a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

JAMES YOUNG, FOUNDER OF THE PARAFFIN OIL INDUSTRY.
" It would certainly be esteemed one of the grealest discoveries of the age if any one could succeed in condensing coal gas into a white dry solid odorless substance, portable, and capable of being placed upon a candlestick or burned in a lamp," say: Liebig in his "Familiar Letters on Chemistry," dated 1843. Seiven years later James Young, the subjest of the accompanying portrait, completed a long series of experiments with the successful extraction of paraffin from Boghead coal, and then, patenting his discovery, opened to the world a great and growing industry.
Mr. Young began life as a joiner, learning his trade in his father's shop. His spare time, however, was devoted to the study of chemistry and he eventually adopted that profersion, becoming at first assistant to Professor first assistant to Professor
Graham in the London Uni Grabam in the London Uni-
versity, and subsequently versity, and subsequently
manager of Muspratt's and after wards of Tennant's chem ical works. In 1848 he re signed his position in order to embark in the manufacture of lubricating and burning oil from petroleum; but as his spring becane exhausted he began a series of investihe began a series of investi-
gations in order to find an ar gations in order to find an ar
tificial substitute for the na tificial su
From his own internal con sciousness Mr. Young evolved the conclusion that petro leum, or its substitute, might be produced loy the action of heat on the coal, the vapor going up into the sand por going up into the sandstone to be condensed. The ultimate result of his re searches was that, out of a cannel that came to be mixed with the soda ash for making the alkali, lie got a quantity of liquid that contained par affin.

Patenting his discorery, Mr. Young, with ten others, establisbed works for the matuufacture of paraffin at Bathgate. Scotland, in the center of the Torbane Hill coal field, a district peculiar ly rich in cannel, and began the manufacture of which lie is the founder.
Commencing with the raw material, which is principally a stone of slaty texture and a dusky brown color, we may explain that shale pits are generally worked in juxtapoaition witb the crude oil manufactories. The shale pits vary in depth from twenty to -orty fathoms. The best qua lity is that which, when cut with a knife, does not splinter, but gives off a continu ous shaving, such as would be got from a piece of soap
or wax. On reaching the pit bank, the shale is tumbled into a crusher, in passing through which it is ground to pieces, sufficiently small to pass easily down the retorts. The more common retort is a flattened cylinder of cast iron, about twelve feet long, which contracts towards the ends, both of which are open, and its lower end dips two or three inches into a shallow pan filled with water. After the retort has been filled with broken shale, the furnace is brought into operation, so as to raise its middle zone to a low red heat. The process of distillation then goes on continuously. At a temperature of 300°, the hydrocarbons contained in the shale are given off in the shape of gas, which is, to a large extent, condensible. At most of the crude oil works, the incondensible vapor is collected in a gas holdt_{1}, and used for lighting the workshops. The oil obtained from the decomposition of the coals, having assumed the form of vapor, is collected in a large main having connections with the retorts. Through this main the vapor is con-
veyed to the condensers, which, as a rule, are stmilar to those used in gas works. As it passes through the condensers, the vapor is reduced to a liquid form, in which state it is run of into reservoirs, some of which contain as many as 100,000 gallons.
On leaving an apparatus called a separator, in which the two components of oil and water are parted from each other, the process of purification commences by a second distilla tion. The dark green fluid called crude oil, which at this stage has an appearance not unlike natural rock oil or petroleum, is now pumped into large iron pans, where it is boiled to dryness. In this way the hydrocarbons are once more
ting machine. The air thus refrigerated is brought to be ar on a stream of brine, which it converts into a freezing mix. ture, thus enabling solid parafin to be produced in the hot test summer weather. Remaining in solution at a tempera ture of 60°, paraffin coagulates into the solid form when the emperature is reduced to 32°. Crude solid paraffin is now worth from $\$ 150$ to $\$ 175$ per tun in England. Parafin candles, from which a clear, lustrous, and perfectly odorless light is obtained. are made at most of the principal Scotch oil works.
In a ddition to the Bathgate works, Mr. Young also pro jected the Addiewell works, on a very extensive scale. Th land leased for their require ments extended to some thre or four thousand acres, al containing shale and othe minerals; while some fort acres were set apart for th ite of the works. The re tort sheds are upwards of 200 yards in length, and each shed contains a doublo row of retorts. There are alto gether close on 400 retorts at these works. This represents a capacity for distilling ove 3,000 tuns of shale per week and producing 120,000 gallons of crude oil, yielding 50,000 to 60,000 gallons of burnin il, in addition to about 12 tuns of refined paraffin, and a large quantity of lubrica ting oil. To accomplish these results, the appliances are necessarily on a large scale The heavy vapors are collect ed in two und erground tanks, each capable of contoining 12,000 gallons. Any vapor which does not liquefy in the condensing main is passed through a four inch cast iron tubular condenser, which is made up of 1,300 nine fee lengths, or a course of nearly two and a quarter miles! Fcr the purposes of distillation upwards of twenty $2,000 \mathrm{ga}$ lon stills, made of malleable iron, are erected. There is a similarly large number of re fining stills, each capable of containing 4,000 gallons. A number of immense store tanks, each capable of con taining 15,000 gallons, are fit ted up contiguous to the re fining kilns, being so situated that they can collect the oil as it passes from one stage of the refining operations to an other. The building in whic the various oils are subject oremical treare sur hundred feet in length and eighty feet wide. It has two fireproof gables, cutting off in the center the engine house from which the machinery is actuated. Underneath the roof of the building there are altogether upwards of a hun dred large cast iron vessel with arge capity varging ressels
riven off in the form of gas, which, when condensed, yields an oil still rather green in color, but much thinner, lighter and purer than before. The oil in this state is taken to a set of closed vessels, where it undergoes a sort of scouring process, by being stirred up wik sulphuric acid. Run off into a settler, still further purified, it rises to the top, where a black tar, formed by the combination of sulphuric acid with various impurities, subsides to the bottom. Being again similarly treated with caustic soda, the oil is still further refined, previous to being passed on by pumps to undergo a third distillation, which is pursued with vitriol and soda until it becomes a thin light, and perfectly colorless fluid This is paraffin oil
Solid paraffin is obtained from the thicker and heavier oil, of which about twenty gallons are evolved from every hundred gallons of crude oil put through the refining process. The solid paration is made by the application of a refrigera-
with a capacity varying from 3,000 to 500 gallons. Upwards of 1,000 hands are employed at Addiewell, and in the shale pits adjoining over 500 miners are at work. One and a quarter million cubic feet of gas are produced at the works daily. The Addiewell shale yields from thirty to forty gallons of crude oil per tun, of the specific gravity of 0.870 .
Within the comparatively short space of twenty years, the mineral oil trede has attained such a magnitude that it gives employment to over 7,000 workmen, who earn weekly something like $\$ 50,000$ in wages. At the present time about 800,000 tuns of shale oil are annually distilled, producing nearly $30,000,000$ gallons of crude oil, while the quantity of refined burning oil obtained from the crude product is close upon $12,000,000$ gallons per annum, in addition to solid paraffin, naphtha, and other chemical products.
Of Mr. Young's more personal history we have left our selves little room to speak; but this is the less to be regret
ted, as his has been essentially a scientific career. For a
number of years past he has held the office of Presiden of the Andersonian University, in Glasgow. Surrounded by the members of his own family and by those of his lamented friend Livingstone-for he has really been in loco parentis to the children of the African traveler-Mr. Young, for whose portrait we are indebted to the Practical Magazine, now spends the great bulk of his time at his beautiful estate of Kelly, near Greenock, Scotland, or at his no less fine and romantic estate of Durris in Aberdeenshire. But he also mixes to somelittle extent in public life, contributing liberally to all movements of a patriotic or charitable character, and aiding by every means within his power the progress of scientific knowledge.

Suintifir Ammitu

MUNN \& CO., Editors and Proprietors. published weekly at
NO. 37 PARK ROW, NEW YORK.

o. D. MUNN.	A. E. beach.
TTEIMS	
One copy, one year.	
cıitb rates $\left\{\begin{array}{l}\text { Ten co } \\ \text { Over }\end{array}\right.$	00

VOLUME XXX, No. 7. [New Series.] Twenty-ninth Year
NEW YORK, SATURDAY, FEBRUARY 14, 1874.

velocity of nervous impulses.

In his suggestive lecture on the sun, our English visitor, Mr. R. A. Proctor, makes use of several striking illustrations to give an idea of the immense distance between us and our great luminary. One of these supposes an infant with an arm of the inconvenient length of ninety-one millions of miles, who should stretch forth his hand and touch the sun. Naturally the darling would have bis fin, er burnt; but, so slow is the transmission of feeling, he would have to wait until he was a hundred and thirty-five years old before he could be conscious of the fact. In this estimate Mr. Proc tor evidently adopts the rate of nerve motion obtained some twenty years ago by the observations of Dr. Hirsch-that is, about one bundred and eleven feet a second. The later and more elaborate researches of Dr. Schleske show a rapidity of conduction by the sensory nerves of about ninety-seven feet a second, which would require our sunhurnt infant to wait some years longer before discovering his indiscretion. If he trusted his sight in the matter, he might become aware of the danger of his distant member in the short space of eight minutes, so much more rapid is the speed of light than the movement of feeling along the nerves. The passage of vol ition along the motor nerves appears to be still slower; so that upwards of a century and a half, perhaps, might elaps before the mental order to withdraw the finger could be car ried out.
However slow the rate of nervous movement may be, a compared with the velocity of light or the still fleeter mo tion of electricity, it is nevertheless so rapid that until quite recently it was thought to be immeasurable, within the lim ited range in which our observation of it is possible. The most widely separated points in the course of any nerve allow but a few feet of diiference at best for timing the periods of sensation or volition; and the nervous impulse travels so quickly that such small distances would seem to be wholly annibilated. To our consciousness a prick on the great toe is discovered as promptly as one on the cheek ; and it is only by the intervention of the most delicate and in genious of mechanical contrivances that the difference in time is made apparent.
The first step toward maxing the solution of this interesting problem possible was taken in the antiphysiological art of gunnery. In the development of that art, it became necessary to measure the speed of projectiles, both in the gun and during the several stages of their flight. For this purpose Pouillet's chronoscope was devised, by means of which an electric current was made to indicate the duration of the most rapidly transient processes. Thus the passage
of a bullet along the barrel of a gun was found to occupy of a bullet along the barrel of a gun was found to occupy
the hundred and fiftieth part of a second. It quickly occurred to Helmholtz that here, possibly, was a means of measuring the speed of nervous action. His application of the
method was too complex for description in this place; it was, however, so trustworthy as to leave no doubt of the practi cal accuracy of its results. His object was to measure the intervals of time, if there were any, between the excitation of a nerve at two different points and the corresponding contractions of the muscle. The difference between such intervals would, of course, be the time required for the passage of the nervous impulse over the space between the two points of excitation. Experimenting with the leg of a frog, two sets of observations were obtained, differing from each other by a small but constant quantity. For the more distant point of excitation, a measurable fraction of a second longer was uniformly required to make the muscle contract. The difference of distance being exactly measured, the rate of propagation of the nervous impulse was easily calculated. Instead of rivaling the velocity of electricity, as had hitherto been supposed, the rapidity of conduction in the motor nerves of the frog was found to be no more than eighty five feet a second. All this was as early as 1851. To test the accuracy of the result thus obtained, Professor Helmholtz devised another and more simple apparatus, which he called a myographicon. In this the contracting muscle was made to directly register the beginning and suc cessive stages of the contraction by means of a style working against a rotating cylinder. This confirmed the general correctness of the estimate obtained with Pouillet's apparatuz, the rate demonstrated being a little over 89 feet a second.

Various improvements of the myographicon were soon suggested by Du Bois Raymond and others, whose observations, while differing slightly in result, were not conflicting with previous results, due allowance being made for temperature and other disturbing conditions. The maximum rate obtained by the last named observer was 30 meters a second, or $98 \frac{1}{3}$ feet. This was the estimate on which he based his widely quoted illustration of the harpooned whale. If one of these sea monsters, a hundred feet long, were struck in the tail, he said it would take a full second before the sense of pain could reach the victim's brain; and, omitting the time necessary for perception and volition, another second must pass before an order could be tel egraphed to the tail to retaliate by upsetting the harpooner's oat.
In all the experiments on motor nerves thus far, the leg of a frog had been used. In 1867, Baxt and Helmholtz applied the test to man, using an improvement of the myo graphicon suggested by Du Bois Raymond. The result gave for the motor nerves of man, corres ponding to that already obtained by Hirsch for the sensory nerves. A very careful series of experiments by the same observers, in the summer of 1869 , showed a mean rapidity for the motor nerves in man very much greater, or about
254 feet a second. But this by no means invalidated the 254 feet a second. But this by no means invalidated the result already obtained, since, as Helmholtz had shown, the ne tenth as great at 32° as at 60° or 70°.
More recently it has been established by Dr. Munck that he velocity of nervous impulses is different in different erves, and in different parts of the same nerves, the rapid ity increasing as the termination of the nerve is approached nd by Marey's observation, that fatigue of the muscles has he effect of seriously reducing the rate of nervous conduc tion; while Wittich has found that the rate is in some degree dependent on the mode of excitation, being greater when electricity is used than when the stimulus is mechancal. The same observer also reports a considerable difference between the rates of motor and sensory nerves, the atter excelling by at least a third
The measurement of the rate at which the nervous im. pulse travels brainward necessarily involves a process very different from any employed in the study of the motor nerves The problem was first attacked by the Swiss astronomer Dr. Hirsch. Soon after Helmholtz took up the other branch of he investigation, and his solution of it was as ingenious as it was successful. It involved the measurement, with the delicate chronometric instruments employed by astronomers, of the difference in time between the appreciation of impressions made at a distance from the brain, say on the great oe, and others nearer, as on the cheek. Roughly described, the plan adopted was substantially this: The observer sat with his finger on a signal key, with which he announced the perception of an electric shock as soon as possible after
feeling it, thus closing an electric circuit which had been broken by the shock. The minute interval between the reaking and closing of the circuit measured the time taken by the transmission of the shock to the brain, the time required for the perception of the sensation, time for willing he movement of the signal key, time for the transmission of this volition to the proper muscles, time for the contrac tion of the muscles, and finally the time lost in the physical process of signaling. Obviously all these parts, except the first, must be substantially the same in all experiments by he same person, using the same finger for making the signal. Any difference in the whole time must therefore be
owing to the greater or smaller distance of the particular point of impression from the brain. This difference being measured with tolerable exactness, it is possible to calculate pretty closely the rate at which the nervous impulse is ransmitted. The estimate first made by Dr. Hirsch was, as ready noted, 111 feet a second. More recent determina tions give averages ranging from 97 feet, by Dr. Schleske 136 feet, Wittich's estimate for a nervous impulse excited by electricity. With a mechanical stimulus, he found an average velocity of 124 feet. These figures, of course, are to
be taken relatively. The rate varies in different individ. uals, and, doubtless, in the same individual, with varying
conditions of health, temperature, and so on, the general average being about that of a high wind, a race horse, or a locomotive. Light excels it about ten million times, and electricity more than fifteen million times.
But, it may be asked, what is the use of all these investi gations? Of what account is a delay of the hundredth part of a second, more or less, in the perception of a sensation or the transmission of a volition, so long as we are not con scious of it? In astronomy, it has proved to be of material account; and it is more than probable that the knowledge of the normal rate of nervous impulses thus obtained may some day be of the greatest help in the diagnosis of nervous diseases.
With the nicest appliances for observing and timing phe nomena, there still remain discrepancies between the reports of different observers, however skillful. Time is required or the act of perception, for willing the pre-determined sig nal, and yet more fur executing the voiition, all of which directly affect the accuracy of the observation; and since hese intervals differ with different observers, the exact mo ment of an occurrence cannot be fixed without knowing and allowing for them.

THE AUTOPSY OF PROFESSOR AGASSIZ.

Dr. Morrill W yman, of Cambridge, Mass., has published a report on the autopsy recently made upon the body of Professor Agassiz, from which it may be deduced that the fessor Agassiz, from which it may be deduced that the
disease to which the great naturalist succumbed was one of disease to which the great naturalist succumbed was one of
long standing. The arteries at the base of the brain showed evidence of extensive chronic disease of their lining membrane,and also several important changes which were fatal In the left ventricle at the lower third, a firm,organized clot,of the size of a peach stone, attached to the wall at the anterior portion near the septum, was found, and around this clot a more recent one had formed, its center softened and granuiar. From this, probably some small portions had been car ried by the blood to the arteries at the base of the brain, doing their part in obstructing them and causing the fatal alterations above noted. The lungs showed evidence of old inflammation. The entire weight of the brain was 53.4 ounces avoirdupois, and its greatest weight,between the ages of 35 and 40 years, was estimated at 565 ounces.
Without entering into the technical details of the investi gation, the result shows that the trouble began with inflam mation of the lining membrane of the lungs, and that the morbid processes, carried by the blood from heart to brain, there disorganized and checked the circulation. The malady was too deeply situated to have admitted of surgical aid, nor could any effort of human skill have averted death from its effects. The autopsy was made in the interests of science and in deference to the expressed wishes of Professor Agas. siz, long since placed on record.

MICROSCOPIC CRYSTALS IN PLANTS.

Besides the familiar bundles of needle-shaped crystals, called raphides, dispersed throughout the cellular structure of certain plants, there are in the seed covers and leaves of several orders of plants, and in the pods of the bean family, multitudes of prismatic crystals of extrene minuteness, which have hitherto escaped detection. In the horned poppy, these crystals are as small as the 8,000 th of an inch in diameter. In the gooseberry and elm, they are $\frac{1}{3} \frac{1}{0} \sigma^{0}$ of an inch; in the black currant, about half as large; in the black bryony, they are about $\frac{10}{15 \sigma}$ of an inch in diameter, thickly set at regular distances throughout the seed covers. In the gooseberry, they are so distinctly and regularly placed in the outer skin-each crystal in a separate cell-that they present the appearance of crystaline tissues. In plants of the bean family, the size is variable, the average being about $\frac{1}{3000}$ of an inch. In the garden pea, they are much larger These crystals appear to consist chiefly of oxalate of lime, sometimes carbonate. Raphides are mainly phosphate of lime.
Plants most relished by animals are found to be especially rich in these microscopic crystals. In a piece of the midrib of a clover leaflet, $\frac{1}{70}$ of an inch in length, Mr. Gulliver, who has added more than any other to our knowledge of these minute but important products of vegetable action, has counted 10 chains of crystals with 25 in a chain, making 250 in all, or no less than 17,500 to the inch. In like manner 21,000 crystals were reckoned for one inch of the sutral margin of a single valve of a pea pod. The pod had four such margins, each three inches in length; so that in a sin. gle pod there must have been as many as 250,000 crystals. In view of the marvelous number of these crystals, as well as their regularity and constancy, Mr. Gulliver believes it no onger possible for physiologists to maintain that such struc ures are accidental freaks of nature, of no relation to or value in the life and use of the species.

THE FIRELESS LOCOMOTIVE.

Mr. Richard H. Buel, a well known consulting engineer in his city, has recently published in the Railroad Gazette an account of a trial trip with one of the engines of the Fireless Locomotive Company. This article is interesting as being the first in which the theory of the action has been fully set forth. We have, on several occasions, made mention in our columns of the fireless locomotive, and have pointed out the advantages it possesses in many cases, such as greater comparative safety, less need of skilled attendants, and the absence of smoke and other products of combustion. Mr. Buel, in the article referre! to, demonstrates that the loco motive can be operated successfully, if properly designed and managed; and he pointsout such improvements as seem to be desirable. We give a brief summary of the principal statements, omitting all mathematical work :

The locomotive with which the experiment was made consists of a platform set upon a four wheeled truck, carrying a cylindrical reservoir 37 inches in diameter and 9 feet long, with a steam dome 1 foot in diameter and 2 feet high. The steam space of the reservoir is connected with a pair of vertical engines, each having a diameter of 5 inches and a stroke of 7 inches; a 2 inch pipe, perforated with small holes, runs the whole length of the reservoir, near the bottom. In charging the reservcir thispipe is connected with the steam space of a stationary boiler, and steam is admitted until the pressure in the boiler and the reservoir are the same. The ocomotive is then ready to run, and will continue to move atil the water in the reservoir has cooled down so much a o be incapable of furnishing steam of a working pressure In making the trial trip, the pressure in the reservoir a tarting was 142 pounds per square inch; and at the end o 49 minutes, during 35.5 of which the engines were in motion it had fallen to 22 , giving a mean pressure during the run of 815 pounds per square inch. At the start, the reservoir wa half fuil of water. Indicator diagrams were taken during the run, and such data were noted as were possible. From these, it appears that the whole distance run was about $4 \cdot 5$ miles; the average horse power developed by the engines was $3 \cdot 61$, and the number of pounds of water evaporated in he reservoir, calculated from the indicator diagrams, 147. The writer then shows that if the engines had been designed in accordance with the best modern practice, the distance run by the locomotive, with this same evaporation, would have been from 2 to $2 \frac{1}{2}$ times as great. A calculation is then given, showing that, with a reservoir of the same size and engines about one and a half times as powerful as in the actual case, starting with a pressure in the reservoir of 275 pounds per square inch and ending with a pressure o 20 , the locomotive might be expected to continue in motion for nearly six hours before the reservoir required recharging.

THE ORIGIN OF THE DIAMOND

If we can trust a paragraph just now going the rounds of the press, the "diamond in the sky" of the nursery verses must be taken not as a happy comparison but as a genuine prophecy of scientific discovery.
It-that is, the paragraph-gravely alleges, on the strength of some supposed philosopher's opinion, that diamonds are in all probability a cosmic product-chips of original creation, so to speak-which the earth has picked up in the course of her travels through space; in short, that they are of meteoric origin. To the popular mind there must be something plausible in the suggestion, else it would not have been so favorably received by so many intelligent editors, ever on the alert for bits of valuable scientific information wherewith to regale their intelligent readers. Indeed, what could be more plausible to those whose knowledge of the diamond is embraced by the one word, carbon, and whose acquaintance with it is limited to some little familiarity with the appearance of the cut gem? How pure, how hard, how brilliant! What fitter product could there be of the heaven ly spaces? But facts are earthly and very stubborn, prone ever to take the shine out of splendid theories. It is true that the diamond is a puzzle even to chemists; that the mode of its formation is a mystery; that even its place in the order of Nature is a matter of doubt. Like amber, it is found among minerals. Amber is known to be a vegetable product ; and the diamond is thought by some to show strong evidence of a similar origin.
Its antecedents are mysterious, it must be admitted, but not wholly dark. Enough is known to make it certain that the notion of its cosmic origin is not to be seriously entertained, unless one is prepared to accept at the same time the farfetched, germ bearing meteor which Sir William Thomson suggested as the importer of life to our previously lifeless planet. In no other way, barring the earthly production of the gem, can we account for the presence of plant germs in the bodies of diamond crystals. Where in extra terrestrial spaces could the diamond, now at Berlin, have picked up its enclosed organic forms, so closely resembling protococcus plurialis? Or that other diamond its chain of green corpuscules, like polinoglcea macrocca?

As surely as flies in amber prove the presence of animal life during some stage in the formation of that singular substance, the vegetable organisms found in diamonds are proof that these gems were formed amid surroundings not inconsistent with the presence of vegetation, perhaps in water: a supposition that finds support not only in the fact of their occasional inclusion of organic matter, but still more in the presence of dendrites, such as form on minerals of aquatic origin, in a diamond belonging to Professor Goppert. Crystals of gold, iron and other minerals have also been found inside of diamonds ; still other diamonds are superficially impressed by sand and crystals, which leads some to believe them to have been originally soft; but it is quite as probable that these foreign substances may have interfered in some way with the perfect development of the diamond crystals, forc ing them to grow around or partly around the obstructions.

Thus, even in its crystaline condition, the diamond is not always such a simple body as is popularly supposed. The writer of the paragraph in question speaks of it as "pure carbon crystalized," fit product of pure matter in pure space. So it is, sometimes, but it is also stained with impurities a And lower down in the scale are the imperfectly crystaline forms, known as boart ard carbonado, harder than the true gem, but cruder and possibly more useful. It would be as a orrect to judge the common mineral quartz solely from its ppearance in what is known as Brazilian pebble; as the dia. mond solely from the flashing brilliant. One exhibits no
greater range of grades and shades and qualities than the ther.
Though supremely beautiful in its dest estate, the diamond appears to be but an earthly product, after all, subjoct like everything else, even theories, to earthly imperfections There may be a diamond factory up in the sky somewhere but the evidence of it is not strong. Arizona, even, prom ises a better field for exploration.

THE DEATH OF DR. LIVINGSTONE.

Information has recently reached England of the decease of Dr. Livingstone, the celebrated African explorer, during June last. It seems that, in journeying over a partially submerged country, he was obliged to wade some four days hrough quite deep water. The exposure brought on re attack of dysentery, of which he fell the victim.
David Livingstone was born near Glasgow, Scotland, in he year 1815, and at the age of twenty-five became one of the agents of the London Missionary Society in Southern Africa. During the sixteen years of his residence in that country, he traversed the region from the Cape of Good Hope o 10° south latitude, and then followed the Zambesi river to its mouth, thus completing a journey of over 11,000 miles. Returning to England, he organized a small expedition which et out in 1858, and returned in 1863, after further exploring he above mentioned country. In 1868 Dr. Livingstone again went back to Africa, and again entered a region totally unknown to civilization. Until found by the Herald reporter Stanley, some two years ago, little was heard from him, and numerous rumors of his death were extensively circulated After Stanley's departure, he continued his exploration, bu no news of him has been received until the present time when the British officials at Zanzibar transmit the intelli gence of his death.
It would be difficult to describe the labors of this most in defatigable of travelers in the space here at our disposal In his death geographical science loses one of its most perse vering students. It may be truly said that for a blank spot on the map of Africa-for a region unknown save through tradition-he has substituted a country rich, fertile and productive, which, before many years, will exercise no smal effect upon the commerce of the world. His labors toward the suppression of the slave trade are well known, and have tended largely to limit the spread and decrease the barbar ties of that infamous traffic. He resolutely refused to dis continue his work until he should believe it complete; and oo, isolating himself from home and his own race for nearly quarter of a century, he has existed among the savages, enduring privations without number. Though to many his toil may appear fruitless, and the years of patient search barren in directly useful results, the world is nevertheles the gainer by the example of "one who loved his fellow men," who, single hearted in his devotion, died as he had ived, a martyr to science.

STEAM BOILER EXPLOSIONS.-THE WORK

 CCOMPLISHED BY THE UNITED STATES COMMISSIONWe have received many inquiries of late as to what has been accomplished by the Commission appointed to investigate the causes of steam binler ex plosions. The preliminary eport of this Commission has just been transmitted to Con gress. Below we give a summary of the principal points :
The following Commissioners were appointed to conduc the experiments: D. D. Smith, Supervising Inspector-Gener a of Steam Vessels, President; Charles W. Copeland, of New York city ; Benjamin Crawford, of Alleghany City, Pa. Isaac V. Holmes, of Mount Vernon, O. ; and Francis B Stevens, of New Jersey. Mr. Stevens having declined to serve, J. R. Robinson, of Boston, Mass., was appointed in his place. The Commission above named held their first meeting on June 25, 1873, and in September issued circu lars to scientific men and engineers, asking for expressions of their views. In these circulars they state the various heories of steam boiler explosions :

1. Gradual increase of steam pressure
2. Low water and overhenting of the plates of the boiler.
3. Deposit of sediment or incrustation on the inner sur faces exposed to the fire.
4. The generation of explosive gases within the boiler 5. Electrical action
5. Percussive action of the water, in case of rupture oiler in the steam chamber
7, The water being deprived of air
6. Spheroidal condition of the wate
7. Repulsion of the water from the fire surfaces or plates.

The Commission also issued a circular, asking that safet valves be sent to them for test.
They received numerous replies to their first circular which they state contained valuable suggestions. More than twenty safety valves were sent to them, both from the United States and abroad

The Cominissioners divided themselves into two commit tees, the eastern and western, the first to make arrangement for conducting experiments at Sandy Hook, and the second at Pittsburgh. There were five boilers, with the necessary connections, at Sandy Hook, which had been placed there by Mr. Stevens, and these were presented to the Commissio by that gentleman. A bomb-proof was erected, the pipe were re-arranged and extended, a blower engine and blowe were set up, an old steamboat boiler was connected, and four ordinary range boilers were set up. Gages were pro cured, and were compared with each other and otherwise tested for several days. On the 7th of November, 1873, the

A boiler was tested by hydrostatic pressure to 182 pounds per square inch. A pyrometer was arranged so that the temperature of the crown sheet could be ascertained. Steam was raised to 50 pounds per square inch, and the water was blown off below the crown sheet. When the temperature of the latter had reached 750°, and the steam pressure was 54 pounds, one of the flues collapsed.
An old ssteamboat boiler that had been tested with cold water to a pressure of 44 pounds was next experimented with. A fire was made in the furnace, the boiler having an ample supply of water; and when the pressure was 70 pounds per square inch, two of the top sheets of the boiler gave way. The pressure gradually rcse to 73 or 74 pourds, when the safety valve suddenly opened and the experiment was brought to a close. A subsequent examination showed that an old crack had existed at some points of the rupture. On the 13th of November, the water in the pipgs was fro zen, and the Commissioners decided to suspend operations t Sandy Hook for the season.
Preparations had been completed for the experiments at Pittsburgh, five boilers being placed in position, bomb-proofs erected, and a shop and store room fitted up. The boilers were of the ordinary two flue variety in use on western rivers, two of them being of steel and three of iron.
Experiments were commenced on November 20, with one of the iron boilers. The fire was not sufficient to produce a greater pressure than 195 pounds per square inch. The ex periment was repeated, and a pressure of 202 pounds per square inch was attained. On the 21 st of November anothr boiler was tested, and the fire gave out when the pressure had reached 342 pounds per square inch, with no other effect than producing some slight leaks. The first boiler was also tried again, its furnace having been enlarged, but the highest pressure attained was 220 pounds per square inch. On the 22 d of November, the same boiler was tried once more, and this time a pressure of 275 pounds per square inch was reached before the fire gave out. Steam was then raised on the second boiler, and both flues were collapsed from end to nd. An instant before the collapse, two men entered the bomb-proof, which contained three recording gages. According to their statements the three gages showed, at this time,
400 , 450 , and 500 pounds per square inch, respectively; but the record given by the gages, when examined after the collapse, was 350 pounds. The Commissioners remark thatone of the results of the experiments bas been to develope the act that the instruments employed were quite unreliable, under the extraordinary pressures and temperatures to which they were subjected. No other results or conclusions re given, it being remarked that they can be more effectivey embodied in a final report. The Commissioners report hat about $\$ 50,000$ (half of the appropriation) has alresdy been expended.
The above is a careful synopsis of the report, given nearly in the words of the Commissioners. But we feel that we ought not to let the matter drop without some few com. ments. Our own position on the subject of boiler explosions has been often clearly defined, and our readers well know that we look for nothing more mysterious than too much steam, or too weak a boiler. At the same time, we are will ing to concede that great good may result from experiments of this kind, properly carried out. One part of the work of the Commission we have looked forward to with the great-
est interest. We refer to the test cf safety est interest. We refer to the test cf safety valves. The
only extended trial of the kind of which we have knowledge was made by the Life Suvin Commisain, a few years ago and the result of that trial showed clearly that many of the safety valves in common use were wrongly named. It is difficult for us to see why the Commission, organizing early in the summer, delayed their experiments until the approach of cold weather. It is still more difficult to understand why he cessation of operations has been so complete. Surely, if every change of pressure and temperature of the steam affects the accuracy of a gaze (which is quite a novel proposition to engineers) the Commissicners could continue their experiments, and reach a definite conclusion upon this point. The tests of safety valves, also, might well be continued through the winter. There is a strong suspicion in the minds of many that this Commission is not working purely in the interest of Science. It seems somewhat remarkable that the Supervising Inspector-General, who has so many other important duties, should be the chief man in the Com mission. The fact that such an enormous sum of money has been expended, with such slight results, is calculated to a waken inquiry ; add the refusal of Mr. Stevens, who inaugu rated this style of experiments, to serve on the Commission, is a most significant fact. The public are vitally interested in all work of this character, and we but do our duty in call evidenced by their own report

Dangers of Gasoline

At Bennington, V_{t}, last month, the knitting factory of H. E. Bradford was destroyed by fire. A leakage of the gasoline pipes permitted the flow of this heavy hydrocarbon gas along the floor until it reached the fire at the boiler when a terrible explosion took place, demolishing the build ing. Nine women were instantly killed and several others were badly hurt. One of the especial dangers attending the use of gasoline is that, in case of leakage, it moves along the cellar bottom or lower floors of the building, and there is no means of detecting its presence until it reackes fire, when the entire mass explodes with terrible violence. Many sad accidents have occurred from its use. The ondinary street gas is less dangerous, because, being lighter, it commingles with the air, and its presence is soon detec:ed by the olfactories.

ALLAN'S FLOATING BATTERIES AND SALOON

Mr. Alexander Allan, of Scarborough, well known to the world as the inventor of the straight link valve motion, has recently invented and patented certain modifications of the Bessemer steady cabin idea. Mr. Allan does not attempt to deal with the subject of sea sickness further than trying to show that the arrangements he suggests will reduce the movements which authorities state are the principal causes of it. These are given as (1st) pitching, (2d) rolling, (3d) angular pitching, (4th) angular rolling, (5th) vibration from waves striking the ship, (6th) tremor from engines, (7th) lon gitudinal advance of ship, (8th) upward and downward motion of translation, (9th) seeing swinging or moving objects, and smells of burnt grease, engine oom, and bilge water.
The first four motions are overcome by Fig. 1. The float is guided as a large pendulum, on its center ball and pillar, ballasted in the bottom, and floats freely in the water surrounding in its dock. If the ship takes all the four movements given above, the dock would do the same; but the water in the dock would keep its atmosphericlevel, and the pendulous spherical float would keep pace with it and maintain its level also, whatever point of the compass the movement came from.
As regards vibrations from waves striking the ship: The dock in which the cabins float is of about the least vibratory shape; it is away from the ship's side or skin; the medium in which the cabins float s free to take the reduced vibrations to its surface and liberate them in smaller waves, and would not affect the convex surface of the floating cabin.
As respecting the tremor from engines, this would be reduced in the same way by the non-vibratory shape of the dock, the floating medium carrying vibratory waves to its surface, and the strong shape of the floating body. Then for the longitudinal advance of the ship: While the ship remains on an even keel, we do not see any cause of disturbance more than in the advance of a railway train or carriage of any kind. As to the upward and downward motion of translation. This, Mr. Allan fears, cannot be entirely neutralized, and some speakers at the Society of Arts' discussion did not consider it the worst movement or a serious one. Should the ship plunge or lurch suddenly into the trough of a sea, the floating cabin would acquire momentum, which would be checked or buffeted, and the effect or shock would be reduced in the cabins by the float dipping lower (say by one eighth inch to one fourth inch), raising the water in the dock somewhat.
As to the subject of swinging or moving objects: In the lower cabin passengers would not see any article in motion. In the saloon, to prevent the passengers seeing the roof approaching and receding as the ship rolled, an awning could be arranged to cover large area of the roof, supported on the float like a huge umbrella;and should he roof touch the wires of support, by an extreme roll they would regain position as the ship righted. These cabins will be without the usual smells of engine room and bilge water.
Fig. 2 shows a modification of the arrangement in which the ball socket is fixed on a spindle fitted to a spider frame, secured to armored shields erected on deck. This keeps the caisson steady.
Mr. Allan's speci fication includes a number of ingenious modifications of the main principle, for which we have not space. We have said enough to show that Mr. Bessemer is not alone in the field of invention as a producer of steady platforms, and we have no doukt that Mr Allan's consummate knowledge as a mechanical enginee would enable him to command a great element of suc cess in putting his invention in practice.-The Engi neer
nfluence of the Winds on Vegetation. A writer in the American Exchange and Review has recent y called attention to the extent to which vegetation is depend ent for its life and growth on the winds, by which alone apor and rain are conveyed from the place of formation and powers of locomotion, to seek the necessary moisture, the
vegetable world, were it not for the air currents, would perish from the earth. This destruction would obviously be very rapid as the quantity of the solid matter in a plant is small compared to that of the water. And therefore the moisture f the soil is more necessary to vegetable growth than are the mineral constituents; and the water not only provides the means of growth of the plant, butalso accelerates the decay by which the solid constituents are returned to the earth o rise anew in the plant life of another generation
For the evaporation by which water is raised into vapors, for
subsequent distribution of that vapor and for its conden.

Fig. 1.-ALLAN'S FLOATING SALOON.

sation in the falling rain, Nature has provided the ceaseless, omnipresent aerial currents. The magnitude of this process of exhaustion and restitution may be estimated from the fact that the total daily discharge of all the rivers in the world into all the oceans is but the quantity of rain which has fallen in a single day. The sun's heat falling on a water surface converis a part of it into a vapor, which rises into and is diffused through the atmosphere, in obedience to the laws that govern the mingling of gases. Within a certain limit this vapor remains invisible, and cannot be distin guished from the main bulk of the air. At every temperatur the air is capable of holding in an invisible condition a definite quantity of vapor. The warmer the air, the more it can hold But for every temperature there is a point, beyond which it is impossible for inore vapor to pass it. This point is called

Fig. 2.-ALLAN'S FLOATING BATTERY.
the point of saturation, or the dew point. When the air has reached its dew point, and its temperature is increased, no visible effect is produced-its capacity for moisture is simply ncreased; but if its temperature be lowered, then it is no longer capable of holding all its moisture and the surplus becomes visible in some form or other of precipitation, name y, as fog, cloud, dew, rain, hail, or snow. In order to ac count, then, for any precipitation of moisture, it is necessary first that a sufficient quantity of vapor pass into the air to bring it to its dew point, and then that the temperature be owered. The quantity of moisture thus precipitated will clearly depend upon two circumstances, namely, the tempera
nour and a quar ter the acid was de composed ; and after eighteen hours, but 14 per cent of the primitive volume emained. As thi limit could not be passed, total decom position was be position was be-
lieved to have taken place.
M. Berthelot also notes a curious ano maly which is pre sented by the com bination of nitrous acid with oxygen in order to produce hyponitric acid Contrary to the usu al result, a dilata tion takes place Two volumes of ni rousacid unite with one of oxygen, and the result is four olumes of hyponi tric acid.
Passing to protoxde of nitrogen, the author finds that it s at about 1060° Fah. that the gas is decomposed by heat The electric spark decomposes it very rapidly; in one mi aute one third of he gas is decom
rature to which it was subsequently lowered. The higher he one and the lower the other, the greater will be the recipitation.
The means by which the lowering of the temperature can be accomplished are varied. A warm vapor-laden air may blow into a cold region, and thus have its temperature lowered sufficiently below the dew point to give a considerable rainfall. A cold wind may mingle with a warm one, and thus produce a moderate shower; or powerful ascending currents arry the moisture of the lower strata into the uppe regions of the atmosphere, where the temperature is very low.
The deposition of the moisture of the air is, then, in all the cases we have considered, referable to atmo spheric motion: for upon it will depend the presence or the absence of moisture in any region, and conse quently the presence or absence of vegetable life The ocean of aqueous vapor partakes perfectly of the movements of the atmosphere. It in fact derives its movements mainly from those of its bulkier neigh bor. It is to the motion of the winds, then, that we must look for the explanation of the peculiarities tha attend the distribution of moisture

Car Coupling Slaughters.

During the eleven monthsending December 1, 1873 four hundred persons were killed while coupling cars on the Pennsylvania railroad. "Is it the fault of the inventions, or is it the fault of the railway companies, that some of the improved devices be not more wide ly used, and the slaughter of employees stopped?" asks a correspondent of the Commercial Advertiser Several devices have been fully described and illustrated in our columns, and many have, when practically used, proved valuable inventions. W think there is little room for argument on the poin that if a railroad company chooses to ignore modern improvements, and persists in retaining on its car he old fashioned connection, saving perhaps the few dollar otherwise invested in experimenting at the cost of the lives of hundreds of its employees, the blame falls fairly and squarely on their shoulders and the public should fully appreciate the fact.

The Stability and Reciprocal; Metamorphoses of the Oxides of Nitrogen.
The above subject, already studied by many chemists, has recently been investigated by M. Berthelot, and many new facts have been adduced. Hyponitric acid, until the presen considered to be most stable of the oxides of nitrogen, has been, by the above chemist, decomposed into oxygen and nitrogen. The gas, hermetically sealed up in a glass tube, was submitted to the action of series of electric sparks. In was submitted to the action of series of hour and a acid with oxygen. Two volumes ee result is four of posed and at the end of three minutes, two thirds or thre quarters. The deutoxide of nitrogen, under the action of he spark, resolves itself, one part into nitrogen and oxygen and the other into protoxide of nitrogen and oxygen. The protoxide at the limit forms two thirds of the decomposed ortion. Under the influence of prolonged contact (cold) with the binoxide, many mineral and organic substances un dergo slow and partial oxidation.
"A Mass. Man" points out that Massachusetts stand next to Connecticut on the roll of inventive genius, as show hy the table on page 65 of our current volume.

CAPTAIN GALTON'S vENTILATING FIREPLACE.
Mr. C. William Siemens, F.R.S., recently delivered a lecture before the operative classes at Bradford, England, on the important subject of fuel. The portion of the discourse under the subheading of domestic consumption was mainly devoted to advocating the use of Captain Galton's ventila ting fireplace, a sectional engraving of which we herewit

present. Referring to the
invention, Mr. Siemens
termed it "the one grate that combines on increased amount of comfort with reasonable economy, and whish, although accessible to all, is as yet very little used." It is not patented
The device differs little in external appearance from an ordinary grate except thatit has a high brick back which forms the exterio boundary of a chamber, c, into which air passes directly from without, be comes moderately heated (to $84^{\circ} \mathrm{Fah}$.), and using, in separate flue, e, is injected into the room at f, unde the ceiling. A plenum o pressure is thus established within the room, whereby indrafts through doors and windows are avoided, and the air is continually renewed by passing away through the fireplace chim ney as usual. The latter d, it will be noticed, is en circled by the air Hlues, s that the heat of the ascend ing products of combustion is utilized throughout ita whole length. a and b are respectively the grate and ash pit, which are curved outwards slightly in ad vance of the mantel.
Mr. Siemens remarks tha he cheerfulness of an open fire, the comfort of a room filled with fresh but mode rately warmed air, and grea conomy of fuel, are here happily combined with unques tionable efficiency and simplicity. Such high commendation manating from so distinguished an authority will, we think bespeak for the apparatus more than an ordinary share o attention. It seems to us that the principle underlying its construction may lead to some better arrangement of heat ing and ventilating devices in our public halls and school rooms, and thus prevent many of the difficulties pointed ou in our recent editorial on this important subject.

HOW GREENBACKS ARE CANCELLED

The money received by mail comes in all sorts of damaged conditions, and has all imaginable kinds of horrible or ludi crous histories. Sometimes it has been swallowed by a cal or a goat, which, finding a pocketbook carelessly left within its reach, proceeded to regale itself with the salt which the leather had absorbed from the perspiration, until the book was forced open and the contents exposed. The green notes had an inviting and familiar appearance, and the confiding animal eagerly swallowed them, and so sealed his own death warrant; for the owner, returning and seeing the wreck of the pocketbook, rightly conjectured where his money had disappeared, put the unwilling thief to death and recovered the half digested notes. Others have been found on the bodies of drowned or murdered men, weeks perchance after their death. Frequently they have been so burned that nothing remains but the charred resemblance of notes, so frail and brittle that a slight touch will change thern to cin ders.
The identification and restoration of notes which have been burnt is a difficult andinteresting operation. Every one has observed that a printed paper, after having been burnt, if not subjected to a strong draft or roughly handled, retain its original form, and that the printing is distinct and leg ble, and appears as if it had been raised or embossed on the paper, but that if it is touched never so gently it crumbles into dust. Notes in this condition are frequently received at the Department for redemption. The counter subjects each note and fragment of a note to a careful inspection in a strong light, under a powerful glass, until she determines the denomination and issue, and then pastes it upon a piec of thin, tough paper, in order that it may be safely handled But this pasting, by destroying the raised or embossed ap pearance, at once and for ever precludes all chance of again identifying the kind or denomination of the note. Hence forth it is but a plain, black piece of paper, giving no indi cation that it ever represented money. It is therefore very necessary that the counter should be quite sure that her judgment is correct before the note is pasted upon the paper. She must also-a most difficult task-determine whe ther the note is genuine or counterfeit. And yet counterfeits are discovered by these experts among the charred remains of notes with almost as much certainty as among perfect notes.

The whole basement floor of the north wing of the Trea ury building, at Washington, including the large room uner the cash room, is occupied by these busy counters. One hundred and eighty women are engaged in counting redeemed money in this division. The work is far from pleasant, for the money is often deplorably dirty and omits the most nauseating smells.
Such labor cannot fail to be detrimental to health, espe cially as want of space has necessitated the crowding of the counters almost as closely as they can sit. Hence we are not urprised to see that many of the women are pale and thin nd apparently weary and careworn.
Entering the last room to which our inspection will lead s, a busy scene is presented. Messengers, each accompa ied by a counter, are hastening to and fro with boxes containing bundles of money carefully strapped and labeled, while a bevy of women surround a large table which they almost screen from our gaze, but which the continua thud!" " thud!" that salutes our ears proclaims to be the site of the cancelling machine. Approaching, we find that

Fig. 1.-Cancelling redeemed greenbacks. the apparatus consists of two heavy horizontal steel bars, about five feet in length, working on pivots about a foot rom the ends nearest to us. To the shorter end of each is ttached a punch, while the other is connected by a lever with a crank in the sub-basement beneath, which is propelled by a turbine waier wheel, furnished with Potomac water from one of the pipes which supply the building. The bundles of notes, each containing one hundred pieces, re passed rapidly and cexterously under the punch by a man whose fingers seem ever just on the verge of complete destruction, but which always escape in some marvelous manner unhurt and whole. The punch savagely and easily cuts a hole in each end of each bundle. This is done for the purpose of effectual cancellation. The bundles, when al have been punched, are returned to the box, the messenger icks it up, and the counter and he hasten away to turn ove the money to the clerk who is to make up the cash account of the division and ascertain whether all the money received and delivered to the counters has been returned and account d for. From the time when the money is received by her until it is thus delivered, the counter is responsible for it and is required to keep it constantly within sight, except when it is locked away for the night. For this reason she ccompanies the messenger who carries her box to the cancelling room, superintends the punching, and returns with he money to the clerk, to whom it is delivered, when her esponsibility ends.
Just beyond the punches, a knife of formidable aspect and

Fig. 2.-cutting cancelled greenbacks.
proportions is engaged in cutting the cancelled bundles in two in the middle of each note. After a sufficient quantity of money has been counted, it is made up into lots of about one hundred thousand dollars of fractional currency and proportionately larger amounts of legal tender notes, and sent in to be cut in two by this knife. The straps with which the bundles of notes are surrounded are so printed as to be also cut in two, and to show upon each half the denomination of the notes, the issue, and the number inclosed. The counter's initials and the date of counting are also written upon each end, as well as a number or letter to identify the bundle, so that if, upon recounting the money, errors are discovered, they can be traced in a moment to the proper counter, date, and bundle. One set of half notes is delivered to counters in the Secretary's office, the other to counters in the Register's office, in each of which the money is recounted. This is done as a check upon the Treasurer's counters, and for the purpose of securing as complete accuracy as pos sible.

IMPROVED WOOD SCREW

Messrs. A. N. Ladd and C. N. Corning, of Concord, N. H. are the patentees of a novel and apparently useful form of wood screw herewith illus. trated. The improvement consists in combining the German twist bit with the screw in such a manner that the latter will cut its own way or hole in the wood, so as to en ter the same easily and avoid splitting or other difficulty. The device may be used with the common straight bit, if desired, but the German twist bit, as shown at A, Fig. 1, is believed to be the best combination. A section of the screw is represented at Fig. 2, and Fig. 3 is a similar view of a cutter (B. Fig. 1) in the shaft of the screw, by which a hole is cut for the shaft of a larger size than is made by the bit
 portion of the screw. The channel or groove, C, is cut, no through the threads alone, but into the body of the screwt through the threads alone, but into the
and retains the wood cut away by the bit.

DRAWING AND SKETCHING-..-PRACTICAL HINTS AND RECIPES.

We give below a number of useful suggestions and recipes relating to drawing, compiled from a variety of sources and comprising, so far as possible, the most recent improvements, as well as the plainest directions attainable, which seem to us likely to be of service to the student of the art.
In selecting a drawing board, choose wood of close grain, well seasoned, free from knots, and of even surface. Notice that the edges are perfectly straight and at right angles. A slight roundness may be given to the face with advantage in order that the drawing paper when stretched may rest tightly and flatly upon it. An apparently excellent form of board, lately introduced in the market, consists of strips of pine wood glued up to the required width with the heart side of each piece of wood to the surface. A pair of hard wood ledges are screwed to the back, the screws passing through the ledges in oblong slots bushed with brass,which fit closely under the heads and yet allow the screws to move freely when drawn by the contraction of the board. To give the ledges power to resist the tendency of the surface to warp, a series of grooves are sunk in, half the thickness of the board over the entire back. These grooves take the transverse strength out of the wood to allow it to be controlled by the ledges, leaving at the same time the longitudinal strength of the wood nearly unimpaired. A slip of hardwood is let into the edge of the board and sawn apart at about every inch to admit contraction. Its object is to make the two working edges perfectly smooth, thus allowing of an easy movement with the square
Whatman's (English) drawing paper is generally preferred It is known by the following names, according to dimensions of sheet: Demy 15×20 inches, medium 17×22, royal 19×24 super royal 19×27, elephant 23×28, imperial 22×30,colombier 23×34, atlas 26×34, double elephant $27 \times$ 40 , antiquarian 31×53. Its cost for "selected best" varies from $\$ 1.00$ to $\$ 30.00$ per quire. Paper can usually be bought ready mounted on muslin, but the process can be easily accomplished by first tacking the cloth tightly to a frame and covering it with a coat of strong size, leaving the same until nearly dry. The sheet is then well laid with paste, in two coats, the second being applied some ten minutes after the first. The paper must lastly be placed carefully upon the muslin, patted down all over with a clean cloth, and left to become thoroughly dry before removing from the board
In fastening paper to the drawing board, there is no necessity of soaking the sheet, as is recommended in many handbooks on drawing. Lay the paper, back up, and go over it with a large flat camel's hair brush well filled with clean water. Wet the sheet to a distance of about an inch and a half from the edges. Two applications of water are sufficient, the second being applied when the wet gloss of the first disappears. Then turn the sheet over, wet side against the board, and bend up the edges, tightly all round, against a Hat ruler, afierward passing the paste brush between the turned up edge and board. The ruler is afterward drawn
over the glued edge and pressed along. The next adjoining edge must be treated in the same manner and so on until all sides are secured. Wetting paper on the right side with a sponge or cloth is a bad habit and tends to destroy the fine surface, rendering it unsuitable to receive clean washes of ink or color. The right side of Whatman's paper can be told by holding the sheet up to the window,and noticing that the water mark reads from left to right; the reverse side should not be used except for rough sketching, as it generally has knots and other imperfections, which exhibit themselves when washed over.
As regards pencils, the market offers quite a number of excellent varieties from which a selection can be made. Faber's are standard articles, though a cheaper but equally good pencilis made by the Dixon Crucible Company. The latter is used by the artists of the Scientific American in drawing upon wood, no light test for the qualities of a pencil, by the way, and has proved of excellent quality. In sharpening a pencil, it should be remembered that, for sketch. ing, a fine conical point is required, but for fine drawing it is much better to have the end thin and flat. To produce this, the wood is cut away from two sides only, so as to make a chisel-shaped extremity, and afterwards removed from the other sides only sufficient to slightly round the edge. This kind of a point can easily be kept sharp by rubbing the lead occasionally upon a bit of fine sand paper
The best eraser is known as bottle rubber, which is quite soft. It has the merit of not fretting the surface of the paper. A good way of hiding small mistakes in ink lines, in places where scraping with a knife cannot be well accomplished, is to touch the spots over with flake white, mixed rather dry, with a fine sable brush.
A good black and indelible drawing ink, it is stated, may be made by dissolving shellac in a hot water solution of borax and rubbing up in this a fine quality of Indian ink. After using, the drawing pen should be dipped in alcohol and wiped dry. Good Indian ink will show, when the stick is broken, a very bright and almost prismatic colored fracture if employed singly and without admixture, it should be used at the first rubbing. Redissolving renders its washes cloudy and irregular in tone.
To fix pencil drawings, various plans are in use. The simplest way is to cover the paper with new milk and dry carefully. Water starch, cold isinglass water, size or rice water, may also be applied with a camel's hair brush. Collodion mixed with paraffin, stearin, or castor oil, has been sug. gested for the same purpose, and is said to
sketches much clearer and more easily copied.
Drawings may be copied in facsimile by the aid of vari ous mechanical contrivances, or transferred by the use of transfer paper. The latter is made by rubbing white paper with a composition consisting of 2 ounces of tallow, $\frac{1}{2}$ ounce powdered black lead, $\frac{1}{4}$ pint linseed oil, and sufficient lamp black to make it of the consistency of cream. These should be melted together, and rubbed on the paper while hot. The prepared sheet is placed between the original and the blank paper, blackened side against the latter. The lines of the original are then gone over with a steel point (a darning needle with the point ground off will answer) and are thus caused to appear on the paper below. Copies may be multiplied by perforating the picture, or a copy of it if it be desir able not to destroy the original, with a number of fine needle holes along the outlines, and then laying upon the paper. A piece of cotton wool dipped in finely powdered blacklead,(or cl:alk, which is better), is then gently patted over the surface, so that the powder passes through the holes and appears on the sheet below. The outline is then filled out with pencil.
Rénault's reproducing process consists in first making the drawing on strong glazed paper with glutinous ink and afterwards covering the lines with bronze powder. If the draw ing thus prepared be pressed upon a sheet of sensitized paper, the lines of the original drawings are reproduced in black by the chemical action of the pulverized metal upon the sensi ized paper. By softening the ink with the vapor of alcohol, and renewing the bronze when it is exhausted, many impressions may be produced.
Tracing paper can almost always be readily procured at a small expense. It is not difficult to make by washing thin paper with a mixture of spirits of turpentine 6 , resin 1 and boiled nut oil 1, parts by weight, applied with a soft ponge; or a simpler way is to brush over thin unsized paper with a varnish of equal parts of Canada balsam and turpentine. Vegetable parchment, sometimes used for drawing purposes, is made by dipping ordinary paper for a few seconds in a solution containing one part water to six sul phuric acid. Careful washing at once is necessary to remove every trace of the acid.
In using colors, at the outset purchase none but the very best, as with no other can purity of tone in washes be gained The following table, showing the general indication of tints used in mechanical drawing, will perhaps prove useful Carmine or crimson lake for brickwork in plan or section to be executed; Prussian blue, flint work, lead, or parts of brickwork to be removed by alteration; Venetian red, bricis work in elevation ; violet carmine, granite ; raw sienna, timber not oak; burnt sienna, oak or teak; Indian yellow, fir Indian red, mahogany; sepia, concrete or stone; burnt um ber, clay earth; neutral tint or Payne's gray, cast iron rough wrought iron; dark cadmium, gun metal; gamboge brass; indigo, bright wrought iron; indigo with a little lake, bright steel; Hooker's green, meadow land; cobalt blue, sky. If washes do not flow well, owing to greasiness of the paper, a few drops of prepared ox gall in the water with which they are mixed will generally remedy the trouble. In coloring tracings on thin paper, work on the back and mix the colors quite dark.

Crartegyoudence.

Total Eclipse of the Moon, October 24, 1874 To the Editor of the Scientific American:
On October 24, 1874, a total eclipse of the moon will oc Canada.

The accompanying diagram represents the path of the moon through the earth's shadow during the eclipse and the moon's position at the time of the middle of the eclipse. The first and last contact with the umbra, or shadow, are also shown. The Washington mean times of the different plases, as given in the American Nautical Almanac for 1874, areas follows:

First contact with penumbra........... 11h. 35.8 m .
First contact with shadow.
Total phase begins.
Middle of eclipse.
Total phase ends.
Last contact with shadow.
Last contact with penumbra
Magnitude of eclipse (moon's diameter $=1$)
Duration of total phase.
.

12h. 33.7 m .
13h. 51.7 m .
$14 \mathrm{~h} .8 \cdot 6 \mathrm{~m}$.
$14 \mathrm{~h} .25 \cdot 4 \mathrm{~m}$.
15h. $43 \cdot 5 \mathrm{~m}$.
16h. $41 \cdot 3 \mathrm{~m}$.
1.053

The mean time at which the phases occur at any other lace may be easily found by simply adding or subtracting the longitude of the place from Washington, to or from the times above given, the correction being added when the longitude is east, or subtracted when it is west
The times of the occurrence of this eclipse, as given above are astronomical, being reckoned from 0h. at noon of October 24 upwards, so that the greater portion of the eclipse occurs on the morning of October 25 , civil time.
St. Catharine's, Ontario, Canada.
J. M. Barr.

The Devil Fish or Newfoundland.

To the Editor of the Scientific American:
In your article on the devil fish. in No. 9, volume XXIX., you speak of "historians, otherwise credible, reporting the capture of some which measured 40 feet." As a proof of their veracity, I inclose you a photograph of an arm or suck er which measures 17 feet in length. It was coiled for the purpose of bringing the whole within the field of the ra, the diameter being 2 feet 6 inches as it lay on the table of the artist. It is of a nearly uniform circumference of $3 \frac{1}{2}$ inches for 14 feet 6 inches of its length, and 6 inches at the hickest portion of the remainder containing the suckers.
While off the eastern end of Belleisle, in Conception Bay, he crew of a fishing boat noticed what they supposed to be n old sail upon the water, and proceeded to make prize by triking it with a boat hook, when, to their astonishment, the limb now photographed was thrown across the boat from gunwale to gunwale; it was broken from the creature some feet (not less than two) from the body, and subsequently pieces were cut off by the boys of the settlement to which the men belonged, before ${ }^{7}$ an attempt was made to preserve the specimen. How much was lost in this way cannot be told. When fresh, the length was taken by a reliable person as 19 feet, but with the same tape line, some time afterwards, found it reduced to 17 , probably by the strong pickle used for its preservation.
Another sucker, described as being as thick as a man's thigh, was also thrown into the boat, of which a length of five feet was chopped off but, unfortunately, lost. The men used their oars as levers over the gunwale to pry the boat from the creature, which shortly rushed off at great speed, then, stopping, went into a flurry, throwing the peculiar inky fluid of the squid with great violence over a space of two hundred yards, and in such quantities as would have wamped the boat had the discharge taken place close to it. The hurried and alarmed observations of the crew are, of course, worth but little as to actual size, but the men think the total length could not have been less than 60 feet.
About three weeks previously a creature, described as of great length (probably 60 feet), was seen from the shore while swimming in the bay, within a few miles of the same place.
The specimen is now in spirits in the museum being formed by Alexander Murray, Esq., F.G.S., our geological surveyor.
Since writing the foregoing, an entire devil fish was capured by getting foul of some nets at Torbay, about nine miles from here. The body is about 6 feet 6 inches long, and the eight main tentacles about the same length, with two thers of 22 ferst each, measured from the head to the ex treme point. To bring the entire length into view these vere hung over a rail. The body and eight tentacles around the head are about of equal length, and this seems to be the
usual proportion of the structure of these creatures, with
two other slenderer arms three and a half to four times longer.

The notice of this specimen has brought out many anec dotes of large squids having been stranded on our shores, in all cases reliable as to great size, and more or less so as to actual dimensions, which range (for the bodies) to eighty and even ninety feet. Without accepting them as authentic, the fact seems established that a considerable number of these creatures, of large size, exist in the Newfoundland and Labrador waters.
J. T. Neville,

St. John's, Newfoundland.
Inepector of Lighthouses.
[Our thanks are due to our correspondent for the photographs mentioned in his letter, and which have safely reached us. They exhibit a hideous and formidable mon. ster, and represent with great clearness, on the long tentacles, the suckers by which the animal attaches itself to whatever may come within its grasp. It is to this species that Victor Hugo alludes in his novel, "The Toilers of the Sea," in which one of the personages is clutched by a devil fish, and slowly drawn to a horrible death.-Ed.]

Poisonous Aniline Dyes.

To the Editor of the Scientific American:
I fully agree with you that aniline dyes should not be used in candies. I recently ate about three inches of stick candy, of a red color, and was taken sick with a burning pain in the stomach and upper intestines. I grew worse; in three days I was not able to walk without being faint and giddy, and had much pain all the time. A doctor prescribed for a case of aniline poisoning, and three doses of medicine put me out of danger. I am now about well again

William Ward.
Cleveland, Ohio.

Microscopical Exhibition.

The Odontographic Society lately gave a microscopical exhibition in the rooms the of Philadelphia Dental College, before an audience of about five hundred ladies and gentle. men, who manifested the most marked interest in the display of instruments and objects.
The microscopes, forty in number, wero placed upon the operating tables, extending one iundred feet. The instruments were arranged so as to be a distance apart sufficient to afford a fair view of the objects without inconvenience to the visitors. In addition to the microscopes belonging to the members of the society, a number of valuable instruments were kindly loaned for the occasion by the Biological and Microscopical Section of the Academy of Natural Sciences, and by several eminent microscopists. The microscopes included every variety of form, from the one thousand dollar grand microscope of Ross and the binocular of Beck, to the inexpensive student's microscope.
The objects exhibited were mainly confined to the teeth of man and animals. The sections of the teeth of man, the cat, horse, cow, sheep, elephant hog, etc., afforded an excellent opportunity of observing and contrasting the difference in the arrangement of the enainel, dentine and cementum in those animals, while the gizzards of the cricket and the cockroach showed the provision made by Nature for the comminution of their food. Among the more notable specimens shown, in addition to those already named, may be mentioned: 1st, a longitudinal section of a dilacerated incisor, and section of a human incisor with the cementum covering a portion of the enamel ; longitudinal section of a human molar with vascular canals in the dentine, and a human embryo of twentynine days; section of an adult human incisor and the lower jaw(tooth in situ) with the vessels of the dental pulp and Haversian canals injected with carmine; hypertrophied root of human molar; enamel columns of human tooth; transverse section of buck's horn and other sections of teeth; section of molar tooth and ja:N of a cat, with vessels of dental pulp; periosteum and Haversian canals injected with car. mine.
Dr. Joseph G. Richardson gave a very satisfactory demonstration of the circulation of the blood in the capillaries of the web of the frog's foot, in the museum of the college.
Professor S. B. Howell, aided by Professor Hunt, exhibited a number of interesting objects by means of the gas microscope, and demonstrated the importance of this instrument as a valuable and indispensable aid to the teacher of histology and physiology.
The success attending this effort on the part of the society has decided the members to give another microscopical exhibition at no distant day.-Dental Cosmos.

Pinysiology of the Siamese Twins

Dr. Hollingsworth, of North Carolina, who examined the bodies of the Siamese twins at the time of their decease, found the band which connected them to be an extension of the sternum, for about four inches in length and two in breadth. The band was convex above and in front, and concave underneath. The two bodies had but one navel, which was in the center of the band, and it is supposed that there were two umbilical cords branching from this, one extending into each body. The connecting link was found to be the ensiifrom cartilage, and was as hard as bone, and did not yield in the least. It may be here mentioned that, for some time previous to their death, no motions were observable in the band.] The doctor said that he did not think they would have survived a separation, not from the fact of being a fraid of separating the arteries, but from fear of producing peritonitis. No hœmorrhage would have been produced, so far as could be seen, as hage would have been produced, so far as could be
there were no arterial connections of any account.

scientific and practical information.

preserving army clothing from mildew.
An appropriation of $\$ 100,000$ has recently been asked from Congress to be expended during the next fiscal year in the preservation of army clothing from moth and mildew by a patent process. The process in question appears to be that patented by George A. Cowles and others, September 20, 1864, and is based on the preservative action of sulphate of copper on vegetable fibers. By the addition of alum, the preserving qualities of the mixture are, it is claimed, greatly enhanced; and when gelatin is also combined, the fibers are said to be not only proof against decay, but also impervious to water. The ingredients are proportioned as follows Alum 2 lbs. dissolved in 60 lbs . of water, blue vitriol 2 lbs . dissolved in 8 lbs . of water, to which is added gelatin 1 lb . in 30 lbs. of water. A still further improvement is said to be effected by acetate of lead, $\frac{1}{2} \mathrm{lb}$. dissolved in 30 lbs . of water. The soiutions are all hot and separately mixed, with the exception of the vitriol, which is added cold. The in entors claim that the process is cheap, and does not inter fere with the strength of the goods.
the home production of steel ralls.
Eight establishments in the United States are now making rails from steel made by the Bessemer process. Their an nual production is 150,000 tuns, an aggregate which, it is expected, will ere long be increased some thirty-three per cent. Steel rails are becoming stronger in popularity; and as the demand increases, there is every reason to believe that ou productive power will eventually prove adequate to meet its full requirements without necessitating our dependence in any degree upon foreign makers for supplies.

A SUBSTITUTE FOR BRISTLES.
The fiberous bark of the sugar palm (arenga sacclaria) proves to be a good substitute for bristles and animal and hu man hair. The treatment is simple. The bark is first im mersed in water and boiled for some time in an alkaline so
lution; the fibers are then soaked in an emulsion of fat, al kali, and water for about 12 hours, after which time the are sufficiently hard and elastic for the above named use.
sulphide of cadmium for coloring soap
The coloring power of the above mentioned material is so great that its price is of little importance. It is, however. frequeutly adulterated with zinc white, which may be readily discovered by digesting the suspected substance in acetic acid, filtering, and addiug a solution of carbonate of soda which produces a white precipitate if zinc be present.

DYEING FELTS WITII ANILINE COLORS.

All aniline colors are suitable for the dyeing of felt, and the coloring inatters can be repeatedly applied when a deep. ened effect is required. As brown is a color frequently used in felt-dyeing, it may be mentioned that fine shades of this color are obtained by using certain products from fuchsin (known in the trade as cerise, maroon, etc.) mixed with in-
digo, carmine, picric acid, and a little sulphuric acid. The digo, carmine, picric acid, and a little sulphuric acid. The
slade known as "Bismark" may be prepared from Manchester brown mixed with the last named ingredients, substitut ing fuchsin for sulphuric acid.

new surgical devices.

Two great surgical novelties have lately been introduced into European hospital practice. The first is the aspirator, originated by Dr. P. Smich, which has been extensively em ploged by Dr. Diculafoy, of Paris. By this instrument fluids can be extracted from formations at some distance from the surface, with safety and certainty. The second novelty is the introducticn of a bloodless method of amputation and other operations on the limbs by means of a compressing bandage, by which the limb is blanched with a circular elastic cord, which compresses both the arteries and veins of the limb. This plan, proposed by Professor Esmarch, has been adopted by many hospital surgeons. It remains to be seen
whether there are any drawbacks to this system, and espewhether there are any drawbacks to this system, and espe-
ciaily whether, in certain cases, embolism is likely to result from displacement of clot, whicl. may have already formed in the veins of a damaged limb.

the ramie industry

If any inventor has a good machine capable of thoroughly, quickly, and economically preparing ramie fiber for the market, there is a good prospect of its being largely to his interest to perfect the same, and bring it before the public at as early a day as possible. The great obstacle to the introduction of this valuable plant-which, from the fact of its being an excellent substitute for silk, is destined to be one of the most important of our Americau products-is the difficulty of separating the fiber from the bark that envelopes it. The Chinese do this work by hand, producing one or two pounds per day of marketaible fiber, and using an ordinary knife. Of course this slow process will not pay here. Several machines, we are aware, have already been invented; but for tome reason, the proprietors take but little pains to bring them into notice. The plant can be successfully cultivated in California and the Gulf States. It can be cut by an ordinary mowing machine, and an acre of land will produce from 400 to 500 pounds at a cutting. The crude ramie staple is worth from $\$ 320$ to $\$ 340$ per tun in Europe. American manufacturers offer for it from 20 to 25 cents per pound when furnished in considerable quantities.

Hipporinatiy in France is increasing.
During July, August, and September of 1873 , the meat of 1,548 horpes 140 asses, and 15 mules, was consumed in Paris, blowing an increase of nearly 100 per cent over the same nionths in 1872.

The Application of Solar Heat as a Motor Force. That the heat of the sun may be transformed into mechanical force no one can doubt; for we see daily what masses of
water solar heat raises into the air, to be precipitated to the earth; and we know what an enormous mechanical force is here represented.
But while solar heat is the cause of nearly all mechanical force developed on the earth, we have yet hitherto known of no means whereby it may be directly utilized for mechanical work. It has been proposed, indeed, to employ solar heat, concentrated by lenses or mirrors, for driving a steam or caloric machine. These machines, however, are not suited for this, as they involve too great a waste of heat. Moreover, in oncentration a large quantity of heat must be lost.
Machines which serve for the transformation of heat into mechanical work rest on the principle that a liquid or gaseous substince, acted on by the heat, undergoes a molecular change, through which a certain mechanical force is developed. The changes of solid bodies, under influence of heat, are too small for transformation of the heat into mechanical work, or to render them means of movement, although, through such molecular change, a certain mechanicai force is developed. Gaseous bodies have been applied as a means of movement in the caloric and gas machines; but with the small differences of temperature which occur in some machines, they cannot be eaployed as such, with advantage. Thus nothing remains but to employ a liquid; and it must be one
whose boiling point is very low. There are several such liquids, whose boiling point is very low. There are several such liquids, sulphurous acid, methylic chloride, methy lic ether, etc. Of all these, sulphurous acid best deserves attention, as it has sever al useful properties for the end in view. It is not difficult to condense. The keeping of it presents no difficulties, and it condense. well be put in ordinary steam boilers.
may
Take a vessel, A, filled with sulphurous acid, exposed to the sun's rays; the tension of the sulphurous acid vapor, if the
temperature of this vessel exceeds that of the surrounding air by 10° or 20°, must be from 1 to 3 atmospheres higher than that of the sulphurous acid vapor in another vessel B,similarly filled with sulphurous acid, but which has only the temperature of the surrounding air. We can thus arrange an engine, which agrees in principle with the steam engine with merely this difference, that the water is replaced by ulphurous acid, the fuelby the solar heat; while the vesse exposed to the sun's rays represents the steam boiler, the vessel kept at ordinary temperature may represent the con denser. The sulphurous acid, condensed after doing work in vessel B, could easily be driven back by a force pump into
the boiler representing vessel A. The capability of work of such a machine must naturally increase with the amoun of the heat communicated to vessel A , or be proportional to the surface exposed to the solar rays.
If now, we conceive a factory or shop, the roof of which is covered with vessels containing sulphuric acid, and which is furnished with a sun machine, made on the above principle such a machine might indeed work while there was sunshine but in default of this. the establishnent would be brought t a standstill. True, the solar heat might be replaced by the heat of the air, if the temperature of the air were pretty high,
and one had at hand a cooling substance like ice. But as this and one had at hand a cooling substance like ice. But as this is not always the case, the establishment should have, be sides the sun machine, an apparatus which might "store up some of the work done by this. As such, Natterer's appara tus for condensing carbonic acid might with great advantag be used. If a supply of carbonic acid were kept in a large gasometer, like those in ordinary gasworks, the Natterer ap paratus might be fed from this. In a wrought iron vesse thus filled with liquid carbonic acid, we should have an enormous store of mecbanical force, which might be made to replace the action of solar heat in the sun machine, partialiy or whoily. After work done, the carbonic acid, becoming gas. oous again, might be collected in the gasometer. Or, again, the sun machine, while in action, might drive an ice machine, and might, in default of sunshine, profit by the ice it had pro duced, for maintenance of its working.
We thus see that, from the present standpoint of Science, it possible to construct a constantly working sun machine. G. A. Bergh, in Poggendorff"s Annalen.

To Inventors.
C. E. G. lays down the following maxims for the guid nce of inventors

1. Know definitely what you want to accomplish, stick to it, and let other matters go, for the time.
2. Post yourself thoroughly as to the laws governing the ation of each part of your machine.
3. Always bear in mind that whatever is gained in time is lost in power, and vice versa.
4. Think over every machine, of a nature similar to yours, which you have seen; and when youridea is clear in your head, compare it with those of inventors who bave preceded you in the same line
5. Be sure that the cost of your device will not prevent its use.
6. A hine of as few parts as possible
7. Imagination, judgment,and memory are the faculties to employ. Imagination will bring forth new forms and actions, judgement will compare them with other devices and deter mine their relative value, and memory will store up the re sults for future use.

As a test for red wine, which is sometimes artificially colored, Cottini recommends nitric acid: 50 parts wine are mixed with 0 parts of nitric acid (of 42° B.) and heated to 90° Fah. The natural wine will not change its color if left for some honra, but the artificially colored will lose its hue ins few misutes.

CThe steel engraving ' Men of Progress' is received, for which accept my thanks. The few subscribers I have sent you were not worthy the aciznowledgment you have given for them."
"I beg to acknowledge the receipt of the magnificent steel plate engraving entitled 'Meu of Progress,' and can assure you it surpasses anything I had the least conception of; it not only being collectively a most appropriate subject, but also one that cannot fail to be appreciated by all. The above are extracts from a couple of letters received from patrons in Canada and in Indiana, who have obtained clubs of subscribers for us. Their views are but examples of many others, whose appreciative commendations of our efforts reach us daily.
The rapidity with which our subscription lists ar augment ing and tie constant addition of new names, not singly but by tens and twenties, indicate quite clearly that the stringency of the late panic has all but disappeared, and that business, efpecially in mechanical and manufacturing establishments, has resumed its wonted vigor. So far from our circulation having become diminished by the financial troubles, we are happy to announce that it never has been nearly as large at this season of the year, nor bave we ever known a new year which, dating from its beginning, has brought us so large an accession of new subscribers or such prompt renewals from old patrons. It would indeed be ungrateful on our parts did we fail to acknowledge our appreciation of the kind words which reach us, and the more substantial, though not more agreeable, recognition of our efforts evinced by the constantly increasing ranks of our army of readers. It remsins for us to strive to merit the praise al. ready accorded, by making the Scientific American, for the coming year, better and more useful than ever before

The Hartford Steam Boiler Inspection and Insurance Company.
The Hartford Steam Boiler Inspection and Insurance Company makes the following report of its inspections in the months of October and November, 1873 :
The number of visits made during these months was 2,449 , and the number of boilers inspected, 4,919 ; of which inspections 1,441 were internal and entire. The hydraulic pressure was applied in 3.) cases. The number of defects discovered was 2,083, of which 555 were regarded as dangerous. These defects in detail were as follows
Furnaces out of slape, 80-14 dangerous ; fractures, 19493 dangerous; burned plates, 118-40 dangerous; blistered plates, $314-52$ dangerous; deposit of sediment, 394 cases, of which 62 were regarded as dangerous; cases of incrustation and scale, $355-26$ dangerous; cases of external corrosion, 127-37 dangerous; internal corrosion, 88-24 dangerus; internal grooving, 31-9 dangerous; water gages de ective, $85-9$ dangerous; blow-out defective, 38-12 danger us; safety valve overloaded, $37-16$ dangerous; pressure gages defective, 288-58 dangerously so. These variations were from -7 to +20 . Boilers without gages, 157-5 of these were run at high pressures; deficiency of water, 23 cases- 5 dangerous ; braces and stays loose and broken, 10249 dangerous ; boilers condemned, 28. Corrosion, either internal or external, has in many cases been found to be making great injury during these two months. In one case, three ooilers were found connected together by cast iron pipe ove the briage wall. The joints in this pipe were made with copper gaskets. At the connection on No. 1, the shell around the flange was badly eaten by corrosion, and very thin. In another case, eight soft patches of copper were found on a boiler. Fiue boilers that had been long neglected were found in bad condition, the flues being corroded entirely through. When boilers are not blown down frequently, impurities in the water become concentrated, and act very injuriously on the iron. The number of condemned boilers was unusually large, and they were in a dangerous condi tion, liable to accident at any moment.

Chainmakers' Peculiarities.

'The 'Iroy chainmakers in that city,', says the Troy Times, " are a peculiar set of men. They are eighteen in number, and are all English. Each chainmaker employs three assistants, and earns, when at work, about $\$ 25$ per day. After paying three helpers, the chainmakers have from $\$ 10$ to $\$ 15$ er day for themselves. They arestubborn, industrious and saving. This branch of manufacturing is in itsinfancy in this country; and as the workers are few, they have a practical control of the trade. When strikes and lock-outs occur, they are able to hold out longer than other mechanics. Their ex tracrdinary wages and their disposition to save what they earn almost invariably enable them to hold out until their employers yield. Their stubborness was well illustrated two or thret years ago. They held out until their savings were all goine; then they went to work upon the streets and else were for $\$ 1.50$ per day until matters were arranged between the owners of the chain works and themselves.
"Last $\mathrm{sp}:$:ng these men were working at an advance of ten per cent over the wages paid when gold was selling at fifty cents promium. During the summer they demanded and received another advance of ten per cent. In November, the lack of work compelled the owners to close the works. A few weeks since they secured an order for about sixty tuns of chain cable of a peculiar kind. Only three of the chainmakers can work upon these cables, and to these three the owners offered work at the highest wages. They refused to go to work unless the other chainmakers were also furnished employment. In this position afiairs are at present. The firms have work for only three chainmakers."

IMPROVED GAINING MACHINE.

Grooves cut at right angles to the fiber of timber are termed gains in the technical language of carpentry. These gains, which in the present method of erecting the heavy work of the period are very numerous, especially in bridges and railroad car timbers, have heretofore been done in a great measure by hand labor, or by rotary cutter heads projected through the surface of a table sufficient for the depth of the gain, over which the timber was carried to com plete the gain transversely
These me thods, howev e, have not the dvantage claimed to be attainable b the use of the improved gain er, produced by the extensive wood work ing tool build ers, Messrs. J 1. Fay \& Co f Cincinnati Ohio, and re presented in the annexed engraving.
This is a very massive and substantialma chine, occupy ing an area of ten by twenty feet upon the loor. Timbers f. any size to twelve inches thick by twen-ty-four inches wide can, we are informed oe gained at any desired an gle upon it. The limit of depth of gain is four inches, the width indetinite.
By means of the stops, to be seen in front of the table in connection with the treadle and spring pin through the way, duplicates of timbers may be produced indefinitely, the stops ndicating the width and distance apart of the gains.
The depth of the gains is determined by the position of the stops placed in the slots in the cutter slide, and which will indicate our depths of gains. The table is moved longitudinally upon friction rollers by means of a rack and !, inion underneath operated by a hand whes: in front. The cutter head, with its slide, i. as a vertical movement governed by the lever in front and counterbalanced by a combination of springs inciosed in the moving frame. The cutter head can be placed nywhere within its range of movement without changing the position of the governing hand lever. This is accomplished by turning the hand wheel on top of the cutter slide.
The sliding frame, which conveys the cuter head in its traverse movement over the table, is actuated by means of a series of gearing driving a pinion in a fixed rack. This mechanism is contained within the frame, in self stopped at any point by means of a shipper and adjustable stops on the side of the column, and started by the operator turning the handle under the hand lever which engages the belt with the tight pulley. The motion of this sliding frame is at a fixed speed, whether for wide or narrow timber, a peculiarity no other gainer possesses. This equal speed in either direction enables the cutting to be done both ways, the cutter head being so constructed as to facilitate the operation.
The countershaft from which the machine is driven is placed vertically over the center of the distance of the travel of the pulley shaft, in the rear end of the sliding frame. The arc of the circle struck from the countershaft being but slightly different from its chord, the tension of the belt is not affected sufficiently to be any detriment to the working of the machine.
The improvements in this machine consist of the equable raverse movement of the cutter head, the ease of adjust ments, the fixed positions of the handles for the operator, and other mechanical refinements introduced where they will be appreciated by every mechanic. Patented January 20, 1874.

MONSON'S IMPROVED AUGER

Mr. Christian Monson, of Moscow, Iowa county, Wis., has invented a novel and, we should judge, very useful form of uger, which, he states, is capable of boring orifices of dif ferent sizes, and is, besides, adapted to making holes for crews.
The bit, as will be remarked from Fig 1, is provi ded with three distinct sizes of screw, each of which parts is made tapering in form. The larger of the three, A, is provided with a projection by means of which it is rendered
suitable for countersinking. Fig. 2 is a modification of the above and has two sizes of screw and a double thread. The point also, it will be noticed, is somewhat differently constructed, being provided with slight projections which, according to the inventor, are not easily worn or broken. Fig. 3 is still another modification of the first form, having also two sizes of screws but a triangular shaped point. This latter is well suited for easily penetrating wood, and is said not to be liable to become broken or dull.
The tapering form of the tool makes the hole for the blank
other localities, to the existing necessity of improved and simple means for securiug constant supplies of pure fresh warm air in crowded apartments. We illustrate in this issue the Galton fireplace, lately introduced in England and strongly commended by high sanitary authority. We herewith present another device of equal timely importance, consisting in a novel adaptation of the furnace flue and register. The apparatus, the construction of which will be readily understood from the annexed engraving, seems to us, judging from the explanation of the inventor below riven jud
part of the screw, that portion being, of course, larger than \mid gle grating of the usual size, is divided by having a sinihe threaded part, while the countersinking and boring are tition, and each portion is provided with a separate set of both accomplished by the single operation. The invention slats, either of which may be opened or closed at will. will commend itself to wood workers, on the score of econo- While the hot air from the flue, A, pours into the room in my, as it tends to save the expense of a number of separate an ascending current, as indicated by the arrows, the cold and heavy vitiated air, which sinks to the foor, makes its exit into the lower half of the register, entering the main flue in the space between the supplementary pipe and the brick work, and thence passing up the chimuey. By this means, it is claimed, a constant circulation of of air is maintained in the apartment.
The small pipe, B, arranged above the flue, A, is provided within with a valve operated by a suitable rod and handle, C, outside the register. By this device either a portion or the whole of the hot air rising in the flue, A. may be discharged with the vitiated air Hue, the be ister of the hot air pipe being either opened regiar of theordingly, and thus increasing the or closed accordingly, and thus increasing the warmth and consequently the draft of the vitiated air flue, a result of much importance in crowded rooms, where the heat becomes excessive and the air very impure. The inventor informs us that, in practice, the truth of the views above noted is fully proved; a candle or handkerchief held before the two portions of

MONSON'S IMPROVED AUGER.
augers of different sizes. Further particulars may be obtained b_{j} addressing tbe patentee as above.

BAP:ZER'S HEATING AND VENTILATING APPARATUS.
'ithe recent disclosures made concernine the very defective

heating and ventilating arrangements in the public schools ard court rooms of this city have, to a considerable degree, aroused the attention of the public, not only in this but in
the combined register indicating clearly the direction of the ingress and egress currents. By a simple modification the device is adapted for floor registers, and in cases where several flues pass up the wall side by side, a metal partition is used to separate each at the poin $\hat{0}$ of loca. tion of its register, enabling the apparatus to be convenient. ly and readily applied. The invention has already ϵ licited favorable notice from eminent sanitary authorities in this city, Philadelphia, and Washington. It is covered by four patents of quite recent date. For further information ad. dress the inventor, Mr. George R. Barker, Geimantown, Philadelphia, Pa.

Gold for Llluminating.

Procure a book of leaf gold, take out of the leares gently and grind them in a mortar with a piece of honey about the size of a hazel nut, until it is thoroushly intermixed with the gold, then add a little water and re-work it ; put the whole into a phial and shake it well. Let it remain an hour or two, and the gold will deposit at the bottom of the phial. Pour off the liquor, and add weak prepared gum in its stead, sufficient to make it flow fieely from the pen or camel's lair pencil. When required for use, shake it occasionally.-Revell's Potichomanie.

Pisciculture in Canada.-Several correspoadents hav ing sent us inquiries on this subject, we are desired by the author of the letter signed "Canadian" (on page 36 of our current volume) to state that he will be happy to give in. formation and advice to any one interested in the subject His name is Rev. J. Alexander Morris, Ottawa, Ontario.

THE AUSTRALIAN FEVER TREE

A question of considerable general interest was recently discussed at a meeting of the French Academy of Sciences. The subject was the remarkable sanitary influence of the eucalyptus globulus, when planted in marshy grounds; and the tree in brief, it seems, has the curious and valuable power of destroying the malarious element in any atmos phere where it grows.
The species is indigenous to Tasmania, and is known among the colonists by the name of the Tasmanian blue gum tree, on account of its dark bluish tinged leaves. Grow ing in the valleys and on thickly wooded mountain slopes it often attains a hight of from 180 to 220 feet, with a circmuference of trunk of from 32 to 64 feet. The foliage is thin and oddly twisted, surmounting, with a thin crown, the top of the pillar-like stem. The wood exhales an aromatic odor, and, after seasoning, is said to be incorruptible. For this reason, it is largely used in the building of piers, vessels, and other structures exposed to the ravages of the weather. It is largely exported, to the aggregate value, an authority states, of $\$ 4,000,000$ per year.
To the peculiar camphor-like odor of the leaves and the large absorption of water by the roots is doubtless owing the fact of the beneficial influence of the tree. Where it is thickly planted in marshy tracts, the sub. soil is caid to be drained, as if by extensive piping.
Miasma ceases, we are told, wherever the eucalyp. tus flourishes. It has been tried, for this purpose, at the Cape; and, within two or three years, completely changed the climatic condition of the unhealthy parts of that colony. Somewhat later, its plantation was undertaken, on a large scale, in various parts of Algiers, situated on the banks of a river, and noted for its extremely pestilential air : about 13,000 eucalypti were planted. In the same year, at the time when the fever season used to set in, not a single case occurred, yet the trees were not more than nine feet curred, yet the trees were not more than nine feet been maintained. In the neighborhood of Constan tina, it is also stated, was another noted fever spot, covered with marsh water both in winter and sum mer; in five years, the whole ground was dried up by 14,000 of these trees, and farmers and children enjoy excellent health. Throughout Cuba, marsh diseases are fast disappearing from all the unhealthy districts where this tree has been introduced. A station house, again, at one end of a railway viaduct in the department of the Var, was so pestilential that the officials could not be kept there longer than a year; forty of the trees were planted, and it is now as healthy as any other place on the line.
La Nature, to which journal we are indebted for the annexed engraving of the peculiar leaves and flowers of the tree, adds that careful experiments have proved that, in a medicinal preparation, it cures the worst cases of intermittent fever, against which quinine proves powerless. It is also valuable as a disinfectant, and as a dressing for wounds; while more recent investigations point to the fact that it may be rendered of great service in catar rhal affections.
The tree has been acclimatized, to a certain extent, in the South of France, Algiers, Corsica, Spain, Cuba, and Mexico. We should imagine that it might be cultivated, with im mense advantages, in the swamps of our Southern States.

IMPROVED WASH BOILER.

In the novel form of wash boiler represented in our en graving, the laundress is provided with a means of boiling, washing, and rinsing ciothes in, it is claimed, a most rapid

and efficient manner. The garments, it is further stated, are thr roughly cleansed, and this without injuring the most de licate labrics.
T'ie boiler proper is akin in shape to that usually employed, and is supplied with clamps, A, so that it may be firmly secured to the edge of the top of the stove or range by means of set screws. Inside the main receptacle is placed a vessel, B, the sides of which are vertical and support a cir cular corrugated bottom, disposed as shown at C. In the
lower part of the sides are formed a number of perforations to allow of the free passage of the water. D is a shaft, one end of which is joit naied in a socket secured to the main receptacle, and the other passes through a short vertical slot made in the edge of the latter, carrying at its extremity a crank. The shaft, which may be secured in this slot by a suitable latch, not shown, is provided with a number of radial arms, E, which project from its lower part, so as nearly to touch the corrugated bottom of the vessel, B. The water and soap being placed in the boiler, the ciothes are laid in the inner receptacle, and, the crank being rocked, are caused by the arms, E, to sweep back and forth upon the corrugations, thus quickly being cleansed.

THE AAUSTRALIAN FEVER TREE,
In order to prevent the spattering of water out of the boiler, during the rinsing, an extension, F , is provided, which fits in the mouth of the latter, and this is surmounted by the cover, which conforms in shape to the opening of either exension or boiler. At one end of the boiler is secured a spout G, to which is attached a cleat to receive a wringer, The water pressed from the clothes is conducted by the spout back into the boiler, through the perforations in the side of the latter for the purpose. Handles are provided for lifting the apparatus, and a faucet may be placed at its lower part or drawing off the water.
The device is the invention of Mrs. Mary A. Barnes, of Olympia, Thurston county, Washingtou Territory. Patent if ordered to issue through the Scientific American Patent Agency.

New Marine Propeller

A new propeller has beenintroduced by Dr. Collis Browne which differs considerably from any other in use, somewhat resembling, when at rest, the letter X , as shown by the illus tration, and claiming to offer many ad vantages over those commonly employed. These are absence of vibration, reduction of wear and tear to machinery, ready daptability to any screw steamship, and facility of check ing a ship's way, with the power of driving her full speed astern in a few seconds on reversal, as well as giving con siderable increase of speed, and effecting a great saving of coal. This propeller has been tried at a measured mile by the steam yacht Lapwing.
During a trial under 58 lbs . pressure of steam, with a consumption of 81 lbs . of coal per hour, the propeller made 220 revolutions per minute with the tide slack, and the fur nace burning hard steam coal, the measured mile being run in five minutes. During a trial under 64 lbs. pressure, with a consumption of 112 lbs . of coal per hcur, and using the ordinary fan propeller making 280 revolutions per minute, with the tide slack and the furnace burning best Welsh coal, the vessel made the measured mile in six and ε half minutes. As far as this experiment goes, the new propeller shows a superiority over the fan form.-Iron.

Some experiments made by the directorate of the government railroads of the Netherlands, in regard to the preservation of exposed sheet iron, have lately been published. Plates prepared in various ways were placed in exposed situations, and examined after three years. The result of the examination showed that as good a method as any of preparing the plates was to ciean them by scraping and brushing, and then paint them with red lead.

The Dry Inkstand an old Device.

" An inkstand containing carbonaceous and extractive mat ter in a dry state, which, with the addition of water only will supply ink." Patented in England in 1820, by John Moody.
The outside of the inkstand may be made of brass, tin, or other metal, and of any shape that may be thought desirable. Within must be introduced a small vessel, which may be made of lead, earthenware, or glass, with a hole to admit a pen, in which the composition is placed; and the whole of the interior may be filled up with a cement, which may be made as follows: Melt two pounds of sulphur over a slow fire in a glazed pipkin; when melted, takeit off the fire, and let it stand ten minutes or a quarter of an hour, until it is of the consistency of oil, then add to it lamp black, or any other color that may be thought proper, and stir it well together, and then pour it into the inkstand. The composition of carbonaceous and extractive matter is made and produced as follows: Take half a pound of fine honey, and the yolk of a new laid egg, mix them, and let them stand three days, frequently stirring them well together; then add half a pint of strong extract of galls, which extract is made by infusing one pound and a quarter of best blue galls, powdered, into three pints of soft or salt water; let them stand for six days, of ten stirring them; then filter the whole through a fine wire sieve, and evaporate the liquor to one half (that is to say, one pint and a half), over a gentle fire, in an iron pot.
Then take another half a pint of extract of galls, as above prepared, in which dissolve three ounces of gum arabic, one ounce of white sugar candy, and one ounce of indigo, all in powder. Then take the renaining half pint of extract of galls, a half pint of stroug decoction of logwood (which decoction must be made by boiling half a pound of logwood in powder, in a pint and a half of soft or salt water, until reduced to half a pint), into which put two ounces of blue galls in powder, two ounces of lamp black, two ounces of willow wood charcoal, ground very fine, and three ounces of sulphate of iron calcined to whiteness in powder, and stir them well together. Then knead the whole well together, in a marble mortar, into a stiff paste, which put into the stands, and let it harden in the air, over which paste must be placed a small quantity of cotton that has previously been soaked in vinegar that has been well saturated with salt.

Fixing Slaten.

Slates, instead of being nailed to the roof, may be fastened by movable hooks, about 2 inches long, which are soldered to conically formed inc plates, 4 to 6 inches long. The slates are thus kept securely between the hook and zinc plate, and can be removed simply, with the greatest facility, by turning the hook. Thus one or more of the slates can be taken out for repair, or new ones inserted, without interfering with the rest. The method is said to make a roof watertight.

SELF-PUMPING WELL-BORING DRILL

With the improved drill represented in the annexed illus. trations, the inventors claim that not only faster and better work can be accomplished, but that the apparatus can be more conveniently manipulated, and will penetrate further

into the ground before its removal for cleaning is required, than the borers in common use. It is also stated that a hole, with this device, may be sunk by hand to a distance of 200 feet, and with a lever to any desired depth; while the operator is enabled, during the progress of the boring, to know exactly the kind and depth of strata through which the tool is passing.
The drill is made tubular and sowewhat flaring, so that
forms an orifice a little larger than its body. Its lower edge is serrated, so as to cut a ring groove into the strata, the core of the bore passing up through the cavity in the drill. The upper end of the latter is rabbeted, and, by means of a screw hread cut thereon, is attached to a perforated tube, A, Figs and 2. The object of the holes in the tube is to allow the water to escape, and thus lessen the weight of the drill as it is moved up and down. To the upper end of the drill i hinged a valve, B, represented in section, Fig. 2, which opens upwards into tube A, so as, when the tool is raised, to carry the contents of the pipe up with it. Sections of tubing-part of ne of which is shown at f. Fig. 1-are screwed to the part B, and increase in number with the depth of bore.
Another advantage claimed is that, should the portions of the device become detached, a screw rod may be readily in serted and the separated parts drawn out.
Patented through the Scientific American Patent Agency November 11, 1873, by Messrs. Timothy Phillips and Joseph Golletz. Further particulars may be obtained by addressing the inventors at Leavenworth, Leaven worth county, Kansas.

An old subscriber, P. H. W., writes to say that he owns a propeller steamer of the following dimensions: Length 42 feet, beam 7 feet; boiler 4 feet 8 inches high, with 78 one inch tubes 2 feet long, and 31 two inch drop tubes 18 inches ong; the engine has a cylinder $5 \frac{1}{2}$ inches dia meter $x 7$ inches stroke; the screw is 38 inches in diameter with 5 feet pitch. She has run 7 miles in 40 minutes, carrying 65 lbs. steam, the screw making 165 revolutions per minute. The boiler is of $\frac{5}{16}$ inch iron, and will carry 130 lbs . on the inch if re quired.

Mr. R. F. Mushet has lately written a letter to the editor of the London Engineer, in relation to the age of a Bessemer steel rail which, he says, was the first cast steel rail ever laid down. The rail was laid down on the Midland railway, in the early part of 1857, and was taken up in 1873. It thus appears that it was in use for 10 years, sustaining daily, Sundays excepted, the passage of 250 trains, and at least 250 detached engines and tenders, or during the 16 years, about $1,252,000$ trains, and the same number of detached engines and tenders.

The Hoosac Tunnel Alignment.-Mr. H. W. N. Cole claims the credit of this for Mr. C. O. Wederkinch, who has had entire charge of the work, has run all the lines, and invented his own instruments for doing it.

HOW SHALL I INTRODUCE MY INVENTION

This inquiry cemes to us from all over the land. Our answer is: Adop uch means as every good business man uses in selling his merchandise o sesses any merit, somebody will want it. Advertise what you have fo cale in such papers as circulate among the largest class of persons likely to be interested in the article. Send illustrated circulars describing the merits of the mschine or implement to manufacturers and dealers in the specta rticle, all over the country. The names and addresses of persons in dif fers. If the invention is meritorious, and if with its utility it possesses novelty and is attractive to the eye, so much the more likely it is to find a purchaser. Inventors, patentees, and constructors of new and useful tons fllustrated and descthed the columpor the Scientific A an. Civil and mechanical engineeringenterprises, such as bridges, docks oundries, rolling mills, architecture, and new industrial enterprises of all Inds possessing interest can find a place in these columns. The publish ers are prepared to execute illustrations, in the best style of the engrav ing art, for this paper only. They may be copied from good photographs r well executed drawings, and artists will be sent to any part of the counry to make the necessary sketches. The furnishing of photograph drawings, or models is the least expensive, and we recommend that course as preferable. The examination of either enables us to determine if it is dvance of its execution, so that parties may decline the conditions with out incurring much expense. The advantage to manufacturers, patentees nd contractors of having their machines, inventions, or engineering american is obvious. Every issue now exceeds 42,000 and will soon reach 50,000 , and the extent of its circulation is limited by no boundary. There Is not a country or a large city on the face of the globe where the paper does not circulate. We have the best authority for stating that some o the largest ordersfor machinery and patented articles fromabroad hav come to our manufacturers through the medium of the Scientifi American, the partles ordering having seen the article illustrated o advertised in these columns. Address

MUNN \& CO.,
37 Park Row, N. Y.

[^0]
DECISIONS OF THE COURTS.

United States Circuit Court--.District of Massachu-

The Animal Kingdom. Volume II, No. 1. Published by the American Society for the Prevention of Cruelty to Animals.
A pleasant and useful little publication, well sulted for the perusal of
young people, in whom it tis likely to create a sympathy for the objects of young people, In whom ft 181 kely to create a sympathy for the objects of
the prasemorthy insitution by which 1 is 18 ssued, and to teach all of us to respect and help those who cannot help themselves.
The Wornsiop for January conta:ne a continuation of a valuable art cle on the Vienna Expositton In connection with art Industry-more espe
cially, in the present number, with rcference to gold and silver work. The usual large proportion of admirably executed engravings of the finest pro duct of European decorative artists are added, and comprise some exqui ite designs in cabinet work, mural decoration, jeweiry, etc. In order render the advantages offered of practical utllity, a large sheet of work
ing drawings is supplied. Puolished by E. Stelyer, Nos. 23 and 24 Frank We seet, New York city. Subscription, $\$ 5.40$ per year. We have also received from the same publisher the inrst number of ART
Workmaxsirp, a superbly printed periodical which is designed to form a complete historical atlas of art work. Its object is to present, by Anely executed engravings on separate and detached pages, together with the necessary letter press, full descriptions of the treasures of public
and private collections, the admitted masterpieces of churches, monas. will serve town halls, and, in fact, of all known objects of art whic is to cover a wide ground and embrace the subjects of wearing apparel embrotdery, and lace. vessels in clay, glass, and crystals, goldsmith's work, wrought and cast iron work, panellng and wood mosalc, wall decoration, bookbinding, and, in brief. every thing of value to followers of artist engravings on heavy paper. Issued in twelve monthly parts, at $\$ 1$ cach,
zercent gmericam and forcign identents.
We have recently been favored with Sowing Machinc.
the patent of which is owned by Mr Christian Sonson of county, Wis., the inventor of the new auger illustrated elsewhere in this issue. The machine, it is stated, has been in successful use for some tine. the device consist in the seed-distributing mechanism, which includes two seed boxes, one in front of the other. The bottom of the larger box is
formed of alternate plates and angular surfaced blocks, in the iormer of which are holes. Beneath thesc orifices and extending across the frame is a cylinder, around the circumference of which circular recesses are cut to correspond with the apertures in the bottom of the receptacle. The cyin hole in the seed box may be over one of three sets of circumferential recesses at will, and govern the quantity of seed to be delivered. These sets are of different sizes. There is a revolving shaft inside the cyllnder
having arms passed loosely through holes made thereln. By this means the having arms passed loosely through holes made therefn. By this means the
seed is agitated and caused to fall through the apertures in the bottom and flll the recesses in the cylinder as it rotates below. A. brush suitably
arranged cuts off the flow, and the crlinder contining throws the grain into tabes, and thence into other conduits, the lower ends of which furrow up the ground in advance. The smaller seed box also has a beater shaft within, and supplies its seed to a cylizder below, in which, however, there is but a single radial recess. the size of which can begov.
erned by suitable means. This may be used, the other mechander erned by sultable means. This may be used, the other mechanism being
out of gear, to distribute the seed at intervals, the grain belng dellvered to the tubes of course but once at each rotation of the cylinder. There are three seed tubes or drills which enter the ground. and which make rows five inches apart. They are governed by sultable mechanism so as to be
easily ratsed from the ground, and are also prevented from becoming easily clogged. Attached to the rear of the machine, which is mounted on wheels in a suitable frame by a draft bar and drawhead, is a roller above which chines, or, If the apparatus be first purchased separately, it can be supplied at, we are informed, a small cost. The use of brushes in cutting oft the
grain prevents any injury to the kernels, and the mechanism, it is stated, grain prevents any injury to the kernels, and the mechanism, it is stated,
measures out the seed with exactness. The machine can be used for plant. ing corn or other grain, etther in drills, hills, or check rows. It is readily adjusted to suit the distance apart of the hills and the quantity of seed to
bedelivered. The owner of the patent adds that the invention has been quite thoroughly tested and extensively manufactured. He is desirous of Increasing his faclllties, however, and wishes to dispose of territorial
rights. Patterns furnished at small cost. Further particulars may be rights. Patterns furnished at small cost. Further particulars may
Improved Device for Cleaning Steam Generators.
David L. Latourette, New York city.-This invention proposes to piovide steam botlers with independent and permanent pipe connections, the same
having cocks or valves, whereby, as soon as they are blown off, a current of having cocks or valves, whereby, as soon as they are blown off, a current of
steam or other fluid may be forced through the boilers, sald current bring impelled by suitable means. The injection pipe is at tached to the boiler at one end on the upper side, and the discharge pipe or conncetion at the one end on the
diagonally opposite end. Thus the current of steam or other fuld acts on the sedimentary deposit immediately around the point of entrance, and thence extends its influence to all the remaining parts of the inner surface
of the boller, and, driving the same before it, carries it toward the lowest of the boller, and, driving the same before it, carries it toward the lowest
and most distant point, where it is forced out of the boiler through the pipe applied
Improved Compound Tool.
John Dillon, New York city.-The hammer head is provided with a short handle, which is made hollow and with a square socket in the outer end to adapt it to be used as a wrench for turning bolts, nuts, etc. Upon the outer
surface of the end of the handle is formed a screw thread to fit into the surface of the end of the handle is formed a screw thread to fit into the
hollow handle. The shanks of a small pimlet and of a brad awl are attached to the opposite sides of the button, which has a screw thread cut upon its edge to fit into the screw thread of the handle. By reversing the button, the brad awl or gimlct may be made to project as one or the other may be
requred for use. A small set screw, which screws in through a small hole required for use. A small set screw, which screws in through a small hole in the handle, prevents the disk from turning when the tool 1 s turned back. ward. The outer end of the handle 18 notched, and the inner surface of one
or both the jaws thus formed 188 errated to adapt them to serve as a wrench One of the jaws is sharpened to serve as a flese screw driver, and the other is made to serve as a coarse screw driver. In the hammer head, near the claws, is formed a socket, into which fitsthe brad awl, where it is secured in place by a set screw. As tha turning a shank or other object.

Impioved Shoe Fastening.
Samuel Babbitt, Branl, Ha., assignor to himself and william E. Sibley Boston, Mass.-The flap or one quarter covers the sht at the instep and water and dust. A strap is attacned, near one end, to the flap near the bottom of the slit, passes through metal loops on both flap and body of the shoe, in a zigzag course to the top, and is doubled through a buckle, and
attached at its upper end to the flap. The doubled portions passing through the loop allow of loosening the shoe suffictently without drawing the strap the loop allow of loosening the shoe sufficiently without drawing the strap attend the pulling of it out.

Improved Grain Drill.
Sa muel Hart, Fulton, N. Y.-A long grain hopper extends across the front portion of the machine with a chamber into which the grain escapes through
the passage, which is regulated by a gate. The side of this chamber is made to fit nearly half around a small dropping roller containing pockets, opposte which there are slots, through which the grain passes into the pockets. The roller has as many pockets as there are to be drills in the machine, and
each pocket discharges into a spout for sowing in drills. The drill stocks each pocket discharges into a spout for sowing in drills. The drill stocks
may be readlly released for adjustment or removal. The dropping spouts terminate over the drill tubes, and have, when the machine is to be used for planting, a gate or valve closing againgt the lower end by aspring shank to retain the grain untll it should fall into the hill.

Improved Printer's Side Stick and Quoin.

Francis Keehn, Milwaukee, Wis.-The object of this invention is one for
the useof printers, consisting of an improved side stick and quoins, by which the forms may be easily set without injurirg the imposing stone and firmly retained during the printing process. The invention also conwider at the base, forming a projecting step, along which the wedge-shaped quotns, with a similar

Improved liano and Organ Attacliment. boards, having pins and bridges arranged on one side in the order of the music, llke the prolections of the barrel of a music box. This is caused to
sllute along the top of a box by a hand crank and sultable gearing. In the nox are levers corresponding to all the kevs of the plano and organs, conhox are levers corresponding to all the kevs of the plano and organs, con-
nected by suitable contrivances with cushioned plungers or hammers which are made to strike the keys of the instrument when the projections
on the moving board come in contact with the levers. The piano or organ is thus caused to play the piece represented on the bosrd by the projections.
Different boards will be used for different tunes. The box containing the Different boards will be used for diffierent tunes. The box containing the simply placing it on the front above the keys. and securing it by clamps
and adjusting devices attached to the box, forming a simple and ingenious and adjusting devices attached to the box, forming a simple and ingenious
contrivance. It requires four or more boards for each tune, as the parts
are alwass repeated alternately, and each board is used in the order in whith its part of the tune is played, the others being removed.

Improved Adjustable Hanger for Mirrork, etc.
mes Wright, New Tork city.-This invention has for tis object to fur.
an fmproved device enabling the mirroror picture to be t:ung without nish an fmproved device enabling the mirroror picture to be liung without
influring the plastering or cutting the woodwork of the house, and without the use of step ladders or othercontrivances for attaining the requisite
hight. The device consists of an upper strip of wood which is hung upon hight. The device consists of an upper strip of wood which is hung upon
n nail in the wall. The lower part of this strip forms a tongue which is slotted, and which enters a dovetall groove made longitudinally in a second strit). A square bodied bolt and thumbserew passes through the
lower strip and tongue, so that the two may be clamped in any position. The upper cid of the lower strip terminates in a band which encircles the upper strip, serving as a keeper
hook whith sustains the mirror.

Improved Sewing Machine.
er, Plifladel hifa, Pa., astgnor to
Theodore A. Wetier, Philadelphifa, Pa., assignor to Albert Lathrop Runong - The first part of the invention conststs of an arrangement of a rotat
ing looper and a vibrating loop spreader for opening the loops wide enough for passing a commnerctial spool, so that the rotating looper sliall frrt take
the thread from the needle and open the loop to some extent before the vibrating spreader takes it, instead of the reverse arrangement, which has
becu befure used. I'y this a rrangement, it is claimed, a much shorter and stiffer needle can be used, and there is less llab,lity of the needi
pringing away from the looper and missing stitches. The second part o perate in connection with the under bulged plate take-up heretofor used. When the spool has passed through the loops, and the spreader
begins to go back to release the loops, the bulged plate enters it, and raws the thread laterally over its swell. so as to keep the necessary tension on the slack given up by the spreader. At the same time the upper
take up hegins to rise, the needle arm, having previously reached the upper limit of 1 ts movement and begun to descend again, acts, in conescapes through the loop as fast as it is taken up, and the latter passes of
the horn as it vanishes, the horn preventing it from being caught by the
needle and the spreader.

Improved Curtain Fixture.
Henry K. Warner ard Charles E. smith, Rochester, Minn.-Two wooden bars are connected together longitudinally, so as to be at right angles to
each other, and are provided with stitable eye bolts, so as to be suspended in sultalle brackets secured in the angle between the bars. One bracket Is detachably securcd to the bars by a pin, so that by drawing out sald ptn
the braciset may be swung outward and the roller detached. The shade is wound upon the roller by means of a cord, one end of which is attached
to a spool attached t o one end of the roller, and which is wound upon sald apool by drawing down or unwinding the shade. The cord passes through
a guide uotch formed in the lower edge of the vertical har, , 又here it is kept in place by a pin, so that by withdra wing the said pin the cord will be released, so as to be detached with the shade and roller. The cornite is
ringed to the forward edge of the horizontal and upper bar, and is so formed as to pass around the forward side of the roller, so as to cover the
said roller and protect the shade from the falling dust. The end parts of the corntce fit and rest upon the brackets. To the lower edge of the bar the cord into the narrow part of said slot it will be held securely, holding the cord into the narrow part of sad
the shade in any desired position.
Improved Carpet Stretcher and Tacker.
Zadock A. Ward, Pittsfleld, Masss.-This invention is an improvement in
the class of implements for simultancously stretching and nalling carthe class of implements for simultancously stretching and nalling car-
pets, in which a hammer and tack or nail conducting channel and toothed pusher are main elements. To the lower end of the handle is rigidly con nected, under suitable angle, an upright gulde plece. which is provided a its broader lower part with forward curved teeth for the taking hold and spiral spring above the same, is a silding bolt, the upper end of which is
truck by a hammer head. The latter is secured to a curved leve piroted to the handle. The lever projects at some distance below its
fulcrum, and is connected at its end with a curverd rod which is operated by a shorter handle. The teck conducting and feeding arrangement is
placed into a recess at the upper side of the lower part of the handle. adjoining and opening intc tee T shaped recess of the guide piece. A T shaped tack conductor slides in inverted position in the recess by the action of a colled spring, on it : upper part, projecting into the recessed
part of the guide piece. The U sinaped carpet tacks are placed one adjoining the otiner on the central part of the conductor, and held thereon by means of a covering plate. The tacks are fed into the recess of the gulde
piece and acted upon by the spring boit, whiteh drives them into the carpet plece and acted upon
at the requitred time.

Improved Steam Cooker.

 paratus, which admits the steam to the victuals in each sam cooking thereof on closing the drawers, shutting off the steam on opentag the drawers. No steam can thereby escape and burn the fingers, but thecooker works uniformly with the full heating power. The different part ooker works unfformly with the full heating power. The different part
of the cooker are arranged above each other, separated by partitions, and connected at their rear sides with is vertical extension of the bofler. The steam enters through silort tubes, with valves applied therenn, opening
intolarger tubes of the drawers, with horizontal guide pins, which push the valves open when the drawers are within the cooker, and shut off the

Improved Hemmer for Newing Machines. Louls Sexauer, Brooklyn, N. Y., assignor to himself and John B. Chris-
offel, Brooklyn, E. D., N. Y.-The invention consists of an auxiliary ressir which is employedin combination with an extension hemmer. It consists of a spring plate bolted on the plate of the hemmer, and a second-
ary plate provided with an aljusting screw. The spring plate is secured ary plate provided with an a.justing screw. The spring plate is securen presser, to be lifted up by it, while the plate itself tends to spring down on
tie cloth. The secondary plate is to be forced down upon the cloth at the outar eat, to press and smooth the fold down flat, so as to run along the
guide proparly to guide the hem to the needle. The adjusting screw is to lug to the thickaess of the cloth. For example, if the cloth be liphtand thin, it siould be adjusted lower than if the cloth be thick, hecause the sewing machiae presser presses down in to the thick cloth, and the latter
will ba ilgiar ralatively to the polnt of support of the secondary presser

Improved Bridge.
James Valleley, Canton, 0 .-For constructing metal arches for bridge this inventor proposes to make hollow trunks, elther of four or six sides, ormed of flat plates, or some of flat plates and some of lattice bars,
united at the angles by angle bars. These trunks have a section of the form of a trapezold when foursided, and of the form of two trapezolds placed base to base, when constructed with six sides. The shoe for the end of the arch or chord is formed of two metal pleces, one of which
ereetves the end of the chord on tis face, and is supported by trunnions recelves the end of the chord on its face, and is supported by trunnions in bearings on the top of the other plece, which is bedded in the foundation,
o that the piece supporting the end can turn readils, as required by the expansion and contraction of the arch.
William McClelland, Sr., Fowler, In.-The object
William McClelland, Sr., Fowler, Ill.-The object of this invention is erg and other equitcles, by which a greater effect is obtained, and the side draft regulated, as required. The welght of the tongue on the neck of the
horses may also be adjusted. The Invention consists of a curved bar which sattached to the tongue, and carries the rear extending bar, with regulat ng rod, whilch connects with andis adjustable on a cross bar of the hound
Both bars together support the equalizing bar, and allow the adjustmen of the same into any required position

Improved Car Coupling.
Grass Valley, Cal.-The link ha
Thoma opening in a circular block. As the link is pushed through this spira opening, it turns a block one quarter around and lifts up a weighted lever ttached. When the spear-shaped head of the link has passed entirely hrough, the weighted lever drops and returns the block to its original po will be crossed by the broader part of the spear head of the link, and there Ore the link will be prevented irom belng withdrawn through the opening. The block is held in the drawhead by a circular flange or a second block, Which enters a corresponding circumferential groove in said first block
The flanged block is secured to the plates by bolts. The link is sustalned 1 The flanged block is secured to the plates by bolts. The link is sustained it
horizontal position, and guided to enter the spiral opening by the asist nce of the socket plece, which has a square stem which plays back an orth in a sumtiee hole in the center of the blocks. The spiral springs con
ectlug the siem to the blocks operate to relleve the cars from the effect
 losely fits in this socket plece, the other end of the link being held in a imilar manner in the coupling iron of the car adjoining.
Jhaprovement in the Propulsion of Vessels.
Charles P. Macowitzky, Corpus Christl, Texas.-This invention ts object to improve the construction of the device for which letters pat nt No. 133.99 were granted February 18, 1873. The piston rod of a steam
ongine is secured to an arm which passes through a slot in the bottom o de of the vessel and a slot in a sliding frame, and is rigidly attached to attached to the paddle, so that the eald paddle may be projected and with rawn by the movements of the sald rack bar. The paddles are pivoted to he sliding frame, so that they may be carried backand forth by and with sald frame or plate in its movements. By sultable construction the arm
nd rack bar will be first moved to adjust the paddles, and the rack bar addles, and arms willt hen be moved together to make the stroke. The that the paddles will be projected upon the forward or back stroke, as may be desired.

Improved Valve.
George R. Crane, Painesville, 0 . The disk of the valve is surmounted by hollow cylinaricalextension, whichis enclosed in a cage formed of thre revent the valve from tilting laterally, and have studs at thetr upper end to keep the same in place. The valve is secured with a ring of leather, fitted
into a recess in its face which is secured by a clamping disk, nut and bolt the a recess in its race which is secured by a clamping disk, nut and bolt
The valve seat in the bottom plate is made in two parts, of which one is in The valve seat in the bottom plate is made in two parts, of which one is in
flat plane, and the other is conical or concave. With the flexible bushing of the valve constructed to correspond with these forms, all the advantages of both for securing a tight joint are claimed to be obtained, as the elastic valve can be removed readlly for repairing the bushing by unscrewing the
astening of one of the standards, and the bushing can be easily taken out

Improved Car Coupling

Hamiln G. Russell, Lincoln, Ill.-Each drawbar is. provided with a couping hook which is plvoted, at the rear end of the same, to a strong vertical
od. A strong band spring is connected to a hook and placed in such a manner between it and the side of the drawbar that the force of the same hedrawbar is made with a solid inclined part at the mouth for the easy entering of the coupling hook of the adjoining car, which part is supplied with a vertical groove along its rear edge, into which the hook locks. A
catch plate is secured to the side of the drawbar in the rear, so that its ont part has an elastic spring-likeaction. On the approaching of the cars, e hooks lock into the vertical grooves. For uncoupling, a sultably ar the hooks and disengage them from grooves. The play in vertical direc on which is given to the hooks along the grooved parts allows the coup disconnects the cars when any one should get off the track.

Improved Sash Holder.
Samuel Charc, Mianus, Conn.- This invention is intended to furnish
neans for holding window eashes in any desired position, and for fastening neans for holding window eashes in any desired position, and for fastening
them when they are down. The sash is raised by pushing back the catch hem when they are down. The sash is raised by pushing back the catch
by means of a knob which releases a lip. The catch is held back until the y means of a knob which releases 1 lip . The catch is held back until the
sash is in the desired position, when the knob is let go. The pressure of he spring is designed to counteract the weight of the sash to some extent but the catch, belng free

Improved Mechanism for Towing Boats.
Olin, Deer Lodge, Montana Terr.-The tug boat is prov
Ghines for farnishing motlve power, and a propeller wheel is made to op erate at the stern. A drum is supported on a horizontal shaft by stands Which are attached to the sides of a frame. This drum is revolved by the motive power with the sid. The drum is given a slight longitudinal motion y means of a lever, which couples it with the gear wheel on the drum shaft. The motive power is applied to the propeller by means of a central haft. The propeller shaft and the two shaftsare coupled together and uncupled by means of a shifting lever, the propeller wheel being used only periodically, or to move the tug ahead and unwind the rope. The towing
of the boat, ortrain of boats, is done while the tug is anchored and stationry. The towing rope may be of any length which can be conveniently wound on the drum. One end of the rope is at tached to the drum, and the other end to the tratn of boats. The drum is thrown into gear with the
shaft, and the tratn of boats is drawn near to the tug by revolving the drum shaft, and the train of boats is drawn near to the tug by revolving the drum
and winding up the rope. When this is accomplished, the propeller wheel is slipped into gear and the tug is driven ahead, while the drum is uncoupled, that it revolves freely on the shaft and unwinds the rope. When the
rope is unwound, the propeller wheel is uncoupled, the tug is anchored, the drum is thrown into gear, and the
is repeated as rapidly as desired.

Improved Glove Turning Machine.

Frederick Vanderpool, Mayfield, N. Γ., assignor to himself and James E. Wood, of same place.- The object of this invention is to furnish a conve nlent glove-turning machine, by which all the fingers and the hand part, With the exception of the thumb, may be turned simultaneously in a rapid
and easy manner. The invention consists of a stationary frame with finger tubes, over which the glove to be turned is placed. A spring frame with Ing pressed down on the finger ends, to carry the glove and hand part over
it by one apward motion of the same.

David A. Caldwell, Jacksonville, Ill.-A A spur Mill.
tion is arranged loose on a shaft, with its toothed rim meshing with a pin Ion on the runner spindlle. The supplementary driving wheel it placed
under and supports the gear, betng itself fast or the same ehaft . adial slots or notches in the upwardly profecting flange formed around it periphery, to recelve the arms of the gear; and sockets are formed in the opposite sides or walls of sald slots, to receive springs, which bear agains the opposite sides of arms of the wheel. The springs are so arranged, as to
trength and length, that one only will come in contact with the wheel whe strength and length, that one only will come in contact with the wheel when
driving one rinin of stone; but, when driving two, the longest one will con ract enough for the shorter one to come into action, thus making the clas ower. To secure the springs in place, and connect the two wheels togeth er, plates are bolted at their ends to the wheel, and cover the sockets, con
ining the arms of the gear wheel in the slots of the wheel. The spindle tep is mounted in a steel bex, which is ifxed on the end of the short arm o lever, plvoted on a pedestal which is to be supported on an independen braces the lower part of a temper screw, under a follower working up and down on gulde rods, and onerated by the screw, which is stepped in a pe estal which supports the said rods by a bar, the upper ends being connect d to and stayed by another bar, through which the temper screw passes, but not screwing in it. The temper screw rod extends up through the
tone flooranda dial plate thereon, and has a pointer and hand crank o Wheel, the one for turning it, and the other for indicating on the dlal the arat its bearings in the stone floor, so that it cannot move endwise. by Which, when turned, it works the follower u_{i} or down, according to whic

Improved Blade for Agricultural Implements.
Wintield Scott, Floyd Court House, Va.-The object of this invention is
render hoes and other agricultural implements more durable, and it consists in making the outer corners of the blade thick and rigid, and akivg

Improved Transter Apparatus for Railroads, et
Joseph Jones, Alfred Harley, and Charles H. Fisher, Albany, X. Y.-Thit
iurention consists in an apparatus for gradually overcoming the inertia of urention consists in an apparatus for gradually overcoming the inertia of
and attaching cars, carriagea, or other vehicles to a cable or belt, while the atter is in contily
ion of the cable.
Improved Mill Pick and Hammer. ck hammer, ead is provided with a set screw, an oblong rectangular sccket, and tap oles on side and edge.

Improved Breech Loading Fire Arm.
Joseph C. Dane, La Crosse, Wis.-This invention is an improvement in rreech loading, of the class 1 n which the firing pin or striker acts by momen
um, the movement of the hammer being arrested fust previous to the de. ivery of the blow on the cartridge. The improvement relates to the contruction of the striker with an annular recess in its lower end, to adart t
o recelve the spiral spring which encircles the firing pin proper, and to rest its movement and impart the requisite weight.

Improved Farm Fence

Jacob Haish, De Kalb, M1.- This aventon relates mens whereby thn ralls of a wire feece panel may be not only made much stronger, hut
whereby it will be enabled to turn stock and allow for expansion and conwire, each fastened at then carrited out and hooked by a bent end with a corresponding one from
the opposite direction, spikes being thrown out on each side of the fence at the opposite direction, spikes betng thrown out on each side of the fence at the point of junction. With two wires to each rall, gipikes will thus bo
thrown out on each rall preferably at intervals of about a foot, more thrown
or less.

lmproved Rotary Eugine.

John B. Adt, Baltimore, Md.-This invention relates to means wherciny rotary engines may be more conventently packed, the piston kept always
radial to the center of the shell, and the usual clapping noise avolded. The vention consists in a combination with the case and the eccentric shatt allow the sald shaft to move.

Improved Selt-Adjusting Track Cleaner.
Hagerty, Baitimore, Md.-This invention relates
James S . Hagerty, Baitimore, Md.-This invention relates to means
hereby the dust,dirt, snow, or other obstacles which are found uipon rail. way tracks, may be speedily and effectually removed in advance of the wheels, while allitiability to fracture or displacement of the scraper may be
avolded. This is done by means of a scraper, a scraper stock, a bar and a grooved lug, jointed and operating together in a novol and effective

Improved Damper for Stoves.
Eaward F. Cook. Onaha, Neb.-The object of this invention is provide use ; andit consists in a hoop or ring attached to the damper plate at right
angles with the damper spindle, so that the hoop or ring will bear agalnst the pipe in which the damper is placed and hold the latter in position by the riction thus produced.

Improved Lubricating Journal Box.
Jean Mortn, New York city.-The object of this invention is to furnish a
self-lubricating fournal box for axles and shafts of all kinds, whtch secures an even and regular supply of oil to the bearings. Chambers extend verti. cally at the sides of the outer case of the Journal box, and contain the lubri-
cating oll, which is filled in by means of tube from the outside, which also indicates the quantity of oil in thechambers by the hight of the oil therein. so that the requisite supply can easily and readily be regulated and kept up. The oll receptacles connect with each other by means of fat, lateral, and
longitudinal channels, at some distance below the axle, which channels are connected by centrai and symmetrically arranged side channels with the bearing and axie. The side channels are wider at the base, narrowing to
ward the upper end, and contain the wicks, which touch witl their upper ends the asle, and feed the oll evenly to the same. The semi-cylindrical axle bearing is cast of bronze and provided with top recesses and a down ward profecting central gulde tube, which fits into the central channel of
thecase. The wicks extend to the fiat lateral channels, take up the luiricating oil and convey it by capillary attraction to the lower part and sides of the journal in proportion to the number of rotations of the same. The

Improved Dropper for Seed Planters.
Hermann H. Koeller, Camp Point, III. - The bottom of the seed box is
cormed with a circulr, recess in its center, in the sides of which are formed slots to recelve the slidiug bar, by the movements of which the dropper is operated. To the center of the botton is attached a projection which
passes up through the ellding bar and forms a pivot for a star wheel, which is made with seven rays, the outer ends of which are made more inclined may be at one side of the radus passing throagh the centers of the said arms. To the upperside of the sliding bar are attached two wedge-shaped which alternately strike an arm of the wheed and turn it through half the space of one arm. The dropplng plate is made in the form of a circle with
its middle part cut away, and is carried around by and with the star wheel. In the dropping plate, near its outer edge, are formed fourteen holes arranged in a circle and at equal distances apart, whith recelve the seed from the hopper and carry it to the discharge hole through the bottom. through which it fallsinto the guide spout that conducts it to the ground.
Upon the lower side of the silding bar is formed a projection which works the other end of which is pivoted to a bar, which is in turn plivoted to is operated at each movement of the sliding bar to allow the corn to drop

Tusimess and exsomal.

Small Factory wanted in Connecticut, with
Horse Water Power. Address Box sis1, New York. Engines 2 to 8 H.P. N.Twiss, New Haven,Ct. $\underset{\text { Fine and Sale-Stacksmith Shop, } 75 \text { Acres Land, three Dwell }}{\text { Mill }}$
 \$10,000, Cash. Address W. W. McK nett, Marydell, Md.
Hearing Restored-A Great Invention. Send Mead's Patent Safety Explosive Bullet, Cart-
ridge, all sizes. Circulars sent. John P. Moore's sons, ${ }_{20}+$ Broad way, New York.
Wanted-A Second Hand Stave and HeadFor Sale-Receipt to Plo Plate Zinc Are Articles.
with Brass without Batteries. sliverplating Glas, minutes. Samples sent. Address 250, Bristol, Conn.
$\underset{\text { A } \text { graduate of a German Polytechnic School, }}{\text { of }}$ Ires a situation in a machine shop, where the results of his study and practice may be mutually adra
H. Bilgram, 17 i South 4th St., Philddelphia, Pa
A full set of the Scientific. American, from What skilled. Maccinists say about Judson's
Patent Lathe chuck. I n never saw so good a chuck. and prefer it to the Universal. - M. M., of Wason M't'k
 ufacturer, Wythe Av. \& He wes st., Brookiyn,E.D.,N.Y.
(iold Pens made to suit any hand, by C. M.
 he establishment without leaving his seat. The Mlutature Flectric Telegraph-splendid for ofttces, factorles, shops, dwellings, etc. Price only wo, with battery, etc.,
complete for working. Made by F. C. Beach \& Co., 26 Broadway, corner Warreu St., New York. The Sclentiinc
American establishment, Xew York, 18 fitted with these nstruments.
Foundry and Machine Shop for Sale. For
particulars, address Bodine \& Lohmau, Jefterson city, Io. See advertsement, tnide page.
Vertical Tubular Boilers.-All sizes. Send
or price list before purchasing. Lovegrove $\&$ co., 121 Pulleys., Shadting, Adjustable Hangers, \&c.
Send for Yrice List to Mully i wide, 20 Hlatt St., N.Y. Diamoñàs and Carbon turnea and shaped
or sclentifc purposes ; also, Glaziers' Dlamonds manuactured and reset by J. Dickthson, 64 Nassau St., N. Y The New Elastic Truss presses uniformly
around the body, and holds the Rupture easy, night and around the body, ald holds the Rupture easy, ningt
nnd day, till cured.
Gold cheap by the Elastic Truse Co.. ${ }^{3} 3$ Broadway, New York.
Protect your Buildings-Fire and Water
root! One coat of Glines slate roonng paint is equal proof: One coat of Glines slate roofng paint is equal tin or fron roofs-never cracks nor scales off; stops all
leaks, and 18 only soc. a gallon reads for use. Roofs examined, patinted and warranted. Locar Agents want.
ed. Send for testimonalas. N. Y. Slate Rooffng Co.,
To. Cedar St, N. Y.
Teleg. Inst's and Elect'l Mach' Y-Cheap
outats or tearners. The best and cheapest Electric Ho. tel Annunclator-Inst's for Private Lines-Gas Lighting
Apparatus, \&c. G. w. Stockly, Scy., Cleveland. onio. Woolen and Cotton Machinery of everr de-
scription tor Sale by Tully \& wide, 20 Platt St., N. Y . Steam Engines-Special Machinery, ShaftL. \&J.W. Feuch wanger, 55 Cedar St, N.Y. of soda and Potash in all forms and quantit ties.
Pat. Double Eccentric Cornice Brake, M'1.'d
PThomas \& Robinson Cinno.. S Send for Circular. Dean's Steam Pumps, for all purposes; Engines, Botlers, Iron and Wood Worksing Machinery of
sil deescriptions.
W. L. Chase $\&$ Co.., 93 , 95 , 97 Liberty treet, New York
Stove Patterns to order-Also, for sale a
variety of new styles. E. J. Cridge, Troy, N. Y.
Treatises on "Soluble Glass," $\$ 1$, per copy, n "Fermented Liquors," ${ }_{3.12}$ per copy. Malled free b . \& J. W. Feuchtwanger, 55 Cedar St., New York.
Temples and Oil Cans. Geo. Draper \& Son, Mining, Wrecking, Pumping, Drainage, or
rrigating Machinery, for sale orrent. Bee advertisement,
Andrew's Patent. Inside page.
Abbe's Bol Machines and Palmer's Power
Hammers a peectialty. s . c. Forraith \& Co., Nanches.
"Superior to all others"-for all kinds of "Superior to all others"-Hor all kinds of
Fork-Llinet Co.s French Files. They are better,
forged, better cut, better tempered, and cheaper than Engilsh fles. Send for Price-List. Homer Foot \& Co.
Price only three dollars-The Tom Thumb paratus, for sending messages, making magnets, the
electrriclight, giving alarms and various other purpese Can be put in operation by any lad. Includes battery, sey and wires. Neatly packed and sent to all parts of
the world on recelpt of price. F. C. Beach \& Co., 260 the world on recelpt of price. F. C.
Broadway, cor. Warren St.,.New York.
Rue's "Little Giant" Injectors, Cheapest
nd Best Boller Feeder in the market. w. Lh. Chase \& Co., 93, 95,97 Liberty Street, New York L. HJ.W. Feuchtwanger, 5 F Cedar St. N.Y.,
Importers and Manutacturers of Chemicals or Mechan.

Brown's Coalyard Quarry \& Contractors' Ap-
aratus for hoistiug and conveyningmaterial by yron caiole.
Parties needing estimates for Machinery
any kind, call on, or address, w. L. Chase \& Co., , 9597 Lberty Stre
Iron Seam Boxes for Stave Bolts \& Veneer
utting Machines. T. R. Balley \& Vail, Lockport, N.Y. Partners Wanted-We want to find one or nterest in 746 Acres Big Muddy Coal, heavy Timber and Farm land, who ehall superintend the Farmtng, a Saw
Mill and Coal Shatt. Safe investment. See "Iron Age"
For Solid Emery Wheels and Machinery,
For best Presses, Dies and Fryit Can Tools.
Blise $\&$ Willams, cor. of Plvmouth Jay,Brooklyn,N..

Best Steam Traps made, non-freezing. Scotch
Tubes and Eng Ineers' Supplies, \&C. A. A. Brocks Walnut Street, Philladelpha, Pa. Hydraulic Presses and Jacks, new and sec
nd hand.
E. Lyon, 470 Grand street. New York. Steam Fire Engines,R.J.Gould,Newark,N.J. Peck's Patent Drop Press. For circulars, Small Tools and Gear Wheels for Models List free. Goodnow Wightman, 23 Cornhill, Boston,Ms.
All Fruit-can Tooos, Ferracute,Bridgeton,N.J. Lathes, Planers, Drills, Milling and Index
 for lithograph. etc.

S.C. C. will find a description of Mure an Clamon's' thermo-electric battery on p. 24 , vol. $29 .-\mathrm{C}$
R. H. can temper steel plow mold by the process for Case hardening described on p. 362, vol. 25.-S. C. c. ca 266. vol. 26.-T. T. C. .and others write to opont ont thal
the explanation of the compound lever oo p. 11. vol. 30 3 hould be " $" 36 \times 17^{\circ} \cdot 5 \times 20$, weight balanced at A, , and not $\cdot \cdots 36$ and dip on pp. 299, 282, vol. 29. Booksellers' addresse Its lenses in a wooden telescope. according to the le. cription on p. 7, vol. 30.-H.E. S. will ind directions
or making paste on p. 280, vol. 28.-A. G. S. will tund dit rectlons for making cider rinegar in our answer toJ.
F. A. on p. 58 , vol. 30 , the process described in which
H. C. asks: How large should a cylinder be nches in hight, with 5 t.vo inch flues, capable of stand ng 75 1bs. pressure to
one inch, stroke toree
J. G. asks: What is the percentage of fuel
aved b. feeding water into a botler at 2000 when before
 to enable us to answer this question. We can give you the heat of the feed water, and y yun can apply it to o your
case. Let $\mathrm{H}=\mathrm{total}$ heat of the steum. $\mathrm{F}=$ one temperaase. Let $H=$ total heat of the steam. $\quad \begin{aligned} & F=\text { one tempera } \\ & \text { ture of feed. } f=a \\ & \text { higher temperature of feed. } \\ & \text { Then }\end{aligned}$ $\frac{-\mathrm{F}}{\mathrm{I}} \times 100=$ per cent of gain by increasing the temperature of the feed water. Example: Suppose, in the case mengage. $H=1207$-so per cent of gain $=\frac{200-125}{1207.8} \times 100=$ $\underset{\text { grist }}{\text { f.2+ }}$, tal shaft which runs at 225 revolutions per minute, the
other on a perpendicular shaft whence a belt leads to wheels, and or what should I make them? A. You do not tsate how much power you desire to trausmit. Wo
think, however the use of wooden wheels.
J. H. O. says: One of your correspondents
states that the heated hydrocarbon vapors are liable to spontaneous explosions when mixed with atmospheric
air. May not euch explosions occur in ordinary temper. From the great volatillty the light hydrocarbon oilis? A
 ilke spontaneous explosion was really caused by some
hydrocarbon vapor coming in contact with flameat some hydrocarbon vapor coming in contact with flame es some
distant point. In this respect tmplre or tmperfecty
retine kerosene is somettmes more dangerous than gunpowder, the volatlle inflammable vapors even at a great distance taking fre in contact with fames, and
leading like a train to in in ammable fuld. We think leadng like a traing to inflammable fuld. We think,
however, that there tis a fild here for carefulexperi:
ment to determine the prectise conditions under which H. A. W. says: "I read that, to make ini mix with two grains of prectpitated oxide of cobalt.
What does the paste alluded to consist of ? What 18 ox ide of cobalt?" A. The paste you mean is a very fusible, highly trausparent, dense glas8, also called strass, frit
itc.,and 18 the baseof all articclal geme. There areva
 tation of the damond: Rock crystal, 1.600 granns, borax
560 grains, carbonate of lead. $3,2 \mathrm{zeO}$ grains, oxxde of man.
 sether, fuse in a clean cructbe, pour into water, sep.
arate
anemelt arate any reduced lead, and again powder and remelt.
Prectpptated oxdde of cobalt le prepared by adding a solution of carbonate or soda to a solution of sul.
phate of cobalt, washnng, drying, and tgnting the
powder paste the blue color, characteristic of the oriental sap. paste th
phtre.
N. A. 'I. asks: 1 . What is the best com-
pound for making artuctal ice, and now must it be ap. piled A. A very conventent freezing mixture without ice may be made by raptaly didsolving 1 part nitrate of
ammonna in 1 part of water. This 18 sald to cause a re. above zero. 2. What is the average cost per hundred
 Urleans manufactured by artuct:al means is suld to bc
produced for $\$ 3$ per tun ; but with improved machnnery roduce for 83 per tun; but with Improved machinery
the time is probably coming when It wrll be made in our great cities for \$1 per tun. 3. Where can I get the best
davice ton plsciculture. A. See the Science Record for A. H. W. asks : 1. What sized wire (insuised and how much shoula be usen for a heixix made
of iron one tinch by two feet, and bent in the common U of fron one tnch by two feet, and bent th the common
shape? Should the roon be painted? A. 1 It it not netessary to paint the tron tron The force of an an electro.
magnet varies in proportion to the number of convolut tons of the wire, the quantlty of electrictty in circula 1on, and the suare root of the diameter of the soft
ron. 2. Why does water feel so cold, atter having pep. permint in your mouth? A. It may be because the

G. S. R. asks: What is the stowage capacity
in cubic feet of a tun of Franklin coal, aso of Lenlgh oal'? A. We gave average values for the space in feet occupted by a tun of coal on $p .60,135$, vol. 29 , and stated
then that there was so much difference of welght in the hen that there was bo much diflerence of welght in the
varioua qualties that t was imposelble to give dennite rarlous qualities that It wa
agures
W. S. M. asks: 1. How shall I proceed to alt the boxes for a foot lathe splndle with Babbitt met paper before the metal is poured in? A, It will be bet. ter to use a plece of paper. 2. Please glve directions
ormaking a hard, heavy, black palnt for the unfnished cast Iron parts. A. There tis a black varnith made from castroum that answers very well. 8. How much should he back gears diminish the speed so as to turn wrought
ron 3 inches in dameter? A. You should arrange the gears to give the tron a surface velocity of about 30 fee a minute. In regard to your other questions, they ar rather Indefinte, as the dimensions you ask for are de.
pendent upon many circumstances. It would be well pendent
for you
ments.
A. R. G. asks: 1. Should I gain any power In acmailturbine water wheel by continu ang two of the uckets spirally up the shaft to the top of the penstock,
or would the wheel run too fast for the water at the top f penstock? Would a close fitting or a wide penstock be best if the whet is used under headd from 16 feet up
wards? If this 18 an improvement, would it be patenta ble? A. These matters could beast be determined by ex eriment. An examination of previous patents (se rospectus in our advertising pages) would
ary to enabie us to answer your last question.
R. C. M. asks: Could a steel saw be used
with economy in sawing stone, usting adiustable teeth? I have been experimenting with black carbons,but find
18 Imposible to make them stay in thelr places." A.We it 18 impossible to make them stay in their places." A. We omical.
S. A. Ct. Says: We have a 30 horse engine,
with a cut-oft, and we tind that the cylinder has worr More at each end than at the center. We have been told
hat tuls is a common occurrence with cut-otf englnes ist so? As we have a good deal of trounle with the cut of, we thought of :oing away with it, and using ago ernor to regulate at throttle. Will this cause the cylin.
der to wear in the center so sa eventually to make it
more unform
A. We think the best way to remedy the trouble will be to re-bore the cylinder.
H. R. says: We are engaged in a manufac Her requirlng iron of great tensile strength. What kluds
ould you recommend? A. Pure gray cast iron, and P. J. D. asks: 1. How do you calculate the is treated as a beam. 2. In your answer to J. O .
bout the length of lever for a roll valve, what does Sout the length of lever for a roll valve, what does the
decimal $0.6 i 2$ represent, and how do you get it? There is a alight mistake in this example, which o
curred through an oversight. Referring to the tigure he chord R C an oversight. Re, multiplied by tit ine of half the angle BA inches. Hence, BC $=2 \times 3 \times$ sine $47^{\circ} 45^{\circ}=6 \times 1 \cdot 74=4$
inches and lever $A E=3 \times 11+4 \cdot 44=7 \cdot 66$ inches, nearly.
A. C. F. asks: What is tinsel ! How could
make the red kind? oated or plated with silver or gold. The red kind of Which on speak exp penobive machnerery and skill. The ly you.
 tand: Hilght oue foot, diameter of of top and botom re
apectively tour and elght finches?
A. Treat to as a art. 2. Has a rotary steam englue ever been coil ructed on the princtple of the turblne water wheel If so, dld it work? 2. Such engines have been made
and have worked, how economically we are not able to
M. H. P. asks: Is coal tar good to put on an
old tin roof to keepit from rusting? How shall I Iapply te. A. Coal tar is often used for rootnne purposes.. For
tarticulars as to tos preparation, correspond witn tome nanufacturer of roofng materials.
C. asks: 1. Can you give me a description
the circuiar sllde valves for steam engines? A. There are everal patent valves of this description in the mar
Ket, and,by addressing their manufacturers you can ob tain the necessary information. 2. Why 1812 that they have not succeeded In navigating submarine boats wit
nen in them? Is it because there is no motor sultable to propel them, or because they roll over and bccom nmanageable, and are likely to turn upide down? A
We belleve this has been accomplished on several occa
Z. E. H. asks: 1. What is the simplest wa page 409, vol. 29, which 18 quite simple and tolerably ac-
urate.
a. How is mean time calculated? A. Meau Imets calculated by supposing that an maginary sun n, moves uniformly ast" "and "sun slow "and "true midday?" A. The dif
and ference of time, as given by the true and mean suns,
shows a correction of "sun fast" or "sun slow." True midday is the time of the passage of the sun over the tal time is reckoned from the moment when the poin of Aries passes the vernal equinox. 5 . What is the simplest miethod of finding the variation or error of o watch
orclock A. calculations in the Nautical Alimanar are generally made for Washlugton time.
J. C.S. asks: When the strain is between hhe hear or a moit and the nuts, which of the nuts bears
the stralu, the frist or the fam nut? A. A great deal de.
 te girl who often amuses herself by looking in my eyes We sit factng $\mathbf{a l i g h t e d ~ l a m p . ~ S h e ~ p l a c e s ~ h e r ~ r i g h t ~ e y e ~ a s ~}$
lose as positle to my left, and we turn our eyes to war each other. They are then partlally shaded, and we see all the Interior flutd and optch nerves. Do 1 see her eyes
or the refection of my own?
A. R. P. asks: How far is it possible for ture of the earth? How far is it possible for the naked eye to see on land withnn a radius of 200 miles of Pitts.
burgh, at an elevation of 1,00 feet burgh, at an elevation or 1,000 feet. A. In general it
may be e thed that a white may be tated that a white object illuminated by the
light of the sun can be seen at a distance of 17, ,250 times its own diameter. A red object, under the same circum. stances. Would be seen only half as far, and a blue ob-
ject a still less distance. An object can be seen in ordi:
 rectly illuminated by the rayss of the sun. These igur
will of course vary somewhat with different eyes.
W. H. G. asks: 1 . How does the duplex
ielegraph work? Lelegraph work? A. Consult some good work on the
electrict telegraph for partuculars.
2. Must I wind the wre around the core of an electromagnet in one direca wire must be wound in one direction.
R. H. G. asks. 1 . Is there any method of
seeping powdered alum and blcarbonate of soda to eeping powdered alum and bicarbonate of soda to
kether, without destroying tine properties of cither? You can mix dry powdered alum and dry blcarbonate of
soda together without any fear of decomposition taking place. 2. How can alum be dried, as in its commerclal
 exposing ordinary alum to heat, as by throwing a plece
upon $¥$ hot tron plate, 1 t melts, loses its water of cryse. burnt alum. At a white heat alum decompose
G. B. asks: Which is the most injurious to
rink, Japan tea or Java coffee?
What effeet has te upon the nervous ystem when drank at nifight just be.
fore retring? Doest coffiee of moderate strength pro.
 red Injurlous when drank to excess, and the effect of etther when taken by a person not accustomed to thet ase before retiring is to stimulate the nervous system and cause sleeplessness. They may cause dizziness and
headache in some constitutions, but we have doubts G. W. C. Says. I I wish to make a sand paper
with considerable grIt. What can I use better than sand remers? I want somethng that will last. to rub down
hard substance. A. Perhaps an emery wheel will anO. M. C. asks: What is the process of ma-
ktug potato flour?
A. The tubers, after veing washed nd peeled, are rasped by a revolving grater, and the pulp washed on a hair sieve to rree ft from feculous
matter. When a sunticlent quantity has passed through the sieves, the starch particles are allowed to substde,
nd the water 1 d drawn out. Fresh water is let in he whole stirred up aud again allowed to subside ; this process is repeated till the estarch is pure. It can be
dried 1 p perforated boxes, or placed on porous bricks to J. S. H. asks: Where was the first locomo
tive built and run in the United States?
A. Mr. Cady Staley mentions, as the frrst locomotive in the United
tates, one constructed by ollver Evans, in Phlladelphia ti 1801.
 with an in ininte stralght line." He argute that, as long as a line is in the theast curved, if produced, it will form
clrcle $;$ and that the curve may be made less, and there as arcle; and that the curve may be made less, and thereYore te circle 1 not Inunte, and from this coucluston
argues that an tinfinte circle is a straight line. I hold and the liue is nelther an infinite or any other kind of of circle. 1. According to his detinition, is an Infinte cir-
cle posstble? 2. If so, which is right? A. The circle is

line of the second order, and the straight ine is of the mrst order; hence they can never colnctlde. This may
 inc, $F G$, reierred to rectanyular axes. Make $r=\pi$, then Make $x=0$, then $y= \pm \%$. Nake $y=0$, then Wo points. on different sides of the oriyin. and at an infinite distance from it; also the axis of X , in two similar points. Vow, in the equation of the straight line,make $b=s$, , then
$=$ axa $+\infty$. Yake $x=0$, then $y=s$. Nake $y=0$, then $x=$ «. Hence the straight line cuts the axis Y in one point. the axis of X in one point, at an infinite distance from e origin. says: A press with movable type
deesk use, not larger than an ordinary sea ress, would meet with a ready sale. . . . Such presses A. W. C. asłs. 1 . How can I tan bear skins
with the hair on, so that the hair will not fall out? A. Fulverize and mix one part alum and two saltpeter together; fold up tight and hang in a a dry place. Rub
over the edge of a board to make them supple. 2 How an I paste labels on tin or fron, so that they will not fall uart of floui paste, and mix thoroughy
D. R. S. asks: How can I ventilate show weather? A. Make some small holes at the bottom and how window.
M. W. J. asks: I. Is there any machine for tc.? A. Yes. 2. Can r ratee fish, such as bass, trout f spring water through it? A. Yes.
H. N. asks: 1. If any one invents an artiH. N. asks: . . If any one invents an arti-
ce which is partiy made of rubber, has ne to pay aroy-
dy to a rubber companys. aty to a ruber company, i. There are several patents
force which proteit the use of certanin processes of
 by heat, or dissolved in hydrochloric acta, making nuy.
fiate of tin. 3 . Is broken window glass valuable? A . L. M. C. asks: What is the weight of an
rdinary passenger engine of 4 teet $8 \% /$ inches gage?
A. From 25 to to tuns. How long a circult will the Tom W. T. R. asks: Will the Tom Thumb bat M. M. asks: If I hang a rope over a loose other in my hands to elevate myself, what proportion
of my welght do I pull down with my hands? My friend

$\xrightarrow[\text { E.M. C. asks: } 1 . \text { Can you inform me of any }]{\text { process by which steel springs exposed to the action of }}$ sea water may be prevented from rustIng, which will not
Impair the temper as galvanziling does? In response to
 With nickel. But nickel plating does not protect iron or stei whe exposed to sea water or see air. Artices
so plated seem to have even an fncreased tendency to ruast, owing posisiby to a alow gavenastice action. A.
Sea water ta compound that few metalas (and those are rare and expensive) can succeessully restist for a great
length of time. Zinc and Iron are raptdly corrodece length of time. Zinc and iron are raplaly corrodede
This is probably owing to the afflity which chlorine loseesses for the metailic elements. Gald and platinum,
the most unalterable of metals, are rapldily dissolved in nitro-murlitic acch, where the e attacking e ement 18 nas-
cent chiorine. We would suggest some strong trans. plater that the pagage of a current of electrictty or galvanism through tempered steel (as in electro-plating) destroy the temper. 1 the this correct, or an error? A.
deare not aware of any reliable experiments on this Weare not aware of any rellable experiments on this
polnt. 3 . Can you give a rellable recipe for marine point. 3. Can you give a reliate recine for marine
giue? A. In making.
 sel untll solution is complete, and then the powdered
shellac added, and heat and stirring continued unt11 liquefaction has taken place
 chnes? 18 the varulsh baked on or not? A. Japanning
constats merely tu covering the surface of the metal with a black varnish. The princlpal ingredients of this varnish are amber and asphaltum dissolved in oll. Oil
of turpentine is afterwards added to promote drying. of turpentine tig after wards added to promote drylng.
Is bronze or gold leat used
most tin We should say bronze leaf, from tit cheapness.
there any book that glves explictt directions to same? A
mation.
W. B. says: "If a galvanic battery consists zInc p pateer with a soituon on sulphate of copper, will
any electricty be geneated if I jotn all the lead plates together and the zinc. or will I have to jotn a lead to a
zinc and so on throughall the cells before any electricty zinc and so on through all the cells before any electrictity will be generated? A. By joting all the lead plates to.
gether, and all the copper, we obtaina quantity current,

E. V. asks: Is there any trustworthy mean of miking benzine or beezzoline non-explosive? A. The
 plodes on the application of flame. We can only prevent thts by encloining these compounds 4 n alrtith treselels,
or by combining them to such an extent with non-volaOrby bombtnng them to such an extent with non-volaa
tile substances of which they are natural solvents that no chemtcal means to preserve the chemtcal constitu. tlon of pure benzinine thtate, and yet
its mopt characteristic properties.
J. L. A. A. asks: 1. How is adhesive court
plastermade? A. Dissolve 1 part of finglase in 10 parts of water: stratn and add gradually 2 parts tincture of face of thnt silk, black or white, by means of a camel's hatr brush. Give as many coats as necessary, allowing
each to become dry before applyng the next, and lastly R1te the prepared surface one coat of the tincture of
benzoln alone. The silk should be stretched on a frame. 2. How can I dissolve copper, ntckel, brass, and other
 cibles made of a mixture of plumbago and clay. They
J. B. H. Aasks: How can I remove black ink a cloth dipped in a weak solution of oxalic accit, wntil the statn 18 removed, and then with
terwards rub dry with a dry cloth.
D. M. asks: What metals expand on coolby melting together 2 parts antlimony, 9 parts lead, 1 part
bismuth.
C.D. M. asks: What gums or equivalents
 action with coal oil might properly be made the subject
of experiment.
 to make acetone, such as 18 8ometymes used for corro-
ding lead? A. You have reference, we suppose, to the production primarlly of acettic acta, from which acetone
is formed. An ordinary acetic acld may be made without distillation by pourlng 60 parts sulphurlic accid, dillu.
ted with 5 rarts water, on well dried acetic 11 me, 100

 Ic acld through an fron tube heated to dull redness, and
condensing. J. O. T. asks: 1 . How can I remove common
india ink from mechanteal drawing without injuring of a harp eraser or penknife, and the part carefullse
rubbed over with any hard smooth ubbstance. Fine esand paper is also useful for this purpose. For small errors,
it ts perhaps best to palnt them out with thick Cninese or lize white. 2o How can the drawings be cleaned,
without injury to ether paper or ink? A. ity of fine vulcanized rubber should clean your paper
without leaving dirt. Try stale bread. 3 . Canthe roots of the following equations be obtained? If so,
higher mathematics, and we colld not publish the solution in these columns. A glanee will show that $x=2$ and $y=3$. clvii engineer? A. Under the circumstances, we can
offrer IIttle practical advice. There ts always a fair de. mand for gkIllled and $\operatorname{dexprienced~engineers,~but~in~or-~}$ fession, the influence and aid of friends is of incalculable advantage. You might make it a potnt to call upon
the superintendents of railroads $i n$ your vicintty and prefer your requesi in person for a place, or perhaps en.
deavor gatu room in the offlce of some well englineer, where you could learn much of the proftesion,
and besi i des form acoualntances whtch would lead to
F. M. D. asks: Is there any invention, patented or otherwise, for the purpose of alding pedestri-
tnism, such as a spring attached to the foot? A . Device tnism, such as a spring attached to the foot?
ao assist the feet in walking have been made.
 common sheet zinc ? A. The object of amalgamating
he $\begin{aligned} & \text { Inc } 18\end{aligned}$ t prevent the action of the acld upan it ex cept when the electric current is pasing,
common sheet zinc, but It will soon weal
an I made of unglazed earthenware. A potter will probably acta of the porous cup flow into the flutd of the zinc, o does it evaporate? A. In Grove's battery the nitric acti In the porous cup tig radually decomposed. It merely
comes in contact through the porous cup with the fuld comes in on tact through the porous cup with the futd
in the zinc cell, and ths 18 necessars to allow the passbattery constructed? 1 . Smee's battery consists of batre of silver or or platinum sumpended between two plate of zinc, and the whole immersed in dillute sulphuric
G. B. G. asks: What is the composition and mode of proparation of the enamel, black and whte
used on clock and watch faces, and are the letters and figures pritited on or put in with a pen by hand? A.
Black enamel. Peroxide of manganese 3 parts, zaftre 1 part. MIx, and add as required to white enamel, Which 18 ,
Washed diaphoretic antimony Trom lead, sparts. Mx, , melt, , pour Into water, powder,
melte agan ; and repeat this three or four tmes. Fig melt agaln; and repeat this three or four thes. Fig-
ures are put on white enamellas on china, while in the "blscutt" state, before vitritication.
A. \& B ask: In there were a hiole through the ball everstop, or would it pass through and through stop as a pendulum does when it has no power to move it, that 18 shorten its stroke every time it swings un.
tilt stops. A. We thlik B. is right.
 of the dameter of the ball tin tnches by 0.5236 , and by
the weight of a cubic tnch of the material of which the F P. Has.
F.P. P. asks: Why does a star, seen with
he naked eye, look trregular? telescope, it appears round. A. The twinkling of stars
s du ue both to the earying density of the atmosphere and
to through the telescope except when the latter is out of
J. C. asks: How can I exterminate red
 make atron an earrution
which they frequent
J. A. asks. How can I bronze small iron
castinge?
A. Take 1 plnt methylated fintsh, 4 oz8. shellac, y oz. gum benzotn; put in a bottle tn a warm
place, and shake occasionally. When the gum is dis. solved. 1 t it tand in a cool place two or three ayy to
settlee then pour off the clear into another botte, cork
it eft in the irrst bottle ts to be thinned w it workable for frrst coats or coarse work. It must be
stralined through a cloth. Then take $\%$ /b. finely ground bronze green, varyling the shade as required by adding lampblack or ree. or yellow ocher. Let the fron be
clean and smooth: take as much varnlsh and bronze powder as required, and lay on, with a brush, in a thin
coat, having silk htly warmed the articles to be bronzed. hen dry, add another coat if necessary, and touch up Where required with a little of the bronze on a pencil.
Just before it 18 dry, gold powder may be put on. Uust berore it 18 dry
nith over all thally.
J. A. asks: How can I separate albumen rom blood? A. By recelving the blood tn moderately
deep vesesis and allowing tit to coagulate, much of the serum or albumen will separate and rise to the top,
R. M. W. asks: What does "Patented, S from Europe, and I think the article patented is a French or Belglan Invention. A. The French authortiles
require these letters to be marked on patented artcles. Ther gtand for "SSans Garantie du Gouver nement",
"without guarantee of the government.". Is there nd this out by examinting one. Patented articles are re. quired by law to be marked " patented," with date of
patent. We belleve it 18 patented. 3 . Is there any suc. eessul stump extractor?:A. We have lllustrated severa for printer's rollers? A. You can make composition rollers by dis8olving with heat, In two pounds of treacle
one pound of good glue, previously soaked a nlght in water. For greater hardines, use more glue. 5. II it it
posible to analyze a mixture of chemicals in order to ossible to analyze a mxture of chem
tell what the ingredienta are? A. Yes.
C. W. Says: I had occasion to mend a topaz
ring, and I Idid it in the usual manner, using a round stck of charcoal and imbedding the stone in plaster of
Paris. The stone was a dark one and was changed
 change of color. The yellow Brazllan topaz, strongly heated, becomes rose red, and the Saxon topaz, when
gently heated, white. We are afrald nothing can bedone
H. G. B. asks: 1. Will platinized silver do is the best way to platinize it? Will it do to platlinze
copper instead of sllver? A. Ether platinzed sllve ead. or copper will answer in Grove's battery, but it must de well plated. The platinum solution used 18 the double chloride of platinum and
solved in a solution of caustic potash.
G. H. J. asks: 1. What are the so-called
glase cards made of, and how are they colored. probably mean cards glazed with soluble glass. This can be applitedn the liquut state like a varinish. When
dry, it forms a hard, glassy, transparent surface. Varl. ous plgments can be used for coloring. See our adver isting columns.
J. D. says: I produce an orange color with
bichromate of potash, alum, , litharge, acld, and soda What must I add to deepen it? A. Ihis is a matter to be determined by experiment. Consult some practical
chemsts, who may have faclitites at hand to make the
W. V. D. asks: How much worm surface is
equired to condenee a gallon of proof spirit in an hour? required to condense a gallon of proof apirtit in an haur
I am told that, to coondense 200 gallong of proof poprit in 12 hours, about 180 feet of 2% or 3 finch copper plpe would
 You should read the article on evaporation in Ure's
"Dictionary.
M. T. asks: Why does coffee, either ground
or in the berry, even if closely kept tin a tin can, lose its roma, and become disarreeable and bitter? A. The
aromattc princtples of coffee on which tits pends, are volattle, and consequently, unless the roasted coftee 18 rigldy excluded from the air (which is alm ost
imposible in ordinary vessels), the flavor 18 soon lost. and the bitter princtplese, among which 1s tanntin, are left d and ground berry, by infusing it in bolling water for few minutes. The coffee should not be bolled in the
W. C. asks : What is tungstate of soda, recit make wooden tobacco plpes uninfammable? A angstate of soda 1 s a compound of tungstic acla a tive tunsstate of Ilme. The compound in solution, to
which alttle phosphate of soda has been added, has long been used In England for the purpose of rendertng
fine fabrics unn infammable. It does not prevent char Fing from the action of fre, however; tits only use be ing to prevent substances burning with lime.
S. B. R. asks: On what stuffs can the an IIIne dyes be used? How can I dye cotton goods with anillne blaek? A. All fabrics of silk, wool, and cot-
ton can be dved with anllite preparations. To get an
 wring out well and, without rinsing, pass into bolling of the manganese salt, wash the cotton in water and as 1 Int a lukewarm chloride of lime bath, taking ca
hat the chloride be not used in exceess.

P. says: I wish to be an engineer. Which
would be the best cty for me to go to, to get Inatruction? Is mechanical draw ing taught riee at the Cooper Inst1.
tute tin New York? Is there anythng of the kind in
Bose can obtain all necessary instruction, including drawing. the cooper Institute. We scarcely think you willifl
E. B. W. says: On page 43 of your current sides. It is quite common for mechantics to oftirm, in the most positive manner, that this cannot be done. Ther
are a few not beting generally understood, cause them to come to
this erroneous conclusion. If a good workman will this erroneous concluston. If a good workman will
take a try square, such asis commonly found in machine take a try square, such asis com monily found in machne
shops, and commence on a block of metal sas two nci-1when he has reached the fourth side, it and the blad of his square will not cotncide. There 18 a cause for
this, and it lays matnly in the angle of the square being this, and in lays matniy in the angle of the square betng
a small fraction less or more than 90 . When he has multiplied by four, and becter plianly visbe. The Whole experiment, then, becomes simply a dellcate test
of the square. If he will take a plece of sheet steel and form a try square out of ti, and with this commence and
of the suare. side, which way his guare when and catetully courte It with a fine file or scraper, he will, after several patient efforts, have it bo nearly perfect that no error will ap. have made a perfect try square, and with it he can square other blocks, comsng out at the fourth side cor
rectly the first time. The secret of the " imposibillty" in this problem rests in the inexactness of tools and workmanship; for certainly if the four corners of the
block are just goo each, the opposite sides will be paral
J. S. says, in reply to to L. and H., who have
diffculty in burning sawuust : "i have a boiler of similar dimenslons and I burn my sawduat successfully. I use
a fan (costing only about 12 or 15 dollarse) of 24 inches dt ameter, with o inch wings,drlven at 1, coo revolutions pe
minute. I also employ at trunk maide of inch boarde to
 also a Ilttle wood or olack coal to keep the fre going."
A. J. K. says, in answer to J. W. B.'s query
to caiculating machines: There are machnes which

J. C. says, in reply to J. F., who inquired
about a certain clock with a glase dal on which the hands ura without any anparent motite power : I I be
leve the timeplece is nothlug but Robert Houdin' clock, whtch works as follows: At one end of each hand
there ts a large disk these seem to be only counter. polses, but, to reality, thes contain concealed wateh appropriate levers, cause each hand to move on the dia and mark the correct time in a mysterious manner. It
J. F. looks closely on these disks, he will probably see on some part of their surfaces, squares, u
them up with a key, like an ordinary watch.
Minerals, etc.-Specimens have been re ceived irom the following correspondents, and examined with the results stated:
C. L. McC. \& Co.-Your specimen is galena in quartz. and 4 contain carbonate of copper and copper ind No 1 is white pyrites. No. 3 resembles quartz and white
E. G. A
E. G. A.-Yo
small sample.
T. M.B.-This is a specimen of earthy chlorite, con Irin. The term chlorite is derived from a Greek wor meaning green, on account of the greenish appearance
of the mineral. It is of no economical importance, al though the eom.
ans for plpes.
J. W.-Your specimens are ochers, that 1s, clay charged with oxide of fron, to which their color is due
The red espectally seems to be a valuable mineral paint You should correspond with some one who is interested in the use or sale of such articles.
J. W. B.-Y our mineral is decomposed hornblende. J. W. Jr.-The enclosed is blue clay, a sillicate of alu-
mina. When clay burns white, it is used in the manu-
facture of white earthenware.
M.L.-Your mineral is specular oxide of 1 ron. S. C.-Clay
e of iron.
B. F. M. - Dark colored clay, a sillcate of alumina.
J. E. S. - Your mineral ts wilte quartz, sometimes J. E. S.-Your mineral is walte quartz, sometimes,
thoughimproperly, called diamond. The purest variety; which is crystaline and transparent, is used by jewel rrs, and is also made sometimes into spectacle lenses, chend is pure carbon. Quartz is silica, while the diaHmes cut glass, but not with the facllity of the dia
M. R. L.-The minerals sent are oxide of iron, chiefly icaceous oxide, so called from Its occurring in smal
bright spangles like mica. From Its glimmering, splen dent appearance you have probably mistaken it for sil his somettmes contains a paying quantity of live t.this can only be estimated by an analysis.
J. E.G.-1, epidote; 2, quartzite; 3, copper pyrites
erpentine; 5 , chlorite ṣchist : 6 , carbonate of lime.
G. S. R. asks: How can I reduce leather,
buffalo hides, for instance, to a pulp, which will set inon hard and durable mass?-A. M. asks: How can 1 find the welght of a person's head without cutting 1
off?-J. V. B. asks: Is there any substance with which I can coat cardboard, to make a white slate, to be writ-
ten on with a lead pencil? - G. W. F. asks: 1 . Can you ten on with a lead pencil? ? G. W. F. asks: 1. Can you
piveme a rule for setting out circular saw teeth? 2 . pivemea rule for setting out circular saw teeth? 2.
How can Iterpper a burrforgumming out saw teeth? C. P. asks: In taking impressions of the human head in
plaster, I have trouble in making the hair and whiskers

COMMUNICATIONS RECEIVED.

The Editor of the Scientific American acknowledges, with much pleasure, the re eipt of original papers and contributions pon the following subjects :
On the Morse System of Telegraph Signals y W. L
On Ctilizing Coal Dust. By J. H
On the Preservation of Timber. By J.H.M
On the Principles of Ventilation. By C. . w .
On Asphalt. By C. F. D
On the Relative Attraction of the Earth and un. By W. M. D
On a Substitute for Mica in Stoves. By A A. H.

On Mr. R. A. Proctor and the Million Dollar elescope. By S. H. M. Jr
On Preventing Incrustation in Boilers. By E. On Ocean Towers. By W. K.
Also enquiries from the following
s. H. W.-H. C. A.-H. S. w.-H. B.-W. w. A.-L.A.C.

Correspondents in different parts of the country ask:
Who makes a centrifugal clothes wringer? Who make no makes a centrifugal clothes wringer? Who make
moke-consuming devices for ootler furnacen? Who makes corn-shuckitng machines? Who makes wod.
working machntery bits? Who makes an instrument other than the ear trumpet, for relptng the parttally deaf o hear? Makers of the above articles will probably pro-
mote thelr interests by advertising, in reply, in the Scrvti
Correspondents who write to ask the address of certain manufacturers, or where specifed articles are to be had,
also those havilug goods for sale, or who want to tind partners, should send with their communications an me head of " Bustiness and Personal" " which is spectilly

[OFFICIAL.]

Index of Inventions

for which

Letters Patent of the United States were granted in the week ending January 13, 1874 ,
and each bearing that date.

Chest protector, I. A. Singer............. Churn power, G. W. Rennolds.
Cloth measure, rotary, W. Heb Cloth measure, rotary,
Clothes dryer, . G. Boorn..................
Clothes dryer, revolving, M. A. Bogart. Clutch, A. H. and J. H. Race.............
Cock, compression basin, J. T. Hayden. Cooler, milk, E. C. Brooks... Cork fastener, J. H. Parkhurst......
Currants, etc., washing, F. Oakley...
Curtaiu cord tightener, C. B. Bristol Dental plugger, G. H. Chance...... Dyeing wool, etc., J. S. Cooke......
Earth conveyor, portable, G. M. Bir Electrical register, ship's, N. H. Thompso
Engines, oll cup for steam, E. S. Fassett... Fabric, waterproof, C. J.
Fence, farm, S. Stan bro......
Fence, Iron, Forsyth \& Counte
Fender for vessels, C. Wacker.
Filter, water, Fitts \& Dav1s, J,
Fire arm, breech loading, , uss \& Wect F'Ire arm, breech loading, L. Gelger (
Fire arm, breech loading, J. L. Raub tinguisher, J. Dillon Flish, cutting and cooking, L. Herreshoff. ases from otial, etc., treating, J. J. Storer

Gate, automatic. D. Clary
onal steam, J. J. Roeper
Hammer, tack, , . H. Rycr.
Harvester, Maddock \& Selz.
Hat tip. ornamental, T. W. Brach
Hay derrick, C. II. Kirkpatrick.
Hay rack, D. N. Webster...
Hay uuloader, M. A. Dilley
Heater, fre plac, w. L. Ph1111p......
Heater, register valve, G. H. Tucke
Hook, trolling, T. F. Fitzgeral
Hub borer, A. O. Abbott.
Ink pad fountanu, F.J. Couta
Key, extension, W.T. M
Kiln, brick, N. Sickels..
Lamp, J. S. Hull................
Lan tern, Carpen ter \& Dopp
Lantern, A. J. Warren...
Lathe screw outting tool, Hasking \& Denison.
Lock, permutation, C. C. Bliss
Loom teapple, J. C. Thiokin
Lumber dryer, H. E. Wells.
Magnet, electro, H. Fontanc......
Marlul cutting machue, B. F. Bla
Mill, disintegrating, W. Denmead.
Mineral water apparatus, Kennedy
Moccasin, G. F. Parker
Nolding, embossed gllt, J. Gschwind
Nippers, rest for cutting, S. F. Leach
Noodles, making, J. Baumgartner..
Nut lock, G. C. Thowas.
Nut lock, W. M. Watson
Oil cup for stean engines, E. S. Fasset
Ornamenting molded articles, W. Sanderso
Oerghoe, G. Watkinson.........
Packing. pliston rod, C . H. Fuller
Pan, frytng, S. Bryant...
Paper bags, making, W. Webster
Pivecment, concrete, G. Basset
Pavement, Iron, J. Vaidercar
Paveno nts, repairing, H. W.Gould.
Plano action ranl, T. Kater.....
Planng machine, S . A. Woods.
Planter, corn, J. Kelly..
Planter, potato, J. R. Phelp
Planter, seed, W. S. Barto
Plow, scraper, and chopper, H. W. Rumfe
Pneumatic apparatus, hydro, W. E. Prall.
ocket book safety attachment, J. Tro ress, baling, B. E. Cole............................... Printing press, J. L. Firm.
Pruning shears, J. J. Ellis. Pump, E. J. Delaney....
uritter middHng, D. Macke
Ruft, life, N. H. Borgfeldt,
Raft, life, G. Clark...
Railroad switcl, J. B. Schofle
Railroad tanks, valve for, C.
Raillroad tte, G. D. Blalsdell.
Rake, horse hay, c. o. Luce
Refning petroleum and other olls, E. Schall Refin holder, I. C. Tilton. A. L afe. burglar procf, W. Corliss....
afe, kitclien, J. B. \& J. M. H 1 rriso
ash holder,
cales, platform, T. Fairbanks, (r),
Self otling bolster, J. D. Wells,
Sewing muchine, Λ. Moltz..
Sewing machine button holer, Howard et al. (r)
Sewing machine rulflur, L. Schultz....
Snow plow, J. M. Gray
Spindle, banding, D. Hussey
Steam and air brakes, coupling for, J. Y. Smith
Stecl, manufacture of, V. H. E. Gallet........... stereotype plate, M. J. Hugh
Stove, gas, J. McKenzle
Stove grate, J. B Hunt
stove, heating, M. B. Mason

16,365 365 Telegraph relay, s. H.
Thll
Thll coupl

$$
\begin{aligned}
& \text { yres, machine for bendng, M. B. Flynn...... } \\
& \text { Valve and IInk motion. cut-off, E. G. Thoma }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Venclie axle box, E.L. Kinsley } \\
& \text { veloctpede, A. A. Hoffman... }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Washnng machine, w. H. . wele.h... } \\
& \text { Water meter, Nicolas \& Chamon. }
\end{aligned}
$$

applications For extensions.
Applcations have been duly tled and are now pendIng
for the extension of the following Letters Patent. Hear Ings upon the respective applicat
the days herelnafter mentloned:
27,998.-Rerifictor.-I. P. Yrink. Aprill 1 z7,933. Ferver Masing Machine.-J. Moore $e t$ al. Ap. 8.,3s.-GRAIN BINDIVG MACHINE.-D. W. Ayree. May 6

EXTENSIONS GRANTED.
 DISCLAIMER.

CANADIAN PATENTS.
List of Patents Granted in Canada,
Jandary 23, 1873.
3,051.-H. M. Baker, w. F. Ftone and J. H. Vermilya
Washington, D. C., U. S., assignees of G. W. Hunter same place. Improvements on sewing machtn
"Hunter's Sewing Machines." Jan. 23, 1874. "Hunter's Sewtng Machines." Jan. 23, 1874.
3,055.- C . Pratt and A. Rov, Montreal, P. Q, as81gnees of J. Goulloud, same place. Noveclles et utiles amelior
 called "Temple Entraineur. Ameliore.". New and use,
ful improvements in machlue for weaving corsets,
ful 1mprovements in ma
gatters, etc. Jan. $23,187$.
3,056-H. Martin, Chicano, Ill., U. S., M.H. King, Spring
feld, Hampden county, Mass., U. S. Improvement field, Hampden county, Mass., U. S. S. Improvements
on rortck machines, called " Martin's Brick Machine."

3,05F-.E.N. Randall, West Troy, Vt., U. S. S. and G.E
Brales. same place. Improvement

HOW TO OBTAIN
Patents and Carvalts

$\boldsymbol{I N} \boldsymbol{C} \boldsymbol{A} \boldsymbol{N} \boldsymbol{A D} \boldsymbol{A}$

P
ATENTS are now granted to inventors in Canada, without distinction as to the nationpatents in Canada are neariy the same as in the
United States. The applicant is reaured to fre nish a model, with spectifatition and drawings in duplit cate. It is also necessary for him to sign and make aftldavtt to the origlualty of the in enention.
The total expense, in ordinary cases, to apply for a

 catlons and papers, and attending to the entre business.
The holder of the patent is entitled to two extensions of the patent, each for flve yeara, making itteen year
if the tnventor aseigns the patent, the asslgnee enjoy
ail the rights of the Inventor
A small working model
A small working model must be furnished, made t
any conventent scale. The dimensions of the mode any convenent scale. The dim
should not exceed twelve tnches.
If the invention consists of a composition of matter
samples of the compostion, and alao of the several in samples of the composition, a,
gredients, must be furnıshed.
gredients, must be furnished
Persons who destre to apply
Persons who desire to apply for patents in Canada are
requested to send to us (MTNN $\$$ Co.) model with a descrintion, an their own language, show tng the merits and operation of the invention, remitting
also the fees as above for such term for the patent as they mye elect. We will then mmedataty prepare the applicant for his examination, signature, and afldavit It requires from four to twelve weeks' time, after com
dian Patent Offlce. Remt the fees by check, draft, or
Postal order. Do not send the money in the box with model. GIve us your name tn tull, middle name included
Inventions that have already been patented in the Inventions that have already been patented in the
United States for not more than one year may also be United States for
patented In Canada.
 Com missioner capuses an examination as to the novelty
andutllty of the invention. If found lacking in etther andutility of the Invention. If found lacking in etther which case no po
Inventors may temporarily secure their improvementa in Canada by fling caveats; expense thereof, $\$ 3$ in full.
For further information about Condian patents, as IUNN $\underset{37}{8}$ Park

VALUE OP PATENTS
 And How to Obtain Them.

Practical Hints to Inventors.

P
$\underset{\text { of money brings a greater return than the }}{\text { ROBA }}$ of money briugs a greater return than the
expense incurred in obtainning a patent, even expense incurred in obtaining a patent, even
when the invention is but a small one. Large nventions are found to pay correspondingly
well. The names of Blanchard, Morse, Bige low, Colt, Ericsson, Howe, McCormick Hoe tunes from their inventions, are well known. And there are thousands of others who
re:alized large sums from their patents.
More than fifty thocsand inventors have avalled themselves of the services of Munn \& Co. during the TWENTY-SIX years they have acted as sollct ors an
Publishers of the Scientific Ambrican. They stand at the headin this class of ousiness; and their large corps Patent offlce: men capable of rendering the best service to the inventor, from the experlence pracuically obtained Co. to do everything appertaining to patents bettre

HOW T0

 OBTAIN
PHililis

This is the
closing in
closing in
quifr
nearly
neve
office. A positive answer can only be had by presenting a complete application for a patent to the Commissioner of Patents. An application consists of a Model, Draw-
ings, Petition, Oath, and full Specification. Various ings, Petition, Oath, and full Specifcation. Various
offctal rules and formalities must also be observed. The offctal rules and formalittes must also be observed. Th
efforts of the inventor to do all this buisiness himself are generally without success. After great perplexity and delay, he is usually glad to seek the ald of persons expe-
rienced in patent business, and have all the work done over again. The best plan is to solicit proper advice at
the beginining. If the partles consulted are honorable men, the inventor may safely conflde his Ideas to them patentable, and will give him all the directions needful

To Make an Application for a Patent The applicant for a paten.t should furnish a model of his invention if susceptible of one, although sometimes
it may be dispensed with; or, if the invention be a chem teal production, he must furnish samples of the Ingredi en ecurely packed, theinventor'sname marked on them and sent by express, prepald. Small models, from a dis tance, can often be sent cheaper by mall. The safes
way to remit money, fs by a draft or postal order, on New York, payable to h horderof MONN \& Co. Person who live in remote parts of the country can usually pur
chase drafts from their merchants on thelr New York

How Can I Best Secure My Invention? This is an inquiry which one inventor naturally asks
another, who has had some experience in obtaining pat ents. His answer generally is as follows, and correct : Construct a neat model, not over a foot in any dimen lon-smaller if possible-and send by express, prepald addressed to MUNN \& Co., 37 Park Row, together with
description of its operation and merits. On recelp thereof, they will examine the invention carefully, and advise you as to tts patentabillty, free of charge. Or, if
you have not time, or the means at hand, to construct a model, make as good a pen and link sketch of the im provement as possible and send by mall. An answer a
to the prospect of a patent will be recelved, usually, bi return of mall. It is sometimes best to have a seareb

he cost of an application for a patent. Preliminary Examination.

In order to have such search, make out a written de
cription of the invention, in your own words, and encil, or pen and ink, sketch. Send these, with the fee 85, by mall, addressed to MUNN \& Co., 37 Park Row, din due time you will recelve an acknowledgment atentabillty of your improvement. This special searc
is made with great care, among the models and patents
at Washington, to ascertain whether the improvement

Foreign Patents.

The population of Great Britain is $31,000,000$; of France 0,000,000, and Russla, 70,000,000. Patents may be securea by merican citizens in all of these countries. Now is the me, when business is dullat home, to takeadvantage of hese immense foretgn filas. Nec in Europe neverbe a better time than the present to take paten abroad. We have rella blebusiness connections with the principal capitals of Europe. A large share of all the patents secured in forelgn countries by Americans ane
obtained through our Agency. Address MONN \& Co., 3 on forelgn patents, farnished free

Caveat.
Persons desiring to fle a caveat can have the paper repared in the shortest time, by sending a sketch an a caveat is 810 . A pamphlet of advice regarding applica
plication Dy maill. Address Muwr \& Co. 37 Park Row New York.

Value of Extended Patents.

Did patentees realize the fact that theirinventionsare ukely to be more productive of proft during the seven朝ents were granted the first full term for which their elves of the extenslon privilege. Patents granted prior
o 1861 may be extended for seven years, for the benefi f the in r Iomer, by due application to the Patent Oftce, ninety days before the termination of the patent. The extended
me inires to the benefit of the inventor, the assignees nder the first term having no rights under the extensiou except by spectal agreement. The Government fee for nextension $18 \$ 100$, and it is necessary that good profeshe Patent Oftice. Full information as to extensions

Trademarks.
Any person or firm domtciled in the United States, or any firm or corporation residing in any foreign councry here similar privileges are extended to ctitizens of the
United States, may register their designs and obtain protection. This is very important to manufacturers in thty country, and equally so to foregners. For full particu-

Desigu Patents.
s, who send goods to thls country, may secure patents here upon their new
patterns, and thus prevent others from fabricating or selling the same goods in this market.
A patent for a design may be granted to any person whether cittzen or allen, for any new and original design
for a manufacture, bust,statue, alto reileve, orbas relief uy newand original destan for the printing of woole ilk, cotton, or other tabrics, any new and original im. pression, ornament, pattern, print, or pleture, to be
printed, painted, cast, or otherwise placed on or worked printed, painted, cast, or otherw
into any article of manufacture
Desigu patents are equally as important to cltizens an IUNN \& Co., 37 Park Row. New York

Copies of Patents.
Persons destring any patent issued from 1836 to Novern er 26, 1867, can be supplied with oftctal copies at a rea. ugs and length of specification.
Any patent issued since November 27, 1867, at which time the Patent O\#flee commenced printing the drawings and 8pect
ice $\$ 1$.
A copy of the claims of any patent $18 s u e d$ strice 1836 When ordering coples, please to remit for the same a bove. and state name of patentee. title or Invention,and date of patent. Address MUNN \& Co.,Pateut Solicitors, MUNN \& Co. will be happy to see inventors in person they may expect an honest opinion. For such consult tons, optntons, and advice, no charge is macle. Write plain; do not use pencll or pale ink; be brief.
All business committed to our care, and
Hons, are kept secret and strictly con thential.
nterferences, procuring extensions, drawing assigy peclalcare and attention is given. For iniormationani or pamphlets or instruction and advice

MUNN \& CO.
PUBLISHERS SCIENTIFIC AMERICAN, OFFICE in W PASHINGTON-Corner F and 7th

Aduertisements.

Back ${ }^{\text {Pare }}$

MILLING MACHINES

PHILIPS. JUSTICE

TROWBRIDGESTABLES \& DIAGRAMS

TO CAPITALSTS AND MECMANICS

Schaeffer \& Budenberg,

5% EACH WEEK. AEents wanted, particulary

February i4, 1874.$]$
Yitutific Ammicaur

BAIRD'S Hous
for pracicial men.
 ${ }_{\text {his }}$ sent, address. HENRY CAREY BAIRD, 406 WALNUSTRIAL PUBLISHER, Unrivalled Scientific \& Practical Books. The PracticalAmerican Mill wright and Miller.
By Davtd Craik. Illistrated by nu.uerous wood en.
gravings and two folding plates.
8ru........... $\$ 5.00$ A Treatise on the 1 ranufacture and Distilla-
 A New and Complete 'Treatise on the Arts of

 Arof. Pr. Dussauce. izmo.............................83.00 Practical Treatise on the Fabrication of
Matches. Gun Cotton and Fulminating Powders. By
Prof. H. Dussauce. 12 mo........................00 A General Treatise on the Manufacture of A Practical Manual of Chemical Analysis and
 The American Dyer. A Practical Treatise on
Coloring Wuol, Coton, Yarn and Cloth. Illustrated
by 4 sainples of Colored Wool, Cotton, etc. By Be
G
Gibson

System of Chemistry Applied to Dyeing Heanings from Ornamental Art of ever

 postage, to any one who will furnish hilo uadarest
HENRY CAREY BAIRD HENRY CAREY BAIRD, 406 WALNUTR STREET, Philadelphta.
Wood-W orking Nachinery Generdly

THE DESGNING AND CONSTRUCTION

 Hossers sarionat
Cotage
Architectirre.
 WOODWARD's $\quad \begin{gathered}\text { 1,00 Worinixe Drawines } \\ \text { Plans, Details, }\end{gathered}$
 ARCHITECT pecfications\& Est1mates.
TaWELVE DOLLARS, postMONGKTONB NATGNAL SII Dollars, post
 orange judd co. 245 broadway, n. \mathbf{y}. Todd \& Rafferty Machine Co.

Niagara Steam Pump. CHAS. B. HARDICE,
The HAWLEY KITN

 woodbury's patent Planing and Matching

N EW \& IMPROVED PATIERNS,-MA
P. BLAISDELI \& CO.,

B0ILERS AND PIPES COVERED

 P TSTON guided from both ends; all working

Mater Mheel NewBookdustOut-160Pages SENT FREE

JAMES LEFFEL \& CO.,
SPRINGFIELD, OHIO. or 109 LIBERTY ST., N. Y.CITY. $\$ 20$
"S MILES AND TEARS"-
 PHALEN TUREINE No rikeg topre haser Fourth Grand Gift Concert, PUBLIC LIBRARY of KY. Over a Million in Bank!! A FULL DRAWING ASSURED! Tuesday, the 31st of March, next.

$$
\$ 1,500,000!
$$

divided into 12,000 cask gifts, will be distrib-
uted by lot amonghe ticket holders.
ate

GREEN HOUSE \& BEDDING PLANTS.

GEO. W. READ \& CO., STEAM BAND SAW AND VENEER CUTTING MILL.

Veneer Cutting Machines-For Sale,

A Set of 12 Steel Lathe Dogs,

K

BERK'S WATCHMAN'S TIME DE

Andrew's Patents.

 $\mathbf{T}_{\text {to }}^{\mathrm{HE} \text { HORTON LAThes }} \mathrm{LATHE}$ CHUCK, from 4

\qquad
$\mathbf{W}^{\text {rood. WORKING MACHINERY GEN }}$

Machinery,

Wood and Iron Working of every kind. Leather and Rubber Belting Emery Whels, Babbitt Netal, \&c.

Cold Rolled Shafting.

Sturtevant Blowers.

 S. 1873 and 1874. Catalogues Free

An deutithe Erfinder.

[^1]| Suduextismenty. | |
| :---: | :---: |
| Back Page - - - - - $\mathbf{\$ 1 . 0 0}$ a line.
 Inside Page - - - 75 cents a line. tngravings may head advertisements at the same rateper ine, by measurement, as the letter press. Advertisements must be rece ved at publication office as early as Friday morning to appear in next issue. | Safest and best sale everywher Established 1 |
| GIGHEST PREMIUM (Medal) A warded and Indorsed by Certiflate from the AMERICAN INSTI. | $\begin{aligned} & \text { DAMPER } \\ & \text { REGULATORS } \\ & \text { MURRILL } \end{aligned}$ |
| | |
| The "ASBESTOS ROOFING" is a substantial and rellable material, which can be safely used in place of Tin, Slate, etc., on steep orflat roofs, In all climates. It | |

PRATT'S

ASTRAL
0 I I.

 DOUBLEACTING
SteamPumps
VALLEY MACHINE COMPANY, Easthampton, Mass.

 preserve old, decayed, and leaky roofs of all kinds. for cover
still , ete
sin

H. W. JOHNS.

87 MADDEN LANE, NEW YORK,

Auction Sale
OF VALUABLE MACHINERY.
To be sold, without renerve, to the highest

Part I. of The Workshop $18 \% 4$.
 The new Volume will be coniousty ynd rchily illus

 $\underset{\text { Part I. of }}{\substack{\text { Also, }}}$ Art-Workmanship.

 STEPI STAMPS

ANTI LAMINA

 $= \pm= \pm=$
JUST OUT.

 Science Record
$18 \% 4$.

$T_{\text {silenadidew and }}^{\text {His }}$
 INSPECTION \& INSURANCR CO. capital $\$ 500,000$
 Boilers, Buildings, and Machiinery, STEAM BOILER EXPLOSIONS

STEAM BOILERS,

 home office, in Hartord, conn. or at any Agency.

 Pyrometers. $\begin{gathered}\text { For teathin Oreng, Boller } \\ \text { nues, } \\ \text { Blast } \\ \text { turacees, }\end{gathered}$ WIRE ROPE. JOHNA. ROEBLING'SSONB

N. Y. Safity Steam Power Co.,
 NEWYORK

NEAFIE $\boldsymbol{*}$ LEVY, PENN WORKS, MARINEEGNES ROLERE AND,

AGENTS sio
Per Day

PORTLAND CEMENT,
 HARTFORD Steam Boiler

IRON PIANERS,

CHAMPION SPRING MATTRESS-The

American Saw Co. Movable-Toothed Circular Saws. Eccentric Geared Power Presses.
 QTHE PULLSOMETER
 Hexian awo moter Hudzu waidiz

Liney Whes Tanite SineyGinders

CHAS.A.CHEFVER E E GEO.ODOW WECRTGRSS. No. 98 CHAMBERS SOA
 uncrustation in steam botlers is our Exclusive Righ
underpatents.
Send for bot G. ROGERS \& Co., Madison, Ind

Rufy

of THE
SCIENTIFIC AMERICAN.
the best mechanical paper IN THE WORLD.]
TWENTY-NINTH YEAR.

VOLUME XXX.-NEW SERIES

 new volume commences. It will continue to be the alm
of the publishers to render the contents of the co year more attractive and useful than any of its prede-

The scientific american is devoted to the inter-
 trial pursuits generally; and it is valuable and instruc. ve not only in the Workshop and Manufactory, but also

The best Mechanical Paper in the World! A year's numbers contain over 800 pages and severaI
hundred engravings of new machines, useful and noreI inventions, manufacturing establishments, tools, and

To the Mechanic and Manufacturer.
No person engaged in any of the mechanical pursults hould think of dolng without the Scientifio AMeriof new machines and inventions which cannot be found TERMS.
One copy, one year...
One copy, slx months.
one copy, six months.
One copy, four month
Onecopy of sctentific American for one year, and : one cony of engraving, "Men of Progress".. 10.00
One copy of Sclentific Amertcan for ne copy of Sclentific A merican for one year,and
one copy of "Sclence Record" for 18a. Remitt by postal order, draft or express
The postage on the Sclentific American is five cents per quarter, payableat the offlce where recelved. Canextra to pay postage.

MUNN \& CO.

[^0]: Inventions Patented in England by Americans.
 [Compiled from the Commissioners of Patents' Journal.]
 From January 6 to January 12, 1874, inclusive.
 tarle Pulley.-E. F. Allen, Providence, R. I.
 Adjustarle Pulley.-E. F.Allen, Providence, R. I.
 Compr- on of Fuele, etc.- - D. T. Casement. Painesville, O
 Drical Filling.-C. E. Blake, San Franctsco, Cal.
 s.Lectric Brake.-S. W. Wilson (of Philadelphia, Pa.), London, England electric Motor.-J. B. Stone, Boonton, N.J. Fluid Pressure Requlator - D. T. Casement. Painesville, o hydratr of Magnesta.-C. H. Phillips, New York city. Hydrooarbon Furnace.-G. W. Morris et al., Baltimore, Md.
 pump Valve.-W. Painter, Baltimore, Md.
 Raising Suneen Vessels.-H. F. Knapp, New York city.
 Rendering Tallow, etc.--J. A. Miller, Providence, R. I.
 Borew Mabing Machine.-W. H. Post, Hartford, Cona.
 Smap Connictor.-S. Reynolds, Pittsburgh, Pa.
 Thsting Wood, Iron, etc.-R. H. Thurston, Hoboken, N. J
 Ventilating Window.-Bradiey Window Company, New Tork city.

[^1]: Diefe grobe und thätige ©laffe unfrer $\mathfrak{B e}$ böfferng madicn wir befonbers darauf aufmertiam, daß̃ unfre \mathfrak{F} irma burø iffe $\mathfrak{B c r}$. binoung mit $\mathfrak{B a}$ afjingtor unt ben europaiidjen §auptfï̈bten, bejondere æorthcile zur Erlar: gung von in und auständifden ßatenten bietet.
 Feber Errfinder, gleidybier meldjer $\mathfrak{\Re a t i o n a l i - ~}$ tät angefobrig, ift burc bie liberalen Fiatentge. feese ber ßereinigten ©taaten zum ßatentiduts fïr ©rfindungen beredtigt. Unfre forma if berect, geftiitţt auf 26jährige Erfafrung, Deuttde
 $\mathfrak{P r c i j e n ~ r a j d ~ u n d ~ p u i n t t l i d) ~}$ ßatente zu crlangen.
 Die Deutide 夭ection if in ben §anben
 Dffice periöntid) mit Erfinbern bertefren merben.
 $\mathfrak{D e r}$,"Scientifc American" wird in feinen Sparten bie bebeutenberen Erfindungen be[predert
 Sorrefpondenz erbeten und prompt beant wortet. Bamphlete in beutider §prade wer. ben auf Berlangen franco zugefandt.

 ##

 Scientific American" Patent Agentur, 37 \$att Ofow,

 Naw York Cits.

