

A WEEKLY JOURVAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, ANI) MANUFACTURES.

Vol. XXX.-No. 9.	NEW YORK, FEBRUARY 28, 1874.	[\$3 per Annum
[NEW SERIES.!	NEW YORK, FEBRUARY 28, 1874.	

CASEMENT'S PRESSURE REGULATOR FOR FLUIDS.
In describing the invention of which our illustrations depict the construction and principal applications, we deem it hardly necessary to prefix any extended prefatory remarks regarding the obvious utility of the type of apparatus to which it belongs. The advantages of a device by which
maximum and normal pressure may be reduced for ordinar continuous employment to any required low degree, while the full force is susceptible of instant utilization at any mo ment: or by which, from a single powerful source of supply several deliveries may be effected, all varying in intensity will, we think, be clearly apparent.
The points briefly enumerated above constitute the objects of the present device, and a reference to our illustrations will render plain the simple means by which the inventor se cures them. Fig. 2, on page 134, shows in section the inte
 sented in the other engravings, of which due explanation will be made as we progress. A is the pipe which conducts the fluid from the source of supply, and represents the apparatus used by the inventor in conducting gas, from a na-
tural gas well to his dwelling at Painesville tural gas well to his dwelling at Painesville, Ohio, for heating and illumina!̣ng purposes. Just above the orifice of
pipe, A, is coupled a short section of tube, forming a chamber; the pressure above the valve equal that below it, clearly and secured between the couplings by a flange and packing gravity would bring the valve to its seat, closing the orifice rings, is a truncated conical diaphragm, B. The latter it is proposed to make of hardened steel, and also as thin as pos sible, while securing the requisite strength, so that its up per aperture, which forms a seat for the valve, C , will be reduced as much as practicable to lessen the area subject to friction, and thus prevent any liability of the valve to stick alve, C, has a long stem which passes up through a guide D. The upper portion of the chamber is closed by a screw plug, E, which can be readily removed to admit of access to the interior, and also for the purpose of placing in position the rings, F, of heavy metal, which serve to weight the valve.
We will suppose that the gas escapes from its source under the high pressure of 20 lbs ., to the square inch, and
 of but one third of a pound. In such case, the weights on valve, C , would be adjusted to aggregate $19 \frac{2}{3} \mathrm{lbs}$. It is evident that, with this force accing in one way opposed to the greater one coming from the other direction, the amount of gas corresponding to the difference between the relative
pressures would be that allowed to pass the valve: for should
and preventing further escape, until the pressure above once
more became less than the force acting from below. Hence, by adjusting the weights, any degree of pressure in the distri buting pipe may be maintained. The valve is, of course utomatic, and, as it is held suspended by the upward cur rent, adjusts itself to the quantity of gas demanded, so that as a moment's consideration will show, the sudden extinc ion of, say, twenty out of twenty-one burners cannot have the effect of causing the single one left to flare and sing; or, conversely, if an additional number of lights be started, the result is simply to decrease the pressure above the valve more rapidly, and allow of a quicker flow from below, which soon restores the proper equilibrium.
The gas, we have stated, passes under the conical valve,
 delivering main, G, depositing in its course any impurities which it may hold in suspension, which, naturally falling to he bottom of the chamber, between the walls of the latter and the diaphragm, B, are subsequently drawn off by the cock, H. The shape of the diaphragm and consequent loca [For remainder, see page 134.]

Srimitific Ammitan.

MUNN \& CO., Editors and Proprietors. published weerly at
NO. 37 PARK ROW, NEW YORK.

o. d. munn.	A.e. beach.
TEMRMS.	
One cops, one year.... One copy, six months	
Club rates $\left\{\begin{array}{l}\text { Ten copie } \\ \text { Over ten }\end{array}\right.$	${ }_{2}^{25} 50$

VOLUME XxX, No. 9. [New Series.] Twenty-ninth Year.
NEW YORK, SATURDAY, FEBRUARY 28, 1874.

PATENT MONOPOLIES IN CONGRESS.

Another of the overgrown monopolies, which not only ppress the people but retard the progress of industry in this country, is now beiore Congress attempting to induce that body to give it another lease of life. Some forty years ago, an American residing in England, invented a machine ior forming felt hat bodies, which he subsequently brought to the United States for the purpose of patenting. Owing to an informality, his application was rejected; but some years afterwards, the right was granted to Mr. H. A. Wells, who presented the same machine, modified by one or two minor changes. Since 1846, the association owning this patent have held a complete monopoly of the business, and,
by refusing to license others to use the machine (except a ew whom they bought off to prevent opposition to their last extension), they force all the manufacturers of the country to send their fur to the ring factories to be manufactured at ring prices. The actual cost of forming a hat body i but two cents, and the charge is from six to twenty cents, showing the enormous profit of from two hundred to one housand per cent on every hat of the ten million and over early produced in the United States. The actual loss to he hat makers over what the cost would be, if allowed to manufacture their own hat bodies, is estimated at over 42
per cent, and against this the trade can do nothing. If any per cent, and against this the trade can do nothing. If any business is ruined. Severai years ago, Wells died, and since then, for the benefit of his "poor" widow, who has were granted. Now the ring comes before Congress again and asks for seven years louger, making thirty-five years in all in which to carry on their monopoly, and this in the face of the fact that the original form of machine patented by Wells, is not used and has not been for the past twenty fiv years, but simply serves as a ground for litigation and the securing of damages for infringements. The hatters are re sisting the attempt with all their influence, and they assert that, with this oppressive tax abolished, they could not only produce more goods, and regain their lost forelgn trade, bu sell cheaper, and give their hands employment for the whole nstead, as is now the case, of only two thirds of the year.
These Wells patents, in common with those held by the sewing machine combination and the Woodbury plane try suffers for want of their abolition. We do not 'hink the fault lies in our patent system, for the principles on which our laws are based are primarily the encouragement of the useful arts and the dissemination of knowledge concerning the same throughout the community. To foster their pro duction upon the ground of expediency, and not of justice, limited monopolites are granted to the original and irst dis coverer, which,in accordance with the value of his invention may yield him an ample remuneration for his thought and labor. Now if the inventor of a valuable article or proces fails within a certain period to gain a just reward, then he may with justice be granted longer time; but if, on the othe hand, he, or those representing him, succeed in obtaining a fair and adequate return during the lifetime of the patent then there is clearly no reason for continuing the monopoly Mr. Sayler,of Indiana, has recently introduced a bill in the House of Representatives, the object of which is the suppres sion of the abuses we have pointed out, but the means taken are not such as will secure the desired result. It is provided that any article made under a single patent may be used,etc. by any one on payment of a royalty of 10 per cent on the market value, and that the user shall secure the patentee by $\$ 10,000$ bond, filed in the Patent Office. The royalty on patents for improvements, or on inventions covered by two
or more patents, is to be fixed by the courts, and the sam provision applies to copyrights. The trouble with this meas it injures the seller. It reduces the profits, perhaps, of the big corporations, but in like manner those of the smaller in ventors whom it should protect. It puts into the hands of one man, the right to absorb the labor of another, carried on through years and at great expense, into a slightly im proved device, giving the former individual all the profits while the real worker must be content with a ten per cen royaity. Finally, apart from the crudity and ambiguity of its provisions (for on what basis is "market value," a fuctuating equivalent varying with locality, season, etc., to be es timated?), the law is open to the same objections as those re lating to usury, as it arbitrarily restricts an individual's right to his personal property, and this we believeto be con rary to public policy, unless the need be imminent, clear nd apparent, as in event of war.
We might urge otherobjections to the act-which we trust will not pass-but we dismiss it for the present to consider that which we believe to be the only true remedy to the exist ing difficulties. Mr. Sayler, in hisargument, brings for ward a mass of suggestive statistics; the india rubber industry pays 59 per cent on the capital employed, the cabinet organ busi. ness, 69 per cent, agricultural implements, 52 per cent. In seventeen months the capital invested in sewing machines doubles itself, besides paying all expenses; and finally comes he Wells hat manufacture, with the immense profits al ready pointed out. Now, with the full comprehension of these and other like cases: and there is no reason why a per ect understanding of the nature of these grinding incubi on the industries of this country should not be afforded us, for we, in common with other journals, have reverted to the
matter again and again: why, we ask, do Mr. Sayler and matter again and again: why, we ask, do Mr. Sayler and the evils and end them at once by rofusing to extend their existences when the prescribed limits are reached? This hat body outrage has been fastened on the country for the last even years by an innocent looking amendment tacked on he end of a bill on the last night of a session. Members failed to investigate, the measure passed, and the work was
done. In other instances which we might mention, wealth is unsparingly used, opposition is bought off, professiona alent employed, "poor" widows brought out as figure eads, Congressmen coased and cajoled, if not bribed, and, in fact, every art and trick of the lobby practised to ensure the passage of a desired bill-the object of which is simply impose additional burden on the backs of the people.
The remedy needed is an enactment which will do away with these Congressional extensions, which will fix certain imits to the lifetime of a patent, subject to the discretion of the proper officials in the Patent Otfice. These limits hould include one extension, to be acceded after careful in vestigation and for cause ; but beyond the period so granted not a day should be allowed. During twenty one years, in the invention be of value, abundant remuneration can be ained ; and monopolies of half a century's standing should e effectually abolished and rendered impossible

sLIPPERY PAVEMENTS

It takes buta ahort stroll along Broadway, during winter time, to convince one that, excellent as the Belgian pavement in many respects, it nevertheless becomes, when well worn down by use and when covered with snow or ice or ven with thin mud, a prolific cause of falls and injury to the heavily burdened horses constantly traveling over it. We know of no statistics which will show the average yeary amount lost through animals thus becoming maimed; but udging from our own observation and from the isolated fact that, quite recently, in passing once up and down Broad way on a single frosty day, we counted fifteen falls and four orses left by the roadside to die, it may be imagined that he aggregate must reach a considerable figare. The street, t times, becomes dangerous even to pedestrians in crossing, and hence doubly perilous for the horses from the insecure ooting of their metal shoes. It would seem that the wooden pavements now on many of the side streets in this city, offer reat advantages in point of security over roads of stone but experience has so proved the unsuitability of the former oo meet the requirements of a street constantly alive with a heavy traffic, that their use on such thorough fares as Broadway is practically out of the question. The subject is one owhich we think the attention of inventors might be pro tably turned, and a substantial pavement, combining the urability of stone with the supporting capability of wood produced. In this connection, we notice that an investiga tion has been conducted in England, by Mr. William Hay wood, engineer and surveyor to the Commissioners of Sewers of the city of London, which mainly consisted in obser vations as to the number of accidents befalling horses on asphalt, wood, and granite pavements. The investigations extended over fifty working days, and were principally made during the rainy weather of spring. The granite was found o be most slippery, the asphalt next so, and the wood the east. Considered in respect to moisture, asphalt was most lippery when merely damp, and dafest when dry; granite most slippery when dry, and safest when wet; wood mos slippery when damp and safest when dry. Wood, on the whole, is less slippery than either asphalt or granite in a marked degree, it being only inferior to granite when the pavements were wet, and the difference then between the wood and the granite being considerable. Of the accident ost obstructive to tramic, as well as most inate next and wood least.

HERSCHEL, TYNDALL, AND DRAPER ON THE SUN RAY

 Studying the solar spectrum, about the beginning of the present century, the elder Herschel passed a sensitive thermometer through the successive colors and observed that the greatest heating effect was not at all coincident with the brightest illumination. At the violet end of the spectrum, the heat was scarcely apparent. As the thermometer passed to ward the red, the temperature slowiy increased, the maximum appearing sometimes in the red, sometimes at a distance beyond the red, where no rays were visible.The inference which he drew from these observations was that the heating rays were separate and distinct from the luminous rays and of a lower refrangibility. By the use of photographic papers, it was subsequently ascertained that the chemical action of the sun ray appeared to be greater toward the violet end of the spectrum, the maximum power apparently residing in the violet or ultra-violet radiations. Thus, as the rays of high refrangibility diminished in brilliancy, they seemed to increase in chemical power, much as the rays of low refrangibility increased in heaing power with their lessened brightness. Hence arose the belief, which the scientific world has generally entertained of late years, that the solar radiation was triple in constitution, and so likewise the emanations from other self-luminous bodies. A favorite illustration of this view has been a cable woven of three strands, which were regarded as being separated by the prism into three independent yet slightly overlapping spectra : a visible spectrum culminating in the yellow; a heat spectrum at the red end and beyond the red; and a chemical spectrum chiefly in and beyond the violet.
In the spectrum produced by a prism of tlint glass and prisms of highly refracting gems, the greatest heat was found below the red; with a crown glass prism it was associated with the pale red; with a prism filled with alcohol it appeared in the orange; while a prism of water gathered the heat chiefly in the yellow. Yet in spite of the evident connection which these facts would seem to point out between the position of the heat spectrum, so called, and the nature of the prism employed, no attention was paid to the suggestion, made by Dr. Draper as early as 1844, that the phenom ena observed must be due not to any inherent propercy of the sun ray but to the prism, which crowded together the rays of the red end of the spectrum and greatly dispersed those of the blue and violet portion. In other words, the red end of the spectrum is warmest as the earth is warmest at the equator, not because the heat rays tend chiefly to that region, but because a greater number of solar emanaions fall upon a given area there
Perhaps the person who has been most influential in giv ing currency to Herschel's error is Professor Tyndall. In the eighth of his classic lectures on "Heat, considered as a Mode of Motion," he illustrates the subject with characteristic force and felicity. Using the thermo-electric apparatus devised by Melloni, he brings to bear upon the face of the pile the spectrum of electric light passed through a prism of bisulphide of carbon, and says: "I turn the handle and the slit gradually approaches the violet end of the spectrum; the violet light now falls upon the slit, but the needle does not move sensibly. I pass on to the indigo, the needle is still quiescent; the blue also shows no action. I pass on to the green, the needle barely stirs; now the yellow falls upon the slit; the motion of the needle is now, perhaps, for the first time visible to you; but the deflection is small, though Inow expose the pile to the most luminous part of the spec trum. I will now pass on to the orange, which is less luminous than the yellow, but you observe, though the light diminishes, the heat increases ; the needle moves still farther. I pass on to the red, which is still less luminous than the orange, and you see that I here obtain the greatest thermal power exhibited by any of the visible portions of the spectrum. The appearance, however, of this burning red might lead you to suppose it natural for such a color to be hotter than any of the others. But now pay artention. I will cause my slit to pass entirely out of the spectrum, quite beyond the extreme red. Look to the galvanometer; the needle goes promptly up to the stops. So that we have here a heat spectrum which we cannot see, and whose thermal power is far greater than that of any visible part of the spectrum. In fact, the electric light with which we deal emits an infinity of rays which are converged by our lens, refracted by our prism, which form the prolongation of our spectrum, but which are utterly incompetent to excite the optic nerve to vision. It is the same with the sun.
Subsequently Professor Tyndall, by means of a prism of ock salt, determined a heat curve in the region of the dark rays below the red, which, as he expresses it, " suddenly shoots upwards in a steep and massive peak, a kind of Matterhorn of heat, which quite dwarfs by its magnitude the portion of the diagram which represented the visible radiation." The same teaching was represented in the American lectures, the "Matterhorn" diagram occupying page 148 of Appleton's edition of the lectures. These lectures, it will be remembered, were delivered many times among us during the winter of 1872.3
In the month of August, 1872, Dr. Draper published, in the leading scientific periodical of Great Britain, a memoir a digest of which was shortly after given in the Scientific american) on the distribution of heat in the spectrum, in which he not only repeated his belief that the method em. ployed by Herschel and subsequent investigators must necessarily lead to incorrect results. but furnished an overwhelming array of observations disproving them. As for Professor Tyndall's estimate of the proportions of heat on the two sides of the "extreme red", he held that " they were valueless for lack of care in determining the point of division." The red light shades off gradually, so that it is almost
impossible to tell where it really comes to an end. "A line e :- thermopile, such as is commonly used, is liable under these circumstances to give deceptive results; and any error in its indications counts in a double manner; it not only diminishes the value of one spectrum, but adds that diminution to the value of the other." Thus an error of only two millimeters in estimating the position of the extreme red would have taken so much from the invisible and added it to the visible that the two would be brought to an equality; then the slightest turn of the screw, that carried the pile toward the dark space, would have given a preponderance to the visible. "It is obvious, therefore, that there cannot be certainty in such measures unless fixed lines are resorted to as standard points.'
This done, the destruction of Tyndall's position is complete. The optical center of the spectrum is the ray which, according to Angstrom's determinations, has the wave length of 5,768 . Now if the rays on t wo sides of this line be brought to seperate foci and their thermal effects care fully measured, it is obvious that any excess of heat at either end of the spectrum will be speedily detected. By an in senious apfaratus described at length in the memoir, Dr.)raper did so compare the heating power of all the less refragible rays with that of all the more refrangible, using prisms of various material, and making some hundreds of observations on an unclouded sun. Taking 100 as the stand ard for the heating power of the entire spectrum, the mean of four sets of measures, with a prism of rock salt, gave 53 for the heat of the more refrangible region, and 47 for the less refrangible. Another series of three sets gave for the two regions 51 against 49. With a prism of flint glass, two series, one of ten sets of measures and the other of eight, gave respectively 49 to 51 and 52 to 48 . Two series of the same number of experiments with a prism of bisulphide of carbon gave 52 to 48 , and 49 to 51 , respectively for the mor prism, twenty-seven experiments gave 49 to 51 ; while an prism, twenty-seven experiments gave 49 to 51 ; while an-
other set of twelve gave 53 as the mean for the more refrangible and 47 for the less. These are given as fair examples of results obtained by a multitude of experiments during sev eral montbs, including winter and summer. The heating powers of the two halves of the spectrum show such closs correspondence that we may safely follow Dr. Draper's lead and impute the differences to errors of experimentation.
The second memoir on chemical action of the spectrum published in December, 1872, proves even conclusively that very part of the spectrum, no matter what its refrangibil ity may be, can produce chemical changes: and that the "actinic curve," so-called, does not represent any peculiari ties of the spectrum, but simply the habitudes of certain compounds of silver. As a logical consequence, the supposed riple consticution of the sun ray must be dropped among the myriad other dead delusions chat mark the onward course of Science, as the skulls of perished camels mark the course of a caravan. There is in the sun ray neither light nor hea nor chemical power, as such, but simply vibrations, which when stopped, may manifest themselves in one or other o all of these phases of phenomena according to the nature of the extinguishing substance. "The evolution of heat, the sensation of light, the production of chemical changes, are merely effects, manifestations of the motions imparted to ponderable atoms
It was a matter of surprise to many that, during his lec tures here, Professor Tyndall did not so much as mentio hese important researches, not even to question the just ness of Dr. Draper's conclusions. It is perhaps still mor surprising that he has since as carefully refrained from pub licly discussing them, yet still continues to teach the old doctrine.
It would be asking too much, perhaps, to expect Professor Tyndall to reconsider his subject in the face of the numer ous and imperative engagements, that had been made for him here, but surely time enough has since elapsed to allow him to do so. The omission of any reference to Dr. Draper's later work, even in a foot note in the edition of the lectures published by the Appletons, might be excused for the same reason. But what can we think, when the English reprint re tains the old teachings without the suggestion of a doubt in regard to their correctness? To put it in the mildest form, it places Professor Tyndall in a slightly equivocal position for one who boasts himself an unprejudiced seeker after truth, for the truth's sake.
It is reported that, when his attention was called to Dr Draper's researches, Professor Tyndall-repeating his favor ite Alpine figure-said that his investigations had raised such a Matterhorn of heat at the red end of the spectrum that it was impossible to get over it, short of a year at least 'i he year has passed; is there still a Matterhorn of pride to be surmounted?

WHITWORTH STEEL.

Sir Joseph Whitworth has recently published a valuable work, in which he gives an exhaustive aciount of his method of casting and rifling steel guns. It will be remembered chat,some time ago, we pablished an account of the remarka ble performances of the nine pounder cannon of the abov inventor, and also referred to the crucial test caused by the explosion of $1 \frac{1}{2} \mathrm{lbs}$. of powder in a cylinder of fluid com pressed steel, in which no other opening was left save that of the vent. The cylinder was a copy of the breech of the nine pounder gun, and it was estimated that the strain woul be six times greater than if the shot were allowed to leave the piece. The projectile was screwed in, and the charge ired. Although all the gas escaped through the vent,which was thereby enlarged from one to two tenths of an inch, no

Abstract

ensions of the cylinder.

In explaining the nature of his steel, the author states that it is impossible to cast a large gun of highly carbonjzed steel that can be reiied upon as perfectly sound. With a small amount of carbon in its composition, lowever, the metal becomes so ductile that it will elongate under pressure from 30 to 50 per cent before breaking, and then will not tly in pieces, but only bulge and tear. To obviate the defect of honeycombing in steel of this description, recourse was had to estreme pressure upon the metal while in a fluid state, equal in some cases to twenty tuns per square inch. As a measure of the quantity of air expelled by this process and the consequent improvement in density aud soundness, it is stated that, within five minutes aftor the application of pressure, the fluid column will be shortened by an inch and a half per foot of length; and drawing out and forging developes,in a still higher degree, the strength of the material. It is cast in hollow cylinders, for reasons connected with rapid cooling and the more complete exclusion of air, and is manufactured in thirteen qualities, ranging from a tensile strength of 40 tuns per square inch to one of 72 tuns, the
ductility at the two extremes being respectively 33 and 14 ductility at the two extremes being respectively 33 and 14 per cent.
The invention is of the highest importance, not only in its application to weapons of war, but to the more useful implements of peace. For steam boilers and railroad axles, it would seem that steel of such extreme strength must be in aluable.

a paper and glass debate.

A correspondent sends us a couple of interesting questions which, he informs us, are to be the subject of a debate, re ating to the merits of paper and glass. The first is: " Pro. viding we had no paper, what other substances may be men tioned that would take its place?" and the second, " Providng we had no glass, what are its possible substitutes?" of course the idea is to bring out, in the present connection, not names of substances which may be advantageously used in tead of the above named almost indispensable materiale, but of such as we probably would employ (and of many of which in fact our aucestors did avail themselves) did glass or paper cease to exist or become unattainable. The case is imaginary but leads to much instructive thought.
In lieu of glass, we can find materials suitable for window panes, for drinking vessels, and in some cases even superior to it for small lensss, but nothing that combines all its properties, or is capable of its ready manipulation into desired forms. For windows, perhaps the best substance other thau glass is:imple mica, which may be readily split from the rock in thin translucent sheets. It is now used for doors of stoves, to protect paper shades around gas lights, and in other common employments. The Romaus filled their win dows with lupis speculuris, a fossil of the class of mica, which is readily cloven into thin smooth lamine. The same substance is found in the Island of Cyprus, in masses a foot in breadth and three inches in thickness. It is used for the construction of hot houses, aud for the protection of delicate plants. Cp to the present day it is also much employed in Russia, in place of glass for windows.
Horn cut into sheets is still used for lanterns, and for drinking vessels, and, if made sufficiently thin, would an wer for illuminating purposes. Oiled linen or other fabric, similar to that now used by draftsmen for tracing, would
also be available, and so would very delicate sheets of india also be available, and so would very delicate sheets of india
rubber. Skins, prepared like parchment or vellum, would be translucent though not transparent. Gelatin, however, might be treated with bichromate of potash so as to be insoluble, and if it would stand the weather would give quite clear window lights. Collodion films, we should imagine, i made thick enouich, could also be used for the purpose, as also animal membrane.
In addition of mica, the mineral kingdom offers a variety of substances. There is the Brazilian pebble, a species of quartz, now used in an immense extent for spectacles and other lenses. We have seen perfect spheres of this mate
tial three inches in diameter, without a fingle speck or Haw rial three inches in diameter, withuut a \&ingle speck or flaw oo blenish its complete transparency. Rock crystal and othe varieties of quartz might also be emt loyed, if means could devised to cut them properly; so could plates of selenite, o hin alabaster, or even of rock salt, though the latter would
not be very durable. Some shells are sufficiently thin to be ot be very durable. Some shells are sufficiently thin to be
translucent, and ivory could be made into plates having the same property. Amber would be transparent enongh but difficult to obtain while, like ivory it would be ratuer costly. Large leaves of trees, if chemically treated, might have their texture preserved and serve to cover windows if other means
failed; or if the dwelling were located in polar latitudes one might follow the exampie of the Esquimaux and use blocks of clear ice.
In recalling substitutes for paper, many of the materials suggested in place of glass owing to their translucency, would from their flexible nature, answer even more suitally for writing purposes. Such is evidently the case with parch ment, membrane, cloth, horn, rubber, collodion, or gelatin sheets. We might go back to graven tablets, like the Moa bite stone, or write with the stylus upon wax, as did the an
cients; in fact,there are numberless modes of inscribing our thoughts on solid substances. But paper has a multitude of other uses, especially in these days of paper clothing, paper furniture, paper churches, and paper money. Hence mate rials are needed with more of its attributes than simply its use as a vehicle for the dissemination of our ideas. The same source of supply,open thousands of years ago, is still at hand for the papyrus tree flourishes yet in Egypt and Sicily. Th bark of the common white birch may also be employed; o
by ingenious machines we can cut shavings of fine grained wood to serve in place of hangings fcr our walls. Sheets of metal, rolled to almost infinite attenuation, would, Low $\in \in \in$, probably form the most favored substitute. About two years ago the Upper Forest Tin Works, in Wales, rolled the most delicate sheet of iron ever made. The metal was worked in a finery with charcoal and the usual blast, then forged into a bar, and finally passed through the tin rolling mills. When inished, the sheet was 10 inches by $5!$ inches in dimensions or 55 inches in surface, and weighed but 20 grains. It would require 4,800 such layers to make up a mass one inch in thickness. Letters have been sent across the Atlantic on iron thinner than ordinary paper,and nearly as light. Steel, iron, and copper could thus be pressed into service; and where Hexibility was necessary, probably alloys could be made to answer the purpose.

SCIENTIFIC AND PRACTICAL INFORMATION

a test of the automatic telegraph

A public test of the automatic system of telegraphy recently took place on a single wire between this city and Washington. The matter transmitted was the President's late message, with the Spanish protocol attached, number-
ing 11,130 words, it having been selected in consequence of the declaration that its transmission over in consequence of Western Union Company, on December 2, 1873, was a fact unparalleled in telegraphy.
The President of the Automatic Telegraph Company submits a report, which is corroborated by the testimonials of various well known gentlemen who witnessed the trial, to the effect that the entire document was copied complete in New York in 58 minutes from the time of the beginning of the sending in Washington. Ten perforators, thirteen copyists, and two Morse operators were employed, as against sixteen expert Morse operators by the Westean Union people. The average pay of perforators and copyis's is $\$ 40$ per month ; of operators, $\$ 100$.

NEW ACOUSTIC PYROMETER

It will be remembered that,some time ago, we gave an account of an acoustic pyrometer, devised by Professor Mayer, of the Stevens Institute. The principle on which the instrument is based is the variation of the length of a sonorous wave in air,when the temperature of the latter is changed. Mr. Chautard states, in Les Mondes, that in his opinion the method proposed by Dr. Mayer is difficult in application, and he suggests the following arrangement as more suitable for practical requirements.
The sound is produced by the aid of an organ tube, Ut 4, for example, disposed with reference to a resonator which is put in relation with the two branches of a König improved interference apparatus. To the movable branch is attacked a long tube of copter, which enters the furnace or other locality, the temperature of which it is desired to determine. This tube returns on itself and communicates with a \approx mall manometric capsule. The fixed branch of the apparatus is terminated by another capsule, which, like the first, is in relation with the same source of heat. The arrangement is completed by a revolving mirror, in which the state of the Hame is seen
Thus disposed, if the pipes which separate the resonator from the capsules each contain an equal number of half wave lengths, the flame will be edentulated; in the contrary case, the indentations will diminish,and this as much more as the difference of length of the tubes is muie nearly equal to an untqual number of half wave lengths. In the latter event, the flame takes, in the mirror, the aspect of a ribion; and by noting the changes in its appearance the calorific state of the air in the tube in the furnace is determined. If the temperature is elevated, the length of wave augments, and a clearly defined interference is shown by the flame in the mirror. If,during the continuance of the eyperiment, the movable tube be gradually elongated, it will be easy to bring the flame back to its primitive state, that is, to cause the indentations to re-appear. Then, by the aid of a scale previously determined and empirically translated ioto thermometric degrees.
noted.

TO NEW SUBSCRIBERS.

All subscriptions to the Scientific American will be commenced with the year, unless persons, at the time of remitting, request to the contary. Nearly all subscribers preserve their numbers for binding; and in most cases where subscriptions are received during the first quarter of the year, if the back numbers are not sent, they are subsequently rdered. To save loth the subscribers and ourselves trouble, the back numbers from January 1 will be forwarded, unless we are advised to the contrary. This course will be pursued till April 1, after which date the paper will be sent from the time of receipt of remittance; but subscription. may commence at any time, at the request of the subscriber, The above regulation applies only to those who give no instructions, at the time of remitting, as to when they desire to commence.
G. D. says: "I think there is a great deal of humbug alout the Troy chainmakers, in the paragraph from the Troy Times. Any good smith can make chain, and England is full of them; they would be glad to get one half of the wages mentioned."

A correspondent, o. A. O., reports that in Setastopol, Cal., from November 1, 1873, to January 14, 1874, the enormous quantity of 33 inches of water fell, in the form of rain and snow.

IMPROVED MOVABLE TEETH FOR SAWS.

The novelty of this inveation consists, first, in punching out only the central part of the lower half of the circular shanks, then cutting off the remaining segment at d; it is thus rendered elastic, and may be sprung laterally, so that the V on the inner edge of the socket may enter into the corresponding groove cut in the edge of the shank, as shown in the tooth at the left hand of the engraving. It will be seen that, if the said tooth were turned in the direction to elevate the point, the circular shank would be rolled out of the socket, the butt of the tooth, c, passing to the opposite side of the plate; also, were the point turned down so that the butt, c, would pass the shoulder, a, then the butt, c, would spring into line with the plate; then the with the plate; then the ooth must be struck on the back, at 8 , light successive lows with a hammer, un til the shoulders meet. To remove a tonth from or to insert it into a socket, thie corresponding movements must, of course, be made and to effect the object, a common hammer only is equired. The shanks ar milled to the size of th miled to the size of the ockets and givena spring emper; the too aid on an anvil and struck with a hammer on the side and near the inner circle, so as to open the space where it has been cut, at d, and make the shank larger than the socket. The segment or spring of the shank is left just strong enough to cause the necessary friction to hold the tooth firmly in position, and it readily conforms to the size of the socket, always making a perfect fit when turned into place Some of the advantages claimed for this new mode of con struction are: A more perfect interchange of teeth; being so strong and stiff, the saw will be the same in every respect as a saw with solid teeth : and the saws afford twice as much stock for wear, as those heretofore made, and are said to be fifty per cent cheaper to the consumer.
Patented in the United States and Canada through the Scientific American Patent Agency, by W. P. Miller
For further particulars address R. Hoe \& Co., 29 and 31 Gold street, New York city

HILF'S IRON PERMANENT WAY.

We extract from Engineering the annexed illustrations o a system of iron permanent way, recently designed and in roduced on the Nassau State Railway, in Germany, by Mr. Hilf. About 65 miles of line have been laid, and we un derstand that the cost of maintenance has been scarcely one third of that for ordinary permanent way. The invention consists in iron longitudinal sleepers to which the rails are secured, the gage being maintained by the bolts passing through the web of rails. The latter, shown in section in our engravings, are of Bessemer stel, and for the Nassau railways were made in lengths of 19 feet $8 \ddagger$ inches each, weighing 48 lbs. to the yard.
The mode of fastening rails and sleepers is clearly represented in Fig. 1. The former are notched only at the ends and are secured by a bolt, a, placed on one side to avoid longitudinal displacement. b is the tie rod, two of which per length of railare used. The entire structure weighs $232 \cdot 64$ lbs. per yard, and its entire cost, in Eu rope, is estimated at about $\$ 7.50$ per simi ar distance. In Fig. 2 is represented the drainage adopted in connection with the system. A peculiar arrangement of switch is employed, the characteristic of which is that the center is not between the two lines of rails, but within the line, so that two frogs are saved.

The combination is such that a train may pass from one line to the other in either direction, or, by another setting of the points, may remain on he same rails.

011 Notes.

Apropos of oil, especially petroleum, the following facts gleaned from the pages of the National Oil Journal, are quite novel and of considerable interest :
There have been several articles going the rounds of the press, strongly recommending, to farmers and others, the use of crude petroleum as a cure for the grub or borer. It s suggested to apply the oil with a brush to the trunk or bark of a tree. To this our contemporary registers a very strong objection; and while admitting that petroleum is useful for burns, scalds, corns, sore throat, consumption, fleas, bed bugs, and as a cockroach exterminator, he remark that there is a point where the utility of the pro luct ends, and that is just before it is rubbed on fruit trees. The editor has tried it,and finds that every leaf is killed in a single day while there is little doubt but that the same result would follow the application to the bark.
Some time since, we referred to a number of compounds
sold throu chout the country as non-explosive oils, but which really wer very dangerous, and of course a fraud on the public. A curious record of nostrums is also to be found among recent English patents; and among a list of seven of hese mixtures, the following are specimens of ingredients to be added, to prevent explosion: Cascarilla bark, Iceland moss, alkanet root, camphor, potatoes, sul phur, iron rust, gum olibanum, sal soda, and onions. These articles are added in very small amounts to very large quantities of gasoline or naphtha.
It is hardly needful to remark that they merely act as impurities, and disguise the odor of the burning fluid, while of

IMPROVED MOVABLE TEETH FOR SAWS

course the chances of explosion are not in the least diminished. No oil, which at low temperature will give off the vapor which, mixing with a proper proportion of air, causes xplosion, is safe, no matter how much sulphur, potatoes, or other useless matter be added.
As an exemplification of the sudden rise and equally abrupt fall of some of the towns, or rather cities, which sprung up in the oil regions when the petroleum fever agitated the country, our contemporary says (on the authority of another journal that we never heard of) that the famous and at one time popular hotel, the Danforth House, Pithole City, which cost twenty-eight thousand dollars, was sold recently for a ten dollar note, and the furniture, which cost three thousand dollars, brought less than ninety. Within one month from the completion of the first house, Pithole city had an eighty thousand dollar hotel. In two months she had a daily paper, and a fast one it, was too. In three months she had a heater. That theatre went to Pleasantville, thence to Lawrenceburg, thence to Parker's Landing, thence to where the woodbine twineth, in the second great fire at the landing last winter. In four months she had another theater and an academy of music. In five months she bad her celebrated mud fire extinguisher, a curious invention for throwing mud. In six months she had seventy-four hotels and boarding
 to use a powder in the majority of cases. lany.

Fig. 1.-HILF'S IRON PERMANENT WAY.
seven months the Miller farm pipe line was completed, which event threw four thousand men and two thousand horses out of employment, and Pithole city had reached the zenith of her glory. She had at that time fifteen thousand inhabitants, elaborate water works, and all the paraphernaiia of a city government. She has now no theater, no hotel, no telegraph office (the telegraph office was closed for time and Fig. 2.

ternity last week), and but nine families out of all that mulitude. The Pithole and Oleopolis Railroad runs but one rain of one car a day, and that only to hold the charter.
In the way of statistics, we note that the total quantity of petroleum, exported from the United States in 1873, reached $236,899,223$ gallons, showing an increase from $80,000,000$ to $95,000,000$ gallons over the three preceding years; also that and which will weld up as olid as a This is a true amalgam, containing no free mercury, in fact there is great difficulty in separating a trace of mercury below a red heat. But, of course, it is impossible
But there is a filling which it is practicable to use in almost all circumstances, namely, the ordinary silver and tin amalgam mentioned above, with the addition of ten per cent of fine gold and sufficient platinum to insure rapid setting. If to twelve grains of alloy four or five grains of mercury le added, and the resulting compound be carefully packed, without washing, into the cavity, little by little, with small points, warmed, if necessary, and finished up by repeated burnishing, the result will be a more perfect filling than can be procured by ordinary means, and that, too, with a compound containing little or no free mercury.-Dentrel Miscel-

Ideness.

Many young people think that an idle life must be a pleasant one; but there are none who enjoy so little, and are such burdens to themselves, as those who have nothing to do. Those who are obliged to work hard all day enjoy their short periods of rest and recreation so much, that they are apt to think if their whole lives were spent in rest and recreation, it would be the most pleasant of all. But this is a sad mistake, as they would sonn find out if they made a trial of the life they think so agreeable. One who is never busy can never enjoy rest; for rest implies a relief from previous labor; and if our whole time were spent in amusing ourselves, we should find it more wearisome than the hardest day's work. Recreation is only valuable as it unbends us; the idle can know nothing of it. Many people lea re off business and settle down to a life of enjoyment; but they generally find that they are not nearly so happy as they were before, and they are often glad to return to their old occupations to escape the miseries of indolence.-Herald of Health.

Where to Buy Sporting rackle.
Mr. Walter C. Hodgkiss, late of C'ooper, Harris, and Hodgkiss, of this city, a firm noted for its sale of guns, revolvers, and
articles for sportsmen's use, has recently withdrawn from that concern, and assumed business on his own account, at No. 7 Warren street, New York. Mr. Hodgkiss offers an exceptionally excellent assortment of the goods above named, and we would suggest the inspection of his stock, to all desirous of supplying themselves with the newest and best improvements in hunting implements and supplies.
J. E. E., of Pa., writes to say that recently, in a church at Alleghany City, Pa,, a crowd ed congregation were warned by the pastor that the services could not be continued, and they retired quietly and in good order. The church was on fire in the roof; and had it not been for the presence of mind of the minister, and of the sexton who discovered the fire, the consequences might have been terribly fatal. Such self-command deserves the highest commendation.

Mr. H. Urosby writes to point out that the easiest way to describe a heptagon in a circle is to take half the chord of the arc of 120°, which is equal to a side of the required figure. This is correct, and will be of practical use.

PIPE CUTTING AND THREADING MACHINE.

The slow and tedious process of cutting and threading wrought iron pipe with the tools now used, together with the great waste of material and the imperfect work produced (except with expensive and cumbersome mach:nes), have long beeu causes of complaint among steam and gas fitters.
Our illustration represents a machine claimed to have the same capacity as more costly stationary machines, with the great advantage of compactness and portability, weighing but one hundred pounds, oc cupying a space of 15×17 inch es only, and so constructed that a boy can thread, cut, or make nipples from pipe, as make as inches diameter large as $\underset{\sim}{2}$ inches diameter, Fig 1 shows
Fig. 1 shows the machine as fitted for hand power, motion being transmitted to the several parts ly means of gearing, as shown; while on the extreme left is seen the pipe, A, held stationary by the adjustable jaws of the pipe vise, B.

Fig. 2 shows the reverse of Fig. the side shown in Fig. 1. The
pipe is held stationary in the pipe is held stationary in the vise, and passes through the
center of gear, A, the rotary center of gear, A, the rotary
motion of which is imparted motion of which is imparted
to the die held in the die box, to the die held in the die box,
B, by means of the studs or guides, C C', upon which the die box freely slides forward as the die passes upon the pipe.

When cutting pipe, the tool post, with the cutter, D, has automatic feed, cutting ends of pipe square and smooth. Wherever steam, gas, or water pipes are used, this machine, it is claimed, will be found of great value, especially upon steamships and in places where economy in space and portability are desirable.
Perhaps we can lay before our readers no better testimonial as to the merits of the device than the opinion expressed regarding it in an official report by Chief Engineer Edward Fithian, U.S.N. That officer says that, in making repairs, ctc., on shipboard, the invention would prove a useful and economical tool, as it can readily be set up anywhere, and thus perform a large amount of work which otherwise would have to be taken ashore, to a shop. The report says that it operates with the greatest ease, its capacity is fully equal to that of three men under the old method, and any threading possible with an ordinary die stock is done by it, besides other work. Chief Engineer Fithian recommends the tool "without hesitation."
Patented April 27, 1869, and September 30, 1873. For further particulars, address the Chase Manufacturing Company, 120 Front street, New York city.

IMPROVED TRENCH BRACES.

Mr. Samuel (i. McKiernan, of Paterson, N. J., has paten ted, December 2, 1873, through the Scientific American Pa

tent Agency, a novel arrangement of adjustable braces fo supporting the sheathing of sewer trenches and similar excavations. The construction of the device will be readily understood from the sectional view in the foreground of the accompanying engraving.
There is a rod, A, having a right hand screw thread formed upon one end, and a left hand screw thread upon the other. To the center of this rod is rigidly attached a block, B, in which holes are made to receive a lever by which the device is turned. Two blocks of wood, C, are perforated longituis turned. Two blocks of wood, C, are perforated longitu-
dinally to receive the rod, A; and in these, near their inner

ends, are secured metallic nuts, D, into which the threads of

 rod, A, fit.In using this invention, when the sheathing planks are placed upright, cross boards are set at suitable distances apart for the blocks, C , to rest against. The inventor adds that his adjustable braces permit of excavations being made by first sinking a hole for the width of one sheathing board. Against each side of the trench a plank is placed horizontally and supported by a suitable number of braces. Then the
excavation continues down for the width of another board

PIPE ICUTTING AND THREADING:MACHINE.

 the processes of natro-metallurgy.and sulphur), hard Spanish lead, and other forms of the me. tal containing large quantities of foreign substances, have been successfully treated. A company has been formed for the fusion of ores, separation of metals, and then refining by

Hot Beds.
Prepare materials at once, consisting of cleanly collected leaves, and rank, but well moistened, stable litter, for the construction of these. In making a hot bed, have a good wide foundation marked by inserting some strong stakes in the corners, for by these stakes the plumb, and hight of the beds, too, can be determined. The foundation should consist of a layer of brush wood, over which asparagus, bean, and pea haulm should be placed, and fermenting material placed over that, being careful to make it firm by beating with the fork in preference to much trampling, and leaving space on either side of the frames for the convenience of linings. One made immedi. ately of equal parts of stable litter and leaves, will be found seful for starting a tew early gloxinias, caladiums, achimenes, and roots of lilium auratum; also for cuttings of different kinds; and it will afterwards be useful for the raising of various kinds of seeds. Throw into a heap a mixture of two or three parts of leaves aud one of litter, and turn it once or twire, applying some manure water if dry: he material may also be used for another bed in February. Besides the hot beds necessary for bringing plants into flower, several are required for vegetable
until the desired depth is reached. In filling up, the lower board upon each side is first removed, and the carth thrown in, and thus for each plank in turn from the bottom upwards.

Natro-Metallurgy.

The various processes of refining lead, employed at the present day, cause, in cases where the metal is impure, considerable waste, and necessitate the reduction of an enormous quantity of oxide, to which they are besides inadequate for the removal of certain foreign metals. A new plan which has recently been devised by M.M. Payen and Roux, of Marseilles, France,allows the complete refining of any argentiferous lead without the formation of oxides of lead, and has, according to the Chronique de l'Industrie, the particular advantage of permitting the collection of all foreign metals, of which the value may be worth considering. The process is founded on the property which a bath of caustic hydrated melted alkali possesses in dissolving or at least oxidizing successively all the metals except three, by drawing them into a soluble scoria, in a state of igneous fusion. The three exceptions are lead, silver, and golu. The metals united with the lead are, one after the other, removed by melted soda, the action of the bath being maintained first by a jet of steam, designed to restore constantly the water of the hydrate from which the metals gain oxygen, and urged, accord ing as the metals are in a less degree oxidizable, either ly a blast of air, or, finally, by carefully measured additions of blast of air, or,
nitrate of soda.
The theory of the reaction is as follows: By simple solution in water, soda abandons all the oxides which it holds in solution orsuspension, and is evaporated and dried for use in the operation, almost without loss. The metals oxidize in the melted alkaline bath in the order of their affinity for oxygen, an order modified, however: 1, by their particular affinity for soda: 2 , by the action of atiinity exercised by the largest mass present. Thus tin and the metals of platinum, although much less oxidizable than lead or copper, are attacked very rapidly, aid before the latter in the soda bath, by reason of their propersity to act as electro-negative elements. Hence also, in an alloy very rich in lead, the copper oxidizes first.
Another phenomenon of not less importance is that the solutions of the oxides in the soda bath act chemically in pre sence of the reagents exactly as do the inetallic salts dis. solved in water. It is thus in this igneous solution: Λl the metals are precipitated, one after the other, in the inverse order of their solubility; and in the direct order, they preserve each other from oxidation. In this respect, even inso luble reducing agents, such as charcoal, may be employed in the bath.
The principal applications in the process are its adaptation not only to the refining of lead and the extraction of silver by the zinc process from lead and argentiferous scoria, but the purification of argentiferous copper and old complex alloys; the treatment of ores of platinum, gold, silver, etc., of ores of chromium, etc.
Since March last,the inventors have constructed a plant and bave carried on the process at Marseilles; and we learn hat the hard leads of Greece (containing $2 \frac{1}{3}$ per cent antimony 1 per cent arsenic, $\frac{子}{2}$ per cent copper, and 1 to 2 per cent iron
forcing, especially where there are few hot-water-heated structures. In April and the two following months, these beds will be useful for soft-wooded greenhouse plants, such as baisams, cockscombs, some annuals, and various odds and ends. In others, cucumbers, chilies, etc., may be grown: and those not required can be removed and used as manure, or turned for forming a compost for the potting bench. Their size must be in proportion to the amount and continuity of heat they are required to produce. If for starting stove plants on, they may be built as high as 5 feet; but if for growing potatoes, carrots, radishes, and other vegetables, 3 feet will be found sufficient. They sink considerably after being built; and when the heat begins to fail, the best way of recruiting it is by adding fresh linings around the frames.

ON THE PURIFICATION OF MERCURY.
by professor albert r. leeds.
In investigations carried on in physical laboratories, and in the volumetric analysis of gases, a largequantity of mercury is employed ; and as it is very readily contaminated, a method for its rapid and convenient purification is important.

Such a method must provide for the removal of the threkinds of impurities which are usually present: First, foe reign metals, especially lead, zinc, and tin; secondly, common dirt and dust ; and thirdly, water or other liquids.
The most convenient device hitherto employed was a long glass tube, into which the mercury was poured through a paper funnel, the funnel having a pin hole at the bottom, and serving to retain the dirt and dust. The tube was partly filled with dilute nitric acid, and was provided with a stop cock below, or with a bent tube, so that a short column of mercury might balance a long column of acid.

The device herein recommended consists of a glass funnel, A, capable of holding five or ten pounds of mercury, the tube of which is cut off at a point just below the stopper of the bottle, B. Cotton wool is jammed into the tube until it fills up the neck, and bulges out at the bettom of the funnel. A short glass tube bent at right angles passes likewise nel. A short glass tube bent at right angles passes likewise
through the india rubber stopper of the bottle and is con. nected with a water air pump. The bottle is two thirds filled with dilute nitric acid (one jart of acid and four or five parts of water). The impure mercury poured into the funnel, A, is drawn through the cotton plug in a multitude of streams, and passes as a fine rain through the acid below. The foreign metals, if not in too large quantities, are removed by solution in the acid, and the pure mercury collects below. It solution in the acid, and the pure mercury a second funnel, C ; and, after being thoroughly dried by suction through anc; and, after being thoroughly dried by suction through another plug of cotton wool, it is caught and preserved in the
bottle, D. A short time suffices for the almost automatic bottle, D. A short time suffices for the al
purification of a large quantity of mercury.
Stevens Institute of Technology, February, 1874

$\mathfrak{C r a x e g} \mathrm{pmadence}$.

The Principles of Ventilation

To the Editor of the Scientific American:
Unless I greatly mistake the intelligence and disposition of the average American, his "scientific" representative will be deluged witi articles protesting against the crude notions contained in the article coming from "the land o cakes," entitled "The Ventilation of the United States Senate Chamber." I purposely ignore the special subject of his article, the senate chamber, and beg leave to refer very briefly to some of the most untenable of his general assertions.
He boldly asserts that " the whole secret of ventilation consists" in providing "an entrance for fresh air below and an exit for foul air above," and bases this erroneous idea upon the false assumption that "foul air," making no dis tinctions, "ascends and accumulates at the ceiling" only. He also says: "If our halls, like the ancient Greek houses, were without roofs, ventilation would cause no thought," for "the foul air from our lungs and bodies would ascend right into the air, and a fresh supply would come down to us through the same opening.
As a simple and plain refutation of his statement regarding the tendency of foul air to "accumulate at the ceiling," I would refer him to the familiar experiment of placing a bit of lighted candle at the hottom of a tall glass jar with open top. He will find, upon exhausting the lungs into the bottom of the jar, by means of a tube, that the light will be extinguished almost immediately; and if he breathe downward into the jai-not directly over the flame, but near the side of the vessel-the light will just as certainly be put out as in the previous experiment, only the inevitable and fatal result will be retarded. If, instead of the lighted candle in the tall jar, he places "the ancient Greeks" or a few live Scotsmen in a "high " room, closed at the bottom and open to the free air of heaven at the top, he will find results quite parallel to those in his previous experiments. Any canses favoring the sudden generation of an excessive amount of carbonic acid gas would result in speedy death to them all, or in asphyxia, as in the first experiment. Confinemert in the same place, under more favorable circumstances, would somewhat retard the fatal result; but ultimately, as the air became contaminated by poisonous exhalations, languor, decay, and death by some "chronic" malady, would occur as surely as the light was slowly extinguished in the second experiment.
In botb these instances, " the destroying angel" is carbonic acid; it is the principal deleterious element which contam inates the air we breathe, and to which we are most univer sally exposed; it is generated by decomposition, by combus tion, and by respiration. At any ordinary comfortable living temperature, the specific gravity of this poisonous gas, even when exhaled from the lungs, is greater than that of the surrounding air; therefore it of necessity gravitates to the bottom of the jar or to the bottom of a room, instead of rising to the ceiling. No matter what may be its source, if often fatal. We find, in what is called pure air, about 45 parts of carbonic acid to 10,000 of air; the open air of cities is often contaminated by from 6 to 15 parts to 10,000 , while the confined air of some public halls and school rooms has been found to contain as many as 75 parts to 10,000 , in sucl cases rendering the air absolutely poisonous.
If warming were not inseparably connected with proper ventilation, as, unfortunately for the position of your cor respondent, it is in our climate, it might do to provide only for the escape of foul air above and the introduction of fresh air below; but, as he admits, "one undeviating law of air currents is that they always take the shortest cut, and de pend upon it" the necessary and inevitable effect of provid ing an opening for inlet below and an opening for outle above would be to "freeze out" the inmates of a room whether the incoming fresh air is warm or cold. If cold the incoming fresh air would spread itself out and fill the lower part of the room first; if warm, it would immediately take " the shortest cut" and escape at the top, without ma terially affecting the temperature or the quality of the air throughout the room, except in the direct course of the moving current, which would be from inlet to outlet.
For these plain reasons, the crude method advocated b your correspondent is not commendable even in a warm cli. mate or in the summer weather, for then, if the doors and
windows be left open, the air will freel windows be left open, the air will freely circulate in an
natural direction. In short, his positions are contrary to the advanced experience and philosophy of such able specialists as Box (see his work on heat) Reid, Ruttar, Leeds and others on ventilation. His ideas are diametrically opposed to modern practice and experierce, especially in the West, where the downward exhaust principle has been introduced very generally in nearly all new public and private buildings. A. R. Morgan.

To the Editor of the Scientific American:

Your correspondent, Mr. Wm. Mackean, in his ariicle on ventilating the senate clamber, must either allude to summer ventilation or be without practical experience of the subject; for ventilation in cold weather, when we require warmth and comfort as well as air, necessitates an entirely different arrangement.
First, if he use an opening of two square feet in the roof for ventilation, and numerous smaller ones (their combined areas being equal to or less than the roof aperture) in the
floor or wainscoating, the heated air would go direct to the opening in the roof, warming the surroundincs air but little, and leaving the large body of air in the room very cold. I have seen the temperature of a room fall 3° in 5 minutes on opening the hot air register in the floor and the ventilator in the ceiling; and although the fire was kept up about four hours, the temperature did not rise half a degree.

Secondly, he says that the air, on being discharged from the lungs, is warmer than the surrounding air, and therefore rises; which is true, but it only rises a short distance, when it becomes of the same temperature as the air through which it passes; and being loaded with mater thrown off from the lungs, it becomes heavier and falls to the floor to be again nhaled.
There is a vast difference between rentilation in the summer and ventilation in the winter, also between a building heated by hot air and one leated by direct radiation from a Pichmond, Va.

The Centralization of Matter.

To the Editor of the Scientific American:
A few modern scientists have recently proclaimed the theory that the resistance of space to the planets, in their
revolutions around the sun, will ultimately cause them to revolutions around the sun, will ultimately cause them to
approach to and become part of the sun. Another writer says that the centralization of matter is one of the great laws of Nature, which will eventually produce the same result that each satellite, as it loses its internal heat, will be absorbed by its planet, and the planets by the sun. I do not know whether this is orthodox science, or whetber it is a " new departure;" but if this process of Nature is in existence, it certainly has been going on for all time, and ourown
planet should exbibit some of the results or footprints of planet should exhibit some of the results or footprints of
this great law. 'Therefore I ask: Has the enrth, since it has taken its place as a planet, received any accession of considerable bodies of matter, going to make up the great mass it now presents? Most assuredly it has ; several of the continents still bear unmistakable evidence of being a deposit of this character, having probably been former satellites of the earth, and to have been precipitated upon it without great violence, but sufficient to crumble and sratter their contents in the direction of their motion. South America bears the most striking illustration of a phenemenon of this character When the sate:llite had gradually wound its diminishing or bit, until it came within the confines of the earth's atmos phere, by a storm or commotion below it is suddenly envel oped in our heated atmosphere ; and losing its hold upon the cold medium of space, with a plunge it is precipitated to the earth. The first contact is at Cape Horn; then with a rollling, settling, and crumbling motion, it spreads out nearly to its present limits, and, while yet in motion, commences the grandest feature of all. Before this great mass of debris can
acquire the motion of the earth in rotation, the great waters and sediment of the Pacific are surged up to the very clouds, rolling up the western border like a ecroll, of which the Andes bear witness, and of which your correspondent, Professor Orton, (page 40 of your current volume) eays: "Here the landscape was purgatorial, presenting the confusion of the grab box of a geologist."
The fact that guano is now admitted to have been a sediment of the ocean, and is fouad on the mountain sidea, as well as on the islands, and that the bec's of the ocean (especially the Atlantic) are crushed down near the borders of the continente, all tend to confirm this theory. The crowding up of the Andes proves that the earth was rotating in about the same position ns now, althnurh what is now C'ape Horn may have been near the equator hefore this occurrence. As the surface of the satellite would he a trozen mass. her glacial period would soon have an end; and the sudden acyuisition of so large a body of matter on one side of the earth (within what is now the southern hemisphere) would necessitate the withdrawal of a large body of water from the northern hemispbere to establish an equilibrium, and complete the spheroid. Hence the greater exposure of land surface now in the northern hemisphere, much of which is known to have been submerged.
Where then is the base line of geology, when we find that our igneous rocks were produced in other worlds, before be
ing deposited with us? ing deposited with us?
A. D.

Io the Editor of the Scientific American:

The want of durability in mica and the difficulty in bending it renders the application of another material desirable My observations have convinced me that we have the most
sent an even and a nearly airtight surface. As glass tubes are drawn at the glass houses, they are slightly though perthe larger and, a matter of no moment, as, by alternaming close joints result.
Three kinds of glass are met with in the market: Brown bottle, greenish lime, and cullet and fint glass, more or less perfect. Either of these kinds may be used, as radiant heat from the fire will anneal them; flint glass, being the most pliant, is best adapted to the nicer purposes. Tubes drawn quite thin, from one eighth to one third of an inch bore, may be used, al ways with reference to the thickness of the envel ope of which they form a part. They may be arranged side by side, either vertically or horizontally, to fill any size or epace, resting loosely in a recessed space or in a clip of mal. leable metal to support them and exclude dust. Combina tions of shorter and longer tubes may be used for paneling or otherwise varying the surface. But ornamentation wil doubtless be best gained through colored and particolored tubes, so arranged as to produce the most pleasing variety.
It is well known that silvering within the colorless or col. ored tubes can be easily so adjusted that much light will be ransmitted, while on another part the luster of burnished metal may be obtained, while little light is lost.
Sliding, folding, and curved screens of any size, flexible or fixed, can be formed with these tubes, so that stoves with open or closed fronts may be made. There is not the slightest risk of fracture of the tubes, excepting from a blow or similar accident; and any partial destruction can be repaired by substitution in a few minutes' time; indeed, the pliancy of the structural forms of large size is a safeguard. Wash. ing or other cleansing of the surfaces can be done without danger when the glass is cool.
The increased consumption of glass in this way will diintro cost in the form of small tubes, and lead to the and ornamental and beautiful designs in all ap pliances for warming apartments by visible fires.
A. A. Hayes.

Electroplating Pewter Surfaces.

To the Editor of the Scientific American:
I noticed in a recent number of the Scientific American that a correspondent experienced great difficulty in plating pewter surfaces. To him, and all others who have met with similar difficulties, I will give the following recipe, which will be found simple and very effective:
Take 1 ounce nitric acid and drop pieces of copper in it until effervescence ceases; then add $\frac{1}{2}$ ounce water, and the solution is ready for use. Place a few drops of the solution on the desired surface, and touch it with a piece of steel, and there will be a beautiful film of copper deposited. The application may be repeated if necessary, though once is generally sufficient. The article must now be washed and immediately be placed in the plating bath, when deposition: will take place with perfect ease. This is an excellenit recipe, and should be known to all electroplaters
Friendsville, Ill.
Jhames Pool..

About Ourselven.

To the Elitor of the Scientific American

We have come to the conclusion that a thing of real practical value has but to be advertised in the Scientific Amercan to insure its success. From one week's advertisement of our small Welch Water Engine, in your columns, we have answered as many as eighty letters in a single das. That single advertisement will pay us largely as an invest ment, unless the overwhelming amount of correspondence therefrom really ruins us.

The New England Motor and Mower Company.
Danbury, Conn.
The Aerophore.
This is an apparatus for enabling personsto breathe and work, with a light, in unbreatbable and explosive gases in mines,welle,sewers, and caverns. It is the invention of Messrs. Denayrouze,of Paris. The aërophore a nists of a number of large or small cylinders as desired, which are lowered into the mine with the workman. Connected with the cylinders is a long flexible tube aboutan inch in diameter, of such strength that it cannot be damaged even by being trod upon. The person who is to use the aërophore first puts on a strongly made jacket of webbing, to the back of which is attached a couple of moderatirg valves which serve to sup. ply the compressed air to the mouth at ordinary atmospneic pressure-not higher-the pipe being attached to these valves. Another pipe passes over the shoulders and to a month piece. The nostrils are closed by a nipper. The mouth piece is constructed so as to be available either for a light or heavy breathing man. Exhalation is accomplished by means of a small aperture in the tube about two feet from the mouth. This aperture is fitted with a proper valve, which stops the ingress of all air or gases. By another valve and tube, air is supplied to the lamp which the miner carries in his hand, and enables it to burn brightly, and a pair of "goggles" are provided in case the eyes are likely to be affected. These can readily be fastened on by means of an elastic strap.
D. I). S. writes to suggest that lightning rods be made in the form of an elongated oval, about 6 feet wide, so that the conductor would present the appearance of two rods, side by side, joined at the top; and they would also be joined under ground. He thinks that this arrangement will give better protection to a building, from the better ground communication it would afford.

Richard Trevethick,s Thousand Feet Tower. Mr. F. S. Hoffman, of Philadelphia, Pa., writes to remind us that the eminent engineer Trevethick proposed to erect an
iron tower 1,000 feet high, in commemoration of the passage of the Reform Bill in England in the year 1832. In that yea he sent a note to the London Morning Herald, which con tains the following:

- Design and specification for erecting a gilded conical cast iron monument (scale 40 feet to the inch), of 1,000 feet in hight, 100 feet in diameter at the base, and 12 feet diameter at the top; 2 inches thick, in 1,500 pieces of 10 feet square, with an opening in the center of each piece 6 feet diameter also in each corner of 18 inches diametor, for the purpose of lessening the resistance of the wind, and lightening the structure; with flanges on every edge on their inside, to screw them together; seated on a circular stone foundation of 6 feet wide, with an ornamental base column of 60 fee high; and a capital with 50 feet diameter platform, and a figure on the top 40 feet high; with a cylinder of 10 feet diameter in the center of the cone, the whole hight, for the accommodation of persons ascending to the top. Each cast iron square would weigh about three tuns, to be all screwed together, with sheet lead between every joint. The whole weight would be about 6,000 tuns. The proportions of this cone to its bight would be about the same as the genera shape of spires in England. A steam engine of 20 horse power is sufficient for lifting one square of iron to the top in ten minutes; and as any number of men might work at the ame time, screwing them together, one square could easily be fixed every hour; 1,500 squares requiring less than six months for the completion of the same. A proposal has been made by iron founders to deliver these castings on the pot at $£ 7$ ($\$ 35$) per tun; at this rate, the whole expense of completing this national monument would not exceed $£ 80,000$ $(\$ 400,000)$. By a cylinder of 10 feet diameter, through which the public would ascend to the top, bored and screwed together, in which a hollow floating sheet iron piston, with seat round it, accommodating 20 persons; a steam engine forces air into the cylinder column from a blast cylinder of the same diameter; and working three feet a second, would raise the floating piston to the top at the same speed, or five or six minutes ascending the whole hight; the descent would equire the same time. A door at the bottom of the ascendng cylinder opens inwards, which, when shut, could not be opened again, having a pressure of $1,500 \mathrm{lbs}$. of air tending to keep it shut until the piston, descends to the bottom. By closing the valve in the piston, it would ascend to the top with he passengers floating in the air, the same as a regulating hlast piston, or the upper plank of a smith's bellows. The air apparatus from the engine should be of a proper size to admit the floating piston, with the passengers, to rise and fall gradually, by the partial opening or shutting of the valves in the top of the piston. Supposing the springs or oft substance, for the piston to strike on at the bottom of the column cylinder, descending three feet a second, would give no greater shock than falling from 9 inches high, that being the rate of falling bedies, or the same as a person be ing suddenly stopped when walking at the rate of two miles an hour. The pressure of the air under the piston would be about half a pound on the square inch; the aperture cannot let the piston move above 3 feet a second, but this speed may be reduced to any rate required by opening or shutting the valves on the floating piston."

Within two months," says Trevethick's biographer " from the date of the design for a gilded column, Trevethick had passed away. His family in Cornwall received a note, dated April 22, 1833, from Mr. Rowley Potter, of Dart ford, stating that Trevethick had died on the morning of that day, after a week's confinement to his bed. He wa penniless and without a relative by him in his last illness, and for the last offices of kindness was indebted to some who were losers by his schemes.
Trevethick's grave was among those of the poor buried by the charitable; no stone or mark distinguished it from its eighbors. He is known by his works. His high pressure steam engine was the pioneer of locomotion and its widepreading civilization. England's mineral and mechanical ealth on land and sea are indebted to its expansive power its applicability, and durable economy.

The Semi-Centennial Anniversary of the Franklin

 Institute.The Franklin Institute recently celebrated the semi-cen tennial anniversary of its foundation, at the Musical Fund Hall, in Philadelphia. Mr. Coleman Sellers, the President, resided, and delivered an address, in which he sketched the past work of the Institute, and its influence upon the mechanical and scientific progress of the country. An earnest plea was made in behalf of technical education, and the value of proper instruction for working men warmly adocated.
Mr. Frederick Fraley, one of the founders of the Institute, gave some interesting recollections of its establish ment, and said the first meeting was held in the County Court House, in Philadelphia, on February 5, 1824. Professor R. E. Rogers spoke upon the immense progress of knowedge which has occurred during the past half century, and, in quite a lengthy address, reviewed the history of inven-
tions, beginning with Fulton's steamboat and ending with tions, beginning with Fulton's steamboat and ending with
the most recent developments in astronomy, physics, and other mechanical and scientific professions.
President Morton, of the Stevens Institute, pointed out that, in the view of Science, the universe of matter is as truly the universe of motion, and hence the branch of study 0 which we should most devote our attention is that which
"mechanics." It is to the development of this knowledge that the Franklin Institute bas contributed during the last fifty years. The speaker compared the advancement of the he said that the necessities of the age are new means of applying great truths already discovered.

Electroplating.

At a session of the Physical Association held in Frankfort on August 30 last, Dr. Otto Volger delivered an address on the history and progress of the art of depositing metals by galvanic action, of which the following is an abstract:
At an early date it was known that a current of galvanic electricity was able to decompose liquils, and that metals deposited from solutions of their salts by this means as sumed fantastic shapes, which appeared so similar, at the first glance, to vegetable growth that they were called galvanic trees, or metallic vegetation, although really consisting of crystals, and formed according to the laws of crys. alization. Professor Böttger took especial delight in prousing this sort of vegetation with different metals,
The use of such metallic deposits for electroplating was discovered accidentally. In 1830, Mr. J. P. Wagner, of rankfort, and Professor Jacobi, of St. Petersburg, were endeavoring to employ electromagnetism as a motive power,
instead of steam. Jacobi employed a Daniell's battery, which is distinguished for its constant and regular action t consists of an outer cup of copper, and an inner cell of un glazed porcelain which contains the zinc rod. The interme diate space is filled with a saturated solution of sulphate of copper. When the battery is working, this solution of blue itriol is slowly decomposed, depositing metallic copper, which finally becomes injurious, and must be removed. Once when Jacobi was busied with removing such a deposit from his copper cup, he noticed that there were several layers of copper, each having the form of the sides of the copper vesel, and hence, concluding that the sheet copper of which the vessel was made had split up into layers, he accused the man who made it of employing a poor quality of sheet copper. A closer investigation, however, showed him that these layers, or leaves, did not belong to the walls of the vessel, but to a new deposit of metal, which imitated, in a remarkably perfect manner, the sbape of the surface of the walls. It ccurred to Jacobi that this troublesome disadrantage could e turned to profit by using it for reproducing objects. In 1838, he communicated to the St. Petersburg Academy a description of his discovery of the use of galvanic electricity or reproducing objects in the arts.
Czar Nicholas requested a (ierman chemist named Klein, who was then employed in the imperial printing office, to test the practicability of the discovery and to ascertain to what extent it was capable of development. The answer being a favorable one, he gave the discoverer the means of making his now art the common property of the whole world.
Electrotyping or plating with copper consists in merely making the object to be copied the negative element of a simple Daniell's battery. If the object is a conductor, metal for instance, and is to be only partially covered, the parts that are to remain uncovered are rendered non-conductors by coating with some non-conductor, as wax, stearin, or varnish. If it is a non conductor, its surface is rendered conducting by brushing it over with a thin film of the finest graphite or silver powder. Murray discovered that graphite works the best. The reaction consists in the separation of the sulphate of copper into sulphuric acid and oxide of copper, while the water is simultaneously separated into oxygen and hrdrogen. The sulphuric acid liberated at the anode or positive pole unites with the oxide of zinc, formed there by the oxygen given off from the decomposed water, to form sulphate of zinc, which goes into solution.
The hydrogen evolved at the opposite pole abstracts the oxygen from the oxide of copper, and forms water, while the copper is left in a metallic state. Hence it is really the hydrogen which causes the reduction of the oxide of copper to metallic copper, at the negative pole or cathode.
Up to the year 1840, this new art wes only employed for making small copies, like coins and medala, and these often came out of the mold imperfect, or were broken in detaching the mold. At that time, however, Professor Böttger prepared handsome relief plates of copper, and also employed galvanism for depositing a metallic coating on other metals, as for instance gilding silver, copper, and brass. In the same year, a copper plate engraver, named Kress, came to St. Petersburg, learned from Klein the galvanoplastic art, as.Jacobi had named it, and became acquainted with the latter. Jacobi called bis attention to the fact that he could in this way make perfect copies of hisetched or engraved plates, thus multiplying the original plave so as to obtain a great number of the most excellent impressions; for it is well known that a plate soon loses its sharpness, and every impression is poorer than the preceding one. At this suggesto great perfection in his business. In 1841 Professor Bött ger had made a copy from one of Professor Felsing's copper plates, in Darmstadt (the Ecce Homo, after Guido Reni, $12 \frac{1}{2}$ inches by $9 \frac{1}{2}$ inches), which was so perfect that Felsing declared that proofs printed with it were identical with those from the original plate, and of equal value. These plates are still in existence, the one in Berlin Museum, the other at Frankfort on the Maine.
The galvanoplastic art has extended itself in three directions: 1. For covering other metals, as in electroplating with gold, silver, copper, steel, and nickel. 2. In producing objects formerly cast in metal. This bas been brought to great perfection in several German cities,especially Mayence,
where the smallest natural objects are copied and the largest works of art produced. Among the latter are three colossal figures on a monument in Frankfort. 3. The reproduction of engraved and stereotyped plates, and the like. In the latter, farther progress is still possible.
Early in 1840, Péligot reduced protochloride of iron by passing hydrogen gas over it, and in this way obtained metallic iron in octohedral crystals and in malleable plates. In 1846. Professor Böttger made the first attempt to decompose the chloride of iron by the electric current, and with success, but soon found that a mixture of the double sulphate of iron and ammonium and the double chloride of iron and ammonium was better for electroplating. This he prepared by dissolving simultaneously 2 parts by weight of protosulphate of iron and 1 part sal ammoniac in water. As anodes he employed a piece of sheet iron; the cathode at once acquired a polished appearance from the metallic iron deposited on it. In this way he copied a florin in iron (several such specimens were exhibited by the lecturer.) The iron is very hard, like steel, but unfortunately very brittle, so that it frequently breaks in taking it from the mold. No technical use could at first be found for it. In 1859 Jacquin found an application of it in covering copper plates with steel. This consisted in precipitating on the copper an extremely thin film of iron, which did not destroy the sharpness of the inpression, but by its hardness offered such a protection to the copper that the latter was almost as durable as a steel plate. In this process, also, Professor Bött ger's recipe proved the best and was generally followed.
Recently, a chemist in St. Petersburg, aleo named Klein, has brought electroplating with iron to a remarkable degree of brought electroplating with iron to a remarkable degree of
perfection. In 1868 be exhibited, before the St. Petersburg Academy, excellent results which he had obtained by using a solution of bisulphate of the protoxide of iron, and a Meid inger battery,with a piece of sheet iron as ancde. Klein deposited the iron in large plates both thick and thin, as copies from engraved copper plates,and thus combined a soft, easily wrought plate for the engraver, and an iron plate as hard as steel for the printer. The iron thus deposited was, to be sure, very brittle,which Klein found to be due to the hydrogen occluded in it,its specific gravity being 7675 , or a little higher than rolled lron. By heating the iron, he succeeded in expelling the bydrogen, when it became more dense, and had a specific gravity of 7.811 , which is higher than wrought ron. It was perfectly mulleable, highly elastic, and could be welded like sheet steel, in short, was an excellent malleable iron. Klein has prepared plates of this iron weighing 16 ble ir
lbs.
Ele
Electroplating in iron will find an important and exten sive use in manufacture of stereotype plates, especially for printing government paper and postage stamps, where colored inks are employed, for the iron would not be attarked by the colors containing mercury, which acts on copper and other metals.
In conclusion, the lecturer referred to the occurrence of native metals in the earth, and the theory, advanced almost 30 years ago, comparing the earth to a voltaic battery. Hardinger believed that he could prove that the surface of the earth was the anode and the interior of the earth the cathode of a galvanic battery. According to this, native metals should only be sought deep down in the earth, which is not always the case. It is much more probable that native metals have been reduced by the decomposition of organic matter. This applies especially to copper, and also to the very rare telluric iron. The graphite frund in the latter, is to be considered as the residuum of decomposed or ganic compounds. In the Rotanger sea in Sweden, native iron is found replacing particles of wood, as if petrified, and the microscope is able to detect the cells and determine that it was a species of pine wood. The interior of the cells is also filled with a deposit of iron. This is not to be attributed to the action of a galvanic current, but to the reducing power of the hydrogen liberated from the decomposition of organic matter.

Borax for Colds.

A writer in The Medical Record cites a number of cases in which borax bas proved a most effective remedy in certain forms of colds. He states that in sudden hoarseness or loss of voice in public speakers or singers, from colde, relief for an hour or so, as by magic, may be often obtained by slowly dissolving, and partially swallowing, a lump of borax, the size of a garden pea, or about three or four grains, held in the mouth for ten minutes before speaking or singing. This greduces a profuse secretion of saliva, or " watering" of the mouth and throat, probably restoring the voice or tone to the dried vocal cords, just as wetting brings back the miesing notes to a flute when it is too dry.

A correspondent, Mr. A. O. Kruger, reports the discovery of a copper mine at Isle Royal, Minn., which yields ore of a quality similar to those of the Calumet and Hecla mines on the south shore of Lake Superior. It is in a conglomerate rock, the belt of ore being 26 feet between foot and banging wall, and has been found at points 14 miles apart. Our correspondent states that preparations for mining on an extenlieve lieve that it will be the largest copper mine in the world.
"A Railroader" writes to suggest placing a partition in es box of a locomotive, so that screenings of sand or gravel may be used if required. A second rod would be required to let the gravel on to the rail; but the coarser stuff would be very useful when the metals are covered with ice

[Continued from first page.]

tion of this cock may be altered to suit conditions of accessibility, etc. It doubtless has been surmised that the escape of a strong current by the valve, would, when the gas is first admitted, produce a vibratory motion or chattering of the valve. To avoid this, the inventor supplies a push pin, I, which is pressed down by the flange and held by the weight, J, above it, until its lower extremity strikes the valve stem, thus steadying the latter until the gas has entered the distribu ting mains, and the proper conditions of pressure above and below the valve result. The pin is then released, when it returns to its normal position.
Another application of the device, ess+n tially the same, though differing somewhat in construction, is shown in Fig. 3. The upparatus is here placed in the main lear:ing from the gasometer. The latter is weighted or otherwise arranged to give the fullest pressure ever necessary, and the regulator governs the quantity of that force required for existing needs. The mains A A, enter a box which is divided into 1 wo compartments, as shown. In the diaphrarm the valve, B, is seated, and the area of its face is made sufficieutly large to con:pensate for the low pressure coming from the holder ; or about equal to, or perhaps a littie greater in diameter than, that of the main C C are the weights, and D the push pin, acting exactly as above described. E is the cock for drawing off deposiis, etc. Of course the advantages of this adaptation are about the same as already described, only more extended. For instance, if we lived next door to a theater or hall in which a thousand burners were nightly lit, this wholesale illumination, the inventor tells us, would be without effect on the dozen or so lights in our dwelling. It has also been suggested that the regulator might be advantageously located in various quarters of a city, so as to regulate the supply of gasor water, just as well-in accordance with he extent of the demand.
In Fig. 4, we show an application of the device toward the regulating of the descent of water in pipes down mountain sides. Commencing at the summit, it is proposed to place a regulator, \dot{A}, at
say, of 120 pounds, so as to reduce the latter to say, of 120 pounds, so as to reduce the latter to 20
pounds. Then further down, after the water again assumes the first mentioned pressure, a second regulator, B

is located, and the force is a second time reduced. This is continued until the descent is complete. By this means the water can be safely carried down any declivity, however long and steep, without undue strain or injury to the pipes. our large front page illustration is intended to show ho the invention may be applied to regulating the water supply
of an entire city, so as to change the pressure, in the mains. to the high force useful in throwing streams for extinguishing fires, from the working pressure ordinarily employed This may be adapted to the Holly system of water works, in which the water is pumped directly from the river by powerful engines usually constructed in substantial build ings on the banks, and of the type represented in our en graving, and subsequently driven through the distributing mains. The idea in this case is to divide the main into two

CASEMENT'S PRESSURE REGULATOR FOR FLUIDS

The Page Patent Litigation
There seems to be a probability that the validity of the Page patent will be thoroughly and legally tested. We have before mentioned in The Telegraplier the fact that suits had been commenced in the United States Courts against the Manhattan Quotation Company and Mr. Charles T. Chester, of this city, for infringement of this patent, and they are to be contested to the end, and its validity, as affecting teleraph instruments and apparatus, either established or denied judicially.

Our readers are fully aware of our opinion in this matter, and we have shown, as we think, conclusively, that Professor Page wa not the original inventor of the devices for which a patent has been granted to him, and that, in fact, the patent is an outrage on the public, who have paid largely for these same devices to other patentees, whose paterts have expired and become public jroperty So well convinced was the Western Union Company of the invalidity of the patent that, when first offered to them for purchase, after an investigation by experts and eminent patent lawyers, it was rejected. It was subsequently purchased by that company for good and sufficient reasons, no doubt, not connected with its validity, and has, for the last three years, been held in terrorem over the telegraph interests of the country not connected with the Western Union-no se rious attempt having heretofore been made to enforce it.
It should, by all means, be disposed of at as early a day as possible. If properly contested, thatit can ever be maintained legally we regard as an impossibility.
The resources of the Western Cnion Company will enable them to press the matter and the contest will be protracted and expensive. All who are interested in defeating it should at once join hands with the defendants and make common cause with them, sharing the expenses as they will the bencfit of success. The railroad companies are especially and vitally interested in this matter; for if the Page patent be once established, they are at the mercy of the Western Union Telegraph Company, so far as their telegraph facilities are concerned, and will be made to pay roundly for the exemption from
branches which are afterwards reunited. In each branch a
regulator is placed, and through each the water may be directed by opening or closing the valves shown. The regulator in the fire pressure branch is adjusted to pass a powerful stream, while that in the other admits of the escape of a current of a force just necessary to insure the complete dis tribution of the water to all parts of the town.
Another adrantage which the inventor claims is that the pressure is equalized throughout the entire system of pipes, so that the latter may be of a uniform strength over their extent, and not subjected to undue strains at any point beyoud the valves.

We have now cited sufficient modes of application of the invention to give our readers a fair idea of its value and uses. The inventor informs us that he has made it the subject of practical tests with invariably successful results, and that it has been in operation in his own dwelling, as we before stated, regulating the flow of his gas well for some time past. He is enabled to gage just the pressure he requires, either for fires or lights, by suitable arrangements of pipes and differently adjusted regulators. The device is susceptible of ready adaptation to the purposes of a safety valve for of ready adaptation to the purposes of a safety valve for
steam boilers, for regulating the water pressure in cooking ranges, water backs, etc., or the pressure of compressed air or vapors.
Patented, through the Scientific American Patent Agency, in the United States, Canada, England, Australia, and most of the countries of Continental Europe. The inventor is Mr. Daniel T. Casement, of Painesville, Lake county, Ohio. Letters for further information should be addressed for the Hoxt three months to the patentee, at the Fifth Avenue Hotel, New York city.
such control during the last few years, since the Morse pasuch control during the last few years, since the Morse pa-
tents expired. They should be wise in time, and cöoperate with those who are engaged in supporting the independence of the telegraphs of the country.-. I'he T'elegrompher.

Heach Mining in California.

On the coast line of Klamath county, Cal.. there is a remarkable deposit of auriferous gravel. For nine miles along the beach an unbroken line of clifss, towering from one to five hundred feet, serves as a sea escarpment to the mountains behind, and these are immense masses of gravel of varying size and of distinctly marked layers or stratifications. In these "gold bluffs," as they are termed, the precious metal is found in considerable quantities, principally in the tenth strata, which is "black sand" or gravel with iron cement.
Mr. A. W. Chase, in a paper read before the California Academy of Sciences, gives a graphic description of how the mines are worked; and as the iabor is carried on without shafts, tunnels, timbers, pumping or hoisting machinery, it may be inferred that the expense of exploration is mot excessively large.
After the sand is reached, it is shoveled into little piles and thence into canvas bags, containing about 125 pounds each. These are loaded on mules, each animal carrying two, and thus transported to the "sand corral" in the works. The washing is done in "Long Toms" with copper plates, the latter being first coated with silver, before the quicksilver is applied. Mr. Chase states that, during the week he visited the mines, $\$ 1,600$ was retorted from the washings of two machines. He points out that, as the experience of the successive proprietors of this extraordinary gold mine gces to prove that, immediately after a heavy cave or slide of the banks, the beaches are richer and the gold coarser, it seems strange that, up to the present time, no artificial means have been resorted to in the way of blasting down the cliffs or undermining them by hydraulic process to increase the yield of gold. The sea, working ceaselessly night and day, is the great natural separator, and man has but to gather the results of its tireless work. Many ideas have been advanced as to the possibility of gold in quantities and coarser in character being found beyond the line of surf, predicated on the fact that it, in conjunction with black sand, has been said to have been brought up from the bottom by the leads of sailing vessels. Several expeditions have been fitted out at San Francisco to procure this sand by means of diving apparatus, etc., but none of them were successful

The Utilization of Iron Pyrites.-In connection with this subject, Messrs. Dobschütz and Abend state that large quantities of coal, unfit for smelting purposes on account of the pyrites it contains, are mined in Illinois. The coal does well for steam raising; but being useless in metallurgy, it is sold for about $2 \frac{1}{3}$ cents per bushel, and is even burnt to preventits camberiag the groand nэarthzia! iz;

CASEMENT'S IMPROVED METHOD OF BURNING FUEL.
The improved steam boiler represented in the annexed enThe improve ${ }^{\text {d steam boiler represented in the annexed en- }}$
gravings presents certain novelties in construction, by which it is the object of the inventor to utilize the largest possible portion of the fuel, and, by suitable mechanical means to render available, to the full extent, the heat of the ascend ing products of combustion. The imperfect utilization of the latter is a prolific source of waste, and for this reason practically applicable to ordinary heating furnaces, stoves,
through their interstices. In the same proportion that the ${ }^{y}$ mprove the combustion, they take up the greater heat produced thereby; and preventing the same from escaping by the flues, hold it, as the inventor claims, so that it is utilized by radiation, thus augmenting the power of the furnaces.
The principle upon which the invention is constructed is
or grates, and, as the inventor assures us, for any variety of
as much of the escaping heat as possible, a series of hollow dampers, shown at F, in Fig. 2, and in full detail in Figs. 3 and 4, are placed near the lower bend of the flues, D, and in chambers formed in the same. These dampers, which may be of any number, have for their shafts hollow tubes, which, passing through stuffing boyes in the shell, communicate with the water in the boiler, so that the dampers, in ace with the water in the boiler, so that the dampers, in

CASEMENT'S IMPROVED STEAM BOILER, LOCOMOTIVE, AND METHOD OF BURNING FUEL.
any device which may advance novel and useful ideas for preventing such loss may be considered as of important economical advantage.
Theinventor proposes to conduct the products of combustion, rising from the fire, between and around a number of

balls or blocks of metal or other material; so that, the latte being intensely heated, the smoke, gases, etc., coming in con tact with them, become entirely consumed. These balls are suitably disposed directly in the upper portion of the fire box, and in such manner as not to obstruct the draft which passes
the uptake. In Fig. 5 is represented the application of a similar arrangement of tubes and balls to the ordinary cylindrical boiler. The construction is quite obvious from the engraving, so that no especial explanation is deemed necessary.
Ref
Referring once moreto Fig. 1, in that illustration is shown both the improved boiler applied to a locomotive and also a peculiar construction of the latter machine. The form of the generator, it is clearly evident, does not comprise the large cylinder, which forms a part of the ordinary boiler, and the larger portion of the body of the motor; and consequently it is proposed to convert the same into a simple tank complete ly separated from the bniler by the double partition, A. The object of this is to render the locomotive adjustable in the matter of weight, by filing this receptasle with water or heavy solid material. Ts illustrate, the inventor considers it unnecessary, and in fact a waste of iron, to run a thirtyfive tun locomotive over a road of varying grades, where its full tractile power is needed only on heavy up slopes, whil a fifteen tun engine would do all the necessary pulling on levels or down inclines. With a light and compact boiler with a tank as represented in the locomotive in our engra ving, the total weight of the machine need not exceed fifteen tuns; but by filling with water or other material, the same may be quickly increased to any desired extent up to the limit, say of thirty-five tuns. At C, a small funnel is erected which is designed to recsive the spout from water stations and at D a door is placed, which may be used for gaining ac cess to the interior of the tank, or for more conveniently be employed at will; and by the materials added, the weight of the locomotive may be quickly augmented or lessened in proportion to the load it is to draw and other circumstances In case of a line having many ascending grades, rendering i necessary to change the weight of the engine quickly, while in motion, it is proposed to place troughs between the rail at the bottom of the slope and let the water be taken upinto the tank in the ordinary manner now in use on many roads for filling the tender. On arriving at the summit of the grade, this water is discharged, and the locomotive once more rendered light
The variuus parts of the machine, as shown in Fig. 1, ar of the usual description and require no explanation. B is the exbaust pipe, to which we have already referred as entering the uptake at J, Fig. 2.
The construction of the boiler and the peculiar arrangement of the locomotive are made the subjects of separate patents, and the credit of the inventions is due to Mr. Daniel T. Casement, of Painerville, Lake county, Ohio, who has patented them, through the Scientific American Patent Agency, in the United States, Canada, England, Australia, and most of the countries of Continental Europe. Letters for further information should be directed, for the next three
months. tio the patentee, at the Fifth Avenue Hotel, New York city.

Prizes offered by the Paris Soclety for the Encouragement of National Industry.

In addition to the grand annual medal of commerce, Chaptal prize, a prize of 2,000 francs in the class of cotton indastries, the society offers the following prizes for the $y^{\text {ear } 1874 \text { : }}$

Details of these and other prizes to be obtained on applica tion to the secretary, No. 17 Rue de l'Abbaye, Paris

Bronze Casting under Artificial Pressure
A French officer, Colonel Lavroff, has given his attention to the casting of bronze guns under a more efficient pressure han has hitherto been employed-a parallel operation with that of Sir Joseph Whitworth in the case of iron and teel.
A cast iron platform is laid on foundation walls; and upon the former rests, first, the ground plate of the mold, and secondly the mold itself, which is of great strength. This mold is surrounded by a heavy cast iron jacket, which is bolted to the platform; springs are arranged to protect the bolts and the other part of the apparatus against the effects of the dilatation of the mold after the running. The cover is furnished with a cylinder formed of clay or other bad con ductor of heat, and on this is placed a metallic piston with pocket or receptacle. The piston and pocket form one solid piece which is supported in its position at the requi l ky iron bands. The opening for the metal as well as the pocket is lined with fire clay
The upper part of the metallic mold and the inferior sur face of the cover are also lined with fire clay, in order to re ard as much as possible the cooling of the upper part of the casting. The air and gases escape from the mold by means of several conical rents. The apparatus producing the pres ure consists of a frame formed of two cast iron cross piece onnected together ly means of bolts. This frame, while mbracing the mold, is at the same time freely suspended o the chain of a crane by means of an iron ring. The
rame is furnished on its under side with a piece of metal,
which serves to close the opening through which the metal is run, and to transfer the pressure to the piston. This pressure is produced by means of an hydraulic press fixed to the low er part of t
the frame.
The conditions laiddown by Colonel Lavroff are as follows 1) Each transversal section of the interior of the mold should be at least equal to any section above it. (2) The upper par of the casting ought to be preserved as much as possible rom loss of heat, by means of a non-conducting lining with in the mold. (3) Finally, the piston acting on the molten metal should present to it a non conductor, and, moreover should act upon the central portion of the liquid column and not over its whole surface

HOW SHALL I INTRODUCE MY INVENTION?
This inquiry comes to us from all over the land. Our answer is: Adop in establishing any busines Make your insenting merchandise esses any merit, fomebody will want it. Advertise what you have fo ale in such papers as circulate among the largest class of persons likely the machine or article. Send illustrated circulars describing the merita artcle, all over the country. The names and addresses of persons in dif ters. If the invention is meritorious, and if with its utility it possesse novelty and is attractive to the eye, so much the more likely it is to find machines, implements, and contrivances of novelty can have their inven

AX. Crated and described in the columns of the Scientific Amers oundries, rolling mills, architecture, and new industrial enterprises of a inds possessing interest can find a place in these columns. The publish ing art, for this paper only. They may be copled from good photograph try to make the necessary sketches. The furnishing of photograph preferable. The examination of either enables us to determine if it subject we would like to publish, and to state the cost of engraving in dvance of its execution, so that partles may decline the conditions with and contractors of having their machines, inventions, or engineering works illustrated in a paper of such large circulation as the Scirntific 50,000 , and the extent of its circulation is limited by no boundary. There Is not a country or a large city on the face of the globe where the pape the largest orders for machinery and patented articles from abroad hav come to our manufacturers through the medium of the Scientific american, the partles ordering havin

MNN \& CO.,

37 Park Row, N. Y.
Inventions Patented in England by Americans.
[Complled from the Commissioners of Patents' Journal.]
Compiled from the Commissioners of Patents' Jou
From January 16 to January 19, 1874, inclusive.
Condensed Milk.-G. Conk1in, New York city. Fil ter.-P. Huerue, San Franclsco, Cal.
Foo Signal.-G. C. Pattison, Baltimore, Md ipe Wrench. - J. Austin, New York city hoe Trp.-A Pollok. Washington, D. C. Vrntilating and Warming.-A. G. Myers. New York city

DECISIONS OF THE COURTS.

Supreme :Court or the United] States. base bibning stove patent.-hailes \& Treadwell ve. van wormbr etal trict of New York.-October Term, 1873 A new combination is patentable if it produces a new resurt, although al
the elements were previusij known and in use
But the new resuls

gerent gmerican and forcign cedatents.

Improved Thill Tug.
Dewitt C. Bassett, Cambria Mils, Mich.-This invention relates to mean for supporting the thills of a vehicle, and furnishing, at the same time. a conventent mode of a ttachment for the saddle, breeching strap, and girth The thill tug consists of a two part tube and a tube containing
the saddle, breeching, and girth straps arranged loosely thereon.

Improved Asphaltic Cement Tank.
coal tar, now used for rooflng, paring, and vault covers. As soon as suf fictently cool, this residuum is placed usually in barrels, wheretn it soon soldafies, and from which it can only be removed by their destruction, a tank in which this valuable cement may be offered to the trade with all its original qualities, and without any necessity for the destruction of th
package that contains it. The tank or metallic barrel is made alrtight, t ackage that contains it. The tank or metallic barrel is made airtight, to and, in conjunction with the inner lining, which is a non conductor of heat to prevent the escape of caloric. The asphaltic cement is drawn from th
still into these barrels or packages, which are then transferred to a cham er, kent always at a suitable temperature, and there held in readiness $t 0$ be supplied to the trade. During transportation from one locality t to make up for the hest that will rery slowly escape from the alrtight an heat-protected package

Improved Potato Planter.

rotating dropplre drum at the bottom of such relation with the passage to the dropping tube that the potatoes, se itng down upon the disk, through the hole in the hopper. will be cut offin suffclent quantity for the seed of one hill and delivered into the passage
to the tube. The invention also consists of a diseharger combined with the cutter and the disk, so as to force out any of the cut pleces that may the passage to the tube. The tivention also consists of a spring pusher Elbrldge Marall, Improved Washing Machine.
a grooved side and a vertical beater, the top closed down. and a muffictent
quantity of water added thereto. quantity of water added thereto. A lever is then worked up and down gle levers, and thereby the rubbing, pressing, and squeezing of the clothes ing lard, by putting the lard in a hag between the beater and the side, and placing it in an taclined position for the clear lard to run off.

Improved Cotton Bale Tie.

Leupold Weil, 211 T West 5ist Street, New York city.-This invention conststs of one or more transverse slots through the end portions of the band or hoop, through one or more of which slots, in each end portion, a flat
metal pin or key is passed, the two end portions belag overlapped. In the case of a bale, the key will merely extend along the hoop or band, betwee
the latter and the bale, so as to be secured by the pressure of the bale The key has a head to prevent it from passing through; and. If needed, it may be bent or Indented with a punch, to secure it from working out. The
nventor's object is to provide a bale tie of undiminished strength. and to do a way with the necessity of making bends in the band to fasten

Daniel Hutchinson, of Ranning Gear for Carriages.

 mainly to provide light vehicles with a platform gearing, by whition the construction of the sustaining parts can be made lighter, and the upturn ing of the body of the carriage prevented, as the front wheels are made to turn freely below the same. The invention consists in substituting forthe king bolt a disk turning in an outer surrounding sleeve, which carrte the iront spring of the carriage, and the springs connecting the step brace of the same. The dispensing with the perch and stays equalizes the add

Improved Magazine Fire Arm.
Frank P. Peace, Marysville, and James W. D. Willams, Knoxville Tenn.- This invention circl, with a transversely reciprocating block behind tiem for taking the cartridges from sald chambers alternately and presenting them to the bar-
rel, also for remioving the shells to a discharger. The block ts worked by rel, also for remioving the shells to a discharger. The block is worked by
a crank slaft and connecting rod set in motion by a trigger wheel. whic is turned far enough each time it is pulled for firing to effect one move
ment of the block, which lirings the cartridge into position just berore the ment of the block, which brings the cartridge into position just before the
hammer falls. Theie object is to provide a sinnte and eflictent repeating arm, which can be loaded and fired by simply pulling the trigger
Improved Bed Warmer.
Job Crockett, Portsmouth, \bullet.-This invention conststs of a flat circular netallic bed warmer, to be filled with hot water, which is provided witha
screw plug fitting hermetically into a screw seat. The latter is arranged with notchcs for allowing every drop of water to be extracted from the
inside, both plug and seat projecting to the inside of the pan, belng flush with th

Improved Machine for Sampling Ores and other Material John Collom. Idaho Springs, Col. Ter.-This invention consists of mall short spout which is slowly and regularly moved at intervals unde the mouth of a spout or trough, through which the substance to be sample be substance taken to the whole mass is detarined by the proportio which the sald short spout or receiver bears to the length of the circuit object ts to obtaln, from croo which is is not passing the spout. Th object is to obtain, from crushed ore, grain, and other substances, દample

Improved Railway Switch.

Carl Naucke, Jr., Magdeburg. Gencany.-The object of this inventio
 be obtained by the incomotive engineer, even if the switch is wrongly set by accident or mistake, permitting thereby a full control of the switches
by the same without slackening speed, and increased safety against accl dents arising from misplaced switches. The invention consists in provid Ing the plvoted switchralls with an attachment plate. This connects, b
bell crauk levers, with a link-shaped piroted rod, operated and guided in bell crank levers, with a link-shaped plioted rod, operated and gulded in
such manner that the attachment plate and switch ralls are moved when ever a latch connection of the link-shaped rod with a longitudinal leve
ood, which locks into the silding switch bar, is released by the action of an nclined lever of the locomotive on the roller of a weighted erank of th locking lever rod. The detaching of the lever rod from the sllding bar it
thus produced, and the switch rails are therebs carried into position fo thus produ.
the train.

Improved Bevel Sawing Machine,
George S. Grier, Milford, Del.-This invention consists in combining ertically rectprocating saw with a canting frame, rack ring and pinion and feed table, having arc bars supported in concavittes of the uprights,
whereby the whole machine is rendered much more convenient, and its productsare ca

Improved Loom Temple
John C. Thickins, Wasilington Mills, N. Y. This invention consists of nd pawl arranged to allow the wheel to turn freely when the welght go down. The weight is free to exert all its force without any loss by friction and the wheel is prevented from turning when the strap is pulled up. By this means the influence of the friction of the strap on the wheel, to the
weight for holding the fabric outstretched against the tendency of the ten welght for holding the fabric outstretched a
Ion of the warp to contract it, is increased.

George $\mathbf{0}$. Kunkle, Zieglevville, Pailway Rail. The cap rail ad overlaps that of the base rall, passing then along its side, and bed In, and be easily removed of the base, so as to ellp easily along the base position, heing produced to correspond with the cap rati, with rounded head and forward projecting lower corner. The cap rall is then placed Ith the he head overlaps the base rall, resting fully thereon. Both the upper and
ower ralls may be removed and substituted very quickly, and without drawing a spike. The wear is confined almost entirely to the upper rail, which may be made of steel, the lower of fron. A chair may be used on very tie, or on alternate ties, as desired.

Improved Machine for Gumming Saws.
S. Jackson, La Grange, Tex.-A sloted stand or socke
Thomas S. Jackson, La Grange, Tex.-A slotted stand or socket is adjust bly connected with the bed plate. This sloted stand resembles the too an arm extends horizontally at a right angle from the shank, which latte placed in the socker. Whe slue of this arm is attacned, on ther arbor, which is supported by the arm, and has upon it a pinion with which the gear wheel engages. A rapid revolving motion is given the em ry wheel by revolving the gear wheel. The machine may be operated by
and or by motive power, and is made to gum or dress the teeth of a saw and or by motive power, and is made to gum or dress the tee

Improved Dental Plugger

George H. Chance, Salem. Oregon.-Heretofore the metal points of the nstruments used by dentists in filling teeth with gold have been exclusive
y of steel. The abcre inventor uses gold rendered of suitable hardness by of ster. The advantages claimed are prevention of electrical action from the contact of the steel tool and the gold filling. Second, obviating the danger of minute partlcles of steel rematning in the filling, forming a cen
er of oxidation. Third, in preventing undue force being used, to detriment of the operation and pain of the patient, the plitability of the old point betng such that it will bend before an exceselve blow. while suf cold point bengs wich that will bend

Improved Inside Blind.
John F. Voorhees, Williamshurgh, N. Y., assignor to Hardy and Voorhee isame place.-To one end of thich also paris attached a pulley aroun Whichis passed an endless belt which also passes around a small pulley o
he casing, and by means of which the shutter is wound upon and unwound rom the roller. The pulley is recessed to recelve the spring, which colled around the pitot of the roller. The inner end of the spring has an
eye formed upon tit, which is sliped over a pin attached to the pulley. The in and a artes of holes in tos arm, mar be adjusted of the spring is regulated by turning the lever around its pivot. The spring is so arranged as to be wound up by the descent of the shutter, and to be ully wound up when the sald shutter has becn fully lowered. By this a rangement, the spring increases in strength as the to be supported, so as to alwas ered with a very slight outlay of power.
$\underset{\text { Cewis Creveling Attachment for Flour Packing Machines. }}{\text { Compent }}$ the connection of pended, and with a hollow cog wheel, which is gulded by a projecting rim in the base plate of the casing, and adjusted to any degree of tension of the spring by means of a pinion with check pawl and crank, as required for the
different purposes for which the packer is used. The increasing wetght o he barrel or sack to be packed will be compensated by the increased ten Ion of the spiralspring on the shaft, so that the process of packing con
Izues uniformly from begining to end, the platform returning then easiy inte elevated position for filling the next barrel
lmproved Fountain Ink Pad for Hand Stamps.
rancis J. Coutant, New York city.-In passing upand down throu ough the top of the ink tank, a certain amount of, friction is required to keep the
ribon tightly stralned across the pad. This is accomplished by means o elastic valves, one of which is stationary. The other is griped betwee metallic plates, and moved so as to press the valve against the ribben by
means of finger screws, which move in slots in the top of the tank. There is a plate at one end of the tank, hroed laterally by cam levers. Whic screws at the other end are attached to an angle plate, and produce the
ame result in a different manner. With this fountain pad the quantity o ak carried up by the ribbon is always the same, and cannot be varied
ept by compressing the ribbon between the valves.
Improved Mitering Machine.
Johin Heury Rowland Denver, Col Ter-This ind consists of aw gutde and plane gulde for controlling the saw and plane in cutting o
and smoothing the wood sticks. There are a couple of shifting staps and a scale for aguide, by which to adjust the stops against which the woo plecesareheld for sawing bevels of any angle, right or left. The support
for sa'd stops is jointed to the saw and plane guitle so as to be adjusted around ts major axis, and at mis to the direction in which the hifting stops change the angles of the miters for making the latte

Improved Bevel Sawing Machine.
er, Milford, Del. $-T h i s$ invention consiats
George S . Grier, Milford, Del_-This invention consiats in a saw bevelin nclined reversely from the middle; an adjustable frame placed tran versely across a sawing machine table; in combining with an adjustable pointer, connected and moving with the table of a stationary scale plate,
aving a vertical row of notations and a series of notated arc rows. Thes aving a vertics1 row of notations and a series of notated arc rows. These imber and the cutting of frregular forms

Improved Grading IAttachment for Levels.
Dr. John Thornley, Charlothe for which letters invention is an improve granted to the same inventor, dated October 21, 1873, and it consists in constructing and arranging the adjasting graduated bar and its silding e rension plece that a single screw secares them in the desired position ither extended or retracted, and whereby they may be locked together a and in the combination of sald adjusttng bar with a plece which is hipged

Improved Piston IPacking, Brownsville, Pat-This inyentio

Andr packing of a piston, and to means whereby the screws that fasten the of ower to the piston head may be fastened by nuts on the outside. while the

Improved Wood Stove Heater.

John C. Frazter, West Alexander Pa This Heation. wists in makin a wood stove with an upper and lower division, the former enlarged and
projecting over the latter to receive a hot air chamber, which is provided With two registers, one opening into a pipe leading to the room abov

Improved Safety Attachment for Pocket Books.
John Trout, Omaha, Neb.-This invention consists of a long flap a little dider than the length of bank notes, with one or more elastic straps
cords extending across from edge to edge on the inside, and attached hely ends to the edges of the flap to secure the bank notes, which are to be
placed under the straps, and then rolled or folded up in the flap. There is etain safery fast ing is a notched stud pin projecting from a base plate, attached to the clothing and passing through a plate on the book, behind which is a spring catch
ngaging the said notched pin, so as to hold it untll released by pushing the catch out of the notch by a thumb bit provided for the purpose. The
astening is also applicable for securing other pocket articles.
 the etandsrd, 18 at tached a second standard, which csrrees a seraper to
 otuached to the beam. To the slaft are atitached two knives, thes shanks o which are made of such a length that the knives may be in proper positio George F. Parker, St. Stephen's, Canada.-The
iliptical form, and sufficiently wide and long to form picce is made of a and heel plece, which slopes from the leg seam in opposite directions
oward heel and toe, and is at some distance above the tread face. The protuberance of seam is brought upon the outside, to make a smooth sur-
face on the inside. The upper of the sole has a tongue and side projecons, to and under which 18 sewn the front plece, the latter betng mud structicg the boot of pleces that are thus shaped and fitted together, a ery comfortable and durable moccasin is obtained, while the leather can e cut to more advantage and with greater economy
$\xrightarrow[\text { Edwin Sanford, Hartford, Conn.-This invention consists in making the }]{\substack{\text { Improved Band Pulley. }}}$ Egging of pulleys of one rubber or leather strap, at intervals and at esch passing up through the wheel rim thereinto, whereby it will be by screw ecessary to take down shaft and remove pulley whenever the lagging needs repair or replacement, but simply to unfasten the screw
Charles H. Fuller, Akroned Ohiso, assignor to himself and Edmund W. Dea con, of same place.-An outside casing of rubber is surrounded by cover
ing of canvas. A coll of hempen rope ts flled with palverized soapstone of rubber cloth is woul around the size of the pistonrod, alternately, and then surrounded by the casing The whole is finally cut off square, so as to fll the stuffing box. In this man orl by cutting it open longitudinally, elther parallel or obliquely with the Iston rod. The packing is elastic, and is made to hug the rod by screwing
own the gland. The rubuer casing keeps the colls in place, and the soap one. combined with the hemp, prevents friction.
Bernard H. Wessel, CIncInnati, Ohio, assignor to hitmself and George A froot, of same place.-The object of this invention is to facilitate the changing of the shafts of a carriage to pole,and rice versa. It consists of
coupling which is attached to the shafts or pole, and applied directly er means of clps and clip plate, and held thereon by crew. or equivalent, together with a rubber cushion. The device also con

Improved Furrow Scraper

Frederick G. Thurston, New York city, assignor to M. Ma Del Gado and Joaquin Llera, same place.-The scraper plate has th forward edge mad tralght and beveled to cause it to enter the ground readily. The mildd plat part is cut away, to cause the soilleaken up by the end parts of sal
plato the furrow to be flled. The plate is made of such ength as to cross the furrow and rest upon the ridges at its sides. The soil taken up by the tnd parts of the plate, encountering upwardly pro
jecting flanges which incline to the rear,passes inwardly, and drops throug notch in the rear part of the plate into the furrow.
Harbert K. Forbis, Danville. Ky.-The drawbars hook together side b side. They are fitted at the rear end in a hanger, and secured, by a key
with a strong buffer spring. This hanger is suspended from a strong plate plvoted to the car bottom to swing laterally, and allow the draw head the necessary sidewise movements. At the front end of this plate is a stud projecting down each side of the draw bar, to insure the alignment of th
one with the other, so that the draw bar will not cramp ti the hange when bumplng. A cap on elther draw bar slldes along in front of th hooked end of the draw bar or the other car, and locks the hooks th
gether. A cap ts arranged to be forced back by the end of the draw ba When coupling, and forward after the hooks have engaged, by a foring. t has a hend, and is fitted on an inclined rest, so as to sllde obliquel gainst working apart, and to prevent rattling. For uncoapilng, the cap are drawn
platform.

Improved Stalk Puller.

Cadwallader Heacock, Trinity, Tex.-The wooden handle of the instru ment is inserted in eyes in the upper end and middle part of a metallic
bar. The upper part of the latter, between the eyes for the handle, has a curve formed in it to serve as a fulcrum. The part of the bar in front of de profting to the reereard and has a fuk The adjacent edges of the fuke and body of the barare beveled upon th
lowersde, to calse sald edges to take a firmer hold upon the stalk to be pulled. The end of the bar forms a hook for throwing the pulled stalk ogether into windrows. In using the instrument, the fluke is passed ring the sald stalk as far as possible into the anglc. The bow sliding pon the ground enables this to be done easily. The bandle ts then presse downwa
ground.
Improved Station Indicator.
Miohael Farnan and Samuel W. McPherson, New York city.-A paw ever is plvoted between pawls, so that a movement of it in one direction
urnsone of two rollers, and a movement offt in the other direction turn he otler. To this pawl are connected cords which pass through the cars. tions. By pulling the cord, which connects with a separate indicator in each car, the brakeman may quickly change the name exhbited. A bell arranged to sound whenever the belt is shifted
mproved Combined Oultivator, Stalk Cutter, Harrow, and
Corn Planter.
Matthew Green, Walker Station, Mo.-This apparates is used as a culti ator and stalk cutter combined across the rows. The catters ren on eac side of the young plants, and throw up the earth to the adjoiang rows
by the front plows, while the rear plows open the earth between them The stalk cutters serve for the purpose of cutting the stalks, and also a ip of the stalks, and preventing injury by the falling of heavy elods upo hem. After the first plowing, the auxiliary front plows are taken off, and laced on the side beams after the rear plows have been taken off, chang and produce the covering up of the weeds. For harrowing, the plows are

Improved Spike Auyer.
Roland 0 . Arbour and Joseph Arbour, Baton Rouge
of the augera longitudinal hole is bored, in the upper pa. - In the center screw thread. A guide, consisting of a straight bar of steel or fron, 1 with the A ided with points, which engage with indentations in the head of the spike previously made with a punch. Λ s the anger is revolved the gulde remain
tationary, and the auger will screw into it and cut an annular hole aroun stationary, and the auger will screw into it and cut an annular hole around
the spike. The points of the gulde belng embedded in the head of the the spike. The points of the gulde being embedded in the head of th
spike, the auger is pressed against the wood suffictently to keep the guid place. When the auger has passed through the plank it is removed, an of the punch which acts as a plug wrich on apurs, and turus the en round and unscrews it, when the operation may be repeated on another
pike, and so on untll the plank is released. This auger may be made of ny size, so as to suit any sized spikes, and is an expeditious way to relea

gusimess and erssumat.

 The Charge for lusertion under This head is $\$ 1$ a Line.Ruves "Little Giant" Ijectors, Cheapest
and Best Boiler Feeder in the market. W. L. Chase \& ., 93, 95, 97 Liberty Street, New York
Bar Led-Miachine made, of Extra Soft loobing trade.
Pittsburgh, Pa .
Brooks' Stean Clothes Washer-Experi.
 he Fin

 Who wrote "Burning Brick with Oii"" Page
3. curr. Wol. Address I. Holcomb, spring tield, O .
 For Sile, cheap-One 4 H. P. Hot Air En-
ane, Roper's make; one 15 H.P. Steam Engiue, in good For the best Cockle Sepirator ever made,
with capactiy from to to io bushels per hour, address Salch \& Giddurs, Hunghm, W's What to Do in Case of Accident-Cuts
Brinses, Broken Bones, Burns, ete. A Book for Every body. Free by mail for ten cents. Industrial Pub. Co., To Rent, at how rates, a Room with Powe
ddres Box 6 Ge, Birmingham, Conn. Try the Paragon Gold Quill-Pen, made by
C. M. Fisher it Cor.,103 Fulton st., , Iew York. Lipht Machinery-Articles in Iron or Brass,
Dile Work dect Hearing Restored-A (ireat Invention. Send amp tor particuarar, to George . Woud, Sodison, ind.
Hand Fire Engines, Life and Foree Pumps
 Parties wishing a foreman of a Machine

 By tourling different huttons on the desk nf the manazer, he canc contumicitate whth any person hi .
 W'onlen and Cotton Machinery of every de

 Treatises on "Soluble Glass,", \$1 per copp;

 "Superior to all others" -for all kinds of
work-Limet \& Co.s French Files. They are better, forzed, better cut, better teupered, and cheaper than
Enngilis files. Send for Price.List. Homer Foot \& Co. Engish tiles. Send for Price. List. Homer Foot \& Co.
Price only three dollars-'The Tom Thumb
ectric Telegraph. A compact workimg Telegraph ap. paratus, for sending messuges, making magnets, the
clectric ligit, giving ilarms, and various ot her purposes. Cin he puti in operation by any lad. Includes batters, he worid on receipt of price. F. C. Beach \& Co., 260

Brown's Coalyard Quarry \& Contractors' Ap.
paratus for hoistiga and conveyng materna by iron caible. Parties needing estimates for Machinery
fank kilud, call on, or aldress, w. L. Chaise $\&$ Co., 3,95 97 Liberty Street, New York
Steam Fire Engines,R.J.Gould,Newark,N.J. For Solid Emery Wheels and Machinery,
 Dick inson's Patent Shaped Dianomond Carbon The New Remedy retains the Rupture in ease
nil comfort,nikglt and dias, till cured. Sold cheap. Fitted Protect your Buildings-Fire and Water
proof: One coat of Glincs' silite rooting paint is equal four of auy other; ; it fils up all holes in shingle, felt,

 Teleg. Inst's and Elect'l Mach'v-Chpap, tel Annunclator-Insts for Private Lines-Gas Lighting
Ipparatus, ©c. G. W. Stockly, Scs., Cleveland. onlo. dll Fruit-can T'ools,Ferracute.Bridgeton, C .J. Lathes, Planers, Drills, Milling and Index
nt: Chinees. Geo. s. Lincoln $\&$ Coo. Hartord, Conn.
 rr lithograph. etc.
Temples and Oilcans. Draper,Hopedale, Mass. Hydraulic Presses and Jacks, new and sec
nid hand. E. Lyon, qio Grand Street. New York. Peck's Patent Drop Press. For circulars,
deress milo. Peck $\&$ Co.. New Haven. Conn

H. F. C.'s question is incomprehensible.2. $\mathbf{3 6 3}$, vol. 29.-C. W. D.s Duery as to the ball falling hrough the earth is answered on p. 107, vol. 30.-F. M.B.
should apply to a dealer in mineral spectmens. -B . C . willtind a rectpe for coating plate iron pipe on $p .11$, vol commission on p. 97, vol. $30 .-\mathrm{S}$. F . B. should apply to
the the chainmakers mentloned in our article -S . should
consult Crookes and Rohrig's work on the metallurgy of copper.-J. A. B.'s explanation of a snake's move. one.- -N. ... can tun small pleces of iron wire by the pro-
ceess described on p. 3z8, vol. $28 .-\mathrm{J} . \mathrm{M} . \mathrm{R}$. will find an cess described on p. 378 , vol. 28.-J. M. R. W. will find an
explanation of the mystery of the long and short screw xplanation of the mystery of the eng and shorr screw
drivers on p. 393 , vol. 18.- J. S. can fasten leather to tron
 25.-G. H. W. should apply to a lumber dealer. See our
advertsinge coumnius.L. H . H. should consult a boiler naker.-W. L. C. Will find a a deseription of the manu
facture of lamp black by burning ninneral vol.28.
F. E. savs: : I have a brick building, one
tory high, it feet from the floor to the eaves, and 85 feet from the floor to therrdge pole of the roof. It con-
talus on large epen space, used for a machine shop, 120 feet long $x 0$ foet wide, with an tron truss roof. The
roof corerng tos made of 2 tnch matched pine plank,
nailed roof covertng is made of 2 inch matched pine plank,
nailed tl| hhtl| together and covered with iron, well paint ed outside and Instde. This roof is perfectiy tight in
all stormy weather: but in frosty weather Iam troubled all stormy weat her: but in frosty weather I am troubled
by tts sweating and water dropping down all over my by Its sweatng and water dropping down all over my
tools, etc. I heat by steam pipes round the room under nell me what to do to sto tts sweating? I have tried
tel
 but does not entitely stop it. Would letting the cold
air from outside into the dead air space do any good? depth, and the cold air were admitted to it sparngly and tempered by admitting also some of the warm air,
it would probably remedy the diftculty. At the same it would probably remedy the dilltculty. At the same
time, the tinside celling that encloses the alr space might nd carr materlal and set at suan ill be formed on the nad carry oft any yrip th
nside of the roof titelf
 wall I wish to make of concrete. What thickness ought
the wall to be? A. Thie thickneess of the wall should be wall commenced 3 feet below the level of the grone and carried up 6 ieet high, so as to be 3 feet underground
oprevent tis belng disturbed by frost. Fill in behin opperent tes beng disturbed by frost. Fin in bhin
with loose stone, and provide opentugs through the wall at the bottom of the bank to dissharge the
may accumulate behiud ii. 2 . will such
the cold and drests on a L Lew Encland winter
if proper precations are taken to bulld
If proper precsutions are taken to bulld it properly
bring oun a projection at to of the concrete, to act llke a coping. 3. As Portand cement is high in price, would
it do to bulld the body or the wall
with a cheaper arti
 will be less refurred of tit. . What are the best propor
sions ior the rarious articles used in making concrete A. of Portland cement, onve may be used to thrteen of the other ingredients. Take one bariel of the ement
to four barrels of eleann sharp sand, and till in with a much gravel, stone chips. and stan stones as can be
worked tito tt, when well supplied with water, ant have
 be done? A. Paint with a cement wash. of cement, other than Portand, is best to use? A. Ro.
sendala e eement is a good article T. O. II. asks: If a man has a right to sell to a man who lives in another county? A. Yes. H. R. asks: 1. What distance will a well of her whelels at ten milles per hour in dead water? A.
Deduct thbut 10 per cent.
2. Does the same rule apply to steamboats aeto a traln of rallway cars on a dead
level? A. No. A. O. P. says: I recently found, among the
entralls of a pratrie chicken, a snake nearly two

 gizzard? Could the chicken live without a liver? A.
ment.
D. HI 'T. asks: How large a piece of soft strength as a plece of white oak ixt incles square, api
of any lenzth? A. Cast iron has nearly twice as great tensllestrengt a a white oak; it offers about ten times nach resistance to a crushng force, and bet ween thre G. F. J. asks: What is the lest work on

 S. S. S. asks: 1. How can I cut a large glass
pottieacross the midde? nered ille, file a circular notch around the middle of bot
 notel fsten a sort small lamp wick or thread of tow,
 slould be large enough to till the notec and not wound
too tight, and \boldsymbol{m} hlle burning revolve the bottle in the tally yo as to contine the flame to one particular When burnt out, plunge the bottle at once into colld war ter. If necessary, repeat the heating and cooling sud.
denly. 2. Will a porous cup made of plaster of Paris be as good fora battery as one made of earthenware?
Vo. The plaster will crumble a way in time, and is no suffictently porous.
T. C. asks: What is used for white writing acld, orindeed almost any acid, when used as an on ink on blue paper. will appear whte by discharging the colo
J. P. asks: I. With a propeller 50 feet long,
8 feet beam, with direct acting engine $8 x 8$ inches, ftted 8 feet beam, with direct acting engine 8x8 inches, fitted
with platan slde valve cutting of at a a ittle more than
 grate surface, and 200 inches of chimney section, to
burn wood: a screw with three arms. of 3 feet diamburn wood: a acrew with three arms.
eter and 6 feet pitch. one third out What speed am Illikely to get.

miles an hour. .2. Wil the esilp of submerged occasion a grat loss of

reply to your other queations, we po do
befiler will givea very satisiactory result.
N. H. asks: 1 . How can I cut and polis
agate? A. The lapidary's cutting plates are arrange as follows: 1. Soft tron (very thin) with diamond dust in otl; 2, , pewter with coarse emery and water; 3, ditto
with fine emery and water ; 4 , wood, with sand aud water; 5, pewter, with rotenstone and water; 6 , leathe
with putty power, silghty wet.
2. How shall I I lim print gold lettering on leather book backs? A. Attach
gold leaf to the leather with white of egg, and impress the letters on. The letters are made of brass, and should be hot, but not enough to sutter when wetted. Slight-
1 y oll the gold and the face of the 1 letter with i
Ireasy rak. 3. Is the oo-called poppet valve of a loconotiv, arranged difierently from an ordinary safety valve. other A. The epopen talve e is concal, , ,und itts into the aper Aure, instead of belug tight on the face
Dhe Metropolit an Museum of Art, in the Kruger Man
R. R. C. asks: What is a yood look on rail-
road construction, from laying out and leveling to put ting down the ralls, for the use of beginers and stu
dents? A. Vose's "Handbook of lailroad Construc tion" will be useful to you, but you cannot tind all in
any book. Sec our advertising columns for booksclers
C. C. H. asks: Can I construct a rifle tele cus for obiect glass, and one double concave of 1 inch
focus for the eyepriece? What should be the sizes, re. spectively, of the two plases, to Insure a clear iteld of
view? A. You can make a Galliean telescope in the way you propose. The field of view, however, in this

 The object tlass can only be well made by a skyllful op ticlan so that it would promably be much cheaper for
you to buy a smal glasst han to attempt to make one you to buy a mall glass than to attempt to make one
For particulars as to the construction of the telescope good work on optcs.
J. B. P. Says: A friend having a threshing.
Jchine engne with whind wheels of P feet dameter wishes to meke it a self-propeller. To do this he ha,
taken oft one of the t feet wheels and substituted an 8 feet driver, eonnectling to h18 engine with a chann, run-
niug his eogine stix revolutions to the drive wheels' It old him he would get as much power and speed by conning his engine three revolutions to one of the drive
wheel. Who is 1 ight? A. From the duta sent. you are
rignt. M. R.asks: Is the common red clover seed used for any purpose besides sowng? I hear that
it is used for coloring prints. A. We have never heard of the
tioned.

 owing manner: : In the morning, the entire contents 0 the stove are let down into the ash pan wilch hangs and
projects below the stove bods. There is about 1 buck etful. Into the pan is poured enongh water, penerally
tuars, to knead the eshes into a thick dougli; atterward tire is starte and the coals are all red hot, which is at 9
A. M. The contents of the ash pan are spread evenls the entre day; not only the stove gets red hot, but, on CookIng in, the contents present the appearance of moltin iron. Thls Decomes soliditiled Into one cinder, which down for another dough mixture ; there is but onc coul ing, and that 18 a 8.15 A. . M ., the stove throwing out an
intense heat for 8 or 1 lc hours without raking. A stove an be arranged to keep fire for 10 or 12 hours, but then ou get no heat. There are evtdently 4 quarts of water
ournt up in our stove evers day. A. This is an interest. ing account of a system of economical iring which has trequently been recommeneded. 2. How can I get the
tin off tin plate, oo that it will hold black asphaltum tin of tin plate, so that it will hold black asphaltum"
varnish? Ican burn it ofti, but our "ashl dough tire" Varnish? I can burn it oftr, but our "ash dough fire
burns the iron to pieces. A. Cover the tio with a coat of of ordiary palnt. 3. How can I wai.in chamuis skin which
has become dirty, so that it will not be as dry and hard as a board? A. If it is washed perfectly clean. and well
Insed. It will not be hard, when dry. 4. 1s there any
and rinsed. it will not be harru, when dry. t. As there any
method by which cheip photograply can be accom. plished for home amusement? A. Yeu can get appara-
tus for home use at a moderate price from a manufac. surer of photographic materials. 5. I lavea sign in my
 ily for a few seconds, the letters appear to move or
dance. A. A combination of red and hlue, which are not complementary colors, is an inpproper arrangement
with regard to producting tlice best eftect upon the obCaused by having them wet a great teal and frecuently
anmersed in strong caustic soda water They crat imsed bed in strong wenstic soda water. They crack
imperand the drt will get under the skin or in the pores.
open and, if greased over night, will 110t wash clean next
morning. A. It would be well to protect their hands orrning. A. It would be well to proteet their hands
with waterproor gloves. One of our correspondents water to neutralize the a!kali. i. I send a mineral spec men. What is it? A . The mineral sent is a quart
B. H. acks: 1 . Please give me a grod ruie
or tinding the pressure of stegmin pound to the square
 ya gage. 2. How can 1 tind
tine?
ndicating Steam Engines," in Sciextific Americax for January 31, 1874. 3. To What ralliroad offictal liad I best apply fora astuation?
A. It depends on the situation you desire. Probably want a position would be the proper person to see. If you chantc, , ff you want a position on a loconotitve ; the superintendent, for appotntment as brakeman or conduc-
tor
W. F. W. .asks. Does the lever principle
apply to water wheel?
For tustance, in two overshot aphy to a water wheel? For instance, in two overshot
wheels, one 10 , the other 2 feet in diameter, with buck. ets of equal size, if one bucket in each wheel be fllled,
will one elve any more powerthan the other? Docs the ame princtple hold good in turbine wheels? A. The Incliple of the lever applies in all such cas
A. S. asks: Can a person obtain instruction he United States Signal Service Bureau? If so, where? . You can obtain rules and instructions from the Bnreau. You can
rellable maker.
A. H. O. asks: 1. What material is best for emery belt ? A. Leather. 2. Is there anything bet.
cr than glue to stick the emery on with? A. We think
P. H. K. asks: Can a clock bee made to run
without pow er from springs or electricity, and without requiring to be wound up, in fact, to receive a steady
novement from Itselt? Is such a thing posssble? Is
Is here any yompany or soclety in the United states that
would support ta poor man in experimenting in such O. P. asks: What is the effect of excessive tar? If mill is built of brick with stone foundation. At its ase in the rear, the streann flows, washing it
somewhat, white the dripping from the race above cre tessome sprayand much dampness. Is there any dan ger of the foundation or wall siving way? If so, what
kind of mortarshould have been used in the first in tance? A. It is quite likely that your foundation is
unsafe, but could not answer positively without know ingmore particulars. Some
ordinarily used in such cases.
C. H. asks: Given the size of ports, exhanst.
nd stroke of the valve, how lare should the valve lee? . If the valve has no lap, it must be large enough to
over both ports, when in midd position, and the stroke
F. C. (.. says: 1. If I undertake to carry
water in wooden pipes a mile under the ground, how nuch waste must I allow for absorption, evaporation,
etc.? I . It will depend upon the material. You can readily
is funt
boiler boiler and save the labor of a well pump. How much shall I save by this? A. About twice the theoretical
power reguired to lift the water. 3, What would be the difference in cost between a wood pipe and a cast iron pipe, and which, upon the whole, had I better have? A.
The wooden pipe would be much the cheapest in mans The wooden pipe would be much the chcapest in many
localittes. If you have facilities for makivg it, we think localities. If you have facilitiles for makirg it, we think
the wooden one may be the best for you. t. What is the what is the least fall the water need have? A. Fou do our best course would be to have an eftective conden.
F. G. H. asks: Will a round chinnney give resented for friction are the same in both cases? A.
in practice there is no essential difficrence in the draft of the two forms.
l. W. asks: Which is the most economical
o heat a tank of water, using live steam or heating pipes in the water? Does it necessitate running the
pipe to the bottom if done with live steam? Will not be an outlet into the water or elsewhere? A. The rela tive economy of the two systems whild depend considera-
bly upon the general arrangement. H. G. B. asks: How can I allor gold ? A.
Gold is alloyed with silver or copper, er with both. Melt the goldin a separate crucible: and if copner is to b poured into the gold. To ensure a thorough combina-
tion, t wo red hot crucibles should be used, and the ligue edmetals poured alternatels from on fito the other To prevent oxidation 1rom the arr, put into each cruci
ble a small quantity of a mixture of common salt and charcoul. The metallic slloy should
ally stirred with a rod of pottery ware.
W. H. F. asks: Is the objection to steam
propulsion on canals the washing away of the banks? Would a system which would propel the boat withoul aisturbing the water be of any use? A. The dificulty
about canal navigation by steam is not the washing of the banks. The trouble is to tind a method of slow pro
pulsion by steam that shall be as cheap and casy of man R. T. asks: 1 . Will a patent be granted in
another person on an already patented mixture, if on or more ingredients be addell or omitted? A. Not un ess there is some essential difference in the compound y adding to or taking away from a patented material compounded for a certain purpose, and use without sub-
stantially altering it for said purpose and use, is not pa 2. How is gas lime made? A. Gas lime is simply the re J. H. asks: What is the best method for
mixing paints for painting on glass, to stand heat and Glassin which the colors are fixed by fluxing certain "stained glass," is what we would recommend to fultil Is than you can make
P. C. (C. asks: 1 . Is it practicable to ron
dense the exhaust of a small compound engine.the steam dense the exhaust of a smanlempound engine.the steam
working 350 fect per minute? A. Yes. 2. Is it practi. steam exhausts intogas pipes with cold water running around them? A. This would be the best way of doing
t. 3. How will I determine the area of condensing nurbuown? A. In pracice.from 2 y to 6 square feet of sur engine.
A. C. R. says: How do engravers transfer
pictures frompaper to wood for re.engraving? A. By first soaking the print in a saturated solution of alcohol
and white caustic potash to soften the ink, when the latter will readily transfer to the hlock under roller A. L. C. asks: Why are objects pictured on
the retibia of tine cye in an inverted position, always seen right side up? A. There are numerous theories. One veys to the mind correct ide the retina of the eye con of exter nal objects. Another is that persons judge of
the position of an object by the direction in which the rayscome to the eyes.
f. H. M. asks: 1. Do you use a machine to
old your papers as they come frcm the press? A. Foldtng attachments for presses have been made, but have
not proved successful. The folding is now done on separite machines. 2. What is the capacity of one of your presses? A. The capuctity of the presses on which the Sctrextific Amprican is printed is about 2,000 cop les per hour. 3. Would not a machne to fold papers as
they come from the press be desirable? A. Yes, If it
.
E. B. asks: Is there a sure test to distincity? A. It is claimed by the manufacturers that the ar
tificial butter will keep longer without becoming rand, the readily decomposable compounds not being ound in the manufactured article. Y
he two kinds to n test of this nature.
E. P. asks: How large nust be a coppe buried? A. About 2 feet square, placed several feet
deep. 2 . What is the iron pipe running down to the ground on a fire ala
ton with the earth
J. R. M. Jr. asks: In a serew press, with a muct welght would the screw sustain before it would
strip the thread or break? A. Multiply the eross sec. Ion of the cyllindrical portion of the serew in inches by the tensile strength of the steel in pounds per square f surface resisting stripping in the thread, multipliec by tiree quarters of the tensile strength in pounds per ping.
W. A. B. asks: Will a common lead pipe say inch in diameter, having a strcam or he water
runnting through it, mett if exposed to the heat of a blast furnace? 1 am well aware that a lead pipe withits standing the intense heat if a cold stream is ru F. M. B. asks: What is the size of the cllinders 120 inclies diameter'2, if purchase a patent ed machine for any particular use, for instance, a blind slat tenoning machine, cutting off and making the tenons on bot' ends at one operation, do I purchase the machine and right to use it without any reference to the length or time the patent has to run on the machine? lasts? A. You can use the machline as long as it lasts, G.
G. M. asks: What is the greatest number
of revolutions that the propeller of a dret class ocean steamship makes per minnte? Also of a fast golng
E. W. B. asbs: 1 . What do you think of the grades of $\tau 5$ feetto the mile, with a ratchet wheel work. ng on a third rall, the wheel to be applied to the rail at
the pleasure of the engineer? A. This plan is in use in some localitites. 2. . Can egge be preserved by placing
them in an alriglit vessel and exhaustug the atr slow. so as not to break the shells by the pressure out-
ards, or by separatiog the whites from the yolks and then exhausting the air? A. We think there are prac tical difflcultes in the way. 3. Can eggs be condenoed
in the same way that mulk is done? A. This is done at present with a fair succes
C. H. M. asks: 1. What are the contents of 2. Cut this ball through into 15 parts of equal thickness, part : A. For the segments: Let r be the radus of the nen and the hight of the segment $:$ the soliditit $=\left(r^{2} \times 3+\right.$
 $\left.\mathrm{b}^{2}--3\right) \times 1.50 \mathrm{~S}$ h. 3. Cut this ball into 15 equal parts sou can tind by trial, substituting values in the preceding fornulue
T. H. Y. asks: 1 . What is a good recipe for
killing tieas on a dog? A. Use carbolle ssap. 2 . How can 1 destroy yarden moles A. set traps for then, such
as those described in our paper a few months ago H. L. says: People say that, if a man be bit-
ten by dog, he is ikely to go mad if the dog is not killed; but if the dog lokilled at once, there ts no danger.
Ifail to see why it is of any good to kill the do., except to prevent his bit
J. C. H. asks: 1. How can I back up a mill would Ineed fora $1 / 2$ foot run' A. Make the backing
of plaster of Paris. Fill the interstices between the stones with a cement made of powdered alum and pow2. What is the best work on milling? A. Consult the catalogue of a scientitc publish er. S
C. D. asks: Which are considered, in Euope and America, to ve the most masterly and thorough

F. P. B. asks: Can I revarnish the body of shi would be the best? The color of the body ts dark
C.E. H. asks: 1. If a boiler has water in and steam up, where is the pressure the greatent, at the
op of the boiler over the stean space, or on the oot. bottom. 2. In reckoning the horse power of an as in your answer toJ. J. W.F., January 3 l, why an you no ake an allowance for friction of the wearing parts, or 1s there no need of it? . . The calculation was for the
thdicated horse power, in whicch no allowance tor fric. on is usual. 3. How long before the scievtific Amepcan is dated is it printed? $\boldsymbol{\Lambda}$. About ten days. W. I. asks: Is the capacity of
oreased by enlarging the stailer in drum?
Is not a teteam drum 24 inches in dameter $x 8$ feet long better than a
drum 18 inches in diameter $x 4$ feet long, for a boiler 40 drum 18 inches in diameter x 4 feet long, for a boller 40
uches in diameter x 24 feet long? A. The steam room is increased by the change, and frequently this is ver
S. E. D. asks: If we take a quantity of waSheated to 1000 Fah. and an equal quantity at 40° Fan or is it merely disseminated or distributed throughout the whole quantity? And further, what would be the A. The onlyloss would be from radiation; and taking no account
would be 70°.

Minerals, etc.--Specimens have been reamined with the results stated
O. R.-Your mineral appears to be a fine Prusian blue, J. I. S.-Your specimens are
with a soft bituminous material
L. L. F.-Your ore is the oxid
ance, it might prove valuable.
H. C. - Your mineral is red lasper, consisting essential ron. Some varieties, like the striped and Egyptian jas per,on account of the richness and variety of the colors are of considerable value for ornamental vases,
etc. Jasper is susceptible of a high polish. B. D. C.-A fine yellowish colored clay. We would
advise you to submit it to some potter, who will test it by burningin the kiln. A manufacturer of paints would so inform you of its value as a pigmen
W.L. V.-No. 1 is galena, sulphtde of lead, the ordiIt is frequently argentiferous; but to It is frequently argentiferous; but to determine this, a
chemical analysis is necessary. No. 2 is blende, sulphide of zinc with quartz, and traces of iron pyrites. C. T. C.-No. 1 is iron pyrites, sometimes !used as
source of sulphur, a valuable mineral when in sufficien quantity nearmeans of transportation. No. 2 is quartz
colored with oxide of iron, of n talue.
J. McW. - Your specimen is chlorite with quartz and
mica. Chlorite is so named from a Gireek wordmeaning reen, on account of its cor it is a silicate of alumina and magnesia with oxide of fron and sometime C, J. B.-This specimen consists of galena (sulphide of lead) and blende (sulphide of zinc in quartz), Lyell's J. W - Thu m . persthene. It yields, by analysis, silica, alumina mag nesia. and lime, and its colors are produced by iron, etc G. J.-Red hematite, or red oxide of iron. It contain fo per cent of metallic fron. It ts valuable as a burnish-
er; the red powder which it gives on pulverizing is val able as a polishing power, and it is an excellent ore of E. N. B. asks : 1. What is the tunnage of
the United States steamer Swatara? By old measure ment she is about 970 tuns. 2. What are the dimension Of the engines of the torpedo boat Alarm and of th of the latter? 3. What are theilength s and breadths of the frigates Savine, Saratoga, St. Mary, St. Louis, , arae,
and Cyane? 4. What was the speed of the Dictator and Monadnock in their race, in 1865 or thereabouts ?-H.W color, before japanntng?-A. McK. asks : Who was the frst inventor of the letter copy ing press?-E. T. T. asks
Where can I find description of a man hoisting engine foruse in mine and other shafts?-I). L. M. asks : If the center core of the centennial tower is perpendicular and we drop a 1 lb . weight from the south side of its top, where will it strike at the base?-W. G. asks: How
can I silver glass globes, etc.? How are different colors produced? Can the silvering be done u
face with the same effect as on globes?

COMMONICATIONS RECEIVED

The Editor of the Scientific American acknowledges, with much pleasure, the re ceipt of original papers and contributions upon the following subjects
On Car Coupling Dangers. By S. H. D.
On the Moon Question. By M. R.
On the Minerals of South East Missouri By H. C. 'r.
On Heating Buildings. By W. IH. (i On a Cure for Rheumatism. By T. C. E. On the Erie Canal. By J.M.H.
On Preventing Damage from Boiler Exploions. By G. M

Also enquiries from the following
C. C. L.-J. S.-R.-W. B.-C. W. Y.-E.-E. B.-
II. E. N.-J. W.H -J.H. M.-J. W.-R. T.-R. L. M

Correspondents in different parts of the country ask Who makenines? Where can a large aquarium be ob tained? Who makes a substitute for india rubber? Who makes four wheeled velocipedes? Who makes the "fly
ing pontes" on which children ride ats ing ponies" on which children ride at fairs, etc.? Who
sells mulay saw mills? Who makes cooking stoves, heated by kerosene flame? Makers of the above article will probably promote their interests by advertising, i reply, in the Scientific American
Correspondents who write to ask the address of certain also those having goods for sale, or who want to tind partners, should send with their communications a the head of "Business and Personal," which is speciall devoted to such enquirie
[official.]

Index of Inventions

for which
Letters Patent of the United States January 27, 1874,
and each bearing that date. [Those narked (r) are reissued patents.]

Air, compressing, W. Johnston

 Ash box and sifter, J.D. Heins\section*{| 146,909 |
| :--- |
| 16,758 |} Auger, earth, T. A. Considine.

Auger, spike, R. o. \& J. Arbo Bale tie, cotton, W. A. Jordan. Beam and rafter,
Beer, etc., M. Hey
Bevel and try square, J. W. Hard
Boats, detaching, G. W. Mallory.
Boller, agricultural, J. G. Smith.
Boiler indicator and blow-oft, R. Montenegro.
Boiler, steam, B. . . Babbit. Boller, steam, B. T. Babbitt......................
Bolt work for safe doors, J. C. E. Richardson. Book, check, E. R. Moore..
Boot and shoe, J. L. Joyce.
oot and shoe, J. McMillin.. Boring machine, Doane \& Bugbee . K. Keith. Bottle, W. H. RIchardson
Bottle, H. W. W.
Bottle stopper, F. Kutscher (r)
Bridge, locomotive draw, G. Sickle Bridge, wrought iron, w, R. Laird. Buckle for suspending brooms, etc., H. P. Crous Burner, lamp, M. H. Collins... Car coupling, w. Day.......
Car coupling, H. K. Forbis. Car coupling, S. T. Lamb
ar coupling, S. T. Lamb........
ar coupling, H. E. Marchland.
ar coupling link, F. A. Markle
Car propeller, F. Mace
r propeller, F. Mac
ard cutting machine, J. Gilber
Carriage scat, J. A. Althouse.
Charr, child's, J. F. Thomson
hair, child's, J. F. Downing....
Chair, folding, F. W. Richardson
Chair, lady's sewing. J. F. Downing.
Cheese, etc., rennet for. M. A. Widge
Climp, flooring, E. Bucklin, J
lomp, joiner's noor, W. W. Ingrum
Coth, etc., stretehing, I. E. Palmer
lothes frame, J. C. Miller
Cothes wringer, J. Brinkerho
rn husking implement
Cotton chopper and cultivator,J.B.Underwood
oton cleaner for cotton gins, T. C. Craven
Cotton feeder for cotton gins, T. C. Cra
Cotton opener, Whithead $\&$ Atherton.
cultivator, J. P. Rumse
Igger, potatn planter, etc., M. Green
ish, soap J. M. Johnson
itching machine, J. M. \& M. M. Dunn
Draw stop mechanism, P.C. Dawson
Drilling machine, metal, M. Love..
Dyeing leather, N. Mary
Effervescent ligulds, preserving, E. F. Vallentin.
leva
Elevator,C.F.\& M. Stewart....
ngine, balanced slide valve, o. Krome
Engine reversing valve, P. T. Brownell
ngine valv
Faucet, H. B. Leach.
Fence, iron, Guttridge . Coleman
ilter, w. H. Lunt.
Fire extingulsher, Waggener \& Breed.
Fire place, A. Wynne...............
Fish hook, trolling, w. H. James
Flour packer, gear button for, L Creveling
ruit jar. T. \& H. Hale.
as by electrictty, lighting ing, Treacwell etal.
Gas retort, N. P. Treadwel
riping and cutting tool, J. Lindsa
Hand sup. Letchworth..
Harness, L. Ellis.
Harness, hame A. Davis.
Harrow, Van Order \& Dinnee
Harvester, cotton, W. H. Pedrick.
Harvester binder attachment. L
Harvester binder attachment. L. King
IJarvester, finger bar for, V. N. Collin
Narvester, inger bar for, V. N. Colling
Hatchway protector, E. H. Benedict.
Hatchway protector, E. H. Benedict
Hatehway, self-closing, J. W. Tripp
Head rest tor seat, G. Hills
ides, etc., bating, vickers \& Holmes
Hinge, lock, F. W. Nicholas................
Hinge and guard, trunk, W. B. Sofield. Hoop skirt, M. P. Bray..
Horse, detaching, I. L. Landis........ Hose patch, W. Flynn...
Hydrant, Z. E. Coffin (r)
e cream freezer, C. Gooch
ndicat or, station, Farn
nhaler, w. B. Hidden.
ampblack, making, J. Rogers
amp chimney, Blatsdell \& Young
ink for chain couplings
Lock, time, S. A. Little.
oom temple, Dutcher \& Stimpson
Sedical compound, J. S. Bruner..
Medical compound, Lippincott \& West Medicinal capsule, P. Cauhape Motion, converting, H. E. Marchan
Music transportation, teaching, W. J. Elderton aill extractor, H. Λ. Nettleton.
Nall plate feeder, J. C. Gould................
Nail plate feeder nose plece, J. C. Gould
es of, F. H. Bradley
Nut lock, T. J. McTighe....................
rgan, reed, R. Burdet
Pail, dinner, P. Hein
Pal, diner, P. Hein............
Pantaloons, W. o. Linthicum
Paper bag and bar mer aper bag and bay machine, R. w. Murphy Paper bag machine, M. Murph
Peat machine, L. W. Boynton
Perspectograph, A. R. East...............
Photographs, exhibiting, C. Dauthendey Photography, S. Anderson..
Pickers, lag for, G. F. Bard.
Pipe. drain, F. F. Boudrye Pipe. drain, F. F.
Planter, corn, w.
Plow, I. M. Ford
Plow clevises, etc., bending, C. F. Mock...................................
Plow, gang, A. G. \& J. R. Cummins...
Plow, gang, w. Newlin...........

Ponton cofier dam, J , Napler. Prese, clotuctes, webstere

 Press, cotton, J. Debeauvals. Press, hand, S. W. Soule.Press, lard, W. C. Marshall Printing press roller carrier, c.
Printing press, card, Watson et
Pruning implement, R. Bartly. Pruning implement,
Pump. T. Wilmington
Pump bushing, eto., A. S.
Pump, rotary, W. B. Ally
Puritter. middlings, M. Sower Quoin and chase co:abined, E. A. Warren
Rallway journal packing, H. B. Devil Railway rail, G. Herring. Rallway rail joint, J. Monk. Roadway. plank, C. Mc.
Sad iron, A. Strobel... ash fastener, J. Keit
\qquad
\qquad Saw handle, cross cut, W. Clemson Sawing machine, circ
Scale, pendulum, w .
\qquad
\qquad
seaming machine, G. H. Perkins
Seaming machine, J. H. Perkins
eparator, grain, F. W. Robinso
Sewing hose, E. P. Richardso
Shank laster, T. K
Shears, E. Nunan
Shears, E. Nunan
Shears, bar iron, W.X.Stevens........................
Sheet metal ware, forming, Von Culin \& De Butt
Sheet metal ware, forming, Von Culin \& De
Shirt , I. Zacharias.........................
Shirt bosom and prot
Shoemaker's edge plane, T. F. Baumann.
oshw case corner socket, J. W. Truby, (t)
Shutter fastener, W. T. Fry....
Shutter fastening, J. D. Winslo
Side rest, E. G. Chormann
Snow plow, I. A. Shinn...
Sower, seed, W. F. West.
spinning machine bobbin, W. F
Spraning mactine B. S. Devlan.
Sponge, trearing, P.
Sooons, burnishiug, E. Tolman.
Spring, door, J. Fitzgerald
stalk puller, C. Heacock..
Stove, cooking, D. E. Paris,
Stove, heating, E. A. Osborne
Stove, reservoir cooking, G.
Stove lining plate, J. Dwyer.
Stufting box gland, J. N. Colb.
Sugar. manufacture of, W. R. Elmenhers
sugar cylinders or disks, Harrison \& How
Tanning process, J. Anderson.......
Telegraph signal box, T. A. Edisod
Telegraph signal box, T. A.
Thill coupling, s. Bippus...
Thill coupling, S. Bippus
Tool holder, I. w. Fink
Toy builluing block, C.M. Crandall.
Toy hoop, G. C. Stone.
Toy money box, J. Hall..
rap, animal, D. Do
rray, A. Nittinger, Jr.
Treadie, A. Provancha
Trumpet for railway heads,
Truss, N. Jones, (r)...........
Tubing, metal, W. F. Brooks
ubing, metal, W. F. Brooks..
Umbrella case, J. C. Hurcombe
Valve gear for engines, R. Gree
Valve, safety, (G. Cockburn..
Valve, throttle, b. F. Wilson
Vehicle wheel,J. H. Glover..
entil
Wash board, J. W. Latcher.
Water cleansing apparatus, M. Nolden
Well tube filtering point, G. A.

APPLICATIONS FOR EXTENSIONS.

ars Patent. Hear pendingor the extension of the following Letters Patenl. Hear
ings upon the respective applications are appointed forhe days heretnafter mentioned
28,122.-Hoisting Machinery.-R. A. Wilder. April
88,130 --Baker's Oven.-D. McKenzie. April 15
28,130.-Barex's Oven.-D. McKenzie. April 15.
28,133 .-Knitting Machine.-E. Tiffany. April 1 is.
EXTENSIONS GRANTED

DESIGNS PATENTED.

7,133.-Clerry Comb.-H. S. Bartholomew, Bristul, Cumn
7,134.-Call Bell.-N. L. Bradley, West Meriden, Cumin
7,134.-Call Bell--N. L. Bradley, West Meriden, Cuml
7,135.-Application to Articles or Jewilay.-o.
Coggeshall, Providence, I.. I.
Coggeshall, Providence, I...
7.136.-WATCH Movementr.-A. C.

Mich.
7,144.-Clock Case.-I. Atkins, Bristol, Comu.

1,606.-Plows.-Carr \& Hobson, New York city
1,606.-PLows.-Carr \& Hobson, New York city.
1,607 .-MEDCNE.-F. Ho ward, Newton, N. Y.
1,608 \& 1,609.-CLotHes WRINGERS.-Metropolitan Wa-h
Ing Machine Co., MIddletield, Conn.
1,610.-Stek Pens. - W. Pedrick, Philadelphin, P P

- SCHEDULE OF PATENT FEES.
On each Caveat....
On each Trade Mark
810
8.55
815

On appeal to Examiners-in-Chief....
on appeal to Commissioner of Paten
On application for Reissue..................
On application for Extension of Patent
On applicatiou for Reissue.............................. 8
On application for Extension of Patent............
On granting the Extension.....................
On fling a Disclaimer
$\$ 15$
$\$ 20$
810

TRADE MARKS REGISTERED

TRADE MARKS REGISTERE
1,606.-PLows.-Carr \& Hobson, New York city
. .810
$\ldots . . .820$
.830
On application for Design (7 years)...
On application for Design (14 years).
$\stackrel{n}{4} \stackrel{s}{0}$
 8,130.-Bafer's Oven.-D. McKenzie. April 15.
$8,133 .-K$ nitring Machine.-E. Tiffiany. April 15 .

CANADIAN PATENTS

List of Patents Granted in Canada, from February 4 to February 10, 1874
s,064,-L. D. Sawyer, H. P. Coburn and I. Aues, Hamil toin, Wentworth county, ontario, asaiguees of L. B .
Hoit, Worcester, Mass., S . s . Improvements in ma. Cora Sheiler." Feb. 4, 1874 .
machines and proceess tor manutacturing extract on
mat
 Improved Machnue and Process for Maktug Bark Ex
tract." Feb 10,187 ,086.-L. W. Pond, Eau d.s. Improvements on boous, called "Pond's Im proved Boon." Feo. 10., 1874 .
3,087.-W. nitchards, Toronto,
cuttung open the ends of metallic. Machine for cuttung open the ends of metalltc cans contatinng,
oysters or preserved meat and frutt, called " Milchards' Can Opener." Feb. 10, 1874.
R. I., U. S. Improvement on ship's windlase, calle
 ments on those applances used for preventling
horses and cattle from running about, called "Rob Inson's Safety Yoke." Feb. 10, 184 .
3,090. - G. S. Harwood, Boston, Mass., U. S. Improve.
ments on frrs breaker feeder for carding machinery, ments on Irrt breaker feeder for carding machiner 10 ,
called "Improved Frrat Breaker Feeder." Feb. 10 ,

s., U. s. Improve
 3,093.-A. T. Millar, Ottawa, Ontario, asignee of A. R.
Giles, Ottawa, ontario. Improvements on carriage jack, called "Millar's Improved Wagon Jack." Fen.
10, 1877.
and

HOW TO OBTAIN

Patells and larveats

 IN CANADA.PATENTS are now granted to inventors incanaa, without distinctor as to the nation patents in Canada are nearly the same as in the
United States. The applicant is required to fur.
cate. It 18 also necessary for him to sign and make atidant to the origiualty of the invention.
The total expense, II ordnary cases, to apply for a
Canadlan patent is inc. the goverument fees for the tirst five years, and also our (Munn \& Co's) charges for preparing drawings, specti-
cattons and papers, und attending to the entire busines Tile holderot the patent 18 entitiled to two extensions of
the patent, ech for In all.
If the tinventor assigns the patent, the assignee enios all the rights of the inventor. any conventent scale. The dim
should not exceed twelve inches.
If the invention consists of a composition of matter samples of the composition,
gredients, must be furnished.
requested to send to us (MUNN patents in Canada ar model with a description, 1o their own language, showalso the fees as above for such term for the patent as they may elect. We will then mmedistely prepare the
drawings and specification, and send the latter to the It requires from four to civlve weeks' time, after com-
pletion of the papers, to corame the decision of the Canadlan Patent Office. Remit the rees by check, draft, or
Postal order. Do not dend the money in the box with model. GIve us your name in full, middlle name included
Inventiona that have already been patented in the United States for not more than one year may also be On filling an application for a Canadian patent. the Commisioner causes an examination as to the novelty
and utility of the invention. If found lacking in elther which case no portion of the fees paid will be returne to the applicant. ments in Canada temporarilly secure their improveFor further information about Canadian patents, as slguments, etc., address MUNN \& CO.,
VALUE OP PAREMTS,
And How to Obtain Them.
Practical Hints to Inventors.

COROBABLY no investment of a small sam
of money brings a greater return than the expense incurred in cbtaintng a patent, even
when the invention is butasmallone. Large Inventions are found to pay correspondingly
well. The names of Blanchard, low, Colt, Ericsson, Howe, McCormtck, Hoe and others, who have amassed immenge fortunes from their inventions, are well known.
And there are thousands of others who have More than Fifty thousand inventors have avail themselves of the services of MUNN \& Co. during the
TWENTY-SIX years they have acted as sollctors and Pubishers of the Soirntifio Amsionas. They stand at the head in this clans of business; and their large corps
of asolatants, montly selected from the ranks of the

Patent Office: men capable of rendering the best service
to the laventor, from the experience pracucally obtaned while examiners in the Patent oflce : enables Muwn \& Co. to do everything appertaining to patents bertai How ro ridelis This is the
closing in. closing in-
quiry in
in ry letter, describing some invention which comes to this complete application for a patent to the compresenting of Patents. Al application consists of a Model, Drawings, Petilion, Oath, and full Specification. Various ifficial rules and formalities must also be observed. The generally without success, after gusinesshimselfare delay, he ts usually glad to seek the atd of persons rienced in patent bustness, and have all the work done over ugain. The best plan is to solicit properadvice at he beginning. If the partles consulted are honorable they will advise whether the improvement is them is patentable, and will give him all the directions needful

To Make an Application for a Patent The applicant for a patent should furnish a model of it may be dispensed tcal production, he must furnish samples of the ingredi ents of which his composition consists. These should
be securely packed, the inventor's name marked on them nd sent by express, prepald. small models, from Way to remit money ,is by a draft or postal order, on New York, payable to ho orderof MUNN \& Co. Pers ons
who live in remote parts of the country can usually pur Who live in remote parts of the country can usually pur
chase drafts from their merchants on their New Yort

How Can I Best Secure My Invention? This is an inquiry which one inventor naturally asks ents. H18 answer generally is as follows, and correct: Construct a neat model, not over a foot in any dime ddressed to MuNs \& Co, description of its operation and merits. On receipt hereot, they will examine the invention carefully, and you have not time, or the means at hand, to construct a. provement as possible and send by mall. An answer as
to the prospect of ε patent will be recelved, usually, by return of mall. It is sometimes best to have a searcb
made at the Patent Offlce ; such a measure often saves

Preliminary Examination.

In order to have such search, make out a written de pencill, or pen and ink, sketch. Send these, with the fee of 45 , by maill, addressed to MUNN \& Co., 37 Park Row,
and to due time you will recelve an acknowledgment thereof, followed by a written report in regard to the patentability of your improvement. This spectal search at Washington, to ascertain whether the improvement

Forelgn Patents.

$7,000,000$; Belgluma, $5,000,000$; Austria, 36,000,000; Pruss $40,000,000$, and Russia, $70,000,000$. Patents may be securea by American citizens in all of these countries. Now is the
time, when business is dull at home, to takeadvantage of these immense foretgn fields. Mechanical Improvement neverbe a better time than the present to take pateats abroad. We have reliable business connections with the princtpal capitals of Europe. A large share of all the patents secured in foreign countries by Americans are
obtained through our Agency. Address MUNN \& Co., 37 Park Row, New York. CIrculars
on forelga patents, furnished free.

Trademarks.

any person or firm domictled in the United States, or any firm or corporation residing in any foreign country
where similar privileges are extended to ctitzens of the United States, may register their designsand obtain proeection. This is very important to manufacturers in this
country, and equally so to foreigners. For full particu-

Value of Extended Patents.

Dld patentees realize the fact that theirinventions are Wkety to be more productive of proft durng the seven
years of extension than the first full term for which their patents were granted, we think more would avall themolves of the extension privilege. Patents granted prior
oo 1861 may be extended for seven years, for the beneflt of the inventor, or of his helrs in casee of the decease ol
fomer, by due application to the Patent offce, ninety days before the termination of the patent. The extended me incres to the beneft of the inventor, the assigneee
under the first term having no rights under the extension except by special agreement. The Government fee fo an extension is
sional service be obtaineut to conduct the business before the Patent offce. Full information as to extensions
may be had by addresing Munn \& Co. 37 Park Row,New $\stackrel{\text { mar }}{\text { mar }}$
Persons desirtng to flie a caveat can have the papers
prepared in the shortest time, by sending a sketch and description of the invention. The Government fee for a caveat is $\$ 10$. A pamphlet of advice regarding applica
tions for patents and caveats is furnished gratis, on ap. pilcation b.
New Yors.

Denign Patents.

Foreign designers and manufacturers, who send good to this country, may secure patents here upon their new
patterns, and thus prevent others from fabricating or selling the same goods in this market.
A patent for a design may be granted to any person
whether cttizen or allen, for any new and original design for a manufacture, bust,statue, alto rellevo, or bas rellef any new and original dealgn for the printing of woolen, silk, cotton, or other tabrics, any new and original im. pression, ornament, pattern, print, or plcture, to be
printed, painted, cast, or otherwise placed on or worked into any article of manufacture.
Design patents are equally as important to citizens as
to forelgners. For full particulars send for pamphlet to

Copies of Patents.

Persons desiring any patent ts8ued from 1836 to Novem
ber 26,1867 , can be supplied with offlctal coples at a reas onable cost, the price depending
ngs and length of specification.
me the Patent ued since November 27,1867 , at whic and specifications, may be had by remitting to this of tice $\$ 1$.
A cop
A copy of the clams of any patent issued stince 1836
will be furnished for $\$ 1$. When ordering coples, please to remit for the same as above. and state name of patentee. title of invention,and date of patent. Address MIUNN \& Co.,Patent Solicitors
37 Park Row, New York. Mark Row, New York.
MUNN \& Co. will be happy to see inventors in person
at their offce, or to advise them by letter. In all cases at their offce, or to advise them by letter. In all cases
they may expect an honest opinion. For such consultathons, opinions, and advice, no charge plain; do not use pencll or pale ink; be brief. All business committed to our care, and al In all matters pertalning to patty confidential. interferences, procuring extensions, drawing assiga ments, examinations into the vallidity of patents, etc. spectalcare and attention is given. For informationana or pamphlets or instruc
Address

MUNN \& CO..
publishers scientific american,
37. Park Row, Now York.
OFFICE IN WASHINGTON-Corner F and $\boldsymbol{\gamma}$ tb
gatertisments.
Back Page
nside Page $\$ 1.00$ a line.
75 cents a line.
ngravings may head auivertisements at the same rate per
nne, oy measur ement, as the letter press. Advertisemen
must be received at publication oftce as early as Fridas
morruing to appear in next issue.
the value or the Scientific American as an advertising medium cannot be over -estimated. Its circulation is ten
times greater than that ot any similar journal now pub lisbed. It goess into all the States and Territories, andis read in all the principal libraries and reading-rooms oj
the world. We invite the attention of those who woish to make their business known to the annexeded rates. A busi ness mun wants something more than to see his adver isement in a prunted newspaper. He wants circulation.
If it is worth 25 cents per line to advertise in a paper of

Metal Organ Pipes,

Parnver's MANUAL, a complete prac

- JESSE HANEY \& CO., 190 Nabsau St., New York

 MILLING MACHINES

 Min
 2

$2 d$ Hand Machinery for Sale

1,000 I OIE Boredor Prilled at Ince. However close toferter compicated,
 ther hey are without togs, pullefgor betto

urpoes

 Both or last two arilet cheaper hani now

Todd \& Rafferty Machine Co.

JUDSON'S
Parzive Larific Cidick. "This is the bent chuck we ever naw.-H. A.
-TREETER \& CO., Globe Iron Works, Chicago."
"A splendid chuck. Will give you our next
order.-BUTTON ENGINE WORKS, Water-
hT roberts, Manufacturar,
Wythe Avenue and Hewes Stre

 ANNUAL OF PHRENOLOGY AND
 HUSSEY'S NATIONAL
 Cottage Architectire.

W00DW ARD'S 1,000 Woriing drawings.
 MONGKTON'S NATLONAL $\}$ Six Dollars, post MONCETON'S NATIONALSix Dix DIInTs, post

PHILIPS. JUSTICE,

Andrew's Patents.

BAIRD＇S PoMS FOR PRACTICAL MREN．
 henry carey baird 406 TNDUSTRAL PUBMSHR

POCKET BOOKS

Civil and Mechanical Engineers， Architects and Builders．

 Gris wolld．－Railroad Engineer＇s Pocket Com

 Hurst．－A Hand Book for Architectural Su

 Molesworth．－Pocket．Book of Useful Form

 Roper－A Catechism of High Pressure and

 henty carey baird， 406 WDUSTRIAT PUBLisERE

 1873 and 1874. Catalogues Free．
 MACHINERY，

THE Union Iron Milla，Pittebhrgh，Pad

The Bagle Foot Lathe APPURTENANCES

[^0]Niagara Steam Pump． CHAB．B．HARDICE，

Planing and Matching

N．
P．BIAISDEII \＆CO．，
 K UATNT，KUEER，AND KURIOUS is the

WANTED，A RELIABLE LADD

B0ILERS
AND

ASBESTOS FELTING COMPANY，

Engines and Boilers，

I ocomotive evgine for sale－

DH：BABBITTMEFZIL， BASHFULNESS AGENTS get the best seilin，Box 2 and ine in

An deutldhe Brfinder．
Diefe groge und thätige 『laffe unfrcr $\mathfrak{B e}$ boblferung maden wir befonders darau aufmertiam，Daß́ unfre §̧irma bura iffe $\mathfrak{B e r}$ bindung mit $23 a f$ fington und ben europäifden §auptitioten，befondere Borthgile zur ©rlan： gung bon in und ausländijden $\mathfrak{F a t e n t e n ~}$ bietet．
Seber Erfinber，gleidbiel welder $\mathfrak{R a t i o n a l i}$ tät angeförig，if ourぁ bie liberalen $\mathfrak{B a t e n t g e}$－ feke ber Berein：gten ©taater zum ßatentifixut für（Erfindungen beredtigt．Unife Firma if bereit，geftiikt auf 26jährige Erfajrung，Deutíde Erfinder jeber ふeit $\mathfrak{\text { jut }}$ beiatlen und zu mäßigen

Die Deutldje Gection if in ben ફannden fäbiger beutfder Эngenieure，：welde in ber Dffice periönlid mit Erfinbern bertefren werben．
Der ，Scientific American＂wiro in feinen Epalten bie bebeuterberen Erfinbungen be \｛predfert
©orrefpnbenz erbeten und prompt beant－ wortet．Bamphlete in beut \ddagger der Sprade wer ben auf $\mathfrak{B e r l a n g e n}$ franco zugefandt．

 Scientific American＂Patent Agentur 37 ®ate Row，

PIPES COVERED

1302 1832．SCHENCK＇S PATENT． 1871

 O1TS＇safety hoisting PoRTABLE STEAM ENGINES，COMBIN
䢒

I PON BRIDGES－CLARKE，REEEES\＆CO

W OOD－WORIING MACHINERY GEN

Machinery，

Cold Rolled Shafting．

Sturtevant Blowers．

（ HAMPION BPRING MATTRESS—The
 STEAM BAND SAW AND VENEER CUTTING MILL．

[^1]

JAMES LEFTEL \＆CO．，
SPRINGFIELD，OHIO，or 109 LibERTY ST．，N．Y．CITY
M

A Set of 12 Steel Lathe Dogs

1 Set of titeen Col cappe．

The fact that chis shafting has is per cent greater

 WHALEN TUREBINE NO Figks to purchaser

SCIENTIFIC AMERICAN．
the best mechanical paper IN THE WORLD． TWENTY－NINTH YEAR．
VOLUME XXX．－NEW SERIES． he publishers of the SCIENTIFIC AMERICAN ocg
o announce that on the third day of January， 1874 ，a
and ew volume commences．It will continue to be the alm
of the publishers to render the contents of the coming ear more attractive and useful than any of its prede．

The SCIENTIFIC AMERICAN is devoted to the inter ests of Popular Sclence，the Mechanic Arts，Manufac－
ures，Inventions，Agriculture，Commerce，andthe Indus rial pursuits generally；and it is valuable and instruc－ the Household，the Library，and the Reading Room．
The best Mechanical Paper in the World！ A ycar＇s numbers contain over 800 pages and several
undred engravings of new machines，useful and noveI

To the Mechanic and Manufacturer
No person engaged in any of the mechanical pursuits can．Every number contains from six to ten engravings in new machiuse and inv
TERMS
une copy，six moarths．
One copy，four months
One copyof Sclentific A
one copy of engraving，＂Men of Y rogress ${ }^{\text {＂}}$ ．． 10.00
One copy of Sclentific American for one year，and
one copy of＂Sclence Record＂for 18i，
one copy of＂Sclence Record＂for 18，．．．
Remit by postal order，dratf or express．
The postage on the Sclentific American is ive cents
per quarter，payable at the ofllce where received．Can－
ada subscribers must remit，with subscription， 25 cents
Address all letters
MUNIN \＆CO．，

Gduertisements.
Back Page
Iuside Page
$\mathbf{8 1 . 0 0}$ a line.
7.5 centa π line Engravinys mayy head adrerti.sements at thesame rate per ine by measurement as the etter press. Advertisements
must be received at publication oftce as early as Friday norning to appear in next issue.

H. W. JOHNS.

STE

Little Giant
IRON CUTTER,

Waltham Watches.

American Saw Co.

 Movable-Toothed Circular Saws.Eccentric Geared Power Presses CO PARTIES BUILDING AND USING

JUST OUT.

THE
Science Record

ROOTS FORGE, BLAST BLOWER SAVES HALF THE POWER REQUIRED FOR FAN.

DOUBLEEA CTING
SteamPumps VALALEY MACHELIABLEE COMPANY, Easthampton, Mass.
SUPER-FTEATRRS

WIRE ROPE.

JOHNA. ROEBLING'SSONS

N are the largest in the Vnited states. WORKS

 $\xrightarrow[\text { The manu. }]{\text { facture }}$ Tannate of Soda $\begin{gathered}\text { for use } \\ \text { arainst }\end{gathered}$

IUBRTCATORS.

Working Models

ANTI LAMINA

 AGENTS \$10 Per Day
To sell the Home Shuttle Sewing Machine money belling the " "Home Shuttle
 Pittsburgh, Pa., Chicago, Ill., or St. Louis, Mo.

 PRATT'S

ASTRAL

 ASTRATL NEAFIE \& LEVY, PENN WORKS,

$\overline{T H E ~ H E A L D ~ \& ~ S I S C O}$

 Patent Centrifugal Pumps,

HOUSTON'S PATENT
TURBINE WATER WHEEL.

WIRE ROPR.

PORTLAND CEMENT,

 EmeryWheels TANITE \rightarrow Imery Crincers

COVER YOUR BOILERS \& STEAM
 HUNTOON GOVERNOR

 gee. Matilusis vers

TOMANUFACTTURERS

 following facts and suggestionIn the first place: It is well known that the leading jobbing and commlssion merchants are invariably re convinced of their merits, and, if at all induced to ac as agents for their sale, claim so many advantages over the smaller merchants that the manufacturer is com pelled to give some form of monopoly to the principa that the thers ; thus one merrer ted, and that the name of the seller shall be substitute in its place; another, that the goods shall be stamped as though they were imported, inasmuch as he deal argery in imported goods; and a thrd insists on such he sedscount that he shall be enabled to undersel nander merchants; and thus at every the lation of the commission merchant and the retal

The prominent retall dealers are also unwilling to purchase goods that are not known, and reasonably he manufacturer is forced to address the consume giving such a description of his wares as will enable the purchaser to demand them, and thus the reluctan merchant of yesterday becomes the most enterprising tomers; his rivals hear of t , and straightway announce that they, too, have a full stock and are prepared to sel at close prices.
The advantages resulting from addressing the public are that
If the goods have merit. the demand will increas steadily and rapidly
The manufacturer of goods favorably known ca always exact his own terms, and jobbers and commis
sion merchants will be compelled in self interest become active and willing agents in his interest in stead of obstacles to his success.
The most noted and successful manufacturers ar those who have addressed the public. Their ware are the last to feel the effects of panics, and the tirs to show signs of activity after depressed period The cost of addressing the pubic is more thau pald of exacting your own terms; and, for the reason tha you greatly ald the jobbing merchant, you can reason bly demand the best terms.
There are many disadvantages attending making goods with a fictitious trade-mark to sult customers. lt makes the manufacturer a mere workman for the
seller, and gives the seller the opportunity of standing seller, and gives the seller the opportunity of standing
between the maker and consumer; and as a natura between the maker and consumer; and as a natural
consequence, the manufacturer is alwasy at the mercy of any one who will undertake to supply the retai dealer with the same line of goods at less price whereas, if the maker insists on having his own trade
mark on his goods, they are sold on their merits, and hifs rights are respected and apprectated by all con
cerned.

Having had, for many years, exclusive charge of the advertising of the best known and most successfu manufacturers, the undersigned feels warranted is
claiming a special qualification for preparing the buis ness announcements of manufacturers, and for procur realize the best results for the smallest outlay.

For all further detalls, address

JIIII IIIIIIIIG.

Waltham Building, No. 1 Bond St., N. Y

REFERENCES
TIFFANY \& C0.
ROBBINS \& APPLETON,
No. 1 Bond St, New York
AMERICAN WATCH CO.
CHENEY BROTHERS,
BREWSTER \& CO.,
ot Broome st.,

[^0]: $\boldsymbol{H Y}{ }^{\text {THE }}$＂PHLADELPAIA＂ $\boldsymbol{A} \boldsymbol{C} \boldsymbol{C} \boldsymbol{C}$ ． $\mathbf{P}^{\text {ISTON }}$ guided from both end ds；all working

[^1]:
 Veneer Cutting Machines－For Sale，

