

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

NEW AND GIGANTIC TELESCOPE

Among the many ideas which have been elicited by the discussion in these columns regarding a gigantic or " million dollar" telescope, we have recently had submitted to our examination one which seems to us quite novel, ingenious, and, although untried, not unpractical. It is a scheme for a huge instrument, to be built on either the Gregorian or Cassegrainian system, in which the image is first received on a large parabolic mirror located in a position diametrically opposite to the objective in a refracting telescope, thence reflected back to a secondary mirror, which, in accordance with the respective systems, is either concave or convex, and by the last re-reflected to the eyepiece, the tube of which passes through an orifice in the center of the large glass. It is hardly requisite to explain the immense labor and, in fact, almost insuperable difficulties which would be encountered in constructing a reflector of the proposed size-ten or fifteen feet in diameter-of metal, and mounting the same. The great mirror in the telescope in Melbourne, Australia, though but 3.8 feet in diameter and weighing 3,498 pounds, required 1,270 hours of continuous labor to bring it into the last polishing stage, while its adjustment and mounting exacted the
nicest engineering skill. In brief, it may be safely asserted the exact form necessary. But little labor, comparatively nicest engineering skill. In brief, it may be safely asserte that a metallic mirror, of the large size above noted. suppos-
ing it could be successfully constructed, would, from its great weight but far more on account of its consequent flexure, be practically useless.
Mr. Daniel C. Chapman, of this city, who is the originator of the plan we are about to describe, suggests both a mode of making a mirror of light weight, and also a method of supporting the same. The reflector, he says, may be constructed of glass. A mold of clay, metal, or cement, of the required shape, is carefully formed and placed in a suitable furnace, cavity upward. Over the latter a huge plate of glass is disposed, and the heat applied. At a certain temperature, the glass begins to soften, and in such state may be bent fitted into the mold, and subsequently annealed. The whole is then removed and placed on a plane. The glass is taken from its bed, disposed convex side up, and a backing of cement or plaster, the composition of which is previously determined by experiment so that it shall have the same coefficient of expansion as the glass, is applied, to several inch. es in thickness. The mirror is next inverted, placed on a turning table, and carefully ground or finished within, into
speaking, will here be required, as an approximate or very nearly true curve will, it is believed, be taken by the glass in fitting itself to the mold. The reflecting face is, lastly, silvered by Dr. Draper's process, a solution of Rochelle salts and nitrate of silver being applied, which very quick y deposits a fine uniform metallic surface. It will be noted that the inventor thus obtains a reflector of light plaster and glass, the weight of which is necessarily quite mall.
Next, for its suspension, and this will be rendered clear by the large engraving on our front page: On the rear of the plaster backing are made a number of projections, ar ranged with sockets to receive the ends of any number of braces. The latier are of wood, strong and well seasoned and covered with some preserving material. These, ex tending from various points on the back, meet at the cen ter of a huge copper sphere, which incloses the entire ap paratus except the mirror, and then, intersecting, spread again to abut against the interior periphery of the globe. The mode of arranging these stages is, of course, a matte of engineering detail, and will depend greatly upon locsl

NEW AND GIGANTIC TELESCOPE. DESIGNED BY DANIEL C. CHAPMAN.
circumstances. The shell of the sphere comes, as shown in the engraving, just to the edge of the mirror, but has nothing to do with its support, the braces being solely for this purpose. The secondary mirror is held by two stays,
which extend from the circumference of the reflector and which extend from the circumference of the reflector and meet at a calculated distance from the same. It is not necessary that the reflector be placed at the surface of the globe, but it may be placed at or near the center, leaving an opening of the same size in the globe, with perpendicular sides, thus requiring little or no counterpoise. The standards and stays holding the small mirror may be attached to the extreme external surface of the globe, thus giving a larger base and greater steadiness. The stays toward the poles are so ar-
ranged that the lower one is detached when nearing the horizon, in case it shoull be desirable. By this method there is nothing, as far as we can now see, to prevent the successful constructing and using of a telescope of very large size. Through the center of the large glass is made an opening, and in this is a telescope tube, suitably jointed and terminating in an eyepiece within the globeat the observer's seat. The situation of the latter is clearly shown in the illustration, and it is suitably supported so as to be always vertical. By this arrangement the observer is constantly located in the right position; and by placing a partition of some non-con ducting material between him and the backing of the reflector, so as to leave an intermediate space of four or five inches, a warm room to work in may be gained, and a means of keeping the braces dry provided.
The great sphere pivots in a ring, the axis of which is inclined to point to the pole, and is pivoted at one side in the cap of a single heavy pier. Below the globe is a vault filled cap of a single heavy pier. Below the globe is a vault filled
with water or other liquid, in which it floats and from which with water or other liquid, in which it floats and from which
it receives its principal support. It is evident that the moit receives its principal support. It is evident that the mo-
tion of the apparatus will thus be susceptible of easy regulation, and may be effected by simple mechanical appliances arranged with counterpoises and governed by the observer. As our object is not to enter into the minor details of this plan, but rather to exhibit the idea upon which it is based, further explanation is deemed unnecessary.
The inventor thinks that a mirror of fifteen feet diameter may be constructed and mounted as we have described. As compared with a refracting telescope with an objective of correspondi:g size, and a focal length of 200 feet, the refractor would give a sun picture 20 inches in diameter; the reflector, having 100 feet focal length, would show an image 10 inches in similar dimension. In point of quantity of light, compared with Herschel's reflector, which was nearly five feet in diameter, the focal distance being still 100 feet, a 15 foot mirror would gather nearly 14 times as much. For photography, a great reflecting telescope could not be advantageously employed, as it would fail to give sufficiently fine definition of the object; but for spectroscopic work, it would be very useful and especially valuable for heat investigabe very useful and especially valuable for heat investiga-
tions with the thermopile. As a searcher for faint comets tions with the thermopile. As a searcher for faint comets
and double stars, from the large amount of light received, it would lead to results of great importance, and enable us to examine and resolve nebule before which the highest mag. nifying power now existing fails.

Srientifir ghmorian.

MUNN \& CO., Editors and Proprietors. published weerly at
NO. 37 PARK ROW, NEW YORK.
O. D. MUNN. A.E. BEACH.

VOLUME XXX, No. 11. [NEw SERIEs.] Twenty-ninth Year.
NEW YORK, SATURDAY, MARCH 14, 1874.

C	
${ }_{\text {Answers }}^{\text {Atraction }}$	
Butter and onster pall, improved* Canals, stean on the	
Caveat rules. enforcement of un.	
Chill exposithon, the...............Currant washer,improxed.	
Fosil man, new $\begin{gathered}\text { Hartiord Sieam Boier Inspection }\end{gathered}$	
Inventuns	

Lake titicaca.

This is the most singular and interesting lake in the world. Situated on the crest of the Andes, it is the highest large body of fresh water; and as concurrent traditions point to ic as the spot where Manco Capac, the first Inca, appeared and woke the aboriginal tribes from their long sleep of barbarism and ignorance, it is the historic center of South America. Humboldt called it the theater of the earlient American civilization. On an island within it are the imAmerican civilization. On an island within it are the im-
posing ruins of the Temple of the Sun, and all around it are
monuments which attest the skill and magnificence of the Incas. There are also, as at Tiahuanaco and Silustani, the remains of burial towers and palaces, which antedate the crusades, and are therefore pre-incarial.
Lake Titicaca is about the size of our Ontario, shallow on the west and north, deep towards the east and south. The eastern or Bolivian shore, being backed by the lofty range of Sorata, is very high and precipitous. The lake never freezes ver, although the temperature of Puno is often 18° at sun rise. Two little steamers of 100 tuns each do a trifling busi-
ness. Steam is generated by llama dung, the only fuel of ness. Steam is generated by llama dung, the only fuel of
the country; for there are no trees within 150 miles. The stemers actually cost their weight in silver : for their transportation (in pieces) from the coast cost as much as the original price. A steamboat company has just asked from Bolivia the exclusive privilege of navigating Titicaca and the Rio Desaguadero to Lago Pampa, with a guaranty of six per cent cost on the capital and a share in all new mines discovered.
Professor Orton, the latest traveler in that region, calls ttention to the fact that Lake Titicaca is not so high as usually given in geographical works by about 300 feet. Its true attribute is 12,493 feet, and in the dry season it is four
feet less. This fact has been revealed by the consecutive feet less. This fact has been revealed by the consecutive levelings made in building the Arequipa railway just finisled, which reaches from the Pacific to Lake Titicaca. The road rises from the sea to Arequipa, 7,550 feet; thence to the summit, 14,660 feet ; and then descends over 2,000 feet, to Puno on the west shore of the lake, a distance by the track of 325 miles from the ocean. Pentlandt's estimates of Sorata, Illimani, and other peaks of the Andes, having started from the Titicaca level as a base line, must come down full 300

swindling patent sellers.

We have received of late a great number of letters calling our attention to the rapid growth and extension of the frauds perpetrated upon inventors by inducing the latter to forward sums of money, as pretended fees, to certain agents who pretend to sell patent rights. Some time ago, we had occasion to show up these knaves, and warned our readers to beware of them, mentioning an instance of some scamps in the West receiving not only money but models, the latter of which they either left in the express office or behind them in a loft when they decamped from the town, while they, of course, applied the funds to their own benefit. We are led once more to revert to the subject by the reception of several queries regarding a "Mississippi Valley Manufacturing Company," doing business in Vicksburgh, Miss. One correspondent, among the many, favors us with a copy of the letter re ent, among the many, favors us with a
ceived by him, which reads as follows:
(Handsome letter head of buildings, etc)
Mississippi Valley Manufacturing Co.
January $13,1874$.
Dear Sir:-Will you, upon receipt of $\$ 1,200$ cash, allow us to have your coupling for gas and water mains manufactured to supply the trade of the South and West, for the term of two years upon a royalty of $\$ 5.00$ per dozen made? If you desire to dispose of your invention in this manner, send $\$ 5.00$ to pay part of the attorney's fees for examining title, etc. Upon receipt of same, we will make the necessary inquiries a the Patent Office, and also have your invention examined before a board of competent judges, when, if everything proves perfectly satisfactory, we will remit the anount by draft on any bank you name, the same to be subject to your order upon the receipt by us of the necessary transfer. Our arrangement will not prevent you from selling any State you
may receive offers for. Comply at once with our terms, if may receive offers for. Comply at once with o
you wish us to take hold of it. Yours truly,

Miss. Manufacturing Co.
This swindle is so very palpable that one is almost at a loss to understand how any person can be so foolish as to be deceived by it; and yet another correspondent, who has interviewed an official at Vicksburgh regarding the subject, says that large numbers of letters are constantly sent to the above address. Inquiries, made as to the business location
of the recipients of these missives, revealed a little room in a "d decayed part of the city," the whole contents of which would not exceed twenty dollars in value. The parties are young men who are leading a fast and dissolute life on the money thus fraudulently obtained. The inventor rarely receives an answer to his letter encloging the funds. The Vicksburgh Herald has also investigated the matter, and remarks: "We have ouly to say, for the protection of people everywhere, that we have never heard of any such company and that it exists only in the imagination of the swindlers who are trying to defraud the public." So much for the Mississippi Valley Manufacturing Company. Still another correspondent asks for information concerning the Western Michigan Patent Agency, Grand Rapids, Mich. This very enterprising firm wants only ten dollars and a model, to
make the inventor rich. The writers ask if these gentry are related to the scoundrels who were located in Albion, Mich.,
name.
It is curious to note with what alacrity people will risk good money for the chances of a large profit. The same feeling which induces the ignorant to stakefunds in lotteries, where the probabilities are all against them, impels others to transmit their cash to persons of whom they know nothing in the hope of thus securing some enormous gain. It is really valuable as an infallible rulasosed of privately and readily for its full worth, and the owner of the right, fally appreciating this fact, is never beguiled iy such dazzling
baits as are offered by these owindling agencies. We are perfectly well aware that it is about as hard to show an inand value, as to convince a mother that her baby is ugly, and both individuals usually resent the imputation in about the same manner. It is these very inventors, however, who, having exhausted every plan to dispose of their rights, snap at the allurements artfully held out to them, and of course are fleeced. The world gives little sympathy, for it laughs at their verdancy in being so readily deceived; but when the trials, the labor, and expense, which these men incur to carry out their cherished ideas, be reflected upon, the subject becomes more one for pity than for derision.
We would once more warn the people against not only the attempts to defraud, above exposed, but against every other they may receive that even appears of similar nature, par ticularly against specious parties who, for a certain sum, agree to sell a patent and advertise it in some patent journal or other obscure circular or sheet. It is very rarely that these men ever effect a sale; and if they be swindlers, they dare not announce the fact, if they have done so. Indeed, if any of our readers desire to prove for themselves the genu ineness of the offers of their correspondents, they have only to write to the latter for the names of reputable persons whose patents have been sold through their agency; and if any be returned personal investigation will soon determine the question of authenticity.

FAILURE OF THE NEW TELEGRAPH LINE BETWEEN

 UROPE AND AMERICA.We are sorry to know that the new enterprise which was intended to secure the opening of telegraphic communication between the old and new worlds at reduced prices, has according to the latest advices from Iondon, become a fail ure. The money paid in has been returned to the stockholders. The title of the organization is the Light Cable Telegraph Company, and they have for some time been engaged in winding the wire preparatory to sinking an ocean cable from Great Britain to our coast of New Hampshire, vid the Azores, Newfoundland, and Nova Scotia. The charge for messages was to have been 50 cents a word, the resent rates being one dollar per word.
The capital of the company was $\$ 2,000,000$. The cable was to ave been much lighter and cheaper than any ocean cable of equal length. The conducting wires were protected by a simple covering of tarred Manilla hemp, which has been found by experience to be almost indestructible in salt water The weight of the new cable was only a little over 700 lbs . to the mile, or 150 lbs. per mile in water. Messrs. Mitchell \& Co., Newcastle, Eng., have lately completed a new steamer of 5,000 tuns burden, specially intended to receive and sub merge the new cable, the laying of which was expected to commence about the middle of June next.
The engineer and electrician was Mr. Robert Sabine. Sir Samuel Canning was the consulting engineer. We still hope that a reorganization mayd be effected on a basis that will insure the laying of the cable.

RELATIVE RIGHTS OF EMPLOYERS AND WORKMEN I

RESPECT TO INVENTIONS

If there were likely to be any permanency or reliability in the official decisions of the Patent Office, the case of inter ference which we publish herewith,on another page, would be of interest and value. It exhibits in a tolerably clear light the relative rights of employers and employees in respect to the ownership of inventions. The doctrine now held by the Patent Office is that the inventor has the right to avail himself of the mechanical skill of those whom he employs to put his invention into practical form. If the inventor gives general directions to his workman to produce a certain machine, the combination of parts or arrangement so produced belongs exclusively to the inventor, and the workman has no patentable right therein. This should be distinctly under stood and remembered by workmen. But when a workman himself suggests and invents an improvement, without previous direction from his employer, the invention belongs to the workman, and the employer has no claim thereon, although the device may have been made in the shop of the employer, with his tools, and during time belonging to him. This should be distinctly understood and remembered by employers.

THE OIL DEPOSITS OF THE GREAT WEST.
About eight hundred miles west of Omaha the line of the Union Pacific Railroad crosses Green River,and the approach to the river is for a considerable distance through a cutting, of from 20 to 40 feet in depth, made in rock. During the construction of the road, some workmen piled together a few ieces of the excavated rock as a protection for a dinner fire and soon observed that the stone itself ignited. The place thereafter became known as Burning Stone Cut.
The general superintendent of the road, Mr. T. E. Sickels, has caused analyses and experiments to be made with this substance, which proves to be a shale rock, rich in mineral oils, which may be produced by distillation in abundant quantities, say thirty five gallons to the tun of rock, at the cost of a few cents only per gallon. The oil thus obtained is of excellent quality and comes orer in two or more grades one suitable for burning and one for lubrication. Its abundance and cheapness of production is such as to render it cerain that the markets of the Pacific coast, and all places weat of the Mississippi, will erelong be wholly supplied from these deposits. The oil can be distilled, delivered, and sold at the points indicated, at cheaper rates than the Pennsylvania and West Virginia oils can be transported to the Mississippi.
The deposits in question are supposed to cover an area of
broad. They overlie the immense coal beds found in that are supposed to have originated by the absorption of oil by sand, the oil having been expelled from the ancient vegetable growths by heat and pressure, during the original process of coal formation.
These rich oil shales may be loaded directly into the cars from their native ledges on each side of the track of the existing railway, and their possession must ultimately yield an immense revenue to the company.

ENFORCEMENT OF UNAUTHORIZED CAVEAT RULES.
It has heretofore been the practice of the Patent Office to permit the widest liberty to inventors in the matter of their caveat papers. A photograph, a pen and ink sketch, a drawing of almost any kind, has sufficed, and this freedom has always been a matter of much satisfaction to persons en gaged in studying and working out inventions.
In the other departments of the Patent Office, the inventor has been subjected to trouble and expense by the introduction of new rules, or the addition of new forms and ceremonies in the obtaining of patents. The one oasis in the Patent Office desert has been the careat bureau. Here the inventor has almays felt that restrictions were to a great extent removed. He was at liberty to block out his papers in the crudest style if he pleased, and, by payment of ten dollars, have them stuffed away into the official pigeon holes, taking an official receipt therefor. He has always known that his chances of receiving official notice of competing applications or patents were improved by having his caveat papers prepared in a clear and careful manner. Nevertheless, in very many cases, he prefers to describe his invention in his own style in the caveat, even if the officials make his lack of time an excuse for their neglect to send him the notice. Even without the notice, he has found the free caveat facili ties, heretofore afforded by the Patent Office, to be a real convenience and comfort.
But the Commissioner of Patents has concluded to deprive the inventor of these satisfactions by requiring that, hereafter, all drawings for caveats shall be done according to the red tape rule. Photographs and ambrotypes (which, by the way, are the cheapest, most convenient and best modes of clearly reproducing a new thing) are now excluded from caveats; so are the ordinary pen and ink and pencil drawings, done on common foolscap paper, uniform with the specification. Inventors who wish to file caveats must now furnish drawings or tracings done on the official sizes and separate from the specifications. Few inventors can do this. They must in future employ agents to make special draw ings for them, and pay special charges therefor, thus considerably increasing the expenses of the caveat.
We think this enforcement of rules is entirely unnecessary. It is doubtless a convenience to the clerk who files the caveats, and probably the papers look a little better to the official eye, when filed, if all are uniformly executed. But it is doubtful whether the rule will serve any other purpose. It will certainly subject the caveator to increased expense and inconvenience.
In respect to the filing of applications for patents, the law is very specific. It recites that the applicant shall file a full, clear and concise description of the invention, framed in sucb exact terms as to enable any person skilled in the art to make, construct and use the same. When the nature of the case admits, drawings must be furnished, and also a model.
In respect to caveats, the law contains no such requirements. It reads as follows:

Any citizen of the United States, who shall have made any new invention or discovery, and shall desire further time to mature the same, may, on payment of the duty ie quired by law, file in the Patent Office a caver.t setting forth the design thereof, and of its distinguishing characteristics, and praying protection of his right until he shall have matured his invention; and such caveat shall be filed in the confidential archives of the Office and preserved in secrecy, and shall be operative for the term of one year from the filing thereof; and if application shall be made within the year by any other person for a patent with which such caveat would in any manner interfere, the Commissioner shall deposit the description, specifications, drawings, and model of such application in like manner in the confidential archives of the Office, and give notice thereof, by mail, to the person filing the caveat, who, if he would avail himeelf of his caveat shall file his description, specifications, drawings, and mode within three months from the time of placing said notice in the post office in Washington, with the usual time required for transmitting it to the caveator added thereto, which time shall be indorsed on the notice. And an alien shall have the privilege herein granted, if he shall have resided in the United States one year next preceding the filing of his caveat, and made oath of his intention to become a citizen.'
It will be noticed that the law does not prescribe the sup ply of drawings or models, but leaves the creator free to make up the contents of his caveat to suit himself. We believe that the Commissioner's stringent rule in regard to caveats is not warranted by law. Rule 97 reads as follows:
" When practicable, the caveat must be accompanied by full and accurate drawings, separate from the specifications, well executed on tracing muslin or paper that may be folded and of the same size as demanded in drawings for patents.' Under the general powers of the Commissioner, he may doubtless give minor directions as to the size of sheets, etc.; but in ordering that the caveat must be accompanied by full and accurate drawings, separate from the specifications, he probably exceeds his authority. We hope the order will be
modified so as to bring it within the terms of the law, while
granting the utmos
paring his papers.

MOUNT SINAI

The exact location of this memorable spot, sacred in the minds of all Christian people as the place where Jehovah appeared to man in fire; where the Ten Commandments were written by the finger of the Lord upon two tables of stone and delivered to Moses-has always been unsettled. But a Calle telegram announces that all doubt is now removed. Dr. Beke, the celebrated scholar and traveller, gives as the Dr. Beke, the celebrated scholar and traveller, gives as the
result of his recent expeditior the discovery of Sinai and the finding of verifying inscriptions, of which he has made copies. The cable despatch says that the expedition places the holy mountain at " a day's journey northeast of the village of Akaba, Arabia, at an altitude of five thousand feet above the level of the sea."
Dr. Beke has long maintained that Sinai was an extinct volcano, and the correctness of that opinion is now said to be fully confirmed by his personal explorations. Indeed, the Biblical account of the manifestations, which took place at Sinai in the presence of the tribes of Israel, corresponds in several respects to the descriptions given in these modern times of the volcanic eruptions of Veauvius. In the nineteenth chapter of Exodus the following graphic narrative is presented:
"And it came to pass on the third day in the morning that there were thunders and lightnings, and a thick cloud upon the mount, and the voice of the trumpet exceeding loud; so that all the people that was in the camp trembled.

And Moses brought forth the people out of the camp to meet with God; and they stood on the nether part of the mount.
And Mount Sinai was altogether on a smoke, because the Lord descended upon it in fire; and the smoke thereof asLord descended upon it in fire; and the smoke thereof as-
cended as thesmoke of a furnace, and the whole mount quaked greatly.
Moses then went up the mount, and the Ten Command ments were proclaimed ; the inspired narrator adds:
"And all the people saw the thunderings, and the noise of the trumpet, and the mountain smoking; and when the people saw it, they removed and stood afar off.
Subsequently, it will be remembered, the Israelites forgot their vows and went back to heathenish practices of idol making, and set up a metallic calf. Moses, on coming down from the mount, had the tables of stone in his two hands; and when he saw the molten calf, he threw down the tables and broke them in pieces. Then he broke up the idol, pounded it into fine dust, which he scattered in a brook that came down from the mount. The inspired narrative then tells us how, by prayer, the Lord was appeased, and He commanded Moses to hew out another pair of tables, and take them up the mount, which he did. Whereupon the Lord again wrote out the same ten commandments as at first, and gave the two new tables to Moses, who brought them down from Si^{-} nai and put them in an ark which he had made of shittim wood, " and there they be." Deut. X, 5 .
It, would be interesting to know what kind of stones are conveniently found at Sinai, out of which Moses might have hewn the tables. From their light weight, indicated by his carrying one in each hand, going up and down the mountain, it would seem as though they might have been composed of
slate or other laminated formation. We presume that Dr slate or other laminated formation. We presume that Dr. Beke's report will give full particulars of the geology of the
neighborhood, and perhaps tell us something new about the Mosaic stones.

PLEASANT WORDS.

We are receiving so many kind letters of encouragement and approval of our efforts that, while we should delight in returning our sincere thanks individually to each writer for his good wishes, we would but trespass on the good nature of our readers in monopolizing too large a space in columns which might be filled with more generally interesting matter. We trust, bowever, that we may not lay ourselves open to the imputation of undue egotism by quoting a few of the pleasant words we receive, since we do so more to mark our appreciation of the spirit which prompts them than for the benefit they may secure to us in the commendation which they express:
"I have completed my quarter of a century as a reader of your paper, and a good portion of that time have been a direct subscriber. I thought to do without the Scientific american this coming year, but it won't work, so I try it another year. I have been trying to find fault with it all my life, and for all I know will continue trying, and so far unsuccessfully." says one correspondent, and a score or so more
writers echo about the aame opinion. The Science Record for 1874 is aleo coming in for its share of approval. A letter before us says: "It is a perfect storehouse of valuable and instructive information," and another reader tells us that the lady members of his family join with him in thinking it "one of the most ueeful and interesting books in the library." For all of which very flattering comments we metaphorically disapparel our heads, make our very best bow, and, with conscious unworthiness, return acknowledgments

SCIENTIFIC AND PRAGTICAL INFORMATION.

TRIAL OF THE WATER WORKS AT ROCHESTER, N. Y.
The water works of the city of Rochester, N. Y., constructed on the Holly system, have recently been completed, and on the occasion of a public test developed a power and dented. The machinery consists in two sets of pumping engines, each of four double acting cylinders 9×24, each set gines, each of four double acting cylinders 9×24, each set
being arranged to take suction and discharge at eight suc-
cessive and equal points during the revolution, to give a uniform and steady flow. These supply the mains and pipes for ordinary use and are run by two turbine wheels driven under a 90 foot head. There are also two pairs of double cylinder steam engines, actuating four double acting pumping engines $10 t \times 27$, a 150 horse rotary Holly engine, and two rotary Holly pumps. The capacity of all is not less than $4,000,000$ gallons per hour in the street mains per 24 hours and $3,000,000$ gallons in the same time can be delivered extra, by the steam machinery. The water is taken to the city by an aqueduct from Hemlock Lake. On the occasion of the trial, says the Rochester Union, the works succeeded in throwing thirty large streams at one time, to a sufficient hight to be efficacious in cases of fire, reaching an average altitude of 135 feet; one two inch stream was thrown up 220 feet; one four inch horizontal stream was thrown 465 feet; one three inch stream reached an altitude of 285 feet; a four inch vertical stream was thrown $287 \frac{1}{2}$ feet; and a vertical stream five inches in diameter was thrown $250 \frac{1}{2}$ feet! These are, indeed, astounding facts. It was, however, in the thirty stream test that the practical usefulness of the system was most clearly demonstrated. The four and five inch streams could rarely if ever be rendered useful for fire purposes, and it is doubtful whether under any circumstances it would be safe to have recourse to them. So great is the force of the torrent thrown from the standing pipes that few buildings in any city would be able to stand up long under it.
a Needed improvement in sugar making.
Mr. José Guardiola, of Hacienda, Chocolá, Guatemala, the inventor of several improved machines for sugar making, coffee drying, etc., descriptions of which were some time since published in these columns, forwards us a letter inquiring whether there is any means by which sugar drained in centrifugal machines can, after the operation, be compressed into loaves or square cakes, so as to remain as hard and com pact as ordinary sugar loaves drained in the mold. To drain sugar in a centrifugal machine is an operation which take but a few minutes, and has the advantage of economy of time and cleanliness; while on the otherhand purging sugar in molds requires from six to ten days, increased expenses, more buildings, and greater waste. Our correspoudent thinks that pressure will not effect the desired result, but we hardly agree in this view. As long ago as thirty years, sugar was pressed in copper molds. In regard to his inquiry above, however, we learn upon investigation that, if the crystals are compressed when damp and the sugar put into a drying room heated to a temperature of 130°, adhesion will be likely to take place.

THE CHILI EXPOSITION.
In relation to the projected international exposition, to be held in the fall of 1875, in Santiago, Chili, our manufac turers would do well to bear in mind that at the present time fully ninety-five per cent of the trade with Chili is monopolized by England, as against five per cent with the United States. The South American Republics undoubtedly offer a great market for our productions, and it would seem, from our geographical position, that the advantages of the same should be 10 us instead of to Great Britain. The reason is,
however, the lack of as extended means of communication between the United States and Chili as exist between Chil and England; but it would appear that, were the limits of trade between the two first mentioned countries enlarged the facilities for its greater pursuit would necessarily follow. We have received a prospectus of the enterprise, which gives full particulars. Information may be obtained from Mr. Stephen Rogers, Consul for Chili, 249 West 42d street, New York city.
steam on the canals.
The commissioners appointed to examine the inventions submitted as appliances for steam navigation of the canals, and in competition for the reward of $\$ 100,000$ offered by the State of New York, have made their final report to the Legislature. The committee were not unanimous, owing, as they state, to the ambiguity and extreme stringency of the law creating the commission, and were unable to make the award under the circumstances, and they leave to the Legislature the question of compensation. Mr. Baxter's boat, they admit distanced all competitors, but it is believed that Mr. Dobbin' aevice also possesses great merits, so the matter is compro mised by suggesting that $\$ 35,000$ be paid to the first named inventor on his placing upon the canals seven vessels, built and equipped in iike manner as the boat tested, and $\$ 15,000$ to Mr. Dobbin on his supplying three, constructed according o his plan. It seems to be the general opinion that the act providing for the above mentioned sums will be passed and the matter thus ended.
the rapid propulsion of floating bodies.
It has been remarked in England that, on the canals, the boats, when drawn by horses at a considerable degree of speed, float higher in consequence of the oblique action exer cised by the water. Impelled at an enormous velocity, floating bodies would merely scrape along the water, like a ricochet bullet.
The English Admiralty recently charged Mr. Froude to examine into the phenomenon; and he finds that the laws of
the resistance of a plane surface, A, placed in the water the resistance of a plane surface, A, placed in the water
under an angle, θ, are the following: $P=3 \cdot 43 \mathrm{~A} \nabla^{2}$ sin. θ for plane deeply immersed, and $P^{\prime}=2 \cdot 14 \mathrm{~A} \mathrm{v}^{2} \sin . \theta$ for a plan placed at the surface. The vertical component is P cos. θ.
An example will render this clearer: A floating body displacing 2,500 tuns, of which the bottom has a inclination of 4 inches to a foot, is given a velocity of 16 knots, that is 26.4 feet per second, and thus causes an emersion of 171 tuns. Substituting the latter number in the formula, the velocity gained will be 7.6 feet per second.

ON TEE MOTION AND SENSATION OF SOUND.

It is needless for me to say to the ladies and gentlemen who honor these lectures with their presence, that they are intended more especially for the instruction of boys and girls. As in all other cases where it has fallen to my lot to teach others, I shall endeavor, while avoiding superficiality, to strip the subject of all unnecessary difficulty, and of all parade of learning, and to present it in simplicity and strength to the youthful mind.
The title of the lectures is "The Motion and Sensation of Sound." Now every boy knows what I mean when I speak of the sensation of sound. The impression, for example, of my voice at the present time upon the organ of hearing the sensation of sound. But the sensation of sound. But
what right have I to speak of what right have I to speak of
the motion of sound? This point must be made perfectly clear at the beginning.

For this purpose I will choose from among you a representative boy, or allow you to choose bim, if you prefer doing so. This boy, whom you may call Isaas Newton or Michael Faraday, will go with me to Dover Castle, make the acquaintance of the general commanding there, Sir Alfred Horsford, and explain to him that we wish to solve an important scientific problem. He is sure to help us; he will lend us a gun, and an intelligent artilleryman; and we will make arrangements with this man to fire the gan at certain times during the day. We set our watches together; and now, before quitting him, we ask the artilleryman to fire one shot. We are close at hand, and we observe the flash and listen to the sound. There is no sensible interval between them. When we stand close to the gun, flash and sound occur together.
Well, we quit the artilleryman, warning him to fire at the exact times agreed upon. Let us say that the first shot is to be fired at 12 o'clock, the second at $12: 30$, and so on every half hour. We quit our artilleryman at half past eleven, descend from the castle to the sea shore, where a small steamer is awaiting us. We steam out a little better than a mile from the place where we haveleft the artilleryman; and now we pull out our watches and wait for 12 o'clock. Newton at length says: "In exactly half a minute the gun ought to fire;" and, sure enough, at the exact time agreed upon, we see theflash of the gun. But where is the sound which occurred with the flash when we were with the flash when we were
on shore? We wait a little, and precisely five seconds after we have seen the flash we hear the explosion; the sound having required this time to travel ever a little better than a mile.

We now steam out to twice this distance and wait for the 12:30 gun. We see the flash, but it requires ten seconds now for the sound to reach us; we treble the distance, it requires fifteen secos:ds; we quadruple the distance, and find the sound requires twenty seconds to reach us. And thus, if the day were clear, we might go quite ${ }^{\text {air? No. We may, in a rough way, represent the particles }}$ across to the coast of France and hear the gun there. In all cases we should find that the flash appeared at the precise time agreed upon with the artilleryman, which proves that light reaches us in so short a time that our watches fail to give us any evidence that the light requires any time at all to pass through space, while the sound reaches us later and later the farther we go away. I think these experiments and later the farther we go away. It "Motion of Sound "
give us every right to speak of the "Motion of Sound
But they also inform us how the velocity of sound has but they also inform us how the velocity of sound has on this subject have been made in France and Holland. Two stations were chosen, ten or twelve miles apart; guns were fired at each station, and the interval between the flash and the report was accurately measured by the observers at the other station. In this way it was found that, when the air is at the temperature of freezing water, the velocity of sound through it is 1,090 feet a second. On different days we should find it traveling at different speeds-as th
grows warmer, the sound is found to travel faster.
But I must not let you go with the idea that light requires no time at all to pass through space. This great problem has also been solved; and we now know that, while sound moves at the rate of 1,090 feet a second, light passes over the almost incredible distance of 186,000 miles in the same time. Hence, in the distances employed in our observations, our watches were entirely unable to inform us that light required any time at all to pass through space.
But if I stopped here, your next question would be: What is this thing which passes through the air with a velocity of 1,090 feet a second, and which, when it reaches us, makes us 1,090 feet a second, and which, when it reaches us, makes us
hearan explosion? We must give a thorough and complete answer to this question, but to do this we need a little preparation. Like sailors going into battle, we must clear our decks for action; and here I must ask you to give me your patient and resolute attention.
In order to know how sound is propagated through the air, we must first know something regarding the air itself. Let us examine the air.
First, the air has weight. It presses upon a single square foot of this table with the weight of nearly a tun (144×15 $=2,1 \neq 0 \mathrm{lbs}$.) I have here a glass cylinder covered at the top
air? No. We may, in a rough way, represent the particles
of air by the solitaire balls arranged in a row close together in this groove. I take the first one and roll it against the second. You obsarve the row does not move, only the end one goes away. The first delivers up its motion to the second, and then stops, the second delivers its motion to the third, the third to the fourth, and so on until the last, which, meeting no resistance, flies off. In this way we may figure the motion as transmitted from particle to particle of the air.

A still better idea may be derived from this model (Fig. 1), which has been devised by the ingenuity of my assistant, Mr. Cottrell.
In my hand I hold a stem, A, passing through the upright, B, by which a shock can be sent from a ball, C, through a spring, to another ball, thence through another spring to another ball, and so on, until at last the shock reaches the last ball, which is projected against the india rubber pad at the end, D, placed there to represent, in a rude mechanical way, the drum of the ear. I press the stem, A, with a sudden the drum of the ear. I press the stem, A, with a sudden
motion of my hand, and you see that,though the ball, C, only motion of my hand, and you see that, though the ball, C, only
moves to and fro, yet it sends forward a kind of pulse, fe ef, moves to and fro, yet it sends forward a kind of pulse, fe ef,
which travels along the line, and ultimately causes the last ball to give a smart strokeagainst the pad, D .
If you could creep into the tube of the ear, you would find, a little way in, a beautiful fine membrane called the tympanum, or tympanic membrane. The shock of the pulses of air falling on this membrane causes it to shiver; its tremors are transmitted to the auditory nerves, and ky them are conveyed to the brain; and cause you to have the sensation which we call sound.
You ought to be able now to figure the way in which the explosion of this popgun is transmitted through the air. I place a ramrod in the tube; there is a cork in the other end; and pushing the rod towards the cork, I cause a crowding together of the particles of air; this they resist, as I can feel by the force I am compelled to exert, and at last their combined resistance takes effect by blowing out the cork at the other end with a sort of explosion.
The suddenly expanding air communicates its motion to the air adjacent to it; this again to the air further off; finally the condensed pulse strikes the tympanum of your ears,
with a sheet of india rubber. The air presses on that sur-
face with the weight of nearly 900 lbs. But then you will ask how the india rubber bears it. Why is it not pressed in Because air is on both sides of it, and the pressure on the inside is exactly equal to that on the outside. But if I take away the air from the inside of the cylinder, you will soon see the india rubber pressed down by the weight of air above [A
[A tube from an air pump was then attached to a pipe communicating with the interior of the cylinder, which stood on a brass plate, io which its edges were ground parallel; the pump was set in action, and the india rubber diaphragm at once sank down, in the end clinging to the sides of the glass, forming a deep vessel, lining the inside of the cylinder.]
\qquad

and you hear the noise. I can show you the passage of a pulse through air in another way. We have here a tube 11 feet long, and about 4 inches wide, its two ends are closed by thin sheet india rubber. Against the india rubber surface at one end a cork gently presses (as in Fig. 2, a); to the cork a slender stem is attached, having a little hammer at its upper end, b, kept from striking the bell, c, against which it abuts, by a slender wire spring, d. If now a pulse be sent from the other end of the tube, the india rubber will drive away the cork, and will drive the hammer against the bell. A dull push will not ring the bell at the further end. The particles of air are very mobile and readily slip round one another, so that it requires a sharp shock to generate a sound wave in the tube and make the bell ring outside the tube. I tap sharply with my fingers on the india rubber, and the sound of my tap and the blow of the hammer, upon the bell at the other end of the tube, are audible at one and the same time. This ${ }^{t}$ ube is 11 feet long: sound travels through air of the temperature of When the air is letin again, you observe the rubber returns | this room at about the rate of 1,100 feet per second; the time slowly to nearly its primitive position; it would entirely, but that the india rubber is a little over stretched.
We have thus seen the effect of removing the pressure from the inside. What would occur if we took the outside pressure away? The india fubber would expand. Instead of trying to remove the whole of the air from this room, which is impossible, I will cover these two slack and collapsed bladders with this glass vessel, fitting accurately on to the plate, over which they are suspended; and then draw off by the air pump the air surrounding them. See how they gradually blow out ; the folds are now nearly abolished ; now they have become quite smooth.
Why is this? Because the air particles have the power of pushing one another apart, and thus take up sufficient space to fill the bladders when the external pressure is removed. The air in this room is pressed upon by the weight of the whole atmosphere. The repelling force which the air particles exert upon each other is called the elastic force of the air.
Now we have to consider how the sound of the gun is propagated through air. Does the gun fire anything through lare taken by the sound wave, in traversing this tube, is $\frac{1}{10}$ of a second, an interval of time far too minute to be measured by our ears.
Air is therefore a carrier or transmitter of sound. Suppose we remove the air from about a sounding body, will it then be heard? This experiment was made by Mr. Hawksbee, a great many years ago (1705). A bell with a hammer worked by clockwork is placed under a glass globe. From the globe we will pump as much of the air as we can. At present you hear the sound with perfect distinctness; the pumping has at first apparently little effect upon the sound, but rery soon it dies away, and now you see the hammer thumping away upon the bell, without producing any noise. It is doing ita work in perfect silence. I allow the air to re-enter the glass globe, the tinkling sound of the bell is soon heard, and quickly grows up into the usual musical ring.
We have therefore proved that when the air is removed we have no sound, and when the air returns the sound re turns also.
We will now follow the matter up a little further. Pro fessor Leslie found that, when a little air was in the chamber surrounding the bell, and you could hear a little sound, if the space from which the air had been taken was filled up with hydrogen, the hydrogen gen quenched the sound. Now Professor Stokes has shown us that to create a sourd wave in hydrogen a sharper tap is necessary than in air, so that the shock that produces a sound wave in air does not suffice to produce a sound wave in hydrogen (which is a much lighter and less dense gas).
My assistant, Mr. Cottrell, has devised the experiment I am about to show you to demonstrate this effect.
I have a long tin tube (Fig.
narrower than the one I used just now, but having, like it, a piece of india rubber stretched over each open end, with a hammer and bell arranged against one of them, as before; at the oth $\in \mathrm{r}$ is a cork hammer fixed to a thin strip of steel, which can be drawn back to any given distance (measured on f gradua ted card). I have thus the means of sending a pulse along the tube as before and making the bell at the other end sound, but I now do it by a stroke of measured force. I now let hydrogen into the tube at the end adjacent to the striking cork (by the tube, H), which is a little lower than the other end ; and while ihe hydrogen is entering I continue to send pulses of mea sured strength along the tube, the bell continues to sound for a little while, but in one minute a sufficient amount of air has been displaced to cause the bell to cease ringing. When we remove the hydrogen, you again hear the bell, showing that the pulse can again be carried from end to end of the tube.
Up to this point our illustrations have been audible; I now wish to render visible to you the action of a tube in preventing the dissipation of the ound. The test that I propose to use is a flame. I have behind the table a good sized gas holder, by which gas can be forced through a steatite burner. I light it, and we have that long pointed flame (a, Fig. 3), and we shall find that that flame is very sensitive. Chirrup to it, and see how rapidly it answris; a great part of the length of the flame is abolished instantly when the sound wave reaches it (b, Fig. 3). I rattle money, tap two keys, and this flame jumps in response to each jingle that I
make. The current of air in the room, owing to our care for your comfort in the matter of fresh air, prevents these phenomena showing themselves as well as they do when the theater is empty; but they are perfectly manifest. No one in this room can hearmy watch ticking; but if I hold it near the flame you can distinctly hear the flame give a little roar, and see it suddenly shorten for each tick of the watch. The regularity with which it jumps indicates the regularity with which my watch is ticking.

$$
\text { Fig. } 4 .
$$

And now observe the action of a tube in preventing the dissipation of sound. Using a less sensitive flame as the sound test, I take off the india rubber ends from our 11 foot tube, and place the flame at the end furthest from myself. The tapping of these two keys together does not affect the Hame; but now, my distance from the lame being as great as before, I tap them opposite the open end of the tube, and each tap is rendered, by means of the flame, as visible to your eyes as it is audible to your ears.
Through the unconfined air this small bell does not affect the flame when set ringing; but when I place it at the ex. tremity of the tube, the flame dances 10 each stroke. Speaking pipes possess their value solely from their preventing the dissipation of the sound pulses; they act precisely as this tube does.
As you know, light cannot well get round a corner; neither can sound, though it does so more easily than light. This little bell actsautomatically. I wind it up and start it. At a few feet distance it up and start it. At ame answers to each stroke. Piaced the flame answers to each stroke. Piaced
behind a board, the flame becomes tranbehind a board, the flame becomes tranquil. I again bring it out from behind the board, and the flame jumps to each movement of the hammer. (For this experiment the sensitive Hame was arranged as in Fig. 4, with a large glass funnel having its tubular end opposite the root of the flame; the board was held about 10 feet distant from the mouth of the funnel.) Sound therefore can be shaded off in the same way that light can be.
In this box, which is well padded, is a bell which I can set ringing at pleasure. The only way by which the sound can get out is this small square opening at one side of it. The bell is now ringing without affecting the sensitive flame (arranged as in Fig. 4); but when this box is turned round, so that its opening faces the quiet flame, we have it dancing and jumping as before.
In other respects also there is a similarity between the mode of action of sound and light. When a beam from the electric lamp is allowed to fall upon the glass mirror in my hand, it is reflected from the mirror, and, the track of the beam being marked by the dust floating in the room, you can see the direction which it takes. This is in accordance with a well known law, namely, that the angle of incidence is equal to the argle of reflection It is perfectly plain o you that a line drawn so as to fall at right ngles upon this mirror would divide that large agle formed by the two beams of light into th equal angles.
hope now to make visible to your eyes the eflction of sound in obedience to the samelaw.
A one corner of the lecture table I place our sensitive flame b, at the opposite corner the padded box containing the elctric bell, a, with its opening directed in the path taken a joment ago by the beam of light, and I will hold this board,: when everything is ready, where I before held the glass mirror. My assistant will now set the bell ringing. You observe that the flame is uninfluenced by it ; but when I bring theboard forward, the shortening of the flame at each stroke of the bell proves that the law of the reflection of sound is the same as the law of the reflection of light; the angle of incidence is equal to the angle of reflection. In this case the flame is knocked down by an echo.
We have thus considered the reflection of sound from a plane surface; let us now see if it behaves like light when retlected from plane surfaces.
The beam of the electric lamp is now directed upon the
concave mirror. You can see the band of light marked in the fine dust floating in the air; as soon as it strikes the polished surface it is thrown back, but the rays no longer pursue parallel paths, they are converged, thrown together into one spot. By holding a piece of tracing paper at the point where they meet, termed the focus, the brilliant little star of light caused by their convergence is made visible. Substitute for the lamp a small bell, and for the tracing paper at the focus of the mirror our sensitive flame, and the conditions are the same as in the previous experiment, sound waves taking the place of the waves of light. You cannot see the track of these aerial pulses as you could theluminous ones, but their obedience to the same law of reflection is very manifest by the shortening of the sensitive flame as each manif sound the sound wave reaches it. The flame, when out of the focus of
the mirror, is unaffected: replace it in the spot the mirror, is unaffected: replace it in the spot when the sound waves are crowded together, and it responds to each stroke. Move the bell so that the sound pulses, though only having the same distance to travel to the flame, no longer fall on the mirror; the flame remains perfectly quiet.
We may go further still. Here are a pair of mirrors, the curvature and size of which is the same. They are arranged so as to face one another. A light is placed in the focus of one, that its rays which fall divergent upon the curved sur face are reflected from it parallel; they travel to the opposi face are reflected from it parallel; they travel to the opposi held at the focus of the further mirror shows the spot of light as before (Fig. 6).
Sound is reflected in precisely the same way, and the sen. sitive flame, when carefully manipulated, can be used as a mgans of proving this fact. For these experiments it is essentially necessary that the flame be reduced to the proper pitch of sensitiveness. By reducing the pressure of the gas we can regulate the flame so that it will not respond unless strongly agitated. The flame is placed in the focus of the mirror, a, and when the bell is rung, not being in the focus of the conjugate mirror, there is no action. I now bring it into the focus, b, and the flame shows a very strong action.

GILBERDS \& HARRIS' RETURN BUTTER AND OYSTER
Fresh, sweet butter is appreciated by every one; but however good its quality in the beginning, it will not retain its original flavor unless properly packed in suitable receptacles. Where the butter is exposed to the bad air of damp cellarn and dust, it is very liable to become deteriorated, and hence lessened in value while in transit; while butter, packed in good pails, brings from 1 to 5 cents more per pound than when in the common tub or firkin. Similarly good return oyster pails, that hold from 5 to 25 gallons, are found much the

l'ia. 3

cheapest and most convenient way of sending oysters over the country; but these have ordinarily to be locked to pre erve their contents from being taken while in transit, and even then the purchaser frequently receives his gallons shor because the pails in common use are not tight enough to keep the liquid from slopping over. The pails shown in our engravings are, it is claimed, stronger, tighter, and better adapted to preserve their contents, and stand the rough handling of transporta tion, than any now in the market. They are made from white oak staves, and ar held together by heavy galvanized iron hoops. The covers are of sufficient thickness to allow a flange, A, to extend over the top of the package, while the under side of the cover projects into the pail, as shown in sectional view, Fig. 3. The cover is rounded on its upper corner in form of a quarter circle, and a cor responding quarter circle is cut on the outer edge of the package, the two forming a rib, B, of semicircular or semi. elliptical cross section, with the cover joint along its medial line. A hoop is then swedged in form to fit this rib, ex-
tained that sound was thus reflected from plane and curved surfaces; but never before have these phenomena been made visible. Hitherto these effects have been investigated by the sense of hearing; I have now been able to prove them by appealing to your eyes.

New Fossil Man.

In the Reoue Scientifique for December, it is stated that a third skeleton of a troglodyte has been discovered by M. Rivière in the caves of Mentone. This new skeleton, judging from the various and numerous implements by which it was surrounded, lived at an epoch far moreremote than that assigned to the skeleton now in the Museum of Paris. The warlike instruments and objects found with them, though

Fig. 6.
 cept that its edges are a little shorter, while it has strong malleable flanges, shown on the left, in Fig. 1, at each end. A screw passing through one flange into the other is turned by a common screwdriver or key. It will be readily seen that the hoop, when tightened by its clamping device, operates in both vertical and lateral directions, and not only draws the cover down on the package, but strengthens it around the top.
On the oyster pail (Fig. 2) the screw, instead of being slot ed, is made and turned by a key; this saves all expense and trouble of locks.
This method of holding the cover is equally adapted for ruit jars or any article having a movable cover. These pails were awarded three first premiums at the New York State Fair, in September last, and also at the Provin cial Fair, Canada, and are, we are informed, readily endorsed by all butter and oyster deal ers. They are now manufactured by the Jamestown Butter and Oyster Pail Company, at Jamestown, N. Y., to whom all orders should be addressed.

Trout in an Artesian Well

The American Journal of Science and Arts presents the following curious statement: Mr. Bard, the agent of the California Petroleum Company,at San Buenaventura, was lately engaged in constructing a wharf at a point southeast of that place. Wanting water to supply
composed of flint and bone, are not polished. They are only sharpened, and by their coarse execution appear to belong to the palæolithic age. On the upper part of the remains was a large number of small shells, each pierced for stringing as a collar or bracelet. No pottery nor any bronze object was found. Our readers may recollect that the first skeleton ound in the same neighborhood, on the bank of a railway cutting on the sea margin, appeared to have been crushed by a fall of rock. It was figured in several English journals last year.

In a French industrial establishment, employing 630 men, chiefly vegetarians, the sick fund was constantly in debt. By the introduction of mest into the food of the men, the arerage loss of time per man, on account of illness or fatigue, was reduced from 15 to 3 days per annum.
this wharf, he commenced sinking an arte-
sian well on the sea beach, not 5 feet from high water mark. At the depth of 143 feet a strong flow of water was obtained, which spouted forth to a hight of 30 feet. It was controlled with a "goose neck," and utilized. One day, while theagent was absent,the men round the well noticed fish in the waste water. On his return they called his attention to the fact, and on examination the well was found to be filled with young trout. thourands of them being thrown out at every jet. These trout were all the same size (about two inches long) and perfectly developed. The eves were found perfect. Now there is no stream nearer than the Santa Clara river, several miles distant. Could these fish then, it is asked, have come from its head waters by some subterranean ouilet? There are no trout in the lower portions of the stream. The temperature of the well water is $64^{\circ} \mathrm{Fah}$

Cencregromateuce.

The Relative Attraction of the Earth and the Sun.

To the Editor of the Scientific American:

The subject of terrestrial and solar attraction having recently been discussed in the Scientific American without leading to any definite conclusion, I propose to show, by the following demonstration, the exact amount of the solar energy which tends to produce irregularity in the earth's at traction at certain points during the diurnal revolution. Matter resting on the surface of the earth is at all times under the influence of four principal forces, namely, terrestrial attraction, solar attraction, the centrifugal force produced by the earth's orbital motion round the sun, and the centrifuygal force caused by the earth's rotation round the axis. In considering the effect produced by these forces on a particle of matter placed on the surface of the earth, the centrifugal action caused by the earth's rotation round the axis may be left out of sight, as it simply tends to diminish the attraction of the terrestrial mass, the diminution being constant at any given point, in whatever position the earth may be placed. Planetary and lunar attraction, it needs hardly be stated, do not appreciably affect the question under consideration. The influence of the three first named forces on matter near the surface of the earth will be readily comprehended by the following brief explanation, reference comprehended had to the accompanying diagram representing a section of the earth in the plane of the ecliptic, and part of the earth's orbit. $o m s$ is a straight line drawn through the center of the earth towards the center of the
sun, $n r$ and $t u$ being tangential lines also sun, $n r$ and $t u$ being tangential lines also
pointing to the center of the luminary. ab represents part of the earth's orbit, $c d$ and $f g$ being curves parallel to the same, inter $f g$ secting the central radial line at m and o.
Mr. Slaughter, in his communication to the Mr. Slaughter, in his communication to the that the weight of bodies on the surface of the earth is not permanent, and that the greatest difference takes place under the meridian, at m, and at the opposite point o, at midnight; but he has greatly overestimated the energy of the disturbing cause, apparentlyoverlooking the important fact that solar attraction is counteracted by the centrifugal force resulting from the earth's motion round the sun. It needs no demonstration round the sun. It needs no demonstra-
tion to prove that, unless the sun's attract tion to prove that, unless the sun's attraction on the ter-
restrial mass was exactly balanced by the centriful caused by the orbital motion, our planet would fall into the sun or retreat from the luminary into boundless space.
Before entering on a demonstration showing the exact difference of the weight of 20,000 pounds (assumed by Mr. Slaughter) under the meridian and at midnight, it will be proper to state the magnitude of the elements on which the demonstration will be based, namely: the mass of the sun, 344,760 times that of the earth; mean distance between the centers of the sun and the earth, $91,430,000$ miles; half the centers of the sun and the earth, $91,430,000$ miles; half
equatorial diameter of the earth, 3962.91 miles, and mean equatorial diameter of the earth, 3962.91 miles, and mean
semi-diameter, 3956.30 miles. Agreeably to the dimensions semi-diameter, 3956 miles. Agreeably to the dimensions
thus specified, the radii of the curves, c d, $a b$, and $f g$, will be respectively $91,426,044,91,430,000$, and $91,433,956$ miles. It should also be stated that the writer has recently constructed an instrument by means of which it has been ascertained practically that, at the rising and setting of the sun, solar attraction, exerted on a body resting on the surface of the earth at n or t (see diagram), is exactly balanced by the centrifugal force acting in an opposite direction called forth by the earth's orbital motion round the sun. The following explanation will give a general idea of the instrument referred to: A solid east iron ball, eleven inches in diameter, highly polished, is immersed in a bath of mercury, and connected by a fine steel wire to a delicate chemical balance, in such a manner that any attractive force acting on the ball will disturb the balance. The force of gravitation being inversely as the square of the distance, and directly as the mass, the attraction of the sun on the floating ball can be ascertained by the following calculation: $91,430,000 \div 3,956 \cdot 30=$ $23,109 \cdot 9$, mean radii of the earth contained in its distance from the sun. Dividing the square of this amount in the sun's relative mass, 314,760 , we learn that the sun attracts the ball with a force $=0.0005893$ of terrestrial attraction. Hence, as the weight of the ball is nearly $181 \cdot 47$ pounds, or exactly $1,270,300$ grains, the sun attracts it with an energy of $0.0005893 \times 1,270,300=748.6$ grains. Careful tests of the new instrument have shown ihat any pull exerted laterally on the floating ball may be measured by means of the chemical balance applied, provided the force exerted exceeds eight grains. Hence, a difference amounting to less than one hundredth of the energy exerted by solar attraction, or one hundredth of the energy exerted by solar attraction, or
the centrifugal energy resulting from the motion of the ball the centrifugal energy resulting from the motion of the ball
round the sun, can be readily detected by the adopted device. It only remains to be stated that not the slightest disturbance of the balance has been observed during repeated trials made while the sun has been rising and sotting; thus proving that the pull of 748.6 grains, exerted by solar attraction on the floating ball, is counteracted by some other force. For astronomical purposes, the result of the trial can only be regarded as an approximation; but for our present purpose it is abundantly precise, since it takes cognizance of an energy of only 8 grains in $1,270,300$ grains, or $\overline{158000}$ of the weight of the body attracted. Referring to the diagram, it will be seen at a glance that the sun's attraction on a par-
ticle at n acts in the direction indicated by the line, $n r$,
while the attraction of the earth on the same particle is exerted at right angles to $n r$; and that consequently solar attraction will not affect terrestrial attraction at the points n and t. It will be evident, therefore, that, leaving out of sight the constant influence of the earth's axial rotation, the weight of bodies during sunrise and sunset shows the the weight of bodies during sunrise a
We may now enter on the task of determining the precise amount of difference in weight which results from transferring the supposed 20,000 pounds from n to m, and from t to o. Agreeably to the laws of motion, the centrifugal force of equal bodies, moving round a common center at unequal distances in equal times, is directly as their radii. Consequently the centrifugal force of a body at m, caused by the orbital motion round the sun, must be less than the centrifugal force at n. The difference will be ascertained by dividing the radius of the curve $a b$ in the radius of the dividing the radius of the curve $a b$ in the radius of the
curve $c d$. Accordingly the diminution of the centrifugal force curve $c d$. Accordingly the diminution of the centrifugal force
will be $91,426,044 \div 91,430,000=1-0 \cdot 9999562=0 \cdot 0000437$. Now the sun's attraction at m is greater than at n, in the inverse ratio of the squares of the radii of the curves $c d$ and $a b$, namely: $91,430,000^{2} \div 91,426,000^{2}=1 \cdot 000: 1875-$ $1=0.0000875$. Consequently solar attraction exerted at m is $0.0000875+0.0000437=0.0001312$ greater than at n, where it is exactly balanced by the centrifugal force caused by the earth's orbital motion. We have already demonstrated the earth's orbital motion. We have already demonstrated
that solar attraction at the point n is 0.0005893 of terrestrial

tion resulting from solar influence, it should be borne in mind that, by means of the pendulum in combination with the balance wheel of the chronometer, the amount of any appreciable irregularity of terrestrial attraction may be accurately measured. It will be remembered that the present Astronomer Royal of England, many years ago, computed the earth's density by ascertaining the variation of the beat of the pendulum at the mouth and at the bottom of the Harton coal pit, 1,200 feet deep. This depth being only ${ }_{1} \frac{1}{7}{ }^{1} \sigma_{0}$ of the earth's radius, we can judge of the efficacy of the pendu. lum as a means of measuring terrestrial attraction.
J. Ericsson.

The Duration of Brain Impressions and the

To the Editor of the Scientific American:
I have read, with interest, your article on the velocity of nervous impulses, in No. 7 of your current volume; and I am induced by it to ask you whether any experiments have been made to ascertain the length of time required to produce an impression on the mind which will be retained in the memory.
In a case wherein I defended a party indicted for assault with intent to murder, the proof showed that the prosecuor, on whom the assault was committed, was standing in a public road, talking to the father of the defendant abcut an alleged larceny of hogs, when the defendant approached him from behind, and struck him on the back of the head with the butt end of a gun, and he fell senseless from the blow. A fight ensued between the friends of the parties, in which a number of shots were fired; and after the fight was over, the prosecutor was carried into a yard near by and resuscitated, regaining consciousness in about thirty mi nutes after receiving the blow. He testified most positively that he had not the slightest recollection of receiving the blow. He recollested and detailed the conversation between himself and defendant's father up to the moment the blow was struck, and also what occurred and whar was said when he regained consciousness, as stated by a numbec of other persons who witnessed the occurrence; but of the blow itself, how, when, and frow whom it was received, not the slightest ia. pression had been made on his mind. Ex cept the surface bruising on the back of the
attraction; thus the supposed weight of ' 20,000 pounds wil be attracted with a force of $0.0005893 \times 20000=11.786$
pounds at n. Mr. Slaughter estimates that the attractive pounds at n. Mr. Slaughter estimates that the attractive
energy amounts to 12 pounds 10 drams, the discrepancy energy amounts to 12 pounds 10 drams, the discrepancy
being occasioned by his calculation having been based on data somewhat incorrect. Solar attraction at m being 0.0001312 greater than at n, it will be found, by multiplying this decimal fraction by the total attraction at n, that in transferring the weight, from n to m, it will be subjected to an additional attraction of $11.786 \times 0.000312=0.001546$ pound. Obviously, when the weight is transferred from t to o, a diminution of solar attraction will take place in the inverse ratio of the square of the radii of the curves $f g$ and $a b$; while the centrifugal force will be increased in the direct ratio of the radii of these curves. Calculation shows that the former is 0.0000865 , and the latter 0.0000432 . Allowing for the stated increase of centrifugal force, it will therefore be found that the solar attraction at o will be 0.0000432 less than at t or n. Consequently, by transferring the 20,000 pounds to o, the solar attraction of $11 \cdot 786$ pounds, exerted on this mass when placed at t and n, will be reduced $0.0000432 \times 11 \cdot 786=0.000509$ pound. The previous demonstrations having established the fact that an increase of the sun's attraction of 0.001546 pound takes place dur ing the transfer from n to m, it will be readily perceived
that a difference of solar energy of $0.001546+0.000509=$ that a difference of solar energy of $0.001546+0.000509=$
0.002055 pound will result from the difference of attraction at m and o. In other words, the weight of the supposed mas of 20,000 pounds will be 0.002055 pound less at noon than at midnight. Agreeable to Mr. Slaughter's computation the diminution of weight will be 24 pounds 1 ounce, thus upwards of 11,000 times greater than we have established by the foregoing demonstration. Those who do not feel disposed to investigate the subject closely may arrive at a correct conclusion, concerning terrestrial attraction, by sinply considering that the gravitating energy is affected by only two appreciable disturbing causes, namely, solar attrac tion and the centrifugal force resulting from orbital motion and that these opposing forces are very nearly balanced throughout the entire terrestrial mass, completely neutraliz ing each other at its center. Likewise that, at all points on the sphere tangential to the sun's rays, solar attraction is exactly balanced by the centrifugal force caused by the orbital motion, a fact practically established by the floating ball of the instrument before referred to. Let it also be re membered that the increase and diminution of the distance from the sun at noon and at midnight amounts to less than $1 \frac{1}{0} 0 \delta$ of the earth's distance from the solar center. A mo
ment's consideration, therefore, will show that the disturb ing force which modifies terrestrial attraction must be ex ceedingly small. Again, if such a great disturbance of the earth's attraction existed as Mr. Slaughter supposes, the beat of the pendulum would be so irregular, from hour to hour, during the diurnal revolution, that the most perfect clock would prove a very imperfect device for measuring time. With reference to the proposed employment of heavy
weights for ascertaining the variation of terrestrial attrac-
head, which lasted a few days only, no bad
effects were experienced from the blow, and his mind and memory are unimpaired.
A similar result was observed, during the late war, in persons stunned by the explosion of shells. A gentleman now in this city, who was an officer in the Confederate Army, was fighting in the ranks, at the battle of Murfrees boro', in Tennessee. Just as he was in the act of taking aim with his rifle, a shell struck his weapon and exploded. He fell senseless, blackened with powder, and apparently dead. He had been struck on the head and other parts of the body with fragments of the shell, and was dangerously wounded; but after an unconsciousness of several hnurs, he was discovered to be alive, and was cared for and recovered. His mind and memory are as clear as ever, and he is now a successful lawyer in full practice. He assures me that no a successful lawyer in full practice. He assures me that no
impression of the explosion of the shell was made on his impression of the explosion of the shell was made on his
mind. He saw no flash, heard no sound; he recollects distinctly aiming his rifleto fire; but after that, there is a per fect blank in his memory until his resuscitation.
These instances appear to indicate that the nerves of sen sation may be paralyzed in less time than is required to make an impression on the mind which memory will retain. What time is required to make such an impression? The flash and noise of the explosion of a shell immediately in front of a man in battle would excite the nerves of sight and hearing as violently as it is possible to excite them; and in the last instance stated, the light of the flash certainly reached the eye before the fragment struck the head. What caused the delay in stamping an impression of it on the memory, and how long must the vital organs remain intact to enable the mind to receive an impression through the senses?
It seems to me that these questions suggest a field for cientific inquiry, in which important results may be reached. Montgomery, Ala.
D. S. Troy.

Crude Petroleum in Steam Boilers.

To the Editor of the Scientific American:
Mr. I. M. Allen, President of the Hartford Steam Boilet Inspection and Insurance Company, says in his report: " some parts of the country, crude petroleum has been foupd o keep boilers free from scale without injury to the irp; while in the same districts and in the immediate vicidty, boilers not using purifiers would have a scale from $\frac{1}{2}$ lo $\frac{8}{4}$ inches thick." He continues: "We have a specimen of scale in this office nearly $1 \frac{1}{2}$ inches thick, that was removed from a boiler in the West by crude petroleum. I am awase that there is a great prejudice against using anything of the kind in steam boilers, but earth oils are very different from animal oils. They are very volatile; and in an experience of several years, where hundreds of boilers have been treated with them, we have found no injury to plates or tabes, and the boilers have been kept free from siale." Further on in the report, he again says: "Feed water heaters are of great ervice in removing sediment, if they are of proper construction. But an open heater, using exhaust steam, with no aption. But an open heater, using exhaust steam, with no ap-
pliance for preventing grease and sediment from entering
the boiler, is notio be relied upon; and as I have already said, steam users ${ }^{\prime}$ hould be careful, in selecting a heater, to get the best; we l. 子e experienced a vast amcunt of trouble with improperly instructed heaters. The subject of incrustation and scal is on
in a report like thik" etc.
Now, what struc me as peculiarly significant in the above is the fact that the president of the above named company says that, during of veral years, they have known hundreds of boilers to be kep free from scale, etc., by the use of crude petroleum in the boiers, and that he should afterwards discourage the use of oen heaters as being peculiarly fitted to let grease into the bilers. It would have been more consistent with his exprience of the use of crude or rock oil, as a boiler cleaner, to rcommend the use of open heaters, provided rock or crudesil is used as a lubricator; for it is only by the use of an opel heater that crude or any other oil can be gotten into a boile while it is in use; and a constant and unvarying supply mist certainly be better than an occasional and perhaps not a rufficient one. My own experience,as a mechanic and user of engines and boilers, is that, where crude or rock oil is ued as a lubricator for cylinders, there is no objection to the pen heater; but on the contrary, it is beneficial to the boile: and a pretty sure preventive of scale or incrustation. I doaot think, however, their use with animal cil is to be recommended; but with crude oil, properly prepared, there does not seem to be any objection at all, but, on the contrary, kenefits.
In my own case I haw used an oil prepared from petroleum, which is especially alapted for lubricating hot surfaces; and by its use, I have overcome the objection brought by Mr. Allen to the use of the open heater.
Ihope that you will,as early as possible, clearaway the confusion on this subject, and thus confer a great benefit on those whose business compelsthem to use steam boilers.
Detroit, Mich.
one of Them.

A Sewing Machine Engine.

To the Editor of the Scientitic American:
There is probably no teld that presents more instances of simple and apparently perfect mechanical construction than that of steam enginery. I recently saw an extremely simple oscillating engine in oneof the slow windows of a sewing machine store. It consisted of scarcely more than a cylinder of about $2 \times 1 \frac{1}{4}$ incles, climped to one of the rear corners of an ordinary sewing machine table; the clamp serving also as a rest for the trunnions of the cylinder, the engine being connected by a belt to the upper pulley of the sewing ma-
chine. The oscillation of the cylinder caused the alternate chine. The oscillation of the cylinder caused the alternate
admission and discharge of steam, the steam being supplied admission and discharge of steam, the steam being supplied
through a one quarter inch flexible tube. The boiler was about the size of an ordinary one gallon milk can, and could be placed in any convenient out of the-way place, in the room or out of it; the vertical tubes of the boiler were made of extremely thin brass, and braced within with a spiral

wire.

I know nothing as to the success of this device; but it would be difficult, I think, to get up anything more simple for the purpose, in the line of steam engine manufacture.
Some cheap power, either steam, air, or something else for working the sewing machine for family use, is one of the great needs of the time; and inventors who have the subject in hand sinould bear in mind that, in order to succeed, their devices must be cheap, durable, and inexpensive to run. To ensure the first of these qualities, the device must best material and workmanship.
F. G. W.

Tho Eucalyptus or Australian Blue Gum Tree.

Io the Editor of the Scientific American:

I have just read an interesting article in the Scientific American of February 14, upon the Australian fever tree, or, as it is called here, the eucalyptus or Australian blue gum. In closing your article, you state that this tree, which is now attracting considerable attention to its medicinal and sanitary qualities, has been acclimated to the south of France, Algiers, Corsica, Cuba and Mexico, and suggest that it might be cuitivated to advantage in the swamps of the Southern States. I thought it might not be uninteresting to you to know that this tree is already being extensively cultivated in California, where it wás introduced over twelve years ago. Some of the trees that were set out in this city about that time are now 70 feet in hight and 20 inches in diameter Probably 100,000 of these trees have been sold in this city and San Francisco this season; and not less than that number are already growing in and about this city, the tree being very popular on account of its quick growth and clean lasting fcliage, to say nothing of its sanitary qualities." have raised from the seed and planted about 10,000 on farm within two miles of Oakland during the past four years. The first were planted four years ago this spring; and when set out, were from 12 to 15 inches in hight. Some land is rolling foot hills, 300 feet above tide water; and the trees have passed through three unusually dry seasons and have had no attention except being plowed once each year and kept clear of weeds. Thus they seem to flourish equally as well as those planted in the low lands or marshes, better in fact than the latter. No tree here, excepting the Monterey cypress, indigenous to California, seems to stand the drought so well as the blue gum; which has made it a very popular ornamental tree. Upon my place I have some five or six variecies of the same tree, namely, the blue, red, white, iron bark and pepperetta. Of these, the blue gum is the quickest in growth and is the most extensively cultivated.

The seeds are first started in hot beds. After the plants are up an inch or two high, they are placed under slats to harden and prepare them for the hot sun when set out, which has to be carefully done, without removing the boll from quently shooting up five or seven feet in the first year, the green stalk having the appearance of a rank weed. This appearance will continue for two years, when the tree not
only begins to change the appearance of its body but also the shape of its leaves; the latter, which when young were very broad and blue, now begin to appear at the top of the tree, long, slim and of a very dark green, the tree thus carrying in appearance two distinctly marked leaves. I have sent which I hope will reach you in a state to explain more fully than I have done here.
The eucalyptus appears to stand a great deal of frost after growth of two years. In fact our unusually cold weather here, this season, the ice being frequently frozen as thick as dollar, does not seem to have affected the young trees in the least. The tree will undoubtedly flourish well in the Southern States; and after what is known of its sanitary qualities, it should be extensively cultivated. The seeds are
very small, probably 5,000 to the ounce, and can be had of very small, probably 5,000 to the ounce, and can be had of eedsmen in San Francisco.
The eucalyptus is already being extensively planted in this State for lumber and fuel; for the latter purpose, it is superior to any timber we have here. As a shade tree, it is entirely free from insects. The leaves placed among clothing are a thorough protection from moths. Oakland, Cal.

To Make a T Square

To the Editor of the Scientific American:
Two years ago, a T square blade which possesses the advantages of both wcod and steel was made; and though somewhat expen
 lent instrument. $\begin{array}{rlr}\text { In } & \text { a piece } & \text { of } \\ \text { sheet } & \text { steel, } a, & 36\end{array}$ inches long by $2 \frac{1}{2}$ wide, and $\frac{3}{64}$ of an
inch thick, holes b, pieces of mahogany pressed in firmly with a vise, and then worked down even with the metal. Pieces of mahogany, c the same size as the steel and $\frac{1}{8}$ thick, were then laid one on each side, and the whole glued together and clamped upon a planer table, where, after it was thoroughly dried, the edges were planed parallel without moving the blade. The wood covering was next reduced to $\frac{1}{32}$ of an inch in thickness,and corners beveled.
F. H. R.

Value or the Scientife American as an Advertising

Medium.

To the Editor of the Scientific American:
I can fully endorse what a correspondent says on this head, in your issue of February 28. Ten years since,I made and sold a small article, which had its day and then passed, as I supposed, into oblivion. Last week, however, I received new orders for it. I am afraid now to advertise in your paper, lest, some quarter of a century hence, part
demand service long after I am dead and forgotten.

Egbert P. Watson.

Messrs. Munn \& Co :

Gentlemen: I take the earliest opportunity of returning you my most sincere thanks for the etficient and honorable manner in which you have conducted the business of obtaining for me a patent for my self car coupling. After employing, during the past five years, as many different agents and failing in each case, it was my good fortune to fall in and failing in each case, it was my good fortune to fall in
with a gentleman who strongly advised me to go to you, as. with a gentleman who strongly advised me to go to you, as.
suring me that, if I did so and it were possible, a patent suring me that, if I did so and it were possible, a patent
could be obtained through your agency. That he was not could be obtained through your agency. That he was not my letters patent is sufficient proof; and I, therefore, cannot allow the opportunity to pass of making due acknowledgment of your straightforward and honorable course as patent agents, and I shall not fail to advise all my friends, seeking a like accommodation, to place their business unreservedly in your hands. As we receive the Scientific American here through the hands of news agents, I presume I shall see a notice of my invention among the notices of patents secured through your agency, which I find in the
weekly issue of your valuable journal. Thos. R. LaND. weekly issue of your valuable journal.
Grass Valley, Nevada county, Cal.

The Hartford Steam Boiler Inspection and

Insurance Company.
The Hartford Steam Boiler Inspection and Insurance Company makes the following report of its inspections in the months of December, 1873 :
The number of inspection visits made during this month was 1,156 , and the number of boilers inspected, 2,318 ; of hese, 771 received thorough internal inspection. The hydrauic test was applied in 132 cases. These were upright tubulars, or new boilers in the yards of the boiler makers. The whole number of defects discovered was 948-of which 262 were regarded as dangerous. These defects in detail were as follows:
Furnaces out of shape, 43-13 dangerous; fractures, 640 dangerous; burned plates, 54-24 dangerous; blistered plates, 174-34 dangerous ; deposit of sediment, $138-15$ dan.
gerous; incrustation and scale, 120-19 dangerous; external corrosion, 76-17 dangerous; internal corrosion, 31-8 dangerous; internal grooving, 10-4 dangerous; water gages defective, 29-6 dangerous; blow.out defective, 28-11 dangerous; safety valves overloaded and defective, 19-8 dangerous; pressure gages defective, 137-25 dangerous, varying from -20 to +12 . Boilers without gages, $66-5$ dangerous; from -20 to +12 . Boilers without gages, $60-5$ dangerous;
deficiency of water, $5-2$ dangerous; braces and stays broken and dangerously loose, $67-26$ dangerous ; boilers condemned, 13. The comments which are made on these reports from 3. The comments which are made on these reports from
month to month may appear to some readers a little stale. We know there is a striking similarity in them all; but when uch facts as those above are enumerated, month after month, it shows that there is great need of frequent and careful examination of steam boilers. It must be born in mind that there are all kinds and types of boilers in use in the country, and that the average ability of attendants is very low. Defects which point directly to disaster are met with almost daily, and we believe many explosions of boilrs have been prevented by the thorough examination which has discovered such defects as those in the above report. A cursory examination or a simple test will do little towards bringing such defects to light. The work must be thcrough, and time enough must be taken. No specific rule can be laid down for making these examinations. Each case requires treatment in accordance with the circumstances connected with it: these are the type of boiler, pressure carritd, character of bracing, quality of water, efficiency of attendant, etc., all of which have much to do with the question of preventing boiler explosions. Experiments on obsoiete or special types of boilers will do little towards preventing the explosion of boilers in use, because the conditions under exphiosion of boilers in use, because the conders are used in manufactories are very different from those under which experimental boilers are used. Val uable information can be obtained on certain points by well directed experiments. Tests of safety valves are an impor tant matter, and one that should receive speciai attention. It may, however, be a question whether the best way of making such tests would not be to subject them to actual use on boilers that were doing regular duty, day after day for six months or a year. We believe in tests that are prac tical, and our experience goes to show that, especially in a question of such vital importance as that which seeks for its solution the prevention of boiler explosions, too great care and too much time cannot be taken. A great many worthless boiler appliances have been palmed off upon steam users, the only proof of their efficiency being that they had worked well under some experimental test. But when subjected to the conditions of constant use, they have proved utterly worthless.
During the months of November, December, and January, here were 37 boiler explosions in this country; 14 of these were in saw mills and planing mills-7 wererailroad locomo tives. In one instance, a boiler exploded while being tested by steam. We have never known of but one other instance of testing boilers by steam. This was doce by the boiler maker himself, and he was killed, with two others who were assisting him. We think in both cases there was lamentable gnorance. The parties had doubtless read or heard of testng boilers by the expansion of water by heat. It will be readily seen that testing boilers by steam pressure is about as suicidal as to be suspended by a rope around one's neck to test his ability to withstand hanging.

Improved Compound Marine Engines.
The principle of the "compound" steam engine, from which so much good and economical work has of late years been obtained, is that it has both a high and a low pressure cylinder or cylinders, and that the steam which has done duty n the former is made to do dutyalsoin the latter, before it is suffered to escnpe. The compound engine was first patented by Arthur Woolf, in the year 1804; and he placed the two cylinders in a vertical line, one above the other, and worked them by a single crank. Since that time a great many experiments have been made in relation to the subject, and als most every conceivable combination of cranks and cylindero has been tried; but the accepted type at present is the twe cylinder engine, with the cylinders either vertical or sidby side. Messrs. Lamport and Holt employ the former con. struction, with a single crank, and thus return almost precisestruction, with a single crank, and thus return almost precisely to the principles laid down by Woolf, seventy years ago.
It now appears that, if his invention had been earlier appreIt now appears that, if his invention had been earlier appre-
ciated at its true value, many millions of tuns of fuel and ciated at its true value, many millions of tuns of fuel and
many hundreds of thousands of pounds sterling would have been saved. The present price of fuel is so high, and its un. necessary consumption is so much to be condemned, on account of the influence which the coal supply exerts over the cost of iron and of many other commodities, that shipowners will often find it necessary to make quickness of passage subordinate to other considerations, and will be forced to inquire how they may safely convey the largest cargoes from port to port at the best paying speed, and with the least expenditure of coal and stores, rather than how they may attain the highest speed without reference to its cost.-Iron.
Mr. A. Augustus Adee, United States Chargé d'Affaires in Spain, is a native of New York. He speaks and writes the French, Spanish, and German languages, and has superior qualifications for the position he holds. He has been in the diplomatic service for five years, and was for three years Secretary of Legation at Madrid. We have had occasion to require Mr. Adee's services a number of times since his residence in Spain, and we can personally testify to his superior ability in the administration of the office he holds under our government. But few of our representatives abroad fulfil government. But few of our representatives abroad fulfi
theic mission as acceptably to their countrymen as Mr.

OAKLEY'S CUBRANT WABHER.

Dried currants, as purchased from grocers, are frequently not over clean, so that it is usually necessary to wash them before preparing them with articles of food. In order to provide a simple and efficient means to enable the housekeeper to perform this operation, the device represented in perspective and section in the annexed engravings has reperspective and sectio
cently been invented.
The principal vessel is an ordinary bake pan of any desired size, in proportion to the desired capacity of the machine. To its edges are affixed suitable bearings for projections from the central portions of the ends of a cylinder, A, the sides of which are formed of perforated sheet metal. The latter is rigidly secured in the end which carries the crank, but the solid portion of the oth er extremity forms a cap, B, as shown in the section Fig. 2, which is readily removable to give access to the interior of the cyl inder. Two rods are secured to the inner side of the crank end and extend into the cylinder, in order to secure the agitation of its contents.
The large lumps of currants which have caked together being first broken up, the receptacle is filled and the cap, B, tightly fitted in place. The projections are then dropped in the bearings and the trough filled with water to within about half an inch of its upwater to within about half an inch of its up-
per edge. If the cylinder is then rotated per edge. If the cylinder is then rotated
slowly by means of the crank, the inventor slowly by means of the crank, the inventor
states, within two minutes the currants states, within two minutes the currants
will be entirely freed from grit and a large will be entirely freed from grit and a large
proportion of the stalks. If they be very dirty, the water may be advantageously changed, and the process repeated. The fruit thus prepared can be dried or used as required, wivh out the usual rubbing in a cloth.

Patented January 13, 1874. For the purchase of rights or of the entire patent, apply to F. Oakley, 96 Bond Street, of the entire pat
Toronto, Canada.

\triangle NEW TOOL HOLDER.

All machinists are aware of the trouble in getting a lathe tool so held in the tool post that it can be quickly and conveniently elevated or depressed as the work may require, and still be held perfectly solid upon the rest. Many devices to effect this result have been suggested; but in those in which cheapness is the principal recommendation, the difficulty appears to arise from a want of solidity under the tool. Mr. Lewis Reder has patented, through the Scientific tool. Mr. Lewis Reder has patented, through the Scientific American Patent Agency, a si
that seems to meet this want.
From the annexed engravings will be clear to any mechanic that one incline of the washer, A, Fig. 4, is higher than the other, the pitch being just the same; and, second, that the shoe is thicker (see Fig. 3. and B in Figs. 1 and 2) at one end than the other, both extremities of it being beveled to suit the inclines of the washer. This simple little of the washer. This simple little
article, with momentary changes, article, with momentary changes,
produces four positions for the lathe produces four positions for the lathe
tool, holding it perfectly firm in each, namely: First, by placing the thin end of the shoe and high part of the washer together; the tool is held in a level position; second, by turning the washer so that the thick end of the shoe and bigh part of the washer are together, the point of the tool is thrown below the level; third, by now turning the tool post and washer half round, the point of the tool is thrown above the level; and, fourth, by turning the washer around the tool post, the tool is adjusted to any hight under any of the three conditions named above.
The advantages claimed for this simple improvement are its comprehensiveness, solidity, durability, and extreme cheapness.
Mr. Reder has arranged for its introduction to the trade of the United States with E. and A. Betts, machinists' tool builders, of Wilmington, Del., who have prepared themselves with suitable apparatus to manufacture the invention of cast steel, at low prices,

Use of Steel for Bollers.

Mr. R. L. Haswell, of Vienna, spoke recently on this subject before the Society of Austrian Engineers. He remarked that the accidents which had occurred on railways using locomotive boilers of steel has thus far been only ascribed to the material; yet this was due, on the one hand, to the preparatory working of the plates, and on the other to the small thickness, as well as to the insufficient mode of assorting them before they were used. The State Railway thus far had used about $50,000 \mathrm{cwt}$. steel plates, among which only 200 cwt . were thrown aside during the manufacture of the boilers.
Mr. Haswell only knows of five instances where the boilers got cracks, four of which occurred in the fire box plate and one in the cylindrical part. Mr. Haswell ascribes their faulty
condition to the fact that they were rolled when too warm. This shows that, even by purchasing steel plates from most renowned establishments, and of the best quality, one cannot depend on their superiority for the purpose in question without assorting them with the utmost care, because it can read. ily occur that in heating the plates one or more get spoiled. Hence, in the establishment of the State Railway, all plates are subjected to tests for their tensile strength before they are used. That these tests are perfectly reliable is shown by tine fact'that, of 350 boilers consisting of steel plate, only a sin

OAKLEY'S CURRANT WASHER.

sie one was found torn thus far, and this in the cylindrica! part. The box plates not having been tested, it is readily explained that four boilers were injured in those parts. But, although these plates had undoubtedly been impaired in their strength by overheating, they would probably not have been torn if the construction of the machines, namely the boiler supports, did not involve an immense strength.
In order to obtain steel boilers answering all requirements,
only correspondingly thick plates and plates of the best maonly correspondingly thick plates and plates of the best material, without any addition (for otherwise the steel is not lously assorted according to the texture and tensile strength. After boring or punching they should be carefully annealed; the riveting must be formed with pedantic care, and the bending done with wooden hammers. That steel plates manu bending done with wooden hammers. That steel plates manu
factured in Austria are of excellent quality is proven by the manner in which boilers are there constructed; the box front

REDER'S IMPROVED TOOL HOLDER.

plate, dome cover, and the sides of the tubes are only furnished with an edge or border, while in England they are compelled to use angle iron for these connections.
Steel plates are preferable to iron plates, owing to the fact that they possess the same degree of elasticity in all directions -from 12 to 15 per cent: in iron plates it is in the direction of the fibers, and, according to Mr. Kirkaldy, about 15 per cent, but in a cross direction only 5 per cent. If one proceeds in the manner indicated, fays Mr. Haswell, steel plates may be used with perfect safety. The boiler manufacturer has the advantage that he finds fewer plates to throw aside, and the railways, on the other hand, will have more carefully con structed, stronger, and, in the end, cheaper boilers.-Indu8 trie Zeitung.

The Dudley Mining Institute, England, offer a prize of $\$ 100$ for the best model of a hand coal-cutting machine sub mitted to the Council next June. Mr. T. Parton recently stated that the ordinary loss of coal is 40 per cent, owing to the imperfect methods of working it. Where the best arrangements are in force, the loss does not exceed 10 per cent.

A Rallroad Signal Officem-An Ho in the Granp Central Depot at New York.

A correspondent of the Troy Times gips the following account of the mode of dispatching and redeiving trains at the Grand Central Depot in this city:
The signal office is a little room at thy northern entrance of the depot, about thirty feet above pe pavement. It is reached by a narrow passage way fro the west side, and when you get into it you see a sight whech made Jones go into an unmistakable surprise. Looking down the depot there was a space of more then 600 feet length by 200 feet breadth, ceverd with an iron roof and lighted from the top. Trains of cars were coming and going incemantly, but no confusion was perceptible, and everything, as my friend said, "went on like clock work." There are two operators in ervice here, relieving each other during a tour of duty, which ex. tends from $5 \mathrm{~A} . \mathrm{M}$. to 11 at night, their motions being regulated by a large and costly clock. The gentleman in sharge received us very politely; but bufore we had hardly thanked him, we hean the sharp and rapid ring of a bell overkead. It was marked " Ninety-sixth to Severty-fifth street." "You see," said the operator, " there is a train coming in, and it wants to know if we are ready for it." " But how does it ring that bell?" said Jones. "By electricity," was the reply. " This is Hall's patent, which works like a charm." In a few minutes another bell rang. It was marked "Sixty-first to Fifty-sixth street." " The train now reports itself again," said the operator, "and this renews notice either to prepare for it or to signal it to stop." He touched a telegraphic machine, and then said, "this throws up the signal to come in," and, sure enough, in a few minutes the train arrived. One hundred and forty trains arrive and depart in a day, including the Central and Hudson, the Harlem, and the New Haven Roads, and hence the signal service is one of incessant activity. The operator then informed us that each road has four starting bells of different keyß, all of which wererung by him by means of electricity. Three started passenger trains, and one ordered out the cars as soon as emptied. "You see," said he," this train which has just come in. The passengers are gone, and I want to know if the baggage is taken out." He touched a stop and rang a bell (as he said) 600 feet distant. In a moment a bell overhead struck twiee. "Baggage is out," he ment a bell overhead struck twiee. "Baggage is out," he
said, "otherwise he would have struck once, and I would have said, " otherwise he would havestruck once, and I would have
waited. I must order the train ont. Do you see that locowative just ahead? W ell, now, see it move." He touched a stop and I saw the let or' Z deplayed at a window in a side building. "He hears a bell ring, also,", said the operator. The engine backed down and hitched to the empty train and the Z disappeared. "I shall now send him out," said the operator, as he touched another stop, and the empty train at once moved forward and left the station. The letters X Y Z (I may add parenthetically) designate the locomotives of the Harlem, Hudson River, and New Haven Roads, and are the signals to back down and connect with trains.
"Iam now about to send out a passenger train," continued the operator; "a half hour ago I struck twice to open thedoors and let the passengers pass from the sitting room to the cars. Now I shall soon close that very door, but first I must stop checking bag. gage." 1 small knob was touched by his finger. "Now," said he, "the next trunk that comes must wait for another train. There (another touch with the finger), the baggage car is hauled out and switched on the right track. Five minutes more and she is off. Here goes the 'close the door bell' at a touch; no one passes in after this. Now I say 'all aboard,'" a touch, and we hear the distant voice of the conductor echoing through the vaulted roof. "Now it moves," another touch, and the rumbling movement was immediately perceptible, and in a few moments the train left the station. As the cars go up the road, they signal their progress by ringing bells in the same office until they have got through the city streets, and thus give assurance of a clear track for all that may follow. The station will contain twelve trains of thirteen cars each; and by means of this wonderful system, they are all managed wlth dispatch and safety.

Frog Culture.-Seth Green, the great fish culturist and Sta ${ }^{+}$Commissioner for stocking streams, now proposes frog culture for food. He says: "We have many stagnant pools about the country, that are uselese in their present state; and believing that there is nothing made in vain, I do not know of any other use for them than to make them into frog ponds. I also believe it would make the man wealthy who could raise a million froge and get them to market."

ONE hundred cubic inches of air weigh thirty-one grains

A NEW WATER METER.

Mr. Charles Deacon, C. E., engineer to the borough of Liverpool, has recently brought into use a water meter which he applies to mains for the purpose of detecting waste. The invention, says The Engineer, to which we are indebted for the engraving, consists of a vertical tube lined with brass and equal in diameter at the upper end-where it is connected with the inlet from the main-to the diameter of that main, but larger at its ๆower end. In the tube is a horizontal disk of the same diameter as the main, with a vertical spindle on the center of its upper face, from the end of which the disk is hung by a fine wire passing out at the top of the tube through 8 , brass gland. The wire is connected above with a counterbalance weight, which, when the water is at rest, retains the disk at the top of the tube,which it completely fills. If water is caused to flow through the it completely fills. If water is caused to flow through the
instrument, the disk will find somewhere in the tube a posiinstrument, the disk will find somewhere in the tube a posi-
tion which it will retain until the velocity of the water changes. The lower end of the conical tube being about double the area of the main, no obstruction to the flow can take place, while the motion for any given increment of velocity near the top, or place of minimum flow, can be made aqual to,or even greater than, that due to an increment at the bottom or point of maximum flow, so that its sensitiveness is not diminished at low velocities-a feature which is unatt sinable in any meters constructed on the turbine or analogous principles.
In order to insure the absence of any friction it was found desirable to abandon the use of a stuffing box, and to substitute a single brass gland, the hole in which fits the wire accurately, but not tightly. This wire, being an alloy of iridium and platinum, maintains its condition for any length of time, and the small quantity of water which oozes past it is allowed to drain away. The absolute accuracy and freedom with which the meter acts has been proved by the strictest tests. The vertical motions of the wire are registered by a pencil, connected with it, on a drum revolving once in a pencil, connected with it, on a drum revolving once in twenty-four hours, the paper on which can easily be removed
at any time and replaced by a sheet with horizontal lines, each of which corresponds with the hight at which the pencil stands when the number of gallons per hour marked upon the line is equal to the quantity passing through the meter. The essential peculiarity then of the waste water meter is that it registers on paper the exact quantity of water moving at every instant, and the exact time and rate
at which that quantity changes. At twelve on the first fine night, a waste water inspector sounds each stopcock on the house supply pipes. If the inmates have retired, and a flow of water is heard, the stopcock is closed, its number and the time being accurately noted. At the same instant the meter registers the reduction in the flow of water, and the time at which it takes place. It is sometimes found desirable to arouse the inmates and enter the house, in order to obtain the necessary evidence of waste, especially when the running of water from taps is heard. In other cases the house is visited by the inspector early on the following morning ; and if, while he is within,another inspector outside turns on the stopcock, there is generally no difficulty in detecting the source of waste at once. If, however, the waste is not superficial, sounding with the teeth at the taps and other fittings will generally discover a leak in the buried pipes. Each source of internal waste having been aiscovered by these means, the greatest care must be exercised by ered inspectors to insure its remedy in the best possible manner.

A Now Method of Determining the Sun's Distance.
The method consists in determining the parallax of one of the exterior planets when in opposition, not by micrometri cal measurements of its distance from neighboring stars, but by noting the exact moment at which it may occult a given star and the duration of the occultation (provided such a phenomenon takes place). Theoretically, this is perhaps the most accurate of all methods, but there seems to exist,at first sight, an insuperable objection to its practicability; namely, the apparent impossibility of noting the exact instant of the disappearance and reappearance of the star. If we can get over this difficulty, nothing will stand in the way of a successful application of this method to determine the sun's distance. And here the spectroscope comes to our aid, and affords us the means of conquering this difficulty most completely.
Suppose, just previous to the expected disappearance of the star behind the body of the planet, the spectrum of the two be brought into the field (the star being at that time of course very close to the edge of the planet's disk). We shall evidently have the spectrum of the star superposed on that of the planet, the characteristic stellar lines appearing as well as the planetary ones. This double spectrum will continue visible in the field of view so long as the star's light reaches
the observer, but the instant its light is cut off by the advancing disk of the planet, at that instant will the stellar spectrum vanish. However slow the apparent motion of the planet, and however dubious the time of the star's disappearance, as determined by telescopic observation, it will be seen that the result obtainable by this method of observation must be most rigorously exact.
The only doubt as to the value appears to be the infrequency of the phenomenon. This, of course, depends entirely on the minimum brightness of the star compared to the planet, necessary to bring out its spectrum at the same time as that of the planet with the required distinctness. On the whole, Saturn would seem to be the planet most favorably situated for the occurrence of this phenomenon, as he has a considerable apparent diameter, while his being much less bright than Jupiter or Mars in opposition would aHow of the use of much smaller stars than these two planets-his very slow motion also being a considerable advantage. By knowing previously, approximately, the portion of the planecary disk which will first occult the star, it would be easy to shut out a great portion of the light of the planet, and observe the spectrum only of that portion of the disk behind which the star would disappear. By an arrangement of this nature, I believe that stars down to the fifth, or even the sixth, magnitudes might be very well used for this purpose with either of the three above mentioned planets; and occultations of tars of these magnitudes cannot be very infrequent.-George F. Hardy, in the English Mechanic.

New Steam Auxiliary.

A new invention by Mr. J. Berger Spence, of London, consists in passing steam at ordinary atmospheric pressure into a solution of caustic soda, which is thereby raised to its own boiling point. It is proposed to use the heat thus developed to generate steam, the waste steam from an engine boiler being employed in the first instance to heat the caustic soda. Mr. Spence showed that the effect was absolutely produced by raising a solution of caustic soda to a heat considerably over 212° by means of a jet of steam, but he stated that he had not yet worked out practical details as to the employment of the idea, though he exhibited a sketch of an arrangement of boilers which he considered might render it a vailable.
The combustion of one pound of coal in one minute is productive of a force equal to the work of three hundred horses during the same time.

NEW BOOKS AND PUBLICATIONS.

rimal Physhology; the Structure and Functions of the
Human Body. By John Cleland, M.D., F.R.S. With 158 Human Body. By John Cleland, M.D., F.R.S. With
Engravings. Price 1.50 . New York: G. P. Putnam's
Sons, corner Fourth avenue \& 23 street.

An elementary work on the sclence, designed as an introduction to more extended treatise.s. It is ans wen a In that most fascinating of studies-one's self-and is suffliciently free from
techutcal verblage to render the perusal of its pages pleasant while, of techulcal verblage to render the perusal of its pages pleasant whine, of
course, instructive. We note no espectal difference in the plan of the book from the slmillar work prepared for colleglate uses oy Protessor Huxley,
and it is necessarily a compilation from varivus sources. The illustrations are both excellent and numerous, and a valuable glossary occuples the concluding pages. The volume is a reprint from the English edition, and Hydraulics of Great Rivers: The Paraná, the Uruguay,
and the La Plata Estuary. By J. J. Révy, C. E. New and the La Plata Estuary. By J. J. Rév
York: E. \& F. N. Spon, 446 Broome street.
The government of the Argentine Confederation. three yea s since, authorized an investigation into the gue tion of the watershed of theirterri South Atlantic to the Andes. This work was most thoroughly done by M. Réry, of London, England, and the result is before us in an exceedingly handsome volume, illustrated with maps, plans, and sections. The book
will be valuable to engineers generally, aud espectally to those engaged in wimilar work, as the author's analyets of his results trcats the subject of
sind fluvial drainage in the broadest manner; and he gives due commendation to tne Argentine
physical geography

patent office decisions.

 Tunctri, Acting commissioner,

decisions of the codrts.

United States Circuit Court--District of New Jersey cilarles guidet va. samuel barber.-patent stone pavement.
[In equity.-Before Nixon, Judge.-Declded December 30, 1873]. Nixon, District Judge:

IMPORTANCE OF ADVERTISING.

The value of advertising 18 so well understood by old established business
business, or having for sale a new article, or wishing to sell a patent, or find manufacturer to work it : upon such a class, we would impress the impor
hrough which to do $1 t$.
In this matter, discretion is to be used at first ; but experience will soon
determine that papers or magazines baving the largest circulation, among the class of persons most likely to be interested in the article for sale, will
be the cheapest, and bring the quickest returns. To the manufacturer of
nechanical line, we believe there is no ether source from which the adver
Iser can get as speedy
Sientific amerions.
We do not make these suggestions merely to increase our advertising
onat but to drect persons how to tncrease thetr own businese
The Soientific american has a circulation of more than 42,000 coples

zerent Gmerican and foreign Ceatents.

Improved Washing Machine.

Theophllus C. Eberhardt, Hochhelm, Tex.-The box of the machine and
rubbing boards are made semictrcular in form. The faces of the corrugated and perforated. They are supported aud oscillated by the square shafts, which pass out through square holes of sockets, and hav andles. The outer surface of the sockets is made cylindrical in form Therubbing boards are forced forward by bent springs sacured to the inne nds of the sockets, wilch silde upon the boards, when the same ar shafts, sockets, and springs all move together, so as to always refain thet proper relative positions. To the outer ends of the sockets are rigidly at tached levers. These are plvoted to connecting rods, which connect
with cranks formed upon a shaft. The shaft carries on its ends fly wheels,解

e machine

Device to be Attached to Fences for Turning Stock. Jacob Halsh, De Kalb, Ill.-Tbis invention relates to modes of effectually
turning stock with hoop band or other light ralled fences, and consists in ecullariy formed fence, or otherwise bring
jure, or impair the same.

Improved Ohest for Tea, Coffee, Rice, etc.
anged to ppiled exteriorly, and thereby control the exit of the contents of the chest into the trough, from which they are removed by a scoop or other convenient device. The trough hasa ila or cover as well as the chest, and the atmosphere.

Improved Vault or Safe Door Fastening.
Cornell, 139 Center Sreet, New York clty.-This inve John B. Cornell, 139 Center Sreet, ew York city.-This invention con that, when the primary bolts which hold the frame and door in intimate contact have been broken by an explosion, the auxillary bolts, frst allowIng the door to be opened far enough to give vent to the force of the ex-
plosives, then arrest the further movement, and hold the door so nearly losed that access to the safe cannot be gained without cutting or breaking rom the locking bolt holes in the frame extending obliquely upward or ownward toward the inside of the frame a certain distance ; these slot ty againg that, While they winsecure the locking boach the door off, ye he tremendous force of an explosive inside of the safe will force the frame long the bolts to the ends of the slots, and thus afford the necessary vent dissipate the force of the explosion and still hord the door so as to de-
mand too much labor for gaining access to be performed with safety after mand too
the:notse.
Attachment to Self Raking Reapers for Carrying Binders.
Allen Elijah, Clarence, Iowa.- This invention relates to the stands ployed upon that class of reapers wheretn the grain is bound up into bundles before it is dropped, and the novel means for accommodating the binders. hese means consist in a frame with a rear projection, a non-revolving
shaft having end sifrups, and a stand connected with a stirrup by a chain

Improved Stud and Button Fastening.
Phillp H. Long, Newark, N.J.-This invention relates to the construction Philip H. Long, Newark, N.J.-This invention relates to the construction and consists in a stud or button and base, so constructed that the two are ution, and unfastened by a reverse movement.

Improved Fire and Water Proof Roof.
Toblas New, New York city.-The object of this invention is to provide means for protecting buildings (having interior wooden timbers) from fire as well as rrom water; and consists of a roof made of a stratum of Areproo of timber is bedded in the freproof substance, and has its upperside flusi with the surface thereof. On this is placed a water-repellent covering and over this an ordinary gravel, slate, tin, or other roof.

Improved Toy Gun.
John Alexander, New York ctty, and Hiram W. Gordon, Lynn, Mass.This inventlon consists of a toy gun, in which a rod or pusher is thrown
forward 1 t the barrel by a spring, for expelling marbles and the like. The barrel has a funnel-shaped muzhe, hat whor odies of difterent sizes can be hela, by friction, in fing of the pusher to secure them.

Improved Wind Mill.

William C. Nelson, Kentland, Ind.-The wheel is made in two sections ach having a separate portion of the hub, which is hinged to a middle has a spring attached to the middle portion of the hub, and arranged to hold the section up to the wind when the latter is not too strong, and to round towar the it fromdamage. The wheel is arranged to receive the wind from behind the standard, on which ita shaft is supported, and to dispense with a tall vane, which is required for
it In advance of the post.

Improved Animal Trap
John M. Marberry, Johnsonville, Tenn., assignor to himself and John M Palmer, of same place.- The wre cage has the usual entrances, and is at lached to a bottom board. A small balt box, having wire sides and a hinged top, ts secured to the bottom board by hooks and staples. The
opening tn the cage for the fnsertlon of the bait box ts closed by a prison box, which is attached to the cage by wire hooks. The box has a vertically silding door which is lield elther closed or elevated by a sliding bolt. Whe the trap is to be put f readiness for catching animals, the prison box is detached from the cage, and the balt box removed through the opening chus uncovered. When bail has been put in the box, it is replaced and se cured. The prison box is then attached to cover the opening in the side o
the cage. The animal enters the cage, and thence passes naturally into the prison box with a view to concealment. The gate betng lowered and se cured by the bolt, the
patching the aninal.

Improved Brick Kiln
Nelson Sickels, Newell, Iowa.-The walls inclosing the kiln are perma nent. The lower portion of the bricks to be burned, in which arches are
ormed. These bricks are arranged close together in the direction at nght angles to the arch, but with spaces between them the otherway; an long bricks a replaced across the arches a short distance a bove the bottom
uitable for burning coal. The bricks above the arch bricks to be burned ar rranged with spaces in both directions to be filled or partly filled with coal. Wider spaces are made between the stack of green brick and th Falls, also for contaning coal to be burned. They are divided vertlcally parate the coal and keep it from falling to the bottom of the spaces as it urns. The arches extend through the kill from side to side, and have the oalplaced in them throughout their whole length to be burned through ut allke. The fres are started at the mouths of the arches, and kept burn ng moderately unt1l the bricks get dry; then they are all
hroughout the kiln in all the spaces as fast as necessary

Improved Trumpet for Railway Heads, etc. Richard E. Frye, Manchester, N. H.-The upper part to the lower side of uldes formard and back a silde gate the mouth, as may be required, the upper wall of the mouth being forme in the end of the slide. To adjust and secure the slide is a screw-threaded rod, passing through an eye stud on the top of the
adjusting and binding nuts arrangedon each side.

Improved Grate Cleaner 'Attachment.
Adolph Teusch, Memphis, Tenn. - The object of this invention is to pro ermanent attachment for cleaning them, or removing the askes and nders that accumulate in the bottom thereof. To this end a shaft is voted beneath the grate, and provided with laterally projecting arms o y a foot lever or other sultable devtce

mproved Fire Extinguisher.

John Dillon, 424 Fourth avenue, New York city.-By sultable construc on access may be obtained to the interior of the case. Which is fastene the wall of the room, by turning back the cover and turning down the may be turned down. A reel shaft revolves in the interior of the case, and made with shoulders, to prevent it from having a longitudinal move ment. One end of the shaft is tubular, and with its cavity is connected, close to the reel disk, the end of the wire-1ined rubber hose, to the other
end of which is secured a nozzle. The wire of the hose enables the water ad of which is secured a nozzie. The wire of the hose enables the wate io pass through it freely, even when wound upon the reel. When the hose
is wound upon the reel, the nozzle is inserted in a hole in the bracket. The ubular end of the shaft projects beyond the bracket, and is made conical to fit into the tapering hole in the globular end of the short ingress plpe the other end of which is connected with the water pipe of the honse. The short pipe is provided with a stop cook, which, by sultable mechanism, may be opened and closed by lowering and raising the said lower part of be lowered and ralsed wy to be closed while the front is lowered to shut off the water when about to wind the hose upon the reel. The latter operation causes the water to run from the sald hose, so that it may be free from water when wound up. A ring groove is formed around the tapering part of the end of the shatt, so
that the water may pass constantly from the pipe to the interior of the that the water may pass constantly from the pipe to the interlor of
shaft, and,thence to the hose, even when the sald shaft la revolving.

Improved Curtain Fixture.

Edward M. Davies, Allegheny, Pa., assignor of one half his right to Fran beyond the brackets in which the roller turns, provided at its outer end thascrew thread, and produced with a square or triangular cross sec tion. A spring is placed between washers, elther inside or outside of the racket, as desired. The washer adjacent to the bracket is provided with a hole to ft on the axie trunnion and prevent the spring from getting worn. A check nut binds washers and opring together, and ts preventea worn. washer, from becoming unscrewed. The check nut is used to regulate the tension of the spring on the bracket, so that the curtain is held in place in

Improved Pipe Joint.
William P. Valentine, New York ctty.-The object
roduce an improved pipe jofnt for water, steam, gas an in to which they may be connected at any sultable point and under any angle without the use of fire or solder, by simple mechanical means. The inven projecting shoulder, to the recessed ends of the adjoining pipes. The sockets are cut with an outer screw thread, and firmly connected when placed on the pipes by a sleeve with right and left hand thread, which is
screwed over 1 t without altering the position of the pipes, while a leather or rubber washer in the sleeve secures the tight commuatcation

Improved Machine for Soldering Cans.
William D. Brooks, Baltimore, Md. This invention consists in several impruvements which have been tested by many practical experiments, and sides of cans and have made it possible for unskilled hands to do the work
rapldiy and well.
Machine for Marking Letters and Canceling Stainps.
Chas. J. Goft and Elmer B. Hursy, Clarksburgh, W. Va.-This inventi relates to mechantcal means whereby stamped letter envelopes in the Post
offle Department may be conventently and rapidly canceled. The invenofflce Department may be conventently and rapidly canceled. The inven-
tion consists in a sertes of improvementa by which a single person can, in a comparatively short space of time. do all the cancellig required at any
post ofllce, thereby not only securing uniformity and thoroughness in the post ofllec, thereby not only securing unif
work, but great economy of time and cost.

Base Burning Stove for Anthracite Screenings.
Sity Henry R. Robbing, Baltimore, Md.-This invention relates to an improved
magazine stove, espectally adapted for burning anthracte coal screeningns magazine stove, especially adapted for burning anthracite coal screenings,
and thereby utilizing what has been generally regarded as a waste product and thereby utilizing what has been generally regarded as a waste product
of the coal yard. The magazine, or cyllnder for holding the coal, has a ranged at such distance apart as to prevent escape of the bulk of screenranged at such distance apart as to prevent escape of the bulk of screen-
ings between them, whlle allowing free access of tlame and heat from the
oody of incandescent coal in the fire pot immeulately below. Thus a deoody of incandescent coal in the fre pot immeutiately below. Thus a de-
gree or extent of combustion which would bediflicult or tmpossible to produce and maintain, by means of the ordinary form of cylinder in magazine stoves is assured, while the area or surface of burning coal is largely in-
creased and thereby a correspondingly greater degree of heat produced. creased and thereby a correspondingly greater degree of heat produced
The gas formed in the cylinder is fed dowu into the flame or burning coa The gas formed in the cylinder is fed dowu into the flame or burning coas
by tubes, which are arranged directly over the fre pot so that the gas beby tubes, Which are arranged directly over the fire pot so that the gas be-
comes highly heated before reaching the coal, and thus has its inflammable
aud combustiole property increased. The invention also includes an araud combustiole property increased. The invention also includes an ar-
rangement of two annular registering sildes with a fire pot open on the sides, whereby the combustion may be increased at the base or top, or both,
of the body of screenings contained in the pot, as occasion or necessity

Improved Transplanter.

Ara Race, Cheraw, S. C.-This invention reateser. generally to transplant.
ers, but particularly to thcse whichare used for the removal and transportation of cotton plants. The invention consists in combining a con caved plate with a reciprocating spade; in the construction of the spade
wilh a convexity on the inner side and opposite the convexity of plate;
and tia combining a crooked slotted rod with the spade handle.

Improved Watch.
Louis Evans, Pittsburgh, Pa.-This invention consists in combiuing the winder post with the wheels and barrel, and also in the app
levers in counection with the wheel post and the dial wheel.
Water Heater, Warming Closet, etc., for Cook Stoves.
John O. Shriner and John Taylor, New Castle, Ind.-The object of this invention Is to provide for household use an attachment for the ordinary cook stove which is adapted for heating a large or mmall quantity of water
by means of a reservoir and a hollow cylinder placed in the stove pipe or by means of a reservoir and a hollow cylinder placed in the stove pipe or
druma, the two being counected by brauched circulating pipes arranged in a peculiar manner. The invention also includes a warming closet whtch is

Improved Fire and Water Proof Roof.
ew, New York city-This invention relates to a per Tubias New, New York city-This invention relates to a peculisr con
struction of the roofs of buildings so that they may be alwayspreservedina waterproof condition, and yet allow the same to serve asa walk over whith
familles or servants may travel in order to utillze the same for drying clothes and other useful purposes.

Improved Binding Attachment for Harvesters. William M. and George H. Howe, Lausing, Miun.- This Invention consists
in combining a straw rope twister, a binding arm, a tueker and a cutter so in combining a straw rope twister, a binding arm, a tueker and a cutter so
that the rope ts made and dellvered automstically; also in certain subendiary features of improvemen
of the binding attachment.

Improved Water and Gas Cut Off.

 Eugene M. Morris, Batimore, Md.-This invention relates to means forlockiug and operating the valve of a gas or water cock. It consists in
commining with s valve red combining with a valve rod connection a ratchet-flanged drum, a thumb

Improved Perspectograph.
Anderson R.East, Selma, Ind.-The object of this invention is to provide
a simple and eftictent mechanical apparatus by which to take the polnts or a simple and efllctent mechanical apparatus by which to take the points or
boundary lines of all visible stationary objectsaccurately and transfer them to paper on a sketch board. Two perpendicular bars extend from a bed picce. On one bar are two sleeves, the lower of which carries a horizontal
arm, the turtber extremity of which is slotted to receive the second perpendicular bar. On the horizontal arm sildesa vertical rod through which, at its upper end, passes another horizontal arm, which is attached to the
upper sidding piece on the bar first mentioned. Pivoted to either sliding upper silding plece on the bar first mentloned. Plvoted to elther sliding
piece at will is a converging arm which carries one eye plate on a vertical
staft. On all these portions except theing piece at winl is a converging arm which carries one eye plate on a vertical
staff. On all these portlons except the swinging arm are marked scales. A single example of the mode of using the instrument will suffice to show its
anplication. To operate by the use of the perpendicular scale and the horizontal scale on the upper sliding plece, or, in other words, to take fleld notes by latitude and departure, using the sliding scales, slide the horizontal scale to the top of the meridian, and move the scale of latitude (the
vertical rod on the lower horizontal arm) to the extreme right. An object in the foreground to the extreme left and nearest to the observer is selected and regarded through the eye plate. The scale of latitude on the base is
next moved till it comes in direct line with the eye and the said point. next moved till it comes in direct line with the eye and the said point.
Then the horizontal scale at the top of the meridinn is loosened and moved down till it also comes in direct line from the eye to the object, and the angle of incldence or the latitude and departure of the sald point of the the plat board is moved until it cuts the degree of latitude of said point in the object, and a dotter is fixed to the angle of longitude or departure. By
a gentle pressure on the dotter the point is carried on the paper. In this a gentle pressure on the dotter the point is carried on the paper. In this
way the operation is carried on from object to object, and from point to way the operation is carried on from ob
point, untll the entire field is gone orer

Improved Breast Pad

Frederick Cox, Brooklyn, N. Y. -This invention consists of infiatable Indis ruboer breast pads so constricted as to fit over the breast and not
bear directly upon it. There is an annular cushion to bear around the base of the natural breast, and also a ventllating opentng trom the cavity. The device improves the form of the natural breasts by keeping them in the
natural shape, instead of flateung and depressing them, as the common pads do; and they are more healthful, and retain their own proper shape

William J. Wilcox, Psterson, N. J.-To make a stri d, it is necesian. Prime article of ard, it is necessary to stir or agitate it to a certain extent while it is cool-
ing after having been rendered or melted by heat. To this end it is pro-
posed to employ two revolving agitators, turning on their own axes, while at the same time rotaclng around the axis of the tank. The agitators betng
on opposite sides of the axts of the tank, thetr action is rendered very nearly equal throughout all parts of the latter. Four of said agitators may be used as well, two being in a line at right angles to the line of the other
two ; but generally two only will be sufflctent.

Improved Medicinal Capsule.
New Yorkcity.-This method of making
Peter Cauhape, St of dipping a ball in the gelatin in a liquid staste, on of gelatin consists of dipping a ball in the gelatin in a liquid state, of when lifted out, sufficiently to form an elastic envelope. This is pulled off the ball by the fingers, and placed in a mold, with the mouth up ward, to be
filled with the medictne, after which it is sealed up. By fattening the ball to a certain extent at the bottom, the accumulation of the material there at will make the sack round, forming an article which is much better in
respect of appearance, and is more acceptable to the public than the old respect of appea
elongated form.

Edmund C. Lipplncott, Edtontown, N. J., and Thomas R. C. Weat and James West, Brooklyn, N. Y.-This improved compound is for the cure of
cancers, and is made of the fuce acid. The whole mass is reduced by evaporation to a thick, pasty state, acid. The whole mass is reduced
when it is complete, and ready for use. It is appiled to tae parts affected
in the ordinary way of using such remedies.

Improved Iron Pavement.

John Vandercar, Brooklyn, assignor to Martin Van Buren, New York city. -On the bottom of each section which is placed on the roadway is a flange, Which is embedded in the foundation and prevents the section from getting
displaced by the wear upon it. The sections, each with a tight bottom have a broad surface, and may be made to lock together so as to support each other. The intermediate chambers are filied with concrete, which
will harden by exposure to the air, or may be filled with sand or gravel so as to give a good foothold for horses. The chambersare eigh or ten Inches
in depth. A pavement thus formed of sections, it is claimed, may be readly depth. A pavement thus formed of sections, it is claimed, may be readily

Improved Kitchen Safe.
John B. Harrison and Josiah M. Harrison, St. Joseph, Mo.-This invenon is an improvement in kitchen safes of the class in which spice dra wers, There are spice drawere, and a space provided with shelves, closed by hinged door. A bracket supports a kneading roller and other articles. The hinged dough-kneading board may be adjusted at various angles to the front of the safe, thereby adapting it for conventeut use. The top of the safe has a hinged lid which forms the cover of the contcal hopper. The lateris designed to be a permanent receptacle for fiour or meal, and has a cleaning, etc. Within the sifter is a rotary stirrer, the shaft of which is flour or meal into the sifter, a slide which forms the true bottom of the opper is employed.

Improved Locomotive Drawbridge.
George Stcklesteel, Lapeer, Mich.-This invention consists of a strong frame, about as long as two spaces and two abutments of an ordinary
bridge, mounted on wheels. The latter are so arranged and connected together that, the locomotive betng run on the bridge and rested with each of will actuate the wheels of the bridge, and cause it to cross on the abutments. The bridge is always supported by two of the abutments, or more
if made longer, so as to prevent it from tilting down between them. A movable bridge is thus provided which itself crosses with the cars, and leaves the spaces between the abutments free for the passage of vessels.
The Invention is intended to take the place of the drawbridges now used for navigable streams, and is calculated to save much time, both to the

Allison g Cummer Gimproved Plow.

Ahson G. Cummins and John R. Cummins, McFinney, Tex.-The king oted a lever, to which, at a little distance from its pivoted end, is pivoted the end of a connecting rod, the other end of which is pivoted to the
tongue. By this construction, by moving the free end of the lo rearward, so as to lie along the curved upper part of the king bolt, the plows will be raised and locked away from the ground. When breaking up, or when bedding or ridging cotton or other land, or when dotng other
plowing that requires a rigid plow beam, a brace is used, the forward end of which is connected with the forward bolster, and its rear end is hooked nto the hinged plow.

Improved Car Coupling.

George D. Splelman, Lancaster, ohio.-This invention consists of a horizontal bar, arranged transversely to the car in a horizontal slot in the end
of the drawhead, and plvoted at tts middle to the latter. A hook on one end engages the end of a simplar car on the drawhead of the other car to be coupled. The second bar similarly engages the end of the first men-
tioned bar. The slots in the drawhead are shaped so that the coupiting bars can be raised at the ends haring the hooks, and depressed at the other end to allow the hook ends to rise up over the other ends for coupling. The
hook ends of the bars are provided with chains to lift them up. The draw hook ends of the bars are provided with chains to lift them up. The draw.
heads are also chambered out above and below the slots, for the coupling bars to recelve the ordinary coupling links, and pin holes are provided for the ordinary coupling pins, so that cars with this improved coupling can be attached to others having the ordinary couplings. The hook of one bar
encounters the end of the other bar not provided with a hook, and rise encounters the end of the other bar not provided with a hook, and rise
up on it because of its curved end, whille, at the same time, the said end swings down in consequence of the hook at the other end rising on the end
of the other bar. The bars extend into the slots far enough to receive the pivots behind the ordinary coupling pins, and they are slotted suffictently for both of sald pivots to allow them to swing up ward and down, as needed
for engaging and disengaging with each other. The coupling is very strong and durable, and will couple self : actingly, as well on curves as onstralght ines, and will uncouple in case the cars run off or shift

Improved Bax Fastener.

scott Welliugton, East Saginaw, Mich.-A strap of leather is made of such a length as to allow the gathcred mouth of the bag to be readlly
passed through it, and its ends are riveted to a small metallic plate. Upon the side, edges, and center of the middle part of the plate, are formed lugs convected by two rods. To the outer rod are pivoted two pointed plates. of such a length that they cannot pass the inner rod, and which are designed
to press the fastening strap down agalnat the said inner red. A narrow to press the fastening strap down against the sald inner red. A narrow
strap has its middle part sewed to the middle part of the strap first men strap has its middle part sewed to the middle part of the strap first men.
tioned. The end parts of this strap are passed inrough staples attached to the main strap, and their ends are passed throngh the spaces between the gathered mouth of the bag to be fastened. The narrow strap is then drawn tight, and is held securely by the tongues.

Improved Window Screen.
John H. Thompson, Flemington, N. J.-This invention relates to the construction of screens for windows, and consists in an ad justable frame The means of which the screen is adapted to windows of different sizes. The frame is made in two parte, the sides betng constructed so that the parts lap past and silde on each other, so as to keep the edges of the screen
cloth tightly inclosed when the frame is extended. Strips are inclosed by the sides, forming a part thereof, to which the screen cloth is attached. Each plece conststs of two parts, which are fastened together with the
screen cloth between them, the end pleces only being grooved. The depth of the gropves tn the ends of the frame determines the extent to which the frame may be extended without leaving an opening. The screen cloth is Improved Bridge.
Richard Long. Stelapolis, Iowa.-This invention relates to improvement raliroad and ot her bridges of shorter spans, with wooden arches, and
onsists in the use of stirrups suspended from the arches which carry the cross beams, tozether with longitudinal stay rods, which connect the ends

Improved Reversing Valve for Steam Engines. Yhilip T. Brownell, Elmira, N. Y.-Steam 1s admitted through an aper-
ure, in a cup which fits on the recelving chamber. Pipes connected with ure, in a cup which fits on the recelving chamber. Pipes connected with
this chamber convey the steam to the eeveral cyllnders. The valve recelves aplder wotion from the crank elf, and the latler is supported by a end of the shaft is a cross bar, with a toe at the end, which takes hold of lugs on the top of the valve for revolving the same. The valve is a hollow
shell, having partitions and a hollow tubularcenter. The cylindersildesin shell, having partitions and a hollow tubularcenter. The cylinder slides in
the center, and has a horizontal partition which separates the live from the exhaust steam. The center has two long slot ports, and the sliding
cylinder has two corresponding therewith in size and position. The cylinder is given a slikht silding motion, which allows elther pair of these ports toregisterfor admitting steam and exhausting it. The sliding cylinder
revolves with the valve. When one pair of ports are admitting steam, the opposite pair are exhausting it ; and this action is instantily reversed oy a
silght movement of the sliding cylinder.

Improved Folding Satchel or Box.
Lorenzo M. Gillet, New York ctty. This invention 1s a small satchel or
oox for travelers that can be folded up in a small, compact package when box for travelers that can be folded up in a small, compact package when
empty. The bottom, stdes, ends and top, may be cut in one plece from pasteboard, leather, or other suttable material, or sald parts mas be made separately with Jofnts to bend at the angles of the box for adjusting it or setting it up for use. The sides and top fold against the edges of the ends
and project a little beyond them, so that staples on sald ends will project and project a little beyond them, so that staples on sald ends will project
through slots to fasten the ends and sides together by pins through them, through slots to fasten the ends and sides together by plins through them,
or any other equivalent arrangement. The top will overlap one of the nary trunk or satchel handle may be attached, or a shawl strap may b buckled around the box for carrying it.

Improved Combined Ash Box and sifter.

John D. Heins, New York city.-This invention consists in the arrange may be conventently removed, and also ashes may be sifted wit allowing any portion to escape. The wood and coal are supplied to cham bers by raising the hinged cover, and the former may be removed withou disturbing sald cover by turning down a door which is hinged at the fron nd is of a width less than the depth of the box. The sleve is worked by the ashes have been sifted out. the sleve can be taken out wheu the handle has been detached, and emptled into the coal chamber, and the ash box can be withdrawn from time to time to carry the ashes away.

Improved Ditching Machine.
John M. Dunn and Murdoch M. Dunn. Erin, Mlss.-This Invention has for Its object to improve the construction of the machine for which letters
patent No. 119,334 were granted to John M. Dunn. The frame may ve slid oo adjust the machine laterally to work in any desired part of the excava into working position, or swung back to ralse the machine for passing from place to place. The device may be readily secured in place when adjusted,
and to raised or lowered by sultable mechantmm connected with the wheels. The plow may also be raised and lowered and adjusted. A whe made with a wide tread projects upon one side of its body. In the angle radially, snd which serve as buckets to carry up the soll thrown finto the cavity of the wheel by the plow. A guard plate keeps the earth from fallIng from the ascending buckets. As the buckets reach the upper part of
the wheel, the soll falls from them into an inclined spout attached to the frame, where it is received upon the wings of a wheel, by which it is pro Jected upward aud outward to fall upon the ground at the side of the
ditch. The earth from the wheel is caused to fallat the desired distance from the wide wheel by a shifeld against which it strikes. The winged wheel is so arranged that it may be driven by the advance of the machine.

Improved Pantaloons.
William \mathbf{O}. Linthicum, New York city.-The object of this invention is render pantaloons more eand it consists in an adjuster durable than they have hitherto been; and it consists in an adjustable clastic strap
attached to the waistband or top of the pantaloons behind, and in a plate fastening in front. By means of this elastic strap, the pants are made self-
adjusting to the waist or abdomen, and are rendered easy and comfortable adjusting to
Improved Heating Stove.
than at the front part, to prevent the ashes rolling forward, and there celving the pipe bottom at the front, with a collar cast around it for rein the stove. The supply of air is regulated by a damper. which has an elevation, to prevent the falling of ashes into its vent, and a thin narrow handle, which extends from the inside of the ash pit throush a narrow
opening in the front. This is all cast in one plece. The pipe extends opening in the front. This is all cast in one plece. The plpe extende
through an opening in the floor corresponding with the position of the ront of the stove, and at the lower end below the fio for the ash pit is a common movable cover. The object of the invention
it as and is to obtain the supply of alr outside the room to be heated, thus prevent-
ing currents, preserving the uniformity of the temperature, and requiring less fuel.

Improved Middlings Purifier

Morris Sower, Princeton, Ill., assignor to Sower Brothers, same place. An inclined frame is placed within the main frame, and is made a little
shorter than the latter, so that timajhave a longitudinal movement. it shorter than the latter, so that it maj have a longitudinal movement. It
Is actuated by an eccentric in one or both directions, supporting springs always bringing it back promptly when released. The franie to which the bolt cloth is attached is suspended within the vibrating frame by flexible straps. By this arrangement each movement gives a sudden Jar to the
cloth frame, which keeps the cloth clean without the use of brushes. The cloth frame, which keeps the cloth clean without the use of brushes. The
middings are fed to the cloth frame by a roller or other suitable feed from middings are fed to the cloth frame by a roller or other suitable feed from
a hopper, which is placed above the upper end of the frame. Below the a hopper, which is placed above the upper end of the frame. Below the
discharge opening of the lopper a spout leads into an expansion chamber, from the lower part of which a short spout leads out through the rea end of the box. which is provided with a trap door. From the expansiun that it passes up through as well as alng above the bolt cloth, while third current goes through the middllings as they fall from the hopper By this construction the air drawn through the machine by the fan carries
the light impurities with it. Any of the midalings that may pass throug the spout with the atr settles in the mine mang hat may pass throug off when desired.
Isaac M. Fork, Belton, Tex. $-\begin{gathered}\text { This invention ha }\end{gathered}$
號 stiftest and most sticky prairie soil, and will thus work without clogging where ordinary plows cannot work. The invention consists in an im. proved plow plate, formed of a aingle plece of fron or steel, with its point
in the form of an isosceles triangle with a rearwardly finclined land side fange. The angular line between the land side flange and the mold board board is convexed, so that a line drawn from its rear corner to the point of intersection of the said angolar line and the point may be upon the ar of a circle of about twelve feet in dlameter.
Improved Sash Holder.
John X. Miller, Chester, Pa.-This invention consists in proving the
window sash at both sides with triangular recesses, into which strong window sash at both sides with triangular recesses, into which strong These rollers bear against one gulde strip of the window frame, so as to Which it is placed. For locking the sash in closed positior, so 28 to pre parts of the outer guide strips, which catches engage a corresponding re cess of the sash, while the necessary play of the sash for cngaging and dis.
engaging it from the catches is obtained by recesse at both

Improved Gear Bntton for Flour Packers.
Lewis Creveling, Akron, O.-The object of this invention is to supply actly the throwing out of gear of the machine, and packing the barre and sacks more evenly as to welght. This invention consists in the application of a T rall to the upright frame piece of the platform on which the
barrels and sacks are placed, with a button slotted to correspond, which bay quired to pack the barrels or sacks, and then throw the machine out on sear.
Jacob F. Schmeltzer, Manteno, Ill. The object of this invention is to ble, to be used in cold weather wirn husker, whitens or gloves, and be adapted for different sizes of hands. The invention consists in making
the handle plates sllding in each other, and fasteniug them rigldy, by a set crew, in the position desired to fit the hand.

Gusimess and tersonal.

The charge for Insertion under this head is $\$ 1$ a Line. One acre yearly of Derby Roofing laid in
Manchester, durlng the last Five years, without crack, leak, drlp or repart, with temperature, 200 below 0 . to
1500° above. Will bear red hot Anthracte Coal without Injury. Rilghts by Stevens \& \&
Proprietors, Manchester, N. H,
Wanted-The Superintendency of a Foun-
dry and Machnte shop. Can extend the טusiness in the

 suuk Co., Wis.
$\underset{\text { Bead, each bar exactly }}{\text { Bar }}$ oz., put up spectaily for the jobbing trade. Balley, Farrel \& Coo., Pittsburgh, Pa. One hall. of thoroughly tested patent Iron
article for sale, or arrankeuients desired with some manuracturer of agitcultural implements to manufac-
ture the whole of same. Address J. W. Stamford Conn., Box 655
Rapid writers-Try the Paragon Gold Quill-
Pen. C . M. Fisher \& Co., 102 Fulton St., New York. Every Manufacturer, Machinist, Mechanic,
Bullder, Engineer, and allo thers interested in the luaus trial progress of the prebent age, should reat the "Man-
ufacturer and Bullder," the clueapest mechantical journal in the world. Subsciption price. 81 for 8 six monthy
$\$ 2$ a year. Sample coples free. Addrees Austin Black. ${ }^{37}$ Park Row, New York.
Judson's Patent Lathe Chuck was awarded
Diploma by the American Insiltute Fair 1873 Dwight Roberts, Manufacturer, Wythe A venue
 I. H. Shearman, 45 Cortlandt St., Sew 亡ork.

Wanted $-A$ new or second land. Centering Magic Lantern Slides for 50 cents : Choice
views. Send for Cataloguc. Wm.R. Brooks. Phelps,N.Y. Scale in Steam Boilers-how
Address Geo. W. Lord, Philadelpitin, Pa.
Wanted- A Aod second hand Judson Gov-
ernor. Geo. Trevor, Nouroc, Mlich. Clay Grinding Mills and Drain Pipe Ma-
chnees. Improded and Best in use. Send for Circular,

 Protect your Buildings-Fire and Water
proof! One cuat of Glines' slate rootng palnt ts equal

 exauined, palnted and warranted. Local Agents waul-
ed. Send for testimonlals. N. N. Slate Rooung Co., Telear. Inst's and Elect' Macin' - Cheap
Outits for Learners. The best nnd ceneapest Electric Ho

 Johnson's Universal Lathe Chuck-Also
lutely protected trom diri aud chips. Lamberville
 Just Published-A Work on Management
of Steam Eugines and Sceam Bollers. (ieo. WV. Lord. 232 Arch St., Philladelpha, Pa.
Machine Sla
Manchine Shops at Pniblic Sale-On Thes-
tay, the 17th March. Yor particularse, address Waroner
$\underset{\text { Waterproof Enameled Papers-all colors - }}{\text { for packing Lard and other olly substances, chlorue of }}$ Lime Soda and sinuliar chemicale, making Cartrigees,
Linngs shoes, Wrapping soaps, shelf Papers, and all ples on application. Crump's Label Press, To Fulton St., New York.
Pat. Double Eccentric Cornice Brake, In'f'd
ov Thomas \& Robinson, Clinu.,. O. Send for circulur. Makers of Flying Horse Machines-Please
addrese willam Brunson, Perry, Ga. Patent for Sale-Article, can be made for :
to ctue each. Indispensable to Every Lady. Tnis is no
 Recently Published-Book and Documents
explanng how to make money on Patente. Piann directions and practical advice, showing Inventors how
to sell thelr Patents by the best methoods. Send stamp

 L. \& J. W. Feucht wanger, 55 Cedar St.. New York.
Wanted Foreman in a first class Door and
Sash Factory. A good opportunity for an experienced and well quallifed man. None other need apply. Refer ences required. Adareess Box 1,500, Columbus, Ohio.
Rue's « Little Giant" Injectors, Cheapest
and Best Botler Feeder in the market. W. L. Chase \& A Superior Printing Telegraph Instrument
(the Seldeen Patent),for private and short lines - a warded the Frrst Premium (a Silver Medal) at Cincinnati Expo
 Patent for Sale-The best burglar proot door
lock in the world. F. Gyse, 196 Grene St., Jew York. For the best Cockle Separator ever made
with capacti from 40 to 70 bushels per hour, addrees Balch \& Giddings, Hingham, Wis.
$\underset{\text { Wrulseg, Broken Bones, Burne , etc. Accident-Cuts, }}{\text { W Book for Every }}$

Mining, Wrecking, Pumping, Drainage, or
Irrigating Machinery, tor aile or rent. See advertisement. Wolenen and Cotton Machinery of every de-
scripton tor sale by Tully \& whlde, 20 Platt St., N. Y.

Planer Wanted-About 12 ft. bed, to plane
inches wide and about 48 inches h tgh. Address (stat
 Dean's Steam Pumps, for all purposes; Ensines, Botiers, Iron and Wood Working Machnery ory
all deseriptions. W. L. Chase \& Co.. 93, 93, 97 Liberty
"Superior to all others"-for all kinds of
ork-Limet \& Co.,s French Files. They are better ark Limet \& Co.s French Files. They are beter,
forged, beter cut, better tempered, and cheaper than
Englis मlies. Send for Price.LIst. Homer Foot \& Co ole agents, 20 Platt st., New York.
Price only three dollars-The Tom Thumb lectric Telegrraph. A compact working Telegraph ap paratus, for sending messages, making magnets, the an be put in operation by any lad. Includes batter
ey and wires. Neatiy packed and sent to all parts the world on recelpt of price. F. \mathbf{F}. Beach\& $\&$ Co., 260
Brout Brown's Coalyard Quarry \& Contraciors' Apw.D. Andrews \& Bro. 114 Water tt.N. Y. Parties needing estimates for Machinery
of any kind, call on, or address, w. L. Chase \& Co., 33, 9592 Liberty Street, New Yor's.
Steaan Firy Eng inees,R.J.Gould, Newark, N.J. For Solid Emery Wheels and Machinery, For best Presses, Dies and Fruit Can Toois
Bitas Willam, oor. of Plvmouth \& Jay,Brooklyn,N.S Diamonds and Carbon turned and shaped
 All Fruit-can Tools,Ferracute.Bridgeton,N.J. Lathes, Planers, Drills, Milling and Index
sachiues. Geo. s. Lincoin \& COo.. Hartord, Conn.
 or Ilthookraph. etc.
Temples and Oilcans. Draper,Hopedale,Mass. Hydraulic Presses and Jacks, new and sec Peck's Patent Drop Press. For circulars,
widress M11o, eeck \& Co.. New taven. Conn. Small 'Tools and Gear Wheels for Models. By touching different buthon on the desk
of the manager, he can communtate with any person in the estabishment with hout leaving hits seat. The Mints-
ture Electric Telegraph - Splendid for ottices, factories, shops, d wellings, ete. Price ouly $\ddagger 5$, with battery, ete.,
coumplete for working. Made by F. C. Beach \& $\mathbf{C o . , 2 6 0}$
 strumeuts.
TriRent, at low rates, a koom with Power. Estimates furnisied for Machinery, Shaft
Ink. Yulleys, \&c. Tully $\&$ Wlde,, O Platt St., New York.

('. S. A. can improve his rancid butter by rection to the problem on p. 11, vol. 30 , has been anticl-
pated. - W. W. will tid d drection for making earthen-
ware
 answers to your other querles, consult the booksellery
Who advetitise in our columns.-J. W. C. should addree ho anvertse in our columb,-J. W. C.shonlw adree
 rrausferring engravings oup. 138, vol. 20.-G. M. H. Will
nda d description of the preparation of platinum spouge Ind a description o.
ou p. 330 , vol. 2 zJ .
J. V. H. asks: 1. Can at paper pulp be
used instead of severai layers of paper in makling im. ges for the estage? A. Probsbly yt could. 2. How can I
 he forn1 required.
J. M. says: I have a boiler 42 inch by 20
eet ; it tis two years old and there are two holes eaten e instde, , rigit over the ire; they are eaten from he instde. What can I do to prevent rust dotug any
nore damage? A. It the corrosion be caused by yscale, change the feed water, or use so
prevent the formation of scale.
W. L. X. . asys. I tind that all matter that the water, till, by attracting more partclese, It becomes
eavy and preciptates to the bottom. I propose to. heavy and prectpptates to the bottom. I propose to
take that scum from the boller while in the fuld state. Is the dea a good one? A. It 18 not a fact that the prin ctpal Incrustations in a boller are
that tloat on the water as a scum.
D. C. asks: : I. What will be the approxi-
mate velocity of steam at 20 ibs, flowing into body of steam at a preseare of for iolbs. through a p pipe 3
square tnchesin area and sinchesin leugth? What would
11pe under the same conditions if disclurged dinto steam on entering the respective pressures be about tqual?
Will Proiessor Ranktne's formulas Will Protessor Ranktne's formulas, given on p. .113
vour volume 29, apply to these cases? A. The rule
 no uneven surfaces encounter much loss of power if if
revolving raplaly 1 n steam at a high pressure? A . No. 3. How 18 it that steam will expand to twice tis volume. nd half its pressure when the heat of one volume with
pressure of 2 is not equal to that of 2 volumes with
 Whose temperature is maintalined constant during the
A. B. says: 1. It is stated that daguerreoprinted page of a book be made in a similar way? A. Eilectrotype coples of daguerreotypes can be made,
2. It is sald that a sheet of paper folded into two leaves Is called a folio, , into four leaves a auarto, etc. What
18 the eize of the sheet so toldod? A. It differs greatly,
 ele any of the numerouat forme of the galvant battery,
buch as Groves or Bunsen's?
A. The electrictites ob

H. J. B. asks for a recipe for plating small
articies of siver without a battery. surface intended to be silvered, having been well
cleaned with a mixture of 1 oz chloride of silver, 1 oz. commoi salt, $\frac{3}{3}$ oz. chalk, and 3 oz. carbonate of potash, made with R Jo ceamy What
R. J. asks: 1. What are the proper propor
Hons of salt and ice to freeze tce cream?
A. Twice as nuch pounded tie as rock salt, but the proportions may
pe changed somewhat without destroying the efliclenc of the mixture. 2. For keeping ice, which is best,dry or wet sawdust? A. Dry saw dust. 3. I have a large
amount of charcoal and ashes, belig the debris from urnace. Will it be of more value as a fertilizer, or as as
nunderlyin bed for an tce house? A. It depends up no underying bed for an ice house? A. It depends up not betng remarkable fertilizers, you might better use athe way indicated.
A. B. C. asks $:$. What is shown by chemi
cal analysis to be the composition of coal?
A. The Penns $3 \cdot 84$ per cent hydrocarbous, 8745 per cent carbon, $7 \cdot 37$
ash. The percentages of these coustituents vary olatlle is ire or tlame a matiterial thing? A. The tlame of candle or gas burner Is composed of gaseous matter in
state of ignitlon. This
gaseous matter generally speaking, consists of various compounds of carbor and hydrogen. By carefulyly lookting at a a fame, it will be
found to consist of three parts: the lowest of a blulsh olor, where the hydrogen is uniting with the oxygen of the air. The heat given out by their chemical unton 18 :eat. These white hot particles glve out the light.
Around these is a thin shell of carboulc acid, and the C. M. F. asks: 1. Has the use of the micro scope any Injurious ettect on the eye? If so, how can I
vold it: A. It has when frequent Intervalis of rest are not permitted to the eyes, or when the observationsare
prolonged for several hours at a time. A little practice will enable the observer to keep both eyes open, while Joking through the eye plece with one eye, and at the same time sec as distinctly as if the other eye were
closed with the hand. ihis, and using the left and right eye alternately, afford great rellef. 2. Is thereany way Herrowng the light upon an opaque object under the Lieberkuhn, which tis \& highly pollened speculum of sill ver, and rellects the light down upon the surface of the
opanue object. 3. Will the use of the lens injure the eye, and why? will the use of the mitror by lamp light jure the eye? A. Used properly, with a lamp which does not tilcker, in such a way as to get a good illumina. tion without etther bilnding the eye with tit intensity,
ut taxing it by too long an observation: both the lens nd ulifror can be used without any injury. 4. If should replace the three smallest lenses or a mitroscope
by three others of higher powers, would it answer the by three others of higher powers, would it answer the
same as a higher priced instrument, without altering same as a higher priced instrument, without altering.
the other parts?
A. It would answer the same pur. stage. C. R.M. asks: 1. Where is carbon black
(ianioud found? A. In Brazil. 2. Could arsentc be ugs? A. Areeutc is equally or morer polsononge, but
xperiment would tell whether the bug would as readly eata white powder as one which is of the same color as
C. F. D. asks : Is there anything which will
 eed oll and red lead; and iafter appying, let it harden J. D. W
J. D. W. asks: 1 . Is there an easy method fextracting pure hydrogen from house gasi? A. Large
uantites of pure hydrogen can be easily and simply
 ouse yas as it comes from the burner? A. The plan usually Yollowed 18 to recelve the gas from the matns
n a small gas holder, and connect this with the burners.
 is or 20 gallons at a time? A. Mixture with alr. When
he alr spreveuted from mixing with the gas there 18 no he air 1s preveuted from mixing with the gas there 18 no
more danger than in handiling gun powder or other ex-
H. J. B. says: I have made an explosive late of potasu, and 1 oz. white sugar, which has s timee

 owtng advantages. It can always be obtalned of uni
form strength and quality, by welgging out the proper quantilueg of each ingredient. It does not attract
moisture and isnot acted upon by exposure to the alr The manufacture requires but a short tme, the projec.
tile force is far greater, and the powder need not be ranulated. Ms disadvantagee are that 18 more read
 enrlng Its Ingitition it acts so very strongly, upon fron
dund
and steel that and steel that it can only be use
and $1 \mathrm{It} \mathrm{the} \mathrm{flling} \mathrm{of} \mathrm{shells}, \mathrm{etc}$.
B. F. C. says: In your pamphlet containing
 Iows: "D Disoolve gum shellacs parts, and caoutchouc 1 plying a gentle heat. When thoroughly dissolved, mix the two solutilons." 1 have tried to make some of thrs
slue, and could not make the rubber dissolve. I had no trouble with the gum. Do you thln nt the fault was in the
ether? What klnd of rubber ts required car spring do? A. Use rectufled sulphuric ether that hat speen washed to remove alcono a and accidty, and in.
dia rubber that thas not been vulcanized. When the dia rubber that has not been vulcanized. When the
caoutchouc has become well sottened by the ether, break $1 t$ up into small pleces and stir well untll shomo.
geneous sortm ass is obtanned
 Pour the solution of shellac into that of the rubber,and
D. E. asks: In your issue of January 10, From his statement IInfer that the annular space $4 \cdot 4$ is arrtight. This betng the case, how is it possible for etther piston to fall, even thongh the balance of the cylinder 5 conta ans only air and not a denser flutd? A
Under this suppostion, it is imposible for motion
$\underset{\text { S. asks: Is there a simple and easy }}{\text { extracting perfume from fowers, etc.? }}$ A. Yeth. The fresu A 17 wers are placed bet weeu layers of cotton wool, saturated with sweet ollve oili, in some cases, pure lard 1 is
employed. The essentlal oll thus obtained is separated from the sweeto byagtation wh drong ana highly rectifed alcohol. The essentlal olls of jasmlu, sweet
violets, hyacinths, etc., are obtained in this muner The perfumed extract is then prepared from the essen. thal oill by dis8olving it tu very pure alcohol; and in or
der to bleud the mixture and render it mellow, it is der to bleud the mixture and render it mellow, it 18
kept several montha in a boitle before beling sold. This
M. B. C. says: I have a building of frame,
 of 1 Inch pipe extending across one end and 48 feet along
each side making about 1,000
feet of plye. Idesire to each side, making about 1,000 feet of plpe. Idesire to
have my stock dry faster; can I accomplish tu1s by ma. have my stock dry faster; can 1 accomplish tuls by ma-
king an opening in the floor of about 144 square tinches, Ing with a wooden chimney Would tit be practicable to to box in about 48 feet in licugth
 run a tube down to the bottom of next room to secure drarts will such an arrangement supply the room
with sulticient warm dry air, and also relleve it of the amp air by the trist named arrangement in the floo onnecting with the wooden chimney? A. There is a ng by heated atr
 ature, and keep tt so for an indentutte length of time. sured when our practice accords with it: Atr has greatest capactly for absorbing, water when expanded
by heat of the sun or otherwise; but when saturated, is tncapable of further absorption. When tit has tne apJ
then pearsnce of betng the most dry, it is then much charged it touches; when it has, on the contrary, the appearauce
of being very wet and humid, it is not much charged of betng very wet and humid, it it not much charged
with water and is giving off that which it lise. In regord to this case, it 18 evideot that by chargiog the air in the water.aud so cause it to have a drying power upon the
stock; but when it is rully saturated wth the wziter it has takenup, its dising power is overcome and itbac-
tion is pasive. It, however, we drive this alr eut o. with heat, and againgive it a drying power equal to its capacity for the a bsorption of water; and thus proceed
more rapidly with the operation of drying the stock. Instead, however, of having a con tinuous current pass. periodically open all the windows for a short time, and let the air be totally changed in the room; then close
them, heat up again, and keep them closed for a period sufflchent to fully saturate the air with water. This
might bedetermined by the feeling of dryness or hu-
midt midity which the air presents, not opening the windows until the arr appears very damp; and a few trials would
soon determine the length of time best to work with soon determine the length of tine best to work with D. C. B. asks: 1. Can you give me recipes
for making trausparent colors? A. It will be cheaper and more eatisfactory for you to buy them. 2. How
can I make a good transparent varnisi for brasswork ? With copal and alcohol.
W. D. asks: Where is the decpest artesian ellin the world? What is its depth? A. The deepest
rtesisn wellof which we have seen an account is at artesisn well of which we have seen an aco
Louisville, Kentucky. Its depth is 2,080 feet.
G. asks: 1. How shall I construct a fire es-
cape, suitabie for a lady traveliug? Λ. Try your iuven. ve skill. 2. How shall I draw an oval? A. See p. 209
vol. 29 .
T. \& H. ask: How can we make a joint in a
brass pipe, so that it can be beut in ary direction? we have heen told of a knuckle joint, but no one knows
what it is. A. The joint consists of a ball and socket. the latter being something more than a hemisphere.
G. L. H. asks: How can I construct a rain The rain gage ordinarily used consists of a cylindrical vessel having a funnel-shaped cover, in which there is
a very small hole. A glass tube connected to the bottom of the vessel shows the hight of water. In accu-
rate operations. It is customary to ascertain the evapoJ. McJ. askis: Is a house properly rodded
or conducting offlightning, where the rod is fabiened the thinals of the roof by means of copper wire not
nsulated? A. It is correct to attach the rod arrectly to the roof or building without insulators. But no
building can be said to be properly rodded or protected against lightning, unless the lower part of the rod or terminal under the ground is made quite estensive.
The extremity of the rod should connect with masses of old iron, or iron ore, or coke, or charcoal, latd in
trenches, or the rod itself should be elongated and car ried off one hundred or more feet from the bullding, and put in connection with water, if possible. The particu-
larmethod of attaching the rod to the bullding, whether with or without insulators, is of far less importauce
than the terminal arrangements of the rod. The golden than the terminal arrangements or the rna. The gole
rule for safety is :"Provide the largest possible area
conducting surface for the terminal or the roc.
C. W. C. asks: 1 . How can I make the best
black writing ink? A. What is the best black mb is brock writing ink? A. What is the best black ink rectpe on p. 203, vol. 29. 2. How can I make red ink?
A. Dissolve pure carmine in caustic ammonia. s. How c. D I estimate the horse power of a boiler? A. The
term" horse power of a boller" is so findefuite that we annot give you any good rule
G. H. B. asks: Is rolled sheet zinc pure ingredients? A. It ordinarily contains small quanti-
ties of lead and fron, a little tin and cadmium, and sometimes traces of arsentc, copper, carbon, and sul
J. L. H. asks: 1. How can I readily tin iron
rods x_{2} nech square and from 12 to 18 inches long? A. Cover the rods with murlate of zinc, and put them into atin bath. 2. What is the process of electroplating,
access belng had to a telegraph battery? A. You slould consult some standard work on the silbject, as, we have
$\underset{\text { M. W. W. asks: What causes the light and }}{ }$ dark stripes on a celling, the lightsiripes corresponding
with the laths and joists, and the dark stripes with the
space between? A. The moisture in the wood.
 the electric current of high tension can be reduced
$\underset{\text { with two sets of bevel gears, using about } 30 \text { horse power }}{\text { G. A. . }}$ I wish to throw the gears out and uee a belt. Whilla 20 nelght foot pulley? The belt will run 720 feet per min ute, on upright shafts. A. We think the belt will be
large enough. We have already given rules by which the proper width of belt can be determined approxt mately
D.N. C. R. asks: About what size would a
ooller require to be to run an engine 300 revolutions pe minate, the size of the cyllnder being 5 Inches stroke an 3 inches diameter? A. It would probably requ
35 to 40 square feet of efflctent heating surface.
J. F. D. asks: How can I make small arti
cles of inda rubber ? Is there a book on the subject A. Hancock's "Manufacture of India Rubber" will give you considerable information on the subject; but prob
ably you would best acquire the art by practical expe rlence at a manufactory. A.S. S. asks: Is this the correct way of find
ing the actual horse power of a htgh pressure steam en-
gine? Diameter of crlinder 7 inches, length of stroke ${ }_{13}^{\frac{1}{3}}$ feet, revolutions per minute 80 , with steam power o piston at 60 lbs . per square inch, and allowing $1 \frac{1}{2}$ lbs. per
square inch for friction : $7 \times 7=49 \times 55_{2}^{1}=28666_{1}^{1}$. The length square inch
of double stroke is 31 feet $\times 80=266^{2} \times 2566^{1}=764400 \div 4201$ $=18 \frac{8094}{42017}$ horse power. A. The solution is correct for the assumed data.
S. asiks: 1. How thick would iren have to
be to withstand a pressure of $301 b s$. to the square Inch?
A. It would depend upon the form of the vessel. 2. I A. It would depend upon the form of the vessel. 2. I
lave a small steam engine. Bed plate is $135 / 1$ long by 3
inches wide, with a 10 inch wheel. Cylinder is $14 / 1$ Inches dlameter by 3 inches stroke. What would be the hors ning as fast as possible without injury to the engine A. Multiply the pressure on piston in pounds, by spee of piston in feet per minute, and divide by 33,000 . 3 .
How can I calculate where to drill the hole where the shaft goes through in the eccentric, so as to give the
right travel to the side valve? A. Make the distance, from center of eccentric to center of hole, half the
travel of the valve. 4. What is the best way to seat or grind the slide valve so as to make it fit steam tight t the cyllinder? A. Use a scraper to face off the valve
aud seat. 5. What is the best polish for iron casting which are tolerably smooth? A. Fine emery will an W. L. P. asks: 1. Who was the engineer
of the Suez canal? A. Ferdinand de Lesseps. 2. What of the Suez canal? A. Ferdinand de Lesseps. 2. What
is itt length, breadth, and depth? A. About 100 milee
ing nottom; average depth 24 feet. 3. In what jears was it and completed in 1869. 4. What was its cont? A. About expenses, but has not vielded anything to its orig nal shareholders. See p. 119, vol. 00 .
$\underset{\text { chloride of goid will a given number of grains of me }}{\text { C. Wrains }}$ chloride of gold will a given number of grains of me
tallic geld make? A. This is found by fros adding to gether the combining weights of chlorine and gold, an dividing the result by the combining weight
alone. Thus $\mathrm{Cl}=35 \cdot \mathrm{~J}, \mathrm{Au}=196, \mathrm{Au} \mathrm{Cl}=231 \cdot 15 .{ }^{231 \cdot 5}{ }^{296}=$ $1 \cdot 15+$. Therefore one grain of metallic gold will mak $1 \cdot 19+$ grains of chloride of gold. 2. Are iodide and bro mide of potassium soluble in a mixture of equal por
tions of absolute alcohol and ether. sulph. com. to the extent of 6 or 10 grains to the oz. of the mixture
What ts the process? A. This is a question which you can determine by experiment. Agitate the powdere
bromide or todide in the mixture of alcohol and ether
E. R. W. asks: What two substances, ele ents or Wher the least a mount of friction when brought into contact
with hard substances? A. It is not possible to answer this q.eestion in its present very general form, because stances are to be brought in contact, and secondly, what the hard substances are, for much depends upon the
adaptation of lubricatting materials to the circum stances under which they are to be used. The softe greases.as oil, hog's lard, etc., diminish the resistance The harder greases, as tallow, soft soap, and mixture of grease and plumbago, produce
pressures than with large ones.
J. H. S. asks: What do the words sin., cos.,
nd tang., and the sign Σ, in algebra mean? A. Sin. $=$ Sine of an arc or angle. Cos. $=$ cosine. Tan. $=$ tangen serios are to be added together. Thus $\Sigma(\mathbf{x})=$ sum of all the trerms of the series of this general form : $\mathbf{x}+\mathbf{x}^{\prime}+\mathbf{x}^{\prime}+$
$\mathbf{x}^{\prime \prime \prime}+$ etc. 2. Would it be profitable to construct a winged steam valve, so as to give the engine power from the run it? A. As we understand this question, it would b run it? A. As we understand done
very proatable, if it could be done
L. P. C.-For replies concerning the as Co., and send ten dollars.
S. M. M. . asks: : Is there an instrument by
whineral of value in or under the ground may be f,und? If there is anything of the kind that you know of, please inform ore. A. We presence of iro be det ermined by a magnetic needle; but there is noin G.S. D. asks: Is a process by which milk ed and churned at conventence into an extra quality of prone to deterioration patentable? A. Probably it
E. L. asks: How or where are the wire hiarglar alarm with the doors and windows of a d well ing house? A. In new houses, the wires are frequently
placed behind the plastering. But ordinarily they run long the base boards of the a partments.
F. H. B. asks: What will remove ink and
ruit stains from paper, linen, etc., without injuring the fabrtc stains from paper, linen, etc., without injuring the
A. For ink, rub the spot with a weak solution b. chloride of lime and 3 pints wat ined carbonate of soda dissolved in 1 pint of water Mix thoroughly, allow to settle, and pour off th
itquid. This will remove frutt stains from linen.
J. F. asks: What is the correct theory m of the water or from vapor escaping and congeal ing on the top? A. It forms at the top, by the produc
to als, which interlace one with another until at last there
W. H. W. M. asks: 1. Can sugar and sirup be made from rags and sawdust by the ald of sulphuric
actd? A. Yes. 2. By pouring sirup into the tea, the tea turns a black color; does it denote that the strup ts made
from ragesetc.? Would the actlon of the acld in the strup perate on the tannin in the tea of the act in the sirup olor? Will not good sirup without acld affect the te the same manner? A. Itis more likely that there wa and caused the inky appearance. Sirup manufactured
in a proper manner will not blacken tea. In a proper manner will not blacken tea. 3. The follow-
ing is another test: Mix the sirup with a solution of ing is another test: Mix the sirup with a solution of
muriate of baryta. If there be any acid in the sirup, Tts resence would be denoted by a white precipitate. Th myself, and it became of such a black color that I could not see the bottom of the saucer. A. It is true that a
solution of muriate of baryta will detect the slightest olution of murlate of baryta will detect the slightest whte compound.
C. O. E. asks: 1. How can I silver plate A. Wash in weak lye to remove grease. Dip into weak
and aquafortis to remove rust. Scour with a hard brush
and fine sand. Then, having fastened to a wire, dip in rong nitric actd and, as quickly a possible, afterward silver in pure aqua fortis. Afterwards a solution cyanide of potasslum is added until nothing more is hrown down. The liquid is poured off, fresh water diver and poured off several times until the cyanide cyanide of potassium is added untll it is all dissolved attery. 2. How can I get different colors oor gold b alvanic plating? A . The process 18 too complicated electroplating. 3. How can I plate iron with nickel . Make a bath of $3 / \mathrm{lb}$. of the double sulphate o ickel and ammonia to a gallon of hot water. Use Smee battery. The articles to be plated require, ac
cording to the power of the battery, from six to ten ours, but the average will be eighhours. After belng plated.they are washed with hot waterand polished on a cloth buff with crocus, rouge, Vienna lime, or other ollishtng powder, and oll. Two points must be at 2. to clean the fron perfectly, which may be done with
A. B. C. asks: How can I makea cheap and rapping a coll of stout insulated wire around A. By oftiron, and connecting the ends of this wire with a
alvanic battery. Around this isting of fine insulated wire is wrapped, and of much reatier length. The ends of this wire are the poles to be used. An arrangement like a toothed wheel must be arroduced somere the crowt.or making and
D. B. W. says: In the Scientific AMERIcement by dissolving rubber in benzine, which falls to work; the rubber does not dissolve. Can you tell what
he diffliculty is? A. Try pure unvulcanized ruuber tirthe ingredients well together frequently, with tick or knife. The benzine must oe highly rectified an
E. B. asks: Is there a sure and simple test er? A. There are sure tests, but they are too compli-
cated for any one but a practical chemist to apply. For
H. W. J. says: 1. I wish to make a cope with a four inch lens, 72 inches focus. What must be the size of my eyeplece? What can I see with such a
elescope? A. You can apply an eyeptece of one inch
ocus; but unless annot employ the full very satisfactory fleld of view. 2. How can I polish ar cles that I have silver plated, and how many Callaud nells chalk, spless w. A. You can ; polish siver with enrag. For plating a few small objects, one or two
P. H. M. asks: Is the cause of the exist. itis caused by the heating of the waters of the Atlant ocean under the equator, which makes them lighter, and
causes them to flow over the tip of the water lying to equator
F. C. B. asks: Is there any process to re-
tore blackberry wine or any other come musty by putting it in a musty barrel? A. Musti-
eess in wine, it is said, may trequently be removed iolently agitating the wine for some time with a little coarsely powdered charcoal, freshly burnt, or even som seed is occasionally used for the same purpose. E.S. M. says: I am about to construct a chemicanly deposited upon glass. Can you give me some rectipe for a solution to deposit the silver in a
proper form? A. There are various methods of depositing silverupon glass. Here is one mhich you may make avallable by practice: A solution of gun cotton
in caustic potash isadded to a solution of nitrate of ver, followed by suffelent strong liquor of ammonia to ifquid is applied to the glass which is then slowly heated overa water bath untll effervescence ensues and the deposit of silver is complete. Let a chemist prepare
the solution of gun cotton, which requires care in hand deposit
the solu
ling.
G. E. R. asks: What substances are used A. In extract of log wood to make a cheap red color? are steeped over night, and then spirited at 2° Twaddle wash and work through a cecoction of three pounde
Lima wood and one pound logwood for thirty minutes then raise with a gill of red spirits; work for fifteen

$\underset{\text { H. }}{ }{ }^{\mathrm{H}}$ R. R, asks 1 . How can a handsome Hake a solution of permanganate of potash in distilled water. 2. Can 1 make two different colors in the same bottle, that is, two colors that will not mix, as, for in
stance, red and green? A. Aqueous solutions alone will not answer. Dissolve some sulphate of nitckel fo hineal.
F. P. C. asks: Is there any satisfactory way testing adulteration of linseed oll with cotton seed
if so, what? A. We are not a ware of any rellable experimen
ical chemist.
W. says: I have bought 100 square inches ead. When the water is used, the surfuce in the pond and raceway lowers about 4 inches. If Idraw my wit
ter through a 10 inch square hole, how deep must I put ter through a 1 inch square hole, how deep must I put
my fume, so that I can get my 100 inches of water and my fume, so that 1
no more? A. See
Pipes,"
V. T. asks: How can I make a fuse that WIIl burn at the rate of about 200 feet per minnete, and hat will take fire at a temperature of about 150° or 200°
Fah.? A. Consult the specifications of the recently Are alams.
J. B. asks: How is a person affected by
aughing gas? Is it injurious? How is it administered? A. Taken in moderate quantities, it exercises a strong nfluence upon the muscles whith are brought into play when there is laughter: but in larger doses, of inve gal lons and upwards, it produces unconsclousness and in rate of ammonla, and washed by passage from pure ni water, solution of green vitriol; and solution of potash, it may be taken without danger by persons in good health, if administered in a proper manner. It is breathed through a stopcock which admits the gas from the bag
to the lungs, but sends the gas lssuing from the lung outinto the
N. S. asks: 1, How can I seal the ends of
mall glass tubes? A. Use a blowplpe. 2. What is the E. C. M. as'ss: 1. Are the Cornwall (Eng is it true that one has been discovered in California?
Yes. For answersto your other questions see books W. R. asks : 1. How many figures denote a , 1,000, 1 . 1 . $000,000,000$. A trillion is $1,000,000,000,000,000,000$. 2. Ha round the sun? A. The earth rotates on the axis, and
revolves round the sun. 3 . Is the sun the center of the solar system? A. Yes. 4. Are the stars inhabited? A dition of many of the stars has been determined by the pectroscope, and the results show that none that have yet been examined present the conditions necessary to without water or ar example, our moon is found to be without water or atr and intensely cold. Saturn and
Jupiter are red hot. It is thought some of the moonsof this planet may posslbly be inhabited.
F. H. S. says: 1. I want to cast a smal he founderites use to put in their fasks? Can I mel brass in a common stove? A. A good composition is 7
lbs. copper, 3 lbs. zinc, 2 lbs. tin. Probably you will ind forge better for the purpose. 2. How much powe
wouldanengine cylinder $11 / 2 x+$ inches, with 10 lbs. o steam have, and also with so lbs.? Λ. See article on
"Indicating Steam Engines," page 64, vol. 30. 3. Would "Indicating Steam Engines," page 64, vol. 30. 3. Would
a crank do instead of an eccentric for the silde valve? nolding brass, and one on thesteam engine? Λ. Byrne' "Practical Metal Worker's Assistant," and Bourne'
"Catechism of Steam the Engine." 5 . How thick should small boller (about 2 feet x foo!) be to withstand pressure of 10 lbs . and also one of 30 lbs ? How thick How does a steam gage tell the pressure in a botier
Must the pipeleading to the gage be one inch? A. Th gage is so graduated that a pressure of 1 lb . per squa: nchgives a corresponding indication.
connecting pipe makes no difference.
G. N. K. says: We wish to heat a factory
(30x80 feet and four stories
high) (30x80 feet and four stories high) with exhaust steam
and are advised to put in 4 inch tin plpes, one tier in each some lig color. Will this answer as well as fron plpes? Why will the tin pipe radiate heat when painted? A. A ti heat than the plain metal. When coated with whit
lead, it radiates about the sameamount of heat. Tin fairconductor of heat, having about one third of the onducting dower of gold.
C. V. asks: If an engine crank pin suddenpiston and crankshaft, what will follow? A. The pis.
ton would strike against the cylinder head; and if the latter be no
be broken.
A. O. B. says : In answer to a correspondent but would like to know why they move about whe placed in strong vinegar. A. We suppose it is on ac count of the generation of carbonic acid. For answers
to your other queqtions, see "Friction of Water in Pipes," p.48, vol. 29.
E. says: I have a double acting engine of one. What would be the proper width of belt to con
ute W. H. G. asks: Why is it that oxycen an d, explode? ed, explode? The product is water, but does not an
expansion take place? A. When these gases unite, the volume of the combination is much less than the origi nal volume of the gases; so that a vacuum is produced Phich air rushes with great rapiaty.
P. C. T. asks: Willa leaden ball, if thrown
into the sea. sink to the bottom? If not, why not? A int the sea. sink to the bottom? If not, why not? A
Yes. 2. What is the depth of the deepest sea sound
H. T. L. asks: Is there any chemical com albumenized paper? A. If the albumen is that of the
white of eggs, it may bedsolved in alcehol contaning
"Erfinder," St. Louis,Mo.-Please send your P. W. L. says, in reply to the query: "Can $x^{2}+\mathrm{y}=7$, and $\mathrm{y}^{2}+\mathrm{x}=11$ Certainly they can, and are as
follows: $\mathrm{x}=2$ and $\mathrm{y}=3$, or $\mathrm{x}=3 \cdot 131312+$, and $\mathrm{y}=-2 \cdot 805$ follows
$113+$
H. D. M. says, in answer to N. F. T., p. 123 , preventsitfromburning the hand. It will prevent it only for a short time, probably until N. L. T. thinks it
quits bolling. A bright bottomed kettle will burn the nstant it touches the hand.
E. says, in reply to M. who asked for a good
etal for models: Melt 6 lbs. tea lead, $1 / 2 \mathrm{lb}$. tin, and $~$
and metal for models: Melt 6 lbs . tea lead, $1 / 2 \mathrm{lb}$. the
b. antimony. This will be a good stiff meta.
E. S. says, in further explanation of the oard question, propounded by D. M. A. (see p. 91, vol.
0): Let W and w equal the two widths. Then will $\left(\frac{W^{2}+w^{2}}{2}-\right)^{\frac{1}{2}}=$ the width of the board at the dividing point. pplication to your question: $\left(\frac{12^{2}+4^{2}}{2}\right)^{\frac{1}{2}}=(80)^{\frac{1}{2}}=8.9442$
Min ormula Minerals, ETC.-Specimens have been re-
eived írom the following correspondents, and xamined with the results stated:
J. A. S.-Rounded fragments of quartz, the one of a J. C. -This product appears to be a fair specimen of
rd. To determine whether it is adulterated or not will require a chemical analysts. Lard oil is a commerWill require a chemical analysis. Lard oll is a commer-
cial product and burns well in lamps if the wick tube
be kept cool. It so chtefly obtaned as a secondary pro. be kept cool. It is chlefly obtained
uct in the manufacture of stearin.
S. B.-The ehining particles are mica and are mired M
M. McK.-It is white sand of superior quality, and is

COMMUNICATIONS RECEIVED.

The Editor of the Scientific American cknowledges, with much pleasure, the re eipt of original papers and contributions pon the following subjects:
On Healing Wounds by Charcoal, etc. By P.
On American Inventions in Europe. By H. S.

On Pavements. By S. S
On Detecting Gold and Silver in the Earth.
On the Curvature of the Earth. By (i.E.W On the 'Thousand Feet Tower. By E. C. M On American Silk Manufacture. By H.C.F Correspondents in different parts of the country ass eed and cuttings of sumac be obtained? Who selle machines for making broom handles? Who makes the
mest clothes wringer? Who makes waterproof gloves, est clothes wringer? Who makes waterproof gloves,
for use in handling strong lyes, etc.? Who makes a ctbushel of apples? Makers of the above articles will probably promote their interests by aavertising, in re y, in the sicientific American.
anufacturers; or where specifled artcles ers of certain sliso those haviug goods for sale, or who want to ind artners, should send with their communications an he head of "Business atid Personal," which is spectall evoted to such enquirie

[OFFICLAL.]

Index of Inventions

for which
Letters Patent of the United States
were granted in the week ending February 10, 1874,
and each bearing that date.

Car brake, N. Birchrath.
Car brake, atmosphertc, , H. E. Marchand.
Car coupling, W. C. T. Davidson
Car coupling, W. C. T. D
Car coupling,
Car, dumptag,
Car, dumptag, C. .. P. Me
Car, street, C. M. Murch
Car fire extingulsher, w. L. D.........
Car water closet, Brown \& Latimer
Carbureter, Davey \&
Card, photographtc visiting, T. T. Carriage, G. H. \& E. Morgan, (r)
Carriage, child's, H. D. Ambler. Carrlage curtain, A. H. Tuttlebee Cartrldge creasing implement, w. B. Hall Casting seals, machine for, H.
Chamber sea:, G. H. Blair.... Checks, etc., preventing alteration of, E.J....................
Cigar lighter, gas, H. Kruge
Clamp for mosquito net, W. M. White.
Claw bar, D. Ferenback
Cloth cutting machine, A. Warth..............
Cloth measuring machine, T. M. Brintnali.
lothes pla machine, H. \& E. W. Locke
Coathes pin machine. H. \& E. W.
Coaling et.,
Cock, etc., steam, J. P. C
ental plate and teeth, R. E. Burlan
Digger, etc., quack, L. W.
Disinfecting apparatus, J.
Dominoes, J. W. Hyatt, J.
Door check, J. S. Ryant
Drill, rock, S. Ingergoll.
Elevator, G. Lane.
Engine for rock drills,etc.,steam,S. Ingersoll, et al.
Explosive compound, C. Dittmar, (r).........
Felting material from wate, , F. F. Greene, ($)$
ence, S. B. Tinkham
Fre arm, breech loading, E. Whitney Fire extlugulsher, W.L. Drake..............
Fire extingulsher, chemical, J. H. Stetner
Fire extingulsher, chemical, J. H. Stetne
Fishing reel, , .. MacCord............
Frult ptcker, A. W. Overholse
Furuace, etc., E. S. Wheeler
Furnace, hot air, w. s. Stevenson
Furnace, tyre heating, Sax \& Kear
urnace, waste gas, P. L. Welmer
Furnace casing, J. Magee
Game board, Dahmer \& Kletn
Game board, 0 . H. Richmond.
Game board, O. H. Richmond.
Gas clgar lighter, H. Kruger.
Gearing, expansion, L. P. Hoy
Glass letters, mold for, T. H. Banks
Goods on blas, cutting, G. Moore (r)
rain for starch, etc.,treating, A
Halls, preventing reverbecation in, J. P. T.........
Hammer, claw, D. W. Parker
Harness saddle, J. F. Knorr
Harvester, J. C. Crawford
Harvester, J. D. Martin...
Harvester, J. D. Martin..........................
Harvester, binder attachment. W.C. Dentler.
Iasp fasteuer, w. H. Hart
Hog pen, P. Burke
Hog ringing pinchers. J. Burge
Hoop \&k1rt, G. W. Hubbell
Horseshoe, J. Jorey.......
 Horseshoe nall machin + , Whysall \& Merrick Horseshoes, calk for, G. McG
Hose coupling, E. B. Jucket.
Indicator, station, D. H. Close
Ink in the form of paste, J. B. F......
Inkstand. E. M. Dickinson
Jack, Hfting. C. D. Smith......
Knitting machine, T. Coltman
amp extingulsher, S. S
Leather, etc., waterproofing, H. Martyn
Leather, stufting, J. A. Enos
Leggings, G. M. Gernshyn...
Lock casee, securing cap plates to, J. Hamill.
ock, permutation, J. G. O'Ne1t
Locomotive head light, r. S. Ra
Loom harness, T. Clegg
Loom weft stop, Isherw
ounge, extension, C . Stredt Nuttall
Marble, ext., remoring stains from, H. H. Elliot
Metal fastenlng for leather, E. P. Richardson.
Mill, grinding. Phillippy \& Elser.............
Nut lock, A. B. Buell
Nut lock, S. T. Lamb
Oller for machinery, o
Ore washer, D. Zelgler.
Ore washer, D. Zelgler.
Pail, dinner. E. Snape.
Paper, machine for coloring, c. Wolmuth
Paper, corrugating, H. D. Cone
Peg cutting machine, Bacon \& Sawyer
Pen. fountaln, D. L. Latourette...........
Pnotogranhic visting card, T. T. Smith. Planoforte, C. E. Rogers
Piston rod adjuster, D. Bl
Pitman, J. F. Selberling............
Planers, feed roller for, L. P. Hoyt
Planter, corn, R.S. Haz
Plow, J. C. BIdwell....
low, wheel, I. B. Green.
Pot tilter, J. Grant...
Potatoes, assorting, D. A. \& A. B. Banker
Press, cotton, M. Hussey
Privy house, J. Holtt.
Pulverizer, J. Ferguos
Purifier, middlings, M. T. Greenlea
Rallway rall Jolnt, A. Johnson
Rallway ticket cutter, J. Tregurth
Rallway ticket holder, etc., J. K. Macdonald
Rallways, removlng saow from, W. Bush...
Rallways, removing soow from, W. Bush
Rake, horse hay, A. Rickart..............
Rake, horse hay, A. Rickart...........
Razor strops, paste for. C. M. Egbert
Reglster, etc., hot air, W. G. Creamer.............
Revenue, stills to prevent frauds on, L . Welf. Roof plate, T. Hyatt
Sash palley, A Halladay


```
Saw, C. D. Lathrop......
l
Scales, beam for welghing, J. Foller.
Scrap, Ice soow, H. Little
Scraper, road, W. C. Rose..
S Sing machine, E. A. Goodes.....
l
SewIng machine treadle, w. I. Mann.....
Silver, etc., from lead, separa
Soap, manufacture of, H. s. Les
Soda water fountain,F.W.Wfesebroc
Spores to fllles, fittIng, G. Swee
Spring, upholstery, E. Drake.
Steam trap, J. Roper.
Stone, arttifclal, J. McLean.
sove, lamp, W.L.Gibson.
SwIne, nose jewel for, J..........
Telegraph apparatus, H. Van Hoevenburg
Telegraph, chemical, T. A. Edison
Telegraph, circuit, T. A. Edison
Telegraph perforator,T.A.Edison
Toy propeller, w. Sellers
Trap, anlmal, J. C. Malo
Trap, hog, Peggs et al.
Vault cover, T. Sharts
Vault, freproof, c. H. ...........
Vehtce, lamp support, T. Boudren
V ehicle, running gear, W. Hem
Wagon rack, J. Bolt.
Wagon running gear, P................
Wash board, F. Voegtll .....
Washing machine, P. Berard ..........
Water feed device, P.T. T
Water wheel,J.Tyler..
WeldIng links, die for, C. H. Willam
Welding links, dle for, c. H
Windmill, A
```


APPLICATIONS FOR EXTENSIONS
Applications have been duly tiled and are now pending
for the extension of the following Letters Patent. Hear
ings upon the respective applications are appointed for
88,335.-Sмокв Combistion.-D. H. Williams. April 29
23.372.-Plow.-J. S. Huggins. May 6.
28,517.-CAttle Car.-L. Swearingen. May 13.
EXTENSIONS GRANTED.
27,094.-Cartridge Cabe Machine.-E. Allen.
27,179.-Marking Gage.-C. D. Wheeler.
27,139.-Hanging Rudder.-J. P. Manton al.
DISCLAIMER.
27,094.-Cartridge Cabe Maching.-E. Allen.

DESIGNS PATENTED.

Merlden, Conn.
7.163.-CAPRT. -J. Forrester, Kiddermingter. England

7165.-Billiard TAbie.-F. E. Held, Chtcago, Ill
7,166.-STrext Car.-C. M. Murch, Cincinnatio.
TRADE MARKS REGISTERED.
1,621.-Axle Grease.-Frazer Lubricator Co., Chicago
III., et al.
1,622.-AGricultural Implement.-Jackson etal,Utica
1,623.-Cignrs.-McFall et al, New York city.
$1,625 \& 1,626 .-\mathrm{C}$
trott, Mich
1,627.-Liniment.-F. F. Porter, Soquel, Cal,
1,627.-LINIMENT.-F. F. Porter, Soquel, Cal,
$1,628 .-$ PUMP. ETc.-J. A. Rumsey, seneca Falls, N. Y.
1,629 to $1,681 .-$ Corfers. -w. J. Stitt
,, 6323. FERRTILIEFR. - Walton \& Co., Wilmington. Del.
sCHEDULE OF PATENT FEES.
On each Caveat......
On each Trade Mark.
On filing each application for a Patent (17 years)
On inng each appication for a
On lsaung each original Patent...
On appeal to Examiners-in-Chief.
On appeal to Examiners-1n-Chief.......
On appeal to Commissioner of Patents
On application for Retssue...............
On granting the Extension.
On filing a Disclaime
On an application for Design ($3 x$ ye....................
On application for Design (i years)

HOW TO OBTAIN
Patonts and Cazeats
IN CANADA.

P
ATENTS are now granted to inventors
In Canada, without distinction as to the nation-
ality of the applicant. The proceedings to obtain
patents in Canada are nearly the same as in the
United States. The applicant the required to fur-
atsh a model, with specification and drawings in dupl
nish a model, with specification and drawings in dupli-
cate. It is also necessary for him to sign and make
afldavit to the origualty of the tovento
The total expense, in ordinary cases, to apply for a
Canadian patent, is 875 , $\mathbf{~}$. s. currency. This include
(he government fees for the first ive years, and also ou
(Munn \& Co.'s) chargen for preparing drawings, spectif

Cations and papers, and attending to the entire business.
The holderof the patent is entitled to two extensions of the patent, each for five years, making fifteen years
in all.
In all.
If the inventor assigns the patent, the assignee enloys
all the rights of the inventor. any conventent scale. The dimensions of the model
should not exceed twelve nches.
If the invention consists of a composition of matter If the invention consists of a composition of matter
samples of the composition, and also of the several in gredients, must be furnished.
requested to send to us (MNN \& Co.). oy express, a
model with a descriptlon, 1 I thelr own language, show-
Ing the merits and operation of the invention, remitting
also the fees as above for such term for the patent an also the fees as above for such term for the patent as
they may elect. We will then mmediately prepare the drawings and spectication, and send the It requires from four to itwive weeks' time, after completion of the papers, to ubtain the decision of the Cana-
dian Patent offlce. Pemit the fees by check, draft dian Patent Offlce. Remit the iees by check, draft, or
Postal order. Do not send the money in the box with model. G1ve us your name in full, middle name included
Inventions that have already been patented in the Unventions that have already been patented in the patented in Canada.
On flling an applic
Commissioner causes an for a Canadian patent. the and utility of the invention. If found lacking in etther of these particulars, the application will be refected, in
which case no portion of the fees pald will be returned which case no po
Inventors may temporarily secure their improve-
nents in Canada by fllng caveats; expense thereof, 895 in full.
For further informater
signents, etc., address

TALDE OF PATENTS,
And How to Obtain Them.
Practical Hints to Inventors.

ROBABLY no investment of a small sum
of money brings a greater return than the of money brings a greater return than the
expense incurred in obtaining a patent, even When the invention is but a small one. Large well. The names of Blanchard, Morse, Bigelow, Colt, Ericsson, Howe, McCormick, Hoe, and others, who have amassed immense for-
tunes from their inventions, are well known. And there are thousands of others who
realized large sums from their patents.
reaized large sums from their patents.
More than Firty Thoveand inventors have avalled hemselves of the services of MUNN \& Co. durlng the
TWENTY-SIX years they have acted as solicitors and Pubilshers of the Scirntipio Amprican. They stand at
he head in this cla es of business ; and their large corps of a sistants, mostly selected from the ranks of the
Patent office: men capable of rendering the best service to the Ifventor.from the experience pracucally obtained Col examiners in the Patent Office: enables MONN \&
Co. to do everything appertaining to patents BETTEB

How To RIIENS
 This is the closing in- quiry in

y letter, describing some invention which comes to this offlce. A positive answer can only be had by presenting
a complete application for a patent to the Commissioner of Patents. An application constats of a Model, Drawings, Pettition, Oath, and full Spectication. Various
offctal rules and formalities must also be observed. The efforts of the inventor to do all this business himself are generally without success. After great perplexity and
delay, he ts usually glad to seek the ald of persons experienced in patent business, and have all the work done over again. The best plan is to sollict proper advice at
the beginning. If the parties consulted are honorable the beginning. If the partles consulted are honorable
men, the inventor may safely confle his Ideas to them; men, the Inventor may safely confide his ideas to them;
they will advise whether the improvement tis probably patentable, and will give him all the directions needful
palt
To Make an Application for a Patent.
The applicant for a patept should farnish a model of hta invention if susceptible of one, although sometimes
it may be dispensed with; or, if the invention be a chemcal production, he must furnish samples of the ingredrents of which his composition consists. These should ad sent by express, prepaid. Small models, from a dis tance, can orten be sent cheaper by mail. The saiest
way to remit money, ts by a draft or postal order, on
New York, payable to the orderof MONN \& Co. Persons New York, payable to the orderof MONN \& CC. Persons
who live in remote parts of the country can usually purhase drafts from their merchants on their New York

How Can I Best Secure My Invention?

 This is an inquiry which one inventor naturally asksanother, who has had soine expertence in obtaining patanother, who has had soine experience in obtaining pat
ents. His answer generally is as follows, and correct: Construct a neat model, not over a foot in any dimenaddressed to MUNN \& Co., $\mathbf{5 7}$ Park Row, together with a
description of tts operation and merts. On recelpt hereot, they will examina the invention carefully, and advise you as to trs patentabilty, free of charge. Or, if
you have not time, or the means at hand, to construct a model, make as good a pen and ink sketch of the im-
provement as possible and send by mall. An ansmer to the prospect of a patent will be recelved, usually, bv
return of mall. It 18 sometimes best to have a searcb made at the Patent Offlce; such a measure often saves

Preliminary Examination.

In order to have such search, make out a written de-
scription of the invention, in your own words, and a encll, or pen and ink, sketch. Send these, with the fee or 85, by mail, addressed to MONN \& Co., 57 Park Row,
and in due time you will recelve an acknowledgment hereof, followed by a written report in regard to the made with great care, among the models and patents Wastington, to ascertain whether the improvement

Foreign Patents.
The population of Great Britain is $31,000,000$; nf France,
$37,000,000 ;$ Belgtuma, $5,000,000$; Austria, $36,000,000$. Pruat $40,000,000$; Belgtum, $5,000,000$; Austria, $36,000,000$; Pruss1a a,
Amertcan cltizens in all of these countries. Now is the Hme, when business is dullat home, totakeadvantage o these mmense forelgn fields. Mechanical improvement of alllinadsarealways in demand in Europe. There will
neverie a better time than the present tot ke pateat abroad. We have rellable business connections with th princlpal capitals of Europe. A large share of all the patents secured in forelgn countries by Americans ar obtained through our Agency. Address MUNN \& Co., 37
Park Row, New York. Circulars with full information

Trademarks.

Any person orfirmdomiclled in the United States, or any firm or corporation restding in any forelgn country
where simillar privileges are extended to cltizens of the United States, may register their designs and obtain pro tection. This is very important to manufacturers in thts
country, and equally so to foreigners. For full particu country, and equally so to forelgners. For full partic

Value of Extended Patents.
Did patentees realize the fact that theirinventions are
1ikeby to be more productive of proft during the seven likely to be more productive of proft during the seve years of extension than the first full term for which thelr
patents were granted. we think more would avail themselves of the extension privilege. Patents granted prio to 1861 may be extended for seven yeara, for the benefl of the inventor, or of his heirs in case of the decease of
fomer, by dueapplication to the Patent Ottice, ninety days before the termination of the patent. The extended under the first term having no rights under the extensio except by spectal agreement. The Government fee for
an extension is $\$ 100$, and it is necessary that good proferan extension is $\$ 100$, and it is necessary that good profer-
sional service be obtaineut to conduct the business before the Patent office. Full information as to extensions may be
York.
Persons desiring to tile caseat can have the paper prepared in the shortest time, by sending a sketch and description of the invention. The Government fee fo tions for patents and caveats is furnished gratts, on ap pilcation
New York.

Dealgn Patents.

Foreign designers and manufacturers, who send goods thls country, may sec ellifng the and thus prevent others
A patentfor a design may be granted to any person,
hether cittizen or allen, for any new and ortginal deatan Whether cltizen or allen, for any new and orlginal design
for a manufacture, bust, statue, alto rellevo, or bas relte any new and original deatgn for the printing of woolen silk, cotton, or other tabrics, any new and original im presion, ornament, pattern, print, or plcture, to ne
printed, painted, cast, or otherwise placed on or worked printed, palnted, cast, or otherwise
into any article of manufacture.
Design patents are equally as important to cittizens as Munn \& Co., 37 Park Row, New York.

Copien of Patents.

Persons desiring any patent lisued from 1836 to Novem
ber 26, 1867, can be supplite with oftctal 10 . onable cost, the price depending upon the extent of dram ings and length of specification.
Any patent issued since November 27,1867 , at which time the Patent Offlce commenced printing the drawing
and specifications, may be had by remitting to this of
fice $\$ 1$.
A copy of the cla1ms of any patent 18sued alnce 1836 When ordering coples, please to remit for the same as date of patent Addres JUNN \& Co Patent Sollctors 37 Park Row, New York.
MUNN \& Co. Will be happy to see inventors in person
at their offlce, or to advise them by letter. In all cases hey may expect an honest opinion. For such consulta tions, optnions, and advice, no charge is made. Write plain; do not use pencll orpale ink; be brief.
Alns, are kept secret and strictly confldential.
In all matters pertaining to patents, such as conducting interferences, procuring extensions, drawing assign
ments, examinations tnto the valinity of ments, examinations into the validity of patents, etc.
spectal careana attention ts itiven. For information and for pamphlets of instruction and advice,

ddress MUNN \& CO.

PUBLISHERS SCIENTIFIC AMERICAN,
37 Park Row, New York.
OFFICE IN WASHINGTON-Corner F and 7 th

Back Page lnside Page

81.00 a line.
75 cents a line.

Engravings may head advertisements at the same rate per
line, by measurement. as the letter press. Advertisements
must be received at publication oftce as early as Friday
W HR SALE-A complete set of Patent Of

MAGNETS-Permanent Steel Magnets

 of any form or size, made to order by F. C. BEACHo cO., 260 Broadwa, Newf York, corner Warren st.
Maker, of the celebrated Tom Thumb and Minlature
Telegraph Instrumente.

500 RELIABLE, THOROUGHLY RENOVATED

BAIRD'S BDOXS

FOR PRACTCAL MEN.
 Sign Writing and Glass Embossing
 A Complete Guide for Coach Painters:

 HENRY CAREY BAIRD

NOW READY,

MONEY-WAGES,

 $\$ 72 \underset{\text { free. }}{\text { EACH WEEK. }}$

Niagara Steam Pimp. CHAS. B. HARDICK,

The American Turbine Water
Recentiy mproveeld
thot submitted to

 A full report may be obtained of
stoU $\begin{aligned} & \text { bill } \\ & \text { ton, oblo. }\end{aligned}$ TEMPLE, Day-

WOODBURY'
Platent
Planimp and Matching

P.BIAISDEIT \& CO.,

Manafactarers of the Blaladell Patent Upright Drills,
and other firt-class Machindsta' Taola
and
$\$ 5: \$ 20 \begin{aligned} & \text { per day at home. Terms Free. Address } \\ & \text { Gzo. Stinson \& } \\ & \text { Co., Portland, Maine }\end{aligned}$

Engines and Boilers,

SHINGLE AND BARREL MACHINERY.-
 Turners, \&c. Address TREVOR \& Co. Lockport, N. Y. 1832. SCHENCK'S PATENT. 1871.

OTIS', we we beand Machinery.
$\frac{\text { NO. } 348 \text { BROADWAY }}{\text { OTAE, }}$

BOILERS AND PIPES COVERED

ASBESTOS FELTING COMPANY,

TE HoRTON LATHE CHUCK, from 4

Fourth Grand Gift Concert,
Poblic Library of Kentacky,
On March 31st, next.
60,00 Mideles, 12,000 Gifts.

LIST OF GIFTS

(Ti, $12,00 \mathrm{Girts}$, all Cash, amounting to $81,500.000$
 all paid in proportion to tbe number of
PRICE OF TICKETS:
Whole Tickets, 850; Halve, \&25; Tenths, or each cou-
pon, $85 ;$ Ele ven, Wuole Tlikets ior $\$ 500$. Send for cir-
cuiar. time for the drawing is near at hand, and persons
intending to purchase tickets have no time to lose. THOS. E. BRAMLETTE,
gent Public Library. Ky.. andManager Gift Concert,
Public Library Builaing, Lounsvile, Ky., or THOS. H. HA YS \& CO., Easte

 SHAFTING
The fact that this , hafting has 75 per cent greater

1873 and

1874. Catalogues Free.

5,000 Agents wanted samples ent tree
$\$ 5760$

$\mathbf{W}^{\text {OOD.WORKING MACHINERY GEN }}$

Machinery,

Cold Rolled Shafting.

Sturtevant Blowers.

GEO. W. READ \& CO..
STEAM BAND SAW AND
VENEER CUTTING MILL.

Veneer Cutting Machines-For Sale,

M AUFACTURERS CHEMICALS,ORES

 $\overline{\text { Kind, }}$ WANTED, A RELIABLE LADY

 A Set of 12 Steel Lathe Dogs,

THE Union Iron Milla, Pitteburgh, $\mathbf{P a}$

 WHALEN TURBINE No rigks to purchaser.

IOWA AND NEBRASKA!
 NO PAYMENTS REQUIRED
 BUY THIS YEAR. GEEO, s. HA RRIS, Land Comr, Burrinineto, Ionoor

[^0]
y MiPN．JORETO P7 MAIDEN LANE，NEW
Patentee and Sole Manufacturer． DRLLING MACMINES
 HORSE STALL FLOOR－Patented through

PORTLAND CEMENT．

 $\mathbf{W}^{\text {ANTED－A }}$ ，purchaser for arran manuac．

都
 JUST OUT． THE

Science Record

FOR

$18 \% 4$.

W

A S

SAWS

SAWS

SAWS
SAWS

1DOUBLEREACTING
SteamPumps
VALLEY MAS HELLABLE
Easthampton，Mase．
BUPMR－TIATPRS

Pyrometers． | Fortestatingorann，Boineer |
| :---: |
| Blast |
| rimaceen |

TRON PTANRRS，
 Working Models

 ANTI LAMINA
 MAGHINTSTS G00LS

 brton squ

 K Live Quail or Partridges

WANPYBD．
 HARTFORD

Steam Boiler

INSPECTION \＆INSURANCB CO． CAPITAL
\＄500，000．
Isscess policies or insirance，atter a careful
nspection of the Boiller，covering all lose or damage to Boilerss，Biildings，and Madiinery， STEAM BOILER EXPLOSIONS．

STEAM BOILERS，
stationary，marine，\＆locomotive． Frallanformat ton concerring the plan of the Company
operations can be obtatied at the $\underset{\text { at any }}{\text { Homency }} 0$
J．M．ALLEN，Pres． $\begin{gathered}\text { J．PIERCE，S．Secretary．}\end{gathered}$
\qquad
 haries M．Beach．．．．．．．．．．．．．．enes Bros．Sllk Mitac

WIRE ROPE．

 JOHN A．ROEBLING＇S SON S ， F Or Inclinge Plankra，Trandiog，Ship Bigging，

Themanu－Tannate of Soda $\begin{gathered}\text { for nae } \\ \text { arainet } \\ \text { facture of }\end{gathered}$
 TO PARTIES BUILDING AND USING

IUBRICATORS．

 HOUSTON＇S PATENT TURBINE WATER WHEEL．

 Kixiditixize

E OGINES AND BOLLERS，New and Sec－
 WIRA ROPE
PORTLAND CEMENT，

 Rare and Beautiful Flowers CHOICE VEGETABLES．

 Blise＇s Illustrated Potato Catalogue free to al Non，B3 Pirik Place and 20 Murr 20 I．P．R 00 OT BOILEB

EくUエーマーのトのトOO」の

R．A．Vervalen＇s Brich Madires， Made at Haverstraw，Rockland Co．．N．Y．Maktng nine
tenthe of all the brick ued in the State．Send forciccular BUILDERS $\begin{aligned} & \text { send for Catalogue．A．J．BICK } \\ & \text { NRLL }\end{aligned}$

American Saw Co．
No． 1 ferre bt．，new york．
Movable－Toothed Cireular Saws． Eccentric Geared Power Presses．
 EmeryWheels（xANITG）EmeryGrinders

HUNTOON GOVERNOR

 Todd \＆Rafferty Machine Co．

 PENN WORKS，

PRATT＇S
ASTRAL 0 II．

THE HEALD \＆SISCO
Patent Centrifugal Pumps，

\％

OF THE

SCIENTIFIC AMERICAN．
tHE BEST MECHANICAL PAPER IN THE WORLD． 3 TWENTY－NLNTH YEAR．

VOLUMREE－IEW SERIES．

The publishers of the SCIENTIFIC AMERICAN O．： to announce that on the third day of January，1874，a
new volume commences．It will continue to be the alm of the poblishers to render the contents of the coming
year more attractive and useful than any of tto prede． cessors．
The SCIENTIFIC AMERICAN 18 devoted to the inter ests of Popular Sclence，the Mechantc Arts，Manufac－
tures，Inventions，Agricalture，Commerce，and the Indus trial pursuits generally；and it is valuable and Instrac－
tive not onlyin the Workshop and Manufactory in the Household，the Library，and the Reading Room．
The best Mechanical Paper in the World！ A year＇s numbers contain over 800 pages and several
undred engravings of new machines，nseful and novel inventions，manufacturing establishments，tools，and

To the Mechanic and Manufacturer ！
No person engaged in any of the mechanical pursult oould think of doing without the Scientifio Ayeri－ an．Every number contains from six to ten engravings in any other publication．
TERMS．
One copy，one year．．．．．．
One copy，six months．．．．
One copy，four months．
 one cony of engraving，＂Men of Yrogress
One cony of Sct． 10.00 One copy of Scientific American for one year，and
one copy of＂science Record＂for 18i4．．．．． 5.00 Remit by postal order，draft or express．
The postage on the Sclentific Americas is five cente per quarter，payable at the office where received．Can－
ada subscribers must remit，wfth subscription， 25 cents extra to pay postage．
Address all letters and make all Post Offce orders and
drafts payable to

MUNN \＆CO．，

37 PARE ROW．NEW YORE
THE＂Scientific American＂is printed wish

[^0]: Andrew's Patents.

 Send tor diratiler Darable, and Economical.

 S

