a Weekly jourval 0f practical inforvation, art, science, mechanics, chevistry, and manufactures.

Vol. $\underset{\text { [NEW SERIES.] }}{\text { XXIX.--No. 24.] }}$

NEW YORK, DECEMBER 13, 1873.

ASCHENBRENNER'S IMPROVED SUGAR-MAKING PROCESS

There is no process of chemical industry in which the waste reaches greater proportions than in that of sugar manufacture. Dr. Scoffern estimates the loss as nearer two thirds than one half, while another authority emphati cally characterizes the proportion as enormous. The weight of the contents of a hogshead of sugar-according to a rticle on thi subject recently published in Iron-is about article ons , 128 lbs . To obtain this quantity of sugar, 3,500 gallon of cane juice are often used, of a strength say of 9° Baumé Each gallun at this average density contains 1.81 lbs . of sugar; hence 2,500 gallons contain $4,525 \mathrm{lbs}$. But the planter, as above noted, gets but 2,128 lbs.; hence the amount lost, or $2,397 \mathrm{lbs}$., is actually more than the maker has to sell. Of this loss 426 lbs . is molasses drained off, while the balance is waste of saccharine matter lost by car amelization; while ordinary processes have the still further defect of evolving, by the boiling of the cane juice, gases which impair the quality of the sugar.
With a view of overcoming these obstacles, the invention we herewith illustrate has been devised. According to the claims of its originator, the largest possible quantity of dry, pure, and naturally white sugar in marketable shape is pro duced. The importance of such an apparatus, if thorough ly efficient, cannot be overestimated, not only as influencing ly efficient, cannot be overestimated, not only as influencing a vast industry, but as directly affecting every consumer of the staple; and hence no further introduction will be needed aiion which its subject deserves.
The course of the juice, as it emerges from the grinding mill, is through the trough, A, in which, at B, are ar ranged two inclined filters of different degrees of fineness, the liquid of course passing through the coarse one first. These filters are placed in two sets of grooves so that one pair can be removed for cleaning, leaving a second couple continuing to act, so that the operation need not be interrupted. The object of these appliances is to stop the passage of mechanical impurities floatino in tho taice. The conduit, B, discharges into a flannel, bucket-shaped recepta cle, C , which it also so arranged over a tank, D , as to be
readily removed for cleaning and another quickly substitut ed, which serves to finish the initial filtering process.
The liquid is next conducted to three open kettles in suc ession. Each kettle has a double bottom so as to be heate by steam. In these receptacles, the juice is precipitated by means of lime and magnesia, a process facilitated by the high temperature imparted by the steam, after which the sediment is drawn off by suitable tubes at the bottom. Thus purified, the liquid passes away through the siphons, E , to another filter, F , which removes the last vestige of foreign substance which may still remain held in suspension. This apparatus consists of a metal case, in which is placed a sec ond case, having two perforated ends and two perforated partitions, forming three compartments. The first is fille with sponge, and the second with bone black, and the thir with charcoal. At each end is an empty space for the enter ing and emerging juice. The inner case is provided with handles to admit of its being lifted out of place for cleaning. The pump, G, then lifts the juice into the sulphur box, H This latter portion of the apparatus is of wood, encloses a paddle wheel which is actuated by the steam engine of the mill, and is fed with sulphurous fumes from the adjoining sulphur furnace, I. The revolving paddles throw the fluid into rapid agitation, so that it is thus more thoroughly ex posed to the action of the gas and caused, it is claimed, to eave the box in a perfectly bleached condition. The emer ging stream, which is of about two thirds of an inch in diam ter, passes at once upon a long trough of sheet metal, J which, heated interiorly and underneath by steam supplied through the pipes shown, serves to raise the temperatur of the liquid to a degree not exceeding $194^{\circ} \mathrm{Fah}$., by a con densation of 32° or 33° Baumé. Beneath this trough, at K is arranged suitable apparatus for altering its degree of in clination at pleasure, thus hastening or retarding the flow. Passing next through a connectiog "canal, the juice, in stream half an inch in diameter, exits upon a second rough or box,L. This conduit is arranged similarly to the trough, J, and the liquid is here heated up from 212° to 320° Fah., and thereby condensed to 40° or 45° Baumé When it reaches the lower end of the incline, occupying from 10 to 12 minutes in the transit, the stream has a thick
ness of one third of an inch. At this point, in order to carry off all the vapor, hasten condensation, and prevent the boiling of the juice, a steam fan, M, is produced. By the effect of this appliance, together with that of the processes to which it has already been subjected, the liquid beccmes so thick as to necessitate the use of a scraping apparatus, \mathbf{N}, which consists of an endless band, passing over pulleys and provided with transverse blades, placed at suitable distances apart. This is set in motion by the engineand serves to convey the material to another inclined plane similar to those ey already described, where it is acted upon by a second fan,
0 . Finally the sugar, now in a crystalized condition, is removed by hand into the last receiver
When it is desired to produce molasses, a small percentage may be obtained by making the incline of the troughs steeper, thus hastening the process and preventing the perfectdrying of the sugar by the action of the two ventilators. The molasses thus made is said to be of the best quality and of the finest color. The entire period of time occupied by the juice in passing through the apparatus is stated to be in the neighborhood of forty-five minutes.
As regards economy, we are assured that the percentage of fuel saved is remarkably large-a fact which may be justly inferred from the advantageous and ingenious arrangement of heating surfaces, etc
The patent for this invention, the credit of which is due to Dr. H. M. Aschenbrenner, is now pending, in the United States, through the Scientific American Patent. Agency. For further information, address Mr. T. Masac, care R. Matthies \& Co., 525 Apartado, Havana, Cuba.

Depression in Railway Bonds.

Fifty-five railroad companies in the United States are now reported as in default for non-payment of interest on their bonds. The total amount of these bonds is $\$ 217,959,311$, or about thirteen per cent of the whole amount of the railroad bonds now outstanding,
With but few exceptions, the cause of the delinquency is due to the tightness of the money market and not to any in herent defect in the roads or their management, and the dif ficulty, therefore, will be only temporary.

Stintifir Ammiran.

M.UNN \& CO., Editors and Proprietors. published weeklyat
NO. 37 PARK ROW, NEW YORK.

o. D. MUNN. A. E. BEACB

One copy, one year...
One copy, six months
CLUB Rates $\left\{\begin{array}{l}\text { Ten copies, one year, each } \$ 250 . \\ \text { Over ten coples, same rate, each }\end{array}\right.$
VOL. XXIX., No. 24. [NEW SERIEs.] Twoenty-eighth Year
NEW YORK, SATURDAY, DECEMBER 13, 1873.

Contents :
(Illustrated articles are marked with an asterisk.)

A WORD TO OUR SUBSCRIBERS

Many of our subscribers will observe, printed in red ink on the wrapper covering this week's copy of the Scientific American, the announcement that in three weeks their subscription will be exhausted. The year and the volume thus expire, and we give notice a little in advance, and solicit a prompt renewal of all subscriptions, in order that our readers may experience no stoppage in the receipt of the journal, and that we may not miscalculate the quantity of paper to print at the commencement of a new volume.
The plan of discontinuing the paper when the time expires for which it is prepaid, we think preferable to the course adopted by many publishers, of continuing their paper indefinitely and collecting afterwards. The latter course is too much like having a bill presented for a suit of
clothes after it is worn out. We shall be gratified to have every old subscriber renew, and doubly grateful if each will send one or more new names with his own.
We hope those of our subscribers whose term is about to expire, as admonished by the notice on this week's wrapper, will not delay in remitting for a continuance of the paper. The safest way to send money is by postal orders, bank checks, express, or draft on New York, payable to the order of Munn \& Co. Little risk is incurred in sending bank bills by mail, but the above methods are safe beyond any contingency.

BETTER TIMES.

The fecling of insecurity with regard to financial matters, which for the past two months has clogged the business interests of the country, is becoming rapidly dispelled, and people are veginning to realize that after all the hue and cry the panic is but a specter, mainly due to their own imagina tion. It was, in fact, a gigantic scare, a veritable panic, as baseless as the frantic rush of a crowd in a building on the shout of " fire," while its victims may be likened to such of the hapless bystanders as are trampled beneath the feet of the surging muliitude.
Like all great storms, this one has left its ravages, which will doubtless be felt for some time to come; but in the main the horizon is clear and there is every prospect of a speedy return of business to its former channels. The subject has been treely discussed, theories innumerable have been ven tilated, and dismal forebodings indulged in to an unlimited extent, until, as a sensation, the novelty of the excitemen has died out. The talkers, therefore, having had their say, the work ϵ rs, cool headed and far seeing business men, are striving to act; and while the former are now devoting their oratorical talents to the Spanish complications, the latter are busily en deavoring to repair the damages of the disaster.
Marked signs of improvement are exhibited in the reports from various quarters of the country, and notably so from the New England States. Total suspension, says an authority, is, in the majority of cases, being modified to half or three quarter time, and hands thus furnished employment are receiving wages enough to keep want well away from their doors. Collections are generally easier, and the record of protests of commercial p !per and of suits in involuntary bankruptcy is largely diminished.
The mines of Pennsylvania have been kept open, although working hours have been reduced. The men have cheerfully accepted the situation, believing that small wages were bet ter than absolute idleness. The iron masters, it is said, will shortly resume operations, although many have suffered very severely, notably for the cessation of orders for railroad supplies. Their renewal will necessarily assist the coal trad θ. Among the manufacturers there seems to be a general impres-
sion that the trouble is past, and we note that resumptions of
business are extensively in progress, although in many cases it has been found necessary to continue reductions of time
and wages. The tobacco interest has suffered but little. and wages. The tobacco interest has suffered but little.
The jewelry manufacturers had experienced a stagnation in The jewelry manufacturers had experienced a stagnation in their trade, but this is reported to be gradually pussing away The knitting mills of the northern part of this State are rap idly receiving orders, and improvements in buildings and machinery are progressing as usual. It is expected that the great establishments in Cohoes, N. Y., will start on full time again as soon as the water is let on in the canals. The safe dealers have reduced prices and sales are said to be brisk. The dry goods trade is recovering, and a good holiday busiThess is anticipated.
The war contingency, while serving to divert the popular mind from the financial stress, is becoming the means of supplying work for large numbers of men. We note the following important contracts, which indicate brisk business for several of the largest machine shops in the country John Roach is to build engines and machinery for one new sloop of war, to cost $\$ 630,000$; for two similar vessels, at 580 , 000 ; to repair four monitors, at $\$ 720,000$; and to build two engines for $\$ 366,000$. Quintard \& Murphy are to construct engines for two sloops of war; the Delamater Iron Works, to repair the "Dictator;" Atlantic Works, of Boston, to repair two vessels; Hartford Iron Works, engines for sloops of war Wright \& Co., of Newburgh, similar work; Cramp \& Sons of Philadelphia, are to overhaul four monitors; the Harlan \& Hollingsworth Company are to repair three ships of the sam type, and it is stated that the Navy Department has mor contracts yet to issue.
The effects of the disaster had been severeiy felt in the eastern States before the magnitude of the panic had become fairly comprehended in the West. In spite of this fact however, the work of recuperation seems to be as rapidly advancing in that section of the country. The iron interes of Cleveland was embarrassed for a time; but as a rule, w learn that there has been scarcely any reduction either of force, wages, or time in the factories and shops of the city. In Cincinnati, of the 12,000 workmen there employed, it is stated that hardly five per cent of the total have lost their places; while from Dayton and Columbus comes a similar report. Local journals go so far as to state that this is even an improvement on the usual condition of affairs at this time of year. From Chicago, St. Louis, and Louisville, advices are generally encouraging ; and the same is tiue of recent reports from Baltimore

We regret to notice reductions of wages on some of the railroads, notably on the Delaware, Lackawanna and Western. We hardly think that the best interests of these great and wealthy corporations are served by such a course, and consider that it would be wiser to exhaust every other means
of retrenchment prior to diminishing the incomes of those of retrenchment prior to
whose labor they employ.

Altogether the feeling manifested throughout the country is encouraging, and the general condition of business is uni formly quoted as sound. There is an abundant demand for our products, enough to maintain all our industries; so that we believe, it will involve only the length of time required for the excitement completely to die away before trade will be resumed, with even an increased vigor.

on the purchase of patents.

Complaints of fraud are sometimes made by purchasers of patent rights, who pay their dollars and receive their deeds, only to find out that the latter are defective and the money lost.

Example 1. A buys from B one half of all B's right in a certain patent, and takes it on the supposition that B owns the whole patent, but without instituting any examination to
ascertain if such is really the fact. After the purchase, A ascertain if such is really the fact. After the purchase, A
employs an attorney to examine the records, and finds that B, at the time of the sale, was the owner of only one half of the patent; consequently A's title secures to him only on quarter of the patent, not one half as he supposed. A sim ple examination made before the purchase would have saved A from the loss.
Example 2. A contracts verbally with the patentee, B, for the exclusive right to make, use, and sell an invention during the lifetime of the patent, pays the money, receives the deed; and without examination of the document, supposing it to be right, places it on record and closes the transaction. Thereafter, on examination, it appears that the words, the exclusive were omitted from the deed, the letter a being used in place The deed, therefore, only conveyed a right to make, etc. leaving to B the privilege of granting as many other rights as he might choose to the business competitors of A. Had A taken the precaution to employ an experienced attorney to
examine the deed before paying the money, he might have examine the deed before paying the money, he might ha
really secured what he bargained for Example 3. A buys a patent, supposing it to be the only ne ever granted for the special improvement claimed. It bears the genuine official marks of government origin, looks straight in all its forms, and appears to him to be all right. Without making a search, he pays the money, takes the deed, and proceeds at once to manufacture the article. After much labor and the outlay of several thousand dollars for mechanism, he succeeds in putting the goods on the market, when, to his astonishment, he is served with legal papers as an infringer of some prior patent; and only gets lear of the trouble by paying damages and buying an inter
est in the first patent. He is thus compelled to pay twice est in the irst patent. He is thus compelled to pay twice for the same article, which he might have avoided had he
employed the services of proper persons to examine as to employed the services of proper persons to exam
Example 4. A contracts for a patent, supposing that the
device in a new thing. Surely, he thinks, the governmen of the United States would not issue a patent for an old de vice. He therefore concludes that it must be all right, pay the money, and receives a deed. Infringers make their ap pearance. He brings suit, and then, to his surpise, discov ers that the invention is a very old one and the patent utter ly worthless. The Patent Office is far from being reliable in its grants. The only safe way, where interests of value are at stake, is to have careful searches made by competent at orneys as to the validity of the patent.
The same remarks apply in respect to the scope of patent claims. The purchaser is too apt to suppose, in buying a patent, that the claim is broader than it is, and covers the manufacture of an article so as to exclude all competitors. He therefore goes extensively into the business, exhausting money and energy, only to find out, what an attorney's ex amination would have quickly revealed before hand, that the scope of the patent claim is very narrow, and the patent of little value.

CONCERNING A TELESCOPE OF UNLIMITED POWER.

In volume I, number 3, of the Mathematical Monthly, fo 1858, may be found an article written by Professor George R Perkins, then of Utica, N. Y. It relates to a fluid parabolic mirror; and the problem is demonstrated that "if an open vertical cylinder, containing a fluid, be made to revolve with a uniform motion about its axis, the upper surface of the fluid will assume a perfect concave parabolic form." A table is appended which gives the focal distances corresponding to different velocities of rotation; and these have been deduced from actual mathematical calculation.
If mercury be used as the fluid, we shall obtain a concave parabolic mirror which will be theoretically perfect. We think it possible to make use of this kind of mirror for astronomical purposes; for all rays of light falling upon it parallel to its axis will be reflected to the focus of the para bola, where could be applied the ordinary magnifying appa ratus, after the method employed in the Newtonian reflecting telescope.
Now it is necessary to reduce our theory to practice. The cylinder containing the mercury must revolve with a uniform motion; and it is our opinion that the mechanics of the present day are fully adequate to the construction of machinery which shall impart a uniform motion to a vessel of mercury many feet in diameter. This problem of uniform motion has been successfully solved : the astronomical instrument known as the chronograph is made to move almost perfectly uni formly ; and the heavy clockwork which is employed in mov ing large refracting telescopes, in a direction contrary to the diurnal rotation of the earth, is often so perfect that a star, from its rising to its setting, can be kept almost exactly in the center of the field of view. Now certainly, since we have attained so perfect a uniformity of motion as this, ma chinery can be devised and constructed which shall impar the required uniform motion to an immense vessel of mer cury. It is evident that gravity would not permit this mir ror to be inclined for the purpose of viewing objects which are not directly overhead; and since this is true, it is also evi dent that the value of the mirror of mercury would be some what lessened by reason of the fact that a celestiai object would soon pass off the field of view of a stationary mirror. So that we must devise some method by which the rays of light from any part of the visible heavens may be throw vertically upon the mercurial surface. For the accomplish ment of this object, the principle of the philosophical instru ment well known as the heliostat could be employed, an thus the rays of light coming from any heavenly bod could be continually reflected vertically upon the mercurial surface As to some of the manifest advantages which this instru ment would possess: The liquid mirror would not be dis toried by a change of temperature; thereby being far supe rior to reflecting telescopes with solid mirrors. Again, there is no limit to the size of mirrors constructed in this way ; and this fact will allow the use of eye pieces which will afford unlimited telescopic power. The speculum snrface, also, of mercury is almost perfect, absorbing a much smaller amoun of light than the polished surface of the metal used in ordi nary reflectors. And the specific gravity of mercury is such that, after it has once assumed its position of equilibrium in rotation, it will be quite stable in its form. It will also be readily perceived that the principal thing about the mercu rial telescope is its machinery; which can be much mor easily and accurately constructed than the great lenses ne cessary for an immense refractor.
Now this plan for the construction of a large telescope cer tainly possesses adivantages sufficiently great to warrant th expense of all experiments for testing its practicability. The essential thing in the executior of a large telescope consist in the requisite funds. The million dollar telescope, so ear nestly talked about by some of the correspondents of the Scientific American for several months past, calls for considerable sum of money; the mercurial telescope, offering far greater power, calls for a far less sum of money. And again, the entire lifetime of an optician would be barely sufficient for grinding and polishing and correcting a pair of lenses large enough for a million dollar refra ting telescope whereas an immense mercurial telescope might be construct ed inside of two years; indeed it might be easily completed before the Centennial of 1876, at Philadelphia, if it is desired hat it be used on that occasion. Such an instrument would add indefinitely to our knowledge of physical astronomy ant, moreover, the great amount of light which a large mer curial mirror would collect, even from exceedingly faint ce lestial objects, would be particularly favorable for spectro opic observation.
This method seems, at present, to be our last resort for
he construction of a large telescope. Definite action in re
gard to this matter should be taken immediately. Let some one take hold and do something ; success is almost certain Amherst College, Mass.
Remares by the Editor.-The suggestion here made by our esteemed correspondent for the construction of a reflecting telescope of unlimited power is novel and ingenious. It is, moreover, theoretically correct. But when we come to consider the difficulties which beset astronomers in using their present large instruments, though these are small as compared with the gigantic machines intended by our correspondent, we confess his idea seems to us to be impracticable.
Whoever has attempted so simple a matter as the adjustment of the wires of a three inch transit instrument, by look ing through it upon a small plane mercurial mirror, knows how considerable the difficulties are. Even the insensible pressure of the wind, upon the exterior of a solid stone building in which the adjustment was attempted, has been known to produce such vibrations of the surface of the mercury, although it was insulated by elastic supports, as to render the work of adjustment impossible; and success is only attained during an almost perfect calm. If these difficulties attend the use of a mercurial mirror of only a few inches in diameter, are we not justified in believing it to be impossi ble, in the present state of human mechanical skill, so to
arrange a plane mercurial mirror of several feet in diamearrange a plane mercurial mirror of several feet in diame-
ter that it shall remain free from vibration? But granting ter that it shall remain free from vibration? But granting
that it could be done, can we conceive of any method by that it could be done, can we conceive of any method by
which the rotation, necessary to produce the requisite con cavity of the mirror, could be imparted and maintained with out inducing vibration? We will grant that the motion could be sufficiently regulated, though an absolutely accurate slock has never yet been been made
But we will suppose the mirror to be complete, and the objections mentioned successfully overcome. The instrument necessarily occupies a horizontal position; it is, we will say, twenty feet in diameter, and we now wish to use it to the best advantage. For this purpose, two plane mirrors, equal in size to our mercurial mirror, will be necessary ; and whether they are made of glass or metal, the difficulties connected with the final polishing of their surfaces into a condition of proper accuracy are seemingly as great as the maintenance without vibration of the rotating mercurial mirror.
We are of opinion that it would be considerably less difficult to construct a concave mirror of speculum metal or other solid material, of the dimensions stated, than to produce either of the other mirrors; while the speculum concave, by its capabilities for change of position, would render the use of the two plane mirrors unnecessary.
We should be glad if our correspondent, and other writers who desire, would point out the particular methods that may occur to them, by which the objections we have suggested might probably be overcome. The subject is one of much interest, and its further discussion may lead to profitable developments.

THE PROTECTION OF PLANTS BY ARTIFICIAL CLOUDS
The practice among gardeners of protecting vegetables from the effects of frost, by lighting fires at such points that the wind will carry the heated air and smoke over the plants, is not new, end in some countries is one of the commonest agricultural operations. In Chili, where large vineyards exist upon the slopes of the Cordilleras, the plan has been found of the greatest value in saving the vines from the cold wind which sweeps down from the mountains; and it is stated that even the tenderest shoots are defended from the frost, at temperatures as low as $21^{\circ} \mathrm{Fah}$.
The most recent experiments in this direction, and perhaps alio the most extensive of late date, have been carried on by M. Fiabre de Rieunègre, one of the largest vina growers in France. It may be remembered that about a year ago we briefly adverted to this subject, and said that it had elicited commendation from a congress of vintners in the above mentioned country. Since then, however, M. de markably good results that the matter is invested with a new and, at this season of the year, timely importance to all engaged in the cultivation of the vine in our Northern States. The investigator in the record of his researches considers that fires of tar or heavy oils are not suitable, nota bly from the fact that cheaper and more efficacious material can be obtained, and also that, in order to keep the former burning over a considerable period of time, an amount of attention is required which eventually becomes very onerous. Wheat chaff, he says, answers the purpose better than any substance he has used, as it burns slowly, produces large quantities of smoke, and costs but very little. Moss, saw dust, or worthless hay may be employed when chaff is not conveniently obtained. The material is piled in heaps of about eight feet diameter and forty feet apart. Three fires thus disposed are sufficient to protect two and a half cres of vines.
In describing his mode of experimenting, M. de Rieunègre says that, having selected a night when the thermometer appeared to be rapidly falling, he collected all his laborers, together with a large concourse of neighbors from the sur-
rounding country. As soon as the mercury fell to 32° Fah., a signal was given and the match was applied to three hundred heaps of chaff and straw. The flames were carefully kept under; and in a very few minutes, a dense cloud of smoke had settled over a plain of 360 acres. The fires were continued until the thermometer had risen above the freezing point of water, but were renewed within twenty-four
hours, when one of the coldest nights of winter set in, with a
kindled in the direction of the wind, the great cloud was aga formed; and although, it is mtated, the vineyards of the surrounding country presented after the frost a scene of desolation, those protected by the smoke were unharmed Thirty thousand dollars worth of plants were saved by the operation, at the sole expense of a quantity of worthless chaff and straw.

ELOQUENCE AND PATENT FUEL.

When we have subjects to write about which call for beautiful displays of rhetoric (and it may be remarked that the editorials of a scientific journal are not popularly supposed to sparkle with such brilliant coruscations of literary genius), we think, by sufficient study, we might prove equal to any ordinary requirement; but we doubt if, under the inspiration of so prolific and poetic a theme as " patent fuel," we could evolve from our inner consciousness anything ap proaching the following, with which a writer in Les Mondes introduces that topic. The quotation is remarkable in that it broaches an entirely new theory of the origin of fire, the peculiar ingenuity of which will doubtless commend itself to all scientific minds

The world was born yesterday. One day an unknown meteor rushed with the wind (!) upon the summit of a forest The horizon reddened, trees burst in flames, the leaves driven by a breath of summer whirled in torrents through the at mosphere: birds driven from their nests uttered cries of distress, panthers fled howling away, reptiles writhed upon the cinders, and crocodiles plunged into the lagunes. Alone, immovable and erect, man regarded with mute astonishment the bloody shadow of the new guest. Suddenly he felt a gentle heat penetrate his fibers, as the prescience of a novel destiny. Fire was found. Then braved be the frost, drove back the night, and caused the grain to leap from the bosom of the earth. Lighting the forge, he melted, molded, and mastered metal; and metal, vibrating under the orchestra of the forge, sounded the chant of the victory of humanity.' And after two pages of this to descend to the advantages of patent fuel

THE SUPPRESSED MEMBER

Of all tyrants, the most tyrannical is custom. As capricious as the King of Dahomey, she is as inexorable as Mrs. Grundy. There is no king or kaiser whose rule is so burdensome or so meekly endured, the secret of her power lying in the delusion of her subjects that they are wholly free. Her laws are the only laws that perpetuate themselves : and though orig inally mere freaks of barbaric fancy, or usages of some forgotten stage of social development, they have shaped the lives of so many generations that they have become part of the social framework, and are harder to shake off than Sin bad's old man of the sea. Our heaviest taxes are those we pay to custom, her tribute takers, with fernseed in their shoes, finding their way into the innermost recesses of our daily life and controlling our conduct where we least suspect it.
A thousand illustrations might be given; but just now our wish is to call attention simply to one: our habitual and unreasonable suppression of a member whose cultivation would being utterly liable to. The oriental custom of restricting education to the male half of the race seems to occidental minds at once unprofitable and absurd. What then would we think of a custom which should effect the systematic repression, not of the girls merely, but of half the boys; requiring number one of every pair of boys to be trained to the utmost strength and skill, and condemning number two to awkwardness, inaction and weakness? Worse than that: allowing him to do nothing not directly and necessarily subservient to number one, yet requiring him always to take number one's place in case he should meet with an injury. Such unprof. itable servitude to other customs than our own would cer tainly be accounted ridiculous in the extreme; but after all, is it so much worsethan our careful repression of the sinister half of each boy's working members?

Don't use that hand" and "Use your right hand" are injunctions that the child hears from the very first; and before he is old enough to understand the spoken words, the outstretched left hand is put back and the coveted toy given only to the right

Why?" he asks as soon as he is old enough to demand a eason for the slight put upon the unoffending member.
"Because," replies mamma, sagely, "it is awkward," or, it isn't polite.
Why it should be awkward or impolite to use the left hand, mamma never thinks to enquire. That the exigencies of ism made it necessary the fighing age of forgotten barba the same hand, or some other equally wise and potent reason established the custom at a time when one skillful hand was enough for one person, mamma neither knows nor cares; nor does it occur to her that times change, and that a good rule for one generation may be a bad one for another. Grant that social convenience is favored by the uniform use of the right hand for certain purposes, that is no sufficient reason for subordinating the left hand in all things, especally when the conditions of our lives and occupations mak it very frequently imperative that the untrained left
shall learn to do the work of the disabled right hand.
Fhall learn to do the work of the disabled right hand.
From the nursery the boy goes to school, and here the same unreasonable prejudice awaits him. Through instinct, accident, or caprice, he grasps his pen or pencil with his eft hand, and his knuckles are sharply rapped for it. Why
t. would take but little if any more time ; and if it did, it would nly keep him busy during moments which he would other wise devote to idleness or mischief. The acquisition would never be worthless, and it might be of immense convenience to him. He might never have occasion to use his double capacity after the fashion of the popular scientist and teach er whose two-handed black board sketches are such a delight to his auditors, and who is said to pursue his microscopic to his auditors, and who is said to pursue his microscopic
studies with a pen at one side and a pencil at the other, draw studies with a pen at one side and a pencil at the other, draw-
ing with one hand and writing with the other as the development of his subject may require; nevertheless his two fold skill would ever be a possible source of satisfaction and advantage to him. He would be free at any moment to rest a hand exhausted by protracted use without any interrup tion of his work; he would be less likely to be disabled by trifling hurts; and in case one hand were stiffened by heavy labor, the other might be kept in readiness for delicate man ipulations, for writing, drafting and the like.
We have seen more than one ambidextrous artizan whose ability to handle tools with either hand, as occasion demand ed, gave him constant advantages over his one handed mates, not only in the avoidance of fatigue, but in the performanc of nice work and the overcoming of difficulties, hard to come at by those restricted to the use of a single hand. The righ handed man who can use a hammer or a knife readily with his left hand, or can tie or untie a knot when his right hand is otherwise engaged, will find frequent use for his skill Indeed the advantages we miss through the non-cultivation of the neglected member are infinite in number and of in cessant recurrence. They are among the taxes we pay to custom.
It would be useless to recommend the mature to undertake the culture of their left hands. They have been " left' unused and untrained too long; and the proper time for such work is in childhood and youth, when the muscles are tractable and time abundant. But need it be useless to urge parents to encourage such training on the part of their children, or, at least, not to discourage it?

SCIENTIFIC AND PRACTICAL INFORMATION.

european railroads.

According to the most recent statistical data, the total length of all the railroads in Europe is 58,650 miles. The largest number of lines is in Great Britain, aggregating 15,351 miles Germany is next with 10,739 miles, then France, 10,511 Austria, 4,492, Russia, 4,758, and Belgium, 1,892.

adulteration of tea in england.

The London Globe, in an article on the above topic, says that the ill effects, often attributed to tea drinking, in the majority of cases are not due to the properties of the leaf itself. Adulteration has become so common that out of 183, 000,000 pounds which passed through the British Custom House in 1872, during the month of July alone a Sanitary Commission found $10,000,000$ pounds utterly unfit for human consumption. In a single chest a magnet brought out 43 per cent of the whole in bits of iron, colored green. This wholesale rascality is done by the Chinese before exportation.

RED AND WHite muscles.

M. Ranvier points out that the red and white muscles of a body,-very clearly seen by removing the skin of a rabbitwhich exist mingled in the same region, are different both in structure and properties. On applying the electric current; the white portions contract almost instantly, and respond even to rapid and continuous shocks. The red portions, on the contrary, are much more sluggish; it requires a certain time for them, apparently, to feel the excitement, while, on quick interrupted discharges of electricity being administered, they simply assume permanent contraction. It is believed by the author that the latter are involuntary and of the nature of the muscles of the heart or other portions relating to the animal existence; the former, however, he thinks, are controlled by the will.

NEW DERIVATIVES FROM CAOUTCHOUC
While recently investigating the properties of Gaboon caoutchouc, M. Aimé Girard has succeeded in isolating a white crystallizable substance which, on analysis, became resolved into methylic ether and grape sugar. In a second series of researches, the same author, with Borneo rubber, has found anothermaterial analogous in aspect to the first, and containing the same elements, but differing in that it contained grape sugar condensed, in other words, answering to the formula $\mathrm{C}^{12} \mathrm{H}^{12} \mathrm{O}^{12}$ instead of $\mathrm{C}^{6} \mathrm{H}^{6} \mathrm{O}^{6}$, as in the former instance. Continuing his studies to Madagascar caoutchouc, still another substance appeared, of which the sugar gave a molecule containing $\mathrm{C}^{18} \mathrm{H}^{18} \mathrm{O}^{18}$, or doubly condensed.
The series thus determined also has regular relative difference in physical properties. Thus the first derivative melts at $414^{\circ} \mathrm{Fah}$. , the second at 418°, and the third at 455°, the temperature rising with the degree of condensation, thus conforming to established laws. As regards optical properties, the first component is inactive on polarized light, the second turns the plane of polarization 32° to the right, the third determines a rotation of 79° in the same direction. M. Girard has therefore discovered an intimately connected seies, representing ethers of which the acids are isomeric forms of grape sugar.
Instead of an edition of sixty thousand of the "special" as promised to advertisers, we shall print of this number sev-enty-five thousand to commence with, and probably a second edition of twenty-five thousand before the first of next January.

THE IRON WORKS AT MERTHYR TYDVIL, SOUTH
Among the rival iron districts which now pour out their millions of tuns annually all over the world, Merthyr Tydvil, was one of the earliest in the field, its product being celebrated long before the Staffordshire mines were opened. The principal works at and in the neighborhood of Merthyr are Cyfarthfa (Mr. Robert Crawshay, the subject of our por trait), Pen-y-darren (Messrs. Fothergill \& Co.), and the Dowlais Iron Company's. The first of these has as many a 5,000 hands on its pay roll, and the last 16,000
The name of Crawshay has been identified with the Cy fartha works for three generations. The first ironmaster in the family was (in the words of one of his grandchildren) the son of a most respectable farmer in Normanton, York slitire. At the age of fifteen, father and son differed. "My grandfather, an enterprizing boy, rode his own pony to Lon don, then an arduous task of some fifteen or twenty days traveling. On getting there he found himself perfectly des titute of friends. He sold his pony for $\$ 75$. He hired him self for three years by paying the $\$ 75$, the price of the pony His occupation was to clean a counting house, to put the desks in order, and to do anything else he was told. By in dustry, integrity, and perdustry, integrity, and perseverance he gained his master's favor, and was Bermed The Yorkshire Boy.' The trade in which he was engaged was a cast ron warehouse. By honesty and perseverance, he continued to grow in favor. His master retired in a few ears and left my grandfather in possession of his cast iron business in London, which was carried on on the very site where he ended his days-in York Road. My grandfather left his business in London and went to Merthyr Tydvil. Who . started with humbler prospects in life han my grandfather? No man in the works is so poor but that he can command 775. Depend upon it that有. Depend upon it that ny man who is industrious, honest, and persevering, will be respected any class of life he may nove in."
There is a sort of ances tral and patriarchal feeling at Cyfarthfa which seldom exists elsewhere. There are many men who have grown gray in the employment of the Crawshays, who have never changed or would wish to change their place. They have begun as children, perhaps only fetching and carrying small articles, for a few shillings a week, and have gone on to earn, as firemen and puddlers, their three pounds. There is not the same intense pressure the same intense pressure districts. The own istrics. The owner, havng inherited a few loose millions, can aford to take things considerately and calmly. If you take the manager of a company, with his $\$ 25,000$ a year salary, and wanting to make another $\$ 25,000$ a year by his commission and percentage, you have, of course, a very different set of circumstances; he is anxious to produce as fast as possible; but the owner of Cyfarthfa is reported to have once truly/ these gigantic creatures can lift their heads to the surface of said that he could afford to shut up his works for fifty years. Mr. Robert Crawshay is the owner of Cyfartha Castle; the unique character of the stern rough place, fit residence for an iron king, impresses you strongly. Some iron rails, a kind of tramway, come almost to the front door. The place might be a fortress, a mill, a lunatic asylum, unless you knew to the contrary. A somewhat steer ascent leads you to the pardens behind the house, with garde be the hothouses are very rich in their and ferneries Some of the he the flowers might be the glory of any consorat but even in looking at the
iron and coal.
Mr. Crawshay is also well known as an amateur photogra pher, and his liberal encouragement of the art, by giving valuable prizes for specimens of portraiture, has already been commented on in our columns. He has recently executed a portrait of Mr. Justice Grove, F.R.S., the eminent philosopher and jurist, which the Photographic Nevos decribes as "nearly faultless."

MR. ROBERT CRAWSHAY OF MERTHYR TYDVIL, SOUTH WALES water ; the little one is as tame, playful, and docile as a kit- mile wo feet ten at the shoulders. Her back is a slaty black color, but her cheeks, chest, and legs are of a lovely pink salmon color. We calculated her weight to be nearly one tun, and her mother would make and weigh about hree little hippos. She eats and sleeps well; and besides her natural nourishment, her meals consist of chaff, bran mangold wurzel, scalded oats, biscuit, and sugar. She is very fond of anything sweet. She has already learnt to beg
for food; she puts her head out between the bars, for food; she puts her head out between the bars, opens her mouth, and pricks upher little ears when she wants to beg The gape of her mouth is about eighteen inches, she has already a most lovely set of white teeth, and the tusks begin to project out of her pink gums. Her mother is very watch ful over her, and, if she thinks any one is about to disturb her child, hisses loudly like a big snake. Every morning
when it is moist and wet, she and her mother are let out in to the bath outside; when it is dry and frosty, they are kept in the house, as the frost would crack and parch their delicate skins. When in her morning bath, she is very playful and plunges about like a porpoise. The pair of hippos sleep on the straw all night, but they spend a great portion of the day in their bath in the house in a sort of semi-sleep. They foat up to breathe apparently without an effort, like corks rising to the surface. When under water, they keep their yes wide open after the manner of crocodiles.
When the mouth of the young one is wide open, it will be seen that the tongue is arched directly upwards so as to form a compact valve, which prevents the water going down the gullet. The old father in the next den talks to his wife and child by means of sonorous gruntings, and they answer him. The father's face is much longer and sharper than that of his wife, and his eyes and nose are much more prominent. I understand from Mr. Bartlett, who kindly allowed me a private interview with the hippos, that another baby is expected about next April, and that Barnum is most anxious to obtain it. I doubt if he will; let him go and catch a wild baby hippo for himself.

Prismoidal Railway

In our last volume, we gave a drawing of the Prismoidal Railway of Mr. E. Crew, of Opelika, Ga. Messrs. Lafferty Brothers, of Gloucester City, N. J., have lately constructed a four tun locomotive on this novel plan, which is thus described in the Pliladelphia Ledger:
It is built for a street railroad company in Georgia. This engine can with propriety be called a velocipede, as it rests upon two wheels, one following the other. The rail or track upon which it is to run a sample of which is laid a the yard of the builders, is tye ya a "Prie builders, is tyled a "Prismoid, or one rack railway, and is com of of several thicknes es of plank, built up in the tyle of an inverted keel of a vessel, with a flat rail on the apex. Upon a trial of speed, about 12 miles an hour was attained, and the inventor and patentee claims that the speed can be almost doubled on a lengthened track.
Mr. E. Crew, of Opelika, Ga., is the inventor and patentee of both tracks and engines, and he claims that his inventions demonstrate a tractive power superior to anything in the locomotive line, of equal weight. The capacity for running on curves is very much greater than the two rail system. The track upon which the trial was made contained 36 feet of lumber and 18 pounds of iron to the lineal foot, proving itself equal to a span of 20 feet, remaining firm and unyielding under the pressure of the engine as it traversed the road. The revolving flanges attached to the engine, and which run on the outside of each wheel, Mr. Crew claims, absolutely lock the rolling stock to the prism, and obviate the necessity of so much heavy rolling绪 the keeper, enticed Guy Fawkes and her mother out of the , claimed that a prismoidal railway built with a base of 14
ten. We made her out to be about six feet four long, and The inventor is of opinion that his engine and track are par
two feet ten at the shoulders. Her back is a slaty black ticularly adapted to the propelling of canal boats, and will
ticularly adapted to the propelling of canal boats, and will compete successfully with horse power on canals without necessarily interfering with the ase of the latter, but he does not state in what way. The engine will shortly be shipped to its destination, Atlanta, Ga. , where it goes into operation on a street railroad, built at an elevation of twelve feet above the sidewalk.

Electric Indicator of Vitiated Air.-A solution of palladium chloride is so connected with a battery that, as long as no metal is precipitated, no current passes; but as oon as carbon monoxide occurs in the atmosphere, metallic palladium is precipitated, which establishes a current, and rings a bell to give warning
gas.-La Gaceta Industrial.

FLAX AND ITS PREPARATION.

 It has deen asserted that flax is, in Great Britain, the most profitable crop that an agriculturist can grow, and yet, of late, whole districts which used to be under this crop are turned over to other uses. There has been, as the Practical Magazine informs us in a throughtful and exhaustive article, a great difficulty in finding machinery suitable for the preparation of the fiber (which needs the most careful treatment), capable of being managed by field hands. "Every farmer," says our contemporary, "ought to have his own scutch mill. The object to be aimed at is the economy of fiber. The saving of labor, the combination of more than one process in the same machine, and every other economic or mechanical desideratum ought to be secondary to the capability of the machine in clean scutching; in giving the largest possible yield of flax ready for the hackle from a given quantity of "mannered" straw. The system of cutch mills as we find them in Ireland is the best that has been adopted as yet. Hand scutching is too tedious and the flax so manipulated can never be properly cleansed-short of an amount of labor which would add too much to the cost of production. But the scutch mill working for a number of farmers only suits Ireland, or else where where the farms are small. In England and Scotland, where the farm are large, every farmer ought to have his own mill, either worked at the farmstead by the engine which works the threshing and other machinery of he farm, or by water power, when it may be had on the farm. The scutch mills ought to be in sets of three stocks, o as to give the flax the chance of " buffer," "a cleaner," and "a finisher," to every streek. The "buffer" may be an unskilled man if only careful not to allow the "blades" to break his hand ful as he holds it across the stand of the stock. A careless scutcher will waste his wages in a quarter of any day he is allowed to work. The "cleaner ought to be not only careful, but a orderly man. If flax is treated like hay, the loss is incalculable. Assum ing that the man at the "rollers" has not allowed an uneven "beet" to pas through his hands, and has not made some stalks to ride on others before he presented the charge to the rollers, and that the "streekers" have done their work carefully, and that the "buffer" is not a sloven, the cleaner will then be eaabled to place the streek on the " finishing." board so orderly that not a fiber will bu awry. The "finisher" must not only be a skilled laborer, but also an orderly minded man, possess ing a good taste; and if he has those qualities he will show his pride in the orderly condition the clearness from shove, and the general finish of every streek, which are necessary to good and economic scutching. But with bad machining neither the "roller" nor the scutchers get fai play; and the owner of the flax pays for all in serious curtailment of profits. The mill should go steadily whether by steam power or wate power. The motive power should always b under such easy control that, according to th condition of the flax (hard or soft), the motion o the mill should be easily regulated."We give herewith a self-explanatory view of a flax-breaking device which is now being in troduced abroad for the purpose of enablin farmers to prepare this valuable but trouble some fiber for manufacturers' use. We believ that it will be of interest to the agriculturists in many portions of our country, who greatly need the introduction of a new industry. Possibly it may pay to grow flax in places where corn burnt for fuel because it costs too much to get it delivered into the centers of population.

THE OREODOXA REGIA PALM.

The splendid and luxurious flora of Brazil produces nothing more graceful than the lofty palm known to botanists as the oreodoxa regia. traight and slightly tapering for over sixt eet in hight (when fully grown), the tree then eparates into a frond of remarkable beauty, a complete in form as the capital of a Corinthian column. A grove of these trees (represented in our engraving) is to be seen in the public botani arden at Rio de Janeiro, and it is difficult to magine an object more beautiful to the ofe over of Nature. The trees are said to be be wis fly for of in frun four feet fom but four in t four feet from the ground, and it goes on apering gradually to a length of more than fifty feet, when it becomes united with anothe mooth thinner trunk, from ten to twelve fee in hight, formed of the bright green foot stalk of the leaves, which again measure some twent feet or more.

FLAX BREAKING MACHINE.
century, and is now above 120 feet in hight. It is a noble tree, and, as it stands singly and at a considerable distance from other plants, its beauty and hight can be seen to the est ad vantage.
Strangers from northern countries are iuvariably struck

THE OREODOXA REGIA PALM TREES
with the appearance of this avenue, which is unrivalled for its regularity, extent, and beauty. It forms a colonnade of natural columns, whose graceful bright green capitals seem to support an overarching dome of bright blue sky.

Property in Patents.

"The Nature of Property in Patents," was the title of an in teresting society paper lately road by Mr. E. M. Quimby, of Orange, N. J., in which were set forth some of the difficulties attending part ownership of patents where there is no agreement regulating the use of the joint privilege, and the importance of preserving the title to the patent in its entirety demonstrated. Mr. Quimby thus formulated the legal question: "Patent property consists of an assignable privilege, having originally an exclusive character, which may or may not be preserved at the pleasure of the grantee. If the grantee assigns an undivided interest in his patent without the precaution of an agreement regulating the use of the privilege assigned, he by that act divests himself of the sole power of exclusion which he theretofore possessed, and the common property thenceforth is simply a common privilege, the free exercise of which by either part owner cannot be held to be an invasion or infringement of the rights of the other part owner.
Mr. Quimby suggested that the whole interest might be assigned to a trustee empowered and directed to administer the patent for the joint account of the several owners pro rata.
In discussing the moral effect and rels tive scope of patents for analogous inven tions, it was remarked that the grant of a patent by no means establishes a commercial value for the invention, or even necesearily indicates that it may be used without i, vasion of the rights of others. To deter mine these points, it must be ascertained by further investigation whether the subject matter of the patent in itself infringes, or whether its use involves the concurrent use of devices which infringe upon principles claimed in prior existing patents, or de scribed so as to be claimed in possible reissues of such patents.

Slag as a Building Material.

At a recent meeting of the Society of En gineers, London, a paper was read on the economic use of blast furnace slag, by Mr. Perry F. Nursey. The author commenced by noticing generally the history of the utilization of slag. In that condition it was first used for the beds in pig iron founderies, and afterwards in producing fine castings. It was also mixed with lime in certain proportions, and then pressed into bricks and made in to concrete and cement. Slag sand was also used in making mortar with very good results; it wes further utilized as ballast on railways, and had also been adopted in the manufacture of glass. In England, the author stated, ithad also been sim. ilarly applied, and systems of machinery for its utilization had come into practical operation. The machinery of Mr. C. Wood, of Middlesborough, and of Messrs. Bodmer, of Hammersmith, was then described by the author by the aid of diagrams and models. Mr. Wood's machines, he explained, were of two kinds, one of a horizontal revolving table, and the other a vertical revolving drum. By the first machine the slag was cooled with a stream of water as it left the furnace, and, be coming disintegrated, was broken up and pusht d off the table at a certain point by scrapers into trucks placed beneath. In that state the materia was in a suitable condition for making concrete for building purposes. The second machine was for reducing the slag to a finer condition. It was run from the furnace into the drum, through which a stream of water flowed. The drum had screens placed within it, and as it revolved the slag became reduced to a fine sand, and was delivered in that condition into trucks. The sand was utilized in making bricks, cement, mortar, and for other similar purposes. Messrs. Bodmer's plan consist ed in the use of a pair of rolls, through which the slag was run from the furnace on to a traveling band, which delivered it wherever required. The sheet of slag thus produced was readily broken up for use in concrete-making or ground into powder for bricks, cement, or mortar. For some purposes Messrs. Bodmer ran the slag into water but for bricks and cement they produced it dry They had also a special system of machinery for the manufacture of slag bricks, which was worked by hydraulic power, and which was described by Mr. Nursey. Samples of sand produced by both processes were exhibited, as were also bricks, con crete, and cement made from them. The satisfac tory results which the author showed had followed the extensive use of blast furnace slag in the form of building materials leads to the hope that the enormous heaps of slag in the iron districts wil become a source of profit and will provide good so und building materials at a low cest.

Correspondeme.

Electricity vs. Yellow Fever.

To the Editor of the Scientific American

I have been an observer, since the epidemic of 1853 , of certain phenomena for which I am unable to account, not being a scientist; and I will therefore recount my observations for the benefit of others. I have observed that, for some time prior to the breaking out in southern latitudes of the terrible scourge of yellow fever, rains fall, unaccompanied by thunder and lightning. During the prevalence of the epidemic, lightning is scarcely ever seen, no matter how of ten it may rain. The weather may be cloudy ever so long, yet the rains are not accompanied by the lightning flashes and thunder peals ordinarily common in this latitude ($31^{\circ} \mathrm{N}$.). When no yellow fever visits this portion of our country, thunder and lightning accompany every rain. There was about in the middle of September of this year, one peal of thunder heard in this county (Jefferson) and in Stow county, Miss. ; and none from then till the evening of October 26 following. We never have a killing frost, that is, one that destroys all the vegetation liable to be killed, till after a rain accompanied by a good deal of lightning. In 1855, in the county of Madison in this State, I remember that, at an examination of a female school in July of that year, there could not be generated a sufficient amount of electricity to perform the simplest experiment with the elecirical apparatus. The yellow fever made its appearance shortly thereafter in the town of Canton, and raged terribly.
I have drawn this conclusion from the facts that yellow fever does not prevail when the atmosphere is charged with electricity; and when it does prevail, there is an absence of that subtle fluid. May not scientific men be able to treat yellow fever cases electrically? As to the modus operandi, I have nothing to say; but it strikes me as being reasonable that there is some property in electricity antagonistic to yellow fever or the miasm that produces it; and if electricity can and does destroy the germ of that fatal disease in the at mosphere, why may it not do the same in the patient afflict ed with the virulent poison?
I make these suggestions hoping thatoscientific men may give the subject investigation; and if there be anything be yond mere coincidence in the facts as above stated, electrical statistics will be able to verify it, if a call be made upon those whose duty it is in the various localities to note the ehanges of the weather

Observer.
Fayette, Miss.

Trees as Historians of the Past

To the Editor of the Scientific American:
It may have taken a French savant years to ascertain what is a matter of common knowledge with wood cutters. I have understood for more than 30 years that a thin ring in dicated a cold season, and a thicker one, a corresponding warm season. Another point which I have observed (and which is not mentioned in the Gros article) is this: In trees that are in an open field, or even in the forest where there is no particular protection from the north wind, the rings will be thinner on the north side than on the south side of the same tree. The heart of the tree is very seldom found in the center of the body. I have no doubt that you would find that a tree cut 4 or 5 feet from the ground will give a true record of the general meteorological conditions of each year of its life. I have often sat down by a newly cut stump of a tree, to count the rings, to note the difference of thickness, and to point out the thin rings to those with me, as in dicating a cold year.
While speaking of trees, I will mention another fact, which I have not seen in print, but which I got from an old gardener. It is that all trees that are not trained out of natural shape will exhibit a profile in exact correspondence with the fruit. For extremes, take the greening apple and a long slim pear. The leaves, even, have a general resem blance to the fruit.
A. M. W.

Bridgeport, Conn.

Snake Poison.

To the Editor of the Scientific American
With reference to the article published in No. 3 of your current volume, I wish to mention that the poison of the rattle snake (cobra cascarel) has been used in this country for about 20 years by several physicians, upon the homeopathic principle, under the scientific name of crotallus cascarella, and with very good results, chiefly against neuralgic complaints and against nervous trembling. It is described as a most powerful specific in such cases, and to operate with great rapidity.
Pernambuco, Brazil.

Prizes for Scientific Experiments.

The following subjects for prizes to be awarded in 1874 have been proposed by the Batavian Society of Experimen tal Philosophy:

1. To discover if there exists, in the molecular state of bodies, modifications other than those caused by tempera ture, which are such as to give for the same body differen spectra. The society wishes that this inqui
effy on the magnetic condition of bodies.
2. To find out by new experiments if the vapor of water exercises on radiant heat an absorbent effect much more powerful than dry atmospheric air, as Mr. Tyndall main tains; or if there exists no difference in this respect between
dry and moist air, as M. Magnus maintains. The society desires that the new experiments which it asks for be conclu sive, and enable it to decide between the two opinions.
3. To determine what influence the pressure which is put upon an electrolyte has on electrolysis, and how far in this case is the principle of conservation of energy confirmed o be chosen by the inquiry
4. To determine the resistance of the liquid amalgams o zinc and gold to the galvanic current. Six at least of each of these amalgams, in various proportions, ought to be ex mined.
5. A prize is proposed for new experiments which will en able a certain decision to be come to on the opinion, advanced by M. Gaugain as probable, namely, that voltaic electricity is propagated by matter, while induced electricity is propagated by ether.

completion of the hoosac tunnel

It is with much pleasure that we chronicle the completion of the bore through the Hoossc Mountains, Massachusetts, which work was accomplished on the 27 th of November. The back volumes of the Scientific American contain ac counts of the progress of this great work from its incipiency up to its completion, together with engravings of the various kinds of mechanism, that have, from time to time, been employed.
When the Hoosac Tunnel was authorized, no such railway work of equal magnitude had ever been undertaken, and the project seemed almost impracticable, for lack of suitable me chanical means. The method of hand drilling through the mountain rocks, for a distance of five miles, made the job mountain rocks, for a distance of five miles, made the soe tion of new and special machinery, whereby the work could be expedited. This was in 1858. The ingenuity of the Yanee was not long in responding to the call; and in the course of a few months, the contractors had the satisfaction of setting at work, against the face of the mountain, an normous machine composed of a great wheel faced with steel cutters, by which they expected, at one operation, to cut a finished tunnel of twenty-five feet diameter in the most rapid manner. But in this they were doomed to disappoin:ment. The machine began its revolutions, and cut its way into the rocks very nicely for a few feet, when it broke down, and gave such evidence of impracticability that it had to be abandoned. The builders lost a large amount of money, and complications followed which practically suspended the work, although, from time to time, up to 1868, some progress was made by hand drilling, and paid for by State funds. Other inventors had in the meantime succeeded in constructing new and improved drilling machinery, of an effective nature, and in 1868 Messrs. W. and \& F. Shanly signed a new contract, guaranteeing to complete the tunnel
by or before July, 1874. They set vigorously to work, emby or before July, 1874. They set vigorously to work, employed the pneumatic drilling machinery, and have now suc cessfully pierced the mountain. Their portion of the work will be finished in advance of the period fixed by their conTh
Mass., on the west, through the Hoosac Mountain to the Deerfield river on the east; and when completed, will open a new line of railway travel, by easy grades, from Boston and he northerly portions of Massachusetts to the Hudson iver.
The tunnel has a length of 25,031 feet. Its dimensions are 4 feet in width and 20 feet in hight above the railroad rack when laid, with a central covered drain two feet square. Its form is a rough semicircle, the variation being such as
to give greater hight at the sides than could be given by a true semicircle. It has cost, principal and interest, a little more than $\$ 12,000.000$.

IMPROVEMENTS IN THE VENTILATION OF THEGNITED

 states senate chamber.The Senate chamber is 113 feet in length and 80 feet in width, by 36 feet in depth, which gives 325,440 cubic feet in solid measure. The galleries, coat rooms, and corridor, however, reduce its capacity to 250,000 cubic feet. The proper ventilation for this apartment, where thinking men
sit through long sessions and important business is transsit through long sessions and important business is transacted, has been deemed a matter worthy of the most serious
consideration. Previous to November, 1870, the Senate hall was ventilated in the ordinary way, and was excessively bad. Persons with weak lungs found it impossible to breathe the poisonous atmosphere for the few hours occupied by the aily sessions, without headache or more serious indisposi vised, and has been gradually put into operation by Mr. H F. Hayden, Chief Engineer of the Senate wing. A description of the old method and the new will perhaps be inter esting to builders and designers of public halls.
The apparatus, as first constructed and operated, for heat ng and ventilating the chamber, worked by drawing in a quantity of external air by means of a fan, and passing it over coils of pipe heated by steam, then forcing it into the chamber through risers and registers in the floor. It was supposed that the impure air would be forced out through low of air. No exhausting power was employed to assis in its removal.
The forcing fan for the chamber is 14 feet in diameter, nd is moved by an engine of 16 horse power, will deliver 00 cubic feet of air at each revolution, and is capable of being run up to 80 revolutions per minute, which is the maximum velocity for summer ventilation. But owing to defects and contraction of the main air channel and the various
avenues for ingress of air, the quantity of fresh air demanded for healthful ventilation could not be supplied without pro
ducing powerful currents on the floor. Therefore the spee of the fan had to be reduced accordingly, which gave onl about one fourch the quantity of pure air required. Th^{y} first improvement was the introduction of two large fans in the basement, and an engine of 25 horse power to operate with them for the removal of vitiated air at the ceiling, by exhaustion. The fans referred to are capable of removing 30,000 cubic feet of air per minute, when run at ordinary speed. The vitiated air is drawn through the perforations in the ceiling into the illuminating loft above, then through two descending shafts into the exhaust room, and discharged by the fans into an ascending one leading to the open air. The capacity of the descending shafts is 36 superficial feet Both the descending shafts and the ascending one are of equal capacity. It will, therefore, be seen that, if the supply of pure air had been equal to the amount that could be removed, the entire atmosphere in the chamber would have been changed once every ten minutes. But the pressure of the air in the chamber was reduced on account of an insuff. cient supply, and the impure air from the surroupding corridors was drawn in through the doorway to make up the deficiency. A new air shaft of ample dimensions has been constructed, leading from the heating chamber in the basement to an air space under the seats in the galleries. The seats and risers of the same have been freely perforated, so that nearly three fourths of the supp.y will enter without causing injurious currents. This air can be tempered inde pendently of that for the floor, so that, when the chamber is crowded, the temperature can be regulated to any degree desired. Another improvement is in the construction of a va porizing apparatus in the main air duct, by which the proper amount of moisture can be added to the supply of air, after it has been heated, and the amount of moisture is regulated by hygrometers placed in the chamber. The inlet for fresh air for the ball was located between the wing and the old Capitol. Coal gas and smoke from the flues above were of ten forced down by counter currents, and carried into the chamber by the supply fan. At the suggestion of the engi neer, a resolution was offered in the Senate last winter to ex tend the inlet from the Senate wing to the Western Park, a distance of 220 feet. An appropriation was made for the proposed improvement, which will be completed before the meeting of Congress. The air for the chamber will then be drawn from the level of the Western Park into a clean pas sage, coming in contact with nothing that can vitiate it purity until it has performed its functions of ventilation. It has been fully determined, by experiment, that with the present arrangements 30,000 cubic feet of pure and well tempered air can be supplied per minute, and ample provision be made for its diffusion: which is 25 cubic feet per minute for each individual, assuming the number of persons in the chamber to be 1,200 . The effiorts that have been made within the past three years by the engineer to improve the ventilation of the Senate chamber, have not been based o theory alone, but on well established principles, which ex perience and observation have rendered necessary
The improvements
The improvements here referred to will be readily understood by referring to page 73 of our last volume, where a diagram of the Capitol, in elevation, is given.

THE-USES OF NICKEL.

The manufacturers of the alloy known as German silver have recently submitted a petiticn to the Parliament of the German Empire, praying against the introduction of nickel money into that country. They state that the cost of nicke has increased at the rate of from one to three dollars, and that German silver in a single month has gone up nearly $\$ 12$ per 220 pounds. In England, the price of the metal in pound.
Although but a short time has elapsed since nickel has at tained any important position in the industrial arts, it is Iready a fact that the demand is \bullet nsiderably in excess of the supply. 'The annual production may be roughly es mated in the neighborhood of 600 tuns, of which aggregat English industries alone, it is stated. use fully one half. It i used as money in this country, Belgium and Switzerland and hence it is argued, with much truth, that if Germany should decide to issue a similar coinage, the necessary drain upon the supply would seriously affect the manufactures in which nickel is employed. It is very probable that abundant uses could be found for quantities far exceeding he amount now produced. In its resistance to tensile strain it is nearly one third superior to iron, a metal which in many respects it has similar features, while it is much less subject to oxidation in air or water. German silver, as is well known, is nothing more than brass to which one sixth r one third part nickel is added, in order to give the alloy the color of silver and at the same time a superior resistance t the action of various chemical agents. The alloy is superior to copper as a basis for silver-plated ware, as, when the deposit of silver wears away, it does not expose a red or yellow metal beneath. German silver has also been lately used as a deposit upon other substances; an employment to which it bids fair to be largely devoted.
The increasing demand for nickel will doubtless stimulate research for new deposits; but until such are discovered, it seems desirable that the metal should not be used for coin. Some idea of its rarity may be obtained by comparing the production as above given with the amounts of other metals. Thus copper, for example, is mined to the extent of $65,0 \%$ uns per year, and the iron production,it is said, reaches the enormous aggregate of $10,000,000$ tuns in the same period, Platinum is obtained probably in smaller quantities than any metal in industrial use, only about two tuns being the yearly yield throughout the entire world.

the savings of science.

Doubtless many of our readers have perused Dickens' ex Doubtless many of our readers have perused Dickens exmeasure, familiar with the London dust heaps. Perhaps it will be remembered how the great writer describes their contents, and, in his inimitable style, sketches the queer people who often spend their lives among them in seeking for treasures. Those patient searchers are creations of the past, Their toilsome occupation is gone; for Science, with her inventions and processes, has extended her sway even to the worthless dust heaps, and from the filthy waste brings out the shining gold. The ordinary waste of a single household may be roughly estimated at a barrelful per day, and Lonmay be roughly estimated at a barrelful per day, and Lon-
don, it is said, contains five hundred thousand houses. don, it is said, contains five hundred thousand houses. Hence, the reader may form some idea of the wonderful in-
genuity which contrives to utilize the enormous aggregate of genuity which contrives to utilize the enormous aggregate of
one hundred and eighty millionbarrels of refuse in the course one hundred and
of a single year.
The local authorities of London sell the privilege of re moving dust and garbage from each district to a contractor who carts it away to a large yard in the suburbs. There hill women, sieve in hand, separate the mass, by a rude analysis, into component portions. The most valuable of the latter are the waste pieces of coal, and the breeze or coal dust and half burnt ashes. The amount of waste of the latter may be measured by the fact, that, after selling the larger pieces to the poor, the refuse breeze is sufficient to bake the bricks that are rebuilding London. The material is used by the contractors who generally combine the builder's trade with their regular caling, for the purpose of imbedding the newly made bricks into compact squares. The coal dust having been fired, the mass burns with slow combustion for two or three weeks, aided by the circulation of
air which is kept up by the method of stacking. The other air which is kept up by the method of stacking. The other constituents of the dust heap are separated by the sifters with the utmost rapidity : bones, rags, paper, old iron, glass, and broken crockery, and even bread, as they are eliminated from the mass being piled in separate heaps. The bones are put to a score of different uses. Of the several tuns of bones that are picked out of the dust in the course of a week, some fat and gelatin they can yield is extracted, the former sub. stance is bought by the soapmaker, the latter is utilized to make the patent preparations employed in cookery, phomake the patent preparations employed in cookery, pho-
tography, etc The larger bones are used by the turners and tography, etc The larger bones are used by the turners and
are converted into hundreds of knick-knacks, so that the bone you may have picked at dinner again enters your bone you may have picked at dinner again enters your
mouth, after many changes, as a toothpick or toothbrush, mouth, after many changes, as a toothpick or toothbrush,
while the smaller pieces, for aught you know, have been while the smaller pieces, for aught you know, have been
calcined, and form the very charcoal toothpowder on your calcined, and form the very charcoal toothpowder on your
toilet table. Fragments that cannot otherwise be employed are ground very fine, and treated with sulphuric acid. constituting an excellent artificial fertilizer. Bone dust is also sometimes used by bakers for purposes of adulteration, so that the poetical remark of the giant in the fairy tale,

"I'llgrind his bones to make my bread,"

is fulfilled both figuratively and literally. Another important product extracted from bones is phosphorus, for which there are an endless number of uses; and, finally, the fat that is saved in the process of boiling, is employed to make the commoner kinds of soap.
Scraps of paper abound in the dust heaps. These are all carefully sorted, the white from the colored and the printed. The soiled pieces, which cannot be profitably remanufactured, are used to make papier maché ornaments, dolls' heads, etc. ; the clean paper is returned to the mill, and even the printed paper has the ink discharged from it, and goes again into parculation. Old rags, of course, are valuable to the paper circulation. Old rags, of course, are valuable to the paper
maker, although the discovery of other materials renders this form of waste not quite so important as formerly. this form of waste not quite so important as formerly.
Greasy dish cloths cannot go to the mills again, so they are Greasy dish cloths cannot go to the mills again, so they are
sent to the hop grower, to whom they are valuable as fertilisent to the hop grower, to whom they are valuable as fertili-
zers. Woolen rags, if they happen to be dyed scarlet, are treated for the recovery of their cochineal, which is used as a dyeing material ;and other valuable colored rags are ground up to make flock paper.
The g eat markets for all old woolen fabrics in England is the town of Batley and its neighborhood, in Yorkshire, the great shoddy metropolis. A writer says, regarding this manufacture: " Reduced to filaments and greasy pulp, by mighty toothed cylinders, the much vexed fabric re-enters life in the most brilliant forms, from the solid pilot cloth to silky mohairs and glossiest tweeds."
Cotton and woolen rags are both valuable when separate, but of late years it has been the custom to weave the cotton and woolen together, the warp being made of the latter material and the weft of the former; thus mixed, however, the fabric cannot be converted into paper or cloth. Many endeavors have been made to effect a separation, and at present the rags are placed in a closed receiver and subjected to steain at a very high temperature. The result is that the cotton comes out pure and fit for the paper maker; the wool is reduced to a dark brown powder, known as the ulmate of ammonia, and is employed to enrich manures which are poor in nitrogen.
A very important constituent of the dust heap is the old iros, battered saucepans, old pails, rusty hoops, horseshoes, and nails from the road. All soldered articles have the sol. der extracted from them, as it is more valuable than the iron, and the cheaper metal is then melted. 'The horseshoe nails are not mixed with the common cast iron, as they are much sought after by gunmakers for the purpose of making stub twist barrels. Scraps of iron, it is found, may be made very useful in securing the copper in the streams washing
veins of copper pyrites. Pieces of battered iron are placed veins of copper pyrites. Pieces of battered iron are placed
in tanks, into which these are collected; the copper quickly
incrusts the iron, and in process of time entirely dissclve it, so that a mass of copper takes the place of the iron. The residuum, in the shape of a colored deposit, is at times taken
out, dried, and smelted. out, dried, and smelted.
The savings of science, however, are not all made in the dust heaps of London, though in the brief outline we have given, of the mode of utilizing some of the constituents of the waste of the great city, a vast economy is indicated. singular and recent French discovery is that sheep draw considerable quantity of potash from the land on which they graze, much of which is ultimately excreted from the skin with the sweat. It was pointed out by Chevreul tha third of the weight of raw merino wool, while of ordinary wools it constitutes about 15 per cent of the weight of fresh fleece. As the suint may be extracted by mere immersion in cold water, it is easy for the manufacturers to produce more
or less concentrated solutions from which the potash may be recovered by appropriate treatment. The development of his new industry is principally due to MM. Maumène and Rogelet, and their process consists in evaporating the solutions, which are sent to them, until a perfectly dry and somewhat charred residue has been obtained. This is placed in retorts and distilled very much in the same manner as coal at gas works, and the result is that, while much gas is evolved which can be used for illuminating the factory, and much ammonia is expelled which can be collected and utilized in many ways, there remains a residue which chietly consists of carbonate, sulphate, and chloride of potassium. These three salts are separated by the usual method, and then pass into commerce. Curiously enough, they are remarkably free rom soda.
The woo
The wool manufacturers of Rheims, Elbœuf, and Fourmies annually wash the fleece of $6,750,000$ sheep, and the mount of potash, reckoned as carbonate, which these fleeces would yield if all were subjected to the new process, represents a value of $\$ 400,000$. The by-products of gas works are so valuable now that factories are actually set up beside such establishments for their utilization. The most impor tant is alum, which, like sal ammoniac, once came, at a great cost, from Egypt, but is now mainly procured from an aluminous shale, which forms the roofs of coal mines, and which has to be brought to the surface before the coal can be gained. This was for a long time a perfectly refuse material, covering acres of ground, like the scoriæ and cinder heaps; but chemistry has found it out, and now obtains the product by setting fire to the shale, the carbon and sulphur which it contains being sufficient for the purpose. The friable porous residua are afterwards heated in iron pans with sulphuric acid, to which is added the ammonia from the gas liquor, and the three bodies combine with water to make common or ammoniacal alum.
Nearly every article of the toilet bottle or the sachet is made from waste, sometimes from foully odorous matters. A peculiar fetid oil, termed fusel oil, is formed in making ba ndy and whisky. This fusel oil, distilled with sulphuric a d and acetaie of potash, gives the oil of pears. The oil 0 , apples is made from the same fusel oil by distillation w ith sulphuric acid and bichromate of potash. The oil of pineapples is obtained from the product of the action of putrid cheese on sugar, or by making a soap with butter and distilling it with alcohol and sulphuric acid. Oil of grapes and oil of cognac, used to impart the flavor of French cognac to common brandy, are little else than fusel oil. The artificial oil of bitter almonds is prepared by the action of nitric acid on the fetid oils of gas tar. The wintergreen oil of New Jersey is artificially made from willows and a body procured from a distillation of wood.
Dyes, like perfumes, are often derived from the most repulsive sources. The waste heaps of spent madder were formerly a great nuisance. It is now found that this hitherto waste can be used, and at least one third can be saved by treating it with hot acid. Prussian blue is made from pieces of horse hoofs or refuse woolen material by fusion with iron and alkali
Perhaps the most important refuse product that can be mentioned, as proceeding from a systematic manufacturing process, is that known as soda waste. Large quantities of this substance are rejected as useless by most alkali works, and it has been, for many years, a problem and a reproach to chemistry. It is a great loss ; and, if we can but recover it, no small victory will be achieved.

Dry Plate Photography with Gelatin.

Place seven gra'ns of Nelson's gelatin and seven grains of isinglass in cold water for several hours until soft and swolen; then drain off the water, and put them into a two ounce oottle, which place in hot water until the gelatin and isin glass are dissolved. Add thirteen grains of bromide of pot tassium, dissolved in a dram of distilled water; and in another dram of distilled water dissolve fourteen grains of nitrate of silver, and add it by degrees, in the dark, shak ing well between each addition. Now add half a dram of a saturated solution of nitrate of baryta, and twe drops of muriatic acid. There will be a froth on the top of this emulsion from the shaking, and in order to get rid of this it may be strained through muslin; or, if left in the hot water, it will gradually subside.
This will form sufficient emulsion, at a cost of about two pence, to coat over one dozen quarter plates, which, as coated, should be laid on a flat surface until the film sets, which will take about five or ten minutes, when they can be put away in a box to dry. The drying will take about forty-
eight hours (unless they are placed in a current eight hours (unless they are placed in a current of dry air),
or they may be exposed at once. An exposure of thirty secor they may be exposed at once. An exposure of thirty sec-
onds, with alkaline developer, should give a negative of suf-
ficient printing density without any intensifying. The plates should be placed in cold water for about a minute revious to developing.
Emulsions prepared with the silver in excess caused the plates almost surely to fog, and the image to be very thin and faint.-Br. Jour. of Photo.

The Tricks of Magic.

Professor Hartz, the magician, has lately been giving a series of performance here, some of which are as surprising as they are entertaining and amusing. One of them is as follows: A common empty packing box, with a lid hung by iron hinges, is placed upon the stage, and a com nittee from the audience asked to examine it. They report that it is a firmly made packing box. After a thorough examination, outside and inside, they take a rope and tie it up, passing twice around the ends and sides, passing it through the staples for the two padlocks, and then tie the ends firmly, and seal them with sealing wax. They then envelop the box in a canvas, which covers all sixsides, when another rope is added, tied and sealed. Surely the box is safe from any attempt to get into or out of it without removing the ropes! Professor Hartz's assistant then comes forward with a canvas sack, open at one end. This is examined by the committee and by the audience. It is then placed over the head of the assistant, and tied below his fee and the knots sealed He is then laid on the box, and the box surrounded by a screen. In two and a half minutes the sack is thrown over the screen, the knot and seals untouched. The screen is intantly removed, and the committee, after examining the seals and finding them unbroken, commence untying the ropes and removing the canvas. The box is opened and the man found inside !

Reward offered for improved Cattle cars.

The Committee of the Royal Society fo: the Prevention of Cruelty to Animals, London, in order, if possible,to mitigate the cruelty to which animals are subjected in railway carriages during their transit from place to place, nffer a premium of $\$ 500$ for a new cattle truck; also a premium of $\$ 500$ for alterations of, or additions to, cattle trucks at present in use; also an additional premium of $\$ 500$ to each prizeholder, so soon as he shall bave induced a railway company to build fifty of mis improved trucks, and to bring the same into actual use on their line for the transport of cattle.
The other conditions are that the improved truck shall be suitable in gage, dimensions, construction, material, etc., for the same purposes for which cattle trucks are now used; the truck shall be roofed, and provided with springs, buffers, and axle springs, or other appliances to prevent injuries to animals during shuntings and sudden startings and stoppages. The truck shall be provided with appointments for the supply of food and water to animals in the carriage during the time when the train is in motion or when it is stationary at a platform or siding, so as to avoid the necessity of removing the animals from the truck for refreshment, the cost of the truck shall not be greatly in excess of the cost of cattle trucks now in use; and the truck shall be satisfactory to the judges.
The limit of competition is for December 1, 1873, and unless the time is extended, American inventors will not be able to compete. But the publication of the offered reward will be of interest as showing a special call for improvements.

Rheumatism.

A correspondent in the English Mechanic gives the following remedy for curing rheumatic gout, of which he had long been a sufferer. He insulated his bedstead from the floor, by placing underneath each post a broken-off bottom of a glass bottle. He says the effect was magical, that he had not been free from rheumatic gout for fifteen years, and that he began to improve immediately after the application of the insulators. We are reminded, by this paragraph from our English contemporary, of a patent obtained through this office for a physician some twelve or more years ago, which created considerable interest at the time. The patent consisted in placing glass cups under the bedposts in similar manner to the above. The patentee claimed to have effected some remarkable cures by the use of his glass insulators, but we have not heard from him for some time. We cannot vouch for any merit in the idea, but it is one easily tried ; and as no harm can arise from the experiment, we hope some one will test it and give us the result of his experience.

Tongueless Speech.

The reputed miracle wrought in the case of the African Bishops and certain other Christian martyrs, who retained the power of speech after having their tongues cut out, has lately been the subject of a somewhat heated controversy The fact of their being able to speak after they had lost their tongues was not questioned; it was only claimed that there was no miracle in the matter, or anything to warrant the inference of Divine interposition because of their peculiar sanctity. They may have been most worthy characters, but their tongueless speech was no proof of such a fact, since the same phenomenon had been observed where there could be no claim to saintliness.
An interesting illustration of the truth of thelatter position has just occurred in the Royal Free Hospital in London, the case being reported in the Lancetfor November 8. To remove cancerous ulcer, a patient's tongue was wholly cut out, leaving the floor of the mouth entire. Recovery was rapid and within a week the patient could speak with sufficient distinctness of articulation to make himself understocd, say ng : "I feel easy," and " I should like some more beef tea."

COMBINED SNOW AND EARTH SHOVEL AND PLOW.
An efficient railway snow plow, by means of which a locomotive mey be enabled to push its way through heavy drifts, is unquestionably an invention for which there is a great necessity. Not a winter passes but that scores of trains are blockaded, and hundreds of passengers subjected to prolonged inconvenience, by the tedious delay incident to digging out the tracks by hand shovels; while, in some instances, as that of a construction train on one of the Pacific railroads last year, people are placed in actual peril from starvation or continued exposure to the inclemency of the weather. Snow plows of the ordinary construction are moderately efficient in light drafts; but when attempts are made to force them through banks that have become packed or heaped up by the wind as high as the body of the locomotive itself, they speedily prove their inadequacy for the severe work.
The apparatus to which our engravings refer is claimed to combine the advantages of both plow and shovel, together with the merits of efficiency, simplicity, and cheapness. Its especial adaptation is to clearing; snow from tracks, but we are informed that it may also b. used in loose sandy soils for re moving earth in the construc tion of railways, or for taking. up snow from street car rails in cities, and carrying the same to a convenient dumping place.
Fig. 1 represents the device Fig. 1 represents the device action From Fig a clearide action. From Fig. 2 a clear idea of the working parts will be obtained. A is the shovel, the bottom of which is made slight. ly wider attherear than in front, and which is provided with flaring sides. The front edges of the latter, as well as the corresponding portion of the bottom, are plated with steel. B is a truck which supports the rear
part of the shovel, the front por-
tion of which rests upon steel shoes, C, which fit over the rails. At D is the plow, the shape of which is clearly indicated, provided on each side with a cleat, E, running in a groove formed in the side of the shovel, so that it is thus groove formed in the side of the shovel, so that it is thus
prevented from being raised up by the snow or other cause prevented from being raised up by the snow or other cause
when being pushed back or pulled forward. 'To the unwhen being pushed back or pulled forward. 'To the un-
der side of the plow is secured a rope, F, which runs forder side of the plow is secured a rope, F, which runs for-
ward in a groove in the bottom of the shovel over a pulley, ward in a groove in the bottom of the shovel ov
and thence back under the shovel to the engine.

Fig. 2

Ordinarily, the track being clear, the weight of the apparetus is borne by the truck, B, and the front end of the shovel does not touch the rails. As soon, however. as a drift is encountered, the snow presses down the shoes, C, raising the shovel almost off its truck, and guiding it into the bank. When the locomotive stops and immediately begins to back When the locomotive stops and immediately begins to back out, owing to the latter movement, the rear end of the appa-
ratus settles down, thereby raising the front extremity sufratus settles down, thereby raising the front extremity suf-
ficiently to break off and detach the snow in the shovel from the drift. The backing continues until a suitable point is reached, at which the contents of the shovel are discharged : as while this retrograde motion is in progress, the rope, F, connecting with a ratchet wheel on the front axle of the locomotive, is being pulled, thus drawing the plow along to the front of the shovel, and, of course, forcing the contents of the latter out upon the track. The engine then starts forward, when the plow, now in front, throws the snow clear of the rails. The drift is then again butted, when the snow pushes the plow back in the shovel to its original position (or the plow can be drawn back by a reverse tension of the rope, F), and the same operation is repeated until the obstacle is overcome.
A suitable jet of steam or water, sufficient in freezing weather to form a coat of ice, may, it is stated, be arranged in connection with the inside of the shovel and with such parts of the plow as come in contact with the latter, in order to facilitate the action of the plow in forcing out the snow.

The dimensions of the apparatus are 16 feet high, 23 feet center, so as to insure a bearing at the ends around the pipe ong, and 10 feet wide; and allowing for the space occupied when closed by the collars, B C, which are also bored to cor by the plow at the back it has a cubic capacity of 3,500 feet As the machine compresses the snow while excavating this large quantity at every ram, it is probable that there are fe'w snow banks which it would not speedily demolish. Patented July 8, 1873. For further particulars relative to sale of rights, etc., address Lieutenant Colonel W. F. Baker, Decorah, Winnesheik county, Iowa.

To Clean Files.
A correspondent, L. D. D., sends us the following recipe
when closed by the collars, B C, which are also bored to cor respond with the conical shape of the sleeve. The collar, B, is flanged to receive the threaded coupling ring, D , to which is flanged to receive the threaded coupling ring, D, to which
it is swiveled, as indicated in the'sectional view. Collar, C, it is swiveled, as indicated in the'sectional view. Collar, C,
is provided with a thread upon which the ring screws. The is provided with a thread upon which the ring screws. The
joint between the ends of the pipe is thoroughly packed by a section of rubber, E , or other suitable tubular packing.
To adjust the device, the extremities of the tube are thrown out of line, and the sleeve, A, containing the packing, E, and upon which the collars and ring have been placed, is applied to one end. The pipe is brought in line, and the rubber tube, with the other portions, is
brought over the joint so as to overlap the two extremities equally. The ring, D, is then screwed up, drawing the two collars together upon the inclined surfaces of the conical sleeve, thereby compressing i firmly against the packing.
This coupling can be manu factured very cheaply of malleable iron, as all the parts can be cast of the necessary form and size for different pipes, and re quire no finishing or fitting except cutting the screw. It is claimed to cost no more than the ordinary union coupling, except the expense of the plia ble hose for the packing. It makes a perfect slip joint as well as a good coupling, and will be found very useful for piumbers in repairing split pipe in places where a die cannot be used to cut threads on the pipes, or where the latter are close to the walls or among joists in buildings.
Patented September 30, 1873. For further particulars regarding sale of patents or rights under the same, address the inventor, Mr. Wm. B. Duzning, New York Central Iron Works, Geneva, N. Y.
"Boil the files in a solution of water and saleratus until they are thoroughly cleansed of outside dirt; after which, wash them in warm water. Put a pint of warm water in a wooden dish, in which stand as many files as the water will cover. Add to this, 2 ounces of borax and 2 ounces of blue vitriol finely pulverized together. Stir up the files well, and add 2 ounces of sulphuricacid by weight, and then $\frac{1}{4}$ ounce of vinegar. The files will turn red at this point in the process. When they again resume their natural color, take them out and wash them in cold water; after which, oil with sweet oil, and wrap singly in brown wrapping paper, which will absorb the oil from the files.
The files will be clean by this mode, in about half an hour after they are put in. Large mill files can be cut by making more solution, and using a dish narrow and tall, so that the files can stand on the shank to let the scales fall away from them."

DUNNING'S IMPROVED PIPE COUPLING

This invention, perspective and sectional views of which are represented in the annexed engravings, is claimed to provide a simple and cheap union or coupling for gas, steam, and water tubes, which may be applied even in long lengths of continuous straight pipe. It will also serve as a sliding or compensating joint to allow for contraction and expansion, and will, besides, prove useful when it is desirable to con-

nect the ends of pipe in situations where threads cannot be conveniently cut thereon.
A is a conical sleeve, cut from end to end, as represented in Fig. 1, or, if desired, divided longitudinally into two separate portions. It is bored out somewhat larger toward the

APPARATUS FOR FILTERING AND RECTIFYING SPIRITS.
Mr. Christian W. Ackerman is the inventor of a novel device, herewith illustrated, for filtering and rectifying spirits, by means of which he claims to effect a saving of material from the usual loss by evaporation, a more perfect elimination of fusel oil, and also that by the apparatus a greater quantity of spirits can be treated in a given time than by the old process.

A receptacle of the form shown in the engraving is pro vided with two inner diaphragms, A and B. The lower one rests upon joists, and may be made in halves, to admit of easy removal when desired. Upon it is laid a circular piece of blanket of one thickness, then a stratum of powdered charcoal, equal to one fourth the distance between the diaphragms; then a double thickness of blanket, and so on for two more layers of coal and blanket, until the upper partition, A, is reached, beneath which a single piece of blanket is placed. The charger, which should be placed in the upper part of the building, communicates with the apparatus by the pipe at the top. The spirits therefrom enter with sufficient force to penetrate down through the diaphragms, which are perforated, and the layers of charcoal and blankets, leaving in the latter the fusel oil and other impurities. Finally, emerging bencath the false bottom formed by B, the liquor escapes by the pipe, C, and passes into another and smaller receptacle, in the interior of which are two wire gauze screens, the intermediate space being filled with cotton batting and blanket. Here the last rectification takes place, and the fluid, in a pure condition, is led away by the pipe, D.

THE COCUYO. and in some countries of of firefly which abounds in Cuba light much more brilliant than that given off by the small insects common with us during the summer months. Its form and size are well delineated in the engraving herewith presented. At about the end of April it is found in Jamp and wooded places throughout Cuba, emerging from its hiding place at twilight, but rarely pursuing its nocturnal rambles for a greater length of time than two or three hours.
The brilliant radiance of the cocuyo is emitted from its ventral region, where there are three phosphorescent organs which the insect can expose and render luminous at will. It is believed that a substance accumulates slowly in the cells of these members, and is discharged voluntarily. As soon as this principle is set free it manifests itself by the production of light alone, without heat, and in a manner similar to that caused by the accidental lar to that caused by the accidental decompos
gars, etc.
The insect lives in hollow trees and under dense shrubbery, subsisting on young leaves and similar vegetation. At about the end of Juiy it disappears, though tt may be kept until September or October. Occasionally impor ters of sugar from Havana, in this city, receive specimens of cocuyos from their correspondents, and we have ourselves obtained several in this way. They live for about a fortnight if supplied with brown sugar, though they prefer fresh sugar cane. By placing a few on a tabe, in a dark room, a curious and interesting effect is produced by the traveling points of light as the bugs run around the surface. Two or three cocuyos in a bottle will emit suf ficient light at night to render a letter easily read or the face of a watch distinguished. They are often thus used by hunters, and Captain Mayne Reid, in one of his interesting juvenile works, makes use of this fact in describing how some surprise party of soldiers, in the Mexican war, managed to read important orders when they had no means of illumination, and, besides, could not have used the same for fear of discovery by the enemy. The cocuyo shows his light best while flying, but it can be forced to shine by dipping it in water for an instant. It is inoffensive to man, but a quarrelsome customer among its own species. When a number are confined fearful battles ensue, in which the claws form powerful weapons. Mutilation of the members is almost always the result, although the insect often lives for months after severe maiming.
The most recent application of the bug to useful purposes was its proposed utilization for lighting the interior of the car of the transatlantic balloon at night. The idea, it is needless to add, was never carried out.

THE BRIGHTON AQUARIUM

The Brighton aquarium, while emulated by several buildngs of a similar nature in different parts of England and the continent, still holds its own in being on a scale of magnitude hitherto unsurpassed, more than one of its tanks, in illustration of this, being of sufficient size to accommodate the evolutions of porpoises and other small cetacea. The works were commenced in the autumn of the year 1869, but owing to various interruptions the building was not formally thrown open to the public until August 1872
The area occupied by the aquarium, says the eminent naturalist Mr. W. Saville Kent, in Nature, to which we are indebted for the engraving, averages 715 feet in length by 100 feet in width, running east and west along the shore line. The building internally is divided into two corridors separated from one another by a fernery and considerable interspace The approach to the first or western corridor is gained through a spacious entrance hall supplied with reading tables, and containing, between the pillars which support the roof, portable receptacles of sea water for the display of small marine specimens that would be lost to sight in the larger tanks.
The tanks for ordinary exhibition commence on the left side of the western corridor, and follow in consecutive order round the two corridors, the last immediately facing No. 1. The smallest of these tanks measures 11 feet long by ten feet broad, and is capable of holding some 4,000 gallons of
water; while the largest, No. 6, in the western corridor, and the subject of the accompanying engraving, presents a total frontage, including the two angles, of 130 feet, with a greates width of 30 feet, and contains no less than 110,000 gallons. Every gradation of size occurs between these two extremes, the depth of the water in all ranging from 5 to 6 feet. Supplementary to the foregoing, a series of half a dozen shallow octagonal table tanks occupies a portion of the interspace between the two corridors, these being especially adapted for the exhibition of animals such as starfish, anemones, and others seen to best advantage when viewed perpendicularly through the water. Flanking one side of this same inter-

THE COCUYO.

pace are several ponds fenced off for the reception of seal and other amphibious mammalia and larger reptilia, while at its further or eastern extremity artistic rock work runs to a hight of 40 feet, thickly planted with choice ferns and suit able exotic plants, and broken in its course by a picturesque waterfall and stream. Tanks 12 to 17 in the eastern corridor, in addition to the stream and basin beneath the waterfall, are set apart for the exclusive exhibition of fresh water fish, the remaining tanks being devoted to marine species. The bulk of water thus utilized in the fresh and salt water tanks collectively amounts to 500,000 gallons, and in addition to this several smaller store tanks in the naturalists' room, adjoining the eastern corridor, afford accommodation for reserve stock, or for new arrivals before their display to public serve
view.
The style of architecture dominant throughout the building Italian and highly ornate, the arched roof of the corridors being groined and constructed of variegated bricks, supported on columns of Bath stone, polished serpentine marble, and Aberdeen granite; the capital of each column is elaborately carved in some appropriate marine device, while the floor in correspondence is laid out in encaustic tiles. The divisions constituting the fronts of the tanks are composed each of three sheets of plate glass, each plate having a thickness of one inch, and measuring six feet high by three feet wide separated from one another and supported centrally by uright massive iron mullions; in the smallest tanks the fron is represented by but one of these divisions, while that of the largest, No. 6, consists of as many as eleven. Among other conspicuous structural features of the aquarium demanding conspicuous structural features of the aquarium demanding
notice are the huge masses of rock entering into the compo notice are the huge masses of r
sition of the tanks and fernery.

The system adopted at the Brighton aquarium for continu. ally renewing the supply of oxygen, necessary for the well being of the animals, is by streams of compressed air, which are constantly forced into the tanks through vulcanite tubes carried to the bottom of the water, each tank being fitted with a greater or less number of these tubes according to its size.

Ink in the Teapot.
The adulteration of tea by the addition of iron filings has just been brought rather forcibly to public attention, by a communication to Food, Air, and Water, from the pen of Dr Hassall. The iron is added, the doctor believes, not so much for increasing the waight of the tea as for giving a dark color
to the infusion; and since tea naturally contains a large amount of tannin, there are thus brought together the two chief ingredients of ink. Not content with asserting the fact the doctor demonstrates it by extracting from such adulter ated tea, a bottle of ink and using it in the writing of his communication.
This is a common way of giving an appearance of strength to teas that have been already once steeped. Those who like inky tea can get it more cheaply by using a rusty tin teapot.

Physiology

In some respects the Chinese are an intelligent, people but they are not strong in science. Thei physiology is especially whimsical. Ac cording to their notion, the chief organ of the human economy is the spleen Its functions are manifold. It rub against the stomach and grinds the food, it keeps up the proper degree of heat in the five toang; it moves the muscles and the lips, and thos regulates the opening of the mouth furthermore, it directs our secret idea so that they become known to us. The liver regulates the tendons and orna ments the nails of the hands and feet Whe heart.regulates the blood vessels, beautifies the complexion, and by it means we are enabled to open the ear and move the tongup. Of the circula tion of the blood, the Chinese are pro touudly ignorant. The kidneys govern the bones, beautify the hair of the Lead, and open the orifices of the two yin. The diaphragm, being spread out lik a membrane beneath the heart and joined all round to the ribs and spine, covers over the thick vapors so that the foul air cannot rise. The gall bladder is the seat of courage hence the popular belief that whoeve eats the gall of a brave man or beast will inherit the valo of its original possessor: a belief which frequently leads t a lively competition for the galls of remarkable animals.
Of the function of the brain, the Chinese have but a vague idea, still they think it has something to do with the intel lect. In proof of this suspicion, they offer the case of a man of great renown for his learning, whose misfortme it was to fall from a horse with such violence as to break his skull. The physician who was called to treat the case hit upon the happy thought of supplying from the skull of a cow the por tion of brain the wise man had lost. The operation was only a partial success, since the subject's eminent powers of mind remained in utter prostration, and from that time forward he was a very different man from what he had been. Whether his residual intelligence exhibited any bovine characteristics, our informant unhappily neglects to say
Hereafter we expect to see this case given as additiona vidence that the Chinese are the original discoverers of verything. It is certain that it greatly antedates the opera tion recently reported from Leipsic for the edification of rura ditors: a case in which the brain of a good natured wine eller, dead of heart disease, was transplanted into the cra nium of a soldier condemned to death for murder, with a corresponding transference of mental and moral traits. The Leipsic surgeon is plainly no better than a skillful imitator

The Persistence of a Name.

A curious illustration of the living force of a name is to bc seen in the title given to the Virgin Mary by the people of the Basque Provinces. In the most ancient records of Chi nese history (the annals of the Bamboo Books, lately trans lated by Dr. Legge), the name Ishtar appears as one of the titles of the Queen of the Stärs. Among the ancient Assy rians, Ishtar was their chief female divinity, the celestia rians, Ishtar was their chief female divinity, the celestial
virgin mother. In Solomon's time, the Syrian equivalent of he name was Astarte; and in II. Kings, the wise man him self is charged with having set up an altar to this fascinating goddess. In the Hebrew record, the spelling is Ashtoreth. By Milton the name is given as
" Astarte, Queen of Heaven., Phenicians called
Whether Phœnician voyagers left the name in Spain, o whether the Basques brought it with them in their original migration westward, it is impossible to say, nor does it mat er. It is there in common use to this day, a living nam with a history of at least five thousand years.

THE GERM THEORY AND ITS RELATIONS TO HYGIENE.

[PART II.]

the doctrine of biogenesis.
This question was, however, not universally admitted to be settled. Dissentients made themselves heard from time to time, among them Gleichen, Othe, Müller, and Previranus, the latter of whom pointed out the significant fact that, while the species of infusorial animals found in infusions of the same kind were constantly the same, those which appeared in different infusions were not so. Early in the present century, the celebrated naturalist Lamarck ranged himself on the side of spontaneous generation. Oken took the same view, and subsequently Bory St. Vincent, J. Müller, Dujardin, Burdach, and Pineau, while on the opposite side appeared, among others, Schwann, Schultze, and Ehrenberg. The experiments of Schultze and Schwann were remarkable. They were undertaken for the purpose of testing the accuracy of those of Spallanzani. Since those experiments had been made, the importance of air, or of orygen, one of its constituents, to the maintenance of animal life, had been discovered, and doubts had arisen whether, in those experiments, the air had not been rendered unfit for the support of life by the operations to which it had been subjected. In repeating the experiments, Schultze admitted to the flasks, after boiling the infusions, only such air as had been passed through concentrated sulphuric acid, and Schwann only such as had been conducted through red hot tubes. No animalcules made their appearance; and these results, reached as long ago as 1836 and 1837, were regarded by the great body of naturalists as finally settling the question.

CONTROVERSIES OF THE SAVANTS.

The controversy, however, after resting for 20 years, was evived, and prosecuted with even more animation than before, by M. Pouchet, in the first instance, on the side of pontaneous generation, and M. Pasteur, on that of biogensis, but more recently by many naturalists of distinction, among whom may be named Dr. Jeffries Wyman, of our own country, whose experimental researches tend rather to the support of the archegenetic theory, and Professor Huxley, of London, whose opinion, given on a survey of the whole history of the controversy and expressed before the British Association in 1870, is very decidedly the other way. While the controversy was between M. Pasteur and M. Pouchet, there can be no doubt that, in the judgment of the world, the former had by far the best of the argument. His experiments, which were substantially repetitions of those of Needham and Spallanzani, but which were variously modified so as to render his demonstrations, in every possible way, cumulative, seemed to have disposed of the doctrine of spontaneous generation, effectually and forever. In multitudes of instances, infusions hermetically sealed while boiling remained for indefinite periods of time free while boiling remained for indefinite periods of time free
from all traces of organic life, while portions of the same from all traces of organic life, while portions of the same
infusions, exposed side by side with these but open to the infusions, exposed side by side with these but open to the
air, were speedily swarming with animalcules. He found air, were speedily swarming with animalcules. He found
that even an unsealed flask, of which the neck had been that even an unsealed flask, of which the neck had been
stopped during the boiling only with a plug of cotton, closely pressed together, continued to be equally free from these organisms so long as the stopper remained in its place. This last experiment presented a rather curious resemblance to
that of Redi, with his gauze-covered jar; for the cotton that of Redi, with his gauze-covered jar; for the cotton
forming the plug was found, on a microscopic examination, o contain the germs which its presence had prevented from entering the flask. M. Pasteur finally found-and this result was long supposed to have furnished an unanswerable reply to all the arguments of the advocates of archegenesisthat flasks containing infusions treated by boiling as before required neither sealing nor stopping with cotton to prevent invasion of the contained liquids by these low forms of life: provided only that the necks of such flasks had been origiaally bent over, so as to direct their mouths downward This result he had predicted as probable, holding, as he did hat the germs by which such infusions are repeopled, when the living embryos they may contain have been de stroyed by heat, must necessarily subside into them from he air above
The experiments of Wyman, Bastian, Cantoni, and others, more recent than those of Pasteur, have led to results sin gularly, and at present, we must say, unaccountably, a variance with his. Professor Wyman found that bacteria wil make their appearance in infusions which had not only been boiled before being sealed up, but which, after being sealed, had been kept at a boiling heat for many hours. He found, moreover, that these same organisms perish when exposed to a heat not over 134° Fahrenheit. Bastian, in a in the tubes containing his infusions as high as 360° Fahren heit, maintaining this high temperature, in some instances, not less than four hours; and has yet found that living forms do not fail subsequently to make their appearance in them. Such forms appear also, according to him, in solu tions containing nothing of organic origin whatever, but which are composed entirely of certain salts of soda and
ammonia; and he even affirms that in such solutions he has ammonia; and he even affirms that in such solutions he has occasionally seen very remarkable fungi to prosent them
selves with their full fructification, drawings of which he selves with their full fructification, drawings of which he Beginnings of Life.
It seems to me that no one can rise from the perusal of the extraordinary book just mentioned without feeling that; if it does not embrace and contain the conclusion of the It leaves us, nevertheless, still perplexed, perhaps more deeply perplexed than before; for it is impossible to under
stand how the results reached by so many naturalists, all in the first rank of scientific investigators, all conscientiously the first rank of scientific investigators, all conscientiously
laboring to elicit the truth of this great question, should be, laboring to elicit the truth of this great question, should be,
after all, so singularly discordant. And another weighty after all, so singularly discordant. And another weighty
consideration adds to this perplexity. It is the existence of consideration adds to this perplexity. It is the existence of
a practical refutation of the conclusions of the class of exa practical refutation of the conclusions of the class of ex-
perimenters to which Dr. Bastian belongs, which is preperimenters to which Dr. Bastian belongs, which is pre-
sented under our eyes every day on the grandest scale in the operations of one of the most important branches of modern industry. I cannot state this consideration better than in the words of Huxley: "There must," remarks this distinguished physiologist, " be some error about these ex periments, because they are performed on an enormous scale every day with quite contrary results. Meats, fruits, vege tables, the very materials of the most fermentable and pu trescible infusions, are preserved to the extent, I suppose may say, of thousands of tuns every year, by a method which is a mere application of Spallanzani's experiment. The matters to be preserved are well boiled in a tin case provided with a small hole, and this hole is soldered up when all the air in the case has been replaced by steam. By this method they may be kept for years without putrefy ing, fermenting, or getting moldy." He argues-and the argument has a weight that must be felt-that there is no mode of explaining this universal and inevitable result but
the exclusion of germs from these cans. And, in view of the exclusion of germs from these cans. And, in view of the marvelous discrepancy between the results on the small
and the grand scale, placed side by side, one can hardly and the grand scale, placed side by side, one can hardly repress the suspicion that, if there be any such thing as spontaneous generation, it is a thing which occurs only under rare and extraordinary conditions, which conditions Dr. Bastian has unintentionally succeeded in establishing while, as a matter of practical importance or daily interest, it is as if it were not.

zincing Iron

The following is an excellent and cheap method for pro tecting iron articles exposed to the atmosphere, such as cramp irons for stone, etc., from rust : They are to be first cleansed by placing them in open wooden vessels, in water, containing three fourths to one per cent of common sulphuric acid, and allowed to remain in it until the surface appears clean or may be rendered so by scouring with a rag or wet sand. According to the amount of acid, this may require from 6 to 24 hours. Fresh acid must be added according to the extent of use and of the liquid; when this is saturated with sulphate of iron, it must be renewed. After removal from this bath, the articles are rinsed in fresh water, and scoured until they acquire a clean metallic surface, and then kept in water in which a little slaked lime has been stirred until the next operation. When thus freed from rust, they are to be coated with a thin film of zinc, while cold, by means of chloride of zinc, which may be made by filling a glazed earthen vessel, of about two thirds gallon capacity three fourths full of muriatic acid, and adding zinc clip. pings until effervescence ceases. The liquid is then to b turned off from the undissolved zinc, and preserved in a glass vessel. For use, it is poured into a sheet zinc vessel,
of suitable size and shape for the objects, and about $1: 30$ of suitable size and shape for the objects, and about 1.30 per cent of its weight of finely powdered sal ammoniac added. The articles are then immersed in it, a scum of fine bubbles forming on the surface in from one to two minutes, indicative of the completion of the operation. The articles are next drained, so that the excess may flow back into the vessel. The iron articles thus coated with a fine film of zinc are placed on clean sheet iron, heated from beneath, and perfectly dried; and then dipped piece by piece, by means o perfectly dried; and then dipped piece by piece, by means of
tongs, into very hot, though not glowing, molten zinc, for a tongs, into very hot, though not glowing, molten zinc, for a
short time, until they acquire the temperature of the zinc. They are then removed and beaten, to cause the excess of zinc to fall off.

Water as Fuel.

A correspondent, Dr. A. A. Hayes, writes to say that recently two similar boilers were employed with widely different results as to consumption of fuel. On investigation it was found that, with the deiticient boiler, "the workmen had
been restricted to about twenty inches in draft of ash pit; the other furnace had a vault, permitting ashes and cinders to be retained for several days, while here the paved, clean floor formed the bottom of the ash pit. The fuel was re-
markable for purity, and so compact as to be kindled with markable for purity, and so compact as to be kindled with
difficulty. On opening sight holes, the fire could be seen burning intensely; the radiant heat appeared to be absorbed very slight flame only could be seen, but the rush of highly heated air was constant. After some time, observation showed that the ash pit was the only point on which suggestion could be excited, the matter of quality of fuel being in a avor of the bad furnace. A casual observation had show
hat the ashes of the good furnace were damp. The pavement of the room and the ashes were accordingly wetted on ment of the room and the ashes were accordingly wetted on
the ash pit floor. Immediately flame appeared at the door joints, and from cracks (from unequal expansion); the damper was hurriedly raised to allow the great volume of combastible matter to reach the chimney. The pressure gage parrook of the new life, and soon an over abundance of steam was formed. After the adjustments were made for using the steam, and a very little water was constantly admitted to the ashes, more than the necessary quantity of steam was
afforded by the boiler, while the consumption of fuel was afforded by the boiler, while the consumption of fuel was
not increased. It will be inferred that, under conditions not unusual, a great economical gain resulted from the use of a portion of the heat of contact in decomposing vapor, or in eating steam so highly that it transported carbon to form flame; the result was the conversion of an imperfect to an a theoretical law.

In numerous cases, continued through many years of ob ervation, I have seen similar results follow the use of moist air in the combustion of dry anthracite; but this case is con idered exceptional from the accuracy of the proofs afforded. In reviewing these facts, it will be seen that a useless ap. paratus was rendered thoroughly efficient by forming flame rom the otherwise ignited fuel. More importance than here appears belonged to the trials, for on the success thus obtained grew up a most extended ayplication of steam, where every point connected with its use is registered with the precision of philosophical apparatus.
A doubt in regard to the consumption of fuel has probably been present in some minds. How could the fuel be consumed, and vivid combustion maintained, without a corres ponding production of steam? The answer is founded, not on observation alone, but on experiments. In a cold, dry atmosphere, the best anthracites produce so intense a radiant heat that near by surfaces of iron become heated above the temperature of economical rapid evaporation. That kind of fuel, too, affording no flame in cold dry air, requires more than double the theoretical amount of oxygen for its combustion; and this volume of heated air and products of combustion is far less hot than flame, and is repelled by the parts of the boiler behind the space over the mass of glow ing fuel, as less highly heated gases are always repelled by colder surfaces. In fact the steam-generating surface was o far reduced in area as to render it impossible for steam to be formed in time, and the heat was wasted.
My wish is to see more attention given to flame fuel, as ontrasted with radiant heat fuel, not only as a facile and economical application, but as a check to the use of old devices which waste the fuel. A long step in this direction has been taken in heating gas retorts. Apart from great economy, the destruction and wear of apparatus is reduced, as they may be in steam production."

California wood Choppers

It is in the logging camps that a stranger will be most interested on this coast; for there he will see and feel the big ness of the redwoods. A man in Humboldt county, eays a writer in Harper's Magazine, got out of one tree lumber nough to make his house and barn, and to fence in two acres of ground. A schooner was filled with shingles made rom a single tree. "One tree in Mendocino, whose remain were shown to me, made a mile of railroad ties. T'rees four teen feet in diameter have been frequently found and cut down ; the saw logy are often split apart with wedges, be cause the entire mass is too large to float in the narrow and shallow streams, and I have even seen them blow a log apart with gunpowder. A tree four feet in diameter is called undersized in these woods; and so skillful are the wood choppers that they can make the largest giant of the forest fall just where they want it, or, as they say, they 'drive a stake with the tree.' The choppers do not stand on the ground, but on etages raised to such a hight as to enable the ax to strike in where the tree attains its fair and regular thickness; for the redwood, like the sequoia, swells at the base, near the ground. These trees prefer steep hillsides, and grow in an extremely rough and broken country and their great hight makes it necessary to fell them care fully, lest they should, falling with such an enormous weight, break to pieces. This constantly happens in spite of every precaution, and there is little doubt that, ir these forests and at the mills two feet of wood are wasted for every foot of lumber sent to market. To mark the direction lin9 on which the tree is to fall, the chopper usually drives a stake into the ground 100 or 150 feet from the base of the tree, and it is actually common to make the tree fall upon this stake, so straight do these redwoods stand, and so ac curate is the skill of the cutters. To fell a tree eight feet in diameter is counted a day's work for a man."

An Inexhaustible Inkstand

We have received from Messrs. Root, Anthony, \& Co., of 62 Liberty street in this city, an inkstand, for the use of which the directions are: Put in a little cold water, let it stand for 3 or 4 hours, and the ink will be ready for use. We suspect that the coloring matter is supplied by some means analogous to Professor Bottger's invention for portable ink, already described in our columns. Our readers' grandchil dren will be better able to speak to the permanency of the supply of ink; in the meantime, we can say that, after trial, we find the inkstand to be filled with black ink of an excellent quality.

Sexadigitism.

A valued correspondent, W. T. R., writes as follows " Recently, I fell in company with a gentleman with a peculiarity in one of his hands. I requested permission to make an examination, when, to my surprise, I found that he had an extra finger hinged on to the metacarpal bone, just back of the little finger and extending sideways from the palm of the hand; it shut up in the fist, but at right angles to the ther fingers. Four of his children have similar developments on each hand, while a fifth child has six fingers on but one hand. The father and the children have each six toes on each foot, and a nephew who accompanied them was similarly endowed. Many of their ancestors and some o their relatives had or have sexadigital limbs. It appears, from evidence adduced, that these peculiarities were derived from a family in which they have existed from time imme morial.
If by any means a family inheriting such peculiarities should become isolated, the consequence would probably be a classification, would constitute a new species.

How Tin Plate is Made.

A paper recently read before the Franklin Institute of Philadelphia, by Mr. T. S. Speakman, representative of the Philadelphia, by Mr. T. S. Speakman, representative of the
Institute at the Vienna Exposition, gives the following interesting details of the manufacture of tin plate as carried on in Wales:
In the opinion of Mr. Henry I. Madge, tin plate manufac turer, of Swansea, in Wales, from whom I received the fol lowing information, the manufacturer prefers making his own iron to purchasing it, because he can thereby insure a more equable quality; he therefore buys suitable pig iron. For common coke tin plates, the "iron bars" are made and sometimes hammered; much depends on the care of the puddler to so bring forward his ball that all its parts shall be equally decarbonized, when the fracture will be of a uniform, dull gray color, without crude admixtures of bright crystals. The unreduced crystals produce "wasters" of the iron plates; and if any such escape the notice of the mill manager, the wasters are thrown aside again after being
covered with tin. If they escape the eye of the "assorter," covered with tin. If they escape the eye of the " assorter,"
the tin plate worker will find them fracture across the angles or bends of the sheets in working them up. The puddled ball, produced under the best conditions, is then taken to the "shingler," who submits it to the squeezer or hammer, sometimes both. This operation should be carefully executed. As the puddled ball is rugged and full of cinder, the cinder has to be squeezed out by this operation, and at the same time the roughness must be so managed as to we welded into a solid eompact mass, which cannot be done
well done in after operations. Some say it cannot be done afterwards, as the whole mass can never again be brought up to a thorough weldingheat throughout, unless at the expense of much waste and loss. The bloom from the "shingler" is at once passed through the rolis, or roughed
down to No. 1 bar. Some prefer letting the blooms lie exdown to No. 1 bar. Some prefer letting the blooms lie ex-
posed to the action of the elements for a time, and others posed to the action of the elements for a time, and others
think it of no importance. The bar, while hot, is cut into think it of no importance. The bar, while hot, is cut into
lengths and piled, five pieces being put and heated together in the "balling" or reheating furnace. When the faces are brought up to a welding heat, and the whole mass softened, it is again taken to the hammer, some rolling at once, others returning the bloom into the furnace to again bring up the heat. It is then rolled out into the finished bar,
size and thickness for the kind of plates required.
Some manufacturers have made very good iron from the puddled ball direct, saving in wasters and improving the quality; but as the labor and number of hands were reduced by this mode, the men struck against it, and spoiled their work if not well looked after. This kind of iron was homo geneous and not fiberous, as the iron "piled" and brought through the reheating furnace is. The "shingler" must be very careful to form a second bloom under the hammer, and
the bloom should be upset once or twice, so as to secure a the bloom should be upset once or twice, so as to secure a
welding of all the rough edges. If, after the shingling, the bloom has lost too much heat, it should be reheated. Care and expedition will remedy that necessity, and the reheating farnace dispensed with altogether. The saving is much in cost and waste; but the trouble with the workmen was puddling furnace by adding to the charge about 60 lbs . of scrap or shearings, the trimmings of the plates when cut to size. The 60 lbs. of shearings were throwninto a bath of saturated solution of nitrate of soda, but added to the charge during the "boiling." The advantages gained were: the scrap iron improved the charge in proportion it bore to the whole mass; it was melted down quickly without waste, as the smelting took place under the surface. The weight of
solid cold iron would take it to the bottom of the charge, solid cold iron would take it to the bottom of the charge, thereby improve the quality of the charge again. The ball was treated in the same way as ordinary puddled balls after wards. The iron was tough as charcoal iron, with the characteristics of puddled iron, arising from crudities; for crystals unreduced were not exterminated, but greatly lessened. A careful puddler can at all times prevent these crude lumps
to a very great extent. Another saving arising out of the process was that the scrap "shearing," formerly put into a furnace and reduced to a welding state, hammered out and rolled, gave only a return of 13 per cent to the tun, whereas
the ather returned the full weight of the shearings. However, the ather returned the full weight of the shearings. However,
difficulties with the union men prevented them from pursuing difficulties with the union m
this mode of manufacture.
The bars are cut up into the required sizes, brought to a cherry red heat in a reverberatory furnace, rolled out to a certain length by gage, "doubled," and returned to the furnace, rerolled, again doubled, heated and reheated. The several foldings of the sheets adhere slightly.
After the sheets are cut down to size for tinning, they are separated from each other by what is called opening; during the process of opening, "stickers" and imperfect plates are ling room." There they are put into a hot pickle of dilute sulphuric acid, to be cleansed from oxydized and silicious matters, and undergo another rough examination in the "scouring process;" that is, any plate not cleansed is rubbed with sand in water. Defective sheets are again
thrown out, and the sheets or plates are now passed into the thrown out, and
annealing room.

The annealing furnace is a large reverjeratory furnace, capable of holding several annealing pots. The pot is composed of a stand, of sufficient size to take the sheets, with a raised rim. Several hundred sheets are piled on the stand, and a square, box-shaped cast pot completes the pot. This is inverted over the sheets, and the space between the rim
of the stand and the rim of the inverted pot is filled with
oxide of iron, to lute it down and exclude the air. The pots oxide of iron, to lute it down and exclude the air. The pots
are then put into the furnace until it is full, and the whole brought up to a cherry red heat, or a little beyond. About eight hours are necessary for its perfect saturation by the heat. When removed from the furnace, they are slowly cooled in a place free from draft, and then the pots are
opened. The plates never lie perfectly flat, and should be opened. The plates never lie perfectly flat, and should be
of a dark straw color at the edges. If the air should get in in small quantities, a deep blue color will cover the sheets more or less. The plates adhere slightly, are again separat ed, and ready for the second pickling room. The plates are hen submitted to a hot but more dilute pickle of sulphuric bath, they are well washed in running water, and kept in clean water until the tinman is ready for them.
The tinman takes the plates from the water bath (where they lie some hours) and plunges them wet into a bath of hot palm oil, called the "grease pot." When they have ac uired the temperature of the grease pot, they are removed with tongs and quickly submerged in a bath of tin. The
oil mixed with the water from the plates floats at the top oil mixed with the water from the plates floats at the top,
forming a flux which covers the melted tin and prevents oxforming a flux which covers the melted tin and prevents ox
idation. With the tongs, the sheets or plates are continual y kept moving and separated, to insure the tin getting be ween all of the sheets. When the bath has recovered its heat, which it generally does in about half an hour, the tinman examines the charge, and if he finds that perfect amal gamation has taken place between the two metals, he re moves them with a tongs to the next bath, which is kept at low temperature.
The temperature, raised by the change from the " tin pot," is again allowed to conl down to a few degrees over the melt ng point of the tin, when the plates are taken in lots of a ozen or two at a time, and laid on an iron slab, which is a the side or head of the pot. The waste metal and grease run back into the pot, the slab being inclined. The workman hen takes up sheet by sheet with the tongs, and dips each into another bath of fine metal, kept at a heat little over
melting point, immediately withdraws it, and places it in a melting point, immediately withdraws it, and places it in a proper temperature, where they are allowed to remain a cer ain time. The sheets are then slowly lifted out of the grease by a boy, who separates them into proper lots by counting carefully, regulating the intervals of time between them. The grease recoils from the top plate; and as little保 on the sheets, they are again placed sheet in a tongs, and dips the lower edge into a small bath of melted tin so egulated that the sheet can only enter to about the eighth of an inch. It is kept long enough to melt off the drops of metal which adhere to the lower edge; and when lifted, the sheet is struck to throw off the superfluous metal from the edge. The plates are again put into a rack, and taken while warm to a bin of bran, where each sheet is thrust into and
under the bran, to get rid of the grease which adheres. It is then passed on to a second and third hand, when the grease is pretty well behind in the last bin, which is kept filled with new bran. The sheets are turned out covered with flou dust and bran, and dusted off with cotton shaggy cloth.
The next process is in the sorting room. Here the fin ished sheets are laid on tables, and each sheet undergoes an which are by the sorter, who throws out those shearing are reheated to regain the tin; the imperfect sheets are sold as "wasters" at a less price; the sheets are counted, and the box of 100 lbs . weight is composed of 225 shee
inches by 10 inches, for home use or for exportation.

What an Englishman Thinks of American Rail way Traveling

Mr. Robert W. Edis, an intelligent English architect, is now communicating to the Building News, London, a series f interesting letters from this country, giving an account of his experience in traveling from New York to the West. In one of these recent letters he draws the following comparisons between the railway facilities of the old and new worlds:
No one who has not been in America can thoroughly nderstand or appreciate the comfort and luxury of these palace cars, in which, whether by night or day, the traveler may journey for days together without the misery and cramped up feeling in our own railway cars; a comfortable seat by day, with plenty of room for legs and knees, and a luxurious bed by night, entirely shut off from your neigh-
bor, with good attendance, lavatories, and other convenibor, with good attendance, lavatories, and other conveni-
ences, all tend to make traveling in the States, where great distances have to be got over frequently and rapidly, com fortable, not to say as luxurious and safe as human ingenu ity can make it. It may not be out of place to mention that no expense is spared in the construction or fitting up of these cars, the cost of which often varies from $\$ 15,000$ to $\$ 25,000$, and that, built as they are in the most strong and substan tial manner, and attached invariably to the end of the train,
the minimum amount of risk is thereby incurred in case of "telescoping" or "colliding" in the course of a long journey. Not only in this comfort of traveling, but in the universally adopted system of baggage checking, by which end England learn a useful lesson; but while railway directors here are content to allow their servants to labor ten or twelve hours at a stretch per diem, on work requiring not only con-
stant hard bodily labor, but continual mental anxiety in "blocking," "signaling," and "switching," etc., we can hardly expect to be free from those pleasant but exciting incidents in railway traveling which too often terminate fatal. ly, or, as frequently is the case, maim and wound, either
bodily or mentally, for life; for which some poor, wretched verworked signalman or under servant is sought to be made responsible, while the real workers of the evil, the di rectors and heads of departments, seem to value the safet and comfort of the public as little as they recognize the mental and bodily labor of their servants, and for whic they pay the minimum amount of wages. I can imagine the horror and dismay with which an English railway director would look upon the comfortable seats, the luxurious fitting up, the pleasant heat:ng apparatus, the general good system of lighting, the lavatories, etc., and the iced water tanks attached to the palace cars of America and Canada, not to mention the comfortable beds and night accommodation which make traveling in the States almost a pleasure, instead of a nuisance and a trouble, as it invariably is in this country; or the dismay with which they would accept or adopt the aids to safety in case of accident, in the shape of Miller's platforms, Westinghouse brakes, and get-at-able ord communications. This is a digression, brought about y a comparison of recent traveling in the old and new coun tries, for which I pray the pardon of my readers.'

The Horse Bit.

The question of the bit, and of the hand that rules the bit, underlies the consideration of the whole subject of man's dominion over the horse. The intelligence of mankind has hitherto invented but two principal forms of bit; the snaffle, the simple piece of iron wnich lies across the mouth subject to endless modifications, such as being twisted jointed, and so forth; and the curb bit, a more powerful im plement, which has likewise undergone innumerable varia ions. The curb bit is an adaptation of the principle of the ever, and the lengthening of the check piece allows a very powerful pressure to be exercised upon the jaw of the horse The snaffle is, so to say, a natural bit, and the curb an arti ficial one. The snaffle was used by our ancestors and by the ncient Greeks; the curb is an Asiatic invention, and wa probably brought into Europe with the Moors. In the famous mosaic found at Pompeii, representing, as is supposed, a battle between the Greeks and Persians, and which, at any re, is the picture of a battle between Europeans and Asia ics, the Eastern horsemen ride with curbs, and the European with snaffles. The difference in the bit modifies the whole tyle of riding; and as there are two sorts of bits, so ar here two quite different styles or schools of horsemanship, which may be called the Eastern and Western styles. The ype of the Eastern is best seen in the modern Bedouin Arab with his short stirrups, peaked saddle, and severe bit; and he Western type in its simplest form is beautifully exem plified in the Elgin marbles, where naked men bestride bare acked horses. To ride after this fashion is an athletic ex rcise ; the strength of the man is set against the strength of the horse, with little adventitious aid. The rider restrain the horse's impetuosity by the sheer force of his arm, and he maintains a seat on his back by exercising the muscles of his legs. It is the equitation of athletes and of heroes; but it is clear that the balanced seat of the Arab, and the more complete command over his horse which follows from the greater security of his seat, would make him infinitely more ormidable in war than the European, in spite of the supe ior size and strength of the latter. History teaches us how cavalry of the Saracens-small men on small horsesode down the Christian horsemen till they learned to rid with the bits, and saddies, and lances of the Moslem cavalry The invention of the curb bit necessitated the stirrup, for a man sitting upon a barebacked horse is forced to bear, a times, more or less heavily upon the bridle; and if, so riding, he were using a curb bit, and he were to lean any part o his body upon it, his horse would stop, or would rear, or would flinch. The ancient Greeks and Romans are believed not to have known the use of stirrups. They are, indeed, said not to have been discovered till the fifth century of our a. This, if it is true, would only apply to Europe. In the East they were used many centuries before. The earliest representation of one I know is in the above mentioned mosaic, where the horse of a dismounted trooper in Oriental costume is drawn with clearly indicated stirrups; the Greek horsemen in the mosaic are without them.-New Quarterly Magazine.

A PRACTICAL SYSTEM FOR THE SALE OF PATENTS.
We have recently received from Messrs. S. S. Mann \& Co., corner of Linden avenue and Hoffman street, Baltimore Md.. a neatly printed manual and a number of sample blanks, the collection being explanatory of a system which the above firm have devised for the use of inventors desirou of disposing of their patents or rights under the same. The book of instructions comprises practical and excellent advice relating to the proceedings incident to selling patents or of making arrangements for the manufacture of articles on royalty. With this work are supplied full sized blanks, hand somely printed, consisting of forms for grants of rights, powers of attorney, etc, with which are furnished detailed printed explainations.
From examination of the method we believe it will be an acquisition of much value to inventors. We are informed that the system has been adopted by many patentees, all of whom have expressed complete satisfaction.

Cement for Wood Vessels.-A mixture of lime clay and oxide of iron, separately calcined and reduced to fine powder, then intimately mixed, kept in a close vessel, and mixed with the requisite quantity of water when used. This will render a vessel watertight if the ingredients are good.
decisions of the courts.

United States Circuit Court---Southern District

 New Yorkthe baćglder sewing machine.-john baghelder os. william
motiton et al.

William H. Grow and Crawford M. Sloan, Darien, Kan.-Each roller is which pass through them. Both ends of each of the rods pass through the seetion or stave, and are provided with screw nuts, which fit in recesses
formed in the edges of the stave. A central transverse groove is formed in each stave, which adapts the cylinders to be applied to the wheels and firm ly secured thereto. When this is to be done, the nuts are removed from the the cylinders large ene staves separated from When the latter have bee adjusted in the grooves, the staves are again brought close together and clamped around the wheels by means of the rods and nuts. The wheels are mounted on an axle provided with a tongue forming a running gear, suc

Improved Eaves Trough Hanger. Thomas G. Williams, Akron, o., assignor to William Warner \& Co., of
same place.-The invention is an eaves trough hanger having a prolonged end, adjustable vertically in a clamp, and turned over to hold the trough at any elevation desired, thus avoiding the use of an adjusting scre

Improved Machine for Cutting Cloth
Nathaniel C. Fluck, Gloucester, Eng.-Thisinvention consists of a movable cutting table or board on a stationary bed, a guide for the cutting
knife a pawl tor moving the cutting table, and an adjustable stop and a gage for regulating the movement, all combined in a manner by which the cutting of cloth strips into sample pieces of any size required is simplified
and facilitated. The extent of forward movement of the board and the and facilitated. The extent of forward movement of the board and the cloth upon it is regulated for the required length of samples by a stop guide is then swung back down on the cloth, ready for guiding the knife for cutting off the sample, and a gage shows where to fix the stop for amples of the length required.
Improved Ventilator and Pipe Hole Plate for Tents.
Robert Brien and William Brien, Jersey city, N. J.-This invention con sists of a metal plate, provided with an aperture of sufticientsize to aftord proper ventilation or allow the exit of a stove pipe, and which is fastened to the tent cloth, or to a suitable patch in the latter. A valve is
for closing the orifice, provided with springs and a cord and pulley

rmproved Belt Hole Cover

Topnan P. Rodgers, Taunton, Mass.-The stationary part of the cover made in two parts, which fit closely upon each other, and are secured of said case are secured to the fioor. The upright plates project upward at any desired angle, according to the direction of the belt, and are made in the form of segments of circles. Curved filanges are formed upon the
lower part of the inner sides of the uprights, near their edges. The inner edges of these langes in projecting points which interlock movable part of the beltcover has a dase parved upon the arc of a circle to fit and slide upon the arched flanges as a seat. In the o pass through freely, and which is surrounded by an inclined flange, making the opening hopper-shaped. By this construction the belt can carry the apper pard in stany position into which it may be moved, preventing the belt from being rubbed and chafed.

Improved Toy Horn.

William A. Harwood, Brooklyn, N. -The mouth piece is cast in two parts, in one of which is formed a little slot in which the reed is inserted a one end and wedged in so as to be held. The other piece is in the form of
a conical tube, and fits on over the one in which the reed is fitted and is ecured by wedging. In the second place, the part having the reed is formed orn, and secured by forcing it on the conical end, so as to be held by friction. It may also be soldered, if desired.

Improved Balance.

Edward C. Pickering, Boston, Mass.-The objeet of this invention is to roduce, for the purposes of scienticic investigation and the use of the spirit level and adjustable weights with one end of a scale beam carrying a weighing pan at its opposite end. All the weights, large and small, are put on the scale pan, which will then balance the welght of the beam, loose nut is adjusted till the exact blace ot the weights is obtained not, body to be weighed is then placed on the pan and the weights removed
gradually until the bubble is again in the center. The weights removed are qual to the weight of the pody. The weights may also be taken oft a added in the usual way till th give the weight of the body.

Improve Slide for Extension Table.
he slides for extension tables that the splitting of the slide bars is pre vented by transferring the strain to the center instead of the sides, and ins in common use. The invention consists in arranging the ends of the blide bars with arched slide plates having short extensions, which are in. clined toward the longitud

Improved Car starter

Archibald H. Crozier. New York city.-A bevel Wheel is attached to a leeve, and revolves fring clutch coupling engages and acts upon the is a when the spring is uncoiling. This spiral spring bears against the coupling, and forces it to engage with the clutch of the wheel. In winding up the spring, the teeth of the coupling clutch slip past each other without affect Ing the axle; but when the coil spring reacts they engage, and the power
is conveyed to the axle. A frame is given a sliding motion beneath the bottom of the car by means of the lever, and is confined to the bottom of the car. A shaft is attached to this frame by journal boxes, and a bevel
wheel on this shaft meshes with the clutch wheel, and another bevel wheel on this shaft meshes with the clutch wheel, and another bevel
wheel on the end of this shaft meshes with the wheel fast on the car axle. The coil spring is wound up around the shaft in stopping or braking end to the frame. In braking or stopping the car, the two miter wheels are thrown into gear, which winds or colls up the spring and stops the car.
Should the momentum of the car be greater than required for winding up Should the momentum of the car be greater than required for winding up
the spring, a braze may be applied to the wheel by the driver. When it is the spring, a braze may be applied to the wheel by the driver. When it is
desired to start the car, the driver moves a lever to the other end of a stop plate, which throws the bevel whecls out of gear. The clutch wheel, belin
engaged with the coupling and sxle, receives the reactive force of the coil spring and transmits it to the axle, thus starting the car

Improved Nut Lock
Casper Dittman, Leacock, Pa.-Thisinvention relates to that class of nut locks which by some elastic substance take up the longitudinal expansion of the bolt, and provide at the same time for a corresponding contraction,
It consists in placing rubber balls between a washer and the flanges of nut, and holding them together temporarily by upsetting an annular projectin lip of the one upon the opposite wall of the other.

Improved Machine for Forming Hat Frames Blagio cross bar of the frame and its York city.-A vertical shaft, piv the table, is rotated by a lever worked by the foot of the operator. To th upper end of the shaft is attached a circular table, to whith is secured the
lower form or mold. The upper form or mold, which is secured to a circuar table, is rigidly attached to a short shaft which passes up through a hole
in the cross bar by which it may be raised. The cross bar is connected wit the foot lever so that the operator can bring the upper mold down upo the lower mold to form the hat by pressing down the lever. The materia
from which the hat frames are formed, and which is wound upon a rod, i from which the hat frames are formed, and which is wound upon a rod, i

Improved Combined Extension Measuring Rod and Divider
George H. Discher, Mobile, Ala.-The object of this invention is to facil George H . Discher, Mobile, Ala.- The object of this invention is to facicles, arcs of circles, and ovals and elliptics. In each of two opposite side of the center piece is a dovetail groove. Near the inner ends of the exten grooves of the center piece, and guide and hold those pieces to the cente iece. Bands are attached to the center piece, which admit the extension
pieces so that they may slide back and forth therein, and are held in any position by thumb screws. These extenslon plecesare graduated or marked of into inches and fractions, so that the length of the rod in feet and
ches may be, at any time, readlly ascertained. A removable point an encil, each fastened in place by a thumb screw, are provided when the ro pencil, each fastened in place by a thumb screw, are provided when the rod
is used as a tram for striking circles, arcs of circles, ovals, or elliptics. In the latter case, the third point is attached to the end of the center piece.
When not used as a tram, the points and pencil may be disposed of in the ends of the pieces.

Improved Blackboard.
James Reber, Nebraska, Ohio.- This invention consits. mainly, in arranging the blackboard with hinged leaves in a strong standard or stock
in which it may be raised or lowered by rack and ratchet arrangement, t o inclined by hinged arm andbow levers.

Improved Extension Trunk.
Gustav Engelsman, New York city.-This invention has for its object to rnish an improved trunk, whichshall be so constructed that it may be nary trunk. The sides and the end parts of the extension are made with an ofr set upon their outer and inner sides, the outer shoulder being desigue orestupon the upper edge of the sides and ends of the lower part of the unk, so that the outer surfaces of the said parts may be fuush with each
other. The inner shoulders are designed to receive the till. The edges of he ends of the extension are rabjeted upon their inner sides to fit upon rabbeted angle blocks, which have a metallic plate attached to their oute sides to overlap the outer surfaces of the ends. With this construction the formed that connect the top part to the lower part of the trunk are so formed that they can be readily attached to and detached from the uppe
part, or rear extension piece, as may be required. The hasp of the lock is made long, and should have two keepers attached to it to enable the trunk to be locked when extended and when contracted.

Improved Grinding Mill

in upin, New York city.-There is a rectangular bed frame on which an uright frame near one end, consisting of two "bents," on the bridge hangs the bridge tree, and runs in a case. In the upper part of the latter is a spout for the escape of hot air, and in the lower part is a spout for the face to face with it, In front of the runner is a stationary stone, standin ported in the arms of a crotched standard, and said trunnions can be shifted forward and back to balance the stone. The arrangement forms a uni versal joint, on which the bed stone accommodates itself to the runner.
The feed shoe, under the hopper, delivers the grain into the eye of the stationary stone, in which there is a projection of the shaft, with a coarse spiral screw thread, which conveys the grain to the runner, where it is met by the radiating distributing plates on the runner. which work it along be-
tween the stones and distribute it equally. The shoe is agitated by a tappet on the shaft. It will be seen that these mills can be geared by a direct manner, and the spindle of the runner nas not to support the weight of the

Improved Apparat
Beer. ed or other liquids, which may be deteriorated, decomposed, or in any way an improper temperature during the time said liquids are on draft. The the same by a gas, indifferent and notinjurious to the liquid to be preserved, and bringing said gas under a sufficient pressure to preserve, increase,
diminish the temperature, and thus keep them in theirnormal condition.

Improved Railway Switch.
Wiliam A. Slingerland, New York city.-This invention relates to means Whereby the liability of a railway train running off the track in consequence
of the misplacement of a switch is avoided. It consists in a peculiar mode Improved A pparatus for Transferring Embroidery Patterns.
Charles Bordas, New York city.-The object of this invention is to fa from a perforated original pattern sheet to other sheets of paper or other sheet consists of a frame and an adjustable clamp attached to one side of the table by hinges, so that it can be turned up to a vertical position. The justable clamp consists of a bed piece with a rib thereon and a hinged heet is laid has a groove which its on the rib of the bed. The end of the fastened by means of the buttons. The clamp is now drawn back, so as to give the sheet the proper tension to hold it smooth and keep it in posi ion. It is adjusted by means of cords, theends of which are attached to the spiral springs, and the other ends are passed through the eyes. The
tension is given by drawing the cords back. When the proper tension is given, the cords are secured around pins, and the clamp is fastened to the this stamping, as itilis called, through a perforated pattern, is done with col ored powder, and the pattern is held oy the hand. A single pattern can only be used in this manner, on account of the dificiculty in keeping it
smooth. By the imprevement a number of patterns may be contained on mooth. By the imprevement a number of patterns may be contained on liquid is employed, with which the brush is saturated. When the patter sheet is properly stretched, the brush, which has been dipped in the liquid is drawnoverit and the impression is made. The frame with the patter sheet is then raised, and the impressed sheet is removed. The frame is again closed do.

Impreved Spring Bed.

H. Gill, Williag Bed. Y.-This inventio has for its object to improve the construction of spring beds in such a
way that the bed will not crush down at the side, and that the bed will be Ordinar coiled springs are interposed between, and the ends of which are attached
to, the bottom and top straps. In the outer row of springs, upon both or the bea, every othersprigis composed of two caps, made in th ther, and with a partition in the weck or smallest parts. Two springs ar
 maller ends resting against the opposite sides of the partition of ssid case. he larger end of the upper spring is attached to the top straps. By thi onstruction, any tendency to press the bed down or over at tae side press-
es the sides of the springs against the sides of the case. This keeps the prings upright, so that the person upon each side of the bed will be su ported by the springs of that side.

nnproved Paper Hanger's Brush

John M. McComb, Lancaster, O.-This invention relates to a novel con andion of paper hangers' brushes whereby they may be made to place the ring-pressed clamp to the top of the brush, also in a novel mode of bling the operator to open the clamp after the paper has been located upo he wall, by a lifter, connected by a cord or wire with his hand. It also co the action of a crooked lever, which holds the clamp open until the brusi

December i3, 8 873.]
Tuginess and tertanal.
$\frac{\text { The Charge for insertion under this head is } \$ 1 \text { a Line. }}{\text { Protect your Buildings with Patent Liquid }}$ and very Cheap.

 .E. Hanthan, Worceatser, Mass. Steam Street Cars.
 Wanted-Engaagement by a thorough prac
 tachinery. Addres Practical Machinust, St' D, N. F. One horse power Steam Ensines and Boil Wanted $-A$ first class Engine Lathe, 30 to
 For Sill Two Copper Sitis. , So and 160

Wanted-A thorough going party to manut
tacture on rovaly, or take an interesesin Bensters Pat ent Barel Heading Machine, 2 thoroughly radical and
superior invention, estmated at teast 5 to per cent supe.
 Seferron Ave..Detrort, MMchizaI
Wanted-To let three new patents on roy-
arts. Machinery popular. Cyrus
H Wanted-Six Foot "Eagle Brake". Cash. At the "Scientific American" Office, New
 municate with any person in the establishment without
eaving his seat. Splendid for offices, factories, shop leaving his seat. Splendid for offices, factories, shops,
dwellings, ett. Price only $\$ 5$. Made by F. C. Beach \& Buy for your boys, for Christmas, the Tom tery, wires, keys, and instructions, price $\$ 3 . \begin{aligned} & \text { Neatly } \\ & \text { boxed and sent to all parts of the worid. } \\ & \text { F. C. Beach \& }\end{aligned}$ Co.. 260 Broadway, New York, See engravings in last
Iron Steam Boxes for Stave Bolts \& Veneer
Cutting Machines. T. P. Bailey \& Vail, Lockport, N. Y. Boult's Unriva'ed Paneling, Variety Mold-
ng and Dovetailing Machine. Manufactured by Battle We sell all Chemicals, Metallic, Oxides, and
 we mall for \$1. Orders whll receive prompt attention by For Solid Wroghthtiron Beams, etc., see ad.
vertisement. Address Enton Iron Mills, Pittsburgh, Pa., cr ${ }^{\text {lithographap. etc. }}$ Stationary and Portable Steam Engines and
Sta nectady, N. Y.
Bacın
tais
tractors Blast Furnaces Engines for Mines, ConAractors, Blast Furnanges, \&c.., adapted to every poossible
duty. Earle C. Bacon, Gen. Ag't, 36 Cortland St., N. Y. Fises to Bolt Forget by hand. J. R. Abbe, Manchester. N.H. Small Tools and Gear Wheels for Models. Diamond Carbon, of all sizes and shapes,for Brass Gear Whee's, for models, \&c made Superior to all others-Limet \& Co.'s French and better tempered. Send for orice-1ist. Homer
Street, New York.
No inconvenience is ever felt in wearing the
New Elastic Truss which retains the Rupture, night and day, till cured. Sold cheap by the Elastic Truss Co., 683 Telegraph \& Electrical Inst's-Cheap inst's
for learners-Models and light Mach'y. G. W. Stockly,
Bec., Cleveland, Ohio.
Brown's Coaly ard Quarry \& Contractors' Ap-
puratus for hoisting and conveyingmaterial bylron caide. w.D. Andrews \& Bro. 414 Water st.N. Y.
Buy Gear's Improved Car Boring Machines Boston, Mass.
Belting-Best Philadelphia Oak Tanned.
C. W. Arny, 301 and 303 Cherry Street, Philadelphia, Pa. Mercurial Steam Blast \& Hydraulic Gauges
of all pressares,very accurate. T.Shaw,913 Ridge av.,Phil. Mining, Wrecking, Pumping, Drainage, or
trrigating Machinery, for sale or rent. See advertisement, andrew's Patent, 1nside page.
Buy Improved Car Machinery of Gear, Boston, Mass.
Lathes, Planers, Drills, Milling and Index
machines. Geo. S. Lincoln \& Co., Hartford, Conn. For Solid Emery Wheell and Machinery, All Fruit-can Tools,Ferracute,Bridgeton,N.J. For best Presses, Dies and Frrit Uan TTools.
Bliss \& Williams, eor. of Plymouth \& Jay, Brooklyn,N. $\overline{\text { A. }}$ Tool Chests, with best tools only. Send for
etrcular. J. T. Pratt \& Co., 53 Fulton St., New York. Root's Wrought Iron Sectional Safety Boiler. 1,000 in use. Address Root
and $28 t h$ Street, New York.
Five different sizes of Gatling Guns are now
manufactured at Colt's Armory, Hartford, Conn. The arger sizes have a range of over two n
are indispensable in modern warfare Hydraulic Presses and Jacks, new and sec-
ond hand. E. Lyon, 470 Grand Street, New York. Drawings, Models, Machines-All kinds made
to order. Towle \& Unger Mf'g Co., 30 Cortlandt St., N.Y. 2 to 8 H.P.Engines,Twiss Bros.N.Haven,Ct Damper Regulators and Gage Cocks-For
Dhe best. address Murril \& Keizer, Baltimore, Md. Steam Fire Engines,R.J.Gould,Newark,N.J. Peck's Patent Drop Press. For circulars,
address Milo, feck \& Co., New Haven. Cona.

F. R. will find directions for repairing rub
eer boots on p. 155 , vol. 26.-V. E. H. will thd the aguari
 J. H. D. should read the directions for tempering drill
on p. 186, vol. 26.-F. G. V. will find the description of on p. 186, vol. 26.-F. G. V. Will find the description of a
storm glass on p. 123 and 234 , vol, 29.-D. H. T. should
use the directions for French putty on p. 53, vol. 27. use the directions for French putty on p. 53, vol. 27 .
W. L. C. C.s query as to a tug and sailing ship was an
swered on wered on p. 96, vol. 29.-L. D. As right: D. N. is wrong
G. W. . . ill find a recipe for dyeng black on p. 101 ,
ol. 2^{7}.-R. B. should use balloon varnish, as described on p. 136, vol. 28.-W. H. R. should see p. 368, vol. 26, fo
parchment paper recipe.-Mrs.J. B. K. should use Par green according to the directions on p. 413, vol. 26 .-
G. . B. B. D. and W.A.R. can blue small steel articles by the process described on p. 107, vol. 26.- B. can stop the
creaking of his boots by following the directions given on p. 340, vol. 25. See p. 332, vol. 29, for rat poison 281, vol. 26.-S. can use the cement described on p. 202,
vol. 27, (for meerschaum) for reparin G. C. will find the directions for tempering mill picks on p. 170, vol. 25.-W. B. R.'s proposed combined rocking chair and cradle is an old idea. See p. 70, vol. 29.-
J. C. C. can coat gray fron castings with zinc by the process described on p. 59 , vol. 24.-G. H. E. T. Is informed
that we published on p. 289, vol. 29, all the information that we possess concerning Abbé Fiehol's battery.
-J. A. DeM. can temper springs by the process describe on p. 314, vol.28.
C. M. A. says: I have lately set up a Ger
man study lamp. The flame, instead of being remark ably steady one. as i supposed it would be, filckers and sputters a good deal, except when turned down very
low. Can you inform me as to the cause, and suggest a remedy? Answer: We think it quite probable that you
have not a proper chimney. We have often expert nced a trouble similar to your o nave from E. G. A. asks: 1. Can carbonic acid be liq-
uiffed; if so, how? 2. Can the carbon be separated from the oxygen by electricity? Answers: 1 . Carbonic bs. per square inch. It is decomposed by plants, but
R. L. H. asks: 1 . Is there such a material
nickel steel? If so, for what purpose is it used and Where is it made? 2. Are not the nickel mines in Pennemployed in the manufacture of ware of any kind, except for the purpose of plating? Answers: :1. We think
not. 2. We believe they are. 3. Its principal use, beGerman silver
S.S. K.-At the equinoxes, the sun rises and sets atd o'clock. The sun requires 22 minutes and 23
scons longer to return to the same star than he does
M. G. C. says: : In graduating a safety valve
lever, the rule is that the length of the ever divided by the listance from the fulcrum to the weight, multiplied by the walghe that the ball will counterbalance. The formula is $\frac{\mathrm{Pp}}{\mathrm{w}}=\mathrm{W}$. But I wish to knowhow the weight of the lever acts, and if it cannot be introduced in the above
equation. Must not the weight of the valve and pin be taken into consideration? If so, how? Answer: In all correct formulas relating to safety valves, the weights
of all the parts are considered. See Box's formula on p. 63, vol. 29.
H. T. asks: Can I make a boiler, for an eninch be thick enough to stand 50 lbs. pressure? Answer:
It would probably be better to make it at least $\%$ of an inch in thickness. You might get a section, sufficient for your purpose, from some manufacturer of cast iron
boilers, or you might arrange a few shells with suitable
D. R. B.-You can probably carry out your
plan by arranging proper connections and mouthpieces C. O. asks: Why is it that, of two locomolarge one, the weight or traetion befng the same and the
length of stroke the same in each, the one with a small length of stroke the same in each, the one with a small
driver will draw the most load? And will the same explanation apply to ascending heavy grades? Answer:
It is on account of the difference in the throw of the crank and the radius of the driving wheel; so that the
tractive force, other things being equal, is greater in
J. M. E. asks: 1. Are any of the processes patents? 2. Does the suet in the process of warming
come in contact with the coiled tube in the tank? 3. Is the buttes fit for the market as soon as manufactured?
4. Is it possible to get a detailed description of the machinery and the workings of the concern? 5. Would the company object to an examination of their factory, and
the working in the different departments thereof? Anthe working in the different departments thereof? An-
swers: 1 . We do not believe that there are any particunary skill in manipulation cannot overcome. We understand that the manufacture as described is patented. 2 . Live steam is admitted into the suet at the bottom of
the tank. 3. The butter is fit for the market as soon as ade. 4. A more detailed description would probably dvise you to communicate directly with the company for information as to machinery, and the working of the process, if our description is not detailed enough for
your purpose. 5. We think the company would decidedy object to any examination of their factory unless by disinterested p
heir patents.
W. F. C. asks: How can I ascertain the rea of the piston in square inches by the mean effective pressure of steam per square inch during the stroke, also
by twice the length of the stroke in feet, and by the number of revolutionsper minute, and divide the pro uct by 33,000 .
C.F. S. asks: 1. How can I melt iron in
quantities of not more than a pound?
2. What should 1 make a crucible of? 3. Would clay do for molds? Should
I have a small bellows? 4. Would charcoal do for fuel? 5. At what temperature Fahrenheit does Iron do it in a common blacksmith's fire. 2. Plumbago cru-
cibles will be the best. 3. Yes. For fine castings you may do better with plaster of Paris. 4. Yes, but blacksmith's coal would probably be better. 5, 6. Cas.
melts at about $2,800{ }^{\text {Fah. }}$ copper at about 1,950 .
F. C. asks: 1. How can I make a white por
elain (or something resembling it) not over one six. teenth of an inch in thickness, capable of being molded
in palater of Paris molds?
in ind the moon. How is it that the tidal wave, lags be moon in the year 1873, the high tide (as the almanac in forms us) comes between 11 and 12 o'clock? Answers:

1. Use hot cast porcelainn, a glass made from Greenland nater materials, and may be pressed and annealed. 2 . The hours east of the moon, and about 50 minutes later each
day. In a landlocked estuary, as at the port of New the moon has passed the meridian.
J. L. G. says: I have lately seen a new kind produce a yield of more than one hundred thousand fold
from the seed, or at least six hundred bushels per acre A gentleman received one grain of this wheat and gre ly clean pure wheat. Is this a humbug? Answer: It clean pure wheat. Is this a humbug? Answer:
would be impossible to give an opinion on the value of
his wheat, from the small sample sent, without an ex this wheat, from the small sample sent, without an ex
pensive analysis. It may be that the plant has all the ood qualities that are claimed for it , and still will be of ittle value. It frequently happens that imported seed because the plant cannot adapt itself to the change
W. M. asks: How can a mechanic construc moons, Saturn's belts, etc.? Answer: The difficulty and expense of making a powerful telescope lies in the
glasses, which must be perfectly ground and free from

G. M. R. asks for a rule for calculating the
ower required to lift $1,0001 \mathrm{bs}$. with a differential pulley and for calculating the weight required to support 1,00 loss suspended from a horizontal cord running over a pul
ley. Answers: Disregrding friction and rigidity of cordag divided by the distance that the power moves in raising he weight.
O. asks: Is there no law in regard to in
competent engineers? We have a small pleasure boa Which is managed by a boy about sixteen years of age to see the lives of from ten to thirty persons paced in rol the immense power of a steam boiler. If there no law to keep such chlldren out of the engine room
there ought to be, and it should be enforced. Answer Most States have local laws relating to the use of steam
boilers, and there is a United States law in reference to ocean and river steamers. Either the laws or the man er in which they are enforced seem to be defective, s steam machinery. We have frequently called attentio
M. C. says: 1. I had charge of a canal boat
boat, of which the engine was an upright, with link mo tion, and connected directly to the main shaft. We
never could get her to exhaust properly. on the lower
center she would exhaust very shortly and quickly, and on the upper surface very slowly and laboriously. The
valve was all rifht, and had just as much lead on one end son the other. 2. Our boiler was an upright tubular,
feet by 36 inches shell; furnace within the boiler. had a very good draft, but forall that we could not make team enough at times. The chimney was connected
irectly to the upper end of the boller, and the exhaus team passed through it. What was the trouble in thes Fith regard to the valve being set similarly at the two ends of the stroke. Even if the valve has the samesteam
lead on each end, it by no means follows that the exaust lap and lead ar
F. E. H. asks: Huw can the perspiration Where the coloring matter of dyed gloves has been af
ected, we know of no method of renewal except re-dye ng. Where benzine fails to remove the dirt, you cai ry the following French invention: Curd soap (in smat
shavings) 1 part, water 3 parts; mix with heat and sti in essence of citron 1 part. The glove is stretched on
a wooden hand of appropriate size and the compoun rubbed over the glove (with a piece of flannel, always
ne drection) unth 1 su
J. E. G. says: I I have a door opening toward
he east; twice a year the sun shines through the keyhole and strikes the wall on the opposite side of the
room, making a spot about the size of a quarter of a dolar. It appears an hour after sunrise for a few days only,
t think in June and November. Will the spot be think in June and November. Will the spot be seen in
exactly the same place in spring as in fall? Can yo give the time in spring if the time in fall is November 10 right ascension and decl'nation of the sun at the tim Siven, namely, November 10. Sixmonths from thistim,
the earth will have accomplished half a revolution, the sun have moved apparently through 180° of longi
tude. The sun at this time, though in an opposite quar er of the heavens, will have the same position, with r Fill be in the following spring on May 8 , a few minute later, in the morning. The time by the clock being 15
minutes after 7 o'clock, November 10, add the equation of t.me (or the difference between solar and true clock on will take place in the spring 18 m .42 s . after 7 A. M. The right ascension and declination of the sun not
varying greatly eaeh day, the spot will probably be seen to about the same place for a few: days
C. E. H. says: How can I construct a simple orm of superheater to place in the furnace or th truction will be with short pieces of pipe and elbows. connection with the steam space of the boile
A. C. asks: What is the meaning of the
word crith, in chemistry? Answer: ln referring the pecitic gravity of a solid body to hydrogen, its value is
irst reduced to the water standard and then multiplie b 0.0000896 grammes (if the volume of the body be in cubic centimeters), which is the specific gravity of hy drogen referred to water. In order to a avoid this long
fraction, Hoffman introduced into chemistry the unit (176133 pints) of hydrogen at the standard temperatu and pressure.
 For the convenient calcuatation on hromits from barome ccuracy is required, as the reductions are quite tedious Below is given an approximate formula. Difference of
level $=60360 \times$ [(logarithm of barometrical reading a owerstation - logarithm of barometrical reading at upper station) - $0.000044 \times$ (reading of lower attached thermom eter - reading of upper attached thermometer) $] \times[1+$
(reading of lower detached thermometer + reading of upper detached thermometer -64$) \div 986]$. Example: The 1851, to determine the hight of Mount Washington :
 Difference of level $=60360 \times[1 \cdot 4664524-1 \cdot 3807538-$
$\cdot 000044 \times(707-54 \cdot 52)] \times[1+(72.05+50.54-64)-$ $986]=5434 \cdot 15$ feet. Calculated by Laplace's formula, thio
difference of level, as given by these observations, is $5465 \cdot 39$
H. J. L. says: I have about 1,000 tuns coal piled up in a yarrs so as to be exposed both to heat and
cold. About two weeks after it was put in yard, it com menced smoking in two places, some 10 feet apart. could smell sulphur, and the smoke was very light. I places where the smoke came from, the coal did not ap pear heated, and in a few hours stopped smoking. What
was the cause of this? Will coal piled in this way in the was the cause of this? Will coal piled in this way in the
open air, without any protection, heat enough to cause pen air, without any protection, heat enough to caus
spontaneous combustion? Answer: We do not think that this was a case of spontaneous combustion. The
rain soaking into the pile, and becoming heated, was robably vaporized, and
J. R.R. asks: Will a glass journal and an to a speed of 300 revolutions per minute? Answer: We
G. E. W. asks: 1. How many feet per mil aoss the line marking the earth's periphery fall down?
Upon the ocean two ships are coursing, each toward the other. Fifty feet up in the rigging of each, a man suated. One man is making, with the naked eye, ob ls viewng his nelghbors accompaniments through lass of twenty degrees of space-penetrating power
Can the unaided eye catch sight of the small upper ion of the rigging, before it can of the larger hull a proaching? 3. Can the eye with the lens, at the same
time, see any farther down the ship which moves in it time, see any farther down the ship which moves in its
direction? Has the assisted organ descried its object before
time
Answe time in proportion to ${ }^{\text {ot }}$ the difference in visual capacity
Answers: The following table, giving average depres

G. L. W. asks: 1. Would a steam cylinder air pump, furnisn motive nower (the air to be worked
in a cylinder of increased dimensions) equal to or supe n a cylinder of increased dimensions) equal to or supe-
fior to a steam cylinder supplying the air? 2 . Would
and he power be increased if the compressed air were heat rangore entering the air engine? 3. Would such an a
rangement be feasible, and has anything of the kind eve been used? Answers: 1. The power furnished by the air would generally be less than that required to com-
press it. 2. There would be a gain by heating the air. e heat developed by compression is great the working parts of the air cylinder. 3. Air com-
ouressors, for use in mines and tunnels, are quite J. H. asks: 1 . How can I prevent a survery
or's transit from beconing wet when taken down in a mine, where the temperature is from 15° to 30° warme than on the surface? It takes nee a considerable tim them. Will it hurt them and the cross hairs to have them wet so often? 2. Is the diurnal variation of the
needle the same underground as on the surface? An wers: 1. Perhaps if you dry the instrument thorough y and warm it slightly, before taking it down, you will
no longer experience the trouble. 2 . we do not of any observations on this subject. You could readily
N. S. says: I' am constructing a glass spec. cave and convex surfaces are unequal; so that the rays transmits all the rays of light) may come to a focus be ocus. The object in thus constructing the speculum o destroy the secondary image formed by the rays of curvatures of the speculum be equal, the images reflec d (one from the exterior and the other from the interior surface) will appear near each other, and thus pre 0 inches. The focal length of the convex surface is five feet, while the focal length of the concave surface high a magnifying power will the above speculum bear eter of an eye glass $1 / \sqrt{3}$ of an inch in focal length?
What should be the diameter and focal length of the 9 b ject glass, to a microscope magnifying 400 diameters;
also what should be the diameter and focal length of
 think your idea is original, but such construction is no ecessary, as a glass speculum is ordinarily silvered on
the concave surface. There is a good essay upon the elative mertts of metallic and glass specula in the Philosophical Transactions for 1899. We could not an-
swer your other enquiries satisfactorily in our limited space, and would advise you to read up some treatise recommend the works on physics by Silliman, Ganot and Deschanel.
B. says: I have loto of boiled bones and an-
 mix with the bones, and what kind of a mill is used fo plan is to grind the bones and mix the bone dust with ashes or ordinary manure. This forms an excellent fer-
tillzer. There are many mills in the marketforgrinding and crushing, and an advertisement for the
Who complains of a gummy substance which exudes rom his boots: It is not the wax from the thread, but oil (the proper article) was so sicarce a few years since that other olls, particularly menhaden or porgy, were Imost impossible to get a true cod oil. I have see 0 as to neeu two men to separate them. It has no become possible to get good onll, and there is little da F. N. says, in reply to G. W. C., that the hill first, for she would hav
L. S. F. says: Let S. M. S. kill his roaches parts. Then pour enough water upon the floor, in the place which the roach frequents, to form a little puddle and form a circle of the mixture around it. They wil poison. In making their toilets, they lick their leg

Minerals, etc.-Specimens have been reeived îrom the following correspondents, and examined with the results stated:

M. W. H.-Your

W. A. D.-Blende, sulphide of zinc.

E. A. W.-Grains of quartz.
G. O. H.-It is an alloy of copper, but a chemical anal
is will be necessary to determine the constituents.
L. S. - No. 1 is bituminous shale. No. 2 resembles oxid
E. E.-Galena (sulphide of lead) in limestone.
R. C.- Your mineral is crystalized sulphate of lime, P. S. - Nos. 1 and 2 are tron pyre.
oxde of iron in quartz. C. H. C.-Carbonate of lime. Dilute hydrochloric jure iron pipes, if not kept too long in contact with the w. K.-Barytes, sulphate of baryta
J. H. S.-Sandstone.
R. F. S. -1 . Blende. 2. Blende with barytes. 3 and Blende (sulphide of zinc). 5. Arragonite, a form of carbonate of lime. 6. Quartz end oxide of fron. Read W. C. B. asks: What is the best varnish to
use on a water color drawing, that will not bloteh or crack off afterwards? ?T. F. asks: If the sum of two squares be given, can science determine the two particular squares which compose the sum?-F. C. says: We put up fruit in airtight jars, and never put a jar away
until we had taken off the iron clamp and found that the jars were tight enough to be lifted up by the cover. Not-
withstanding this, three of the jars burst. As they were airtight, how could they ferment?-F. A. asks for remedy for a fever sore, which breaks out on the slight ing matter, or paint, which could be used with a brusi in marking the horns of cattle.-H. B. asks: How can I put the finish on brass as it is in watch movements?
T. B.J. asks: What is the composition of the ink used T. B. J. asks : What is the composition of the ink use
on hand stamps and for saturating ribbon for ribbon stamps?-J. E. E. says: In a suit now in the San Francisco courts, against a sea captain for alleged cruelty to
a seaman, it is shown by the witnesses that it is a com. a seaman, it is shown by the witnesses that it is a com-
mon practice on shipboard to hang sailors up by the wrists as a punishment. Will some one scientifically explain the physical effect of this puishment upon the system?-J. A. McK. asks: What two metals, gases, or
other substances are the most subject to expansion and other substances are the most subject to expansion and
contraction by heat and cold?-S. S. R. asks : Can you inform me what variation occurs in the time of sunrise and sunset on the same day of the same month, in the

COMMONICATIONS RECEIVED

The Editor of the Scientific American acknowledges, with much pleasure, the receipt of original papers and contributions upon the following subjects:
On the Coal 'Tar Interest. By H. C. F. On Treatment of Cancer. By C. W. B On a Cheap Fertilizer. By G. W. B. On Mysterious Boiler Explosions, etc. By C.B.

On Fireless Engines. By I. P On the Science of Iron and Steel. By C. C. Jr.
On Railway Religion. By J. E. E. Also enquiries from the following C.R.C.-W. L. A. - H. H.-J. T.S.-J. H. G.-P. L.--
B. W. W.-S. B. H. - F. B. - J. F. - E. C. M. - J. M. S.

Correspondents in different parts of the country ask: Who makes a carpet stretcher with a magnet in it to

 Who makes a carpet stretcher with a magnet in it tohold the tacks? Who makes coal-cutting machinery? Who makes pea shellers? Who makes the best steam washing machinery? Who makes plaster fuses? Who makes transplanters? Who sells horse power potato
diggers? Who sells machines for pearlingbarley? Who diggers? Who sells machines for pearlingbarley? Who
makes small lithographic presses foramateuruse? Who makes small steam engines for running jig saws, etc.? Where can apparatusfor burning petroleum be obtained? Who makes diamond drills? Makers of the above articles will probably promote their interests by adver
tising, in reply, in the Scientific AMERICAN.

Correspondents who write to ask the address of certain manufacturers, or where specified articles are to be had,

 also those having goods for sale, or who want to find partners, should send with their communications an amountsufficient to cover the cost of publication under the head of " Business andderoted to such enquirles.
[OFFICIAL.]
Index of Inventions FOR WHIC Letters Patent of the United State: November 11, 1873 and fach bearing that date [Those marked (r) are relssued patents.]

nimal substances, preserving, C. Alden (r) nimal carcass scraper, R. C. Thompkins.

 Auger, earth, W. Cole.........Bale tie, cotton. A. G. Buford
alloon advertising, W. F. Brow Bitumen, ore, etc., compound for, P. Lea. Blasting, charges for, H, M.Boies. Block fitting machine, E. H. Woodsum....
Boiler attactiment, wash, w. W. Glanville Bolt ends, rounding, J. I.
Boot heel, O. Uaderwood.
Boot heel'stiffener, S. Moore....
Boot sole marker, J. W. Dodge
oring bar tool holder, J. Wheelock
Box, match, J. Matthias.
Box opener, M. J. Hinde
Bridge, J. B. Mads.......
Brush, C. L. W. Baker.............
Brush hande, ather, w. H. Miles
Calculating machine, T. Eser
Can for fruit, etc., M. Bray.
Car brake, E. P. Harrington.....
Car brake, hydraulic, J. F. Taylo
Car brake, hydraulle, J. F
Car coupling, M. Andres
Car coupling, A. A. Att.
Car coupling, C. C. Con
Car coupling, s. Reed......
Car coupling,. . P. Rider.
ar coupling, H. G. Russel
Car coupling, M.R. Wood
Car heater, J. H. Weibel..............
Car steam brake, railway, N. Nilson
Car truck, J. Darling..
Car wheel, J. E. Atwood
Car starter, etc., J. M. Starr.
Card case, postal, Townsend, Hughes \& Keith Carpet rag looper, etc., Morris et al Carriage door, J. Carson.
Carriage epring. J. Curtis............
Cartridges, capping, H. M. Bronson
Caster for furniture, G. H. Glad
Chimney top, G. Wingate
Churn, G. G. Buchanan..
Cigar point splitter, A. Sickenberger
Clock, calendar, Clinton \& Mood
Clothes line reel, G. F. Corliss.
Coal cutting machine, Gillott $\&$ Copley Cock, racking,A. Roos.....
Cocks, machine for dressin
Compressor. arir, H. H. Day
Cooler, milk, C. A. Dougla
Cooler,milk, D. Smith
Cotton opener, R. Kitson
Cralle, c. Fenner.......
Cultivator, rotary, J. D. Star
Dental tool rask, G.E. Haye
Dividers, extension, G. C. Mille
Drill, grain, S Hart
Drill, wor well boring, Philitps \& Golletz.
Edge trimmer, jack center, Orr \& Sears
Egg beater, J. F. Rote.
per pulp, Moore \& Hurlbur
Engine, rotide valve, Myera............
Engine valve, direct acting. H. A.
Fan, automatic, W. B. Campbel.
Faucet, Doll \& Eling.
Faucet, beer and ale, J. Deasey
Fertilizer distributer, J. Lytch...............
Fire extinguisher, automatic, E. H. Ashcrof Fire place front, E. A. Jackson
Flowers, artificial stem for cut, J. B. Craig. Food for infants from cereals, L. S. Chich
Fruit loosener, dried, H. W. Holman..... Furnace for making gas, etc., F. Carr
Furnace, steam boller Furnace, steam boiler, , s. Keyes
Furnaces, bridge wall for, Furnaces, bridge wall for, S. C. Sturtevant
Furnace draft apparatus, G. Wingate. Gage, alarm, etc., electrical, C. Heisler Gas, making hydrogen, W. L. Imlay...
Gas retorts, etc., charging, W. Foulis Gas retorts, etc., charging, W. Foulis Gas works by-pass, P. Munzin Generator, vapor, W. Wells..
Grain cleaner, W. Houghton.
Grain cleaner, W. Houghton,
Grain conveying apparatus, H. G. Yates.
Grain weigher, automatic, J. w. Hill
Harvester finger, A. Hughes.
Hatchway guard, Berry \& Ping
Head block, P. M. Cumming
Heater, car, J. H. Weibel
Heater, steam, W. M. Fuller
Heating and illuminating, L. Ruel.
Heating drum, O. D. Spalding
Horseshoe, U. Snyder.......
Hose rest, garden, C. Ryder
Iron, etc. with alloys, coating, C. Marshall.
Jewel case, C. Beck.
Key board instrument cap,
Lantern, signal, S. H. Miller
Lawn seat, H. H. Gratz.

5,648
$.144,579$
1451

\section*{| 44,510 | Pl |
| :--- | :--- |
| 1 | |}

14,50	Plan
4,436	Plan
Plan	
4,517	
Plan	
Plan	
Plan	
Plastic	

 Mattress, wire, N. Chapman. J. Powers. Medical compound, D. J. McEvoy..
Mill, hominy, J. L. Toner..........
Molding stair rails, J. B. Margeson.

Organ, reed, W.J. Kent....
Organ reed, reed, M. o. Ni
Pan, baking, C. T. Smith.
Paper file, M. Craft............
Paper product, J.L.Kendall.
Partition, fireproof, C. F. Brand.
Plane, bench, Brown \& Williams.
Planing machine, S. A. Woods............
Planter, cotton and corn, A.Penington, Jr.
Planter, hand corn, M. C. Root..
Planter, hand corn, J. o. Talma
Plastic material from minerals, P. Lea
Plates, removing ink from, J. S. Ives..
Plow, J. Blanchard..
Plow, J. L. Laughlin
Plow, W. C. McCooo.
Plow, A. Riviere.....
Plow, A. Riviere.
Plow, E. Wiard...
Plow, cotton scraping, J. M. Cobb..
Plow, subsoil, Turner \& Jacobs.....
Pow, wheel, F. Hasbrok
Press, wine, E. Howland.
Printers' rule miter box, т. H. Mead
Propeller, steering, w. Harsen.....
Propeller, steering, W. Harse
Propelling vessels, J. O'Neil.
Pudder, rotary. W. \& G. H. Sellers..
Rallway signal, electric, D. Rousseau
Railway switch, J. B. Alexander.
Rattan ware, S. H. Penley...
Ribbon block, T. Ehrenberg
Ribbon block,
Rood trimmer, B. Goooricich
Roller, land, w. Williams.
Safes, fire escape for, C. Morgan
Sash fastener, O. H. Gilbert.

Sawing machine, wood, J. Skinner....
Sewing machine cutter, w. H. Sample
Sewing machine shuttle, J. Knoa
Sewing machine shus
Sitter, ash, L. Marsh
Signs on cloth, painting
Skylight, G. Hayes, (r)
Snow, etc., moving, C. . Waterbury.
Soap cutting machine, J. Seibert.....
Staples, machine for pointing, w. Malick. Steam and air brake take-up, G. Westinghouse,Jr. Stones, cutting cobble, Lombard et tove, base burning, S. H. La Kue
Stove, portable, R. Moore.
Table, buffet, W. H. Tufts.
Table, ironing, W. H. Sparks.............
Telegraph and fire alarm, J. H. Guest.
Tenoning machine, J. Richards..
Thill coupling, J. C. Barrett.
Thill, vehicle, A. Muhleisen
Ticket case, J. Stokes, Jr.
Treadle, w. Felzer
Tubing, machine for bending, w. T. Farre.....
Type, manufacture of printing, J. Silversmith. Type writing machine, J. Galloway...
Valve, balance slide, C. H . Hutchinso
Vehicle, M. V. Nichols.......
Velocipede, J. F. McClure.
Ventilator, window, L. Robinso
Vise, H. K. \& T. W. Porter
Vise, H. K. \& T. W. Porter (r)
Wagon brake, B.W. Coe.......
Wagon end gate, Baird \& Miller
Wagons, etc., spring seat for, Weyand \& Hill.
Warmer, foot, J. B. Cratg.........
Watchmaker's lathe, E. H. Kelly
Watchmaker's lathe, E. H. Kelly.............
Water meter, automatic, F. de P. Bellido. Wheat, etc., preparing, R. B. Fitts (r)
Wheat, etc., preparing, R. B. Fitts ($)$ Whip stocks, manufacturing, D.
Winduw, G. M. Barth......... Wood molding, L. Bushnell.

APPLICATIONS FOR EXTENSIONS.
Applications have been duly filed andare now pending
for the extension of the following Letters Patent. Hearings upon the respective applications are appointed for he days hereinafter mentioned
27,135,-SUGAR CUTTER.-C. Kinzler et al. Jan. 28.

EXTENSIONS GRAN'TED

26,00 Rn PLanter.-E. C. Allen.
26,0s6- MANUFACTURE OF GAs.-L. D. Gale.
26,060,- - MARING Box Joints.-J. Simpson.
26,090.- Yaper Folding Machine.-C. Chambers, Jr.
26,097.- Ellectromagnetic Telegraph.-M. G. Farmer.
26,135.-Portable Pump.-W. T. Vose.
26,136.-Mode of advertising.-E. Wiebe.
26,139.-PJMP.-W. Wright.
$26,145 .-W_{A T E R}$ CLoset
DESIGNS PATENTED.
6,987.-Drinking Glasses, etc.-T. G. Cook, Phila., Pa
6,989\& 6,990.-PRINTING TYPE.-H. Menburg, N. Y. city.
6,991 to 6,994.-OIL CLorts.-H. Kagy, Philadelphia, Pa.
6,995.-PICTURE FRAMEs.-J. Nonnen bacher, N.Y. city.
TRADE MARKS REGISTERED
1,522.-Gold Pens.-C. M. Fisher, New York city.

1,526.-Watches.--National Watch Co., Elgin, Ill.
SCHEDULE OF PATENT FEES. On each Caveat....
On each Trade Mark
On fling each application for a Patent (17....................................
On appeal to Examiners-in-Chie
On appeal to Examiners-nn-Chief.....
On appeal to Commissioner of Patent
On application for Reissue...

TALDE OF PAPEMTS,

 And How to Obtain Them.Practical Hints to Inventors.

ROBABLY no tnvestment of a smail sum
of money brings a greater return than the expense incurred in obtaining a patent, even
when the invention is but asmallone. Large inventions are found to pay correspondingly
well. The names of Blanchard, Morse, Bige low, Colt, Ericsson, Howe, McCormick, Hoe and others, who have amassed immense for
tunes from their inventions, are well known nd there are thousands of others who hav More than Fifty Thousand inventors have avalle Themselves of the services of MUNN \& Co. during the Publishers of the Scientific American. They stand the head in this class of business; and their large corp
f assistants, mostly selected from the ranks of th of assistants, mostly selected from the ranks of the
Patent oflice: men capable of rendering the best servic the inventor, from the experience pracucallyobtain Co. to do everything appertaining to patents betres HOW TO PTIDTS oranim andes quiry in
nearly eve
flice. A positive answer can only be had comes to this complete application for a patent to the Commissione of Patents. An application consists of a Model, Draw-
ings, Petition, Oath, and full Specification. Various fficialrules and formalities must also be observed. The efforts of the inventor to do all this business himself a delay, he is usually glad to seek the ald of persons expe ienced in patent business, and have all the work don ver again. The best plan is to solicit proper advice a nen, the inventor may safely conflde his ideas to them they will advise whether the improvement is probabl

How Can I Best Secure My Invention This is an inquiry which one inventor naturally ask
another, who has had some experience in obtaining pat ents. His answer generally is as follows, and correct: Construct a neat model, not over a foot in any dimen-
sion-smaller if possible-and send by express, prepaid, son-smaller if possible-and send by express, prepaid,
addressed to MUNN \& Co., 37 Park Row, together with ddressed to MUNN \& Co., 37 Park Row, toget her with
description of its operation and merits. On receipt dhereot, they will examine the invention carefully, an advise you as to its patentability, free of charge. Or, 1 .
ou have not time, or the means at hand, to construct model, make as good a pen and ink sketch of the im-
provement as possible and send by mail. An answer as provement as possible and send by mail. An answer as
to the prospect of a patent will be received, usually, by return of mail. It is sometimes best to have a searc made at the Patent Offce ; such a ment.
the cost of an application for a patent.
Preliminary Examination. In order to have such search, ma解列, sketch. Send these, with the fe of \$5, by maill, addressed to MUNN \& Co., 37 Park Row, and in due time you will receive an acknowledgment
thereof, followed by a written report in regard to the patentability of your improvement. This special search made with great care, among the moder improvemen

To Make an Application for a Paten The applicant for a patent should furnish a model of his invention if susceptible of one, although sometime
it may be dispensed with; or, if the invention be a chem cal production, he must furnish samples of the ingredi-
ents of which his composition consists. These should be securely packed, the inventor's name marked on them, tance, can express, prepala. Small models, from a di way to remit money is by a draft, or postal order, on
waine who live in remote parts of the country can usually pur
chase drafts from their merchants on their New York chase drafts fros
correspondent

Foreign Patents.
The population of Great Britain is $31,000,000$; of France ,0,0000,000; Belgium, 5,000,000; Austria, 36,000,000; Prussia, American citizens in all of these countries. Now is th time, when business is dull at home, to take advantage of
these immense foreign fields. Mechanical improvemen of all kinds are always in demand in Europe. There wil
never be a better time than the present to never be a better time than the present to take patent
abroad. We have reliablebusiness connections with the principal capitals of Europe. A large share of all the
patents secured in foreign countries by Americansar obtained through our Agency. Address MUNN \& Co., 3 Park Row, New York. Circulars with full informatio
on forelgn patents, furnished free. Caveats
Parsons desiring to file a caveat can have the papers
prepared in the shortest time, by sending a sketch an description of the invention. The Government fee for
a caveat is $\$ 10$. A pamphlet of advice regarding applications for patents and caveats is furnished gratis, on ap
plication by mail. Address MuNs \& Co. 77 Park plication by
New York

Value of Extended Patents.
Did patentees realize the fact that their inventions are
likely to be more productive of profit during the seve likely to be more productive of profit during the seven
years of extension than the first full term for which their patents were granted, we think more would avall themvos of the extension privilege. Patents granted prio of the inventor, or of his heirs in case of the decease of
fomer, by due application to the Patent days before the termination of the patent. The extende
time incres to the benefit of the inventor, the assignee under the first term having no rights under the extension

gitortishanty

BAIRD'S Books
 for Practicai imen.

of postage, to any one who will avor
adden CAREY BAIRD. 406 INDUSTRTAL PURLISHER WALNUT STREET, PHIladelpha

A Practical Manual of Chemical Analysis and Assaying:

 HENRY CAREY BARID,

L IGit GREY IROV CASTINGS made to

 GRIDDLE GREASRR

200 Pages, 500 Engravings and

WORKING CLASS Male or female, s30

To Electro-Platers.

COLD ROLLED SHAPTING.

Reliable Business Opportunities.

A.S. GEAR

Wood and Iron Working.
MAGHINERY,
Notice mbiny of the

 PUNCHING G. ILIINGWORTH, Neville St. Foun.

U'VIS" SAFETY Hoistine

HARD WOODS
in logs plank, boards \& veneers.

Planing and Matching

Turbine Water Wheels.

 "DEW DROP," $\$ 50.00$ in Gold

An deutlater erfinder.

[^0]Finentifir Smerican.

FALL AND WINTER.

 classes and occalonen.
$\mathbf{O}^{\text {VERCOATS, } 85,810 .}$
$\mathbf{O}^{\text {VERCOATS, } 815,820 .}$
$\mathbf{O}^{\text {VERCOATS, } 830,840 .}$

$\mathrm{R}^{\text {Ules for self.meastre, }}$ SAMPLES OF GOODS,
Book or FASHOVS BOOK OF FASHION
LIST OF PRICES, HEENT FREE on app

IUBRTCATORS.

 PORTLAND CEMENT,

WIRE ROPE.
JOHNA. ROEBLINGBAONB

BUILDERS

Pyrometers. $\begin{gathered}\text { For teathng orena, Boner } \\ \text { nues, } \\ \text { Blast } \\ \text { turracese }\end{gathered}$

Diamonds skarbon

 POOLIE \& HUNT, BALTIMORE.

IRON PLANERS,

B OILER FEEDTERS send for ilustratid catalogue COPE \&MAXVELL MFG.CO. HAMLTEN.DHID. HAMILTON. LHID.

SCIERECSRECORD
Discovery. 600 pages, octavo. Price $\$ 2.50$ will be Issued in January next.
The volumes for 1872, 1873,

HOUSTON'S PATENT TURBINE WATER WHEEL.

PRONT Co

SCIENTIFIC AMERICAN. the best mechanical paper IN THE WORLD.
TWENTY-NINTH YEAR

VOLUME XXX.-NEW SERIES.

The publighers of the SCIENTIFIC AMERICAN beg
oo announce that on the third day of JIanuary, 1874, , new volume com mences. It will continue to oe the alm
of the pubushers to render the contente of the of the pubilishers to render the contents of the coming
year more attractive and useful than any of tito prede. cessors.
The SCIENTIFIC AMERICAN is devoted to the inter ests of Popular Sclence, the Mechanic Arts, Manufac trial pursuits generally; and it is valuable and instruc tive not only in the Workshop and Manufactory, but also in the Household, the Library, and the Reading Room. The best Mechanical Paper in the World! A year's numbers contain over 800 pages and several
hundred engravings of new machines, useful and novel nventions, manuf

To the Mechanic and Manúufacturer. No person engaged in any of the mechanical pursuits can. Every number contains from six to ten engraving of new machines and inventions which cannot be found nany other pubication.

TERMS.
One copy, one year..
one copy, six month
One copy, six months.
one copy, four month
One copy of Sclentific American forone year,an one copy of engraving, "Men of Yrogress"... 10.00
One copy of Sclentifc American for one eyear,and one copy of "Sclence Record" for 18i4..... Remit by postal order, draft or express.
The postage on the Sclentific American is five cents per quarter, payable at the office where received. Can extra to pay postage.
Addressall letters and make all Post office orders and

MUNN \& CO.,

37 PARK ROW, NEW YORE.
CHE "Scientific American " is printed with

[^0]: Diefe groß̉e uno thätige © $\mathfrak{C l a f f e} \mathfrak{u n f r c r} \mathfrak{B e}$, botferung madjen wir bejonbers barauf aufmerffam, Dã unfre sirma durdi ifre $\mathfrak{B c r}$ binbung mit $\mathfrak{W a f g i n g t o n ~ a n d ~ b e n ~ c u r o p a i j d y ~}$ Fauptfitiden, befondere Borthoile zur Erlar: gung bon ins und ausländifden watenten bietet.
 Seber Erfinder, gleidpier welder sationalität angehörig, ift durd) die liberalen Patentges fetze ber $\mathfrak{F e r e i n i g t e n ~ S t a a t e n ~}$ zum ßatentiduty fir ©rfindungen beredtigt. Unfre Firma ift bereit, geftüţt auf 26 jährige ©rfahrung, Deutide Erfinder ieder Beit zu berather und zu märigen Preifen rajd und piinftlid) Patente zu erlangen. Wie Deutidue Gection ift in ben §anden fäbiger bentfdjer Sngenteure, "Leldfe in ber Dffice perjönlidy mit Exfindern verfebren merden.

 Der ,Scientife American" wird in feinen Gpalten die bebentenderen Elfindungen be, (predjen.
 Correfpondenz erbeten und prompt beants wortet. Wamphlete in beatiduer Sprade mer, ben auf $\mathfrak{B r r l a n g e n ~ f r a n c o ~ z u g e j a n t . ~}$

 צbrefire
 2anut \& Co.,
 "Scientific American" Patent Agentur
 New York City.

