes Whinger.-E. Dickerman
27,832.-HARVFSTER.-L. C. Reese.
TRADE MARKS REGISTERED. 1,008.-Bobbins.-J. H. Bullard, Chicopee Falls, Ma
1,709.-Whisky.-Harthill \& Co., Louisville, Ky.
,
 1,712.-CANNED OYstris.-H. si. Rowe \& Co., Balt., Md.
1.713.-PERFUMERY, ETc.-B. F. Ulmer, Savannah, Gs. 1,714.-Fertilizers.-Walton \& Co., Wilmington, Del.
1,715.-Stoves.-Western Stove M'f'g Co., St. Louls, M

DESIGNS PATENTED.
 7,355.-LOUNGE BACES.-H. S. Carter, Chicago, 111.
7,356. - BIrd CAGA. - G. R. Obborn et al., New York city Id en, Conn.
$7,359 .-C E I T E R$
Pires.- H. Berger, New York city. , s60.-ARE Holdrr.--s. H. Cate, Watertown, Mass. 7,361.-SPOon Handurs, mto.-J. H. Galaway, N. Y.city
$7,362 .-$ MAIL Box Frorr. - W.Gorman, New Britain,Con

On fillng anch appitication for a Patent (17...............................
On tasung ere ortarinal Patant.,
On appeal to to mitesioner of Patents.
On application for elicaue.............
On granting
On fillng a Discialmer...
On an application for Design ($8 \nless /$ years
On application for Destgn (7 years)..
On application for Design (14 years).

CANADIAN PATENTS

List of Patents Granted in Canada APRIL 8 to April 10, 1874.
3,280.-B. G. Martin, New Tork city, U. S. Improve-

${ }_{8,1874 \text { ments }}$

3,281.- H. Cobley, Toronto, Ont. Improvements on boots
and shoes, called "Cobley's Antliydric Boots and
Shoes." A pril 8,1874 .
s,882.-Ed ward Beanes, Toronto, Ont. Extension o
patent No. 311. A process for improvements in brew ing, called "Improvements in Brewing.". April 10, 1874 3.283.-D. N. B. Coffin, the Younger, T. H. Johnston,
and B. Woodward, Boston, Middlesex count5, Mass., U. S. Extension of a provincial patent for improv ments in capstans and wind lasses. April 8, 1874.
284 -A. Pritz, Dayton, Montgomery county, \mathbf{O}. Improvements on car couplings, called "The Prit Automatic Car Coupling." April 10, 1874
used in the process of sensitizing glass or other plates for photographic purposes, called "Inglis' Sensitizing Fra:ne." A pril 10, 187.
226.-J. A. Tripper and A. R. Glles, Ottawa, Ont. Im-
provements on a machine for washing clothes, called "The Canad lan Washer." Aprll 10,1874 .
3,287.-D. B. Waggener and I. H. Breed, Philadelphia
Philad elphia county, Pa., U. S. Improvement on fire extlingulisher called"The Triumph Fire Extingulgher April 10, 1874.
Improvements on circularsaws, called "Hale's Circula Saw." April 10, 1874.
Improvemans, Brockport, Munroe county, N. Y., U.S Improvements on circular gang sawing machine 10, 1874.
3, 290 I.
290.-I. Newton, Cleveland, Cuyahoga county, O. Im-
provements on carriage bolta, called "Newton's Im-
3,291.-C. H. Thurston, Marlborough, N. H. Useful in-
vention having reference to woden knobs, closet
pins, or handles, called " The Thurston Knob." April
10, 1874.
3,292.-R. Smallwood, Charlottetown, Queen's county, $\mathrm{G}_{\text {Rednct }}^{\text {ENUINE CHESTER EMERY. }}$

 ,292.-R. Smallwood, Charlottetown, Queen's
P. E. Island. Improvements on shingle sawing ma-
chines, called "Smallwood's Lever Feed for Shingle chines, called "Smallwood's Lever Feed for Shingle Sawing Machines." April 10, 1874.
agitator to be used in pigeon and bird shooting from
the trap, called "Marsh's Agitator." April 10,1874 .
gluvertisements.
Back Page
lnside Page
81.00 a line.
75 cents a line.

Engravings may head advertisements at the same rate per
line, by measurement, as the letter press. Advertisements morning to appear in next issue.

Onlya Pennya Picture,
 and all the valuable reading matter

Such the fact in regrd to the ill gitrated Anualo of

NELSON \& PHILLIPS,
$\frac{805 \text { Broadway, New York. }}{\text { M OORE'S REVOLVING BLADE SCROLL }}$
MORE'S REVOLVING BLADE SCROLL
Crrculawing Cachine-The best fn the world. Send for
CRAS. D. MOORE, Agent, Lawrence, Ma Bs.

HEMP MACHINE

MONSON'S PATENT BIT.

PATENTS

The publishers of the Soientific Amprioan have cted as solicitors of patents in the United States and
oretgn countries for moore than one quarters of a cen sury. More than firty thousand inventors have
avalled themselves of thetr services. All patents seavailed themselves of their services. All patents se-
cured through this agency recelve a special notice in the
Chasmificic AMmRIOAN,
chasers the patent.
Inventions examined, and advice as to patentablity free Patents obtained in the best manner, and with as iltde delay as possible.
led in the Patent oflce at Spectal examinations as to the notentability of inventons made, at the Patent Office, on recelpt of model or port, 85 . Trade M
protection to manufacturers and merchants
country and abroad are prepared at this offlce.
ountry and abroad are prepared at thls offlce.
Destgn Patents, for protecting artists and destgners
o any new ornamental work, are quickly and cheaply btained through this offlce.
Copyrights obtained.
Forelgn Patents are sollcited in all countries where
patent laws exist. Pamphlets, containing the cost and
full particulars, malled on application.
Canada Patents.-Canads is one of the best countries
or patents. The cost depends upon the length of time or which a patent is desired. Full particulars by mail on application.
We shall be
heir models and draw confer with inventors, examine their models and drawings, and ad vise with them as to
obtaining patents without consultation fee. For every bind of information pertaining to patents, at home or broad.
Send for pamphlet, 110 pages, containing
directions for obtaining patents. Address
MUNN \& CO
MUNN \& CO.,
Publishers SCIENTIFIC AMERICAN,
3y Park Row, N. \mathbf{Y}.
branot orfion-Corner Fand 7th Street

GREAT BARGAIN.

Stap File and Binder,
 ADAPTED FOR THE SCIENTIFIC AMERICAN AND OTHER ILLUSTRATED PAPERS.

 This File and Binder consists simply of stift covers in across the back at the top and bottom of the fnitde, be tween which are stretched stout cords, for holding sixor twelve months'numbers of a weekly periocical, a

The File is used by merely opening a paper to its cen
tral fold, and slipping one slde under the first vacant er of the fold.
For the conventence of our subscribers, we have had a
supply of Files constructed as above, holding ifty-two the side.
price at this oftice............................... $\$ 1.25$

WOOD WORKING MACHINERY.
 E. M. MAYO'S PAT. BOLT CUTTER.

TVVENTORS, CAPITALISTS, \& M'F'RS,

THE SOUN GAS ILLDNIINATOR.
SIMPLE, DU RA BLE, AND CHEAP 1 ,
Can be applied to auy gas burner in u ue, thereby pro
cucing one third increase in the light by making a more

MACHTNPRY

BAIRD'S goous
 For pracical Men.

 HENRY CAREY BAIRD, 406 INDDSTRIAL PUBLISHER
Todd \& Rafferty Machine Co.

PROCTOR'S FAREWELL Lectures on Astronomy.
 BROWN-SENUUARD'S Lectures on the Nerves.

THE TRIBUNE EXTRA N0. 15.
 "SCHLIEMANN DISCOVERIES ON THE SITE OF ANCIENT TROY."

JOHN G. ROLLINS $\boldsymbol{\&}$ CO., Ten years established in London, and extenG,
 NEXT JULY, A WELL KNOWN FIRM
 THE FIFTH TEXAS STATE FAIR MACHINERY, MOSTLY NEW.

 Superior to any modifi cation of the trip cation of the trip ham- mer. Simple, Efficient and Cheap.
 (18) Send for Circu-
 Address
 W.L. Clase C Co. Nerty St., Now York

WOOD-WORKING MACHINEXY,

HAS NO EQUAL FOR VARIETY, QUALITY, AND ECONOMY OF ITS WORK

 INING AND M ATCHING MACHINES, and other Wood-working Machinery Sond for Oatalogue and Prioe-List. BENTEL, MARGEDANT \& CO., Hamilton, Ohio.
 Pamphlet of one hundred pages, contaning ints of s,000
new ipapers, and estimatee aiowing cost of advertiging.
MAGNETS-Permanent Steel Magnets

 WOODBORY'S PATENT
Planing and Matching

BLAKE'S PATENT Stone and Ore Breaker

1874 and

1875 Catalogues Free.

F \$x0. POWER JIG SAW-God article
 Hossers national

WOODWARD'S ${ }^{\text {1,000 Wozkirad DRA wiras }}$ NATIONAL ARCHITECT Thant Dullew, post MonckTon' MARCETONR A ATIINAL ORANGE JUDD Co.. 245 Broadway, N. A Set of 12 Steel Lathe Dogs,

RICHARDSON, MERLAM \boldsymbol{A} CO.

hines Bnoke and wod Trning Lathes, and Variou
onher mind of wood-working Machiner, Catalogue

WORKING CLASS $\begin{gathered}\text { Male or Female, 880a }\end{gathered}$
 TOR SALE, CHEAP-Two Steam Pipe

SALAMANDER WORKS

$\$ 5$: $\$ 20$ per day at home. Terms Free. Adareese Portable stean enaines combin

 TRON BRIDGES-Clarke, Refves \& Co.

Machinery,

 Sturrtevant Blowers. Cold Rolled Shafting.

Niagara Steam Pump. CHAS. B. HARDICE,
$\mathrm{H}^{\mathrm{AND} \text { S AW }}$ MILL SELF-FEEDING.Hol man an work of ${ }^{3}$ men Niagara Steam Pump. $\mathbf{W}^{\text {OODPW. WORKING }}$ MACHINERY GEN.
 FoR SALEE-Four Engine Lathes, 36 in inche

 Milling Machines.

Fif BABEITTM METAL.

To Electro-Platers.

Tik Union Iron Mills, Pitusburgh, P^{2}

FOR SALE-A large Root Pressure Blower,
 1882. SCHENCK'S PATENT. 1871
WOODWORTH PLANERS
 AL KINDS OF IRON AND STEEL DROP
P. BIAISDEII \& CO.

 $\mathbf{P}^{\text {ISTON guided }}$ prom both ends als all working M ASON'S PATTT FRICTION CLUTCHES

STEPTOE, McFARLAN \& CO., Nos. 212 to
 TEW \& IMPROVED PATTERNS.-MA.
 Andrew's Patents.

 MONEY-WAGES.

 Grand Industrial Exhibition, MECHANICS INSTITUTE Opening on August 18th, 1874.

PAT. INTERLOCKING GRATE BARS

恐dwextisemerts.

Manufacturers, Syracuse, N. Y. BORING MILL.
 $\mathrm{N}_{\text {EAR }}^{\mathrm{EARL}} 1000 \mathrm{NOW}$ IN USEL-BUF.

 TRENTON, N.J.

PRATT'S

ASTRAL

01 I.

Grant's Lightring Scerem Plate.

BUERK'S WATCHMAN'S TIME DE

PATENT FOR SALE.

$\$ 120000^{- \text {(if closed before }}$ June 1) will buy the Patent (and qill

F. A. HULL \& CO.

STEAM VARTETY PS. SHOP FOR \& LUSTRANELCATALOCUE. HAMILTON,OHIO.

 ELECTRIC \& VAPOR CHAIR.
 one Beat
 Machinery, Crane Bros. Mfg. Co, chicago.

BOILERS AND PIPES COVERED

AsBESTOS FBLTING COMPANY,

J. $\begin{gathered}\text { G. ROGERS \& CO, Madison, Ind., are } \\ \text { reme }\end{gathered}$

 ma | Ond |
| :---: |
| Ond |
| Sen |

STEAM BOILER AID PIPR covering
 NEANTEA STEASHI BOLLDRRS. PENN WORKS,

CASEEFTOS RODFING

POKILLAND CEMENT,
 THE HEALD \& SISCO Patent Centrifugal Pumps,

I
 Mill Furnishing Worlss

Portland Cement

REMODAL

Working Models

E NGINES AND BIILERS, New and Soc

Machinists' TOOLS, OFALL KINDS, N.T.Steam Pngine to. 98 Chambers St.

R. A. Vervalen's Brid Madiines,

 MACHTNSTS OOLS
 HOUSTON'S PATENT
TURBINE WATER WHEEL.

The best Oils are the cheapest in the long run.
-
E. H. KELLOGG'S

EMEIIE and Spindic oils
Acknowledge the Fact.

They are really good substitutes for pare sperm and tallow ons, and as free from gum or offensive odor as handsome and endure as cold temperature as
Winter sperm ofl, while costing considerably less.
H. KELLOGG'S EXTRA SPINDLE OIL..... 8
H. KELLOGG'S SPINDLE OIL..... 1.20
H. KELLOGG'S EXTRA ENGINE OIL..... 1.00
H. KELLOGG'S ENGINE OIL..... 1.0
H. KELLOGZ'S EXTRA SIGNAL OIL...... 1.25
H. KELLOGG'S
H. KELLOGG'S SPERM ENGINL OIL...... 1.00
H. KELLOGG'S SPERM SNGINE OLL.... 1.2
H. KELLOGG'S TALLOW ENGINE OIL..... 1.10
H. KELLOGG'S TALLOW SPINDLE OIL... 1.0

ㄹ. H. Kellogg,
No. 17 Cedar St., New York. We keep a general stock of Lard, Whale, Fish, Paraffin and West Virginia Black Olls, and can furnish low grades of machinery oll, equally as good as can be had
elsewhere at the prices charged.
E. H. K.

SUPER-FPATERS

Pyrometers. $\begin{gathered}\text { For tet titig orene, Boll. } \\ \text { er fues, Blas furnaces, }\end{gathered}$

DRAWING INST'S.

ILLUSTRATED PRICED MANUALS,

 FOR SALE-One Grice \& Longs Dummy

 B automattc. Territory for eale. Box 610 . Baltimore

TMERODE

