

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

JOSEPH GILLOTT.

The early history of the steel pen is curiously obscure. The most diligent search fails to discover the first maker or the earliest date of this implement. There were steel, or rather iron, pens-made, we believe, in Holland-as early as the middle of the seventeenth century. Towards the close of last century, Mr. Harrison, an ingenious Birmingham mechanic, made steel pens for Dr. Priestley. One of them
is nothing more than a tube turned out of a flat strip of is nothing more than a. tube turned out of a flat strip of
metal, with the sides and point filed away into the shape of a pen. The first actual supply of such pens, it is believedthe auvhority for the statement is no more than local tradi-
slow and laborious operations of pen-making; that it would
cut out the blanks, slit them, bend the metal, stamp the cut out the blanks, slit them, bend the metal, stamp the
maker's name, and thus, by mechanical means, render production at once rapid and certain. But the conception of this idea and the means of working it out were different matters. The metal had to be prepared by rolling, pickling, and tempering for the action of the press. Then special dies had to be made for each size of pen, and for each operation of stamping to which the blanks had to be submitted. Press es of improved construct:on-quick, light, easily worked,
this respect, to an equality with " the gray goose quill." It is, however, a curious fact-and one worth noting, if only as evidence of character-that Mr. Gillott himself never used a steel pen; he always wrote with the quill. For some years Mr. Gillott kept his methods of working secret, fashioning his pens with his own hands, assisted by a workwoman whom he afterwards pensioned; and many curious anecdotes of the early days of pen-making have been related by this old lady. She used, for example, to tell with great amuse ment how the first pens were blued in a frying pan over a tion-was made by a Sheffield workman, whose name is forgotten. From time to time, as far back as 1809 , steel pens, hand fashioned, turned and filed, were made as curi and filed, were made as curiosities or luxuries for presents; but it was not until
about 1824 that such instruments were produced in considerable quantities, as regular articles of manufacture. Mr. James Perry was the first manufacturer; but the process was tedious and costly. The metal was steel, rolled gut of wire, and for this Mr. Perry paid as much as seven shillings a pound. To the first person he employed he gave five shillings for making each pen; and even when the trade had become regular he gave for some years as much as thirty-six shillings per gross to his workmen. Now -thanks to machinery and modern improvements-pens, not very good perhaps, but good enough to write with, can be made and sold at a profit for $3 \frac{1}{2}$ cents per gross!
The first great impulse to the steel pen trade was given in 1820, when Joseph Gillott began pen-making; and since then his name has become so closely identified with the trade, and has acquired such a world.wide reputation, that he has come to be regarded as the Pen Maker.

Though so long resident in Birmingham, Mr. Joseph Gillott was not a Birmingham man by birth. He was born in Sheffield, on the 11th of October, 1799, the son of a workman in the cutlery trade. His own youth was occupied in this business, in which he was both industrious and skillful; indeed, according to the account of old workmen, he was a noted hand at the forging and grinding of knife blades. In 1821, when Mr. Gillott was in his twentysecond year, trade in Sheffield fell off; and work being scarce, the young workman resolved to transfer himself to Birmingham, where, owing to the variety of occupations, a
skilled mechanic need never be idle.

His earlier employment in Birmingham was in the light steel toy trade-the technical name for the manufacture of steel buckles, chains, and other works and ornaments of that kind. Some specimens of his workmanship in this trade Mr. Gillott always preserved.
After being for a few years engaged in this trade, Mr. Gillott began the manufacture of steel pens. His faculties of invention and adaptation at once came into play. Such pens as were then made were laboriously cut with shears out of the steel, and were trimmed and fashioned with the file in imitation of the quill. Mr. Gillott adapted the press to the making of pens-the stamping press, then much used in the Birmingham trades, and now familiar to everybody who has ever been in the shop of a metal worker. He saw that the press would enable him to dispense with most of the

JOSEPH GILLOTT, INVENTOR OF THE STEEL-PEN PRESS.
for some timture had been
the price time established lott has been heard to say that on his wedding day he madeseven pounds and four shillings by producing a gross of pens, which he sold at a shilling each.
In $1872, \mathrm{Mr}$. Gillott em ployed about 450 persons the manufacture of pens reached more than five tuns per week, and the prices were reduced from one shil ling each to a few penc:s per gross-all the work of the active brain and skillful hand of one industrious and able man.
Every visitor to Birming ham very properly holds that a visit to these works is both a duty and a pleasure The courtesy of the attend ants, the interest of the processes, the cleanly, orderly industry of the various rooms, the wonderful and delicate skill of the ale fingers, and the ready hands, the millions of the little peaceful weapons fashioned for all parts of the globe, are a marvelous tribute to the genius, perseverance and liberality of one of the most famous heroes of the arts of peace. All readers will be glad to know that Mr. Gillott's eldest son in herits his father's mechani cal genius and generous spi rit, and that the world•fa mous works are not likely to be closed to the public eyes.
It is not only, however, as a pen maker that Mr. Gil lott deserves to be remem bered. This record would be incomplete without mention of his great collection of pictures. The taste for art was developed early in life. So soon as he had money to spare, Mr. Gillott began to buy pictures. Apart from business, this was the work of his life; the collec tion constantly grew, both in quality and extent, until at last his house in the Westbourne Road, Edgbaston, and his residence at
remained others not less formidable, such as tempering the metal after it had left the press, rendering the newly made pens flexible so as to write easily, cleaning and polishing them without injuring their fineness, and coating them with some kind of varnish, so as to render them attractive to the eye. This was the work which Mr. Gillott had to do; ${ }^{\text {n }}$ nd with much ingenuity and unflagging perseverance he accom rlished it.
One of the chief troubles was the extreme hardness of steel pens: when much used, they became pins rather than pens. After many trials Mr. Gillott effected a great and permanent improvement by cutting the side slits in addition to the center slit, which had been solely in use up to that period. To this was afterwards added the cross grinding of the points; and these two processes perfectly succeeded in imparting elasticity to the steel pen, and bringing it up, in

Stanmore, near London, were crowded with works of Tur ner, Stanfield, John Linnell, Collins, Muller, Maclise, Leslie, Mulready, Cox, Eastlake, Callcott, Webster, Wilkie, David Roberts, Frith, Hook, Poole, William Hunt, Faed, Nicol, Copley Fielding, Prout, and almost every English artist of note.
The sale of his collection-a lamentable dispersion of art reasures-is too recent to be forgotten by our readers. The enormous produce of the sale, $\$ 850,000$, affords proof that art not only yields the highest pleasures, but pays in a commercial sense, for Mr. Gillott's pictures brought, in all cases, large profit upon their purchased price.
Mr. Gillott's figure was short, sturdy, square; his hair and beard (for many years before his death) silvery and venrable; his forehead broad, well rounded, high; his eyes clear, humorous, and bright ; his expression pleasant and as
suring; his walk light, active, and firm. His chief characteristics were remarkable quickness and accuracy of observation, wonderful shrewdness, common sense, and frankness; boldness, decision, and enterprise; rare mechanical skill and constructive powers; special talent for arrange ment and organization, and rapid and sound judgment on all matters that came before him.
We are indeb ted to the Practical Magazine for the admi rable portrait of this remarkable man.

Sxientifia Amoricam.

MTUNN \& CO., Editors and Proprietors. PUBLISHED WEEKLY AT
NO, 37 PARK ROW, NEW YORK.

> | O. D. MUNN. | A. E. BEACH. |
| :--- | :--- |

M正 IR IMS.

VOL. XXIX., No. 18. [New Series.] Twenty-eighth Year.
NEW YORK, SATURDAY, NOVEMBER $1,1873$.

SECRET SOCIETIES AMONG COLLEGE STUDENTS. Mortimer M. Leggett, the youngest son of the Commissioner of Patents and a student at Cornell University, was recently accidentally killed during the progress of his socalled initiation into the "mysteries" of a college secret
society known as the Kappa-Alphas. The circumstances society known as the Kappa-Alphas. The circumstances
were that the deceased went with a party of members of the above fraternity to a creek just outside the town of Ithaca; and there, blindfolded, he was left, with two companions, standing on the brink of a gorge through which the stream runs. Sho stly after, a crashing of bushes, followed by groans, was heard, when the remainder of the party, hastening to the spot, found that the three boys had fallen over a precipice some fifty feet in hight. Young Leggett, it seems struck on his head, sustaining such severe injuries that death ensued in half an hour, while the others were both seriously hürt.
As one of these college fraternities has thus been the indirect means of causing this terrible calamity, we desire just here to express our opinion on the system of secret societies as generally practiced in our institutions of learning. These associations are bodies of students, organized in principle something after the orders of free-masonry or odd fellowship. In many, the members are numbered by hundreds, and chapters of a single society often exist in a score of col leges at once. The records are handed down from class to class; and out of each set of freshmen, a few individuals are selected for the privilege of membership. When the plan was started (during, we believe, the year 1827) the idea was simply to form clubs of young men, for mutual improvement in debate and such kindred studies as are better pursued by uumbers tian by single persons, and to keep alive, among alumni, pleasant associations of college life. In course of time, the former innocent and laudable object has been lost sight of, or rather relegated to other associations, now existing in many colleges and not incluled in the list of secret societies; while the cardinal principle of the younger chapters of the latter organizations seems to be nothing more nor less than simple mischief, rendered attractive by a little mystery and concealed under the cloak of such cognomens (sy mbolized by Greek letters) as "union of souls," "circle of stars," "lovers of wisdom," etc. If the boyish nonsense resulted in the usual students' pranks. it might be passed over with a smile; but such is not the case. The influence exerted, upon boys fresh from school and for the first time free from direct home influence, we believe (from repeated instances within our personal knowledge, and in connection with one of the oldest colleges in this country) to be in a high degree baneful and demoralizing. Unless a youth has well filled p.ckets, (in which case rival societies vie with each other to see who shall secure him, or rather his money) he is not, invited to membership at all. Once joined, however, and held by working upon his fears through the blasphem ous oaths of secresy that he is forced to take, he is inducted, by sheer force of example, through a routine of profanity, intemperance and gambling; while in many cases, if young and innocent, his course leads to graver faults, committed more through a sense of shame and false pride than depravity, and due to the tacit if not open instigation of his unscrupulous elders,

The sad and untimely fate of Mr. Leggett, just at the outset of doubtless a brill iant and honorable career in the calling which his father has so ably adorned, will, from the circumstances under which it occurred, excite a lively and widespread sympathy. It is the first death, which, to our knowledge, has been owing, though indirectly, to the proceedings of these student organizations : though we have heard of numerous cases of maiming and injury thus caused, and of idiocy and cerebral disease due to the effect of hideous and idiocy and cerebral disease due to the effect of hideous and
ghastly paraphernalia upon the imagination of weak minded boys.

There is a notion, which is becoming entirely too prevalent, that colleges are merely convenient places for sending young men to while they are passing through that uncertain and
troublesome age, leading to manhood, during which they troublesome age, leading to manhood, during which they
are expected to sow their traditional wild oats. To this idea, we believe, may be mainly ascribed the barbarities of "hazing," and the no less reprehensible practices of secret societies; while to it also may be traced many of the complaints that our seminaries are inferior in an educational point of view to those of foreign countries. Hazing, already crushed out in the government naval and military schools, is exciting so large a share of public condemnation that there is a fair prospect of its stern repression in colleges generally. The secret societies, we trust, may meet hereafter with similar treatment, at least through the influence of parents if
not at the hands of faculties. Harvard forbids their existence among her students, and Cornell at this time would do well to follow her example.

PROGRESS OF PATENTS.

The following were the number of applications for patents made to the principal governments of the world in the year 1872, as given in the published statistics of the British Patent Office:

The aggregate number of patents apphed for in all of the countries a bove named, in 1872, except the United States, was 14,072 , thus showing that in this country the number of patents annually applied for exceeds, by 4,171 , the cornbined number applied for in all other countries above named. The reason for the surprising difference in favor of this country, in the inventive productions of the world, we believe to be due to the superior theory which prevails here concerning the object and uses of patents. We grant patents for the purpose of encouraging the useful arts. We regard the inventor as a benefactor, and place him under no restrictions in the sale or working of his improvemert. We grant patents at so low a price that the masses, the poorer classes among whom the best inventors are found, may readily obtain and hold them.

WOOD AND STRAW PAPER MAKING IN FRANCE.

The improved processes of making paper from wood, straw, and various grasses, as practiced in France now enable the manufacturers to recover 85 per cent of the caustic al kali, used in the redu tion of the raw material into pulp This is a very important economy.
In order to convert wood into pulp, a strong solution of the alkali is necessary. One pound of carbonate of soda is required to produce four pounds of pulp.
By steeping the wood or straw in the alkali solution, the resinous and other gummy matters are separated from the fibers of the material, and become mixed with the solution. To regain the soda for re-use is now the object of the manu facturer. This is done by evaporating the water by heat, then charring the resulting mass, which yields carbon ate of soda, then converting the latter into caustic soda.
The evaporation is effected by passing the products of combustion from the fire which heats the alkaline solution through the liquid which is to be evaporated. For this purpose the liquid is thrown up in the form of a thin spray, by paddle wheels. $12 \frac{1}{2}$ pounds of the solution, it is stated, are eva porated for each pound of coal consumed. The car in a peculiar apparatus until it is fit for burning, and in a peculiar apparatus until it is fit for burning, and at
last 85 per cent of the original quantity of the alkali is last 85 per cent of the original quantity of the alkali is
recovered. The former methods only permitted the recovery of from 50 to 60 per cent of the alkali.

TWO INTERESTING DISCOVERIES.

The America, a daily journal of Bogota, in a recent issue publishes a letter of Don Joaquin Alvez da Costa, in which he states that his slaves, while working upon the plantation of Porto Alto, Parahyba district, Peru, have discovered a who mental stone, erected by a small colony of ninth or tenth year in the reign of Hiram, a monarch con-
temporary with Solomon and who flourished about ten centuries before the Christian era. The monolith bears an inscription of eight lines, written in clear Phœnician characters, without punctuation marks or any visible separation of the words. This has been imperfectly deciphered, but enough has been made out to learn that a party of Canaanites left the port of Ariongaher (Boy-Akaba) and navigated about the coas \ddagger of Egypt for twelve moons (one year), but were drawn by currents off their course and eventually carried to the present site of Guayaquil,Peru. The stone gives the names of these unfortunate travellers, both male and female, and probably further investigations will shed more light on the records they have left.
Another and more astonishing discovery, we find announced in Les Mondes. It appears that some Russian colonists, having penetrated into hitherto unexplored parts of Siberia, have found three living mastodons, identical with those heretofore dug up in that country from frozen sand. No particulars are given as to this, we fear, somewhat questionable find. From the statments of M. Dupont, of the Brussels Royal Academy, it would seem that, like the reindeer, the mastodon should not now be extinct, and that the animal is naturally the contemporary of the horse, sheep and pig. Hence the announcement is not without some shadow of probability.

NEW ORDER BY THE COMMISSIONER OF PATENTS.

The subjoined order, recently issued by the Commissioner of Patents, will be fully appreciated by inventors and their representatives, exhibiting, as it does, a determination at headquarters that the chronic indolence heretofore prevailing among certain examiners, shall no longer be to lerated
U. S. Patent Office,

Washington, D. C., October 3, 1873
I have noticed, for more than two years past, that a few of the Examiners are generally from one to two months behind with the work in their rooms. The fact that they so uniformly have about the same number of cases on hand is evidence to me that, with proper effort, they might keep their
work closely up to date. The answering of letters and the work close ly up to date. The answering of letters aind are
making of excuses, in consequence of belng so far behind causes of great loss of time. I shall expect the work of the Office to be promptly up to date by the tenth day of November. If, to do this, it becomes necessary for Examiners to demand of their subordinates more than six hours labor per day they will do so ; but the work must be brought up to that date, and thereafter kept up.
(Signed) M. D. Leggett,
Commissioner of P atents
The tedious delays in the matter of official decisions. often deter inventors from applying for patents, and are equally discouraging to those having cases pending in the Patent Office. With this rule inflexibly observed, early examinatiqn and quick disposal of cases will be insured, the reby largely increasing the business of the Office.

PETROLEUM AND PINE TAR GASES.

Some time ago, it may be remembered, we called attention to the interesting and novel experiments, made by Professor Benevides of Lisbon, Portugal, upon the flame of compressed carbonized gas burning in free air. Ordinary illuminating gas and marsh gas (light carburetted hydrogen) were the subjects of the investigation. Recently the same author has conducted similar inquiries, in reference to gas extracted from the residues of petroleum and of the pine and fir tree, with even more remarkable results.
The gas derived from vegetable sources, used in the experiments, was obtained by the distillation of the residue left after the distillation of the roots, by employing a jet of steam at high tension, which was injected into the distilling cylinders. A liquid was produced from which turpentine was extracted, when there remained a black and thick fluid as residue. The latter, submitted to distillation, disengaged a combustible gas which for some time past has been employed for illuminating several lighthouses on the coast of Portugal. The petroleum gas was obtained by the distillation of the residuum of petroleum by the Hirzel system. The gases,thus arising, as well as those derived from the pine, are mixtures rich in hydrocarburets, phenomenon analogous to that observed with ordinary lluminating gas obtained by the distillation of coal, and con tain, in variable proportions, protocarburet of hydrogen, bicarburet of hydrogen, carbonic oxide, carbonic and sulphydric acids, etc.
Coal gas possesses in general much of the protocarburet and little of the bicarburet. As the proportions of these gases are variable, the density and illuminating power of the mixture likewise vary considerably. The coal gas, as employed in the city of Lisbon and used in the course of employed in the city of Lisbon and used in the course of power, as indicated by the Erdmann apparatus, is 29 .
Pine gas has a very pronounced odor resembling that of burned turpentine : its density is $0 \cdot 8$, nearly double that of coal gas. It is a mixture very rich in carbon and requires burners of special construction with very small orifices, in order to avoid the production of smoke andbad odor,as happens when consuming the gas in the ordinary illuminating gas burner.
The air which combines with the flame in the latter case is insufficient to ensure the combustion of the enormous quantity of carbon contained. The illuminating power of this pure gas is much superior to that of coal gas. In experiments with the apparatus above named, while the latter gas gave 29, the former produced an indication as more than 50. The graduation of the instr ument sto pping at this point (the maximum width of the slit),it was found impossible to cause he brightness of the pure gas flame to disappear entirely, so that the full intensity of its illuminating power could not be
accurately ascertained by this means. With the Bunsen solid portion, and by complete evaporation gave a non solidphotometer, experiments gave 5 to 1 as the ratio of the respective luminous intznsities of pine and coal gas.
Petroleum gas possesses properties analogous to those of pure gas, but has however a different and very strong odor similar to that of phosphuret of hydrogen. Its illuminating power is even stronger than that obtained from gas derived from coal. On burning petroleum gas in a Bunsen burner of ordinary dimensions, the brilliancy of the flame does not entirely depart, as the quantity of air drawn in is not suff. cient to cause the consumption of all the contained carbon. When the cock of the rubber sack containing the petroleum or pine gas, under examination in the Bunsen lamp, is very slightly opened, the tame disappears from the upper portion of the burner and leaps to the inferior orifice of the tube. If, however, the said bag be pressed by the hands, the flame returns to the upper part of the burner. Although this experiment may $b \otimes$ repeated as often as desired with the gases above named, it cannot be accomplished with coal gas, of which the flame, once produced at the inferior orifice, is not displaced,even if the same pressur) be exerted upon the bag as before, thus indicating the greater mechanical energy of the former gases.
Combustion not being complete in Bunsen lamps of ordinary dimensions, the characteristic bands are not clearly defined in the spectra of pine and petroleum gases. The upper part of the flame gives a continuous spectrum, while that of the lower portion is channeled: the lines have the colors of the bands, while red appears at the extremity of the spectrum. On lighting a jet of compressed pine or petroleum gas, escaping from a tube, similar phenomena to those caused with coal gas are observed. With the former gases, however, the effects are amplified by the greater density and larger quantity of carbon contained. The velocity and the escape being great, the flame never commences at the orifice, but an intervening obscure space is produced. If a tube be employed having an exterior opening 1 millimeter in diameter, the flame of compressed cual gas presents no obscure point near the pipe; for if the cock be opened too wide, total extinction of the flame follows. With petroleum or pine gas, the contrary is the case: a quite large non-illuminated space appears near the escape orifice, and at the same time an oscillation of the luminous jet in the direction of its axis is perceptible. If the flame be observed from the side of the tube, a hollow central space, from which combustion is absent, can be perfectly discerned. This, the author considers, confirms his explanation to the effect that the velocity of a gaseous current is greater at the center than at the surface of the jet, for the friction diminishes the velocity of the molecules of the exterior. The mechanical action of the current is also greater at the center; the flame is projected to a greater distance, and there is a stronger displacement of the air in the region near the axis of the jet than at the periphery.
Another experiment gives additional support to this theory
f through a bent tube a current of air be directed upon the If through a bent tube a current of air be directed upon the flame of compressed pine or petroleum gas, in the direction and path of the gaseous current, the obscure space augments and the flame, drawing away from the orifice of the burner, this case the air, it is believed, augments the mechanica? action of the gas, in throwing the flame to a greater distance. If, on the contrary, a draft be applied to the jet in the direc tion of its axis but in a path opposite to that of the current, the flame approaches the orifice, diminishing the obscure space until the same disappears and the flame begins directly at the escape opening. By this means the gaseous mass is impressed with a movement contrary to that which it possessed on leaving the compressing apparatus, which di minishes the velocity of escape of the current and conse-
quently its mechanical action on the incandescent portion. quently its mechanical action on the incandescent portion. Again, if the air be injected trarsversely to the flame, the latter will deviate to the opposite side, through the compo sition of the motion which the jet had at the point of escape with that impressed by the draft; and at the same time the with that impressed by the draft; and at the same time the
dimensions and form, both of obscure space and luminous dimensions and
jet, will vary.
Petroleum and pine gases having more carbon than coal gas, in order completely to ensure their consumption more air is required than is necessary for the combustion of ordinary illuminating gas: and thus for compressed gases it is necessary that the velocity of escape be greater for those derived from petroleum and from pine than from coal, in order to have the highest temperature and to cause the complete disappearance of the brilliancy of the flame. It is also for the same reason that the velocity of escape of the former gases should be greater than that of others less rich in carbon, to enable the spectroscope to exhibit with clearn
the spectra characteristic of the flame of compressed gas.

scientific and practical information.

a new series of aromatic hydrocarbons.
In the reaction of zinc powder on a mixture of benzine and chloride of benzyl, there are produced, besides diphenylmethane (benzyl-benzine) some other hydrocarbons, which M, Zincke has recently succeeded in isolating.
After the distillation of diphenyl-methane, the temperature rises rapidly up to the limit of the indications of the mercurial thermometer, and a liquid is distilled which coagulates on cooling into a clotted and crystalline pasty mass. At the end of the distillation, a solid yellow body is passed and the residue cokes. The crystalline mass was treated with a little ether and pressed between sheets of paper to carry away the liquid portion. The etherized solution slow-

fiable oil.

In boiling alcohol the solid portion is deposited in acicular rystals: the mother waters retain a liquid product and another hydrocarbon. The acicular crystals are a mixture of two hydrocarbons; one, which appears to dominate, crystal izes in boiling alcohol in fine and very brilliant layers, or, if the solutions are extended, in rhomboidal transparent tables. This substance is slightly soluble in alcohol, quite so in benzine, chloroform, and sulphide of carbon, though somewhat less in ether. It melts at about 187° Fah. and coágulates at 172.4° into a transparent mass which becomes crystallizable by heat or friction. It does not combine with picric acid.

The second hydrocarbon is much less soluble than the first, crystallizes in fine needles, melts at $172.3^{\circ} \mathrm{Fah}$., and coagulates at 1544°. The separation of these hydrocarbons is very difficult, and ether is the best agent to employ. Their composition is sensibly the same, and the author regards them as to isomeric di-benzyl-benzine, $\mathrm{C}_{20} \mathrm{H}_{13}$; one of them may, however, be tri-benzyl-benzine, $\mathrm{C}_{26} \mathrm{H}_{24}$. Their oxidation may give some indications on their molecular weights.

TO DESTROY FIELD MICE.

Smoke, it is well known, will soon destroy these little pests, but how to introduce it into their holes in an easy way may interest some of our readers. Professor Nessler, of Carlsruhe, has devised a soit of pellet which gives off great quantities of smoke when burning, so that it is only necessary to put some of these into the holes and ignite them in order to suffocate the mice. Their preparation is nearly as follows: Some fiberous substance, such as jute, is soaked in a concentrated solution of saltpeter, dried, then dipped in tar, and, when half dry, flowers of sulphur are sprinkled over it. When fully dry the jute fibers are cut into little pieces like pills and are ready for use. As soon as they are ignited they are stuffed into the hole, which is then stopped up with earth.

FLUORENE.

M. Berthelot announces, under the name of fluorene, a new and very fluorescent carburet contained in the portions of the tar of volatile oils between 300° and $340^{\circ} \mathrm{C}$.
In order to extract the substance, instead of causing the portions of solid carburet which have passed the distillation between 300° and $305^{\circ} \mathrm{C}$. to bs crystalized in alcohol simply, a mixture of alcohol and benzine is used. By this means may be separated a small quantity of acenaphtene which remains in the mother liquor. The point of fusion of the mass, which is ordinarily $105^{\circ} \mathrm{C}$. after the first distilation and crystalization in pure alcohol, increases to 112° after
crystalization in alcohol mixed with benzine. The remaincrystalization in alcohol mixed with benzine. The remainder of the purification consists in redistilation and crystallization in pure alcohol. The carburet possesses a quite pronounced violet fluorescence which, however, disappears promptly on its being exposed
symbol is stated to be $\mathrm{C}^{26} \mathrm{H}^{10}$

THE BRITISH ASSOCIATION.

We continue, from our last, abstracts from papers read at the late meeting at Bradford:

on peat. - by mr. f. hatn danchell.

The prime fact in relation to peat is that, in its raw condition, the combustible parts are combined with from 80 to 90 per cent of water, which, for the most part, must be removed before it can constitute fuel. The peat problem may therefore be defined as the economical separation of the two elements-the retention of the solid and the discharge of the fluid. The simplest mode of effecting this is by cutting the peat as sods or bricks, and leaving them to dry in the air and sunshine. To diminish labor, it is frequently sug. gested, why not dry peat by pressure? If peat were altogether composed of fibers, the water might certainly be squeezed out, as from cotton, or wool, or hair ; but a large portion of peat is semi-gelatinous, which, when dry, serves to cement the whole together, and which, moreover, is good for combustion. When peat is compressed, this glutinous constituent escapes with the water, indeed as easily as the water, involving a serious loss. Drying by artificial heat is also frequently proposed; but when it is considered that to obtain 100 tuns of dry peat it is necessary to find space for 500 or 600 tuns of wet peat, which space must be so heated as to permit the evaporation of 500 tuns of water, the econ omy of the proposition is seen to be highly questionable. But, setting economy aside, it is to be observed that peat cannot be artificially dried without deterioration in quality. The practice of maceration is so old that Pliny refers to it in
his description of the inhabitants of North Germany; and his description of the inhabitants of North Germany; and yet ever and anon it is advanced as a novelty, and made the subject of patents. The reduction of peat to pulp is one of the easiest of operations. It may be done with the feet, or with any kneading or mincing machine. The most efficient mode of drying is by slow evaporation under roof. Drying goes on more rapidly in the open air if the weather be favorable; but in this country the sky cannot be reckoned upon, and with alternate exposure to wind, rain, and sunshine the quality of peat is much deteriorated. The difference in favor of peat dried under a shed is most marked, and, though the cost of production is greater, the quality affords ample compensation. How much drainage affected the cost of production may be seen from comparing the results from a
drained and undrained bog. An undrained bog drained and undrained bog. An undrained bog contains about 90 per cent of water, while a drained one contains 80 perfectly dry peat, case, therefore, we have 10 per cent or

The output will, therefore, be half the quantity from an un drained bog as from a drained one, while the labor is the
samed In Holland Westphalia, Hanover, Holstein and same. In Holland, Westphalia, Hanover, Holstein and Schleswig, Denmark, Pomerania, and the whole northern part of Germany, Russia, and many parts of Austra, Bava ria, the North of Italy, Switzerland, and extensive district in both the North and South of France, peat is a general article of consumption, and the inhabitants would, no doubt hear with some amazement that what is matter of course with them is matter of inquiry with us, and that we want to know whether peat is applicable to iron smelting and other industrial purposes, when they from time immemorial have used litctle else.
on the effect which the depth of immersion has on THE RESISTANCE OF A SCREW.-BY PROFESSOR OSBORNE Eynolds, M. A.
It has been stated by several writers on the screw propel ler, and is, I think, generally supposed, that the resistance of the water to a screw increases with the depth of immer sion below the surface. Improvements have been nade by Mr. Rennie and Mr. Maudslay which appear to prove this, but I do not think that any theoretical reason has ever been given. Now this idea is so contrary to our fundamental notions of hydraulics that I thought it would be worth while to make experiments. These experiments show us that here is not any increase beyond a certain point, and that his point is that at which the screw ceases to break the sur face and get air. In a paper read before the Institution of Naval Architects, I explained how the air getting down to the screw is the cause of racing. In the same way it may be shown thatit was the air that was the cause of the diminished resistance near the surface, found by Mr. Rennie and Mr. Maudslay.
The conclusion is that, when a screw is once fairly down elow the surface, depth of immersion is of no advantage Experiments on the effect of immersion on the resistance of screw propeller were made June 8, 1873 . The screw was 2 inches in diameter, driven by a spring, which, when wound up, caused it to make 240 revolutions. The resistance at the different depths was measured by the time taken for the spring to run down.

OF LEEDS.

Enough has been said respecting compressed air as a moor to justify the expectation that it is the key to vast an. 1 mportantimprovements upon the presentsystem of working coal; and bearing in mind that the wea th, the power, and the greatness of this nation depend primarily upon an abundant supply of coal, it is hardly possible to over rate the importance or over value the advantage which this powe places at our disposal. I now turn to the consideration of the machine for cutting the coal, which has for several years been employed at West Ardsley without any inter uption. The weight is about 15 hundred weight for an crdinary sized machine; its length, 4 feet; its hight, 2 feet 2 inches; and the gage, 1 foot 6 inches to 2 feet; it is very portable, and easily transferred from one bank to another. The front and hind wheels of the machineare coupled together in a similar manner to the coupled locomotive engines. The "pick" or cutter is double headed, whereby the penetrating fower is considerably increased. The groove is now cut to a depth of
3 feet to 3 feet 6 inches at one course, whereas, by the old 3 feet to 3 feet 6 inches at one course, whereas, by the old
form of a single blade, we had to pass the machine twice orer form of a single blade, we had to pass the machine twice of the coal to accomplish the same depth. The points are loose and cottered into the boss, so that, when one is blunted or broken, it can be replaced in a few moments. It dispenses with the necessity of sending the heavy tools out of the pit to be sharpened, and is an immense improvemen upon the old pick.
When all is in readiness for work, the air is admitted and the reciprocating action commences. It works at a speed of sixty to ninety strokes per minute, varying according to the density of the compressed air, the hardness of the strata to be cut, or the expertness of the attendant. As to the quantity of work in "longwall," a machine can, under favorable circumstances, cut 20 yards in an hour, to a depth of 3 feet, but we consider 10 yards per hour very good work, or say 60 yards in a shift. This is about equal to a day's work of twelve average men, and the persons employed to work the machine are o.e man, one youth, and one boy, who remove and lay down the road and clear away the débris. The machines are built so strong that they rarely get out of working condition. Some of those now working at West Ardsley, and other places, have been in constant use for three or four years. At that colliery there are about eight machines in use. One of the seams is so hard and difficult to manage that it could not be done by hand, and the proprietors had to abandon and did abandon it; but now, by the emplayment of the machines, it is worked with perfect ease. It is a thin cannel seam with layers of ironstone, and the machines now "hole" for about 1,200 tuns per week. The groove made by the machine is only 2 to 3 inches wide at the face, and $1 \frac{1}{2}$ inch at the back; whereas by hand, it is 12 to 18 inches on the face, and 2 to 3 inches at the back. In thick seams worked by hand the holing is often done to a depth of 4 feet 6 inches to 5 feet, and the getter is quite within the hole that he has made; and where the coal does not stick well up to the roof, or where there is a natural parting, there is great difficulty and danger from " falls of coal."

The consumption of coal for the purpose of gas illumination in Great Britain is estimated at fourteen millions of tuns per annum, valued at sixty millions of dollars. The total annual prons.
of tuns.

FEEDING AND WATERING CATTLE IN RAIL ROAD CARS. |the way of killing down these tigers. First, the superstition A London butcher has lately taken out a patent for a convenient device for feeding and watering cattle as they stand in the railway cars. The hay rack, b, and the water trough, in the ralwa at the end a lever, c (seen in a, are suspended at the end of a balanced lever, c (seen in both our illustrations, which we repri Magazine). Water is turned on at g,
till the weight of the trough overbatill the weight of the trough overba-
lances the counterpoise, e, and delances the counterpoise, e, and de-
scends to the required level. When the animals are well refreshed, th cock, h, is opened, the remainder of the water flows away, and the trough rise out of the way. Our engraving show the complete apparatus in us show the complete apparatus in us with (Fig. 2).
car (Fig. 2)
The inventor, Mr. W. J. Bonser states that such apparatus need be put up only once in every two hundred miles of continuous railway
In addition to the misery caused by the transit, as at present conducted, it is testified by experts that every bullock, from the moment it leave the grazier's yard, will lose eight pounds a day in weight, besides loose fat. ProfessorSimmonds says: " There cannot be a doubt that the feeding and watering of animals on their journey to a fat cattle market would prevent to a great extent, that waste of tissue which invariably takes place in the traveling of cattle, and would also tend to maintain that juicy and well known superior quality of the mea which is met with in animals killed at home From a humane point at ho a. it is a hane point of view, also, it exceld desirab that animals should hav and water on long journeys, the latter
being especially required during the heat of summer."
The cost for apparatus to feed 30 car of cattle at once is estimated, by a firm of engineers, to be $\$ 4,260$, a moder ate outlay, considering the permanen value of the appliances, and the greatly improved condition of the stock Such improred cont cilly valuable in this coun, whe cially valuable in this country, wher journeys of a thousand miles are eve
ry day matters, and where cattle suf ry day matters, and where cattle suf-
fer and lose in value proportionally to the territory over which they tra vel.

Wild Beasts and Snakes in India

We havepreviously alluded to the remarkable stories which come to us from abroad of the destruction of human life in India by savage beasts and poisonous serpents. We could hardly credit the reports as true till we read, in the last number of Land and Water, the following, taken from of ficial reports:

The number of human beings annually destroyed by wild beasts is one of the most extraordinary features of Indian life. In the frecently issued official statement as to the condition of our Eastern Empire, we find the subject again discussed; and it is there remarked that, though rewards are offered by the Government for the killing of these animals, yet in some districts the loss of life is very great; and in others, where it is less excessive, the reason given is that goats are very abundant, and that wolves prefer kids when they can get them. Deaths by snake bites are also very frequent, no fewer than 14,529 persons having perished in that way during the year 1869; while in 1861, the total deaths caused by dangerous animals of all classes amount to 18,078 . Dr. Fayrer is of opinion that, if systematic returns were kept, the annual number of deaths from snake bites (exclusive of all doubtful cases) would be found to exceed 20,000 . The inhabitants of the border lands between jungle and cultivation are killed and eaten by tigers in such numbers as to require the immediate and serious attention of Government both in India and in England. The following are a few out of many instances: "A single tigress caused the destruction of thirteen villages, and 256 square miles of country were thrown out of cultivation." "Wild beasts frequently obstruct Government survey parties. In 1869, one tigress killed 127 people and stopped a public road for many weeks." "In January, 1868, a panther broke into the town of Chicola, and attacked, without the slightest provocation, the owner of a field; four person were dangerously wounded, and one died." "Maneating tigers are causing great loss of life along the whole range of the Nallai-Mallai Forest. There are five of them o a said to have destroyed 100 people," "Writing from Nuyclunka in 1869, a gentleman says one tigress in 1867-8-9 killed respectively, 27,34 , and 47 ; total, 108 people. This tigress killed a father, mother, and three children, and the week before she was shot she killed seven people." "In Lower Bengal alone, in the period of six years, were killed by wild beasts 13,401. In South Canara, in July, 1867, forty human beings were killed by wild beasts." The Chief Commissioner of the Central Provinces in his reports shows the following returns of human beings killed by tigers: In 1866 and 1867, 372 ; in 1867.68, 289; in 1868.69, 285; total for three years, 946 . It appears that there are difficulties in
of the natives, who regard 'the man-eating tiger" as a kind of incarnate and spiteful divinity whom it is dangerous o offend. Secondly, the failure of Government rewards irdly, the desire of a few in India actually to preserv tigers as game to be shot with the rifle, as a matter of sport

Fig. 1.

Fig. 2

DEVICE FOR FEEDING AND WATERING CATTLE.
a proper hight in the two trees, and inserts in these op hese cones is fixed, and the ang as removable.
In the annexed sketch of this arrangement, taken from $E n$ gineering, these cones are marked $b b$. The wood blank to be turned is then prepared with the hatchet, so as to be fixed between the centers, and is fit ted at one end with a ssmall cylindri cal part, a, to take up the rope for giving a rotary movement to the piece of work.
The rope is then taken two or three times round the small cylindrical part, a, and is attached to the top of the young maple, as shown in the sketch. The lower end of the rope is fastened to a piece of wood, c, which, at its other end, is attached to one of the roots of the trees, and thus serves as oots of the the the footboard. After this the man fasens a crossbar, $a^{\text {, }}$ to the trees, and begins to turn with his chisel what ever he wants to produce.

Statistics of Paper Manufacture.

 From the time when paper made from cotton was first brought to Europe from the deserts of Central Asia, its manufacture has increased steadily and has entirely supplanted the papyrus of the ancients. Paper is now manufactured from the most varied materials, such as wool, cotton, flax, hemp, jute, agave, straw, potato, mulberry, esparto, and rice fibers; and a recent Austrian investigator, Dr. Albinus Rudel, calculates the yearly production in all civilized parts of the world as amounting to $1,800,000,000$ pounds. This quantity is manufactured in 3,960 factories, which employ 90,000 male and 180,000 which employ 90,000 male and 180,000female hands, besides 100,000 workmen occupied in collecting and as sorting rags. The factories, when in full working order, represent a money value of not less than $\$ 280,000,000$ gold, and the value of the annua paper production is estimated $\$ 195,000,000$ gold. The production of the United States, with a population of $39,000,000$, 000 pounds, but their consumption exceeds this quantity by $3,000,000$ pounds, which are supplied by impor tation. Every American uses annually Mr. Frank Buckland suggests an organized destruction of 101 pounds paper, while Mexico, with Central America, the tiger cubs in the breeding season, and the attraction of consumes only 2 pounds, and British America $5 \frac{1}{2}$ pounds fully grown tigers to traps, pitfalls, and other devices, by means of a drug of valerian, of which tigers, which are only gigantic cats, are exceedingly fond.

An Ancient Lathe.

At the Vienna Exposition we find turned objects of wood, such as wooden glasses, bottles, basins, etc., manufactured by the Huculen, the remnants of an old Asiatic nation which had settled at the time of the general migration of nations in the remotest part of Galicia, in the dense forests of the Carpathians. These people manufacture the articles named above, and the instrument they are using for turning them

is worth noticing, seeing that it has been employed unal. tered since times immemorial. If a Hucule wants to manufacture a turned basin, bottle, etc., he arms himself with a chisel, a hatchet, and a rope, and enters the dense forest which surrounds all human habitations in his part of the country. After having cut the tree out of which he wants to manufacture the desired articles, he looks around for two trees of about one foot or two feet diameter, and sufficiently close together for his purpose. But it is an essential point in selecting these trees that a young maple or beech should also grow near at hand. Having found this necessary combination for the work to be done, the Hucule makes two holes
consumes only 2 pounds, and British America $5 \frac{1}{2}$ pounds pounds per head in Great Britain 8 in Germany 71 in France, $3 \frac{1}{2}$ in Austria and in Italy, $1 \frac{1}{2}$ in Spain, and in Russia but 1 pound. But these figures by no means justify us in drawing any rigid conclusions as to the literary occupations or mental acquirements of the respective countries though they give us a general idea thereof. It must be re membered that one third of all this immense quantity of pa per consists of paper hangings, pasteboards, shavings, and wrapping sheets, one half of all the production is printing paper, and the remaining sixth is writing paper. The con sumption in civilized countries averages per head 5 pounds paper, 5 newspaper copies, and 10 letters; fifty years ago, $2 \frac{1}{2}$ pounds of paper were supposed to be the average. In round numbers, Dr. Rudel distributes the annual paper "crop" into the following departments: Government offices, $200,000,000$ pounds; schools, $180,000,000$ pounds; commerce, $240,000,000$ pounds; industrial manufactures $180,000,000$ pounds; private correspondence, $100,000,000$ pounds; printing, $900,000,000$ pounds ; total, $1,800,000,000$ A people consuming comparatively large quantities of pa per will certainly occupy a high place in the scale of indus trial and mental development, its use being co-extensive with commerce, manufactures, schools, and the printing press.

A Virginia city (Nevada) man is said to have invented an ingenious plan of keeping his house clear of insurance agents and similar nuisances. On each side of the path leading to his door, he has fixed several sections of water pipe filled with small holes, and on the approach of a suspicious character a tap is turned, and instantly numerou jets of water enfilade the path in all directions, and effectu ally keep the invader at a safe distance.
AT various points on the river Thames, between Woolwich and Erith, there are visible at low water the remains of submerged forest, over which the river now flows. This fact has led geologists to conclude that the present outle of the Thames to the North Sea is of quite recent origin.
A. Vogel hạs found nearly all specimens of fresh milk either neutral or slightly acid. In only two specimens, out of thirty, the alkaline action appears to have been due to races of free ammonia. He ascribes the acid reaction of fresh milk to the presence of free carbonic acid, since litmus tincture colored red by fresh milk regains its blue color on shaking or boiling. No mention is made of the conditions of food, etc., to which the cows were subject.

circular ships.

The idea of circular vessels is not absolutely new. Probably the earliest practical suggestion was that of Mr. T. R. Timby, of Worcester, Mass., who, in 1843, filed in a working model of a revolving ship, together with specifications, in the Patent Office at Washington. His plan embraced circular ships and revolving ironclad forts and turrets, which have since come into use.
Admiral Popoff, of the Russian navy, has also adopted the idea, and quite recently two vessels, the Kiew and the Novogorod, have been successfully launched at Nikolaief
We lay before our readers, in the accompanying engravings, sectional and plan views of these curious ships, from the pages of La Nature. Each vessel is $99 \cdot 2$ feet in diamete and constructed of iron, planked with wood and sheathed with copper. The draft of water is $12 \cdot 1$ feet, and the spa deck is $2 \cdot 1$ feet above the water line. The displacement is 2,783 tuns. The bottom is perfectly flat, and the sides are vertical, with an overhang aft, sheltering the rudder. In or der to insure stability, twelve keels are affixed, each abou three inches in depth.

At the center of the ship is a turret, 29 feet 6 inches in diameter and 7 feet high, containing two 11 tun steel gun (probably eight inch bores), breech loading and mounted en barbette. The turret has a hollow axis which serves as an ammunition scuttle, and on which pivot the supports of the guns, so that the latter can be pointed over an angle of from 30° to 35° with the fore and aft direction of the ship The rest of the armament consists of torpedo arrangements.
The rest of the armament consists of torpedo of the hull is double, and there is a
The space of about 2.9 feet between the shells. The lower plating is 62 inch in thickness and the upper 23 inch. The hold is divided into a large number of watertight com partments. Parallel to the upper deck and about 6 feet be low, is a second deck, both being united to the lower shel by bulkheads.

Forward of the turret is a light superstructure serving as a protection against the sea and as quarters for captain and other officers, eleven persons in all. The second deck com prises a forecastle for the crew of ninety men, and furthest aft the coal bunkers and boilers, each of the latter having a separate smoke stack. Amidships are other officers' quarters and a powder scuttle. There are six eighty horse power engines, built on the Woolf system, each driving an independ ent screw. Machires and boilers tog ether cost $\$ 222,000$, about. Below the forecastle are storerooms; and under the officers' quarters, the powder magazine and shot lockers. Two steering wheels are also on the second deck.
The armor consists of two streaks of plating about three feet broad: the upper layer is $9 \cdot 1$ inches thick, and is backed by solid teak 6 inches through; the lower skin is 6 inches, with a Dacking of 9 inches. The turret is similarly constructed, with the exception of the plates having a uniform thickness of 9 inches. At a distance of about two feet inside the walls of the ship is a^{f} fwatertight bulkhead formed by 7 inch plating, dividing the battery into two parts, so that in case water should enter one of the exterior compart ments, the vessel would still float.
The trial trip of the Novogorod was recently made at Ni kolaief in presence of the Grand Duke Constantine of Russia. Although the s?lip was hardly completed, or entirely ready for sea, it is stated that, with a steam pressure of 5.2 pounds, and a vacuum of $21 \cdot 4$ inches, with 62 revolutions. a speed of six knots per hour was obtained. The ship proved herself an excellent sea boat, obeying her helm readily, and turning almost squarely on her heel when the engines on either side were stopped or their speed slackened. With the port engines going ahead and the starboard engines backing, it is stated that she went about the first time in two

minutes, and on a second trial in one minute and nineteen seconds, without hardly changing her place. On reversing both machines, the ship stopped in a few seconds and turned in the opposite direction, also without altering her position.

The Hair Worm.

To the Editor of the Scientific American

The following, apparently cut from some book, was sent ome for solution : and, if agreeable to you, I will answer it through your columns. It reads thus:
"A Curiosity for Naturalists to Solve.-Mr. J. H. Horsford writes us from Freedom, Ill., that a horse, owned in that country by a Mr. West, has a worm or snake in his left eye, from two to two and a half inches long, and, to appearance, of the thickness of a small oat straw, squirming with the active motion of a large snake. The horse, he says, has evidently lost the sight of his eye from his snakeship having taken up his abodethere; and it is only about a week since there appeared any difficulty to the eye. He week since there appeared any dificulty to the eye. He
thinks it has been produced by a hair getting in by some thinks it has been produced by a hair getting in by some
means, and changed to a snake, as hairs are known to do in means, and changed to a snake, as hairs are known to do in
water. To know its wonders is to see it, as it can be plainwater. To know its wond ers is to see it, as it can be plain-
ly, a rod from the object, wriggling about as if too much confined. Query: How came it there and what will the result be? Let some of our veterinarians answer."
I hoped that the old notion that a horse hair will turn into a snake had been obliterated years ago. I am surprised that any one should advance such a theory, even in this Darwinian age.
The hair snake, so called, is frequently met with; I have tak en them from grasshoppers, from an apple, from a head of cabbage, swimming in the gutter along the curb of our city. I have found them in our streams and in our spring water, of various lengths and shades of color. Indeed, it seems to me, everybody ought to be familiar with the gor dius, or hair worm, which, in my youth (as I was taught the common notion), I thought was a transformed horse hair. They are so perfectly hair-like in form that it is not very surprising that ignorant persons might so mistake them Yet the two sexes are readily distinguished. In the male, the tail end is bifurcated, in the female trifurcated (at least in the American species). I have found the female coiled or indeed knotted up, suggestive of the Gordian knot. Could its name be derived from Gordius, king of Phrygia? If so, I am not aware that I ever met with the statement.
After carefully unfolding, I discovered that it had within its folds a string of eggs, like beads, in a bail, a.nd seemed tenaciously attached to them, gathering them up carefully, again to take them under protection. The female deposits millions of these eggs, connected in a string. These, in the course of three weeks, hatch; when the embryos escape from the eggs, they are of a totally different form and construction from the parents. Their bodies are only the $\frac{1}{450}$ th of an inch long and consist of two portions: the posterior cylindrical, slightly dialated and rounded at the free extremity, where it is furnished with two short spines; and the anterior broader, cylindrical, and annulated, having the mouth furnished with two circlets of protractile tentaculo and a club-shaped proboscis. I am indebted for some of these details to the patient investigation of Mr. Joseph Leidy, M.D., of Philadelphia. Healso says: "No one has yet been able to trace the animal to its origin, or what becomes of the embryo in its normal cyclical course," as those he had of the embryo in its normal cyclical course, as alter escaping from the egg. These gordii, when developed, vary in their length from three inches to a foot; they occupy various positions among the viscera and even in the head, including the muscles, for their living habitation, analogous to the trichince. And so minute a larva can as well get into the eye of a horse as into the muscles of an insect or animal.
Among the known entozoa that infest man is the monosto mum lentis, of Gescheidt, found in the crystaline lens, and the distomum oculi humani, in the capsule of the crystaline lens, others of this latter genus, d. hæmatobium, in the tor tal vein, and d. heterophyes, of Siebold, in the small intes ines. To refer to the snake in the horse's eye, then. It is sim ply this: The minute animal just hatched (the gordius is common in streams, where horses may drink or be washe in the water abounding with the minute embryos of the hair worm) could cling to and penetrate the crystaline lens of the eye, and develope into the gordius, which may require some living tissues for its development, or if more carefully ex mined, might prove some other specimen of the entozea I was more astonished to find a gordius in an apple; true, t was worm eaten, but I can advance no theory how it got there unl ess it crept from a dead grasshopper into the apple or hatched in the blossom and developed with the fruit. A shower of rain could easily scatter the eggs or minute em bryos.
J. Stauffer.

Lancaster, Pa.

The Variable star Algol

To the Editor of the Scientific American:
The periodical fluctuations in the light of the star Algol have been accounted for in two different ways, first, by suppos ng that a non-luminous body revolves around this star, th plane of its orbit being directed toward our system, or nearly so, and secondly, on the hypothesis that Algol is secondary body, revolving round a dark primary in an orbit situated as in the former case.
If the variations are really produced by the intervention of a dark body, and if, at the time of minimum brightness, their dark body is entirely projected upon the disk of Algol, it is evident, from the large proportion of light cut off, that the two bodies do not differ very greatly in size. It seems to me , therefore, that if we admit the existence of a dark com panion, it would be more correct to say that both bodies re
than to say that either of the two revolves around the otherThere is a method of observation at our command, how ever, by which the truth of this theory of Algol's motion in an orbit, may be put to the test. I refer to spectroscopic observation. In case Algol moves in such an orbit,it is obvious that, at times, it must be approaching our system, and at other times receding from it.
If, therefore, the orbital velocity of the star be sufficiently great, displacement of the lines in its spectrum would result; and by observing the amount of their displacement at different times during the period of variation, the rate at which the star moves in its orbit could be determined, approximately. Of course, in these observations account would have to be taken both of the proper motion of the system from or towards us, and of the orbital motion of the earth.
Spectroscopic observations of Algol, and of other variable Spectroscopic observations of Algol, and of other variable
stars as well, if conducted in this manner, would, in all probability, lead to the most interesting results.
St. Catharine's, Ontario, Can.
J. M. Barr.

Mexican Water Coolers and Filters.
To the Editor of the Scientific Amerucan:
In your issue of June 14, you have given a drawing of an Australian water cooler. That is very good for the purpose; but herein you will find a sketch of those used in this country to stand on a table, which are far prettier and more convenient. They are made of red, white, or buff colored clay, with saucers and stopples to match. Many of them are ornamented with wreaths of ivy, or bouquets of flowers in colors. The necks, stopples, and saucers, are glazed; the bodies are left porous. The white and buff become discolored sooner than the red. The latter are very pretty when made of the finest clay.
In this country there is a stone which is used for filtering water for domestic use, and I am sure that it is better than anything gotten up in the United States for that purpose. It is indurated volcanic ashes. The stone is cut in the form of a hollow, inv erted pyramid, the smallest size being about 15 inches at the base, 22 inches deep outside, and 2 inches in thickness, the last dimension increasing as it approaches the apex, with the exception of being cut away near the base on the outer surface to form an offset by which it is suspended in a frame. Beneath this, upon a shelf in the lower part of the frame, six or eight inches from the floor; is placed a very thin, unglazed, earthen jar to receive the water as it drops from the stone. This jar is covered with a plate having a hole in the center, upon which rests a small, unglazed pitcher.
Turbid water passes from the filter as clear as crystal, remains in the jar deliciously cool, and is much more wholesome than ice water. The latter article is rarely used here, as our only sources for the supply of ice in this valley are artificial, and the peak of Popocatepetl.
S. E. G.

City of Mexico.
Taking up the wear of Journal Boxes.
To the Editor of the Scientific American:
In Mr. Crawford's suggestion, published in your issue of September 6, I see no way to take up the wear of the boxes, caused by the end strain that the rod is subjected to. I herewith send to you a sketch of a plan for which I am indebted to Mr. Charles Elms, of Chicago. I have used it, and find it a very convenient, cheap and substantial method of fitting up stub ends, answering all purposes of the strap, gibs, and key, and in some respects better to those, as there are no spring straps and battered keys to repair after a few years' use. The following is a description of the invention: A is the stub end; B,
 plate or cap fastened at each end by a stud, an offponding one upon ponding one upon stub end A;C C are
brasses ; D is a steel brasses; D is a steel
wedge to take up wear of boxes or brasses, adjusted
y the stub set screw, E.
Having been benefited myself by many suggestions and much information received from your valuable paper, I submit this to you, hoping that it willbe of some use to my fellow draftsmen and machinists.
New York city.
Robert C. Gray

Planetary Motion

To the Editor of the Scientific American:
I claim that the following is no mere hypothesis, but a logical deduction from known facts: The sun and earth

tend to approach each other, obedient to the laws (f gravi-
$\mathrm{i}_{\text {nstantaneous, and its direction is indicated by a right. line }}$ drawu through the centers of the earth and sun. If it were not for an opposing force, they would approach each other with an accelerated velocity. Such a force exists in and is radiated from the sun in all directions, and is made manifest to us by certain well known physical phenomena.
This force is not instantaneous, but it requires time to ac through space. The sun revolves upon its axis: consequently the direction of a force radiating from the sun and requiring time to act through space would not be indicated by a right line. For convenience of illustration, we will suppose that the planes of the earth's and sun's equators coincide. Let S and E , respectively, represent equatorial sections of the earth and sun : then a will be the line of direction of their attractive forces. If the sun be at rest, the direction of force emaating from the point, f, on the sun's equator would be indicated by the dotted line, c; but, as the sun revolves, this force, which requires time to act through space, will be deflected which requires time to act through space, will be deflected
in the direction of the curved line, b. This line, b, is the cenin the direction of the curved line, b. This line, b, is the cen-
ter of direction of the force projected from the sun and acting ter of direction of the force projected from the sun and acting
in oppositon to the attractive force. I should have said that in oppositon to the attractive force. I should have said that
the arc of the sun's equator, intercepted by the angle, $a d c$, is equal to the distance traversed by a point on the sun's equator during' the time required for the transmission of this force to the earth. This curve will be increased by the amount of the earth's orbital motion for a like interval of time. Now with your knowledge of mechanics, you will see at a glance the inevitable consequences of this slight difference in direction of these two opposing forces. Slight as it is, it is more than sufficient to account for the movement of the more than sufficient to account for the movement of the
planets, as it will explain other questions. Now lay down planets, as it will explain other questions. Now lay down
an axial section of the sun and project the curves caused by an $2 x i a l$ section of the sun and project the curves caused by
the centrifugal force: the axis and equator will be represented by right lines: but from the intermediate degrees all the lines will be deflected towards the equator, the curves shortening as we ieave the axis. In this we have an explanation of the cause of the planets being confined to the zodiac. I have forwarded substantially the same communication to three eminent astronomers. John Linton.

Baltimore, Md.

Remariseby the Editor.-Tbe nebular hypothesis finds general acceptation at present. The solar system is supposed to have been originally a nebula or vapor cloud of unequal density. Such a mass, in condensing by the mutual attrac. tion of its particles, would rotate with increasing velocity. Rings of vapor thrown off, or rather left behind in condensution, formed the planets. The planetary nebulæ themselves throw off rings, forming their sateilites and, in the case of Saturn, a nultitude of asteroids. As force is as inthe case of Saturn, a nultitude of asteroids. As force is as in-
destructible as matter, and as light, heat, motion, electridestructible as matter, and as light, heat, motion, electri-
city and chemical action are convertible terms, the planets, city and chemical action are convertible terms, the planets,
resisted by the ether of space, will fall to the sun, and the solar system will ultimately resume its original gaseous form.
A sphere of oil, supported in a mixture of alcohol and water of the same density, and set whirling by introducing a rotating disk near its equator, flattens at the poles and throws off rings which form revolving satellites, in a very instructive manner.

The Proper Length of Crank Pin

To the Editor of the Scientific American:
In your issue of September 27, I find just the thing I have been looking for for years, namely the proper rule for the size of a crank pin of an engine, as laid down by Theron Skeels, C. E. I think the rule beautiful in the extreme, and so simple that any one ought to understand it. Yet there are one or two things that are not fully clear to me, but this is probably from a lack of education on my part. The last part of his rule says " multiplied by a coefficient which is determined by an experiment." If we are to find out,by experiment, this point, why not the whole thing?
It seems to me that there may be more causes than the one named. In practice, we first look to see if the box is not too tight, and second, if the pin is in line with the main bearing. Then we see that the cross head does not twist this connection on the pin, next that it is well lubricated, and that the oil or lubricant is strong enough to stand the work. After going through the whole of these and finding all right, then we look to see if it be of proper size, and this, I opine, is and always will be determined by experiment,for I opine, is and always will be determined by experiment,for
engines of equal indicated horse power will need different engines of
sized pins.
sized pins.
We have one engine running made by George H. Corliss, with cylinder 18×30 inches, shaft $8 \frac{1}{2}$ inches diameter, crank pin $4 \frac{1}{\frac{1}{2}}$ inches diameter, and 7 inches long. This runs, with steam at 125 lbs . at 100 revolutions per minute and comes to full stroke probably 500 times per day, then off to nothing, passing many strokes wilhout steam at all. After two years, use, there is no appreciable wear and no heating. We are making another like it, thus using the last part of Mr. Skee ormula and not infringing his rights by using the first.
$\begin{aligned} & \text { Syracuse, N. Y. } \\ & \text { W. A. Sweet. }\end{aligned}$

Near Delaware Water Gap, Pa., there is a cave in the face of Mount Minsi, opposite the river, whence issues constantly, with considerable force, a current of cold air. A small stream of water issues from the cave. It has been as certained that the water trickles down from the roof of the cave, and the cooling of the air is supposed to be due to contact with the wet surface of the roof.
AN advertisement in the special sixty thousand edition of this paper, soon to be published, will reach a class of per sons not accessible through the ordinary channels of news
paper advertising. See announcement on another page.

The Great Oil Wells of the United States. The committee sent by the prophet Moses to enquire into
the resources of Canaan, reported that it was a land flowing the resources of Canaan, reported that it was a land flowing
w'th milk and honey. But even if that ancient country had wth milk and honey. But even if that ancient country had
been veritably blessed with natural deposits of the substances been veritably blessed with natural deposits of the substances mentioned, it is questionable whether its richness could have oil wells.
The total oil product is now 34,560 barrels of 42 gallons The total oil
The number of producing wells in the entire oil region of Pennsylvania is about 5,000 , and the average daily product per well is 7 barrels.
A correspondent of the New York Tribune gives the following interesting information:

boundaries of the oil diggings.

The northern extremity or rather the two northern extremities of the oil producing region are in the vicinity of Titusville and Tidioute, Pa., from which points it extends in a southwesterly direction along the Allegheny River, though not following its course strictly, down to Greece City and Millerstown, a distance in a straight line of about eighty miles. The "Old District" begins at the north, as given above, and ends at Parker's Landing, on the Allegheny River, and comprises most of the old famous wells, including those of Pithole, which have figured so conspicuously in times gone by. The "New District" begins at Parker's Landing and extends down to and includes the new wells of Modoc. The entire district is a rough farming country, and is traversed with lines of hills which, though noc remarkable for hight, are of mountainous character. Here and there are towns which, though of moderate size, are " cities," those of Titusville and Franklin being the finest.

theory of the oil rocks.

The present accepted theory in regard to oil-producing rocks is that they lie in series of belts, the general trend of which is from twenty-two to twenty-three degrees east of north and west of south. But there are minor belts that seem to run across the great belts, and even the most experienced oil men are not very certain of the accuracy of their theories. One who has never visited this country is apt to fall into the error of supposing that the number of wells that have been sunk is quite limited; but the fact is that they may be numbered by thousands. They are seen everywhere, on hill and mountain, in valley, in mid river, in town and in country. And as most of these wells have gone to decay, and but very few are yielding enough oil to pay, and as it cost originally from $\$ 5,000$ to $\$ 10,000$ to drill each of them, some estimate may be arrived at of the amount of capital that has been dissipated.

How oil wells are sunk.

The business of drilling wells has now fallen almost entirely intothehands of professional drillers. When a man or a company has decided upon a well, and selected its site, the first step taken is to put up a derrick, or, as it is termed here, a "c carpenter's rig." This is a framework, made mostly of plank, from 65 to 75 feet high, about 14 feet square at the bottom, and running nearly to a point at the top. The cost of a derrick is about $\$ 800$. The tools used indrilling are the
bit, which is like any ordinary rock drill, but larger, being about three feet in length; above that is the auger stem ; then two chain links called the " jars," and above that the " sinker

This is attached at the upper end to the rope which passes over a pulley at the top of the derrick, and thence do wn to a large windlass outside of the derrick. The drilling done by a steam engine with a crank movement, which the derrick to give the tools more rope at pan standing by in the derrick to give the tools more rope at proper intervals,
and to turn the drill while it is operating. After the drill and to turn the drill while it is operating. After the drill from the well up into the derrick, and the sand pump is lowred and the sand is brought out, when the drill is again inserted. 'The rope used must be of the very best quality, and in digging deep wells it requires two ropes, as the sand very
soon cuts them out. The expense is a very considerable one being $\$ 400$ for each rope. The tools for drilling that are now used weigh 1,800 pounds, those that were first used weighing only 90 pounds. A good set of drillers will put a well down in about 65 working days, provided they have cood luck and no accidents; but it oftentimes takes six

ENORMOUS DEPTH OF THE NEW WELLS.

The rock in which the oil is found has a very decided dip from the north to the south, it being about sixteen feet to the mile. In the old or northern part, it is found at a depth of from four to seven hundred feet, whereas the new wells at Modoc are from fourteen to seventeen hundred feet
deep, the expense of drilling one of the new wells being nearly double that of one of the old ones. The drillers generally know where they are by the kind of sand that they bring out.

character of the several rocks.

At Modoc, at a depth of about five lundred feet, they strike whatis called the mountain sand rock, down to which they bore an eight inch hole. Here they know that they are
below all fresh water, and they put in a casing, down to and resting on that rock, with an insidediamster of $5 \frac{5}{8}$ inches. From there they bore, through the casing, the remainder of the well with a diameter of $5 \frac{1}{2}$ inches, depending upon this shoulder of rock at the botton of the casing to shut off the salt water, which is sometimes found in large quantities. The next sand rock of importance that is found is called he second sand, which lies at a depth of a little over twelve hundred feet and sometimes produces oil. This, however,
i_{s} not considered a good sign, and makes future drilling operations on the same well rather gloomy work, as a first class well cannot be expected. The fifty foot sand rock comes next; the next is the bowlder; then comes the corn meal sand, so called because of its resemblance to corn meal. From that you get five to ten feet of slate, and then From that you get five to ten feet of slate, and then
you strike the oil sand, which is a sort of pebbly rock; and you strike the oil sand, which is a sort of pebbly rock; and
if the well is going to amount to anything, oil appears the moment you penetrate or even scratch this rock. Between these strata that I have mentioned, the space is filled up mostly with shells, slate, soap rock, sand, etc., the drilling being very easy. But in the sand rocks above enumerated, slow time is made by the drillers; and the mountain sand is so hard that it wears the drill, and the particles of steel from the bit are very perceptible among the grains of sand.
the new wells at modoc.
The stream of oil from a flowing well is not continuous, but comes in pulsations, with occasional intermissions of entire stoppage of greater or less length. A good flowing well runs at first with great force, and the yield of oil is accordingly great, but it gradually decreases in production until it ceases to flow at all, and thus it must be pumped, after which the supply goes on decreasing until its yield will not pay the expense of pumping, and then it is shut down. It therefore requires ordinarily the constant drilling of 400 wells to hold the production up to the level of the demand. But at the present time all drilling must stop except in the neighborhood of Modoc, because nothing less than a 200 barrel well will pay back to the owner the first cost, $\$ 8,000$ to $\$ 10,000$, with oil at the present prices, 80 cents per barrel at the wells. Wells that will yield 200 barrels a day are found only at long intervals, Modoc being at present the exception to this rule, and the richest oil deposit yet discovered in Pennsylvania.
The first well that was sunk at Modoc was the Troutman well, which was struck last March. At first it averaged about 950 barrels a day, and it turned the attention of oil men in that direction. It, however, stood alone for over four months before any other wells were finished. Its present yield is about 300 barrels a day, and it is considered as holding out remarkably well. In July a number of other wells were struck, among which two of the richest were the Walt Thompson and the Dean \& Taylor wells. Their yield is now estimated at 650 barrels each per day. There are at this place 16 wells, all lying within a square mile, which now average 500 barrels each every twenty-four hours. The reports that the new oil wells of Modoc are materially falling off are not correct. It is the opinion of good experts that the yield of oil is even greater than it is reported to be by the producers themselves. I saw wells that were said to be giving 500 or 600 barrels a day which had every appearance of yielding 1,000 barrels a day. As a large number of new wells are being drilled in this deposit, the producers, being anxious to keep the price of oil as high as they can, are evidently underestimating the capacity of their wells.
products of the various districts.
Of the 34,560 barrels of oil now daily obtained, the First District, which is the latest development and includes all the big wells, furnishes 18,560 barrels, the Second District 2,500 larrels, the Third District 4,500 barrels, and all the other districts, containing the wells that furnished all the oil previous to $1870,9,000$ barrels, making a total as above stated of 34,560
the pipe companies.
As is well known, all the oil is delivered from the wells to the delivery tanks on the railroads through pipes. These pipes are laid generally upon the surface, and they run through valley and over mountain, and under rivers, the oil being forced through them by steam power. The longest pipe now in use is about 15 miles in length.

The Bridgeport Shirt Factory.---The Howe Sewing Machine Works. Machine Works.

A correspondent in the Commercial Advertiser gives the following interesting account of his visit to some of the ext
Burlock \& Co., large shirt manufacturers, the writer states, employ about six hundred hands, and make one hundred dozen shirts per day, consuming three thousand yards of muslin and seven hundred of linen each day, and $\$ 9,000$ worth of thread every year. One hundred sewing machines are constantly running, from seven o'clock in the morning until eight in the evening. These machines are worked by steam and managed by young girls, the majority of whom are skilled performers ; some of these experienced hands earn as high as
$\$ 75$ per month. Every part of a shirt is manipulated by $\$ 75$ per month. Every part of a shirt is manipulated by different hands; each piece is finished in a room designed he parts of ahirt, and takes sixty women to make al make this all important garment. From the time the cloth make this all important garment. From the time the fore the
is first brought into the cutting room, there is no rest fabric ; it is tossed about with lighting speed; ;the changes made from one to another are really marvelous, and, before you get over your surprise, the shirt is ready for the laundry, where it again flies about without stopping until it reaches the inspecting room, where it is allowed to rest a few minutes, when it is carefully looked over, and, if there is the slightest flaw found anywhere in its manipulation, back it goes to the department where the defect was made. We remained some time in the ironing room, and were much amused to see the way the women ironed the bosoms, collars, and cuffs. The irons are heated almost to a red heat; they
are passed over the linen with very great rapidity, which is no sooner dried, than the ironer again wets the linen and takes anothẹr red hot iron. This drying and wetting process is repeated several times before the linen presents the desired glossy appearance. We asked Mr. Perkins what the secret was of putting on this much admired polish. The gentleman smiled, and said: "It is nothing but elbow grease."
After seeing how much labor and scientific work it takes to make a shirt, we drove over to East Bridgeport, and were escorted through Howe's sewing machine factory. This building has a front of 1,256 feet; it is five stories high, and employs 1,500 workmen. They make 500 hundred machines per day. Every part of a sewing machine is a branch of work by itself, and is manipulated in a separate room under the charge of a foreman. We were very much interested in the needle department, which is under the charge of Mr . Thompson, a very pleasant and affable gentleman, who kindly gave us many points of information. Twenty thousand needles are manufactured in one day. One hundred and eighty men and woman are employed in this department. From the wire steel coil up to the time when the needle is ready for use, it passes through fifty different hands.

LETTER FROM UNITED STATES COMMISSIONER PROFESSOR R. H. THURSTON.

NUMBER 16.

Paris, September, 1873.
Since the date of the previous letter, we have made an excursion into South France, visiting the immense iron works of Le Creusot, and the great and busy city of Lyons. Our trip has occupied only four days, but we have seen and learned a great deal and have experienced much pleasure in that short period
During the year 1872, the total quantity of cast iron produced in France is reported as $1,181,262$ tuns, of which more than one million tuns has been produced by the 113 blast furnaces which use coke fuel, and 178.571 tuns were the product of 115 furnaces using charcoal. The production of steel is given as about 140,000 tuns during the same year, the amount having doubled in the short space of three and a half years, and nearly trebled in about four years. This production is the result of the united labor of many estab lishments; but a single one, that of Le Creusot, is sending into market one third of the whole, and we should hardly have been justified in leaving France without visiting this place, even had it compelled far greater expenditure of time, money, and physical energy than it has demanded. We were also bound by our acceptance of the courteous invita tion of its hospitable proprietor, M. Schneider, whom w had met as a colleague at Vienna.
The day before leaving Paris on this expedition, we visited the locomotive engine building establishment of

cail \& co.

on the Quai de Grenelle, near the Champ de Mars. We found there a fine collection of shops, employing between three and four thousand men in the manufacture of locomotives and of general work. We were received here with the utmost kindness and courtesy, as we have been at all of the great manufactories that we have desired to visit, with the single marked exception of that of Krupp, at Essen. The workshops of Cail \& Co. cover an immense extent of ground just outside the city of Paris. They are all of one story in hight, the roots are supported by iron columns and girders, and the interior is generally well lighted and ventilated by windows in the roof.
The transportation of material from one part to another of the works is effected by cars upon a railroad track leading to all the workshops, the traction power being obtained from several light locomotives. In the setting-up shops, traveling cranes are well placed, and are in constant use. The
work is generally very good, although some pieces were hardly as well finished as was the average of that which had passed inspection, and it would not have been passed as satisfactory in our own leading shops. The boile: work was quite good. We noticed one riveting machine here, but it would not compare favorably with those that we have seen elsewhere. In the forge shop the work was good. The heaviest steam hammer was said to have a drop weighing 800 kilogrammes $-1,760$ pounds. Judging from the fact that there were a hundrea draftsmen employed, we should conclude that work is not as well systematized as it should be in such a place, or as it is in our own establishments of this kind, and that alteration of designs must absorb a heavy percentage of the profits. It is possible that the variety of work done by Cail \& Co., which includes sugar mill work and every variety of machinery, may be good cause for the
employment of so much profit-consuming labor. We were pleased to find here a neat chemical laboratory, an auxiliary too seldom appreciated by iron works proprietors.
Taking the $11 \mathrm{~A} . \mathrm{M}$. train from Paris, an express running through to Marseilles, we enjoyed a very pleasant ride through the heart of France, arriving at Le Creusot at $9: 30 \mathrm{P} . \mathrm{M}$. Our route, almost from Paris.to the end of ou journey, lay through the beautiful and rich wine-growing
districts, of which the produce is sent to all parts of the world. From Verrey to Dijon and Chagny, we were delight ed with the beautiful scenery of the

CôTES D'OR,

where are raised the finest wines of Burgundy, and which district is given its name from the exceptional value of the product of its vineyards. The common table wine of this
country, which would, with us, be considered a good wine,
sells for about twenty sous a bottle, while the price of the finer brands of the Cótés d'Or is ten francs here, and probably nearly as many dollars in New York, if it is possible to obtain them at all in all their native purity and strength. Both red and white wines are raised, buit the red are generally most liked and are best known abroad. Their delicate nd delicious flavor and their exquisite bouquet are considred, by connoisseurs, to be beyond rivalry
The level lands of the valley through which the line of railroad passes, and the beautiful sunny hillsides on either hand, are covered, apparently, by one immense vineyard. This whole district, with an area of 250.000 acres, is devoted to wine culture, and the annual production has an estiniated value of fifty or sixty millions of francs-ten or twelve mil ions of dollars.
We dined at Dijon, the name of which town is familiar to all as one of the places which obtained some celebrity during the late war. Here we met a veteran who had been partial ly disabled in a skirmish with the Prussians in 18171, and a bright young French student with whom we enjoyed a pleasant and instructive conversation until our change to the branch line leading to

le creusot.

Long before reaching the latter city, we could see, away across the country, great masses of smoke rising slowly from the valley and floating across the hills, like heavy thunder clouds, obscuring large tracts of the country which was elsewhere beautifully illuminated by the bright light of the moon, then just past the full. As we finally skirted the town and rushed toward the station, a sight burst into view such as we had never before witnessed, and to which no verbal description can do justice. The vast clouds of smoke which we had been watching, miles away, were issuing from the tops of myriads of chimneys and from the midst of numbers of great blast furnaces, which rose, like so many towers of Babel, far above the surrounding building The long structures, covering the rolling mills and the forges, were plainly seen through the gloom, lighted up by a ruddy glow from great masses of hot metal passing through the rolls, or by the brighter glare of scores of forge fires; and on the hill above and behind the works, barely revealed by the light of the partly obscured moon, we could see the populous town which has grown up here, founded and supported by this marvelous example of recent industrial progress. A dull intermitted roar of escaping steam, the loud clatter f gearing from the rolling mills, and the rumble of the olls, witt: the unceasing concussions of many steam hammers, the sound of loud voices now and then rising above he noise of machinery, and the barking of the numerous dogs in the city beyond, mingled and produced almost as novel and exciting an impression upon the ear as did the strange and interesting scene upon the eye.
A frugal and truly French repast of bread and delicious native wine was furnished at the humble inn at which we stopped for the night; and we retired early, sleeping soundly in beds as clean and comfortable as we ever found at an English country tavern, or in our own New England. Before we had finished our breakfast, our kind friend, the proprietor of this wonderful establishment, who had already been informed of our arrival, called to take us in charge, and we spent the day in its exploration.
A century ago, this busy valley was adeserted and sparsely nhabited spot, forming part of one of the least productive estates in France. The discovery of its mineral wealth at that period was the commencement of its development, by the erection of an ironworks, in 1782, which was supplied with coal from the beds beneath it and with iron ore from the neighborhood. The machinery was driven by one of Watt's earliest engines, which is still preserved at Creuot as an interesting relic. The early prosperity of Creusot, then called Charbonnières, was seriously checked by the French revolution, and by the subsequent uncertainty in poitical matters; but, recovering, acquired such extent, when purchased in 1837 by MM. Schneider, that its value was fixed at $2,700,000$ francs, and its production was stated at 40,000 tuns of coal and 6,000 tuns of iron. The number of workmen was not more than 1,200 to 1,500 , and the populaion of Creusot was not much above 3,000 . To-day we find 5,500 people employed in the mines and mills, two thirds f whom are cngaged in the latter. The establishment produces 50,000 tuns of steel rails annually, and the new works, the construction of which is already begun, will, in a few
months, largely increase tnis figure. Of iron rails, 20,000 months, largely increase this figure. Of iron rails, 20,000
tuns are turned out this year. A hundred locomotives and an immense quantity of other machinery are also included in the annual out-put of Creusot.
There are twelve blast furnaces making ordinary and Besemer pig metal. The later furnaces are 20 meters- 65 feethigh, while some of the older ones are 25 meters. The maxmum efficiency seems to have been found at an altitude which has been found best also in some portions of our own ountry.
The Whitwell and the Cowper hot blast stoves have both been used here, and the new furnaces have a stove which M. Schneider calls a hybrid " Whitwell Cowper." The temperature of blast is carried at about 600° Centigrade $=1,080$ Fah. The fuel is coke, from native coal raised on the premises or at St. Etienne, where are mines which have the same ownership. The ores of the neighborhood make very goou ron, but, for the Bessemer process, iron is made from ores imported from Africa. These ores are as pure and rich a the English Cumberland, and our best Missouri or Lake Superior ores.
Here we
Here we saw, for the first time, the molten iron tapped from the blast furnace into ladles, which were drawn at
once to the converters and the iron converted into steel with
ut intermediate casting, cooling, and reheating. The econ orfected is an imprrtant item in these days of the mpetition, and, in part, accounts for nland ironworks in competing with English makers of stee ard in exporting the rails produced here to the United States. It is a matter of wonder that this coöperation of the furnace with the converter is not of tener met with, since there is no difficulty in making the arrangement, as a matter of engineering, and there must be many localities where the requis ite capital may be obtained to take advantage of the natura facilities existing for such an economical combination.
The steel rails made here contain four tenths per cent of carbon, and are as strong and tough, and as resilient, as any made in Europe. They are of Bessemer metal. Where a softer steel is required, the Siemens-Martin process is adoptd. I think that it was at Le Creusot that this method was irst made successful.
In the magnificent Creusot exhibit at Vienna were some ine samples of the product of this process, but we found the finest specimens here that we had ever seen. Such won derfully ductile metal is precisely what is wanted to take the place of the weaker and less homogeneous metal, iron, for thousands of purposes. These samples were said to contain one fourth of one per cent carbon.
Eight new Siemens furnaces are in course of construction. The rolling mills are very large and are unusually well arranged. The buildings are neat and substantial and the machinery strong and well proportioned. The driving engines are not what we should, in the United States, consider the best possible design, but are well built and are strong and serviceable. The workshops contain much old machinery and some that is new and exceedingly creditable. The forge contains steam hammers of all sizes up to fifteen tuns weight of drop; and here, as well as in every other department, we saw evidence of good management and of intelligent supervision.
We visited the offices and drawing rooms, and found them well constructed, pleasant, and comfortable, with every possible facility for doing work and for communication with the various departments of the works. The telegraph is used very extensively for correspondence. Before leaving, we looked into the houses where the locomotives, used by the works for their own transportation, were kept. There are sixteen now in use, and they are not fully equal to the work. They are plain, powerful machines of the common continental type of freight engine, and exhibit no specially noticeable peculiarities.
The working people here seem to have a more efficient character and more industrious habits than is usual with French workmen, and impress the visitor very favorably by the contrast which they present to the sluggish, inactive, workmen generally seen in Europe.
After a very thorough examination of this greatest of all the French ironworks, atter enjoying the generous hospitality of our host, and after a stroll about nis pleasant grounds, we took the evening train for
LYONS.

We have not space in which to describe this fine city, or to give even the merest abstract of the memoranda gathered here in the great center of the silk manufactures, where 70 , 000 looms, in 10,000 establishments, support 140,000 persons, and produce a value of $\$ 60,000,000$ per year. The permanent Industrial i xhibition, which was visited with the expectation of learning much that would prove of interest, is a sad failure, although it opened so short a time ago under such encouraging auspices. We saw there some fine castings, in Siemens-Martin steel, from the " Société Anonyme de Charente," and a six inch armor plate from Marvel Frères, doubled up without crack, as stated, cold. Chevalier \& Grénier exhibit a compound portable engine and boiler with removable tubes and firebox, as at Vienna. The engine governor was of the parabolic class, and the whole was a good piece of work. The immense buildings look barnlike and empty, and we came away disappointed.
Before taking the train back to Paris, we visited the observatory on the hights of Fourvières, and spent an hour or more enjoying a splendid panorama embracing many miles of the valleys of the Rhone and the Saône, which have their confluence at Lyons, and, a hundred miles away, over the eastern hills, taking in the hazy outlines of Mont Blanc. Then, after an uneventful all night ride, we wele back in Paris, ready to leave the continent and to spend a few days in Great Britain.
R. H. T.

The Atlantic Cables.-The attempt of the Great Eastern steamer to lift and repair the Atlantic ocean cable of 868 has failed, owing to stormy weather, and the great hip has returned to England. The work is postponed until next year. The fault has been located at a point not far eastward of the banks of Newfoundland. The cable was successfully grappled and lifted several times. A portion of the original cable, that of 1858, was brought up during the grappling operation and found to be in a fair state of reservation.

The Preece block system of electric railway signaling is worked on the principle that the trains are to be kept a cerain unvarying distance apart. No train can advance until the signal is given that the line for the specific distance ahead is absolutely clear.

The passengers carried by the railways of Great Britian 1872 reached the enormous total of $423,000,000$. The total number carried in 1850 was only $78,854,422$. The increases is mainly owing to the construction of underground and other suburban lines leading out of the large cities.
automatic car coupling.
The invention illustrated in our engravings is a new form of car coupling, which, while it connects the cars automatically as they are brought together, allows of the uncoupling of the vehicles from either their tops or sides. The device is claimed to operate perfectly on the sharpest curves and steepest grades, and to bring the cars as closely together as the ordinary drawheads now used. It is attached to the carriages in the usual manner, with perhaps somewhat more up-and-down and sideways play.
From Fig. 1 the construction will be readily perceived. is the drawhead of one car, made with a cavity of sufficient size to receive the connecting drawhead, B. Fitting into a recess in A, so that its lower and hook shaped end may pro ject down into the hollow portion, is a stee coupling block, C, which engages with another steel block, D, dovetailed and bolted to the drawhead, B. The block, C , is provided with a ring or handle at its upper portion to admit of its being readily lifted out by hand, when it is so desired, to uncouple the cars, while its movement is limited by a pin or screw, E, working in a suitable groove on its surface. When raised, the coupling block, C, may be held up by a pin placed in a hole therein and above the drawhead.
Pivoted in a slot in the upper part of the latter is a bent lever, F, of which the forward arm enters a slot in the coupling block, so that, by suitably operating the lever, said coupling block may be easily lifted up, and the cars thus uncoupled. This is effected by a chain, G, attached to the upright arm which, passing over suitable rollers, connects with one lever near the top of the car and with two othe levers attached to the sides of the vehicle.
The draw bar, B, has a collar, H , to prevent its being forced too far into the opposite drawhead when the cars are brought together.
A point claimed as of considerable advantage in the invention is the facility with which it may be adapted to connect with and in the same manner as the common form of drawhead. In the forward part of the bumber, A, is a hole for a coupling pin which secures one end of the link. The other extremity of the latter slips over the couplingblock, D, where it is held in place by a square angle bar, I. One portion of this bar drops into a square though somewhat inclined hole in the drawhead, B, at J , and its low er extremity, being notched, locks itself in. This will be more clearly understood from the section shown in Fig. 3. The horizontal portion of the bar, I, simply rests along the top of the drawhead, B, and terminates in an end angled to fit the corner of the block, D, thus securely confining the link.

Patented through the Scientific American Patent Agency, September 2, 1873. For further particulars regarding purchase of interest in the patent, etc., address the inventor, Mr. Franklin E. Howard, Geneseo, Livingston county, N. Y.

CUMMINGS' IMPROVED MILL PICK.

The invention herewith illustrated is a small pick, designed for both furrowing and cracking, or for light and

Fig. 1

heavy stone dressing. The principal advantages are the firmness with which the blades are held, the manner of letting the same down, to compensate for wear, and also the facility with which they may be changed. The latter is an important feature, as it is often necessary to remove blades for sharpening as many as one or two hundred times in dressing a mill or a run of stones. Two sizes of the implemen are made, one for furrowing and the other for cracking. Fig. 1 represents the entire pick ready for use. Fig. 2 i a stationary stock bearing the handle, and Fig. 3 is a detach able clamp plate. The latter is a thin metal plate, having a
ratchet on its inner surface, a convex rib, A , on its rear ratchet on its inner surface, a convex ris,
side, and a loop or socket, B. The pick or blade is a thin steel plate of even thickness, with its upper end bent to fit the notches in the clamp plate.
In adjusting for use, the blade is placed upon the clamp plate, its sloping end entering one of the notches, when both are applied to the stack, C. The lower wedge-shaped end D, of the stock, enters the loop. or socket, B, of the clamp plate, and the wedge-shaped lips, B, of the clamp plate fit into corresponding channels formed in the ears, F of the into corresponding channels formed in the ears, \mathbf{F}, of the

HOWARD'S AUTOMATIC CAR COUPLING

 the cder.
the blade will force the clamp plate and blade upward, and cause them to embrace the stock with great power. The more powerful the blows upon the stone, the more firmly, it is claimed, is the blade confined in its place. To remove the blade the implement is reversed, and the opposite end of the clamp plate struck on any solid substance, when both clamp plate and blade will be instantly released.
As the blades are abraded by use, they can be let down in the ratchet until worn out. They are tempered along the ntire length, and only require grinding to sharpen.
Patented June 24, 1873, by Mr. Jotham Cummings, of West Charleston, Vt., by addressing whom further particu lars regarding sale of rights, etc., may be obtained.

The Eftects of Worry.

That the effects of worry are more to be dreaded than hose of simple hard work is evident from noting the classes of persons who suffer most from the effects of mental overstrain. The casebook of the physician shows that it is the speeulator, the betting man, the railway manager, the great merchant, the superintendent of large manufacturing or commercial works, who most frequently exhibits the symp toms of cerebral exhaustion. Mental cares accompanied with suppressed emotion, occupations liable to great vicissitudes of fortune, and those which involve the hearing on the mind of a multiplicity of intricate details, eventually break down the lives of the strongest. In estimating what may be called the staying powers of different minds under hard work, it is always necessary to take early training into account. A young man, cast suddenly into a position involving great care and responsibility, will break down in circumstances in which, had he been gradually babituated to the position, he would have performed its duties wichout difficulty. It is probably for this reason that the professional classes generally suffer less from the effects of overstrain than others. They have a long course of preliminary training, and their work comes on them by degrees; therefore when it does come in excessive quantity, it finds them pre pared for it. Those, on the other hand, who suddenly vault into a position requiring severe mental toil, generally die before their time.-Chambers' Journal.

HAMILTON'S CONTINUOUS SELF-FEEDING PERMEATOR The object of the device herewith illustrated is to inject tallow, oil, or similar material, into the steam in an engine cylinder, and thus, by thoroughly permeating, to lubricate the vapor and, consequently, the machinery with which the same comes in contact. The invention is an ingenious appli cation of the needle principle, the supply orifice being not over one thousandth of an inch in diameter, so that the lubricant is driven in, in the shape of fine mist or spray. Probably the most important advantage claimed is that the apparatus will continue to supply oil even after steam is shut off, as in cases of locomotives on down grades, etc. How his is effected will be noted as we progress, in the description which follows
The chamber, A, and distributing bolt, B, Fig. 1, are cast n a single piece of any suitable metal. In the bolt are orifices through its wall, leading to the channels formed by the intermediate space between the needle, C , and its interior At the end of the bolt is arranged a conical discharge orifice,
in which is the steel pointed valve spindle or needle. The relative diameters of the needle and opening are such that when the former is screwed down so as to shut off all further flow of the lubricant, its point projects beyond ihe hole and into the cylinder, so that the orifice is, by this means always kept free from incrustation. The needle spindle passes through a stuffing box, at D , and is rotated by the hand wheel shown. At E is a socket bearing, to which is secured, by means of a screw, a bearing plate for retaining he cup in proper position beside the steam chest or cylin

The oil is poured into the cone-shaped vessel, F, in the center of which is cast a vertical tube, E, shown in section in Fig. 2. The interior of the latter is threaded to receive the screw, H. In the bottom of the receptacle are made annular supply chan nels, I, and along said screw, H, is cut a groove, as shown, to serve as an air passage. The screw, H, forms a screw plug valve, and terminates in a hollow spindle K. The surface of the female thread in tube, G, extends below the discharge orifices, I, of the supply chamber, and also below the inlet or escape openings of the air passages, so that each can be opened and closed at pleasure by simply turning the plug valve. The tube, L , of the sediment cock (Fig. 3) is screwed into an opening at the base of the chamber, and is formed, with a female thread, within a small valve chamber into which the oil flows through the short passage shown. The valve plug, M, is conical at its end, and has a passage, throughout its length, opening by branches into the valve chamber.
The apparatus being secured to the cylinder or steam chest, oil or other lubricant, is poured into the cup, the valve plug, H, being elevated to such a position as to leave the lower orifices of the channels, I, and air passages open. The air then will escape as the liquid flows in, a point of adantage, as it is claimed to give the engineer control over the cup, whether the engine is in motion or not, and with no risk of his getting scalded with boiling oil or tallow.
When the chamber, A, is filled, the plug, H, is screwed down, thus cutting off the supply. The needle spindle, ${ }^{\top}$, in bolt, B, is then caused to open the orifice leading into the cylinder. The lubricant passes into the bolt, B, through the orifices in its walls, and is discharged, as before stated, in spray-like form. The steam also enters the chamber, A, through the same ofifices, but, becoming condensed, falls to the bottom, and lifting the lighter lubricant, keeps the latter in condition readily to flow to the tubular section of the bolt, B. It is stated that when the cup is emptied the amount of oil drawn off is just equal to the capacity of the chamber, and that the lubricant must, consequently, be always

above the bott and in condition to be fed through the open ings. The mere action of the valves, therefore, when steam is shut off from the cylinder, it is claimed, is sufficient to bring the oil away, so that the lubricant is supplied just when the facings become dry and cutting begins.
To draw off the contents, it is only necessary to turn the valve plug, M, and thus allow the sediment, etc., to escape through the opening through its center.
Patented June 24, 1873, to Mr. William Hamilton. For further information address William. Hamilton \& Co., Box 379, Erie Pa.

IMPROVED LUBRICATOR.

We illustrate in the accompanying engraving a new lubricating device, claimed to ensure a continuous and econom ical flow of oil or similar lubricating material into the cylinders of steam engines, and, besides, to possess many improvements and advantages in general construction.
The oil is poured into the cup, A, Fig. 1, and descends by the glass tube, B, into the circular receptacle shown. At C, the apparatus is attached to the cylinder, the steam from which, when the valve, D, is opened, passes up the tube, E. This tube is movable in the direction of its length and is held tightly in stuffing boxes, as indicated in the sectional view of its upper portion, Fig. 2. G is the condensing surface, so that the steam, emerging from the end of tube E, fills the intermediate space between said tube and the inner periphery of G with water. It is clear that, by moving tube E up or down so as to bring its upper end nearer or further from the cover of G, the condensing surface will be decreased or augmented so that less or more water will pass hy pipe H, and mingle with the oil in the reservoir. The effect of this addition of water is to displace the oil, raising the latter back through glass tube B and pipe H into G, and thence down tube E into the cylinder at C . The glass tube, B , affords a convenient means for the engineer to perceive the amount of oil in the apparatus, and also to know when the water entirely displaces the lubricating material in the reservoir, a fact indicated by its appearance at the bottom of the tube. There is an opening in the lower part of the reservoir which communicates through pipe I and valve J with the bent conduit shown, thus allowing the contents to be drawn off at will. The valves at J and at A are provided with screw thread collars, which secure them in place and through which their stems freely work. This is designed to obviate the difficulty, which arises when the thread is on the valve stem, in screwing the plug down on its seat in case of any foreign material stopping the way. With the present arrangement, the collar is the securing portion, while the stem may be turned around so as to grind the valve into its seat.
The inventor informs us that he has had this device in use The flow is constant and unobstructed, while the expenditure of oil is reduced to a minimum. The construction is strong and durable, and the apparatus generally appear is strong and durable, and the apparatus generally appears to
us as showing considerable ingenuity as well as being well us as showing conside
adapted for its purpose.
Patented through the Scientific American Patent Agency, January 7, 1873. For further particulars address the inventor, Mr. James McL. Power, Port Townsend, Washington Territory, or at Warren, Trumbull county, Ohio.
Testing Alcohol It is customary to obtain the percentage of absolute alcohol and water in mixtures of alcohol by taking the specific gravity with a hydrometer especially adapted to the purpose and called an alcoholometer. When a liquor contains sirups and extrackive matters, the specific gravity fails to indicate the amount of alcohol present. In such cases it has been necessary to distil off the alcohol and then measure it.
In these cases, and also where no alcoholometer is at hand, or the quantity of the liquid is too small to float one, Vogel's method may be employed. He found that, when dry starch paper was dipped into a solution of iodine in alcohol of 66.8 per cent or over, the starch was not turned blue. If the spirits contained less than 66.8 per centahsolute alcohol, the paper is immediately blued. To apply the test to weaker alcohols, it is only necessary to add

THE JAPANESE DEPARTMENT=AT THE VIENNA SHOW.

Here are exhibited the choicest articles of workmanship, embracing those forms of art which, for ages, have satisfied the popular tastes of Japan, but which, under the rapidly improving ideas of her people, will soon for ever disappear. improving ideas of her people, will soon for ever disappear.
Remarkable sea monsters of grotesque form, birds, vases, globes, etc., having the appearance of solid materials, elaborately adorned, but in reality composed of paper, stretched and supported on bamboos, surprise and interest the visitor on every side. The display of Japanese trappings for horses, vehicles, saddles, bridles, and equestrian equipments is quite extensive and includes many peculiar forms. For example, instead of a stirrup like ours, the Japanese use a piece of wood bent at a sharp angle, to one end of whish the stirrup strap is attached, while the foot rests on the portion below, which hangs horizontally. The stirrup is beautifully decorated. The wealthy Japansse, when they ride, present a gorgeous appearance, the animal being covered with goldplated straps, bridles, and fringes, while the dress of the rider is adorned with golden emblems, and his belt filled with costly swords.
The show of Japanese arms is very fine, especially the collection of swords. These are of curious forms and elaborate workmanship, great pains being taken in the ornamentation of the hilts. The steel is of splendid quality.
In their mental power and readiness to appreciate the ideas and appliances of modern nations, the Japanese are decidedly in advance of other Eastern peoples; and now that the government is so fully committed to the re-education of the people, on the basis of Western civilization, the nation will soon take a high rank. Large numbers of Japanese young men, from the prominent families of the Empire, are now being educated in Europe and this country. At the Vienna Exposition a special delegation of Japanese students and officials are employed to copy and procure information about everything which they consides to be useful for introduction into Japan.

POTATO BLIGHT AND ROT

Dr. Thomas Taylor, of Washington, D. C., communicates to The Lens the result of experiments upon potatoes, for the examination into the chemical and strucof several leading mycologists. Among other tubers, one half of a potato brought from Santa Fé, New Mexico, was placed in water with a diseased specime Mexico, was in water to which sugar had been added. An Ohio potato was similarly arranged, and the effect of al lowing it thus to re main for a consider able period noted. On the twentieth day, the Ohio speci men had entireb men had entirely dissolved, while the Santa Fé potato was
uninjured. Comparing the portions in the sugared water, the Ohio tuber ap peared a mass of in fusorial life, mycelium, and budding spores, with a strong odor, no starch cells being discernible.
The New Mexican specimen showed few infusoria, and the starch granules arranged in cellu lose, between which bundles of mycelium and budding spores appeared in profu sion. No liberated granūles were visi granūles were visi ble. Since the seex periments, other nor thern and eastern varieties have been tested by fungoid solutions in contrast with some of the New Mexican varie ties, giving like re sults, clearly demonstrating the superiority of the Santa Fé potatoes, over all others thus far ex. amined, in respect to their powers of re sisting fungoid and infusorial action.
We note that the government is about to test, by samples
of every variety of potato from the a bove mentioned localof every variety of
ty, their anti-fungoid qualities in the open field and in conirast with the usual varieties grown in that section of the country.

THE NEW EXPLORATION OF THE AMAZON RIVER, BY PROFESSOR ORTON.--UP THE AMAZONS.

thousand miles on the great river.-scenery

A voyage on the Amazons is excessively monotonous. vast volume of smooth, yellow water, floating trees and grass, low, linear-shaped islets, a dark, even forest, the shore of a boundless sea of verdure, and a cloudless sky with occasional flocks of screaming parrots, these are the general features. No busy towns are seen along the banks only here and there a palm hut or Indian village, half bur ied in the wilderness. No mountains break the horizon, only a half a dozen table-topped hills; and while many bluffs of red and yellow clay are visible, they are exception al, the usual border being low alluvial deposits, magnificent ly wooded, but half the year covered with water. The real grandeur, however, of a great river like this is derived from reflecting upon its prospective commercial importance and
immense drainaje. A lover of Nature, moreover, can never immense drainage. A lover of Nature, moreover, can never tire of gazing at the picturesque grouping and variety of trees with their mantles of creeping plants; the wild, unconquered race of vegetable giants; the "reckless energy of vegetation," compared with which the richest woods on the Hudson are a desert; the dense canopy of green, supported by crowded columns, branchless for fifty or eighty feet; the parasites and undergrowth struggiing for life; the broad leaved bananas and gigantic grasses; the colossal nut and pod-bearing trees; and above all the hundreds of species o palms, each vying with the other in beauty and grace Through such a densely packed forest flows the Amazon with ali the grandeur of an ocean current.
In giving our voyage up the great river to its source among the Andes, we shall touch only at representative points, and confine ourselves mainly to such commercial and industria facts as will be likely to interest the practical man. From Pará to Santarém, the first town of importance, is 543 miles. The passage can be made by steamer once a week, sometimes oftener; fare, $\$ 25$; time, four days. Twenty hours after leaving the capital, the steamer stops at the little village of Breves on the south west corner of the great island of Mara-
jo. Rubber is the chief article of export. Here begius a labyrinth of narrow channels connecting the Amazons with the Pará; and as the forest is usually luxuriant, the sail through to the Great River is the most memorable part of the whole voyage. Here the palms are seen in all their glory; the slender assaï and jupatí with their long, plume like leaves, the mírití with enormous fan-like leaves, and the bussú with stiff, entire leaves, some thirty feet long. The banks are frequently bordered with heart-shaped arums and waving arrow grass, or with plantations of the cacao tree and mandioca shrub
The first view of the Amazons is disappointing, as it is nearly filled up with islands, but where the Xingú comes in, it shows its greatness, being ten miles wide. At the mouth of this tributary is situated the pretty village of Porto de Mos, now numbering but 800 souls, but destined to be an important center in the rubber trade, while the country up the Xingú is admirably adapted for coffee. Passing the singular hills of Almeyrém and the rightly named village of Monte Alégre, famous for its cattle, we reach

santarem

at the mouth of the Tapajos. This ambitious but, to an American, sleepy looking city is the half-way station between Pará and Manáos, and is now aspiring to become the capital of a new province, to be called Baixo-Amazonas, extending from Obydos to Gurupá. It is not thriving, however, barely maintaining its old number of 2,500 souls. Of these about 2,000 are Indians, Negros, and mixed, including two hundred slaves. The situation is beautiful, lying on a green slope facing the clear Tapajós, with undulating campos and flat-topped hills in the rear. Three or four long rows of low, whitewashed, tiled houses, with less than half a dozen two-storied buildings and one Jesuit church, make up the city. There is a "Collegio" for boys and girls, the former department having fifty students varying in age from eight to sisteen, and a course of four years for the study of grammar, arithmetic, geography, history, French, Latin, algebra, and geometry. Just now there is a conflict betweer the Jesuits and the Masonic order, the government siding with the latter. The priest decla ed from the pulpit he should obey Rome rather than Rio. The climate of Santarém is delightful, the trade winds tempering the heat (which is seldom above 83°) and driving a way all insect pests. The chief diseases are syphilis and fevers. Dr. Stroope, an immigrant from Arkansas, is the sole physician. The soil in the immediate neighborhood is sandy and poor; but inland, especially , where the

american colonists

have located, it is exceedingly fertile, rice, for example, having a yield of seventy-five bushels to the ε.cre, and tobacco one thousand pounds. The great want is a laborng class there are too many shopkeepers and too few workers. Ye such as are willing to work can be hired for fifty cents a day.
One paper, a foot square, is published weekly. The follow One paper, a foot square, is published weekly. The follow-
ing prices will give some idea of living at Santarém: Wheat flour (mostly from Harper's Ferry, U. S.) costs $\$ 16$ a barrel and New York goods generally sell at three times their original value, the chief addition being made at the custom
house atPará. Agricultural implements are at double their price. Butter (all from England and the United States), 80 cents a pound; Holland cheese, 75 cents; Newfoundland codfish, 20 cents a pound; Lowell domestics, from 25 to 40 ductions, cacao sells in the city from $\$ 2.10$ to $\$ 2.20$ an arroba (32 lbs.); coffee from 16 to 24 cents a pound; sirup (no sugar is made), 40 cents a frasca (5 pints); maize, $\$ 2$ a bushel cachaga rum, 50 cents a gallon: peanuts, $\$ 2$ a bushel; Bra zil nuts, $\$ 1.50$ a bushel ; farina, $\$ 5$ a bushel ; tobacco, $\$ 1$ to $\$ 1.25$ a pound; lime, $\$ 3$ a barrel; pork, 35 to 40 cents a pound; beef, 7 to 9 cents a pound; hides, at the ranchos, 5 cents a pound, at Santarém, 7 cents a pound, at Pará, 12 to 14; cattle, at the ranchos, $\$ 15$ to $\$ 20$, at Santarém, $\$ 25$ to 28, at Pará, $\$ 35$ to $\$ 50$; horses, at the ranch
The sara, $\$ 10$, at Para, $\$ 50$ to $\$ 100$.
The best paying business at Santarém would be in the nanufacture of brick, leather, and lumber. The only aricles manufactured are cajú wine, cachaga, soap, and lime. Nearly all the following exports, given in the order of their valuation, come down the Tapajós: Rubber (about 7,000 arrobas annually), cacao, hides, dried beef, fish, farina, salsaparilla, tobacco, guaraná, copaiba oil, Brazil nuts, tal
low, cattle, horses, and lime. Coffee, sugar, and rice are mported from below, although hardly auy part of the Amazons valley would produce more. Rubber gathering has not only killed agriculture, but drained the district of 2,000 inhabicants.
Santarém is of interest to the American reader as it was selected for colonization by emigrants from the Southern States. Most of the colonists have left, only six families remaining; but these contain nearly all the enterprise and in telligence of the motley party that left Mobile in 1867. These have chosen their plantationson the slopes of the hills, six miles south of the city, and are astonishing the Brazili ans with the results of their industry. The land is rated at 22 cents an acre; but practicaily the colonists enjoy "squatter sovereignty," pre-empting a square mile, and paying no taxes except on exports. They can sell their improvements but not the land. The soil is black and very fertile. It beats South Carolina, yielding, without culture, 30 bushels of rice per acre. Sugar cane grows eight feet high, or twice the length of Louisiana cane, and fully as sweet. Sweet potatoes grow naturally; indeed it is impossible to exterminate the plant. Broom corn and cotton grow luxuriantly. In dian corn does not mature well; turnips grow finely, but do not come to se

aluable vegetable products

abound at the American settlement: abio, ata, pine apple, pikiá, papaw, aracá, ingá, abacati, bread fruit, orange, banana, cocoa nut, peach palm, cupuassú, cajú, cará (or yam, four or five kinds), three kinds of mandioca, tomato, pepper, ginger, Brazil nuts, tonka bean, sugar cane, sweet potato, quash, Lima bean, rice, tobacco, indigo, and pita; while in the dense forest we find, the following trees, many of them
unknown to commerce, but furnishing the richest cabinet unknown to commerce, but furnishing the richest cabinet
woods or timber: itaüba (often 60 feet high and 4 feet through), cedar (specimens of which occur 100 feet high and 7 feet in diameter), jutahí (a very hard, dark wood, used for sugar mill rollers, etc.,) sapucaya (resembling hickory, the clear trunk of which is often 50 feet high), loira (the pine of the country), moira-pushúva (similar to black walnut), cumarú, sapupéra, macacaúba (very close grained), acariúba (very durable), javana, rosewood, pracuúba (very hard), pao-mu
latto, pao-prito, pao-d'arco, and andiroba. With Nat latto, pao-prito, pao-d'arco, and andirbba. With Nature so
generous, with a healthy location at the outlet of the rich generous, with a healthy location at the outlet accessible to
Tapajos, and, though 500 miles from the sea, accer Atlantic vessels of heavy tunnage, Santarèm is sure of brighter future. From Santarém to

manaos,

the capital of the upper province of Amazonas and the sec ond city in magnitude on the river, is 460 miles. Three villages of importance are passed in this voyage: Obydos (seated beside a bluff on the " narrows," where the river, con tracting to a strait not a mile wide, has a depth of forty
fathoms and a current of 2.4 feet per second) exports confathoms and a current of $2 \cdot 4$ feet per second) exports con
siderable cacao and Brazil nuts. Villa Bella, insignifican in itself, is the outlet of a large and rich inland district, ex porting cacao, guaraná (from Manés), piraracú fish, bast, Brazil nuts, tonka beans, tobacco, coffee, caferána, copaiba oil, hides, and beef, but importing almost every necessary of life. And Serpa, built on a high bank of variegated clay, nearly opposite the entrance of the Madeira, has a deep wa ter frontage, where vessels might easily dispense with lighters, montarias, etc. But wharves and piers are yet to
be on the Amazons. The excuse for not building them be on the Amazons. The excuse for not building them is
that the great difference between high and low water (50 feet) precludes their construction. We think any experi enced mechanic from the North could easily show that piers on the river are among the possibles, and at the same time reap a fortune for himself. One is greatly needed at Manáos, where sometimes twenty-five steamers unload every month.
On the left bank of the dark Rio Negro. ten miles from its junction with the Amazons, stands the St. Louis of Brazil, the city of Manáos. The site is admirably located for either residence or commerce. It is uneven and rocky, twenty feet above high water mark. The river in front is deep enough for the Great Eastern, and its banks for hundreds of miles are packed with a luxưriant forest of valuable trees. The soil is fertile in the tropical sense; and the climate is Neapolitan, Nature having left little to be desired in this respect. We did not see the mercury rise above 93° at mid day, and the nights are invariably cool, with but few mos-
quitos. The country around is quite romantic for the valley, being undulating and covered with picturesque vegeta
ion while the igara apes or canoe patha winding through the ion; while the igarapés or canoe patha winding through the
forest are among the most beautiful features in the Amazonian landscape.
The city, for a long time stagnant, is now rapidly improving. As we saw it in 1867 , it was meanly builf, without a show of enterprise, without a hotel, and not $3,00 \hat{i}$ inhabitants. It now numbers 5,000 souls, with 17,000 in the dis. trict, a mixture of Brazilians, Portuguese, Negros, Indians, Italians, Jews, Germans, and English; it has a fine cathedral, to cost, when completed, $\$ 200,000$, and a President's palace in process of construction; two hotels and a market, beside many elegant private houses. The city is lighted with 500 kerosene lamps, has day and night schools, with an Episcopal Seminario, three newspapers, one daily; and one two horse carriage, which is advertised "to let,
Agriculture, as everywhere on the Amazons, is dead ; even farina, the bread of the land, is imported from Pará, although this is the mandioca country. In fact, there is a constant lack of food in the city.
price of labor and productions.
The only productive industry worth mentioning is seen in one steam saw mill, one brick and tile establishment, and on ϵ soap factory. Masons and carpenters get from $\$ 2.50$ to $\$ 5.00$ a day ; pilots $\$ 100$ a month ; and physiciens $\$ 5$ a visit. The daily "Commercio de Amazonas" costs $\$ 10.00$ a year. Hotels, $\$ 2$ per day. The following prices, current the present month (August), will serve to illustrate life a thousand miles up the Amazons: Cacao, $\$ 2.20$ an arroba ; tonka beans, 20 cents per kilogramme ; puxurí (nutmegs), 90 cents per kılogramme; guaraná, 68 cents per kilogramme; Brazi! nuts, 5 cents per kilogramme; copaiba oil, 70 cents per kilogramme; fish glue, 90 cents per kilogramme; dried meat, 21 cents per kilogramme; dried pirarucú fish, 23 cents per kilogramme; vanilla, 45 cents per kilogramme; indigo, $\$ 2$ per kilogramme: salsaparilla in bundle, 80 cents per kilogramme; tucum thread, $\$ 1.00$ per kilogramme; tallow, refined, 90 cents per kilogramme; rubber, from 56 cents to 85 cents per kilogramme; rubber, in liquid, $\$ 2.53$ per kilogramme; aguardente (cane rum), from 15 to 20 cents a liter : tapioca, 20 cents a liter; piassaba in the rough, 12 cents per kilogramme; piassaba cord, 50 cents a centimeter ; piassaba brooms, $\$ 1.60$ a dozen ; estopa or bast, 9 cents per kilogramme; hides, 26 cents per kilogramme; cotton hammocks, from $\$ 5$ to $\$ 14$ each ; tucum hammocks, feathered, $\$ 45$; cedar logs, $\$ 1$ per meter; cedar or itaúba boards, sixteen feet long, eight inches wide, unplaned, $\$ 18$ a dozen; cabinet wood in boards, 45 cents a meter; steamer fuel, $\$ 20$ a thousand sticks, each weighing on the average fifteen pounds*; native brick $(8 \times 6$ $\times 2$ inches) and tiles, from $\$ 50$ to $\$ 75$ a hundred, at Pará $\$ 35$; the ordinary red sandstone rock, which abounds in the vicinity, unworked, 75 cents a cubic foot.

duties and freights.

The provincial duty on liquors is 25 per cent; on rubber, 12 per cent ; on fish, 5 per cent ; on all other articles, 10 per ent. If exported, 5 per cent extra is collected at Pará, beides fees. Rubber collected in Peru and Bolivia pays no duty. Steamer freight between Manáos and Pará, on rubber, 25 cents an arroba; on coffee and cacao, 24 cents an ar roba; on Brazil nuts, 35 cents a bushel; on brick, $\$ 20$ a thousand; cotton, 30 cents an arroba; hides, 20 cents each; crude piassaba, 25 cents an arroba; salsaparilla, 30 cents an arroba; tobacco, 25 cents an arroba; boards, $\$ 3.30$ per dozen; beeves, $\$ 7.50$ each; horses and mules, $\$ 10$ each. Freights between Manáos and San Antonio on the Madeira; on rubber and salsaparilla, 40 cents an arroba; cacao, coffee, dried beef and tallow, 32 cents an arroba; Brazil nuts in sacks, 35 cents a bushel; hides 25 cents eacin. To Hyutanahan on the Purús, the tariff is about the same.
The produce of the Rio Negro and Solimoens does not stop at Manáos, but goes directly to Pará, and must be purchased there. This is owing to the fact that Pará merchants have put the producers under obligation, so that producers up the river cannot sell at an intermediate place. But Manaos is determined to become independent of Pará; and the project of a through line of steamers from Manáos to Europe is on foot. With a healthy climate and fertile soil, a situation nea the mouths of four great rivers, the Maderia, Negro, Purús and Juruá, and having water communication with two thirds of the continent, this city has commercial advantages unsurpassed. What it wants is an even and generous legisla tion and an industrial class.

James Orton.

Honors to Operatives and Foremen.

The Society of Arts and Manufactures, Vienna, has issued 134 silver medals, with diplomas, to operatives and fore men, recommended for the honor by employers who were exhibitors at the Exposition.
The distribution is as follows:

*Cutting wood for the steamers is very lucrative. Many will soon go into the business with steam or horse power and make fortunes. The forest is
free to all. The great difflculty in ascending high up certain tributaries is not so much the lack of water as the lack of fuel, there being no one to cut it.

Trin of Steam Canal Boats on the Erie Canal, in
Competioion for the State Reward of One Hundred Thousand Dollars.
The trial of steam canal boats on the Erie canal, in competition for the $\$ 100,000$ prize, came off between Syracuse and Utica, N. Y., on October 15 and 16
The members of the State Commission present at the trial were Van R. Richmond, George Geddes, John D. Fay, E. S. Prosser, Daniel Crouse, W. S. Nelson, and George W. Chapman; also D. M. Greene, engineer in charge, and H. A. Petrie, Secretary of the Commission

The boats were required to be able to carry 200 tuns of cargo, besides their motive power, and to make an average of three miles an hour. But none of the boats made this time, and none can claim the reward.
The following is a brief description of the five competing boats, their machinery, etc
the william baxter
was built especially to compete for the prize. She is 96 feet long and 17 feet beam, and has much sharper lines than the ordinary canal boats. Her bottom is perfectly flat, and her sides, stem, and stern, vertical. The outlines of the immersed portions of her bow and stern are the same. She has an overhanging deck at the stern to protect her propellers, and with 200 tuns of cargo she draws $5 \frac{1}{2}$ feet water Her machinery consists of a Baxter upright boiler, and a pair of Baxter compound condensing engines, 7×12 and 12×12. Her boiler is 6 feet high, 46 inches diameter, and has 152 two inch flues, and a grate surface of 7 feet. She is propelled by 2 three bladed twin screws, of $4 \frac{1}{2}$ feet diameter and 4 feet pitch. Theamount of coal consumed in running from Syracuse to Utica, a distance of 56 miles, was 830 lbs. the port byron
This is a full sized canal boat of the ordinary outlines, but with a recess or trunk, extending along the center of the bottom of the boat and terminating in an opening, cut in the stern for the reception of the paddle wheel. This paddle wheel is 10 feet in diameter and has eight feathering paddles made of boiler iron. The wheel is driven by two 12×24 horizontal non-condensing engines, which are set on the quarter. The amount of coal consumed from Syracuse to Utica was 4,450 lbs.

the central city.

This bjat is built somewhat sharper at the bow than the ordinary boats. She is 96 feet long and 17 feet 4 inches wide; and she is driven by two common paddle wheels, placed in recesses cut in the stern. These wheels are of 9 feet diameter, and are driven by a 10×17 horizontal engine. The boiler is 16 feet long and 4 feet diameter. The peculiarity of this boat consists in an arrangement for raising and lowering the paddle wheels and machinery, so as to obtain an uniform immersion of paddles without regard to the draft of water. This adjustment is accomplished by means of four vertical screws, on which the entire machinery, engine, and boiler, rest. The amount of coal consumed from Syracuse to Utica was 7,280 lbs.

THE C. C. POPE
is a regular canal boat of the largest size, to which the screw propeller and machinery are attached without any cutting away of the hull of the boat. A common screw is placed on the outside of the stern in a triangular frame, and an upright shaft and gearing connect this with the engine. The propeller wheel is raised and lowered by means of a screw to
suit variable depths of water. The engine is 10×12, and, suit variable depths of water. The engine is 10×12, and,
with the boiler, occupies but 12 feet of the length of the boat, at the stern. This boat has a steam windlass attached, which is used in hoisting cargo and pulling the boat in and out of locks. The amount of coal consumed from Syracuse to Utica was $3,454 \mathrm{lbs}$.

he william newman

is on about the same model as last year, but has a Hubbard hydraulic propeller in place of her old screw. She has an horizontal tubular boiler, 8 feet long and 44 inches in diameter, and a grate surface of 13 feet; and she is driven by a single 12×12 upright engine. The propeller is 4 feet 8 inches in diameter and 3 feet long. The amount of coal consumed from Syracuse to Utica was 4,500 pounds.
The boats left Syracuse, October 15, as follows William Baxter

Central City.
:23 A. M.
W. C. Pope.......

They arrived at Rome as follows
 William Baxter

C. C. Pope..

Port Byron.
Central City
William Ne

The boats left Rome as follows

William Baxter
Cort Byron
Central City
William Newman
The boats arr
William Baxter
William Baxte
C. C. Pope.....
Port Byron
Central City.......

$$
\begin{aligned}
& \begin{array}{l}
\text { 9: 26 P. M., October } 15 . \\
5: 30 \mathrm{~A} . \text { M., }^{15}
\end{array} \\
& \begin{array}{llll}
\text { 5:30 A. M., } & " & 16 \\
6: 09 & " & " & " \\
6: 55 & " & " & " \\
8: 53 & " & " & "
\end{array} \\
& \text { 9:45 P. M., October } 15 . \\
& \begin{array}{l}
\text { 8:40 } \\
9: 00 \\
9: 10 \\
9: 50
\end{array}
\end{aligned}
$$

October 16:

William Newman ery great, the total detentions of the Newman alo way were about five hours.
The Syracuse Journal gives the following conclusions, drawn from remarks made by several of the commissioners:

1. That it is quite impossible to invent any machinery that will propel a boat carrying two hundred tuns at a less cost than when moved

2. That boate

That boats, as now constructed, are too large for the capacity of the canal, their progress being retarded by natural and well known laws relating to space for the displacement of water.
3. That as the law requires that inventions shall be of a character making them practical tor superseding horse power, an award is not likely to follow the test.
4. The law requires a speed of at least three miles an hour and as none of the boats made that time, an 9ward cannot be legally made.

SEE announcement on another page for a special edition of the Scientific American. Sisty thousand copies to be mailed gratuitously, postage prepaid, to manufacturers, machinists; contractors, and others engaged in industrial, scientific, and mechanical pursuits. Parties having machinery or new inventions to sell will find this an unusual medium to advertise their cases.

Erratum. -The address of Mr. Dittenhaver, the inven of the wood filling described on page 186 of our cur rent volume, is Napoleon, Ohio, and not Chapalear, Ohio

zerent dancrical and forcign zefatents.

John Haggerty, Corry, Pa.-This invention consists in providing the base ortion of the loop or runner with projections, to prevent the same turning which are applied to the opposite side of the strap or head plece of the which
William F. Senior, Ripley, Ohio.-Two arms are placed in the cavity of the hopper-shaped coupling box. The forward ends of the arms are rounded off, and rest against concave shoulders formed in the forward parts of the
sides of the box, where they are securely pivoted to said box, the said sides of the box, where they are securely pivoted to sald box, the said
shoulders projecting inward sufficiently to prevent the forward ends of the arms from being struck by the entering coupling bar. Springs are placed between the rear ends of the arms and the sides of the box, and are designed to hold the rear ends of the said arms pressed inward or toward
each other. The ends of the coupling ber rounded off, and have shoul. each other. The ends of the coupling bar are rounded off, and have shoul.
ders formed upon their sides, so as, when pushed In, to force the fnner ends of the arms apart. As the shoulders of the end of the coupling bar pass the of the sald coupling bar may rest against the ends of the arms, which thus sustain the draft. In the cavity of the box is formed a recess to recelve
the coupling bar and center it, so that it may bear equally upon the arm the coupling bar and center it, so that it may bear equally upon the arms. Upon the inner ends of the arms are formed projections, between which is placed a block, so that the arms may be forced apart to release the coupling
bar, by turning the said block, which is thus protected from being struck bar, by turning the sald block, which is thus protected from being struck
by the entering coupling bar. The block is attached to the end of a whicn passes up the platform of the car, so that the arms may be forced apart to release the coupling bar by turning the same. When the crank is released, a spring brings the block parallel with the projections of the arms. With this construction, when the cars are betng run together, should the end of the coupling bardrop too low, it may be ralsed and held in proper position by the attendant from the platform of the car by means of a rod
having a hook formed upon its end, or from the top of the car, by using longer rod. The cars may thus be coupled without danger. By sultable construction, the cars can be readily uncoupled when under headway.

Improved Nut Lock.

Homard C. Lowe, Northeast, Md., assignor to himself and John B. Haley, of same place,-This invention is an improvement in the class of nut locks in which a metal plate is placed in a recess of the washer of the nut, and its ends bent up against the sides of the latter. The improvement relates to the combination of a washer provided with projections on its under
side, and two straight grooves in its face (the same crossing each other right angles), and a sheet metal locking plate, whose form is that of a Latin cross, to adapt it to fit in said grooves, and thus form a double lock fcr the

Improved Stamp Mill for Ores.
都 inning. Thec rubber springs on the stamp stems, which are compressed by the cam the stamps rise and react to give the stamp a quick downward movement. coarse quartz is fed through a hopper under the most elevated stamp, which has the coarsest screen. After undergoing the stamptng process within
this screen, the quartz is spouted under the next stamp, whose screen 18 his screen, the quartz is spouted under the next stamp, whose screen is ner, and from this it is spouted under the last stamp, and when it passes falls by its own gravity from one stamp to another through the spout Thisis whatis called spouting the quartz from one stamp to the other The screens not only increase in fineness as the quartz descends, bat also in speed, and are reduced in lift from the first to the last stamp. By reduc ing the lift and fncreasing the speed of the lower stamps, the latter ar made to work nearer the dies.

Daniel MoKinnon, Wmproved Head Band.

place.-The band is made in one piece, in the form of a bow of ho to bind and ornament the same.

Improved Chandelier Center.
Joseph Kintz, West Meriden, Conn., assignor to himself and P. J. Clark of same place.-The first feature of the invention consists in a construc ton of the center in such manner that the lower part can be readily low ered away from the upper part. and the center thereby opened to allow
the arms to be put in without entirely removing the lower part, the lower knob, which, together with the rod and upper knob, secures the parts together, be removed. The second part consists of the arrangement
of the hooks on the inner ends of the arms the center. The third part consists of openings in the lower part of the middle portion of the center, in connection with the contrivances for se curely hold them when connected. The fourth part consists of a and se flange projecting from the under side of the top part of the center to se cure the upper hooks of the arms : and the fifth part consists of a connec ton of the suspending rod to the center, so as to prevent it from turning

Improved Can for Paint, etc.
Ohver E. Walker, Cincinnati, Ohio, assignor to himself tite of Charles F. Stites, of same place.-This invention consists of a paint can composed a metal cylinder wlth wooden heads at each end, secured, by a flange o
the cylinder end turned over the outside and a bead ralsed on the fnside o the cylinder against the inside of the head, by impressing a groove in the outside of the cylinder. One of the heads has a large opening through it o allow of putting in and removing the paint, and a plug is used to close to allow
he hole.

Improved Revolving Fire Arm.
William H. Phlifp, Brooklyn, N. Y.-This invention relates to the combi nation of a sliding pawl bar and a series of pawls with a series of revolving cartridge cylinders arranged on the same axis, and provided with spiral and and straight grooves to enable them to be turned in succession. whereby,
when one cylinder is exhausted, it sets the next one in mution, and ceases when one cylinder is exhausted, it sets the next one in motion, and ceases
itself to rotate. The invention also consists in connecting the pawl bar itself to rotate. The invention also
and series of pawls with the hammer.

Improved Spring Rocking Chair.
Franklin Chichester, Minwauke, struction of that class of rockingchairs which have the stationary legs or a rocking motion; and consists in the peculiar mode of applying a plate spring to the front of seat at the rear, and to the middle of back.

Improved Reel for Skeining Silk.

Robert Simon, New York city.-For crossing the threads of "greges, thrown, raw, and soft silks, and other threads or yarns, in skeining them,
to prevent the threadsfrom mixing and knotting together, and thus save much loss of time and waste of material in winding from the skeins upon bobbins, In consequence of the breaking and snarling common to the ordinary mode of skeining, it is proposed to have a wide reel with, say, six arms and as many longitudinal bars, in the outer sides of which are small transverse grooves. In combination with sald reel there are one or more traversing guides to lay the thread on the reel, the gulde belng operated so
that it will cross the threads at intervals between some of the bars-say, that it will cross the threads at intervals between some of the bars-say,
every second pair-and lay them parallel, or nearly so, between the others, and at the same time shift at each revolution of the wheel by a slow forward and backward motion, independent of the crossing motion, so as to lay the threads parallel and not directly upon each other, and thus contruct flat skems winc

Improved Centering Chuck

George H. Miller, Binghamton, N. Y.-This is an improved chuck for cen tering shafting and other work to be turned in a lathe, and consists in a
frame formed of arms crossing each other, and provided with slots to recelve the clamping dogs, a crank and pinion and ratchet mechanism for moving the dogs toward or from each other and holding them at any point and of a central tube and a punch working through the same.
Improved Cotton Press
Paul Williams and Robert A. Williams. Winona, Miss.-This invention
consists of joints in the serews which work the follower, whereby the latconsists of joints in the serews which work the follower, whereby the latter can be swung conveniently away from over the case. to allow of filling he case w
John Moffet, New York city.-The drawing cock for fitted into the head om the inside, and a plug is fitted in the inside extension. The outside itted in the side of the barrel directly over the drawing cock, with its plug also inside of the barrel. There is a vent passage through the cock, and a correspond dig passage through the plag, also an extension of the plug out hrough the cock, for the application of a wrench for turning the plugs. A rod connects the two plugs, for turning one by the other. Sald rod is capa
ble of a slight endwise motion in the plug, and a spring is arranged $w 1+\mathrm{h}$ it and said plug to keep both plugs tight on their seats. By turning the plu one way to open the drawing cock, the ventilating passages willbe bro into line, so as to admit the alr; but by turning them the otner way the passages will remain closed while the drawing cock is opened. so that

Improved Water Cooler.

Thomas Smith, Brooklyn, N. Y.-The object of this invention is to so im prove the water cooler in common use that pure water or other liquids may mpurities. It consists in arranging the receptacle for the liquids as a casing around the ice chamber of the cooler, providing it with an inclined bottom and a faucet at the lowest point thereof. A reed opening or fun el at the top admits the 1iquid.

Improved Griddle.

Samuel Kennedy, Allegheny City, Pa.-This invention consists of a grid die for baking pancakes having a hoop or flange projecting downward op and inclose a hot air space for equalizing the heat throughout the whole area of the griddle. The invention also consists of a damper, in combination with this elevated griddle and hoop or flange, for regulating the heat within the flange by opening or closing passages through it.

Improved Wheel for Vehicles.
Charles W. Spayd, Wilkesbarre, Pa.-This invention consists in the com bned spoke socket and felly clip of a wheel, having one end of the socket circular, but gradually cha
the spoke to be weuged.

Improved Brush Washboard and Roller
Isaac Hussey, Ironton, Ohio.-This invention relates to the application of bristle brushes in the operation of washing. A roller is employed that is
made both to rotate and reciprocate over the clothes, which are themselves made bod upon a stationary subjacent brush. In using the machine, the artlcle is spread upon the brush, and the rollerbrush moved gently up and down upon it, sald brush being immersed in the suds between each downward and apward movement.
James H. Hill, Boone, Iowa.-This invention consists
ub with corrugated or ribbed he sides on suttore bitan and sides, mounted on trunnions at with several loose balls of wood placed in it on the clothes to act in conunction with the water to effect the washing of the clothes. The tub is osclilated or swung on its trunnions byth
motion of the water, balls, and clothes.

Improved Sewing Machine Power.
Alfred W. Cochran, Eufaula, Ala.-This invention consists of a sewing machine mounted on the operator's rocking chair, and having its pitman connected to the wall or other stationary object, so that, by rocking the chair, the pitman gives rotary motion to the driving wheel of the machine
The sewing machine table, divested of the stand ordinarily used, is mounted on the arms of the chair in front o! the operator, and swings forward and backward in unison with him, so that no inconvenience in managing the work arises from the rocking motion. The pitman is, by preference, attashed to the stationary support on the horzontal plane of the crank haft; but it may vary from it either way to some extent without material effect. T
with it.

Improved Means or Adjusting Paddle Floats.
Juan B. Baptista, N ew York city.-The novelty of this frame and arrangement of the paddles consists of the upper and lower parallel cross bars for paddles in them by keys, or other equivalent devices, driven or screwed in holes in the paddles above and below the cross bars, the paddles having several holes at different hights. By simply taking out the keys or bolts, paddles may pe readly shifted to and putcing eala key or bots in again, the readapted to be changed with special facility, as often as may be required in the navigation of rivers, bays, a
sand bars and other shallow places.

Inventions Patented in England by Americans.
Compiled from the Commissioners of Patents' Journal.]
From September 22 to September 27, 1873. In
si Stiffenmr.-J. W. Hatch, Rochester, N. Y.
Boot Hele Stiffener.-J. W. Hatch, Roch
Car Wheid rtc--J.
Sax, Pittston, Pa.
purifying Sugar, etc.-J. M. O. Tamin, New York city.
Rolling Steel and Iron.-D. J. Morrell, Johnstown, Pa
Silvering Mica.- W. M. Marshall, Fhilladelphta, Pa
Switci, itc.-W. Wharton, Jr., Philadelphia, Pa.

Gutinesw and teximal

 $\frac{\text { The Chargefor Insertion under this head is } \$ 1 \text { a Line. }}{\text { Protect your Bildings with Patent Liquid }}$ Slate Rooof Paint. Fire Proof and Elasttca and very cheap. Pre Roor Paint. Fire Proor and Clastic and very Cheap.Send for Circular of Pricee and Certifcates. New York
city Root's Wrought ron Sectional Safetv Boiler.
1,000 in use. Address Root steam Engine Co. 2 da Avenue nd $28 t$ Street, New York
Lane's Monitor Turbine Water Wheel at The Jilo Well Auger is the best thing in
he world for prospecting for coal and ores and boring wells. Address Well uuger Company, St. L Louis, Mo. Wanted-Manufacturers forthe Best Com
binea Hay Rake and Tedder in use. Light, simple, dura
 culars, \&e., sent by C. La' Dow, So. Galway. N. Y.
Wanle Press. Address Iron, Room 19, No. 430 Wainut St.. Phila.
See the Barnes Foot and Steam Power Scroll
Sen Saw, at Fairs American Instit
cago Industrel New York, and Chi
 An Inventor of fine Steam Enginery to pro-
pel and steer present N . Y . Erie Canal Boats, will show model to a party who might take chief or sole in.
terest, low. Address, with references, Walter King, Richmond, Missouri.
Richmond, Missourl.
Sotitionary and Portable Steam Engines and
Boilers. Send for Circular. Clute Brothers \& Co., sche-
Wooddurytype-or Photographs in perma-
nent ink, on paper and glass. Specimens on exhibition at the Farir of the American Institute. Used largely by
Machinists and Manufacturers. Send for Price 1 list to Am . Photo-Relief P'tg Co., 1002 Arch Street, Philadel phia, Pa. J. Carbutt, Manager.
One of Root's No. 4 Rotary Blowers for Sale.
Used two years. J. J. S. Sternbergh, Reading, Pa. Stave \& Shingle Machinery. T.R.Bailey \&Vail. Patent on a powerful popular Microscope
or Sale. Address James H. Logan, 12 Cedar Avenue, Illegheny, Pa.
Chicago Exposition-See Abbe's Bolt Forgng Machine and Palmer's Po wer spring Hammer, there
o exhbibition. S. . F. Forsaith \& Co., Manchester, N.H. Nobody. will byy the metal Traness with its
Hitiess Iron Finger. The New Elastic Truss, ,683 Broadway, New York, holds the rupture easy till cured. Pres
Tringe
sure all around the body-
Engines, Boilers, \&c., bought, sold and ex-
changea. All kinds constantly on hand. Send for circular. E. E. Roberts 52 Broad way, New York.
Brown's Coalyard Quarry \& Contractors' Ap-
paratus for hoisting and conveying material by ron cable
 Sewing Machine Needle Machinery-Groov-
ers, Reducers, Wire Cutters, Eye Punches, dec. Hendey rothers, Wolcottville, Conn.
Buy Band Saws and Saw Benches of Gear, Boston, Mass.
Key Seat Cutting Machine.T.R.Bailey \& Vail. Enclish Roof Paint, all mixed in oil ready
 116 Madden Lane, New York.
Patent Chemical Metallic Paint-All shades
ground in oil, and all mixed ready for use. Put up in cans, barrels, and half barrels. Price, 50c., 1 , and 81.50
per gal. Send for card of colors. New York City oil Company, sole Agents, 116 Malden Lane, New York.
Horizontal Engines, the Best and Cheapest, We sell 1all Chemicals, Metallic, Oxides, and
mported Drugs; also, "Nickel Salts" and Anodes for

 Belting - Best Philadelphia Oak Tanned.
C. W. Arny, 301 and 303 Cherry Street, Philadelphia, Pa. Mercurial Steam Blast \& Hydraulic Gauges
fallpressures,very accurate. T.Shaw, 913 Ridge av.,Phil. For patent Electric Watch,-locoks, addreses
jerome Redding \& Co. 30 Hanover Street, Boston,Mass. Catalogue on Transmission of Power by
Wire Rope. T. R. Balley \& Vail. Mining, Wrecting, Pumping, Drainage, or
(rrigatig Machinery, for sale orrent. See advertisement,
 circular. J. T. Pratt \& Co.,53 Fulton St., New York.
Lathes, Planers, Prills, Milling and Index
Machines. Geo. s. Lincoln $\&$ Co.,Hartior, Conn. Mactines. Geo. Smery Wheols and Machinery, all Fruit-can Tools,Ferracute,Bridgeton,N.J. For best Presses, Dies and Fruit Can Tools.
Bliss \& Williams, cor. of Plymouth \& Jay,Brooklyn.N.S. Five different sizes of Gatling Guns arenow
manufactured at Colt's Armory, Hartford, Conn. The manufactured at Colt's Armory, Hart ford, Conn. The
arger sizes have a range of over two miles. These arms
re indispensable in modern warfare.
Gauge Lathe for Cabinet and all kinds of han-
dles. shaping Machnine for woodworking. T. R. Bailes
Machinists-Price List of small Tools free ;
Gear wheels for Models, Price List free; Chucks and Drills, Price List
bill. Boston.Mass.
Do mawings,Models, Machines-All kinds made
to order. Towle \& Unger Mi'g Co., 30 Cortlandt St., N.Y. For Solid Wrought-iron Beams, etc., see ad-
or lithograph, etc.
Hydraulic $P r$
解 Damper Regulators and Gage Cocks.-For
ine best.adress Murrill Keizer. Baltimore, Ma. Steam Fire Engines,R.J.Gould,Newark,N.J. A Partner Wanted-In the manufacture of
insect oili ; also, oil Machinery. Address Box 159 East Jes Moines, Iowa
Jes Moines, Iowa.
Pecks, Patent Drop Press. For circulars,
iddress Milo, Peek \& Co., New Haven, Cona.

2 to 8 H.P.Engines,Twiss Bros.N.Haven,C At American Institute and Chicago ExposiDotetailing Machine. Manu actured by
Iachnery Company, Battle Creek, Mich.
Wanted-Some ouod Stove Patterns, and
arst class Moulder. E. Q. Dutton, Cato, Cayuga Co,N.N.Y Wanted-A Reversing Oscillating Engine
cylinder about 6×12 Address, with description and Hinder about 6×12. Adress, with
rice, Box 559, Owego, Tioga Co., w. ₹.
 with a boat bullder.-A. D. B. will find the manufac
ture of collodion deseribed on p. 171, vol. 28.-C. C. D.
ave on p. 407, vol. 26 .
I. N. P. akks: What does the word bacteria
ean, and what is its origin? Answer. Bacterid nean, and what is its origgn? Ansew ri B Bacteriza are
vegetable forms of life of the lowest order. They are vegetable forms of life of the low est order. They are
mere polnts of organized matere,
solitilie to toppear II any orind or fuld substance containing vitalized matter
The Greek bacteria means a staft or support, but the et ology of the word asapplied to organic life ts unknowi
E.N.M. asks: 1. What meaning have the
 between a sulphide and sulphate? Answers: 1 . They
are merely for the guldance of the engravers of the piates. 2. Fourteen. 3. A sulphate is a compound o
sulphuric actid with a base
a sulphide is one of hydro
C. H. G. asks: How can I make an elastic clear varnish? Can India rubberbe dissolved in alconol,
and how? Answer: India rubber cannot be dissolved
 ee made by dissolving 1 1/s ozs. Indala rubber, cut as smal
S.P. \& Co. ask: How can we deposit brigh Sopper on unpolished cast iron by dippling? Answer
Usea solution of sulphate of copper $3 \% / 2$ ozs., sulphuric
 actid
cles and be conventiently coated by yerking them anout
In sawdust or bran soaked in the above described soluP. S. asks: 1. How can I get hazel nut
stains out of a linen shirt bosom? 2. Is there such a thing as a miner's compass? Answers : . Soak the
spots with a strong solution of oxalic acid, and then
 A. R. G. . says. We are having some troubl
in taking the oxide oft sheet iron. We are worksing no with a lead tank, $1 /$ lich thick, placed in a $^{\text {a }}$ a
wooden tank; but it continually leaks. We use the oll of vitriol and water heated by a jet of steam; bu
when we solder the cracks , it eats the solder off. 1
 We have treat is the best process to take the oxide off
tilht. What ind
sheet iron, so that it will answer for tinning and gal. vanizing? Answers: You are using a good material an
vocess for removing the oxide from the surface of the
 Iead together by the blowpipe, instead of soldering. This is done in the erection of sulphuric actid chambers
by men called " "ead burners," with some one of whom you should communicate. There is consequently no
necessity for casting so expensive a contrivance when ordinary sheet lead, enclosed in wood, can be made to N. O. A. asks: How can I tell gold from
other metals? How can I ascertain the fineness of gon? Ansers : : Metallic gold can be almost invariably
distinguished by an experienced eye by its rich yellow distingulshed by an experien eed eye by its rich yello
color. Touch it with a drop of strong nitric accid and notice whether any oxidation, effervescence, etc., takee
place. If no effect is producea, the article may be con sidered as gold on the outside. This test is, of course, only a very partial one, as the gilded sham jewelry may
withstand it. To ascertain the ineness of gold, that is how much real gold there may be tn or on a gildedmetal This can be done by dissolving the gold material in aque pigia, and atterwards prectiptatitng the gold by a solu
tion of protosulphate of fron (copperas). The precipldate (washea, aried and gently heated) is weighed a
pure gold. . asks: Is there anything that will
B. F. D. ata
take the stain of nitrate of silver from the handa as well

soda. W. asks: How can I get rid of the un-
J. been thoroughly washed in hot water, sun aired, and
well dried. Answer: Wash the feathers with a weak solution of carbonate of soda, or water to which a little
solution of chloride of lime has been added, then rinse
B. asks: Can you inform me what liquid
rofessor Tyndall used (in his jectures last winter) to Slow his large osan pubbles with, and (2) how hydrogen
soap bubles are blown? Answers: 1. As far as we now, he used a very strong solution of hard soap. ${ }^{2}$ Hyd rogen bubbles are blown in the same way as air bub
bles, hydrogen gas being dellyered dito the bowl of the pipe Instead of air. Hydrogen is easiliy made by pouring J. D. B. asks: How are transfer pictures
put on, and what are the ingredients? Answer: Dis

 bject to be ornamented, the surface of which should b R. B. B. asks: How can I I issolve isinglass?
Answer: If you mean isinglass, a specles of fine glue, it is soluble in water. If you mean mitea, the transparent
mineral used in stovedoors, and which some people call Ising P. W. asks: W解; eventually it will sefjure the eame? Answer
B. C. M. C. says: Please give best process
for annealing small steel forgings, from $y / 1 \mathrm{lb}$ to 10 loss.

J. E. E. says: In your issue of October 11 Information," there is an account of the instantaneou lighting of the Jewish synagogue on Lexington avenue
New York city. Was the light produced by a precon
 ence upon the audience? Answer: It was produced by
electricen electrical infuence upon small bits of platinum wire
placeed over the orifices of each gas burner. Series of theese bits of platinum were connected by ordidnary cop
per wires with a galvante battery. On closing the elr cuit, the elecetricty passed tirough the wire and through the platinums, which, betng very small, offered so much
resistance to the passage of the electricty as to become fesistance to the passage of the electricity as to become
heated white hot; and the gas, being at the same mo nent turned on, was instanty yignited.
W. A. says: It is a well known fact among practical men that no rule for width of belts is re
lable, as no two rulus give the same results.
The
greaterthe greater the width of the belt, the greater is the error
If a inch belt at a velocity of 750 feet per minute is
 Inches wide to transmitis 5 horse power? It It eeems that
the experiments upon which the formulas have bee the experiments upon which the formulas have been
obtained have been from small belts of single thiek. obtained have been from smail belts of single
ness. Practical results show that the power of a belt
Lotransmit force is more nearly as the square of the
breaith. "I will cite a few cases as examples, the
 pressure 70 ibs., 30 revolutions, with 5 feet driving pul.
ley to 24 Inch one on line shaft; belt 9 inches wide, of ey to 24 inch one on line ehaft; be
double thitckness, and 41 feet tong.
$50-20 \times 70 \times 160$ feet $=562912$ foot pound
peed of belt $1570 \times 80=1256$ feet per minute $=448 \cdot 17=$ 49.77 lbs. per inch of belt. 2. Engine 13×30, pressure 60 ibs, 62 revolutions, with 5 feet driving pulley and a heavy
ly wheel, 15 inch double belt driving on to a 32 inch pulley Hy wheel, 15 inch double belt driving on toa 32 inch pulley
on line shaft; distance between centers of pulleys, 17 feet.
nee harr; distance between centers of puleys, 17 feet.
$132 \cdot 73 \times 60 \times 310=2468788$ foot pounds peed of elt $15 \cdot 70 \times 62=973 \cdot 40$ feet per minute
$=169 \cdot 08 \mathrm{lbs}$ per inch. \quad 3. Results from an elevator strap $2 \frac{1}{2}$ $=169 \cdot 08$ lbs. per inch. 3 . Results from an elevator strap 2,
inches wide, single belt, driving pulley 18 inches diameter, 124 revolutions; driving on to a 14 inch pulley without slipping; between centers of pulleys, 10 feet. Effect, 1000 lbs . raised 31 feet per minute. $\frac{31000 \text { foot pounds }}{\text { speed of belt } 4 \cdot 712 \times 124}=$ $53 \cdot 05=21 \cdot 42 \mathrm{lbs}$. per inch. This weight was the utmost capactty of the belt, and more would cause it to run off.
Many cases to the contrary, where bad judgment had Many cases to the contrary, where bad judgment had constants are obtained by experiments with small belts, there seems to be no good reason that they should not
pply to large ones. The driving power of a belt de ends upon the friction between it and the surface of ion of the belt, and independent of the width. Hence, If we could make a belt one inch wide strong enough, it ide. The last example eited by our correspondent is a eltable one, giving observed results; and it is exper forward to us. The other examples, in which the power
is calculated do not seem to be so reliable. The calcuationst tike no account of the back pressure in the cyl der, of the loss of pressure between the cylinder and riction of the moving parts. The judges at the Fair of
re American Institute may have an opportunity to ake tests of the value of pulley coverings in compar on with the ordinary methoo of transmitting powe gate the matter, they will determine some rules that
H. B. says: I commenced ferrotyping, but I
net nothing but more or less foggy pictures. Iam sure the fault lays in the nitrate bath. Whenever I make at brown. If I leave it to stand for 24 hours it gets lear, and a brown precipitate forms. I use common hat causes this brown precipitate in the nitrate silve Olution? Answer: Your trouble is due to bad water You can easilymake distilled water by placing a tin fun-
el over a water pot and boiling the water. The inne dge of the funnel should be turned up so as to form spout to lead off the drip. The steam that rises is con densed by contact with the funnel, runs down into the edge and out at the spout. A common iron pot, used in
J. G. asks: 1. What would be the best way oo stop a leak in a gas pipe, where there is great expense
ncurred in getting at the leak? Is there any chemical he leak up without injury to the pipes, as the leak is small but very troublesome? 2. Why does lightning
sometimes tearand spinter trees fromthe ground upards, and at other times downwards? Answers: 1 . ar, and then you could inject some rusting composition which would be drawn to the hole; after it had set,
he remainder could be washed out. 2. It may be that one case the tree is struck directly, and that in the
C. H. H. asks : Is there anything with which
t painting with ordinary white paint? Answer: You can aply a white enamel, such as
A. A. F. asks: 1. What makes it dangerous
o load a canon without thumbing it? What causes the po wder to catch fire? 2. What particular properties
have filint and steel, that fire is seen when they are ought together with quick rapid strokes? Answers The vent is closed to prevent the admission of air. 2
The friction between the two substances raises the par
W. \& L. ask: What do you think of petrors? Would not an agent which is sufficiently powerfu to remove or decompose a substance formed upon the
fues and plates of the inside of a steam boiler also deroy the iron, as the scale is harder theing the hardest seales in any steam boiler that I have yet seen. It has
been brought into general use here in our locality, and nore explosions have occurred here than ever before Engineers are competent, water seemingly good, and
our boller iron has stood a tensile strain of sixty thou sand pounds to the square inch. Answer : So far as we know, the petroleum does not Injure the iron. It is
uite possible that the boiler you speak of may have been much corroded, and that the removal of the scal
C. H. S. asks: How can I make a dip for
leaning brass rough castings, so that they will look bright and retain their color when exposed to the
weather? Answer: Brass, however highly polished will not retain its bright surface long when exposed simple lacquer or varnish for the brass after it is wel polished. This you can make by dissolving 8 ozs. of
shellac in 1 quart of strong alcohol, and using the clea portion, applied by a fine brush on the polished brass with sweet ofl. You can give brass a fine color, by washing with a strong lye of red alum (1 oze, alum to
pint water), then rinsing with clean water, and finall nishing with fine tripoli.
J. A. asks: How many horse power have I ou do not send enough data to enable us to answe water wheel manufacturers, you can obtain such wito mation as you desire. Send them the hight of the water
over the bottom of the opening, or the mean velocit with which it flows through the opening
$\xrightarrow[\text { bracket from a large one so as to have them both of the }]{\text { C. F. }}$ bracket from a large one so as ta have them both of the
same pattern? Answer: You can do it by means of the
pantagraph, described and illustrated on page 99, yol
XXVII. xxvili.
K. F. asks: Can galena be roasted in the Answer: We have never heard of the process of roasting
galena being practiced. From the fact that galena melts galena being practiced. From the fact that galena melta
before the blowpipe, owing to the large percentage of lead (85 per cent), if its roasting were attempted in the
lay indicated it would be apt to fuse and run together wayindicated it would be apt to f
A. Q. N. asks: What course shall I pursue
in order to become a civil engineer? What amount of education is requisite, and how can I get into the bus ness? Can I teach myself drawing; if so, what are my
best aids? Answer : It is possible for any young man with energy and talent, to educate himself, but of course there are many difficulties in the way.
civil engineer must understand mathematic principles of mast understand mathematics and th principles of natural philosophy; and there are many
other things, which he can only acquire by expertence Try and get some position in the surveying party on railroad, to make a start. Professor Warren's elemen-
tary works on drawing are well suited to those who G. W. C. asks: 1. How can I melt brass Will wooden ones do? Answers: 1. Use a crucible made of fire clay or black lead. 2. Molds can be mad
of sand or plaster of Paris. Wood will not answer.
W. asks: 1. Will you please give me a rule
or finding the diameter of a wheel when the circumference is known, and vice versa? I have two arithmetics,
one of which gives $3 \cdot 14716$ or $3 \frac{1}{7}$ as the divisor or multi ne of which gives $3 \cdot 14716$ or $3 \frac{1}{7}$ as the divisor or multi plicand, and the other, $3 \cdot 1416$. Which is right? 2 . In the circumference to the base of the teeth or calculate
from the outer circumference? from the outer circumference? 3. In a process as that
described on page 194, present volume, does the water described on page 194, present volume, does the water
evaporate or lose its bulk by expansion and condensaname somegood book that will ald me in making pat
terns for models? 5 . Will you please tell where I can get the book that is to be issued monthly at the Paten Office? Answers : 1 . The number $3 \cdot 11159265$ is the ap
proximate value to be used. More commonly, we em ploy $3 \cdot 1416$, which is sufficlently correct for general op erations. 2. Calculate the circumference at the pitch
ine, between the points mentioned. 3. The water evap. ine, between the points mentioned. 3. The water evap
orates, and has its bulk increased. The steam is then orates, and has its bulk increased. The steam is then
condensed, thus restoring the original bulk. 4. We do not know of any single work that will give you the de sired information. 5. We suppose you refer to the
weekly volume. This is not sold to private individuals. C. C. T. asks: How far will a siphon draw hight due
to 34 feet.
L. H. asks: How can I construct a force
pump? Does it make sny difference whether I put the ir chamber between the two check valves? I want
 verylittle dea from your letter as to what you wish to
accomplish. Place the air chamber beyond the delivery alve of the pump.
A. W. F. says: In your issue of August 23 , Gesner, M. A., I find sulphuric acid described as $\mathrm{H}_{2} \mathrm{SO}_{4}$ and in another place as $\mathrm{SO}_{3} \mathrm{H}_{2} \mathrm{O}$, and water as $\mathrm{H}_{2} \mathrm{O}$. My
knowledge of chemistry would make the former $\mathrm{H} \mathrm{SO}_{4}$ or $\mathrm{SO}_{3} \mathrm{HO}$, and the latter HO . Please inform me which is the correct way. Answer: The writer of the article re erred to has followed ne the symbelic notation water, but whether we srite it HO or $\mathrm{H}_{2} \mathrm{O}$, no difference is implifed in the relative weights of the combining ele
ments. When water is submitted to electrolysis, it is well known that hydrogen is given off at one pole and oxygen at the other. - The relative weights of the gase weight of oxygen are given oft to 1 of hydrogen, 9 part of water always yilelding these proportions. But there are wo volumes of hydrogen to one of oxygen, and the s 1 , and regard water as a binary compound, or shall we call the 2 volumes of hydrogen, 2 equivalents, mak ng equal volumes the equivalents of each element and
regard water then as a ternary compound ? Under the regard water then as a ternary compound? Under the ond $\mathrm{H}_{2} \mathrm{O}$; but in $\mathrm{H}_{2} \mathrm{O}$, oxygen is regarded as having he atomic weight of the oxygen in HO, thus preserving he relative weights. Under this system the atomic
weights of severai other elements are also doubled, as those of carbo
H. H. T. asks: Are cast iron sectional boiloo sectional boilers a committee of the American Inst1-
ute Fair in 1871 mar
following remarks : " Your committee feel confident that the introduction of this lass of steam boilers, will do much toward the remova enders the presence of a steam boiler so objectionable in every locality. The difficulties in thoroughly inspect-
ing these boilers, in regulating their action, and other aults of the class, are gradually belng overcome, and the committee look forward with confldence to the
time when their use will become general, to the exclusime when their use will become general, to the exclu-
sion of the older and more dangerous forms of bollers."
$\xlongequal[\text { H. P. M. asks: } 1 \text {. In building a chimney 75 }]{\text { eet tin hight, which would create the most draft, one }}$ started at 2 feet square on the inside at the base, and
spreading out to 3 or or 4 feet at the top, or one. 2 feet
 mill? Answers: 1. Probably it would do better if made of the same sizz all the way up. 2. The castings may
be dipped into sulphuric acild and then placed gin a rebe dipped Into sulphuric acti, and then pal
volving cylinder, or polished on a wheel.
W. S. asks: Which will sustain the greatand 30 feet long, with the end resting upon blocks
without any other support, or the same amount of tim. ber in three separate pieces, each of $3 / 3 /$ inches in thickness, set up edgewise, side by side? If there is any difference, please give the principle. Answer: If all the
sticks are of the same quallty, the same amount of sticis are of the same quant be sustained in both cases.
welght
F. E. P. Says: In electroplating sewing machine eataciments,
silveron the solder at the jornts. I have tred several
 copper plating; but the copper will not stick frmly
enough. Can you give me any information on the sub. ject? Answer: To prepare your articles for plating: Arst bon them in a solution of caustic potash to free them
from grease. Then dip quickly in red nitrous acld to remove any oxide from the surface, and afterwards wash well to remove every trace of acid. Then dip into a so-
lution of mercuryin cyanlde of potassium (not toolong), and after wards wash in water as betorere. The amalgam. and afterwards wash in water as before. The amaliga,
atton of the surface effected promotes the adhesion of
the fim of the film of sllver. M. A. Pa asks: What can I use to cement the joints of vitritied pipe for con veying strong a cetic acti? Answer: Mix equal parts of pitch, resin, and
weld dried plaster of Paris. This is used for the masonwel aried plaster of Paris. Th1s is used for
H. F. asks : Are there three rails used on
he track of the Rigi rall way? Answer: Yes, and the the track of the Rigi rall way? Answer: Yes, and the
central arall sa arack into which a toothed wheel of the
locomotive ears.
T. H. asks: What is an anemometer? Anof the wind is formed of two wrires crossing at right angles. at each end of which is a cup.shaped vane, placed
with its concave side to recelve the current. A counter is employed to register the number of its rotations; and
it must be nearly free from friction, or its indications it must be nearly fr
will be valueless.
J. H. M. asks: Can you give me a recipe
for staining butternut wood in imitation of black wal-
 Water 1 quart, washing soda $13 / 20$ ozs., Vand 10 minte and apply with a brush.
L. C. asks:
accurate tables of the number of bricks required for walls and cisterns; the quantity of 1 lime and sand for
certain number of bricks; the day's work for rickloyer and the cublic yards to be excavated for a cistern, tank
or cellar? 2. How is puddling for bottom of water res. ervoir made, and how thick should 1 t be? Answer: W know of no book that can be relied on to give you this
information. Consulta aood mason, or builder. 2 . Read
Res. ani article on page 240 , current volume.
U. T. K. asks: Can a low pressure single der head broken out? If it can, what course can be
taken to form a vacuum in the condenser? Would be necessary to take any buckets odt the whe eis? An An
swer $>$ In King's work on the steam engine, page 98 , this
.
 and exhaust valves from the damaged end of the cylin
der, if the engine be fitted with poppet valves, and let the atmospheric pressure force the piston in one direc tion, the steam being used for the opposite direction. Should the engine be fitted with a slide valve, close up
the opening into the damaged end of the cylinder by flock of soft wood." In such a case, it would probabiy be necessary to remove some of the paddle floats, or to reef thera
T. L. B. says: In answer to my inquiicy as
o how i could supply a small boiler with water, you say By the direct pressure of the steam, using an arrange
ment like an equilibrium oil cup. Will vou ment like an equilibrium oil cup. Will you please give
a more definite description of the article? Answer: The
 appended sketch wil understand thearrange
ment. A is a vessel of suitable size, connected by a pipe, B, to the
check valve of the boiler, by C to the steam
space, and by D to water supply-each o
these these pipes having
cock or valve, so tha
ure. E is an escap pipe and valve, opening
into the air. The oper ation is as iollows:
Close valves in plpes B
and C, and open those in pipes D and E. The
water will then run int the vessel When it is full, close valves in pipes and E, and onen valves in pipes B and C. The vessel A
being above the boiler, the water will run into the boller as the steam pressure on top of the water in A is the
same as the pressure on top of the water in the boiler H. C. P. asks: What weight will a flat bot-
tomed boat, with perpendicular sites, 16 feet long x feet wide x 14 inches, carry? The weight of the boat is
200 lbs. How much weight will it carry when drawing me a formula for it? Answer: You do not send enoug dimensions to enable us to make the calculations, but we will give you the method and you can apply it. Find the area of the bottom of the boat, in square feet. Sup-
pose that it is A square feet. Then the boat, when pose that it is A square feet. Then the boat, when
drawing 6,8 and 10 inches of water, respectively, will carry the following loads: When drawing 6 inches,
$\mathrm{A} \times \frac{\mathrm{e}}{12} \times 62 \cdot 5-200$. When drawing 8 inches, $\mathrm{A} \times \frac{8}{12} \times 62 \cdot 5$, 200. When drawing 10 inches, $\mathrm{A} \times \frac{1}{1} \frac{10}{2} \times 62 \cdot 5-200$. G. S. T. asks: Will sulphur water affect a
boiler injuriously, and to what extent? Is there any way of counteracting its effect, or of purifying the water? Answer; We do not think the sulphur water
will injure your boiler; and we do not know of any willinjure your boiler; and we do not know of any
method you can emplop, to purify the, water, that is sufficiently practicable for general use.
A. B. asks: How can I dissolve rubber so 95 parts, and rectified spirit 5 parts, until it swells into a pasty mass. It may then be molded into any desired
H. J. W. says: 1. Are the fumes from hot count of the manner of preparing can I find some ac count of the manner of preparing anilne colors? 3. I
want small steel wire in the coil, cut into lengths of three inches; what is an ordinary and cheap process for
stralghtening the latter? Answers: 1 . We think not. 2. Retmann's work on "Aniline and its Derivatives," will
give you the desired information. 3 Draw the pieces give you the desired information. 3 Draw the pieces
through an opening in which they bear at three points. Such an arrangement can readily be made with thre
Ey A. A. P. asks: 1. Is there any known law inch required to compress common atmosphere to any
desired volume: that is, to reduce two volumes to three to one, etc.? Answer: Mariottes law is: The temperature remaining the same, the volume of a given
quantity of gas is inversely as the pressure which it bears. Therefore a pressure of two atmospheres will
reduce the volume to one half, of three to one third, $\underset{\text { current volume: "'I havemade an entire destruction of }}{\text { J. M. Bays, in reply to R. A. C., page } 27 \text {, }}$ willow swamps by chopping the trees around at any convenient hight, and stripping the bark to the ground
and letting it remain ; when the sap is in fiow, in July or August, is as good time as any. Do not chop them down for a year or two. 4. A certain cure for nose
bleeding is to extend the arm perpendicularly against a wall or post or any convenient object for a support.
The arm on the side from which the blood proceeds is the one to elevate.
C. A. D. says: C. M. N. can precipitate ni-
trate of silver and sal ammonisc by adding to a solution of the former salt a solution of chloride of sodium hydrochloric acid, which immediately precipitates the
silver as a white flicculent pound being, in the language of the chemist, Ag C (chloride of silver). Sal ammoniac can be precipitated by bichloride of platinum; the precipitate is of a light
yellow color. These are also characteristic tests for
J. B. W. says: C. H. A. (page 87 of your
current volume) can find the solution of his problem in Smith's "Mechanics." Of course the surface of the revolved fiuld may be replaced by a rigid paraboloid, and a
material particle without friction will remain at rest upon any part of the surface. The case of a ball roll-
ing on a surface is, however, different. I will assume (and afterward prove) that the centrifugal force gener ated by a revolving ball is the same as if the mass were
concentrated at the center of the ball. This true, the concentrated at the center of the ball. This true, the
ball will be at rest when its center is confined to a parabola, whose equation, referred to the axis of revolution and where $g=$ force of gravity $=32 \cdot+, w=$ no. of feet per sec ond passed over by a point one foot from the axis, $x=$ the bscissa and y the ordinate of the curve: Proposition:

by means of the curve MN, on which the sphere rolls, the arve M N is not a parabola. Let F be the focus of the
parabola and draw F B its semi-principalparameter. Draw also NBY, a normal. From the nature of the parabola, we shall there have: $F B=2 F A$ and angle $N Y M=45^{\circ}$. When hesphere has its center at B, the resultant pressure of the centrifugal force and gravity is in the direction BN; BN is cerefore a normal not only to the parabola but also the the
urve MN. But the curve at N being perpendicular to the ormal, it makes an angle of 45° with $Y M, \cdots$ if it is a parabla, NE, perpendicular to YM, must be its semi-principal But $\mathrm{EN}=\mathrm{EC}+\mathrm{CN}=\mathrm{EC}+\frac{2}{2} \sqrt{2} \mathrm{BN}=\mathrm{FB}+\frac{1}{2} \sqrt{2} \mathrm{AM}$, nd $2 \mathrm{EM}=2(\mathrm{FA}-\mathrm{FE}+\mathrm{AM})=2\left(\mathrm{FA}-\frac{1}{2} \sqrt{2} \mathrm{AM}+\right.$ $1 \mathrm{M})=2 \mathrm{FA}+2 \mathrm{AM}-\sqrt{2} \mathrm{AM} . \cdot \mathrm{FB}+\frac{1}{2} \sqrt{2} \mathrm{AM}=$ $2 \mathrm{FA}+2 \mathrm{AM}-\sqrt{2} \mathrm{AM} . \quad$ But $\mathrm{FB}=2 \mathrm{FA}$. Substituting, $\sqrt{2} \mathrm{AM}=2 \mathrm{AM}-\sqrt{2} \mathrm{AM}$. Dividing by $\sqrt{2} \mathrm{AM}$, we have $\frac{1}{2}=\sqrt{2}-1$, or $1 \frac{1}{2}=\sqrt{2} \overline{2}$, which is not true. \therefore MN
s not a parabola. Proposition: The centrifugal pressure of a revolved sphere is the same as if its mass were concen-

nd consider 8 particles atits center. Let OA be the di lance to the axis. Remove 4 of the particles to C and 4 to
C^{\prime}, so that $A C-A O=A O-A C^{\prime}$. Then place2 each at D DIIIII, equally distant in front and behind AX. Finally eparate each pair by raising one particle and lowering the other a certain đistance. We have now taken the 8 particles from the center and placed them in correct position in the sphere, and as this figure is symmetrical with respect
to a line parallel to A Y through its center, all the particles to a line parallel to A Y through its center, all the particles,
uspposed to be concentrated at the center, may be removed
by8s and placed in position to make a homogeneous sphere. We will now show that such a change produces no change in the centrifug
 $\mathrm{e}, \mathrm{ao}=\mathrm{b}$, the distance to the center of sphere. $\quad c o=c / 0=$
the distance of removal. Then centrifugal pressure of particles at the center will be $8 \mathrm{w}^{2} \mathrm{~b} \frac{\mathrm{a}}{\mathrm{g}}$, of 4 at c it will be $4 w^{2}(b+c) \frac{a}{g}$ ing these, we have, for the 8 particles after removal Centrifugal pressure $=P_{c}=4 w^{2}{ }^{2}-(b+c+b-c)=8 w^{2} b \frac{a}{g}$, he same as when they were at the center. Taking now a

, but this pressure is in the direction ad, and we mustre
solve it into 2 parts, one in the direction cd, which will be destroyed by the opposite component of the pressure pro-
duced by the 2 particles at d, and the other in the direction $\mathrm{a}^{\prime \prime} \mathrm{d}$, which, combined with the corresponding component of d^{d}, will result in a pressure in the direction ac, the same pressure in $d / d: p^{\prime \prime}{ }_{c}=2 w^{2} e \frac{a}{g} \cos . c a d=2 w^{2} e^{\frac{a}{g}} \frac{b+c}{e}=$ $2 \mathrm{w}^{2}(\mathrm{~b}+\mathrm{c}) \frac{\mathrm{a}}{\mathrm{g}}$; and as there are 2 pairs of particles the whole pressure is $\mathrm{P}^{\prime \prime \prime}{ }_{c}=4 \dot{a}^{2}(p+c) \frac{a}{g}$,the same as if the 4 parti cles were at c. Lastly, it is evident that there can be no change of centrifugal pressure produced by moving the pararated in this manner. Therefore the particles being moved from the center of the sphere into position in its body, no
change is produced in centrifugal pressure change is produced in centrifugal pressure.
P. K. D. says, in answer to C. C.'s query as
to press power: I would suggest that to give the amount of pressure exerted against W, it will be necessary to If the power was applied at the center of the track roll-
kner er, then the amount would be obtained thus: Divide the
length of lever E (measuring from center) by the dis. ance from center of track rollor c to a perpendicula line drawn from the point of lever attachment (to W) to
thetrack. Multiply this by 8 (thepower obtained by the ine) and the resultthus obtained by the 1600 lbs . This will give about 75024 lbs. Ncw to solve the problem
given: Diminish this result in proportion to the disgiven: Diminish this result in proportion to the dis-
tance that B is moved up.the lever from center of track
F. A. W. says, in reply to P. T.'s query as
to the consumption of water by engines in cold ascompared with that in hot weather: A few years ago three
boilers were situated on the bigher floor of a building bnd were heated by gas that would otherwise escape Thisgas was admitted to the bollers and regulated by
neans of sliding gates. The speed of the blowing cylinders was governed of curse by the velocity of the engine, and the latter by an ordinary governor; but this not beling sufflciently accurate, it was neces-
sary to throttle the engine to drive it at the required number of revolutions per minute. Much practo maintain a pressure of 60 lbs. with hardly the varia tion of a pound in a week, and sometimes in a longer
period. Nearly a year of such experience showed us period. Nearly a year of such experience showed us
that, in cold, damp weather, it was necessary to admit that, in cold, damp weather, it was necessary to admit
more gas, and in warm, pleasant weather to admit less. the in the quantity and quality of the gas, and perhaps
augment the resistance of the air that was being forced into the furnace; but a long continued series of exper ments, such as we were obliged to make, eventually es
tablished the fact. The boilers were supplied with constant stream of water, regulated arbitrarinly by a
cock, and so accurately as not to require moving sometimes for daystogether. "I do not apprehend that the ing the admission of more heat to the boilers, except by the increased condensation of steam, which was not morethanin ordinary engines. This same condensation will undoubtedly account for the difference, if there
is any, between the effect of steam and air in a locomo-

D.M. says, in answer to the question pro posed by C.H.A. (page 187, vol. XXIX): Let there b

 a system of rectangular axes, having c for their origin,bc being the axis of X . Since the number of revolu tions of the balla is constant, a line equal to its distance
from the axis of X and perpendicular to the same axis from the axis of X and perpendicular to the same axis,
may be taken to represent the centrifugal force, the force of gravitation being represented by a constan
line parallel to the the axis, and which I denominat by g. Therefore at any point, $x^{\prime} y^{\prime}$, of the curve, the resultant of the two forces will pass through the point,
$x^{\prime} y^{\prime}$, and alsothrough a point whose equations are $x=x^{\prime}$ -g , and $\mathrm{y}=2 \mathrm{y}^{\prime}$. Therefore the equation to the resultant is $y-y^{\prime}=-\frac{y^{\prime}}{g}\left(x-x^{\prime}\right)$ which is evidently the equation to the normal of a parabola having 2 g for its parameter. (See
G. W. says, in reply to H. H. J., who asked be done. At the timegrain ought to be cut, it is not dry enough to thresh; and if left standing until it is dry enough to thresh, it will shell out so as to lose half the crop, especially if the grain be oats. It was this whic
made useless a harvester in the western states. It the heads off and left the straw standing; the heads wer
be stored in cribs or bins, 11ke corn. But the head proved to contain so much moisture as to cause mold
W. W. H. says, in answer to T. M. Jr., who taken from the vines: When the grapes are fully ripe water tit water tight keg or box. Place in the bottom of the box layersof grapesand leaves alternately until the vessel is
filled; nail a board on top, and bury flled; nail a board on top, and bury the vessel in the
ground, where water will not stand, out of reach o ground, where water will not stand, out of reach of
frost. Grapes put up in this way will keep fresh and sound until April.
J. W. H. Says, in reply to C. P. T., who
wants a heavy foam on a tonlc beer: Use the whites of
a dozen or more eggs in a 10 gallon keg. $\underset{\text { J.M. B. says : "I think the blistering of cement tiles, which D. U. B. complains of on }}{\text { J. }}$ page 171, current volume, is caused by the expansion of remedy would be to drive the moisture out

COMMUNICATIONS RECEIVED.

The Editor of the Scientific American cknowledges, with much pleasure, the re ceipt of original papers and contributions upon the following subjects
On the Million Dollar Te lescope. By W.M.R.
On Canal Navigation. By T. K.
On Hatching Eggs. By B. F.S.
On Spectroscopic Mavipulation. By C. A. D On Perpetual Motion Seekers. By F
On Financial Science. By J. E. E.
Also enquiries from the following
H. C.B.-C.G. T.-M. W.K.-A.V. L.-J. N. P. -G.M

Correspondents in different parts of the country ask Where can I get a cross-cut saw for getting out trunks
of largetrees? Where can I obtain cotton seed oil of large trees? Where can I obtaln cotton seed ofl
machinery? Who makes shoe peg machinery, and what does it cost? Makers of the above articles will proba bly promote their interests
in the ScIENTIFic AMERICAN
Correspondents who write to ask the address of certain manufacturers, or where specined aving goods for sale, or who want to find
also those are
partners, should send with their communication an parners, should send with their communications an the head of "Business and
devoted to such enquiries.
[OFFICIAL.]

Index of Inventions

for which
Letters Patent of the United States were granted for the week ending September 30, 1873,

and each bearing that date.

Grate bar, A. F. Crowell. Harness pad, W.A. Reddick
Harness saddle tree Harness saddle tree, M. W. Pond.
Harvester dropper, J. S. Truxel Hinge and spring, W. G11filla
Hook, snap, J. C. Covert Hook, snap, J. C. Covert.. Horses, checking, J. Jackson
Horses, detgching, R. R. Jones Horseshoe, J. B. Johnston. Iren from ore, cast, P. E. Jay Kaleidoscopes, object for, Lamp post box clamp, P. McCosker Lasting mechanism, L. R. Blake.. Lath machine, Brower \& Knox
Lathe, wood turning, J. Chase. Lathe, gear cutting, W. P. Hopkins. Loom picker, S. Boorn................. Lounge, W. H. Hart
Lubricating compound, S. Y. Love
Mattress, life preserving
Meter, gas, Telling \& Johnson
Mill, quartz, T. O. Cutler......... Millstone cooling device, J. J. Rot Motion, preventing back, A. H. and J. H. Race Naill, capped, C. Walsh
${ }^{\text {Onl eup, }}$ A. T. Ballentine.
Paper bag, L. D. Benner.........
Paper bas machine, W. Liddell
Pen, marking, D. s. Holman.
Pipe coupling, W. B. Dunnin
Pipe coupling, J. Holmes......
Pipes, etc, cutting, W. D. Chas
Piston and packing, A. K. Ride
Piston and packing, A. K. Rider
Planing machine, Frank \& Spire
Planter, corn, A. F. Smith.
Plow, W.A.Estes
Plow, subsoil, E. Cutcliffe.
Potato bug destroy er, A. A. Mixe
Potatoes, sorting, D. M. King.....
Potatoes, sorting, D. M. King
Pump for driven wel
Purifler, middlings, J. Hollingsworth
Railway gage, L. Kayser.........
Railway joint seat, L. Scofield
Ralway switch, J. G. Rockwell
Refrigerator builling, W.S. Bate Register point perforating device,
RRIng. scarf, Mayhew \& Leoonard..
Saw set, B. S. Cas
Screw, wodna, woo, b. F. Clic
Screw, wood, O. D. Barrett.
Screws, making metal, C. M
Screws, making metal, C. M. Spence
Separator and scourer, grain W. Separator, coal, J. B. Wllford.... P. Cliff Separator for coal, ore, etc., H. Bradford Separator feed device, H. Bradfor Sewing machine caster, J. E. Smit Sewing mach:ne shuttle, W. H. Scaofiel Shank stiffener, w. N. Sprague......
Shoe uppers, gumming, P. E. Clark Shoo s, jack for holdin, A. K. Washburn...
Shutter and blind operator, D. M. Leonard Sifter, D. Pierce
Skirt protector,
Stove, cooking, G. H. Philips Stove pipe shelf, J. F. Beckwith Straw cutter, A. Kindermann..
Telegraph, district and fire ala J. H. Guest Telegraph circuit closer, M. Gally Telegraph key, D. L. Parkhurst Tube, speaking, J. R. Crelghton Tubing, bending, W. T. Farre (Twine holder, D. Webber......
Umbrella cover, D. W. Odiorn Valve, ball, W. Mendham
Valve for hydraulic cranes, J. A. Vaughn Vault, metallic, A.L. Stimson.
Vehicle wheel, Chandler \& Tai Vehicle wheel, J. C. Garretson Vehicle wheel, P. C. Härston. Vehicle wheel, L. G. Peel.
Wagon brake, J. F. Jurbin....................
Wagon boxes, fastening for, J. W. Cranda
Wagon boxes, fastening for,
Wagons, etc., loadng, B. Cokly.......
Wagons, running gear for, G. Phillips Wagons, running gear for, G. Phillip Washing machine, L. H. Davis Washing machine, G. S. Newsom..............
Water traps, manufacture of, W. A. Butler. Water traps, mold for casting, w. A. Butle
Water wheel, turbine, J. E. Whiting. Weather strip, J. W. Browne. Weeding implement, garden, , Wells, gland for oill, G
Windmill, G. Stearns
Wre, etc., coll holder for, I. E. Palmer Wire cloth, painting, J. H.De Witt.

APPLICATIONS FOR EXTENSIONS. Applications have beenduly filed, and are now pendin for the extension of the foilowing Letters Patent. Hear
in ge apon the respective applications are appointed fo the days heretnafter mentioned: 26,674.-Cloties Dryer.-B. B.Hawse. Dec. 17 .
26,689.-Pivot Bearing.-F.C.Lowthrop. Dec. 17 . 26,689.- Pivot Bearing.-F. C. Lowthrop. Dec. 17
26.735 - Waste Cock.-G. W. Robertson. Dec. 24. 26,503.-Boors, ETC.-F. D. Ballou. Dec. 24.
27,45j.-SpRING Covering MAchink.-J.T.Loft. Feb.

EXTENSIONS GRANTED.
25,640.-Steam Boiler.-J. Harrison, Jr.
25,662-Construction of Prisons.-E. May
25,673,-bastina Boots,
25, 293. -SEwina Machine. - - K. Vogel. DISCLAIMER
DISCLAIMER.
25,693.-LASTING Boots, ETc.-J. Purinton,
DESIGNS PATENTED.
6,395.-CALL Bell.-C.S.Barnard et al.,W. Meriden, Conn
6,896.-Boot JAck.-O.F.Fogelstrand, Kensington,Conn

$\left\lvert\, \begin{aligned} & \text { 6,897. - Lamp Shade.-W. Maevers, New York ctty. } \\ & 6,898 .- \text { TEA Pot Bask.-E. B. Manning, MIddletown, Ct. } \\ & \text { 6, }\end{aligned}\right.$
 TRADE MARKS REGISTERED
 1,473.-Windmill.-Atwood et al., San Francisco, Cal. 1,444.-PACKED Orsters, ETc.- Barnes \& Co., Balt., Md. 1, 1,475 \& 1,476.-FERTILIzers.-G. Dugdale \& Co., Balt.,Md. 1,777.-AGUE CURE.-H. Van Kiper et al., New York city.
 1,479.-Brandies.-M. Doherty \& Co., Boston, Mas
 SCHEDULE OF PATENT FEES: On each Caveat.....
 On flling each application for a Patent (17............................ on issuing each original Patent. On appeal to Commissioner of Patent On application for Extensio On granting the Extension. on fling a Disclaimer.....................
 VALDE OF PATEMTS
 And How to Obtain Them.
 | $\$ 50$ |
| :---: |
| $\mathbf{8 5 0}$ |
| $\mathbf{\$ 1 0}$ |

required fee in each case, and complying with the other
requirements of the law, as in original applications Address MUNN \& Co., 37 Park Row, New York, for ful particulars

Persons desirtng to file a caveat can have the paper
prepared in the shortest time, by sending a sketch an description of the invention. The Government fee fo a caveat is $\$ 10$. A pamphlet of adviceregarding applica
tions for patents and caveats is furnished gratis, on ap tions for patents and caveats is furnished gratis, on ap
plication by mail. Address MUNN \& Co. 37 Park Row New York

Canadian Patents.

Practical Hints to Inventors.
On the first of September, 1872, the new patent law of Canada went into force, and patents are now granted to
cittizens of the United States on the same favorable terms as to citizens of the Dominion.
In order to apply for a patent in Canada, the applican
mnst furntsh a model, spectification and duplicate draw ings, substantially the same as in applying for an Ameri can patent.
The patent may be taken out elther for five years (gov
ernment fee ${ }^{\$ 20}$), or for ten years (government fee ${ }^{\$ 40}$) or for fifteen years (government fee $\$ 60$). The five an ten year patents may be extended to the term of fifteen
yeara, The formalities for extension are simple and not year. Th
expensive.
American inventions, even if already patented in this country, can be patented in Canada provided the Ameri can patent is not more than one year old.
All persons who desire to take out patents in Canada Row, New York, who will give prompt attention to the business and furnish full instruction.

Value of Extended Patents.

Did patentees realize the fact that theirinventions are likely to be more productive of profit during the seven
years ofextension than the first full term for which their patents were granted, we think more would avail themelves of the extension privilege. Patentsgranted prion of the inventor, or of his hetrs in case of the decease of fomer, by due application to the Patent offce, ninety
days before the termination of the patent. The extended Ime invires to the benefit of the inventor, the assignees under the first serm having no rights under the extension except by special agreement. The Government fee for an extension is $\$ 100$, and it is necessary that good profesthe Patent Office. Full information as to extensions may be had by addressing MUNA \& Co. 37 Park Row,New Y

Trademarks.
Any person or firm domtclled in the United States, of where similar privileges are extended toctizens of the United States, may register their designs and obtain protection. This is very important to manuiacturers in this country, and equally so to forelgners. For full part
lars address MUNN \& Co., 37 Park Row, New York.

Design Patents.

Foreign designers and manufacturers, who send goode om fabricating selling the same goods in this market.
A patent for a design may be granted to any person
whether citizen or allen, for any new and original dest Whether citizen or alles, any new and original design for the printing of woolen silk, cotton, or other fabrics, any new and original im pression, ornament, pattern, print. or picture, to he printed, painted, cast, or otherwise
into any article of manufacture
Design patents are equally as important to citizens a to forelgners. For full particulars send for pamphlet to Munn \& Co., 37 Park Row, New York.
Copies of Patents.
Persons desiring any patent 1ssued from 1836 to Noven ber 26,1867 , can be supplied with offctal coples at a reas onable cost, the price depending
Any patent issued since November27, 1867, at whic time the Patent Offlee commenced printing the drawing and specifications, may be had by remitting to this of tice $\$ 1$.
will be furnished for 81
When orderi g coples,
ove, and state name of patentee, title of invention,and 37Park Row, New York.
MUNN \& Co. will be happy to see inventorsin at their office, or to advise them by letter. In person, cases they may expect an honest opinion. For such consulta tions, opinions, and advice, no charge is made. Write plain; do not use pencli orpale ink; be brief.
All business committed to our care, and all consulta
tions, are kept secret and strictly confdential. In all matters pertaning to patents, interferences, procuring extensions, drawing assig ments, examinations into the validity of patents, etc special care and attention is given. For
for pamphlets of instruction and advice

Address

MUNN \& CO.

PUBLISHERS SCIENTIFIC AMERICAN,
37 Park Row, New York.
OFFICE IN WASHINGTON-Corner F and $\boldsymbol{y}^{\text {th }}$

Sumattimment
Rates of advertisi
Engravings may head advertisements at the same rate per line, by measurement, as the letter-press.
TNVENTORS'
Rights (patented and unpatented) are constantly betn ments for capitaitists who may desire a profitabie bust nees. Attention is called to McGregor's Improved
Prano, Rupp's Spring Helve, Lang's Sewing Machine
ing Rod, Clark's Fishing Apparatug, Steven's sugar
porator. Hopkins' Sewing Machine, Isbell's Trunk
stener, Krum's Mowing Machine, Beddow's Car
upling and others, Cis
each,
. E. RuBE

Hunters' and Trappers' Guide

COR SALE, CHEAP- 1 ten horse Portable

$\mathrm{O}^{\mathrm{NE} \text { OF } \mathrm{LANES} \text { NELEBRATED and popular }}$
A. FULL SET of Improved CLAPboard
 $\mathbf{F}_{\text {sell }}^{\text {OR SAL }}$ Patent the right to manu facture and

HIMATH
SUPERIOR TO ALL OTHERS.

SCIENCE RECORD
1873
Compendium of the Scientific Progress and Disco
ries of the Preceding Year. Illustrated with over 150 Engravings. 6

 MUNN \& CO., PUBlishers,

The SCIENTIFIC AMERICAN will be sent one year nd one copy of SCIEACE RECORD FOR 1873, on
receipt of $\$ 450$.
SCIENCE RECORD FOR 18\%2, uniform with the

BAIRD'S goons
 for pracicial ied.
 HENRY CAREY BAIRD, 406 $\begin{gathered}\text { INDUSTRTAL P PUBLISHER, } \\ \text { WALUT STREET, Philadelph }\end{gathered}$
 IIIPMIIIIIT BMINIS

Metalas anil Metal Worixing

Bauerman's Metallurgy of Iron. 12mo. $\$ 2.00$ Blinn's Practical Workshop Companion for
Tin Sheet Iron and Copperplate Workers. 100 illu
trations. 12 mo............................... Bell's Chemical Phenomena of Iron Smelting circumpermencestal which Practical txamination of the Capacity of the
Blast Furnace, the Temperature of the Air, and the Proper Condition of the Material to Le Operate
Upon. By I. Lowthian Bell. 8vo............ $\$ 6.0$ Byrnes' Practical Metal Workers' Assistant
 De Koninck-Dietz. A Practical Manual of
 Appendix on Iron Ores by A. A. Fesquet......... $\$ 2.5$ ture of Metallic Alloys. Comprising their Chemics
and Phyisal Properties, Prearation, Couposition
and Uses. 12 mo......................... Landrin's Treatise on Steel. 12mo. ... $\$ 3.00$ Napier's Manual of Electro-Metallurgy. Illus Overman's Manufacture of Steel. $12 \mathrm{mo} . \$ 1.5$ Overman's Moulder and Founders' Guide
Illustrated. Osborn's Metallurgy of Iron and Steel. The
 Perkins and Stowe's New Guide to the Sheet
Iron and Boiler Prate Roller.......................50 Phillips and Darlington's Records of Mining Percy's Manufacture of Russian Sheet Iron Roseleur's Galvanoplastic Manipulations. Practical Guide for the Gold and Silver Electro-plater
and the Galvanoplastic Operator. 127\% engravinga. 9.93
pages. 8vo....................................00 Schinz's Researches on the Action of the Strength and other Properties of Metals. Il
lustrated by 25 large steel plates. 4to.............810.0 Tables Showing the Weight of Round,Square Urbin and Brull's Practical Guide for Pud-
ding Iron and steel. 8 80......................... $\$ 1.00$ Vail's Galvanized Iron Cornice Workers' Man
 Watson's Practice of American Machinist Warn's Sheet Metal Workers' Instructor, for
Zinc, sheet Iron, Copper and Tin Plate Workers, with
Instructions for Boiler Making, \&c. 8vo........ $\$ 3.00$ RYe The above, or any of my Books, sent by mail, CAL AND SCIENTIFIC BOOKS-96 pages, 8vo.-sen
free to any one who will furnish his adress.
HENRY CAREY BATRD, HENRI UAREI BA

06 Walnut St., PGILADELPHIA

SILVER AND GOLD

 The energy and thoroughness with which Mr. Ray
mond has prosecuted his investivations, and the rare
intelligence and intimate acquaintance with mining and metallurgy, manifested in his writings on thesesubjen an
mave been widely
hansurgoveleded, and his reputation will
ensure an interest in this, his latest work. ** To be had of Booskellers, or will be sent to any ad
dress. post-paid, on receipt of price, by the Publishers, J. B. FORD \& Park Place, New York,

F valuable invention. An independent fortune and
 $\mathbf{\$ 3 7 5}$ A MoNTH to Male of Female

A Rare Chance to Alvertise.
Cheapest and Best Mode of Introducing NEW MACHINERY AND INVENTIONS.

To Advertisers.

MERICAN, which will be mailed in separate wrappers and the postage prepaid to every post offlce in the Unite
\qquad It is intend dhat a copy of the paper shall reach the princtpal manufacturers, workers in lumber and Advertisements will be taken for this extra edition on the same terms as in the regular issue, inamely, 7 cents a line instae, and 811 line on last page. A few notices, in the Business and Personal column, no
exceeding four lines in length, will be inserted at 8150 a 1 ne. This affords an unusualy favorable opportu ity for advertisers to reach a class of persons not accessible in the ordinary channels of advertising. ames have been selected with care, and the publishers guarantee the number issued to pe full 60,000 ; th ing of the papers to their destination.
\qquad

ENGRAVINGS

MUNN \& CO., Publishers,

MAN POWER SAWS. Circular, Jig, Band \& Bench. Sis for Sper and work Unequiled. Combinined Power Co., 23 dey st., n.y.

A. S. GEAR

Wood and Iron Working

$\mathbf{M A C T I N E R T}$

manafacture
tryby patents

, inf intead of attempting to evade others rifhts by

WOOD SCHENCK'S PATENT. ${ }^{1871}$.

To Electro-Platers. $\mathrm{B}_{\text {riteries, chemicals, and mate- }}^{\text {ater }}$

FOR TOLO MACHINISTS.

A Set of 12 Steel Lathe Dogs,

 J. A. FATY T deximo

RNGINES, BOILERS PUMPS, \&C
 Andrew's Patents.

 All Light, Simple, Durable, and Economical.

Machinery,

Cold Rolled Shafting.

Sturtevant Blowers.

OTIS' ${ }^{\text {safrerr }}$ Moistiva Machinery.

COLD ROLLED SHAFTiNG

 woodbury's Patent
Planing and Matching

of every size and description, constantly on nand.

PATENT UNCHING

WORKING CLASS \qquad
M. YOUNG \& CO.,173 Greenwich St., N. \bar{Y}

Turbine Water Wheels.

P EREECIIN OF SPERD ON WATER

Niagara steam Pump.
\qquad
PRICE ONLI 10 CENTS PRE POUND.
Thomafs Finid Tannate of Sotar endives

$\$ 100$ to 250 pir mond guarataced

$W^{\text {Wind }}$
A GRVTS WANTED EVERYWHERE-

PRATT'S
ASTRAL 0 I 工

TIE TANITE COMMPANY

EmeryWheels TAN/TE E EmeryCrincers
 JUST PUBLISHED

 HOW ABOUT YOUR PAY ROLL?

 NEARLY 1,000 NOW IN USE. We fifer these Planers to our customers, bulleving ghem
to be the best for the price that canbe found. Thes wil

REYNOLDS \& CO.
 Bridge and Root Bolts. STEEL \& IRON SET SCREWS
 GLASS CUTTERS

Our Glass Cuters are made with a handie like a Gla

 HOUSTON'S PATENT TURBINE WATER WHEEL.

Gridutitix Ambthat.
[November 1, 1873.

Malleable Iron \& Steel Castings
CARR, CRAWLEY \& DEVLIN
OFFICE, 3 Of ARCH STREET, PHILADELPHIA, PA.

Manufacturers also of FINE GREY IRON CASTINGS, and an assortment of BUILDING AND CABINET,

Todd \& Rafferty Machine Co.

IUBRICATORS.

PORTLAND CEMENT,
\triangle Practlal 1 reatise on cement turnsened tor zr cen
Soller. GENRY W. BULKLEY Engineer. 98 Lberty St., New York
Pyrometers. $\begin{gathered}\text { For teastnin ovens. Bonee } \\ \text { fues, } \\ \text { Blast } \\ \text { furnaces }\end{gathered}$

B. F. STURTEVANT,
 PRESSURE BLOWERS \& EXHAUST FANS

$T \mathrm{WY}$ THE VICTOR DRILL CHUCK-

SCHLENKER'S PATENT Q B 8 \& NEW INVENTION. AD ADRESS, HOWARD RON WORKS. BUFFALON.Y.

WIRE ROPE.
JOHNA. ROEBLING:SSONB

AMERICAN SAW COO. Movable-Toothed Circular Saws PERFORATED CROSS-CUT, SOLID SAWS.

Machinist's Tools, LUCEXTRA MEAVY A MD IWPROVED,

LDTANBTOUS

$\boldsymbol{D} \boldsymbol{R} \boldsymbol{I} \boldsymbol{L} \quad \boldsymbol{C} \boldsymbol{H} \boldsymbol{U} \boldsymbol{C}$

STEAM BOILER AND PIPE

WIRE ROPE.

TON PLANERS, ENGINE LATHES

BUILDING PAPER!

For Sheathing, Rooflng, Deafening, Carpet Lining, and as a substitute for Plastering. Send for Samples
and Circulars, to B. E. HALE \& Co., $56 \& 58$ Park Place, N. Y., or lock RIvER PAPER Co., Chicago.

BOILER FEEDERS COPE\&MAXWELL MFG.CO. HAMILTON. ロHID.

Working Models

 SPATYONABI AND PORTARLID STTAM BNGINKS.
Babcock \& Wilcox Patent safety Boilers,
 SHAFHGG, PULLLESB, HANGERS AND GEARINGE
POOLE \& HUNT, BALTIMORE. "Soluble Glass,"

Manufactured by L. \& J. W. FEUCHTWANGER. New Yort

 Patent Drill Presses, with Quick Return Motion,

KEEP YOUR BOILERS CLEAN.

ANTI LAMINA , MAHOGANY,

ROSEWOOD, WALNUT, WHITE HOLLY
SATIN WOOD HUNGARIAN ASH, AND ALL KINDS OF WOODS.

 Veneer Cutting Machines FOR SALE,
ONE ROTAFPR MACHAE, cutting 4 ft. long

C lampion Sprivg MATTRESS-The

Souncicicam

The of Popular Sclence, the Mechanic Arts, Manufac tures, Inventions, Agriculture, Commerce, and the inive not only in the Workshop and Manufactory, but also The Best Mechanical Paper on the World A year's numbers contain over 800 pages and severa
undred engravings of new machines, useful and novel inventions, manufacturing establishments, tools, and
To the Mechanic and Mamufacturer
No person engaged in any of the mechanical pursuits
should think of doing without the Scientific Amerishould think of doing without the Scientific Ameri-
can. Every number contains from six to ten engravinge any other publication.
One copy, one year TERMS.
One copy, six months

One copy, four months	8.0 l
1.51	

One copy of Scientific American for one year, and ${ }^{1.0}$ one copy of engraving, "Men of Progress,",
One copy of Sclentifc American for one year, and one copy of "Science Record," for 1873
Remitt by postal order, draft or express.
The postage on the Scientific American is five centspe ${ }^{r}$
quarter, payable at the offlce where recelved. Canada subscribers must remit, with subscription, 25 cents extra
to pay postage. to pay postage
Address all le

MUS N di do
THQ "scientific American" is pringed with

