
a WeEkly Journal 0f Practical information, art, SCIENCE, MECHANICS, CHEMISTRY, aND MANUFACTURES. $\underset{\substack{\text { Vol. XXX.-NO. } \\ \text { INEW SERIES. }}}{4 \cdot}$

NEW YORK, JANUARY 24, 1874.

THE CENTENNIAL TOWER ONE THOUSAND FEET HIGH--[See page 50,]

Srientifir Amoriram.

MUNN \& CO., Editors and Proprietors published weekly at
NO. 37 PARK ROW, NEW YORK.
$\frac{\text { O. D. MUNN. }}{\text { A.E. BEACH. }}$

VOLUME XXX, No. 4. [New Series.] Twoenty-ninth Year NEW YORK, SATURDAY, JANUARY $24,1874$.

tents:	
(Illustrated articles are marked with an asteris	
Accident, steam engine	${ }^{\text {Friction }}$ Friends, toars
tion of the ${ }^{56}$	6 Hours of labor,
Answers to correspondents...... 58	8 Iron alloys, new
	In Iron bridge construction, recent*
Bench jıck, adji istabie ${ }^{\text {a }}$........... ${ }^{54}$	4 Lava overflow
Brood spots, the detee ion of.... 5_{50}^{33}	
Boiler tupes.probable cause of tie	Mallet, im
	3 Marine probulsion, new mode
blower, low tem-	Much butter from litile
Bunning bricks witi non-explosive	Patent d ellitons
Business and personal	Patent $\begin{aligned} & \text { form in }\end{aligned}$
Canal navig	Patents, offliclallist of.
coupliag d	Patents, recent Am
Centennial feet high, ther	elgn.
coal fet high, the the uctization of	Saw, the Emers
glun of ships at sea, pr	
Comers,	dicin
Coowneine vesel inprov	lar motion, new
of teerh, the causes	re
Auguste …...	
rs	

THE UTILIZATION OF IRON PYRITES.

The great number of specimens of this material sent to the office of the Scientific American for examination sug gesto a few words as to the characteristics and utilization of a very abundant and useful, but hitherto, in this country much weglected mineral. That we have not put this impor tant compound of sulphur and iron, which in Europe forms an important article of commerce, to more profitable account can be attributed only to our infancy in the art of manufacturing chemistry. We are still dependent upon foreign sulphur for our oil of vitriol, when stores of iron pyrites, contaiuing not only sulphur but other valuable constituents lie at our own doors. Pyrites is a term applied to various metallic compounds of sulphur, but the most abundant and well known are those of iron and copper. It is of iron pyrites or sulphide of iron that we propose to speak here, as mineral worthy attention and study.
It was not until 1835 that the English, who used im mense quantities of sulphur in the manufacture of oil of vitriol for the production of carbonate of soda from common salt, suddenly found their supplies of sulphur cut off, by an almost prohibitive duty laid on the exportation of the article by the King of Sicily, from which country most of the crude brimstone of commerce is obtained. The only avaiiable substitute was the subject of our article; and it was soon put to such useful account that, in 1861, statistics show that no less than 264,000 tuns were consumed in Eng land. The amcunt used now must be vastly in excess of this, probably not less than 500,000 tuns per year.
Iron pyrites, though occurring under a variety of forms well known to the mineralogist, is still soon readily recognized, even by the inexperienced, from certain characteristic tests. How many unfortunate dupes has the bronze yellow variety deceived, in the hope that they had struck solid gold, when a few drops of hot nitric acid in the hands of the chemist, or a simple blow pipe test with charcoal, would oon have dispelled their illusion! And yet gold is not always absent. The auriferous pyrites of California, South America, and Niberia, have been profitably worked for gold. The valuable sulphur, however, in the roasting was driven off, as sulphurous acid, into the air to poison the surround ing atmosphere. Improvements are of slow growth. In our search after one valuable material, to which our atten tion is directed, we are apt to overlook equally valuable oncs, until necessity or profit compels us to take account of them. It is but a year or two since the immense copper smelting works at Swansea, Wales, where copper is extracted from copper pyrites, have attempted to utilize the escaping sulphurous acid gas from the roasting ores. These fum ss, that for generations settled down upon the surrounding country like a blight, have now been turned into a valuable commercial product.
A very common form of pyrites is that of a bright yellow mineral, which is a true bisulphide, containing iron 46.03 and sulphur 53.97 parts in 100 . Iron pyrites is frequently, however, of a dark or bronze color, and sometimes resembles bell metal in its luster, this variety consisting of a mixture of protosulphide and bisulphide of iron. There is also a white variety called white pyrites, which, from its form of crystalization, is termed cockscomb pyrites. Magnetic pyrites also occurs. It is of a deep color and not very abundant. We pass over the numerous compounds formed by
the combination and intermixture of other minerals, observthe combination and intermisture of other minerals, observing that when the propo "tion of corper is considerable, the ore is called copper pyrites, and is distinguished by its brass yellow co
hardness.
hardness.
Iron pyrites is so hard that it will strike fire with steel,
whence its name, from the Greek word for fire. It was once used in the old fashinned musket, instead of flint, for this purpose. This is an easy and inexpensive test for those who would confound it with gold. Gold is too soft to strike fire in this way, and its waight, bulk for bulk, is four times
as much as that of pyrites. In the utilization of iron pyrites for its sulphur, the ore is either roasted in close vessels without access of atmospheric air, when a certain proportion of flowers of sulphur sublimes; or more ordinarily it is
burned in the air, for the production of sulphurous acid in the manufacture of oil of vitriol. This is done in peculiariy shaped kilns; and when once ignited, the ore keep up its own combustion. By this plan of burning, even under the most favorable conditions, two or three per cent of sulphur remains undecomposed. But by pulverizing the ore and roasting on the floor of a reverberatory furnace, not ouly is all the sulphur expelled, but the residue is in a suitable condition for the extraction of its copper, and the utilization of the remaining red oxide of iron. In England, the pyrites found in the coal beds (and called "brasses"), as well as that from Wicklow in Ireland, is largely burnt for the production of sulphurous acid gas in the manufacture of sulphuric acid. The ore after burning can be utilized as a common red pigment; but where the pyrites contains from one to thres per cent of copper, as it frequently does, it is returned after burning to the copper smelter. It is this small proportion of copper that makes iron pyrites so economical a portion of copper that makes iron pyrites so economical a
source of sulphur to the oil of vitriol manufaciurer, the Spanish pyrites on this account being of late largely imported and used. Ores of this cbaracter are utilized at present in England to their fullest extent, their sulphur being first ex. tracted in the manufacture of sulphuric acid, then tizeir copper; and finally the red residue of oxide of iron is sold to the iron manufacturer for smelting. In spite of the abun one establishment in this country where it is partially util. ized in the manufacture of sulphurie acid.
Another important manufacture, in which pyrites may sometimes be economically used, is that of sulphate of iron or copperas. When pyrites is exposed to the influence of ir and moisture, it undergoes decomposition. The two constituents of the pyrites, sulphur and iron, absorb oxygen, becoming converted respectively into sulphuric acid and oxide of iron; these from their chemical affinity unite and form sulphate of iron or copperas. In the manufacture of copperas, the ore is first stacked in large heaps on a clay Hoor or wther waterproof foundation. It is then roasted to hasten its decomposition, and afterwards moistened with water from time to time as required. The resulting solution of sulphate of iron is then caught in suitable vessels concentrated, and crystalized. In the South Lancashise district in England, over 80 tuns of copperas per week are thus produced; and in Stafford, Vt., copperas has been made in this way for at least balf a century
We have spoken of the "brasses," or yellow pyrites of the coal measures. These are readily decomposable; and during decomposition, so much heat is sometimes liberated as to inflame the remaining pyrites and finally set the coal on fire. When this happens, the workmen are comnelled, at great expense and loss of time, to flood the mice to put a stop to the contlagration. The water pumped from coal mines containing iron pyrites is sometimes so strongly charged with the acid sulphate of iron, that the iron pumps used for its removal are rapidly corroded.
There are undoubtedly many localities in this country where the pyrites is sufficiently abundant and readily decomposable for the economical manufacture of copperas, a salt which is largely used in dyeing, as a disinfectant, and for the manufacture of ink and Prusii:n blue. Where the pyrites contains a small proportion of copper, it may be more economically utilized, in the way already shown, for the production of sulphuric acid.

THE INFLUENCE OF CARGOES OF MACHINERY AND HARDWARE ON SHIPS' COMPASSES
In order to determine the local deviation of a ship's com pass, due to the materials entering into the vessel's compo sition affecting the needle, it is usual, before proceeding to sea for the first time and at certain intervals thereafter, to swing ship and compare the indications of a standard com. pass, located in a position out of the sphere of attraction, with those of the ordinary steering instrumeats in the binnacle. By this means a correction for every point is found, which must be allowed for in steering a course per the binnacle mpass.
Wnile there is little question but that every captain of a sea-going steamer is in posseasion of the important data thus obtained, there is in our minds considerable doubt whether a similar allowance is made for the nature and doubtedly affect the compasses, and cases, of arms, for ex. ample, or any other articles of iron or steel, carelessly left near the binnacle, might throw the ship miles off her course and be productive of just such a disaster as that of the At lantic. The captain of an English vessel, the Duke of Argyll, steaming between Liverpool and Duolin, a foreign contem porary informs us, found that a box containing six sabres and three scabbards, placed at a distance of 10 feet away, exercised a sensible influence on the needle, which, when the disturbing cause was removed, oscillated from side to side for fully five minutes before it resumed its normal position. Another instance is on record of a ship being thrown some distance from her proper position through the careless placing under the compasses of a case containing a couple of small sewing machines and a few packets of

These instances show that serious consequences may be due to indiscriminate stowage of cargo composed of objects of ron or steel. In fact every shipper of hardware or ma chinery, or passenger having in his possession such articles shouid, for his individual as well as for the general inter est., advise the captain and, besides, have tie cases con spicuously marked as to contents, so that every precaution may be taken to avoid their influence upon the compass. It can hardly be expected that a merchant vessel will swing ship every time that she goes to sea, but at least the danger of a guide, upon which the safety of the vessel de pends, becoming unreliable will be materially lessened by careful and intelligent disposition of the metallic portion of the cargo.

NEW IRON ALLOYS

A new process of manufacture of alloys of iron with man ganese, titanium, tungsten, and silicon, and of the agglo meration of these substances for treatment in a special fur nace and in movable crucibles, has recently been patented in Belgium.
Up to the present time, as our readers are doubtless aware but one of these alloys has been to any extent industriall manufactured and employed. This is ferro manganese which contains twenty-five to thirty per cent of manganest with from 70 to 75 per cent iron and from 5 to 6 per cent carbon. In France and Germany, this alloy has attained some inportance, and is stated to admit of the manufacture of certain qualities of cast iron with a regularity and surety not riven ly any other process. It has heretofore been produce either by the Prieger crucible system or by the Henders. process, both being based upon the simultaneous reduction in presence of finely divided charcoal of a mixture of the ores pulverized, of iron and manganese. The presence of iron in th, mixture determines the complete reduction of the oxide of manganese, and is indispensable to sach reduction, a fact evidenced by the difficulty always eucountered in obtaining metallic manganese duriug laboratory researches, and by the large expenditure of time and fuel usually required in ef fecting the reduction of the oxide. On account of the pul verulent state of the mixture, and of the poverty of the batch which should contain an excess of charcoal, these two pro cesses are able to produce in a given apparatus but sinal quantities daily of the alloy, and with an enormous con sumption of fuel. The difficulty seems to have been to find a system which would auswer all industrial requirements, work continuously, effect the reduction of the oxides suc cessively and not simultaneously, and finally cause their complete fusion. A vertical apparatus, analogous to a high blast furnace, it would appear, might answer the require ments, and it is stated that in certain localities, where or las been found containivg the proper proportion of iron and manganese, two emeltings have been roduced, containin 18 per cent of the last mentioned metal. Unfortunately however, such ores are very rare, for it is a necessity that they should be almost absolutely free fromsilex. Moreover, t is difficult to pass into a high furnace material reduced to dust. The operation is productive of accidents, while it is hardly possible, subsequently, to preserve a regular working. Beyond this, the interior surface of the apparatus, inces antly in contact with the semi-reduced pulverized oxide which the blast drives into the very joints, becomes at acked with great rapidity.
The new process to which we refer in our initial paragraph and for the following description of which we are indebted to the Chroinique de l'Inrustrie, appears to be based on a sys tem of agglomeration, whicl permits of the introduction o the oxides no longer in a state of powder, but in the form n small bricks or lumps, containing the elements of the alloy to be produced. Many attempts, it may here be remarked, have already been made to agglomerate the rubbish of iron ore, which, in certain districts, exists in profusion, and which in its natural state is useless: but none have given satisfactory results. Lime, pitch, and fatty earth, have been successively employed, forming briquettes, which though appearing of sufficient solidity when cold, disagegre gated completely in the fire, or con'ained vitrifiable el ments in such quantities that the ore became impoverished to an inadmissible degree. From the description of the new process, we learn that, if metal in granulated form, in the shape of filings, of iron or steel turnings, of spoagy iron coarsely pulverized, or of any other déhris of iron or steel in an analogous state of division, be mixed with ores containing manganese, tungsten, titanium, or a combination of thes metals, or with quartz: the ores or quartz being finely pulverized and introduced in suitable proportions for the alloy if this mixture be completely and regularly moistened with an ammoniacal solution, or with water slightly acidulated, and finally compressed in a mold of iron, a strong develop ment of heat is produced; and at the end of several hours, if the mold be opened a very hard compact mass will be found which can be broken by the hammer into fragments of de sired size. These pieces resist red heat perfectly, and do not commence to disaggregate until the point of fusion of pig iron. Their proper treatment in a high blast furnace affords the means, it is stated, of obtaining alloys containing iron and manganese, in all proportions ranging from 25 to 75 per cent of the latter metal, also combinations of iron and silicon, up to 25 per cent of silicon, and finally alloys o iron and tungsten or titanium, or even triple allioys of the different metals. These results are, however, obitained only at high temperatures, with a hot blast at strong pressure and it is stated that the apparatus ordinarily rapidly dete riorates at its lower portion. To avoid this last mentioned defect, a furnace of especial construction is employed. The
in which the aluminous element predominates. The hearth is of lime, magnesia or pure alumina, and the crucible is of carbon lime or magnesia. The latter portion is made in a single piece, by molding a mixture of pure graphite, gas carbon, or pure coke, in a cylindrical shaft or mold of bloom plate, and raising the whole in temperature to nearly a dark red heat for some hours. A very hard compact mass without fissures or joints is thus oitained.
The hearth is enclosed is a conical sheet iron shaft, secured by dowels to the pig iron plate which carries the tunnel. The cracible is movalle, atud simply rests against the lower part of the hearth. It is held in place by small blocks. The entire arrangement is such that the working parts of the apparatus can be casily renewed or repaired in a short time. The blast is heated to at least $\approx=0$ Fah. and its pres sure equals from $5 \cdot 0 ;$ to $5 \cdot 85$ iuches of mercury.

AUGUSTE DE LA RIVE.

This distinguished philosopher, who was among the foremost of European strvans for more than half a century, died on the 2?)th of November, at Marseil es, France. He was on his way to one of the numerous health resorts of the South of France, but was unable to reach it.
Among De la live's earliest investigations are to be found some imporiant researches on the specific heat of many simple and compound gases, and here commenced his fame, and his influence in the Academy of Genera, of which he was, up to the day of his death, the gruiding spirit. The science of electricity was scarcely in existence at this time (1803), and its rapid development during the past 50 years has received much impulse from the labors of De la Rive, whose zyal in iuvestigation was indonitable. In 1840 , he discovered the value of the voltaic current in deonsiting gold on silver and brass, and at once published it, declining to make any profit from the invention. For this, the French Institute aworded him their premium of $\$ 600$.
De la Rive was a man of almost universal culture, and his society was sought by literary men, politicians, and artists,as well as by his fellow scientists. The Swiss Confederation intrusted him with the deicate mission of laying before the British Government the danger that Switzerland was ex posed, to by the absorption of Savoy and Nice into France, and he had the satisfaction of obtaining from Lord Palmersion a declaration that any attemp: on the part of France againet the independence of Ssvitzerland or Belgium would be con sidered a casus belli by England.
The labors of le lat live were universally recognized as of the highest value and honors and distinctions from scientific bodies in all parts of the world were conferred upon him He died in the 73 d year of his age.

DEATH IN THE SCHOOL ROOM.

Despite the frequent casualties due to imperfect ventila tion, together with the generation of noxious grses in large ly populated buildings, though assisted by the oft repeated counsels of the best sanitary authorities as to the proper mode of remedying the evil, our progress in learning how to afford a constant supp'y of pure frech air is, at best, sadly discouraging. The New York World, with commendable enterprise, has recently employed Dr. Endemann, of the Board of Hea'th of this city, to make a careful chemical examination of the concition of the atmosphere in our pub lic schools; and the results of that gentleman's invertiga tions, as published with much detail in the above men tioned journal point to a state of affairs that is simply dis graceful.
Graham and Liebig have pointed out that the mean amount of oxyyen in the atmosphere is $20: 9$ volumes per cent, lear ing a balance of $79 \cdot 1$ nitrogen, carbonic acid, and other constituents. The normal quantity of carbonic acid gas is, how ever, very small, and is estimated by le Saussure at 4 parts in 10,000 . Dr. larkes considers that an increase of this pro portion to 6 farts in 10,000 , or 0.06 of 1 per cent, is the hight est permissible impurity. In avalyzing the samples of air, Dr. Endemann used Pettenkoffer's method, by which the air is introduced into a glass globe, together with a solution of caustic baryta of definite strength. The alkalinity of the baryta solution is diminished in proportion to the amount of carbonats of baryta formed, and will be neutralized by a proportionally less quantity of a given solution of oxalic acid, thus furnishing the elements of an accurate calculation of the amount of carbonic acid in the air contained in the globe. A measured amount of lime water of known strength may be used instead of the caustic baryta solution.
The effect of the carbonic acid is then to neutratize and The effect of the carbonic acid is then to neutralize and pre cipitate a quantity of lime in the form of chalk, and the $o x$ alic acid determines the proportion of lime subsequently re maining. The difference in the quantity of lime before and after the action upon the air enables the operator to calcu late the existing ratio of carbonic acid.
Carbonic acid is the product of perfect combustion and of the breathing of animals, the oxygen in the latter case uniting with carbon in the system; and the air expired coutains abnut $4 \frac{1}{3}$ per cent of carbonic acid gas. This, however, in ope: atmosphere, soon diffuses itself, but, if confined in cir cumscribed quarters, contaminates the air to such an extent that, if atmosphere containing one two-hundredth part of it
be breathed, headache and lassitude result. Such a proportion is, however, far from fatal, for Berzelius points out that five or six per cent may be inhaled with safety, and that life may continue for some time in an aimosphere conta'ning thirty per cent. This latter assertion, we imagine, m ist be based on an extreme case, as it is generally conceded calize speedy death. Dr. Endemann, in his report, exemplicalize spoedy death. Dr. Endemann, in his report, exempli-
fies the mortal effects of the gas in a statement that children
breathe about fourteen cubic feet of air per hour, and this
air, when exhaled, will contain 430 times the normal amount of c rrbonic acid. If 100 persons be placed in a room, say 18 feet square by 11 feet high, and the doors and windows be hermetically closed, so that there could be no circulation, in about two hours and a half all the air would be inhaled and probably not a soul would be living.
Space necessarily forbids our following the carefully prepared details of the report before us, but the citation of a few cases will serve to show the flagrant neglect which must characterize the sanitary reguiations of our schools:
(1) Rooms 18 by 16 feet: 40 scholars; temperature, 62° Fah. ; carbonic acid in 10,000 parts, 26% or $6 \cdot 6$ times the normal amount. The air was described by the inmates as generally oppressive. (2) Large class room, 20×18 feet: Odor very foul; 47 scholars; 4 times the normal amount. Odor very foul; 48 scholars; 4 times the normal amount.
(3) Class room on top tloor: 65° temperature; air described (3) Class room on top floor: 65 temperature; air described
as coustantly bad, and very correctly, as analysis showed $8 \cdot 1$ as coustantly bad, and very correctly, as analysis showed 8.1
times the normal quantity of carbonic acid. In the next two tests, this proportion is 7.5 and 5 times.
The annexed engraving is a specimen of the heating and ventilating arrangement in the well known 12th street school, an establishment accommodating 1,200 female scholars. is the register, and b the ventilator. The heat,entering, roasts

the back of the teacher at d, ascends, and immediately escapes at b, or, in caze the window is open, diverges into another current, p. The cold, heavy carbonic gas is, as is evident, totally unaffected by the draft, and settles down upon the children at e. Mr. Lewis W. Leeds made a report re garding this schooi some time since, which, for some occult reason, the Board of Education saw fit to suppress. He pointed out the difficulties above indicated, and also explained a neat arrangement of the janitors, in converting the fresh air ducts to the furnaces into hen roosts, partitioning the same off, so that the air supply was obstructed; but a copious odor of poultry was added to the hot current. "Fowl"air, he very truly remarks.
Example 6 consists in analyses made in a room heated by steam ; teacher and children all complaining. The temperature was 60°, and 8.3 times the normal proportion of carbonic acid was indicated. Passing over succeeding tests, none f which show a larger percentage of carbonic acid than last mentioned, we notice repeated cases of the most dense ig morance displayed in the steam heating arrangement. In ne school the ventilators were shut, choked by rust, and the javitor had no conception of their use. In another the steam
heat rs were arranged after the fashion indicated in the next

engraving. The current of air from the heater, u, escapes hrough the opened window, while the cold air from the lat er pours down. There is a constart circulation, as indica ed by the arrows, at the sides of the room, while the center of the apartment becomes packed with foul air.
There is no necessity of entering into further minutice. In this city there are 59 grammar schools, 42 primary schools, and 6 schools for colored children, and the number of pupils thus subject to the dangers we have noted is estimated t from 80,000 to 100,000 . There is unquestionably a de cided need for simple and efficacious plans of ventilation, which may be promptly put in practice in these institution at no very large expense. Dr. Fndemann suggests the fol lowing system:
Here the warm fresh air, flowing in at the register, at

asceuds to the top of the room. The windows being closed, t cools gradually and descends, returning to the ventilator, which is either below or on a level with the register, where it is drawn off and escapes through the flue.
The New York World has done good work in thus exposing the shameful condition of our schools, and parents would do well to profit by the warning. It supplies the explanation of many a pale face and aching head, if not of severer maladies, engendered by a system of slow poisoning. Other
cities may take the hint, and investigate their own educa
tional buildings. To architects and builders generally, the subject exnressly addresses itself for a speedy and efficient solution.

TO OUR FRIENDS.

In dealing with our legions of friends, it is our earnest de sire to give satisfaction to every one of them. But should any suppose that we have overlook their requests or lighted their interests, we hope they will at all times promptly inform us. Postal cards only cost a penny. Speak plainly, and do not hevitate to complain.
Our mail writers and folders are under special injunctions to write our subacribetrs names upon the encelopes legibly, and fold each paper neatly. We shall be glad to be informed if anybody receives slovenly work from this office.
At the beginning of the year, many thousands of subscrip tions are renewed, new clubs formed, etc. If any person fails to receive the paper, or any premium to which he is en titled, we will thank him to inform us promptly.
If, by any chance, any editor or publisher, who by any agreement is to receive our paper, should fail to receive it, we shall be glad to be informed.
Persons who have written to us upon business or sent enquiries for the parer which have not been answered, are re quested to repeat their enquiries. Letters sometimes fail to reach us. Be particular to mention the State in which you live. In some cases we are perplexed to know where to direct, when no State is given and there are many post offices of the same name.

SCIENTIFIC AND PRACTICAL INFORMATION

fog siciness among englinil cattle

The recent heary fogs about London and its vicinity have been productive of an unusually large outbreak of sickness among the cattle gathered at the Smithield Club show. The sufferings of the animals are described as very great, and are so clearly traced to the peculiar state of the weather as to excite apprehension that some similar malary may attack the stock on this side of the water, if the dense mists, which have prevailed to such an extraordinary degree during the present winter, continue. The Field says that, on the third day of the show, which opened with every appearance of a successful exhibition, and with a fine variety oî prize cattle, ninety of the animals were removed, seemingly choking, and it was found necessary to slaughter fifty immediately. The illness was not confined to the single locality, lut affected the horned cattle in the markets and in the suburbs; so that it was not, as has been suggested, due to foul air or lack of ventilation in the Smithfield Club building. Sheep and pigs, moreover, were not alfected. The treatment used was an abundant supply of pure air and a sedative tincture of aconite. The sickness lasted for about five days, until the dissipation of the fog.
new observations of stellar motion.
Dr. H. Vogel, at the new observatory at Rothkamp, near Kiel, Germany, has recently made some researches into the movements of certain stars with relation to the earth by observing the position of the rays of their spectra. The stars thus examined are $\alpha L y r c e$ and cx Aluilce. It appears that $\alpha L y$. $r C e$ is approaching the sun at the rate of 52 miles per second, a result which accords with previous observations made by Huggins, in which the speed was estimated at between 45 and 54 miles. α Aquile is moving in similar direction at the rate of 48 miles per second. Dr. Vogel applied his method to the constellation of Orion some time ago, and determined that it receded from the sun at a speed of about 16 miles per second.

decorating wood by phinting.

Mr. Thomas Whitburn, at a recent meeting of the English Society of Arts, described a process, recently patented by Lim, adapted to express, on flat surfaces of wood, effects of light figures on a dark ground, or of dark figures on a light ground, or of figures light and dark in parts on a ground intermediate in shade. The designs or patterns are engraved in the ordinary way on box wood, and, from the blocks, the wood is imprinted on a common hand printing press with printer's ink. The process is capable of being used with two or more colors, and is designed for the ornamentation of door pavels, furniture, etc.

en photocraphic process.

We have heretofore mentioned a recent improvement in dry plate photography which comists in using gelatin instead of the ordinary collodion. The nitrate of silver, for sensitiz. ing the gelatin, is mixed with the gelatin solution. The only drawback to this new process was the fact that the gelatin solutions could not be long preserved, especially in warm weather. This difficulty has been lately overcome by Mr. Burgess of England, who prepares the sensitive gelatin solution in any quaiatity that may be desired, and, after pre. paration, desiccates or dries the same by spreading the solution on glass plates. The dritd film is then broken up into small bits and packed away in dried condition for use. Thus prepared, it will always keep good and only requires to be dissolved in water, to form an excellent sensitized solution.

The Alignment of the Hoosac Tunnel.-Mr. Charlea Fosdick, of Fitchburg, Mass., writes to say that the credit of the calculations in boring the Hoosac ti.nnel and the almost perfect alignment is due to Mr. Frank D. Fisher, the firs: assistant of Mr. B. D. Frost, the chief engineer. Mr. Fisher is a native of Massachusetts, and was educated at the Inc.itute of Terhnology in Bn:ton.

THE CENTENNIAL TOWER ONE THOCZAND FEET HIGH Near the modern viliage of Hilleh, in Asiatic Turkey, and on the river Euphrates, at about 300 miles above the junction of that famous stream with the Tigris,stands a huge ir regular mound, rising abrüptly from the desert plain. Masses of vitrified brick are heaped about its base, and its interior so far as excavations have progressed, prove the whole vas pile to be of similar material. Cuneiform characters, im printed upon the sun-dried clay, have told to the archæolo gist the long forgotten history of this ancient ruin, carrying the mind back to the glories of Babylon the Great, back to the reign of Nebuchadnezzar, and, yet still further into the mists of antiquity, to the days when " the wholeearth was of one language and of one speech." Equaled in age only by tradition itself, the first monument erected by human hand et remains, and though its lofty pinnacle is overthrown and prostrate, it fulfils the purpose of its builders: "To make us name."
It is but natural for the mind to wander back to this earli est attempt of our race to make for itself a written history and to commemorate a great event by the erection of a col ossal structure, in connection with the subject of the presen ines. As did the descendants of Noah, so propose we to do. The oldest of ancient nations formed brick and made mortar and built for themselves a tower to record their existence; we, youngest of modern peoples, build us a tower to celebrate the close of the first century of our national life. And to it prototype, Babel, a pile of sun-dried clay which authoritie ssert, at the hour of the confusion of tongues, had not attained an altitude of over one hundred and fifty-six feet the graceful shaft of metal, rearing its summit a thousand feet above the ground, forms a fitting contrast, typical of th knowledge and skill which intervening ages have taugh mankind.

But how high, comparatively speaking, will this thou sand foot structure appear?" doubtless is a question already in the mind of the curious reader. Beside the mighty works of Nature, we answer, infinitely small; beside the works of man, colossal. Compared with the vast peaks of the Hima layas, twenty-five thousand feet above the sea, ten hundred feet is but a pigmy elevation; beside the loftiest spires which exist upon the earth, it is as are the giant trees of California to the tallest maples and elms, which join their leafy arches ver our streets and doorways.
The reader can draw the contrast for himself, by a glanc at the admirable effort of both artist and engraver, to which our initial page is devoted. Here are grouped the highest structures in the world; and in the center and springing far above them all, is the airy network of the great tower. Many of the edifices depicted will be recognized at a glance. First in point of altitude is the graceful spire of Cologne's far famed cathedral, rising to a hight of 501 feet above the marble pavement of the sanctuary below. Next is the Great Pyramid of Cheops, beneath the crest of which lie 480 feet of stone before the vast foundation is reached. And then another fane, spared by the fate of war, though not un scathed, Strasbourg's minster, towers 468 feet from earth to pinnacle. Michael Angelo's grandest work, the dome of St. Peter's, the gilded cross surmounting which, from its hight of 457 feet, seems to watch over the Roman campagne is closely followed by another pyramid, that of Cephren, brother and successor to Cheops, the summit of which is 454 feet from the desert sands which continually drift about ts foot
Rivaling the glorious vault of the Italian architect, Si Christopher Wren's masterpiece, St. Paul's, rears its sym bol, 365 feet above the crowded streets of the great city at its base, overtopping, by comparison, the dome of our own C'apitol at Washington, to which our artist invites the contrast, by fully 78 feet. Representative structures from thre of our principal cities complete the picture. Trinity church steeple, in New York city, 286 feet from foundation to apex then Bunker Hill Monument, its granite column towering 221 feet above the scene of the conflict which it commemo rates, and, lastly, St. Mark's church, in Philadelphia, an edi fice of no small architectural beauty, the spire of whic springs to an altitude of 150 feet above the curb.
So much for relative hight. And now a word as to who is to build the great fabric, and how they propose to carr out their task. The designers are Messrs. Clarke, Reeves \& Bridge Wivil engineers and proprietors of the Phonixville its productions throughout the whole country, and regard ing whose ability to carry through an enterprise of this kind no corroborative assertions on our part are at all necessary The material is American wrought iron, made in the form of Phœnix columns, shown in section in Figs. 5 and 6, united by diagonal tie bars and horizontal struts. The section is circular, and is 150 feet in diameter at the base, diminishing o 30 feet at the top. A central tube, 30 feet in diameter shown in section in Fig. 2, extends through the entire length, and carries the four elevators, shown in plan and section in Figs. 3 and 4. The latter are to ascend in three and descend in five minutes, so as to be capable of transporting about 500 persons per hour. There are also spiral staircase winding around the central tube
The bracing above noted, as will be observed from ou arge engraving, runs in every direction, so that the tower wil be as rigid as if made of stone, and yet will expose very lit tle surface to the wind. The proportioning is such that the maximum pressure resulting from the weight of the struc ture, with persons upon it, and a side wind force of 50 lbs . per square foot, will not strain the lowest row of column over $5,000 \mathrm{lbs}$. per square inch. The four galleries are roofed over and protected with wire netting, in order to prevent ac cidents. The estimated cost of the fabric is one million dol
lars, and the necessary time for cons'ruction, the designers tell us, need not exceed one year. The site has not been as yet definitely located, but it will probably be in Fairmount Park, Philadelphia, in proximity to the buildings of the Centennial Exposition. By calcium and electric lights from the tower, it is suggested that the latter, with their adjoining grounds, might be brilliantly illuminated at night. The ummit of the spire would also form a magnificent observa ory, while the view of the surrounding country would be unparalleled.

It is hardly necessary for us to point out the very appro priate character of the design in connection with the object f its erection. That the hundredth anniversary of our naional existence should not pass without some more perma nent memorial than that of an exposition, which, within a few months from its close, will have disappeared, seems to us eminently proper. It is clear that, within the coming wo years, no monument of so imposing a nature, or of so unique and original conception, can be constructed of any ther material than iron, nor, indeed, can we hope to erect fabric more completely national in every feature. Not only

then shall we commemorate our birthday by the loftiest structure ever built by man, but by an edifice designed by American engineers, reared by American mechanics, and contructed of material purely the produce of American soil.

Making Wax Flowers

Our lady readers will find the imitating of natural flowersin wax a very agreeable amusement for long winter afternoons and evenings. The work is not difficult, and with a little practice ornaments of great taste and beauty can be made. The materials can be obtained for a small sum from any dealer in artist's materials. Some knowledge of the general form of owers is of course necessary to begin with, nor should a ittle artistic skill be entirely lacking. Forms of various leaves, of tin, to be used as patterns, may easily be obtained, but the best imitations of nature we have ever seen were made directly from the natural flower. A handful of blossoms may be purchased from any florist, and carefully dissected; then by tracing the shape of leaves,, etc. on paper, quite a collection of patterns may be gained. The British Trade Journal says that the best white wax is required for the art

- pure, and free from granulation. The consistency may need to be modified, according to the state of the weather, and the part of the flower to be imitated; it may be made firmer and more translucent by the addition of a little spermaceti, while Venice turpentine willgive it ductility. In preparing the wax for use, it is melted with Canada balsam, or some kind of fine turpentine, and poured into flat tin molds these give it the form of quadrangular blocks or slabs about
an inch thick. These blocks are cut into thin sheets or films, in one or other of several different ways-by fixing them flat, with screw and a stop, and slicing off layers with a kind of spoke shave; or holding a block in the hand, and passing it along a carpenter's plane, having the face uppermost; or causing the block to rise gradually over the edge of the mold, and cutting off successive slices with a smooth edged knife
The coloring of the wax is an important matter, seeing that in some instances the tint must penetrate the whole substance; whereas in others it is better when laid on the surface, as a kind of paint. The choice of colors is nearly the same as for other kinds of artificial flowers, but not in all instances. The white colors are produced by white lead, silver white, and one or two other kinds; for red, vermilion, minium, lake, and carmine; for rose color, carmine, following an application of dead white (to avert yellowish tints); for blue, ultramarine, cobalt, indigo, and Prussian blue; for yei. low, chrome yellow, massicot, Naples yellow, orpiment, yel. low ocher, and gamboge; for green, verdigris, Sch weinfurth green, arsenic green (the less of this the better), and various mixtures of blue and yellow. For violet, salmon, flesh, copper, lilac, and numerous intermediate tints, various mixtures of some or other of thec lors already named. Most of these coloring substances are employed in the form of powder, worked upon a muller and stone with essential oil of citron or lavender, and mixed with wax in a melted state; the mixture is strained through muslin, and then cast in the flat molds already mentioned; or else a muslin bag filled with color is steeped for a time in the melted wax. The material dealers sell these slabs of wax ready dyed, to save the flowermaker from a kind of work which is chemical rather than manipulative. Some flowers require that the wax shall be used in a purely white bleached state, color being aifterwards applied to the surface of selected spots.
The wax is, of course, the chief material employed in waxHower making; but it is by no means the only one. Wire bound round with green silk, tinting brushes and pencils, shapes or stencil patterns, molds and stampers, flock or ground up woolen rag, and many other implements and materials, are needed

The patterns of leaves and petals are made from paper or of thin sheet tin, copied from the natural objects; and the wax sheets are cut out in conformity with them. Only the smaller and lighter leaves are, however, made in this way; those of firmer texture and fixity of shape are made in plaster molds. The patterns are laid on a flat, smooth servic? of damp sand; a ring is built up round them, and liquid plaster is poured into the celi thus formed. Generally two such molds are necessary, one for the upper and one for the lower surface of the leaf. Sometimes wooden molds are employed, into which (when moistened to prevent adhesion) the wax is poured in a melted but not very hot state. Occasionally the entire mold is dipped into molten wax, to producepetals and leaves of peculiar size and shape. The stems are made by working wax dexterously around wires, with or without an intervening layer of silken thread. By the use of flock, down, varnishes, etc., the leaves are made to present a glossy surface on one side and a velvety surface on the other. A singular mode of preparing films of usual thinness is by the aid of a small wooden cylinder, like a cotton reel, or rather a ribbon reel: this is dipped and rotated in melted wax until it takes up a thin layer, which layer. when cold, is cut and uncoiled; the difference of smoothness which the two surfaces presents fit them to represent the upper and lower surfaces of a leaf or petal. The combination of all these materials into a built.up flower is a kind of work not differing much from that exercised in regard to textile flowers.
The Proposed Tunnel under the British Channel The feasibility of this project, and the advantages and dis advantages of various localities proposed for it, are still being discussed. Mr. Joseph Prestwich, an eminent engineer and geologist, has recently investigated the conditions of the strata between the continent of Europe and the coast of England. These researches extend from Ostend, Belgium, to St. Valery, in Normandy, France, and from Hastings to Harwich on the English side; and by them it was ascertained that a deposit of the London clay extends from the mouth of the Thames to Dunkirk, on the northeast point of France. This deposit is from 200 to 400 fcet thick; and the imper meability and homogeneity of the clay, as shown in the works of the subway under the Thames in London, point out the line between the mouth of the Thames and Dunkirk as one of the most practical routes for the tunnel. But the distance (80 miles) is an important consideration, against which, again, must be set off the very great depth at which a tunnel between Dover and the neighborhood of Calais would have to be made. But the probability of striking coal in the last named work would be an additional inducement to take the shorter route; added to which must be considered the fact that the traffic between England and the continent lays chiefly between London and Paris, in the direct line of which the Dover tunnel would lie.

A Remarkable Boiler Explosion
The boiler of a locomotive belonging to the Baltimore and Ohio Railroad exploded recently at Newark, Obio, while moving slowly with a passenger train. The smoke stack was thrown some distance, and the cab splintered into minute fragments; the shell of the boiler entirely disappeared, the flues being twisted in a!l directions. The destruction was considerable, having taken place in a crowded fr'sight yard. The engineer was instantly killed, being terribly mang!ed; the fireman escaped, almost miraculously, with a slight wound on his head. The local reports give no clue to the cause of the explosion.

RECENT IRON BRIDGE CONSTRUCTION.

We illustrate herewith a road bridge recently constructed by Mr. R. M. Ordish, over the river Pruth, at Czernowitz Austria.
A cross section of the bridge. with a view in perspective of the girders and their resting point upon one of the piers, is also shown in detail.
The bridge is 762 feet long, and carries a roadway and two foot paths, making a total width of 15 feet between the centers of the girders. There are six openings over the river each 126 feet from center to center of piers: the five piers and two abutments being of masonry, on concrete founda tions. The main girders are continuous, double Warren girders, 11 feet 10 inches deep. The flanges are trough shaped, composed of two large trough irons, 10 inches deep, and a flange plate riveted to them. The diagonals are placed at an angle of 45°, and consist of a pair of flat bars which form the ries, and a pair of trough irons braced together which form the struts. Except at the piers, the
main girders have no vertimain girders have no verti-
cals, nor are they anywhere braced across ihe top, flanges.
Lateral stability is given to the girders by a special maintain the top flanges in position against side bend. position against side bend-
ing. In the first place, the ing. In the first place, the
girders are continuous over girders are continuous over
six spans, and certain parts six spans, and certain parts
of the top flange (those over the piers) are always in tension, so that only the intermediate portions have to be held in position laterally. Secondly, at each pier the two main girders rest in strong trough-shaped frames, which resist lateral movement and stiffen acertain length of the girder on ain length of the girder on
each side. Thirdly, the top each side. Thirdly, the top
flange of the girder is made flange of the girder is made
specially broad (\approx feet ~ 2 specially broad ($\underset{\sim}{2}$ feet 2
inches, whi:h is 7 inches more than the bottom flan length to width in the remaining part the proportion of excessive. Lastly, all the diagonal struts, which are constructed as girders, and which occur most frequently where, for this secondary purpose, they are most wanted, are connected to the cross girders of the platform by means of a trough-shaped flange, in a manner specially suited to resist any twisting action.
The cross girders are of wrought iron, 1 foot 6 inches deep in the center, and are placed 5 feet 6 inches apart throughout the bridge. The parapet railing is of wrought iron lattice work, bolted at intervals to the main girders, and finished with a wooden handrail.
The roadway of the bridge consists of longitudinal timbers, 7 inches by 6 inches, placed about two feet apart upon the cross girders. Upon these timbers is laid, transversely, $4 \frac{1}{2}$ inch planking, and upon this, again, rest oak blocks, 5 inches thick. The footway is laid with 3 inch oak longitudinal decking, upon which the wearing planks are spiked. This forms a somewhat heavy roadway, but timber is exceedThis forms a somewhat hea
ingly cheap at Czernowitz.
The two main girders rest upon roller bearings at each of the piers, each of these bearings being composed of three castings. The first or upper portion is fixed to the girder between the trough frames, the under side of the casting being concave, and resting upon the second or intermediate casting, to which a corresponding convex shape is given. This arrangement allows for oscillation in the bridge from moving loads, and also insures the central action of the load upon the rollers, and consequently upon the pier. The second casting rests upon eight cast iron rollers, each 4 inches diameter, the rollers moving upon a cast iron bed plate, bolted down to the masonry of the pier. The rollers are omitted from the bearings over the central pier, while the convex form is retained to provide against oscillation. The main girders being thus prevented from moving horizontally at this point, the expansion from increase of temperatu:e radiates outwards from the center, and ext onds the bridge equally at each end.
The iron work was made in England. The bridge was not thrown open for traffic until it had undergone a careful and searching test at the hands of the government engineer. All the spans were tested individually and collectively. The test load appointed by the Austrian Government, says Iron, to which we are indebted for the engravings, for bridges is 30 cwt . per square fathom, or 96 lbs. per square foot, English. This is considerably higher than the proof load used in England, which may be taken at from 70 lbs. to 80 lbs. per square foot of road surface. On account, however, of the increased weight of timber introduced into the platform during construction, the test load was reduced to 25 cwt . per square fathom, or 80 J 'g. per square foot. According to the test originallyproposed, the load brought upon the iron work of the structure would have been 6 tuns per square inch of sectional area.

Hardening Steel and Regenerating Burnt Iron.
Hardening Steel and Regenerating Burnt Iron.
Lieutenant Colonel H. Caron publishes in Iron the following account of his investigations, mentioned in brief on page 405 of our volume XXIX:
A piece of steel is first hardened, then softened more or less, according to the hardness or elasticity desired. The hardening, as it is ordinarily practised, that is to say, the hardening of the red hot metal in cold water, frequently has the grave inconvenience of developing rents and cracks disadvantageous to the powers of resistance of the metal. The process of softening hen gone through does not cause these defects to disappear; later, in the using, these fissures, invisible at first, increase little by little, and finally end in a serious rupture. It is already well known that, to obviate in part such a danger, it is better to make the steel less hard, and soften it more lightly. A spring heated red hot, hardened in cold water and softened with burning oil, possesses the same elasticity as a similar
the forge had been gone well through, and that without having recourse, as was formerly done, to a new hammering, which results in a loss of time, of metal, and often in the wasting of the piece itself. The means which I employ to regenerate burnt iron is like that of hardening red hot metal in wa
A bar of Berry iron, 1.2 inches in diameter, easy to break, without a crack, cleft, or flaw, was burnt, that is, warmed in such a manner that, pressed in a screw vice, it could be broken without bending. The fracture was strewn with brilliant facets of many thousand squares. A boiling liquid, strongly impregnated with ordinary salt, was prepared; a piece of the burnt iron, heated red hot, was plunged in this liquid during the time necessary to bring the metal to the temperature of the bath (about 110°). It immediately produced a rather curious phenomenon; directly it was plunged in the salt solution, the red metal was covered with white salt, which detached it from water, and certainly contributed to diminish its cooling. The piece of iron thus hardened was capable of being bent back upon itself, as the bar had been before being burnt. Pure water, boiling, can be employed as well, but its efects are less marked.
Now it is known that boiling salt water can regenerate burnt iron, it will be to the interest of the manufacturer to apply this operation to pieces after being finished at the forge, as the hardening will not damage them at all; if, on the contrary, they have suffered from too much or too prolonged heat, it will give them the qualities which a good forging imparts. Just the same applies to steel.
It is likely that there may be other liquids and other solutions which will produce the same results as the saline solution, but I have only it appears to me to be the most it appears to me to be the m
ily procured at the same time.

-rer-a

Steam Engine Accident.

At the spoke works of Messrs. Hoopes \& Darlington, West Chester, Pa., the governor belt of a forty horse engine recently slipped off, and the engine ran away at a terrific speed. The engineer promptly shut off the steam, but already considerable damage had been done. The cutter head of a facing machine, being unable to resist the velocity, burst, throwing a piece of metal, weighing 13 lbs., through the wall of the building and across the street; three other frag. ments were scattered in divers directions, and another machine was similarly disabled.

New Imitation of Silver

A patent has been obtained by M. Pirsch-Baudvin for a metallic alloy which is declared to resemble silver better than any other yet known with respect to color, specific gravity, malleability, ductibility, sound, and other characteristics. The new alloy is a compound of copper, nickel, tin, zinc, cobalt, and iron. The following proportions are said to produce a very white metal, perfectly imitating silver:-Copper 71.00 parts; nickel, 16.50 parts; cobalt, 1.75 parts; tin, 2.50 parts; iron, 1.25 parts; zinc, 7.00 parts. A small quantity of aluminum, about $1 \frac{1}{y}$ per cent, may be added. The manufacture is rather peculiar. The first step is to alloy the nickel with its own weight of the copper and the zinc in the proportion of six parts to ten of copper. The nickel alloy, the iron, the rest of the copper, the cobalt, in the form of black oxide, and charcoal are then placed all together in a plumbago crucible. This is then covered over with charcoal and exposed to great heat. When the whole is melted, the heat is allowed to subside, and the alloy of zinc and copper is added when the temperature is just sufficient to melt it. This done, the crucible is taken off the fire and its contents stirred with a hazel stick; the tin is then added, first be-

IRON BRIDGE AT CZERNOWITZ, AUSTRIA.
forehand. Hardening with very hot water, and better still, boiling, singularly modifies soft steel containing 0.002 to .004 of carbon. It increases its tenacity and elasticity without materially altering its softness; the grain changes
in nature; and often where there is a breach, it is found to have become fiberous instead of granular or crystaline, as it was before.
In a communication inserted in the report of the Academy of Science last year, I have demonstrated that the crystaline texture presented by the fracture of pieces of iron is neither due to the action of the cold nor to that of prolonged vibration, but that it existed in the metal previous to its being used. After my experience, that particular formation I found to result from an incomplete forging, leaving the metal still burnt, crystaline, and full of cracks. I saids, besides, that it was possible to give the iron thus deteriorated the fiberous texture
or the tenacity which it would have had if the operations of
ing wrapped in paper and then dropped into the
> crucible. crucible. The alloy is again stirred and finally poured into the molds; it is now ready to be rolled and wrought just like silver. A great portion of the zinc is volatilized in the act of fusion, so that a very little remains in the alloy. The superiority of this metal is said ta depend principally on the cobalt, to which is due its peculiar argentine luster.
W. R. says, in reference to an article which we recently published, entitled Electricity vs. Yellow Fever: "The observer is right, as far as electricity goes. During storms accompanied by lightning and thunder, ozone is formed, and this electric oxygen is a quick and efficient destroyer of all organic substances in the air. A small stick of phosphorus half immersed in water will form ozone."

One fifteenth of the length of the St. Gothard tunnel has already been excavatef.

CHorxesponderte

Tho Relative Efficiency or Engines and Bollers

To the Editor of the Scientifc American:
I am somewhat surprised at seeing the matter of the relative efficiency of engines and boilera presented for discussion by a "Consulting Engineer," as if it were an open question. The late Professor Rankine, in his "Treatise on the Steam Engine," has gone into this subject thoroughly and fully, showing clearly the immense losses that occur in the use of steam, in the most perfect engines that have yet been built, and showing, too, the requirements that must be fulifled if greater efficiency is desired. I euppose it is gen erally known to engineers that the greatest losses in the use of steam do occur, and must occur, in the engine. If yo will allow me the space in your valuable paper, I wid
or to illustrate this fact by two simple examples.
In 1871 an unusually careful and interesting test of boiler was made at the American Institute, by a committee of judges. In order to determine the efficiency of the boilers, all the steam that was generated was condensed and meas ured, together with its temperature, and the quantity and temperature of the condensing water, in order to determine the total amount of heat imparted to the feed water by the combustion of the coal. An analysis of the coal showed the amount of heat it would have imparted to the water if it had been burned without waste, and in this manner the etficiency of one of the boilers was shown to be between 70 and 71 per cent of the total heating power of the fuel. The other boilers gave results differing from this but little While it is probable that th:s efficiency was greater thai would be realized in ordinary practice, owing to the skillful firing and the excellent quality of coal ured on that occasion, it is not unlikely that these results have been equaled, if not exceeded, in other cases. So much for the boiler.
In 1869 there was a competitive trial of steam ongines at the American Institute Exhibition. An account of this trial will be found in the Annual Report of the American Insti tute for 1869. It appears from this record that one of the ongines developed an indicated horse power by the evapor ation of 20.25 pounds of water per hour, using steam at pressure of 81.69 pounds per square inch by gage. This performance, though occasionally surpassed, is far better than generally occurs in practice, and it may be interesting to determine what per cent of the steam furnished by the boiler produced useful effect in the engine. The feed water ntered the boiler at a temperature of $47^{\circ} \mathrm{Fah}$, and was con ertad into steam having a pressure of 81.69 pounds per square inch, so that each pound of water received $1213 \cdot 1$ $47=1166 \cdot 1$ units of heat from the coal. The amount of water used per indicated horse power per minute was $23 \cdot 25$ $\div 60=0.3375$ pounds, so that $0.3375 \times 1166 \cdot 1=393 \cdot 56$ units of heat were furnished by the boiler for each indicated horse power of the engine. If all this heat had been converted by the engine into work, it would have produced $393 \cdot 56 \times 772=$ $303.828 \cdot 32$ foot pounds, or $303,828 \cdot 32 \div 33,000=9 \cdot 21$ horse power. As actually used in the engine, however, it only produced one horse power, so that the efficiency of the steam in the engine was $(1 \times 100) \div 9 \cdot 21=10 \cdot 86$ per cent of the filciency of the steam furnished by the boiler.
I have not gone into the theory of the subject, because it would occupy too much space, and the matter has already received far abler treatment than I could bope to give it, in the work by Professor Rankine, referred to above. If might venture to make a suggestion, in conclusion, it would be that probably more profit would be derived from the discussion of improvements in the use of steam, than from arguments on a question which is only too well understood by those who are familiar with the theory of the steam ngine

Richard H. Buel
80 Broadway, New York

Administrative Reform in the Patent offce.

 To the Editor of the Scientifc American:While every competent person will probably admit the mmense benefit to the American people and to mankind of the enlightened and liberal principles which have always grided Congress in its relations to inventors, it is nevertheless obvious that considerable dissatisfaction now exists with respect to the administration of the patent law. For proo of this, it is only necessary to refer to the general and scientific press. In reply to these strictures and complaints, it is not a sufficient answer to say that the United Stares patent law is superior to that of European communities, the pracical question being whether it is so administered as to carry out in the right spirit the patriotic and noble objects of it lounders, such as the encouragement of genius, the promo tion of arts and manufactures, the development of the national resuurces, and the utilization of those great natural reser voirs of power surrounding man on every side and only awaiting the vivifying force of his intellect to become the fruitful sources of prosperity. In the following remarks my oniy object is to offer a few suggestions for the improvement of the system of administration, and I have not the slightes wish to impute blame to any individuai.
The first evil presenting itself is the temporary organiza tion of the Patent Office. It is apparently considered as merely part of the ordinary executive machinery of government rather than as national and neutral ground from which all political considerations shoald be excluded. Why should not the personnel of the Patent Offce be placed on the same footing as that of the Sapreme Court of the United States? Is it not ovident that the incessant changes resulting from its subserviency to the Execative of the day tond in the
ministration? It is always found that men appointed for a lengthened period, independently of party or political con siderations, will get through more work and do it infinitely btter than those who feel insecure in their official position. For such highly q
me inadequate.
The frst point, then, in Patent Ofice reform would be to educe the number of employees, and to substitute a few highly qualified, well paid, permanent officials for a crowd o temporary, half paid, half satisfied, and half competent men
and women, selected chiefl through political influence, and and women, selected chielly through political influence, and
eldom having had any suitable previous training for the duties which they are called on to discharge
In connection with the permanency of the officers sbould be the permanency, as far as practicable. of the rules guiding he transection of business in the Patent Office. As it is at present, there seems to be an utter absence of any perma nent principles regulating the granting or refusal of patents. The rules of this year may be quite at variance with those
of last year or next year, and inventors on applying for patof last year or next year, and inventors on applying for pat-
ents, after expensive and laborious investigations, may find themselves ousted by some recent edict of the temporary head of the Patent Office. To revert again to the analogy of the Supreme Court of the United States, how could it business be satisfactorily carried on, if, instead of well con sidered, well understood rules, founded on reason and experienee and principle, its suitors from all parts of the Union had to encounter a mere chaos of personal caprice, reflecting be ephemeral fancies of an amateur pro tempore dispenser f justice?
Then. with respect to the rejection of applications for patonts, what can be more unjust and burdensome to inventors
han to cast on them the onus and costs of appealing to th than to cast on them the onus and costs of appealing to the rroneous, ignorant or inequitabie deciaions of the inferio examiners, when all these officers are already paid out of the ges of inventors? As a general rule, it will always be found that the needless multiplication of tribunals of appeal is practically a denial of justice to the mass of the community, or it tends to make length of the purse and not goodness of the case the all important consideration. And in a reject d application, to constitute that expensive series of successive tribunals out of the various grades of the bureaucracy of
one and the same office is certainly a most curious mode of one and the same office is certainly a most curious mode of
encouraging invention. A single crotchety or incompetent ncouraging invention. A single crotchety or incompeten progress of a wholerangeof industries, and so directly defeat the objects of Congressional legislation on this subject. Such a man may see in the most recent steam engine simply reproduction of the principle of the celopile as it existed ,000 years ago; or may find in the most improved lamp or tove only the same process of combustion known of old to he vestal virgins. The fact is that, in considering an application for a patent, something more than mere expertism, as may be termed, is required in the examiner. He should ot only be acquainted with the laws of science, but also be capable of discriminating between the relative claims of ndividuals and the essential features of their respective plans. But the records of the Patent Office show clearly that many of the primary examiners and some of the examners in chief have given decisions subsequently pronounced by their superior offcers erroneous and unjust. Why then there not, in the regular machinery of the Patent Office itself, suitable provision for the equitable settlement of such
ases, instead of casting the burden of appeal on individual cases, inste
It is evident from these facts alone that one of two results ought to follow: Either all applications for patents complying with certain simple conditions should be granted (a course advocated by so high an authority as the Scientific Amer(CAN), or before any application is rejected the adverse decision of the primary examiner should be revised ard confirmed by the judgment of the superior officers, and that re vision should be, not as at present on technical points indicated by the examiner appealed from, but on the substanal merits of the invention
As it is at present, no sensible man who could possibly avoid doing so would apply for a patent for his invention; he would rather be dispoeed to try to secretly manufacture the article or carry on the process. Many improved chemical processes re indeed already kept secret in consequence of the inadequate protection afforded by patent laws. For in making his application, the inventor discloses all that he may have earnt from his studies and trials; the information is henceorth no longer his own exclusive property, and possibly all hat he would now receive from the Patent Office in return would be a permission to institute a series of appeals to the consecutive officials constituting it, at an expenditure of me, trouble, and money, which might be more usefully employed. The appealing part of the patent law, as it now exats, is therefore obviously a source of injury rather than of benefit to the inventors, and should either be changed or abolished. I believe that thesa principles of Patunt Office eform, fairly and fully carried out, would conduce to the interest of the best officers of that important national institution, while they would at the same time benefit inventors nd harmonize, more intimately than the present practice, with the known intentions and desires of overy American ittesman from the time of Washington.
a Patentee.

An Acoldontal Dleoove To the Edter of the Sciontific Amerioan:

About two years ago, I heard that phosphide of calcinm, hrown upon wator, would teke fire instantly bat not being
found that I could make it by distilling phosphrous over rod hot chalk in a covered crucible; as I had no earthen cover for the crucible, I sabstituted a copper dish, wh ich contained red lead. When the chalk was heated to almost a white heat, I dropped the phosphorus in by degrees until I had used half an ounce, to $3 \ddagger$ ounces chalk, keeping the fumes in the crucible and letting the whole stand till cold I then tried crucible and leting the whole stand thl cold to produce a light by throwing some on water, but it would
not ignitg. I put the remainder of my phosphide of calcium(?) not ignitg. I put the remainder of my phosphide of calcium(?)
in a puial, and forgot all about it till a few weeks ago. I went to my chest, and, on closing it, I heard a sweet ringing tone within. I opened it again aud searched for a bell. I was certain I had no bell in that chest, but I looked until I got the old crucible lid: and as I threw it aside, it gave anoth+r clear ring, and I discovered that,instead of making phosphide of calcium, I really produced a new phosphor bronze without fusing the copper. It is of a dark bluish cobalt color.
Reading, Pa.
W. H. Rodaers.

Curious Instance of Atmospheric Refraction.
To the Editor of the Scientific American
I witnessed, in the month of May, 1852, at Crystal River Bay, West Florida, a phenomenon of which I will give you the best description I can.
Being in the habit of taking observations whenever opportunity offered to obtain correct time, and thereby (having the latitude and longitude of the place) ascertaining shronom. eter error rate, etc., I took observations, every thing being clear in the west, and with good results. The sun's altitude was 10° or 15°. As the sun approached the horizon, I used my spy glass; and when the sun's lower limb was a little more than one of his diameters above the horizon, his reflected image appeared in the water. When within a little less than a diameter, both the sun and reflected image commenced to elongate towards each other; and when within a semidiameter, they joined together. When the sun's lower limb reached the horizon (as near as could be seen), a perfect conglomeration took place and spread out at least two diameters, looking like molten iron, too dazzlingly bright to look on for any length of time with the naked eye or a common spy glass. Then, as the sun descended below the horizon, the size and brightness diminished until it finally disappeared, which did not seem to be until the upper limb was consider ably below the line of horizon. At the last, occurred the change of color from pale red to purple, blue and bluish green. These observations continued from May 8 to May 28, 1852, covering twenty days, with like results, with one exception, which was when sunset followed a tremendous thunder shower which occurred about the middle of the afternoon. At sunset the line of horizon was as well defined as I ever saw it, and the sun's contact as readily discovered. This clearing up of the air by the thunder shower satiffied me that the cause of this phenomenon wae, in a great degree, density of the atmosphere, but not wholly, or the same would often occur in other localities. I do not remember ever seeing the same elsewhere, though I have often Strandown obsations in varioun
Stratford, Conn.
Truman Hotchisiss.

The Utilization of Coal Dust.

To the Editor of the Scientific American
I notice severalarticles in your journal on the preparation of slack or waste coal for fuel, and would suggest a plan for its preparation, especially applicable to this great Northwest, where coal is dear and corn cheap
Grind very fine one half bnghel of corn, boil it in one barrel of water until it is like prepared starch. Mix it with one tun of fine coal dust in a mortar bed; as soon as it is stiff, cut it out, and pile under cover to season. As a fuel, this cannot beaten.
Stellapolis, Iowa.
Richard Long.

The Canal Navigation Problem.

To the Editor of the Scientific American

I should suggest that the New York Legislature grant the right of way, on both sides of the canal, to a company for building and operating a railroad which shall, during the season of canal navigation, tow all canal boate at the prices now charged by horse towing companies. During the suspension of navigation, the company should be allowed to carry freight, making it wholly a freight route during the year. I think there should be a company formed as soon as the Legislature grants it the right of way. The railroad could be built very cheaply, as there would be no grading, at least upon the tow path, and very little on the heel path.
I think that eteam power in a vessel cannot be made to compete with the horse jower on the tow path. A strong man on the tow path, with tow line over his shoulder can move a avily loaded boat at a good speed; but put the man in the to fwim with the tow line, and how much will he move? The sai:. ; p inciple holds good in the horse and steam power. Two hories oa the tow path will move a loaded boat. carrying 200 tuns of freight, $2 \frac{1}{2}$ miles per hour; to accomplish the same speed by power acting in the water, you have to use about 20 horse power. The difference between the power to propel a boat acting on the land or upon the water is to great to allow steam power in the boat to compete with horse ower used upon the fow peth.
Geneva, N. Y
W: B. D.
Friction Gears.
To the Editor of tho Bcientiflc Amertcan:
I once wanted to run two lathes from a drum on the wator wheel shaft, which was 8 feet in diameter and 10 inches on face, lagged up and tarned off in the ordinary way. There face, lagged up and turned off in the ordinary way. There
was no space to nee a belt to any adrantage, and cog gearing
would have been very expensive, as well as making a dissgreeable noise; so I built a wooden pulley by taking scraps of plank, 6 iuches wide and 10 inches long; I cut them diag. onally, making each piece full width at one end, the other being brought to a sharp point. I formed a circle in this way, by putting all the sharp points to the center. The pulley was 20 inches in diameter, and 12 of the pieces formed a circle, allowing for jointing. The first section can be laid down on a face board, such as pattern makers use; the sec ond course can be put on by halving the jnints, using nails or glue ; but glue is best. The joints siould be broken alternately. Building pulleys in this way takes much less plank than in the usual way; besides, it brings all the wear on the end grain of the wood; it wears equally; there is no side end grain of the wood; it wears equally; there is no side
grain to cut out as is the case with a pulley built in the ordigrain to cut out as is the case with a pulley built in the ordi-
nary way, and you can use up small scraps of wood. Now nary way, and you can use up amall scraps of wood. Now
for the result. I built such a pulley 20 inches diameter by 10 inches face, turned it off smooth and hung it on a line shaft. I arranged it so that I could attach it to or detach from the drum at pleasure. The drum made 10 rerolutions a minute. I ran one of my lathes up to $1, \tilde{7} 60$ revolutions a minute, without a belt or cog wheel, and with no noise.
B. N. C.
ctical meth

Remarks by the Editer.-'Thisis a good, practical methnot generally known.

Preventing Collisions of Ships at Sca.
I') the Editor of the S'cientific American
It seems to be more dangerous now than ever to go to sea, as vessels are so much more numerous, and sailing so much faster causes a great increase of danger. Is there not a Loch Earn might still have been afloat if they had been provided thus:
Puta chain of the same weight as the anchor chain round the ship outside, supported by iron brackets with rings in the ends of them to pass the chain through and keep it in place. These brackets or chain supporters should be 18 inches long and from 1 to 4 feet below the main deck, accord ing to size of ship, and about 8 feet apart. Large passenger steamers might have two such chains, one 1 foot below the main deck and the other 4 feet below it. Such ships, in colliding, would have to break or pass through the chains before making holes in each other's sides. Level with main deck, have two beams, running out from 8 to 15 feet beyond the cutwater, one on each side of cutwater, 8 to 12 inches in diameter, so constructed that, when they come against a vessel or any outside object, they would sield and spring back
slowly to within a font of cutwater.
F. J.aies.

A New Theory About Comets.

At a recent meeting of the Lawrence, Kansas, Academy of Science, a paper entitled "Speculations on the Nature of Comets Tails" was read by Professor F. W. Barwe who comet than is a shadow a part of the object which gives it form. He supposes that the resisting medium surrounding he sun for a great distance is itself self-luminous in a de gree, as indicated by the zodiacal light; that the uncleus of a comet is merely a large meteorite; that in its rapid motion through the resisting medium near the sun, great heat is thereby developed, increased by the heat of the sun, causing some of the elements of the nucleus to become volatilized, and thus to present the phenomena of the coma with its glowing gas; and, finally, that the brigit train called the tail is merely an effect of an increased luminosity of the portion of the resisting medium behind the comet, caused by the ac tion of the sunlight and passing through the glowing gas of the coma, and projected beyond in a form usually approaching tiat of a conical surface. He predicts that, on the appearance of a comet with a bright train, the tests of shetrum analysis will show that this train is not nebulous, as Bexel and others have supposed, and not of a meteoric characte. like that of the nucleus, as Schiaparelli and Le Verrier
suppчe, but chiefly of a zodiacal nature, and probably in a suppere, but chiefly of a zodiacal nature, and probably, in a slight egree, reflecting sunlight.
T. W. Har Coupling Dangers. coupling c_{0} can be almost entirtly avoided danger of coupling $c_{0 s}$ can be almost entirtly avoided by care on
the part of $t_{\text {, }}$ engineer. I have seen engineers (or rather men who had 'rarge of engines) "get mad", as the expression goes, in couplil cars, and send the cars together with sunh fury that no ma. living could attempt to make the connec tion with any kil. of safety; herein lies the danger. Many brakemen pride th ${ }_{\text {nselves }}$ on coupling cars when they are sent back too quick for any safety to life and limb, tr, say nothing of the injur), the cars and drawheads. Yet they make tho attempt, th $c_{r h}$ warned by the conductor that they could not make the col ${ }_{i n g}$. Once, when I remonstrated with an engineer for his ckless backing up, he replied: "I am in a hurry." Note ho he succeeded in gaining time. He
drew ahead and backed tee times before the connection dres ahead and backed hee times before the connection
was made; whereas, if he ad come back first time as a was made; whereas, if he ad come back first time as a
sen.ible man should have a_{e}, the connection would have been made with time to spa Whenever you see a large number of broken drawheads ound the car repair shops, you can be assured that someb has been in a hurry.
I. P. W. says: "I have in my ssession a live fish which has the body and tail of a dog fisl $n d$ the head of a cat fish. Its labits are those of a cat fish, sling in the day time and waking at night. I presume that $\mathrm{r}_{\text {, ts }}$ this habit from the head. It is clearly a hybrid of the $t^{\text {thinds. Here is some- }}$ thing for the developtent theory."

Drobable Cause of U. S. Kidder, U. S. N., communicates to Van Nos. trand's Erlectic Enginetring Mugazine a paper pointing out the probable cause of the destruction of boiler tubes, and desaribing experiments which show the cieterioration or pitted condition, of those portions of the generator which are immersed in the water, to be due to the acrion of oleate of copper. The presence of this substance is accounted for by the decomposition of the olive oil, used in lubricating the piston, into oleic acid and glycerin, a sufficiont frictional heat being raised to thus act upon the thin film of oil between the suriaces. In the condenser, the brass tubes are exposed to the powerful comminuting impact of steam at a high temperature and pressure, and this substance is thus finely divided and placed under the most favorable circumstances for union with tue free oleic acid which the steam brings with it. Oleate of copper is then formed in the condenser, and appears in bright greeu, greasy masses which are cairied from condenser to boiler. A quantity of this substance, settling upon one of the iron boiler tubes and adhering thereto, causes both a deposition of copper and absorption of iron. Being insoluble, its action is confined to the surface of contact, henee the small holes characteristic of this kind of injury. Copper, however, it is found, will adhere only to perfectly smooth iron, and since boiler tubes are never in this condition, each deposit is quickly removed an a freshiron surface continually exposed.
Selden's apparatus, mentioned in the report of the Engi neer of the Navy as a preventive of this difficulty, consists in a long iron box fitted with a steamtight cover and placed between condenser and boilers. Tbe box is divided into
compartments by diapiragins of felting, pervious to water, avd the compartments themselves are filled with coke. In referring to the placing of alkaiies in this filter, Dr. Kidder remarks that soda is of questionable advantage, and that lime is theoretically the best, but then only when used in connection with a fresh water boiler.
At Hecker's mills, the condensed water, after leaving the filter, is treated with atmospheric air forced through it from below. The resulting water is perfectly free from taste or odor, and quite q alatable. It seems possible that the hithero insuperable difficulties in the way of freeing condensed water on shipboard from a certain unpleasant empyreumatic odor, may be orercome by similar treatment.

A New Mode of Marine Propulsion
Mr. John T. Bowman, of Dallas, Texas, favors us with sketches and description of an ingenious and quite novel mode of propelling vessels, which he ha ; lately contrived but does not propose to patent. An opening is made through the cutwater of the ship under the water line, whence, by a suitable conduit, a large stream is allowed to pass to two athwartship revolving bla les, which are modeled in form
and arrangement after those constructed inside the Root blower, and which are situated in a suitable inclosure in the forward portion of the hold. From this casing, and leading aft, are three passages, one extending downwards, at an incline, to the keel, and the others leading to each side of the n by the blower may be diverted into either passage, so that by this means the vessel may be drawn ahead or steered in either direction at will.

The Emerson Stone saw
We are informed that one of Messrs. Emerson, Ford, \& Co.'s stone saws, 28 inches in diameter, carrying 14 steel chisels,making 22 revolutions per minute, recently cut lengthise through 9 blocks stone each measuring 4 feet $6 \times 10 \times 10$ inches. Tine eaw cut 1 inch a head at each revolution $=1$ foot per minute. The 9 blocks were cut in 87 minutes, being 28 feet of linear cutting and 56 feet of surface. The machine
was driven by a four inch belt from a 12 inch pulley. A resh set of chisels was inserted for each block, the time occupied in changing being two minutes for each shift. The chisels weigh 200 to the pound, and cost half a cent each. The cost of splitting the 9 stones was $\$ 1.50$, power included. The stone was a hard, sharp gritted sandstone. much used in Pittsburgh for building purposes; and 45 cents per superfi cial foot is paid for hand dressing the same stone.

Much Butter from Little Milk.

The recipe for making a pound of butter from a pint of milk, says the Inter Ocean, is as follows: Take four ounces pulverizod alum, $\frac{1}{2}$ ounce pulverized gum arabic, and 50 grains of pepsin ; place it in a bottle for use as wanted. A tea-
spoonful of this mixture, added to the pint of milk, will, spoonful of this mixture, added to the pint of milk, will,
upon churning, make a pound of butter. It is true that the butter will seem to be a near relation to pot cheese, but call it butter and that will make it so. This recipe is selling
through the country for from $\$ 1$ to $\$ 5$; and as we give it with. out charge, it may considered as equivalent to the chromos of our religious contemporaries.

The Hours of Labor. not afraid of work" writes

"One who is not afraid of work" writes to say that mon who are idle during a day of eight hours will be equally so if the nominal time be ten hours, and that a compulsory lengthening of a day's work will not cure the dilatory or indolent workman. We believe this to be true; and we desire for every man the right to work as long as he likes. If he is healthy and sober, and has a family to support, ten or even twelve hours may not be more than he can do. At
all events, he should be allowed to do it if he chooses all events, he should be allowed to do it if he cho
without fear of unions or other forms of petty tyranny.
Professor Dana states that, during the Helderberg era, the Connecticut ralley was a wide coral growing sea, separa-
ing eastern from, western N_{6} w England.

Burning Bricks with Non-Explosive Ofl.
An old subscriber states that the eaving in burning by this method is not less tban 33 per cent. One hundred dollars worth of oil will burn 60,000 hard burnt, beautiful, facing bricks, and 40,000 hard burnt ordinary bricks, giving a brick equally burnt from top to bottom. End, side and heart of the whole pile all present the same hard burnt, beautiful looking bricks. There is no smoke, neither is there any soot or dirt arising froo the fuel during the process of burn ing by this meihod: but one continual heat from the begin ing until the bricks are suffiriently burnt. After the "water smoke" has passed off the bricks, the heat is regulerly in creased to any pitch which may be required ; and in 48 or 50 hours, a regular, equalized, high pitch of heat is obtained, sufficient to melt cast or wrought iron if required, with little or no loss in burning, producing a hard unshaken brick, im. perishable in water or atmosphere, and proof against change temperature.
But in order to make a brick of this character, it must be borne in mind that all does not depend on the manner in which the bricks are burnt, whether with wood, coal, gas or oil. To make a brick proof against the changes of tempera ture, the first thing to be done, after it is ascertained that the material of which the brick is to be made is of the right qual ity, is to dig and cast up loose, in the fall of the year, as much stuff as it is intended to make into bricks in the fol lowing season, in order that the rain, anow, frost, thaw, and atmospheric air may decompose and mature every particle possible, and prepare it, ready for the tempering machine in the forthcoming spring.
Bricks, whether of clay or clay loam, prepared in this man ner and burnt with non-explosive oil, are vastly superior, as to quality, beauty, and durability, to bricks made of im nor soot entering the kiln during the process of burning, the bricks, when taken from the kiln, have the appearance of newly planed small blocks of wood.
This method of burning bricks and other clay articles is most certainly destined to revolutionize the whole system of burning clay, throughout the whole of the United States.

Flether's New Low Tem Mera

We have previously had occasion to notice some of Mr. Fletcher's improved appliances for the production and appli cation of heat from gas. The "new low temperature burner," by the same inventor, seems likely to be not less widely arpreciated. It gives a range of temperature varying, at the will of the operator, from a mere current of warm air to bright red
ness, and so perfectly under control that it may be advantage ously used for drying, for prolonged digestion and evapora tion, and a variety of other operations. It is considered likely to supersede to a great extent hot air baths, water ovens, sand, oil, water, steam, and solution baths-apparatus which are all, from well known reasons, more or less objectionable. We learn, in proof of the regular and equable character of the heat, that a common glass bottle may be placed on the tripod above the wire gauze at the top of the apparatus, and beated to any temperature that may be desired without the risk of breakage. When very low temperatures are required, below or not much exceeding the boiling point of water. the gas is lighted through the aperture in the side of the furnace, and burns below the wire gauze. If a red heat is wanted, the
light is anplied above the wire, where the gas burns with a clear blue flame. By means of a specially adapted "blast tube," the temperature can be raised to a bright yellow heat, bordering upon full whiteness, being regulated by the respective quantities of air and gas supplied. The ' foot blower" is an improved bellows which may be used with any kind of table blowpipe or laboratory blast furnace; it appears convenient for working, well arranged, and not likeiy to get out of order.-Chemical News.

The Proposed Great Telescope.

J. T., of Jersey City, writes to suggest that the great telescope should be a reflector. "I believe it to be possible to construct a reflector, of from 10 to 15 feet diameter, of the regular speculum metal, or to silver and polish a speculum of that size after the manner of Foucault. It should bave a focal distance of not less than 150 feet, and be mounted without a tube. I have myself suceessfully tried this way
of mounting a reflector. It was first suggested by the cele. of mounting a reflector. It was first suggested by the cele-
brated Dr. Dick, who made many different kinds of reflectors. The speculum could be worked at one end by clock novement, and the eye piece at the other by separate clock work, each end being kept as steady as possible and without either tube or any connection between them. The eye piece should be fixed right opposite the speculum, on what is called the front view system. There would thus be very little light lost. I should be glad for such a gigantic reflector to be
attempted; and although of small means, I will give $\$ 25$ attempted; a
towards it."

Tr e Detection of Blood Spots.

M. Sonnenschein employs, for this purpose, tungstate of soda, strongly acidulated with acetic or phospboric acid, which throws down albuminoid matters from very dilute solutions. These precipitates, insoluble in a large excess of water, dissolve in alkalies, especially if hot. If defibrinated blood is treated with this salt, a red brown precipitate is formed, which becomes clotty on boiling. All the coloring matter is thrown down. To detect blood spots by this means, on clothing, etc., the suspected portion is cut off, and, after having been treated with distilled water, the filtered solution is precipitated with the above reagen ${ }^{\dagger}$. The precipitate, washed and treated with ammonia, takes a reddish green coloration. If phosphoric acid is present, it must be carefully
washed away before treating the precipitate with ammonia.

WARDWELL'S ADJUSTABLE BENCH JACK

Carpenters, cabinet makers, and other workers in wood are, by the invention herewith illustrated, supplied with a convenient and novel form of bench jack, intended for use in connection with the common screw vise, and which may be readily adjusted to hold boards of any width or thickness, while the same are being jointed. Our engravings represent the apparatus as applied to the bench, both in perspective (Fig. 1), and in section (Fig. 2).
A is a metal bar, slotted longitudinally, and provided with ratchet teeth on its forward side, which is let into and secured to the front part of the bench. Projecting at right angles to and passing through the slot in this bar is the jaw B, on the upper side of which ratchet teeth are also formed. The shank of the jaw enters the frame or spider, C, the forward end of which is so constructed as to slide upon ways formed upon the rear side of bar, A. D is a rest which has shoulders on its forward part to take against the front side of the bar, A, and a crosshead on its rear extremity, which is received in a transverse notch on the lower side of the spider, C. The shank of the jaw, B, therefore, holds the piece, D, in place, and also rests thereon, while the piece, D, in turn, secures the frame or spider in proper position in rear of the bar, A. Pivoted to the forward end of the rest, D, is a pawl, E, whirh is so formed that its own weight may hold ts lower or enaling end against the ratchet its lu in A, ras eeth in A, so as thereby to support the rest, spider, and jaw in any position in which they may be adjusted, the parts of course all moving together. Upon the top of the spider, C, and pivoted in lugs, are two hook pawls, F, so set that the hook of one s in advance of that of the other by a distance equal to about half that included between two of the ratchet teeth on the jaw, B, in which they engage. By this means the jaw may, it is claimed, be accurately adjusted in accordance with the hickness of the board to be held. The forward hickness of the board to be held. The forward A, so as to be conveniently accessible for adjustment.
In practice, the bar, A , is fastened to the bench at a suitable distance from the vise; and the jaw, B, by means of the pawl, E, is quickly set at the proper hight to receive the board. The latter is then inserted, and the jaw is pushed in, when the pawls, F, engaging in the ratchet teeth, hold it firmly in place.
When desired, two or more of the jacks may be attached to the bench at different distances from the vise, so as to accommodate long or short work. But a single set of the smaller working portions need, in this case, be em ployed, as they can be readily removed and shifted from one bar to the other, and when out of use may be laid away in the tool chest.
For further particulars address the inventor, Mr. J. B. Wardwell, Box G, Lawrence, Mass.

IMPROVED COOKING VESSEL

Messrs. L. P. and J. S. Bodkin, of Brooklyn, N. Y., have recently patented an improved cooking vessel, herewith il lustrated, which is so constructed that its liquid contents may be readily poured off while the solid material is retained.
The device consists of a lip, formed upon one side of a boiler, to guide the fluid into a receiving vessel, and also of a grate formed upon the inner side of the edge of the forward part of the receptacle, the bars of which are connected with

each other at their inner ends. These bars are made in triangular form, and, while offering the least possible obstruction to the escaping liquid, serve to hold the cooked substance within the pot. A handle is provided on the rear side for convenience in tipping. In other respects, the vessel is of the ordinary description in common use.

Yankee Notions.

Incited thereto by certain domestic annoyances, classed here under the generic title of " servant-galism," the inventive faculties of our American kinsmen have developed many curious and useful household implements. The Scientific
american recently gave a description and engraving of 'combination corn sheller, bootjack, hammer, hook claw, tack drawer, pot lifter, and wrench," which, it is suggested n another transatlantic journal, is open to improvement, so as to serve also as a toothpick, corkscrew, pocket pistol, baby rattle, and hypodermic syringe. This, however, and every other similar specimen of Yankee ingenuity, except, perhaps, that wonderful pig-killing machine into which the nclean animals were driven in herds and taken out at the ther end as bacon and sausages, are eclipsed by a baby washer, just patented, and thus described by its inventor: You simply insert the begrimed and molasses-coated infant in an orifice which can be made any required size by turning
E.iq. 2

WARDWELL'S ADJUSTABLE BENCH JACK.

for ten minutes a cog wheel with electric attachments. The child glides gently down a highly polished inclined plane; his lips are met at its terminance by an india rubber tube, rom which the infant can draw lacteal nourishment of the purest and most invigorating character, secured for the special purpose, at great expense, from a choice breed of Alderney kine, raised on the estate of Her Majesty Queen Victoria, in the Isle of Wight. While in this compartment, which is lined with plate glass mirrors, the perturbed spiritsof the infant are soothed by its frantic efforts to demolish its own image, reflected in the glass, with a nickel-plated combined tooth cutter, nail knife, rattle, and tack hammer, which is thrust into the baby's hand by an automaton monkey. Fatigued by its deatructive efforts, the infant falls to sleep, while the organ attachment plays softly the ravishing melody of 'Put me in my little bed.' Then it slips into the third compartment. Here the baby is washed. Another small tube administers a dose of soothing syrup, and the infant glides from the machine, its nails pared, its hair combed, if it has any, ready for the habiliments rendered necessary by the fall of our first parents." Truly, there can be no better labor savers than Yankee inventors!-Iron.

IMPROVED MALLET.

Machinists will be interested in theimproved form of raw hide mallet, herewith illustrated, and recently patented by Mr. Albert Holbrook, of Providence, R. I. The body is of Mr. Albert Holbrook, of Providence, R. I. The body is of
metal and solid, and the handle is secured in the ordinary metal and solid, and the handle is secured in the ordinary
manner. In each end of the body is a recess which receives a head made of rawhide, coiled up and dried and then turned to the desired size and shape. The heads are secured in the socket by means of a screw therein, as shown in the engraving.

Blows given with this mallet are said to leave no dents on metallic surfaces, so that it will doubtless prove a convenient tool for putting together wrought iron, steel, and bras
work, driving keys, and for all purposes where it is desirable to avoid the marks of a hammer.

Skampfjelding.

A rule, or custom, obtains on board Norwegian ships, known as skamfjelding, which is simply this: Every morn ing at daylight, as soon as the decks are washed down, the officer in charge details each individual of his watch to some particular pari of the ship, skampfjelding: Johannis goes over the mainmast and yards, from the truck to the topmast head; Jem takes the main topsail yard and topmast; Tellog takes the main yard, top, and lower rigging, and so on. Thus the whole ship is parcelled out, each man takes a few rope yarns, or "Spanish foxes," and spends the next twenty minutes or half hour in examining the part allotted to him; every seizing, splice, iron, bolt, rope, mat, even the stitching of the sails and condition of the paint, come under his considera. tion. A slight matter he repairs at once; anything for which he is not then prepared is, on returning to the deck, reported fully to the officer, and, if needing immediate attention, men and material are at once sent to the spot: in many cases the officer goes himself, or sends his second in command, to superintend the work. Things not requiring such immediate attention are noted; and when the other watch comes on deck, after breakfast, they are detailed to repair what has been reported, before commencing the day's work. In this way B repairs what A reported, and gives a look for himself, in going and coming. tgain, if anything breaks during the day, the captain asks: "Who went there skamptjelding this morning?' He is known and asked why he did not report; in some cases he gets a disagreeable job as punishment, while each man feels a personal responsibility and interest in giving an accurate report lest he lose his character for seamanship, which requires not only the knowledge of how to do things, but also good judgment in regard to materials.
This custom is not found in American or English ships, but could be copied there with good effect. And a similar system, applied to engineers, oilers, and firemen, would save more boilers and machinery than an army of government inspectors. Very little machinery breaks without some warn ing, very few pieces of modern work are equal to the wonderful one horse shay, and a little of the care mentioned is never wasted. Railroads have attempted something of the kind, but the same man, running the same engine day in and day out will, in time, take risks that he would not if another man were to take the machine the next day. So of track inspectors, train starters, and the whole host of workmen; rotation in office, with a regular system by which each inspector' location for each day would be always known at headquar ters, would here find its true place.
The real value of such a custom lies in the fact that it would beget habits of thought that would make every man an inspector of what is near him, thoughtful not merely for his own safety, but for others also; thus the bridge may be perfectly safe on the footway where he passes, but that rot ten plank in the roadway may break a horse's leg; he reports it, or marks it at once. But perhaps the greatest recom mendation of such a habit to the American mind, albeit an unworthy one, is that while it would save much it would not cost a dollar.-Engineering and Mining Journal.

A SIMPLE FREEZING MACHINE.

This is an apparatus designed for producing ice in small

quantities. It consists, simply a hollow sided receptacle having a rounded bottom, so $\dagger^{\prime} \dot{t}$ it can be easily rocked to and fro. In the sides is ple, d any suitable freezing mixture, and, in the inner spacf water. The covers are then secured by the set screw, ar nown, and the machine oscillated until freezing takes y ve, an operation requiring, it is said, about ten minutes. ae chief recommendation of the ice is its purity, suitabilj for the dessert table or sick room and the ornamental forrff the blook. Ice cream can easily be made by the appe, us. The blocks of ice are hollow, of about one fourth o,n inch in thickness, and weigh some six ounces.

A MODERN ORCHID HOUSE.
The beautiful tribe of orchids, are deservedly favorites with all lovers of graceful foliage; and we present herewith a view of a greenhouse devoted to their cultivation. A correspondent of the Gardener's Chronicle, who recently visited the extensive grounds in which this house is situated, states that in this garden (which, amnng other curiosities, compels fuchsias to do duty as bedding plants), there are at leas 20,000 species of plants, grown in the garden, in some form or another. Every nook and corner, every house, every pit every rockery, every border, teems with interesing plants of some sort or other
Of orchids, the number is legion, and several houses are assigned to them. The owner, Mr. Saunders, does not confine his attention to the large flowered showy species, but includes in his collections a veritable host of the smalle flowering kinds whose blossoms yield in nothing but size to their larger compeers. Their beauty is, when looked for, quite as striking, often more so ; while their conformation is very gencrally more interesting and extraordinary. These orchids swarm everywhere; above, below, on each side; and to make room for more, an ingenious device is adopted: that of erecting curved or bowed wire trelises along the sides of the houses near the glass; on these bows the tiny orchids cluster. Too thick, we hear some one say; not a bit of it. They are in the finest condition and vigor; the plants are not large, but they are in perfect health; and what roots they make.
If we were to describe literally a catasetum of no great size which we saw langing in a basket from the roof, we should acarcely be believed. Equally remarkable is the manner in which the roots in other cases cover the pots with a perfect network, creeping from pot to pot, more as Crecping Jenny would do than like an ordinary orchid. The secret of this unusually luxuriant root growth, Mr. Saunders believes, lies in the due acration of the roots. He is a great advocate for the free access of air to the roots; and hen the peculiar habit of orchids is considered, and the special structure of their roots borne in mind, there can be no doubt as to the soundness of
his physiology. his physiology.
A writer in the Garden recummends that every one who has convenience should grow the cool or mountain orchids. There are two distinct classes of amateurs who affect orchid culture, namely, the afect orchid culture, namely, the their swetness and beauty, and those who grow them on account of their rarity and value. The latter strive mainly to possess rare plants, of which there are only a limited number in the country, and willingly pay high prices for them; while the former grow only the most beautiful, and think that the cbeaper they can be obtained, and the more they are growing, the better. To the latter class the author claims to belong, and he says that he commenced or chid growing three years ago in a little lean-to fernery, on the north side of a high brica wall; and the house wing laturally humid, his first pair of plants-odontoglossum cordatum and o. Bictonense-grew
and flowered so vigorously that he was induced to add plants from tim
 collection now numbers upwards of fifty species, and occupies the whole of the front shelf, the back of the house being formed of rockwork and planted with half hardy ex ot ic ferns. No fire heat is used during the summer months, and the temperature rarely exceeds 55° during winter, ex-
cept by means of sun heat, while it frequently descends as cept by means of sun heat, while it frequently descends as
low as 40° on sharp frosty nights. In potting, small pots, low as 40° on tharp frosty nights. In potting, small pots,
well drained, should be used, and the compost is fiberous peat, well drained, should be used, and the compost is fiberous peat,
coarse sand, and about one fifth of living sphagnum. The moss grows freely on the pot tops, and not only gives them a neat and clean appearance, but also keeps the roots of the plants moist ; while at the same time, it keeps the compost clear of slimy confervoid growth, to which wet peat is generally subject. The plants require a liberal supply of water at the root nearly all the year round.

The Lava Overfiow of Oregon.

Professor Le Conte, at a recent meeting of the California Academy of Sciences, stated that the great overflow of lava in the West proceeded from the Cascade Mountains in Oregon which were of themselves one vast mass of lava. From this point, the lava overflowed a great portion of Oregon Washington Territory, all of northern California, and vast sections of Nevada, Montana and Idaho. The lava floor cov ored an area of at least two hundred thousand square miles ered an area of at least two hundred thousand square miles,
as explored, and it would probably be found to extend
over a surface of three hundred thousand square miles, as its limit northwest had never been determined. The depth of the lava crust varied from upwards of three thousand feet in the Cascade and Blue Mountain region to one and two hundred feet and less at remote points on the outer edge of the overflow. Where the tremendous gorge of the Columbia river cut through the lava bed, it had a depth of three thousand five hundred feet. The eruption was comparatively recent, belonging to the latter part of the miocene period, ex tending perhaps into the post tertiary.

Splicing Railway Carriages

Mr. W. H. Mills, the general manager of the Mexican Railway (from Vera Cruz to Puebla and Mexico), finding the short English cars unsuitable to the sharp curves of a newly opened extension of the line, desided to splice them together in couples, with a four wheeled American bogie truck under

each end.

The carriages offered special advantages for this splicing together. The main frames, whish are of rolled wrought iron, have been spliced or fished together with strong

It has been charged against our bretbren of the dental specialty, says the Lancet, that they are wofully at fault in regard to knowledge of the commonest of all things-caries of the teeth. That they extract teeth with skill, and stop them with even more skill, and in a nobly conservative spirit, is admitted; but the causes of decay in the teeth have remained obscure. ${ }^{1}$ The investigations of Leber and Rottenstein into this sabject have at least the charm of pointing to definite conclusions. They admit, of course, that there are differences of teeth, constitutional and connected with race, making teeth more or less resistant to the great influences which determine decay. These are not, according to these authors, internal and vital so much as external and chemiical. The process of decay begins from the surface, and if it can be controlled or arrested at the surface, it is entirely controlled. The great causes of caries are two, namely, acids and a certain fungus found abundantly in the mouth, leptothrix buccalis. This latter agent is characterized by certain microscopic appearances and by its reaction with iodine and acids, which give to the elements of leptothrix a beautiful violet tinge. Under the microscope the fungus appears as a gray, finely granular mass or matrix, with filaments delicate and stiff, which erect themselves above the surface of this granular substance so as to resemble an uneven turf. The fungus attains its greatest size in the interstices of the teeth $\boldsymbol{\}}$ No one can deny nowadays the action of acids on the teeth, even weak acids, in dissolving the salts of the enamel and the dentine. All acids, both mineral and vegetable, act prompt. ly on the teeth Various experiments as to the action of acids on dental tissues are given, making the enamel, naturally transparent, first white, opaque, and milky, and, in a more advanced state, chalky, and then the dentine more transparent and softer, so as to be cut with a knife. The acids which may actually effect the first changes in the production of caries are such as are taken with food, or in medicines, or such as are formed in the mouth itself by some abnormality in our secretions, which should be alkaline, or by an acid fermentation of particles of food. But acids alone will not account for all the phenomena of caries in the teeth. 'They play a primary and principal part, making the teeth porous and soft. In this state, the tissues having lost their normal consistency, fungi penetrate both the canaliculi of the enamel and of the dentine, and by their proliferation produce softening and destructive effects much more rapid than the action of acids alone is able to accomplish. It is not pleasant to think that fungi exist in the mouths of all but the very cleanest of people. Bowditch, in examining forty persons of different professions, and living different kinds of life, found in almost all vegetable and animal parasites. Ti he parasites were numerous in proportion to the neglect of cleanliness. The means ordinarily employed to clean the teeth had no effect on the parasites, while soapy water appeared to destroy them. If this be a true version of the causes of caries-the action of

A MODERN ORCHID HOUSE

wrought iron joint plates 3 feet 6 inches long, well riveted, hus making each of the main frames in one continuous piece or girder. To assist in stiffening these frames, three ension or truss rods $1 \frac{1}{4}$ inches in diameter have been placed and carefully adjusted under the carriages. The carriage bodies, which are of teak, have also been strongly bolted together at the sides and roof. A four wheeled center pin bogie truck built by Gilbert, Bush \& Co., Troy, N. Y., has been placed at each end of the carriage. In addition, the Westinghouse air brake is fitled up on all the carriages of the Mexican railway; one brake placed on the top of the carriage applies the brake shoes, which are of iron, to all the ight wheels at once
The result of this splicing of two carriages together has been a perfect success, and all those that have been thus treated are now by far the easiest and smoothest running carriages on the line.
The Diagnosis of Lipomata.-An excellent suggestion is made in a French journal. A character peculiar to lipomata resides in the property, belonging to all fatty tumors, of hardening under the action of cold. When, after the use of ice or the ether spray, in the case of a doubtful tumor, the growth becomes harder, the presumption is that it is lipoma.
Mr. Thomas Sutton, the photographer, states that, if calico is dipped for an instant in dilute sulphuric acid, it is
acids, supplemented by the action of that the great means of preserving ungi-then it follows that the great means of preserving eeth is to preserve the most scrupulous cleanliness of the mouth and teeth, and to give to the rinsing liquids a slightly alkaline character, which is done by the admixture of a little soap. This is not so pleasant a dentifrice as some, but
it is effective and scientific. Acids not only dissolve the it is effective and scientific. Acids not only dissolve the
salts of the teeth, but favor the increase of the fungi of the mouth. No increase of fungi and no action on the dental tissues occurs in solutions slightly alkaline, such as a weak solution of soap. The good effects of stopping teeth, in the light of these experiments, are intelligible. The penetration of acids and fungi is prevented.

That $\$ 40,000$ Cow Again.

It seems that the sale of the celebrated Eighth Duchess of Geneva, a shorthorn cow, recently referred to in our columns, knocked down at the New York Mills auction to Mr. R. Pavin Davis of Gloucestershire, England, at the enormous price of $\$ 40,000$, was effected through a mistake. The agent of the purchaser, during the excitement of the bidding, became confused as to the relative value of the pounds sterling and dollars, and offered far beyond his authorized limit. His principal immediately, on learning of the bargain, ordered the sale of the animal, which was recently consummated to Colonel Lewis G. Morris, of Fordham, N. Y., report says for the sum of $\$ 30,000$. The highly valued animal, therefore remains among the American breeders.

THE NEW EXPLORATION OF THE AMAZON RIVER BY PROFESSOR ORTON....OVER THE ANDES.

THE COMMERCE OF PERU.

It would be quite as easy to ascertain the revenue of Atahualpa as to find out the present exports and imports of Peru. Both are impossible. The wildest confusion prevails in the custom houses, as well as in the minds of the people, regarding the commerce of the republic. But better days re coming, as the government has just established a statistical bureau.
Peru under the Incas was essentially an agricultural naion, without trade and with few mechanical arts. In many respects it resembled the Hebrew nation. The empire must have been a magnificent shell, that should so suddenly collepse on the appearance of a hundred Spaniards. It is a signal prosf that agriculture alone will not preserve a people. Roads there were, but for military communication, not for commerce. Pizarro had sense to see that Cuzco was too far nland; so he founded Lima, the most lasting monument of his wisdom.
Peru no longer leads the South American republics in en terprize and thrift, for Chili now bears the palm. Peru has reached her level for the present. By a system of official stealing and reckless financiering, she has brought herself to the verge of bankruptcy. Everybody seeks office to sap, not to serve, the government. Every city hangs on the skirts of Lima. Arequipa, the second city in Peru, stands like a beggar at the door of the public treasury, receiving $\$ 80,000$ annually; and even imperial Cuzco holds out her hand for $\$ 30,000$. Employees distant from the head center (as Iquifos, for example) go anpaid. Yet Peru has immense capabilities. She is the France of the continent. With the great Pacific on her left and the navigable sources of the Amazons on her right, with mountains of mineral wealth untouched, with highland valleys like the hanging gardens of Babylon for beauty, and with plains and reclaimable pampas which might equal Egypt in fertility, Peru is potential ly one of the richest countries on the globe. But she must have a more substantial and permanent basis of prosperity than gunno and saliter. The wealth thus suddenly acquired has diverted the people from the slow but surer sources of national growth. Whoever heard of an original patent ta ken out by a Peruvian? Where is the vessel that was built in Peruvian waters? What manufactures thrive in Peru? We can think of only one success, the powder factory at Lima, which the government runs, dispensing the "villanous saltpeter" at thirty cents a pound. There was once a wool on factory at Cuzco, bu ${ }^{\ell}$ it is now silent. Commerce is almost entirely in the hands of foreigners. Take out what foreign ers have done for Lima, and little would be left but the bull ring.
The annual revenue from guano (including saliter) and customs is about $\$ 95,000,000$. To the railways now nearly completed by Mr. Meiggs, Peru must look for an advance, It is a fact that the receipts at the custom house in Callao have increased by one million of soles every year since the beginning of the Oroya railroad.
In eastern Peru, hats, aguardente, salt, turtles, salsapar illa, tobacco, and hammocks are the main exports. Trade bus vastly improved since the establishment of steam navi gation on the Amazons. But until there is a better out than miserable Balsa Puerto, it must be inconsiderable.
On the coast, the majority of the sailing vessels are Anglo Saxon. There are a few French steamers; but the Pacific Stoam Navigation Company, founded by an American, the late Mr. Wheelwright, is the most prosperous navigation company in the world. It has a fleet of seventy steamers some of them the largest afloat, with an aggregate tunnage of over 200,000 . The six best harbors of Peru are Payta, Chimbote, Callan, Islay, Arica, and Iquique. But all are roadsteads opening to the north; and of each it can be said as a captain earcastically remarked of Mollendo, "the har bor is entered as soon as the ship turns Cape Horn." Th wealth of Peru lies mainly in the following productions: guano.
This valuable fertilizer, whose virtues were known to the nces, comes no longer from the Chincha Islands, which have been pretty thoroughly scraped. It is now shipped from the Guañape Iflands, where the deposit will last about eighteen months. The principal deposits yet untouched are those of Maca bi Island, Lobes island, Viejas Island, Lobillo Island, Huanillo Island, Huanillo Point, White Point, Pabollon de Pica, and Chiapana Bay. The guano now in the market is nferior to that of Chincha, containing five per cent less o ammonia. Peru owns but four millions of tuns (the rest be ing mortgaged to Dreyfus \& Co.), worth $\$ 35$ a tun where it lies, or $£ 13$ a tun in Liverpool.

aliter 'nitrate of soda).

This formidable competitor with guano is found in the Provincrs of Tarapacá, especially on the Pampa del Tamaru gal. The average yield is $4,100,000$ quintals; but were the senseless restriction on its exportation (25 cents per quintal) removed, the quantity would be tripled. It is mainly ex ported from Iquique, where the price is about $\$ 2.50$ a quin tal. Mixed with guano saliter (or "caliche" as it is called in the crude state) is the best compost for cereals. In the de posit at La Peña Grande, fossil birds have been discovered nine feet below the surface.

In many respects, this is the most important production of Peru. All along the coast, wherever the land is watered by
streams or irrigation, the cane grows luxuriantiv farom 15 to

20 feet) and gields 85 per cent of juice, having 12° or 15° Baumé. The green and ripe are seen in the same field; men are cutting at one end and planting at the other. The cane requires replanting but once in ten years, and gives a crop every fourteen months. It is exported mainly from Eten 12,000 tuns annually)-the richest agricultural region in northern Peru-Pacasmayo (800 tuns), Malabrigo, Huanchaco, Chancay, and Pisco. The bulk goes to Europe to be refined. superior quality is grown in the interior at Abancay, which is sent to Bolivia.

COFFEE.

A small quantity is produced at Guadaloupe near Pacasmayo, which is second to none in richness of flavor. Its excellence is due to the fact that it is grown in the shade, and with the greatest care. This "(toyburu" coffee, as it is alled, brings fifty cents a pound at the hacienda. A very choice article (valued at $\$ 1$ a pound) is made by selecting the mallest Goyburu; but it is not in the market. Fine coffee grows also at Huanuco and Urubamba.
cotton, grain, and hiquors
A very fine article, mext to sea island, has been grown at Pacasmayo; but the yield, only 50 or 60 lbs . to the acre, is ot encouraging. It sutfers from mildew. The points from which cotton is exported are Pacasmayos (100,000 lbs.) , Pay, Eten, Chancay, Lomas, and Pisco
Rice is now imported from China direct and from India $i \hat{a}$ England, so that little is raised. The usual yield is 200 fold. Its production is nearly confined to Eten, Pacasmayo, nd Huanchaco.
A prime article of corn, quite different from the short, parcolored ears on the highlands, is grown to some extent on the coast ; 700,000 lbs. passed through the custom house of Pacasmayo last year.
The best cacao comes from the Department of Cuzco, espesially from the hacienda of Echarati. It brings 60 cents per pound in Lima, or double the price of the (fuayaquil.
The province of Moquegua is the Bordeaux of Peru; and large amount of rum and wines are exported from Pisco. The "Italia" is the leading brandy. Ordinary "Pisco" is worth $\$ 1$ a bottle; "Locumba," $\$ 2$.

товассо.
This grows luxuriantly at Eten and Pacasmayo, sometimes tanding eight feet high with leaves four feet long. It is ent chiefly to Chili. Pacasmayo exported $100,000 \mathrm{lbs}$. in 1873. Tobacco is also grown along the Urubamba and Utcubamba.
Coca is almost confined to the Urubamba province, and is ot exported from the coast, as it is consumed in Cuzco, Puno, and Arequipa. It is considered inferior to the coca of ungas, Bolivia.
cascartlla bark.
Less and less of this is exported every year, as the hunters have to go farther and farther into the interior for it. The reater part now goes down the Amazons from Bolivia. It is shipped from Payta (coming from Loja), Pacasmayo (coming through Cajamarca, nearly 200,000 lbs. in 1873), Islay, and Arica (coming from Cuzco and Bolivia). At Arica, it is worth $\$ 90$ a quintal.

After guano and sugar, alpaca is the great export. It comes almost entirely from the departments of Puno and Cuzco; and the outlets are Pisso, Islay, Mollendo, and Arica. But Arequipa is the great center of the alpaca trade. Such the reputation of the Arequipa brand that the wool is enerally taken to that city from other points to be re-assored and re-packed. The alpacas thrive best in the black, almost barren, boggy lands from 13,000 to 14,000 feet in eleva ion. Shearing time begins, December 15 ; but an individual sheared only once in two or three years. A fleece of three ears is of course the largest and commands the best price. It now worth in Arequipa $\$ 70$ a quintal. Vicuña wool brings $\$ 100$ a quintal: but little is exported. The sheep's wool of Peru (" cholo") is of middling quality, inferior to he "mestigo" of the Argentine Republic. It brings twelve pence in England. It is exported from Arica and Islay.
A bout 4,000 guat skins are exported annually to the United States from Payta, and a few chinchilla skins from Arica. minerals.
Arica, being the main port of Bolivia, ships the most metal especially bar silver (at $\$ 12.4$ per mark), copper barilla or powdered ore (at $\$ 18$ a quintal of 70 per cent), and tin barilla (at $\$ 19$ a quintal of 70 per cent). Pacasmayo and Chim bote will ere long export considerable silver ore and bitumi nous coal, the latter having been discovered of excellent uality a
Besides these exports, Tumbez yields petroieum, Huan chaco, starch, Quilca, olives, and Amotape (near Payta), co chineal. Orchilla was formerly sent from Payta; but a bet r article has recently been found on an island off Mexico.

James Orton

decisions of the courts.

United States Circuit Court---District of Connecticut t Carriage whefl--barven vs. hall
[In Equity.-Before Woodruff, Judge.]

Charles R. Ingersoll and Benjamin F. Thurston, for defendant.
The Tarner Car Brake Patent.

gecent american aud forcigu gatents.
John Demarest, Mott Haven, X. Y., assignor to himself and Jordan L Mott, of same place.-The invention consists in pipes having corresponding
end enlargements, with two annular recesses to form chambers, the former to recelve an extension, and the latter to forma a close chamber for packing, that the packing winnot be expor the lly be forced out of tts place into the pipe

Improved Combined Shutter and Window Fastener. William T. Fry, Brooklyn, N. Y. - This invention consists in fastening the unfasteued separately. The arrangent is such that, when the shutter or door is fastened, all parts, except the inside handle, are concealed from
view, and access from without for forciole entry is effectually prevented, ayd the fastening and unfastening of shutters can be efiected without open Ing the windows. A spring is arranged with the shutters to throw them open when they are unfastened. It may also bc used with gates and doors,
if required. The spring catch is proviced with a metal case m.de in two parts, which form a lining for the mortise through the sill or frame. The parts of the sald casing are contrived so that, when they are placed togethcr preparatory to being put in the mortise, they receive the pivot of the
catch in opposite holes formed for it, and are held together to confine catch in opposite holes formed for it, and are held together to confine the catch by the walls of the mortise. The satd linnng may be provided
with a flange on the inside of the sill, to prevent it from betng pulled with a flange on the inside of the sill, to prevent it from betng pulled
outward. The Inventon also consists in utilizing this shutter fastening for locking the window sash by means of a stud catch on it, projecting down from the lower edge, and engaging the spring catch.

Improved Cooking Stove.

Solomon Long, Mayrille, 0 . -This invention is on improvement in the class of stoves whose fire boxes are provided with movable or adjustable backs. The improvement relates to the arrangement of two pivoted or hinged plates, one forming, when elevated, the back of the tire box and he stove.
Improved Spring for Chairs, etc.
William T. Doremus, New York city.-To the lower part of the seat is attached a centrally slot ted metallic plate. Through this passes the screw, admit of the oscillation of seat. Two rubber blocks are placed one upon
each side of the plate, and may be kept from turning by toes, said toes eacb side of the plate, and may be bept from turning by toes, said toes
entering notches in them. The toes, when the chair is oscillated, press entering notches in them. The toen, when the chair is oscillated, pr
laterally against the rubber, and thus make the spring more efficient.

Improved Fishing stake.

John O. Campbell, Alpena, Mich.-This invention consists of a fishing stake composed of two parts connether by a socket and apring
catch, In such manner that the upper cortion can be readily detached from the lower portion, just above the gromed when the season is over, to be preserved, and then be readily attached again at the beginning of another

Ernst Gundlach, Hackimproved Mangle.
sitable clamping screws to the table. The mangle is irmly secured by the mangle rollers. The shaft of the upper or pressure roller turns in a frame which is pivoted to the standards above the clothes roller. The upper roller is made of larger diameter than the lower, both betng made of central lever, extending iso made of cast iron, in forked or U shape, with a with a handle efor pressing the roller down, or with a weight suspended at its end for producing the necessary pressure on the lo verroller. The frame brought down to arts eccentrically, so that the pressure of the roller, whe eccentricty to the length of the lever and the weight applied, which may be increased or decreased according to the power desired to be exerted. By holding with one hand the lever of the pressure roller, and turning the crank with the otheras long as desired, the clothes are rapidly mangled They arthing on and
Willam Roberts, Jr., Copper Falls, Mich Drill.
Wiliam Roberts, J., Copper fock, or head by a coundion conslsts in and tapered bolts, the sald half boxes having the ehank of the half boxes them, and entering the socket of the stock. The bolts pass through the位k on opposite sides, and bear against the back or the boxes in grooven so as to wedge them tight against the shanks of the drill, and hold it in the
boxes, and also hold the boxes frem working out by the notches in the back.
Willam Willam Weaver, Burlington, Vt . The object of this invention is to prowhich the shavings are carrled off by the force imparted by the rapid revolutions of the cylinders and side cutters, and transmitted to elevators or other recentacles, whether used with or without suckers or blowers. The
conductor, covering the machinery, protects the gearing against the accumulation of shavings, leaves every part of the machine fully within view of the workman, and permits readily any repairing of the same at any desired moment. The invention consists, mainly, of a hood-shaped conductor adapted in form to a cylindrical planer and side cutter, combiucd with an extension casing leading to the opening of the blowers, suckers, or receptacles, and turning in a clrcular sleeve, so as to be lifted off the machinery
The chip breaker of the side cutter is suit 4 ! y enlarged and recessed for the passage of the shavings into the conductor, which may also be arranged separately for the side cutter

Improved Curtain Fixture
Charles C. Moore, New York city.-This invention has for its object to improve the construction of the shade roller described in letters patent
No. 55416 . Uponeach end of the roller is slipped a metallic tube, which No. 75,416 . Upon each end of the roller is slipped a metallic tube, which
tubes are made with dies, so as to be exactly of the same size and perfectly tubes are made with dies, so as to be exactly of the same size and perfectly
true. The tubes are designed to receive the side parts of tne shade, and shades to roll up true, thus obviating the annoyance in hanging and using tubes are formed small holes, to recelve tacks, which at the same time fasten both the shade and tube to the roller. A broad beaded screw is screwed into the ends of the roller, which, in connection with the end
of the tube, forms the spool upon which the suspension cord is wound. By this construction the length of the spool upon which the cord is wound may be adjusted as required by simply turning the screw in and ont. Upon outward, edge of the end of the tube is formed a flange or bead, projecting flange or bead, projecting inward. The head of the screw is formed bear against the cord when it comes to elther end of the shank of the spool
in being wound thereon, so that it cannot make more than one coll upon in being wound thereon, so that it cannot make more than one coll upon consists in an arrangement of plow beam with a triangular frame, supportd on caster wheels, the parts betng so connected that the same rods which

Improved Carriage Spring.
elliptic spring are of uniform size, and composed of three leaves. Flanged plates are on the outsile of these hialves. the flanges of which project in-
ward. A kuee Joint stay is grooved, the ends of which are attached by joint ptus to forised bolts pansing through the plates and through the halves. joint outside of a straight llue drawn from one to the other of the joint and when the spring reacts. the stay limits the motion and prevente breaiand when the epring reacts. the stay thmits the imotion and prevents breas-
age. Springs of :ankular form at the eads of the ellitita are contined to
clevises at their :unles, with their ends resting on the plates within the clevises at their :angles, with their ends resting on the plates within the
flanges. springs of oral form are also similarly confined to the clevises, with their othe. ends senarated and extending inward. Pads of rubber are
thached to the inside ot one of the ends of each of these springs. When attached to the inside of one of the ends of each of these springs. When other, and the pads prevent noise. These springs may be so arranged that,
at ordinary pressures, they will not act, and so that they will not be brought Into requisition. except when the pressure is sufficient to Jeopardize the safety of
all times.
lmproved Vibrating Propeller for Vessels.
Friser, Pictou, Camada.-This invention is an improvement in the class of propellers formed of patides or buckets hinged to horizontal shafts or arms, whth vibrate on a vertical axis. A hollow vertcal crank
suaft extrinds from instie down through the bottom, and is stepped at the bottom of the keel. Below the hottom of the boat this shaft carries two
armsextending from opposite sider nearly the width of the bottom of the arms extending from opposite sides nearly the width of the bottom of the
boat. The bucketsare hinged upon these arms to swing freely between boat. The buckets are hinged apon these arms to swing freely between
short secondary arms, which ph. ject laterally in two sets at right angles to tion. Any suitahle number of there crank shaft, and propellers will be
used in a boat, being arranged at intervals throughout her length, and the powermas brecter then any approved way
Jerome N. Brems, Gouth Adams, Mass.- The bod In two parts, the rear parts of which are securcd to each ot ther by a
serew bolt whell hold them together, and by a pla that prevent latera movement. The lowry part is made with a downward projection to enable site sides of the dower part, and the bases of which project along the stde of sadd part, are secheed to it by a bolt which passes through it and through slots in the bases of the said arms. The parts of the bolt that pass through
the slots in the said iases are tlatiened so an to hold the arms exactly in line with each other. Cpot the upper sldes of the bases of the arms are formed in proper position ior the tooth to ve operated upon, while the arms sup.
port the saw plate in: horizontal posetion, wo tint it cannot spring or bend By loosening the nut of the bolt, the armin may be readily adjusted accord

Constantin Lazariteroved Grooklyan Conveyer

竍 purpose of distriburing it and properly trinming the vessel. A shell whee plate, seprated by vertical partition plates, which latter divide the space between the two plates into a serics of compartments which have thet This wheel in placed below the hitch and given a rapid revol ing motion and the grain. suppled by suitahle hoppers and condults, is thrown from
the whecl, through the compartuents and sace, by centrifugal force gannst the sides of the vessel and buik clamed, without hand distro as fast as the elevatordelivers in, it is claimed, without hand labor, and
the most perfect mann?r. The speed of the machine may be regulated by mcans of cone pulleys or otherwise, so as to simply clear the wheel an
allow the grain to fall nearly vertically fur illing the middle of the hold.

Improved Liquid Measure.

Wills L. Wever and A. Wallace .Jhnson, Platsburg, N. Y.-This inven
Hon consists in arrangine a measure of suitable size with a vertical centra Hon consists in arranging a measure of suitable size with a vertical centrat
slide gate. whic.s is provided with a horizontal subdivisional shelf, so that easure, the whole half or other subdivisional measure may be filled.
Improvement in Hardening the Surfaces of Iron. suitable compound for case-hardening fron, or converting the surface int steel; and it consists in lamp black, sal soda, murlate of soda, and blac oxide of mangsusue. The tron is heated in any sultable forge or furuace
and, having beren wrought tuto the sinape of the implement or artcle to be y sprimking or siftimf or by momerging the froll therein. The effect ts to by sprimking or siftink, or by immersing the ir
carbonize and steelify the surface of the iron.
Iosiah smith, southold, Bolt r., assignor to himself and L. F. Terry, same place.-The inner plate of the fastening is cast with two keepers to recelve
the bolt, which has a loop cast upon it to serve as a handie for operating it upon the inner side of the dour. The rear keeper is cust with a transverse
slot through its middle part, to allow the handle to pass through when Slot through its middle part, to allow the handle to pass through
slipplug the bolt into place. The outer plate is cast with a flange to
ap the edge of the door. A loop or handle, the stem of which through a slot in the outer plate. a slot in the door, and a slot in the inner plate, enters a hole in tine bult, where it in secured in place so that the bolt Upon the outer plate is cast a loop, whith is made exactly like the handle pushed back by accidental means.
Cbristian Loetscher, Dubuque, Iowa.-This invention is an improvemen devices for forming miter joints, whereln the bar, against which the In the saw table. The siding bar may be reversed. and is designed for use as. stop when a uumber of pieces of the same length are to be sawn
Improved Table Kniíe.
Wimain Henry Andrew, Shenlield, Enpland.-This consists in a simple tangs; and it consi.ts in the employment of a bent piece of metal, angu-
lar plate, or cap, mate of any suitable metal and contiguration, applied o the hande next to the bolster, wrat it, lower end, and provided with a
openiug for the insertion of the holding tang, which is secured in positio by a r
tang.
Grl August Sitzler, Kitzingen, (iermany.-This in nil atiblo walls, machinery, etce., and is for patnting wool, and produclng wall and ronf papers. The compound is impervious to moisture and air, of
great durabitity, and. thoagh pliant and clastic, of great hardness after great durability, and. though pliant and elastic, of great hardness afte
hiving thoroughly dried. It consists, mainly, in silver itharge ground with esquioxide of manganese, to which balsam of sulphir the toadted he disselution being accelerated by heating. Zinc white is then added to the furegoing, thoroughiy ground. and then combined with soluble glass Venice turpentine, spintits of turpentinc, oll varnish, pulverized metalicic
fron, and Portiand cement. The whole compound is then thoroughly mixed fron, and Portland cement. The whole compound is then thoroughly mised
and ground together, producing a blutsh gray paint, which may be colored and ground together, producing a blutsh gray paint, which may be colore
to any desirable tiut by adding the coloring pigmentsin suitable quantity

Improved Toy Putty Blower.

Nathan Joseph, San Francisco, Cal.-This invention consists of a putty blowing tube for children, constructed by simply rolling up the sheet into
crlindrical form, and overlapping the edgee for the joint withoat solder the sharp edges of the metal.
 a diftrult matter to construct an ornamental lining for rrates and freplaces
that would stand the continual expansion and contraction to which such hiat would stand the continual expansion and contraction to which
linlugg are exposed from repeated tres without breaking the tiles or blocki thes wer with cement, but the tiles or blocks have been eet like whidow panes in metallic frames. These diftcultes are desifned to be overcome by the
present invention, in which ilies of any form or deecription, or metal blocks of any design, tigure, or size, are securely bolted or fastened to metallte backing made in the forin desired for the areplace or grate, room
being allowed for expansion, so that the lining is not damaged by the
 ornamental tile front for treplaces in its proper position. The tile is connined to a cast metal frame by means of border moldings. The outer edges of these molding gre thush with the outer flauges of the frame. The tine edpes lap on the the so as to securely hold in tratece, andide the moldiugs are held.

Tmproved Car Coupling
Allen Strafin, Giret at itsupperenda notched recess toward the open side of the drawhar, which supports the lever
when raised to acmit the coupling link. The latter is provided with two notches, wedge -like ends, and a higher central part. When the link enters
the drawbar it passes, with its end, below the raised lever till the central ar strikes the same and canses it to drop into the notched part of the 11nk. pivoted triangular plate presses by its own weight, with its base, on the jerks and ribratinns of the car. To a lever extension of the plate, and also to the end of the lever, is connected a wire rope which connects with a
treadle on the platform of the car, so that the attendant nay easily raise the plate, and with it the lever. into the recess. in readiness for couping.

Improved Apparatus for Compressing Cast Metals. Horace W. Mann, Omaha, Neb.-The object of this invention is to pro Vide a portable convenient apparatus for solidif fing cast metals in the cuin state by compressed arr, which is forced directly on top or gate in
thask after the metal is poured. This invention consists of a portable res ervir for compressed air, with a pump attached, which latter is connect ed by rubber hose with a cylindrical cap that is titted and clamped to a cyl-
inder that is fastened to the top cf flask. Both cylinders are coupled to Inder that is fastened to the top c.f flask. Both cylinders are coupled to -
gether by projecting flanges and clamps. The Hask cylinder is provided gether by profecting flapges and clamps. The Hask cylinder if provided
with a clay wash, and, previous to the pouring of the liquid metal, with a ring orcap piece, set on top to prevent the hot metal from coming in con poured, the cap is wanc. The ring is remored as clap cock opened, so that the compressed air is let directly on top of metal through the gate of flask, compressing thereby the metalin the molas.

$\underset{\text { ohn } F \text {. Boerciel, Allentown, } P}{\text { Improved Car }}$

Xaver Krapf and John F. Boerckel, Allentown, Pa.-The drawhead is rounded of at its front part and provided with a backwardly curved hook, over which the coupling link sides easily, and is then retained without he-
ing disconnected by the jerking of the car. The coupling link is pivoted the drawhead, and at one side of the latter are arranged a series of up-
vardly inclined holes of difterent hights, ibell-crank-shaped lever with a treade is pivoted, sidewise of the link, to the link pivot bolt, projecting With its curved extension hook under the link and lifting the eame into orizontalor inclined position when lever is turned. When in inclined positton for coupling, it is secured therein by placing a pin into one of the
holes before mentioned. selecting the hole required for productng such an nclination of the link as the hight of the platform of the car to be coupled enders necessary. The coupling link strikes then, on the approach of the ratsed, allowing the pin to drop out, and passes over the hook, dropping on the drawhead back of the hook and coupling the cars. The uncoupling quicssure on the treadle, is required.

Improved Urinal
York city.-This inve
John C. Garnsey, Y Yith handle arranged at the top解 such a manner that the center of gravity falls to the rear of the same. s prevented, whlle the forward projecting pointed epout in front of the
handle facilitates the use, and furnishes an opening of sufflient size for handle facilitates the

Improved Milk Can
James F. Cass, L'Original, Canada. -This invention consists in a conteal on with thear also, on opening at the top and a tube and tubes in connec, for ventllating the can and carrying of the animal heat and the odors of he :nilk. Fresh cool air is carried in at the lower holes by blowing against he cover, and forces the warm air out through the tube at the top, so as to
cool the milk etticlently as it is in waiting on the stand at the farmer's gate or when being conveyed to market. This milk can is intended princtpalls

Improved Churn Dasher.

Andrew J. Hudson, Camden, Tenn.-The dasher ts made in the form of wo-armed bar. Upon the upper side of one arm is formed a rounded hol-
low, or concave groove, inclining out ward and upward, and in the unde side of the other arm is formed a similar groove inclining eutward and downward. Upon the upper side of onearmand upon the upper side of the
other, respectively below and above the other grooves, is formed a recess aving a convex bottom and vertical sides. The outer shoulder of the re ess is curved and extends from the forward side or the dasher arm to
bout the center of the rear side of sald arm, where it terminates in a notch. By this construction the dasher, in its movement, throws the milk in cur
rents in different directions, which currents collide with each other and ents in different directions, which currents colide with each other and
with the sides of the churn, throwing the milk into violent agitation, and with the sides of the churn, throwing
bringingthe butter in a very short time

Improved Ventilator and Pipe Hole Plate for Tents. sts of a metal plate having a hole for ventiation, or for the profection of asive for closing the ventilator or pipe hole. The plate supports the

Improved Carriage Top .Joint

William B. C. Stirling and John W. Pohlman, Batavia, O-The object of ops of carriages of all kinds, an improved foint or prod, by which the braces are effectually extended and rigidly supported when the top is thrown up, and neatly yand compactly arranged when folded down. It con
sists of a combined joint for the braces of a carriage top, so that the same sists of a combined joint for the braces of a carrlage top, so that the same olds easily into parallel position, together with an abutting extension of cess of the
is opened.

Improved Machine for Building Earthworks. Harves Morey, Co casters or wheels, for moving along the ground read y, and havingan elevated platform hinged at one side, and held down at the other side upon powerful springs,on to which the earth is scraped up an
ascending way or otherwise delivered upon it. The earth is finally dis charged in the direction of the place where it is to be spread by tripping the platform and allowng it. A windlass is emploged for forcing the plat to project the earth from it. A windlass is employed for forcing the plat
form back again for reloading, with ratchets and pawls for holding it. This machine is more particularly designed for levee building and,it is belleved, y saving much of the labor of the antmals in moring themeelves and the

Improved Latch for Gates.
George N. Sharp, La Plata.Mo. - This invention has for its object to im
prove the construction of the lateh for which letters patent No. 123,0 were granted to the same inventor June 18, 1872 , so as to make it more re:table in ascand less expensive in manufacture. The catci inoves up end down through a slot in the bcttom edge of the case, and has hooks iormed unon
the outer and innerends of its upperside. The innerarm of s lever passes hrough a slot in the topeage of the case and enters the cavity of the catch ward, it may raise the catch and unfasten the gate or door. 'Tle urper arim of the lever projects upward, to serve as a thumb plece for operating. opening partition is formed in the inner part of the case, and its upper part is
curved to serve as a stop to the catch when thrownupward hy the slammisg hut of the gate, to canse the catch to droo before the gate, in lis rebound can carry the catch bar out past the catch.

Improved Hub Boring Machine.
gignor tu Cyntrial A. Wright base part and the vertical standard supported thereon. The larger part is laterally connected y pieces which support, he wheel to be bored in hortzontal position, forming a platform for the same, to which it may be rigid
ly fastened. A lower literal piece carries centrally a vertical, to which re pivoted the toggle levers, which have jaws at their urper ends, which
take hold of the hub at diametrically opposite sides, and certer it accuately below the boring mandrel. Jaws are adjusted to the hub br a link connecting the tuggle levers and screw, whith is naced vertically b low the axis of the mandrel, securing therchy the exact ecntral position and
bore of the hub. The mandrel is set, in the usual manner, in ycritcal posi. tion oa the standard, and driven by hand or other po
Improved shoe Last.
 plugs of wood and a fastening device composed of a screw-threeded hush
and rollerscrew in the hottom of the last, for driving the tacks into nud temporarily fastening them on the soles. The object of this is to remure always have sold substance for the to the the as they weer out, and thus soles, having a metal plate on the bottom for riveting or clinching the tacka
by which the insole is fastened to the upper in the process of making mas. chine-sewn shoes.

Improved Nleeping Car.
Herrmann Lindner, Brooklyn, X . Y. The seatio of the lower berths constructed of three pivoted cushions, the nai in chshion formine the dle part of the berth. Alug-shaped extension limits its motion, ancitt is foldeddowninto horizontal position into the place made vacant by reat. Either back cushion may de slightly elevated fnto an inclined position for
head rest, and secured. The seat frame dividing each section extend thereby a full view of the car and a frea pionas in cushon, nda allows When the top cushifon is loeked in its upward posi 'on it serves as support for the upper berth, which is arranged immediately under the top of the car,
supported in front by liorizontal projections, and fin the re ar by bolts, which lock into nosings provided at the upper end of guide grooves. When it is
desired to lower the upper berth, rear boltsare withdrawn, so that the rear arms. The berth assumes thereby an inclined position. Front bults are arms. The berth assumes thereby an inclined position. Front bults are
then withdrawn from pendent arms till the berth, swingivg on plyots, fs . same operation is reversed when placing the berth back in its old position,
the front and rear bolts locking by mere pressure by the action of their piral springs.
Improved Machine for Facing Cylinders. Imploved Machine for Facing Cylinders.
Thomas 1 . Henderson and Frank L. Mc Donaid, Omaha, Neb. -The ohject
of this invention is to provide means for facing the ends ui stean cylinders, and cyllnders for other purposes where steam or watertight joints
are required, and it consists in a cone which is rigidly fastened to a central hatt. Four arms pass through a projectng hange war he ton of to There is another cone through which the shaft passes, and to which it is
connected by a groove and a feather, buiceither the shaft nor the concs $\begin{aligned} & \text { re. }\end{aligned}$ volve. This cone forces the arms outward against the cylinder. The vuter The lowerend of the shaft arms bear at or nearthe ent of the criindier. a central position in the cylinder. On the top of the innercone is a nevel
 Which moves from and toward the center of the cylinder in grocres th thu.
arms. The feed screw works through the crosshead as through a nut andi When revolving it carries the crosshead and cutter over the end of the cyl-
inder. The frame is revolved by means of a spur gear wheel and pinion, the gear wheel being rigldy attached to the hub of the frame. and the pia.
ion being on the end of the crank shaft. As the crank is turned the frime ion being on the end of the crank shaft. As the crank is turned the frime
(carrying the cutter) is revolved around the shait, and at the same time

Improved Gate Fantener.
Joseph H. Nichols, La Fayette, Mlle.-This invention relates to the class gate fastenings so contrived that the gate closes under the catches, vers. A weighted eccentric lever is employcd, wi ich effictually rccures
the gate whlle it remains down; and only relcases it on betng liftell up. lmproved Subsoil (Gang Piow.
Christian Myers, Marysville, Cal., assignor to himself and Francis J. Schaeffer, Davenport. Iowa.-To make the plowshare detechable, it is pro-
duced in one piece with the point, and the latter is extended back to the duced in one plece with the point, and the latter is extended back to the
full length of the landside. A hook is welded to the lowers side of share lower side to offier less resistance to the earth. The rear part of point is provided with an oblong aperture which corresponds with a simplar cne of
the landside. The land side fsrecessed for the extension of point, and the under side of the plow is estended forward. and provided with an obleng
aperture, through which the hook is introduced. The sharc fe then carried to ward the landside till the hook closes firmly on the mider side and the driven through the holes, fastening thereby the ehare rigidly and etrongly to the supporting parts of the plow, allowing at the same time the ready
taking off;, sharpening, or replactug of the share.

Improved Ice Creeper.
Reginald H. Earle, St. John's, Newfoundland.-Upon the upper side of a narrow plate, which reaches across the sole of the boot and along its sitle edges, are formed grooves to recelve the side edges
the inner parts of which are halved, so as to overlap each producing any extra thickness. The inovements of the last mentioncel plates, as they are slipped out and the are limited by plins whith proje"t.
through short longttudinal slo:s. The outer cnds of the plater are
bent upward at right angles, and have spikes attached to them to cater the edges of the boot soles. A set screw passes up through the narrow
sole plate, so that fts forward end may press against the plates and hold them against the flanges that form the grooves in whtch the edges of the sald plates work. To the under side of the sole plate are attached short
spikes to take hold of the ice, and thus prevent the wearer from sllpping

Improved Water Wheel.

Mordeca F. Heylman, Oshkosh, Wis.-This invantion ennsists of a hor:zontal reaction wheel, receiving the water in the top and discharglng at the
periphery, for which purpose it has issues formed in parallel circles. In front of the latter, at a distance sultable beyond them, in order to allow the Water to freely enter the circle in which the issues are formed, is a clerve
or angular ehoulder, from four to siz times larger in area than the 1 esues, against which the reactionary force of the water is delivered, in a manar
colculated to.give the best results in respect of power.

58
 Business and extimat.

 $\underset{\text { with Light Brass Work, making Dies, use of Machinery }}{\text { Wand }}$ sc. A. P. Smith, Rock Falls, Whiteside Co., 111.1 H.P. Engine and Boiler complete. E Inventors and Patentees, send me your
names and addresses. Don't neglect it. Henry Connett,

For Inventors-Valuable information recently published.- Book of Instruction and Documents Plain directions and practical advice, showing how to Price 83. Send stamp cor cricular and table of contents. S. S. S. Mann
cor. Linden Λ ve. and Hortman St., Baltmore, Md. Dean's Steam Pumps, for all purposes; Ensines, Botiers, Iron and Woor Workng Machinery of
all deseriptions. W. L. Chase $\&$ Co., $33,95,97$ Lberty

Stove Patterns to order-Also, for sale For Sale-Steam Saw Mill, Foundry, Ma ings, sit uated st Marydell, Md. \& Del. R. R., Md. Pric Car Coupling Patentee. T. \& J. W. Meikle Kast Cambridge, Mass.

Wanted-Good, Cheap, 35 H.P.Tubular Boil Makers of Cultivator Wheels and Shovels Wanted-One 20. Horse Power Locomotive dimensions, age and where th can be seen. Address
 Parties man'f'ge Power Pipe Screwing and
Bolt Cutting Machines, send elrculars to L. Mr'g Co. Pulleys, Shafting, Couplings, Adjustable
Haugers, es. Send for price list to Tully $\&$ Wilde, 20 Platt Street, New York.
 on "Fermented cliquors," 83.12 per copy. Malled free b
Buy Gear's Wonderful Paneling Machine, Millstone Dressing Diamond MachinesStmple, effective, economical and durabile, , iving uni Nobody will buy the metal Truss with its
pitiliess Iron Finger. The New Elastic Truss, 633 Broad way, New York, hoold the rupture casy till cured. Pre Temples and Oil Cans. Geo. Draper \& Son, Wanted-A good Second hand Drop of me
dium size. Address P. O. Box 2 25s, New Haven, Comn. Abbe's Bolt Machines and Palmer's Power
Hammers aspectalty. s. C. Forsalth \& Co, Manches.

Daniel's Planer for sale, 2d hand. Planes For miv newly improved Portable Engine,
from 2 to 6 H. P., address L . Ge Sk'inner, Erie, Pa. (late Vertical Tubulir Boilers-All sizes. Send
for price list petore purchasing. Lovegrove \& Co., 121 South tth St., Pliliadel phit, Pa.
"Superior to to all orthers"- for all kinds of
work-Linet \& Co.'s Freuch Flles. They are better, forged, better cut, better tempered, and cheaper than
English flles. Send for Price.List. Homer Foot \& Co. ${ }^{20}$ Platt St., New York.
Price only three dollars-The Tom Thumb
Electric Telegraph Electric Teiegraph. A compact working Telegraph a electric lig it givilugurms and rerlous oher purpose Can be put in operation by any lad. Includes battery key nad wires. Neatly packed and sent to all parts of
the worid ou receipt of price. F. C. Beach \& Co.,260 Rues " LLitle Giant" Injectors, Cheapest
and Best Boller Feeder in the market. W. L. Cases $\&$ Co., $93,95,97$ Liberty Street, New York. Gnown's Maschinery Depot iness
L. \& J.W. Feuchtwanger, 55 Cedar St., N.Y L. \& J.W. Feucht twanger, 55 Cedar St., N.Y.
Importers and Manufacurers of Chemicals for Mechai

Protect your Buildings-Send for testimo
alals. N. Y. State Roodng have no connection with $\mathrm{N} . \mathrm{Y}$. Liquild Slate Roofng Co.

Drawings,Models,Machines-All kinds made
o order. Towle $\&$ Uncer Mr'k Co., 30 Cortlandt St., N. By touching different butons on the desk
of the manager, he can communicate with any person in the estabisthment without leaving his seat. The Minia shops, dwellings, etc. Price only 45 , with battery. etc Broduway, coruer Warren St., New Yorks. The sclentific

For the best Simall Portable Engine in mar
sct, address Peter Walrath, Chittenangu, N. Y.
 Mining, Wrecking, Pumping, Drainage, or Partice needing estimates for Machinery
of auy kill, call on, or address, w. L. Chase \& Co. $93,95,97$ Liberty Street, New York.
IIrn Stean Boxes for Stave Bolts \& Veneer
Cutting Jiachines. T. T . Balley \& Vail, Lockport, X. Y . Boult's Unrivaled Paneling, Variety Mold-
ag and Dovetailng Machine. Manufactured by Battle For Bolt Forping Macthinees, Bolt Holding
Hest to upset by hand. J. R. Abbe, Manchester, N.

Brown's 507 Mechanical Movements, price ave any inventor a hundred times its cost. This work
so valuable that the Royal Museum of Bruself
 Partners Wanted-We want to find one or
wo good caretul Managers who have capital, to buy an therest in 746 Acres Big Nuddy Coai, heavy Timber and Farm land, who shall superintend the Farming, a Saw
Mill and Coal Shaft. Safe investment. See "Iron Age" or Jan., 1874. Adaress Dobschutz \& Abena, Believine, 11 For Solid Emery Wheels and Machinery, For best Presses, Dies and Fruit Can Tools,
Bilise $\&$ Willame eor. of Plvmouth $\&$ Jay, Brooklyn N. \bar{S}. Hydraulic Presses and Jacks, new and secSteam Fire Engines,R.J.Gould,Newark,N.J. Peck's Patent Drop Prees. For circulars,
didrecs milo. Pects $\&$ Co.. New Haven. Conn Small Tools and Gear Wheels for Models. Brass Gear Wheels, formodels, \& \&c., made to
order, by D. Gllbert \& Son, 212 Chester St.. Phlla,, Pa. All Fruit-can Tools,Ferracute.Bridgeton,N.J. Lathes, Planers, Drills, Milling and Index For Solid. Wrought-iron Beame, etc., , Bee ad.
ertisement. Adrese or Ilthograph,etc.

R. A. C. is informed that the manufacture ormed that we have not heard of M. Lebarre's experlnents on hydrogen,-B,'s mathemattcal query is not in-
elligible to the keneral reader. What are the relative values of a and b ?-W. J. Will find full directions or the the
preparation of nitro.glycerin on p. 138, vol. 29.-P. will nd full explanation of the blisulphide engine on pp. 199,
 Ickel plating 1 s deecribed on p . 177 , vol. 5 . and p . 91 ,
 vol. 25.-H.M.P. 1 I Ifformed that the pressure result Ing
from the fall of a body has been full discused the from the fall of a body has been fully discused in these
columns and we do not propose to ore-open 1 It. - W. F. B.
w. will ind diricetions for tempering inleos on
and in the answer to F. W. H., on page 9 .
P. S. asks: How can I get rid
hich in feest the e plumage of my canaries?
A. Germin
Give the birds a bow ot water to bathe the
ally. Do not use very cold water.
J. A. H. says: I want to obtain a large quan-
Ity of pulverized metallic zinc, as fane as 1 t 1 spossible to make ti. Please sugest a sutable means of accomplish.
 Inc becomes very brittle at high temperatures, and can
 he power betng a 50 horse power engine at each end of
he tube, with an 8×4 feet cyllinder containing a fan, produce force at one end and buction at the other?
propose to use a fann:ng mill which admits alr at the sile, to obtatil the suction. If not one hundred milles,
lease state how far can do it. A . We do not know o any experiments that glive data for the conveyance of
air to such a distance. You will tind the subject treated W Weisbach's "Mechancs and Englineering"
A. G. asks: 1 . What is the best liquid for
dissolving India fuk for drawing? dissolving India iuk for drawing? 2. Would chlorine
bleach a drawing without injuring the ink? The paper 8 brown through excessive handling. A. 1. Water, or
water to which a little alcohol has been added. 2 . We would advise or olstenng the drawing and then exposing to the fumes of burning sulphur, and flanlly pasing
through pure water. Any treatment of this kind of
K. W. M. asks: In reference to your anumber should the wire for the respective helices be?
What number should the fron wire for the core be? What number should the ron wire for the core be ?
3. What acause the tron bar or revolve? 4 . Could not a or the glass tube? 5 . Could I make the hellces of com. mon copper wire by placing cotton cloth between each layer of wire? A. 1 and 2 . You can easilly fnd the num-
ber, whlch isa trade matter, and the cost, from a nardware deale.. The outside, hellx should e e made of the
noest copper wire you can mantpulate, and the tnterior one of ordinary thout wire. 3. The suceessive attrac.
tons of the interlor bar. 4. Yes. 5. Not so as to make and
an effective apparatus.
 ut 6 Inches water. Is there any form of a propeller that can be used with advantage in 6 tncheres water, and yet have power enough to drive a boat of that size four
or tive miles an hour? Her machinery ts to be worked hy hand. A. Possibly y
J. F. says: I have seen a clock, which ap-
pears to consist of a alass plate, 24×30 nches, three sixeenths thick, set on two wooden bases. There is a gas burner over thls glass phate and two the wires leading
from the gas plee to the wooden bases. There is nothng en the glass but the tho hands, one on each side of
the glase. How is tit action malntanined? A. We have seen a clock answering to thls general descriptlon, which
recelved 1 ts motlon from a weight 1 In the end of one of recelved tis motion from a weight in the end of one of
the hands, this welg ght beling moved by dell cate mechan. C. J. asks: 1. What is the usual width
and depto of the water in canals? 2 . 18 steam ever used to propel canal boats, and in what manner? 3 . Wha objection are there to the general use of the ordinary
propeller wheel, of a size to sult a canal boat? 4 . What is the e verage speed of a loaded canal boat drawn by two
horses? 5 . What horse power would it require to drive such a boat, loaded, at the same speet, with steam ap
plled to a proper aized propeller wheel? A. 1. The di depth, and from $5 C$ to 70 feet wide. 2 . Yes, both by tug and ang enines in the boass., 3. None that we know of,
axcept the excessive sllp usual with canal boats of the ordinary form. 4. One and a half milles an hour, we be
leve. 5. Probably from three to four times as much.
L. W. E. asks: What is carbolate of lime A. Carboiate of afse sa componund folmed bot the une
of carbolic actid and llme. Although not a powerfula cid carbolic actid combines with bases, as carbonct, sulphu
and nitric aclds do, forming salts called carbolates. W. P. asks: How can I color the wool on any of the ordinary dyes for wool. For blue, use Prus slan bue with a persait of fron or tin as a mordant. For
ree, use cochineal, madder, or logwood with a tin mordant. For yellow, use turmeric or annatto. splendit G. F.P. P. says: 1. What is the cost of Journal, page 351, vol. 29? 2. You say (In describlng Mr.
A. Ladiguln's A. Ladigutn's exhausted glass tube, In whitch he produce the llght that he makes use of but one carbon potnt.
Is the other terminal metallic, and 18 it near the carbon tip, as is the case when the usual two carbon potnts are ased? A. 1. We do not reply to quend Our descriptio perfectiy clear on this por n .
E. L. asks: 1 . How can I estimate the per
centage of acetic actid (approximately In agiven weigh
 Paris green? A. .1. You can estimate approximaturely, 1 ,
sufticlen core be used of the commercial acetate, add carefully a solution o oxallc acld untll a prectpitate ceases to be produced
Pour off the solutlon of acetic ze with a weighed amount of dry carbonate of soda, in powder, add ing by degrees unt11 effervescence ceases
Every $5+$ grains of dry carbonate of soda used are equiv alent to 51 grains of anhydrous acetic acld. It 18 neces
sary, of course t to welgh accurately the sample to be
tesed tested. k. It is used indirectly in th.
what k kown as Sca welnfurt green.
A. W. C. asks: How can I dissolve iodide or bromde of potasium in absolute alconol and con-
centrated sulp phuric ether mixed in equal proportions without using more water than just enough to dissolve at all? I can succeed in dissolving the salt in the alco
 solve 40 io grann of salt tin each ounce of the ether and
aicohol. A. If potash is the essential Ingredient desired aiconol. A. If potasis 1s the essentalal Ingredient desired
in solution, you might try other
bearitits of potasesum arring in mind the propertles pecullar to each particu-
W.R. S. asks: How can I make gold and silver tink, that can be used in a pen or a hand gtamp?
2. CCan I uee the Tom Thumb battery for learning tele
 gold powder with a Ittle gum water. The yellow blsul. gold. SilverInk tis made tin the same way, by using pow
A. L. MCC. asks: Is there any instrument chemical preparation which will enabe te to dis.
cover buried gold and silver?
A There
is no only chance of success 18 to keep digging.
A. R. asks. What metal expands most with
C. C.F. F. asks: How can I make variously
colored fres? A. Red ifre: Sulphur 1 part, sulphuret ot antimony 1 part, itter 1 part, drited nit rate or strontla 1 part, sulphur 2 parts, dry niter 6 parts. This is the Bengal lue 11 ght. Green fire $:$ Boracic acld 10 parts,
sulphur 17 parts, chlorate of potash 73 parts. Yellow Are: Sulphur 16 parts, dry carbonate of soda 23 parta chlorate of potash 61 parts. Violet flire: Charcoal8 parts
sulphur 10 parts, metallic copper 15 parts, chlorate of pot ash 30 parts. Orange frre : Sulphur 14 parts, chalk 34 parts chlorate of potash 52 parts. Purple fire: Lampblack. realgar and niter. of each 1 part, sulphur 2 parts, chlo
rate of potash 5 parts, fused n nltrate of strontia 16 parts. By parts are meant equivalent proportions, ouncee
pounde, etc. The different Ingreadents are to be sepa rately reduced to powder, ,lifted throunh lawn and kepp
in well corked wide mouthed bottles untli used. Car In well corked wide mouthed bottles untll used. Care
must be exerclised in handllng, especillly the chlorate must e exerchised in handillig, especimily the chiorate
of potash, when in contact with combustible materals paperwith a wooden stifrer with a light hand, avolding excessive friction. They should not be mixed long be
fore using, as they are apt to deteriorate by long keep. ing and even to tonfisme spontaneously. The nitrate of beling welghed, should be heated until thetr water crystallization 18 driven of and they fall to powder.
J. T. says: 1. Supposing we have two boil
ers, both connected with a steam chest. The steam Soth 18 to be at 40 ibs. pressure. If the eleam 18 admit
ted from one boller to the steam chest the pressure ted from one bonier to the steam chest, the pressure, o
eourse, will be 401 lbs . A friend of mine contends that 1 l the steam be now admitted from the other boller in ad
ditlon, it will ratise the pressure to 80 lbs. I, howeve
 pressure, by the addition of one or any indefnite num
ber of bollers. Who is right?
2. Supposing that the firs boller 18 amply large enough to drive a certatin engine
and the feed plpes, valves, etc., in proper mroportion, could the additlon of another bollerincrease the power?
3. I happened to state to the same party that a certain of 1,200 t 2 2,000 revolutions per minute. He thought that nothing could be made to stand such a speed. I say tha what is the greatest speed that has been attained by an No. 3. CIrcularsaws of 12 fnches diameter are fre S. B. asks: washing machine, can a nother make it himself and use IIght to do it without beling Hable to an action for in make or use a patented article for his private purpose without consent of the patentee.
E. C. O. asks: 1. Does such a thing exist $\times 6$ gives morellight than two windows 3×3. I claim that they are equal. Whtch 18 rlight . A. 1. See article
entitled "A APrefect Vacuum," on page 40, vol. 28. 2. S. S. asks: How can I make the best viole
ank thle alum or chiorde of tin. When the decoction o
H. W. M. asks: How can I drill holes in
late glase?
Answer: : Keep the cutting edges of your
J. F. A. asks how to make malt vinegar water, and ferment as in brewing. Put In barrels placed endars, and tie over the bunghole with canvas; keep
tn the dark in a well ventllated place, moderately warm. dilt take she acetous fermentation is complete; th wo arge casks, and put tin some green twifs or cutllnge
of grape vines. Fill one of the casks wholly, and let the grape vines. Fill one of the casks wholly, and let the
other be \approx full. The fermentation will recommence and eacetification proceed more rapldy in the last name As you consume It, replace the quantity drawu off wit ninegar from the other cask. If you make it on a larg
cale, you can use several palrs of casks in this manne D. C. says I have two boilers connected he frrst, in which the pressure ta 1001 lbs . I want 50 lo pressure in the second. The connecting pipe has an area
of one square Inch. How large a hole should I cut 10 th sosphere? Would the veloctity of steam through p plpe
mot of steam at 50 lbs . as powerful as one volume at 100 lbs . A. See article on "Efflux of Steam,", page 113, vol. 29.
Two volumes of steam at 50 lbs. pressure are more power , 1 of 100 lbs .
C. I. asks for a recipe for bronzing green.
Dissolve 2 ozs. nitrate of iron and 2 ozs. hyposulphite of soda in 1 pint water. Immerse the articles in the
pickle till the required shade is obtained; wash with ater, dry, and brush
C. C. asks: 1. Is there a salve that will
curecorns in a short time? 2. What is a good polishing wder for house use? A. 1. Take powdered verdigri rag. 2. For polishing plate, take jeweller's rouge so
A. J. C. says: I suffer very much from cold
eet; the soles seem to be the most affected. My woolen ockings get damp, but I hardly think it can be swea Aly remove yourdifficulty. J. A. L. asks: Is there any residual mag stance and necessarily heat, as in Wilde and Ladd's ma-
hine? The armature is retarded and heated by the
J. C. D. wants us to illustrate Siemens dustries such as sewing machines, the lathe We published an engraving of it a few weeks ago.
$\underset{\text { H. U. Says: I have been a subscriber to }}{\text { to }}$ find all sorts of questions answered through your
columns. Ihave agreen parrot, one of the yellow head d kind, with rea wigg butts. What is the best way each it to talk? . You might use the speaking chine to teach your parrot. Set the machine so that will repeat "how do you do," and keep it slowly run-
ing all day with the parrot in the same room. Next day set the machine on "good morning:", and so on, chang og the words dally. Yourparrot, if a good talker, would sin become well edncated. An enterprising person
mitht do good busing, we think, by opening an inst1-
tutionforthe instruction of parrots. $\&$ class of a hunthase of a hun ngle machine
T. C. asks: 1. How many species of moles watery caves, ey ound in Europe and A.1. The bealops known are condylura, in North Americs; chrysochloris, in Arrica; and urotrichus,
in Japan and North America. 2. Yes. 3. Yes, situated Japan and North America. 2. Yes. 3. Yes, situated
t the extremittes of the longer tentacles. 4. Fishes and
the da
W. H. S. asks: How can I remove stains onate of potash and whiting with bolling water, apply, and leave on for three days. Then wash off with soap
and water. To re-polish, use tripoil in water, and then
J. H. T. asks: 1. How is gunpowder made?
What is oll of rhodum? A. i. Take powdered saltpeter 75 parts, powdered willow charcoal 15 parts, sul-
phur 10 parts, mix well, add enough distilled water to make a paste, and grind till thoroughly incorporated. eave in a cake to dry; granulate and dry by a steam the wood of a species of rhodoriza, and is much used for mall scale is not likely to be successful.
W.T. V. asks: What kind of sizing can be
pplied to the surface of cloth to smooth the surface iffen the cloth, and at the same time render it water-
roof? A. Try the elastic varnish described on p. 282 proof?
vol. 29.
J. M. B. asks: Is there such a thing as an The British government has now tn operation a "d difference engine,", for facilitating calculations of avera-
W. R. asks: What proportions of bismuth,
lock tin, and lead are required to make blsmuth solder, for plumbers'joints on block tin pipe? How hot can I use the solder without melting the pipe? A. You can
make a solder of two parts, by weight, of lead and one part of tin, which melts at about 100° below the point fusion of tin
J. F. A. asks: How is heel ball made? A. black 4 ozs., lamp black 3 ozs., powdered gum arabic 2
ozz., powdered rock candy 2 ozz. Mix and, when partly
H. B. asks: How can I make sailors' clothng waterproof? Answer: There are various processes
for waterproofing cloth: 1 . Moisten the cloth on the rong side, first with a weak solution of isinglass, and
hendry with an infusion of nut galls. 2 . Moisten with a solution of soap, and another of alum. 3. A simple
method of rendering cloth waterproof without being rproor is to spreadit a smoonin surface and to rub he wrongside with a lump of beeswax (pure and free or grayish appearance. A hot fron is then passed over $i \mathrm{t}$; and the cl
s complete.
H. G. T. asks: Is there anything better and
friction wheels or brakes? A. We think not.
J. M.C. asks: What work gives the best
tnformation on the working and setting of sille valves so as to obtant the best results? A. Auchincloss on
"Link and Valve Motions." We have never seen the
"ther worle $\underset{\text { culty in tring his boiler with saw dust: Inave been firing }}{\text { F. A. M. . }}$ under boilers, very similar to yours, but not so large, in made. The chimney 1s sheet tron of 18 or 20 tiches dam. burning sawdust; ; but as the traft 18 very strong, it
buthe
 added, with about $1 /$ more grate surface than for wood;
and if the grate bars are cast in half cyllinders of 6 Inches diameter, full of $y / 2$ or slab, I th moderately, with now and then a plece of
 In construction (otherw wise than having more grate eur
facee) from ordinarily built furnaces, unless the sawdust 18 so wet and the draft so poor that it would be neces.
sary to use the wet tan furnace. 2 . You say in an 8 swer to a correspondent that the S shape of a plpe
between a steam governor and bofller tis to hold water 18 it absolutely necessary that it be bent at all? I see
that the gage will work when there is nothing but steam In the pipe; but have not had time to experiment on it. bly be very useful to many of our readers. 2. The ob-
ject of having water in the plpe is to prevent the heating of the spring of the gage, which 18 apt to become ti
M. H. says: I wish to place a fountain in can 1 be worked? A. Probaby your simplest plan will
be to have tank in an elevated position, such ns the P. \& B. say: In a worm wheel and worm, to be 30 inches diameter, with 4 tnches face and 1
tnen pitch. The tops of the teeth and bottom space are
te and made in this way, but we think $1 t$ impossible to make so large a one as this. What do you think? A. It derends L. C. D. asks: :- What do you mean by the
mean pressure in pounds per square inch, in calculatitng the power of steam engines? A. The steam pressure tn
the a cylinder ordinarly varies at difierent parts of the
stroke, and the mean pressure per square inch during
the etroke is the mean of all these various pressures. T. C. H. asks. 1. How can I explode four
blasting charges, placed 3 feet apart, at a depth of 12 feet, simultaneousty, usting either powder or dualln? 2. Wh1
you tive me a recloe for making and using dualin for blasting rock? 3 . How many tuns of gold and silver quartz will four stamperss crish per day of 10 hours? 4
Is copper found In any kind of grante rock? A. If you use powder, you must arrange the tratins or fusees so
that:they will all explode at the same time. If duallin
 from paper stock, saturated with nitrate of potassium,
and dried In u furnace, then ground and mixed with nitro-glycerln. 3. They are made of different sizes. By
writing to a manufacturer, you can obtain full informa. tion as to capactity. 4. We think not.
$\underset{\text { erly tempered? A. In }}{\text { F. Wow should files be prop- }}$ make some provision so that the delicate teeth shall not be tnjured by the heat. The following method is fre-
quently employed: The fles are covered with some stlcky substance, and drawn through common salt.
They are then heated, until the salt just begins to melt When they are plunged dito cold water. This 18 an op.
eration requirlng care and experience, as the flie tis apt to become bent t finall
rusting. asks: Do you know of a standard
work on windmills? Could I construct a small one to drive a circular saw about 14 nnches diameter? A. You
will fnd information on this subject in Falrbairn's "MMlls and Mill Work," Professor RankInes " steam EngIne and other Prime
EngIneering.
A. C. asks: What would be the value of a price for damonds, as they vary much in quallty. A
good diamond welghng one carat, will cost, perhaps wo hundred dollars; cne weighing two carats,from stix So elght huudred dollars; three caratt a bout one thou
sand dollarrs. We recenty sam a very beautful dua da. at ten thousand dollars.
J. A. A. asks: How much engine power
shail I require for a boat 28
feet long, 7 feet
wide, to draw about 2 feet of water? I want to run 1 tat 12 miles
per hour. A. Probably from 25 to 3 horse power. J. T. C. asks: What are the advantages or
disadrantages connected with the use of superneated disadrantages connected with the use of superheated
steamm? A. Narly any standard work on the stean en.
s.and gine treats of the subject. We could not
matter intelligibily in this limited space.
J. R. asks: What would be a perpetual
motion? Some say tit is a machine that runs for ever
 of the term, is a contrivance that contains its motive
power within titelf. For instance, if a lathe, that was formerly driven by an engine, should sudden!y start up
without any assistance and continue to move, that J. B. B. asks: 1 . What are the objections
using hydrozen, with or without oxygen, as a a substi tute for coal gis for 111 uminating purposes? 2 . Does the
gas produced hy the decomposition of water by meana of magneto-electricty contatia an approximate equiva
tent of the power expended in producing it, in in light, oo not know of any objection to its use in connection witt
oxygen. Used by itself, It lacks 1 lluminating power.
W. L. B. asks: What will be the force be be
square tinch upona water pite when the moticn of the square inch upon a water pipe when the motiten of th
water is instantly stopped, hhe pipe belng horizootal),
feet feet long and 2 feet tin dlameter. and filled with water under: a presure of 50 pounds par square inch, moving
at the rate of 2 feet per second? of the shock, if the water is instantly stopped. In pound
per square inch? A. Dise inarding frictoon the shock a the bottom of the pipe will be the eame as that given by
a trip hammer moving with the same veloctty, and hav Ing a weight equal to the welfght of water in the tube
plua the weight due to the additional pressure of the
C. O. says: A friend has a mining opera-
Hon in his control, which 18 now run by a twelve horse
 200 feet. He ts golng to sink the shaft 100 feet, making he total depth 300 feet. In discussing the feasinity laimed by one of us that the extra work to be performed by the eagine 18 merely the welght of the extra 100 feet
of wire rope attached to the ore bucket and the extra welght of ralsing the 100 feet of water tn the plpes, and that the engine eould not feel any greater stratn on its
tilty to do the work than tit has a present ablity to do the work than it has at present. The other
party claims that if it takes 12 horse power to ralse 600 party claims that aft takes 12 horse e ower to rase 600
lbs. ore 200 feet, and to pump 200 feet water up through 20 feet of plpe, it will necessarill take 50 per cent more, or 18 horse power, to ralse 6001 108. of ore 300 feet, and to to
pump the water 50 feet. It was agreed to submit tit to
 his question. ifts per cent more work to to be done ti he same time, It will take 50 per cent more po wer, but If the work 1 st to be ticreases 50 per cent, and the time
Is increased in the same proportion, the original power 18 increased
will sumflce.
J.T asks: 1. What is the best packing for
a piston rod? The engine runs 120 revolutions per min ute. What makesa gafety valve hang or stick, and
prevents it blowing off?
It is set to blow of at 100 lbs.,
 roma rellablemanufacturer will work satisfactorily. 2. From your statement, it would appear that the welgh
is not properly ad dusted, since by rasing the valve a 1 it ne, you Increase the area upon which the steam acts.
S. F. H. says: It is said that the same
 J. S. Pr asks: How can I season staves in a for seasonting timber rapidy, acting either on the principle of remorling the sap, or forctng in some chemical
that will coagulate the albumen. Creosote is used in
th J. E. B. asks: 1. Is it practicable to use the brass and steel. by means of a tool set perpendiculariy
to the bed of the lathe? All motlons of the lathe are siven directly by hand. 2. Would such occasional use
be apt to overstran
 njure the slide rest.
 stone. 1. Do you think the engline lis large enough for
the work? How many revolutions should it make per minute, and how heavy a pressure of steam will it re
aure to do the work? 2. I have a boller 10×20 inche with cast fron heads $\%$ inch thick, the shell betng three
sixteenths inch thick. I do not think it 1 is large enough to run the engine, and the maker says that it would bo
unsafe to put tubes into the cast adrise me what to do under the crrcumstances? A. 1
 minute. 2. Probably yo
W. B. L. - To provide yourself with a min welght and length to gult your hand. They areall allike and are of no value.
C. M. asks: 1 . What is the difference be
tween chlorlde of ilime and chloride of calclum? 2. What 1. the difference between washlng or soda and and the woda
used formatig sode used for making soda powders? 3. What ts Spantsh pep
per? 4. How tis gun cotton exploded? 5 . What are the propith consodion? 6 . How is blnoxide of manganes
making coll procured Z. How can I make phosphide of calctum? A. 1. Chlorlde of lime is a misnomer. It consists of a
mixture of hypochlorite of lime, ehloride of calctum and water. Chloride of calctum 18 a comblnation of chlorine
and calctum only, without the hypochlortie of lime which glves to chloride of llme or bleachng powder lts pecullar properties. 2. Washnng soda 18 a mon ocarbon-
ate of of oda, ocotatinng but one equivalent of of carbontc acid, wile the other, called
twlce as much carbonic acld. 3. You probably mea Malegegeta pepper, a name sometimes given to " "granns
of Paradse" or Gulinea gralns. 4. Gun cotton will ex. plode at a heat of 3000 . 5 . Pyroxylin and rectited alco
hol of tach 1 part, rectiled ether 19 parts 6 . It Lol of each 1 part, rectifed ether 19 parts. 6. If 18 an
abundant mineral producton. and ta 1 ground tor use. 7. By passing the e aporo of phosphorus over amall rrag.
ments of lime, heated to redness in a porcelain tube. T. D. McC. says: On page 385 of volume
29, you give a rectpe for a fertlizer. How much should be applived per acre for potatoes ; and how is it to to be used, In the
amount depends on the condition of your soll. Try small quantity and ticrease as needed.
A. P. asks: 1 . In the case of a book, what
18 protected by a copyright, the title or the whoie mass of literary matter? 2. Must a book be completed as to printing, binding, etc., before ebeng entered for oppy
right? ${ }^{3}$. What are the conditions on whilich copyright protection 1 is accorded to forelgers resident in the
Untited States? A. 1. Copyright protects the printed matter as a whole. 2. No; only the title must be spec-
ifed. 3 . Authors of books, reesident in the United States, an obtain copyright protection on the same condtition citizens.
A. R. M. says that O. S., who enquired how ully the plans and modifcation recommended by rattar fin his work on ventllation. Proper heating 18 Insep.
arably connected with proper ventilation. The " one should epe should be constructed so as to tom thoduce the supply of heated air into the tops of adjacent rooms, whine at the by means of open fre places (low down) Into chimnes or Into a foul airduct running under the floors and leading to a common chlmney. By chis method an ample a unform temperature maintalined. This plan has of ate beenverygeneraily adopted In the West in new pub
Hic and private bulldinge, and with most satisfactory re. sults, both in an economical and sanative point of view.

J. R. S. asks: What is the best way to to
smooth out engravings that have become wrinkied by he other way and then submit them to pressure.
W. W. says: I see you recommend your uerists to use plaster of Paris for attaching the giasse I have used melted alum for this purpose. I put a plece of alum on to a fire shovel, lay the shovel on the fre till
the alum 18 melted, and then apply with a thin plece of the alum ts melted, and then apply with a thin plece of
wood. It hardens in a few minutes and is far better
G. writes to soy that he has built several
steam boats, and now owns one, which he constders to be nearer perfection than any he has yet seen. A de-
scription of it may answer the needs of some of our correspondents. She is built with double hull, or rather two half hulls, placed 3 feet apart and decked entirely
over the space between the hulls, as well as over the nulls, on $\begin{gathered}\text { nhich } \\ \text { are eseats } \\ \text { and } a \text { a ralling around the entitre }\end{gathered}$ hulls, towards the stern. The boat is very light an strong. The hulls are well fastened together, two Inch
beams running across both hulls, which are 35 feet lon and of 3 feet beam. She ts driven by a belt from a cal orlc engine, costng twenty cents per day to run It , and
a boyi2 years old can fire up and run her. She carries,
 desirable quallt
perfect safety.
 the bottom of the cyllinder, passing thence down 20 feet
below into water) be filled with steam and suddenly How many cubtc Inches of water at 600 are required to
 a man covers an tivention with a caveat and then manu.
factures and sells. and finds that he has a good thing, and
 ented: Can the frst party come down on the second
party as soon as the patent tis issued? 4 . Can the tirs party claim that the second party infringed upon his
rights, prorto the date of the patent? 5. Are small cast steel castings as strong and durable as wrought be completely $1 l l e d$. . . Atleast seven. 3 . We think oo
4. J. W. says I I am running two old boilers,
and the stame from them enters tnto a botler steam dome by means of 2 pipes. 1 . I generally run them at 50
 my employer tells me there 18 onl5 25 1bs. on each boiler because pipes from bofler to steam dome are douge er
area of steam plpe. Is he right? If a gage we placed on each boller, would it not tndteate 50 1bs.?
How would you fix 2 bollers soo that the gage would indicate double the pressure on each boilier? 3. Whea my engine makes 100 revolutions per minute, with 2 feet
stroke and 50 lbs. presesure, with no cut-of, how muct Water does she use, the cylinder belng 10 inches diame dicate double the pressure by having a weak spring or by graduating it wrongly. 3. If the cylinder is 10 inches
 1bs. Hence, in each stroke, the engine uses about 1 .09 $\times 2 \times 0 \cdot 15697=0,1851$ bs. of water. This calculation does
not take tito account the steam required to fllt the clearnot take Into account the steam required to fill the clear-
ncee spaces, and the loses from leakage, radiation and
M. says: In an inclined tunnel a full truck Sometimes the chain, which is attached to the whim and araws up the full truck, breaks, and consequently the
ruck dashes back and strikes againat atick of timber r some other obstacle underground. How can the loadWhen the chatn breaks? A. By having a stop arranged which will come into play when the chati breake.
C. A. W. Aasks: How can I melt vulcanized
rubber without Injuring its qualtites?
A. This nave to be a matter of experiment. The vulcanizedrub.
per can be exposed to heat in a suitable vessel without acees8 of alr. A safety tube should be attached to allow peration.
M. J. S. asks: 1. What is the proportion of battery? 2 , what are the tngredients of hatr dye? Is It injurlous to the head? 3 . There 1 s a powder, sold un-
der the name of kerosene oil rectifer, which 18 said to prevent the lamp from exploding or the chimney from

 | coating ts produced. 2. The numerous preparation |
| :--- | sild as halr dye have generally a basis of enad or silver.

Blsmuth, pyrogallic actld and certant astringent vegetapled, we have never heard that they are particulariy tin. jurious to the halr. 3. Do not trust any powder sold
for the purpose of rendering impure kerosene Inexplo-
 The only way to prevent lamp chlmneys from breaking
from heat 18 to see that they are properly annealed. This can be hene by placing the chimey in cold water, which 18 to be gradually brought to the bollling potnt and then
slowly allowed to cool, when the chimney 18 removed. C. C. A. asks: 1 . Are nickel five cent picces
specie?
2. Does the governmentissue the old fashloned
 L. F. . asks: Are eye stones alive or not,
My oponent claims that they are, because seme will move while others will not, and I claim that they candergo, belive, for the reason the open air and corked in alrIght vessels, 18 in oppostiton to every law of animate creation. The particular ones under discussion have
been kept corked up in glase bottles for over thirty years. A. Eye stones are simply bits of smooth peb-
bles, and whe about by the tinvoluntary motione, of the eyeball. Any specks in the eye stck to the stone when they come tn
contact with it. There ts no more life in the eye stone
C. W. H. asks : haust pipe be made of alternate olonts of charcoal fron and common fron will the charcool last longer than the
common iron? If so, why? A. Probably the charcoe

X asks: How can I make a spectroscope
have a double convex lens, a tilint glase prism, and aid Will the lens and telescope answer? If so, how shall I rrange them
 4p the subje
"Phystcs."
D. N. B. asks: Is there a small water wheel
pullt to use a 1 llttle as 8 gallon water per minute? A. O. C. H. asks: How can I gild letters on eral succesisive coats of size thick ened with finely powo let each coat become dry, and rub it mmooth with fine lass paper before applying the next. Then go over
ininly and evenly with gold size and apply the gold leaf, urnishng with an agate. Several coats of leaf will be
W. W. asks: When were the first iron ves-
sels bultt?
A. The first tron vessels were three steamers, bull for the trade bet ween Luve
by Mr. Willam Falrbalrn, in 1830 -31.
J. A. V. says, in reply to several correspond-
ents who have asked about echoes in bulldings: It has seen mentioned In the ScisNTIFIC Ayrrican that echoes
n rooms were prevented in England by strectenng wires cross the room, 6 inches apart. our judiclary tried it in the county court rooun, but failed, as the distance
between wires was at least $\&$ feet. It is very probable hat, at 6 inches and in a horizontal zone, as you sugset, the vibration of the wire will stop the reverber.
ation from the celling; but it will not prevent the horl. zontal reflection agalnst side walls and the surfaces op-
posite and to the rear of the pulpt. The remedy in this case is to ralse the seats gradually as in the parquets of theaters, and have the rear seat at least as high as the
nouth of the speaker. A simple remedy, for a plain meettng room, is to canvas the walls and cellings on half
inch strips of wood, and paper them in timtation of covered with shades or oplinds.
 tudy lanp will be that burned particlese of wick adhere nd the one which is nd the one which 18 ninide the wick. These particles
lame up and go out with great rapldity and often make the elight useless. The rims must be cleaned trequently.
Another reason is that sometimes the waste ofl fills up the cup at the bottom, cutting of the supply of air.
Good chimney, clean lamp, and evenly trimmed wick w1ll J. H. P. says that J. F. W., who asked how
ostralghten vulcante gquares, should warm them carefully and place them between two perfectly smooth sur-
faces, applylig constderable pressure, and leave them til cold.
rue also.
C. H. H. says that J. K. W. W. Who has diff-
culty in using sawdust as fuel, should build his turnace fter the following plan: Space for cold air to enter each iurnace, 20×28 t inehes. Space bet ween boliers and bridge
wall, 10 inches. Size of smoke stack for each bofler, 22 nches x arled. Do no
J. B. says, in reply to C. R., who asked as Such a race took place the morning after the first Atlan. tic cable parted. The acclent occurred about 3 A . M. .
a little after sumrise. "we all started back to England st 12 M . we could just see the Agamemnon's topsail yard
Minerals, etc.-Specimens have been received irom the following correspondents, and examined with the results stated
ulphide of ion; of no value unless found 111 large quan titles. Pyrtes is so called from a Greek word meaning
Are, because tit will strike fre with steel C. R.-This mineral 1 a a mixture of $t w$

促
 cation and accessiblity.
O. D. asks: What is the doubleroyalcubit of
he Temple of Karnak?
T. G. asks: Can you inform me ow the chocolate colored stain is produced on Swis wood ornaments?-E. L. A. asks : How can I reduce will look like ivory? -A. R. asks : Is there anything tha will make cotton goods take dye as readlly as sllk and
wool do ?-J. A.F. asks: How can I whiten plano keys?

COMMUNICATIONS RECEIVED

The Editor of the Scientific American acknowledges, with much pleasure, the re ceipt of original papers and contributions pon the following subjects
On a Sore Throat Remedy. By S. C. E.
On Mysterious Rappings. By A. F. C. On Ignition by Compressed Air. By C.C.A. On Red Ants. By A. S.
On Ventilating the Senate House. By W. McK

On Animal Electricity and Magnetism. By J. H.

On Friction Gears. By B. N. O
Also enquiries from the following
A. C-T. G. V.-T. B. W.-T. W.-W. M. D.-J. C. C.-
T.-N.L.-H. H. T.-J. M.-O. R.-G. W. K.-W. H.-
J. H.C.-J. M.F.-C. S. N.-C. H.-G. W.M. Correspondents in different parts of the country ask Who makes metal mall boxes, to put on gate posts, etc.?
Where can pin-making machines be obtained ? Who makes the cheapest and most durable local telegraph battery? Where can I obtain a a mall printing press for
amateur use? Who makes machinery for blocking tin and galvanized fron, for cornices and other ornamenta
work? Makers of the above articles will probably pro mote theirinterests by advertising, in reply, in the ScIEN tific American.
Correspondents who write to ask the address of certain
manufacturers, or where specifled articles are to be ha also those having goods for sale, or who want to ind
ind partners, should send with their communications an
amount sumflent to cover the cost of publication unde the head of "Business and Personal" which is specially
devoted to such enquiries.

[OFFICIAL.] Index of Inventions

Letters Patent of the United States December 23, 1873, r Mhose marked (r) are relssued patenta.] Alarm, burglar. F. W. Blakemore Alarn, till, J. F. Baldiwin..
Alarm, till.:. O. Wood....

 Bracelet fastenngs, S. Cottle.
Briule or hor horixes, J. Multer Burner, r.tuse, v. Glue.........................

 Cord. michue for masing, D. Otts....
Cores, device for forming, H. Parker.
 Cuntiv stor, A. A. Copler
Cutitivar. A Ronden.
Curry comb,

 Ensine, triple cy tuder, P. Brotherhood. Fi, ther ring ovator, J. . . Schootler.......
Fell for wether strips, etc., F. Slerlug.
 Hecectre, wathinh Chipley..... Furnace for solderhat ran, J. Burges ame apparatus, I. X. Sawkins
 rain tor tour peptinz o. F. Cook Griter. nutwes, T. Marrivt. Ioistlag machtue, J. Daring. Honp skirt, w. Co
Hose c uplung. J.
Inul, satp $₫$, E. C. Belequic

Key hole gaura, w. W. Halli,
Latder. firenan's ext cuslon, G. W. Harri
Ladder and rountug board, II. H. Kendric Laddsr, bench, and clothes irame. H. H. Barker Lamp extinguisher, F. Hille...... etter clip aud paper blnder, G. W. McGil Lightning rod, ,. Drew....................... oom pichir. O. A. Saws
Loom shuttle gu ird, F. M. Stevens....
oom shuttle relicf, F . C. Macomber
oom shuttle relicr, IT. C. Macomber
hort ithas compound, J.B. Norris...
Lethas compound, Pawlewski \& Schulz.
Mirror, hand, J. F. D Dhan....
Miter machine, T. Pooles.......
Molding apparatus, W. C. Amis
Mording machine, N. Jeuking...
Moiding machine, N. Jeukins....

Vall delivering machine, S. S. Pu
Nail driving machine, A. Smith. Null separating device, H. B. Chess.
Nipper for twisting wire, J. W. Fry Paddle wheel, A.C. Fletcher.... Padlock, F. Egge.
Padlock, combinat
Padlock, combination, w.
Paint, D. R. Averill, (r). Paint, D. R. Averill, (r).....
Pan, dust, O. C. Forsyth, Jr Paper weight and sponge holder, D. R. Manning.
Peg cutter, C. H. Bacon. Peg cutter, C. H. Bacon
Pegging machine, G. L.
Pen wiper, H. S. Ball...
Pessars, C. E. Flack
Plano truck, F. B. McGregor.
Plauo and organ attachment, L. J. J. Fremaux
Pickets, machine tor shap Pickets, machine tor shaping,
Pie marker, T. S. Macomber Pie marber, f. S. Macombecs, etc., carrying,
Planter, corn, J. S. Davis. Plow, J. L. Graham. Power, transferring, E. B. Clark. Printer's furniture, H. A. Hemple.
printing press feed Printing press feed ga
Pump,.J.J. Walton..
Punp, E.C.C. Wharton
Pump cy quicksilver, M. P. Bов
Pump, steam, B. .S. Lawson.....
Rallway crossing, J. Brahn.
Ruke, horse, C. Edgar.
Rake, horse hay, B. J. J.
Razor strop, J. B. Lucas.......
Refrigerator, A. J. \&J. Fink
Refrigerator, A. J. © J.
Respirator, B. W. Janes.... Rigging, tar leader ior shlp
Rigging stopper, T. G. Bell...
Roadways, Roadways, etc., removing snow, M. C. (r)
Roadways, etc., removing snow, C. (E . Waterbury Rod, connecting, T. T. Prosser.
Rud, connectiug, W. L. switrer Safe, tireproof. Sontag \& Lotz..
Sash cord gulde, W.
Saw set, R. F. Cook.
Screw threads, forming, Neuber \&
crubbing machine. W,
scrubbing machine. W. J. Gard
Sewing machine, C. H. Palmer.
Sewing machine, T.
Sewing stand, Fling \& Land.
shoe fastening, s. Babbitt.
Sleve, G. Wright
Skate, J. Forbes, (r)
Skate, roller W. P
Skalight, G. Hayes, (r).
Sofa, charr, etc., A. S. Newhous
Spading machine, J. G. Jones.
pinning ring, W. Jenckes (r
Square, try, L. Bailes..............
Stalbs, apparatus for
StIrup, A. J. Herrin
Stove, heating, I. G. Macfarlane
Tack puller, C. W. Blakeslee...........
Tanlow.etc., bleaching, J. R. . Brown..
Tool, Baker, Doney, \& O
Toy gun, Mills \& Wolfe.
Toy money box, J. Hall
Toy pistol or gun, G. S. Hasting
Trap, fly, G. W. Eichholtz.......
Trap, ny, G. W. Eichholtz
Umbrella, G. G. Griswold
Umbrella, , C. Sawye
Umbrella,
Valve, G.R. Crane
Valve, safety, Jordan \& I
Vehicle wheel, D. Brown.
V
Ventilating car windows, C. B. Knevals.
Ventilator, car, M. T. Hitchcock Ventliator, rallroad car, J. U. Simmons.
Wagons, unloading corn from, T. Barro Wagons, unloading cor
Washer, ore, S. Whecler........... Washling machine, M. L. Hawks Water meter, diaphragm, D. B. Spooner.
Water wheel, J. Kunkle. Weather guard, J. Pease
Weather strip, o. Vorcee
Whiffletree, H. Agar
Whip sockets, clamping, E. Chamberlin (r)
Whlp sockets clampin, Wulp sockets, clamping, E. Chamberlin ($)$ Whip sockets, clamping,
Windlass, W. H. Harfleld
Windmill, Cro
Windmill regulator, D. C. Whindow bind slat operator, E. C. Byam
Windo w guard, J. W. White Wind wheel, Brand et al
Wire, nippers for twisting, J. W. Fry.
Wood to imitate slate, J. O. Froshaug
APPLICATIONS FOR EXTENSIONS. Applications have been duly fled, and are now pending ings upon the respective applications are appointed for the days beretnafter mentioned
27,603.-Wringing Machine -S. A. Bailey. March 11.
27,620 .-Sewing Machine Stitch.-J. Davis. March 11 . 27,631-Tousco Screw - N. Hoag et al. March 11 27,6:1.1-Plow.-G. W. Hunt. March 11.

EXTENSIONS GRANTED
26,58:-Harvester.-J, Gore
26,58t.-Planing Curved Strfaces.
26,599.-Horsk Hay Rake.-S. Lebsig.
26,614-Porous W Re_-B. S. Pierce et
DISCLAIMERS.
26,582.-Harvester.-J. Gor
DESIGNS PATENTED.
7,068.-Knob Rose and Escutcheon.-W.Gorman, New
Britain. Conn.
7.069 \& 7,0iO.-Canisters.-S. A. Ilsley, Brooklyn, N. Y.
7.071.-Harnksa Trimuinas.-R. Hoyer, New York city 7,072 to 7,074 .-Printing Types.-W. H. Page, Nor
wich 7,075.-Drawer Pull.-A.Shepard, Southington, Conn 7,076.-Lock Case.-L. Widmayer, New Britain, C
TRADE MARKS REGISTERED.
1,578 to 1,580.-Hats.-O.Benedict \& Co., Bethel, Conn.
$1,581 .-$ Frrtilizer. - Loretzet al., Baltimore, Md.

1,552 \& 1,583.-Explobive Compounds.-Giant Powde Co. et al., San Francisco, Cal. 1,584.-Motto Papers.-T. Van Skeline, Brooklyn, N.Y 1,585.-Aniline Dyes.-Wells \& Co., Burlington, Vt. 1,586._Soar.-J. Eavenson \& Sons, Philadelphia, rau. 1,587.-Liniment.-W. Kidder, Goffstown, N.H.

Practical Hints to Inventurs.

5
$\underset{\text { of money briug investment of a small sum }}{\text { ROBA }}$ of money brings a greater return than the
expense incurred in obtaining a patent, eve when the mvention is but a small one. Large
inventions are found to pay correspondiugls well. The names of Blanchard, Morse, Bige and others, who have amassed immense for tunes from their inventions, are well known.
And there are thousands of others who have tealized large sums from thetr patents. themselves of the services of Muve \& Co. during the Publishers of the Scientific American. They stand at the head in this class of business ; and their large corp of assistants, mostly selected from the ranks of the Patent Oflice: men capable of renderfng the best service
to the inventor. from the expertence pracucally obtained to the faventor, from the experience pracucally obtained
while examinersin the Patent oflle: : enables MuNN \& co. o do everything appertaining to patents better
and coin OBTATN RATENTS closing in-
quiry quiry
nearly eve
offlce. A positive answer can only be had by presenting a complete application for a patent to the Commissioner
of Patents. Al, application consists of a Model, Drawings, Petition, Oath, and full Specification. Variou efforts of the inventor to do all thls business himself generally without success. After great perplexity and delay, he is usually glad to seek the aid of persons expe-
rienced in patent husiness, and hare all the work done over again. The best plan is to solicit proper advice at he beginning. If the partles consulted are honorable they will advise whether the improvement is probably patentable, and will give him all the directions needful

How Can I Best Secure My Invention? This is an inquiry which one inveutor naturally asks
another, who has had some experience in obtaining patents. His answer generally 18 as follows, and correct:
Construct a neat model, not over a foot in any dimenaddressed to MUNN\& Co., 37 Park how, together with a thereot, they will examine the invention carefully, and advise you as to its patentability, free of charge. Or, if
you have not time, or the means at hand, to construct a model, make as good a pen and ink sketch of the imto the prospect of a patent will be recelved, usually, by
return of mail. It is sometimes best to have a searcb made at the Patent oflice : such a measure often save

Preliminarv Examination.

In order to have such search, make out a written de
scription of the invention in scription of the invention, in your own words, and a
pencil, or pen and ink, sketch. Send these, with the fee of $\$ 5$, by maill, addressed to MUNN \& Co., 37 Park Row, thereof, followed by a written report in regard to the patentability of your improvement. This spectal search
is made with great care, among the models and patents

To Make an Application for a Paten

 The applicant for a patent should furnish a model of it may be dispensed with; or, if the invention be a chem ical production, he must furnish samples of the ingred ents of which his composition consists. These should and sent by express, prepaid. Small models, from the tance, can otten be sent cheaper by mall, from a dis way to remit money is by a draft, or postal order, onNew York, payable to the order of MuNN \& Co. Persons Who live in remote parts of the country can usually pur

Foreign Patents.

The population of Great Britain is $31,000,000$; of France $40,000,000$ and Rusela, 70,000,000. Patent may be securea American citizens in all of these countries. Now is the time. When bustness is dullat home, to take advantage of these immense forelgn filas. Mechanical improvements of all kinds are always in demand in Europe. There will
never be a better time than the present to take pateats abroad. We have rellable business connections with the princlpal capitals of Europe. A large share of all the obtained through our Agency. Address MUNN \& Co., 37 Park Row, New York. CIrculars with full information
on foretgn patents,

Persons det Caveats.

prepared in the shortest time, by sending a sketch and description of the invention. The Government fee for
tions for patents and careats is furnished gratis, on ap.
plication by mail. Address MUNN $\&$ Co. 37 Park Row,
Value of Extended Patents.
Did patentees realize the fact that their inventions are likely to be more productive of proftt during the seven
years of extension than the first full term for whith their patents were granted, we think more would avall them-
selves of the extension privillege. Patents granted prior selves of the extension privilege. Patents granted prior
to 1851 may be extended for seren years, for the beneint of the inventor, or of his heirs in case of the decease or
fomer, by due application to the Patent ontice, ninety dass beforce the terminination of tie patent. The extimated
time incres to the benefit of the finventor, the assinnees under the first term having no, riphts under the extension except by spectal agrement. The (ibverument fee for
an extension is $w 100$, and it is neressary that good profes-
slonal service be obtanie to conduct the bustucss before slonal servite be obtane a to conluc the bustuess before
the Patent oftice. Full information ar. to extensions

Trademarke.

Any person or frm domictied in ine United Satces, or where sinuilar privileges are extended to citizens of the Untted States, may refister their designs and obtaln protection. This is very fmportaut to manufacturers in this
country, and equally so to furelgners. For full particu-

Foreign designers and manufacturere, who send goode patterns, and thus prevent other, from fabrlcating or elling the same goods in thls market. or a manufacture, but, atatue, alto relievo, or bas: et any newand original design tor the prinung of woolen ression, srnament, nattern, print, or pitcure, to be into any article of mauufacture. Design patents are equally as important to citizens as
to foreigners. For full particulars send for pamphlet Huxis \& Co. 3 Park Row, New Yurk.
Copies of Patents.
her $26,186 \overline{\mathrm{c}}$, can be supplied with ofticlal copies at a reas onable cost, the price depending
Any patent issued since November ${ }^{2}$, 1s6T, at which Ame the Pateut Ollice commenced mintiag the drawings
and specffcations, may be had by renitting to this ot. ice $\$ 1$. A copy of the clams
will be furnished for $\$ 1$.
reme for the same as above. and state name or patentee. title of Invention.and
date of patent. Address N1t Ny \& Co.patent Solicitors Muny \& Co. will be happy to see inventorsin person at their ottice, or to advise them by letter. In all cases
they may expect an honest opinion. For such consulta. hey may expect an honest opinion. For such consulta-
Hons, opintons, and advice, no charge is made plafn; do not use pencll or pale fnk; be bricf
All ; do not use pencli or pale ink; be brier.
All consiness conmmitted to our care, and all consulta -
In all matters pertaining to patents. such as conductirg Intcrierences, procuring extensions, drawing assign-
ments, examinations Into the valitity of pate nts, etc.
spectalcare and attention is Or pamphlets or instruction aud advice
Address

Ublis 37 ark
OFFICE IN WASHINGTON-Corner F and ${ }^{\text {gith }}$

HOW TO OBTAIN

Patents and Careats atas.

P

TENTS are now granted to inventors in Canada. without distluction as to the nationUnted States. The applicant is required to fur nivh a model, with specitication and drawings in duphi-

cate. It is also necessary for him to sign aud math affidavit to the origiuality of the invention.
The total expense, in ordinary cases, to apply for:
Canadian patent, is sis, E . S. currency. This incluace the government fees for the tirst tive years, and also our
(Munn \& Co.'s) clargen ior preparing drawings. speciff. ations and papers, and attending to the entire businest. the patent, each for tive years, making fifteer yeary
in all. all the rights of the livent
ay convenient scale. The dimendions of the mode should not exceed twelve fiche-
samples of the comportion,
Persons who desire to apply for patents in Canada ar requested to send to us Muns \& Co.). oy express.
model with a description, Ho their own language, show. ing the merits and operation of the invention, remitting
also the fees as above for such termior the pateni in they may elect. We will then mnediatey prepare the applicant for his exammation, slgmature, and affidavit pletion of the papers, to obtala the decision of the Cana dian Patent Office. Remit the fees by check, draft, or
Postal order. Do not send the money in the box with Yostal order.
model. Give your name in fult, middyle namie fincluded
Inventions that have already been patented in the United states for not more than one year may aleo be On filing an applic
Commissioner causes an examination as to the novelty and utility of the invention. If found lisking in either Wich case no portion of the fees paid will be returne: to the applicant.
Inventors may temporarily secure their improve
ments in Canada by flling cureats; expens; thereof, ssi in full.
For further information about Canadian patents, as-

FOR PRACTICAL MEN.

WATSON'S

 Practice of Machinists \& Engineers.

FAIRBAIRN'S PRINCIPLES OF MECHANSMM. The Principles of Mechanism and Machinery

 be 82.50
 HENRY CAREY BAIRD, 406 WALNUT STREET, Philadelph

Thr Connirecal Aeriner

McKILLOP \& SPRAGUE CO.
109 \& 111 Worth St.
and State Banks. Name and Address of every Private Banker.
A Complete List of all the Manufacturing and Business Men in every Town and Village in the United States and British Provinces, with Numerals giving credit and capital in each case.
\qquad This Agency was the first to undertake the reporting oldest in existence. This gives a decided advantage, Which it maintains through numerous Assoclater and
Branch Oftices-by systematic use of inteligent traveiIng Agents, and by the employment of over 7,000 local
resident correspondents. An efficient and economic
The REGISTER will be found a most valuable assist country. A GENCY WANTED.-The undersigned,

 $W^{\text {ATMED }}$ NE Every where-Live Agents for亚

[^0]

A. S. GEAR,
\qquad Sole owner and Manutacture of the GEAR Wood and Iron Working

MAGTINERY,

$\overline{\text { Sin imple }}$ In

SCEENCK'S PATENT. 1871
WOODW ORTH PLANERS

Ge I ILLINGWORTH, Neville St. Foun-

0TIS' Mat inimex

N CWINISTS' TOOLS-All sizes-at'ERNS.-MA

Fourth Grand Gift Concert, PUBLIC LIBRARY of KY. 31st of March Next,

Water Wheels.

Turbine Water Wheels.

 GEO. PLACE \& CO. 121 Chambers atreet. N. Y.
PIERE \& WHALIN. Milwaukee. W18. PORTABLE STEAM ENGINES, COMBIN-
 $\xrightarrow{97 \text { Libertr THE.. Now. Yort. }}$ Agenta, oid and young, male an
femate,nake moremoner sellin
onr Frenchand Amercan JE
ELRY, BOOKS ANI GAME

 MOLDING, MORTISING tenoning \& shaping d BAND SAWS,
 sCROLL SAWS Planing \& Matching J. A. FA $\& \&$

EMPLOYMENT

A $\stackrel{\text { For } L \text {. The Independent }}{ }$

P. BLAISDELI \& CO.,

Andrew's Patents. Noiselem, Rriction Grooved, or Geared Hoist
Mud, Band, Gravel, Coal, Grain, etc., wit: All Light, simple, Durable, and Economient. Send for Circulars. AND, WB \& BRO.
$\mathbf{\$ 1 0} \mathbf{0}_{\text {ented }}^{\mathrm{A}}$ DAY made by Agente selling our newlity pat
Ood. Working Machinery Gex-

Machinery,

Cold Rolled Shafting.

Sturtevant Blowers.

Wlaning and Matchirag
 1873 and 1873. Catalogues Free.

 G LEANINGS IN BEE CULTUUEE

Veneer Cutting Machines. FOR SALE,

STEAM BAND SAW AND VENEER CUTTING MILL.

and the tor Catalogue and Price List.

 Eilectric Light Battery for Sale.

Satertismments.
Back Page - - - - - - 8 Inside Page - . - . - . - 75
Engravings may head advertisements at th ine, by measurement; as the letter press. must be received at publication oft morning to appear in next issue.
HIGHEST PREMIUM (Medal) Awarde Certiflcate from the AM

H. W. JOHNS, $\mathrm{F}_{\text {Bo }}^{\mathrm{OR} \text { SALE-Second } \text { hand Engines and }}$
 BUILDERS
 TNGines and boilers, New and Se
 PROSPECTUS AMERRCAI ARTISAI,

 for 1874The american antisin, hitherto published as
Weekly, was changed, the ist of January, to a MONTHLY PUBLICATION. Each number contans THIRTY-TWO LARGE QUAR The pubucation ts The publication th more PP
ENGRAVINGS EXECUTED IN THE HIGHEST STYLE
No expense will be gpared to
tyo And Instructive Matter.
The Magazine is cut, sttch.
The princtipal.
The principal purposes of the Magazine are to dif
fuse Sclentific Information among the Induatrial -botn employers and employed-to sLEvATx Thi so
 shall control the rawards of include
scope of the Magazine will inclumen
DISCUSSIONS of ALL SUBJECTS CONNECTE
WITH THE INDUSTRIAL INTERESTS

ADVANCEMENT IN THE SCIENCES AND ARTS. instructive miscellany
THE BEST AVAILABLE SOURCES ing year, and the Pablishers are now negotlating ing year, and the Pabishers are now negotlating
with others. The Publishers pledge themselves, not only to maintain the highest Literary, Sclentific, and
Typographical Excellence, but to present articles writ ten in a popular and entertaining style, that all may
read and enjoy. They will also aim at all read and enjoy. They wiln also aim at alt.

One copy, one year....
 Three six months....

Five coples six months
s, one year....
six months.
January, and will be placed on sale oy all respectab News Dealers. ANY NEWS DEALER WILL ORDER
FOR THEIR CUSTOMERS.

gravings:

New Scron Saw

Fine Machine Too
New Wire Fe
Hand Drill...
Minor Inventions
Notices of Forelgn Invent
The Gramme ne a square Acre
Overhead Cranes...
Silk Winding Machin

A FEW OF THE PRINCIPAL ARTICLES IN THE

 theorderof itionar number.\qquad
\qquadan inportant influence 1
Perils of the Coal Mine
Extermination of Marin
Cotton Mills of Lancashive.UndergrouNew Recipes.
periments).
nt Stock Company Farmin
The Final StrugThe ARTISAN betng electrotyped, bacSUBSCRIPTIONS CAN BEGIN AT ANY TIME.
. .82 .00
.1 .00

WIREROPR.
JOHN A. ROEBLING'S SONS

Champion spring mattress-The

这

SCIENTIFIC AMERICAN. IN THE WORLD PAPER TWENTY-NINTH YEAR.
VOLUME XXX.-NEW SERIES.
The publishers of the SCIENTIFIC AMERICAN DCg
o announce that on the third day of January, 1874, a new volume commences. It will contlinue to be the aim the pablishers to render the contents of the coming
The scientific american is devoted to the inter sts of Popular Sclence, the Mechanic Arts, Manufac
ures, Inventions,Agriculture,Commerce, and the Indu rial pursuitsgenerally; and it is valuable and instruc tive not only in the Workshop and Manufactory, but also
in the Household, the Library, and the Reading Room.
The best Mechanical Paper in the World! A year's numbers contain over 800 pages and severa
hundred engravings of new machines, useful and nove undred engravings of manding establishments, and nove

To the Mechanic and Manufacturer. No person engaged in any of the mechanical pursuits
should think of dotig without the Scientific Amerit. CAN. Every number contains from six to ten engraving in any other publication. TERMS.
One copy, one year.....
One copy, six months.
One copy, four months
One copy of Sclentiffic American forone year,and
one cony of engraving, "Men on one cony of engraving, "Men of Progress".. Remit by postal order, draft or express.
The postage on the Sclentific American is flve cen
ada subscribers must remit, with subscription, 25 cent
extra to pay postage.
Address all letters a

MUNN \& CO.

[^0]:

