
a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANOFACTURES.
Vol, XXIX.--NO. 22.]
NEW YORK, NOVEMBER 29, 1873.
$\left[\begin{array}{l}83 \text { per Annum. } \\ \text { IN ADVANCE. }\end{array}\right.$

THE K. M. I. STEAM ENGIRE.

The principal feature of the novel form of stesm engine illustrated herewith, to which the attention of the reeder is diracted, is the valve, which is equally well adapted to oither double or single machines. The double cylinder engine is constructed with cranks at right angles, has no dead point, and consequently requires no fly wheel, the leverage varying between one and one and a half cranks, nearly. The valve is actuated by bevel gearing communicating with similar mechanism on the main shaft, which may be in the center, or on the outside of the bed plate as represent. ed in the perspective view, Fig. 1. To this portion of the apparatus, however, more however, more particular reference will
Fig. 2 is a section of the steam chest, A, valve, B, cut-off plate, C, and valve seat, D. The valve stem, it will be noticed, carries a bevelcog wheel a wheel above the
steam chest, and steam chest, and is held in a suitable frame. The direction of the live steam is indicated by the bent arrow, at E , and the course of the exhaust by simi lar means at F. Proceeding to the Proceeding to the the various portions in detail, we represent in Fig. 3 the bottom of the valve, B. G
is the dome which, as already indicated, opens into the live steam port, H , which is cut to one eighth of the circle; I is the exhaust aperture, cut to three eighths, whence the steam passe into the steam chest. as before noted, at F, Fig. 2. Around the dome, G is formed a skort cylindrical rim which passes down through the cut-off plate, C, and into the" valve seat, down through the cut-off plate, C, and into the, valve seat,
so as to hold the valve in place. The arrow drawn beside so as to hold the valve in place. The arrow dra
Fig. 3 shows the direction of the rotation of the Fig. 3 shows the direction of the rotation of the
valve. In Fig. 4 is depicted the variable cut-off plate, C , which is a thin disk of metal; in it are four openings, which correspond with similar apertures, each equal to one eighth circle, in the valve seat, Fig. 5. These orifices embrace the stops, J, Fig. 5, which are pieces of metal secured to the valve seat and of the same thickness as the cut off plate. The object of these stops is to prevent the movement of the plate from affecting the points of admission of steam into the cylinders. The plate is controlled by the governor by means of suitable mechanism connecting with the cogged octant, formed at it circumference and fitting in a recess in the side of the steam chest. It is stated that the gover nor adjusts the cut-cff, by moving the plate, with the greatest ease, the valve gliding over the lat ter with very slight friction.
The valve seat, as shown in Fig. 5, is pierced for a double cylinder engine. The openings, 1 and 3 , connect with the right cylinder, and 2 and 4 with that on the left, the steam ways cross ing, as indicated by the dotted lines. The valve moves over the seat in the direction of the arrow, Fig. 5, which, as before noted, is pierced for a fixed cut off at haif stroke, since one eighth passing over one eighth gives one quarter rev olution or one half stroke; while, as the ex. haust port is cut three eighths of circumference necessarily three eighths passing over one eighth gives one half revolution, or full stroke eighth give
for exhaust.
According to the inventor, this valve is cap According to the inventor, this valve is capable of these modifications as follows: First, the valve constitutes the steam chest, the steam taking the ordinary course, the live steam port connecting with the steam chest and the center dome connecting with the exhaust port, which
opens duwnward only, the joints being visible and showing any leak that may exist.
In the second, the course of the steam is reversed; the ive steam port of the valve opens into the conterdome. The exhaust port, opening upward, discharges the exhanst steam into the steam chest above the valve. This modification is lready described and shown in Fig 2.
In the third plan, a part of the top of the steam chest is attached to the valve stem, in surface slightly less than the bottom of the valve, producing a balanced valve, the top
works a similar wheel, L, upon the rod which connects with the valve gear. Between the wheels, K , and sliding loosely upon the shaft, is a sleeve forming a clutch which may be brought into action, as plainly indicated, with either. The sleeve, although moving freely along the shaft, is rigidly connected with it by a feather and slot, so as to partake of its rotary motion. It is evident, therefore, that the wheel, L, thus receives its motion from but one wheel, K, while the other is inoperative, and hence as is evident from the ar rangement of the gearing, may, by altering the tosition of the sleeve, be caused to rotate always in the same direction.
The claims of the inventor regarding the mer. its of his device advantages which we learn secured for it much atten tion and favora ble comment at the recent Louis. ville Exposition, may be briefly summed u as follows: That, in dispensing with the fly wbeel and the eccentric, and in the free movement of the valve, there is a saving of a great part of the resistance ari $\sin \boldsymbol{r}$ from the moving parts of the engine itself. That the double engine costs no more, and the sin. gle engine less, than the common non-cut-off engine of the same power. Tuat in econ-
it accomplishes all
the steam chest being reduced to a narrow outer rim The steam, en

Fig. 6 shows an ingenious device employed for connecting he cog gearing which actuates the valve with the main shaft, whereby the movement of the latter may be instantly

otion of the valve. This is not shown in the engine in group Fig. 1, but is usually placed on the center of the mann shaft, the cylinders being separated for a few inches. Both of the bevel wheels, K, are loose upon the shaft, and between them
that engines of the bighest grade can accomplish, while it remarkable for sim jlicity and cheapness of first cost. hat it cannot get out of order except by breakage or wear farts, and can be managed by an unskilled hand. The parts, and can be managed by an unskilled hand. The valve, it is also stated, can be attached at small expense to engines now running, giving them the fixed and automatic cut-off, with a saving of half the fuel for the same amount of work. The double engine, it is believed, has peculiar adaptation to road steamers, steam plows, etc.
Our engraving is taken from a photograph of this form of the machine, as exhibited at the above mentioned exposition.

Patented September 9, 1873. For further information address the inventor, Colonel R. T. P. Allen, Superintendent Kentucky Military Institute, Farmdale P. O. , Franklin county, Ky.

The Cotton Window in the Guildhall,

 London.Mr. W. J. Cotton, a London merehant, and an alderman, has recently presented to the city a stained glass window, in commemoration of the roublous times of the scarcity of cotton during our late civil war, and the generosity of the Londoners in ailing the Lancashire operatives. Alderman Cotton was a zealous worker on behalf of the relief fund; and if, by accident, the memorial window perpetuates his own name, no one will rudge him the distinction.
The window illustrates the cotton plant, in the different stages from its growth to its final appli. cation to clothing, by twelve medallion pictures, showing sowing, growing, picking, packing in the field, loading at New Orleans, at sea in an Amercan clipper, discharging in the London Docks, carting, in transit on the rail, the Manchester Piccadiily (the Cottonopolie), manufacture in cotton ill and wearing the last mod being a family mill, and wearing, the last named being a family roup. The color of the groundwork is lavender; the bor ers are ruby, with an amber ribbon; the designs are filled in with ruby, amber, and lavender, the gothic scroll work being brownish white.

Srientifir Ammerian.

MUNN \& CO., Editors and Proprietors. publiehed weekly at

NO. B7 PARK ROW, NEW YORK

o. D. MUNN.
 A. e. beach.

WEGMS.

VOL. XXIX., No. 2.2. [New Series.] Tweenty-eighth Year.
NEW YORK, SATURDAY, NOVEMBER 29, 1973.

the valde of patents.

A recent number of the Official Gazette contains a full report of the address delivered by Mr. J. M. Thacher, our present Assistant Commissioner of Patents, before the socalled Patent Congress, at Vienna, last summer. In this effort, Mr. Thacher begins at the beginning, avers that invention is "the product of the highest faculties given by God Almighty" to man, and therefore ought to be secured to him by letters patent. He declares that man has a more valid right to the exclusive possession of his inventions than tven to his landed estates, and perceives no obligation on the part of the inventor or discoverer to disclose new knowledge to others, unless permitted to control and use that knowledge as he would other property. Having strongly the way are at variance with the teachings of the wisest philosophers. he next proceeds to show that this inventive philosophers. he next proceeds to show that this inventive
property, these natural rights of the inventor, ought by law, property, these natural rights of the inventor, ought by law,
to be taken away foom the originator after he has for a limited period enjoyed their possession.
In relation to official examinations at the Patent Office, our author is of the opinion that the inventor, whose mental genius and discernment are eloquently lauded throughout the address, is incompetent to examine the novelty of his own invention, and determine for himself whether it is worth his while to pay in the official fees and take out a patent. Nor is the inventor's attorney qualified to solve this momentous question. It should be left, Mr. Thacher this momentous question. It should be left, Mr. Thacher
says, to a corps of scientific experts; but, as he thinks they says, to a corps of scientific experts; but, as he thinks they
may be liable to err, he suggests that there ought to be anmay be liable to err, he suggests that there ought to be an-
other set of experts to re-decide the decisions of the first experts. This, in fact, is the way the thing is done at Washington. Ons hundred of these scientific gentlemen, aided by four hundred clerks and helpers, all of whom are supported at the expense of the inventors, now officiate at the Patent Ofice, but Mr. Thacher wishes to increase the number. "Unfortunately," he says, "it is the pocket that controls men, more or less, in every station and in every country." It is indeed a misfortune for our inventors that their pockets It is indeed a misfortune for our inventors that their pockets
are obliged to control and supply so large a number of exare obliged to control and supply so large a number of ex-
amining ofìcials. Save us, we say, from any increase. We are glad to turn from the mazes of the metaphysical portion of the Assistant Commissioner's address to that branch which relates to the practical results and values of inventions, for here we find information, useful and interesting to everybody. He says:
"The number of patents granted since 1836 is about 140,000 . The number of applications for patents has steadily increased from year to year, until it now averages from 20,000 to 21,000 per annur, and the number of patents granted anto 21,000 per annur, and the number of patents granted an-
nually is from $13,0 \% 0$ to 15,000 . To perform the work of nually is from 13,00 to 15,000 . To perform the work of
examining this large number of applications, the corps of examining this large number of applications, the corps of
expert examiners has been increased from time to time, until it now numbers about 100 -to wit, 24 principal examiners, and the same number of first, second, and third assistant examiners, together with a special examiner of trademarks and also of interferences. The clerical force has been correspondingly increased. so that officials of all grades now employed in the Office may be stated in round numbers as employed
The bare statement of the number of patents granted since 1836 is sufficiert to bear me out in the statement that our system las proved to be a most remarkable stimulant to inventive genius, not only in our own country, but throughout the world. But you will very naturally inquire. How many of these patents are valuable? Of course it is impossible to obtain statistical information that shall be entirely reliable on this point, but my official experience has given me such data that I am enabled to form an opinion approxi-
mately correct. I have discussed the matter with others, and have sought information from manufacturers, patentees and legal gentlemen who have made a specialty of the practice of patent law, and I think I do not exaggerate at all
when I say that one half of the patents granted in our counwhen I say tbat one half of the patents granted in our country may be considered remunerative. Now I do not wish to be understood by this that one half of these 140,000 patents have brought fortunes to the pockets of the patentees. They have become remun rative to a certain extent-that is, they have paid expenses and something more. A small proportion of them have become largely remunerative, and the patentees, or their representatives, have obtained large fortunes from them. I think, therefore, it may be said that the tunes from them. I think, therefore, it may be said that the
influence of our system upon inventions and inventors theminfluence of our system upon inventions and inve
selves has been beneficial beyond all expectation.
But you will also ask: What has been the influence of our patent system upon the manufacturing interests of our courtry? I have taken occasion to make some inquinies upon this point also. A short time before I lefi Washington the Secretary of State sent out, to inventors, manufacturers, and otbers interested in patents, a series of inquiries, among which were some as to the influence of our patent system upon the manu facturinginterests of the country. With scarcely an exception, so many of our manufacturers as responded answered that the patent system was beneficial, beyond all answered that the patent system was beneficial, beyond all
manner of doubt, to the manufacturing interests of the country. It is estimated, both by myself and others who are qualified to judge of this matter, that at the present time from six to seven eighths of our enormous manufacturing capital is based upon patents, either directly or indirect. ly. In fact, it is almost impossible to organize a company for manufacturing purposes in America without first secu ing the control of patents for some valuable invention.
I think, then, that we may be said to have reached this conclusion, that our inventors, patentees, and manufacturers have all benefited greatly by our patent system. At the same time the public welfare has been greatly promoted by
the generul introduction of na any valuable inventions, which otherwise would have remained undeveloped, and by the cheapening of many articles by the invention of new and improved modes of manufacture. At the same time wis beijeve the whole world has been benefited by the liberality of our law. We make no distinction between foreign and native applicants, but invite inventors from the whole world to give us the benefit of their inventive genius upon the same liberal terms that we grant to our own citizens, putting upon them no restriction as to time or place of manufac ture, or introduction of the invention into public use. *
Let me express the hope that you will not adjourn with out establishing a permanent committee as the representa tive of this congress, so that an organization may be created by means of which the discussion of this subject may be continued from time to time unt:l, finally, civilized govern ments shall become convinced of the righteousness and expediency of the principles here advanced, and there shall be public benefits conferred the rights belonging to, and the

A NEW AND IMPORTANT DISCOVERY RELATING TO THE BEHAVIOR OF METALS UNDER STRESS.

he
In calling attention recently to the original investigations be remembered that we referred in some detail to the int esting and valuable experiments which Professor R. H. Thureton is conducting with a view of determining the torsional resistance of various metals. The machine used for this purpose is an apparatus of the Professor's own inven tion; and although we have already alluded briefly to its construction in another connection, it may be of interest for
the reader to review its salient points, in order to understand the reader to review its salient points, in order to understand
with clearness the highly important discovery which has just been effected through its aid. A triangular cast iron frame supports two suspended arms which swing about independent ases in the same line; one arm carries a weight, and the other bas a bandle at its extremity, by which it is moved. Each of the axes has a rectangular recess, in which each end of the test piece,previously squared, is fitted. The frame carries also a guide curve of metal, so constructed that its ordinates are proportional to the twisting moments
exerted by the weighted arm while swinging through an arc exerted by the weighted arm while swinging through an arc to which the corresponding abscisses are also proportional. A pencil holder bears against the guide curve; and being carried by the weighted arm, is thrown forward as the latter swings out under the action of the force producing torsion, which force is transmitted through the test piece. The handle arm carries a table upon which a piece of paper is clamped, so that the pencil traces ihereon a curve, the ordi nates of which are proportional to the torsional movements,
while its abscisses represent the relative motion of the two arms and, consequently, the amount of torsion to which the test piece has been subject. This line, therefore, gives a very legible and a ccurate record of the results of each experiment.
During the recent visit of the members of the Academy of Science to the Stevens Institute, Professor Thurston trok occasion to explain his researches and to illustrate the power of his device in exhibiting the action of the molecular forces under stress. After the session had adjourned, a test piece
was left in the machine under heavy strain in was left in the machine under heavy strain, in order to determine if possible the existence of viscosity, which had been
suspected in the metal. On examining the piece twenty-four bours later, the investigator discovered, to his surprise, that not only could no evidence of yielding be detected, but that, on his attempting to produce further distortion, an even
greater resistance was offered than when the first stress was applied. The curve traced by the pencil, instead of being coincident with the line previously described, beoame paral.
lel therewith, and some twenty per cent higher above th xis of abscisses.
Repeated experiment has confirmed this remarkable discovery, and Professor Thurston considers that he has substantiatsd the fact that metal, sirained so far as to take a per manent set and then left under the force producing stress, actually gains in power of resistance up to a limit of time, which in these experiments was about seventy-two hours, and to a limit of increase which has a maximum, in the hest irons, of about twenty per cent. We need hardly point out the importance of this conclusion, which, though it has been suspected for some time by many engineers and men of science, is now for the first time definitely proved. The result is of course negative, and necessarily completely upsets the comnton notion that metal continuously strained beyond its limit of elasticity loses its strength.
We understand that further experiments will be speedily made, so that we hope to be enabled before long to lay before our readers more detailed information, together with copies of curves and other interesting reaults obtained. We note with pleasure that numbers of specimens of cast, wrought, and malleable iron, steel and many otther varieties of matal, are being sent to Professor Thurston by prominent manufacturers in all parts of the country; so that the coming inves tigations bid fair, not only to add greatly to the already well earned reputation of their author, but largely to the knowl edge of the scientific professions.

PATENTS FOR SIMPLE THINGS.

In a recent application for a patent for an improvement in attaching metallic heels to bcots, the invention consisted in extending the outsole the whole length of the boot and in fastening the heel upon such outsole. The application was rejected for the reason that it was not new to carry back th outsole as described, nor was the heel new; therefore the attachment of a heel to such sole was not an invention, though the ordinary method was to attach the heel to the insole, the outsole being only extended up to the heel. The applicant appealed to the Assistant Commissioner of Patents, who reversed the decision of the Board of Examiners, and held that; however small or insignificant an invention appeared, it ought to be patented if useful. In this case, the attachment of the heel to the outsole made a firmer fastening for the heel, was better than the common plan, and there fore patentable. This is good doctrine; and if the Patent Office would only stick to it and carry it out into practice with uniformity, the interests of inventors would be greatly promoted. But, unfortunately, the decisions of the Patent Office are irregular. It too often denies on one day what it grants the next day. We cannot always rely upon the Office to issue patents for simple improvements, like ioasted persimwon seeds, a knot upon the thread of an envelope, or, as in this case, nailing a heel upon the bottom of a boot. Yet it is for the issuing of patents upon just such simple improvements that 100 principal examiners and their 400 help ers are thought by some people to be necessary, and for whose support inventors are taxed.

BOSTON REBUILT.

Just one year has elapsed since the occurrence of the disastrous conflagration which laid one of the fairest portions of the city of Boston in ashes. Sixty-five acres constituted the extent of the burned district; 776 buildings were consumed, and an aggregate total of $\$ 75,000,000$ lost. The de stroyed edifices were insured to the amount cf $\$ 56,000.000$ and of this sum $\$ 34,000,000$ has, it is stated, been paid, although twenty-six Massachusetts insurance companies have failed in consequence thereof.
Shortly after the calamity, a building act was passed,which was designed to provide in a measure against similar casuther roofs being me causes. This law firb more than twenty feet above the upper tloor of a building, unless fireproof throughout. Bay windows are not to be constructed at a hight exceeding three feet above the second story. Exteriors of structures above forty five feet high must be covred with incombustible material; if over sixty feet, they must be fireproof. The limit of hight of buildings is fixed at seventy feet, and party walls bounding lofty roofs must be carried at least two and a half feet above the same, and be corbelled and coped with stone or iron. With these regulations in force, and with the teaching of experience before them, the citizens have proceeded with the rebuilding of their ruined edifices; and as a result, structures have been completed and are still rising which, it is believed, will not uccumb even before a repetition of the great fire.
The burnt section included 31 streets, 8 places, 5 squares, and 1 court; in reconstructing which 17 streets have been widened, 4 extended, and a large square laid out, at a total cost to the city of over $\$ 5,000,000$. The general plan of the streets is little oltered ; 365 buildings have been erected or are in progress, of which 115 are finished and occupied,
10 unoccupied, and 240 uncompleted. Among these, there 10 unoccupied, and 240 uncompleted. Among these, there are but 72 mansard roofs against 264 flat roofs, the former with fire The majority of the edifices are our stories, there being but two, one of six and the other of even stories, exceeding this hight. The external and party walls are all 20 inches thick to an elevation of two stories above the street, and 16 inches thence to the roof. The " fire walls" which surmcunt the party partitions are of the hight above noted and 12 inches through. Galvanized iron is largely used for cornices; and, with cast iron, for exterior finish. The total cost of the completed buildings is $\$ 3,762$, 00 and they cover $1,192,918$ superficial feet of ground. As regards architecture, we learn that many of the edificas
will be of exceptional beauty and magnitude. The majority are of the modern gothic order, and much ingenuity of design is manifested in constructing the flat-roofed buildings so as to avoid the unfinished appearance incident to the abrupt termination of the façade. Three great structures are to be erected by the New York Mutual Life, the New England Mutual Life, and the Equitable Insurance, companies, which are to be of magnificent design, and, with the new Post Office and Rialto building, are to be completely fireproof throughout. There are also a number of warehouses and other mercantile edifices, which in many instances are mor

The same energy which has made Chicago rise from a The same energy which has made Chicago rise from a
heap of ruins into a grander and even more magnificent heap of ruins into a grander and even more magnificent
city than before, has within the short space of a year blotted out the recollection of an almost overwhelming disaster, by labor which seems all but Herculean. Hardly had the story of the calamity ceased to be the current topic of thought before workmen were busily laying foundations, and this in the face of losses which dealt a blow to the entire business community of the nation. Not only the people of Boston, but of the whole United States, may well be proud of such indomitable enterprise. It adds but another proof, to that already shown by our unfortunate war, that in this country we know neither the extent of our energies nor of our resources, until the same are put to the trial which demands their strongest action.

PHYSICAL AND MENTAL OVER-CULTURE.

A noted British novelist, now on a visit to this country, in one of his most popular narratives, exemplifies the case of an athiete who, by a severe course of training, has brought himself to a high state of physical perfection, in order to compete in the lists of a foot race. When the time arrives for the test of his powers of endurance, the runner begins his task; but ere he can reach the goal, his overtaxed system gives way, and he falls stricken with paralysis, a hopeless bodily wreck. Instances of similar kind in reallife are but too common. The death of the celebrated oarsman Renforth while at the thwart is still within public recollection, and the decease of Heenan, the once famous pugilist, is a more recent exemplification of the retributive action of Nature when the laws by which the confines of the possibilities of human muscular effort are transgressed.

A man's body may be compared to a finely adjusted and accurately balanced steam engine, and his vital energy and mental power to a constant motive force acting upon a uniform area of piston. It needs no demonstration to prove that an engine has a certain fixed capability; it can develope so many horse power, and then reaches its limit. If we make more ponderous wheels or stronger rods and shafting, equal to the performance of much more arduous work, and then expect that the same power, merely by operating such heavier machinery, will produce increased results in overcoming greater burdens, common sense tells us that we look for an impossibility. And yet this is precisely what we seek to accomplish by causing exaggerated muscular development. We destroy the equilibrium of the machine; and as a result, the action of the power by which it is set in motion is either weakened or arrested. The physical seats of vital energy in the human frame are in the so termed vital organs: as in the overtaxed steam engine the molecules of vapor dash and expend their force against the piston unproductive of any motion, so in the body; one part (the heart) unable to drive the increased flow of blood required for the augmented needs of other members, becomes overwrought and eventually diseased; the lungs, equally unable to maintain the process of burning up the effete matter poured into them by the veins, degenerate and waste away ; and the brain, failing to establish the connection between motor nerves and will, shatters by paralysis the delicate mechanism. All, in fine, are causes which as surely arrest the motion of the human machine as does the load beyond its powers that of the apparatus of iron and steel.
The case of Heenan illustrates these truths perhaps as forcibly as any that can be cited. The man was a model of physical perfection, not ponderous in build or gigantic in frame, but to all appearances one in whom the parts of the body, while cultivated to their full extent, remained in statuesque symmetry. And yet despite the capacious breast and broad shoulders-points in themselves supposed to indicate almost unlimited strength of lungs-these last mentioned members, in the constant strain upon the system, proved unmembers, in the constant strain upon the system, proved unequal to their task, and fell prey to t
ous disease which resulted in death.
While, with such evidence as this before us, the tenets of the ultra advocates of " muscular Christianity" may well be questioned with reference to the benefits derivable from the attainment of a so called high plysical condition, on the otber hand, it is true that no less dangerous. results are to be apprehended from the converse practice, the development of the mind at the expense of the body.
Again referring to the steam engine for a simile, let us consider the consequence, supposing that working parts and load remained constant, of our crowding into the cylinders an enormous steam pressure. Manifestly there would be either a much more rapid wearing out of the machine, caused by the overwhelming power, or more probably the com plete breakdown. Thus it is with the individual who, by excessive study and brain work, overweighs the bal ance in the contrary direction, and, by neglecting to maintain the equilibrium of mind and body, succumbs to the impoverishment of his physical system. Illustrations in point are to be found among the members of every profession,
among the students of every institute of learning. Young men, ambitious to gain scholastic honors and spurred on by the applause of preceptors and friends, too often find failing health and despondent spirits the precursors of permanent
bodily infirmity, induced by overstrict application, too many hours of study, absence of simple and nourishing food, and neglect of wholesome exercise. Undeterred by premonitions of Nature, toward the close of their course, in order to reach a coveted prize-as valueless to them in after life as it is intrinsically worthless-they tax their energies beyond their powers of endurance. Then, as the yunner in the race or the oarsman at his oar physically breaks down at the moment of trial, so the overworked brain succumbs when it is subject to the final strain. The student, whose hollow eyes, pale face, and wasted form denote nights of unvaried toil finds his powers inadequate to do him justice, and his memory fleeting at the hour when he desires their firmest aid;
and he endures the bitter experience of seeing others, intellectually beneath him but physically his superiors, withstand trial before which he fails.
Study is to the mind as exercise is to the body: both alike act as developing powers, but neither body nor mind can be carried to a relative excess of cultivation except at the expense of the other. "Mens sana in corpore sano" does not refer either to pundits or prizefighters. It means a mind well balanced, well organized, and varied in ability, coupled with a body healthy, vigorous, and strong-the one
capable of grappling with the highest thoughts and ideas, the other with the deepest ills and obstacles incident to ever walk in life.

BOILER EXPLOSION.

While a commission of scientific experts are busily engaged in expending $\$ 100,000$ in discovering the occult cause of boiler explosions at one extremity, comparatively speak ing, of this city, at the other end of the town a body of laborers, headed by an engineer, endeavor to lift and transport a steam boiler (with a blazing fire under it and subjected to a heavy pressure of steam) by means of crowbars placed underneath. As a result of which (in the opinion of the engineer directing the job), and attributable to the canting of the apparatus from one side to the other, causing sudden flows of water to the highly heated surface of the boiler thus too rapidly generating steam, a terrific explosion en-
sues, seven persons are slaughtered, and a dozen or more sues, seven persons
seriously wounded.

The scene of the tragedy was in Fourth avenue, near 128th treet, at which point the tunnel for the underground track of the Hudson River and other railroads is in process of construction.
The boiler was of the upright tube style, about 6 or 7 feet high and 44 inches in diameter. It had a square fire box, with horizontal tubes in the upper portion and vertical tubes from the top of the same to the boiler head. The fracture took place in the center of the shell; the largest fragment some 1,000 pounds in weight, landing in the fourth floor of a building 550 feet distant. It is stated that the boiler had been recently tested to 120 pounds pressure, and was considered in every way safe, while the engineer positively as serts that the gage, just previous to the accident, did not show any extraordinary amónt of steam.

PHOSPHOR-BRONZE.

Combinations of phosphorus with bronze alloys are not new to the chemical laboratory. Phosphurets of copper were produced in the middle of the last century, and have since frequently been examined and their properties care ully studied.
Without considering many minor investigations which have been made regarding this important alloy, we may here note at once that the most complete researches are those of Messrs. Montefiore-Levi and Kunzel, of Val Benvit Nickel Works, near Liège, Belgium. As far back as 1860, this firm was engaged in an elaborate inquiry into the means of im proving gun bronze, and in 1868-70 conducted a very extended series of experiments for the Russia government. The results of these as well as of subsequent trials are well
summed up by M. Dumas in a note to the French Academy of Sciences. He says: "The characteristics of the alloys change. The color, when the proportion of phosphorus exceeds $\frac{1}{2}$ per cent, becomes warmer, and like that of gold largely mised with copper. The grain and fracture approximate to those of steel. The elasticity is considerably in. creased, the absolute resistance under a fixed strain becomes in some cases more than doubled: the density is equally increased, and to such a degree that some alloys are with diff culty touched by the file. The metal, when cast, has great fluidity, and fills the mold perfectly to the smallest details. By varying the dose of phosphorus, the particular characteristic of the alloy which is most desired can be varied at will."
We can now proceed to the consideration of the most recent data obtained from experiments lately concluded or actually in progress in Europe, and reported in a recent issue of the Engineer. In Germany trials are being carried on at the Royal Academy of Industry in Berlin, to ascertain the qualities and capacities of the metal under heavy strain, and especially the comparative resistance to of ten repeated strains,
whether tensile or inflecting. A bar of phosphor-bronze tried under a constant strain of 10 tuns per square inch re sisted 408,230 pulls of this amount: while a bar of ordinary bronze broke before the strain of even 10 tuns per square inch had been attained. A bar of phosphor-bronze under 10 tuns of strain resisted 862,980 bends, while the best gutn metal broke after 102,650 bends. Another bar of phosphor-
ronze, now being tested under 9 tuns strain, has thus far resisted $1,260,000$ bends. In Austria, the following comparative results have been obtained:

Phosphor bronze. 81,795 lbs. per sq. in.

Point of elasticity.	Stretch in percentage.
54,915 lbs. per sq. in...	$1 \cdot 6$
$14,450 "$	$" \quad$
$5,562 "$	$11 \cdot 0$
5	$15^{\circ} 0$

dnat

Best English copper sheets lost during six months immersion in sea water 3,058 per cent. Phosphor-bronze sheets ost only 1.158 per cent.
In Belgium, Messrs Montefore-Levi \& Co. have carried on large series of experiments, proving that the presence of oxide of tin and suboxide of copper lessens the tencity, elasticity, and tensile strength of the bronze. Shavings of old bronze were melted, and a bar cast at $1595^{\circ} \mathrm{C}$. The remaining liquid bronze was poled, and a second bar
cast at $1668^{\circ} \mathrm{C}$. The remaining metal was de oxidized with phosphorus, and a bar then cast at $1614^{\circ} \mathrm{C}$. The three castings were made out of the same crucible and in the same manner, into three iron molds. The results found were that the old bronze had tripled its tenacity, 6.8 as against 2 per cent, and considerably augmented its absolute resistance (2384 to 1613)
In England, Messrs. Alexander Dick \& Co. have recently established, in London, a special foundery for phosphor bronze casting, und are also to produce sheets, wire, etc. Experiments, made for this firm by Mr. D. Kirkaldy and carefully tabulated, show the great superiority of phosphor bronze for all articles hitherto manufactured of ordinary bronze or gun metal. What steel is to wrought iron it seems that phosphor-bronze is to ordinary bronze. Another table gives the tensile strength and resistance to torsion of various wires, showing also a large superiority in these par iculars of the alloy over other metals. In fact, referring to the increment of tensile strength gained by phosphor-bronze when drawn into wire, it is considered that the same is as tounding; and the Engineer adds that,even with a large mar gin reserved for probable error, enough remains to prove that phosphor-bronze, drawn into wire or laminated into sheets, must prove, if practicable to be produced with perfect uniformity, a most importantaddition in future to the list of our constructive materials. Having pliability, with a tensile strength approaching that of steel, the specific gravity of bronze, and nearly the electric conductivity of copper, it cannot fail to have important applications for the electric tele graph engineer. For small articles, now made of brass, such as curtain rings, picture frames, etc., the same, cut from spirals of phosphor-bronze, with the ends soldered so as to avoid annealing the wire by conducted heat, would be an im mense improvement. Although experiments toward using the alloy for artillery are incomplete, it is probable that further investigation may demonstrate its fitness for that pur pose. We have already published a long paper on its employment for tweers, for which it offers the advantages of greatly increased toughness and density, and consequent great resistance against change of temperature and the influ ence of molten masses. Finally, should copper become
cheaper, say to double the cost of an equal weight of wrought iron, phosphor-bronze might be used in place of iron in shipbuilding. It is superior to Muntz yellow metal, a substance patented by John Scott Russell for the latter purpose, in that it does not become crystalline and brittle, while its passive strength is four or five times as great
With our vast deposits of copper, notably in the Lake Superior region, there appears to be every facility for the prosecution of investigations leading to the manufacture of this mportant and valuable alloy in the United States. We herefore consider that the subject merits the careful atten tion of American metallurgists, who, we trust, at no dis tant period, will contribute the results of their own experiments to those thus far adduced by their brethren of the old world.

SCIENTIFIC AND PRACTICAL INFORMATION.

new electric liaht.

M. Ladiguin has recently invented a new plan for electric illumination, which is quite simple, and which, it is believed, may be advantageously used for lighting mines, as there is no danger of its causing the explosions incident to such localities. It consists in a bit of charcoal or other poor con ductor attached to a wire communicating with a magneto electric machine. The charcoal is enclosed in a glass tube in which the air is replaced by a gas which will not combine with the carbon when the same is brought to a high temper ature. The tube is sealed, and the machine set in motion by a small steam engine or other motor, when the charcoal gradually becomes incandescent, emitting a pleasant and quite brilliant light, the intensity of which, it is said, may be graduated at will.
.
M. Davaine has recently examined the following subtances, which he classes in regard to their power as antiseptics in the subjoined order: Ammonia, silicate of soda ordinary vinegar, aid carbolic acid; then caustic potash chloride of oxide of sodium (?), hydrochloric acid, permanganate of potash, chromic acid, sulphuric acid, iodine. The power of ammonia, of vinegar, and of carbolic acid being represented by $1-200$, that of iodine would be by $1-12,000$. Iodine should therefore be considered as the best antiseptic to be employed in the treatment of maladies such as malig nant pustule, boils, carbuncles, and the like, when, not hav ing become localized under the form of a simple pustule, they have taken up a certain extension. Injections of 1-6000 of iodized water are recommended.

IMPROVED CHURNING APPARATUS.

The object of the device represented in the annexed engraving is to furnish a convenient means of operating a single churn or any desired number of churns at once, in accordance with the amount of milk used and power to be accordan
applierl.

To the end of the driving shaft is attached a hand crank or a pulley, A, which is connected by a belt to a suitable motor. The shaft rotates in bearings in the framework of the machine, and carries a large gear wheel, B, which, through a smaller wheel below, actuates a balance disk, C. To a crank pin on the latter are connected the rods, D, which, through the horizontal levers pivoted to supports on the frame, communicate motion to the churn dasher shafts.

The frame of the apparatus may, if desired, rest upon a platform, in which recesses may be made for the reception of the lower portions of the churns. The peculiar form of dasher represented in the foreground of the engraving is made by halving two bars to each other and attaching them at their centers to the extremity of the dasher handle. The middle portions of the ends of the bars are cut away, and the arms thus formed are made V shaped upon the upper side, while they have grooves of similar contour on their lower faces. The under side of the middle portion of the dasher is concaved, in order, it is stated, to gain a better hold upon the milk and to prevent spattering.
In the cover is formed a chamber, of which the funnel sbown forms an upward continuation. The object of the chamber is to receive the milk and fine butter which may be carried up by the dasher shaft. Its bottom is formed by attaching to the cover a plate, E , the under side of which is made convex, so as to scatter the milk that may be projected against it by the dasher. This plate is secured by screws and may be readily removed for cleaning, etc.
Instead of the form already described, the dasher may be made of the shape shown at F, its upper side being conical, and its base slightly concave. The invention is of simple construction, and, according to the inventor, of very efficient operation. He informs us that a child, by its aid, using a simple churn, can easily produce butter from four gallons of cream in ten minutes, and that with three churns, actuated by one horse power, thirty gallons can be similarly treated in fifteen minutes. Patented through the Scientific American Patent Agency, November 4, 1873. For further information address the inventor, Mr. George Ridler, Rickardsville, Dubuque county, Iowa.

A New Torpedo Boat

A new torpedo boat was lately launched with success at the Navy Yard, Brooklyn, N. Y. It is a double hull vessel, being built with two vertical sections and five watertight bulkheads, and will be furnished with a vertical wheel of peculiar construction, by means of which she will be guided as well as propelled. She is constructed wholly of iron, is 175 feet long, 28 feet wide, and 14 feet deep. On the bow she will carry a gun of 11 inch caliber, and on either side and on the bow two torpedo booms will project. The torpedo has been building for two years, and she will not be finished until next year.

What Made the Chimney Fall?

At the cement works of Gostling \& Co., Northfleet, Eng., the upper part of an immense chimney, 220 feet high, composed of the best bricks and mortar, grouted with Portland cement, recently fell, just as the last brick for its completion was being laid. Seven lives were lost. The remainder of the chimney was subsequently torn down. An official enquiry as to the cause of the disaster was held. The jury were unable to decide what made the chimney fall, and brought in a verdict, in respect to the killing, of accidental death, with an expression of sympathy for the owners of the chimney, whose loss was quite heavy.
It is possible that some of our readers may be able to point out the cause of the disaster, and we will therefore give some of the particulars, as deduced from the evidence of scientific experts, workmen, the architect, the builder, and the proprietors.
. The materials were perfect, the workmanship the very best, the method of building excellent; the work was not hurriei, more than sufficient time being allowed, namely sixteen weeks, the rate of progress being 14 feet per week.
2. The work was most carefully watched at all times during its progress, and always found plumb; had been plumbed a few minutes previous to the fall, and then stood exactly correct.
3. The walls of the chimney were thicker and stronger than chimneys of equal hight were ordinarily made. The buse on which the chimney rested was 30 feet square, buse of chimney 22 feet diameter top of chimney 11 feet diameter outside. Thickness of wall at base, 3 feet 9 inches. The first set-off, at 26 feet 3 inches, was 3 feet $4 \frac{1}{2}$ inches, at 52 feet 6 inches it was reduced to 3 feet, at 78 feet 9 inches it was reduced to 2 feet $7 \frac{1}{2}$ inches, at 105 feet it was reduced to 2 feet 3 inches, at 131 feet 3 inches it was reduced to 1 foot $10 \frac{1}{2}$ inches, at 15% feet 6 inches it was reduced to 1 foot 6 inches, at 183 feer 9 inches it was reduced to 14 inches, and it was carried out at 14 inches. A large chimney in West Cumberland, belonging to the West Cumberland Iron and Steel Company, was 250 feet high \cdot diameter of the shaft as
it comes out of the ground, 22 feet; thickness about $2 \frac{1}{2}$ bricks, which would be about 1 foot 11 inches, so that they were pretty nearly a third thicker at the base; at 160 feet this shaft breaks off to $1 \frac{1}{2}$ bricks, that is 14 inches, while at 157 feet theirs was 18 inches. The chimney at Workington was 200 feet; diameter at base 23 feet; thickness of work at bottom, $2 \frac{1}{2}$ bricks, that is, 1 foot 11 inches, while they had a thickness of 3 feet 9 inches; at 100 feet, this was 18 inches while theirs was 2 feet 3 inches. The shaft at St. Rollox Chemical Works, Glasgow, was 422 feet from the surface, the thickness at the bottom was $3 \frac{1}{2}$ bricks or about 2 feet 8 inches, while this chimney was 3 feet 9 inches, or proportion-

RIDLER'S IMPROVED CHURNING APPARATUS.
valve, D, is opened. On a match being applied, the finely eresset takes fire and burns as inguish the ligh. . Sherator is enable to lower or pulating the cock, D. The brick filling. being wholly non combustible, will not smolder as a wick would, but will re tain its full efficiency for instant service. The funnels may be greater or less in number than represented, and the cres set, if desired, may be otherwise supported and connected with the reservoir by a flexible tube.

Dr. Crace Calvert.
Dr. Crace Calvert died recently at Manches ter, England. As an analytical chemist, Dr. Calvert's renown was European. He left En gland as a youth to pursue his education in France, and in the schools of that country se cured many honors-defraying the cost of his education by the awards which he obtained. He subsequently pursued the study of chemis try, and was appointed assistant chemist at the Gobelin Works, under his learned master Chevreuil. Soon after his return to England, he commenced reading a series of papers before the Society of Arts, on chemistry applied to industry ; and on February 12, 1851, brought forward the discoveries of Mons. Cherreuil in relation to the laws of color, his object being to explain upon what basis those laws are fixed, and to point out their application in the effective arrangement of colored fabrics in the Great Exhibition of 1851. In 1846 he settled in Manchester, and was soon after appointed Professor of Chemistry at the Royal Instituion there. He was also, for some time, a lec turer at the Manchester School of Medicine. His connection with the Manchester Sanitary Association led him to hygienic investigations -one of the principal results of which was a patent for the application and preparation of carbolic acid. In this he followed up the discoveries of the Prussian, Runge.
Another of his patents was for desulately nearly double the thickness. The cap was begun about \mid phurizing coke, by means of chloride of sodium, and this a week before the accident, the greatest projection of the body of the cap was $18 \frac{1}{2}$, and it tonk 10 feet to get out each brick, overlapping barely $\frac{1}{2}$ inch; there were eight projecting ribs in it which projected $4 \frac{1}{2}$ beyond, so that it came out a 2 foot projection. They were well supported and not a source of weakness. The weight of the shaft was 1,674 tuns the weight of the cap being 19 tuns 3 cwt.

BARTHOLOMEW'S IMPROVED TORCH.

Mr. Seth Bartholomew, of Sturgis, Mich., is the inventor f the ingenious form of torch represented in the accompayying engravings. The device may be used for fishing pur poses by night, or as a means of illumination during politi cal or other public demonstrations, instead of the ordinary stationary gasoline flambeau generally employed.

It consists of a cast or wrought iron cresset, A, shown in section in Fig. 2, perforated and made in the shape of an inverted cone. This is traversed axially by a rod, the lower end of which forms the bottom of the receptacle, and the upper extremity is screw-threaded in order to hold the nut which secures the cover. Attached and surrounding the cresset is a series of inverted funnels, B. The apparatus is applied and, at the same time, supplied with gasoline or other combustible liquid by a pipe, C, which connects with a suitable can or reservoir. The latter is secured to a post or tree by sockets, and is provided with a screen, E, to pro cts its contents from the heat of the flame.
The cresset being filled with fragments of brick or other porous material, and the reservoir charged with liquid, the
has led to an extensive business. In some other direction Dr. Calvert's persistent experiments were doomed to becom commercially valueless just at the moment when they had attained to success in the laboratory. This was the case with a patent for sizing cloth, and with another for the production of aniline colors. Dr. Calvert's process for obtaining the aniline from coal tar was soon superseded by its more profitable preparation from benzine. Dr. Calvert made a series of elaborate experiments with picric acid, for dyeing purposes, and also with tannic acid for tanning leather. In scientific circles great interest attached $\mathrm{t} \boldsymbol{\circ} \mathrm{Dr}$. Calvert's protoplasmic investigations.-Journal of the Society of Arts.

The whartford Steam Boiler Inspection and
 Insurance Company.

The Hartford Steam Boiler Inspection and Insurance Com pany makes the following report of its inspections in the month of September, 1873
The number of visits made during the month were 1,465 boilers examined, 2,858; internal examination, 792; external, 2,738. The hydraulic pressure was applied in 236 cases. Total number of defects discovered was 1,199, of which 287 were regarded as dangerous. The defects were as follows: Furnaces out of shape, 46-11 dangerous; fractures, 11043 dangerous; burned plates, 67- 25 dangerous. Several of these cases resulted from the neglect of the fireman to try the gage cocks before starting fire in the morning. The boilers were blown down Saturday night, and then refilled; but the blow-off cock did not close tight; or a defect in the check valve in the feed water pipe allowed the water to run out of the boiler before Monday morning. The red hot, warped and twisted plates soon gave notice of the sitwation. Blistered plates, 202-28 dangerous; deposit of sediment, 223-27 dangerous; incrustation and scale, 210-24 dangerous; external corrosion, 70-14 dangerous; internal corrosion, 34-14 dangerous; internal grooving, 12-6 dangerous, water gages defective, 79-14 dangerous; blow-ont defective, 26 - 11 dangerous; safety valve overloaded, 43-15 dangerous; pressure gages defective, 189-24 dangerous; errors anging from -44 to +7 pounds. Boilers without gages, 61-8 dangerous; deficiency of water, 5-3 dangerous; braces and stays broken, 54-19 dangerous; boilers conbraces and stays broken,
demned as unsafe to use, 8.

We are under obligations to correspondents who, from time to time, furnish letters for publication in our columns upon a great variety of practical topica. We highly value these contributions, and hope that our mecbanics and others will oftener take the pen and contribute from their valuable tore of practical information. During the coming months we hope to enrich our columns with a greater variety of practical subjects, and shall look for an increased number of useful contributions from our readers.

Variegated Cotton Thread.-Cotton thread may be dyed in two or three colors by covering some parts with parchment paper, tightly wound, and thin tin or lead foil, holding the latter in place by binding threads. If tied sufficiently tight when the skeins are introduced into the dye bath, the protected parts remain white; and by protecting dyed portion, and unwrapping the white portion, another color may be applied.

Completion of the Great Brid

The great international bridge across Niagara River from Buffalo to Fort Erie, in Canada, has b een lately completed. The Buffalo Commercial Advertiser furnishes the following interesting description:
" To state the fact roughly but plainly, the entire length of the bridge is about three quarters of a mile. But more in detail the length is as follows: In the main river, 1,800 feet; over Squaw Island, 1,300 feet (trestle work), and over Black Rock Harbor, 450 feet. The entire length of the superstructure in the main river is 1,890 feet; in Black Rock Harbor, 440 feet. There are nine spans in the portion on the main river and three in the Black Rock Harbor: four of 190 feet in the clear, and three of 240 in the clear. Over the main river also are two draw openings, of 160 feet each; total length of draw girder, 362 feet. In Black Rock Har bor are two draw openings of 90 feet each, and one fixed span 220 feet in length. In the main river are eight piers and two abutments; and in the harbor, two piers and two abutments. The abutments are 40 feet long by 30 wide at the bridge seat level. Over the bridge is laid a track for railroads, and a common sidewalk for foot passengers. The piers and the abutments are built of sandstone from Georgeown and Acton, Canada , and from Berea, near Cleveland, Ohio. The iron of the superstructure was from the Phœnixville Iron Company's Works, Phœnixville, Pa. The first cais son was launched on the 13th of July, 1870, and work progressed steadily up to the time of completion. It must be remembered that the current of the river, at the point where the bridge is located, runs from five and a half to ten miles an hour, according to the state of the wind. This was throughout one of the greatest difficulties encountered, and frequently retarded progress. Then, too, the depth of water varies from twelve to forty-five feet. The ice in winter some may think, would lamage the bridge in course of time, but the ice breakers afforded ample protection, and cut to pieces blue ice two feet thick with comparative ease Another remarkable thing connected with the history of the bridge is that, during the whole course of the work, not single life has been lost. The workmen have, many of them, often been exposed to dangers, but always have escaped.
The respective weights of the different spans over the river are as follows: 190 feet, 130 tuns; 240 feet, 208 tuns; 362 feet draw, 353 tuns; and the entire quantity of iron used in the whole bridge amounts to upward of 2,000 tuns. At the request of Captain Tyler, the English Government In spector of Railways, who visited the bridge in November 1871 , or behalf of the Englishshareholders, one of the s
of 190 feet was loaded with 210 tuns of iron rails, of 190 feet was loaded with 210 tuns of iron rails,
equally distributed over the floor beams (a weight greater than that of a continuous train of locomotives covering the span), and le in that condition for three days. This test was highly satisfactory, the deflection being found to be only about one inch, and the truss returning exactly to its former condition on the removal of the load.
The bridge has been leased, to the various railroads which will cross it, for twenty years. The roads are the Grand Trunk, the Great Western, the Canada Southern, the New York Central, the Erie, and the New York, West Shore and Chicago. Most of these railroads have already constructed their approaches to the bridge, and will commence sending trains across at as early a day as possible. The original plan con templated a carriage way, but this was abandoned for the reasons that, as the bridge was three quarters of a mile long and so many trains were to cross it, iher would very seldom be a chance for carriages to cross withou interfering with the trains.

The entire cost of the bridge, in round numbers, is not iess than $\$ 1,500,000$. Of its practical benefits we leave the reader to judge, merely stating in conclusion that it supplies a want long felt by the different railroads which have for so many years been obliged to cross the Niagara River on the steamer International.

New Comets.
The present year is marked by the discovery of quite a number of new comets, and the reobservations of others previously noted but since invisible. Particularly is this the case in comparison with 1872 , when only one of these va grant bodies, and that a fragment of Biela's comet, was seen. Up to the current date seven have been observed, which were found as follows: No. 1 on the 3d of April, by Stephan at Marseilles. This comet is identica with No. 2 of 1867 , originally discovered by Tempel. The second body is a new one, and of short period, and was noted by Tempel on July 3 at Milan. Another new comet was observed by Breolly at Marseilles on August 20, and a fifth, of considerable brilliancy, passing southwardly, by Paul Henry at Paris, on the 23d of the same month. On September 1, Stephan, of Marseilles, obtained feeble views of Brorsen's, and on the 3d of Faye's, comets. Another new discovery was made on November 10 by Le Verrier at Paris, of a comet which has a slight motion to the southwest, and the last new arrival has been found on November 11 by the Vienna Academy of Scieaces.
Professor Kirkwood suggests that persons having the use of comet seekers will do good service to astronomy by searching for these wandering celestials at the present time. It may be added, as an incentive, that the Vienna Academy of fors a gold medal for every new discovery.

PARDEE HALL AND ITS FOUNDER.

We recently noted the formal donation, by Mr. Ario Par ee, of a large and handsome edifice to Lafayette College t Easton, Pa. The building, which has been named Pardee Hall, is to be used as the scientific departmeut of the institution. We give herewith an engraving of the structure, and a portrait of its liberal founder. The edifice, to the erection and fitting up of which $\$ 250,000$ has been devoted, is situated on an elevated knoll in the eastern portion of the college grounds. It has a total frontage of 256 feet, and its main building is five stories high, and extends back for a distance of 61 feet. On each side are lateral wings, 61 feet in length and 31 in width, joining which, at their extremities, are cross wings, 42 feet front by 82 feet in depth.

MR. A. PARDEE, FOUNDER OF PARDEE HALL
The architectural effect is quite imposing, the handsome mansard roof and two turrets giving a massive appearance to the whole. The material used in construction is Trenton brown stone, with light Ohio sandstone trimmings.
The first floor contains metallurgical lecture rooms and private laboratories, apartments for the study of blowpipe analysis, assaying, ore dressing, and similar branches. Extraordinary facilities are afforded for instruction in the sci ence of mining, there being, among other interesting objects, a complete model of coal mine plant operated by steam, from which the functions of all the different machines and processes can be seen at a glance.

Pardee hall, lafayettercollege, easton, ${ }^{*}$ Pa.
The second story is devoted to geological and mineralogical cabinets, which are arranged to adjoin a spacious lecture hall. Valuable collections of specimens relating to the sciences of mineralogy and geology. have been provided together with necessary apparatus, books, etc. The third floor contains the cabinets and lecture rooms for the classes in the various branches of engineering, and the two upper stories are fitted up with every requisite for the study of chemistry.

The contemplated supply of apparatus has not been placed in the building, so that we shall probably find it necessary to refer in more detail to the various novel instruments and plans in aid of study, at some future time.

WHITEHEAD'S COMBINATION TOOL

a pair of dividers. Both handles are provided with conical holes, G, corresponding to sirilar apertures in the frameThese are not placed centrally above each other, but some distance to the right and left of the longitudinal axis of the tool, so that the sides of the orifices act, on closing after opening the handles for the admission of a wire, like shears, cutting the same at the point desired. Two straight shanks, H, are wedged transversely into the frame, and slide on the guiding supports. Their lower sides are supplied with a series of teeth which gear into teeth, D. Attached to the shanks, and at right angles, are jaws which act as pliers One of the shanks is also provided with a steel blade, I which serves as a screwdriver. The curved slots, J, corres pond with longitudinal slots in the frame which guide the connecting bolt, K . The latter is formed in square shape so far as it moves in the lower guide slot, and at its upper end is threaded and provided with a thumbscrew; when the thumbscrew is loose, and the handles are opened and closed, the bolt, K , is caused by the slots, J, to traverse in the lon gitudinal slots of the frame and to proauce a parallel move ment of the jaws and their application as pliers. By tight ening the thumbscrew the jaws may be set and used as a hand vise. The tool may be made of malleable iron, steel or any other suitable material.
I7 was patented June 10, 1873, through the Scientifie American Patent Agency, by Mr. H. B. Whitehead, of Holly Springs, Marshall county, Miss.

Ice-Making Machinery at the Vienna Exposition The making of ice by artificial means is a matter of rapid. ly increasing importance, not only on account of the increase it affords in our domestic comforts, but also on account of its usefulness in many manufacturing branches. The ice-making machine has already been of great service in breweries, as it renders the brewer independent of the supply of natur al ice, while the ice machine may also be used for the direct cooling of the air and the wort. Besides, ice made artificially by mackinery is colder and therefore harder than natural ice, a fact which has clearly been proved by experiments lately made, when equal weights of buth artificially and naturally produced ice were placed in warm water of equal temperature, the result being that the artificial ice took more than twice the time for melting that was required by the natural ice.
At Vienna were exhibited three ice-making machines, one by Messrs. Siebe and West, of Lambeth, London, one by Messrs. Vaas and Littman, of Halle on-the-Saale, and a third by the Actien-Gesellschaft für Fabrication von Eismaschinen, formerly Oscar Kropff and Co., of Nordhausen, Prussia. The principle applied in Messrs. Siebe and West's machine consists of the production of a cold temperature by means of the evaporation of ether, and of the continued use of the same ether without any significant loss. The machine consists of a refrigerator, a condenser, an air pump, and an icemaking box. The machine works in the following manner: As soon as the air pump is put in motion, the ether in the cooling vessel evaporates, and, of course, absorbs heat from the tubes by which the cooling vessel is traversed. The ether vapor thus produced is forced by the air pump into the condenser, where, under the combined influence of the pressure and the cooling action of the water circulating through the condenser, it resumes the liquid form and returns through a small tube to the refrigerator, in order to be there again changed into gas.
This process is continued with the use of the same ether as long as the machine is kept working. The great cold produced in the cooling vessel acts on the fresh water to be frozen in the ice box by meatisi of a current of salt water introduced into the tubes which pass through. The temperature of the salt water decreases quickly on its way through the refrigerator on account of heat being absorbed from it by the ether changing into gas, and it then circulates, with a temperature considerably below he freezing point in the ice box, round a number of iron or copper vessels filled with the fresh water to be frozen into ice. The salt water, the temperature of which increases again by coming into contact with the vessels containing the resh water, is taken back to the refrigerator, where its temperature is again reduced. The process of freezing is thus uniform, self-regulating, and uninterrupted, until the fresh water has been changed into ice. The latter is then removed and the vessels are filled again with fresh water, and are again exposed to the cooling of the brire current. These essrs. Siebe and West's are now constructed like horizontal steam engines; they are exceed ingly simple and compact, and have a steam engine attached, or may be worked from an existing shaft. The ice is made in single cakes, weighing between 8 pounds and 100 pounds, according to the size of the machine. If these cakes are placed one upon the other, they freeze together, so that blocks of any size may be formed. It is stated by Messrs. Siebe and West that they can produce from 10 pounds to 30 pounds of ice with their machine
which may be unhesitatingly applied in reference to the use ful little invention depicted in our engraving. It is a small tool chest compressed into a single implement which may be readily carried in one's pocket.
There is a double flanged frame or casing, A, which is cennected by supports, B. Pivoted at C are the handles which, at their rounded ends, have teeth, D. On a projection on one of the handles is a punch, E, and at their ends are lonsitudinally projecting pieces, F, the inner extremities of which serve as calipers and the outer ends as the points of for two cents, and that one pound of coal produces be tween 3 pounds and 10 pounds of ice. The time taken in removing the ice and refilling the freezing vessels for the next operation occupies from 30 to 60 minutes. inessrs. Siebe and West state further that a temperature of 50 degrees below zero Fah. has been obtained with this apparatus, and that from 50,000 to 500,000 cubic feet of ai may be cooled per hour to 30 degrees Fah., or a smaller body of air to a lower temperature. The ice made by this machine at the Vienna Exposition was beautifully clear and
were easily rolled over and over by the force of the stream. The nozzle which carried off the prize was some 6 inches at the large end, where the water entered, and I think $1 \frac{18}{4}$ inches at the discharge end; it was very long (7 or 8 feet) and a portion of the small end bored out perfectly smooth to an exact focus of 22 feet, being the distance from the bank at which it was most commonly used. If used at a sharper focus, the currents seemed to cross each other and confuse or scatter the stream beyond; with a portion of the end bored straight, the stream seemed to scatter from the point of discharge. As the washed rocks occasionally accumulated on the washed bed rock below the embankment, impeding the course of the dirt to the mouth of the sluice, the operator would (with a kind of sweeping stroke) direct the stream so as to sweep everything before it, often shoving ten cart loads or more at a single sweep over the bank into the sluice. Even before this time, I had seen lydraulic mining (at Alpha and Omega, and at Nevada, as well as in other locali ties) of which, even in this day of improvements, California need not be ashamed; it leveled the mountains and often buried men alive.
J. E. Emerson.

Beaver Falls, Pa

Petroleum as Fuel.

To the Editor of the Scientific American:

A series of trials have been made here recently, on a small scale, to determine what may be done with petroleum as a fuel under steam boilers. The boiler used was an ordinary eight horse upright one, about three feet diameter and six feet high, with the usual number of one and a half or two nch vertical flues, the lower flus sheet being about fourteen inches from the grate. The device for burning the petroleum was placed upon the grate, and a stream of oil, scarcely larger than a No. 16 wire or the rapid dropping of the oil (about six quarts an hour), mingled with a certain quantity of air under pressure, was sufficient to raise steam to thirty pounds to the inch in thirty-five minutes. Considering that during this time the furnace door was kept wide open for the purpose of observation, and that the boiler was in a cold room and entirely unprotected by jacket, I think this may be regarded as a good result.
It seems to be requisite that the air should have consider able tension, and mingle with the burning oil in jets, and in quantity proportionate to the quantity of oil, in order to en sure perfect combustion; for it was noticed that, while the apparatus was being adjusted, considerable smoke occasionally arose; but as soon as proper adjustment was reached and the boiler and apparatus had warmed up, the consump tion was quite free from smoke and gas.
Although these tests (some half dozen in number) have been upon a small scale, consuming only about one barrel o oil, all told, they certainly indicate that petroleum has the qualities of a strong and economical fuel.
Worcester, Mass., Nov. 6, 1873. F. G. Woodward.

Tracks in the solid Sandstone.

To the Editor of the Scientific American:
Having heard that there were numerous mule, deer and turkey tracks to be seen on a ledge of rocks, situated about four miles northeast of this place, on the farm of Mr. John Stevenson, I visited, in company with Mr. Louis Graff of thi place, and made a thorough investigation of the surface o the spot. We found that the rocks, which are a very hard sandstone, extended thickly over several acres of ground The top surface of almost every loose rock was marked plainly with tracks like those of small mules of various sizes; some few were not over an inch in diameter. We found one ver distinct track, showing the hollow of the hoof, and of the size and exactly like that of a common sized horse. We found a few tracks like those of deer, some such as a deer makes when leaping, others made as when walking. Several tracks were made in slipping; some shewed notches, as made by the notched hoofs of the wild horses on the wester plains. We found, where the unbroken stratum had been exposed by the washing of the rains, that its surface was also covered with the same kind of tracks as those on the loose rocks.
We were informed that many rocks had been hauled away as curiosities; and that there used to be found on the rocks distinct turkey tracks, and perhaps the tracks of other kinds of birds.
A. M. Bourland, M. D.

Van Buren, Crawford county, Arkansas.

Railway Religion.

To the Eaitor of the Scientific American:
Many an attentive reader of your valuable paper has been pained to read an article under theabove caption,on page 297 of your current volume. Knowing your reputation for fairness, I had rather believe that the article spoken of found its way in to your columns by accident than by design. There may be some "divines" who believe that "the world was made in a week," but they are not the index of the Christian ministry of today. Clergyman are not of all men most ignorant; and they that are not altogether unacquainted with the modern de velopments of science,' is clearly proved by the fact that not a small number of them are among the readers of the Scientific American. We have searched in vain among the utterances of the late Evangelical Alliance to find one which came anywhere near calling scientific men "servants of the evil one infidels, and scoffers." Yet it is taken for granted that the delegates will do so from their pulpits on the first suit e occasion.
There can be no real controversy between science and religion. Fanaticism and ignorance may get into collision, but the intelligent clergyman is just as apt.to adopt the teach
ngs of pure science as the scientist is to respect the claims of religion.

James Pitcher, Principal.
Hartwick Seminary, N. Y.

LABORATORY NOTES.

 by B . P. sifarples.

 by B . P. sifarples.}
electrotyping with iron

M. Klein, a Russian chemist, has succeeded in electroyping with iron. He used a bath consisting of a concentraed solution of sulphate of iron and ammonia, and four Meidinger cells. For an anode he used an iron plate having a surface about eight times that of the cathode, and connecing this also with a copper plate. He found by this means he could get a perfect coating of iron. On leaving the bath, he iron is as hard as tempered steel and very brittle; heated to a cherry red, it becomes malleable, and may be engraved as easily as soft steel.

CEMENT FOR PIPES, STILLS, RETORTS, ETC.
J. Spiller recommends a misture of pulverized iron borings, kaolin, and sirupy silicate of soda as a lute for fixing on the heads of stills which are required to stand a high temperature. We should judge the same might be found useful in other situations, such as the joints of cast iron furnaces, for instance.

PRESERVING GELATIN SOLUTIONS.

Lanjorroic finds that the addition of 1 per cent of fuchsin o a solution of gelatin will prevent its putrefaction. A quantity prepared in this manner was kept 11 months without change. The addition of a very minute quantity of aniline violet to gelatin or to an infusion of coffee was also ound to prevent its putrefaction entirely. It is hard to understand how these substances do this, if they have no poionous properties.

copying medals.

Copies of medals or other similar articles may be readily made by a very simple piece of apparatus. A cast of the medal is first taken in wax. This is done by moistening the medal or coin slightly, and then pouring the melted wax ver it. The object of the moistening is to prevent the wax ticking to the surface of the metal. While the wax is still warm, a piece of copper wire should be imbedded in it to erve as a support, and to connect with the zinc in the decomposing cell. After removing the medal from the mold, the surface of the mold is dusted over with fine plumbago until it appears quite black; all excess of the carbon is then carefully removed with a soft brush. If fine iron fillings can be had, a few of them are sifted over the face of the mold, and a solution of sulphate of copper is poured on it. It is then carefully washed; this serves to give a very thin coating of copper, and facilitates further operations, but may be omitted if not convenient. Care must be taken, in putting on the plumbago coating, that it comes in contact with the copper wire. A very convenient way of applying this wire is to bend it into a ring slightly larger than the medal to be copied, lay it on the table around the medal, and pour the wax over both at the same time. Scraping with a knife exposes it completely. The mold being prepared,take an or dinary glazed earthenware basin four or five inches deep, and in it set a small flower pot, having previously plugged up the hole in the bottom of the pot with a piece of wood, a little wax, or other suitable material. The flower pot is to be filled with a weak solution of common salt. The outer basin is then filled with a strong solution of sulphate of cop per, and a little bag holding crystals of sulphate of copper is hung in it to keep it saturated. Add a few drops of sul phuric acid to both solutions, place a piece of zinc in the lower pot, and connect it with the wire of the mold. The mold being now put in the outer solution, a coating of copper soon shows itself. The mold may be left in the solu-解 Journal of Chemistry.

Trees as Historians of the Past

M. Charles Gros has recently communicated a note to the French Academy of Sciences on the study of the yearly ings, shown when the trunk of a tree is transversely divided. These layers by which, as is well known, the age of the tree may be determined, do not diminish in relative thickness by a constant law. In view of this, M. Gros seeks a cause for the irregularity, and, it seems, has arrived at the conclusion that the data, mean and extreme, of meteorological phenomena, when known and tabulated, might be com pared year by year with the annual ligneous layers formed during such periods in many different varieties of trees.
From the comparison it is not impossible that some inter esting ideas relative to the laws of development of trees may be obtained. But, moreover, these laws once established the trees in their turn might become precious collections of meteorological evidence for places and times where observa tions cannot be made. Les Mondes suggests rather a striking example of what might be learned from ancient trees, as follows: "Suppose that there should be found in Egypt a very old though living tree, the origin of which dated back to the time of Joseph. If, on cutting the trunk, the rings corre sponding to that period showed seven thick and seven thin layers, there would be tangible evidence of the truth of the Scriptural tradition of the seven years of plenty and seven years of famine, besides of the immediate causes of humid ity, temperature, etc., to which such phenomena might be due."

Drier for Oil Colors and Varnishes.-Water, 100 parts; gum lac, 12 parts; borax, 4 parts.

PRIZES FOR IMPROVEMENTS.

The Society of Arts, London, has lately issued a detailed statement of prizes offered for various practical improvements. We present the list, believing that, if our readers may not wish to compete, it will be suggestive of subjects forinvention, and lead to new discoveries in other matters, if not in those here mentioned. We have recently published a list of five other rewards offered, for improvements pertaining to the use of gas, by the same Society, which it is unnecessary here to repeat.
The Council, in issuing this list of subjects and asking for communications upon them, state that they are aware that some of the suggestions put forth may, at first sight, appear difficult of realization. In some instances, the thing sought involves the use of known substances in the industrial arts in a manner in which they are not at present employed, but in which there is reason to believe they are capable of being used with economy. In other cases the aid of the chemist is sought to develope such a form of action upon the material u sed as will induce the creation of new industries, or aid the extension of old ones by economizing processes, render them
less detrimental to health, or lessen the risk of accident to those employed.
Steam is the motive power now generally employed, but its use on common roads seems at present, for various reasons, inadmissible. Other agents, such as mercury, gunpowder, and petroleum, have been tried, but hitherto with out success. There are, however, many other materials in Nature to which scientific men and others may well turn their attention for the development of power, and put them in a form which shall render them available to the engineer and mechanist. It is believed that not one of the objects here sought is incapable of realization; and the Councilhope that men of science-engineers, manufacturers, colonists, and ag-riculturits-will combine with men of capital to realize and bring many of them into commercial use.
$\$ 1,000$.-Swiney Prize.-Jurisprddence: Under the wiil of Dr. Swiney, a silver goblet, of the value of $\$ 500$, containing gold coin to the same amount, is presented on every fifth anniversary of Dr. Swiney's death "to the author of the best published treatise on jurisprudence." The next award of this prize will be made on the 20 ch of January, 1874. Competitors for this prize should send in copies of their published works to the secretary not later than December, 1873.
\$500.-Trevelyan Prize.-Preserved Fresh Meat: The sum of $\$ 500$, placed at the disposal of the Council by Sir W. C. Trevelyan, Bart., with the Society's medal, is offered for the discovery of a process for preserving fresh meat in an uncooked or raw state better than by any method hitherto employed, applicable to the preservation of meat in countries where it is now almost valueless, so as to render it an article of commerce.
Fothergill Prize.-Under the will of Dr. Fothergill, funds are bequeathed for the offer of a medal, and "the fol lowing subjects are proposed to the Society for their consideration: (1.) The best method of preventing destrucive fires, and of detecting incendiarios. (2.) Of speedily extinguishing fires when water is scarce. (3.) Of speedily se uring valuable property from the flames, and also from thieves. (4.) Of preventing or diminishing the numerous fatal disas(4.) Of preventing or diminishing the numerous fatal disas-
ters from fishionable muslin dresses catching fire, whether ters from fishionable muslin dresses catching fire, whether
by rendering such dresses less combustible, or having conby rendering such dresses less combustible, or having con-
stantly in readiness a large cloak of incombustible fabric, composed of asbestos or amianthus, with which instantly to en wrap the whole body. Paper of this kind (incomin ustible) might preserve from fire valuable deeds and other manuscripts. A premium for the encouragement of such a manu. facture is aleo recommended. The above to be varied at the Society's discretion." On the present occasion the Society's medal is offered as follows:
Gold Medal-Uninflammable wood: For the economic production of an uninflammable wood, so as to render ic production of an uninflammable wood, so as to render
buildings in which it is employed less destructible by fire.
Howard's Prize. - Gold Medal or $\$ 125$: For the production of a traction engine of maderate power, capable of being employed as a substitute for horse power on tramways and in the streets of cities and towns. The engine to form one structure in combination with the tramway carriage. The power may ke generated by any means, provided that noise, noxious fumes, and the discharge of refuse into the air or on to the road surfaces are avoided.
Gold Medal.-For the discovery or manufacture of a means for safely and economically generating power, suitable for use in place of steam. It should be free from refuse, noxious fumes, and injurious effects on the metals with which it may be brought into contact, or on the workmen employed.
Silver Medal or Stock Prize.-Under the will of John
Stock, funds are bequeathed for the offer of a medal for the Stock, funds are bequeathed for the offer of a medal for the encouragement of drawing, sculpture, and architecture. Shell Cameos.-On the present occasion the Society's medal is offered to female artists, for the best cameo, designed and executed on any of the shells ordinarily used for that purpose.
general prizes-Gold and silver medals.
Molds for Metal Casting. - For the production of molds for casting, constructed without seams, and capable of resisting the temperature employed in running bronze and other molten metals; specimens of the molds and casts to be sent to the Society.
Coating Vessels.-For an economical method of coating large vessels of zinc, such as baths, so as to present a bright and clean surface, not readily oxidized and as durable as a tinned or japanned surface.
VACUOM. - For the introduction and use of a vacuum, for the drying and preservation of fruits and vegetables, either with or without heat of low temperature.

Vacoum. - For any new and economic application of a vacuum in the preparation or finish of manufactured goods. Elastic Tubing.-For an elastic material for tubing suit ed to the conveyance of gas, and not liable to be affected by moisture, alterations in temperature, or to be acted upon by he gas itself.
Rollers for Printing.-For a composition for feeding rollers for printing by cylinder machinery, similar in consistency and texture to the gelatin rollers used in letterpress printing, but adapted for working in water colors.
Improved Chemical Balance.-For the best chemical and assay balance, suitable for the use of students and experimentalists, which (loaded with 600 grains in each pan) will show a difference of 005 or less. To be sold at a modrate price.
Incombostible Wick.-For the production of an incombustible wick, suitable for use in lamps.
Casts (White Marble).-For a means of casting ornamental panels, or marble groups of figures, flowers, etc., in white marble, so as to retain the transparency of the marble itself, as well as the polished surfaces of artistically finished works.
Waste Coal.-For a more economical and efficient method than any at present in use of preparing waste coal, so as oo render it available as fuel for engineering or domestic purposes.
Coal Working Machinery.-For an account of the modes at present in use for getting coal, and suggestions for improvements calculated to render the use of machinery more general in coal mines.
Lighting Coal Mines.-For a means of lighting coal mines, so as to increase the light in the workings, and at the miner's lamp.
Tunneling.-For the best account of the machinery used in tunneling, with suggestions as to the best means of applying either compressed air or water power in the working or getting of minerals.
Freezing Machine.-For a machine or process, either chemical or mechanical, for lowering the temperature of substances by the abstraction of heat, more effectually and at a less cost than is done by machines at present in use. The machine must be capable of working efficiently in the tropics. Etching and Ornamenting Iron.-In a permanent way by the use of chemicalagents; or by the application of enamels; or by both conjointly, for the decorations of iron fire grates, fenders, gaseliers, etc.
For tie Application of Lithography or Block Print-ING.-To stopping grounde, for etching upon glass or metal by means of chemical agents.
A Varnish-or coating which can be applicd to iron wires, so as to protect them against rust, and which shal not be liable to clip off when the wire is bent or rubbed.
A Galvanic Element-which shall combine the con-
stancy of the Daniell's cell with the low resistance and high stancy of the Daniell's cell with the low resistance and high electromotive force of a Grove's cell.
An Electric Condenser-whic' sball combine high capacity with sma!] bulk and small residual charge.
a Sensitive Pocket Galvanometer.-The size should not exceed that of a watch.
Potato Disease.-For a method of preventing the potato isease.
New Edible Roots.-For the discovery and successful introduction into England of any new edible root or tuber
useful as food for men or cattle, capable of resisting frost useful as food for men or cattle, capable of resisting frost ad suitable for extensive and improved cultivation.
Hydraduic Engine.-For a small, simple, cheap, and ef. fective hydraulic engine, which, in connection with the constant water supply of towns, can be appled to work lifts in warehouses, drive lathes, the bellows of organs, etc.
Unsingable Ships.-For plans for the construction of an efficient and seaworthy vessel, such that, when perforated either by shot or accident and filled with water, she shall in part maintain her floating power.
Diving Apparatus.-For an improved diving apparatus, in which divers may work free from the inconvenience of great pressure, and at greater depths than by means of the diving bell, helmet, or otherexisting appliances.
Electric Weaving.-To the manufacturer who first practically applies electricity to
of figured fabrics in the loom.
NEW GUMs OR OiLs. -For
NEW GUMS OR OILS. - For any new resin, gum, or oils, the produce of India or Anrica, calculated to be useful in the arts
and manufactures, and obtainable in quantity at a moderate price. Samples of not less than 25 lbs . of gum, and 50 lbs . of oill, to be transmitted to the Society.
Mines.-For the best method of applying air or water as a raction power in mines.
Telegraphs.-For an economic and permanent means of telegraphing through uninsulated wires, between places not less than 1,000 miles apart.
Colonial Silk.-For the importation of silk cocnons, the production of any of the Australian colonies, in a dried and preserved state, in bulk, and fit for silk-reeling in England.
Surface Blocks.-For a ready means of reproducing d. Surface blocks.-For a ready means of reproducing designs by artists, as surface blocks, possessing sufficient relief
to admit of their being worked at the steam press sharply and without blur.
GUNPOWDER.-For a method of constructing magazines for the storing of ganpowder, gun cotton, nitro glycerin, and other highly explosive compounds, so as to give increased against thainst explosions, and more effectually to provide against the possibility of large masses of material exploding,
or, in case of explosion, communicating with other and adacent quantities of explosive material.
Petroledm and other Litht Oils and Sptrits.-For a
cheap and effective method of constructing storehouses for the stowage of petroleum and other light oils in towns and cities, so as to give greater security to the adjacent properties. Peat.-For the introduction into commerce, as a substitute for coal, of fuel manufactured from peat, and suitable for combustion in domestic fireplaces, the furnaces of steam engines, and for industrial purposes generally.
Patented inventions are not excluded from receiving the Society's rewards. The Council reserve to themselves the right of withholding all or any of the above medals or premiums, as the judges may report. The Council is willing to receive communications on subjects not included in the above list. The degree of originality and value of suggested improvements will have material influence on the adjudication of the award. In all cases a full account and description of he invention for which a medal or premium is sought must be sent to the Society. All communications must be written on foolscap paper, on one side only, with an inch and a quarter margin. They must be accompanied by such drawings, models, or specimens, as may be necessary to illustrate the subject. The drawings should be on a sufficiently large scale to be seen from a distance when suspended on the walls of a meeting room.
With regard to colonial produce of all kinds, it is absolutey necessary that a certificate from the Governor, Collector of Customs, or other qualified person, should accompany the amples sent to the Society, certifying that they really are he produce of the particular district referred to. The samples should be sufficient in quantity to enable exper:ments
to be made and an opinion to be formed of their quality and uses; and it is desirable that the cost price in the district from which they are forwarded should be given. In every instance the probable extent of supply, with the average yield, if cultivated, and whether similar articles have hitherto been exported from the colony or not, and in what quantities, should be stated.
All communications and articles intended for competition must be delivered, addressed to the secretary, at the Suciety's House, London, free of expense, on or before the 31 st of December, 1873 or 1874 . In the first case they will be considered during the session 1873-4; in the second case, during the session 1874-5.
Any communication rewarded by the So siety, or any paper read at an ordinary meeting, will be considered as the property of the Society. Should the Council delay the publication beyond t welve months after the date of its being rewarded or read, the author will be permitted to take a copy of the same, and to publish it in any way he sees fit.

Zinc Bandages in Surgery.

An interesting and important experiment in surgery was performed at the Park Hospital, a few days ago, in the presence of a number of distinguished surgeons, by Dr. Fluhrer, inventor of a new bandage for fractured limbs. The contrivance consists of a number of perforated zinc strips, which, when once arranged, form an absolutely inflexible bandage, not to be disarranged by any violence or uneasiness of the patient. As soon as these cover the point of fracture, the limb is firmly set and the natural outline retored. In one of the wards of the Park Hospital is Francis Lefry, a truckman, who had a compound fracture of both thighs. No parallel case of dual fracture, it is said, is on nedical record; and, as the most unpromising, the doctor selected it for a practical test. After ether had been given to the patient, Dr. Fluhrer bent over the sole of each foot a broad zinc strip in the form of a loop, the extremities of which were securely wrapped with cloth bandages previousy steeped in plaster of Paris, which were prevented from slipping by the tooth-like projections of the reverse side of the punctured zinc. The terrible fracture of both thighs, when he limbs were stripped for this purpose, could be plainly perceived. To the loops were fastened stout cords, which passed over the grooves of pulleys affixed to the adjacent wall, and were drawn taut by Warden Brennan. Dr. Fluhrer next mummified the limbs with a multiplicity of bandages, over which he laid his zinc strips, and covered them with a second stratum of bandage. Immediately the lumpiness about the region of infury disappeared, and the doctor expects that, in six weeks, this bandage will be removed, and in two more Lefry will use his legs.

Two New Steamships.

Two new steamers have recently been completed at the ship yards at Wilmington, Del., belonging, respectively, to the Cromwell and Metropolitan lines, and named the Knickerbocker and General Whitney. The former vessel is of 23 feet denth of register, costing $\$ 260,000$, She has a vertical inverted condensing engine 44×72, and four tubular boilers. With steam up in only two of the latter, it is stated, the ship easily made a speed of 10 knots per hour. She will ply The General Whitney is alsoans.
The General Whitney is also of iron, and is besides a very fine model of marine architecture. Her length is 245 feet,
beam 40 feet, hold 28 feet and tunnage 1,848 . There are two inverted engines 36×60 and three cylinder furnaces to each boiler. The engines and boilers are carefully enclosed in iron, and the engine room is remarkably commodious and well lighted. The vessel has some novel arrangements in the shape of four independent hoisting engines, operating seven freight cranes stationed at various points. By this means the time consumed in receiving or discharging cargo will be materially reduced. The port sbutters are also of new invention, and are easily worked by one man, though of
exceptionally ponderous construction. The ship will be used, exceptionally ponderous construction. The ship will be use
for freight purposes only, between this city and Boston.

IMPROVED TURBINE WHEEL GOVERNOR.
We illustrate herewith a novel and simple form of apparatus which, it is claimed, acts as an efficient and reliable governor for turbine or other water wheels. The construction is of a type generally familiar, the balls being thrown out by the centrifugal force of the rapid rotation, which of course increas $3 s$ with the speed, thus, through suitable apparatus, conirolling the gate, and hence the quantity of water which reaches the buckets of the whesl.
A is the driving band and pulley by which motion is given to the governor shaft. Pivoted to lugs immovably secured to the latter, at B , are the bent levers, which terminate in the balls as shown. These communicate with other pivoted rods, the connection between which is clearly indicated in the engraving, and which finally connect above and below with sleeves, C, which slide freely up and down the governor shaft. To the sleeves are secured portions of clutches, the corresponding parts of the latter being attached to two loose pulleys, D and E. Pulley D connects with another pulley on a second sinaft, F, by means of a straight belt. Pulley E, however, is attached to the same by a crossed band. Consequently the effect is that, when the pulley, D, is in action, the shaft, F, rotates in the contrary direction to that which it assumes when the pulley, E , is in opera. tion. Shaft F has a pinion, G, on its lower end, which pinion communicates with a gear wheel on the gate shaft.
The operation of the device can now be easily followed. The turbine is started by opening the gate by turning the large hand opening the gate by turning the large hand wheel shown on the shaft. To do this the pinion, G, which is connected with the shaft,
F, by a slot and feather, is lifted by the foot F, by a slot and feather, is lifted by the foot
lever, H, so that its teeth no longer engage with those of the gear wheel. As soon as the turbine is in motion, however, the pinion is allowed to fall back into place. The pulley, A, rotating the governor shaft, transmits motion to the balls through the rigid connection of their arms at the point, B. It is evident that, as the rapidily of motion is evident that, as the rapidicy of motion more nearly perpendicular to the vertical shaft, and in so doing will raise the upper sleeve so that the clutch upon it and the pulley, D, engage, causing the pulley to be carried around. By this means the shaft, F, and pinion, G, will be rotated so as to turn the gate shaft and partially close the gate, thus checking the inflow of water. The speed of the wheel will, of course, diminish, when the balls will fall and the clutch above drop out of action. In case the speed should become too slow, then the further effort of the balls to reach the lowest possible point will cause the lower clutch to come into action with the pulley, E. This, however, as we have already explained, causes the shafc, F, to turn in the opposite direction, opening the gate wider and increasing the spe -d . It is evident that the supply of power will be so adjusted as to cievelope a speed of shaft that will keep the governor arms and balls between the two clutches, for, as a matter of course, the moment either clutch comes into action, the effect is either to increase or diminish the speed until the apparatus resumes its proper position.

For further paiticulars address the inventor, Mr. Joseph F. Terhune, Stockholm, N. J.

GAS BRACKET MATCH SAFE.

Everybody has experienced the annoyance of searching for matches in a dark room, doubtless to the no small detriment of temper as well as of such projecting portions of the body as are brought in sudden contact with vagrant rockers or sharp corners of tables and bureaus. Match safes, in fact, have the unpleasant peculiarity of apparently never remain

ing in the spot where last placed, because every one using the contents leaves the box wherever about the room he may happen to be, so that the next person is obliged to hunt for it. Moreover, about nine tenths of the common match re ceptacles upset on the slightest provocation, strewing the floor with inflammable material, ready to take fire and burn holes in the carpet, and sometimes set dresses on fire; whenever accidentally stepped upon. We illustrate herewith a new form of safe, the invention of Mr. M. L. Orum, which can neither upset nor wander about a room, because it is fastened immovably to the wall by screwing the gas bracket against
it. The fixture is first removed, the hole in the device slipped over the pipe, and the bracket replaced, the whole being the work of a moment. Thus located, the box is always at hand when and where wanted, and, besides, is situated at the point where matches are usually scraped upon the wall, thus preventing injury to the paper or paint. It can be made with either one or two receptacles for matches, two being preferable, as one of the boxes may be employed to receive the burnt sticks. In material, style, and design, the attachment may correspond to the bracket to which it is screwed.
For hotels, where lodgers are apt to carry off the matc

TERHUNE'S TURBINE WHEEL GOVERNOR.
boxes, the invention is excellently adapted, while its con venient and ornamental form will doubtless commend it a necessary appendage to the gas fixture in every room.
For further particulars regarding rights to manufacture application should be made to Messrs. Mellor \& Orum, 448 North 12 th street, Philadelphia, Pa.

The Opeioscope.

This is a new and simple instrument, suggested by Pro fessor A. E. Dolbear, for the purpose of demonstrating the pulsations of sound. Take a tube of any material, from one to two inches in diameter, and anywhere from two inches to a foot or more in length. Over one end paste a piece of tissue paper or a thin pisce of rubber or goldbeater's skin; either will do. In the center of the membrane, with a drop of mucilage, fasten a bit of looking glass not more than an eighth of an inch square, with the reflecting side outward, of course. When dry, take it to the sunshine, and, with the open end of the tube at the mouth, hold the other end so that the beam of reflected lightwill fall upon the white wall or a sheet of paper held in the hand. Now speak, or sing, or toot in it. The regular movement of the beam of light with the persistence of vision presents very beautiful and regular patterns, that differ for each different pitch and intensity, but are quite uniform for given conditions. If a tune like "Auld Lang Syne" is tooted slowly in it, care being taken to give the sounds the same intensity, a series of curves will appear, one for each sound and alike for a given sound, whether reached by ascension or descension, so that it would be possible to indicate the tune by the curves; in other words, it is a true phonautograph.
By trial one can find some tone which causes the mem brane to vibrate in a single plane, and of course a straight line will appear upon the screen. If, while the sound is continued, the tube be swung back and fortil at right angles to the line, the sinuous line will appear, which may be either simple, representing a pure and simple sound, or it may be compound sinuous, showing aver tones, precisely as in Köig's manometric flames.
With the lecture room darkened and using the beam of ight from a porte lumière or from a lantern, these may be projected of an immense size. There is no trouble in the world in making them eight or ten feet amplitude or more if needed. At a distance of but three or four feet, the curves will spread out to two or three feet in length when a tone is made to which the tube can reasonably respond.

The Water Supply of Rome.

In the course of a lecture on Roman antiquities, delivered the Royal Institution, London, Mr. J. H. Parker said The celebrated Aqua Marcia has recently been again brought
nto Rome, and is rapidly coming into use, being considered the finest drinking water in the world, always cool even in the finest drinking water in the world, always cool even in
the hottest weather. On the river Anio itself, where a the hottest weather. On the river Anio itself, where a
fine cascade falls over the rock, there is a deep rocky gorge; fine cascade falls over the rock, there is a deep rocky gorge;
and here great engineering works were made in the time and here great engineering works were made in the time
of Claudius and Nero. A great wall, 12 feet thick, built of of Claudius and Nero. A great wall, 12 feet thick, built of
large blocks of stone, was erected across the river at the large blocks of stone, was erected across the river at the
lower part of the gorge, forming a dam of 100 feet high and a portion, perhap 100 eet between the dam and the natural cascade; the water was made to fall over the dam, which thus became the cascade but at one end of it a specus was made below the level of the surface of the water, so that the water must always flow through that specus, and consequently through Rome, before any of it could fall over the cascade This magnificent and most useful piece of engineering continued in use for centuries. It was destroyed in the fourteenth century by an ignorant monk, who was annoyed by a temporary flood in the upper country, which overflowed the meadows near his monastery, and, to relieve that, he made a hole at the bottom of the great dam. The force of the water soon carried all before it, and caused a great flood over all the lower country, even to the Tiber, and did immense mischiefeven the walls of Rome were injured.
Mr. Parker said that he had not time to describe the thermæ, or great public baths, to supply which most of the aqueducts were made, but he could not conclude without mentioning that the opinion, commonly entertained, that the ancient Romans were ig norant of the fact that water will rise to its level, is entirely a popular delusion. At every half mile of the aqueducts, on their course from the foot of the hills to Rome, each aqueduct forms an angle, to break the force of the water, and at that angle a great reservoir is made, with a piscina or filtering place at one end. Each piscina consists of our vaulted chambers, two above and two below. The waterentersinto the top of the first upper chamber; it then falls through a hole in the vault into the first lower chamber, then passes through small holes in the intermediate wall into the second lower intermediate wall into the second lower the vault into the second unper chationer and then follows its course at the same level as it originally entered, depositing its mud in the lower chamber as it passed. Each piscina is thorefore made upon the principle of water finding its level.
They used the large stone specus, or aqueducts, instead of ordinary pipes, because they could not depend either upon their leaden pipes or their terra cotta pipes to resist the force of such a stream of water. Nothing but the concrete stone was strong enough.
At the present time, the castiron pipes of the new company are bursting every day in the streets of Rome to such an extent that the managers of the company fear that the expense will be ruinous to them. This seems to show that the old Romans were better engineers than we are.

A Trade Mark Decision.

The value of trade mark security to manufacturers and merchants is forcibly demonstrated in the following recent decision of the Supreme Court,rendered in the Circuit Court of the United States for the Eastern district of Pennsylvania, McKenna, judge, in the case of the Lowell Manufacturing Company against Larned and Starr, which is of interest as bearing on the law of trade marks. The complainants many ears ago began to send their rolls of carpet to market with hollow wooden shell in the center of each roll. The annexed engraving exhibits the construction. Fig. 1 is a plan view of the inside half of the shell. Fig. 2 is an end view of carpet, rolled, with shell in place. This shell can both be seen and felt. Becoming a distinguishing mark of the goods, they continued its use and adopted it as their trade mark, registering it as such in January, 1871,

Fig. 2.
Fig. 1.

under the act of July 8, 1870. Defendants copied it, and omplainants having brought suit, pleaded that it was an unpatented mechanical contrivance for rolling the carpet and extracting the spindle. After full argument by Horace Barnard and Ludovic C. Cleeman for complainants, and Victor Guillon for defendants, Judge McKenna decided that the "shell" is a good and valid trade mark, and complainantsare entitled to its exclusive use, furtner deciding that defendants have infringed. A perpetual injunction is granted, with reference to a master to compute and assess profits and damages.

BLACKSMITH'S MEASURING WHEEL. 䅴絡

Mr. Thomas R. Way, of Springfield, Ohio, is the inventor of the device herewith illustrated, for measuring the circumference of wheels and the length of the iron from which tyres therefor are to be made. The peculiarity of the apparatus consists in an extra pointer pivoted to the hand which indicates the wheel measure, for the purpose of deducting from the latter the amount to be allowed for expansion of the metal.
The wheel shown revolves freely on its axle to which, however, the hand, A, is rigidly affixed. The pointer, B, is secured to the hand, A, by a screw, as shown in Fig. 2 , so that its end may be set at any desired distance from that of its support. The device is applied and carried around the wheel to be measured, as repre sented in Fig. 1, where the hand, A, indicates the length of circumference passed over. The pointer, B, is then fastened with its end at a distance to one side of the hand equal to the amount of expansion of the iron. The apparatus is afterward carried over the tyre, which is cut at the point indicated by B.

The invention may also be employed by coopers for measuring hoops, in which case the extra pointer may be used to indicate the allowance for lap.

The Novel Steamer

The saloon steamship designed by Mr. Bessemer, to make sea sickness impossible, is well under way at Hull,England. The framing is nearly complete, and a good part of the outer plating has been put on. The steamer is 350 feet long, 40 feet broad inside of her paddle boxes, and of 2,774 tuns burthen. She will be driven by two sets of paddlewheel engines, acting upon a double set of paddlewheels, situated 100 feet apart, the aggregate power of the engines being no less than 4,600 horse power. The two ends of the ship are alike, and each will be furnished with a rudder. Her most characteristic feature is her saloon, which will be 70 feet long and 30 feet wide, and suspended upen massive pivots at the center and at the extremities. Thus supported, it will be brought under the control of powerful hydraulic gear, worked by the principal boilers of the ship. This gear will be so arranged that it is expected a man will be able to impart to the saloon a rolling motion in relation to the ship precisely the reverse of that which the ship herself receives. The engines, it is anticipated, will drive the vessel at a speed The engines, it is anticipated
exceeding 20 miles an hour.

THE BLACK NECKED SWAN.

The swan; in one or another of its numerous varieties, is aboriginal in all parts of the globe. A large number are to be found in our beautiful Central Park. The proud and

BLACKSMITH'S MEASURING WHEEL

 thermythical. The black necked swan (cygnus nigricollis), of which we present an illustration, is a native of South America, and it rivals the European white bird in the color of its body and wings, while its neck and head are of a splendid black color. In the red color of its bill it also resembles the white swan. A pair of these birds were taken to England and placed in the zoölogical garden of the late Earl Derby, at Knowsley, near Liverpool; and when the collection was dis persed, at Earl Derby's death, the Zoölogical Society, of London, became the possessors. Specimens of the variety are also to be found in the gardens at Amsterdam and Cologne. As shown in our engraving, the young birds are singular ly undeveloped, their necks being especially at variance with those of the grown birds. But time adds to them not only their singularly graceful form and beautiful plumage, but also the prodigious strength for which the whole species is remarkable, instances being on record wherein men's limbs have been broken by the blows of the wings of infuriated swans, whose pugnacity at breeding time is notorious. The females lay from five to eight eggs, the period of incubation being six weeks.

The Year's Business at the Patent Office.
A statement prepared by the Commissioner of Patents for the coming report of the Secretary of the Interior shows that, during the year ending September 30, 1873, there were
filed in the Patent Office 20,354 applications for patents, including reissues and designs;283 applicat:ons for the extension of patents, and 519 applications for the registering of trade marks. Twelve thousand nine hundred and seventeen patents, including reissues and designs, were issued; 235 extended, and 955 allowed, but not. issreed by reason of non-payment of the final fee; 3,274 caveats were filed, and 476 trade marks registered. The fees received during the same period from all sources amounted to $\$ 701,626.72$, and the total expenditure to $\$ 699,449.69$, making the eceipts $\$ 2,177$ in excess of the expenditures. The appropr:ation asked for the fiscal year ending June 30,1875 , is $\$ 693,500$. The expenditures included $\$ 40,000$ for the publication of the Official Gazette,' $\$ 40,000$ for printing current drawings, and $\$ 60,000$ for the reproduction of old drawings. These items were unusual, and account for the absorption of most of the customary excess of receipts over expenditures. The cost of printing current drawings has heretofore been defrayed out of the government printing ffice appropriations. In regard to the reproduction of old drawings, the Commissioner considers the amount expended for that purpose a good: investment, not only with reference to the intelligent advancement of the manufacturing interests of the country, but financially, as they are now being sold at two or three times their actual cost. The Commissioner again invites earnest attention to the great want of additional room for the proper transaction of the business of the Office, stating that is utterly impossible to properly classify the work of the Office, in order to insure its being economically and well done, in the present crowded state of the files, records, and exhibits.

Effect of Artificial Addition of Phosphates to the Food of Lambs.
V. Hofmeister states that two lots, each consisting of three eight weeks old wether lambs, were fei from May to December on hay and potatoes, with a little salt, this diet being selected as characteristically poor in phosphates. One ot received precipitated tricalcic phosphate with its food, the other lot none. During the last 77 days most phosphate was given, the phosphatic diet then containing one fourth more phosphate than was supplied by the vegetable food. The lambs gained about 18 lbs. per head in the six months. Those receiving phosphate showed a distinctly better appetite and drank more water than the others, but their greater increase in weight was insignificant. When slaughtered the only difference between the two lois was a slightly larger weight of stomach. intestines, and lungs, in the case of the lambs receiving phosphate. Five bones of two lambs in each lot were carefally examined. The fresh bones of the

lambs fed with phosphate were on an average slightly the heavier; they had a mean specific gravity of $1 \cdot 384$, the specific gravity of the other lot being 1.350 . Analysis showed that there was generally more water and less fat in the bonss of the lambs fed with phosphate; the dry bones of these lambs also generally contained a slightly larger proportion of incombustible matter; but looking at the absolute quantities found in the bones of the two lots, there was no increase of incombustible matter by feeding with phosphate, but a small increase of phosphoric acid, coupled with a diminution of lime. The amount of fat in most of the bones was very high, reaching to 40 per cent in the dry bone of the fore leg.
Experiments were made as to the digestibility of phos phates. The lambs fed on hay and potatoes (chiefly the latter) digested during six days 25.8 per cent of the phosphoric acid, and 46.0 per cent of the lime contained in their food ; and in another experiment of four days, 40.9 per cent of phosphoric acid and 20.6 per cent of lime. In a further experiment of six days, with two year old sheep, on a similar diet, $43 \cdot 3$ per cent of the phosphoric acid and 43.0 per cent of lime in the food were digested. When the lambs received 6 grammes of precipitated phosphate per day, the whole of the extra phosphoric acid was taken up; but when the quantity was increased to 9 grammes, only about half the phosphoric acid was digested. In no case was all the lime of the phosphate taken up, but a greater proportion of the lime was taken up from the larger dose of phosphate. The old sheep received superphosphate. When 10 grammes were administered per day, the whole of the soluble phosphate was digested; but when the dose was increased to 20 grammes, only 64 per cent of the soluble phosphate was digested. As with the lamks, a greater proportion of lime was takon up from the larger dose of phosphate.- Journal of Chemical Science.

Photographs in Natural Colors

After many unsuccessful attempts, I have at last been fortunate enough to discover a method of producing, with great ease and certainty, heliochromic prints whose colors are closely allied with those of nature. I have obtained by my method reproductions of colored glass and stamps. I can also obtain landscapes in the camera, but with colors rather weak in nature, the result, no doubt, being capable of improvement by having recourse to a better adapted apparatus.

My method of operating, at which I have arrived after numerous trials and experiments, I will now describe:

A sheet of paper, with as fine a grain as possible,
plunged into a silver bath made up as follows:
Nitrate of silver
${ }_{20}^{20}$ parts.
, Distiled wat......................

dded:

Alcohol..
Nitric aci
.100 parts.
When the sheet has been thus treated and dried again, it is further plunged into a solution of

Hydrochloric acid.	50 parts.
Alcohol	50
Nitrate of uran	

A little zinc white is dissolved into the hydrochloric acid beforehand.
After this double treatment, the sheet of paper is exposed to sunlight for a short time, until its surface has assumed a tiolet blue tint. It is then immersed again, after desiccation, in the silver, as also in the hydrochloric bath. These operations are repeated until a most intense blue has been obtained
images.

Before the paper is altogether dry, it is put into another bath, made up by adding a few drops of a solution of mercury, dissolved in nitric acid, to some distilled water. The sheet is allowed to remain from five to ten minutes in this last named bath, and is then dried by contact with blotting paper.
The sheet thus sensitized is then exposed to light under colored glass-a colored magic lantern slide, for instance; and after a period of twenty to thirty seconds in the sunlight, an impression on a white ground is obtained, with all the colors of the model. The colors are more vivid, and the rapidity quite as great, if there is added, to the bath just mentioned,

Saturated solution of bichromate of
 potash or ammonia
 Sulphuric acid.
 ${ }_{2}^{2}$ parts

To fix the prints in some degree, they are washed in plenty of water, and then immersed in

Ammonia................................ . 5 parts.
After again washing, the impression is put in a bath saturated with an alkaline chloride. Then, after a final washing, the image will be found to resist for a considerable time the action of diffused light.

ACTION OF COLORED GLASS.

1. Much greater rapidity is obtained if the chloride of silver paper is darkened under violat or blue glass.
2. If, on its exit from the nitrate of mercury bath, the
sheet is exposed under a colored glass, and there are intersheet is exposed under a colored glass, and there are interes of different colors, it will be observed that the colors appear more rapidly under the yellow, green, and red screens, pear more rapidly under the yellow,
than under the blue and indigo ones.

COMPLEMENTARY COLORS.
The phenomenon of complementary colors, observed by M.

Becquérel when plunging the impressions in ammonia, is exceedingly easy to produce with paper. To effect this, it is only necessary to put the print, after it comes out of the frame, into a solution of carbonate of soda, and then plunge it, after washing, in a solution of nitrate of lead, and expose it to sunlight in a bath of an alkaline chloride. The phe nomenon may also be produced in several other ways.
To reproduce landscapes in the camera, it is necessary to prevent, as much as possible, the action of diffused light, and to do this a cone of cardboard of sufficient length is fixed in front of the lens. The time of exposure with a Darlot lens of about eight inches focal length is from fifteen minutes to an hour, operating with an open stop and in full sunlight.-M. De St. Florent.

THE DEEP INJECTION OF CHLOROFORM.

In a paper recently read before the Academy of Medicine Professor Roberts Bartholow, M. D., says:
It is true that the injection of a few drops of chloroform into the gums for the relief of toothache has been practiced by others, and by myself, with success; but hitherto, as faras I am aware, no one has used the deepinjection of chloroform for the cure of tic douloureux. Indeed, the hypodermic injection of chloroform has been regarded as improper, owing to the violent local inflammation which follows its introduction to the subcutaneous areolar tissue.
The ill effects produced by the injection of chloroform into the areolar tissue are these: vaporization of the chloroform and consequent gaseous distention of the surrounding parts, painful swelling, inflammation, and the formation of an abecess. The pain exverienced by the patient at the moment of
injection is also considerable; and as the needle is withdrawn the chloroform acts with energy on the wounded skin. These are very serious and almost insuperable objections to the hy podermic injection of this agent. Thesame objections do not hold against the deep injection of chloroform according to the method which I practice for the cure of tic douloureux It is true considerable pain is experienced and swelling arises,
but the pain quickly subsides, and no inflammation ensues but the pain quickly subsid
and no abscess is prodaced.
The needle is inserted under the upper lip, which is raised and passed so deeply that its point shall rest near the infraorbital foramen. The chloroform is then slowly injecued. When the needle is withdrawn,firm pressure from the check is made over the point of insertion of the needle, and is maintained for a time to insure the diffusion of the chloroform.
It is generally admitted thatinjection of the anodyne at the site of pain is not necessary to the relief of neuralgia. The curative effect is supposed to bo due to the impression made by the anodyne on the center of consciousness While this is undoubtedly true, there are many reasons for believing that the local influence of an anodyne on the end organs, the seat of an painful impression, is very serviceable, for pain of peripheral origin is mads of two factors, an irritation of the sensory nerves, a realization of this irritation by the centers of conscious impressions. Furthermore, ther dition of nerves, the seat of a painful sensation, reacts bene dition of nerves, the seat of a paintul sensation, reacts bene-
ficially on the center with which they are physiclogically and pathologically connected, although the peripheral pain may be the reflection outwardly of a centric lesion.
It is a singular anatomical fact that the facial vein com municates with the pterygoid plexus and the cavernous sinus hence an injection of chloroform into the part I suggested and practiced in this operation must reach the brain more directly than by any other route. The effect, hence, may be much more decided than when injection is practiced into remote parts.
Case 1.-Mr. M-, aged about fifty years, married, and by occupation a book keeper; a tall, rather spare man, of nervo-sanguine temperament. His hair and beard are freely sprinkled with gray. Although pursuing a sedentary occu pation, he has had considerable outdoor exercise, and led a rather active life. Being in good circumstances, his hygienic surroundings have been favorable. He has lived freely and has always had a good appetite and vigorous digestion. He tobacco.
abacco.
fra orbital ears ago Mr. M. began to suffer with pain in the infra orbital branch of the fifth nerve. The attacks appeared with more or less frequency during the ensuing eighteen
months, and gradually increased in severity. When he presented himself to me for treatment, he was in
the following state: he was emaciated, and his countenance the following state: he was emaciated, and his countenance
was anxious and worn. Owing to the extreme suffering which was anxious and worn. Owing to the extreme suffering which ficient supply of food. Every motion of the lip, the gentlest washing of the face, a touch of the cheek, induced a paroxysm of pain of horrible severity. The pain was on the right side of the face, and was experienced in the infra orbital nerve and its terminal branches. During the paroxysm, the muscles of the face were convulsed, the eye injected, and profuse lachrymation occurred. There was great tenderness to pressure over the infra-orbital foramen, and a slight touch induced a paroxysm of pain. His teeth, although not very
good, did not appear to be the seat of the irritation, for no pain was developed by pressure on or by striking them sharply. Raising of the upper lip always caused a severe paroxysm. In consequence of this, talking was painful, and the attempt to smile brought on an agony of suffering, so that he avoided seeing his friends. There were no evidences of intra-cranial disease except neuralgia, nor was
there a history of specific infection. there a history of specific infection
I determined, as the patient was naturally most anxicus
obtain relief, to inject chloroform. Charging the syringe
with half a drachm of Squibb's chloroform, I passed the needle deeply under the lip, accoraing to the method which I have already described, and injected the chloroform in the neighborhood of the foramen. Mr. W. experienced a very severe paroxysm of pain at the moment: this was succeeded by burning pain at the site of the injection, numbness of the lip, giddiness and sopor, and swelling of the cheek. In ri sing to walk, he staggered and had difficulty in maintaining the vertical position. He went immediately home and laid down, in consequence of the continued vertigo and drowsi ness. The giddiness did not entirely disappear for twenty four hours or more. The pain ceased and has not since re turned, a period of more than three months having now elapsed. The patient did not again present himself until three weeks, being desirous to ascertain, beyond peradventure, that his relief was permanent, a fact. which he could scarcely realize after the protracted and agonizing suffering which he had endured. A remarkable improvement had occurred in general condition in this time. He had gained largely in weight, and his countenance wore a cheer ful expression, instead of the anxious and suffering appearance which it had before presented.
Case 2.-Mr. E. V. W-, farmer by occupation, aged about fifty-six, a man of medium height, compactly built, and of bilio-nervo-sanguinous temperament. He always had enjoyed good health and led an active outdoor life. About five years ago,he began to experience decided pain in the infraorbital division of the right fifth nerve. The paroxysms oc upred at first at long intervals; within the past year they have rapidly increased, and during the last three munths have been almost continuous. During thistime, the lightest touch on the surface of cheek, a current of air, washing the face, raising the lower lip, and especially the mastication of food, have given rise to horrible paroxysms. Lately he has found it necessary to eat alone. The frightful contortion of the muscles of the face, and the rolling of tears down his cheek during mastication, have excited so much apprehension in his family and friends as to render this isolation neces sary.
As is usual in these cases of tic douloureux, the countenance oî this patient expressed great suffering. He looked worn and anxious. When giving me his history, he had repeated paroxysms, during which the muscles on that side of the face became convulsed, the tears rolled down his cheeks, he ceased to speak, and his countenance wore an expression of great agony. He described the pains as of two kinds: a sensation of painful vibration in the face, eye, and forehead, and sudden darting pain, of intense severity, shooting up through the jaw to the eye and head. When I lifted up the ip to examine the mouth he had an atrocious attack, and begged me to desist until the paroxysm ceased. There was no disease of the teeth. Besid:s the nouralgia, he had no symptom of cerebral disease. His funcions were otherwise normal. The loss of flesh was plairly due to the difficulty experienced in taking in a sufficient supply of food.
I injected, in the way already describsd, thirty minims of chloroform. This brought on a severe paroxysm of pain, which continued for a few minutes, but was succeeded by a feeling of relief, numbuess of the face and lip, some drowsiness and swelling of the cheek. The relief to the pain lasted nearly twenty-fuur hours, when a light paroxysm ensued and the injection was repeared. In all, furinj-ctions were made in space of a week, but no pain was experienc-d after the second injection. At the expiration of two weeks baving had, meanwhile, no recurrence of his old malady, he called to say he was perfectly well. As he has not since presented himself, I have no doubt that he continues free from any return of the disease.

Embalming the Dead.-In the Vienna Exposition there were several specimens of the embalming of parts of the hu man body. Those exhibited by Dr. Marini, of Naples, were particularly to be noted. One of these was a large round table made of muscles, sinews, etc., of a dark brown color, with a handsome polish. Among his other exploits he petrified Thalberg, the deceased pianist, and the widow is said to keep the corpse in her drawing room. He also embalmed Mazzini, and so well that some of the more economical ad mirers of that statesman urged that the body should be set up in Rome as a statue, and thus save expense.

Sagacity of Brids.-Certain facts render it probable that birds, in some manner, become aware of cholera infection in the air. Recent European journals state that at Munich, where several cases of cholera have occurred, the rooks and crows, which flew about the steeples and through the trees of the public promenades, have all emigrated; and the same thing happened during the cholera seasons of 1836 and 1854. According to Sir Samuel W. Baker, the same phenomena occurred at Mauritius, where the martins, which exist in immense numbers the year round, wholly disappeared during the prevalence of the cholera.

Qualitatife Anialysis of Benzine.-Commercial benzine often contains quite a large proportion of petroleum which leaves a disagreeable odor when the benzine is em ployed for the removal of grease. A small piece of pitch is placed in a test tube and the suspected liqnid poured upon t. Pure benzine will readily dissolve the pitch, forming a tarry mass, while adulterated benzine will be less and less colored in proportion to the amount of petroleum contained in it. Coal tar wil dissolve easily in pure benzine, but forms distinct layers when impure material is employed for forms distinct

science and health.

The American Public Health Association, a body the ob jects of which are sufficiently indicated by its name, recently held its second annual meeting in this city. A number of interesting and valuable papers by eminent physicians and others were read, of the more important of which we give abstracts herewith.
Dr. Nathan Allen, speaking upon the laws of longevity pointed out that a mind well cultivated and balanced, cheer fuldisposition, temperate and regular habits, are great pro moters of long life. Hence longevity is found among civilized nations more than among savages. The prerequisites of prolonged life may be classed under the heads of constitution, inheritance, and obedience to laws. It was finally considered that physiology in its practical application is yet in its infancy; and when it is thoroughly understood in the family and the schoolhouse, the duration of life will be greatly increased.
the houseemeper's responsibility
formed the subject of some excellent remarks by Dr. Edward James, of Dorchester, Mass., in which he said that man is more affected by the kind of food he eats than the lower animals, because he is of a more sensitive disposition. All measures of his life ought to depend on his digestion, and the methods of his housekeeper. The stomach is originally methods of his housekeeper. The stomach is originally
sound. It can digest and convert all proper food necessary sound. It can digest and convert all proper food necessary
for the support of the animal body, if it is suitably selected for the support of the animal body, it it is suitably selected
and prepared. If, after our meal, the stomach complains, we have headache, or are languid, nervous, depressed, have pains of neuralgia or indigestion, or our energies are overborne, it must be referred to the way in which we have treated the stomach by putting unsuitable burdens upon it. A large portion of these ills are due probably to our own fault, and to our love of what we call really good eating; but the cook and housekeeper are, more likely, to blame.
Dr. Hamlyn, of Bangor, referring to
diet,
considered that, in the selection of meat for food, there is too little care. Flesh contains the elements of vicious poison. Butcher's meat contains but a small portion of nutrimene, as shown by French physicians. It is now exposed to the air before serving it for the table. The exposure deprives it of a portion of its nutriment. Animals should be stalled and fed before being offered for food; but so far from that being the case, they are brought here by long travel in cars, worn and harassed. The meat should be prepared at the pastures of the cattle; and if necessary, the law of the nation should secure such a consummation.
the sanitary relation of health and architecture was considered by Mr. Carl Pfeiffer as of great importance, inasmuch as the architect furnishe; the human body, by means of its dwelling place, its house, with the proper medicine wherewith to regulate its intercourse with what is its chief food and necessity-air. As this chief food exceeds in amount three thousand times that of all other kinds, so in proportion is the science of building a proper house of pre-eminent importance to the science of hygiene. One of the first principles of architecture is that the material of
builaings should be dry and porous. The furniture can chill and produce rheumatic affections if it is damp or has been loug in an unheated room. Cold bedrooms are breeders of disease unless they have ventilation besides their cold. of disease unless they have ventilation besides their cold.
People sleep in airtight cold rooms and believe they are People sleep in airtight cold rooms and believe they are
doing a wondrous thing for their health, particularly if they have the bedroom aired in the morning. All night long the air stays unmoved and becomes slowly poisoned, while the evaporation of the body settles upon the walls and makes the room more and more airtight.
Referring to the
refuse of cities,
Dr. C. A. Leas, of Baltimore, recommended great care and regularity in removing the ashes and garbage from the various sections. He urged that carts should be employed in this service, and that ashes and vegetable matter should be kept in separate receptacles, and emptied at regular and
stated times: stated times.
Dr. Storer, of Boston, read a paper on the same subject, recommending a change in the method of disposing of the offal of slaughter houses. The most effectual way was to build chambers or ovens four or five feet square, where the gases and steam may be burned. Public health demanded that the offal and dead animals of a city should not be permitted to accumulate.
Dr. Russell's report on

yellow fever in loutstana

was read by Dr. White, of New Orleans. It was reported that the cases at Shreveport and Memphis were not more malignant than those found in New Orleans, and that the sprinkling of carbolic acid and hygienic measures are almost
sure to moderate the disease. It is a strange fact that no single colored person took the yellow fever, and they farely ever take it unless it is fiercely epidemic.
'For use in this city we have dead oil, and for streets carbolic acid. In applying these disinfectants, we applied 170 per cent of carbolic acid, and a chloride of zinc and iron,
precipitated from scrap tin, which we used through water precipitated from scrap tin, which we used through water
carts by a hose attachment, by which three men, going as fast as a horse could walk, could sprinkle each gutter; and by this means we have sprinkled 150 miles a week. No complaint of the smell of carbolic acid ever came to us. We
were able, with dead oil and zinc solution, to disinfect about 120 outbuildings a day."
Dr. White said: In New Orleans they sprinkled carbclic acid on the velvets and silks in houses, as disinfectants, as it could not destroy colors.

General Francis A. Walker, superintendent of the United States census, followed in an interesting paper on the statistics of mortality,
in which the proportion of deaths among all classes wa shown, as follows:
Colored. .
Irish....
German.

.126 in 1,000 48 in 1,000

Share of deaths.
137 in 1,000
55 in 1,000

55 in 1,000
38 in 1,000

15

The large proportion of dearhs from accidental causes among the latter class may be perhaps attributed to the fact that so large a number of the Welsh population are miners From the severity of our climate, all foreign elements tend somewhat to consumption when on our shores. In the South the native colored furnish a less mortality from consumption than the average, while in the North it is much greater than the average.
. Lewis W. Leeds then read a paper on
the sanitary elements in dwellings.
He thought it was a mistake to overheat all the fresh air as fast as it was admitted to our hospitals and public and private buildings. He had come to the conclusion that all artificially warmed air was injurious to animal life. Nature's method of warming was a warm floor, heated by the obstruction of the sun's rays, while the air above is cold.
A report upon the
HABITS OF YELLOW FEVER
was then read by J. M. Toner, M. D., of Washington. One question was whether elevation had had anything to do in the escape from yellow fever. Its favorite places were between the 45 th and 100th degrees of longitude, and the 35th north and 35 th south degrees of latitude. The strata of air in which yellow fever exists is heavier and lower than the surrounding air. From the facts gathered together, it would seem clear that this disease in the United States never exists above 500 feet. If it can be shown that the existence of yel. low fever depends entirely upon the elevation, a great dea will have been done in the investigation.

atMOSPHERIC ELECTRICITY AND OZONE

was the title of a paper read by Dr. George M. Beard of this city. He said that it has been shown that there are two daily tides of positive atmospheric electricity. In the morning between 6 and 9 o'clock, the atmospheric tide is at its hight, falling somewhat between 2 and 5 P. M., rising again between 6 and 9 P. M., and falling to a minimum between 2 and 5 A. M. Similar variations are noticeable in the months, the tide of atmospheric electrisity being highest through the months of January and February, gradually subsiding in the months of March, April, May, June, July, and August, when it is at its minimum, and gradually rising again through September, October, November, and Dacember It has been stated that there is a relation between ozone and intermittent and remittent fevers; that rheumatism is prevalent when ozone is deficient; and that when ozone is in
excess, diphtheria, scarlet fever, small pox, measles, scarlaexcess, diphtheria, scarlet fever, small pox, measles, scarla
tina, and other cutaneous affections become prevalent. tina, and other cutaneous affections become prevalent.
Comparative researches regarding atmospheric electricity, if conducted to a large extent under government supervision, would help to explain the extraordinary stimulative character of the climate of California, to explain the fact that sunstrokes are almost unknown on the Pacific coast, and per haps elucidate some of the unknown causes of other wondrous effects of our climate.
Professor Chandler, in the course of remarks on

THE SANITARY CHEMISTRY OF WATER,

observed that the organic matter which is dangerousin water is sewage, and many diseases, especially cases of typhoid
fever, have been developed by the presence of these impuri fever, have been developed by the presence of these impuri-
ties in water. Actual experiment shows that water which ties in water. Actual experiment shows that water which
remains overnight in lead pipes in New York contains 1-10 of a grain of lead to the gallon. It seems to be well established now that rivers possess the power of self-purification, and the drainage of a great city can be received within an ordinary river without destruction of its wholesomeness. The Croton water brought to this city every day contains 224 tuns of mineral matter. To poison the Croton water for not; probably, a tun of strychnin in the world. It would not, probably, a tun of strychnin in the world.
take 114 tuns of arsenic to serve the same purpose. So it may be seen that threats of poisoning the Croton supply during the war were ridiculous.
President White,of Cornell University, delivered an interesting address on

GENERAL SANITARY TOPICS

and proper education in hygiene. He said; "I would have simple text books in physiology introduced in our common
schools; but, better still, I would have short courses of lecschools; but, better still, I would have short courses of lec-
tures by competent physicians. It thus becomes a study of living man by living man to living man. Physiology should be taught througbout a college course. The science of sanitary engineering is not so large that the main elements culum, but the substitution of sanitary studies will well replace some of the now well worn classics."
THE GERM THEORY OF DISEASE IN ITS RELATION TO HYGIENE was the subject of an able discourse by President Barnard, in which the view was taken that the laws of health and disease were as well defined as those of the mathematics, and the only obstacle was the difficulty attending their discovery. No living organism enjoyed an existence prolonged to an indefinite length, and life began in the germ and ended in dissolution and disintegration. In the human race life was After discussing the germ theory, the speaker concluded by
saying that drugs wiere already falling into disrepute, and he hoped to see the time when, through medical science, infectious diseases would be extirpated, and men would live out the time that Heaven intended they should.

Soap Soluble in Sea Water (M. Manin).-Oil or fat, 46 parts; resin, 10 parts; fish glue, 40 parts ; soda or potash, part ; oxalate of potash, 1 part. The oil and resin are sa ponified as usual, but with an excess of alkali, the glue pre viously rendered gelatinous by solution in oxalate of potash with constant stirring to 50° or 60°.

ANOTHER newspaper concern is to attempt the passage of
Ahe Atlantic by balloon. This time it is the Evening Herald the Atlantic by balloon. This time it is the Evening Herald
of Philadelphia. It is to be a hot air balloon, and is now in f Philadelphia. It is to be a hot air balloon, and is now in

Tercut gmexican and forrigu zeututs.

Improved Hydraulic Brake. John F. Taylor, Charleston, S . C. This invention consists in means

 whereby steam, water and air may be conjointly applied to operate car brakes with great certainty, efflciency and economy. Two steam cylinders and two water cylinders have an outlet tube, so connected with the ramsthat the introduction of steam in one cylinger results in the expulsion on that the introduction of steam in one cyllnder results in the expulsion of
water from the other. The steam valves and valves of the water outlet tube are connected by intermediate mechanism and operated by one nd the same lever. The piston rod of the hydraulic engine is connected With brake bars. Provision is made for readily applying the brakes, in cas of rupture or breakage of the connecting pipes.
Improved Apparatus for Cleansing Dyed Wool, etc.
James E. Ackroyd, Chester, Pa.-This invention consists of a trough attached to a tank for holding the wool and the scouring and cleansing
mixture, having one side curved from bottom to top, and provided on the mixture, having one side curved from bottom to top, and provided on th
inside with fixed blocks or wire netting. Above there is a curved urack which a carriage having blades projecting down to the curved bottoms is arranged to run forward and backward to force the wool up the sides of the
tank and over the blocks. The latter are fnclined on the sides againe tank and over the blocks. The latter are inclined on the sides against which the wool is forced, and the arms of the truck are hinged so as to
swing up and pass over any portion of the wool that may be under the swing up and pass over any portion of the wool that m
pointsingoing back, so as not to tear and injure the fiber.

Improved Mop Holder.
Elon M. Naramore, Underhill, Vt.-This invention consists of a lateral mob is tightly held. The wire clamp is provided with coiled springs, which wing sidewise on pivots of the head plece, with upward extending part hooked to the sides of the handle.
Michael B. White, McLean County, Ill. The spoke is provided with a round, shouldered tenon, which enters a hole in the felly. The thimble and on such reduced portion a nut is screwed, and also a jam nut. The himble is applied to the spoke tenon with its larger end abutting agains the shoulder thereof, and has ribs which take into no ches on the spoke, or the purpose of preventing the thimble from turung. When the tyre equires to be tightened, or the felly adjusted, a wrench is applied to the larger nut, and it is turned or screwed back toward the felly untll the diso
tance between the spoke shoulder and the felly has been suffliently in creased to produce the desired effect.
Improved Pitman Rod.
Samuel N. Wate, Jr., Danville, Pa., assignor to himself and Peter J Adams, of same place.-This invention consists in improving the pitman rod connection for whichletters patent were granted to the same inventor, Nov , 1872. The forward end of a screw, to which is atcached a milled nut, The body of the screw passes through a washer. anditsotherend isinserted in the rod. This end of the screw is flat, to prevent the screw from turnia when the nut is screwed down against the rod. Bolts, which pass through lotted holes in the straps, fit tight in the rod and brass, and are moved with the latter as they are pushed outward; but the hole through the long strap for one bolt, and the hole for the other in the short strap, are so arranged ant, when the screw and nut push out the rod. block, and brass, the strap apart, so that all the wear and lost motion is taken up without changing the length of the rod. The two cross bars described in the former patent are taken out, and the two bolts mentioned substituted.

Improved Jig Saw. Plain, N.Y.-In the front

Marvin E. Weller, Fort Plain, N.Y.-In the front of the frame is a vertical ovetail groove, in which a corresponding tongue on the adjusting plate its to control sald plate in adjusting it up and down and to hold it. For
the latter purpose, an eccentric cam is arranged, provided with a weighted the latter purpose, an eccen 4 ric cam is arranged, provided with a weighted
arm, which, when it falls, causes the eccentric to bear the tongue against arm, which, when it falls, causes the eccentric to bear the tongue against
the walls of the groove with sufficient force to bind it fast. There is sult able mechanism in order to lift the weighted lever and unfasten the plate by the hand used for adjusting said plate, and at or just before the time of djusting it . Thus only one hand is employed for these two purposes, and he other is free to do other things necessary to be done at the same time. The upper cross head carries a couple of griping jaws pivoted near their
lower ends, and curved, outward and then backward, nearly together at heir upper ends to provide room for a ball between them, to which a spring is connected. The upper end of the saw, having a slight head upset on it; is placed between the said jaws at the lower ends, and the spring is hitched o the ball, so as to pull it upward between the upper ends of the jaws, which forces the lower ends to gripe the saw and hold it with great foree.
The lower cross head has two sllding jaws oetween twoinclined plates and The lower cross head has two sliding jaws between twoinclined plates, and
double spring connected with said jaws, and extending down to an eccen: tric lever. The saw, also having a small head upset on the lower end, is placed between the jaws at their upper ends, and they are forced up by the
two levers between the inclined plates, and thereby forced hard against the two levers between the inclined plates, and thereby forced hard against the
saw. These modes of fastening the saw are very simpie, and allow of saw. These modes of fastening the saw are very simple, and
changing the saws with but very little labor and loss of time.

Improved Life Preserver,
George and Charles Palmer, Morris Run, Pa.-This tnvention consists in anige cape weaterproof, water repelent and the usual protection for sailors and seaforing people it tsalso it affords the us
ife preserver.
Improved Bee Hive.
John H. Shook, Normal, min.- The feature of nevelty in this hive is the ar angement of the honey frames on the comb frames proper, so that both
nay be supported by the same hinges, and removed from thehive together may be supported by the same hinges, and removed
Improved Car Brake.
James B. Pelton, Mt. Pleasant, Md.- - This invention relates to that class brakes which are operated by steam from the locoriotive. It consists in he mode of providing the cord with a take-up mechanism by means of a
tube and pulley frame, jointed so as to fold up when the triclis come close together, and to unfold as they separate, thereby maintaining a constan tautness in the cord which connects the power with the brake
and preventing the brakes from being applied unintentionally.

Arms of the Law.

,unless ft be the sand club or slung shot, is more liable to cause severe injury or even death by a single well directed and heavy blow than the ordinary policeman's
"locust." For the preservation of order and peace, it is manifestly necessary to provide men with sultable weapons, A recent Invention of Messrs. Simon Beery, of Ohio, and J. W. McDonald, of Texas, for which a patent has lately been granted, is an elastic baton, of gutta percha,indiarubber or heavy wooden "billy."

Improved Wheel Cultivator.
James F. Ms tchet and Perry W. Smith, Paris, Mo.-The axles at the inner
ends of the hubs of the wheels are bent forward at right angles, and after projecting a short distance are bent upward at right angles. The bow is made double, and the parts of its ends are horizontal, parallel with each other, and at such a distance apart as to receive the coupling between
them. The ends of the double bow have holes formed through them to rethem. The ends of the double bow have holes formed through them to re-
celve and work upon the upright parts of the axles. The middle parts of celve and work upon the upright parts of the axles. The middle parts of
the bow are at such a distance apart as to receive the tongue between them the bow are at such a distance apart as to recelve the tongue between them
and allow the said tongue and bow to work freely upon each other and upon the bolt that pivots them to each other. The intermediate parts of the double bow are close together, and are rigidly connected. To the rear end of the tongue is pivoted a cross bar, the ends of which are pivoted to arms
the lower and forward ends of which are rigidly attached to the upper the lower and forward ends of which are rigidly attached to the upper
ends of the upright parts of the axle. The invention consists in the parts above mentioned above mentioned all pivoted together and mov
in combination with the beut sectional axles.

Improved Manufacture of Iron and Steel. Edgar Peckham, Antwerp, N. Y.-The object of this invention is to pro
duce a thorough separation of the impure cinder from the metal, and in this duce a thorough separation of the impure cinder from the metal, and in this
manner purify the iron or steel. This method consists in drawing off and manner purify the iron or steel. This method consists in drawing off and
removing from the fire or furnace the impure cinder arising from the ore or pig tron as fast.or nearly as fast, as it is made, and supplying its place (by
the use of a flux) with a pure cinder. If the impure cinder arising from the use of a flux) with a pure cinder. If the impure cinder arising from
the ore or pig iron should be thick, and not liquid enough to separate thorthe ore or pig fron should be the metal (as is otten the case with cinder arising from ores or pig iron containing silica), enough flux is added to it to make it liquild, so it will separatelfrom thelmeteal, ohen it is drawn off, and its place supplied with
a pure cinder by adding more flux, and in this manner the impurities are separated from the iron or steel. Lime, filint, spar, or lean hematite or specular ore, or any other substance that will produce a liquid cinder free from impuritiesis used as a flux, depending somewhat upon the charac ter of

Improved Tag Fastener.
, Norfolk, Va. - Theimprovement
John M. Goodridge, Norfolk, Va.-Theimprovement consists in the manner of attaching a hook to the card or label by means of a cross bar. The hook is made of tlat sheet metal, and its upper part is in the form of the
letter T reversed. The cross of the T is attached to the card. At the end
of the vertical part is a double barb, which securely holds the hook in place of the vertical part is a do
when it is once attached.
Joseph L. Britt and Troy R. Britt, of Raletgh, ists of a peculiar and simple arran, operating mechanism, the said supports are mounted on the churn top, so that the dasher and driving gear are all removed wh
off, to afford unobstructed access to the churn case.

Improved Eige-Protecting Welt for Boots and Shoes, John Green, Brooklyn, assignor to himself and Joseph Bach, New Yor
city.-This invention is a welt for the protection of the shoe upper, formed of a long narrow strip of leather or orther material rabbeted on the upper
side to recelve the upper, and bent or molded to conform to the shape or side to receive the up
outline of the sole.
Improved Belt Clamp.
base piece and a top plece, which are conuected by suitable thumb screws. Both pieces are grooved at their inner sides, taking hold of the belt-like
jaws to prevent its slipping. The top piece is rounded off a tone side and jaws to prevent its slipping. The top plece is rounded off at one side and
straight at the other, so that it may be swung open on one screw, and be quickly attached to the belt. The hole for the other onumb screw in be quickiy attached to the belt. The hole for the other thumb screw in
same piece is slotetd for opening and closing the same on the belt. The
ends of under piece are provided with recesses, and at their outer edges at ends of under piece are provided with recesses, and at their outer edges at
the off-side of the belt ends with lugs. Rods extend longitudnally in recesses and connect the clamps, having right and left hand serew threads,
with nuts working thereon. with nuts working thereon. A ratchet is placed centrally on the rods for
turning the same. After the clamps are applied, the rods connect them, as the lugs serve to retain thenuts in fixed position. Each turn of the ratch. et produces then the gradual approach of clamps, and, consequently, the
tightening of the belt for lacing, etc. William M. Baker, Fortville, Ind.-This Invention
provements upon the refrigerators patented by the same inventor Decemprovements upon the refrigerators patented by the same inventor Decem-
ber 21, 1872, and May 6,1873 : and consists mainly in providing, by a compact arrangement of the ice chamber, in combination with the cold water and
air chambers, a larger space for the provision chambers, and a complete
and uniform ventilation of the same.

Walter R. Carter, Brooklyn, N. Y.-This invention cond

 ng the conple of long thin bars, supported horizontally side by side in a stand of any suitable tween them, to expose the line directly above the edge of one of the bars Which serves as a guide to the copyline is copied, to expose the next.

Improved Refrigerator and Cooler.
 -This invention co

 outer box provided with doors in front. and at each end of its top, and islined with galvanized iron. In the middle part of the case is placed a box also made of galvanized iron, and which is so supported as to leave a space
between it and the lining uponits top, bottom, back, and sides. The inner box is designed to recelve things to be cooled or preserved. In the spaces
at the ends of the outer hox are placed vessels to receive liquids to be cooled, and which are made of such a shapeand size as to leave spaces between them and the lining and the box for ice. Pipes lead into the vessels
through the bottom of the case, and are designed to extend to the casks or other receptacles in which the beer or other liquid is kept, so that the said liquid may be forced into the said vessels by torce pumps.
Improved Picket Fence.
$\begin{aligned} & \text { Robert H. McGinty, Moulton, Texas.-This fence is composed of two } \\ & \text { kinds of posts. Those forming the greater number rest upon the ground. }\end{aligned}$. kinds of posts. Those forming the greater number rest upon the ground.
The others are arranged atintervals, and are longer than the posts first The others are arranged atintervals, and are longer than the posts first
mentioned. The distinguishing features of the ience are the zigzag base
and stralght top. The posts (both long and short) are arranged in panels and stralght top. The posts (both long and short) are arranged in panels
which brace alternately in each direction, but the tops of some of the posts which brace alternately in each direction, but the tops of some of the posts
are brought to a line of wire. The wires are bound together between the posts by linkswhich are so applied that the wires are drawn tightly against the sides of the posts, thus binding all of them together, and rendering the
fence strong and substantial. A fence is thus made of short timber of the fence strong and sabstantial. A fence is thus made of short timber of the
most durable kind, one well calculated to resist the currents of water as most durable ki
well as wind.

Improved Cosmetic Bottle.
Mary H. Huntington, Watertown, N. Y.-This invention consists of a cup on the top of the bottle or on the stopper, soarranged that some of the con-
tents of the bottle will flow into it when the bottle is laid on one side, and tents of the bottle will flow into it when the bottle is laid on one side, and
be held conveniently to be taken up by a sponge, brush, or other article for use, and the remainder will flow back into the botile again when it is placed
upright. The object is to avoid the use of a separate cup and the waste attending it, as in the present mode of using cosmetics.

Improved Reel for Harvesters.

John Werner, Jr., Prairie Du Sac, Wis.-The journals of the reel revolve
in bearings, which slide upon bars in which several holes are formed to receive pins or bolts, so that the bearings may be moved to adjust the reel forward and back. To the bars also are pivoted the upper ends of connect-
ing rods, the lower ends of which are pivoted to the outer arms of bent ing rods, the lower ends of which are pivoted to the outer arms of bent
levers, which are pivoted at their angles, and in a reversed position, with respect to each other, to a bar of the frame. To the inner armsof the bent levers are pivoted the ends of another connecting rod. By this arrange-
ment the two bars will be made to move exactly togather, so that the reel ment the two bars will be made to move exach
will always be raised and lowered squarely. The reel may also be ralsed and lowered by operating a suitable lever and held securely in any position
into which it may be adjusted.

Improved Bolt and Rod Cutter.
Lewis H. Smith, Stryker, - This invention consists of a main cutter or lever or bar, to which is attached an eccentric lever, which bears on the
revolving wheel of a sliding cutter acting on the bolts or rods. The opening of the cutters is produced by the action of the eccentric lever on a curved lever having fil
on the sliding cutter.

Improved Car Coupling

Oscar Taylor, Grand Rapids, WIs.-The bumper head is made in two parts, upper and lower, divided horizontally and in the direction of their length. The upper part near its inner end has a rounded projection which fits and
is pivoted in a corresponding recess in the lower part. At the forward end of both parts are shoulders. Between these enters the coupling bar,
the end of which has corresponding projections which engage with said shoulders. To theinclinedinner surface of the lower part is attached a spring which is held down against said inclined surface by projections of the upper part, an 1 which, when said upper part is raised in uncoupling the cars, raises the shoulder of the coupling bar. The upper part is raised to ap to the platform or top of the car, or to both places.
lmproved Scaffold Pole Clamp.
Henry Haering and Herman Alles, New York city.-For fastening the horizontal poles to the vertical poles of scaffolds, it is proposed to have a short lever pivoted at the middle in a yoke next to its bottom ead, so that
the lower end, which is curved to fit the side of a round pole, will emorace the lower end, which is curved to fit the side of a round pole, will emorace
a horizontal pole and press it tight against the side of the vertical pole. The yoke embraces the vertical pole and is powerfully drawn aganns', it by eccentric lever pivoted in the bais at the open end on the side of the lever is forced against the vertical pole above the yoke, so that points
upon said extremity, as well as upon the 1..ce of the eccentric lever, will e driven into the pole and prevent the clamp from slipping down. Wi.e eccentric lever is fastened with a binding chain pressed around the poie and attached to it. The lever, which clamps the horizontal pole, is detach.
ably connected to the yoke, so that the yoke and the eccentric lever may be used without the clamping lev \sim for a splice clamp for clamping two pole
together lengthwise, accordi $;$ to a method heretofore patented by same inventors.
Frederick L. Trayser, Maysville, Ky.-This invention consists of a combined repeating and back check attachment to the French grand action, by which it is designed to render sald action equal to the most perfect repeating action. The attachment consists of a notched arm on the hammer rod
and an adjustable headed screw on the jack, so contrived that, as the hammer drops from the string, it is caught by the head of the screw in thenotch of the arm and held in check about a quarter of an inch from the string, to hlow to vibrate. The rebound is prevented by the heel of the arm belo jack, hammer butt, notched arm, and adjusting rod is such that, after the hammer is caught this way, the key being allowed to rise slowly, the jack
will again fall into its notch as soon as the key has risen an eighth of an inch, so
amount.

Improved Children's Carriage.
John G. Kamphaus, Pittsburgh, Pa.-This invention relates to the con the axle with the bolster, by means of which concussion and jolting are

Inventions Patented in England by Americans.

[Compiled from the Commissioners of Patents' Journal.]
From October 14 to October 27 , 1873, inclusive.
Bessemer Converter.-J. E. Sherman (of Bucksport, Me.), Norbiton,Eng. Boot Tacks.-L. R. Blake, Erooklyi, N. Y
Driving Boot Tacks.-L. R. Blake, Brooklyn, N. Y.
Friction Bearing.-T. A. Weston, Ridge wood, n. J
Iron Manufacture.-J. E. Sherman (of Bucksport,
, Norbiton, Eng.
Lock Washer.-K. H. Loomis (of New York city), London, England. Loom.-G. Merrill, New York ctty.
Passenger heaister.-J. T. Parlour (of Brooklyn, N.Y.), London, Eng.
Raising Machinery.-T. a. Weston, Ridgewood, N. J. Raising Machinery.-T. a. Weston, Ridgewood, M.
Rotary Engine.-J. b. Bennett, Brooklyn, N. Y.

Value of Patents,

 and how To obrain rikil Pracical Iints to lireanoris.

ROBABLY noinvestment of a small sum of money brings a greater return than the expense incurred in obtaining a patent
even when the invention is but a small one. Larger inventions are found to pay correspondingly well. Thenames of Blanchard, Morse, Bigelow, Colt, Ericsson, Howe, McCormick, Hoe, and Morse, Bigelow, Colt, Ericsson, Howe, McCormick, Hoe, and
others, who have amassed immense fortunes from their inven-
tions are well known. And there are thousands of others who tions, are well known. And there are thousa
have realized large sums from their patents.
More than Fiftr Thousand inventors have availed themselve of the services of MUNN \& Co. during the TWENTY-SIX years they have acted as solicitors and Publishers of the ScIENTIFIC AMERICAN
They stand at the head in this class of business; and their large corps pable of rendering the best service to the inventor, frcm the experienc pabie of rendically obtained while examiners in the Patent Office: enables MONN \&
pract to do everything appertaining to patents BETTER and CHEAPER than Co. to do everything appert
any other reliable agency.
HOW
This is the closing inquiry in
 swer can only be had by presenting a complete application for a patent to ing, Petition, Oath, and full Specification. Various official rules and formalities must \&lso be observed. The efforts of the inventor to do all this
business himself aregenerally without success, After great ter business himself aregenerally without success. After great perplexity and
delay, he is usually glad to seek the aid of persons experienced in patent
business, and have all the work business, and have all the work done over again. The best plan is to solicit
proper advice at the beginning. If the parties consulted are honorable men, proper advice at the beginning. If the parties consulted are honorable men,
the inventor may safely confide his ideas to them, they will advise whether eimprovement is probably patentable, and will give him all the directions

How Can I Best Secure my Invention?

 This is an inquiry which one inventor naturally asks another, who has had some experieand correct:
Construct a neat model, not over a foot in any dimension-smallerif pos-
sible-and send by express, prepaid, addressed to MUNA\& Co.,37Park Row New York, together with a description of its operation and merits. On recetpt thereof, they will examine the invention carefully, and advise you as
to tis patentability, free of charge. Or, if your, have ciot time, or the means
at hand, to construct a model, make as good a pen and ink sketck of the e
Improvement as possibie and send by mail. An answer as to the prospect of a patent will be received, usually, by return of mail. It is sometimes the cost of an aprlication for a patent.
Preliminary Examinatiom.
In order to have such search, make ouc a written description of the inven tion, in your own words, and a pencil, or pen and ink, sketch. Send thescwith the fee of $\$ 5$, by maill, address 3d to MunN \& Co., 37 Park Row, and in
due time you will receive an acknowledgment thereof, followed by a written report in regard to the patentability of your improvement. This special search is made with great care, among the models and patents at Washing.
ton, to aseertain whether the improvement presented i3 patentable. Rejected Cases.
Rejected cases, or defective papers, remodeled for parties who have made applications for themselves, or through other agents. Terms moderate

To Make an Application for a Patent.
The applicant for a patent should furnish a model of his invention if sus ceptible of one, although sometimes it may be dispensed with; or if the tn
vention be \& chemical production, he must furnish samples of the ingredients of which his composition consists. These should be securely packed,
the inventor's name marked cn them, and sent by express, prepaid. Small the tnventor's name marked cn them, and sent by express, prepald. Small
models, from a distance, can often be sent cieaper by mail. The safest way to remit money is by a draft, or pos al order, on New York, payable to
the order of MUNN \& Co. Persons who live in remote parts of the country the order of MUNN \& Co. Persons who live in remote parts of the country
can usually purchase drafts from their merchants on their New York corcan usually pu
respondents.

Caveats.

Persons desiring to file a caveat can have the papers prepared in the short est time, by sending s sketch and description of the invention. The Govern meat fee for a caveat is $\$ 10$. A pamphlet of advice regarding applications
for patents and caveats is furnished gratis, on application by mall. Address MUNN \& Co., 37 Park Row, New York.

Reissues.

A retssue is granted to the original patentee, his heirs, or the assignees of he entire interest, when, by reason of an insufficient or defective specifica
ton, the original patent is invalid, provided the error has arisen from inad vertence, accident, or mistake, without any fraudulent or deceptive inten-
A patentee may, at his option, have in his retssue a separate patent for each distinct part of the invention comprehended in his original application by paying the required fee in each case, and complying with the other re-
quirements of the law, as in original applications. Address MUNN \& Co. 37 Park Row, for full particular

Design Patents.

Foreign designers and manufacturers, who send goods to this country
may secure patents here upon theirnew patterns, and thus prevent other from fabricating or selling the same goods in this marike
A patent for a design may be granted to any person, whether citizen or alien, for any new and original design for a manufacture. bust, statue, alto en, silk, cotton, or other fabrics ; any new and original impression, orna ment, pattern, print, or picture, to be printed, painted, cast, or otherwise placed on or worked into any article of manufacture.
Design patents are equally as important to cititizens as to foreigners. For
full particulars send for pamphlet to MuNN \& Co., 37 Park Row, New York. Foreign Patents. The population of Great Britain is 31,000,000; of France, $37,000,000 ;$ Be1
gum, $5,000,000$; Austria, $36,000,000$: Prussia, $40,000,000$; and Russia, $70,000,000$ Patents may be secured by American citizens in all of these countries.
Now is the time, while business is dull at home, to take advantage of these Now is the time, while business is dull at home, to take advantage of these
immense foreign fields. Mechanical improvements of all kinds are always immense foreign fields. Mechanical improvements of all kinds are always
in demand in Europe. There will never be a betion time than the present in demand in Europe. There will never be a betier time than the presen
to take patents abroad. We have reliable business connections with the principal capitals of Europe. A large share of all the patents secured in MUNN \& Co., 77 Park Row, New York. Circulars with fuil information on foreign patents, furnished free.
Value of Extended Patents.
Did patentees realize the fact that their inventions are likely to be more productive of profit during the seven years of extension than the first ful
term for which their patents were granted, we think more would avail them selves of the extension privilege. Patents grayted prior to 1861 may be ex-
tended for seven years, for the beneitiof of the inventor, or of his heirs in case
of the decease of the former, by due application to the Patent Office, ninety of the decease of the former, by due application to the Patent Office, ninety
days before the termination of the patent. The extended time inures to days before the termination of the patent. The extended time inures to
the benefit of the inventor, the assignees ulder the first term having no rights onder the extension, except by special agreement. The Government be obtained to conduct the business before the Patent office. Full informa ion as to extensions may be had by addressing MUNN \& Co., 37 Park Row
tion Trademarks.
Anyperson or firm domiciled in the United States, or any firm or corpora-
tion restding in any foreign country where similar privileges are extended ton restding in any foreign country where similar privileges are extended
to citizens of the United States, may register their designs and obtain protectizens of the United States, may register thert
tection. This is very important to manufacturers in this country, and equal ly so to foreigners. For full particulars address MUNN \& Co., 37 Park Row New York.

Canadian Patents.
On the first of September, 1872, the new patent law of Canada went into orce, and patents are now granted to citizens of the United States on the In order to apply for a patent tn Canada, the applicant must furnish a pplying aplying for an American patent.
The patent may be taken out either for five years (government fee $\$ 20$) or for ten years (government fee $\$ 40$) or for fifteen years (government fee $\$ 60$).
The five and ten year patents may bs extended to the term of fifteen years. The formalities for extension are simple and not expensive.
American inventions, even it already patented in this
Amented In Canada provided the American patent is notmore than one be
All persons who desire to take out patents in Canada are requested to communtcate with MUNN \& Co., 37 Park Row, N. Y., who will give prompt Copies of Patents.
Persons desiring any patent issued from 1836 to November 26,1867 , can be upplied with official copies a t reasonable cost, the price depenclng upon Any patent issued since November 27, 1867 , at which time the Patent Office Any patent issued since November 27, 186 , at whish time the Patent Office
commenced printing the drawings and spesifications, may be had by remit ing to this office $\$ 1$.
for $\$ 1$. . ame of patentee, title of invention, and date of patent. Address MUNN \& Co., Patent Solicitors, 37 Park Row, New York city.
Munn \& Co. will be happy to see inventors in person, at their office, or to advise them by letter. In all cases, they may expect an honest opinion. For such consultations, opinions, and advice, no charge is made. Write plainly
do not use pencil, Lor pale ink; be brief. a not use pencil, wor pale ink ; be brief.
All business committed to our care
and strictly confdeneitial.
In all matters pertaining to patents, such as conducting interferences rocuring extensions, drawing assignments, examinations into the validity of patents, etc., special care and attention is given. For information, and for pamphle
Address

OFFICE IN WASHLNGTON-Corner ofE aud Fith streets oppoedte

*asinestand zersonal.

Protect your Buildings with Patent Liquid late Roof Paint. Fire Proof and Elastic and very Cheap. Send for Clrcular of Prices and Certilacates. New York
City oil Co., 116 Maiden Lane, New York, Sole Agents. Wanted-Second handed photographic outbeth, N.J.
The cheapest and incomparably best Steam
Pipe Covering. Am. Nonconductorco. Providence Bac n's Hoisting Engines for Mines, Con-
tractors, Blast Furnaces, ece., adapted to every possible duty. Earle C. Bacon, Gen. Ag't, 36 Cortland St., N. Y. Waxted-A purchaser for the best Self-
Raking Attachment for Reaper in the country. G. W. , springield, ohio
Engineering and Scientific Books. Cata-
logues mailed free. E.\& F.N.Spon, 446 Broome St.,N.T. Wanted-To manufacture, under contract
heavy Machinery, Steam Engines, Ore Crushers, \&c., , \&c. Address Herrman \& Herchelrode M'f'g Co., Dayton, Ohio Stationary and Portable Steam En \&ines and
Boliers. Send for Circular. Clute Brothers $\&$ co., scheFor Bolt Forging. Machines, and Holding
Vises to upset by hand. J. R. Abbe, Manchester, N.H. Small Tools and Gear Wheels for Models.
List free. Goodnow Wightman,23 Cornhill,Boston,Ms. Wanted Set of Patterns for a Model Loco size. Goondno $\begin{aligned} & \text { \& Wightman, } 23 \text { Cornhill, Bostoon, Mass }\end{aligned}$ Bross Gear Whee s, for models, \&c, made to
order,by D. Glbert \& son, 212 Chester St., Pbila., Pa.

 Superior to all others-Limet \& Co.'s French
Files. Thy are cheaper than English fles. 1 hey are hiaavier, better finished, and better tempered. Send for Srice. ist. Homer Foot \& Co., Sole Agents, zo Platt
Stret, New York. Metal Patterns, Models, and Dies for cuttin metat of any kind, made to order. Hendey Brothers,
Wo.coot, ille, Cond.
Millstone Dressing Diamond Machines-
 For Sale-S \in cond hand Planer, nearly new.
Planes 4 ft.x 2 ft. $x 19$ Inches. New Haven, Conn.
Telegraph \& Electrical Inst's-Cheap inst's
for learners--Iodels and light Mach'y. G. W. Stockly. for learners - -M Iodels a
Sec., Cleveland, ohio.
Brown's Coaly ard Quarry \& Contractors' Ap

Nobody will buy the metal Truss with its pitile,s Iron Finger. The New Elastic Truss, 688 Broad.
Way, , , evew York, holds the rupture easy till cured. Pres-
sune English Roof Paint, all mixed in oil read
for use, 50 . a aallon, 116 Maiden Lane, New York. Patent Petroneum Linseed Oil works. in all
pain's as Boiled Linseed oil. Price orly $\begin{aligned} & \text { wocts. a gallon, }\end{aligned}$ paints as Boiled Linseed Oil.
116 Malden Lane, New
Buy Gear's
Boston, Mass. Boston, Mass.
Protent Chemical Metallic Paint-All shades
ground and all mixed ready for use. Put up in
 o. Belting- - Best Philadelphia Oak Tanned. Mercurial Steam Blast \& Hydraulic Gauges
fall pressures, very accurate. T.Shaw,913 Ridge av.,Phil. For patent Electric Watch-clocks, address.
Jerome Redding \& Co. 30 Hanover Street, Boston, Mass. Mining, Wrecking, Pumping, Drainage, or
[rrigating Machinery, tor sale or rent. see ad vertisement, Andrew's Patent, Inside page.
Buy Steam Engines and Boilers of Gear, Lathes, Planers, Drills, Milling and Index
Machines. Geo. S. Lincoin \& Co.., Harttord, Conn. For Solid Emery Wheels and Machinery All Fruit-can Tools,Ferracute, Bridgeton,N.J For best Presses, Dies and Fruit Can Tools Fivedifferent sizes of Gatling Guns are now
nanufactured at Colts Armory, Hartford, Conn. The manumatured at colrts Armory, Hartford, Conn. The
arger sizes have a raute of over two miles. These arms Tool Chests, with best tools only. Send for
circular. J. T. Pratt \& Co., 53 Fulton St., New York. Hydraulic Presses and Jacks, new and sec-
ond hand. E. Lyon, 470 Grand Street, New York. For Solid Wroughtiron Beams, etct, see ad.
vertisement. Address On Ion Iron Mills, PIttsburgh, Pa., or lithograph, etc.
Damper Requators and Gage Cocks-For
the eest. addrese Surrill E Eeizer, Bailimore, Md.
 Peck's Patent Drop Press. For circulars,
daress'milo, Peck \& Co., New Haven, Cong. Root's Wrought Iron Sectional Safety Boiler.
1,000 in use. Address Root steam Engine Co. 2 Z A Avenue and 28th Street, New York.
At American Institute and Chicago Exposi-
Hon-Boult's Univaled Panelling, Variety Molding and Dovetalling Machine. Manufactured by
Machinery Company, Bathe Creek, Mich.
Drawings,Models,Machines All
to order. TTwile $\&$ Unecr Mands made 2 to 8 H.P.Engines,Twiss Bros.N.Haven,Ct. Workman's Hand Book-Indispensable to
ill eagaged in Manufacturing pursuits.
For Cabinet
 tion, and new receipts of great value. Price 8150. Ma1led
to any a d dress by C. Abel, Cheboygan. Mich.

 J. W. C. asks : If a cone is 2 feet in diam-

 eter at the base, and 80 feet high, and a line is fastenedat the top and then wond arond the cone at every two
feet perpendichlar hight, antind it reaches the bottom, at he top and then wound aronad he cone at every two
feet perpendicilar hight, untt1 $1 t$ reaches the bottom
What is the length of the line?
M. W. asks: If two stakes of equal hipht
stand 80feet apart in a horizontal plaze, what will be the din or sag of a chasto or cord connecting their tops,
the eord belng 100 feet long? curve? Is it elliptic or parabolic?
R. R. asks: How can I restore the color of
Reather and cloth backs of books
They have suffered rom the sun and from dust.
W. C. A. asks: How is the silvering pre-
pared and applied din making glass reflectors? O. says: Astronomers tell us that the plan-
et Neptune is 40,000 or 50,000 miles in diameter, and can. not be seen witit the naked eeve. Would iter, be reasona-
bie to suppose thatall the stars that we do see the orblt of Neptune) are over that magnitude?
T. F. de S. says: A friend says that if one takes a gun, and sayoots A straitht up (ino wind blowing),
that the ball will not come down at the point whence it was discharged from the gun, but that the motion of the would have to hold the gun at an ang angle to co correspond with the motion of the earth to let the ball
at the spot whence it started. Is this so?

P. S. A. asks: How do lapidaries cut, grind
 circular piece of fron like a circular saw, without teeth, however, the periphery of which is corered with dia.
mond dust. It is made to revolve rapidy, and the stone nond dust. It is made to revolve rapidy, and the stone
applied to tis edge. The stone is then taken to the ing. The roughing lig. The roughtng mill consists of a revolving leaden
disk covered with emery. This gives a smooth surface oo the stone, which is lastly polished at the polishing
mill. The polishing millis a revolving leaden disk kept overed with rottenstone and water.
E. R. G. asks: Can you give me directions end of a rake or rafter molding? Answer : As we un-
derstand your question, you wish to find the bevels, $\mathrm{A} C$ nd B D, of the ends of a rafter, ABCD, set at any pitch. Draw a triangle, A B E, making A B represent the incli-
nation of a rafter. Construct a miter box in the usual manner. Draw asquare line, K L , across the top of the bix. On the side, BE, of the triangle, lay off a distance,
BF, equal to K L, the extreme width of the box. Draw BF , equal to K L , the extreme width of the box. Draw
GF , perpendicular to BE , and note the point, G , in which t cuts the side, A B, of the triangle. From the point, L

in the miter box, lay off on the outer edge a distance, $\mathrm{L} M$,
qual to $G \mathrm{~F}$. From the point, K , on the equal to G F. From the point, K , on the othe: outer
dge,dra a aline connecting K and M . Thisgives ine bevel for A C, the ower end of the rafter. To find the bevel
for, BD , raw another square line, N O, across the miter tance, AI, equal to KL or NO, the width of the miter box.
From I draw I H perpendicular to AE; and from O, lay off a distance, o P, equal to I H. Then N P represents the bevel at which the upper end of the rafter is to be
cut. These constructions are based on theprinciple that the angles of the mitter box are the complements of the angles BAE and ABE.
S. Y. O. asks: 1. Is it a fact that the ani-
mal body, especially that of man, is heavier when asleep than when a wake? In other words. is there a
power to counteract gravitation in the living human ody? 2. Is itan established fact that tables are moved
by the mere act of the will by so-called mediums? An wers: 1. We think not. 2. No.
E. H. F. says: If I take a piece of plate
ooking glass and cut a fine line through the amalgam coating on the back, and then set this glass firmly on and perpendicular to the surface of a plane table, so that the
inne on the glass wull be truly perpendicular to the table, and (turning the face of theglass northward, at the time of the transit of Alioth, and standing in front of the glass)
ajust the table and glass so that the line on the glass adjust the table and glass so that the line on the glass
shall bisect both the north star and Alioth, will a line drawn truly perpendicular to the plane of the glass,
aross the plane table, be a true meridian line, making allowance of 17 minutes after the transit to bisect the
north star fy the line? Or, in other words, would the north star by the line? Or, in other words, would the
star, the eye, and the line on the glass be all in the same
. vertical plane at such time? Could the star, as seen in
the glass, be bisected by the line on the glass without bringing the eye into a plane perpendicular to that of the glass? If not, then by reversing the glass, with the
table thus fixed with reference to the north star, could a sha, dow of the sun be bisected by the line on the glass, as seen by the eye, at any other time than when the sun
is on the meridian of trie plane? The reflection of the
eye, as well as the star, in tne glass, must be bisected by the line on the glass, at the time of the transit. Answer: To ensure, with the arrangement you propose, the line
drawn on the plane table being in the same vertical hav ϵ two pieces of glass, and sight through both to the north star. We think there are better plans than this in F. T. T. says: The feed pipe of a heater
from tank enters the top. The pipe leading to torce pump is 18 inc:ies from bottom of heater. The glass level with center of glass, that is, 6 inches above and 6 inches below the center of pipe. Pipe is $13 /$ inches dimeter. On starting engine after a few hours' stoppage,
the water always leaves the glass tube, the lower end of which is 4 inches below the lower edge of feed pipe. In the course of 15 minutes all comes rightagain. Can you
explann the reason? Anser : It may occur from the is not ranning.
E. C. H.'s calculations as to the rotundity
of the earth per mile are correct: but hemisunderstands of the earth per mile are eorrect: but he misunderstands
the word rotundity in this connecticn. The question is: If a stralght line tangential to the curve leaves the earth's surface e at a particular potnt, how far will the the
earth's surface be from a pornt in the line one mile dis. tant from the starting place? Answer: Eight inches. $\underset{\text { Link and Valve Motions." }}{\text { G. Sensult Aur }}$ Auchincloss on for booksellers' addresses.
P. asks: How can I preserve leaves?
swer : Press them between pleces of blotting paper, a
G. W. F. asks: 1. Is spherical gearing illus-
rated in the science Record for 1373 ? pipe that connects to a steam gage bent into an Sform? H. F. B. asks: What is the value of the SkIVIngs of sole leather as a fertilizer? The flesp phert
of the skin is steamed until lit beomes a pulp p and the of the skin is steamed unt11 It becomes a pulp, and then
is dried and ground. Is the iliquor valuable also? 2 . Can bones be made soft so that they will crumble easily by steam pressure? If foo, are they worth less or more,
when ground, as a fertllizer? Answers 1 . We must ask when ground, asa fertilizer? A Aswers: 1. We must ask
some of our farmer readers to answer th1s question. 2. J. E. H. sends the following solution of Let $h^{\prime} a^{\prime},=y$, represent Let $h a,=y$, represent
any distance of the ball from the axis $b c$. Then, from the laws of central
forces, we shall have. forces, we shall have -
$h^{\prime} a^{\prime}(=y)$ is proportion al to the centrifugal force
at a^{\prime}. Let the curve $\alpha^{\prime} c$ at $a a^{\prime}$. Let the curve $\alpha^{\prime} c$
represent the resultant of the centrifugal and grav-
itating forces at all disitating forces at all dis-
tances from the axis between zero and $l^{\prime} a^{\prime}$, and let $c h^{\prime}$ be represented by
x, and draw $k l$ indefinitely near and paralle to $h^{\prime} a^{\prime} ;$ and draw l
perpendicular to h^{\prime}
a^{\prime} Then will $l i$ represen $d x$ and $a^{\prime} i^{\prime}$ will represent $d y$. Now because x may vary uniformly, $d x$ is constant; and because the differentials an
x and y represent the components of the two forces at any point, $. \cdot d x: d y:: 1: y . \cdots d x=\frac{d y}{y}, \ldots(1)$. In tegrating (1) we get: $x=\log . y \ldots$ (2). As (2) is a well arithms, and as the tangents to the required curve must b perpendicular to this curve, therefore the required curve is the evolute to the Napierian logarithmic curve. The equa-
tion to this curve I have not investigated ; its tangent, however, which is perpendicular to and limited by the result ant curve, is $\left(\frac{1+y^{2}}{y}\right)^{\frac{3}{2}}$. The question, as I understand it,
may be definitely stated as follows: Suppose a ball to re-
volve in a horizontal plane, at variable distances, about a volve in a horizontal plane, at variable distances, about
vertical axis suppose the resultant of the force of gravity and the centrifugal force due the several distances from the axis to form a continuous curve from its greatest distance at d^{\prime} to the
axis at c : Can another curve be drawn whose tangents shall be perpendicular to the resultant curve and which shall also be continuous between the greatest and least distance
of the ball from the axis? The answer to this latter question must be a negative; for, as I have shown in the solu
tion, the resultant curve will be the Napierian logarithmi curve, and hence the required curve will be its evolute

I have determined the equation to the evolute, and find it to be: $u=l o g .\left(\frac{1}{2} v \pm \frac{1}{4} \sqrt{v^{2}-8}\right)-\frac{1}{8} v^{2} \pm \frac{1}{8} v \sqrt{v^{2}}-8-\frac{1}{2}$.
The evolute may be constructed from this equation, and consists of the two branches of P and P p as above. Answer It is required to draw a curve, whose tangent shall be per-
pendicular to the resultant of the centrifugal force and force of gravity at any point, or whose normal shall coincide in direction with this resultant. Suppose the problem to b solved, and that O CE is the required curve, its normal

B C, at any point, C , having the same direction as the re
sultant, $\mathrm{C} R$, of the sultant, C R, of the centrifugal force, $\mathrm{C} F$, and the force of
gravity, C G Let $w=$, acceleration due to gravity, $v=$ angular velocity, $r=$ radiu of rotation at any point, $\mathrm{F}=$ centrifugal force, $\mathrm{G}=$ force of
gravity. $\mathrm{F}=\frac{m \times v^{2}}{r}=4 m \times \pi^{2} \times r$, since $v=2 \pi \times r ; \mathrm{G}=$
$\mathrm{W}=m \times g$; tangent of angle $\mathrm{FCR}=\frac{\mathrm{CG}}{\mathrm{CF}}=\frac{m \times g}{4 m \times \pi^{2} \times r}$ $=\frac{g}{4 \pi^{2} \times r}$. The equation of the line B D is $y=-\frac{g x}{4 \pi^{2} \times r}$ make $x=r, \mathrm{~A} O=-\frac{g}{4 \pi^{2}}+b$. Hence subnormalof curve

B. F. asks: Why is it that street cars are
not run by compressed alr?
Could there ont be enough air compressed in sheet fron vessels (say in the seats and a hollow or double floor) to runa a matll engine which would propel the acr from station to ostition? To in-
crese the fitcency the compressed airmight be heated crease the efilctency, the compressed alr might be heated
in the cylinder of the engine with a sultable lamp. In the cylinder of the engine with a zultable lamp. 2.
Could not gas be generated out of water by electricity, oulda not gas be generated out of water be electrict
with a sumfletent force of expansion to run a small en-
gine? . gine? 3. As the Nicholison pavement is apt to rot soon,
would it not be better to lay a floor of boards. as in the Nicholson, then a a hin lig layer of sand, and perhaps coa tar or eement, and on that basis (while the cement and
sand or tar is yet soft) put common paving stone? Ansurs 1 . We have published accounts of therunning on
swer such cars. It is probably an expensive method. 2. Not economically. 3. The vilcholson pavement, as generally laid, does not have a good founatiton. Were thiss at-
tended to, and proper care used in the eelection of the blocks, wooden pavements would be very durable.
W. T. H. asks: How can I put quicksilver of tin foll, the size of the glass, upon a perfectly smooth wrinkles in the table, and carefully rub down ail the break the foll. Then pour over it a small portion of mercury, and rub it over the tin foil gently with a clean percury as it will holld, placing a strip of cloth around
ment wion the edges to prevent waste, and slide a perfectly clean and dry sheet of glass over the surface of the Hquald
metal, beginning at one end and ending of the other. Some experience is neceesary in slididing the glass, to make a perfect mirror. Afterwards the glass is placed ander heavy weights, to remove superfluous mercury. C. M. says, in reply to the question of of a hemisphere whose base is horizontal, will leave the
side: I think it will not leave it at allt for after it starts,
 ity, acting in a line tangential to the sphere, and the force of gravity acting in a inine perpendicular to the Dase. The tendency would then be to move in the diag
onal of these two torces, which lies within the base the hemisphere ; hence it would never leave the sld Answer: When the body is at its starting point, the
propelling force 1 s applied tangentially orin a horzonta propelling forece is applied tangentially, or in a h orizontal
drection
Hence the resalt arrection. Hence the resultant motion will be that due ward; and this resultant may fall without the base of the hemisphere.
F. H. M. asks: Is there any metal, or com position of metals, or any other known substance, that
will break the atractive power of a magnet if placed between It and ass armaure? Answer: We thmi not
C. W. C. asks: How can I plate polished me. Probably fill wer: see page 206, current vol ume. Probably it will be cheaper and mure satisfacto-
ry for you to send the artucles to an establishment where they make a specialty of such business.
$\underset{\text { chemtcal which, if contained in }}{\text { F. Wa }}$. W. . Is artight chamber vould make sunficient heat to boil water? 2.18 ther any known comb nation of chemicals which wlll have he desired effect? 3 Is there any known chemical
which, If confned in an alrught vessel, will burn and make considerable vapor? Answers: 1,2 . Yes. Lime nd water. 3. Yes. Gunpowder
E. W. asks: How can I make Russian shee
iron? Answer: Russian iron, so called, is not maue in Russia exclusively,if indeed any that we use comes from that country. Very pure fron is used in the manufac-
ureof these sheets. The glossy appearance is produced by heating the sheets, moistening them with a solution of wood ashes, and passing them through polished steel roliers.
C. V. C. V. D. says: A vessel, 6 feet in diameter
at the bottom and 5% feet as the top, is feet deep. How
 commons hoop iron thel? What is the least amount of sel betng filled with water, and where should the hoops be placea? Answer: fif the vessel is illed with water of water whose base is equal to the base of the vessel, and whose hight is equal to the hight of the vessel. The pressure on the sides of the vessel is equal to the weight
of a prism of water whose base is equal to the area of a prism of water whose base is equal to the area
of surface pressed, and whose hight. is equal to the dis. tance of the center of gravity of the vessel below the sarface of the water. Knowing the tensile strength of
the hoops to be used, their size can readily be propor-
L. S. asks: How can I get rust, caused by
salt water, off fine steel Instruments? I cunnot use
 ment, you probably cannot remove the rust. We have an dea however, that you can succeed in arranging a cloth or brush so that you can polish every part; and in this rick dust, atterwards applying sume with on and fine
D. L. S. asks: How can I remove deep work for an expert, and we hardly advise you to attempt it. The seratches, when very deep, are sometimes flled with a cement which is colored to match the wood, very fine sand paper is used. The wood then requires A. T. asks: What book gives, in the most
condensed form, the relative strength of metals and woods? I also want books on the workings of the dif Answer: We advise you to correspond with Professor R. H. Thurston, Professor of Mechanical Engineering in
the Stevens Inst.tute of Technology, Hoboken, N.J. the Stevens Inst.tute of Technology, Hoboken, N.J.
W e are sure thathe will beglad togive you the desired nformation, while his experience and ability will make is reply of pecullar value.
P. P. H. asks: 1. What power is required
o drive a sewing machine? 2. To what pressure can air be conventently gompressed in a suitable recelver by the
ir pump? Answers: 1 . From 550 to 1,003 foot pounds er minute, varying with different machines. 2. The inNentor of the Giftard injector states that he has com
pressed air, by the use of a piston of his own design, to nore than 1,000 atmosplieres, or till it attained a pressre of about 15,00 pounds per square inch
W. L. C. says: We have occasion to use a
arge number of hard rubber balls for testing castings arge number of hard rubber balls for testing castings ard, consequently soon crack and break. How can
they be kept soft and pliable? Answer : Probably you cannot restore their former qualities. Your best plan
will be to purchase a superior class of rubber.
 the tres were drawn and the steam magee indicateda about
35 bs. st steam : what wa the cause? 2 . of what allos 35 bs. of steam: what wav the cause? 2. Of what alloy
or metal should a safety plug be composed? 3 . How or metal should a safety plug be composed? 3. How
many yearr has the sorrmirric AxRrIcAN been pub
tishe
 out by the shock dre to the contraction of the boiler.
 August, 1845.
J.F. W. . Says: I wish to watch the inside of
a smill thin copper cylinder. Can I cut a slitit in it and asen cement appecece of glass. over the eaperture so that it
then
will stand 20 lbs to the square tnch? a am a raid of un equal contraction and expansion. Could I cement it to
any better acruntage in a cast tron cylinder? Answer any better advantage in a cast Iron cyllinder? Answer
The Committee of the Franklin Institute, who made experiments to determine the cause of boiler explosions. poed a boiler haring an opening covered with glass. We
useel
believe the glass was broken several times, under high believe the glass was broken several times, under high
pressures. Your best plan would probably be to make te joint wha rubber.
E. J. C. asks: Will kerosene oil do in place
of petroleum for steam boilers? Answer: We think not $\underset{\text { cheapest way of making an exhaust air }}{\text { W. . Plower, to take }}$ the dust from a small emery grinder? 2 . What is the cause of the clinking noise heard in cold steam pipes
when steam is let on? 3 . When does the Fair of the American Institute close? Answers: 1 . It can be done by enclosing a shaft with vanes, in a box, having suita you to purchase a blower from an established manufac turer. 2. It is caused by the iinpulse of the condensed
steara acting in a vacuum, and by the movement of the steara acting in a vacuum, and by the movemen
pipe as it expands. 3. On November 15, unless ex
J. F. C. asks: 1. Could not drills be used With a rotary movement in boring roek, as is done in
boring metals? 2. Could not some form of acid or solvent be used to facilitate the boring of rock? 3. What
are the comparative advantages of the different forms ing fields of or practical use in blasting? 4. In clear ing fields of stone, would it save labor to ase the
more powerful explosives instead of ordinary blast ing powder? Answers: 1. They would get dull too
quickly. 2. Agents that would soften the rock might erform the same office for the drills, and in any case the
process would probably be too expensive for general use. 3. Giant gunpowder is probably the most econom cal. 4. Yes.
J. R., Jr. asks: 1. What is the longest dis-
ance you haveknown steam to be conveyed from the boiler to the engine, as for steam pumps in shafts and
mines? 2. How far do you think it could be conveyed bs. pressure, if well place a pump about 2,500 feet from the boiler. Answer: We think you can carry out this plan successfully if you
use a large pipe, protect it carefully arrange expansion carry of the water. We advise you to have plans precarry
pared
pipe.
F. H. C. asks: What is the nominal horse
power of the largest steamer on Long Island Sound, also power of the largest steamer on Leng Island Sound, also
what is the indicated horse power? Answer : Nominal horse power, by English
horse power, about 3,000 .
C. J. H. asks: 1. At what surface speed eather) to get the best result in grinding and polishing malleable cast iron?? 2. Is there any better way to attach
emery to leather, than with good glue? 3. Where is the mery to leather, than with good glue? 3. Where is the
best (sharpest) emery obtained from? 4. Can corundum best (sharpest) emery obtained from? 4. Can corundum
be obtained in market, in grades like emery? Is it supe be obtaned in market, in grades ise emorys to pay for
rior to emery in abrasivequalities, enough so to pay
the difference in cost ? Answers: 1 . About $\%$ of a mile a he difference in cost? Answers: 1 . About $3 /$ of a mile a
minute. 2. We think so. 3 and 4 . Where emery secured
to leather is used, it stays on so short a time that the cheap grades of emery answer as well as the better qual ities. Corundum can be obtained, but its use is not re-
$\underset{\text { mixed with type metal. }{ }^{\text {M. }} \text { How can I separate themor can }}{ }$ mixed with type metal. How can I separate them or can
they be made to work together? There is only a small mount of zinc in it, just enough to give it the appear-
nce of cold metal in the cast. Answer: The zinc can probably be separated by vaporizing it. This 1 s, however, a rather difficult operation, and you will scarcely succeeed
unless you have had some experience in the method. Y. E. asks: 1. In calculating the horse
power of a boiler, do you count any of the breeching, or do you cownt nothing but the actual fire surface of the saw when cutting pine timber? 3. How is naphtha oll
manufactured? 4. What is benzine made from? 5. What horse power has an engine of the following dimensions:
Cylinder 9×16 inches, working at 63 revolutionsperminute, with a pressure of 70 lbs . to the square inch? 5. Did the, great transatlantic balloon burst from the high pres.
sure of gas, or did Professor Donaldson cut a hole in it ? ure of gas, or did Professor Donaldson cut a hole in it?
Answers: 1 . Take only the effectlve heating surface. 2 . is hard to give a general rule, as much depends on the
ize and quality of the timber.
3. Itis a natural product imilar to petroleum. 4. It is ordinarily prepared from coal tar oil. 5. The data furnished are incomplete.
Probably the mean pressure of steam is not 70 lbs , and here are some deductions to be made for back pressure and cushion. But using these figures, we have horse
power $=63 \cdot 6 \times 70 \times 63 \times 2 \times 16 \div 33,000 \times 12=22 \cdot 7$ nearly. 6. We expect no one but Mr.
give a correct reply to this question.
C. D. M. asks: 1. What horse power would a propeller engine, 8 inches in diameter $x 8$ inches stroke,
have? 2. Would you advise using a square water tube boiler to supply steam for the above engine? It is to be used in a small yacht, 40 feet keel x 10 feet beam.
How large ought a boiler to be for this engine? An2. We think you had better use a cylindrical boiler, of the same general character as those now used on ocean
steamers. 3. Allow from 18 to 20 square feet of heating
J. S. asks: In constructing a compound mi he glasses to be used, to produce a magnifying power of
so? What are the distances that the glasses slould be placed from each other? Answcr: Use for the objec glass a plano-convex lens, $1 / 2$ inch focus, with its plane
side towards the object and its aperture one fifteenth of glass, place the eye glass, which, in itssimplest form, is a double convex leng. The magnifyling power can be in
greased somewhat by increasing the distance by means
f a draw tube between the eye glass and the obje
lass, but this is at the sacrifice of distinctness. G. K. M. asks: How can I make paint ad.
here to zinc? Answer : Dissolve 1 oz. nitrate of copper nd 1 oz. sala mmoniac, In 64 ozs. water. Then add 1 oz. whdrochloric acid. A pply thismixture to the zinc ; and
when it is dry, paint it. using mineral paint. M. M. M D. H. S. Jr. asks: 1. In fastening pulleys be driven up or down? In securing bevel gear, ought
the keys to bedriven with or contrary to the thrust? By hrust I mean the tendency of the wheel to push out of mesh. 2, What scale of measurement is used in exo that the thrust of the wheel tends to tighten it. There is a great lack of uniformity on the gage question,
in the practice of different manufacturers. In ordering saw, it is best to write to the maker and request him
J. O. R. asks: Will you please give a for-
mula for finding the length of a lever for working aroll valve, diameter of steam chest, travel of valve and
throw of eccentric being known? Answer: Let the cir cle described with A B as a radius represent the steam
chest. Knowing the travel of the valve, the chord B C chest. Knowing the travel of the valve, the chord B
can be found. Then the chord, D E, which represents the

lever can be found by a simple proportion. Example iameter of steam chest $=6$ inches. Travel of valve $=$
inches. Throw of eccentric $=11$ inches. Angle BAC $5 \times 360 \div 18 \cdot 8496=95{ }^{\circ} 30 \prime$ nearly. Chord B C $=6 \times 0.672$
$=4.032$ inches. Lever A E $=3 \times 11 \div 4.032=8.18$ H. R., S. H., and H. C. say: Locomotive eccentrics sometimes slip round upon the shaft. Bourne,
in his "Catechism of the Steam Engine,"gives the fol lowing rule : "Draw upon a board two straight lines at
right angles to one another, and from theirpoint of tersection as a center describe two circles, one repre senting the circle of the eccentric, the other the crank
shaft ; draw a straight line parallel to one of the diametert; draw a straight line parallel to one of the diam-
eters, and distant from it the amount of the lap and lead the points in which this parallel intersects the circle of ing eccentrics. Through these points draw straight
lines from the center of the circle and mark the intersection of these lines with the circle of the crank shaft measure with a pair of compasses the chord of the arc
intercepted between either of these points, and the dam eter which is at right angles with the crank, and the di
ameters being first marked on the shaft itself, then ameters being first marked on the shaft itself, then by
transferring with the compasses the distances found in lransferring with the compasses the distances found in
the diagram and marking the point, the eccentric may at any time be adjusted without difficulty." Can you
make this a littleclearer for us? Answer: In the accom panying diagram, let FG and EC be the two straight lines atrightanglesto
each other, the circle described with A B as a radius be the end
view of the shaft, the circle described with A C as a radius be the
circle described by the center of the eccen-
trics, and H Ithe line parallel to $\mathrm{E} C$, and
distant from it the amount of the lap and lead. Then if F G re-
presents the direction of the crank when on be the positions of the centers of the eccen-
trics, according to the

rule. If, then, the
points K and L , in which the lines A H and $\mathrm{A} I$ intersect the circle representing the shaft, be transferred to the chords B K and $\mathrm{L} M$, the eccentrics can readily be set. E. S. asks: Is hard rubber expansive in its
ature when subjected to steam under pressure? Will an india rubber contcal plug placed in a hole in the shell
of a boiler, so that the steam pressure would make it faster in the plate, expand as fast as the hole increases in size by the expansion of the boller? Answer: We
think the proposed arrangement will answer the pur-
pose very well.
R. asks : How can I take 4 or 5 copies of a
letter written in copying Ink? Answer: There are several varieties of copying ink in the market, which, their
makers state, will take 5 or more copies; but you can Mrobably make the ink you use at present effective by
prone dding a little more sugar.
L. Z. R. says : I have a head of water of $7 \frac{1}{4}$ have tried means to use the water over again. Below
me is a lake reservoir always full of water above is the Like which supplies my stream. My Idea is to run a pen
tock, 4 feet deep and 3 feet wide, level with the lower lake, through and under my dam: and thences penstock
at right angles to this, 200 feet long, parallel to my dam. at right angles to this, 200 feet long, parallel to my dam
This admits the water of the lower lake in sald penstock
right into the water of the upper lake, whence te must raised by power into the upper lake for use the second
time. On this 200 feet (or longer if needed) penstock 12 or more large cheap windm'lls with 12 feet arms can be easily erected by simply driving 4 piles to form a frame;
wood arms and sails would do, cheapness and strength being the only requisites. What kind of pump will dis. charge the most water, under $61 /$ feet head? I want sim
ply a pump to raise the water from the penstock, discharging directly in the water above the powerbeing furnished by sald windmills. Answer: Your
plan is practicable, provided you can depend upon the
wind. Probably simple piston pumps, double acting will answer as well as anything.
H. says: I notice your answer to H . in ref
rence to heating a room by gas. If a gas stove is put
pipe, you can use it without any objectionable smell.
There is, however, a great difference in gas stoves. In
some, the combuasion Is more perfect than in others.
The only secret is to have cxygen enough to mingle
with the carbon to produce perfect combustion, free
from odor.
R. A. M. says, in reply to C. M. N., who
asked how to read the superscriptions on coins: Lay
your coins upon a piece of hot tron; the dates will be so your coins upon a piece of hot iron; the dates will be so
visible as to be plainly read. The iron must be red hot, ne consmust read while hot.
H. says, in answer to S. W. G., who asked nomical for your purpose. In order to elevate water 15 feet, you must have a fail of 12 feet from the spring
or fountain head. You should excavate, at the exit of the springs, to 3 feet depth, and group together as many out-
lets of the springs as possible. Box the sides of the excavation with 2 inch plank and cover the same. Make hole sixinches square at the lower end of the box, in
the trench or excavation. Cover this hole with a coarse wire gauze, conduct the water from this through a
wooden box 4 inches square into a square box in which woodea box 4 inches square into a square box in which
the ram should set, at the foot of the hill. Close the he ram should set, at the foot of the hill. Close the
end of the wood supply pipe, and in this insert a piece
f iron pipe 2 inches in diameter to ram. The supply or wood pipe should be from 25 to 50 feet long. This will take a No. 5 ram, which will re-
ceive from 6 to 14 gallons water per minute. The fron ceive from 6 to 14 gallons water per minute. The fron
discharge pipe that runs up the hill to the reservorir houla not be less the hill should be inserted in a close, heavy, iron bound 10 gallon cask, at the lowest point.
At the opposite point of the cask, insert another piece of pipe 1 inch in diameter, and continue to the fountann ram will discharge one seventh of the water it receives into the reservoir. For every foot descent in the sup-
ply or drive pipe, you have a raising power of 10 feet in ply or drive pipe, you have a raising power of
the discharge pipe. The object in having the discharge pipe large is to avold friction ; for when the pipes are
maller, there is more friction, the ram labors heavily maller, there is more friction, the ram labors heavily
and is more liable to get out of order. The box in which the ram sets should be made double, with a space of 10
inches, filled with sawdust, to prevent freezing. The aischarge pipe and cask should be buried
belo $\begin{aligned} & \text { freezing point. Avoid sharp angles. }\end{aligned}$.
T. L. M. says, in reply to several enquiries
s to leaf printing: The bichromate of potash photoraphic processspoken of by your correspondent J.N.Q. ives but a faint picture, evenafter leng thened exposure
o the sun. The image may be reddened by a dilute soytion of nitrate of silver. Blue leaf prints are obtained f potassium commercially called the red prussiate of potash. They are fixed by simple washing. By Ober-
netter's process, using salts of copper, pictures may be btained in different tints of deepp red and violet, with uired, and the process, though not difficult, is rather tedious. Leaf prints of the greatest beauty and delicacy may easily bemsde by amateurs by the ordinary process-
of photography on paper, scarcely any utensils being s of photography on paper, scarcely any utensils being
needed besides those found in any household. Make a solution of sixty grains of in antrate of of silver and sixty rains nitrate of a mmonia to the ounce of water. Fraph ce supply store, on this solution for half a minute or a minute ; pin up to dry in the dark. When dry, lay the nd upon this a pane of glass. Fasten all together with pring clothes pins, and expose to the sun till the dark
ened albumen paper begins to show a metallic marbling f chloride of gold. For a then in chloride of albume gold is needful. Dissolve in a pint of warm water, add acidity; leave the washed leaf prints in this till they have assumed a pleasing shade (ten or fifieen minutes
will be sufficient); then immerse ten minutes in a solution of hyposulphite of soda, two ounces in ten of water, remove and wash thoroughly; if possible, leave over
night in running water. These prints are very pretty. noxperimenting with them, I obtained beautful re sults by soaking them in aniline dyes; the color does
not show on the black ground, but the leaves shine out like exquisite paintings on ebony. The entire expense
for chemicals (excepting the aniline colors) is $\$ 2.50$, for his process; this will be enough for twenty square feet

COMMUNICATIONS RECEIVED.

The Editor of the Scientific American acknowledges, with much pleasure, the receipt of original papers and contributions pon the following subjects:
On Electricity vs. Yellow Fever. By 0. On a New Theory of the Universe. By D.L.S.

On Cement Water Pipes. By M. S On Richmond, Va. By H. E. C. On Compressed Air Cars. By J. P On Propylamin. By C. D. D. lso enquiries from the following J. T. T.-J.M.S. Jr.-H. Z. T.-M.F.-C. W.-J. P.
-F. D. B.-F.C.D.-J.M.-P.L.-S. N.-A. L.B. Correspondents who write to ask the address of certain manufacturers, or where speciffel articles are to be had,
also those having goods for sale, or who want to find partners, should send with their communications ar mountsumfcient to cover the cost of publication under
he head of " Business and Personal " which is specially evoted to such enaulries.

Index of Inventions

Cetters Patent of the United States WERE GRANTED FOR THE WEEE ENDING

October 28, 1873, AND Each bearing that date. [Those marked (r) are reissued patents.] ccordion, etc., Goetz \& Müller... Ants, destroying, Dulany
Auger, earth, E. H. Clark.
xle box for veh'cles, C. H......
Axie box grar veh. G. Co. Coan........
Basket,
Bath, hand shower, D. sterling.
 Bit stock, D. A. Newton.............
Blind dsat fastener, , F. Champlin
Blind stop, J. H. Cranston........ Boiler flue cior J. Armb Boring machine, Rea, Pyke \& R
Bottle protector, 0 . Fitzgerald Brick machine, Ellitot \& Woo
Bucket, R. T. Brown....... Building block, R. M. Seldis Can opener and pipe cutter, D. A. A. Barne.............
Car brake, hydraulic or air, w. M. Henderson. Car brake, railway, L. Adam
Car ceupling, W. C. Brooks. Car coupling, L . Ruel. Car coupling, X. St. Pierre.:
Car coupling, w. M. Wiswell. Car propeller, G. W. Earl Carriage, child's.s, W. H. Towers
Carriage top, C.A. Dearbo Carriage top, C. A. Dearborn........
Cartridge case, metallic, s. W. Woo Cartridge for fire arms, S. W. Wood................. 144,011
Cartridge shells with bullets, A. C. Hobbs....... 143,981 Cartridges, etc., cases for, s. w. Wood. Cask for oill, etc., W. Jenkins
Castings, steel, W. Kelly, (r) Castings, steel, W. Kelly, (r)...
Chain machine, Daykin \& Case Chain machine, Dayk
Chair, G. Feldkamp.. Chairs, etc., spring for,
Churn, L. Parmelee... Clgar box, E. C. Patterson
Clasp, scarf, A. R. Weisz
Clothes pins, making, J. B. Smith. Cock boxing, stop, W. H. Graham.... Corn ground marker, J. H. Rynerson..............
Cotton chopper and cultivator, A. F. Roberts. oupling and steering apparatus, J. McCreary, (r) Dead, preserving the, J. M. Gallagher... Depilating animal carcasses, D. H. Sherman... Desk cover, J. Heymann....
Digger, potato, E. T. Ford..
Drawing frame stop mechanism, J. C. Taft.. Dredge, etc., pepper, T. B. Atterbury.
Elevator, J. B. Sweetland............... Elevator, steam, T. W. Eat
Engine, fire, J. A. Sinclair.
Engine governor, steam, J. C. Hoadley Equalizer, draft, J. P. Beckenbaugh. Equalizer, spring, H. Davis. Evaporating pan, G. W. Storer............
Evaporating pan, ete., salt. G. W. Storer Faucet, P. Hille.
Faucet, J. White
Fence, portable, C. A. Thomas.
Fence post, J. Scott...
Fire arm, revolving, J. W. Know
Fire escape, Murset \& Zuberbuhle Fires, extinguishing, J. D. Sutter.
Fish grappling spear, J. W. Floor clamp, H. J. O. Reed. Frier and broiler combined, G.Smith.
Fruit loosener, dried, Schmeltzer et al Furnace mouth piece,

Gas motive power, o . B

Generator, steam, W.C. Bake
Generator, steam, W. G. Baker
Generator, steam, E. Goddard.
Generator, steam, w. Golding. Glass bowls, making footed.
Gong, door, C. W. Pendela,.....
Grand sampler, J. J. Bois......
Grindstone hanger, S. L. Blgna
Guns, operating heavy, A
Hammer, power, J. C. Butterfield.
Hammer, power, J. C. Butterfield.
Hammock support, o. Tufts....
Harness pad, J. Hughes (r).
Harness pad, J. Hughes (r)
Harness pad, J. Hughes (r)....
Harness traces, eyelet for, N .
Heater, peanut, I). Kellog
Heating apparatus, water, T. M. Carroll.
Hoe, H. Parkman...............
Horse collar ining, liadsiey
Horse power, L. R. Faught.
Horse power, J. S. Tadlock.
Horse stall, W. C. Davol, Jr...
Ice cream freezer, R. P. Beil...
Ice elevating track, A. Pfund.
Ice elevating track, A. Pfund
Ice pick, Boynton \& Keefe
Iron and steel from granulated iron, C. Wood..
Knobs to screws, attaching, C. H. Thurston (r). Lamp, R. E. Dietz...
Lamp, J. . Pesse..
Lamp, J. A. Pesse...
Lamp, o. N. Perkins
Lantern, magic, L. J. Marcy (r)...................... 144,18
sock
Lock for alarm box, etc., J. M. Fairchild.........
144,07

Locomotive air brake, e. Westinghouse, J
Loom for pile fabriss, J. C. Ellison......
Loom shedding mechanism, I. L. Wiber
Loom shuttle, M. F Fields
Mill smut, H. A. Barnard ...
Mill feeding device, S. Mid
Mold and core, J. Kelly (r).........
Music box cylinder, A. Frank celd
Musical instrument, A.
Nut lock, S. Peatfield....
Oleine from fatty matters, C. F. A. Simonin..
Organ reed board, W. Munroe..
Organs, fall for parlor, W. O. Tr
Oyster and:other dredges, J. Walmer................ 144,169
Oysters, device for opening, D. M. Cleary...... 144,66
Packing, metallic piston, W. A. Buyden.
Padlock, etc., D. K. Miller.
Padlock, combtnation, W. C. Langenau............... 14
Paper dryer, E. A. Seeley 14
Paper folding machine, R. J. Stuart......... 144
raper machine, c. Whealen.
Paper ruling machine, Cliff \& Martin...
Paper, die for cutting, A. Delkescamp (r)........... 14
Pavement, Davenport \& Ward........................
Piano action, F. Koth 148,
Pianoforte, upright, G. H. Davis............ 143
Pipe, hydrauliç cuehion, W. Ricketts............. 144,

Planter, cotton, P. Seymour..........
Pocket book fastening, F. Helles...
Pruning hook, J. Christy.............. Pooket book fastening, F.
Pruning hook, J. Christy
pulley, suspension,
Pulley, suspension, J. A. Evarts
Pump, E. C. Wharton............................
Punching and shearing machine, J.Kisse Purifier, middling s, Burdick \& F Filler.
Purifier, middlings, w. A. Clarke..... Protechnic sings, W. A. Clarke. Railroad rail, Railroad switch, G. F. Beatty Railroad switch, E. P. Wheeler
eeg. atator for injectors, Marden \& Smith Roofng, felt, E. Churchill......
Saddle tree, A. Teas
Saw Jointer, S.D. Knight
Saw set, H. C. Hart.
Sawing machine, E. H. Ste...........
Sawing machine, stave, C Murd
Scissors points, cap for. C. Wr. William Screw threading machine, E. Horton... Seat, folding, J. H. Hall.
Sewing machine ereaser, W. J. Faulkne Sewing shoes, gulde for, H. Bond
Sewing shoes, guide for, L. E. DeW Shearing maehine, J. K. Priest. Shears for metal, rotary, M. Stephens Shutter fastening, J. Parker... Shuttle box mechanism, R. B. Goodyear Slate frame, A. H. Jocelyn. Sod 2 water, disp ensing, W. Gee. Spark arrester, J. Bardsley Spike bar, G. Douglass. spindle,L. C. Crocker. Spinning ring, J. W. Watiles. Starchirg machine, A.N. Nolph.. Stave jointing machine, c. Murdoc Stave sa wing machine, C. Murdock.
Steam and air brake, G. Westlnghou Steam and air brake, G. West
Stove, cooking, J. Easterly Stove damper,
Stove, heating

Stose pipe thimble, v. Fa

suspenders, J. w. watt

Table, kitchen and ironi

Teaching music, L. A. Seward (r Telegraph, printing, G. L. Anders Telegraph wire protection E D. Prittombs Thrashing and hulling clover, Bradley et Toy build press clamp, Toy horn, W. A. Harwood Toy money box, C. C. Johnso. Trimming, w. Murray Trimining, w. Murray Trunk, extension, G. Engelsman Trusses, pad for pile, J. L. Rowe
Tub:ng connection, flexible, W. B. S. Taylor. Type casting machine, J. M. Umbrella, Dugan \& Moncrie Valve, balanced slide, 0 . H. Gronberg vehicles, shifting top for, M. B. Keller Ventilator, etc., tent, R. \& W. Brien... Wagon, spring, G. A. Brice Warmer, foot. W. Heissenbutte
Watch case spring, U. A. Juvet.
Water traps, forming, W. A. Butle
Water whe ρ l, Kirkhart \& Ramsay....
Watering streets and roads, I. Brown
Whip socket J. W. H. Doubler
Whip socket, J. w. H. Double
Whip socket, J. Heberling.
Windlacs, w. Ne wcomb
Windmill, S. H. Radway
Winnower, reciprocating, E. Lombard

Wrench, L. B. Prindle.

APPLICATIONS FOR EXTENSIONS. appications have been duly fled, and are now pendin ingsupon the respective applications are appointed fo nafter mentione
27,020.-Engine Exhatst Pipe.-G. Edwards. Jan. 14
$2 \uparrow, 0 ; 3$.-Calendar Clock.-E. M. Mix et al. Jan. 14. 27.034.-Harvebter.-J. Butler. Jan. 21.

EXTENSIONS GRANTED. 25,936.-CUT-OFF Valve.-E. R. Arnold.
25,984.- BTT BRACE. - N. Spofford.
26,003.-TELEGRAPBIC MACHINE.-G. M. Phelps.
DESIGNS PATENTED
6,966.-TOY Target.-S. Hamm, Philadelphia, Pa.
6.9 it.-Spoon Handue.-B.D.Beiderhase,New York city 6.968.-FIY TRAPP-D. K. Thompson, Clark, Pa.
6,960.-SPOON, ETO.-G. Wilkinoon, Providence, R. I.

TRADE MARES REGISTERED.

 1,511.-Shingles.-L. M. M. Blakely. New York city. $1,5: 3$.-FLour.-Haxall \& Co., Richmond, Va. 1,514.-FIsH.- Ocean Trout Co., Port Monmouth, N. J.
sCHEDULE OF PATENT FEES

On each Cavest...... on each Trade-Mark.

On fling each application fors
On appeal to Examiners-In-Chie
On application for Relssuer of Patents
On a pplication for Extension of Patent.
On granting the Extensto
On an application for Design ($3 \ngtr y$ years)
Onan application for Design (14 yeara).
gatbertisements.

for practich mis.

his address. HENRY CAREY BAIRD, INDUSTRIAL PCBLISHER,
406 WALNUT STREET, Philadelph

TO ENGINE BUILDERS-Wanted a party

Beantifull Combination for only 83.50 CHARLES
ANDREWS, No. 35 Exchange Street, Boston, Mass.

C

A SPECIMEN COPY of the AMERICAN

WORKING CLASS Male or Female, s:

Niagara Steam Pump.

$\mathbf{P}_{\text {In }}^{\text {ORTABL mat }}$ STEAM ENGINES, COMBIN.

A. S. GEAR

Wood and Iron Working $\mathbb{M} \mathbb{A} \mathbb{N} \mathbb{N} \mathbb{R}$,

Aeam Engries © \boldsymbol{I} enamean supple

SGENCKS PATENT. 1871.
WOOD ORTH PLANERS

DROP PRDESSES.

0 TIS MALTM Hoisting

MACHINERY, semp ind Raditivic

 The VARIETY MOULDING MACHINE CAUTION.

$\$ 100$ to 250

$W^{\text {Sind.ind }}$
$\mathbf{M}^{\text {INERALLS, Shells, Fossils, Bird Skins }}$

J. A. FA \mathcal{A} CO

To Electro-Platers.
Batteries, chemicals, and mate

Andrew's Potents.

 $\$ 375$ A MoNTH to Nale or Female \triangle gents.
 Univeral Mrilining Macmives

 CCEAPEST AND BEST:

Machinery,

Cold Rolled Shafting.

Sturtevant Blowers.

Turbine Water Wheels.

Planing and Matching

HARD WOODS
IN LOGS PLANK, BOARDS \& VENEERS.
 EDAR, our specialties. ${ }^{\text {GEO. W. READ \& CO. }}$ \&
MILL AND YARD 186 to 200 LEWIS STREET,

An deuffio Crfinder.

[^0]

$\boldsymbol{D} \boldsymbol{R} \boldsymbol{I} \mathbb{L} \boldsymbol{L} \boldsymbol{C} \boldsymbol{C} \boldsymbol{H} \boldsymbol{H} \boldsymbol{U} \boldsymbol{C} \boldsymbol{C}$

Diamonds＝Carbon

 Shaped for craed，turuisaed and se for buring rucksdressing mili burs，emery wheels，grid

E《UエーZーのトのトOO」の

 HARTFORD Steam Boiler INSPECTION \＆INSURANCR CO． CAPITAL
$\$ 500,000$
 Boilens，Buildings，and Machinery， STEAM BOLLER EXPLOSIONS

$S T E A M B O I L E R S$ ，

Funl fnormation con erning the plan of the Company
－perations can obe obtatemat at the

J．M．ALLEN，Pres．PIEM．B．FRANKLIN，Vice Pre

SCTE ${ }^{\text {STEPREORD }}$

A Yearly Compendium of Sclentific Progress an
DIscovery． 600 pages，octavo．Price 82.50 ，
 will be sesued in fanamery next．
The volumes for 1820.1878 ．

12－GEOLOGY AND
I3：ASRONOMP
14：- BUARARHY．

Evorr person who desires to De well informed concern
fing the Propress of the Arts and Sclences should have

 the price．A liberal difscount to the trade and to tal munn \＆CO．，Publiehers， 37 Park Row，Now York City． $\mathrm{T}_{\text {IR }}$ SCIENTIFIC $A M \overline{E R I C} A N$ WII be sent one year SCIENCE RECORD FOR
ready．Each 8.5 .50
1872
and
1873
now
B BERK＇S WATCHMAN＇S TIME DE－

 thoritv from me wili be dealt with according to law．

Todd \＆Rafferty Machine Co．

GGHLENKERIS PATENT B 8 H \＆ NEW INVENTON．ADDRESS， HOWARD IRON WORKS．BUFFALO．N．

WIRE ROPE．

JOHNA．ROEBLING＇S SONS

 T WY THE VICTOR DRILE CHUCK，
 ractoring co．，Adares sidideteown．oonh．

HOUSTON＇S PATENT TURBINE WATER WHEEL．

BIDS AND PROPOSALS

Worlining Models
 BUILDING PAPER！
 NEW YORK STEAM ENGINECO Malaciinitst＂Tolls 98 Chambers St．，NESCRIPTIONS，\quad YoRK．
 IRON PLANERS， THETANTTE MUSCOMDANY EmeryWhess（TANITE E EmeryGinders
 JUST PUBLISHED

HOW ABOUT YOUR PAY ROLL？

Workers Wanted

For wood＇s household magazine， which with its Premiums，is one of the most attractive
in the country．

ONE DOLLAR

Commissions liberal，offering a lucrative and agree
able business to those willing togive it properattention
Vol．XIV．begins with January， 1874.
Examine our Clubbing \＆Premium Lists
arrt－class periodicals for the price of one
Address．
wOOD＇S HOUSEHOLD MAGAZINE， $\begin{gathered}\text { Newburgh，N．} \mathrm{F}\end{gathered}$
WIRE ROPF．

P．BLAISDELL \＆CO．，
Patent Drill Presses，with Quick Return Motion，

NEARLY 1,000 NOW IN USE．

CHAM ION SPRING MATTRESS－The

$\mathbf{R}_{\text {and main tains vacuum on Steam Engines at cost }}^{\text {ANSOM }}$

ests of Popular Sclence，the Mechantc Arts，Manufac－ tures，Inventions，Agriculture，Commerce，and the in－ dustrial pursuits generally，and is valuable and Instruc－ tive not only in the Workshop and Manufactory，but also T＇he Best Mechanical Paper in the Wort The Best Mechanical Paper in the World A year＇s numbers contain over 800 pages and severa
hundred engravings of new machines，useful and novel inventions，manufacturing establishments，toois，and

To the Mechanic and Manufacturer！
No person engaged in any of the mechanical pursuits should think of doing without the Scientifio Ameri－ CAN．Every number contains from six to ten engravings
of new machines and inventlons which cannot be found in any other publication．TERMS．
One copy，one year
One copy，sil months
One copy，four months

One copy of Sclentific American for one year，	1.50
1.00	

The jostage on the Sclentific American is five centape quarter，payable at the offlce where received．Canada subscribers must remit，with subscription， 25 cents extr to pay postage．

[^0]: Diele grose und thätige ©laffe unfrer Be, boblferung mactien wir befonders barauf xufmerfjam, bá unfre firma burd) ifre Wer, Gindung mit Waffington und ben europaitiden Sauptfïdten, bejondere Borthoile zur Erlar gung von $\mathfrak{i n}$ = und ausländija)en Watenten bietct.
 Seber ©rfinder, gleidutiel welduer Mationalität angehörig, ift burd die liberalen \mathfrak{B} @tentge fetze ber Sereinigten Staaten zum ßatentiduts für ©rfindungen beredtigt. Untre Firma if bereit, gcitüzt auf 26 jährige Erfarfrung, Dentidje Erfinder jeder Beit. 3 beratyen und zat mäßigen Preifen rajd) und piinftlid) Patente zu erlangen.
 Die Deutidue Section ift in ben நaünden fäbiger beutjder Sngenieure, weidfe in ber Dffice perjönlid mit Erfindern verferfen werben.
 Der ,,Scientifc American" wird in feinen ©parten bie bebeutenderen Erfindungen be= (predent.
 Gorrefpondenz erbeten und prompt beant mortet. Wamphlite in beatidjer ©prade wer. ben auf ßorlangen franco zugcjantt.

 सbrefire:
 drumit \& coo
 Scientific American" Patent Agentur 37 part Oow,

 New York Cits

