
a WeEkly JOURNAL 0F PRACTICAL INFORIIATION, ART, SCIENCE, ILECHANICS, CHEMISTRY, AND MANUFACTURES.
 [NEW SERIES.]

the manufacture of plaster of paris.
By J. F. GESNER, M.

Gypsum is a mineral, very widely and abundantly disseminated, whether as the snow white, translucent, and massive alabaster, the transparent, crystallized selenite, the fiberous, beautiful satin spar, or the ordinary amorphous, rather soft plaster stone. It is only when ground and cal cined that the term plaster of Paris is applied to it, from the great extent of gypsum existing at Montmartre, near Paris, where it has been worked for a long time.
The many beautiful objects of art into which alabaster is formed, such as vases, monu ments in churches, statues, etc, are familiar enourch to many many. The soft ness of the stone and its rapid de-
terioration when exposed to then exposed to the weather, render it adapted only for statuettes and oth er small works of art, or for those which are not intended to be ex. posed to excessive moisture or clima tic influences.
The crystallized and transparent form of gypsum, frequently found in large deposits of the ordinary stone, is known a selenite, from se lene, the moon, on account of its re flecting a soft moon-like luster. This variety is capable of splitting up into thin laminæ or leaves, sometimes of large some
The beautiful satin spar is a fiberous variety of gypsum, and exhibits a fine play of light, like lustrous satin. It is used for necklaces, inlaid work, and other ornamental pur-
poses, though it is
easily scratched and its beauty destroyed. Anhydrite is the term applied to a hard compact variety, which is remarkable from the fact of its containing no water; it is consequently inapplicable, as will be seen more clearly presently, for the process and uses which we are about to describe.

The ordinary amorphous form of gypsum, or plaster stone of which we have to treat in this article, is a sulphate of lime, containing, in 100 parts, 46.51 parts sulphuric acid, 32.56 parts of lime, and 20.93 parts of water. It is the pe.
culiar way in which this water is held, its easy expulsion by a moderate heat, and the subsequent readiness of the material to combine with the abstracted water, when again pre sented to it, and assume the solid state, that give to gypsum its importance in the useful arts, and make its manufacture on the large scale a great and increasing industry.
In its composition will be noted how substances, highly cor-
rosive in themselves, sometimes unite to form inert and
harmless compounds. Confectioners largely adulterate their
sugar plums with very finely ground or elutriated gypsum.
Gypsum, in the ordinary state, as largely quarried, resem.
not set with water, and the upper layers are apt to be insufficiently dehydrated, giving rise to the same evil. Many pieces of gypsum, moreover, when taken from the kiln, are found to contain a core of raw plaster, which of course is incapable of setting solid. After calcination, the stone found to be sufficiently burnt is powdered and packed for

The great demand for calcined plaster, and its cheapness for building purposes, have caused large steam mills to suBy the kindness of Messrs
By the kindness of Messrs. Wotherspoon Brothers, pro prietors of the Pho nix Plaster Mills in West Thirteenth street, New York city, our artist has been enabled to make a series of drawings which will help to ex plain the variou processes of the manufacture. The large illustration (Fig. 1) shows th operation of break ing and crushing. The crude gypsum which, when brought to the mill, is in masses weighing from 20 to 100 lbs. or over is broken up by the hammerinto piece rathersmaller tha an ordinary paving stone, and thrown by the workma into the crusher This consists of an upright shaft expanding below int heavy iron cogs, which turn in an exterior iron shell as seen in Fig. 1 The stone is her rapidly reduced to powder but not pot sufficiently fin yet sumb the calcinin for the calcining process. A pulle below conducts the powdered material by means of cleat revolving in an in clined wooden pipe termed a convey er , to the floo above. This style of conveyer is use E MRANUFACTURE OF PLASTER OF PARIS
bles good limestone or carbonate of lime; but it differs from softer. when pure, effervescing with acids and in being of water it is gradually dissolved and washed away, 1 part requiring 400 parts of water for its solution.
When crude gypsum in any of its forms, except anhydrite is heated to 212° Fah., it begins to lose its comlined water and parts with it entirely at $272^{\circ} \mathrm{Fah}$. If it be now with drawn from the source of heat and, in a powdered condition, mixed with water, it combines with the same quantity previously expelled, and sets or becomes solid as at first. The operation of driving off this combined water is termed calcination.
We come now to the processes connected with the treat ment of gy psum for rendering it available for the arts. The principal treatment, on which everything may be said to depend, is the calcination, or the exposing of the stone to that degree of heat which is just sufficient to expel enough water, so that the powdered material, when mixed with water, will set rapidly into a solid mass. This can be effected in two ways, either by exposing the hard crude stone, in small lumps, to the direct action of flame, or by submitting the crude powdered material to an indirect source of hєat. The first method is practiced in Europe, where the crude gyp sum is burned in kilns, similar to those used for lime, or sometimes in those of more improved construction, but in which the stone is still exposed to a direct fire.
The disadvantages attending this method are that the lower layers of stone are "dead burnt," so that their powder will
in flour mills, and
is located on the left of the crusher in the engraving. Here the crushed plaster is fed by a hopper, like wheat, to a burr sone mill, which reduces it to a fine powder, ready for the calcining process. Another conveyer, similar to the one de scribed, carries the fine raw plaster to a bin at the top of the

building, where it is delivered in successive charges to the kettles. These, as shown in the illustration (Fig. 2), consist of large cast iron receptacles, capable of holding 45 barrels as a charge. They are set in brick furnaces and their bot
oms are constructed in a peculiar manner and of stout iron, to withstand the heat of an anthracite fire. Revolviag stir rers, almost in contact with the bottoms and sides, are kep in motion to prevent caking.
Care and skill are requisite in the calcination process, to avoid either over or under burning. If all the water be driven off, the plaster will not harden so rapidly as that which has been heated so long as the tumultuous expulsion of vapor lasts; and if only half the contained water be expelled, the plaster will have entirely lost its power of hard ening with water. Properly calcined gypsum seems to re tain one fourth of its combined water. When the calciner judges the process to be complete, the calcined plaster is drawn out into a bin, where it is conducted to the bolt, which is a revolving cylindrical drum made up of three different finenesses of wire cloth set on an incline. The finest sieve is first encountered, and then the material falls upon the oth ers in turn. Directly below, corresponding to the width o each particular fineness of the sieve, are kins which receive the calcined plaster of three degrees of fineness, known as superfine, casting, and common. From these bins the arti cle is rapidly shoveled into barreis and packed for the trade The method of packing is seen in the illustration, Fig. 3. The workman first prepares the barrel by lining its interio by hand with a few sheets of brown paper, wide enough to overlap one another. These project above the top of the barrel, and are folded overin a very secure manner, thus an swering the purpose of a head. Barrels for distant transportation are headed in the ordinary manner
The barrel to be filled is first fitted with a wide mouthed funnel, and then placed on a revolving platform, and, while rotating slowly, is tapped rapidly by a hammer actuated by a pring and ratchet wheel. Each shovelful is thus well packed.
This manufactory of the Messrs. Wotherspoon has been in operation over forty years, and utilizes the product of two quarries, one at Wentworth, near Windsor, Nova Scotia, and the other at Hillsboro', New Brunswick. The establishmen is capable of turning out about 2,000 barrels $_{s}$ per week
Among the uses of plaster of Paris may be noted its employment for a hard finish to walls and the molding of cornice ornaments, for which purpose, to prevent its too rapid setting, it is usually mixed with a due proportion of slaked lime.
A remarkable fact connected with calcined gypsum is that the addition of two per cent of alum or borax delays its se ing three or four hours, but the material then becomes stone-like body, heavier than ordinary plaster. In Germa ny, Italy and England, beautiful cements are made in this way, known as parian. In taking casts, and in stereotyping, plaster of Paris is largely used.
Besides its use for molds in potteries, gypsum is employed for glazing porcelain ; and, being an excellent non-conductor of heat, for filling fireproof safes. In Spain and France, made into a mortar with sand and quicklime, it is used for cementing floors and vaults.
In the United States, gypsum is extensively used as a fertilizer, and is found to be very efficacious on some soils. It is used as a top dressing for grasses, and for potatoes and turnips, but the gaains do not require it. Liebig has pointed out the fact that it fixes the ammonia of the soil as well as that of the atmosphere, thus conveying nitrogen to the roots. The best gypsum quarries that are worked on this continent are on the Bay of Fundy, Nova Scotia, and Hillsboro', New Brunswick. Over one hundred thousand tuns of the finest quality are annually imported into the United States.

Mr. Seth Adams, long identified with the commercial and mechanical interests of Boston, died at his residence in Newton a few days ago after a long illness. Mr. Adams was the inventor of the celebrated power press bearing his name, but left it for improvement to his brother Isaac, who afterward became celebrated among printers for his many contrivances for facilitating the art of printing. He had a large property, which was invested in various corporate enterprises.

PUBLISHERS' CARD.

With this issue of our journal, the time for which a large number of our subscribers have prepaid will expire. In order that our readers may experience no stoppage in the receipt of the journal, and that we may not miscalculate the quantity of the paper to print at the commencement of a new volume, we hope our friends will signify their intention to continue the paper by early remittances.
The plan of discontinuing the paper when the time expires for which it is prepaid, we think preferable to the course adopted by many publishers, of continuing their paper indefinitely and collecting afterwards. The latter course is too much like having a bill presented for a suit of clothes after it is worn out. We shall be gratified to have every old subscriber renew, and doubly grateful if each will send one or more new names with his own.
The safest way to send money is by postal orders, bank checks, express, or draft on New York, payable to the order of Munn \& Co. Little risk is incurred in sending bank bills by mail, but the above methods are safe beyond any contingency.

Binding.-Subscribers wishing their volumes of the Screntific American bound can have them neatly done at this ofice-Price $\$ 1.50$.

Sxientific ©

MUNN \& CO., Editors and Proprietors PUBLISHED WEEKLY AT
NO. 37 PARK ROW, NEW YORK

\section*{o. D. MUNN.

 A. е. beach.}
 o. D. MUNN. A. FifinIS

One copy, one year..
Club rates $\left\{\begin{array}{l}\text { Ten copies, one year, each } \$ 250 . \\ \text { Over ten copies, }\end{array}\right.$
$\$ 300$
150

VOL. XXIX., No. 26. [New Series.] Twoenty-ighth Year.
NEW YORK, SATURDAY, DECEMBER $27,1873$.
\qquad

the second target, breaks it, and the corresponding magnet and pendulum are similarly affected. In this case the pendulums, not beginning their oscillations together, do not meet at the zero point of the arc, but some distance to one side of it, where the mark indicates the number of degrees from zero at which they passed. The time of oscillation of the pendulums being known, the short arc enables us to find the time between the fall of thefirst and second pendulum, which equals the time occupied by the projectiles in passing from the first to the second frame or target; and the space between the targets divided by the interval of time gives the initial velocity. For example, suppose the value of the interval to be one tenth of a second, and the space passed over to be 100 feet, then: $100 \div 0 \cdot 1=1,000$ feet per secend. The Benton instrument was invented by Major J. G.Benton, of the United States Ordnance Corps. It is probably the best of the pendulum instruments; and, for measuring velocities by means of a single interval of time, is unequaled for general accuracy and ease of manipulation: but a pendulum instrument is limited to this use, and involves sources of error which later ones of different construction are intended to overcome, by discarding the pendulum and adopting a more overcome, by discarding the pendulum and adopting a more
sensitive agent to indicate the very small intervals of time sensitive
required.
Prëeminent among these stands the instrument invented by Captain Schultz of the French artillery, and known a the "Schultz chronoscope." It consists of a bed plate on which is mounted a cylinder with clock work and a screw to give it simultaneously a rotary and lateral motion on its axis; a vibrating fork, whose function it is to trace a scale of time on the surface of the cylinder (which has been previ ously smoked by the flame of an oil lamp), by means of a quill point attached to one of its arms and resting lightly on the surface of the cylinder, in front of which the fork stands, clamped to the bed plate. The fork is made to vibrate, without fluctuation, by an electro magnet mounted near the end of each of its arms, which alternately attracts and releases them without contact. The electro magnets are controlled by an "interrupter," which closes and opens their battery circuits as often as the fork vibrates, which is about 500 times per second.
The rotary and lateral motion of the cylinder cause the fork, when at rest, to trace a fine line on its surface from end to end in the form of a helix or spiral, and, when the fork is in vibration, the sinuous line it traces intersects this fine line at the beginning and end of each vibration. The "rate" of the fork is found by connecting a break circuit seconds pendulum with the primary wire of the Rhumkorff coil, whose secondary wire delivers an induction spark on the surface of the cylinder, beside the trace, every second; the number of vibrations between each spark shows the rate of the fork per second, which rate is constant for the same fork.
In like manner the rupture of the target wire (which is in circuit with the primary wire of the coil) by the bullet gives a spark for each, and the number of vibrations traced between the two sparks indicates the time the projectile took to pass from the first to the second target. A micrometer microscope is provided to read fractions of a vibration, and by its use the value of the interval can be determined to within $\frac{1}{50000}$ part of a second.
This instrument is not so easy to manipulate as the one previously described, but it yields more accurate results and is susceptible of more extended use. It will record inter vals continuously for 25 or 30 seconds, and so permit of in vestigating the motion of a projectile through its entire time of flight, and yield data for determining the resistance of the air on its cross section. It has been used to measure the time of passage of a musket bullet over the space of one foot, the average of ten trials being $0 \cdot 000914 .{ }^{\prime \prime}$ It may also be used to investigate the motion of the projectile within the bore of a gun, an experiment which has been recently the bore of a gun, an experiment which has been recently
made by Captain Noble, of the English service, with a chronoscope of his invention, in which rapidly revolving chronoscope of his invention, in which rapidy revolving
disks, of almost uniform motion for short periods of time, disks, of almost uniform motion for short periods of
serve to receive the electric record from the targets.
The data furnished by such experiments are of the highest importance in the selection of suitable powder for guns of various calibers and the best forms of projectiles, and the instruments just described are fully equal to the solution of all the problems of modern gunnery lying within their field of research, and may well be expected to hold their prëeminence for many years to come.
the practical aspect of the eight hour law.
Supervising Architect A. B. Mallett of the Treasury Department, in his recent annual report, cites various forcible objections to the eight hour system, gleaned from his experience in the employment of labor in the construction of government buildings, since the passage of the act of Congress fixing the above number of hours as a legal day's work. He draws the general conclusion that the practical operation of the law has led to undesirable results.
In brief and generally, it appears that the eight hour system means not merely two hours less toil per day for the workman, but two houras daily practice in labits of idleness with their attendant train of evils; while to the employer and the community at large it indicates a deprivation of useful and valuable labor in a proportion constantly increasing, above its initial limit of twenty per cent, with the length of time the plan is in existence
Mr. Mullett, in his communication to the department, sates the more especial objections to the law, as follows:
' I desire once more to call attention to the fight hour law, believing it to be alike injurious to the best interests of the government and to the workmen themselves. It frequently happens that mechanics and laborers employed by
the government and those employed by contractors are required to work on the same building, and at the same time Those employed by the government work but eight hours, while those employed by the contractors work ten hours per diem. This causes much feeling, and it needs no argument to prove that it is unjust, and that the mechanic who per forms ten hours' work is taxed for the benefit of the more favored workman who has friends and influence sufficient to obtain employment for him on government work. It is also in direct violation of the principle of civil service reform, inasmuch as it converts the employment of mechanics and laborers from a business question of competency and industry to a question of political patronage and personal influence. I do not hesitate to say that it has cost the gov ernment millions of dollars, without benefiting the mechanic or laborer in the slightest degree, or, as far as I am advised, any other persons than perambulating or paid agitators, or the claim agents who have instigated litigations and claims for their own benefit. The law has been fairly and fully tested; the experience of this department, as well as of private establishments, has shown that it is not ouly impossible for a man to perform as much laborin eight hours as in ten, but that he absolutely performs less work per hour under the eight hour system. It is a matter of neither interest nor importance to me whether mechanics and laborers perform eight or ten hours' work, provided the hours of labor are the same on public as on private works. It is, however, impossible to conduct work in a proper manner under a system that increases the compensation of mechanics and laborers employed by the government 20 per cent above market rates, and thus makes them a favored class, without, as I have previously shown, obtaining any advantage therefrom. I would therefore recommend that such modification of the law be obtained as will entitle all persons employed by the government to the highest market rates for their labor, and the benefit of all local rules and regulations in regard to the hours of labor, or otherwise. If this rule is, however, to be the permanent policy of the government, and its mechanics and laborers are to be compensated at the rate of 20 per cent above the highest market rates, I see no reason why officers, clerks, and other employees of the government should not be paid by the same rule. Under the present system, gentlemen ${ }^{\circ}$ of education, who occupy positions of trust and great pecuniary responsibility in the different bureaus, actually receive less than mechanics' wages, and are discriminated against in favor of men who, as a rule, exhibit little interest in the performance of their duties, and have no re sponsibility whatever. It is also a fact that many mechanics receive, under the present system, not only more than their foremen and master mechanics, but more than the superintendent of the work on which they are engaged, the latter classes being allowed no compensation for extra labor performed."

JONAH AND THE BELGIAN ACADEMY.

Les Mondes devotes four pages to a piously indignant and argumentative editorial on a recent dissension in the Royal Academy of Belgium, regarding the rather antique subject of Jonal and the whale. A member of that institution took occasion, in the course of a paper upon South American
travel, to allude to the habits of the dolphin; and in the copy of his remarks submitted for publication, he added a foot note, to the effect that an ancient European legend at tributes to these fishes the habit of bringing to land the bodies of drowned persons, which their instinct teaches them to recognize. From this circumstance, says the author, doubtless arose the fable of Jonah. The unlucky word " fable" seems to have set the learned members of the Academy by the ears. Two have resigned, and now an interne cine war, aided and abetted by Les Mondes and other scientific journals, is raging fiercely.
As we are sufficiently removed from this important controversy to enable us to regard it wihh dispassionate and philosophical calmness, we may venture, with all humility, to observe that it is utterly immaterial to the progress of modern science whether that whale did or did not swallow the prophet, and that we are unable to perceive why the
single member's belief regarding Biblical traditions should single member's belief regarding Biblical traditions should so stir up the gall of the savans of France and Belgium, to the extent indicated by the elaborate and bitter argument in support of the story published in our contemporary. Has Science grown so poor as not to furnish material enough for profitable discussion, that Les Mondes and the Belgian Aca demy must thus employ their talents in wrangling over a dubious legend of the far past?

hints for cheap floral decoration

The introduction of natural ornaments into our houses is moods has willed it, and the conventional and artificial have had their day. Rustic baskets of trailing ivy, stands of gaily tinted growing flowers, mimic ponds teeming with finny life, and vases of autumnal leaves and grasses have replaced the cumbersome china or queer old ornaments of
buhl and marqueterie; and even in art, the graceful neglibuhl and marqueterie; and even in art, the graceful negli-
gence of nature is imitated in the decoration of our modern gence of nature is imitated in the decoration of our modern
dwellings, in showy contrast to the geometrical embellishments and prim finery of the houses of half a century ago. And this is true alike in public as well as in private edifices. One of the recently built theaters, in this city, in place of the meaningless frescoes surrounding its proscenium arch, substitutes huge palm trees with their broad leaves (of tin) drooping from their summits; another fills its lobby with similar ornaments in conspicuous places in its auditorium, and rumor says a fountain is to be constructed in the center of the parquet

Like all fashionable articles, however, and especially in cities, the question of the expense of such decorations is by no means an unimportant one, and doubtless many of ou country readers would stand aghast at the prices demanded
by New York florists for baskets of the commonest wild by New York florists for baskets of the commonest wild
grasses and ferns, even such as flourish in abundance on grasses and ferns, even such as flourish in abundance on
every brook side. Fifteen dollars is the usual cost of a imple ruastice. Fifteen dollars is the usual cost of ive to to stana, filled, and hanging baskets range. whi include bowls of gold fish, or cages of birds, with, perhaps, a few exotic plants, bring sums which are far beyond the reach of ordinary purses. Paying these prices is, however, not at all necessary, if one has a little mechanical ingenuity coupled with a fair share of good taste. We have made beautiful flower baskets from old wooden chopping trays that have survived their turn of usefulness in the kitchen, though perhaps clean new ones would be better. All the materials needed are some sticks of red cedar with the bark on, or, if this variety of wood cannot be obtained, almost any kind can be pressed into service, except ailanthus and kindred sorts, the bark of which peels off bodily; a few bits of rattan, some gnarled roots, a paper of brads. and a little varnish, complete the requirements. A good plan is to cut the cedar sticks into pieces, say three inches long, split them, sharpen both ends, and nail these neatly around and outside the upper edge of the bowl. Then fasten bits of root or twine the rattan around beneath and finish with an irregular knob below. For handles, select three strong pieces of rattan, and secure them firmly to the bowl, letting them ex tend about two feet above the same and m et in a neat lcop. The bowl should not be less than six inches deep, in order to give the roots of the plants plenty of room to grow downward. After the construction of the basket is finished, give it a coat of varnish and the work is done. Dried walnut skins, pine cones, acorns, split butternuts, or even chestnut
burrs may be used as ornaments instead of pieces of root, burrs may be used as ornaments instead of pieces of root.
We have also seen some very neat arrangements made entirey of the shells of English walnuts, which had been carefuly removed. In filling the basket, first place some broke stone or bits of china at the bottom to serve for drainage, and above add loose earth made of two thirds garden soil and one third sand. As regards plants, unless the basket be large, or a stand (which, by the way, can be made of a soap box, lined with zinc and mounted on feet) be used, we do not believe in any large variety of flowers in a single receptacle. It is nonsense to mix exotics with wild ferns and grasses, because the nature of soil which suits one is gener ally not beneficial to the other; and very often the warm uniform temperature, necessary for delicate plants, is fatal to the more hardy varieties from the woods and pastures. Fill a basket entirely with English ivy or smilax, and a luxuri ant growth can be obtained, particularly if too many shoots be not set in. City florists aim to cram as much as possible into their baskets, and are totally regardiess whether the broad leaves of the begoniasshade the stems and roots of the more delicate creeping vines. In first setting in the plants, however, place them for a few days in a cold room until new shoots appear. Remember also that plants, and especially ivy, will not grow without light, particularly in the house. Place a pot of ivy, after it has begun growing, for a few days in the shady part of a room, and the young shoots will speedily turn white, while the older leaves will begin to drop off. There is another fact that amateur house gardeners forget, and that is that the roots of a plant need plenty of air; and hence pretty pots of painted china or majolica ware will not answer to contain the earth for their reception. If such ves-
sels be used, the common earthenware pot must be set inside of them, with plenty of intermediate space between; while care should be taken that the higher edges of the outer pot do not shade the base of the plant. Weak vegetation may be rejuvenated with a little ammonia, but it must be used with care, as too much kills. About two drops in a teacupful of water given once a week, we have found to be plenty roots be kept loose and not allowed to pack hard.
A be kept loose and not allowed to pack hard.
A very pretty adornment for picture frames is German ivy, All then trailng vine which grows with great luxuriance. All the old medicne phials which infest out of the way clos ets may be utilized for this purpose. These should be filled with water and hung behind the pictures, and a slip of the
ivy inserted. The vine is quite hardy. We have seen a single slip, in a pint bottle, grow until it ran along the entire length of a moderate sized room. In the back volumes of our journal will be found described a host of ingenious ideas of this description. We recently noted a way to raise oak trees in hyacinth glasses, it being merely necessary to suspend the acorn inside and a little above the water. A sponge moistened and with fine seed scatiered in its pores, soon be we think can be made of a large pine burr, similarly prepared and hung, like the acorn, over water. Fine grass seed is the best to use. Wardian cases are very easily made. A shallow box lined with zinc, with some holes on the sides to ventilate the soil, and a large glass shade, easily obtained for a small sum, answer the purpose. The plants take care of themselves, the water which they evaporate condensing on the glass and running back to the soil, so that a species of
circulation is constantly maintained. Insect fanciers can combine animal and vegetable life very nicely in one of these cases, as quite an assortment of bugs may be kept alive in them even through the winter. Of course such varieties should be selected as will not feed on the plants.
Abnut as pretty a vine as can be selected for window dressing may be obtained from the ordina y sweet potato. The send out shoots. Hyacinths lookvery pretty on a window
sill; but in raising them in glass, it should be remembered to keep them in the dark until the roots are two inches long, and also to change the water frequently, never allowing the new supply to be colder than that removed. Dried leaves and vines also make tasteful ornaments if they are properly prepared. Doubtless many have gathered fall leaves, and are waiting for a convenient rainy Saturday to arrange them. To such we may remark that the best plan is, not to use varnish, because the leaves thus treated soon lose their color. Wax is preferable, and is easily laid on with a warm sadiron. Group the leaves in bouquets with plenty of fern, fasten them at the back to a piece of cardboard, and tack them against the wall. We recently gave a description of how very pretty leaf pictures may be made, to which the reader should also refer. German ivy, dried in sprays, looks reader should also refer. German ivy, dried in sprays, looks in the bootle or where the living vine is not desired.

an easy telegraph code.

The following is suggested as an easily learned code for general use, by which messages of all kinds may be transgeneral use, by which messages of all kinds may be trans-
mitted with certainty, by means of the ordinary electric telegraphic instruments, by means of bells, by whistles, by fire arms or cannon, by lights, lanterns, rockets, or flames, by the flash of reflectors, by flags and levers, by the motion of the human limbs, arms, hands, or fingers. It may be written on paper, communicated by touch, drummed on the table, or transmitted by any of the known means of signulizing. It may be employed with facility by the blind, the deaf and dumb; and will enable people who must talk in church to do so without disturbing their neighbors. It may be learned by anybody in five minutes.
The code is formed by dividing the alphabet into five sec tions, represented by the five vowels, A, E, I, O, U. Everybody can remember the vowels. For the first vowel, A, make one stroke, flash sound, or motion : for E two strokes, I three strokes, O four strokes, U five strokes. Make the motions for these section letters quickly, but evenly.
For the remaning letters, give the sigual for the section letter, as above, and follow with one stroke for each letter onging to that section until the letter wanted is reached.
The scientific american telegraphic code.

The Section

A		E 11	1 III	0 III	U IIIII				
${ }^{\text {B }}$	11	${ }^{\mathrm{F}} \mathrm{\\|}$	JIII!	${ }^{\text {P }}$ IIIII	${ }^{\mathrm{V}}$ III!				
D $1\\|\\|\mathbf{H}\\|\\|$			K111	${ }_{\text {Q }}^{\text {Q }}$ (1111 11					
			L 1111	R $1\\|\\| 11$					
			m	s 111111	Y				

Example: To signalize the letter D, give one stroke for the section letter, A, and follow with three slow strokes, the last being the signal for D .
To signalize L: Give three quick strokes for the section letter I, followed by three slow strokes, the last being the signal for L.
To signalize W: Give five quick strokes for the section letter U , fo!lowed by two slow strokes, the last being the signal for W .
The quick strokes are to be made twice as fast as the slow strokes. Practice slowly. Speed will follow accurate prac tice. After each complete letter signal is given, a space or pause, equal in duration to one quick and one slow stroke should be made. The space or pause between words is equal to two long strokes.
Example of written message:

 D
Numerals, etc.-To signalize numerals, give two quick double strokes, followed by one slow stroke for each numeral until the figure wanted is reached. Thus:

This alphabet involves the use of many more signals than the Morse; but it is much more easily learned and remem bered than the Morse, or any other that has come under ou notice.

death of professor agassiz.

We but reflect the sentiments of the whole country in ex pressing our deep regret at the news of the death of Pro fessor Louis Agassiz. For nearly a week past the medical bulletins extended no hope of improvement, and it is stated that paralysis had affected the organs of the throat and inci dentally almost the entire body. There were fears that even if life had been spared, the physical system would be so shattered as to render it a total wreck, leaving the patien utterly helpless and condemned to a languishing existence worse even than death. He died in his sixty-seventh year
In the deepest sorrow that this terrible afliction has not been averted, we know that every reader of our journal wil most cordially join with us. The loss of the man who, above all others, has been universally considered the representative and exponent of American scientific progress, and to the grandtur and vastness of whost mastery over thought and
knowledge the world did homage, will indeed be irreparable

THE WEEPING SOPHORA OF JAPAN.
As yet we do not know the full value of weeping trees, It is a peculiarity of most weeping trees not to show their full beauty of character till they have attained a considerable age. Who knows anything of a weeping beech who has seen only a young specimen.recently planted? Why, it is passed by as a mere curiosity. But giveit a generation, and it becomes as picturesque as a gale-tossed ship. So it is with the weeping mountain elm. Some species, it is true, show their beauty from an early age; but the above named marked examples point to the probability that we cannot judge of the effect that will finally be produced by kinds obtained in recent years.
One of the most beautiful of all weeping trees is the weeping form of that fine tree, the Japanese so phora (sophora japonica pendula). of which we pre sent an engraving. When well developed, it is a tractive in winter or summer. It is more picturesque
in outline than the weeping willow, while the shoots in outline than the weeping willow, while the shoot hang most gracefully. It is rather a slow grower its only fault; like the normal form, it would thrive well on dry soils.
As to the position suited for this tree, says The Garden, there is no fairer object for isolation in some quiet green bay of the pleasureground or lawn. It should never be crowded up in a plantation or shrubbery with a number of ordinary trees, which they do not rob it at the root, or shade it at the top, will prevent its beauty from being seen

Huge Cuttle Fish.

Mr. Harvey, of St. John's, Newfoundland, reports that, on the 26th of October last, two fishermen, who were out in a small boat, observed some object floating on the water at a short distance, which they supposed to be a large sail or the débris of a wreck On reaching it, one of the men struck it with hi gaff, when immediately it showed signs of life and reared a parrot-like beak, which they said was a big as a six gallon keg, with which it struck the bottom of the boat violently. It then shot out from about its head two huge, livid arms, and began to twine them around the boat. One of the men seized a small ax and cut off both arms as they lay over the gunwale, whereupon the fish backed off to a considerable distance and ejected an immense quan tity of inky fluid, that darkened the water for great distance around
The men sawit for a short time afterward, and ob served its tail in the air, which they thought to be ten feet across. They estimate the body to have been sixty feet in length and five feet in diameter of the same shape and color as the common squid and moving in the same way as the squid, both backward and forward. One of the arms which the men brought ashore was unfortunately destroyed but a clergyman who saw it assured Mr. Harvey that it was ten inches in diameter and six feet in length. The other John's; the remainder, which measured nineteen feet in length, is but three inches in circumference, except at the extremity, where it broadens like an oar to six inches in circumference.
As usual in the cuttle fish, the under surface of the extremity of the arm is covered with sucking disks, the largest of which are an inch and a quarter in diameter. The men estimated that they left about ten feet of the arm attached to the body of the fish, which would make it about thirtyfive feet long.

friction geared centrifugal pump

We give herewith an engraving of a centrifugal pumping engine, constructed by Messrs. Marquis Brothers, of Glasgow. The engine and pump are fixed on the same bed plate, and are connected by frictional gearing, the fly wheel of the former being grooved around its periphery and gearing into a correspondingly grooved pinion on the pump spindle. The

arrangement is very compact, and provision is made for ob taining ready access to the pump disk by removing a side door with which the casing is fitted. The piston rod, conecting rod, and pump spindle are of sticular pump shown is intended for use on shipboard for pumping out water bal last, etc., or for circulating the water in surface condensers

In some cases, Measrs. Marquis Brothers substitute ordinary for frictional gearing, while in others, as, for instance, when the lift is low, they connect the engine direct to the pump spindle.-Science Record for $18{ }^{\prime} 3$.

A New Gas Apparatus.

MM. Muller and Eichelbrenner, of Paris, arethe inventors of apparatus for producing illuminating gas from coal, etc. which will probably find much favor among gas engineers. Already fifteen gas works in France have adopted it, and it

THE WEEPING SOPHORA OF JAPAN

has generally met with much approval. The inventors require no change in the ordinary arrangement of the works, but they do a way with the old furnace and replace it by one of considerably smaller dimensions, placed at the back of the bridge, and surmounted by a receptacle of a slightly conical form. This can be filled with coke by its lower door, which is ordinarily kept closed, and its capacity is such that it does not require charging more than once in eight or ten hours. This plan is exceedingly advantageous for small gas works, preventing as it does the necessity of firing during the night.
This furnace is literally a gas producer, the fuel being kept in such a state of combustion, by regulating the admission of the air, that, practically, distillation of the volatile products is carried on. When leaving the furnace, the carbonic oxide and other combustible gases that have been generated enter into a cylinder at the back of the bridge, whence they pass into the oven by a series of openings, distributed over the entire length of the bottom. By means of other openings air can be admitted, which has already been heated during its passage from the external atmosphere, into the apparatus. The amount of air, and consequently of the combustion of the gases that must ensue, is regulated by a register placed on the exterior of the oven By means of refractory earthenware plates, that can be forced against each of the openings to stop the passage of the gas, the rate of combustion can be more completely regulated, and the temperature of all parts of the oven equalized. This heating of the air, effected by a method already familiar in the heat-economizing furnaces of Siemens, Ponsard, and others, is less complete than theirs, but less expensive-in its first construction. According to a report by M. Launy, the ease of working the furnace is great, the expenses generally are much reduced, and the removal of cinders and ash is not required. The principles applied are not new, but MM. Muller and Eichelbrenner have the merit of having combined a variety of conditions of simplicity, etficiency , and economy that had not previously been realized. M. Launy visited the gas works of Montreuil, where one of these new furnaces had been erected alongside one of the old system, and expressed himself surprised at the results just mentioned, and generally gratified with ts success.-Engineering.
We call our readers' attention to Messrs. Harper Bros. advertisement on the last page of this issue, and to their terms of subscription for their three widely renowned periodicals, which maintain their excellence and their reputation as ex amples of the highest class of American literature.

What Measure of Expansion will require Leas We reply to this question that the best measure of expan sion lies somewhere between six times and ten times, but is generally nearer the first limit than the last, and that in fact the gain to be had from working up to a tenfold expan sion is so small, as compared to the gain to be had with a six fold expansion, that it is not worth the trouble. If we were called upon to design an engine of maximum economy-w mean an engine of considerable power and one expected to perform its duties under ordinary conditions-w should not think of adopting a grade of expansion higher than eight times-though we should provide for the earlier cut-off in order to give the governor the control of the engine-and under no circum stances should we permit the terminal pressure to fall lower than 10 pounds above a vacuum. For a tenfold expansion, this contemplates an initial pressure of 100 pounds, and for an eightfold expansion a pressure of 80 pounds absolute, or safety valve loads of 85 pounds and 65 pounds; and it is more than probable that in both cases. better results could be had with a sixfold expansion only, giving a terminal pressure, in the first case of 16.6 pounds, and in the second of 13.3 pounds. Having thus stated our opinions, it now becomes our duty to explain why we have formed them. Unfortunately, the whole question is more or less one of opinion from beginning to end. We base those we have expressed on the fact that the entire experience of sea-going engineers and marine engine builders is to the effect that little or nothing is to be gained by expanding steam more than five times. For example, the Elbe, with an expansion of about twelvefold, burns, we believe, about $2 \cdot 25$ pounds of coal per horse per hour; but we have engine room logs in our possess. ion which show a consumption of but 2 pounds, and even less, with a sixfold expansion, or one half that used in the Elbe. Indeed, there is scarcely a well authenticated instance on record where better results have been got with very high measures of expansion than with much larger admissions. On the contrary, very careful and elaborate experiments, carried out in the United States and elsewhere, all demonstrate that measures of expansion much ex ceeding sixfold give no advantage whatever; and when once this point has been reached, there is a tendency to an increased consumption of steam, which becomes well marked as earlier cuts off are reached, unless the pressure of steam is very high to begin with, as, for example, in Perkins' engines. If any of our readers can cite cases where large measures of expansion did in themselves secure exceptional economy, a statement of the facts will constitute a very interesting contribution to our cor respondence columns. It may be urged that in the engine using a high measure of expansion, the economy effected in the use of steam will quite counterbalance this loss, and leave a large margin of profit. Nothing is easier than to prove this-on paper. In practice, however, we believe, nay, we know, that the consumption of steam would be absolutely larger in the more expansive engine than in its rival. This, it is impossible to prove on paper; but our readers may rest assured that it is consonant with experience, and we have no doubt that the proposition will be endorsed by many competent engineers.-The Engineer.

THE AUTOMATIC TAPER LAMP.

There has recently been invented, says the Science Record for 1873, a taper lamp for the instantaneous production of a flame or light, which is accomplished by simply pressing together thetwo handles shown in the upper figure of theannexed engraving. The interior mechanism is shown in the fig ures below. Each tube consists of a little ball of fatty material from which protrudes a short match. These tapers are all set on a rotating plate, under the lamp cover, and are so ar-

ranged that, when the handles are pressed together, the plate rotates, and one of the matches rubs against the inside of the case near the spout or opening in the cover, which rub bing or friction ignites the match and communicates fire to the ball, which thereupon burns, producing a light that lasts from five to seven minutes. This is a very curious as well as a useful little example of mechanism.

an automaton transit of venus

The Astronomer Royal has recently designed and constructed a working model to show the phenomena of the transit of Venus, of a peculiarly complete and simple character, which we show in Fig. 3. A few words only are necessary to enable any of our readers to appreciate its object and scope. A transit of Venus occurs only twice in about 120 years : and hence the importance of observing this phenomenon. The feature to note is the exact instant at which the edges or limbs of Venus and the sun are in contact during the passage of the former across the disk of the latter. Very great difficulties have been found on the occasion of

previous transits in obtaining reltable observations, owing to the peculiar optical effects accompanying the phenomenon and the consequent difficulty in insuring the observation of the same particular phase in the transit by all observers, as well as the doubt arising from the exact effect of the pecuwell as the doubt arising from the exact effect of the pecu-
liarities of each telescope and each observer. So great inliarities of each telescope and each observer. So great in-
deed have been these difficulties that the observations of the deed have been these difficulties that the observations of the
transits that have hitherto taken place-observations made transits that have hitherto taken place-observations made
at great trouble and expense-have been found of very at great trouble and expense-have been found of very
doubtful value. It is, therefore, most important that uniformity in habit of observation should be acquired by all the officers and others leaving England to observe the transit of Venus in 1874. To this end systematic practice of some kind is desirable. How is this to be obtained with a phenomenon occurring only twics in 120 years? Careful observations of the transits of Jupiter's satellites have been recommended, but Sir G. Airy has met the difficulty by a device which appears to give a singularly close copy of the transit of Venus, and on which observers may try their powers to their heart's content. Before giving a description, however, it is well to understand the difficulty to be dealt with in the observation of a transit of Venus. Fig. 1 represents the sun with Venus coming on to it about the moment of internal contact. There is a ligament connecting the black disk of Venus with the sky at the point of contact. This ligament is the main cause of the trouble. It is nearly, if not always, seen, and is explained in the following way:

Any brilliant object dazzles the eye, and by irradiation appears to be larger than it really is; thus, in Figs. 1 and 2, we suppose the real size of the sun to be indicated by the dotted line, while the apparent disk is the size of the larger circle. So again Venus should be seen the again Venus should be seen the
size of the small dotted circle, kut the sun so far encroaches on kut the sun so far encroaches on the size of the black disk whe the size of the black disk whenever her edge is seen against the
sun. But up to the sun. But up to the moment that the entire edge of Venus enters within that of the sun, the light cannot encroach at the part that, as yet, is not projected against the sun but only against the sky. Consequently, the limb of Venus that last enters on the sun's disk is for a time seen its full size; and the light, as the limb of the sun concealed by it, can neither encroach on the sky can neither encroach on the sky nor on Venus. In short, at this point the edges of Venus and the sun are those shown by the dotted circles, and thusthe black sky and black disk of Venus meet where the circles, $s s$ and
$v v$, meet, and thusthe ligament is formed. It has been supposed that directly Veuus enters within the sun's disk, as shown in Fig. 2, the light rushes in and encroachment takes place. Supposing this to occur immediately after internal contact, it is clear that, when understood, the peculiarity of the phenomenon would greatly facilitate its being accurately observed and recorded. It is clearly necessary, however, to ascertain the truth of this supposition.

Fig. 3 shows the apparatus designed by Sir G. Airy to represent the transit of Venus, at which the officers and other observers now practise. A glass slide, A A, with a black disk (to represent Venus) fixed on it, is drawn by clockwork across the opening, $S_{1} S_{2}$, cutin a screen. The curves, S_{1} and S_{2}, correspond to the limbs of the sun at the moments of in gress and egress. By means of the looking glass, D, the reflected beams of the sun are thrown through the opening, S_{1}
S_{2}, and the result is that the phenomena of encroachment S_{2}, and the result is that the phenomena of encroachment of light and ligament, or "black drop," is seen in an actual transit. The rate of motion and size of Venus are calculated so as to give the same apparent dimensions and movement
when seen on the main building by observers on the top of the magnetic buildings in the Royal Observatory, Greenwich, as those of Venus at the expected transit. The limbs of the
sun are brought together and make an arch, in order to give ingress and egress without unnecessary loss of time. We have said that our observers are practising daily at this model, and it may be expected that their personal equations and the effects of peculiarities in telescopes will be clearly established. We may add that some rather unexpected facts have come out, which seem to indicate that a modification of the generally received explanation of the behavior of the black drop, which we have given above, may be necessary. For example, it is found that with a smaller telescope Venus is seen to leave the limb and enter within the sun's disk later, and come in contact again at egress earlier, than with a larger glass. Then, again, it is found that, with a brilliant blaze of sunlight, a ligament is seen in a position when with a faint light it would have disappeared. This is rather contrary to the generally received ideas. It is premature, however, to say much now. A few weeks' work may establish very valuable results.-The Engineer.

RECENT GEOGRAPHICAL NOTES.

During the past year, MM. Stuebel and Reiss have ex plored the Andes of Ecuador, and ascended Mounts Chimborazo, Aetar, Cotopaxi, and Tunguragua. Among the volcanoes of the chain, three exhibit especial characteristics and only one, Pichinchae, retains a moderate activity. We note no especial results of the labors of these explorers, beyond the determination of the altitudes and physical characteristics of the mountain range, and certain trigonometric calculations or observations having for their object the completion of accurate maps of the country
H. B. M. ship Basilisk has taken possession in the name of the Queen of England of the western coast of New Guinea. This great island is peopled by a long haired black race known as Papous, and is said to be very fertile. The Basilisk explored the coast for a distance of 140 miles and dis. covered the bay of Youl, to which the name Port Moresby was given. A channel was also found, which, it is believed, will materially improve the route now followed by steamers between the Asiatic and Western American coasts.
There exist in Copenhagen and Moscow remarkable ethnological museums. That in the former city is comprised of forty rooms, in which are exhibited, all the objects and documents relative to the arctic regions. The Moscow museum has sixty wax figures showing the different races existing in the Russian Empire, of which thirty represent types found in European Russia and the Caucasus. The comparison of the contents of the two museums has recently led to a discussion regarding the Ainos, a race now inhabiting the Saghalien Yesso and the Kurile Tslands. M. de Quatrefages states that the people once formed a great
nation, which extended itself over the Indian Archipelago, conquering the country and founding the present Japanes

AUTOMATON TRANSIT OF VENUS-Fig. 3.

Empire. The Japanese, however, soon became a distinct race, through intermarriages with the Chinese, and the Ainos gradually disappeared, until only a remnant of the pure stock now exists. They clearly belong to the Caucasian division of mankind, and are also believed to be the progeni tors of the Esquimaux of North America.
Dr. Nachtigal, a German traveller, at present engaged in exploring central Africa, has been recently heard from. He has traversed the shores of Lakes Tchad and Chosi, and arrived at a capital city called Abon-Cheu. The inhabitants are violent, quarrelsome, and intemperate, hating strangers, and only ruled by the tyrannical power of their sultan. The commerce consists in slaves, ivory, and ostrich feathers, and flows mainly to Egypt.
M. Delesse announces the discovery of new silver mines a Caracol, near the frontiers of Chili and Bolivia. Sulphides and sulphates of silver are found associated with argentifer ous lead. The mines were found by Frenchmen, and a capi tal of thirteen million dollars is to be raised for their ex ploration.
J. W. writes that. 400 men were killed in the State of New York, in seven months, while coupling cars.

CARELESS PLUMBING.

We should advise such of our readers as are plumbers to cut out the accompanying little engraving and post it in a conspicuous place in their shops, so that all their journeymen may have it constantly before their eyes. It indicates about as disgraceful a botch as any mechanic who pretends to the smallest degree of intelligence could hope to accomplish.
The piece of piping represented was recently removed from a building, situated in this city and owned by a gentleman with whom we are well acquainted. For some time past, continual complaints have been made by tenants of a

failure in the proper water supply. An experienced mechanic was set to work to discover the trouble. After exhausting his ingenuity in trying to remedy the defect, he finally concluded that the main pipe was too small, so a larger connection was laid at great expense; still the difficulty continued. It was finally determined to cut away the joints of the conduits through the building. This was partially done, when the piece shown in our engraving was re. moved, and the cause of the trouble at once made apparent. The individual who mismade the joint (we cannot do vio lence to our feelings by calling him a plumber) carelessly fitted the connection to the larger pipe, and by so doing al lowed his solder to fall into the bore of the latter, choking it up almost completely. The fragment is now before us ; and estimating the pipe to be about $\frac{5}{8}$ inch originally in internal diameter, it is evident that the solder has reduced it to an opening of probably barely a tenth of an inch.
It occurred to us that doubtless many of our readers are experiencing difficulty with the water arrangements of their buildings, and vainly seeking just such a hidden cause as this; hence we have had the annexed engraving made in the hope that it may serve as a suggestion of value. In any event, it will do for a warning to plumbers to be careful in soldering pipe joints.

A Tower Taller than Babel.
Messrs. Clarke, Reeves \& Co., proprietors of the Phœnixville Bridge Works, Philadelphia, Pa., propose to construct a wrought iron tower, one thou sand feet in hight, to be com pleted for the American Centen nial Exbibition in 1876. The ower is to be circularin section, one hundred and fifty feet in diameter at the base, diminishing to thirty feet at the top. It is proposed to have spiral staircases winding around the center tube for those preferring to walk up; but elevators will be pro vided, which are calculated to ascend to the top in three min utes. We have in process of engraving a full page illustra tion, representing the tower in contrast with St. Peter's Cathedral, Rome, St. Paul's Cathedral, London, Bunker Hill Mon ument, the Pyramids of Egypt, and other existing tall struc tures, all of which, alongside of the thousand feet tower, look like pigmies.
Thisis one of the greatest en gineering projects of the age and it is in the hands of con structors capable of completing whatever they undertake. Th beautiful engraving we are hav ing executed will be ready for publication in the ScIENTIFIC AMERICAN within about two weeks. We calculate that it shall be the handsomest wood engraving that has appeared in any American newspaper. The copy of paper containing this engraving will be worth a whole year's subscription.

Frigorific Effects of Capillarity and Evaporation.
By directing upon a sheet of spongy paper, wet with bisulphide of carbon, a spray of pure water, hoar frost is not formed; but if the conditions be reversed, and the bisulphide applied in a finely divided spray, (according to M. Décharme) a circle of arborescence becomes quickly apparent. The same jet, directed on the bulb of a thermometer, produce first hoar frost and then arborescence, together with a low ering of temperature from $+50^{\circ}$ to - 7° Fah. Arborescence hus formed upon a glass plate may be retained long enough for examination by the microscope. Other liquids which are capable of producing similar effects to bisulphide upon spongy paper are chloroform and rectified sulphuric and brom hydric ethers. The icy arborescence is believed to be purely aqueous. Its point of fusion corresponds exactly with 0 C. $\left(32^{\circ}\right.$ Fah.), and it has no taste or odor after the evaporation of the volatile liquid with which it is impregnated.

Caxrespmademte.

A New Route between America and Europe.

 To the Editor of the Scientific American:On page 294 of your current volume, I notice a proposed new route between New York and London. This route, think, was first proposed by Sandford Fleming. C. E , when he conducted the preliminary survey for the Intercolonia Railway, about six years ago; and it was specially made on
behalf of the upper provinces of the Dominion, and before behalf of the upper provinces of the Dominion, and before
the line was constructed from Bangor to St. John. I questhe line was constructed from Bangor to St. John. I question whether Mr. Fleming now entertains the project. A a line from New York, it cannot compare with that which is hereinafter proposed. Although Shippegan is counted an excellent summer harbor, its value for such a purpose would be greatly reduced by the fact thatit is only open about eigh or nine months in the year. n length, which will not probably be soon constructed.
If the people of the United States wish to see the ocea traveling between the two continents reduced to a minimum, hey can safely reckon on the lines of railway already con tructed viâ Bangor, Vanceboro', St. John, Sussex, Moncton Amherst, etc., to Truro, and thence by branch to Pictou, in stead of going to Halifax. From Pictou a line is contem plated to Whitehaven, or some other suitable port near th Strait of Canso, which would materially shorten the ocean voyage; or it would be better still to tunnel the Strait of Canso (this is believed to be quite practicable where it does not exceed a mile and a half in width), thence by railway (to be constructed) to Louisburg, a port said to be open all the year round, near the eastern extremity of Cape Breton and more than 200 miles nearer Europe than Halitax. Now Louisburg is much nearer St. George's Harbor than Shippe an, without being so far back in the cold; and with thi onnection by steamer, and a railway thence, say 250 miles to St. John's, the great object would be accomplished. Per haps a further improvement in this line could be secured Should Aspy Bay, or some other point in the vicinity, prov to be a good ocean terminus for the railway, it would stil further shorten the passage by water to Newfoundland. And his is the direction in which improvements should be looked for in the line of travel between New York and Europe The tunneling of the Strait of Canso need not be regarded as very formidable affair, after what has been accomplished t Mount Cenis and the Hoosac. The only other break in the proposed continuous line of railway would be at $\mathrm{St}^{\text {. }}$ John's, where a good suspension bridge of 620 feet span, fo ordinary traveling, now crosses the river. There a suitable tructure for railway purposes is only a question of time Petitcodiac, N. B. Geo. W. McCreadr

Proserving Zoological Specimens trom Insecte To the Editor of the Scientific American:
The difflculty of preserving zoölogical specimens from the epredations of insects is a matter of regret and anxiety to very collector, and various methods have been proposed for accomplishing this desirable object. The compositions into which arsenic and corrosive sublimate enter are well known to be very effectual when properly applied; but unless used with caulion, they are apt to injure the natural pliancy of the skins, and are hardly effectual in protecting collections of insects. I have known these substances, even in the hands of the most expert, to produce such tenderness of the skins as to form a considerable obstacle in setting up specimens To render them effectual they must be carefully applied to each specinen, by which the labor of collecting and preserv ing is considerably increased.

Every substance which I have tried seems inferior in effi cacy and ease of application to the rectified oil of turpen tine, and my method of using it is as follows: I put the turpentine in a bladder, the mouth of which is firmly tied with a waxed string; and nothing more is necessary than to place the bladder thus prepared in the box with the birds, or to tie it to the pedestal on which the birds are perched in a case. If there be any maggots on the birds, I have invaria bly found that they will soon be dislodged from the feathers, fall to the bottom of the case, and die in the course of two days. I have also made the experiment of introducing the common house fly, the large blue bottle fly, and moths into a case of birds so defended, through a small hole in the bottom of the case. The moment the flies enter the box they begin to vomit a whitish, glutinous matter, they are much agitated, and the largest of them dies in a few min utes. I have repeatedly introduced, in like manner, active cockroaches; and these strong insects soon became uneasy often rubbed their sides with their hind feet, and usually died in about an hour and a half. I next got a bird skin full of living maggots and placed it in my defended case ; in about three hours, they were seen coming out in all direc tions, and fell to the bottom of the case, where they died. For large cases of birds, a pig's or sheep's bladder is suffi cient. The turpentine bladder, as it fills the case with its strong smell.
New York city.
G. W. B.

Remarkable Copper Spring

To the Editor of the Scientific American
Inclosed you will find a nickel five cent piece that was coated with copper, as you see it, by a spring in Monroe county, Tenn. in what is known as the Coker Creek gold region. I was travel ing through the mountain regions of North Carolina and Tennessee this fall, and had heard a great deal of talk about the rich mineral resources of that part of the country and had a great curiosityto visit it; and I was astonished to
find such rich indications in the way of gold and copper The spring which coated this coin with copper is a gre curiosity; it ebbs and flows every twenty-four hours. In the evening it scarcely runs at all, but in the morning it uns quite briskly, and all around its border you can pick up mall pieces of blue stone. There are also rich specimen of quartz in the same range. The spring is situated be ween the Chilbowe and Uanachacha mountains, about thre miles from the North Carolina line, and about eighte miles from the celebrated Duck Town copper mines. I was old that an English miner had been to look at it, and had ffered fifty thousand dollars for the lot to one of the part ners who owned it; buthe went to Europe, and on his return e learned of his death, and did not know where the othe partner lived. It is astonishing that such valuable mineral wealth should lie undeveloped when, by a little energy an capital, there could be made a large profit on the investme f time, labor, and money.
[Remarks by the Editor.-The specimen sent by ou covered with consists of a nick

THE ATMOSPHERIC RAILWAY IN LONDON.

In addition to thirteen miles of three inch bore pneumatic tubes, for sending telegraph messages between various sta tions, there is also in operation in that city a line of pneu atic railway, the capacity and operation whereof we find describ:
The pneumatic tube extends from the London and Torth Western Railway station at Euston square to the General Post Office in St. Martin's-le-Grand. The central tation is in Holborn, where is also the machinery for effect ng the transit of the trains. Here the tube is divided, hat in effect there are two tubes opening into the station ne from Euston to Holborn, and the other from the Post ffice. The length of the rube between Holborn and Euston is 3,080 yards, or exactly a mile and three quarters, a greate ength than was originally contemplated, but which was endered necessary by the avoidance of certain property on the route. The tube is of a flattened horseshoe section, feet wide and 4 feet 6 inches high at the center, having sectional area of 17 square feet. The straight portions of he line are formed of a cast iron tube, the curved lengths being constructed in brickwork, with a facing of cement The gradients are easy; the two chief are 1 in 45 and 1 in 0 , some portions on the line being on the level; the sharpest urve is that near the Holborn station, which is 70 fee adius. The tube between Holborn and the Post Office i 1,658 yards in length, or 102 yards less than a mile, and is of the same section, and similarly constructed to the firs length. The gradients of 1 in 15 occur on the Post Office section, but this steep inclination is in no way inimical to the working of the system.
The wagons, or carriers, as they are termed, weigh 22 wt., are 10 feet 4 inches in length, and have a transverse contour conforming to that of the tube. They are, however of a slightly smaller area than the tube itself, the difference -about an inch all round-being occupied by a flange of india rubber, which causes the carrier to fit the tube exactly, nd so to form a piston upon which the air acts. The ma chinery for propelling the carriers consists of a steam engine ving a pair of 24 inch cylinders with 20 inch strok. Thi gine drives a fan 22 feer 6 inches in diameter, and the two are geared together in such a manner that me revolution of
the former gives two of the latter, or, in technical terms, the former gives two of the latter, or, in technical terms,
the engine is geared at 2 to 1 with the fan. The trains are rawn from Euston and the Post Office by exhaustion, and e propelled to those points by pressure. The working of he fan, however,is not reversed to suit these constantly va ying conditions; it works continuously, the alternate action of pressure and exhaustion being governed by valves. The engine takes steam from three Cornish boilers, each 30 feet long and 6 feet 6 inches in diameter. Telegraphic ignaling is carried on
needle instruments
The experimental working of the tube has already formed e subject of careful investigation with several engineers, hose opinions are highly favorable to the system. In the arly part of 1872 , Mr. W. H. Barlow, the consulting engi eer to the Midland Railway Company, instituted a series of xperiments with the pneumatic tube, which extended over everal days. The results thus obtained led Mr. Barlow to he conclusion that the greatest working economy of the neumatic tube was obtained in moving a great amount of weight at low speeds. In other words, with the same numoer of revolutions per minute of the engine and the same pressure, a very large increase made in the load produced a comparatively small decrease in the speed. In the Post Office section of the tube two gradients of 1 in 15 occur; but notwithstanding this, the heaviest loads were those which produced the best commercial results. Mr. Barlow's experients showed that 20 tuns of goods were conveyed through the Euston tube in 8 minutes, and 12 tuns through the Post Office tube in $4 \frac{1}{2}$ minutes. Hence, with the engine working on each tube separately, two trains of 12 tuns each might be brought through the latter tube in 9 minutes, and might be sent forward in one train of 24 tuns to Euston in oods might be conveyed through the entire length of the tube in 18 minutes, or, allowing a delay of'six minutes at he station for shifting the trucks from one line to the other, he practical result would be the transport of one tun of Th load per minute
The practical conclusions to which the preceding remarke
point are that there exists at the present time, in good work ing order, a rapid and efficient means of transit for parcel between one of our leading railways and the Post Office, the an intermediate station. The system is now open to vepablic for the conveyance of goods, and the public are avaing themselves of the benefit it confers. The comparaively limited estent of the district served means, of course or the present, proportionately limited commercial results. It remains, however, for the Pneumatic Company to prove the soundness of their scheme by regular systematic work. ng , and so to gain the confidence of the Postal authorities nd the railway companies, to whom the preumatic tube should prove a great boon. Useful as the system is as at present arranged, it requires but slight extensions to very materially increase that usefulness. It has already one of its ermini at the Euston Station, and the proximity of the Kidland and the Great Northern Stations at once suggestis short extensions to both of those points. Again, the relative position of the Holborn Station with that of the South Eastern Railway at Charing Cross, and of the Post Office station with that of the same railway at Cannon street would render an extension in either of these directions no very difficult matter, while all parties would apparently be benefited by the result. Then there are the district offices of the postal system, most of which might be placed in direct communication with the chief office by means of the peumatic tubes, in the same way that, to some extent and by means of small tubes, the postal telegraph offices are conected at present time. Should the satisfactory results of of experimental working be borne out by the practical trial he system is now undergoing, there appears to be no reaso vhy it should not be generally estended to all parts of the metropolis and the suburban districts.

Rallways in Great Britain and the United States, The reeent financial panic in the United States has naturally directed much attention to the railway system, which has been accused as the cause of all the disasters. It is not within our province to enter within the mere financial ques ion, except so far as engineering enterprise may bear on it. The object of this article is chiefly to examine into the sta istical history of the system, compared with our own, in egard to construction, population, commerce, etc., and thus to give prominence to certain facts which,so far as we know have not hitherto been placed in such a position for the pro essional and general reader.
In 1830, there were but some 23 miles of railway existing in the United States; and at the end of 1872, there wer 7,000 miles in existence
In 1870-72 nearly 20,000 miles were constructed, or consid rably more than the whole railway mileage of the United Thom at the present day
The above statistics bear a striking contrast in rapidity of progress when compared with the extension of the British railway system. For example, in 1842 we had but 1857 miles; and in 1870 we had 15,540 miles, nearly. Between the end of 1864 and the end of 1872 , the increase in the United States lines was about 33,000 miles, or just about double the total of British railways existing at the end of 1870. In other words, American enterprise had constructed, in eight years, double the mileage that we have effected in bout forty years.
Next comes the question of the comparative cost of the wo systems, and this is one of great importance in an engieering point of view. We are as nearly correct as we can be in stating that, while our 15,540 miles of railway involved by the end of 1870 a capital of $\$ 2,650,000,000$,the 67,000 miles of United States railway cost only $\$ 3,150,000,000$. The ratio of mileage is as 1 to 4.31 ; it consequently follows hat, if the cost of the United States lines had been per mile he same as ours, the capital they would have involved would have amounted to $\$ 11,421,500,000$. Taking the subject in another point of view, we shall find that, if the cost of our lines had been in the same ratio as that of the American ines, our expenditure would only have been some $\$ 730,000$, 000. Taking the cost per mile, the United States lines average 47,000 , and here the contrast with us is very great. The cheapest constructed line in this kingdom is the Highland, which cost $\$ 61,300$; the average is about $\$ 180,000$ per mile. This would have confirmed our previous estimate of the ost as being over four timos that of the United States, had we included shorter but more expensive lines in the Urited Kingdom. These figures have 'crtainly a startling appear ance, and this is increased if we take into consideration the difference of dividend that would have accrued to British shareholders had it been possible for the English lines to have been so cheaply constructed; but in considering this matter,the far larger proportion of single lines in the United States must be born in mind, while it must be remembered that the station buildings and general fixed plants of a large proportion of the oheaper American lines are such as would be quite incompatible with the traffic to be accommodated here
In respect to the engineering department, the advantages the Americans possess are very great in the majority of
cases. Stone and iron for solid work, and brick where it is cases. Stone and iron for solid work, and brick where it is
easily procured, are the sole materials employed by us. In America, on the contrary, wood, which can be obtained at a much lower rate, was at first almost universally employed for bridges, stations, and oiher constructions. Another poin of great importance is the fact that, while the great majority of American railways are only single lines, ours, with scarcely an exception, are double lines and now triple lines, as on the London and North Western, are becoming common where great traffic exists. The cost of earthwork of all
width, and the cost of the single lines would be much less, even if labor and material were at the same price in each case. Practically, the United States traffic is moderate, and spread over a large area of line, while ours is enormous, and spread over a very limited area. Hence, with us solidity and durability are of absolute importance, qualities which, as a rule, do not distinguish American railway constructime
Sleepers are an item of serious cost also with us; and the geological structure of our islands is such that cuttings, embankments, and tunnels are of constant occurrence, a level piece of line, except in the east of England, being of very rare occurrence. In the United States, on the contrary, the contracted contour of our country becomes expanded. Level plains are of enormous extent; and if there are obstacles, such as hills and mountains, the cheapness of land and construction permits a dêtour which would be simply ruinous, if not impossible, with us.
An interesting question, and one of great importance, as effecting railway enterprise, is that involving area, population, and commerce; and in this the comparisons between the United States and ourselves is remarkable. In 1861 our population was $29,321,288$; in 1860, that of the United States was $31,443,321$. In 1871 , ours was $31,817,108$, and that of the States in 1870 was $38,555,983$. The latter, therefore, increased by seven millions, while our increase in the same period was about two and a half millions; the American increase was thus nearly three times that of ours. Comparing the respective areas, ours is 121,115 square miles against $3,034,459$ of the States (exclusive of Alaska), of which about one fourth only is under civilization; but this area is six times that of ours, say 750,000 square miles. Our ratio per squaremile is 250 persons against about 51 on the limited area just estimated. It results that, while both goods and passenger traffic is carried on in a compact area with us, the reverse occurs in the States. If precisely the same traffic took place for an equal population, at the same cost of material, wear and tear, etc., in both countries, it is evident that the States lines would be ruinously expensive. Butfortunately for them the general cost of management and repairs is much less.
The management of the United States railways has been a subject of much complaint, and blame has been cast alike on engineers, directors, and other officers of the companies. We are not disposed to dip our hands into dirty water which abundance has been scattered about lately.
On the other hand, however, the resources of the country are enormous. Generally the soil is of inexhaustible fertility for the growth of corn, cotton, tobacco, etc. The forest districts afford endless supplies of almost every kind of useful and ornamental woods. In the mineral kingdom few valuable products are absent; coal, iron, copper, lead and most metals being found in abundance and frequently of the richest ores. All these natural products will tend to foster railway enterprise; and if this, in future, be restricted in its extension to the actual wants of the country, instead of its supposed distant necessities, it is impossible but that railway enterprise in the States can be other than of the most profitable and prosperous character at no distant period. Engineering.

Gas Purifier and Mixer

M. D. Colladon says: Gas requires to be freed from particles M. D. Colladon says: Gas requires to be freed from particles
of solid matter, naphthalin, coal tar, ammoniacal salts, etc. of solid matter, naphthalin, coal tar, ammoniacal salts, etc.,
as well as from gases such as carbonic and sulphurous acids. as well as from gases such as carbonic and sulphurous acids.
For washing it, vessels have been employed similar to For washing it, vessels have been employed similar to
Woolf's bottle, in which the gas traverses water or a suitable solution through a metallic network, in the form of bubbles or continuous currents. This arrangement is insufficient for working on a large scale; because the bubbles of gas take a spherical form, and consequently present a minimum of surface for a maximum volume.
Further, this method requires a decided increase of pressure, which is inconvenient. The chemical cascades, in which the gas passes upwards through a fine rain of the washing liquid, act much better, but they require too large a quantity of liquid. Coke towers (scrubbers) produce a more complete effect, but the action is very irregular. The new mechanical washing apparatus has the advantage of producing very powerfulaction without requiring large dimensions. At Geneva it yields coal gas, superior both in illuminating power and
in a sanitary poiut of view. Less purifying matter is also rein a sanitary poiut of view. Less purifying matter is also required than on the old system. The same apparatus will
 with the vapors of a liquid, for example, hydrogen with the vapor of petroleum. The system rests on the principle that the best arrangement either for washing a gas or saturating it consists in making it strike, in the form of currents as thin as possible, against solid walls kept perpetually moist. The currents are broken against these surfaces, and are prevented from moving on in a straightline. The gaseous particles are thus always kept in a rotatory movement, and are pressed against the moist walls, so that they either absorb the substance diffused over these walls or may deposit there a part the gas or to wash it.-Chemical News.-Comptes Rendus. New Method of Tempering Steel and Regenerating Burnt Iron.
M. H. Caron says: A piece of steel is generally tempered, and then reheated more or less according to the hardness nd the elasticity which it requires to receive. The dry temper, as commonly practiced, that is to say, plunging the red hot metal into cold water, has the dpawback of developing cracks and opevicps injurious toits tenacity. Rehoating does not remove these faws : and subsequently, on use, thege hssures, though invisible at fixet, Increase and terminate in frectures

It has already been discovered that, in order to escape danger, it is preferable to temper the steel a little softer and af erwards to reheat more slightly. The author has succeede in producing the combined effects of temper and reheating in one operation, and of removing as far as possible the chance of flaws. This is done by heating the water, into which the red hot metal is plunged, to 55°. Tempering in hot, or even boiling, water modifies soft steel containing from two to four thousandths of carbon. This process augments its tenacity and elasticity without sensibly altering its softness. The tex ture is changed and becomes fiberous, even if previously crystaline. The author's method for restoring burnt meta is likewise to plunge it at a red heat into a hot liquid. Ibid.

$\underset{\text { [Reimann's Färber Zeitung.] }}{\text { New Dyeing Recipes }}$

This number contains a recipe for a safllower rose on glazed calico. The dressing consists of 50 lbs . of wheat starch, 20 lbs of wheat flower, 4 lbs . of white wax, and 6 lbs . of cocoa nut oil, a little sulphuric acid being added to the water in which , starch is mixed.
There are also recipes for light and deep Prussian blues on lazed calico; for a green(ex tracts of indigoand of quercitron) on jaconnet ; a peach wood crimson on glazed calico and jacon net; a brown on calico with Bismark brown and magenta a gray drab on wool, and a scarlet on woolen cloth and flennel; also a blue (soluble aniline blue) and a coffee brown on plush; a violet on woolen yarn. The mordant in thi case consists of $1 \frac{1}{2} \mathrm{ozs}$. of tannic acid, dissolved in hot water in which $\frac{1}{2} \mathrm{oz}$. of Marseilles soap is next dissolved $\frac{1}{4}$ oz. rape oil is next added, and stirred up till it forms an mulsion. The liquid is used at $167^{\circ} \mathrm{Fah}$. The bleached yarn is worked in this mordant for fifteen minutes, and then withdrawn. The color bath, at the same temperature, is pre pared with 5 ozs . of alum and the clear solution of 1 oz . of methyl violet.
There is also a prescription for a light green on cotton yarn, he color being methyl green fixed with tannic acid.
The editor gives a recipe for a brown on shoddy contain ing a mixture of cotton, called on the continents velour To 100 lbs . of this material, make up a bath of 30 lbs . of fustic, 3 lbs . of alum, 2 lbs . of prepared tartar, and 1 lb . of blue vitriol, in which the shoddy is boiled for half an hour. To the same flot are then added 1 lb . of chromate of potash and $\frac{8}{4} \mathrm{lb}$. of aniline red, ruby, or aniline crimson, known on the continent as rosain. The dyeing is carried on at a gentle boil, and turmeric added to modify the shade. Loywood may be used, if needful, to dark en. Aniline is refuse magenta ; it is dissolved in hydro chloric acid and boiled in water previous to use.-Chemical chloric
News.

Alleged Presence of Iron Filings in Tea
In several cases of prosecution under the adulteration act which have recently been reported, the analyst has been able o demonstrate that a magnet thrust into a specimen of tea would attract certain particles which were stated to be iron filings, and held to be indisputable proof of a fraudulent admisture. That this inference is necessarily correct has, wever, been disputed in more than one quarter $\mathbf{M r}$ Treffry, of Exeter, England, writing to the Grocer, asserts hat the mineral matter found in tea is not iron filings but a native magnetic oxide of iron, and he states that "it is pro-
bably titaniferous iron sand, which is very abundant in bably titaniferous iron sand, which is very abundant in
China." Mr. Alfred Bird, F. C. S., of Birmingham, says that he has separated particles of mica and quartz from the magnetic oxide of iron found in tea, his inference being "that, as magnetic oxide of iron forms part of the soil of China, it would rise with the dust of the country, and coming in contact with the damp leaves would adhere to them when they are dried, and thus make the dried leaves stick to the magnet as if there were iron filings mixed up amongst them." Speculative, to say the least, as this may seem, it would appear to receive some support from an experiment made by Mr. Bird upon some French bean leaves grown in his own garden. One hundred grains were dried, and upon testing with a magnet were found to be attracted by it in a similar manner to that reported of some specimens of tea leaves A closer examination of the matter adhering to the leaves
showed that it was magnetic oxide of iron, and 0.02 of a grain was obtained from the 100 grains of bean leaves. Au investigation of the black mold of the garden in which the plants were grown showed that it contained an abundance of magnetic oxide of iron.
If all that the opponents of the adulteration act say against it were true, it would be but little to be able to reply that it is not an unmitigated evil ; but still it is a fact that the act has given a great impulse to the investigation of food sub stances, the benefit of which must appear in an acquisition to our store of knowledge respecting this important subject. For even should Mr. Bird's speculations prove correct, it
would not be the only instance that bas recently come under would not be the only instance that bas recently come under
our notice where the presence of a gross adulterant has been alleged upon insufficient grounds.-Pharmacbutical Journal.

Dentist's Solders.-I. H. P. says: For gold solder, use 8 grains American silver coin and 4 grains best copper wire (or copper from an old style cent) to each pennyweight of gold plate of the same fineness as that to be soldered. For silver solder, use 8 grains best brass wire to each pennyweight of silver coin. Melt with borax, cool, and roll into plate.

The Hoosac tunnel alygnment proves to have been very ccurately made. The errof in vertical alignment was only nine sizteenths of an inch, and that in the level was oneinch and a half. This result if very creditable to the engineers,

sCIENTIFIC and practical information.

a new weather vane

The old weathercock has three essential faults; it indi ates a direction when there is a dead calm, it gives no means of learning the force of the wind, while it fails to how the true course of the same, by exhibiting merely it horizontal component. M. Tany proposes the arrangement o be attached to the ordinary lightning rod. Just above suitable shoulder on the latter is placed a copper ring rooved and made into a pulley easily rotated in a horizon tal plane. Around this passes a knotted cord, the ends of which are secured to the extremities of a short stick or metal rod, to which is secured a simple streamer. Thu constructed, the vane indicates \& calm by falling vertically and besides shows the strength of the wind by being blow out more or less from the lightning rod. As is evident, it capable of motion in every direction, so that if there ex ist in the wind an upward tending vertical component, the same will be shown.
Ew MODE OF SHOWING NODAL POINTS IN SOUNDING TUBES, Bourbouze proposes, as an improvement upon the Kœeni apsule generally used for the above purpose, the employ ment of a simple membrane of rubber on which is attached very light silvered mirror which oscillates with it. If ays from a luminous point be reflected upon the mirror, and the image passed through a lens, the image is lengthened, nd often transforms itself into an ellipse. It reaches it maximum elongation when the mirror is placed at a node but retains its immobility when reaching the points corres ponding to ventral segments. The device, it is stated, can e placed at the extremities of Helmholtz's resonators, or of the rubber tube attached to these instruments, and the mirror vibrates when a mixed sound is produced, containing he note proper to the resonators, to which it is applied.
aqUEOUS EXHALATION OF PLANTS.
M. Barthélemy, after a series of experiments on the above subject, concludes that in plants there is an insensible ex alation throughout the entire cuticular surface, through he medium of a true gaseous dialysis; that there is an bruptemission of saturated gases which escape by breath ing apertures when the plant is submitted to a rapid eleva ion of temperature, especially when under a bell glass; and hat there is finally an accidental exudation, the result o efects in equilibrium between the absorbent action of the roots and the work in the aerial portions for the fixing of he carbon added to the elements of the water, a labo which ceases when light disappear
MPLE METHOD OF DETECTING ADULTERATION OF WINE. Into a small quantity of the wine to be tested, says L lemps, drop a piece of potash. If no deposit is formed, and he wine assumes a greenish tint, it has not been artificially olored. If, however, a violet deposit appears, elder o ulberries have been used. If the deposit be red, the adul eration is sugar beet; if violet red, campeachy wood; if vi let blue, privet berries; if clear blue, coloring matter ob ained from sun flowers.

IMPROVEMENT IN PHOTO-LITHOGRAPHY
M. Paul proposes the substitution of albumen for gelatin the bichromate process. The paper is covered with a thin ayer of albumen, to which a concentrated solution of bi hromate is added. After sufficient exposure under the gative, the sheet is covered with lithographic ink and then immersed in cold water in order to dissolve the unal ered albumen, which is removed by fine sponge. A very clear image, it is said, is thus obtained, ready to transfer to the stone.

PHysiological properties of caffein
The physiological action of coffee, according to MM. Au bert and Haase, should not be attributed to caffein, but to ther principles. An injection of 0.6 cubic inch of coffee containing 06 grain of caffein killed a rabbit in a very short time, producing acceleration of the pulse and respiratory gans, uneasiness, and finally convulsions. An injection 0.75 grain of pure caffein, however, did not produce death or even any symptoms of sickness. An infusion of 770 rains of very hot coffee, corresponding to 6.3 grains of caf fin, acts upon a man far more intensely than a stronge ose of pure caffein. Headache, vertigo, trembling, and similar symptoms are produced, which last upward of fou hours. Coffee extract, deprived of caffein by chloroform and injected into the jugular vein of a rabbit, causes strong con vulsions, but never tetanus, such as is produced by an over dose of caffein singly.

James Vick, the Rochester (N. Y.) seedsman and florist, forms us that he manufactures and sells the tent roof gar den chair illustrated in this journal some time ago. It wil be remembered that we recommended its introduction in this country. We are glad that our suggestion has been an ticipated.

Mr. A. Pell desires such of our readers as have old num bers of the Scientific American which they do not want to send them to No. 18 East 30th street, New York city Any papers sent will be distributed in the Bellevue Hos pital and other charitable institutions, where they are fre
quently asked for and eagerly read by the patients.

A strong colony of bees has been known to build one hundred square inches of comb in twenty-faur hours; a that rate, over sixty sheets of comb a foot square could be constructed in three months. The Annals of Bee Culture, mentions a swarm that built nine sheets of comb, ten by thirteen inches, in ten deys.

THE CRYSTAL SELE-ACTING TABLE FOUNTAIN.
Nature's ornaments are the standard of beauty; and the Nature's ornaments are the standard oi beauty; and the
more closely art copies her ever varying forms, the higher more closely art copies her ever varying forms, the higher
and purer does it become. A spray of ivy creeping over a and purer does it become. A spray of ivy creeping over a cornice, a handful of flowers, not imbedded in a stiff mass but allowed to rest loosely in a simple vase, a jet of erystal water dancing and playing like a shower of diamonds in some sunny corner, are far more exquisite than the most elaborate decorations or gorgeous fittings that the most-skillful of workmen can produce.

But nature may be assisted by art, so that her handiwork may exist in places where it would otherwise be absent; and tne ingenuity of the inventor is not at a loss to find a way of bringing into our parlors the beauties which we admire in the garden. Such indeed is the object of the ornamental little device to which our engravings refer, and by which we are enabled to place a miniature fountain, with its floral accompaniments, in the center of our dining tables, if we so desire it. Apart from its beauty as an ornament, it may here be noted that a jet of water in the room tends toward moistening the atmosphere, and relieving it of the dry nature especially aue to furnace heat, while, besides this, the fure especial has a tendency to absorb the foul gases due to respiration. Hence the invention is desirable both from an æsthetion. Hence the invention is desirable both from an æsthe-
tic and a sanitary point of view, while it has, as we are intic and a sanitary point of view, while it has, as we are in-
formed, the further merit of being within a moderate limit of cost.

In our illustrations, Fig. 1 shows the apparatus entire and Fig. 2 is a vertical section. There is a pedestal, which may be of imitation bronze or any other desired material and made in any handsome design. In this is a cylindrical space in which fits a heavy plunger, A. Through the latter is an opening into which passes a rubber pipe, B , of smallerdiameter, and which terminates below in a flap valve. The valve, however, is pierced, so that the opening from the water below, through the pipe and to the spout above, is clear.

To start the fountain, in which clear, colored, or perfumed water, or even eau de cologne, may be used, the plunger is drawn up to the highest position by means of the chains which connect with the movable metal tulip buds, C. While this is being thus elevated, the water above passes through the annular space between the pipe and the periphery of the orifice in the plunger, and escapes below, the valve, of course, opening downward. The plunger, however, on being left to itself, descends by its own gravity, pressing upon the water
below, which, unable to ascend through the annular space on account of the closing of the valve, is forced through the small central opening in the latter, through the pipe, B, and, finally, out at the spout in a fine jet sixteen or eighteen inches high. The basin communicating with the cylinder, of course, never overflows, and the play of the fountain continues until the plunger has reached the bottom, which, with a small jet, occupies a period of about forty-five minutes. The lifting of the plunger is very easily done, and is hardly two seconds' work. The glass tulip shown near the jet is designed to hold flowers, and the same are also arranged in holders attached to the side of the basin. By being continuously sprinkled with water, they are thus kept fresh for quite a long time. At the bottom is a conduit and cock for drawing off the water, and a suitable strainer is provided at the jet to prevent the same from clogging.
The deccrations are quite tasteful, and the ormament, as a whole, will be a handsome addition to any parlor.
Patents for the fountain are now pending. For further particulars, address the American Fountain Works, New Haven, Conn.

COMBINED EXTENSION MEASURING ROD AND

 DIVIDER.The object of the invention herewith illustrated is to facilitate the taking of measurements between rigid surfaces, and the striking of circles, arcs, ovals, or ellipses. It apand the striking of circles, arcs, ovals, or ellipses. It ap-
pears to be quite a handy little instrument, and will doubtpears to be quite a handy little instrument, and will doubt-
less prove a convenient device for builders and mechanics. less prove a convenient device for builders and mechanics.
. There is a center piece, A, Fig. 1, in each of the two opThere is a center piece, A, Fig. 1, in each of the two op-
posite sides of which is made a dovetail groove for the reception of metallic dovetails attached to the inner sides of the extension pieces, B and C. This arrangement is clearly shown in section in Fig. 3. Secured also to the center piece are suitable bands for holding the extension arms, which are provided with thumbscrews, so that the latter may be fastened in any desired position. The pieces, B and C, are graduated in inches and fractions, so that the length of the rod may be at any time easily ascertained. At D is a removable point secured by a thumbscrew, and at the opposite

extremity of the apparatus, shown in Fig. 2, is a simple ar rangement for holding an ordinary pencil. The mode of using the device for striking circles is obvious from our engraving. In making ellipses, the third point is attached to the end of the center piece. When not used as a tram, the points and pencil may be disposed of in suitable holes made in the ends of the pieces.
Patented through the Scientific American Patent Agency November 4, 1873. For further particulars address the in ventor, Mr. George H. Discher, Mobile, Ala

The Sea Mouse.

The sea mouse is one of the prettiest creatures that live under the waters. It sparkles like a diamond and is radiant with all the colors of the rainbow, although it lives in the mud at the bottom of the ocean. It should not have been called a mouse, for it is larger than a big. rat. It is covered with scales that move up and down as it breathes, and glit ters like gold shining through a flocky down, from which fine silky bristles wave that constantly change from one brilliant tint into another, so that, as Cuvier, the great naturalist says, the plumage of the humming bird is not more beauti ful. Sea mice are sometimes thrown up on the beach by storms.-Hearth and Home.

TOY GYMNAST.
This is one of those ingenious mechanical toys which are sure to amuse and please children of all ages, though it it is nothing but an articulated figure which, supported between two upright bars, goes through a variety of ludi crous antics. The performer is made of pasteboard, and has his legs and arms pivoted to his body. The hands are kept apart by two short tubes through which pass a couple of strings which are secured to the tops of two bars, A and B Bar A is curved and projects downward into the handle. The other, B, is also curved, and its lower end terminates in
a thumb piece, which enters and is pivoted in a groove in he upper part of the handle of bar A.
All that is necessary to do in order to make the figure ex ecute a number of astonishingly impossible gymnastic feats
is to press down the thumb piece, as shown in our engraving By this means, the upper ends of the bars are forced apart and the motion of the gymnast regulated according to the quantity of pressure applied. The inventor also adds hooked

toes to the feet, so that the latter will catch in the tubes between the hands, and thus give the performances of the figure a more grotesque appearance. This is just the article to find ready saleduring the holidays.
It was natented November 18, 1873, through the Scientific American Patent Agency, by Mr. Frederick A. Bancker, of whom further particulars may be obtained by addressing whom further particulars ma
P. O. box 180, Brooklyn, N. Y.

MOISTENING DEVICE FOR LAME ANIMALS.

Mr. George J. Harris, of New York city, has recently patented an apparatus by means of which the legs or feet of a horse, or other animal, may be kept moist for any de sired time. He arranges an india rubber water bag around the neck and leads therefrom flexible pipes, which extend to the legs of the animal. These pipes, at A, are connected to tubular sprinklers, which are so constructed that they can be conveniently secured either below the knee or below the ankle joint. They are also perforated with a number of

minute holes, and are enveloped in flannel or other suitable absorbent material, so that water or liniment, which oozes slowly out, is distributed over the entire surface of the legs or feet.
By this means a sufficient quantity of liquid is supplied o keep the extremities of the animal damp for a considera be period of time; and when the device is once adjusted, it needs no further attention until the receptacle is empty:

CHINESE FRESH WATER FISH.

There is a common belief that the queer animals repre sented in the grotesque designs of Chinese artists are in the main chimerical, and have no existence save in the imagina tions of their delineators. It is a fact, however, that the reverse is, in some instances, the case, and that many of these beings really live, though perhaps in a form hardly so exaggerated as depicted in the works of celestial art. A French pisciculturist, M. Carbonnier, has recently succeeded in transporting several strange varieties of fish to France and, as we learn from La Nature, has found it possible to acclimatize them, and hence to study their habits of life, re production, etc. Four species of these odd animals are re presented in the accompanying engraving. The pair near est the surface of the water are macropodes, small fish pale gray in color, and, at first sight, having little about them to attract attention. As soon as the animal becomes excited, however, the long fins on the back and belly straighten ou and assume a rich purple hue tinted with green; the lone and fork-shaped tail spreads into a kind of fan, and the stripes upon the sides of the fish become yellow, red, and blue, constantly changing in color. The scales seem to become opalescent, and reflect the light with the greatest brilliancy, while the eyes ap pear illuminated with a bluish green fire. These beautiful peculiarities of the fish have gained for it the popular name of Fish of Paradise.
The habits of the animal are as odd as its appearance. The males take charge of the young and build the nest. The latter is simply a clot of foam floating upon the water, and is made by the fish rising to the surface and alternately absorbing and expelling air, until a little cluster of fine bubbles, hardly three tenths of an inch square, is formed. The female then deposits her eggs, which are at once stized upon by the male, who carries them in his mouth to the nest. Then in his mouth to the nest. Then he .watches their incubation, buting them with wonderfu buting them with wonderful sagacity evenly tbroughout the mass of foam. When they clot together, he pushes them apart with his nose, and, besides, keeps up a continual manufacture of bubbles until the eggs are lifted up above the water and rest only upon their soft couch. As soon as the embryos appear, his care is doubled. He watches thatnone escape; and in case some become separated, he chases them, catches them in his them, catches them in his mouth, and replaces them care fully in the nest. If one be comes injured, he removes it from the others, and gives it a separate air bubble to itself, and apparently nurses it until it regains strength.
The macropodes belong to a family known as labyrinthi form pharyngitns, and their peculiar construction enables them to keep their gills moist for a very long time. They can pass through half dry marshes by maintaining their equilibrium with their fins and propelling themselves by the sharp toothed points with sharp toothed points with
The two grotesque-lookin fish represented in our engra ving, just below the macropodes, are of the genus cyprinus, and are termed telescope fish. The body is apparently gilded on its lower portion and of a deep velvet black above, while its form is globular. The dorsal fins are double, and the tail extends into a long curved fan. The eyes project sometimes as far as an inch and a half beyond the head, and resemble the lens and tube of a telescope. The habits of this strange animal are as odd as its shape, and it is said that its equilibrium in the water is very unstable, so that it even swims with difficulty
The two species shown near the bottom belong to the same genus cyprinus, and are known to science as the leuciscus idellus and the hypophthalmichthys molitrix. There seems to be nothing extraordinary about the habits or form, and the value of the fish lies in its quality as food. Its flesh is said to be excellent, and the animal, when adult, often attains a weight of fifty pounds. The Chinese raise these fish in great numbers in artificial ponds.

How the Heathen Chinee catches Fish.

 M. de Thiersant, lately a French consul in China, has pub ished in France a quite interesting work on pisciculture and the mode of fishing in that country. He states, among other facts, that over 850 different kinds of fish exist in Chinese waters, many of which are of species hitherto unknown to European naturalists. Several varieties have for enturies been selected as fit for food and cultivation, and henc pisciculture or the ordinary domestic raising of fish, an indus ry here in its infancy, is far from a novel idea in the Celes tial Empire. The author presents a vast number of interest ing details on his general topic, from among which we selec the following curious ideasThe cormorant is largely employed as an assistant to the isherman, and is carefully educated to its work by profes sional trainers. When thoroughly trained, a pair of birds is worth 40 dollars, the high price being explained by the cost and labor of instruction. During the first seven months of

CHINESE FRESH WATER FISH

its life, the cormorant is left with the flock and is taught by its elders how to feed itself on small fish. After that age however, a collar is fastened about its neck so that it canno swallow its prey, and to one of its feet a cord some two fee long is attached, terminating in a bamboo float. At a signa from the fisherman, whose sole implement is a forked stic some ten feet long, the cormorants plunge into the water and search for fish, each bird, as fast as he catches one in his beak, rising to the surface. The fisherman then hooks the bird's float with his stick and draws it towards him, taking the fish away from the cormorant as soon as it comes within reach of his arm. When the fish is very large and weighs seven or eight pounds, for example, the cormorants will as sist each other, one catching the fish by the tail, another by the head, etc. They rarely catch anything weighing less than a quarter of a pound. After every capture a small bit of fish is thrown to the bird as a reward, the piece being suff ciently little for it to swallow in spite of its collar: Chinese
fishermen keep their feathered assistants at work as long a daylight lasts. Occasionally the birds become tired and re fuse to dive, a proceeding which occasions a series of fright ful yells and beating of the water with a stick by their mas ter, which frightens them to such an extent that they resume labor instantly. This mode of fishing, which is not interrupted even by severe cold, is quite lucrative, as twenty or thirty birds can readily catch about a dollăr and a half worth of fish per day. In general the fishermen are asso ciated, and the birds belong to a society which marks them with a peculiar brand of its own. Oil of sesame is said to be the panacea for allills of the cormorant, which continues its career of active work until about ten years of age.
The Chinese have also queer ways of catching water fowl ometimes they spread great vertical nets with large meshe ear ine surface of the water, so that the wings of the bird rrancent sticks which, when the birds perch upon them, fall and allow the game to become entangled in the meshes. Perhaps the most ingenious idea is carried out by men who enter the wate entire'y nude, wading in up to their necks. Over the head is placed a sort of helmet, which is pierced with holes for sight breathing, etc.; and resting on the man's shoulders is a woode shelf on which, just in front of the sight orifices of the helmet is placed a number of cups con taining corn or seed. The bird attracted by the bait, alights upon the shelf, when the fowl er grabs his prey by the legs with his hand, draws it under the surface, and secures it in a n ?t bag which is worn abou his waist.

Hairy Men.
Two remarkable instances of hairy men arrived recently in Berlin. They are Russians, father and son, and have excited so much interest that Professor Surchow has delivered a lecture Virchow has delivered a lecture upon the phenomenon, an abstract of which appears in Edinburgh Medical Journal.
They are peculiarly remarkable in keing edentulous. They are not hairy men in the ordinary acseptation of the term, but more resemble some of the monkey tribe (the Diana monkey, cuxio, etc.); while their edentulous condition carries them yet lower in the animal scale. The eldest is a man aged over 55 , Andrian by name, said to be the son of a Russian soldier from the district of Kostroma. He was born during the troma. He was born during the period of service of his reputed to him, to his mother, or to a to him, to his mother, or to a brother and sister whom he possesses. To escape the unkindness of his fellow villagers, Andrian fled to the woods, where he lived in a cave, and was much given to drunkenness; even yet he is said to live chiefly on sauerkraut and schnapps; but his mental condition, which is truly none of the sharpest, does not seem to have suffered, and he is, on the whole, of a kindly disposition, and affectionate to his son, and to those about him. Andrian was married, and had two children, who died young; one of these was a girl resembling her father; but of the other, a boy, nothing can be ascertained. Fedor, the boy, exhibited with him, is three years old, and comes from the same village; he is said to be Andrian's son, born in concubinage; and it is most probable that this is the case, as it would be singular were two such creatures to originate independently in one small village. The peculiarity of these individuals is that they have an excessive growth of hair upon one particular part of the body, namely, the face and neck; on the body and lower extremities there is also a stronger growth of hair; and particularly on the back and arms of the child, there are sundry patches of 0.15 inch to 0.24 inch in diameter, covered with soft yellowish white hair 0.12 to 0.24 inch long. Andrian himself has on his body isolated patches strewn, but not thickly, with hair 1.5 inches to 2 inches long. But all this is trifling and subordinate compared with the hair growth on the face, to which attention is mainly directed. Andrian has only the left eye tooth in the upper jaw; Virchow has not stated how many teeth are in his lower jaw, but from the
context it is improbable that he has more than his son, namely, four incisors. The son has no teeth, hardly any alveolar process, and the upper lip is very narrows so tha the upper jaw appears depressed; the father presents the same appearance. It is somewhat singular that a simila family has long been known to exist at Ava, and was firs described by Crawford in 1829, and since then by Beigel. Three generations of this family are now known to exist. The grandfather, Shwe-Maon, had a daughter Maphoon, and she again a son, all of whom present precisely the same pecu liarities as in the family of Andrian, not only as to the growth of hair, but also as to the teeth. The grandfather has in the upper jaw only four incisors, in the lower jaw four incisors and one eye tooth; and these teeth did not appear incisors in each jaw; the eye teeth and molars are wholly wanting; the first two incisors appeared during her second year. The peculiarity of the hairiness in these individuals year. The peculiarity of the same type as in Adrian and his son, in whom every is of the same type as in Adrian and his son, in whom every
part of the face and neck, usually only covered with lanugo, part of the face and neck, usually only covered with lanugo,
is covered with long hair, the very eyelids being so covered, the eyelashes being normal, while flowing locks come out of both nostrils, and also out of the meatus auditorius externus. At first sight, the occurrence of two such families in two such distinct parts of the world, seems to point them out as "missing links"-as the unreformed descendants of an earlier race of man. And our thoughts are carried back to the Ainos or harry Kuriles, who are believed to be the remains of the aborigines of Japan, and who now inhabit the northern parts of the Island of Yesso and the southern part of the island of Saghalien. At first these aborigines were ate information, obtained by the Berlin Anthropological Society through the German resident Herr Von Brandt, accompanied by numerous photographs and Japanese pictures of panied by numerous photographs and Japanese pictures of
these Ainos, and from an examination of a skull recently ob. these Ainos, and from an examination of a skull recently ob
tained through Privy Councillor Von Pelican, Virchow is able to state with positiveness that, neither in respect of the formation of hair nor in regard to the teeth, have the Ainos any analogy with the Russian or Burmese hairy men. The Ainos are certainly hairier on the chest and extremities than the nations around them, but there is nothing peculiar in the distribution of the hair, and the males have hair only on the typical parts peculiar to man. There is not a sladow of a men, andection between the Amagination could connect the latter with the Burmese family No doubt, careful breeding could raise a new race of men from this accidental variety, just as various new races of domestic animals, dogs, for instance, have been propagated from accidental varie ties. Virchow, however, believes that the peculiarities, belonging to the Russian as well as to the Burmese families, depend upon idiosyncrasies of innervation, and these upon accidental congenital abnormalities in the trigeminus, within whose domain all these features present themselves, only to be ascertained by careful dissection.

Becent Gumerian amd fareign eatents.

mimproved scrubbing Brush

Carl Herold, formerly of Pittsburgh but now residing with Mr. Vock, 52 Ludlow street, New York city.-This invention is designed to furnish a other cleansing liquid. This reservoir is in the brush back, in which a small air hole is made, the closing of which by the finger, while the brush
is in use, will stop the flow of the liquid; or the hole may be provided with is in use, will stop the flow of the liquid; or the hole may be provided with
a valve. The improvement may be applied to blacking brushes, for which it is especially suitable. Further information may be had by addressing Mr. Herold as above.

Improved Grain Separator
Joseph Koons, New Auburn, Minn.-This invention is an improved grain
separator, so constructed as to thoroughly senarate the grain from the straw separator, so constructed as to thoroughly senarate the grain from the straw the straw out of the machine and deposit it upon the stack. The frame of the machine is rectangular in form, and is incased upon its top and sides.
The frame is from twelve to fourteen feet long, about four and a half feet high, and from three to four and a half feet wide. Two shafts revolve in a side bar, and to each are attached two wheels, which work in circular spaces in the casing of the machine, so that the straw and grain cannot es-
cape. The wheels are connected near the rims, at their apper and lower cape. The wheels are connected near the rims, at their upper and lower
parts, by two rods, the points of attachment of which form an angle with
each other of one hundred and sixty he separating rack, the slats of which are provided with teeth, inclining forward, so that as the rack moves upward and forward it may carry the straw with it and may slide beneath the straw as it moves downward and rearward. By this construction, as the shafts are rocked, the rack receives the vertical and horizontal movements necessary to properly separate the
grain from the straw and carry the straw forward. To the lower rods is tached the conductor which receives the grain from the rack and conducts it to the sieves. To the forward end of the conductor are attached
ingers to break up the sheet of grain as it falls to the shoe or sieves. The fingers to break up the sheet of grain as it falls to the shoe or sieves. The
conductor has the same vertical and horizontal movement as the rack. By sitable mechanism, the horizontal and vertical movements of the rack and conductor may be regulated at will. This adjustment enables the f
movement of the straw to be accelerated or retarded, as required.

Improved Corn Planter.
Charles Hutchins, Aubrey, Kan., assignor to himself and Abram Large, of in guide slots of the hopper, at the dottom of the same. The slide is ar ranged with a band spring, to whith is connected a lug which is acted upon by knobs attached to the spokes of the wheels, according to the distance st
which the corn is to be planted. The knobs carry the spring and slide forwhich the corn is to be planted. The knobs carry the spring and slide for-
ward, and drop the seed inside of plow to the ground. As soon as the pring is released, the posite to the knobs, for the purpose of marking the exact place at which
the corn has been dropped. The driver is thereby enabled to see at any the corn has been dropped. The dry or not. As soon as he finds himself not exactly in line, he can, by placing his foot on the lever, raise the front
wheels on the pivots, and regulate the planting by simply turning the wheels forward or backward, which allows htm to plant as straight one way wheels forward or backward, which allows him to plant as stralght one way
as the other. The broad oancave hind whet ls are placed back of the plows, which is operater the corn dropped the the furrows. By means of a lever
whe driver, the pivoted frame with the Which is operated by the foot of the driver, the pivoted frame with the
Wheels is raised, and thereby the planting interrnpted at will, as: requires

Improved Reciprocating Engine.

 oth cylinder heads, and disks fit thereon, one each side of the pist an work airtight in the cylinder. On the upper side of the latter are inducion ports for the air, and valves for opening and closing them, which areconnected by a valve rod. Short rods project into either end of the cylin er, by which the levers are thrown to work the valves, by means of the isks, which strike the rods when forced against the cylinder heads. Th cam portsare on the lower side as is also an injection port for water, to
condense the steam after having thrown the shuttle to expel the air through the clack valves and shift the air valves. Supposing the engine to standing with its piston at its forward end, and the valve shifted to ad it steam at the front port, the rear disk will thereby be driven to
ther end of the cylinder, expelling the air ; and just before arriving other end of the cylinder, expelling the air ; and just before arriving at hand air port, and open the left hand port; at the same time, if the injecting port be opened and water admitted, the steam will be condensed and a
vacuum formed, so that the air admitted will drive the piston and other disk acuum formed, so that the air admitted will drive the piston and other dis on the two sides of the piston, which, in practice, will probably be about welve or thirteen pounds to the square inch. At the same time the injec ion port should be closed to shut off the water; then if steam be admitted between the rear disk and the piston, it will be driven back to the left, ex pelling the air and water at that end, and taking their place to form a vacu
um again by being condensed by water admitted; so that as rear disk arrives at the end of its movement and strikes the rod, the air would be admitted behind the piston, and drive it back to the place of be ginning, and so on.

Improved Safety Valve.
James Hoffman, Belvidere, N. J.-A short Vertical pipe rises up from the top of the steam chamber, having a considerable enlargement near the
upper end, which is bored out cylindrically, and, at a suitable distance above the bottom, perforated with numerous holes. The safety valve proper is seated at the top of the small bore of the pipe, and is provided
with a cylindrical attachment fitted to the bore, as nearly steam tight as it ith a cylindrical attachment fitted to the bore, a nearly steam tight as it steam has lifted the valve, it cannot escape until the attachment rises as
high as the lateral holes. By this means, the lifting:of the valvehighenough high as the lateral holes. By this means, the lifting of the valvehighenough
to insure the opening of the escape to the full capacity of the bore will be

Improved Wood Molding.
Leonard Bushnell, New Bedford, Mass,.-This invention consists in a
wooden or other molding, provided with stamped ornamental figures o signs in intaglio, having the sides of the recesses beveled and inwardly inclined, to faellitate the operation of gilding

Improved Wheel for Vehicles.
Joseph f. Glover, Freedom, Ky.-An octagonal tube has a screw thread cut upon each end, and is lined at each end with antifriction metal, to form the bearings for the axle. The two hubs have octagonal holes formed
through therricenters, to fit and slide upon the tube; and in their outer sides are formed dovetailed recesses to receive the dovetailed inner ends of the spokes, which are kept in place by plates bolted to the hubs. The inner
part of the plates is rabbeted to receive the flange formed upon nuts, which part of the plates is rabbeted to receive the flange formed upon nuts, which
hold the hubs and plates in place, and also move sald hubs and plates out hold the hubs and plates in place, and also move sald hubs and plates out
and in. The corresponding spokes from the two hubs meet at their middle parts, and their outer parts are connected together. The outer ends of the itsinner side and concäve upon its outer side, which construction prevent the wheel from slipping. By this construction the spokes are shortened by spreading their inner forked ends apart by turning the nuts outward. This shortens the spokes and loosens the rim. By turning the nuts inward, the
inner ends of the forked spokes will be moved toward each other, the spok es will be lengthened, andithe rim tightened.

Improved Car Coupling.
Xavier St. Pierre, Ophir City, Utah Terr.-This invention consists of a
pair of spring jaws, side by side, with heads or enlargements near the fron nd between which a double headed coupler enters. The latter is secure by the heads of the jaws engaging it behind its enlargement, the jaws being
confined against springing open by a forked locking key, which drops down confined against springing open by a forked locking key, which drops down
with one of its prongs on each side. The forked locking device is raised with one of its prongs on each side. The a catch is combined with said lever, to engage it just afterit has raised the locking device, and hold it up
until the cars are to be coupled again. This catch is so coupled with one of the spring coupling jaws that, when it is swung back by the lever to al ow it to pass beyond said catch, the latter is caused to withdraw the sal
coupling jaw, io allow the coupler to escape freely and uncouple the cars. A spring is combined with the elbow lever of the locking device, to insure the return of the latter to confine the coupling jaws when the elbow lever released by the spring catch.

Improved Overalls.
Emil Weil, New York city, assignor to Stern \& Co., of same place.-The object of this invention is to furnish overalls readily applied without the
use of buttons, suspenders, etc., fitting the body of the person, and selfuse of buttons, suspenders, etc., fitting the body of the person, and self
adjusting to the position of the same. It consists of short elastic bands, inserted and applied into the band piece of the overalls, and closed by a common belt buckle, which is drawn through a slit of a flap
lower front edge of the overalls, and covered by the same.

Improved Apparatus for Puddling Iron

a pulley for revolving it. Thn.-On the rod or shaft of the puddling too is a pulley for revolving it. The pulley is fitted by a journal at one end in a
bearing in a standard, and the shaft is fitted in the pulley so as to slide free endwise, and has a long key or spline working in a groove in the pulley, io be revolved at the same time. The standard is jointed to a section which own through allar on the bench, and has a cylindrical extension passing down through a long slot in the bench top, which is secured by a pin. The
bench ranges parallel with the front of the furnace, and is pivoted just portion of the puddling tool rod does not revolve with it when held by the attendant for directing the tool. It will be seen that the tool can be moved in and out by sliding in the pulley in which it is supported; also, by.swing. ng the bench forward and backward on the pivots, that it can be swung horizontally on the bench by turning the section of the support, and that it
can be shifted along the bench parallel with the furnace, and thus all nec to manipulate the iron for puddling and balling.

mproved Portable Stove

Rice Moore, Nashville, Tenn.- This invention relates particularly to the chamber of the stove, whereby the course of the heat and products of combustion is controlled with reference to their effect on a cullinary vessel set
into said chamber. A small vertical rectangular case is mounted on short egs and contains a fre pot fue oven, and chamber. The fire pot extend downwarda little below the bottom of the other portion of the stove, and
has a perforated bottom and sides. The combustion chamber extends up has a perforated bottom and sides. The combustion chamber extends up
through the oven space at one side, and discharges into the heating chamber, and a dooropens into it for supplying the fuel. On the side of the stove els aremade long enongh to extend through the heating chamber into the oven, through the top, to utilize the heat of the oven for boiling, stewing,
etc. A plate is arranged in the chamber, parallel to the top of the oven, dividing it horizontally into two parts. Immediately over the combustion chamber said plate has an opening which can be partially closed by a
sliding damper. By adjusting the damper, a large share of the products of sliding damper. By adjusting the damper, a large share of the products on
combustioa will be diverted to pass beneath and around the end of the plate before reaching the flue, while the remaining portion will pass vertically into the same through the openings on each side of the damper.
Improved Tomb.
Joseph C. Taylor, Roanoke, Ala.-This invention has reference to a tomb or grave cover which is gomposed of a base or pedestal of masonry, upon Which is placed a slab of artifictal stone resembling marble, formed by
nolding upon sald base a composition of hydrauliceement, sand, and water or their equivalents,

John S. Tadiock, Belmont, Texas, assignor to himself and J. M. Howell, same place. This invention relates to railway horse powers; and it con-
ists of cog wheels on the drums over which the endless chain travels ge ing with large multiplying wheels, one on each side of the chain. Between hese wheels is a drum on the same shaft, on which the chain rests, so as to eared with a counter shaft having pinions and transmitting pulless, from which the motion is taken by belts. The frame supporting the endless chain rests by the wheels of its drums on the large multiplying wheels, and an be shifted so as to ascend from either side to run the machine in either
direction, and to change the inclination for varying the speed. The drums of the endless chain are weighted to prevent them from jumping out of ear with the multiplying wheels.
Improved Apparatus for Filling Cans with Tomatoes, etc. or funnel-shaped, at its lower end, which terminates in a small pipe. An adjustable can holder is placed in front of the end of the tube and provide with a movable cut-off plate. In the tube is a piston, connecced with a
counterpoise. The tomatoes being placed in the receptacle through a suitbly arranged hopper, the piston, being caused to descend by pressing readle, forces the contents out of the tube and into the can. When the onds with the cut-off plate is placed so that its opening no longer corre ponds with the end of the tube, so that its solid portion prevents the
escape of the tomatoes after the can is removed. A trough is placed in ch a position as to recelve any of the substance being canned that ma it to a receptacle placed at the rearled while filling

Attaching Stereotype Plates to Blocks.
Hughes, New York city.-A stereotype plate is Marshali J . Hughes, New York city.-A stereotype plate is cast on and n impression is taken, it can be "locked up" without the delay and pre minary labor required to attach the ordinary stereotype plates to block tors of country journals and others who use selected matter, isers in general.

Improved Cotton Chopper and Cultivator.
Mansfield L. Nearn, Doubie Briages, Tenn.-This invention is an improve ment in the mode of attaching shovels to the standards of cultivators,
more especially those employedia cotton culture. The invention consists in forming two parallel vertical slots in the shovels. through which bands
or straps of sheet metal are passed, and in forming notches or recesses in the sides of the standards in which jaid bands or straps are laid and
thet are and and

William R. Coovert, Londoned Ca.-This Coupling.

e class of car:couplings formed mainly of arrow-hed improvement in bars, and pivoted latch blccks engaging therewith. The invention consist connecting a draft bar to a pivoted block having a ratchet mechanism
for elevating it, so that the pin which connects the two will be disengaged frolevating it, so that the pin which counects the
from the draft oar when the pivoted block is raised.

Improved Farm Gate.
Jacob C. Rohrer, Gomer, Ohio.-The frame consists of two vertical side ieces, of which the stronger piece is placed sidewise of the main post o securely into the ground. The upper part of the piece is recessed and turnsin arms, which are applied to the top of the main post. The two ver cai pleces are lateralyy connected by a top plece, diagonal brace, an crizontal piece. The vertical pieces, and also the diagonal brace, are repiece of the gate is carried by rollers, so that the gate slides. easily in the
framer piece of the gate is carred by rollers, so that the gate slides easily in the
frame forward and backward. The vertical end pieces limit the extent o sliding the frame, being, however, so constructed that that part of the gate
which extends beyond the stronger piece balances the fore part of the gate which extends beyond the stronger piece balances the fore part of the gat
and frame, 30 that the whole gate swings readily and easily in bearings.
Improved Composition for Removing Incrustation in Boilers
Charles Burfitt, New Wimbled on, England -The three different forms-that is to say, in block, in liquid, and in paste. The block composition is compounded of oak galls, Australian bark, sode. glue, Irish moss, and filtered water; to be set by the application of 170° of
heat. Into the vessel in which the above ingredients are mixed is eat. Into the vessel in which the above ingredients are mixed is put a
small quantity of arsenic. The liquid composition is oak galls, Australian bark, soda, Irish moss, and filtered water, bolled together for three hours. itered water, bolled to 120°. Talls, Irish moss, Australian bark, soda, an filtered
added.
Improved Shaving Mug.
Andrew J.Furrand Walter C. Knaus, Boonsborough, Mo.-This inven tion is an improved shaving cup, so constructed that the water may be
warmed and kept warmby a small lamp connected with the cup itself. A warmed and kept warm by a small lamp connected with the cup itself.

Improved Glove.

Thomas G.Foster, Gloversville, N. Y.-This 'invention relates to gloves inger pieces cut in a single piece, with the finger and thumb pieces sufficiently long to turn over the ends of the finger and thumb, and be at

Improved Overflow Alarm.
ble kind. There is a lever for holding in mechansm may beof any suit ounded, and a catch for tripping said lever. A float is arranged in the drip pan to disengage said lever when the fluid rises in the pan nearly to ver by receiving the drip from another pan upon it, the said tiliting pa eing weigated so that thedrip falling on it at the other side of the ful

Improved Composition for Purif ying Illuminating Gas.
Samuel P. Parham, New York city.-Sawdust is mixed with lime, Samuel P. Parham, New York city.-Sawdust is mixed with lime, to
which a solution of copperas in water is added, and the same, together with oxide of iron, thoroughly mixed and stirred, producing thereby a reddish brown composition. This composition is placed into large puri-
fiers, which are alternately brought into use, so that the contents of one flers, which are alternately brought into use, so that the contents of one
maybe taken out, and, by exposure to the air, be revived and charged may be taken out, and, by exposure to the air, be revived and charged
again, till gradually, by long and repeated use, the absorptive power is spent. The sulphureted hydrogen gases are distributed and absorbed in all, and the gas issues from it purer than from the lime purifiers.

> Inventions Patented in England by Americans. [Compiled from the Commissioners of Patents' Journal.] Bolt Machine.-A. Wood, Worcester, Masb.
Brake - G. Westinghouse, Jr., Pittsburgh, Pa Concentrator, etc.-J. A. Peer et al., San Francisco, Cal. mipctat Tmichards et al, Philadelphia, Pa Electric Telegraph.-J. b. Stearns, Boston, Mass. Gas Engine.-T. B. Fogarty, Warren, Mass. Hardining Steel, etc.--S. S. Lewis (of New York city), London, Eng rroning Machink.-G. W. Cottingham, Refugio, Texas.
Makine Iron, Etc.-H. M. Baker, Williamsburgh, N. Y. Making iron, etc.-H. M. Baker, williamsburgh,
MAking Screws.-C. M. Spencer, Hartford, Conn. Naid Machine.- National Horse Nail Company, Vergennes, Pipe Tonas, - J. R. Brown, Middlesex county, Mass. Preserving Fibirrs.-T. Sim, New York city. Printing Madhink.-G. P, Gordon, Woodbridge, N. J.
Railway and Cabs.- C. W. Hunt, West New Brighton, N. F.
> WATHRPROOF BOOTB, KTC, -F, M, Sh@pArd, New York.city.

December 27, 1873.]

The Universal Hand Planer is recommended n most favorable terms by all using them. Saves its
60 Duane street, New York
Wanted, Agents in Foreign Countries, to sell
my Bolt Forging Machines. J. R. Abbe,Manchester,N.H. Wanted to purchase-A small machine, to woods, for flre wood. Address Drawer 49, Post Oftce

Moods, for fire w

Machine Manufacturers acquainted with
Clothes Pin Machinery, address Julius Smith, Rock
Falls, IIls.
W anted-A Manufacturer who can supply
clean cut paper tape for !" printing telegraph instru-
clean cut paper tape for "' printing telegraph instru-
ments." Address G. L. Wiley, 126 East 61 st St.,N.Y. city
2nd hand Iron Planer for Sale, planes 16 ft .
Address INew Haven Manf'g Co., New Haven, Conn.
I will give $\$ 2,000$ a year, cash, and furnish
Horse and Wagon reee and $\$ 550$ worth of goods, not to
Horse and Wagon free, and yoron, worth of goods, not to
be paid for till sold. An agent wanted in each county in
be paid for till sold. An agent wanted in each county in
the U. S. Stnid stamp to J. C. Miller, Pittsburgh, Pa.
Rue's " Little Giant" Injectors, Cheapest Co., 93, 95, 97 Liberty street, Kew York.
Wanted A-A
purctase Patents, or mansible Pacture on royalty, Housepurchase Pattnts, or mannfacture on royalty, House-
hold articles of Glass or Iron, such as Lamps or Table hold articles of Glass or Iron, such as Lamps or Ta
Furniture. Address P. O. Box 881 , Pittsburgh, Pa.
Flour, Feed, Paint, Ink, and all other kinds
of Mills. Ross Bro's, Whlliamsburgh, N. Y. Brown's Coalyard Quarry \& Contractors' Ap-
paratus for hoisting and conveymg marerialby 1roncaile.
W.D.Andrews \& Bro. 414 Waterst.N. Y.
Millstone Dressing Diamond Machines-

Mimple, eftective, economical and durable, giving uni-
Nobody will buy the metal Truss with its
pitiless Iron Finger. The New Elastic Truss, 688 Broadway, New York, holds the rupture easy till cured. Pressure all around the body- Mortising and Tenoning Machines of
Buy Mort,
Gear, Boston, Mass. Qear, Boston, Mass.
Tool Chests, with best tools only. Send for
circular. J. T.Pratt \& Co., 53 Fulton St., New York. circular. J. T. Pratt \& Co., 53 Fulton St., New York.
Root's Wrought Iron Sectional Safetv Boiler.
1,000 in use. Address Root Steam Engine Co. 2d Avenue and 28th Street. New York.
Drawings, Models,Machines-All kinds made
to order. Towle \& Unger Mf 'g Co., 30 Cortlandt St., N.Y. 2 to 8 H.P.Emgines,Twiss Bros.N.Haven,Ct. Engines for Sale, Cheap-Three 8x12 hori-
zontal stationary; one $1: x 18$; one 5×8. Enquire at 1 . Frisbie \& Co., New Haven, Conn.
Frisbie \& Co., New Haven, Conn.
Wanted-To let three new patents on roy-
alty. Machinery popular. Cyrus H. Kirkpatrick, Lafayette, Ind. Wrecking, Pu mping, Drainage, or
Mining, Andrew's Pateni, nside paze.
Parties needing estimates for Machinery
of any kind, call on, or address, W. L. Chase \& Co., Parties needing estimates for Machinery
of any kind, call on, or address, W. L. Chase \& Co.,
$93,95,97 \mathrm{Liberty}$ Street New York, At the "Scientific American" Office, New
York, they use the Miniature Telegraph. It greatly facilltates the transaction of business. By touching dif-
ferent buttons on the desks of the manager, he can comferent puttons on the desks of the manager, he can com-
municate with any person in the establishment without meaving his seat. Splendid tor offices, factories. shops,
dwellings, etc. Priceonly \$5. Made by F. C. Beach \& d wellings, etc. Price only $\$ 5$. Made by F. C. Bea
Co., 290 Broadway, corner Warren St., New York.
Iron Steam Boxes for Stave Bolts \& Veneer
Cutting Machines. T. R. Bailey \& Vail, Lockport, N.Y. Cutting Machines. T. R. Banley \& Vail, Lockport, N.Y.
Boult's Unrivaled Paneling, Variety Mold-
ng and Dovetaliling Machine. Manufactured by Battle ng and Dovetailing Machine. Manufactured by B
We sell all Chemicals, Metallic, Oxides, and
 we mail for $\$ 1$. Orders will receive prompt attention by
L. \& J. W. Feuchtwanger, 55 Cedar Street, New York. Wanted-To manufacture, under contract,
heavy Machinery, Steam Engines, Ore Crushers, \&c., \&c. Address Herrman \& Herchelrode M'f'g Co., Dayton, Ohio.
Buy for your boys, for Christmas, the Tom
Thumb Telegraph, complete for practical use, with bat.
 Co.. 260 broadway, New York. See engravings in last
week's "Scientific American." week's "Scientific American."
F'r Solid Wrognt-Iron Beams, etc., see ad.
vertisement. Address Union Iron Mlls, Pittbburgh, Pa., or lithooraph, etc.
For Bolt Forging Machines, , Eolt Holding
Vises to upset by hand. J. R. Abbe, Ma che chester. N.H. Vises to upset by hand. J. R. Abbe, Ma Gechester. N.H.
Small Tools and Gear Wheels for Models.
List free Goodnow Wightman 23 Cornhill Listfree. Goodnow \& Wightman,23 Cornhill,Boston,Ms.
Brass Gear Wheels, for models, \&c, made to
order, by D. Gilbert \& Son, 212 Chester St., Phila.,Pa. Fuperior to all others-Limet \& Co.'s French heavier, better finished, and better tempered. Send for
orice-list. Homer Foot \& Co., Sole Agents, 20 Platt Street, New York.
Subscribe for "The Mechanical Advocate," Boston, Mass. \& Electrical Inst's-Cheap inst's
Telegraph \& End
for learners-Models and light Mach'y. G. W. Stockly, Sec., Cleveland, ohio.
Dean's Steam Pumps, for all purposes ; Engines, Boilers, Iron and Wood Working Machinery of
all descriptions. W. L. Chase \& Co., $93,95,97$ Liberty Streee, New York. Belting-Best Philadelphia Oak Tanned. Belting-Best Philadelphia Oak Tanned.
c. W. Arny, 301 and 303 Cherry Street, Philadelphia, Pa. Mercurial Steam Blast \& Hydraulic Gaugee Lathes, Planers, Drills, Milling and Index
Machines. Geo. s. Lincoln \& Co.. Hartord, Conn. For Solid Emery Wheels and Machinery,
send to the Union Stone Co., Boston, Mass.,for circular. All Fruit-can Tools,Ferracute,Bridgeton,N.J. For best Presses, Dies and Fruit Can Tools,
Bliss \& Williams, eor. of Plymouth \& Jay, Brooklyn,N. $\overline{\text { I }}$. Five different sizes of Gatling Guns are now
manufactured at Colt's Armory, Eartford, Conn. The manufactured at Colt's Armory, Eartford, Conn. The
arger sizes have a range of over two miles. These arms
are indispensable tn modern warfare.
Hydraulic Presses and
Hydraulic Presses and Jacks, new and sec-
ond hand. E. Lyon, 470 Grand Street. New York. D mper Regulators and Gage Cocks-F
Steam Fire Engines,R.J.Gould,Newark,N.J.
Peck's Patent Drop Press. For circulars,
Mdrese Milo, Peok \& Co., Now Haven, Conn.
A. P. asks: Can you tell me how to draw

 cosine. In our example, we have the angle, B A C, Fig. 1 ,
4043/485 $51 /$, which ist helatitude of New York city. From $40043448 \cdot 51 /$, which ist he latitude of New York city. From
 convenient scale, and join the points A and B by a straight
line. B AC will then be the required angle. Next, to Ine. BA C whour ines on the dial, draw two parallel
construct the hour
lines J F, K Fing. at a distance apart equal to the hhickness of the style, Fig. 3. Draw a line, T T, perpen dicular to these parallels, and mark the points of inter
section, B and N . This will be the six o'clock line section, B and N. This whil be the six oclock rie.
From B as a center, draw two semicircles, with radii
equal to A B and B C, Fig. 1. Divide each of these semicircles into t welve equal parts. Then from each poin of division in the outer semicircle, draw a line paralle
to $T \mathrm{U}$, and from eacl point of the inner semicircle o T , and from eacla point of the inner semicircl
draw a line parallel to $J F$. The intersections of lines drawn from corresponding points of outer and inner
semicircles give points of the hour lines. The hour semicircles give points of the hour lines. The hour
Innes can then be drawn through these points and the lines can then be drawn through thes
center B. To illustrate the construction, from the point ceuter B . outer semicircle, draw $\mathrm{L} m$, parallel to T W,
L , of the
From l, the corresponding point of the inner semicircle, draw $l m$, parallel to J F. Then m, the point of intersec
tion of the two lines, is a point of the eleven o'clock hour line, and this line may be drawn through \mathbf{B} and m. To find the quarter hour lines, divide the outer and in ner semicircles into four equal parts, between eonsecu-
tive hour lines. Then draw construction lines, as before tions will give points of the quarter hour lines, whic are to be drawn through the center, B. The construc tion of these quarter hour lines is shown between the
hour lines of VII and VIII. In this way, all the morning hour lines can beconstacted. The afternoon hour line are found in a similar manner, except that they radiate
from the center, N, and the semicircles, used in con-
struction,aredrawnfrom the same point as a center. It struction, aredrawn from the same point as a center. It
is not necessary to lay off all the hour lines, but only
s led me to

L. asks: What is the size of argest gun made in this country has a a
and its solld shot weighs about 1060 lbs.
A. B. C. asks: 1. Can a main belt work on
the balance wheel of an engine? 2. What kind of belt is best? A. 1. Yes. 2. Any kind of a belt, flat, round, o
angular, will answer, if the balance wheel is constructe with re thereto.
J. N. Q. asks: What is. soft iron, used in make an electromagnet out of a bar of soft iron one foot long, does it matter whether it is round, or square, or the bar is, whether the size of No. 16 wire, or an inch in
diameter, or any other size iron is the best for this purpose. The bar may be round he power of the magnet. The magnetism of cyllinder of iron of equal length, magnetized by currents of the
same force, and having the same number of windings urrounding the core closely, is proportionate to the
ngs of Aron? A. A. We know of no better plan than then place the castings, surrounded by saw dust, in an fro it to a red heat for several hours. The castings must bet cold before they are withdrawn.
C. H. M. asks: 1. Where was. the Great
Eastern built? 2. What is metaline? A. 1. The Great Eastern was built at the works of John Scott Russell of metaline is kept secret by the manufacturers. It is a
E. E. P. says: I run a boiler which carrie

51bs. steam; I have been using water heated to 125°
Fan. What would be the saving in fuel should I use water heated to 21° or 212° Fsh. ? A. In case all the
other conditions were the same, the asving would be as
follows. With water heated to $12^{\circ}=$ about 8 per cent.
W. R. says: 1. I have a pistol which I load rel looks as though it had been painted inside with red paint. After a short time, the red color disappears. The pearance. Where does the red come from? 2. How without in juring the wood? 3. Would it be likely to crack in seasoning? A. 1. t may be that the red oxide,
which is readily decomposed by heat, s formed. 2 . The bark can be removed when the stick is grmed. or af. The
wards, by steaming or heating it. I . It should be seasoned
W. F. H. asks: How can I get the numbe of concave spectacles in the most practical manner?
can get the convex ones correctly bymeasuring. A. W belleve that double concave glasses are numbered in
accordance with their radil of curvature. For instan No. 6 glasses have a radius of curvature. of 6 tnches.
$\left\lvert\, \begin{aligned} & \text { earliest sunrise and latest sunset, in the latitude for } \\ & \text { which the dial Is constructed. The style, Fig. 3, should } \\ & \text { be made so as to have the angle }\end{aligned}\right.$ tude of the place. The base of the style should cover
the space BNFG. The dial should becarefully levelle and placed so that BN points to the south, and F G t he north. To lay off a north and south line, draw sev
eral circles on a board, and place a light rod at the cener, perpendicular to the plake of the board. Place the
ooard in a level position, so that a shadow will be cas by the sun from the board. During the morning, mark the points where the shadow just reaches each of the
circles, and mark the same pointsin the afternoon. Then
isect each of the arcs between the points marked bisect each of the arcs between the points marked in line joining the centers of the circles and the points of bisection will be north and south. .This constructio
while not strictly accurate, is sufficiently correct, i carefully made. The time given by the dial must be cor-
rected by the equation of time, which may be found rected by the equation of time, which may be found in
nearly any almanac. It will be observed that the hou removed on either side. For this reason, it is usual place the center of the dial at a little distance from the enter of the hour lines, so as
of the hour lines around noon
L. P. asks: 1. Is the link a cut-off, or does valve? It closes the valve sooner or later just equal to what the lead varies, but does it do any more? 2. I an
running a propeller 37×30 inches stroke, pressure 40 lbs. vacuum 15 inches, making 50 revolutions, cutting off a
about one half stroke. The bovlers have 2500 feet ing surface, the surface condenser, about 600 feet cool-
ing surface. 'the valve takes steam in ng surface. The valve takes steam in the center an
exhausts on the outside. It has $13 / 4$ inches lap on the steam side, one thirty-second inch lap on exahaust side.
The valve is set where the engine does its work, with seven sixteenths inch lead, mid-stroke lead one half
inch, exhaust lead two and five thirty-seconds inches The eccentrics are cast solid, and are therefore unalte the eccentric rods beengoutside of the block, connect eccentrics have 9 inches throw; but as I I use shaft. The Inches throw. I get a better vacuum when well linked
up, with the throttle wide open than any other way. Ex haust opens on the up stroke $7 \% / 2$ inches from end of stroke, and five inches from end on the down stroke. think this is wrong, and the remedy I propose is to bor
out the eccentrics on one side and put in a bushing, would make the exhaust ore up the ports Piecing out eccentric rods, I should get one half inch lap instead of seven sixteenths inch lead, taking steam just as the
crank pin passes the center line, cutting off and exhaust ing later. Waat would be the effect on the engine's ru ning smoothly, and would it take more sweep of the
link to handle her? What would be the effect on the
vacuum and vacuum, and what would a diagram of each way look
like? 8. What range of stroke and pressure has a good
indicator? indicator? 4. The condenser has upright composition
tuibes 40 inches long $x \not \approx$ inch diameter, and weighing.
ounces, taking water at the botom and deliverring on
top, but to one side. The e emperature of injection 8 sol
 pump is 8×5 inches stroke, air pump 10×8 inches stroke, neblease the vacuum? How do you get the amount of water for a surface condenser ? For a jet, Bourne give bout 29 times the amount contained in the steam. The holes come. Is it the exhaust or the oil used ? 5. How can
Imake the cut edge of belting (rubber) like the new dge? 6. How would hard wood, set in brass, do for foo What is the best method in the care of boilers with com position tubes? Is it not as well to feed a little salt wate nd blow off oc casionally as to feed lime? What amoun
of lime is used per cubtc foot of water What is the specific gravity of carbonic acid compare with fresh water? 9. Can a person prevent another from using a patent article, if he has used the same thing number of years before the article was patented?
You have the right idea of the action of Probably you can secure a better action by adding lap to the exhaust side of the valve. Engines ordinarily re-
quire some cushion, whether high or low pressure. We quire some cushion, whether high or low pressure. W carcely think an alteration of the valve would affec
nuch change in the vacuum.
3. Indicators are adapte to all strokes and steam pressures that occur in.practice.
Thetrouble with y our condenser seems to be that it oo small. The tubes are probably injured by some im. bath. Theoretically, are tinned by immersion in a ti surface condenser can readily be calculated, and the it is customary to allow from one half to twice as much, or example, we will suppose that your engine cuts of der full of steam at 40 lbs. pressure. The capacity o the cylinder, adding 10 per cent for clearance, is abou 20.5 cubic feet, so that in every revolution $20.5 \times 0 \cdot 13434=$ 3.75 pounds of steam are used. Steam at this pressure
has a total heat of 1201.5° Fah. The steam, when con ensed, has a temperature of 160°, so that it has los ensing water raising whe temperature of the tatter 100攺品 $=50^{\circ}$. Hence, Hn this case, if all the injection water quire $1041 \cdot 5 \div 50=20 \cdot 83$ times as much injection water a the amount contained in the steam, or $3.75 \times 20.83=78 \cdot 11$ ibs. of injection water for each revolution of the engine The circulating pump ought to be capable of delivering io it. Perhaps applyinga hot iron to the edge migh have a good effect. 6. The arrangement might answer If the wood were placed endwise of the grain. . We
knownothing of the action of lime, but do not think the best plan will be to make a slight scaie in the boile by the use of salt water. s. About 0 -00187. 9. We think
you can use your arrangent, you can use your arrangement, but cannot apply the im
provements made by another party without first obtaining his consent.
 heel, so as to give 5 inches leverage, or (2) so as to ge 13 inches leverage, or (3) on center of 3 inch whee
What proportions have these three powers? A. Disre - arding friction, the resistance that could be overcome the circumference of the small wheel, would be as fo
ows $1.31 / 8$ times ; $2,81 / 8$ times, and 3,6 times the powe applied to the crank.
J. H. asks: 1. What wouid be the loss of
steam by having a throttle valve 25 feet from engine, with a pipe of $13 /$ Inches inside diameter, well cuvered?
The engine is of 10 horse power, working at 1001 bs. pres ure to the square inch. 2. Were the monitor set opposite each other, or were they set so a
to fire in the same direction, having separate ports? Are the guns arranged on all monitors as on the first on oss, under the circumstances mentioned. 2 and 3 . Th guns on all the monitors wer
$\underset{\text { which is run by a treadie. a s want to printing if it could bo }}{\mathrm{P}}$ run by a weight, which could have a drop of forty or
fifty feet. How heavy should such weight be? A. If fifty feet. How heavy should such weight be? A. If
it requires the power of a man to drive your press, then ou will need a weight equal to one fifth of 33,0001 bs., 6,600 1 bs., raised 50 feet. This ought to drive your pres A. M. B. says, in reply to E. R. G.'s ques raking with a level molding: Of course he is a ware that the raking molding is of a different size and shape from
the level. Draw a square of any size, and the line A B the pitch of the cornice. Take A for a center, and C

the cut across the box; the angle 3 is for the side of
Minerals, etc.-Specimens have beenreeived from the following correspondents, and examined with the results stated
J. W.T.- Your ${ }_{\text {sp }}^{\text {ec }}$ imen is iron pyrites, a combination
imur and iron. il of vitriol, andalso for copperas or sulphate of iron. fter ro latter purpose, the ore is piled in heaps an reatment, and the action of the oxygen of the air, the sulphur becomes oxydized to sulphuric acid, which com-
bines with the oxide of iron, also produesd, forming lea of value, if its transportation to market be not to
xpensive.

410
ฐ̌rientific Ammicuix.
[December 27, 1873.

COMMUNICATIONS RECEIVED. The Editor of the Scientific American acknowledges, with much pleasure, the receipt of original papers and contributions upon the following subjects On a Square Acre. By J. H. M On Patent Cases in the Courts. By J On Cheap Telescopes. By S. M. B On Pisciculture. By J. A. M. On Friction Pulleys. By B. N. C. On Trisecting an Angle. By J. S. A. On the Parabolic Mirror. By J.L. On Reduction of Copper Ores. By F. C On Transfusion of Blood. By W. A. G On Rheumatism. By J. P. Also enquiries from the following : L. F.-M. F.

Correspondents whe write to ask the address of certain manufacturers, or where specifiled articles are to be had also those having goods for sale, or who want to find
partners, should send with their communitations an
amountsufflcient to cover the cost of publication under he head of "Business and Personal." which is speciall devoted to such enquiries.

[OFFICIAL]

Index of Inventions

Letters Patens of the United States ge granted in the week fnding November 25, 1873,
and each bearing that date.

[Those marked (r) are relssued patents.]

Horseshoe nalls, finishing, s. s. Putnam........... 144,922
Hose coupling, T. J. Mayall................... 144,99 Hose coupling spanner, L. Pond.........
Hose pipes, stop nozzle for, J. N. Allen. Indicator, pneumatic, Kealy \& Rid Inkstand, B. Brower....
Inkstand, T. S. Shenston
Inkstand, T. S. Shenston......
ronnngmachine, J. F. Walker.
Jack, lifting, Hamilton \& Conner
Knit fabric, B J. McGee..
Ladder, fireman'3. M. Cronin.........
Last block fastener, N. R. Streeter.
Laster, shank, w. H. Hanna........
Latch, door, F. Stowe..
Latch, gate, J. Bull (r)
Leather splitting machine, Goebel \& Prei
Letter box, B. B. Gurley..................
Locomotive mmoke stack, J. V. Bishop
Lubricating compound, N. D. Smith.
Malt polishing apparatus, W. W. Stoll
Measurer, spooling machine, Ket
Medical compound, G. F. Munro
Medical compound, G. F. Mu
Milk cooler, Crane \& Hadley.
Mill, fulling, R. Eickemeyer.
Millstone dressing machine, diamond, D. Laver
Mop wringer, A. W. Bunnell Mop wringer, A. W. Bunnell..
Needle threader, F. R. Gaspary
Nut lock, W. H. Bowman.
Nut lock, C. Dittman..
Nut lock, C. A. Howard
Oven for plate glass, flattening, J.................... ail, folding, Du Chateau \& Williams...
Paint, manufacture of,F. W. Gerdes (r)
Paper machines, stuff regulator for, D. Hamel.......
Photographic plate holder, A. Semmendinger
Plano string bridge, w. C. Ellis.
Pipe coupling, D. Ashworth....
Plane, metallic, J. F. Baldwin
Planing machine, J. Rankin..
Planing machine, J. Rankin..
Planter, corn, J. G. La Fonte
Plow, A. K. Dah1.................................
Plug, testing, J. Allin.
Power, spring, T. Ebeling................
Printing press, feeding, J. T. Ashley.......
Printing enameled surfaces, s . J. Hoggson
pump, J. W.Douglass
Pump valve, Gould \& Campfiel.....
Purifer, middlings, E. N. Lacroix..........
Quicksilver, purfifylng, Randol \& Wright.
Radiator, steam, A. L. Id
Railway raill fastening,...............
Railway switch, T. J. Reynolds
Railway switch, T. . Reynolds.....
Railway switch, self-closing, Hubbell \& Gregor
Refining and desilvering lead, G. L......
Register for machinery, S .
Register for machinery, S. F. Payne......
Rubber, etc., compounds of, T. J. Mayall
Safe doors, operating, H. B. B. Tripp....
Sample case, revolving,
Saw mill dog,
Saw mill head bloek, Presc
Scraper, road, R. F. Read...........
Scraper, road, Warner \& Kingsey.
Seeder, broadcast, J. R. Searborou
Seeding machine, M. Schnapp..
Seeding machine, E. Witzigman
Sewer bottom, cement, M.
Sewing machine, D. Porter.
Sewing machine, O. St. Amant...........
Sewing machine caster, J. K. Proctor.

Shovel,

Signal, fog, G. C. Pattison.....
Sgnal, railway, E. R. Marshall
Skirt, skeleton, P. Lippmann.
Sleigh brake, T. H. Bromley
Smoke consum
moke consuming apparatus, w. B. W. Smi......
Soda water tumbler nolder, J. Matthews. Spark arrester, G. Swenson...
Spinning machine spindle, W. G. Perry
Spoke setting machine, w. R. Greene
poke seting machine,
Spring, door, F. H. Richards
Steel, manufacture of, C. M.
Stoner, cherry, Buck \& Kirk.
Stove pipe streteher, etc., G. Elsey.
Strap couplng,. Cogswell.
Sulky, L. H.Jennison.
Suspenders, T. J. Flagg..
Tade, iroaing, L. Scofield
Tablet, writing, C. N. Brown......
Tan dryyng apparatus, N. Porter
Thrashing machine, J. Smith
Toy, automatic, A. H. Dean..
Trap, fly, Packard \& Standish
Umbrella, H. L. Power
Umbrella, c. B. Spencer............................
Valve, A. Marriott...........
Varnish, refining, F. Kersting
Varnish, refining, F. Kersting..................
Varnish for wood, metal, etc., F. F. Chevali
Veneer cutting machine, w. H. Williams....
Vessels' booms, antifriction, H. Gregory, Jr
Vessels, center board for, J. Espalla......
Vise, adjustable bench, J. B. Wardwell
Wagon brake, E. N. Jack
Watch, stem winding and setting, E. J. Pacaud.
Watches, reversible center pinion for, o. Gates
Water tank for hotels, J. H. Co
Water wheel, B. J. Barber
Whifletree, D. S. Sloan.
Wire-drawing machine, J. \& E. E. Woo.........
Wood, compound for flling, C. E. Bradle
Wrench, T. L. Buckley..
Wrench bars, die for forging, L. Coes............................144,832
Wrench. hose, E. Bucklin, Jr.............
APPLICATIONS FOR EXTENSIONS.
Applications have been duly filed and are now pending ings upon the respective applications are appointed for

27,297.-Railroad Car Couch.-E. C. Knight. Feb. 11.
27,303:-Fabtening

EXTENSIONS GRANTED. 6,243.-Water Closet Basin.-W. Boch, Sr 26,262.-Journal Box.-W. M. Ferry, Jr.
26,266.-INDIA RUbBER Hose.-T. J. Mayall 26,321.-METAL Casting Mold.-J. P. Broad.
$26,327 .-$ Nursing Botrlae.-F. J. La Ferme. 2,327.-NURSINe Botrie.-F. J. La Ferme.
26,329.-Boor Tir.-N. Silverthorn.

DESIGNS PATENTED 7,002.-KNIFR HandLe.-J. D. Frary, New Britain,
$003,-$ Inkstand.-G. W. MeGill, New York city t,

TRADE MARKS REGISTERED 1537.-Emery.-Abbott \& Howard, Boston, Mass. 1,538.-GUANO.-Guanahani Guano Co., Petersburg,
1,539.-PLLows.-Hunter \& Co., Frederckksurg, Va.
1,540 .-PERFUMRRY, ETC. - Felix Prot \& Co., Paris, France 1,541--CIGARS.-T. B. Slingerland, Rome, N. Y.
1.542.-CIGARs, ETC.
Consolidated Tobacco Co 1,543.-TEAS, ETC.-Great Eastern Tea Co., Terre Haute
In.
1,541.-Organs.-G. Woods \& Co., Cambridgeport, Mass
SCHEDULE OF PATENT FEES. On each Caveat.....
On each Trade Mark. n filing each application for a Patent (17...................... On appeal to Examiners-1n-Chie

On appeal to Commissioner of Patents

 On application for Reissue.................. On granting the Extension On an application for Design ($31 / 2$ years) On application for Design (7 years).
CANADIAN PATENTS

List of Patents Granted in Canad from November 25 to December 5 1873.
884.-T. W. Perry, Ringwood village, York county,
Ontario. Composition of matter for a table suce

Ontario. Composition of matter for a table sauce,
called "Perry's Indian Chutney Sauce." Nov. 25, , 8733
2,885.-I, K. Proctor, Salem, Essex county, Mass, U. S. 2,885.-I, K. Proctor, Salem, Essex county, Mass., U. S.,
assignee of J. K. Proctor, Malden, Middlesex county, or stands, etc., called "Proctor's' Caster Attach
for Sewing Machine Table, etc." Nov. 25, 1873. 2,886.-D. Saul, New Edinburgh, Carleton county, Onta-
rio. Improvenent rio. Improvement in hoisting machine, called
Improved Hoisting Machine." Nov. $25,1873$. Improved Hoisting Machine." Nov. 25, 1873.
,887.-W. M. Rice and A. D. Cable, Montreal, P. Q. Im provement in laying the permanent way of railways
called "Rice's Custioned Rail." Nov. 25, i873. called "Rice's Cushioned Rail." Nov. 25, i873.
2,888.-T. Paxton, Wm. Tate and C. Paxton, Fort Perry place. Machine for attaching to or connecting with gang plows, called "Dunn's Improvement on Gang Plows." Nov. 25, 1873.
2,889.-J. C. Schoonmaker, Kansas City, Jackson county
Mo., U. S. Improvement on lightning rods, called Mo., U. S. Improvement on lightning rods, called
"Schoonmaker's Insurance Lightning Rod." Nov $28,1873$.
2,890 -w. W. Weaver, New Haven, Oswego county, N Y., U. S. Improvement on turbine wheels, calle
"Weaver's 2,891.-J. G. Loggins and T. P. Wilkins, Williston, Chit-
tenden county, Vt., U. S. Improvement on machine tenden county, Vt.U . S. Improvement on machine
for cutting the notch in wooden hoops for barrels, etc for cutting the noth in wooden hoops for
called " The Hoop Locker." Nov. 28, 1873. 892.-C. Campbell, Montreal, P. Q., and J. A. Laemle,
Staten Island, U. S. Improvement on printer's fu Staten Island, U. S. Improvement on printer's fur ture." Nov. 28, 1873 .
Francis, P. Q. Improvement on machine for cuttin clapboards, called "Aylmer's Clapboard Machine. Nov. 28, 18 is.
,894.-G. Bouc
,894.-G. Boucher de Boucherville, P. Q. Nouvelle
maniere de se servir des lames pour propulser
navirts, "Lame Moteur", Now
 ment in "new paddies for propelling vessels.".
2,895.- J. C. Livermore, Boston, U. S . Improvement on skirt protectors, called "The
Skirt Protector."
Nov. 28, 1873, S896.-H. Parker, Gananogue, Leeds county, Ontario Improvement in the art or process of molding core and mold employed for casting the cores by such improved process, called "Parker's Improved
and Mold for Casting Cores." Nov. 28, 1873. 897.-J. P. Bass, Bangor, Penobscot, Me., U. S
of H. C. Bucknam, Bricksport, Hancock county, Me. U. S. Improvement on the process or method o
cleaning surface condensers, called "Bucknam's Pro cleaning surface condensers, called "Bucknam's Pro
cess for Cleaning Surface Condensers." Nov. 28, 1873 2,898.-F. H. Perry, Drummondensille, Welland county, Nons.
Ontario. Machine for washing textlle fabrics, called Ontario. Machine for washing textile fabri
"Pery's Hydraulic Washer." Nov. 28, 1873 . Eng, R. G. Sllar, Lee, Kent county, En, London, Eng., R. G. Silar, Lee, Kent count, Eng., and
Rawson, No. 1 St. Swithn's Lane, London, Eng. Im-
provement on cieodorizing, purifyng and utilizin provement on ceodorizing, purifying and utilizing
sewage, night soil, excreta and excrementitious and
refuse matters, called " The Nita Improvement on Deodorizing, Purifying and Utilizing Sewage, Urine, Night Soil, Excreta and Excremetitious
and Refuse and Refuse Matters." Dec. 5, 1873 .

Improvemen Dec. 5, 1873. 2,901.-C. Ston

,901.-C. Stoner, Montreal, P.Q., assignee of I. Fisher Boston, Mass., U.S. Improvement on mechanism for lighting gas burners, cas.
Lighter." Dec. 5, 1873.
2,922.- K. Moneau, San Francisco, Cal., U. S. Improve
ment on sewing machine, chiefly designed for embro dering and stitching button holes, called "The Eurek Button Hole Sewing Machine." Dec. $5,1873$.
2,903.-T. Baty, Westminster township, Middles ty, Ontario. Useful fence, called "Baty's Farm
Fence." Dec. 5, 1873. Fence." Dec. 5, 1873.
2,904.-I. Fréchette, St. Hyacinthe, P. Q. Amelioration
aux rateaux de aux rateaux de moissonneisese, called "Rateaux de de
Moissonneuses Ameliorees." Dec. 5, 1873. Improvement on rakes for mowing machines.
2,905.-D. Heaton, Providence, R. I., U. S. Improvement in combination tools, called " The Imp." Dec. 5, 1873 .
2,906. F . Rogers, Lynn, Essex county, Mass., U S. provement on the manufacture of shoes, called " Rog provement on the manuracture of
erss 'Improved Shoe." Dec. 5, 1873 .
provements on sewing machines, called "Cole's Uni-
versal Feed Sewing Machine." Dec 5, 908.-J. Miller, Perth, Lanark county, Ontario. Im provement on sewing machines, called "The Mille 909.-J. H. Copping, Toronto, Ontario. Improvemen on a machine for the rolling, print ting and cutting of
lozenges, called "Coping's Improvements lozenges, called " Copping's Improvements on Lozeng
machine." Dec. 5, 1873. machine. Dec. 5, 1873.
,910.-H.J. Davies, Brooklyn, Kings county, N. Y., U.S.
Improvements on machines for printing and emboss. Improvements on machines for printing and emboss-
ing skirts and other articles, called "Davies' Machine ing skirts and other articles, called " Davies' Machine
for Printing and Embossing Skirts." Dec. 5, 1873. for Printing and Embossing SEirts." Dec. s, means for raising and floating wrecks and sunken ves
sels, called "Knapp's Improved.Means for Raising and Floating Wrecks." Dec. 5, 1872.
912.-J. Varney, Montreal. Improvement on washing
machine, called "Varney"s Washing Machine." Dec. 5,1873.
29:3.-D. S. McKinnon, Carleton Place, Lanark county Ont. Improvement in sewing machine stands an $\underset{\substack{\text { 5, } 1873 . \\ \text { 2,914.-P. D. Cummings, M. Smith } \\ \text { nd J.C. Jordan, all o }}}{ }$ Portland, Maine, U. S. Improvement in match slit Match Slitting Machine." Dec. 5, 1873 . a,915.-T. A. Heintzmann, Toronto, Ont. Improvement
on pianofortes, called " Heintzmann's Improve Bridge." Dec. 5, 1873.
,916.-W. M. Fuller, New York, U. S. Improvement on Apparatus., Dec. 5, 1873.
917. - M. Thibault, Hull, Ottawa county, P. Q , and s Benoit, of Ottawa, Carleton county, ont. Improve ment on machine for curting nans, a
Improved Nail Cutter." Dec. 5, 1873 . 918.-D. M. Lamb, Strathroy, Middlesex county, Ont.
Improvement on filters for oil and other liquids, called "Lamb's Combined Oil Filter." Dec. 5, 1873 .
919. D . M. Lamb, Strathroy, Middlesex county, 919.-D. M. Lamb, Strathroy, Middlesex county, ont.
Manufacturing and treating vulcanizable gum and Manufacturing and treating vuleanizable gum and
hydrocarbon oils, called "Lamb's Gum and Oil Pro cess." Dec. 5, 1873.
Compound vulcanizable gum, called "Lamb's Vulcan
Comp Compound vulcanizable gum, called "
izable Waterproof Gum." Dec. 5, 1873,

HOW TO OBTAIN

Plails anil cianals

IN CANADA.

DATENTS are now granted to inventors
 patents sin Canada are nearly the same asi in th Unted states. The applicant is requrrect to tu nish a model, with apeeilication and drawings in dapll.
cate. It it is also necessary tor him to sibn and make The total the originality of the invention. The total expense, in or orinary cases, to apply for a
Canadian patent, is $\$ 75$, U . currency. This incluade the government fees for the first five years, and also ou
Munn \& Co.'s) charges for preparing drawings, specifl ations and papers, and attending to the entire busines. The holder of the patent is entitled to two extensions of in all.
If the inventor assigns the p A small working model must be furnished, made to ny convenient scale. The dim
If the invention consists of a composition of amples of the composition, and also of the several in gredients, must be furnished.
Persons who desire to apply for patents in Canada ar requested to send to us (MUNN \& Co.). by express,
a model with a description, in their own language, ing the merits and operation of the invention, remittin iso the fees as above for such term for the patent a hey may elect. We will then mmediately prepare th rawings and specificailion, and send the latter to th It requires from four to twelve weeks' time, after com letion of the papers, to obtain the decision of the Cana an Patent Office. Remit the fees by check, draft, o ostal order. Do not send the money in the box with
model. Give us your name in full, middle name included Inventions that have already been patented in the
United States for not more than one year may also be atented in Canada.
On filing an application for a Canadian patent. the and utility of the invention. If found lacking in eithe of these particulars, the application will be rejected, in Which case no portion of the fees pald whi be return
to the applicant. Inventors may temporarily secure their improve
nents in Canada by filing caveats; expense thereof, 8 in full.
For fu
For her information dgnments, etc., address

VALUE OP PATENTS,
And How to Obtain Them.
Practical Hithts to Invertors:

ROBABLY no investment of a small sum of money brings a greater return than the when the invention is but a smallone. Larg nventions are found to pay corres. well. The names of Blanchard, Morse, Bige
low, Colt, Ericsson, Howe, McCormick, Ho and others, who have amesed tunes from their inventions, are well known ealized large sums from their patents. More than Fifty Thousand inventors have avalle TWENTY-SIX years they have acted as solicitors an Publishers of the SCIENTIFIC Amerions. They stand a of assistants, mostly selected from the ranks of the Patent Office: men capable of rendering the best service
to the idventor,from the experience pracucally obtained.
whlle examiners in the Patent office: enables MUNN \&
Co. to do everything appertaining to patents BETTER nd CHEAPER than any other rellable agency

H0W TO PRTITN OBTAIN

closing in-
quiry in
quiry in
nearly eve-
fllice. A positive answer can only be had by presentin complete appication for a patent to the Commissioner ings, Pettition application consists of a Model, Drawofficial rules and formalities must also be observed. The efforts of the inventor to do all this business himself are generally without success. After great perplexity and delay, he is usually glad to seek the aid of persons expeover again. The best plan is to solicit proper advice at the beginning. If the parties consulted are honorable men, the inventor may safely confide his ideas to them: they will advise whether the improvement is probably to protect his rights.

How Can 1 Best secure My Invention
This is an inquiry which one inventor naturally as another, who has had some experience in obtaining pat
ents. His answer generally is as follows, and correct Construct a neat model, not over a foot in any dim sion-smaller if possible-and send by express, prepald addressed to Munn \& Co., 37 Park Row, together with a description of its operation and merits. On receipt thereot, they will examine the inv ention carefully, and you have not time, or the means at hand, to construct 4 model, make as good a pen and ink sketch of the improvement as possible and send by mail. An answer as
to the prospect of ε patent will be received, usually, by return of mail. It is sometimes best to have a search made as the Patent ofice; such a mead.
the cost of an application for a patent.

Preliminary Examination.

 In order to have such search, make out a written deencil, or pen and ink, sketch. Send these, with the fe and in due time you will recetve \& Co., 37 Park Row, hereof, followed by a written report in regard to the patentability of your improvement. This special searc we with great care, among the models and patent presented is patentable.
To Make an Application a Patent

The appicant for a patent should furnish a model his invention if susceptible of one, although sometime cal production, he must furnish samples of the ingredi nts of which his composition consists. These should and sent by express, prenventor's name marked on them, tance, can otten be sent cheaper by mail. The affer Way to remit money is by a draft, or postal order, on New York, payable to theorderof MUNN \& Co. Persons Who ive in remote parts of the country can usually pur
chase drafts from their merchants on their New York chase drafts from
correspondents.

Foreign Patent

The population of Great Britain is $31,000,000$; of France 37,000,000; Belgium, 5,000,000; Austria, 36,000,000; Prussia, American citizens in all of these countries. Now is the time, when business is dull at home, to take advantage of of all kinds are always in demand in Europe never be a better time than the present to take pateats abroad. We have reliable business connections with the principal capitals of Europe. A large share of all the patents secured in foreign countries by Americans are
obtained through our Agency. Address MUNN $\&$ Co Park Row, New York. Circulars with full information
on forel Park Row, New York. Circulars
on forelgn patents, furnished free.

Prersons Caveats.
rersons desiring to file a caveat can have the papers resared in the shortest time, by sending a sketch and escription of the invention. The Government fee fo
caveat is $\$ 10$. A pamphlet of adviceregarding applica tions for patents and caveats is furnished gratis, on ap plication by mail. Address MUNN \& Co. 37 Park Row ew Yo

Value of Extended Patents.

Drd patentees realize the fact that theirinventions are vears of extension than the first full term for which thei patents were granted, we think more would avail themelves of the extension privilege. Patents granted prio of 1861 may be extended for seven years, for the beneft
of the inventor, or of his heirs in case of the decease of fomer, by dueapplication to the Patent office, ninety days before the termination of the pa tent. The extende ime incres to the benefit of the inventor, the assignee except by special agreement. The Government fee fo an extension is $\$ 100$, and it is necessary that good profeslonal service be obtained to conduct the business befor may be had by addressing MUNN \& CO. 37 Park Row, Ne York.
Any person or firm domichled in tne United States, why firm or corporation residing in any foretgn counnr United States, may register their designs and obtain proection. This is very important to manufacturers in this country, and equally so to forelgners. For full partic

Design Patents.

Foreign designers and manufacturers, who send goods
to this country, may secure patents here upon their new patterns, and thus prevent others from fabricating o selling the same goods in this market.
whether ctitizen or aliten, for any new and original destign Whether citizen or alien, for any new and original design
for a manufacture, bust, statue, alto rellevo, or bas rellel;
ny new and original design for the printing of woolen ilk, cot ton, or other tabrics, any new and original im pression, ornament, pattern, print, or picture, to be nto any article of manufacture.
Design patents are equally as important to cittzens a oforelgners. For full particulars send for pamphlet to
copies of Patents.
Persons desiring any patent issued from 1836 to Novem er 26, 1867, can be supplied with official copies at a rea ings and length of spectification.
Any patent issued since November 27, 1867, at whic nde the Patent office commenced printing the drawing ice $\$ 1$.
A copy of the clams of any patent issued since 188 When ordering coples, please to remit for the same a bove. and state name of patentee. title of invention,an 37Park Row, New York.
MUNN \& Co. will be happy to see inventorsin perso at their office, or to advise them by letter. In all case tiey may expect an honest opinion. For such consulta plain; do not use pencll or pale ink; be brief
All business committed to our care, and all consult Inons, are kept secret and strictly conflential. In alf matters pertaining to patents, such as conductin ments, examinations into the validity of patents, etc. special care and attention is given. For information an for pamphiets of histrachon and advice,

Address

MUNN \& CO.,
PUBLISHERS SCIENTIFIC AMERICAN, 37 Park Row, New York.

atcan Mry

Splendid

UNPARALLMEBER RRIUMPRS

Wheeler \& wilson SEWING MACHINE CO.,
 NEW YORK
 Over 81 Competitors

World's Exposition, Vienna, 1873, Ete. 1. THE RNIGHT'S CROSS OF THE IMPERIAL AUS TRIAN ORDER OF ". FRANCIS JOSEPH," con. Austria upon the Honorable Nathaniel Wheeler President of the Wheeler \& Wrison Sewing Ma
chine Company, as the founder and builder of Sewing Machine industry.
2. THE GRAND DIPLOMA OF HONOR, recommended
by the International Jury for the Sewing Machine by the International Jury for the Se wing Machine
Company only, for their important contributions to the material and social welfare of mankind. for their New No. 6. Sewing Machine, belng for at which the only Gold Medal for Sewing Machine was a warded to the Company. Hence this Vienna ferior medal, but from a Gold Medal, the highest
4. THE GRAND MEDAL FOR MERIT for the development or Needie Industry, and excellence and su
a GRAND MEDAL FOR MERIT for excellence and superiority of Cabinet work; the only award of
6. MEDALS FOR SEVERAL CO.OPERATORS of the
7. THE OFFICIAL REYORT, published by the Genera Direction of the Vienna Hxpositton signalizes the supremacy of the Wheeler \& Wilson Company for in the Sewing Machine business.

FURTHER DISTINGUISHED HONORS. "The MARYLAND INSTITMTE Base, Mact. s, ER \& WILSON the GOLD MEDAL for their New No Sewing,
thing."

At the GEORGIA STATE FAVAR a SILVER MEDAL the btgiest and only premtum for Leather Stitching was awarded to WHEELER \& WILSON
done on their New No. 6 Sewing Machine.,
"At the Forty second Exhibition of ' THE AMERICAS
INSTITUTE OF THE CITY OF NEW YORK, the High est Premium has been awarded for WHEELER \& WIL

P. BLAISDELI \& CO.,

 Tricks or finkrica The ox revial o ex
 J OSEF OESTERREICHER, VIENNA, has

Agents Wanted. Adires Row ic

$\mathbf{W}^{A T C H M A E E R}$ and JEWELERES Man

 "It Still Waves". Mwelth volume

A RARE CGANCE For MALL CAPTTAL

A MAGAZINE AND A NEWSPAPER. both for little more than the prige of one. The New York Tribune has completed arrangements with the principal magazines and periodito supply these publications, together with either edition of The Tribune, at a very marked reduction from the subscriptions may be sent, at any time, to The Tribune are given below, with the regular price of each add the reduced price of the combination with The Tribune:		

 and newspaper.
Address
 CATECHISM OF THE LOCOMOTIVE.

 F A COMPANY WISHES TO ACQUIRE

SHORT HAND. ${ }^{150}$ worda ger minte it

$\bar{W} \mathrm{ANTED}-\mathrm{AN}$ HONEST MAN OR WO

SCIENCERECORD

will be issued in January nex ne
The volumes for 182,1873 ,
now ready

$\Gamma_{\text {gispendid annaal }}^{\mathrm{HE}} \mathrm{NDO}$

 2ingrong Axd

 MUNN \& CO., PUBLIEHERS,
3Я Park Row, New York

1

A. S. GEA R
 Wood and Iron Working
MAGEINERY

SINGLE AND BARREL MACHINERY.

 1832. schencers PATENT. 1871
WOODWORTH PLANERS

 G. E. ILLINGWORTH, Yerille St. Foun

OTIS' $\begin{gathered}\text { sAFETY Hoisting } \\ \text { Machinery: }\end{gathered}$

$\$ 100$ to $250 \begin{gathered}\text { per montr gurarateed } \\ \text { sur }\end{gathered}$

 GRIDDLE GREASRR

 $\underset{\substack{\text { crent } \\ \text { Eaison, } \\ \text { B }}}{ }$

U. S. Plano Co., 810 Broadway, N. Y.

G LASS Mamps, ME MLDS for Fruit Jars, Patent

COLD ROLLED SHAFTING

 1 Turbine Water Wheels.

HARD W00DS
in logs, plank, boards \& venerrs.

 SHICATES OF SODA \& POTASH (hion

 $\$ 375$ A AoxTh to Natio or Female Agents.
 J.A.FA Cr

PUNCHING

 Natin

Machinery,

Cold Rolled Shafting.

Sturtevant Blowers.

$\mathrm{R}^{\text {ICHARDSON, MERIAM \& CO. }}$

Planing and Motching

 1873 and 1874. Catalogues Free.

 Sity

Try union Iron Mills, Pittaburgh, Pat

 Niagara steam Pump. CHAS. B. Hat AIICE,

Portable steam engines, combin

gluertisements.
Advertisements will be admitted on this page at the rate of $\$ 1.00$ per line for each insertion. Engravings may head advertisements at the same rate per uns by measurement. as the letter-press.
1874.
Now is the Time to Subscribe

harper's periodicals.

Harper's Magazine. The Magazine has done good and not

Harper's Weekly. The ablest and raost powerful illustrated Journal.

Harper's Bazar.
There never was any paper published that so delighted the heart of woman.Providence Journal.

TERIS for 1874. Harper's Magazine, One Year......... $\$ 400$
Haprer's Werily, One Year....... 400
Harpers Bazar, Harper's Bazar, One Yea
One copy of either will be sent for one year, POSTAGE
PREPAID, to any Subscriber in the United States, on receiptof Four Dollars by the Publishers. Harper's Magazine, harper's Werkly, and Harper's
Bazar, for one year, a\$10 00; or any two far 87 (0) postage payable by the Subscriber at the office where
received. An Extroch Copy of either the Magnzine, Weekly, or BAZAR, will be supplied gratis for every Club of FIVE
SUBSCRIBRRS at $\$ 40$ each, in one remittance, oo. Six
Sit the'Tubscribers at the oftces.s where received.

CHAMPION SPRING MATTRESS-The
 market. Sold by all leading dealers. No stock con

 BU1LDERS $\begin{gathered}\text { Send for Catalogue. A.J. BiCK- } \\ \text { NELL \& CO., 27Warren At.,N.Y }\end{gathered}$

B ENNET HOTCHKISS, New Haven, Conn

BOILER FEEDERS SEND For ulustrated catalogur HAMILTON. ZHID.

DRILLCHUCK

LUBRICATORS $\mathrm{D}_{\mathrm{n}}^{\mathrm{R}}$

 PORTLAND CEMENT,
 SUPRR-FEATRRS

WIRE ROPE.

JOHN A. ROEBLING'S SONB

ONE DOLLAR

Commissions liberal, offering a lucrative and agree
able business to those willing to give it proper attention
Vol. XIV. begins with January, 1844.
Examine our Clubbing \& Premium Lists.
EFOr spectmen Magazine and further information wood's houskemold magazine,

BUILDING PAPER!

TRON PLANTERS,

 POOLE:\& HUNT, BALTIMORE. Firms having Machinists' Supplies and

Dramonas carbon

The "ASBESTOSROOFFNG, is a substantial an
 A SBESTOS CEMENT,
prepared ready for use. Can be ensily applied with
trowel, and will permanen tly ston all eaks on roofs.

NEARLY 1,000 NOW IN USE.

minatis
The simplest, most durable and eftective
STAEAM PDMP Mow in use. WHill pump grity
or muddy water without wear or iniury to
or muddy water winthout Wearor inp gritty to
its parts. It cannot get out of order. Branch Depots :
berton Square, Boston, Mass
 $\mathbf{R}^{\mathrm{ANSOM}} \mathrm{SYPHON}$ CONDENSER perfectig
 TIH TANTIE ANTM COMPANY EmeryWheels (TANITEE EmeryGinders

JUST PUBLISHED
Facts and Suggestions regarding the Right Choice and
Aigh USe of
ing ill
 complete Manual on the subject of Emery Grinding yet
published. Sent, opst-ail, on recelpo of 25 cents.
dddress
THE TANITE Co., Stroudsburg, Pa.

HOW ABOUT YOUR PAY ROLL?
 hands he can get along with-is not this the time to
study carefully the claims of labor-saving tools How much Wages will a good Emery Grinding Machine
draw How many men now working with File, and
Grinditone, and Cold Chise, and vise, can be dipoensed
with by running a Rotary File a mile a minute? How
 Wh ose points are crystals of Adamant, and whose speed
is as, 500 of eet to 6 feet.
When money is scarce, Labor Saving Tools are cheap. TWE CIRCULAR SLIDE VALVE may be placed on anyengine at smalin cost, iargely increas-
ing pooer and anving fuel, by avolding seam presure
and friction. Circulars free. J. F. TALLANT, Agent,

Soves ten to twenty per cent. CHALMERS SPENCE
CO., foot E. 9th St. N. Y.: 1202 N .2 Znd St.. St.Louis. Mo.

American Saw Co.
Movable-Toothed Circular Saws. Eccentric Geared Power Presses. PROSHe (1)

of the

SCIENTIFIC AMERICAN
THE BEST MECHANICAL PAPER
IN THE WORLD.
TWENTY-NINTH YEAR.
VOLUME XXX.-NEW SERIES.
The publishers of the SCIENTIFIC AMERICAN beg
to announce that on the third day of January, 1874, a to announce that on the third day of yanuary, 184, a of the publishers to render the contents of the coming
year more attractive and useful than any of its predecessors. The SIENTIFIC AMERICAN is devoted to the inter ests of Popular Sclence, the Mechanic Arts, Manufac-
tures, Inventions, Agriculture,Commerce, and the indus trial pursuits geuerally; and it is valuable and Instructive not only in the Workshop and Manufactory, but also in the Household, the Library, and the Reading Room. The best Mechanical Paper in the World! A year's numbers contain over 800 pages and severaI
hundred engravings of new machines, useful and noveI inventions, manufacturing establishments, tools, and
cesses.
To the Mechanic and Manufacturer . No person engaged in any of the mechanical pursuits
should think of doing without the ScIENTIFIo Am eriCAN. Every number contains from six to ten engravings
of new machuce and inventions which cannot be found in any other publication.
One copy, one year...
One copy, six monthe
One copy, slx months..
Onecopy of Sclentific American forone year,................... one copy of engraving, "Men of Progress".. 10.00
necony of Sclentific American for one year,and One copy of Sclentific American for one year,and
one copy of "Science Record" for 1874..... 5.00 one copy of "Science Record" for 1884.. Remit by postal order, drait or express.
The postage on the Sclentlific American is five per quarter, paya me at the office where received. can-
ada subscribers must remit, with subscription, 25 cent extra to pay postage.
Address all letters

MUNN \& CO.,
37 PARE ROW, NEW YORE
THE "Scientific American" is printed with
CHAS. ENEC JOHNSON\& CO.s. INK. Tenth And
Lombard sts. Philadelphia, \&nd 59 Gold st., New Yort.

