

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, TLECHANICS, CHEMISTRY, AND MANUFACTURES.

Vol, $\underset{\text { [NEW SERIES.] }}{\text { XXIX. }}$
NEW YORK, NOVEMBER 8, 1873.

IMPROVED STANDARD COMPRESS

It may be safely stated that the cardinal object, to be attained in the construction of mechanism designed for compressing bulky articles into a more readily manipulated form, is so to arrange the application of power that its effect be not diminished toward the end of the work; or perhaps, more accurately, so that the amount of force expended in performing the operation shall increase in direct ratio with the opposition it ha to surmount. Referring to the individual instance of tha class of cetton or other presses, in which a in which a steam piston i made to act up ing between cog segments, con nected by rod tc the follower of the press in such a manner that the leverage will be in creased as the creased as the follower is drawn up, it i hardly necessary to point out that, toward the end of the stroke, an immense force may be developed. But it has been found equally found equally true, owing to the difference of
sizes of articles of the same nature, to be compressed, bales of cotton, for example, that be sides, from oth er causes, the power of the press is hardly sufficient to perform the work or to reach so near the end of its stroke as to render the gain by this increase of leverage available. It is, vailable. It is, therefore, common, in order to attain the latte result, to employ a cylinder of larger size than is necessary at the begin ning of the motion or with bales of comparatively small dimensions.
In the invention represented in our engrav ing, while the general plan above noted has beenadhered to,
two engines, instead of but one are employed, and these |description of the mechanism, as a reference to the engrav are so arranged that a cylinder of comparatively small di ing will clearly indicate the quite simple construction of the ameter applies the first and, consequently the less powerful pressure. When this has reached the limit of its capability, the second engine comes into action and, loy means of a large piston surface and short stroke, develops sufficient power to insure the completion of the pressure, and thus brings into effect the advantageous leverage already alluded to. By this means, it is claimed, steam is not only used in the most
economical manner, but the construction affords four distinct gradations of the power, to be applied at will, as fol. ongine; and fourth by uaing steam diract from the boile n both.
lows: First, by employing the smaller cylinder alone; se-|exactly as we saw it a few days since. The material to be cond, by introducing steam into the larger cylinder in addi- compressed was cotton, and a single bale, taken as a sam tion and causing it to work expansively therein; third, by ple, weighed in the neighborhood of 500 pounds, and meas cutting of team in the smaller cylinder, so that it may there ured, before pressing, 52 inches. This was placed on the work expansively in connection with the steam in the large follower of the machine, and the engineer threw over on of the hand levers, shown at the right of the engraving. The effect of this was to vibrate a rock shaft, the lower one represented, and so open the steam valves of the lower cylinder. These valves, as well as those on the up per engine, are balanced as near ly as possible, and are claimed to possess all the advantages of both cylindrical and double puppet valves, as they work with littl riction and ar held on their seats with slight steam pressure. As steam entered the lower engine the piston of course rose, and the rack upon it, engaging with he teeth of the segments and thus actingon the massive wrought ron rods, quick ly raised the follower. This mo tion continued until very nea the end of the ower engine's troke, when the upper end of the piston rod en. tered a simple clutch formed by gibs, resting at heir upper ends in bearings in a in bearings in a un upon the downwardly projecting rod of he upper cylinder. The gibs are hooked at their free lower portions, and are controlled by arms provided at heir outer end with rollers which work in rooves in the stationary frame. These grooves are so formed hat, when the rosshead and clutch are in heir lowest posiion, the hooks at the lower ends of the clutch jaws are drawn out ward from the head of the rack but, as they rise, are pressed inward and, by the shape of the frame, cleaily shown in our en graving, kept in contact with the head of the lower piston rod Thi two piston rods together, and at the same moment its gibs, as they expanded, actuated a bell wire and sounded a gong close beside the engineer, who, rapidly moving a second lever admitted steam into the upper cylinder. At this point, the various gradations of power above noted may be employed in accordance with the nature of the work to be accom plished. The second and more powerful engine being now in operation, further compression of the bale followed. Six
inches of stroke, we noticed, corresponded to one inch of movement of platen; and with a steam pressure of 125 pounds, this would develope a pressure of two thousand tuns.
Finally the limit of stroke was reached, and the follower had risen to a distance of between 7 and 8 inches from the immovable portion above it. Here the bale was held until the straps were passed and the ends secured,and then steam was allowed to escape from the upper cylinder, allowing the follower to drop.
It will be noticed from the drawing that the piston rod of the upper and larger engine projects up through the cylinder and terminates in a flanged collar. Beneath the latter is a rubber buffer, so that, as the piston descended, the falling weight was met by this elastic support taking against the top of the cylinder, and all jar is thus avoided. When the widened portion of the guides was reached, the clutch of course uncoupled, leaving the piston of the smaller engine to continue its descent, cushioning slightly on the contained steam. The rack and segments necessarily resumed their pnsition as at the beginning of the operation.
So quickly is the work performed that,probably during the time the reader has devoted to perusing the above description, a dozen bales of cotton would have been pressed, banded and removed. In the case of the bale referred to in the beginning as 52 inches through, we found that it occupied about 5 seconds to complete the pressure; and within 50 seconds, the bundle was reduced to 14 inches in thickness and securely tied. The economy of space in shipping thus gained need hardly be pointed out. Estimating cotton bales pressed by other means as of an average thickness of 33 inches at the beginning,and supposing them to be compressed
to the uniform dimension of 18 inches, here is a saving, to the uniform dimension of 18 inches, here is a saving,
we are informed, of 175 tuns admeasurement per 1,000 bales, while it is further claimed that, thus packed, 24,000 pounds of cotton can be stowed in a 28 foot car. In case of hay, the economy is even greater; for two bales, standing 6 feet 2 inches high,can be compressed into a single bale of 20 inches. A fair statement of the average capacity of the machine (judging from our own examination, together with the claims of the inventor) seems to be about 60 bales of cotton per hour. There are other advantages incident to thus compressing cotton into such perfectly compact form, in addition to that of economy of space; among which may be mentioned its greater facility in handling, less danger of being permeated by fluid or moisture, and also greater im-
munity from the peril of fire.

As regards the construction of the machine, we may add that it appears exceedingly strong and durable. Its weight is about 100 tuns. The follower rods,as already noted, are of wrought iron, while the segments, rack, crosshead, etc., are of gun metal. The cogs are cast from templates and claimed to be more perfect even than cut gear, while their strength, we are assured, prenludes all possibility of their stripping. There are also powerful braces placed so as to meet the strains in the most advantageous manner; and rubber buffers are applied at the various points which might be jarred by suddea or too heavy inpact.
The invention was patented by Mr. G. W. Grader, and may be seen in operation at the works of the Standard Compress Cotton Company, Nos. 108 and 110 Morton street in this city. Further particulars may be obtained from Mr. C. H. Close, of the latter address, or from Mr. J. H. Edmundson, Memphis, Tenn.

srixutifir Ammitam.

M.UNN \& CO., Editors and Proprietors. published weekly at NO. 37 PARK ROW, NEW YORK.

> | O. D. MUNN. | A. E. BEACH. |
| :--- | :--- |

HEMINS

One copy, one year...
One copy, six months

$\$ 300$
25
2500
50
VOL. XXIX., No. 19. [New Series.] Twoenty-eighth Year.
NEW YORK, SATURDAY, NOVEMBER 8, 1873 .

Mr. R. A. Proctor, the distinguished British astronomer, has recently arrived in this country. He proposes, we believe, to give an extended series of popular lectures, for which purpose he has brought with him a series of paintings illustrative of astronomical problems and discoveries.

the electrical condenser.

In the working of the steam engine, the office of the con denser is to assist the power and economy of the machine by rapidly removing the back pressure of the exhaust steam and converting it into water for re-use in the boiler, In a somewhat analogous manner, the employment of the electrical condenser appears to facilitate and improve the working of certain kinds of telegraphs. When a battery curren is sent through an insulatedtelegraph wire, there is produced another current, termed static induction, which interferes with the operation of the battery current.
On the ordinary pole telegraph with the ordinary instruments, the static induction gives little trouble; but in the case of subterranean and submarine cables, the induced curents prevent the rapid working of the instruments.
The electrical condenser consists of tin foil, separated by sheets of insulating material, such as parafin paper; and w^{\prime} en the metal of the condenser is connected with the telegraph wire, it absorbs the electricity of induction, and changes it so that it acts to assist instead of retard the transmis sion of telegraphic signals by the instruments.
The various submarine cables could hardly be worked with commercial success, were it not for the combination with them of the coidenser. The condenser has been recently applied to some of the land lines with greatly improved results. It is employed in connection with the Stearns duplex instruments, by which messages are simultaneously transmitted in both directions over one wire; thus doubling the capacity of transmission without augmenting the expenses. The Stearns invention has been heretofore de scribed in our paper. It has lately been adopted by the British government, in accordance with the recommendation made by us.
Another recent application of the electrical condenser is in connection with what is termed automatic telegraphy. This consists in operating the sending key by drawing under it a strip of perforated paper, each perforation, of given length, representing a given signal. At the opposite end of the line the message is received upon chemically colored paper, the color of which is instantly changed and the signals made visible by the passage through it of the electrical currents. The great trouble with the practical working of this system of telegraphy always has been that the static electrivity operated to string out the electrical waves, producing tailiogs, making the signals to run into or overlap each other, and render them illegible, upon the receiving paper. This was especially the case if a certain limit of rapidity in the transmission was exceeded. This limit of transmission was 100 words per minute over a line of 250 miles extent; whic about the speed of the common Morss instrument
Mr. George Little, who is well known for his indefatiga be efforts and ingenuity in connection with automatic tele graphy, has applied the condenser to his instruments with marvelous results. He states that it enables him to trans mit 5,000 words, or 30,000 signals per minute, over one wire with perfect legibility, and that the instruments of the Automatic Telegraph Company are now working the system a this rate between New York, Philadelphia, Baltimore, Wash ington, Mobile, and other cities.
This discovery promises to be of much importance in the business of electrical transmission. It will enable people to do their correspondence in full by telegraph, instead of by brief sentences, as at present. It will assist to preven blunders in transmission, for which at present there is no
remedy, except by double payment. It is well known that the Western Union Company will not ctherwise guarante the correct delivery of any messages sent over their lines, The successful introduction of the automatic system will, however, put an end to this extortion. The facility of trans mission is so great that the Automatic Telegraph Company is now enabled to send twice as many words, for the same money, as the other lines; and thus the sender may make sure of a correct delivery of his message, without loss of time or payment of extra charges.
Another striking advantage of the electrical condenser is its use in connection with subterranean wires. It permits the transmission of signals with as much facility when the wires are placed underground as on the pole lines, and will enable our city authorities to pass ordinances requiring the removal of the many poles which now disfigure and encumber our streets.

PROGRESS OF SCIENTIFIC EDUCATION.

Two more munificent gifts have been made in aid of scientific education: one in the shape of a bequest of the sum of $\$ 200,000$, by Mr. William Wheelwright, of Newburyport, Mass., lately deceased in England, for the establishment of a scientific school in his native place, and the other by Mr. Mr. Ario Pardee, of Hazelton, Pa. The latter gentleman, finding through his own experience the necessity of increased facilities for technical instruction throughout the country, some time since selected La fayette College, in Easton, as the object of his donations. Although the aggregate amount thus bestowed had, up to some sixteen months ago, a complete scientific department, and to this end began, with in the college grounds, the erection of the edifice, which quite recently has been formally presented to the authorities of the institution. This magnificent gift, while forming a fitting culmination to the series of benefits already rendered by its donor in furtherance of scientific learning, brings the
total pecuniary value of his endowments to the large sum of half a million dollars.
The building, which has been named Pardee Hall, is five tories high, 256 feet in length, and is constructed of brown
tone. It contains chemical and metallurgical laboratories
geological and mineralogical cabinets, large and elegantly fitted up lecture rooms, besides a spacious hall. The labora.
tories are said to be the most complete in their appointments tories are said to be the most complete in their appointments tudents. Pip students. Pipes throughout the building convey gas, oxygen, hydrogen, sulphuretted hydrogen; steam, and blast, to all points where the same inay be required. There is an elab orate set of chemical apparatus, together with a valuable stock of chemicals, besides models of machinery for mining operations and various industrial purposes.
The formal ceremonies of donation consisted in an address by Mr. R. W. Raymond, lecturer on mining geology in the ollege, on the "Necessity for Scientific Education," together with speeches by Mr. Pardee, the Governor of Pennsylvania, nd Dr. Cattell, President of the Faculty.

the state of the iron trade.

There exists at present a general feeling of depression in he iron trade, and this more especially among the smaller firms. We do not share in the gloomy apprehensions of its permanency, however, throughout the winter, and it seems to us that there is ground for a much more hopeful feeling han that expressed in the majority of cases.
The railroad supply firms and locomotive works have prob ably suffered most, through the countermanding of orders But the money which would have been expended in payment for the completed work is not out of existence, but simply locked up. The same is the case with regard to all other industries which have felt the effects of the crisis. Funds f not in circulation, must accumulate; and when they once break over the barriers which confine them, there will be a superabundance of cash within easy reach. How soon this reaction will take place, it is impossible to say. The panic gave no warning of its approach, and we believe that the anomalous state of affairs which now causes the people to so closely guard their purse strings will disappear in an equal y sudden manner. The only counsel to be given is simply to hope, and to use every effort to tide over the interva which may elapse before the resumption of easier times. The country is unquestionably in a prosperous condition, and industries generally are doing exceliently well. Hence, as to the temporary nature of the present difficulties there is not a shadow of a doubt; and that they c nnot much longer con tinue, we consider almost a certainty. Those houses which, by careful management, succeed in bridging over the chasm without making serious sacrifice, will, we further believe, when the reaction comes, clear sufficient to wipe out the record of the losses they may have incurred, and, besides, how a fair profit for the year.
Regarding the probable condition of the workmen, due to he reduction of force in many establishments, we notice with regret that the sentiments of one of our most promi nent firms breathe a spirit of retaliation and a lack of sym pathy for the men, on account of the part taken by the latter in the strikes of a year ago. Such expressions tend but to re-open old wounds, and employers will (ind that, instead of thus planting the seed for future feuds, they will serve their wn interests best by considering the welfare of their em ployees. By assisting their men in a time of trouble, to the extent of their ability, they will engraft in them a feeling of gratitude which will serve materially to diminish the chance f future dissensions; while it will be but ordinary charity to endearor to alleviate the condition of fellow beings who, from no fault of their own and for an indefinite period, are thus forced out of employment and compelled, as best they may, to face the hardships and miseries of the coming winter

ELASTIC PROFANITY.

At a summer festive gathering on one of the Thousand Isles of the St. Lawrence, last summer, the Rev. Dr. Pull man, of Peoria, playfully gave, as a complimentary toast, "The health of the inventor of Elastic Profanity," in allusion to Dr. S. C. Barnum, of this city, who happened to be present, and who is well known in the dental profession as the author of the rubber dam. Thisis a device now in common ase, for keeping fillings dry during the operation of tooth plugging, and is almost as indispensable for good success in dentistry as chloroform is in surgery,
The rubber dam is nothing more than a piece of sheet rub ber, which is punctured and stretched over the necks of the teeth, serving to hold up the gums, and wholly prevent the access of saliva at the point where the filling is being intro duced. It is not only a marvelous convenience for the dental operator, but affords great relief to the patient; for it in no way interferes with the natural functions of the tongue, muscles, and glands of the mouth. It enables the dentist to perform with ease and certainty a class of most necessary operations which were previously counted almost among the impossibilities by leading practitioners. In thousands of cases, teeth which before were condemned for extraction are now readily saved and filled.
The rubber dam was invented in 1865, by Dr. Barnum and presented by him as a free gift to the profession, at the Dental Convention held in this city during that or the fol. lowing year. Previous to the discovery of this device, dentists were obliged to resort to all sorts of curious contrivances in the attempt to keep their fillings dry. Among these was the duct valve, a round disk which was placed in the mouth of the patient, upon the orifice of the salivary gland. and there pressed by a clamp, to prevent the escape of the saliva. This was painful to the patient, as well as injurious, as it caused an unnatural engorgement of she gland.
Then there was the saliva pump. While the dentist was engaged in filling the tooth, an attendant stood by and worked hand pump to draw off the saliva from the patient's mouth

Sometimes the dentist had to take plaster casts of the defective tooth and adjacent parts, and by their aid manufacture temporary bulworks of gum mastic, to fit the mouth, with a view to shut off the water from the designated tooth. This preliminary operation involved much more time and trouble preliminary operation involved
than the filling of the tooth.
Then there were the tongue clamp, the gum clamp, the gag, the iron presser, and other special tormenting devices, which were brought into operation for the one purpose mentioned; to say nothing of sponges, blotting paper, and cloth napkins, with which it was deemed necessary to stuff and torture the patient's mouth. All of these relics of what may be termed the dark age of dentistry have been superseded by Dr. Barnum's rubber dam. The author occupies a high place in the estimation of the profession, by whom he is place in the estimation of the profession, by whom he is who remembers the old instruments, gives honor to the inwho remembers the old instruments, gives
ventor, and rejoices with elastic profanity.

THE LATE DR. NELATON

To Nélaton, the greatest of modern French surgeons, recently deceased, it is said that the medical profession owes the perfection and simplification of an immense number of the most difficult chirurgical operations. Although he wrote but little, he manifested a wonderful genius for devising tools and apparatus, and for imparting clinical instruction to others. "Give him a piece of wood, some iron wire, and some chisels," says a biographer, " and he will invent and construct an instrument to suit any requirements."
He detested display, and particularly avoided spreading out cases of implements during the course of an operation. "Surgery \mathfrak{a} grand orchestre," he called such exhibitions; and it seemed as if he managed to do far more with his fingers than many other surgeons with the most elaborate of tools. His coolness equaled his dexterity, and some of his sayings will doubtless pass into proverbs. "When you have made a correct diagnosis and know what you are about, you risk nothing," was a favorite remark. "If you have the bad luck, while operating, to cut a man's carotid artery, remember that it takes two minutes' time to cause syncope, and four minutes will elapse before he bleeds to death. Now four minutes is just four times as long as is necessary to place a ligature on the vessel, provided you do not hurry": and "You are working too quickly, my friend; remember that we have no time to lose," were other now famous observations made during the course of difficult operations.

Nélaton attained very general celebrity from the fact of his treating the Prince Imperial and the wounds of Garibaldi. He died of a lingering malady of the heart, continuing his teachings and practice to the last.

SCIENTIFIC AND PRACTICAL INFORMATION.

a new galvanic battery.

Abbe Fiehol, says Les Mondes, has recently constructed a new battery, using a Spanish mineral which is probably a kind of pyrites. Within a glass jar is placed a zinc cup, 7 inches long, 3 inches deep, and 2 inches broad, into which the mineral is packed. Above is a piece of copper, and the interstices are filled with pulverized coke, mixed with ten per cent of chloride of sodium (common salt) and moistened with water. Four elements, united with isolated copper wires, copper to copper and zinc to zinc, it is stated, gave a current of surprising energy, fully equal to that of five Bunsen couples. The battery is constant, and it has been found that, after eighteen months continuous use, it operates as well as when first employed. The only condition seems to be that it should be kept thoroughly moistened.
a new textile plant.
The jury at the recent Exposition, at Lyons, France, a ward ed a medal for the utilization of the fiber of a inarsh plant, commonly known as the massette. It is of the typha family, and three varieties, namely, typha latifolia, angustifolia and minima, yield the fiber. The plant grows in a wild state reaches a hight of some ten feet. Heretofore it has been employed for seatirg of chair bottoms and thatching of cottages, and occasionally in place of straw as bedding for animals.
The mode of extracting the fiber from the leaves after the latter are cut and dried consists simply in boiling them for several hours in an alkaline solution and afterwards dressing them in a mill or under rollers. Washing terminates the process. A yellowish paper is made, worth about $\$ 16$ per 220 pounds. The fiber, it is believed, may be used for fabrics and for cordage, and is considered equal to hemp, flax or jute.
america no longer a customer for british steel.
The excitement produced in Sheffield by the rise in coal has been intensified by a rumor that one of the largest firms engaged in the manufacture of steel-mainly for American customers-is about to transfer its business to the United States. For a long time past these makers have been pro
ducing steel from Bilbao ores, but have at ducing steel from Bilbao ores, but have at last found them
selves (overweighted by the cost of freight and the high prices of fuel and labor) unable to compete with American makers, who import the ore direct, and manufacture upon the spot. If confirmed, says Iron, this report will only tend to prove more clearly than before that, although we need not
for awhile-dread the American as a rival, he is gone for ever as a customer.
the manufacture of magnesia.
The Washington factory, near Newcastle, England, manu factures the greater part of the magnesia used in the world. The principle of the process employed consists in treating
dolomite with gaseous carbonic acid, under a pressure of 5 or 6 atmospheres. The dolomite is first dried, then finely pulyerized, and afterwards placed with cold water in a cyl inder which constantly revolves on its horizontal axis. The carbonic acid gas formed by the action of hydrochloric acid upon carbonate of lime is, by a powerful pump, driven into the vessel at the pressure above noted. The solution of bicarbonate of magnesia thus produced is carried into a vertical cylinder and submitted to steam (the consequent elevation of temperature regenerating the neutral carbonate,) and then led into canals beside the last mentioned receptacle. Lastly, the substance is gathered into masses, from which are cut the parallelopipeds which, after desiccation, are supplied to commerce. Caustic magnesia is obtained by heat ing the carbonate in red hot muffle furnaces.
analysis of tea.
Zöllers analysis is as follows:

the british association.

We continue, from our last, abstracts from papers read at the late meeting at Bradford:
heat-conductine power of rocks.
Professor Herschel and Mr. Lebour have been experimenting in this subject. Twenty-eight specimens of rocks were reduced to uniform circles of 5 inches diameter and $\frac{1}{2}$ inch thickness, carefully gaged. Out of six specimens that had been tried, slate plates, cut parallel to the plane of cleavage, transmitted the heat faster than any of the others. Where the flow of heat had become uniform, the water was raised $1^{\circ} \mathrm{Fah}$. in thir-ty-two seconds. With marble, sandstone, granite, and serpentine, about thirty-nine seconds were required to raise it by the same amount. The greatest resistance to the passage of heat was offered by two specimens of shale, gray and black, from the coal measures in the neighborhood of Newcastle, which occupiedforty-eight or fifty seconds in raising the water one degree, or half as long again as the time taken by the plate of slate.

PHOTOGRAPHS OF INVISIBLE SUBSTANCES

Dr. J. H. Gladstone, F. R. S., cailed attention to some photographs of fluorescent substances. Fluorescent substances, such as bisulphate of quinine or uranium glass, have the pow er of altering the refrangibility of the violet or chemica rays of light; hence, although paper painted over with bisulphate of quinine will look nearly white, it will appear in a photograph as if it were nearly black. Dr. Gladstone exhibited some photographs of ornamental design traced on white paper with bisulphate of quinine; although the designs were nearly invisible to the eye, in the photographs they were boldly visible. A colorless solution of bisulphate of quinine was placed in one glass, and some ink in another glass; when both glasses were photographed, they came out equally black. Dr. Gladstone said that once, at the seaside, he painted a pattern with bisulphate of quinine upon paper, and took the paper to a photographer to be photographed; he objected, because there was nothing on the paper, but on trying the experiment he found out his error. It was stated
that some kinds of varnish possess a similar power of affecting that some kinds of varnish

shooting stars.

It appears, from the report of the Luminous Meteor Com mittee of the British Association, that shooting stars and large fire balls have appeared during the past year in more selves in considerable numbers, and ordinary shooting stars in a more striking manner, as regards the explanation of their origin, than has often been the case in former years. Of all these kinds of shooting stars, both large meteors and meteoric showers, much accurate information has reached the committee. Two of the largest fire balls seen in Great
Britain were aërolitic, or burst with the sound of a violent Britain were aërolitic, or burst with the sound of a violent
explosion on November 3 and February 3 last. Aërolitic meteors and aërolites have also been noticed in the scientific journals of other countries, which have given rise to experiments or the composition of aërolitic substances, both chemical and microscopical, the conclusions of which continue to extend the range of our speculations regarding the origin of these bodies. Thus the existence of carbon and hydrogen, in the atmosphere from which the largest iron meteorite yet found (a few years since upon the shores of Greenland) was expelled, confirms the discoveries of Grahame and Professor Mallet, in America, of the existence of the
same gases in other meteoric irons. Dr. Wöhler has thus detected the oxides of carbon as gases in the vast meteoric iron of Ovifak, found in Greenland and brought to Stockholm during the last few years by Professor Nordenskiöld and the same gas was found by Professor Laurence Smith in the siderite which fell recently in the United States. A connection between comets and meteorites appears to be in dicated by these discoveries, in the spectra of some of which gases containing carbon appear to have been certainly recog The by Dr. Huggins.
The past year was distinguished by the occurrence of a
ost remarkable star shower on the night of November 27
last, to the expected appearance of which astronomers were looking forward with especial attention,from the unexplained absence of the double comet of Biela (to which it belongs), from its accustomed returns in the last three of its periodical revolutions.
The cloudy state of the sky unfortunately deprived obervers in the South of England from witnessing the sight; but in Scotland, and north of the Midland counties of Eng. land, many uninterrupted views of it were obtained. On the European continent and in the United States of America, as well as in the East Indies, at the Mauritius, and in Brazil, observers were equally fortunate in recording its appearance, and few great star showers have hitherto been more satisfactorily observed, or indeed more abundantly described. In an astronomical point of view, the agreement of the time and other circumstances of its appearance with the supposed path of the lost comet is so exact as to prove that the calculations made by astronomers of that comet's orbit cannot be affected by any errors of a large sensible amount, and a proof almost certain is thus obtained, that the disappearance of the comet is owing to no unexplained disturbances of its path; but that like some former comets of variable bright. ness, it has not improbably faded for a time out of view, and that at a future time a reasonable expectation may be entertained of re-discovering it pursuing its original path in repeated visits to the earth's neighborhood, and to the field of telescopic observation.

IMPROVED PROCESS FOR PURIFYING COAL GAS.
Mr. Vernon Harcourt said that the usual method of freeing coal gas from sulphuretted hydrogen was by passing it through lime. But oxide of iron was also employed in place of the lime, the advantage possessed by the oxide being that while the lime, after it had served its purpose, was useless while the lime, after it had served its purpose, was useless
and difficult to get rid of, the oxide of iron could be used repeatedly for the same purpose. The chemical changes in volved were that, when the gas had passed through the ox ide the latter was changed into sulphide of iron; when the sulphide was exposed to the air, the sulphur separated and the oxide was re-formed, thus enabling the oxide to be again used. This was called a continuous process, because the oxide could be continuously used. But the process was not quite continuous, for, after the oxide had been used some thirty times, it became so clogged with sulphur as to be use ess. The new process was applicable wherever oxide of iron could be used in the purifying process. The difference from the old process was that the oxide during revivification was moistened with a solution of ferric sulphate (persulphate of ron), and a portion of the oxide was removed from time to time, and treated as follows: It was first extracted with water by the use of a well known arrangement. The soluble salts were sulphate of ammonia-formed in the purification by the reaction of ammonia upon ferric sulphate-and, in smaller quantities, sulpho-cyanide, hypo-sulphite, and probably sulphate of ammonia. This extract was mixed with a small excess of sulphuric acid; and yielded, when concentrated by evaporation,crystals of ammonium sulphate. The remainder of the substance was then boiled with dilute sul phuric acid, which dissolved the oxide and left a residue of sulphur. The actual process of extraction by acid consisted in treating the substance successively with (1) a solution of ferric sulphate containing some free sulphuric acid; (2) with a more dilute solution of ferric sulphate to which sulphuric acid had been added; (3 and 4) with more dilute solutions of ferric sulphate-all these liquids being the product of a for mer extraction-and (5) with water. The liquid resulting from the first of the treatments enumerated above was a strong solution of ferric sulphate, which was used as already mentioned, by being mixed with the charge of oxide before it was replaced in the purifier. The residue of the final washing consisted almost entirely of sulphur, and required only to be dried. It would be evident that all the oxide which had been freed from sulphate of ammonia and sulphur by this treatment passed into the condition of ferric sulphate, and in this condition it was replaced in the purifier. There it again became oxide by the action upon it of he ammonia in the gas, which it completely removed, fixing it as sulphate. This system had been brought into use as a manufacturing process, and had been found to be, as far as could be judged, a complete success.

next fear's meeting

The next meeting of the British Association is to take place t Belfast, Ireland, on August 9, 187.4. Professor Tyndal has been elected to preside.

A Gigantic Cotton Press

We devote our initial page this week to the illustration and description of a new machine for the compressing of cotton, hay, or similar material. The apparatus is a gigantic affair, occupying two stories of a moderate sized building, nd is a model of admirable workmanship. The parts, hough weighing tuns, move with the ease and regularity of well balanced engine, and the tremendous pressure which they develope produces results which it is difficult to ima gine could be otherwise so well and readily effected.
The application of the invention to the re-pressing of cotton bales, previous to their shipment abroad, will tend to increase materially our present facilities for exportation, as a vessel is thus enabled to carry fully three times mor e of the staple than heretofore. There are many advantages gained, notable immunity from danger of fire or injury by moisture, increased facility in handling, besides others which will be easily apprehended on perusal of the description of the device. Apart from its capabilities, the machine is intrinsic ally well worthy of the examination of engineers and me-
chanica. chanice.

PROPOSED ADDITION TO THE HARBOR WORKS AT DOVER, ENGLAND.
The Admiralty Pier at Dover, well known for its immensely solid construction, has been found to be so convenient a landing and embarking place for continental traffic that another work, leaving the shore from the other end of the town and, with the work already constructed, inclosing a harbor of refuge of 350 acres extent at low water line, has been proposed by Colonel Sir Andrew Clark. We publish herewith a bird's eye view of the town, with the suggested improvement.
The trains of the two railroads, whose depots are seen on the left in the engraving, at present run on the top of the solid masonry of the pier, allowing passengers to pass immediately from the cars to the steamboats; but the new plan suggests the construction of an inside landing place, with covered platform for loading and unloading trains, also shown in the view (for which we are indebted to Engineering). This would improve the accommodations considerably, as the place of arrival and departure would be protected from the very strong tide of the Straits and from the sea, which runs at times at great hight. But the more important proposition is the other arm of the work, quitting the eastern part of Dover and proceeding seawards in a southsouthwesterly direction for a distance of 3,800 feet. It then turns westward and continues further for 2,200 feet, stopping at a point 600 feet from the end of the Admiralty Pier. This 600 feet width is the entrance to the harbor.
The pier already in progress has been twenty five years in hand, the work being executed in stone facing, the inner filling being of concrete. The new work is to be entirely of the latter material, and it is proposed to use convict labor in the construction. By modifying the design of the structure now being erected, which is another feature of Colonel Clarke's design, it is believed that the whole can be completed in five years.

The value of a harbor of refuge at Dover will be understood when it is known that the South Foreland is but five miles east from the town. This promontory is frequently the scene of most tempestuous weather; and when the wind is northeasterly, whole fleets of vessels lay there unable to round it, suffering very considerable damage. The work would also add to the attractions of Dover as a marine resort, its beautiful surroundings and bracing air having. long made it renowned in Europe. It has a very handsome fagade of residences, and the commercial part of the town lies well protected by the South Downs,. which almost surround it and through which the two railroads enter by long tunnels. Immediately to the left of our picture is the cliff whose appalling hight is so well described in "King Lear," from which it obtained the name of "Shakespeare's Cliff." A prominent point in the view is Dover Castle, which was built by Juljus Cæsar after his landing in Great Britain, 1,930 years ago. Thirty-five acres of ground are covered by this work, which is still a redoubtable fortress,now armed with the best modern artillery. The hights on the west side of the town are surmounted by a very large fortification, with barracks, bombproof magazines, etc. But the harbor of refuge, open to all nations, will be a more beautiful and probably more useful example of the powers of modern science than either ancient or modern strongholds.
The Chemical Society of Berlin have decided to erect a statue of Liebig, either at Darmstadt, Giessen, or Munich. Subscription lists have been opened throughout Germany in order to secure the necessary funds.

New Stereoscope for Large Pictures.
In the accompanying diagram I have attempted to indi cate the construction of an instrument, available for pic tures of large size. The two halves of each stereogram are to be mounted on pieces of carảboard, joined together by leather, cloth, or other flexible material, so that the whole may be shut up like a book, with the pictures face to face. Let L and R indicate respectively the positions of the left and right eyes of the observer, and the lines, A B and B C and right eyes of the observer, and the lines, A B and B C,
the boards or frames upon which the folio pictures rest. The perpendicular pencils of light from the center of each picture now reach the eye pieces in converging lines, which, by

transmission through the prisms, may be rendered paralle or divergent to suit the particular theory of binocular vision approved of by the constructor of the instrument. I may observe that parallelism is the idea which accords best with my own apprehension of the subject. After transmission through the prisms, the rays are finally passed through suitable magnifying lenses, whose centers, I apprehend, may be employed for the purposes of vision. The eye pieces themselves may be constructed of single pieces of glass ground to a spherical curve on one side (the outside), and to the refracting angle on the other.
To determine the angular inclination of the pictures to each other, find, first of all, the point, B, at which their juncture shall be placed. Then, with a radius equal to one half the width of the pictures to be shown, describe the circle seen in the figure. From each eye piece draw a line touching the outside of the circle, and from the center of the circle draw other lines through the points of juncture. The resu is the angle for the pictures. In the right hand portion of the figure I have drawn lines showing the actual direction taken by the rays in passing from the picture to the prism, and in the left the virtual or seeming direction of those rays.
The advantages I claim for this form of lenticular stereoscope are:

1. That it admits the use of pictures of any size.
2. That those pictures are not mounted on separate sheets
3. That they are, as heretofore, right handed, and therefore capable of production by any perfected process.-D. Winstanley, in British Journal of Photography.

THE THREE CYLINDER ENGINE.

We published sometime ago a sectional view of an en gine constructed with three cylinders, placed at angles of 120°, and three pistons operating one crank. We give here with a view of the complete machine, from which it will be seen that the dead centers are overcome and the fly wheel is dispensed with; and a very high piston speed, to the attainment of which engine builders are now specially direc ting their attention, is at once made possible. Two thousand revolutions per minute, without jar or disturbance, are said to have been reached by this engine, which is the invention of Messrs. Brotherhood and Hardingham, London, England. The cylinders are arranged, says Engineering, to which we are indebted for our illustration, around a central chamber with which they communicate, the whole being cast in one piece. The crank pin, after passing through the connecting rod eyes, is prolonged, and fits into a hole in a rotary slide valve, which it thus actuates. The valve has a steam and exhaust port, which are alternately placed in steam and exhaust port, which are altornation with the passage belonging to each cylinder. In working this engine, steam is admitted to the central chamber, and exerts an equal pressure on the inner sides of the three pistons. Thus far the machine would be in equilibrio. But steam now passes through the slide valve to the outer side of one piston, thus throwing that piston into equilibrium but the three pistons collectively out of equilibriam. In other words, it renders the pressure on the inner sides of the other two pistons effective. A rotary motion of the crank and slide valve ensues, and the other pistons are alternately operated upon in a similar manner, the constant effective area for pressure being that of a piston and a balf. If steam be not admitted during the whole of the inward stroke of a piston, it follows that the piston is not entirely thrown into equilibrium, and the crank has to assist it in the return stroke. The effect is of course equivalent to working steam expansively in an ordinary engine.
It will now be seen, and this is the most important feature of the engine, that a piston, when moving in one direction, pulls the crank, and when moving in the other, is pulled by the crank. Hence, the strain on the connecting rod is always a tensile one. No knock can therefore take place in the connecting rod eyes on the alteration in the direction of he piston's movement; so the fit may everywhere be quite loose, and, instead of constantly adjusting brasses, it is only ecessary to renew a few bushes when excessive wear has taken place. Similarly the slide valve is free to slide on the rank pin, and adjust itself to its face as wear takes place; and the back of the crank disk always maintains a steamight joint in the same manner. The lubrication at first proved a source of difficulty, but it is now amply secured by the simple addition of an impermeator to the steam pipe the oil being carried by the steam as a medium to all the working parts.
In the course of experiments it was found that few metals would stand heavy work in high pressure steam under such conditions. Ultimately hard phosphor-bronze bushes for the connecting rod eyes, working on a hardened steel crank pin, were adopted, and these are found to last a long time without any oil whatever, the steam affording of itself sufficient lubrication for these two metals.
An average speed of only 300 feet per minute for the pistons is said to give a very high indicated horse power in pro

portion to the size and cost ; besides which, there are the advantages due to the saving in weight. It will be seen that great protection is afforded to the moving parts, and that cleanliness of working is insured. The economy arising from the friction being so much reduced is very considerable, while the ready applicability of the engine to a great variety of uses is one of its chief merits.

The Effect of the Panic on the Iron Works

It appears that the late financial crisis is producing afte results of a rather serious nature as affecting the iron manu facture in the neighborhood of this city. A Tribune re porter has lately visited officials of several prominent estab lishments, and, with the exception of the statements of re presentatives of the Quintard and Architectural works, the inference to be drawn from the opinions selected is that the prospect for the autumn and winter is far from encourag ing.
The agent of the West Point Foundery says that, previous to the panic,there was every expectation of a brisk demand for machinery. Now, however, prices have fallen, and people are putting off enlarging or repairing their shops until more favorable times. The West Point works, which usually employ from 600 to 700 men , are working barely two thirds of that number, and it is probable that even further reductions will be made. Little hope is held out of a revival of business before spring. The President of the Atlantic Dock ron Works confirms the latter statement, and adds that the workmen have but a gloomy outlook. Out of 250 men em ployed at the last mentioned establishment, 100 will be hortly discharged. To the panic, the entire difficulty is ascribed, notably through the stringency of money, the fact of a general resrenchment taking place, and buyers are holding back in apprehension. Few contracts are now being made because contractors hesitate to involve themselves in engagements in the present unsettled state of affairs, while manufacturers shrink from accepting offers, unless they are certain they can get ready money on their completion.
The J. L. Mott Iron Works will continue carrying on a large stock and running on full time with a strong force of hands, in expectation of better times in the spring. If mat ters become worse, the company will have to follow the general example and make reductions. About 400 men are employed.
The Etna Iron Works employs but 300 hands, instead of 700, and proposes to reduce the former number by half. Substantially the same views as already given, as regards an amendment of business in the spring, are held.
The Architectural Iron Works have work ahead for two or three months. Their customers are of the wealthiest class, and the government is also a patron: consequently collections are exceptionally ready with this company, but even in their case some difficulty has been found during the early part of the difficulty. No trouble is experienced in obtaining currency to pay off. The Quintard Works have not been interfered with seriously, on account of their business being mainly repairing. The proprietors consider that the complications will be merely transient and that money will be plentiful during the winter, while an unusually active trade will spring up during the spring. The full force at the establishment is 500 hands, and no material reductions will be made.

A New Mode of Condensing the Liquefiable Matters

 held in Suspension in Gases.by ma. e. pelouze and p. audouin.
It is well known to all gas engineers that gas, as it passes from the retorts, carries along with it a quantity of liquefiable matters (tar and ammoniacal liquor) to the amount in general of 12 per cent of the weight of the coal distilled. Only 4 or $4 \frac{1}{2}$ per cent, however, condenses in the hydraulic main, although the temperature of that part of the apparatus is always below 212° Fah., while the boiling point of the tar is above 600° Fah. The reason, no doubt, is that the liquid particles are present in the gas in the vesicular form. The reduced temperature, which it is easy to obtain by the employment of a refrigerating apparatus, is not sufficient to cause the condensation of these particles; and it is only by carrying the gas a long circuit, and using a coke condenser, that they can be so completely removed that the tarry matters may not interfere with the action of the purifying materials. It may be asserted, however, that, in a majority of works and especially at the time of greatest production, the gas is not completely deprived of the matters which ought to be removed before it reaches the purifiers.
The new mode of condensing, invented by the authors, is founded upon the principle that the liquefaction of the globules, held in suspension by the gas, is brought about by the contact of the particles either with solid surfaces or with each other ; the object is to obtain, by the aid of a very simple apparatus, occupying but a small space, the complete condensation of the liquid particles carried along by the gas or vapor.

The action of the apparatus is as follows: The gas to be purified is made to flow through a series of holes of small diameter, so forming jets, which strike against a surface placed opposite. In the passage of the gas through the holes, the liquid molecules are brought into close contact with each other, and the action is completed by the contact with the solid surface upon which the tarry matter is deposited.
The intimate contact between the liquid globules and the gas which holds them in suspension, obtained by the use of this apparatus, effects the condensation of some matiers (ammonia, sulphuretted hydrogen, bisulphide of carbon) which hitherto have only been removed by complicated methods
sometimes injurious to the illuminating power of the gas washing with liquor, etc.). It must be added that, by passing the gas, properly cooled, through the apparatus, any naphthaline is completely eliminated and retained along with the tarry matters.
A high pressure is not necessary to the use of the apparatus, eight tenths of an inch of water being sufficient in ordinary cases. It may be placed either before or after the exhauster; if before, a weak vacuum must be maintained. The most striking result of the use of the apparatus is the almost complete removal of sulphuretted hydrogen from the gas, and it follows that a very important economy in purifying materials must be effected wherever it is employed. An apparatus (of which we append an engraving) has been in operation in one of the Paris works, at which the daily make exceeds 350,000 cubic feet, for several months with perfect success; and others are now to be installed in all the works of the Paris company. The gas, after passing through this apparatus, the capacity of which is less than a cubic yard, is found to be completely deprived of tarry matters; while the tar deposited is rich in oils, and the ammoniacal iquoŕ collected is larger in quantity and more than twice the strengeth of the ordinary condensed liquor.
In conctisfon, it is said that numerous photometric expeiments lave proved that the gas loses none of its illuminating power in passing through the apparatus.

A is the condensing apparatus, properly so called; B is the chamber in which the apparatus moves; C is the inlet
for gas; D is the outlet for gas after passing the condensing for gas; D is the outlet for gas after passing the condensing
apparatus; E is the outlet pipe for condensed products, ter apparatus; E is the outlet pipe for condensed products, terminated by a siphon; F is the regulator, by means of which he number of perforated plates in use is varied according to the quantity of gas to be purified; and G is the water spac
into which the apparatus dips.—Journal of Gas Lighting.

Statistics of Vassar College.

There are over 21 miles of gas pipe in the building, which, including the various stories, covers a floor space of over five acres. There are 410 young lady students, 50 professors, teachers, and assistants, and 100 servants and helpers, making between five and six hundred persons, all of whom board
upon the premises. A special telegraph wire and a horse upon the premises. A special telegraph wire and a horse distant 21 miles. The young ladies drink 150 quarts of milk every day, swallow 150 podierds of butter, and 40 pounds of sugar for pudding sauce for one dinner. The students are required to spend one hour daily in the open air for exercise ; hey have a lake, and boats for rowing in summer, and skating in winter. They have a riding school, bowling alley, gymnasium, etc.

Caxxespmanderre.

ientific American.] Institutions.

To the Editor of the Scientific American

If anybody wishes to find a really enterprising, thrifty and beautiful place, let him come up here to Middletown. It is 67 miles from New York on the Erie railway, in Orange county, the garden of New York State.
I suppose your readers know that the finding of so many fossil animal remains hereabouts, including bones of gigantic mastodons, is attributed to the ancient attractive fertility of the soil and its superior natural endowment with the phosphates of lime: a substance that contributes luxuriance of growth and vigor not only to grains and grasses, but to all living things that derive nourishment therefrom. Hence the inhabitants of Orange county are notable as an enterprising and long-lived people. The county chickens lay the finest eggs, the cows yield the richest milk, the cattle and sheep furnish superior meat, the oxen are large and brawny, the horses muscular and spirited.
Middletown is one of the homes of inventors. Here new inventions and manufactures flourish. I have been much interested during a tour of the shops. The Orange County Butter Pail Company are making here large numbers of the improved tub, patented not long ago by your house. In the various mechanical establishments, which include large founderies, rolling mills, hat works, horse shoe nail mills, file works, saw factories, etc., I find that the Scientific AmerICAN is read and studied with satisfaction by the more intelligent operators.
Among the specially interesting places that I visited were the Madden rolling mills, and the saw factory of Wheeler \& Co. Both of these concerns were built up and are guided by a man who, from what some might regard as a humble condition of life, has elevated himself to a high place in the regard of his fellow citizens. E. M. Madden was, only a few years ago, a poor factory boy, but now he is a distinguished man, has occupied many important public positions, is now State Senator, to which place he is soon to be re. elected. I see that some of your city papers speak dis. paragingly of him, doubtless from political bias. But they evidently know little of his real character. A natural orator, honest to a fault, incorruptible, progressive, the advocate of all useful enterprises and improvements, he is greatly esteemed by the people; and the masses have in him areatly esteemed by the people, and able representative. The six noble public a faithful and able representative. The six noble public
schools which exist here are examples of his personal efforts schools which exist here are examples of his personal efforts
to promote the public grod ; while among the later works of which he is godfather is the new and splendid State Asylum for the Insane, at this place, now nearly finished. But I must defer a description of this model institution until my next; after which I may give you a few words upon the remarkable mineral deposits of this region, and perhaps say something of certain interesting geological curiosities found near Goshen, seven miles hence. Traveller.
Middletown, N. Y., Oct., 1873.

Carbonic Acid in Wells.
 Tothe Editor of the Scientific American:

Last year I read your articles on carbonic acid gas in wells I remember that I was once engaged in putting up a bath. ing house, to be supplied with water from a well. After getting, as I supposed, everything done, the pumps soon ex hausted the water from the well, and there was no remedy but to take out the walling and dig it deeper. I had the wall taken out and commenced rewalling, to get the new wall above high water mark before stopping. One of the hands came to me and stated that the man in the well could not get his breath unless he stood upright, and that his candle would not burn. It struck me at once what the matter was. I ordered the man out of the well immediately, and put about I ordered the man out of the well immediately, and put about
a peck of quick lime (oxide of calcium) into the tub, with a peck of quick lime (oxide of calcium) into the tub, with
about as much water, stirred it up well, and lowered the tub about as much water, stirred it up well, and lowered the tub
and worked the windlass a little so as to cause the gas to fall on the surface of the lime water. Then I drew it up,stirred up the lime and water again, so as to present a fresh surface of lime water, and lowered again. I did this three times aud then let down a candle, which burned perfectly well. My man then went back and walled up above high water mark before stopping for the night. I was astonished last year, in reading your articles on this subject, that no one struck upon his truly scientific remedy.
The burning of charcoal or anything else in wells would only increase the quantity of carbonic acid gas, unless such a current could be gotten up by the fire as to carry the gas out with the smoke, which I think hardly possible. The lime plan is easily done, absolutely certain, and in accordance with scientific principles.
F. A. Hore.

Walhalla, S. C.
We published last week a portrait of the late Joseph Gilott, Esq., of steel pen fame. A correspondent is reminded hereby of an amusing conundrum, circulated long ago in connection with his name, as follows: Why was Mr. Gillott very wicked man? Because he makes people steel pens and then tells them they do write.

Two prizes, of $\$ 350$ and $\$ 170$, have been offered by the English Society of Arts, on the motion of Sir Joseph Whitworth, for the best essays on the establishment, in large industrial concerns, of savings' banks for workmen. Manuscripts are to be sent to the Secretary of the above association at London, before the 1st of December next.

LETTER FROM UNITED STATES COMMISSIONER PROFESSOR R. H. THURSTON.

NUMBER 17.

Liverpool, England, September, 1873.
We bave at last reached the end of our European tour of observation, and are ready to re-embark for America. The "doings and observations," of which we are directed to make reicorts to the President, have been fruitful of interest and of instruction, and we look forward to our arrival at home with almost unalloyed pleasure. We have enjoyed good health, have made many pleasant and some eminently distinguished acquaintances, have enjoyed most exceptional opportunities of acquiring information, have added largely to our stock of general knowledge, and have filled our notebooks with the technical and engineering statistics and memoranda which we came specially to seek.
Since leaving France, we have been even more fortunate in gathering professional information than during our continental journeyings. The fact is not at all surprising, however, for, as was remarked at Vienna, by far the greater part of all that is admirable as well as novel, in European practice, has its origin in British workshops. We have found time to make an excursion to some of the more interesting of the working districts of this country, and have also been fortunate enough to see some of the larger and best known workshops.
On the whole, there does not seem to have been an im portant advance in the standard practice in either of these important fields of labor since our last visit to Great Britain, three years ago. This is the case in the machine shops quite as much as elsewhere. Visiting the establishment of

SHARP, STEWART \& CO.

a firm noted for the accuracy of their work, and particularly for the excellence of the tools of which a large proportion of their product consists, we found the verdict of the Vienna jury, which ranked them with our own best builders, fully sustained. Their shops have been erected in that patchwork manner which is oftener observed in Great Britain than in the United States, and are by no means as well built, or as well arranged as could be desired ; and a large proportion of their tools would be considered antiquated, and would have been long ago replaced by more effective machines had they been long ago replaced by more effective machines had they
been the property of an American firm of first class tool been the

The fact that the saving of the labor of a single man pays the interest on capital amounting to twelve or fifteen times his annual wages seems less generally recognized in Europe
than on our side of the Atlantic, and the possibility of the printhan on our side of the Atlantic, and the possibility of the prinfor older tools seoms unsuspected . all tools here are made self-feeding, however, and considerable ingenuity is exhibited in devising new feed motions. We noticed here, as in some other shops, the adoption of the Whitworth tool holder for planing machines. This contrivance is a simple and effective one for rotating the tonl and then taking a cut when the table runs backward as well as when moving forward. A round nosed tool is used, and a large saving of expense is effected by the efficiency of the device. A slotter was used for dressing up the cranks of a cranked axle. The axle was secured in a vertical position, and two cutting tools were employed, thus trimming both cranks simultaneously. Systematic endeavors to effect the greatest possible saving of labor, a direction in which our manufacturers excel all others, are more noticeable here than in any place visited in Europe. The rapidly increasing cost of labor in Great Britain is compelling rapid changes in this direction. A large amount of locomotive work is done here, and little more need be remarked than that the designs were in greater variety, and more in accordance with American ideas and practice, than is usual in this country. The work was unusually excellent. Steam riveting seems to be practiced wherever possible. In setting up seven eighths rivets, two blows were invariably given, and thus, although the machine was rather a light one, the work was thoroughly performed. The edges of all plates were planed, instead of being left, as is too generally the case with us, to be chipped by hand previnusly to caulking, a not infrequent cause of furrowing and of consequent explosion. Fireboxes were of copper, and the tube plates, at that end, which were an inch or more thick where the tubes entered them, were thinned down, below, to the same thickness with the other firebox sheets. Shells were made with butt joints and covering strips. Wheel tyres were of Vickers' steel, and were always flanged, whatever the position of the wheel. We were received most cordially by a member of the firm, and were introduced to a son of a director of the company, who kindly took us through the works. The young gentleman was serving an apprenticeship, and learning the business in the most thorough manner. We accepted this fact as an evidence of a better
appreciation of the dignity of labor than has generally been observed in England, as well as of an understanding of the fact that scholastic attainments must be supplemented by a knowledge of shop practice, gained by actual contact, to se cure ultimate success in any branch of mechanical engineering.
The most remarkable and in every way interesting loco motive building establishment in Great Britain, or in Eu rope, is that of the

LONDON and NORTH WESTERN RAILWAY COMPANY, at Crewe, and we spent a day there, seeing more that was novel and a greater display of ingenuity than we had ever
seen outside the United States in a single manufactory. The seen outside the United States in a single manufactory. The
superintendent at Crewe was, for a long time, Mr. Ramsbot-

tom, one of the ablest locomotive engineers living, and to
him is due the credit of planning this great establishment

inhabitants has been built up about the works.
One hundred and fifty locomotives are built per year, and One hundred and fifty locomotives are built per year, and
nearly two thousand are kept in repair. Immense quantinearly two thousand are kept in repair. Immense quanti-
ties of steel are made at these works, and converted into rails, ties of steel are made at these works, and converted into rails,
tyres, boilers and running parts of locomotives. Even the tyres, boilers and running parts of locomotives. Even the
bricks for the new building in course of erection are made by an excellent machine built at Ragby, and are baked on the grounds in the annular Hoffman kiln. The steel works contain four converters of ten tuns capacity each. The large and well planned, finely lighted foundery, fitted with hydraulic cranes and steam travelers, is a model of its kind. The iron from a number of puddling furnaces, and the steel from the Bessemer works, are worked in a rolling mill in which the Bessemer works, are worked in a rolling mill in which
the large plate rolls are driven by the now well known the large plate rolls are driven by the now well known
Ramsbottom reversing engine, or are forged in the smith shop, adjoining, by the curious but effective Ramsbottom steam hammer. In this machine, the work lies upon an anvil which simply supports it, while powerfulsteam pistons drive against it, simultaneously from both sides and hori zontally, great masses of iron which run upon tracks supported at the proper hight above the floor. The heating furnaces are Siemens' regenerative gas furnaces, the most economical known; yet even these are on so large a scale as to require two hundred tuns of coal per day.
In the machine shops, we noticed that eccentrics were all bushed with white metal, and we were particularly interested in the style of connecting rod ends. They are all made solid, without strap, gib or key, and bushed with white metal. No provision is made for taking up wear. When worn and beginning to shake, the bushings are taken out and recast. This is only found necessary at long intervals. Dome tops are struck up, and the seats of all boiler mountings are of wrought iron. The boilers are usually four feet in diameter and three eighths of an inch thick. Steam is carried at 120 to 130 pounds. Engine frames are of $1 \frac{1}{8}$ inches plate, cut out, as in all European shops, straightened and then ground smooth by a grindstone revolving horizontally in a tank containing water. All wheels are of wrought iron. Piston rings are of the Ramsbottom style, small rings sprung into grooves in the piston, and seem to give full satisfaction. Our forward trucks are never used, their small wheels being looked upon with great distrust. English and continental builders prefer a single pair of larger wheels. The solid bar Stephenson link is used, a decided improvement upon the strap link universally used in the United States.
Both injectors and feed pumps are fitted to all engines. The express engines of this road are driven at higher speed and are claimed to make better time than those of any other road in the kingdom. They are remartable for the great size of their, usually, single pair of drivers. Six and a half feet is the usual size, seven and a half is not uncommon, and eight feet diameter has been reached, in the one example of the engine "Cornwall," which is still kept at work. This engine shakes badly and has large bills for repairs. The favorite design is now, as with us, two pairs of coupled favorite design is now, as with us, two pairs of coupled
wheels for express engines, but with drivers six and a half wheels for express engines, but with drivers six and a half
feet diameter. Freight engines are given five feet six inches wheels.
This whole establishment, with its fine buildings, excellent plant, and peculiar designs of machinery, and its excellent work, should be carefully inspected by every Amercan engineer visiting Great Britain.
In iron making, the growth in size of blast furnaces seems to have ceased ; the temperature of blast has not been elevated; the same forms of hot blast stoves are still used; and the yield of metal per tun of fuel consumed still remains as three years ago, about tun per tun, for the best known re sults. In the

CLEVELAND DISTRICT

the most generally approved size of furnace seems to be about 75 to 78 feet high, and 26 to 27 feet diameter of bosh. The temperature of blast is about $1,000^{\circ}$ or $1,100^{\circ}$ Fah., with cast iron stoves,
with brick ovens.

the cumberland region

was the most interesting section visited, both on account of its own importance and the magnitude of its yield, and of its This district is to our own iron manufactures.
This district is situated on the extreme northwestern corner of England, and, until within a few years, was only known as a beautiful country abounding in fine scenery and picturesque old ruins. An excellent red hematite, capable of yielding exceptionally fine iron, was known to exist, but its distance from the market and the comparatively high cost of uel forbade the successful development of the iron manuacture in that country. The introduction of that most wonderful of all metallurgical processes, the Beesemer steel manufacture, and the discovery of more convenient and very
extensive deposits, beth of ore and of flux, has, during the extensive deposits, bsth of ore and of flux, has, du
last two decades, produced an astonishing change.
The ore of Cumberland is the only known British ore which answers well for the process of Bessemer, and it therefore happens that the opening of this secticn of country has been pushed with a rapidity which reminds one of the mushroom-like growth of some of our own western towns. It thus happens also that the future prosperity of Great Britain must, probably, depend largely upon the extent of his single deposit, for it seems very certain that the prosperity of any manufacturing people, like the British, must
depend in an important degree upon, if it is not absolutely
determined by, the cheapness with which its demands for low steel can be supplied.

The principal town in Cumberland is

barrow,

a city of twenty five or thirty thousand people, occupying he site where, a quarter of a century ago, existed a small and unknown hamlet. Here, the wealthy owners of the soil and proprietors of all manorial rights, the Dukes of Devonshire and Buccleugh, have established what is probably the finest Bessemer steel works in Europe, in which, and in the neighboring mines, are employed from ten to twelve thousand people.
We found, at Barrow, sixteen blast furnaces, varying from fifty-six to sixty-one feet high and from sixteen to nineteen fifty-six to sixty-one feet high and from sixteen to nineteen
and a half feet in diameter, the larger of these sizes being and a half feet in diameter, the larger of these sizes being
considered to be about the maximum for economy here. considered to be about the maximum for economy here.
The blast was heated in both iron and firebrick stoves, the temperature of blast being about 900°. A bigher temperature had been tried with less satisfactory results. Nineteen blowing engines of a united power, as stated, of over two thousand horses forced this air into a conduit of immense size. The production of pig metal was given at 280.000 to 300,000 tuns per year, from unmixed Cumberland ore. The metal, which we had an opportunity to examine, was a fine, rich, dark gray iron, precisely the material best adapted to the manufacture of Bessemer steel.
Eighteen converters are set in the steel works, and the production of steel amounts to 100,000 tuns per year, principally rails and tyres. The roll trains and accessories were of the most approved modern design, and the heaviest train is driven by a Ramsbottom engine.
The plan of buildings and the general arrangement of plant are exceptionally excellent. The raw material enters the works at one point and passes through one process after another, continually approaching th.e opposite extremity, where it finally emerges in marketable shape. So fine an example of a well arranged and well built establisbment is less often met with here than at home, where we have not a few engineers who know how such work should be done, and find a way of doing it.
The ore of Cumberland is smelted here without mixture. It is a rich ore, and is almost free from either of those poisonous constituents, sulphur and phosphorus.
The spiegeleisen is obtained from both Sweden and Ger many, the former being now furnished of admirable quality. The coke is brought across the country from Durham, a distance of something morethan a hundred miles, and the limestone is found, of good quality, nearer home. The material produced is, as might be expected, of most excellent quality, as was evidenced by the fine samples shown here as well as by the still more remarkable and beautiful specimens which we saw at Vienna. It finds a large demand in the United States.
We might wish that time would allow of an extended description of other establishments in which we have seen so much to admire or to criticize during our short stay on this wonderful island, but our letters have already, probably, occupied too much space in the crowded pages of the ScIENtific American.
In the great Cumberland iron-making district, we learned that, even there, the size of furnace and high temperature of blast bad apparently reached its limit. In Lancashire and Staffordshire, we saw some of the worked out collieries which have drawn the attention of thinking Englishmen seriously and earnestly to the question of the future coal supply. The dozens of unused hoisting engines and water filled sbafts to be seen between Birmingham and Stafford, and the startling figure-probably $150,000,000$ tuns-representing the present annual consumption, when considered together, may well startle British statesmen. To an American this may appear also most important as indicating the rapid approach of the time when our markets must be supplied solely from our own iron and coal producing districts. Fortunately, we are most amply supplied with this kind of mineral wealth, more valuable than the gold deposits of California or the silver of Colorado and Nevada. At

SHEFFIELD

we saw the great mills in which were rolled the fourteen and fifteen inch armor plates for the British navy, and enjoyed a pleasant meal with the proprietors of the establishment noted, the world over, for the manufacture of the strong, tough Firth steel, of which is made the inner tubes of all British ordnance. We found there also a large number of men employed in making files. We visited the district where the well known brands of

LOWMOOR AND BOWLING

iron are made, and learned to attribate their excellence, their hardness, pliability and uniformity of high quality to the care taken in manufacture rather than to any special peculiarity of ores or of processes. We particularly noticed that no squeezers were used, but that puddle balls were invariably hammered. We spent a day at

sоно,

inspecting the works founded by James Watt, and seeking out the old tools, of which so many were designed by that reat man.
Of all these and of many other interesting excursions we cannot write at length, but, undoubtedly, v_{y} hat is here left untold will be related, sooner or later, by abler correspondents of the Scientific American.
And now we leave many places unexamined that we had hoped to visit, and we embark, our pleasure in anticipating our early arrival at home being mingled with some regret
that so much still remains unseen.

FRUIT AND VEGETABLE SLICER.

Our engraving represents an ingenious little device for slicing potatoes, fruit, etc., preparatory to cooking. The mechanism is quite simple, and its work, judging from the performance of the machine sent us for examination, is expeditiously and nicely done. The hand crank shown actuates a shaft in the fixed standard, A. On the end of this shaft the fixed standard, A. On the end of this shaft
is an arm connecting, by means of the rod is an arm connecting, by means of the rod
shown, with a bottomless metal receptacle, B. The latter has suitable flanges and projections, which, working in side grooves, confine its to and fro motion, caused by turning the crank, to the extent of the piece, C, which, it will be noticed, is elevated above the platform. The cutting apparatus is simply a two edged blade, D , in a slot in the bed piece, C. It is set at an in a slot in the bed piece, C. It is set at an
angle, thus giving a drawing cut to the article angle, thus giving
brought against it.
brought against it.
Two bent standards are connected with the receptacle, C, and through their point of junction above passes a rod which is surrounded by a spiral spring, and carries at its lower end a follower, E. When the fruit is placed in the receptacle, B, this follower is pushed down upon it by the expansive force of the spring. The crank is then rotated, and the fruit and its holding apparatus caused to travel to and fro along the bed, C. The spring continually fro along the bed, C. The spring continually
presses the íruit down, so that the blade, a : presses the fruit down, so that the blade, a
each movement of the receptacle, B, across it, cuts off a thin slice, which falls through the slotinto a dish below.
For further information regarding sale of rights, etc., address the inventor, Mr. F. C. Vibert, Hockanum, Conn.

TENT ATTACHMENT FOR LIFE BOATS.

The inventor of the device herewith illustrated presents a simple and detachable arrangement for use in connection with life boats, which consists in suitable tent-like coverings, serving as protection to the occupants from exposure to the serving as protec
weather or sea.
weather or sea.
To any ordinary boat are applied stanchions, A, which are either hinged so as to fold down upon the rail or may be set in holes made for the purpose, and thus readily detached for storage, etc. These supports are placed at intervals along the gunwale, as represented. Near the top of each are a number of notches, Fig. 2, which serve to hold at various hights the movable hook, B. various hights the movable hook, B.
C, Fig. 2, is a roll of tarpaulin or canC, Fig. 2, is a roll of tarpaulin or can-
vas, which, when not in use, is stowed vas, which, when not in use, is stowed
as shown, and fastened in compact form as shown, and fastened in compact form
by proper stops. One edge is riveted by proper stops. One edge is riveted
to the outer portion of the boat, and the other strengthened by suitable lining and provided with eyes into which fasten the hooks, B, which serve to hold the cloth up, making it a kind of weatherboard. The pin-shaped ends of the stanchions, A, fit into holes of the lateral pieces, D, which are slightly lateral pieces, D, which are slightly
arched and attached to the top cover or arched and attached to the top cover or
a wning, also made of suitable watera wning, also made of suitable water-
proof material. The bow and stern en proof material. The bow and stern ends of the latter are
held and stretched tightly by hook shapsd ends of stander eld for the purpose arranged for the purpose. The side covering, it is stated, will serve to keep out spray and water, and suitable openings provided with elastic bands may be arranged in order to allow the use of oars when necessary.
Patented September 23, 1873, in the United States and also in England, through the Scientific American Patent Agency. For further particulars address the inventor, Mr. John R. Adams, Truckee, Nevada county, Cal.

PLANER-TOOTHED SAW AND ADJUSTABLE ISWAGE.
Mr. James E. Emerson, of Emerson; Ford \& Co., Beaver Falls, Pa , an inventor whose devices have frequently found place in our columns, has recently patented the two novel and, doubtless, useful inventions represented in the accompanying engravings. The first (Fig. 1) relates to movable teeth in saws, and its object is to obriate, in a great measure, the expense of such teeth by so constructing them pense of such the and adapting them to a saw plate that they can be used until dull at their cutting edges, and then removed and a new set inserted in
their places. Our illustration is a section of the saw plate, in which clamp pieces, A, and wedges, B, hold the teeth, C, firmly in position. The pieces, A, have shoulders at D, against which the inner ends of the shanks of the teeth firmly bear.
E is a finished tooth, shown separately. It is made from a bar of steel of suitable shape, from which blanks are cut of proper length to bear against the shoulder, D, and thus be to bear against the shoulder, D, and thus be prevented from being pushed inward during
the operation. The circular side of the tooth fits into a correspondingly shaped groove in

VIBERTS FRUIT AND VEGETABLE SLICER.

crack. The tang or shank is formed by a drop hammer and edges to be the full width of the flat face of the bar. Cutting edges are thus formed which cut the width of the kerf and plane each of its sides. We are informed that the teeth thus made are durable and not liable to strain the saw plate, thus made are durable and not liable to strain the saw plate,
are intended never to be sharpened after insertion in place,

ADAMS' TENT ATTACHMENT FOR LIFE BOATS.

section of the inner faces of the jaws, F and G, is a circular hole in which fits the round portion of a movable jaw, H , which is so constructed as to be upset or riveted in a coun. tersink at the outer sides of said hole, so that, while it cannot be disengaged or loosened, the jaw, H , may freely turn in the socket thus formed. I is a temper screw passing down through jaw, F, and bearing on jaw, H, so as to adjust the latter to different angles with relation to the face of the lower jaw. J is a saw tooth inserted in position, showing, by the dotted lines, that the jaw, H, may be adapted to suit its particular shape or that of any other ordinary form of tooth.
In operation, the jaw, H, is adjusted as represented and firmly held in position. Blows are then struck with a hammer at the other end of the body, hard enough to upset the tooth and give it the, desired form and sharpness at its cutting edge. This the device is claimed to do in better manner than the work can be to do in better manner than the work can be
performed with a file, while one size of the invention is equally well adapted to every size and shape of saw tooth, from a 72 inch, through gang mill and .muley saws, down to the finest toothed bench implement.
These improved tools are covered by various patents, the most recent of which are dated September 16, 1873. Further particulars may be obtained by addressing the inventor as above.

SAFETY RAILWAY SWITCHES.

We have lately examined, at the office of the Broadway Underground Railway, corner of Warren street and Broadway, this city, a large and splendid working model of Saxby \& Farmer's railway lock switches, now so extensively used in England. The employment of this device is rendered obligatory up on all new railways in Great Britain by act of Parlit and it is voluntarily employed by most of the older companies. It is regarded in Encland as almost indispensable to the prevention of accidents.

This model, we understand, is a duplicate of the beautiful apparatus now on exhibition at the Vienna Exposition and which the London Times correspondent speaks of as follows:
"Saxby and Farmer exhibit a beautiful model of their apparatus for directing the traffic at great railway junctions or termini. It has already come very generally into use, yet it cannot be too widely advertised; for, as it renders accident humanly speaking impossible, a grave responsibility rests with those companies who delay to adopt it. Its principles are that the signals are work ${ }^{d}$ in inseparable connection with the points and switches. It is impossible to sig. nal that the line is clear unless it actually is so, while the act of manipulating one set of signals locks all the rest and keeps them of signals locks all the rest and keeps them at "danger." Thus the signal man cannot mislead the engine driver; the worst he can do is to do nothing at all; the very worst that can happen is an unThe second in the market by the hundred. w sw importance of this invention if we mention that the men in pparag for spreading the teeth of saws. The body of the the signal box at Cannon strect have to work 67 levers, of which has two fixed and diverging jaws, F and G, the latter which play on the points and switches of that intricate netand is comes in contact with the under side of the saw tooth, work of lines as the keys of a piano act on the chords. Thir and is made convex in form. Through the body, at the inter- $t y$-six trains go out or come in in the course of the hour, and

EMERSON'S PLANER-TOOTHED SAW AND ADJUSTABLE SWAGE. on an average there is a movement of sig on an average there is a movement of sig-
nals or points once in each 33 seconds. Annals or points once in each 33 seconds. An-
other invaluable subsidiary invention is other invaluable subsidiary invention is
Messrs. Saxby and Farmer's patent switch lock and bolt. Often the signalman has to change the points at a distance of some hundreds of yards from his box. He may work his levers and signal "all right" in innocent unconsciousness that anything is wrong; yet a stone may have interposed, the points may not have answered to his levers, and the train may be thrown off the rails. Messrs. Saxby and Farmer's bolt effectually prevenis such accidents."
We are glad to know that this valuable improvement i; to be employed upon the Broadway Underground Railway. Further information can- be had of Mr. Joseph Dixon, agent for this country, as above, where the apparatus may be seen. It is well worth examination by railway people.

Travel between America and Europe. A new route between New York and London is proposed. It consists of railroad from the former city to Shippegan, on the Gulf of St. Lawrence, steamer to St. George's Har bor, Newfoundland, railroad to St. John's, steamer to Valencia, Ireland, railroad to St. George's channel, and steamer again to England. It is estimated that the voyage may be made in seven days and three hours.

IMPROVED FURNACE FOR BUJLDINGS

 The improved heating furnace herewith illustrated serves not only as a means of warming the interiors of buildings, but also as an efficient ventilating apparatus. Its construction is such as to utilize the heat of the fire to the fullest extent, and also to distribute the same uniformly at every point to which the flues may be conducted.Fig. 1 is a longitudinal and Fig. 2 a transverse section. A is the fire pot, the heated air and gases from which pass up and around the tubes, B, thence down and under a par ition, C and, finally, emerge at the chimney, D. By this means the cold air, which enters the tubes, B, in the direction of the tubes, B , in the from the chamber, E , is subject ed twice to the hot current; and thus becoming warmed, is led away by such tubes, a prolongation of one of which is shown at F. As there are fourteen of these flues, it will be noted, that if desired, the entire number may be utilized, each as a separate conduit to a single register. Cold air also enters below and outside the fire pot, into spaces, G, Fig. 2, and thence travels to the rear, where it passes into a heating chamber, H, Fig. 2. This reservoirmay, by a suitable parti tion, indicated by the dotted line shown at the rear of the fire pot in Fig. 1, be divided into two compartments, from each of which a separate flue may be led. I, in separate flue may be led. I, in
Fig. 2, shows a section of still Fig. 2, shows a section of still
another heating chamber, formed another heating chamber, formed surrounding the flues and the exterior casing. Air enters this from below by the conduits, J becomes warmed, and exits by the flue, K ; or, when desired, this chamber may also be divided by a longitudinal parti-
tion, represented in section in Fig. 2, when the hot air will then be led away by the two pipes, shown in dotted lines. It will be here observed that eighteen separate flues are thus provided, each totally independent of the other, and all supplying pure heated air without any admixture of disagreeable gases. The current drawn directly from the outer atmosphere nevercomes in contact with the fire; but on the contrary, is securely confined in tight flues or chambers, where it is heated and at once supplied to the desired localities. It will also be observed that a uniform quantity is thus, it is claimed, insured, as, each flue or chamber forming a heater by itself, it becomes impossible for a strong current to escape in the lower part of the house while little or no

heat reaches the upper stories, a frequent trouble in furna ces the parts of which are mutually dependent.
All the tubes, B, need not, in some cases, be used for heating purposes, in which event two or three may be advantageously utilized for ventilating the entire building. It is proposed to place registers close to the floor in the lower stories and to lead therefrom flues, one of which is shown at L, Fig. 1, connecting with the heater tubes used. The other ends of the latter, M, may connect with a shaft which passes up through the edifice, emerging at the roof. The hot airin the tubes will generate an up current in this shaft which, receiving its supply of air from the register and flue, L, will thereby draw from the lower rooms all the foul and heavy gases. The upper apartments, it is stated, need only be connected directly with the shaft, as the same may be arranged to pass in proximity to all. Tuis furnace seems to be parti-
cularly well suited for hospitals and public buildings, where foul and deleterious gases are freely generated, and its effect is such as to keep the wards or halls perfectly supplied with pure air. Besides, the device aids in quickly heating rooms, as, its openings being placed low down, the cold air near the floor is drawn out, while the hot current from the heating register is continually pouring in.
The furnace, it is claimed, is well adapted to the heating of
extension rooms ; and by a nearly horizontal pipe, fifty feet lon

Fiq. I

FURNACE FOR HEATING BUILDINGS.

and ten inches in diameter, with only ten inches rise, an adequate amount of warm air is easily delivered. Half of the flues may be led vertically and half in a horizontal direction. The heating surface aggregates four hundred square feet, all of which, as we have already pointed out, comes in direct contact with the hot gases. The construction of the apparatus generally is said to be strong and durable, the metal parts being of wrought iron. The flues are eight inches each in diameter: The grate is in two sections, and is very easily controlled, while the air supply, entering through a single pipe, may be regulated at pleasure. The furnace, we aro informed, has been in use for the past year, giving in every respect satisfactory results. For further information relarespect satisfactory results. For further information relaW. N. Abbott, 40 Cortlandt street, New York city.

To Clear Photo Baths.

When photo printing baths become discolored, various agents are employed in order to decolorize them. Among the best of these is the substance known as China clay or kaolin, which consists almost entirely of silicate of alumina. At the present ρ eriod, paper is adulterated to a large extent by the admixture of clay, and hence, when a silver bath has become discolored, owing to the presence of organic matter, an effectual remedy is always at hand; for, in the absence of kaolin, all that is necessary is to burn any good, heavy bodied paper and shake up the ashes with the silver. On filtration it will be found to have becrme pure and bright.
This little bit of useful knowledge may prove beneficial to those who live at a considerable distance from a photographic chemist. Of course we all know, says The British Journal of Photography, that there are many agents by which the bath may be decolorized, among which may be named animal charcoal, camphor, citric acid, chloride of sodium, and others. Kaolin, however, is more generally adopted than any other; and many of our readers will be pleased at being made acquainted with the foregoing very simple method of obtaining a supply with no greater amount of trouble than that of igniting a piece of any heavy bodied paper.

Covering for Steam Pipes.

A new method of covering steam pipes is applied in the Saarbrucken district, Germany. A coat of thin loam wash is is first given, to increase the adhesion of the mass. The composition consists of equal parts of loam or clay, free from sand and brick dust, with an addition of cow hair This is well mixed up and put round the pipe in a hot state. For better securing this coating, pieces of board 10 inches long are laid along the whole length of the pipes and fastened by thin iron wire. After applying the loam wash again to the dried mass till all the cracks have disappeared, the pipes receive another coating of the mass, until they feel quite cool, which will be attained after the mass has been laid on to the thickness of from 5 to 6 inches. A coat of linseed oil and cement is finally given. This method answers at present all requirements, the covering being perfectly airtight and free
from cracks. The mass is not hygroscopic, a property making it all the more suitable for pipes in the open air. The cost of the covering per foot of 8 inch pipe is 12 cents.

Concrete Foundations.
The Delaware and Hudson Canal Company are constructng an immense building on the corner of Church and Cort landt streets, in this city, for their own use and as a coal exchange. The edifice is to be of brick and stone, nine sto ries high. Mr. R. M. Hunt is the architect. At the present time the foundations are being laid in concrete, under the superintendence of Mr. David Camp bell. The mortar used is made of 1 barrel of Portland cement, 3 barrels sand, and $28 \frac{1}{2}$ gallons water. These ingredients are shoveled into an inclined tube, which works a worm blade that incorporates them together and delivers them in a thoroughly plastic mass. Ten cubic feet of this mortar, fifteen of broken stone, and twelve and a half of gravel, are then placed in a box of boiler iron, four feet square which is hung on feet square, tached to ding on bearings at ners and cogonally opposite co a station rotated by gearing from lution engine. Eight revo lutions completes the mixing, and the concrete is removed and transported to the point where it is to be laid. Beds of the mass, six inches thick, ar placed, each being rammed down by hand before another layer is applied. The lower bed will, in all, be two feet thick; and above this, to support the walls, the concrete will be packed in bevel form to a hight, in all, of six feet seven inches. The piers are of stone, resting on a layer of concrete eleven feet square. The crete eleven feet square. The cost of the concrete, as compared
to be some thirty per cent cheaper.

LLOYD'S CAR COUPLING

We present herewith an engraving of a car coupling which presents several points of novelty, while, at the same time it is of very simple design. It is intended to be automatic in action, and therefore to possess the various qualities which we have frequently alluded to in reference to inventions of this description, and which we need not here recapitulate.
A A are the drawbars, in mortises in the ends of each of which are jointed the coupling bars, B. A part of one drawbar is represented as broken away in order to show this connection, the object of which is to allow the bars, B , to be turned upward as much as is necessary, while it prevents them from falling much below a horizontal position. Upon the upper and lower sides of each of the bars, B, are formed shoulders, which are made V shaped and also dove. tailed. This is more clearly shown at C C. The V shape prevents the shoulders from slipping apart when coupled, as represented, when the train swings around curves, and the dovetail stops the bars from jarring apart when the cars are run together or when in motion. The general form of the

drawbars, adapting them to slide upon each other, is aiready shown in the engraving and needs no description. The chain leads up to the platform or top of the car, and serves to lift the bar which is uppermost, and thus effect the uncoupling. The holes shown in the ends of the bars are for connecting them by a pin with the ordinary link coupler. It is claimed that, by this means, cars of the same or of different hights may be connected or run together with facility.
Patented October 21, 1873, through the Scientific American America Patent Agency, by Mr. R. Lloyd, of Lake Shore Railroad Bridge, Cleveland, Ohio, who may be addressed for further information.

IT is announced that Mr. Bennett, of the Herald, is now organizing a new arctic expedition, to be sent in search of the North Pole.

THE NEW EXPLORATION OF THE AMAZON RIVER,

BY PROFESSOR ORTON.--UP THE AMAZONS

From the nearo to the andes.

Manáos is an important point of departure for sevora lines of steamers. Steamers leave regularly for Pará and Tabatinga, and for the Madeira, Negro, Purús, and Juruá The fare up the Madeira is $\$ 40$, and up the Purús, $\$ 50$ From Manáos to Tabatinga, on the frontier of the empire, is one thousand miles. The Icamiába, the first and only steamer, which has been running for nearly twenty years, leaves Manáos the 11th of each month; fare, $\$ 50$; time, on week.
The Solimoens, as this niddle portion of the Amazons is called, flows through a rank wilderness, broken at few points by the hand of man. There are, probably, not a kundred acres of cultivated land between the Rio Negro and the base of the Andes. The whole country is a vast plain of slight elevation, without hills or sandy campos, but with a soil o stiff clay covered with vegetable mold, and a lofty, luxuri ant, humid forest. Palms are comparatively few, the mos numerous being the short murumurú, the slender assaí, the spindle trunk pashiúba, the beautiful tucumá, and the uru curi, the nuts of which are used in smoking rubber

valuable timber.

But it is heavily timbered with useful woods, as cedar copal, andiróba, guacapú, capiróna (called pao mulatto in Brazil, furnishing the fuel used by the steamers), sicupéra (an excellent boat timber), acari-cuára, acariúba, moira pirárga o red wood moira coatiâra or striped wood, itaúba, jutahi, sapupíra massarandúba or cow tree (one of the most valuable and durable woods on the river), paracu-úba (a very hard wood used for harpoons, etc.), cumarú, palo de cruz, palo d'arco, and many kinds of loiro. And yet there is not a saw mill between Manáos and Iquitos, a distance of 1,300 miles We see three varieties of banks: low, alluvial deposit covered with arrow grass or wild cane; slightly higher land covered with broad leaved plants and dwarf palms, with a dense forest of lofty trees in the terra incognita beyond, the most common aspect ; and cliffs of variegated clay from 25 to 50 feet high, generally cut squarely away by the current, presenting a massive colonnade of trees loaded with parasites and wound with creeping plants. The signs of an
imal life are not proportioned to this exuberance of vegeta tion. White egrets and tall gray herons stalking along the edge of the water; hummers whirring among the flowers; macaws and parrots flying across the river; capybaras on the banks, and rolling porpoises and ugly alligators in the water; these are the most conspicuous forms. But the mos numerous and the most dreaded of all animals on the Soli moens are the

insects.

As we have already remarked, the strong trade winds keep the Lower Amazons clear of these pests; but soon afte leaving Manáos, the traveller becomes intimately acquainted with five insects of torture: (1). The carapaná, called mos quito in the United States and Europe, and sancúdo on the Marañon and in Spanish America generally. (2). The piúm or sand fly-the scourge of the Amazons, called mosquito in Peru-a minute, dark colored dipter with two triangular horny lancets which leave a small circular red spot on the skin. It works by day, relieving the carapaná at sunrise. (3). The motúca (tábono in Peru) of the size and general shape of the house fly, of a bronze black color, with the tip of the wings transparent, \&nd a formidable proboscis. (4) The moquim (ysanguí in Peru), a microscopic scarlet acarus, resembling a minute crab under the glass. It swarms on weeds and bushes, and on the skin causes an intolerable itching. An hour's walk through the grassy streets of Teffé was sufficient to cover our entire body with myriads of moquims which it took a week to exterminate. (5.) Carapátos or ticks, which mount to the tips of blades of grass and at tach themselves to the clothes of passers by. In suckin one's blood, they cause no pain, but serious sores result the proboscis breaks off in the wound. Besides these are ants innumerable in species and individuals, and of all sizes from the mammoth tokandára, two inches long, to the small red ant of the houses. The sauba is the most mischievous, from its habit of marching in broad columns and stripping the most valuable cultivated trees of their foliage. Everywhere, from Pará to the mountains, complaints are heard of this terrible pest. In some places, agriculture is impossible These half a dozen forms of insect life must for ever hinder the settlement of the Amazons. It is true, however, that they have their migrations: Fonte Boa, for example, the paradise of mosquitos in Bates' time, is now nearly free
from them. There are two kinds of bees on the River, the from them. There are two kinds of bees on the River, the
black and yellow. Their cells are not hexagonal, but like those of the humble bee, and the honey is thin and sour when collected. Scorpions and tarantulas exist, but not in such numbers as to be dreaded.

the great wilderness.

Man makes an insignificant figure in the vast solitude of Al to Amazonas. From Manáos to the entrance of the Huallaga a distance of 1,700 miles, there are probably not over 10,000 inhabitants scattered along the banks of the river and its inlets. The largest Brazilian town west of Manaos is Teffé, the Omaha of South America in position; yet it contains scarcely 2,000 souls, although the best agricultural region on the Solimoens. It exports annually 40,000 or 50,000 arrobas of rubber, and 4,000 or 5,000 arrobas of pirarucú fish. Here also are manufactured, by wild tribes in the interior, the celebrated grass bammock woven from the fiber of the tucum
palm. The population of the Upper Amazons has not in creased with the introduction of steamers. The climate is healthy, although one lives in a constant vapor bath, and Nature is bountiful. Epidemics are unknown, and ague is con fined to dark colored or sluggish tributaries.
Between Teffé, where Bates spent four years and a hal nd Agassiz six months, and Tabatinga, the frontier fortress f the Empire, is the most uncivilized part of the Amazons. Yet here enter five great rivers which are destined to be famous: Japurá, Icá, Juruá, Jutahí, and Javarí. The only towns are Fonte Boa, Tonantins, and San Paulo, built on slippery clay bluffs, and exporting the produce of the forest and waters. Rice and cotton might be grown in vast quan ities on the lowlands after the subsidence of the river. But the people, mainly the half civilized Tucúna Indians, pre er to collect rubber, catch turtles, swing in their hammocks, nd live on pirarucú and plantains.
Tabatinga is a village of barracks, defended by sixteen uns and ornamented with graceful tucu má palms. This has been a military post since 1776. It stands on a hig bluff of variegated clay which gives its name to the whole Amazonian clay formation. The depth of the river here is from eight to twelve fathoms, the difference between high and low water being thirty-six feet. The current, at flood time, is five miles an hour.
team on the marañon.
Here we exchanged the Brazilian Icamiába for the Peruian Moróna. At present, the following steamers are afloat n Peruvian waters: Moróna, Pastássa, Tambo, Putumáyo Napo, Moiro, Alceste, and Ucayáli, the last two belonging to private individuals. The Moróna is an iron vessel of 150 horse power, with a tunnage of 500 , and consumes about 450 ticks per hour, which cost $\$ 14$ per thousand. The rate is eighteen miles down stream, and nineup. The running time from Tabatinga to Yurimaguas is ninety hours; distance about 800 miles. She leaves Tabatinga the 21st of each month, and Yurimaguas, the 9th. The first class fare is $\$ 60$, passengers providing their own bedding. There are no accommodations for ladies.
Travel on the Marañon exceeds that on the Solimoens Nevertheless, the towns are decaying, excepting Iquitos and Yurimaguas.

turtles and fishes.

Life within the Marañon presents greater variety, at least for commercial purposes, than in the Amazons below. This is the great turtle field; and turtle hunting is the chief busi ness in the dry season. They are to be found on the main river and all the tributaries from the Madeira to the Hual laga; but Caballococha is considered the best region : 4, $\mathbf{0} 0$ were caught on one playa in one year. They furnish the staple meat of eastern Peru, and the oil expressed from the eggs is an important article of export. The turtles of com merce are the tartaruga grande (charápa), measuring three feet by two, and the smaller, but more delicious, tracajá (charapita). The females only are taken, so that the males, which are inferior in size, must far outnumber them. The average price of the larger turtle is two dollars, and of the tracajá, fifty cents. Besides these are the mata-mata and aiassá. The largest fish in the Amazons is the súngaro (in Brazil called the tuberon), sometimes weighing three hundred pounds, and is edible; but the most important, as furnishing the codfish of the Amazons, is the pirarucu (called payshi on the Marañon). It abounds throughout the Great River, chiefy in lagunes and in clear water; with farina it constitutes the chief food of the Indians; but it is far inferior to the Newfoundland fish. The Amazons, however, yields many others which compare favorably with the trout and perch; among these are the tambaquì (the gamiana of the Marañon), piranha, corvina, tucunaré, and aca ra uassú. Rays (at least two species), some tnree feet broad; the manati or vara-marina, which is potted under the name of mishíri; three kinds of dolphins, the small, dark colored tucuxì, the white bouto, and the flesh colored which is the largest of all; and three species of alligator abound, especially in the Marañon.

the birmingham of the amazons.

Iquitos, the only village of size and enterprize on the Mar non is of recent origin, and now numbers 2,500 inhabitants English, Americans, Peruvians, Indians, and nondescripts, the last forming a numerous class; for excepting a dozen lawful marriages, the rest are accidental unions. It was ounded by the survivors of a massacre at Borga. It stands on a bank of dark clay (containing a multitude of fossil shells and a stratum of lignite), sixty-five feet above the average river, and three hundred and fifty above the sea. The mean temperature is 80°, and the range but 10°. The climate is unusually healthy, the diseases, such as exist chiefly la tinta (dark blotches on the skin), abscess, fever and dysentery, being due to inproper food and want of cleanliness. But Sodcm would shine alongside of Iquitos in point of morality and temperance.
The government works are the making of this place Twenty years ago it was a fishing village of 227 inhabitants now it contains a machine shop for the repair of steamers, steam sawmill, and a brick factory. The superintendent and most of the hands are from England.

price of laboir.

Carpenters, masons, and machinists get from $\$ 80$ to $\$ 100$ month; the first engineer on a steamer has $\$ 145$, and the second, $\$ 116$, with rations; day laborers have $\$ 10$ a month and rations. But the mischief is that this is promised, not paid; some of the foreign employees have not received a cent for sixteen months. By thus withholding payment,
the government manages to hold on toimported skill. The

Marañon at present is a burden to Lima, for the works and the steamers do not pay: and Congress votes a monthly subsidy of $\$ 20,000$. But it is vital to Peru that she retain this Oriente. Iquitos even exceeds Manáos in

scarcity of food.

She exports nothing but money, and produces nothing eata be. She depends, strange to say, for almost every mouth ful of food upon the east, instead of the weat; upon Pará and New York ratherthan upon Moyobamba and Lima. And when the steamer fails to bring a supply, a famine is imminent. Iquitos receives its flour from Richmond and Baltimore; lard from Cincinnati; canned butter from England; potatoes from Portugal; coffee and sugar from Brazil; rice rom Ceará and India; and all this, while almost any created ruit and grain would grow on the Upper Marañon or the slope of the Andes. Flour and potatoes sell at 20 cents a pound; butter one dollar a pound; fowls one dollar each: eggs, eighty cents a dozen; cachaça, one dollar a gallon; ime, $\$ 12$ a barrel; Newcastle coal, $\$ 80$ a tun; logs, $\$ 4$ a piece; and it costs $\$ 5$ a hundred feet for sawing.
survey of the marañon.
We were happy to mest at this place the Hydrographical Commission commanded by Admiral Tucker, which has been engaged for several years past in surveying the Marañon and its tributaries. It has just returned from an elaborate exploration of the Ucayali, ascending the Pichis to lat. 10° $22^{\prime} 55^{\prime \prime}$, or 1,041 marine miles from Iquitos. We look for ward to the publication of the report by the Peruvian government with the greatest interest. The determinat'on of the latitude and longitude of prominent points by Captain Rochelle will straighten our geography of the Marañon region; while the meteorological and ethnological observa ions by Dr. Galt will make a valuable contribution to sci nce. The Commission are about to map out the main trunk of the Marañon from the Javarí to Borga, and may then be alled to explore Lake Titicaca.
Two little steamers, the Napo, of Iquitos, and the Ucayali, of Nanta, run up the Ucayali to Surayácu and Cachaboya monthly, the voyage to Sarayácu from Iquitos taking eight days up and four down. The trade at present is light, con sisting chiefly in the exchange of English goods and Hualla ga salt for salt fish and turtles. But this tributary, contribting more water than the Marañon above it, and navigable or about one thousand miles or within a short distance (vid Tarma) from Lima, must ere long become a highway for commerce. A mule road is already projected to connect Srayácu with the salt mines of Chasuta. Fine gypsum occurs above Sarayâcu, and cinnamon around Cachaboya Lake From the specimens collected by the Commission on the Pa chita, exhibiting cyathophylloid corals, brachiopods, and ostrex, we infer that the formation in that region is Upper Silurian. Nothing in this collection indicates the resence of cretaceous beds intervening between the Siluri n and the tertiary clays. The Ucayali, which is built of alvanized iron, has a tunnage of sixty, and draws when la den but three and a half feet, is about to make an exploring rip up the Rio Napo.
The largest village above Iquitos is Nanta, but the busiest is old San Regio-a little huddle of mud huts, but mighty in achaos. Here they distil and export 2,500 garrafones (seven allons each) a year of this white rum-the apparent life blood of eastern Peru-and sell it at $\$ 5$ a garrafon. Th cane, of which there is a vast plantation, is luxuriant, but i is said to be too watery for the manufacture of sugar. Sal aparilla and payshi (salt fish) ave also shipped from San Regio.
From this point to Borga, the head of navigation on the main Marañon, where the river dashes through a deep gorge in the limestone mountains, is about 450 miles. But trade eldom calls a steamer beyond the mouth of the Huallaga The Morona turned up this tributary and left us on the clay bank of Yurimaguas, where we leave our readers while w Andes.
dames Orton.
James Orton.

The Hartford Steam Boiler Inspection and

The Hartford Steam Boiler Inspection and Insurance Com any makes the following report of its inspections in the onth of August, 1873
The number of inspection visits made during the month were 1,087 ; boilers examined, 2,026 ; internal examinations 63. The hydraulic pressure was applied in 180 cases. The defects in all discovered were 719, of which 176 were re arded as dangerous. These defects in detail were as follows Furnaces out of shape, 51-6 dangerous; fractures, 48-2 dangerous ; burned plates, 35-19 dangerous; blistered plates, $123-27$ dangerous ; deposit of sediment, 105-15 dangerous norustation and scale, $97-7$ dangerous; external corrosion, 77-22 dangerous; internal corrosion, 18-5 dangerous; inernal grooving, 8-2 dangerous; water gages defective, $37-$ 4 dangerous; blow-out defective. $27-6$ dangerous; safety valve overloaded, 21-5 dangerous; pressure gages defec tive, 83-16 dangerous; boilers without gages, $100-3$ dan gerous; deficiency of water, $.7-4$ dangerous; braces and stays broken and loose, 47-25 dangerous; boilers con demned, 22. We feel compelled to call attention to the im portance of often cleaning boilers out through hand holes. We have frequently recommended this precaution, and we speak of it again because steam users do not seem to attach he importance to it which they should. Scale is thrown of from the boiler, perhaps by some solvent, it accumulates on he bottom and, if not removed, becomes conglomerated with other impurities, covers the fire sheets, and the result is tha they are sooner or later badly burned. We would advise all steam users to see that this work is not neglected.

ASTRONOMICAL NOTES.

Observatory of Vassar College.
For the computations (which are approximate only) and for the observations collected in the following notes, I am indebted to students.
M. M.

Positions of Planets for November, 1873. Mercury.
On the 1st, Mercury rises at 8 h .33 m . A. M., and sets at 5 h .39 m . On the 30 th it rises at 7 h .2 m . A. M., and sets a 4 h .38 m .

Venus.
On the 1st Venus rises at 4 h .17 m . A. M., and sets at 3 h 51 m . P. M. On the 30 th Venus rises at 5 h .27 m . A. M., and sets at 3 h .26 m . P. M.
Venus can best be seen at early morning at present, but a small telescope will show it in the daytime; it comes to me ridian or souths a little after $10 \mathrm{~A} . \mathrm{M}$. during the first half of the month, and before 10 h .30 m . all through the month, its altitude in this latitude being about 45° on the first of the month, and 32° on the last of the month.

Mars, which has been so favorably seen through the sum mer months, is at too low an altitude and sets too early in November to permit one to make good observations.
It rises on the 1 st at 11 h .52 m . A. M., and sets at 8 h .41 m . P. M. On the 30 th it rises at 49 m . after noon, and sets at 8 h .39 m .

Jupiter.

Jup time.
On the 1st of November it rises at 2 h .44 m . in the morn ing, and sets a little after 3 in the afternoon. On the 30th it rises at 1 h .13 m . in the morning, and sets at 1 h .24 m . P. M. Its apparent diameter is increasing, and it reaches a greater altitude from day to day, when it comes to meridian. It is moving among the stars of Leo; is east of the star π Leonis on the 1st, and on nearly the same parallel of declination. On the 30th its diurnal course is very nearly in the celestial equator, its declination being only $1^{\circ} 37^{\prime} \mathrm{N}$.

Saturn.
Saturn, which during the summer months has been so beautiful, is becoraing smaller, and is setting earlier.
It rises on the 1 st of November at 0 h .32 m . A. M., and sets at 9 h .50 m . P. M. On the 30 th it rises at 10 h .45 m . A. M., and sets at 8 h . 7 m . P. M. It should be looked for early in the evening, in the southwest, among the stars of Capricornus. On the 30th it has nearly the same right ascension as the double star of Capricornus known as α^{2}, which can be seen with the eye; and animaginary line from this star, running below it some 9°, will reach Saturn.

Uranus.
On the 1st Uranus rises at near 11 P . M., and sets at 1 h . 17 m . A. M. On the 30 th it rises at 9 h .3 m . P. M., and sets at 11 h .23 m . A. M. It is among the small stars of Cancer, and can be seen with a small telescope.

Neptune.
Neptune rises on November 1 at 4h. 25m. P.M., and sets at 5 h .27 m . A. M. On the 30th Neptune rises at 2 h .29 m . P.M. and sets at 3 h . 33 m . A. M. It cannot be seen without a good glass.

Spots on the Sun,

The record of sun spots by photography is from the 9 th to the 13 ch inclusive, with the omission of Sunday, the 12 th. On October 9 th, one pair of small spots was near the western limb of the sun, another pair of larger, circular spots was between the eastern limb and the center, and an elongated spot was at a short distance from the eastern limb. On October 10th, besides a change of position, owing to the revolution of the sun on its axis, a fresh spot appeared, accompanying the elongated spot of the previous day. October 11th showedmerely a change of position from the sun's revolution. On the 13th, the western pair had disappeared in consequence of the daily motion, the larger spot of the eastern pair had become circular, and, between it and the eastern limb, two small spots had appeared. Photographs of the 14 th, 15 th, 16 th, and 17 th show only daily change of position. On the 16 th and 17th, the group nearest the western limb was surrounded by conspicuous faculæ.

Amount of Rain.
The rains in October have been very heavy
The rain which fell between the morning of October 6 and the afternoon of October 7 amounted to $2 \cdot 3$ inches.
The rain which fell between the evening of October 19 and the morning of October 21 amounted to 3 inches.

Death of Donati

Professor Donati, the director of the Astronomical Observatory in Florence, died recently in Vienna, where he had just arrived to attend to duties connected with the exhibition. His name is connected with a comet discovered by him in June, 1868, which, during the following August, passed around the sun within the orbit of Venus, exhibiting a nucleus as bright as Arcturus, and a tail of great brilliancy and more than twenty degrees in length.

The Hayden Exploring Expedition-.-Remarkable

The last Congress authorized the geological and topographical survey of Colorado Territory, underthe direction of the Secretary of the Interior, by whom the active work was committed to the charge of Professor Hayden. James T. Gardner was the geographer of the expedition, and he gives a variety of interesting particulars concerning the lo-
cation of the mountains. The district surveyed comprises
the grandest portion of the Rocky Mountains, where tha highest peaks are found. The area surveyed was about 160 miles broad, and embraced Middle Park,South Park,and the Southern San Luis Park. The number of mountains sur veyed and mapped is astonishing, large numbers of the of the peaks measuring from 13,000 to 14,500 feet in hight. The triangulation extended over 30,000 square miles.
Professor Hayden reports some very interesting particuars in a letter to the Evening Post.
The 'explorers' experience on the Electric Mountains-a high and much exposed range separating San Luis Park from Wet Mountain valley-was most amusing. They could scarcely handle their instruments, sparks being elicited a every touch; their rifles, too, snapped under the electric in-
fluence, and were in continual danger of going off; while, when fluence, and were in continual danger of going off; while, when
caught in a thunderstorm, their hair literally stood on end. The whole party experienced shocks more or less severe, but none were injured.
These are at Colorado Springs, three days from Cañon City. The wide reputation of these springs is not undeserved, and the different ingredients with which the waters are charged, considering their close proximity, is quite remarka ble. The waters of the main springs contain respectively iron, soda, and sulphur, together with other substances in minor quantities. The soda spring is particularly interesting, being heavily charged with carbonic acid gas, which kubbles up in a lively manner. Inverting your glass and plunging it quickly into the spring, you obtain a delicious draft far superior to any ordinary soda water. The water is led into bath houses, and is considered very efficacious in the relief of rheumatism. It is certainly most refreshing. The hotel accommodations are excellent and their situation very beautiful, built as they are in one of the main cañons leading up to the Rocky Mountains and entirely shut in by the foot hills. Pike's Peak rises grandly above all, forming the main feature in the scenery.

curious sand hills.

One of the most wonderful sights of the exploration was encountered at the entrance of the pass. The wind sweeping down the valley is drawn towards the narrow gorge which furnishes the passage through the mountains, and has piled up a range of sand dunes seven hundred feet above the plain. They are several miles in extent, and, upon approach, glistening under the southern sun, resemble in their brilliancy mountains of pure sñow; and the crossing was ef fected with even more difficulty than it would have been over a snowy range.
The neighboring country contains many places of curiou interest, such as " Monument Park" and the "Garden of the Gods." The former consists of a valley filled with pillars of hardened limestone, which have been left standing, the softer material having been eroded by the action of water and the atmosphere. As one looks upon these great monuments of Nature, he feels as if they might mark the resting place of the dread giants of the story books. The " Garden of the Gods" is of similar construction, only the remaining rocks are higher and more conical in shape, the material being a red sandstone; the pointed spires, upon approach, resemble a gothic cathedral.

PIKE'S PEAK.
A favorite expedition is the ascent of Pike's Peak, a feat that is now practicable even for ladies. A new trail has been constructed to the top, and a halfway house built to accommodate those who stay overnight, thus enabling them to reach the summit early in the day, when the atmosphere is clear and the view most extended. A signal station has been estab lished on the summit by the War Department for the benefit of "Old Probabilities," forming an object of interest to hose who reach the top.
Railway Religion.-During the homeward journey of the western delegates to the recent Evangelical Alliance gathering in this city, a religious meeting was held on board of one of the trains, in a Pullman parlor car especially granted for the occasion. The returning delegates crowded the car, which was provided with an excellent organ, and had a splendid time of it; stringing out their prayers, hymns and exhortations for a distance of over sixty miles. Thus it is that science lends her aid to assist religionists. But it is ten to one that these divines will get up in their pulpits next Sunday and denounce scientific men as sel vants of the evil one, infidels and scoffers, because, having found out that the world was not formed in a week, they are bold enough to world
say so.
There is to be daily steamer service between New York and Liverpool, on the Cunard line. The company, we understand, are to withdraw their vessels from the West India trade and assign them to this duty. Eight new ships for this line are now in progress of construction at the yards of Messrs. J. \& G. Thomson, on the Clyde.

Inventions Patented in England [Compiled from the Commissioners of Patents, Americal.]
 CCompiled from the Commissioners of Patents, Journal.] From September 30 to October 9 , 1873, nnclusive.

Connecting Hose.-N.Thompson (of Brooklyn, N. Y.), London, England. FIrr ARM.-Providence Tool Company, R.I. I.
GUNPOWDR.-L. DuPont et al., Newcastle, Del.
Knives and Forss.-H. Bramhall (of New Britain, Conn.), Sheffild, Eng. Lasp BURNER.-T. Silver (of New York city), London, England.
LAMP.-R. Hitchcock et al., Watertown, I. Y. LAMP. - R. Hitchcock et al., Watertown, N. Y.
Life Preserver Mattress.-H. B. Mountat
LIFR Preserver Mattress.-H. B. Mountain,
Power Press. - N. C. Stiles, Middletown, Conn.
Pressure Gage.-G. A. Everett (of New York city), London, England. Punce.-I. P. Richards, Whitinsville, Mass.
Steam Lubricator.-W. Hamilton, Pa.
Tream lubricator.-W. Hamilton, Pa.
Treating Cast Iron, etc.-W. M. Arnold, New York eity.

wacent 2mericau and foreign gitents.

Improved Mode of Connecting Pitmen with Shafts.
Rudolph Cleaveland, Covington, Pa. - This invention consists in the mod of relatively constructing a bar and hand crank shaft, so that power other han that of the hand may be employed to operate. To the upper end of a vertical churn shaft is detachably attached bevel gearing communicating
with a horizontal shaft. One end of the shaft projects, is flattened, and as a longitudinal slot formed in it. A crank is arranged so that the churn may be operated Dy hand power when desired, or a bar, in one end of which is formed a slot to receive the flattened end of the shaft, when it is se
ured in place by a spring catch pin. The other end of the baris slotte cured in place by a spring catch pin. The other end of the baris slotted
to receive the end of the shaft of the driving power, where it is secured in oo receive the end of the

Improved Lamp.
$\mathrm{n}, \mathrm{N} . \mathrm{Y} .-$ This inventio
Louis Berns, Middletown, N. Y.-This invention consists in the combi nation, with a loose drip cup, of the sections of a lamp column connectcd
by intermediate rode,wide enough apart to allow theinsertion and removal of intermed

Improved Harvester Rake.
James Irvine, Parkersburg, Iowa.-This invention furnishes an improved levating rake for at tachment to reapers and mowers to convert them into harvesters. As the shaft rotated by the driving wheel revolves, the rak
will sweep across the lower part of the platform parallel, or nearly so, with the cutter bar, so as to collect the cut grain, and gather it into a gavel gainst the side board attached to the inner edge of the said platform. As ine shaft continues to revolve, the rake slides the gavel back along the side board, a spring allowing the rake to accommodate itself to the size of
the gavel. As the gavel approaches the rear inner corner of the platform, the gavel. As the gavel approaches the rearinner corner of the platform,
it is pushed Into a trough attached to said corner. As the rake passes the end of the trough a guide pin enters a sharp angle in a guide groove, which swings the rake around, so that it may move forward along the outer part of the platform into proper position to collect another gavel. A small spring gate placed in the gutde groove just in front of the sharp angle in said groove, which spring is pushed back by a pin and serves the double
purpose of guiding said pin fully into the said sharp angle, and preventing purpose of guiding said pin fully into the said sharp angle, and preventing
it from leaving said angle by the route by which it entered it. The gavel re removed from the trough by binders standing upon the platform, an are laid to be bound upon the tables at the front and rear ends of the said platform.
Apparatus for Arranging Type for Type Setting Machine.
D. Brainerd Ray, New York city.-This invention consists of a new an mpro ved a pparatus for arranging type in rows for a type setting machine, nd is designed to facilitate type setting by machinery. The construction
and operation are as follows: A series of hoppers or troughs is arranged, ne for each letter and character used in printing, upon a frame, at a con venient angle. Into these hoppers the type are distributed by hand, just as they are now, into the boxes of a type case. The type slide down to the channels or tubes, some having their notches turned one way, and some the opposite way; bat the bottom and sides of sald hoppers are so shaped that he type are all turned up edgewise as they enter the channels, and these are sha
side.

Improved Pruning Hook.
A. P. Bettersworth, Carlinville, Inl.-This invention relates to the class of pruning hooks in which a hook and sliding knife are so arranged that their cutting edges are made to approach eacb other by means of toggle or
jointed levers, said effect being produced by a direct pulling or tractive jointed levers, said effect being produced by a direct pulling or tractive
force applied to the handle of the implement. The invention consists in the force applied to the handle of the implement. The Invention consists in the
arrangement of double levers and a spiral spring in connection with a cutarrangement of double levers and a spiral spring in connection with a cut-
ting hook and chisel adapted to slide on each other, said levers serving, by ting hook and chisel adapted to slide on each other, said levers serving, by
their extension, to operave the cutting devices, and the spring to retract and hold the same close together for renewing the operation.
Stephen P. Ruggles, Boston, Mass.-This invention consists of a pair of otating registering disks side by side in the steam pipe, one of which is urned by clock work, or any power independent of the engine to be regulated, and the other is turned by the engine. The two are so connected ufflient to close or open the register. The one turned by the clock geared to run as fast as the other should be driven bv the engine, and they are so set relatively to each other that if an additional labor is imposed on the engine the retrograde motion of 1ts disk will open the register and ad itt steam; or, if tae labor is lessened the advance of the disk will close the reg
peed.

Improved Car Coupling.
Peter Kendrick, Trenton, N. J.-The object of thisinvention is improve-
ment on the car coupling of Depeu and Hall, patented July 2, 1867, and ment on the car coupling of Depeu and Hall, patented July 2, 1867, and
Smith and Utton, patented September 12, 1871; and the invention consists n employing a headed bolt sliding in opposite slots of the drawhead and link with a cross stud for streng thening it.

Improved Rice Cleaner.
David L. Geer, Lake City, Fla.-This invention consists, first, in the rota ngshaftof the mach spirally, and turned in ward: and, secondly, in providing the cylinder into which the grain delivered with a bulge, which form a cavity wherein the gratn is forced by he spiralblades, thereby effecting the hulling.

Improved Traveling Thrashing Power.
Richard W. Faris, Murfreesborough, Tenn.-This invention is intended to furnish an Improved power for driving a thrasher, so that each shock of
wheat or:other grain may be thrashed while passing to the next shock Wheat or, other grain may be thrashed while passing to the next shock consists in the ccmbination of the gear wheels connecting with the rear wheels of the wagon and communicating with a transverse shaft. Upoia the shaft is placed a gear wheel about eighteen inches in diameter, and which is provided with a clutch upon each side, so that the shaft may be ept in motion whan the wagon is turning, or even when one wheel is standing still. The upper part of the wheel projects through an opening
in the bottom of the wagon box, and connects by a gear wheel to a short haft which is attached to a band wheel, about twelve inches in diameter, and which is connected with the pulley of the thrasher engine. By this rrangement the thrasher cylinder will make about seventy-two revolutions to each revolution of the wheels. A still greater speed may be ob
tained by varying the size of the wheels, or by employing more wheels.

Improved Coffee Pot.

Margaret J. Stubbings, Youngstown, Ohio.-This invention consists in a cylindrical steam cover, connected, by pipes, with a perf orated drum, and
a muslin bag attached to it. The steam generated in the bottom part of the ot forces the boiling water continually over the coffee in the bag till the ull strength of the same is extracted.

Improved Oil Can.
Orris H. Warren, Baldwinsville, N. Y.-This invention consists mainly o tubular rod, of suitable length, in which is an oil receiving chamber, and
o which is secured a hollow handle, in which the airchamber is arranged. From the oil and atr chambers the ofl is forced out through the discharge pipe at the end of the rod by means of a pump arrangement nperated by the
thumb. Projectinglugs or ears, at the end of the discharge pipe, raise the thumb. Projecting lugs or ears, at the e
covers of boxes or cups over bearings.

Improvement in Indexing Books.
John S. Hicks, Roslyn, N. Y.-This invention relates to the indexing of books, and consists of a volume provided with index tags bound into the back with its leaves, and projecting beyond the side edges thereof.

> Improved Springs for Vehicles. wis, Portsmouth, Va., assignor to himself an

George W.Lewis, Portsmouth, Va., assignor to himself and C. W. Walker of same place.-This invention consists in two lever springs, the long sec-
tions of the upper division being held by the back wardly curved ends of tions of the upper division being held by the back wardy curved ends of
sections of the lower portion. The two divisions are separated by a considerable space by the metal or wood block confined between them in a
yoke, which also tends to utilize the power of the springs. The ribs are yoke, which also tends to utilize the power of the springs. The ribs are
raised in the upper surface of each leaf, at the center, by indenting the raised in the upper surface of each leaf, at the center, by
undersurface, which ribs are nested with the indentations.

Improved Atomizer or Vaporizer,
John N. Gerard, New York clty.-A hollow collapsible bulb is made in
 stretching the mouth of the bulb over the top Into a go yove. A pipe, ris-
ing up from near the bottom of the bottle through the bottom of the stop. per, extends by a bend through the side of the stopper, and terminates in
small nozzle. The nozzle for the sir projects from the side of the stopper smail nozzle. The nozze for the sir projects from the slae of he topper,
surround the small nozzle and terminates slighty beyond he e tatter with
a contraction arranged to cause the ant jiet to converge upon the liquuldet a contraction arranged to cause the air jet to converge apon the e tiqutdjet
at a point a little in ad vance of the two nozzese, so as to vaporize the 11 . quid in the most effectual manner. There is passage from the hollow sto
in to the bottle below,to ad mit the air for forcing out the 1 quil.
Improved Binder Attachment for Harvester. Washington L. Sanford, Ashton, Ill.-A hollow cylinder is made long
enough to receive the longest grain, and large enough for reeelving sumfl-

 grain into the opening near the top, where there is a shaft provided with
curved teeth, to adapt it to clear the grain from the elevator, and press it downwardand compress it in the receiver. At the bottom of the cylinder
a shaft with teeth retains the falling grain in the side where it falls untl a shaft with teeth retains the falling grain in the side where it falls untin a
quantity sufficient for a a avel is obtained. There are also fingers to guide the grain asest f falls from the eleverator to to the side where it accumulates.
Guard wheels working in the erooved ends guide the grain into a space unGuard wheels working in the groved ends guide the grain into a space un-
der the curves of the ei arms, for compressing it to be bound. While the der the curves of the ee arms, for compressing it to be bound. While the
gavel is accumulating, movable compressing arms are holding the one being bound, and after releasing it they are swung upward to the left, over
to the right, downward on to the grain, and then up again to the left untitl arrested by the pressure of the grain brought up by them under the sta. arested by the pressure of one the compression of the gavel is regulated by
tionary arm. The extent of the springs and auxiliary compressing arms. Other arms cast the bound gavel
down and out of the cylinder speedily, in order that the rake may the
sooner rcvolve and save time for the binding. When the bundele is thus sooner revolve and save time for the binding. When the bunde is thus
compressed the band is put round it and fastened by the attendant who stands on the pla
of the machine.

Improved Ironing Table.
d Simon H Foreman, Reading, Pa
Walter B. Grosh and Simon H. Foreman, Reading, Pa.-The object ot this invention is to furnish a table for ironing, shirts, skirtt, and other articles, and it consists in a foldng table so constructed that the ironing board or
leaf may be raised for putting on or taking off a shirt or skirt or other similar article, and the whole be made to fold together, so as to occupy but
Fictile Compound for Sanitary and Decorative Articles.
Jesse Rust, Bond street, Vauxhall, England.-This invention relates to
the compositions for sanitary, pictorial, decorative, and building purposes. Che compositions for sanitary, pictorial, decorative, and bulldidng purposes.
Glass of any kind is
ground topo wder and mixed with the same weight of
 and fused. When cold the same Is reduced to powder, is after ward pressed
into molds in a dry or in a dampened state by adding water or any glutinous 11quald. Another compound used1s of equal parts of fused and of powdered
glass and sand, mixed with two or more parts of clay or sand, cohered with glass and sand, mixed with two or more parts of clay or sand, cohered with
1iquid, molded, and baked. The blocks or molded pieces, small or large, liquald, molded, and baked. The blocks or molded pieces, smallor large,
are placed in a potter's or such like killn, and baked in the same way as pottery ware. When cold they are fit to use, and form a material w
be polished, painted, glazed, or decorated like other fictlie ware.
Improvement in the Preservation of Pulp Pigments, etc.
P. C. Tiemann, New Thork city.-This improvement relates to what ar P. C. Tiemann, New York city.-This improvement relates to what are
known in the trade as pulp, or slip, or paste colors or pigments, including whit tes, or that class of paint or coloring materials that tis prepared for use
by preciptation in water, or by fine grinding in water. The mprovement oy preciptation in water, or by fne grinding in water. Phe in one vessel, in which the pigments are to be stored, with a material or filling
that shall so close the pores of the vessel as to prevent auy oozing away of that shali1 so close the porse of the vessel as to prevent ayy oozing away of
the contents or loss of consistency in the pigments. This is accomplished the contents or loss of consistency in the pigments. This is accomplished
by lining or covering the exterior of the vessel with a suitable insoluble
pant paint or varnish, such
er insoluble materlal

Improved Tool for Making Button Molds. withn a conical cavity in the end, terminating in a cylindrical socket. There
Jity is a roughng tool to the conical cavity, and a anishting tool in the cylindri-
cal socket, and also a center bit. All are so arranged that a square stick,
 off upon the end by the finishing cutter to the required oval form for the top of the button mold. The stick, lastly, is presented to a saw and the
mold cut off.

Improved Adjustable Tongue for Organ Reeds.
aria Procopé, stockholm,Sweden. - This invention consists in an
provement in tuning wind reed instruments. A finger-shapend support is
applied against the under side of the tongue to support the same near its root, and is a tached to a slide which is held between guides that are fastened to under side of the board to which such tongue is secured. The
11des are made with teeth at their sides, and a tuning key, having a pinion sired to tune the organ, it is only necessary to Antroduce the tuning key in one of as many openings as there are tongues in the board, and thereby to bring its pinion in gear with the plate to be moved. or wwith severalp plates
successively. In this manner, therefore, the vibration can be regulated by shifting the support and reducing or increasing the vibrating lengths of the several tongues. Instead of using an adjustable finger above or below the
tongute to be tunen, the tongue itself may be made movable, and the length tongue to be tuned, the tongue itself may be made mova,
of its vibrating portion thereby increased or reduced.

Improved Fire Escape.

Peter W. Barnes, Albany, N. . . - -There is a box, one part of the top of
which 1 s stationary which is hinged a plate which can be turned out of the window to rest up. Winchis ingeed a plate which can be turned out of the window to rest up.
on the window sill. Another plate may be turned out to extend along the on the window sil. Ano ther plate may be turned out to extend along the
wall of buildinn upon the outer side of the window blind. In the outer part
of the latter plate is formed a hole where the ladder is dropped. This ladder of the latter plate is formed a hole where the ladder is dropped. This ladder
is made of wire rope, and, when not in use, is kept in the box. Rallings are is made of wire rope, and, when not in use, is kept in the box. Raillings are
hingea to the plates so that they may be turned up into a vertical position hinged to the plates so that they may be turned up into a vertical position
as a guard to those using the escape, and turned down Into a horzizontal o. asa guar to hose asing the escape, and turned down into a horizontaipo-
sition when sald plotes are to be folded together. Arms provided with
springs are arranged to rest against the inner side of the window casing to
 These are locked, when extended, by stopps, and, when closed, are held in
position by catches, so that they may be released by opening the device.

Improved Machine for Driving Brush Handles.
$\mathrm{n} A$ mes, J r., Lansingburgh, N. Y. - To the table is a tuached a f r

which a platesildes up and down in grooves. To the rear side of theplate

 is attached a rack which connects with a pinion on a shaft by which saidplatels raised or lowered. A handscrew limits the downerd plate 1 r raised or lowered. A handscrew 1 limits the downward movement
of the plate and insures that the handles of the brushes are driven to exact of the plate and Insures that the handies of the brushes are driven to exact-
y the eame point. To the for ward side of the plate $i s$ secured the follower,
by which the handele is forced into the brush by which the handle is forced into the orush. TTo blockren have half round
notches to recelve and hold the handie while being driven, and are so arnothce torececive and hold the handie while betng driven, and are so ar-
ranged in connection with arms as to be kept horizontal while moving toranged in connection with arms as to be kept horizontal while moving to
ward and from eachother. Said blocks, by suitable means, are kept exactly in line with each other as they move out and fin, and may be moved back out
the way to enable the brush to be conventently removed from the machine the way to enable the brush to be conveniently removed from the machine
In operat lon,the point of the brush handle is passed down through the hole between the blocks, and is inserted din the center of the brush head, the
lower end of the driver resting uapon the upper end of the brush handle lower end of the driver resting upon the upper end of the brush handle. A
lever is then operated, orceng the brush handle down through the brush lever is then operated, forcing the brush hande down through the brush
head until the forward end of a set screw strikes the top board of the frame. As the forward end of the brush handle passes down through the
brush head, tits point or forward end enters a socket in a guide which keeps
centered. The brush handle is thus always supported at two poinss, and driver is ratsed from between the blocks, the blocks and arm back out of the way, and the brush is removed.

> Improved Bee Hive. Lyman Chander, New Lo

Charles J. Sperry a double bee hive with two sets of honey frames. The roof is made in two
parts hinged together at the center, and fits over the hive, The hone parts hinged together at the center, and its over the hive. The ho
framesare sugpended from cleats by means of projecting top pieces. The
bottom of the hive consists of two tnclines corresponding in form with bottom of the hive consists of two inclines corresponding in form with
the roof, the edges of which form the bee lighting boards. A slat partiHon extenas from a cross plece to the center ridge of the fioor, and a shut ter closes the communication between the two parts of the hive. Whe the shutter is reversed, the bees can pass freely from one part to another.
This is a great convenience in dividing swarms. Outside of honey frame of each part of the hive there is a compartment closed by means of the movable partition and a top slat. The partition is hinged so that, when
he loose slat is removed, the top of the partition will drop over agan the loose slat is removed, the top of the partition will drop over agannst
the side, which allows the heney frames to be removed without difficnty The eside, which allows the honey frames to be removed without diffenlty. arconstraction, and are formed by cutting out the top part and inclined nder sides of the bar, leaving the bottom part entire, the object being to
void wes they may pass up or down on either side of the comb or comb frame.
Improved Combined Shutter Worker and Blind Operator.
Daniel M. Leonard, La Crosse, Wis.-The object of this invention is to ters and blind slats from the inside of the window. A cog wheel is keyed on a sliding shaft to be brought into engagement, alternately, with toot hed disk attached to the shutter, and toothed segmental lever connect-
ed with the blind slats, whereby both the shutter and slats may be ad uast-
ed as desired. Improved Potato Cutter and Planter.
Lemuel G. Mewborned Kinston, N. C.-This invention relates to a potato cutter and dropper on wheels, and consists in combining mechanic al in
trumentaittes so that whole potatoes are fed to a hopper, cut up tinto an strumentaities so that whole potatoes are fed to a hopper, cut up into an
average size, and dropped at regular intervalis in the drill or in hills. It average size, and dropped at regular intervals in the drill or in hills.
seems to meet a want long experienced by farmers, who find hand-cutting and hand-cropping of p

Improved Locomotive Smoke Stack.
James Hughes, Scranton, Pa.-The object of this invention 1 to provide
he smoke stack of locomotives with an 1 Improved cone by which the dre Is fncreased and the rapid wearing out of parts of the stack by the exhaus steam prevented. This Invention consists of flat plates and rings of vary
ing sizes, which are placed above each other in such a manner that the ing sizes, which are placed above each other in such a manner that the
steam cannot pass through without striking the plates and rings, varying will pass direction of the steam and distributing it equally so that and bringing the bonnet Into wite over imp thole surface. The draft tis regu
Improved Trotting Gear.
Henry Schmalhasen, Bridgeport, Inl - The object of this invention is to provide an elastic gear for horses, by which they can trot faster, raise their feet higher, and step higher, preventing them also from balking, kicking,
backing, or rearing. It consists of an elastic strap, which plays easily through the hame ring, either end being fastened to a hind and fore foot.
Ira T. Halateac, Fredonparav. N. Y.-This invention furnishes a simple appa ratus for collecting sulphareto, gole, sill ver, etc.., from ores. The invention
consist in the enployment of one or more sieves, in connection with one consists in the employment of one or more sieves, in connection with one
or moresluices and pitvoted boards, for separating the sulphurets and heavor more slutces and pivoted boards, for separating the sulphurets and heav.
fer particles of ore from the stream of water and pulverizel ore passing er particles of ore from
through the apparatus.

Improved Neck Yoke Holder.
E. Halt, of sama E. Hatt, of same place.-This invention consists in constructing the holder to the perforated leather plate by rivets. Thus the plates lap around the yoke, and, being fiexible and formed in one plece, they form a strong
device for the purioses.
William A. Pratt, Baltimpre, Md.-This invention.
nside of a reservoir a slide sleeve, to adjust the upper of the two valves locomotive lubricator toward or from tits seat, to regulate the flats
nto the feeding channel that leads to the parts to be lubricated.

Value of Patents, AND HOW TO OBTAIN THEMI.

Practical Iints to Inventors.
ROBABLY no investment of a small sum of money brings a greater return than the expense incurred in obtaining a patent
even when the invention is buta small one. Larger inventions are found to pay correspondingly well. The names of Blanchard
Morse, Bigelow, Colt, Ericsson, Howe, McCormick, Hoe, and others, who have amassed immense fortunes from their inven. Hons, are well known. And there are thous
haverealized large sums from their patents.
More than FIFTY THOUSAND inventors have avalled themselves
of the services of They have acted as solicictors and Publishers of the Scientific American of assistants, mostly selected from the ranks of the Patent 0 oflce: : men ca
a
 HOW TO This is the closing inquiry in oun in intank nearly every letter,dscscrbting some invention which comes
to this office. A positive an. swer can only be had by presenting a complete application for a patent to
he Commissioner of Patents. An application consists of a ing, Petition, Oath, and full Specification. Various official rules and for-
malities must also be observed. The efforts malities must also be observed. The efforts of the inventor to do all this
business himself aregenerally without success. After great perplexity and business himself aregenerally without success. After great perplexity and
delay, he is usually glad to seek the aid of persons experienced in patent delay, he is usually glad to seek the aid of persons experienced in patent
business, andhave all the work done over again. The best plan is to solicit
proper advice at the beginning. If the parties consulted the inventor may safely confide hisideas to them, they will advise whetherthe improvement is probably patentable, and will gire him all the direction

How Can I Best Secure my Invention ?
This is an inquiry which one inventornaturally asks another, who has had
some experience in obtaining patents. His answer generally is as follows some experie
Construct a neat model, not over a foot in any dimension-smaller if pos New York, together with a description of its operation and merits. On re
N celpt thereof, they will examine the invention carefully, and advise you as
to its patentability, free of charge. Or if
at hand, to construct a model, make as good a pen and ink sketch of the Improvement as possible and send by mall. An answer as to the prospect
of a patent will be received, usually, by return of matl. It is sometimes a a patent will be receivea, usuaily, by return of main.
best to have a search made at the Patent Ofice. Such a measure often saves

In Preliminary Examination.
Hon, in n to have such search, make ouc a written description of the inven with the fee of 85 , by maill addressad to MUNN \& $\&$ Co., 37 Park Row, and in
Ren due time you will receive an acknowledgment thereof, followed by a writ earch is made with great care, among the models and patents at Washing ton, to aseertain whether the improvement presented is patentable. Rejected Cases.
Rejected cases, or defective papers, remodeled for parties who have made applications for themselves, or through other agents. Terms moderate

To Make an Application for a Patent.

The applicant for a patent should furntsh a model of his invention if sus.
ceptibleof one, although sometimes it may be dispensed with; or 5 tij the in ventlon be a chemical production, he must furulsh samples of the ingredi-
ven he inventro his composition consists. These should be securely packed models, from a distance, can often be sent cheaper by mail. The safest way to remit money is by a draft, or postal order, on New York, payable to She order of MUNN \& Co. Persons who live in remote parts of the countr can usually p p.
respondents.

Caveats.

Persons desiring to flle a caveat can have the papers prepared in the short
est time, by sending a sketch and description of the invention. The Govern ment fee for a caveat is $\$ 10$. A pamphlet of advice regarding applications for patents and caveats is furnished gratis, on application by mall. Address

Reissues.

Areis granted to the orginal patentee, his heirs, or the assignees he entire interest, when, by reason of an insufficient or defective specifica
ion, the original patent is invalid, provided the error has arisen from inad ion, the original patent is invalid, provided the error has arisen from inad
vertence, accident, or mistake, without any fraudulent or deceptive inten

A patentee may, at his option, have in his reissue a separate patent for
ach distinct part of the invention comprehended in his original application by paying the required fee in each case, and complying with the other r quirements of the law, as in original applications. Address MUNN \& Co

Design Patents.

Foreign designers and manufacturers, who send goods to this country from fabricating or selling the same goods in this mariet
A patent for a design may be granted to any person, whether citizen or allen, for any new and original design for a manufacture. bust, statue, alto relievo, or bas relief; any new and original design for the printing of weol
en, silk, cotton, or other fabrics; any new and original impression, ornament, pattern, print, or picture, to be printed, painted, cast, or otherwise ato any article of manufacture.
Design patents are equally as important to citizens as to foreigners. For Foreign Patents.
The population of Great Britain is 31,000,000; of France, 37,000,000: bel tum, $5,000,000$; Austrla, $36,000,000$: Prussia, $40,003,030$; and Russia. $70,000,000$
Patents may be secured by American citizens in all of these countrie Now is the time, while business is dull at home, to take advantage c.f these in demand in Europe. There will never be a betici time than the prese to take patents abroad. We have reliable business connections with the principal capitals of Europe. A large share of all the patents secured is foreign countries by Americans are obtained through our Agency. Address
MUNN \& Co., 37 Park Row, New York. Circulars witl ' -11 information or

Value of Extended Patents.

Did patentees realize the fact that their inventions are likely to pe mor:
productive of profit during the seven years of extension than the first ful term for which their patents were granted, we think more would avail themselves of the extension privilege. Patents granted prior to 1861 may be extended for seven years, for the benefit of the inventor, or of his heirs in case
of the decease of the former, by due application to the Patent Office, ninety days before the termination of the patent. The extended time inures to the benefit of the inventor, the assignees. under the first term having no
rights under the extension, except by special agreement. The Government rights under the extension, except by special agreement. The Government
fee for an extension is $\$ 100$, and it is necessary that good professional service fee for an extension is $\$ 100$, and $1 t$ is necessary hat gen offe. Full informa-
be obtained to conduct the business before the Patent Trademarks.
Any person or firm domiciled in the United States, or any firm or corporation residing in any foreign country where similar privileges are extended to citizens of the United States, may register their designs and obtain pro-
tection. This is very important to manufacturers in this country, and equaly so to forelgners. For full particulars address MUNN \& Co., 37 Park Row New York.

Canadian Patents.

On the first of September, 1872, the new patent law of Canada went into same favorable terms as to citizens of the Dominion. In order to apply for a patent in Canada, the appicant must furnish a applying for an American patent.
The patent may be taken out either for five years (government fee $\$ 20$) or The five and ten year patents may be extended to the term of fifteen years. The formalities for extension are simple and not expensive.
American inventions, even ir already patented in this country, can be
patent
old.
All persons who desire to take out patents in Canada are requested to
communicate with MUNN \& Co., 37 Park Row, N. Y., who will give prompt attention to the business and furnish full instruction.

Copies of Patents.
Persons desiring any patent issued from 1836 to November 26,1867 , can be
upplied with offictal copies at a reasonalle cost, the price depencing upon the extent of drawings and length ot specif ication.
Any patentissued since November 27, 1867, at which time the Patent Office
commenced printing the drawings and spe 3 fifcations, may be had by ting to this office \$1. A copy
for $\$ 1$.
When
When ordering copies, please to remit for the same as above, and state
name of patentee, title of invention, and date of patent. Address MUNN name of patentee, title of invention, and date of pate
$\&$ Co., Patent Solicitors, 37 Park Row, New York city.
Munn \& Co. will be happy to see inventors in person, at their office, or to ach them by letter. In all cases, they may expect an honest opinion. For do not use pencill, nor pale ink: be brie.
All business committed to our care, a
All business committed to our care, and all consultations, are kept secrel
In all matters
In all matters pertaining to patents, such as conducting interferences
procuring extensions, drawing assignments, examinations into rocuring extensions, drawing assignments, examinations into the validity
f patents, etc., special care and attention is given. For information, and or pamphle
Address

MIUNN \& CO.,
PUBLISHERS SCIEN ITFIC AMERICAN,

\%usintsin an zexsonal.

$\frac{\text { Pre }}{\text { Protect }}$ Four Buildings with Patent Liqueid
 Send for Crireular of Prices and Certuleates. New Yorr
City onco.,116 Malden Lane, New Tork, sole A gents.
 time to try

Notic of Removal--The American Photo

For Sale-Second hand Planer, nearly new.
 sec, Cleveland, Onoio
Something for Inventors. See Ad. page 301. Just Published-" Workshop Reeeipts" for
Han unacturers, Mechanics, and scientitic Amateurs.
 uiltng Chemist, 114 state St., Boston, Mross.

 Makers of Johnson's Carpet Stretcher and Steam Boiler and Pipe Covering-Economy ent. Cialmers spence Company, foot East tth St, N. N. Lan's, Monitor Turbine Water Wheel at
 cago Industrial Expositton.
For Sale, cheap-A vertical resawing, ma-
 Wood burytype-or Photographs in permaa at the Fair of the American Institute. Used argelyby
Machinitsts and Manantacturers. Send for Price list to Am. Photo.Relief Pttr Co., 624 North 24 th street, Phil
 Enyines, Boilers, \&to, bought, sold and ex-

The New Remedyretainsthe Rupture in ease withoutcharge, by the Elastic Truss Co., 688 Brad Fay.
Sewing Machine Neeale Machinery-Groovers, Reeducers, wre Cutters, Eye Punches, ic. Hendey
 Patent Petroleum Linseed Oil works in all
pains as Boiled Lliseed Oil. Fr rice only 5octs. 116 Nalden Lane, New York.
Pa Mat Mene, New York.
Patent Chemical Paint-All shades
Patan cans, barrels, and half barrell. Price, 500 oc. \&1, ana \&i.1.5
 Belting Best Philidelphio O. Ok Tane Mercurial Steam Blast \& Hydraulic Gauges

 Buy Belting and Mechanical Supplies of

 all Fruit-can Tools,Ferracute,Bridgeton,N.J.

 orills, Price List tree. Goodnow \& Wightman, 23 Corn till. Boston. Mass.
 Hydralicter. Presses and Jacks, new and sec
ond handul. E. Lyon, tso orran street. New Tork.
 Steam Fire Engines, R.J. Goould, Newark, N.J. Buy Gear's Improved Variety Moulding Ma-
chine, Bosoron Mass.
 At American Institute and Chicago Exposi-

 We esellall Chemicals, Metallic, Oxides, and

datics Muries

W. E. says: I have a painting on the back of glass. It must be fifty years old, and the colors ar
getting loose from the glass. How can I fasten them J. A. asks: How can I make artificial meer W. B. C. asks: What is the best method of J. N. C. asks: Is it practicable to have a kind of a fender attached a bove the coweatcher of a lo-
comotive to prevent injuring cattle thrown off the comotive
track?
$\underset{\text { scientific paper the following process for taking leaf }}{\text { J. N. }}$ phctographs: " Put ten cents worth of the bichromate
of potash in a two ounce vial of sott water. After as much of this substance as possible has dissolved, pour
some of the solution into a shallow dish and place in it piece of white letter paper. When thoroughly satua plece, take it out and carry it into a dark room, and fan
it about untilnearly dry, when it will be of a bright yelIt about untilnearly dry, when it will be of a bright yel-
low color. Next, place upon it the leaf to be photolow color. Next, place upon it the leaf to be photo-
graphed, and under it put a piece of black cloth, and between two pieces of window glass of equal size, and fasten together with spring clothes pins. Expose this now to the sun,se that the rays will fall perpendicularly
upon the leaf. The paper will soon turn brown; and, in rom half an hour to several hours, there will be a perfect pric. Next, wash the paper in clear water, which
renew every fe moments until the paper is nearly or
perfectly white." This photograph will resemble a dead eaf. I want to get a picture that is green. Is there an olution, as cheapand simple as the above, by which a
green picture can be obtained? Or is there any way of green picture can be obtained? Or is there any way of
converting the picture obtained as above into a green color by pouring some solution over it, or otherwise
Can we obtain, similarly, a red leaf?

H. B. C. will find the process of nickel platfor lemon sirup on p. 266 , vol 29. You can make copying ind rules for calculating the dimensions of fly wheels on p. 288. vol. 28.-J. B. W. can waterproof canvas by
the process described on p. 122, vol. 27.-J. can temper gun and other springs by following the directions on p. ishing on p. 266, vol. 29.-C. F. P. Will find a
blackboard composition on p. 299, vol. 28.
S. says : It is asserted and believed by many
people that, if a man be stretched at full length, say people that, it a man be six persons gather about him (op-
upon stools, and six
posite, two and two and place the forefinger of each posite, two and two) and place the forefinger of each
and under him, he can be raised with ease into the air by the joint strength of the six, exerted in this maner, provided that all seven of them inhale and retain apon theinhalation. Is there any virtue in this? For a
oody to take in any amount of the fluid in which it is bathed does not increase its buoyancy; nor does a full nd retained breath assist vital power so well as sustained and regular breathing. The only way in which I can imagine its assisting is by its giving the upper part
of the body greater rigidity through the increased arch
of the chest. This would make thedistribution of power inform over the body of the lifted, and give a better ing a lift of thirteen pounds to each inger, but it is ne curiosity. The believers in this, I have no doubt, xperience an additional buoyancy equivalent to the weight of a volume of air equal to their cranial capacity.
Answer: We have often made the experiment you speak of; and our idea is that the effect of the inhalation by the lifted is to give rigidity to his body. As for the
fters, the inhalation probablystrengthens the muscles:
R. says: Is the method of drawing an elppe, described on page 84 of the pamphiet pabled
by you and called " The United States Patent Law, etc.," by you and called "The United states Patent Law, elc.,
acorrect one? If so, please explain the princtple by
which the figice is thus drawn. It seems to me that the methed is incorrect, and that no part of the curve of a
circle can coincide for any appreciable distance with the circle can coincide for any appreciable distance wist eculiar curve of an ellipse. in at an ellipse. My plan
it to myself, that the figure is not with regard to its focl (the method of drawing gener rallygiven in scientific works) and to compare this area with the area of a flgure, having the same axes,
called an ellipse by you, but composed of the arcs of
tour enclosed square. The difference is so large that it must be the difference in shape between the two areas. An-
swer: Your statement is correct. The method given in ur pamphlet for laying down an ellipse is approximat
its results. We present herewith another method in trictly accurate and quite as convenient. Mark on a
stres
ruler, or strip of paper, $a b$, a distance, $c a$, equal to the semi-conjugate axis, or half the short diameter, and

and the pointer is on the conjugate axis, the point c winl
be on the curve. Hence, any desired number of point can readily be obtained. It is easy to make an instrument which shall fulifl these conditions ; and by placing
a pencil at c, a continuous curve can be described. Most of our readers know that if a string, the length of the
transverse axis, has its ends secured to the foci of the
 When the axes, A B and C D, are given : from C or D as
a center, with a radidusequal ito A B divided by 2 , des
cribe the arc of a circle. The points, FG cribe the arc of a circle. The points, F G, in whic
cuts $a b$, will be the foci. D. A. B.--Extract of hemlock bark is in
 E. T. C. says: I saw, a few days ago, in the ent Office. They were scattered over a couple of tables and seemed to receive no care and very little attention
Ishouldilike to know how they came to be there, an Why there seemed to be no carc taken to prevent their being destroyed or carried a way. Answer: Probably
they were old models of rejected cases, which were sold ome time ago at auction by the Patent Office.
$\underset{\text { that wood cannot be set on flre by coming in contact }}{\text { F. E. S. Says }}$ Answer: The heat of ordinary steam pipes is not suff ficient to set wood on fire. But some kinds of wood,
enclosed in a certain way and subjected for a sufficient ength of time to the heat of steam pipes, will after a long while become charred. It is known that charcoa made from certain kinds of wood, and warmed to a cer sorb oxygen so rapidly from the enclosure, will ab fame spontaneously. This is one way in which steam pipes may indirectly be the cause of fire. Agann, some
kinds of wood, if long subjected to moderate heat, reated with oil, and suitably enclosed, will inflame span engine cylinder,so situated that in oilingthe valve small quantities of oil became incorporated with the wood, has been known to take fire. But such examples are rare. The practice is to set steam pipes an inch or
two apart from the wood, not because they will directly wo apartfrom the wood, not because they will directly
burn the wood, but to prevent the accumulation, near ine pipes, of materials and conditio
G. M. A. says: In your answer to C. M. B. of a rife, you say that the thickness of the barrel at the
breech should be twice the diameter of the bore. 1 . What is the thickness of a barrel? Is it the thickness o carbonized steel? How does it differ from the bes rought iron? Why is not cast steel as good? 3. What he grooves, or is it the line K L, Fig. 2? 4. How are the sights of a rifle arranged Are they parallel to the
bore? 5 . In Fig. 1, let F be the barrel of a rife, E the path of a ball, C S a target, and P, G, the sights parallel
o the bore. Now if C was aimed at, I should think that he ball would strike at S. Is it not always necessary therefore, to have one of the sights movable, for in
tance P ? And would it not be neeessury to igk as B for the distance $V \mathrm{~S}$, and as high as A for the hoids a gun of any kind perfectly horizontal, does not leaving the gun as if it had been dropped from the muzeaving the gun that it has not time to fall any afte

only. Atesfor heating purpos. horse upright tubular boiler. These
are in use on Mondays, Wednesday and Fridays. Would it be practica-
ble to heat the house by steam from this boiler, and if so, would it
be economical? We could dispense
the ball go swifter, as it ouers more ressistance to the by in a vise or other support, send a ball into evactly the ame place every time, at 100 yards? Answers: 1. B is the thickness. 2. You probably refer to what is com-
nonly known as blistered steel. It is stronger and less malleable than wrought iron, and is capable of being empered. Cast steel is the most perfect kind of steel . We think that the generally received definition of would be glad to hear from sportsmen on this matter.
tand 5 . It is impossible to give definite rules for ar4and 5. It is impossible to give definite rules for ar-
ranging the sights of a riffe, as so much depends on the weight of the charge of powder, and the weight of the
ball. Hence one of the sights is made movable, and the experience of the marksman teaches him how to adjus t. 6. Yes. The amount the ball falls is allowed for by
he adjustment of the sights. 7. We think that the prino the ball of the grooves is to impart a rotary motion at each trial. In practice, it is generally impossible to
avoid slight differences in the weights of charges, and it alsof ar from an easymatter to hold a riffe immovably
E. D. W. asks : 1. How can I prevent the er in the hot weather? 2. If a magnet that will lift two pounds be suspended from one that will lift a quarter
of a pound, so both gain in strength, and does the small r one gain as much as it would if a plece of iron wer
suspended from it? Answers: : . We do not believe
you can remedy the trouble in any way, except by placing a piece of tissue paper over the oiled silk, before rolling up the case. 2. The magnets do not gain in strength
R. H. asks: What materials are used in grinding lenses for opticalinstruments? I can make excellent polish necessary. Answer: First, use quart
sand, with the lead grinder, then coarse emery. Second,
washed or elutriated emeries of increasing fineness, with washed or elutriated emeries of increasing flneness, with
the fron grinder. Third, rouge, with the pitch polisher the iron grinder. Third, rouge, with the pitch polisher.
Rouge is obtained by calcining copperas in a covered crucible.
C. W. says: I have a steam boiler about C. W. G. says: I have a steam boiler about
feet in diameter and 7 feet high, of which 5 feet tis the
ength of the flues. My engine has a cylis der $41 / 2 \times 12$ length of the flues. My engine has a cylit der 41/2 12
inches. What power ought Ito obtain fromit? Answer: Inches. What power ought I to obtain from tr? Answer
It would be impossible to answer this question without receiving more data. In any case, only an appilal.
estimate could be made, without an actual trial.
D. B. K. sends a paragraph about the pering on the city water works, Providence, R. I., but fails
o give any particulars as to size or construction of the
E. W. G. asks: Will water which has it flows along from the source), be injurious to a steam
boller? Answer: We do not think this water will in
and instead of firing up the boiler every other day with nuch delay. Answers: 1 . It would be necessary to use
pump, and it could be used etther to draw or fore the water. If an air vessel is added, it should be placed be-
yond the delivery valve. 2. Properly managed, it would probably be more economical to use steam for heating
parposes, in the case you mention.
C. D. H. asks: 1 . How can I transfer suroaded? 2. Can I run an engine with the exhaust steam f another engine? 3. Is there a well authenticated
case of fire originating from steam pipes in adryhouse? mow can such danger be prevented? Answers : You
might carry a steam pipe from the large boiler to the
small engine. 2 . This is done in the compound engine but it would hardly be advisable in your case. 3. InsurWhere ordinary precautions are observed, we do not
J. A. M. says: I recently undertook to make an engine of about one horse power. I got along well,
xcepting in the valve in the steam chest on the cylin-
der; and I wish to get some information on the position of the piston head and slide valve. Answer: Consult
B. F. M. says, in reply to J. D.'s assertion ing a 10 horse separator for nearly two seasons; ; used and I assert that I can do more threshing with the rods than with belt. I have coupled to the engine, right to
fly wheel end of crank shaft, my tumbling shafts, consisting mostly of gas pipe of 2 inches diameter and 15 feet length; but one or two are each but $/$ /s inch diamelatter are inteended to spring somemhat, and also to
twist off in case of accident. The gearing at machine is bevel, $61 / 2$ to 1 , and this ald gives us the.proper motion ; itis
also furnished with stopped and machine run ahead. With the abone we thresh from 300 to 500 bushelc wheat, and twice that
amount of oats, peray, which is more than any onc of ree other machnes does, though we have the lightest ngine of the four. They use belts and we use tumbling
ods. Answer: This is an interesting statement, though ot conclusive as to the greater efficiency of tumbling rods, in the absence of a test with dynamomete
hall be glad to hear from others on this matter.
C. H. D. says: I have an upright boiler he water is supplied, the pressure is reduced to 35 lbs . it go down one of the flues, return by another and then from the pipes, after working hours, when the pressure leaves the boiler, and will the pipes receive injury from
the action of the fire when steam is again being made? Answer: Your plan will probably work very well, as
many heaters are in use, constructed on substantiall
F. H. H. says: If I make a square vessel with partitions cast in copper (all in one plece), filling
each alternate compartment with zinc, would it produce n electric current? It is on the principle of the electric disk or soles, the only difference being that, in the
disks and soles, the pieces of copper and zinc are connected and joined with copper wire, while this one of
mine is one solid piece. Would the solid body of copper mine is one solid plece. Would the solid body of copper
prevent the passage of a current? Answer: Your ar preventene passage of a current? Answer: Your ar-
rangement would not produce an appreciable electric current, as something more than mere contact of metals is required in a galvanic battery. It is true that in the ry pile, so called, a current of electricity is generated ordinarly, but not when the parts are perfectly dry,
showing that moisture, which gives rise to cheomical ac ion, is necessary to produce an electric current. Even f a current were generated in your arrangement by the mere contact of zinc and copper, there are no means of isolating and making it avallable. If a current should
flow from the zinc to the copper. it would return immedately by the coper conections, around to the zinc again, and vice versa. To make an effective galvanic battery, there must be chemical action upon one of the
metals used, and the parts of the battery must be armetals used, and the parts of the battery must be arbanged and connected in a particular way.
W.A. J. says, in reply to C. C., who asked, press: If C. C. will measure the amount of chain taken up on his pulley at P while his follower travels $1 / 4$ or $3 / 2$ nch, he will readily get a ratio by which to multiply his become nearer parallel. A very simple rule (which I have never seen published) for all purchases orleverages is: The distance which the resistance or object is moved is to the distance which the power applied moves plies to pulleys, gears, tackles, and all descriptions of levers. Take, for example, a compound lever punching machine, where you cannot measure the separate levers: The punch moves $1 / 2$ inch, while the lever where 1 it is grasped by the hand moves 30 inches; this gives a ratio
of 60 to 1 , that is, the lever moves 60 times as far as the punch, and 100 lbs . applied at that point of the handle will exert a pressure of $6,000 \mathrm{lbs}$. (less the friction of the machine) on the punch. With a tackle and fall, by the same rule, you hook your movable block to an object,
and move it 1 foot; in dotng so you have moved 20 feet fall, which is 20 to 100 lbs . power applied gives 100 $\times 20=2,000$ (less friction). For a series of gears turned by a crank: A weight is winding up by a rope and has
moved 1 foot; the crank is 1 foot long and has made 30 evolutions, A crank 1 foot long travels around a circle tions, makes 186 feet, the distance the power ropled ravels to every foot of rope wound up; and 186 multiplied by the power applied in pounds would give weight raised, less the friction. "With these rules and exam ples, I hope the readers of the Scientric win be able to make their own calculations without troubling our
editor, so that he may be able to give us something more valuable and interesting."
Minerals, etc.-Specimens have been received from the following correspondents, and examined with the results stated:
J. S. H. P.-The specimen is limestone conglomerate, of no value, unless a chemical analysis should show the
presence of some metal. F. J. P.-
limestone.

egrated sandstone roc

R. H. McG.-No. 1 is iron pyrites, used for the manufacture of oin of vitriol. Whether it will pay to mine, depends upon whether it would pay to manufacture sul-
phuric actd in your locality. No. 2 is a mixture of sandstone, clay, mica and oxide of ron, of no value
B. K. D.-The syecimens are quartz pebbles.

COMMUNICATIONS RECEIVED

The Editor of the Scientific American acknowledges, with much pleasure, the receipt of original papers and contributions upon the following subjects
On Carbonic Acid in Wells. By F. A. H. On Elliptic Pulleys. By F. H. R
On Traction Engines on Public Roads. By H. B. P

On Spectacular Exhibition of Diffraction. By A. E. D.
On the Easterly Current. By J. E. V
On the Fireless Locomotive. By J. P
On Boiler Explosions. By
On the Providence Pumping Engine. By D.B. K.

On a New Reactive. By J. T.
Also enquiries from the following H. С. в.--Z. G. T.-W. H. B.-F. т. H.-H. B.-J. J. D. -J. G. M.-J. O'N.-A. L. H.-A. A.-F. S.
H. M. McK.-W. H. С. - R. H. R.-J. V. R.
Correspondents in different parts of the country ask: Who makes the best flies in the United States? Which
is the cheajest ice making machine? Where can devil fish be bought by the dozen? Makers of the above articles will probably promote thetr interests
tising, in reply, in the Scientific A MEricus Correspondents who write to ask the address of certain also those having goods for sale, or who want to find
partners, should send with their communtcations an partners, should send with their communtcations an
amountsufficient to cover the cost of publication under amountsufficient to cover the cost of publication under

OFFICIAL.]

Index of Inventions

 For whiceLetters Patent of the United States October 7, 1873,
and each bearing that date. [Those marked (r) are refssued patents.]
Ankle supporter and filler, S. Stlberschmidt...... 143,53
Auger, underminin

Axle, vehicle, T. F. Coleman. Bayonet socket, B. Burton......
Bed bottom, A. Turnbull, (r). Bedsteads, etc., fastening for, J. M. Baird. Bedstead, sof,., S. M. \& S. A. Winn.................
Bellows for furnaces, operating, H. Crumlish. Bellows for furnaces, op
Belt fastening, P. Subit Belt fastening, P. Subit..................... Blinds, machine for wiring, C. McGill
Bolster, pillow, etc., C. P. Cooper Boot jack, F. Dorsett, Sr. Bullet, Retn \& Stock.. Burral case, J. B. Cox.
Buttons, fastening
Car coopling, A. W. Bohaker
Car coupling, Merrill \& Kempton
Car coupling, S. A. Otis..
Car coupling, J. B. Tracy.
Car coupling attachment
ar hing attachment, Brown et al., (r) Car lamp, J. L. Howard
Car, stock, T. J. McCarty. J. S. Lester Car, stock, T. J. McCarty Carbureter, W. T. McMillen
Carbureter, I. W. Shaler
Carriage, child's, H. M. Richardsc..... Carriage and wagon seat, C. K. Le
Carving machine, B. J. Tayman, (r) Chisel, C. E. L. Jelliffe Cloth, manufacture of felt, J. E. Pollard. Coach and car truss, G. F. Chalender Commode, J. D. Averell
Corset clasp, J. Burke
Curtain fixture, H. H. Burritt. Dyeing, mordant for, G. A. Hageman Electric rallway signals, F. L. Pope. Envelope, Kuhn \& Atkinson, (r) Feather renovator, R. B. Cooper Fence, wood, R. F. Ward
Fire arms, attaching magazine to, H. Metcalf Fountain and aquarium, J. Moor Furnace, blast, E. B. Andrews. Furnace for tempering, etc., w. M. Watso Furnace, hot air, o. s. Kelsey Furnace, tyre heating, J. G. Roger Furnaces, operating bellows for, H. Crumlish Gaining machine, J. Richards. Game machine, portable, B. Sloper.
Gate, automatc, E. Wheeler. Gate, farm, W. S. Brown. Grain register, G. W. Nesmith Harrow, D. B. Maze Heater, steam, P. H. Merrill Heel burnishing machine, C. W. Glidde Hemmer, O. L. Brown
Hoisting apparatus, Massey \& Darling Hook, siding, P. J. Coon.. Horses, grooming, J. J. G................
Horses, device for attaching sugh, s . Hose bridge, E. Batzel.. Inking apparatus, F. L. Bailey Knitting machine, L. D. Sanborn Ladder, fre escape, G. Pfleeger Lamp, F. Kampfe
Lantern, signal, I. W. Siale
Leather skiving machine, G. Andrews. Leather straps, waving or embossing, D. H. Unge
Liquids, freezing, s. s. Fitch......... Lock, seal, J.E.Thomson
Locomotive head light, W. Westlake Loom stop mechanism, Wheeler et al Lubricator, W. A. Pratt Lubricator, J. Ross...................
Matter, treating refuse, c. Whittier Medical compound, J. P. Barnet Medical compound, F. Stuitzel....... Mill, fanning, E. M. Gilbert................
Musical instruments, pedal for, H. Haas Nall extractor, G. J. Capewell.. Oven, baker's, D. McKenzie. Paper pulp, fiberous, A. Ungerer.
Pavement, concrete, G. Bassett, (Picture frame, F. Relfschnelder Picture holder, stereoscopic, Samson \& Smith
Pitman, J. Swan Planter, corn, E. E. Henegan
Plow carriage, H.
Press, book-holding, L. Heitk Privies, slnks, etc., cleaning, R. R. Retowsky Pulley block, A. S. Dickinson.... Punching and shearing, s. R. House Punching sheet metal, M. Stephens....
Purifier, middlings, Brandon \& Wiggim Railroad rail joint, T. Rodes...
Railroad signal, W. Wickersham.
Rallroad ticket holder, J. C. Maloy Rallroad tie, P. S. Devlan..................
Railroad time signal, G. B. Cumming Rallroad time signal, G. B. Cumming Retn holder, E. Fahrney. Roofing, machine for heading, J. A. Wells Sad iron, B. Jones...
aw set, T. E. Grimes
Scale pan, J. P. Chatillon.
Separator middetal, N. C. Hubbell
Separator, middingss, R. L. Downton.........
Sewlag machine and water wheel, I. Hyde, (r) Shears, A. Lapham
Shoe fastening, Fitch \& Jones
Shutter fastening, A. J. Palmberg
Shu ter worker, L. Muller
Shutter worker, L. Muller...............
Slag, iron, etc., granulating, c. Wood.
Soaph alkalies, J. W. Wylé.
Spinning machine condensing tube, J. Good. Stamp, ore, L. D. Webb.
Staves, cutting gores in, c. Ruggles.
Stove, car, Mooney, Van Dorn Stove flues, extension for, F.Warriner Stove grate, G. W. Eltonhead
Stove grate, W. H. Stryker...
Stove platform, C. Brownell. Streets of snow, elearing, R. A. Shinn.
Suspenders, Potter

Tables, slide for extension, Zen Teeth, artificial, w.c. Tracy....

 Teeth, artificial, W. C. Tracy............Teeth, retalning filling nin, E. Osmond.
Tenoning machine, Richards \& Berry Tobacco, etc., packing, J. H. Trowbridg Toilet rack, Cooke \& Kenfield.......
Toy for making bubbles, S. B. Bliss Toy gun, R. Y. Murphy.
Trap, yy, C. S. Rouse.
Treadle, Tisdale, Putnam \& Allen.
Tub support, wash, G. F. Shaw....
Tube, speaking, C. A. Fredericks
Vehicle coupling, C. H. Cratar.
Vehicle wheel, M. B. Whtte....
Vessels, forccng ashes from, J. Pal.........
Vessels, propulsion of, G. B. DeBoucher Washing machine, dish, C. H. William s.... Watch chairs and bracelets, etc., W.
Watchmaker's lathe, J. M. Oram... Wheel for wheelbarrows, W. E. J
Whip socket, F. B. Munroe. Winding machine, cop, Chadwick and Lownds. Wire, machine for pointing, F. H. Aiken. Wood, etc., apparatus for graining

APPLICATIONS FOR EXTENSIONS.
Applications have beenduly fled, and are now pending
or the extension of the foilowing Letters Patent. Hearfor the extension of the following Letters Patent. Hear-
ings upon the respective applications are appointed for the upon the respective applications are appoine 7,262.-FARE Box.-J. B. Slawson. Dec. 31.

EXTENSIONS GRANTED. 25,7z6.-Blind Wiring Machine.-B. C. Davis.
25,733.- Dovble Friction Couplinge-J. Hendy. 25,767.-Cutting and Panning Cakes.-J.H. Shrote.

DESIGNS PATENTED

 6,900 to 6,908.-CARPETS.-R. R. Campbell, Lowell, Mass.$6 ; 909$ to 6,931 .-CARPETS.-O. Heinigke, New York city. ,, ,332.-Carpets.-H.Horan, East Orange, N. J.
6,933.-Lathe Dog.-B.L. Lathrop, New Haven, Conn. 6,934.-Carpets.-L. G. Malkin, New York city. ,936 \& 6,937.-Carpets.-D. McNair, Lowell, Mass.
 6,992 to 6,945.-CARPETS. - J. H. Smith, Enfleld, Con
6,946.-Tov Bank.-T. Swann, Philadelphia, Pa. 6,948.-LAMP Foot.-T.B. Atterbury et al,Pittsburgh, 6,949--BUTT HINGE.-M. Bradley, Springfield, Mass.
950.-CARPET.-H. F. Goetze, Boston, Mass. 6,950.-CARPET.-H. F. Goeize, Boston, Mass.
6,951.-OIL CLoTHS, ETC.-C. T. Meyer et al, Bergen, N. ,953.-Sword Hilt, etc.-V. Price, New York city. 6,954.- Printing Type.-E.C. Ruthven, Philadelphia,Pa.
6,955.-Advertising Frame.-C. H. Shackford et al, Sy-

TRADE MARKS REGISTERED.

$$
\begin{aligned}
& \text { l,481.-GIN.-J. W. Culbert, New York city. } \\
& \text { l,482.-IroN AND STEEL.-Leng \& Ogden, New }
\end{aligned}
$$

$$
\frac{1,487 .- \text { SoAP.-W.L. Troxell, Brooklyn, N. Y. }}{\text { SOHEDULE OF PATENT FEES: }}
$$

$$
\begin{aligned}
& \text { On each Caveat.. } \\
& \text { On each Trade-Mark filing each application for a Pa tent (17 years). }
\end{aligned}
$$

$$
\begin{aligned}
& \text { On ning eacn application fora } \mathrm{Fa} \\
& \text { on } \mathrm{a} \text { suing each orginal Patent... } \\
& \text { on appeal to Examiners-in-Chief. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { On appeal to Commissioner of Patent } \\
& \text { On application for Relssue.............. }
\end{aligned}
$$

Surerisememt

RATES OF ADVERTISING

Back Page
Inside Page
$\$ 1.00$ a line.
Engravings may head advertisements at the same rate per
line, by measurement, as the letter-press.
The valueof the SCIENTIFIC AMRRICAN as an advertising
medium cannot be over-estimated. ftsc irculation is ten
times greater than that
times greater than that of any similar journal now pub-
lished. It goes into all the States and Territories, andis
read in all the principal libraries and reading-rooms of
read in all the principal libraries and reading-rooms of
the world. We invite the attention of those who wish to
make their business known to the annexed rates. A busi-
ness man wants something more than to see his adver-
tisement in a printed newospaper. He wants circulation.
$\& f$ it is worth 25 cents per line to advertise in a paper of
It it is worth 25 cents per line to advertise in a paper of
three thousand circulation, it is worth $\$ 3.75$ per line to
three thousand circulation, it is worth
advertise in one of fortv-five thousand.
CHRISTMAS BELLS sent FREE

V Artificial Eyes, Naturallst Supples, and Sbjects

MOTHIRE 2" $=$

 A GENTS-For the most Saleable Article, A Set of 12 Steel Lathe Dogs, From 栄 to 4 inch........
Iron, from 2 to 2 inch:
or
1 Set of Steel
Expandron Ma
Inches \&e.
Send to C .
Inches, ec.
send to
for Circular.

S $\mathrm{S}_{\text {tical }}^{\text {OMEstem for the Sale of Patent Rights, showing }}$
 spectmens. s. s. maNy \& CO., 213 Hoftman stree
Baltimore, Ma.
G. E. ILLINGWORTH, Neville St. Foin

ILICATES OF SODA \& POTASH, SOLU

SILVER AND GOLD

The energy and thoroughness with which Mr. Ray.
mond has prosecuted his investitations and the reare
intelingence and intimate acquatintance with mining and

 CIVIL ENGINEERING SCHOOL,

HARTFORD
 Steam Boiler INSPECTION \& INSURANCR CD. CAPITAL $\$ 500,000$.

 Boilers, Biilidings, and Madiibery, STEAM BOILER EXPLOSIONS.

STEAM BOILERS,

 Home office, in Harford, Conn. or a any A geney
J. M. ALLEN, Pr,

BAIRD'S HOOMS

For Practical Men.
 HENRY CAREY BAIRD,

B00KS

CHEMISTS, MINERALOGISTS AND ASSAYERS.

of Too The above, or any of my books, sent by mall, free

HENRY CAREY BIIRD 406 WMUSSPI ATHRD.

[^0]
A Rare Chance to Alvertise.
 Cheapest and Best Mode of Introducing NEW MACHINERY AND INVENTIONS.

To Advertisers.

About the 15th of November, we shall publish a special edition of 60,000 copies of the SCIENTIFIC States, Canada, and adjoining provinces.
It is intended that a copy of the paper shall reach the principal manufacturers, workers in lumber and
nd fron. railroad shops, and the works of other mechanical and chemical industries in the United States. and iron. railroad shops, and the works of other mechanical and chemical industries in the United states. cents a line inside, and $\$ 1$ a line on last page. A few notices, in the Business and Personal column, not
exceeding four lines in length, will be inserted at $\$ 150$ a line. This affords an unusually favorable cpportu exceeding four lines in length, will be inserted at $\$ 150$ a line. This affords an unusually favorable opportu
nity for advertisers to reach a class of persons not accessible in the ordinary channels of advertising. The names have been selected with care, and the publishers guarantee the number issued to be full 60,000 ; the
postage on these copies, which is twelve hundred dollars, will be prepaid, thus insuring the prompt forwarding of the papers to their destination.
Advertisers will bear in mind

ENGRAVINGS

MUNN \& CO., Publishers.

MAN POWER SAWS. Circular, Jig, Band \& Bench. Combined Powel CO., 23 dey st., n.y

A. S. GEAR

$\mathbf{M} \underset{\text { steam Enzines \& }}{ } \boldsymbol{A}$ Mechanical $\mathbb{E} \mathbf{R} \mathbf{Y} \mathbf{Y}$ Steam Engines \& Mechanical Supplies,
56 TO 62 SUDBURY ST., BOSTON, MASS.

Improved

 THOMAS LEFFEL.

SB32. SCEENCE'S PATENT. 1871

To Electro-Platers.

B

$\boldsymbol{H Y D R A} \boldsymbol{T} \boldsymbol{T} \boldsymbol{L I} \boldsymbol{C}$ "J $\boldsymbol{J} \boldsymbol{A} \boldsymbol{C K}$.
$\mathbf{P}^{\text {ISTON guided from both ends; all working }}$

$\$ 375$

SHINGLE AND BARREL MACHINERY.

OTIS $\begin{gathered}\text { safety hoistivg } \\ \text { Machimery. }\end{gathered}$

Gar tiss $\mathbf{M}_{\text {Bothe }}^{\text {OULDS }}$ for Fruit Jars. Patent

DAGE'S Water Flame Coal Lime Kiln, with

OLD ROLLED SHAFTING

 WOoDburr's Patent
Planing and Matching

ENGINES, BOILERS PUMPS, \&C

Andrew's Patents.

 millina machines.

 B ${ }^{\text {UERK }}$, WATCMAN'S TIME DE-

BOILER WORKS.

Machinery,

Cold Rolled Shafting.

Sturtevant Blowers.

PATENT PUNCHING

 wists s. wni WORKING CLASS

T H Union Iron Mills, Pittsburgh, Pa

 Pass This By Hyatitiow
\qquad Niagara Steam Pump. CHAS. B. HARDICK, PRICE ONLY 10 CENTS PER POUND.

Yatent Woodworth, Dantels and Dimension Pliners Mther Machinery for Workine ig Wood. Sole Manifac
onrers ofthe ceiebrater Firmer Patent Aotcher Headd
and Antiriction Cutters and he New Eugland Band

PORTABLEATEAM ENGINES, CMBIN-

gadurtizematis.
 head a advertisements at the sa
urement. as the e etter-press.
PRATT'S

> ASTRAL

F

FREEMAN\& BURR, clothing warehouses

Todd \& Rafferty Machine Co.

WIRE ROPE.

JOHNAROEBLING'SSONS

LUBRICATORS

PORTLAND CEMENT,

SUPRR-FTPATRERE

,

 Pyrometers. $\begin{gathered}\text { For testngheren. Boole } \\ \text { Hues, } \\ \text { Blast } \\ \text { furnaces }\end{gathered}$

No. 1 Remit St. New York.
Movable-Toothed Circular Saws PERFORATED CROSSCUT, SOLID SAWS.

Machinist's Tools, LUCIUS W. BRAND, ANDNWPROVED,

ROOTS FORCE, BLAST BLOWER SPEED ONLY 100 'TO 300 REV. PER. MIN. SAVES HALT THE POWER REQURED FOR FAN.

 CARPENTERS A specimen copy of the AMERICAN BUTLDER mailed to
you re by sending address to CHARLES D. LAKEY
 THE WEALD \& DISCO Patent Centrifugal Pumps,

 S SELF OIITRRS,

 Mater Wheel NewBookJustOut-160Pages SENT FREE

JAMES LEFFEL \& CO.,
TRON PLANERS,

 DOUBLE ACTINGWTATER RAM

P. BLAISDELL \& CO., Patent Drill Presses, with Quick Return Motion
In the Market, also other Machinist Tools.

 The Pulsometer or Magic Pump.

KEEP YOUR BOILERS CLEAN.

ANTI LAMINA

prevents and removes scale in Steam Boilers-aoes not
injure the Iron. In use over five years Patented
J. J. ALLEN'S SONS. Philadelphia, Pa,
I. 1. S. Side Sean Pere Co.,

Veneer Cutting Machines FOR SABLE
one rot Par machine, cutting 4 ft. long Ontiditictingmeteritine, cutting 5 ft .6 in .

Ji\$75 to $\$ 250$ per month, everywhere Male to in traduce the GENUNE MPROVED and fe-
MMON SENSE FAMIT SEWING MACHINE. This
Machine will sitchir

HOUSTON'S PATENT
TURBINE WATER WHEEL.

Bogardus' pate vt uyivinsi

A SPECIMEN COPY of the AMERICAN

M17RH2M

[^0]: CHAMPION SPRING MATTRESS-The

 SUPERIOR TO ALL OTHERS,

