

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

$\underset{\substack{\text { VOI. XXIXX.--NO. } \\ \text { [NEW SERIES.] }}}{14 .}$

NEW YORK OCTOBER 4, 1873.

$\left[\begin{array}{c}\text { 83 per Annumm. } \\ \text { IN ADVANCE } \\ \text {. } \\ \text {. }\end{array}\right.$
DIAMOND CUTTING--A NEW INDUSTRY IN NEW YORK. |ted, only to be abandoned for entirely new inventions, also
Diamond cutting is an art, not merely an industry, re- the work of the projector of the scheme; and thus at last quiring that certain degree of deftness of manipulation staid old Amsterdam, to the dismay of her artisans, discovwhich, after a few years of apprenticeship, is readily attained in nearly every mechanical operation, but a fine art in the full sense of the term. It is labor which calls not ered that her long kept secrets were known across the ocean, and her hitherto undisputed supremady rivaled in the metroonly for an exquisite refinement of manual dexterity, but an unerring judgment, to be gained only by hard study and
constant practice, extending perhaps over a lifetime. how diamond cutting was introduced in the united

We purpose, in the following paper, to tell the reader how this pursuit, now for the first time in the world's history followed in the western hemisphere, came to be established in the the United States, and then to trace the various processes of diamond cutting as practiced in the city practiced in the city of New York. It is a matter of general information that the art, from time almost immemorial, has been confined to the celebrated lapidaries of Amsterdam, Holland, whither the rough gems were forwarded from all parts of the globe. At the time of the extensive discoveries in the diamond fields of South Africa, however, Mr. I. Hermann, a well known jeweler of this city jeweler of this city and an expert in the art, became convinced that diamond cutting could be introduced in this country, both as a valuable accession to the nationalindustries and as a means of attracting large amounts of foreign capital within our borders. To this end he undertook its establishment in the face of many serious

DIAMOND POLISHERS OR SLYPERS.

obstacles. There was an import duty of ten per cent on the countered, as jewelers and owners of gems necessarily pre rough sitones, the repeal of which had to be secured (a mat- fer sending their diamonds to a locality where they may be ter of no small difficulty, for the Government seemed un- repaired or re-cut without undergoing the perils of an ocean able to perceive the advantage of thus increasing the wealth voyage. Twenty thousand dollars worth of the stones, we within the country), large capital had to be obtained to start learn, are received regularly each fortnight, while millions	the enterprise, and, finally, workmen had to be persuaded	of dollars worth are yearly handled. The largest diamonds
to leave Holland and try their skill in a foreign land. When	ever brought within the country, one of which weighed 80	

 these men; in sufficient numbers, could not be induced to \mid carats, have, through the same agency, been imported. \quad regular shape andity of rough stones. They seemed of ir

SPLItTING THE DIAMOND We recently were enabled to visit this establishment, situated in a small build. ing in Fifteenth street, a few steps from Union Square, in this city, and there to follow the interesting operations which we are about to describe. As, in all descriptions, general explanations are first in order, we were at the outset informed that the business is divided into three that thely distinct branch entirely dincting, cutting, and polishing. Also, that each class is a separate art, and that the workman finds the attainment of any one sufficient labor for the balance of his existence without troubling himself about the others. Hence, no one man can carry a stone through all the manipulations. A cutter cannot cleave, nor does a polisher know aught about cutting; and even further, a polisher or

cutting the diamond.
bon, a combustible body. It is crystalized mostly in the shape of an octohedron (two four-sided pyramids united at their bases) or rhombic dodecahedron, the latter being the commonest. In its black form-as used for stone drilling or sawing-it is the hardest known substance, and in this state differs from the jewel, which hasfoliated passages parallel to the faces of figure, in which directions it may be split. In the accompanying engraving (Fig. 4) is represented an enlarged section of the rough gem, showing the grain along which it may be as cleanly cleft as a piece of wood The resemblance to the latter substance is increased by the resemblance to the latter substance is increased by the fact that there are so called knots, which instead of a straight clean fracture.
THE CLEAVER
This much im parted by way of preface, we were conducted to the apartment occupied by the cleaver, or klover, as he is called in Holland. This artist, we were in formed, must pos ess a greater de gree of skill than any other workman So difficult is hi labor that probably there do not exist twenty-five cleaver to every five hur dred polishers and cutters in the worta The klover in Holland is taught from boyhood, and is usually the son of the owner of the estab lishment, outside parties being rarely instructed. On a instructed. in a of the workman wa a little box divided into two compart ments, the furthest containing a covered tray for the recep tion of stones. The other division wa made deeper and had a false bottom, be ing finely perfora ted. Also on the able were a number of sticks like spindles, which with ouple of laive (to which we shall presently allude), lal (constituted the entire kit. constituted the entire kit. regular shape and varied in size, from that of a pin head to
migrate, Mr. Hermann sought for other artists among the cutter of a brilliant cannot produce a rose diamond, and a large pea. Some pieces were quite flat and closely reDutch already in the United States, and he tells us that he found them pursuing all kinds of callings, in order to gain the support which the art they had studied all their lives was here unable to afford them. Then machinery was impor-
ice vers \hat{a}; so that, in fact, each individual has his specialty, and there stops his knowledge.
nature of the diamond.
The diamond itself, as all are aware, is nothing but car- sembled mica. Selecting a diamond from the heap, the ar tist glanced at it a moment and then secured it in a knob of cement (brick dust and rosin) on the end of one of his spin Continued on page 215.

Suntifir Ammitan.

M.UNN \& CO., Editors and Proprietors. published weerly at NO. 37 PARK ROW, NEW YORK.

o. D. MUNN.
 A. E. BEACH.

路正IRIS.

One copy, one year... 50
One copy, six months
Club rates $\left\{\begin{array}{l}\text { Ten copies, one year, each } \$ 250 . . \\ \text { over ten copies, same rate, each.. }\end{array}\right.$
$\begin{array}{r}2500 \\ 25 \\ 200 \\ \hline\end{array}$
voL. XXIX., No. 14. [New SEries.] Toenty-eighth Year
NEW YORK, SATURDAY, OCTOBER 4, 1873.

SPECIFIC heat.

When a substance is heated, it expands, and its temperature is increased. It is evident, therefcre, that heat is required both to raise the temperature and to increase the distance between the particles of the substance. The heat used in the latter case is converted into interior work, and is not sensible to the thermometer ; but it will be given out if the temperature of the substance is reduced to the origi-
nal point. Thus, while heat is apparently lost, it is only stcred up, ready to do work, and the suostance possesses certain amount of potential energy, or possibility of doing work. It would be easy to convert this potential energy into dynamic energy, or in other words make it do the work of which it is capable; and if we could measure all the actual and possible energy in the universe, we should find that the sum of the two was always constant, although each migh vary in amount at different times. We may say, in passing, that ignorance of or unbelief in this principle has caused many to waste their lives in vain endeavors to construct per petual motions, or to create force.
Now as different substances vary greatly in their molecular constitution, expanding and contracting the same amount with widely differing degrees of force, it is to be expected that the quantity of heat that will raise one substance to a given temperature may produce a less or greater degree of sensible heat to another; and we find in practice that such is the case. On the material theory of heat, this was explained by saying that one substance could contain more of something called caloric than another, and hence the term "ca pacity for heat" is still occasionally employed. But, adopting the mechanical theory of heat, we say that different substances require different amounts of heat to raise them to the same temperature, because the amount of interior work differs in each case, and because one body has more particles to be heated, for the same volume, than another. On this theory, we use the term "specific heat" instead of "capacity for heat," and define specific heat to be the number of units of heat required to raise the temperature of a unit of weight (say one pound or one ounce) of a body one degree. By a unit of heat, we mean the amount of heat required to raise a unit of weight of water, at its maximum density
(about $39 \cdot 1$ Fahrenheit), one degree in temperature. The (about $39 \cdot 1$ Fahrenheit), one degree in temperature. The
unit of weight is ordinarily taken as one pound. Very careunit of weight is ordinarily taken as one pound. Very care-
ful experiments have been made by Régnault on the specific heat of water at different temperatures, and a law has been determined for its variation: Specificheat at temperature $39 \cdot 1^{\circ}(\mathrm{T})=1$ (C). Then $\mathrm{C}=1+0 \cdot 000000309 \times(\mathrm{T}-39 \cdot 1)^{2}$, or the specific heat of waterat any temperature, indicated by Fahrenheit's thermometer, is unity increased by $0 \cdot 000000309$ times the square of the difference between the given temperature and $39 \cdot 1^{\circ}$. Example: What is the specific heat of water at a temperature of 80° ? Answer: $\mathrm{C}=1+0.000000309$ $\times\left(80^{\circ}-39 \cdot 1^{\circ}\right)^{2}=1 \cdot 00052$
The specific heat of many solids, liquids, and gases has been determined experimentally, by methods which we propose to explain. The values obtained in this way are average approximations, since the specific heat of a substance varies with the temperature. If a pound of water and a pound of mercury be heated to the same temperature, and allowed to cool, it will be found that the mercury cools about 30 times as fast as the water; hence we say that the specific heat of mercury is about one thirtieth (more accurately, $0 \cdot 03332)$. This means of determining specific heat, called the method by cooling, was used by Régnault in many of his investigations on this subject.
Another method of determining the specific heat of a sub. stance is that by fusion of ice, observing the amount of ice
that is melted in cooling a given weight of the substance certain number of degrees.
The method by mixture is readily available, and gives very accurate results if carefully conducred. As some of ou readers may like to experiment a little in the subject of spe cific heat, we will give a few details of this process. It is conducted on the principle that, if definite weights of any substance and water, at given temperatures, are mixed to gether, the temperature of the mixture will depend upon their respective specific heats. The vessel in which the wa ter is placed should be surrounded with non-conducting ma terials to prevent the radiation of heat, and should contain a sensitive mercurial thermometer, finely graduated. The substance, if a liquid, can be heated in another vessel; if solid, in some heated liquid; and if a gas, it can be heated in a closed vessel and plunged into the water, a correction
being applied for the heat imparted to the water by the conbeing applied f
taining vessel.
It is evident that when a heated substance is immersed in the water, all of the heat lost by it is not given up to the water, some being absorbed by the metal of which the vessel containing the water is composed, and some being absorbed by the mercury and glass of the thermometer. The weights of these substances can be reduced to equivalent weights of water, and added as a correction. Thus, let W = weight of water employed, $\mathrm{P}=$ corrected weight, $\mathrm{A}=$ weight of mer cury in thermometer, $\mathrm{a}=$ specific heat of mercury, $\mathrm{B}=$ weight of glass in thermometer, $b=$ specific heat of glass, C $=$ weight of vessel containing the water, $\mathrm{c}=\mathrm{its}$ specific heat. Then $\mathrm{P}=\mathrm{W}+(\mathrm{A} \times \mathrm{a})+(\mathrm{B} \times \mathrm{b})+(\mathrm{C} \times \mathrm{c})$, or the correct ed weight of the water is equal to the actual weight increased by the products of the other materials absorbing heat multi plied by their respective specific heats. By using this corrected weight in the calculations, we take account of all the heat absorbed by the materials of which the instrument is composed. We will now show how to calculate the specific heat of a solid or liquid, from data obtained by experiment. Let $M=$ weight of substance, $s=i t s$ specific heat, $t=$ original temperature of water, $m=$ temperature of the water after the heated substance has been immersed in it, $\mathrm{T}=$ temperature to which the substance is heated. The the number of units of heat lost by the substance, when it is put into the water, must be the weight of the substanc multiplied by the number of degrees of heat lost multi plied by the specific heat of the substance, or $\mathrm{M} \times(\mathrm{T}-\mathrm{m}) \times$ s , and the number of units of heat gained by the wa ter will be its weight multiplied by the degrees of heat gained, or $P \times(m-t)$; but as what the water gains is just
equal to what the substance loses, we must have $M \times(T-m)$ equal to what the substance loses, we must have $M \times(T-m)$
$\times s=P \times(m-t)$, or $s=[P \times(m-t)] \div[M \times(T-m)]$; henc $\times s=P \times(m-t)$, or $s=[P \times(m-t)] \div[M \times(T-m)]$; hence product of the corrected weight of the water multiplied by its increase of temperature, divided by the weight of the substance multiplied by its loss of temperature. Example Suppose that we have 2 pounds of water in a copper vesse weighing 0.5 pounds, and that the mercury of the thermom eter weighs 0.1 pounds, and the glass, 0.3 pounds; also that a solid or liquid (weighing 0.75 pounds, whose specific hea we wish to determine), when heated to 180° and put into the
water, raises the temperature of the latter from 60° to 70° water, raises the temperature of the latter from 60° to 70°.
The specific heats of the copper, mercury, and glass, will be found in any table of specific heats; and lapplying the rules we find that $\mathrm{P}=(2+0.1 \times 0.03332)+(0.3 \times 0.19768)+(0.5 \times$ $\cdot 09515)=2 \cdot 110211$ pounds, and $\mathrm{S}=\left(2 \cdot 110211 \times 10^{\circ}\right) \div(0.75$ $\left.\times 110^{\circ}\right)=0 \cdot 25578$.
Te find the specific heat of a gas, it must be enclosed in a vessel and heated, so that the heat imparted to the water is received not only from the gas, but also from the containing vessel. If we call E the weight of the vessel, and e its speci fic heat, we shall have the equation $\mathrm{M} \times(\mathrm{T}-\mathrm{m}) \times \mathrm{s}+\mathrm{E} \times(\mathrm{T}$ $-\mathrm{m}) \times \mathrm{e}=\mathrm{P} \times(\mathrm{m}-\mathrm{t})$, whence $\mathrm{s}=[\mathrm{P} \times(\mathrm{m}-\mathrm{t})] \div[\mathrm{M} \times(\mathrm{T}-$ $\mathrm{m})]-[(\mathrm{H} \times \mathrm{e}) \div \mathrm{M}]$, or the specific heat of a gas is equal to th quotient of the product of the corrected weight of the wa-
ter and its gain of temperature divided by the product of the weight of the gas and its loss of temperature, diminished by the quotient of the product of the weight of the vessel containing the gas and its specific heat, divided by the weight of the gas. Example: If we have 0.25 pounds of a gas enclosed in a copper vessel weighing 0.5 pounds, which (on being heated to 200° and put into the water, the instrument being the same as in the last example) raises the temperature from 60° to 68°, what is its specific heat? By the rule: $S=\left[\left(2.110211 \times 8^{\circ}\right) \div\left(0.25 \times 132^{\circ}\right)\right]-[(0.5 \times 0.09515) \div$ $0 \cdot 25]=0 \cdot 19968$. There is one other correction, of which we have not spoken. Some of the heat is lost by radiation, though this will be very slight if the apparatus is properly constructed. The amount can be ascertained, however, by ex periment: heating the water, and observing how long it takes to lose a given number of degrees of heat. Tables of the specific heat of various elementary and compound sub stances will be found in most modern text books on physics.

CAMPHOR

A correspondent, who has suffered from the undue use of camphor, asks for information concerning its usual effect upon the system. It should be known that the physiologica action of camphor is not yet understood; but judging by the symptoms that follow the taking of a moderate dose, we are justified in calling it a nervous stimulant. It is somewhat like opium and alcohol, therefore, in its action, when given in small quantities; but when taken in large doses, it causes vulsions and death
Camphor has another action, more important to be men tioned because many people, depending on this medicine to
cure all the trifling pains of life, are constantly taking it this action is to irritate and congest, and finally to inflame the mucous lining of the stomach, causing in the milde cases a form of dyspepsia, and in the more aggravated, ulcer ation of the stomach. From these two actions, namely, that of nervous stimulant and of local irritant, come all the good and evil of its use. As to its constant employment, the same reasoning will apply as to the use of other stimulants. However beneficial opium or alcohol may be in sickness, every one will acknowledge that opium eating or tippling is dangerous to health. Moreover, investigation has established the fact that the constant use of stimulant, of what ever kind it may be, results in degeneration of nervous power. If we remember, also, that camphor produces lo cal injury to the stomach, we readily see how unsuited thi drug is to be a household remedy.
Let us add a word for the benefit of those who depend on their "bottles of medicine" for good health. There can be no greater harm done to the constitution than to tak medicine unnecessarily. If a person is not sick enough to ask advice of a physician, he is not sick enough to need me dicine, and he will recover quite as rapidly by leaving the feeling of malaise to the cure of the great physician, the natural renovating power of his system.

CRUDE PETROLEUM FOR FOEL AND FOR ILLUMINATING GAS.

To the Editor of the Scientific American
I find two recent articles in your paper which I think de mand some correction or modification. I refer to the edito rial entitled "The Flowing Oil Wells of Pennsylvania," etc. and to an article copied from the Journal of Gas Lighting entitled "Mineral Oils for Gas." Through the courtesy of a friend, recently, I was invited to go to the shops of the friend, recently, I was invited to go to the shops of the
Philadelphia and Baltimore Central Railroad Company, lo Philadelphia and Baltimore Central Railroad Company, lo-
cated at Lamokin, Pa., to witness experiments in burning cated at Lamokin, Pa., to witness experiments in burning crude petroleum as a fuel for stationary engines. I found, upon a careful examination into the process, that it wa being successfully and economically done. In starting the fire, a pan containing two or three gallons of benzine is placed immediately under the burner and cylinders, and ig nited; and when consumed, the cylinders are sufficiently heated to turn on benzine, into the inside cylinder, whic rapidly vaporizes. When the cylinders are cherry red, and ten pounds of steam are obtained, the benzine is turned off and the steam and crude oil turned on. It was found neces sary to use benzine until the cylinders were properly heated, as crude oil would not all vaporize unless the cylinders were red hot. After that is attained, there appears to be no dif ficulty in burning crude oil; and on an examination of the ficulty in burning crude oil; and on an examination of the
cylinders after the experiment was made, there was no evicylinders after the experiment was made, there was no evi-
dence of carbon; but on the contrary, they were as clean as dence of carbon; but on the contrary, they were as clean
when they left the hands of the machinist. [The vaporizing apparatus, we understand, consists of a burner, an iron cylinde in which steam is superheated, and another iron cylinder in which the superheated steam is brought into contact with the crude petroleum.-EDs.]
In a conversation with the Master Mechanic of the road Mr. Danfield, he informed me that, although he doubted its practicability before the experiment was made, he was now thoroughly convinced of its adaptability for steam purposes and it being against his previous convictions, he had used all the appliances that the shops afforded to break down its power, but without effect.
However, what I particularly wish to get at is the economic view. You state that, " in markets where coal is worth $\$ 6$ per tun, petroleum must be supplied at $3 \frac{1}{2}$ cents a gallon or $\$ 1$ per barrel, in order to compete as a fuel with coal." In actual experiments made in the above case, at Lamokin, Pa., seven gallons of crude oil per hour was consumed on an average for four days, at a cost of forty cents per hour When wood or coal is burned, the cost is from seventy to eighty cents per hour, in the same engine. This would seem to leave a wide margin between your ideas and the actual experiments made
In the article on " Mineral Oils for Gas," the writer admits that, if the carbon could be got rid of, there would be no doubt that mineral oils would be found a most useful sub stitute for coal in the production of gas of a high illuminating power. This process to my mind most effectually disposes of the carbon objection. The carbon is not only got rid of, but is actually made fuel to the flame. Mr. Kendrick, the inventor, claims that he can make a pure fixed gas by this process at 60 cents per 1,000 feet, with oil at 8 cents per gallon

These facts, or rather experiments, seem to be at variance with your editorial and the article in the Journal of Gas Lighting. I have for many years been a reader of your val uable paper, and I am constrained to write to you these facts as they came under my observation, for the purpose of get ting your opinion upon them. If the process which Mr. Ken drick employs in burning crude oil is not practical, will you oblige me by pointing out its defects?
Locomotive No. 4 on the Baltimore Central Railroad is now being fitted up with one of Mr. Kendrick's oil vaporizers and burners for the purpose of running with oil as a fuel It will be complete in about ten days from this writing when further developments will, no doubt, be made. I un derstand that it is the opinion of the officers of that road that it will prove a success, not only in point of economy but in getting rid of the handling of coal, smoke, sparks, etc., that are so annoying to passengers.
Norristown
Norristown, Pa. Henry L. Acker.
Remarks by the Editor.-Our correspondent has omitted o give the exact quantity and cost of coal and wood, as de ivered at the place of trial. He has also failed to sa
whether the fuel used in converting the water into steam, before the latter is superheated in the apparatus, is included in his statements of cost. It is very evident to us, from the alleged difference in the resulting costs per hour, that our correspondent has been misinformed on that head, and we need the full data in order to point out the error.
Making the ordinary allowance of 4 pounds of coal per horse power per hour, the amount consumed by the 40 horse power engine would be 160 pounds per hour. The expense, according to our correspondent, was 80 cents, which is half a cent a pound, or $\$ 11.20$ per tun. This appears to us to be a high price for coal in Lamokin, Pa., which we believe
is on the railway and only fourteen miles from Philadelphia, where coal is selling for less than $\$ 5$ per tun. It apphia, where coal is selling for less than $\$ 5$ per tun. It ap-
pears to us that coal ought to be obtainable in Lamokin at a pears to us that coal ought to be obtainable in Lamokin at a price not exceeding $\$ 5$ per tun, at which rate the cost of
running the engine in question would be 36 cents an hour. running the engine in question would be 36 cents an hour. The comparative calorific values of crude petroleum and
coal are as 2 to 3 . That is to say, 2 pounds of petroleum are equal to 3 pounds of coal. Hence, if it requires 160 pounds of coal per hour to run the aforesaid engine, it ought to require $106 \frac{2}{8}$ pounds of crude petroleum to do the same duty, or a little more than $15 \frac{1}{4}$ gallons of petroleum, allowing 7 pounds to the gallon. Our correspondent, however, states that the cost of running the engine, when petroleum was used, was 49 pounds or seven gallons of oil, costing 40 cents per hour ; which would make the cost of the crude oil, delivered at the establishment he refers to, $\$ 2.40$ per barrel. It
may be that, in the present depressed state of the crude oil market, the article can be delivered in Lamokin at $\$ 2.40$; but market, the article can be deliv

We have stated the relative calorific values of the oil and coal at 2 to 3 , which gives the oil 50 per cent greater heating coal at 2 to 3 , which gives the oil 50 per cent greater heating
power, weight for weight, than coal. This is a result depower, weight for weight, than coal. This is a result de-
duced from the chemistry of combustion and from the records of careful engineers, after many trials, allowing every possible point in favor of the oil. But if the information furnished by our correspondent is correct, then they get, at Lamokin, more than one hundred per cent more of heat from petroleum than from coal, a statement which we can hardly credit. We hope that our correspondent will give us the exact data as to the respective costs of oil and coal, at Lamokin, and such other information as may assist the elucidation of the real economics of the subject
In respect to the manufacture of illuminating gas from crude oil, our correspondent gives us no information further than the statement of the inventor, which, we understand, is not based upon actual experience in the manufacture of
permanent illuminating gas, but is an opinion he has formed, judging from the ease with which he produces combustible gases by his apparatus. We think it probable that he will find it more difficult to make permanent illuminating gas tban to run a steam boiler with crude petroleum. We shall be happy to receive and chronicle any new facts concerning either of the foregoing subjects.

RESCUE OF THE REMAINING SURVIVORS OF THE POLARIS.

The good news comes to us from Dundee, Scotland, of the safe arrival there in good health of all the remaining survivors of the Hall arctic expedition; consisting of Captain Sidney O. Buddington and twelve others. After leaving their encampment on the Greenland coast, which they did in the latter part of June, 1873, in open boats, they sailed south ward, encountering many dangers and exposed to the sever est hardships. They landed at various points and searched everywhere for cruising whalers. On the 20th of July, 1873,
they had the good fortune to fall in with the Ravenscraig, a they had the good fortune to fall in with the Ravenscraig,
Scotch whaler, on board of which they were hospitably reScotch whaler, on board of which they were hospitably re-
ceived, and subsequently conveyed to Dundee. They return to the United States at once.
Captain Buddington reports that, after that fearful night which separated him and his vessel from his comrades upon the ice, he never saw them again. It was with difficulty that the Polaris was kept afloat that night, and they momentarily expected she would go down. But they finally reached the shore, where the vessel was beached, and the party wintered in a hut on the land, being supplied with skins and walrus meat by the natives.
The incidents and results of this latest and most event polar expedition may be briefly summed up as follows
On the 29th of June, 1871, the steamer Polaris, Captain Charles F. Hall, sailed from New York on a voyage of arctic exploration. In August, 1871, she had reached latitude 82° 16^{\prime}, the highest point ever attained by any vessel. Soon after this the ship went into winter quarters at Polaris Bay, latitude $81^{\circ} 38^{\prime}$, and Captain Hall organized sledge and boat expeditions with a view to further northerly explorations. Soon after his return from one of these expeditions, he was taken ill and died, on November 8, 1871. He was buried on shore, and there his remainsrest, near the north pole which he so ardently endeavored to reach.
On the death of Captain Hall, Captain Buddington, previously second in command, became master. On the opening of the ice in August, 1872, Captain Buddington, finding further progress northward impossible, determined to return home, and the ship started for the south. She was now un
fortunately caught in the ice, and drifted down helplessly for two months, receiving injuries which caused her to leak badly. Such was the continual crushing of the ice agains the vessel that Captain Buddington caused a portion of the provisions and a part of the ship's company to be landed on the ice, expecting that all the others might at any moment be obliged to follow. On the night of October 15, 1872, a ter rible storm and utter darkness set in, during which the Polaris broke away from her icy moorings, leaving the haples
party of nineteen persons on the ice. They had provisions, party of nineteen persons on the ice. They had provisions,
boats, and clothing. Next day*they saw the steamer, but were themselves unseen by those on board. Days and weeks passed, and still the little party waited for relief, clinging to the ice cakes, exposed to the most extraordinary perils washed by the seas, drenched by the rains. Their supplies of food were swept away, but one or two guns were still re
tained, with which they occasionally succeeded in killing tained, with which they occasionally succeeded in killing
seals and bears, and this preserved their lives. On the 30th seals and bears, and this preserved their lives. On the 30 th of April, 1873, after $6 \frac{1}{2}$ months dreary drifting, they were rescued, and safely landed at St. John's Newfoundland The recent rescue and landing of their former companions t Dundee completes this remarkable arctic narrative, which for thrilling adventure and extraordinary incident has no parallel in the previous records of fiction or fact.

THE FAIR OF THE AMERICAN INSTITUTE.

Judging from the number of articies already in position in the Hall of the American Institute, and from the fact that, as we are informed, the applications for space are in exces of the accommodations provided in the large area, the forty second Fair has every prospect of surpassing in no small d gree its predecessors of last year. The exhibition of $18 \div 2$ though in many respects a decided improvement (especially in mode of management) on previous displays, was deficien in number and variety of new devices entered, a fact proba bly due to the attention of the people being diverted by the excitement of the political campaign; while such defects as existed in the conduct of its affairs may with fairness be as cribed to official experience in endeavoring, for the first time, to put in operation many radical and much needed reforms. We have already noted several changes in the organiza tion of the management. So far as we understand the lat ter, the occupation of the managers, save as a body, seem gone, and the personal control with which departmental com mittees have heretofore beeninvested, regarding the article in their respective sections, is given to one general superin tendent, Mr. Charles W. Hull. A board of directors, regard ing whose duties no official whom we have yet met seems to have any very clear idea, has been organized: while the sub ordinate officers, clerks, etc., remain as before. The post of superintendent of machinery, a position invented last year and ably filled by Mr. R. H. Buel, has been rechristened as chief engineer, and is in the hands of Mr. John T. Ha kins, an engineer and inventor quite generally known
Several alterations for the better have been made in the in terior of the building. A large amount of space in the passage from the main hall to Third avenuehas been converted into rooms for exhibitors, judges, and the press, affording ccommodations both necessary and ample. The silvered monstrosity, supposed to be a statue, which surmounted the soda water fountain is conspicuous by its absence, and we
are also pleased to note that the badly distorted and much confused Goddess of Liberty, which, accompanied by an im possible category of implements, forned a scenic decoration on the main arch facing the entrance, has been removed to a less conspicuous position. The work of art substituted is a shade better, representing a more appropriate subject; but as a production, it would bedifficult to discover one in which set at naug perspective or drawing is more synnection, re marks already made to the effect that, while such admiralle decorative artists as Gariboldi and others who might easily be named are within access, it is liardly creditable to the Insti tute to exhibit second rate efforts ostensibly as the best repesentatives of the progress of this branch of art
It is hardly possible to forecast with much accuracy the nature of the coming display as regards numbers of especial articles. There appear to be fewer sewing machines than
ordinary, and more heavy articles in the machinery departordinary, and more heavy articles in the machinery department; but, as yet, arrays of empty cases are more prominent
than complete exhibits. Space, we understand, will not be reserved, no matter how long ago bespoken. It is the intention to fill up the building as quickly as possible, and exhib itors who imagine that they can come long after the Fair is in progress, and thus avoid waiting through the first few weeks and slim attendance incident to that period, will, we fear, find themselves debarred altogether.
In noticing the various entries, our custom of occasionally strolling through the building and commenting briefty on such as strike us as novel, ingenious, and interesting, will be as heretofore followed. Mere lists of exbibits are doubtess very entertaining to the proprietors as gratis advertise ments, but, to the general reader for information, they ar xcessively dull.

nitting and weaving machinery

represented in quite full force. At present Lyall's posi motion loom and corset weaving apparatus are in operatant and interesting in the Fair ; but as we the most impor some further particulars regarding it, the detailed explanation which it deserves is deferred to next week's notes. Messrs. Tiffany and Cooper, of Bennington, Vt., exhibit two knit ing machines, one of which is in operation. The invention is designed to manufacture ribbed tops for stockings or cuffs.
Briefly, there are two sets of needles, upon one of which, tanding vertically, the thread is placed. The second se are barbs, and come down from above, catching the stitch.
Then a presser, acting against the point of the barb, presses it in, making an eye, over which and the old loop it drive he stitch. The thread leads from bobbins above to horisufficient length of material is of the latter operate until and a second series of guides, carrying a lighter thread,
come in play, thus marking a space for the division of the
fabric. The cuffs or bottoms are turned out with perfect welts, slack courses, and splicing threads, all put in without stopping the machine. By using different colored yarns on the two sets of guides, fancy articles may be produced From three to ten rolls of fabrice kime. The mechanism is remarkably well contrived; and, as exhibited, ribbed tops, we learn, can thus be made in a day

the main engines

this year are one of 125 horse power, built by Jerome Wheelock, of Worcester, Mass., and driving a 22 inch belt ; and, on the other side of the passage, a Hampson \& Wheelock machine, of 20 horse power. The large engine is somewhat on the Corliss plan and is a fine piece of workmanship. The valves are nearly underneath the cylinder, and are of the ordinary slide description, bat are made to taper outwards in their box, so that the pressure from inside keeps them tight, thus obviating the necessity of stuffing boxes. There is a variable cut-off, arranged in the chest just between the valves, which communicate with the governor.

the delamater hoisting machine

is a gigantic affair, capable, we are told; of lifting $15 ; 000$ pounds two hundred feet per minute. The engine is a 40 horse power Rider horizontal; which connects with a main fly wheel, 8 feet in diameter and 14 inchas in face. The mechanism, though large, is quite simple. The drum; which is five feet in diameter, is loose on the main shaft; and is operated by gearing on a smaller shaft which commu nicates with the main shaft by friction pulleys. The latter are thrown into or out of gear by moving the small shaft by a toggle joint and lever; so that the drum is either rotated by the cog gearing or left to revolve loosely in the contrary direction for lowering, its motion being then controlled by a suitable brake.

SILK-measuring apparatus,
known as Dunn's patent, is an ingenious little arrangement for determining the length of thread or silk, and thus detecting any fraud in case the same is purchased by the pound. It consists of a light wheel, fitted on a sliding pin: ion, traversing the surface of the spooled thread, and is connected with clock work moving two registering dials. The thread is thus measured after it is spooled, while the operation of spooling is not interfered with. Another form of the same device is exhibited for the use of consumers who desire to test the length of thread already spooled. A crank and spindle wind the thread on a new spool, and dials indicate the amount reeled off. This operation is usually so tedious that a small machine, which seems to perform its work very quickly and accurately and which can be readily attached to the corner of a counter or table, will doubtless prove acceptable to both dealers in and consumers of thread. While this device winds the material, another machine is exhibited for roughing out the spools. In fact, the invention makes almost any small wooden article, in the way of bungs; spool blanks, pill boxes, etc. Mr. J. T. Hawkins is the in our columns

making button mold

At present, however, a novel attachment has been combined with it, in order to make button molds of the large size usually worn by ladies on redingotes. The improvement is a revolving steel head, in a cavity in which are arranged cut. ters and a small drill. The stick of wood, squared to suitable size, is fed by an ingenious appliance into this openingThere it encounters, first, a pair of cutters which turn off the edges, and then another set which give its end a convex orm. Meanwhile the drill pierces a small hole in the center. A cam arrangement then comes in play, and carries the wood over against a circular saw which cuts off the mold. The stick then returns, and the same operation is repeated. The speed of the machine is at the rate of 5,000 revolutions per
minute, and a mold is finished every second. Three $\mathbf{L} \geq \mathbf{n}$. minute, and a mold is finished every second. Thre
dred gross, we were told, can be turned out in a day.
Among the small inventions, so far exhibited, is

sewing machine engine,

which consists of a little oscillating cylinder attached to the table, having a driving pulley in line with the small wheel of the machine. A boiler holding enough water for a day's work supplies steam, and occupies a small space on the floor in rear of the apparatus. The throttle valve regulates the supply of steam and is connected with the treadle of the sewing machine, so as to be governed with the foot

New Exploration of the Amazon River

Among the most recent exploring expeditions is that un dertaken during the present year for the exploration of the Amazon river, by Professor James Orton, the well known naturalist, of Vassar College. We have just received our first instalment of correspondence from him, the publication of which we shall begin in our next issue. Our latest ad vices from this enterprising traveler are dated August 19, 1873, at which time he had paddled one thousand miles up the Great River, taking notes and making surveys and ob servations en route. He had an immense distance yet to go before reaching the Cordilleras, which he expected to cross, and to reach home viâ Panama
The letters of our correspondent are full of interest con cerning the marvelous region which he is exploring. He speaks of unbroken forests covering a space eleven hundred miles in diameter, and other equally astonishing revelations of Nature.

The Neapolitan papers state that, from observations taken n Mount Vesuvius, new earthquakes are expected.

THE PLANET MARS-IS IT INHABITED

Part 2.

Having determined the existence of a vaporous envelope around Mars, similar to the clouds which float in our terrestrial atmosphere, if we assume the same to be aqueous, we must believe in large bodies of water from which it originates. But other fluids besides water generate vapor; hence, unless direct proof be adduced to the above effect, the hypothesis, that the vail observed is a cloud screen existing in an atmosphere like our own, is without substantial foundation.
The telescope has told its story, and a more wonderful instrument must add the sequel. The spectroscope, in the hands of the eminent English physicist Huggins, solves the problem. The planets reflect the light which they receive from the sun; and if their rays be passed through the prisms, we find in their spectra the solar spec trum, just as if it nad been reflected by a mirror. Dr. Hug gins on his first observation of the planet was unsuccessful, but at the opposition of Mars in 1867, he attained important results. On directing his spectroscope, attached to a powerful eight inch refractor, toward the star, he noticed that the spectrum obtained was crossed near the orange portion by black lines similar in position " to lines which make their appearance in the solar spectrum when the sun is low their appearance in the solar spectrum when the sun is low down, so that its light has to traverse the denser strata of our atmosphere." The question to determine, then, was: Were the lines due to the passage of the light through the
atmosphere of the earth or through that of Mars? Turning atmosphere of the earth or through that of Mars? Turning his instrument toward the moon, then nearer the horizon
than the planet, so that the atmospheric lines, if they apthan the planet, so that the atmospheric lines, if they appeared at all, would be much clearer in the moon's spectrum than in that of the object of his observation, Dr. Huggins found that they were totally absent. It was thus demonstrated beyond peradventure that the bands belonged to the Martial atmosphere, and not to that of the earth; and hence two aerial oceans, analogous to each other, encompass both planets.
But, it may be asked, what produced these lines? Carefully noting their position, the observer found them to be the signatures, not of oxygen or nitrogen, but simply of the vapor of water, of the same chemical composition as our own, oxygen and hydrogen. This proved, in this direction we need go no further; the existence of sea, of cloud, snow, ice, fog, and rain is demonstrated. Reasoning from this basis, we can trace the presence of winds which shift the masses of vapor from place to place, of aerial and ocean currents, of rivers flowing to the seas, of a climate tem pered in the same manner as our own, and of copious rain fall which must nourish the land and cause the production of vegetation. If, further, there be continents and oceans, similar geological forces to those of the earth must be at work; there must be upheavals and depressions, mountains, valleys, and water sheds, in fact a miniature of our earth. Here, then, millions of miles away inspace, is another world, a small one, it is true, and seeming to the eye no larger than our engraving, which represents its appearance

at the present time; but it has water, air, light, winds, clouds, rains, seasons, rivers, brooks, valleys, mountains, all like ours.
"All the circumstances necessary for the production of an imate existence being there, under what pretext, then," de mand the believers in the habitability of the planet, "can it be asserted that living organisms, such as, under precisely similar conditions, exist upon our own earth, do not live and flourish there? Can it be that the sun, air, water, and earth are held in bonds and prevented from combining in organic evolution? Or can it be credible that, while every drop of water on our earth is peopled with millions, another world is a desert?" In our previous paper we observed that, owing to the eccentricity of its orbit, the amount of light and heat received by Mars from the sun must vary considerably. Further, we may add that, while the earth is 92,000 ,000 of miles from our source of light, the distance between that luminary and Mars is fully $141,000,000$ miles. From this difference, and the relative sizes of the two planets, we can determine the amount of heat transmitted to Mars as compared with the quantity reaching the earth ; and the average daily supply is found to be as two to five. More nearly, when Mars is closest to the sun, he receives somewhat more than half as much heat as the earth; when furthest, his supply falls to a little over one third that of our sphere. The
sun would appear, to a person on his surface, to be about one third the size that it does to us.
Considering, now, the question of the Martial heat, it seems to be of much smaller importance than it really is. The sun is the great storehouse of power, and the heat we obtain from him underlies all motion and life. If the supply from this sou ce were diminished, manifestly life, as it now is upon the earth, could not be maintained. If we take away half the fuel from under a boiler, the engine, although it may work, will no longer be of the same efficiency. Imagine this reduction to have taken place ages ago, "before the sun's rays in a potential form," as Tyndall expresses it, were buried in the deposits of the carboniferous epoch, and consider that it would require $108,000,000$ of horses, working night and day for a year, to develope the work equivalent to produce of our mines. If, then, Mars, which we have produce of our mines. If, then, Mars, which we have
proved to receive a far less quantity of heat than the earth has been thus deprived during countless ages, it must be apparent that, if it require existing circumstances upon the earth to maintain the creatures thereon, the absence of such circumstances on Mars clearly shows the unfitness of that planet as a habitation for beings.
The point next arising is: WhetherMars be possessed of an nherent heat sufficient to compensate for this deficiency of olar heat, or has the planetenough heatstored up to render it an abode for living creatures? It is very probable than the earth, for it is known that, of two bodies equally warmed, the smaller cools the more rapidly. We have no reason ${ }_{4}^{3}$ to believe that Mars has been hotter than our globe, and hence, as its sphere is smaller, it must now be a much colder body. If, then, we are to adopt the theory that the cimate of the planet resembles our own, we must assume that there is a peculiarity about its atmosphere which enables it to retain a larger proportion of the sun's heat than can our aerial envelope. In such case, considering the con stitution of such an atmosphere to resemble our air-a necessary hypothesis, if we are to believe in the existence of the beings with which we are familiar,-it must be much more dense, reasoning from the fact that there is a steady decrease in warmth as we ascend to the upper regions of our own atmosphere, due to the increased tenuity of the air.
We may presume that every planet has an atmosphere proportioned to the matter contained in it. Hence, the mass of Mars being about one fifth that of the earth, we must infer that its atmosphere is equal to one fifth part of the earth's. But the surface of the planet is fully two fifths that of our globe; hence, over each square mile, there would be a much less corresponding amount of air. In addition to this, we have already noted that in Mars exists less than two fifths the attractive force of the earth, the proportions being about as 38 to 100 . The atmospheric pressure would therefore be reduced in proportion, even if the planet had as much air above each square mile of surface as theie is above each square mile of the earth. This quan tity of air would be twice as much as we should infer from the mass of Mars, and we should require five times as much air to have an atmosphere only as dense as our own a the sea level. An atmosphere about twice as dense as this would perhaps give a climate as mild, on the average, as that of our earth; but we can hardly assume that Mars has an atmosphere exceeding ten times in quantity what we should infer from the planet's mass.
If, now, we suppose that the Martial air is moderately dense, comparable, in fact, to our own air, then, since we dense, comparable, in fact, to our own air, then, since we
know that considerable quantities of aqueous vapor are raised into that air, we must, from the circumstances already raised into that air, we must, from the circumstances already
considered, conclude that there would be a precipitation o considered, conclude that there would be a precipitation of
snow which would keep the surface of Mars permanently snow which would keep the surface of Mars permanently
covered. But this is not the case, as Mars is not a white covered. But this is not the case, as Mars is not a whit planet; and so we must assume so great a rarity of its at
mosphere that sufficient water vapor can never be raised to mosphere that sufficient water vapor can never be raised to produce a permanent snow envelope by precipitation. Con sequently it is probably the most satisfactory course to re turn to our first assumption, namely, that the Martial at mosphere bears the same relation to the mass of Mars a the terrestrial atmosphere to that of the earth. Under this hypothesis it can be shown that the atmospheric pressure on Mars corresponds to about $4 \frac{1}{2}$ inches of the mercurial barom eter. Can
mosphere?
In the great balloon ascent of Coxwell and Glaisher, in 1862, the enormous hight of 37,000 feet above the sea leve was attained. At 29,000 feet Mr. Glaisher fainted and did not revive untii the balloon had descended and returned to the same point. At 37,000 feet the barometer stood at 7 inches, and the thermometer at 12° below zero. Coxwel became almost paralyzed, and only saved the life of himself and his fellow aeronaut by seizing the valve rope with his teeth, and thus allowing the gas to escape. If, by extreme fortitude, one man has managed to live at two miles above
the fainting level of another, could human beings generally the fainting level of another, could human beings generally exist in an atmosphere reduced to five sevenths the density We have shown that Mars has, therefore, not only a far tenuity than that of the earth, conditions manifestly incom patible with the existence of terrestrial creatures: a conclu sion easily attained by considering the life (mere microsco pic animalculæ) found on the mountain peaks of our earth beyond the last stages of
We extreme cold prevails.
We have now presented sufficient data to form a clear Mars as a habitation for the hig of ut space permit, we might continue and refer to the atmosphere,
which must be at least 100 miles high, and the winds which must prevail, which carry aqueous vapor, in the form of snow, to the poles. Here great masses of glaciers are heaped which sometimes disappear, leaving vast gaps discernibl even at forty millions of miles away, producing convulsions which must affect the entire planet.
The weight of evidence, it seems to us, is against the ex istence of beings of a nature with which we are familiar No terrestrial creature could live even in the torrid zone, so cold and dismal must it be. Even vegetable Iife, however hardy, would not survive a single hour. If inhabitants there be, they must be of different form from us, to corres pond to the decreased attraction of gravity; if red vegeta tion exist, their eyes must be different from ours; to live in such an atmosphere their respiratory organs must be totally unlike our own; and thus we might go on specifying points of variance until we find that, in the end, there is no more possibility of Mars being inhabited by beings like ourselves than there is of the sun or Jupiter being similarly peopled In fine, we cannot say whether other worlds are or are not abodes of life. We can assert with reasonable probability that on no other planet are there conditions suitable for the existence known in our globe. Whether there be beings in the fiery vapors of the sun, on the molten mass of Jupiter, in the bleak deserts of the moon, or in those remote parts of the universe, from which our entire solar system seems but as a single bright star, is a problem within the knowledge as a single bright star, is a problem within the
of only Him "to whom all things are possible."

Exposition Awards

The Commercial Bulletin thinks that it is time that the practice of exhibition rewards should be abandoned. Any one who has seen the inside and secret workings of exhibitors, to obtain the coveted prizes, knows that lobbying and friendship have much to do in devermining awards, and that they who have friends at court are seldom found empty handed when the day for awarding prizes arrives. And even those who, in all honesty and from the merit of the articles which they exhibit, are rewarded are, by thei brother exhibitors and especially less successful rivals, ac cused of lobbying in some form or other. If exhibitors did but know it, the benefit which they derive from industrial expositions comes not from diplomas and medals, but from the fact that vast numbers are brought to see and inspec the machines and products exhibited.

A SIMPLE TREE PROTECTOR.

The first frost-and it has already made its appearance in the northern part of New York and the New England States -is apt to cause sad havoc among our young fruit trees,

tropical plants, and ornamental trees, before the gardener is prepared for it. The device represented in our engraving is therefore of timely importance and will prove of value to nurserymen and agriculiurists generally. The Ironmonger, from whose columns we extract the illustration, states that it has recently been introduced in England, and that in construction it is simply a conical frame of galvanized iron wire supported at its apex by a wooden post driven in the ground beside the tree. It is only needed to cover the wire with cloth, or even newspaper, to render the tree safe from the frost.
The Ütah Mining Gazette, published at Salt Lake city, dds to a paragraph from the Mining and Scientific Press in which the editor states that Arizona wants more practical miners and fewer speculators without means, more men of capital, and no mining experts or wiseacres) that Utah, also, would be far better off if she had fewer "experts and more men with plethoric bank accounts. It is these experts -at swindling-that have already done us so much damage. Like Arizona, we want a new class of speculators.'

SUCH is the marvelous ductility of gold that a single ounce of the pure metal may be drawn out into a wire thirty three miles in length.
 ed in a meeting of condolence in the following remarkable |tannery is the largest calfskin tannery in Europe, or per manner: All the stations included in that division were connected into one circuit,, extending from New York to Albany, thence via] Troy to Saratoga and return to Albany, westward to Syracuse, and via Oswego, Clyde, and Rochester to Buffalo and Niagara Falls, back from Buffalo via Auburn, Seneca Falls, etc., to Auburn again, being over twelve hundred miles of wire. Each person remained in his own office and all the instruments were so connected that the remarks made by one operator upon his instrument were sent through all the other instruments. Promptly at 2 P. M. (Buffalo time) New York called the meeting to order. Buffalo moved that Mr. Hauff, chief operator at New York, be made permanent chairman. The motion was seconded by Troy, and carried. The chairman then suggested that Mr. McCoy, manager of the Buffalo office, be nominated as secretary, which the meeting unanimously resolved in the affirmative. Various speeches were made and the resolutions were then read and adopted, and an adjournment then followed. The meeting was entirely harmonious throughout, and the state of the weather and condition of the wires peculiarly favorable to its success.

SELF-TIGHTENING DRILL CHUCK

Our illustration represents an ingenious appliance which, t is claimed, is self tightening, and may be caused to hold any drill of a size within the compass of its jaws with complete firmness, and this with no further trouble to the operator than a clasp of the hand. That such an improvement is of value, both as applied to the drill as well as to the lathe chuck, will be evident to every mechanic even without the further corroboration of its merits found in the substantial victory which the manufacturers assure us was won by the device at the Vienna Exposition.
The material used in the construction is forged steel in every part, except the jaws, for which the best and most carefully tempered cast steel is substituted. The shell or case, A, Figs. 1 and 2, contains the working portions and, as wiil be noted from the sectional view, is provided with a shoulder within, flush with the face of the scroll, B. On this shoulder, and at a slight taper, is driven the plate, C. The latter is thus made to form a close joint and still may be easily removed, while it is afforded a support calculated to bear the strain (often caused by inexperienced persons driving it upon the arbor) from the screws, D, by which it is held in position. The plate is fitted in the usual manner with tongue and grooves, and is also provided with a center which serves to center and steady the back end of the drill, and thus insure the proper holding of the tool in its place.
In order to give greater strength, and also to guard against the entrance of any dirt through the slots into the working parts, the jaws, E , are made with projections, the upper parts of which, when the chuck is open, are flush with the outside of the shell. The inner sides of the jaws, as shown in Fig. 2, are provided with segments of screw threads which engage with the face of the scroll, B, Fig. 3. The latter is provided with a tapering hole which is held on the center of the lathe in the usual way, the shell plate and jaws revolving around it. Outside the shells grooves are placed to favor a firm grasp of the hand around the chuck, so that the device, when in use, is thus self-tightening, the strain of the tool while cutting serving to make it hold more securely.
drills from $\frac{8}{8}$ down to 0 ; while the next form, No. 4 , retains from $\frac{8}{8}$ down to $\frac{1}{8}$ inch. The jaws arext form, No. 4, holds outer ends so as not readily to catch hands or tools near them. An extra set of these appliances, of the form shown in Fig. 4-which make a lathe chuck of the ap earatus,-are furnished when desired, and, as we are informed, may be substituted for those in use in the space of three minutes.
For further particulars address the manufacturers, the Hubbard and Curtiss Manufacturing Company, Middletown, Conn. The article itself may be found at the factory, at the above address, or at the warehouse, No. 82 Chambers street, New York city.

CALFSKIN TANNING IN EUROPE

Mr. Jackson S. Schultz of this city, now in Europe, in a letter to the Shoe and Leather Chronicle gives the following interesting particulars of his visit to Mercier's great tannery
The calfskin tanneries of Mr. Raichlen, at Geneva, and Mr. Mercier, of Lausanne, both situated on the Lake of Geneva, are among the largest, if not the very largest, in all of Switzerland; and with the exception of one, Mr. Mercier's
abundant and omparatively heapall through this country. Th trong acid from this bark has a wonderful ten dency to plump. Mr. Mercier is disposed to attri. bute these re markable plump ing powers to the resin or sap in
 haps the world.
Mr. Mercier many years since found out-what has been the experience of all other tanners-that to excel in the trade, attention must be given to one single department, and for these years of his triumph and success he has devoted himself to the wax calfskin trade exclusively.
He does not depend at all upon his home market for a supply of skins, but lays all Southern and Eastern Europe under contribution.
These skins are brought to him invariably " flint dry," not even drysalted. They come in compressed bales, and these are opened, assorted and piled away in a cool, dark loft or storehouse in large compact piles, to be withdrawn at the rate of about 500 per day, for his daily use.
These skins are so perfectly cured and so uniform in condition that it is seldom that one skin in a hundred breaks or indicates the fact that it has been dried. Even the grain does not show a crack, as is too apt to be the case with us, where skins are dried in the sun or otherwise exposed

- These skins are soaked in the usual manner and are softened in wheels precisely as our best tanners are now softening their light stock, with this difference: In the construction of the wheel, there are four compartments, instead of being, as with us, one open space. These compartments turn the
skins more actively, and Mr. Mercier says the force is sufficient to do the work of either "softening" (breaking) or rinsing and otherwise cleansing the skins. It will be seen after a moment's reflection that a wheel divided into four compartments or segments must turn the contents four times as frequently as if left in the whole wheel.
The liming of the calf at this tannery presented no new features. They are fully limed, so that the hair comes freely. The skins are washed in the wheel after being unhaired, and worked with a stone worker to remove the re maining short hair. Great care is manifested throughout to keep the grain sound, and to work every part of the skin uniformly, so that no more lime will be left in one part of the surface than another; the tendency of an omission in this respect is to cause the grain to color unevenly and ap pear clouded when tanned. method. for.
this bark. But it is proper to say that this practice is a spe
cialty in this tannery, and is seen nowhere else.
When the skin is slightly raised and fail
id away in oak bark this colored, it is versal in this courr. This process of laying away is uni orsal in this grain of the neck and shoulders is folded on the grain of the butt, that is,doubled over. The bark only comes in contact with the flesh. In some tanneries, I notice, they vary this practice by putting two skins of about the same size together, grain to grain. This, I judge, with all respect for the experience and practice of Mr. Mercier, is an improvement upon his

The object of this practice is variously considered; some say it is to prevent the over tanning of the grain and to in duce, as far as possible, the tanning from the flesh side. This object is desired to make the grain tough, so that it will hold the stitch when sewing the side linings. Others say it is to aid the color of the skin. My own judgment is that it may aid and help to produce both of these results, and therefore the practice is justified.
The bark is laid on the skins fully one to two inches thick and all the interstices are filled with bark and stamped down solid. I should judge that not more than half the number of skins are laid in the vat that our practice would call
When the vat is filled with skins and bark thus put away, the vat is run up with water or weak sweet liquor, mos frequently with water, although Mr. Mercier's practice is to run liquor from his leaches; but I judge that only spent bark was placed in these leaches, and consequently the liquor was little more than the washings of the bark

These skins are allowed to remain for three months, and in Mr. Mercier's case two such layers, and in most other cases three such layers, occupying nine months, completes the tannage of the skins.
I need not say to any intelligent tanner that skins pre pared in this careful way and tanned by this slow process must yield a very tough skin. The grain must be soft and yielding, requiring but little scouring, and I think beyond the working of these skins on the flesh over a beam and the softening in the wheel before scouring, the skin gets bu little labor-hardly so much as is bestowed by our practice The stretch is left in the skin and not taken out in the effort to get out the old grain aur system of strong liquors compels us as ou
to do.

The shaving, whitening, blacking, etc., is after our method and is in no sense an im provement. Of course where so many skins are tanned, and the selections and classifica tions begin with the raw material, there can be no difficulty in rendering the most severe classifications possible in putting up the skin or sale
All that it is further necessary to say, in regard to the manufacture of Mr. Mercier is that he devotes himself to the work of making as good leather as can be made, and he has succeeded. Whether he makes more or less profit, whether he makes as many pounds of leather from the skins taken in hand by him as an English tanner would, is quite another question, and one I fancy he does not care to consider. He sacrifices every thing to toughness-to wearing qualities.
Mr. Mercier showed me some French cop pice bark which costhim five cents per pound, or $\$ 100$ per tun, although his usual coppice bark cost him but $\$ 40$ per cord,or two cent per pound, and he considered the former pro
nerve-and he certainly devotes less labor to this end than any other manufacturer I have met. He does work all the flesh off with a worker, but when this is accomplished I did not see that an additional stroke of the knife was given to soften the pelt or break the nerve. Each man thus worked off the flesh from about one hundred and twenty skins per day; from the amount of work thus performed it can be estimated about how much labor was bestowed.
The next remarkable fact I wish to mention is that Mr . Mercier, in common with all other calfskin tanners in this section, entirely omits bating, as we practice it. They use nc other bate than some liquor
The acid which forms, known as " gallic acid," and which is abundantly found in all oak yards, is the only bate here employed. This acid liquor, it is well known, will kill the lime (neutralize it), and will, with a few days' handling, remove all appearance of lime from the pelt. When thus reduced and brought back to its normal condition, then Mr. Mercier treats his stock to the usual nourishing process. He begins this process by a solution of liquor made from spruce bark, which, as I had occasion to say before, is very

He confirmed my opinion that the spruce bark contained ittle or no tannin, and although for the purposes indicated he did use a small quantity, at about the price of one cent per pound, he did not look upon it with much favor.
If this view is true, what kind of leather must that be which is made out of spruce bark exclusively? More than half of the bark used in sole leather tanning throughou Germany and Austria is this spruce.
M. B. writes to suggest the construction of a spherical me tallic balloon, 70 feet in diameter. Such a sphere would lif $11,225 \mathrm{lbs}$. ; and if made of metal weighing $\frac{1}{2}$ a lb . to the square foot, it would weigh $7,647 \mathrm{lbs}$., leaving $3,578 \mathrm{lbs}$. o lifting force available. The balloon could be raised and low ered in the air by an engine of half a horse power, and no gas need be lost or ballast thrown out
Erratum.-In Professor Morton's article on " The Magic Lantern as a Means of Demonstration," on page 163, in place of 18,14 and 16 inches as the radii, read $4 \frac{1}{2}, 3 \frac{1}{2}$, and inches. The Professor's attention was called to this over

Coxtrspunderce.

Combined Steam and Bisulp To the Editor of the Scientific American:

Your correspondent Mr. C. H. Aàron suggests that would be better to apply heat directly to bisulphide of carbon, by putting it in the boiler instead of water,and dispensing with the steam engine altogether. Many men have made the same suggestion since I began to experiment in utilizing the latent heat in exhaust steam, and have fallen into the error of supposing that power could be produced wit much less heat when it is applied
bon than when applied to water.
The difference in the amount of fuel that would be required to produce a horse power an hour with the two fluids is by no to produce a horse power an hour with the two fluids is by no
means as great as most persons imagine. To illustrate: 4 lbs. means as great as most pine of 1 horse power an hcur, if the boiler and engine are well constructed. If the boiler is filled with the bisulphide of carbon instead of water, 4 lbs. of coal will run an engine of $1 \frac{1}{2}$ horse power an hour. If a combined steam and bisulphide engine is used, the 4 lbs. of coal will work the steam cylinder 1 horse power an hour, and the ex haust steam from this cylinder will work the vapor cylinder nearly $1 \frac{1}{2}$ horse power during the same time; and we get about $2 \frac{1}{2}$ horse power from the same fuel that would be required to produce 1 horse power with steam alone or $1 \frac{1}{2}$ horse power with bisulphi
by trial many times.
In other words, with the combined engines, the same heat is used twice and produces two results; and I know by actual tests that the latent heat in the exhanst steam from
an engine will do nearly as much work when used to heat a bisulphide boiler as the coal, burned to make that steam, originally would have done had it been burned under the bisulphide boiler in the outset. The loss of heat by using the steam in an engine does not exceed 95 per cent; and the exhaust will heat, to $200^{\circ}, 95$ per cent of the water that the coal used to make that steam would have done. The loss of heat is entirely due to the radiation from the pipes and cylinder; it does not make the slightest difference in the amount of heat it contains, whether the high pressure steam is used to produce a large amount of power in an economi cal engine or whether it escapes direct from the boiler. The theory that the heat extracted is in exact proportion
to the power produced is theory only, and cannot be susto the power produced is theory only, and cannot be sus-
tained by any practical tests; but on the contrary, heat is no more destroyed or used up in producing power than water is by flowing through one wheel to another at a fall below.
Another popular error is that a large amount of the hea produced by combustion goes up the chimney flue, in a well set boiler. I have put a bisulphide boiler into the smoke stack of a steam boiler and found that more work could be done with the exhaust steam from one engine, when ap plied to a bisulphide boiler, than with the heat escaping from
hope that these facts will convince your correspondent and others that more work can be done with a combined engine where the heat is used twice than with a single engine where it is used but once.
Springfield, V .
To the Editor of the Scientific American:
I have read C. H. Aaron's remarks on the steam engine; and I wish to say that a pound of steam at any temperature contains about 1,150 units of heat; of these not more than 250 go to working the engines, even when the feed water is heated to 180°; the rest is blown off through the exhaust
pipe or enters the water of condensation. Fifty years ago, the Cornish steam engine made one horse power per hour out of $2 \frac{1}{3} \mathrm{lbs}$. of coal; to-day the average of all engines running will not be less than 4 lbs. of coal per horse power per hour, the very best compound condensing marine engines requiring 2 pounds of coal per horse power per hour.
The units of heat in a pound of coal, when tried with the mechanical equivalent (772), ought to produce 2 horse power for 1 hour.
We have been exercising our ingenuity in making every imaginable style and shape of engine, cut, off, catching the gases going up the chimney,etc. So of the they go,these are
good; but they do not go to the root of the evil, good; but they do not go to the root of the evil, which is,pre-
eminently, the 966.6 units of latent heat which pass out with the exhaust steam. The half of this may perhaps be utilized by making it heat a second boiler containing a substance with a low boiling point, which substances render latent a small quantity of heat. Such are ether, gasoline, bisulphide of carbon,etc. ; all these boil at about 100°. Ether in passing into steam renders latent only 163° of heat.
With regard to putting the fire directly to the boiler containing these substances, it would be very dangerous; and I doubt not, if Mr. C. H. Aaron were to try it, the chances are that he would not long be able to eat apple pie even though it be seasoned with quince. And it would be of little practical utility; because, when the specific heat of a substance is low, the steam is proportionally weak, that is, although 1 unit of heat will raise 1 pound of water 1° and 1 pound of ether 2°, but the steam of the ether will only have half the power of the steam of the water.
Wilmington, Del.
Wilmington, Del.
J. W. H.

The Patent Right question

To the Editor of the Scientific American:
Several of your correspondents have given opinions on this question, arguing in favor of certain general principles which seem to me to be essentially wrong. Permit me to say a few words on the other side, though we all come to
the same conclusion, but for different reasons. Mr. H. A Walker says: "A citizen has a right to claim from the State only such protection in the use and ownership of property only such protection in the use and ownership of property
as shall redound to the general good." J. E. E. says: "I as shall redound to the general good." J. E. E. says:
cannot see that an inventor has any inherent right in his own discovery." Both of these propositions, I call funda mentally wrong. The citizen claims protection from the State for his property because it is his, independently of the State, and the State itself exists, simply by the universal consent of the individual members, because it is only by union that each can be protected; and without that union there would be and could be no such thing as public good. If th
fails.

As to the other dicta of J. E. E., I must say that, in my opinion, the inventor has as much inherent right to his own discovery (exclusive right, I mean) as he has to the use of his hands or his teeth. But he is powerless to enforce tha ight; to do so, he becomes a member of a community or State, each member of which, by mutual agreement, bind himself to all others; so that, if any one will invent a new sive use and profit of that thing. But only for a limited time, for the cost of a perpetual monopoly would be too much. Under this condition, the inventor has an inducement to invent, and the State the benefit of the free use o the invention finally.

Charles Stodder.
Boston, Mass.
To the Editor of the Scientific American
On reading H. A. Walker's letter on page 132 of your cur ent volume, I can see very plainly that a citizen has the ex clusive right to whatever he produces with his head or hand and none but a thief or robber can take it from him without obtaining his consent, and remunerating him for it. The best protection to the individual is for the best interest of the State. The State ho night to my service, in any ca-
pacity, only as I sell it, and the idea that it has is only one of hose barbarisms which advancing civilization has failed to radicate. The above will do also for J. E. E., and I will add that the idea of reward for doing good and punishmen for doing the opposite is as old as man; and if the inventor benefits the public, he is entitled to a reward, simply be
cause he doэs so
Portland, Me.
J. E. S.

Water as Fuel.

To the Eiditor of the Scientific American
I observe in your issues of April 5 and July 19, under the head of "Water as Fuel," some observations on the newly nvented Stevens steam furnace exhibited in San Francisco Will you allow one who has seen its workings, and had its objects stated to him by theinventor, to correct a few errors in those communications?
First, I will mention to the Alta reporter that the " tremendous roaring" is caused simply by the escape of steam from the pipe, as would be the case if there were no combustion at all, and not, as he seems to think, by the chemical action. Next, the inventor is not so unscientific as to think that steam can be decomposed simply by striking disks of iron, or by any other mechanical means. It is true that it is practicable to decompose water by contact with red hot iron, but only at the expense of the metal, which is xidized, hydrogen being set free; but this is far from being he design of the inventor, he using the disks of iron only to deflect the current of steam on to the jet of oil. As stated by him to me, the objects of the inventor are: To decompose
superheated vapor of water in presence of red hot carbon, hereby getting abundant oxygen in a very small space, and then to burn the carbonaceous matter to carbonic oxide. The merit of the invention consisting in having at command a limited space where the temperature is very high. This would make the furnace specially valuable for reducing very valuable ores, and for other metallurgical operations. He did not pretend to economy of fuel, and such a device could not possibly be economical when no arrangements are made o introduce air to consume the hydrogen set free from both il and water. Oil is used, being the only fuel that cruld be ed constantly into the right spot.
The inventor knows that as much heat is necessary to de compose water as will be produced by combining the oxygen set free with the carbon of the oil. But if his ideas are cor rect, he gets, as I said, an abundant source of oxygen. I
make these corrections for the benefit of those of your read rs who might be misled.
H. O. L.

Stockton, Cal.
The Thermal Expansion of Mercury.
To the Eaitor of the Scientific American :
In your clear and useful article on the " Properties of Sat rated Steam," in your issue of August 9, current volume here is an error, derived probably from a similar error on age 61, of Charles T. Porter's useful "Manual on the Steam Engine Iudicato
The coefficient for the expansion of mercury for each degree of Fahrenheit's scale, as there given, is 0.0010085 and you reproduce it exactly. As given by Rankine ("Steam Engine," art. 107, I, p.111), it is $0 \cdot 00010085$, and it is so given in Rankine's " Civil Engineering" and Young's "Physica." Your coefficient is therefore ten times too large, and may mislead the inexperienced. I have called Mr. Porter's atten tion to the error.
J. C. Hoadley.

Lawrence, Mass
Remarks by the Editor:-We are much obliged to ou
reproduced, as h9 supposes, from Mr. Porter's valuable and, in general, very accurate work. Applying the correction to the problem given in our article on the properties of steam (page 81, current volume of the Scientific American), we find that the expansion of mercury is $61.11 \times 0.00010085 \times$ $(80-32)=0 \cdot 3$ inches, and the corrected hight of the column $=61 \cdot 11+0 \cdot 3=61 \cdot 41$ inches. We advise our readers to make a note of this correction, and affix it to the article.

A Toad in the Solid Rosk.

To the Editor of the Scientific American
The other day Mr. Moses Gains of this place, while dig ging into a bank, found a toad embedded in the hard pan He came to a stone some 2 feet square; and after digging this out, a man who was with him observed something black: taking his pickaxe, he carefully dug it out, arid it proved to be a toad. It was some six inches below the urface of the stone, and its place of concealment was as mooth as if it had been made of putty. The toad was about 3 inches long and very plump and fat. Its eyes were about the size of a 3 cent silver piece, being much larger than those of toads of the same size such as we see every day. They tried to make him hop or jump by touching with a stick, but he paid no attention to them.
How came this toad embedded, 5 feet below the surface under a stone, in that hard pan? What did he subsist on? Will such toads live on being brought to the light? Is there ny air in the ground, on which a toad could live, and how long must we suppose that he had been there?

New Hartford, Conn.
 \qquad

The Hartford Steam Boiler Inspection and
The Hartford Steam Boiler Inspection and Insurance Company makes the following report of its inspections in the month of July, 1873:
The number of visits made during the month were 1,108 boilers examined, 2,300 ; internal examination, 1,112 -these were very thoroughly done, including examination of bot toms and all fire sheets, as well as flues and tubes and boiler attachments; external examinations, 2,029. The hydraulic pressure was applied in 180 cases. These were, in most instances, boilers so small, or of such construction, that an inspector could not get into them; but, in addition, the hammer test was applied externally while the boilers were under cold water pressure. Number of defects in all discovered, 1,123; dangerous defects, 275 . The dangerous defects were 1,123; dangerous defects, in most cases such as were liable to result in accident at any in most cases such as were liable to result in accident at any management. The defects in detail were as follows:
Furnaces out of shape, 49-9 dangerous; fractures of plates, $56-20$ dangerous; burned plates, $53-34$ dangerous. These defects were from various causes. In some cases, the fires were too fiercely urged from insufficient boiler capacity. In other cases, the boilers were not properly constructed. The builder, anxious to provide the greatest area possible of fire surface (very likely to outbid his rival), had placed his tubes so near together that, when the fires were driven, the heat was so great that the water was nearly or quite all forced away from the iron, and, having no protection, it could not be otherwise than burned. Anuther difficulty; tubes and flues are often placed too near the shell of the boiler. The space is sometimes not more than one inch, when it should be not less than three inches. Even four inches would be better. There should be abundance of room for good circulation of water. We have found fire sheets, tubes, and flues badly burned from want of sufficient water space between them. Another difficulty. and one which causes many boilers to be burned, is that they are not opened frequently enough. Cleaning is neglected. Potatoes, or some solvents of scale are used in the boiler, the scales are thrown off and down into the bottom of the boiler, and, instead of having it removed through the hand-holes or man-hole, it is allowed to remain, and, becoming conglomerated, prevents he water from protecting the fire sheets, and they become burned and contorted, or, as it is generally called, "bagged" and buckled. Hundreds of boilers are injured or ruined in this way every year. Have your boilers constructed so that no tube or flue shail be nearer than three inches to the shell. If tubular, have the tubes placed in vertical rows, and not staggered-the water will circulate much more freely and the tubes can be much more easily cleaned, and scales will not be as likely to fill up the space between them. We have had some bad cases of late, where the spaces around stag. gered tubes were filled with scale. Cases of blistered plates, 182-31 dangerous; deposit of sediment, 261-36 dangerous; incrustation and scales, 223-15 dangerous. The danger of these defects is sufficiently explained above. External corrosion, 88-18 dangerous; internal corrosion, 52-12 dangerrosion, $88-18$ dangerous; internal corrosion, $52-12$ danger-
ous; internal grooving, $28-3$ dangerous : water gages defective, $72-5$ dangerous ; blow-out defective, 23-10 dangerous; safety valves overloaded, 29-7 dangerous; steam gages defective, $149-16$ dangerous-dangerous varying from -17 to +50 . Where there space, we should say something on this defect. We have often enlarged upon it, but will leave it for a future report. Boilers without gages, 83; cases of broken and dangerously loose braces and stays, $50-$
21 dangerous; boilers condemned as unsafe and unfit for future use, 18 .

The railway link, of about eighty-five miles, between Cairo, Ill., and Jackson, Tenn,, is progressing rapidly, and is expected to be finished about next October. On the completion of this road, Chicago will have an uninterrupted railway line to Mobile and New Orleans by the Illinois Central Railroad, over which passenger trains will run the entire dis,

THE GREAT EXPOSITION-LETTER FROM UNITED STAT
COMMISSIONER PROFESSOR R. H. THURSTON.
NUḾBER 12

$\nabla_{\text {IENNA }}$, September, 1873.

It is with mingled pleasure and regret that we take leave of Vienna and of this vast exhibition.
Several weeks of unremitted toill-of the most fatiguing kind of toil, in which body and mind have both been severely taxed from early morning until late in the afternoon, day after day, without relaxation,-have prepared us to look with pleasure to an early departure. There is probably no severer labor imaginable than that of examining critically the exhibits here grouped in the Machinery Hall. And when the visitor has kept at his work all day, the physical exertion of walking or standing so many hours, together with the mental strain which is occasioned by the uninterupted work of examining and comparing competing machinery and novel methods, are found to be singularly exhaust ing. The excessive heat of the summer has also been seriously enervating. Yet probably no one can finally determine
to take leave of this splendid collection of

THE WONDERS OF MODERN ART AND INDUSTRY without some reluctance. If he is a lover of the beautiful, the great picture gallery, containing contributions from the finest collections of Europe, the statuary, and the thousands of magnificent creations scattered in every direction throughout the vast enclosure, must still attract him. Hundreds of these beautiful objects would well repay him for the time which might be required to revisit them, and scores, equally beautiful, remain yet undiscovered. If he is essentially utilitarian, he desires to investigate more thoroughly some
new and interesting process, or to trace the growth of some new and interesting process, or to trace the growth of some
established department of industry, to learn more of some recent invention, or to examine yet a little more fully the construction of some novel machine. Here no one is ever satisfied. The longer the exhibition is studied, the more does the student find to occupy his attention. The task, once entered upon, becomes almost as endless as the study of Nature itself, and hardly less remunerative.
The engineer, however, who attends the Welt-Austellung soon finds that, to learn thoroughly the lesson which he has come here to study, he must pursue his investigations at a distance from, as well as within, the exhibition limits. He finds here a splendid exhibit of machinery and of manufactured products, but, to see the processes and the methods by which these products are created, he must visit the estab lishments which have contributed them. We therefore propose to leave at the earliest possible moment, after the most
important work is done here, and to spend the remaining portion of available time in visiting some of the most successful or most interesting of those establishments in various parts of Europe, and also, where possible, to see something of that system of technical schools which has done so much for Germany.
Taking a farewell stroll about the grounds and buildings, we have found almost as much to interest us as on the first day of our visit. Even the Machinery Hall, where these several weeks have beeu almost exclusively spent, seems to be still rich in novelties, and we have not yet lost interest in many objects which are now quite familiar to us. At one side, and almost unnoticed before, we find one of the most singularly interesting exhibits to be seen in the building. An old glassblower's lamp and a roughly made reel, standing before a case containing a few new but not, apparently, remarkable specimens of woven goods, form a group which does not appear at all attractive. But when the exhibitor makes his appearance and, sitting before his lamp, begins to heat and to draw out a little rod of glass and to wind off, from its red hot semi-fluid point, a thread finer than that of the silk cocoon, and when it is found that this glass thread is spun and woven like silk, and that the cloths and made up garments, and the hats and feathers, and strong flexible cords exhibited, are all made of a material which we are accustomed to regard as the best illustration of combined inflexibility, brittleness and hardness, the collection a wakens extraordinary interest. Cloaks, capes, ladies' and children's hats with their elaborate trimming of ribbons and feathers, muffs of apparently a curly fur or fleece, and dozens of other articles, are shown, having all the suppleness and softness of
silk, with a remarkable variety of coloring. These silk, with a remarkable variety of coloring. These
glass textile goods,
the exhibitor claims, wear well; and, if soiled, are readily the exhibitor claims, wear well; and, if solled, are readily
cleansed by washing in strong lye or dilute acid. The vis.
itor, after examining this extraordinary collection, finds himself prepared to believe that the story told by a classic author of the discovery, by the ancients, of flexible glass has at least some foundation in fact.
In another part of the hall we meet with a train of " three high rolls," such as have now been long used by our own ingenious engineer, Holley, here exhibited as a new invention by a gentleman well known on this side of the water. In still another place, we discover the peculiar and very excel-
lent form of bridge column, constructed of four rolled iron beams having a section formed of the quadrant of a circle with each extremity turned outward to form a flange, which has so long been used by some of our best builders of iron has so long been used by some of our best builders of iron
bridges; this is also now claimed as a new invention here. In some of the many cases in which well known American In some of the many cases in which well known American
inventions are brought here by foreign exhibitors, they have inventions are brought here by foreign exhibitors, they have
been undoubtedly either "pirated" and adopted precisely been undoubtedly either "pirated and adopted precisely
as they have been brought out in the United States, or with as they have been brought out in the United States, or with
slight moditcations, which are usually claimed to be im. provements. In other instances, the European inventor has actually produced the device contemporaneously with and independently of the American. Piracy is probably not unusual in those countries where the patent code is so incomplete and so unjust to foreign inventors, and instances of it occur quite frequently here, probably, although it is often difficult to distinguish the pirate from the contemporaneous inventor. The latter deserves as much of credit as the former does of reprobation. It is particularly creditable to produce an invention in a country where the talent for invention is so rare, and where it finds discouragement rather than assistance by existing legislation. In the majority of observed cases, however, the foreign exhibitor pays a royalty an American patente
The aid which American inventors have extended to Eu rope is well illustrated in the agricultural halls, where

agricultural machinery,

and particularly mowing and reaping machines, are found in large numbers, all embodying the inventions of American mechanics. The English are now building some fine machinery of this class, and particularly excel in threshing machinery and steam engines for agricultural purposes, a
direction in which our own people are doing too little. The direction in which our own people are doing too little. The German builders are also just entering upon this field. The English machinery is well built, substantial and finely finished, but American farmers would probably hesitate about adopting it on account of its weight, and would prefer our own styles which, while equally well made and quite as well finished, are much lighter and yet are exceedingly strong; and which, if rather less substantial and durable than the English machines, cost less and may be expected to last until later improvements shall have caused other styles to supersede them ; that is to say, quite as long as is necessary or expedient.
Hofherr, of Vienna, is the only continental builder wloo has attempted to compete with American exhibitors of mow-
ing and reaping machines. His machine, though creditable ing and reaping machines. His machine, though creditable and doing good work, is far too heavy for our market and in
several respects inferior to the best American machines The English builders have all declined to compere at the field trials. The officialtrial was therefore a contest between American machines.
The American styles of

STEAM PUMPS

are finding an extensive sale in Europe, apparently, and some firms are building under royalties to American patentees. The Earle pump is exhibited both in the United States section and by their European builders, Decker Brothers, of Canstatt. The Cameron Special pump appears to good advantage in the exhibit of the great English manufacturers, Tangye Brothers. The Selden pumps, exhibited in the United States section, seem to attract attention and to receive much commendation.
The European exhibits would not attract very much atten ion in the United States. The exhibition of centrifugal pumps, by the two firms of Gwynne \& Co. and J. \& H. Gwynne, of London, are more interesting; not so much, however, on account of the novelties to be observed there, as because of the fact that the wonderful adaptation of the centrifugal pump to raising large quantities of water, where the lift is comparatively low, has been most convincingly illustrated by these pumps.
One of these firms is now building eight pairs of pumps to be used in draining the extensive Ferrara marshes in Northern Italy, where the quantity of water to be raised is stated to be 2,000 tuns per minute-enough each minute to float a large ship-and the highest lift is 12 feet. This quantity amounts to $650,000,000$ gallons per day. The pumps are fifty-four inches, diameter. Each pair is driven by com-fifty-four inches, diameter. Each pair is driven by com-
pound engines, of $27 \frac{8}{4}$ and $46 \frac{3}{4}$ inches diameter of cylinder and 24 feet stroke of piston, furnished with steam by a boiler having more than 700 square feet of heating surface. The proper construction of the centrifugal pump is not usually well understood by builders, either at home or abroad, and both theoretical investigations and careful experiment are probably required to assist in perfecting existing designs: but it is well known that the centrifugal pump affords the best known means of raising very large volumes of water to moderate hights, where the first cost of apparatus is a matter of consequence; and in extreme cases, as the be used. The sal is the only form of pump which can well as well as abroad, is becoming an important branch of business, and when buildersshall succeed in fulfilling guazantees of an efficiency, under moderate lifts, in ordinary work, of
seventy per cent. they wili confer a great benefit upon the world and secure corresponding rewards for themselves. Experimentand competition are gradually producing a much desired and greatly needed improvement.
As we take a last glance at the long Machinery Hail and its crowded exhibits, the embodied inventive genius and constructive talent of the world, past as well as present, we feel that we are leaving it with our task hardly commenced and with an oppressing sense of the hopelessness of any at. tempt to accomplish it fully, were the whole period of the exhibition available. Indeed a lifetime would hardly suffice to make the best mechanic, of the thousands who visit it, familiar with all that he probably would desire to learn.
As the Machinery Hall may be considered to contain the apparatus with which the material civilization of the world has been produced, the

ducational departmen

of the Austellung may be looked upon as tbe illustration of the system of machinery by which we are :o day endeavoring to aid the advance of the more purely intellectual part of the work of civilization. The collections in this department are not as extensive as they might be, or as they were expected to be. The ordinary and standard apparatus which are everywhere used in higher schools and colleges, text
books in every branch of study for all grades and in every language, maps and charts, the familiar forms of physical and chemical apparatus, are all illustrated, with some few novelties, but with rare examples of strikingly interesting innovations or impróvements. The school apparatus and furniture from the United States, our American text books, the French illustrative apparatus for very young pupils, the apparatus exhibited by London and Paris makers of philosophical instruments, are all attractive and exceedingly interesting to all who appreciate the public as well as private benefits which follow the adoption of effective and truly practical methods of education. The German exhib. truly practical methods of education. The German exhib
its of apparatus for technical instruction, we have found e its of apparatus for technical instruction, we have found e
ceptionally interesting, both as constructions and as illust ceptionally interesting, both as constructions and as inlust
tions of German methods. Models exhibiting kinematic combinations, the various kinds of gearing, elements of machines, modes of transmission of power, models of typical forms of important machines, and other models illustrating processes of metallurgy and engineering, are here in great variety. Supplied witt such apparatus, our American technical schools would, with their advantages of excellence of material in their classes, probably excel any schools even of Germany, in the efficisncy of the education which they would confer upon their students. A few of our professedly technical schools are already nearly as well provided with this kind of matériel as are the German, and one or two of our kind of materiel as are the German, and one or two of our
schools are even superior to the coninental schools in this particular, with perhaps one or two exceptions. It will probably not be long before we may expect to find ourselves in a ably not be long before we may expect to find ourselves in a
position to offer to our yourg men all the advantages at home position to offer to our yourg men all the advantages at home
which they now seek abroad, and, in addition, some which which they now seek abroad, and, in addition, some whiche
can only be had in a country like our own, and among a peo ple like ours.
Here we are compelled to take leave of the great WeltAusstellung, a gigantic failure financially, but yet a stupendous creation, which entitles those who have inaugurated the scheme and who have, with even moderate success, conducted its administration to far greater credit than the world generally will be inclined to accord them.
The result of her venture may be the temporary financial prostration of her government, but it can hardly be doubted, by those who have had the privilege of visiting the exhibition and of studying its political as well as its economical relations, that Austria will eventually derive from it, directly and indirectly, benefits which will far more than compensate her for all her pecuniary losses.
There are whole groups of exhibits, and numberless articles of specially interesting character, which well deserve notice, which we have had neither time nor space to give
them in this short, hastily written and ill digested series of them in
To the Art Journal, the London Engineering, and other periodicals devoted to special branches, we must leave the task of going more fully into detail and of giving more e:tended descriptions than would suit the pages of the Scif ${ }^{-1}$ tific American. One or the other of the editors of the second paper mentioned is always on the ground, and it is a gratification to learn that the vast amount of valuable engineering information collected by them will be published, at the close of the exhibition, in book form.
In the course of our journeyings among the manufacturing districts, and when visiting the great establishments of Europe, we may have occasion to refer again to a few important exhibits, while considering the methods adopted in thei production.
R. H. T.

Cement for Making Concrete.

J. S. R., of Germanton, N. C., has read our aiticle in our issue of August 9 on "Concrete for Building Purposes," and asks what the cement is made of, etc. In reply, we have to say that the cement is made from what is called cement stone. The stone is quarried from the mountain and burned in a kiln, similarly to the process for making lime. C. ment is similar to lime, and is used with the sand instead of lime, in making mortar. It is termed "water lime" in some parts of the country, from the quality it possesses of setting or becoming hard under water. It maybe procured in any of our principal cities. There are various qualities of it. It should be used with as little delay as possible after burning. To make garden steps or other pieces of artificial cut stone, it is safer to employ Portland cement. This is made in Englar:l, but is imported and for sale in New York city.
aUTOMATIC RAILROAD GATE AND SIGNAL.
The frequent disasters at level crossings on railroads hav called forth many inventions for the purpose of at once closing the roadway to vehicles and warning drivers of their impending danger; and we herewith illustrate a device, simple and apparently universally applicable, which is intended to automatically close the gates at cross roads, and to exhibit to travelers going in either direction, an indication of the coming train
In Fig. 1 is seen a perspective view of the apparatus, which consists of a gate, let down to the horizontal position by a coming train, and again elevated to the perpendicula by the same train when it has passed the point of danger. In the latter position, a signal, attached to the top of the bar, is clearly visible from a con. siderable distance. Fig. 2 shows the working of the de working of the device. As the locomotive approaches the crossing, a pro-
jection (seen in Fige jection (seen in Fig
1 close to the engine 1 close to the engine
near the rails is struck by a clutch on the post of the cowcatcher ; this pulls a wire or rod (laid parallel to the track and partly underground if preferred) which draws the catch, A, away
fiom the projection on the bell crank, B, as represented in Fig. 2. The horizontal arm of bell crank, B, is thus pushed down by spring, C, and, pulling on the connecting rod and pivoted horizontal lever, shown above, turns, by the chain on the end of the latter, the pulley or signal bar, E (dotted lines), thus overcoming the weight, D , and throwing the bar down across the road. As the train comes immediately op

Fig. 2

posite the gate, the clutch on the cowcatcher strikes another projection, F, moving the lever (shown in dotted lines, Fig $\dot{\tilde{2}}$), which pushes in the vertical arm of bell crank, B. The projection on the horizontal arm of the latter is thus raised, so that, by the action of its spiral spring, the catch is drawn under and in connection once more with the lug. The pressure of the end of the catch on the latter raises the connect ing levers, compressing spring, C, and allows the weight, D, to lift the bar to a vertical position, leaving the apparatus ready for the approach of the next train. The form of gate and of signal can, of course; be adapted to suit varying circumstances.
This device was patented on April 15, 1873, to Mr. Richard Walker, of Hopedale, Mass., who may be addressed for further information.

The New Straw Burning Steam Engine.

An interesting trial has been made at Vienna, before several German professors and landed proprietors, of the patent steam engine (illustrated and described on page 403 of our volume XXVIII) which uttlizes as fuel straw and other vegetable products. This engine is one of the novelties of the exhibition. A 10 horse power engine was used for the experiment, making 140 revolutions per minute, and the brake was loaded for a duty of 19 horse power. 355 lbs. of straw was carefully weighed, consisting partly of straight rye and partly of loose broken wheat straw, purposely mixed in order to test the capabilities of the engine for burning all kinds of fuel of this description. It sequired 46 minutes to
consume the straw, steam being kept up during the whole the jaw, B, is caused to approach or recede from the cente time at a pressure of 70 lbs . per square inch with the great- of the chuck. est regularity. This result gives a consumption of about 4.5 lbs. of straw per horse power per hour, and as an engine burning average coal under similar circucumstances would have required about 6.4 lbs . per horse power per hour, it appears that rather less than 4 lbs . of straw are equal to 1 lb of coal. In thrashing, about nine sheaves of straw are required to thrash 100 sheaves of wheat or barley. Everybody present was highly satisfied with the results of the experiment, as it has long been the desire of the eastern farmer

D, Fig. 3, is a yoke piece, through which the screw of great est pitch passes, and thus actuates it in a direction opposite to the motion of the jaw, B. Upon its under surface are wo diagonal grooves into which enter corresponding ribs on the jaws, C^{\prime}, Fig. 4. As the yoke piece, D, is moved, the jaws, C^{\prime}, are thereby caused to slide in their radial slots. The motion of the three jaws is made isochronous by a proper ratio of pitch between the screws on the shaft.
The rain points of advantage claimed for this invention are strength, accuracy, durability, and cheapness. It is stated to be the most powerful chuck made, and to hold drills from 0 to 5 (full size 0 to $\frac{8}{8}$ (fun size of drill). By turning t will ratain drill t will retain drill up to one inch in clusive, and this, it is said, withou slipping even in the most difficult work. The chuck has now been in us for six months, giving good and satisfactory results and is sold with a full warrant as to efficiency, etc.
Patented by Min C. H. Reid, Augus 12, 1873. For fur ther particulars ad the enormous expense of bringing coal and wood from a dress ${ }_{4}^{\text {T }}$ the manufacturers, F. A. Hull \& Co., Danbury, Conn long distance. This invention completes another link in the history of the steam engine, and will enable every farmer who grows more straw than he requires for the use of his estate, and who is miles from a coal mine or forest, to use steam instead of animal power, and at far less cost than hitherto.

THE DANBURY DRILL CHUCK.

This invention, of which illustrations in detail are here with presented, is a three jawed lathe chuck, so constructed that the three jaws are simultaneously moved in radial directions by the revolution of a singie right and left hand screw. The action is direct and positive, and, it is claimed, cannot clog, set, or in any way get out of order
In the sectional views, Figs. 1 and 2, A represents the case, which is made in two parts, suitably secured together and in the face of which are three slots for the sliding jaws, $B B^{\prime} B^{\prime}$. Resting in bearings in the case is the shaft, C, upon and near the ends of which are formed screw threads, cut in opposite directions and extending nearly to the linear
center of the shaft. It will be observed that these screws center of the shaft. It will be observed that these screws are of different pitch.

The shaft, C, is directly in line with and above the slot in which moves the jaw, B; and from the section, Fig. 2, it will we understood that the latter is provided at its inner end of least pitch on the shaft; so that, as said shaft is rotated,

IMPROVED PLOW ATTACHMENT.

The invention herewith illustrated is an attachment to the ordinary plow, and is designed to open furrows or channels in the soil of suitable depth to receive potatoes, and after wards to cover the latter with earth. The device consist simply in a plate, C, pivoted and secured by a screw and nu to an elbowed arm. The vertical position of the suppor drops into a socket, as shown on the rear of the mold board when in use, or, when not employed, is carried by the staple epresented on the plow beam. It will be understood tha the furrow left by the plow is too deep for potato planting nd hence the primary object of the attachment is to par tially fill the channel with the loose earth thrown up by the

share. A bed of friable soil is thus prepared, excellently suitable for the germination of the seed. To cover the lat ter. it is simply necessary to use the plow without the attach ment, the ground being thrown up and over the potatoes by the moldboard in the ordinary way.
The device can be placed in the socket with the end of the vertical part of the arm either up or down, it being suitably secured while in the latter position, so that the downward reach of the plate can be adjusted to plow in grain, etc., to any desired depth. Properly arranged, it is stated, the implement is well adapted for putting in manure or plow ing grass ground.
The seed potatoes are of course deposited by a suitable dropper or other convenient means. It is also claimed that a result of using the invention is that the digging of the hills, when the vegetables are ripe, is attended with much less labor than ordinarily. The apparatus is simple, very quickly attached or removed, and readily adapted to the quickly attached or removed, and readily adapted to the
plow. The patentee is a practical farmer, and informs us plow. The patentee is a practical farmer, and informs us that he has found it in operation a useful and valuable tool
Patented through the Scientific American Patent Agency Aug. 12, 1873, by Mr. William Donnelly, of Calverton, N.Y

New York and Long Branch Railway.-The northern section of this road, the New Jersey Central's Long Branch line, is rapidly approaching completion, and, it is expected, will be open to Perth Amboy about October 1. The bridge over the Raritan betweon Perth Amboy and South Amboy is nearly finished. It is about 3,000 feet long.

[Continued from page 20\%.]

dles. Taking a fragment of a stone that had already been operated upon, he fastened it in a second spindle in similar manner. Next, with an implement in each hand, he brought the diamonds together, steadying the shanks of his tools against two metal projections on the edge of the box before him. Applying the second diamond to the rough gem, with a quick grinding motion he rapidly cut a notch in the latter; it was hardly the work of an instant, but the line was perceptible.
At this point our curiosity prompted us to ask explanation, and suspending his labor, the cleaver showed us that there
idea of the relative sizes, proportionate to the weight of th ${ }_{f}^{e}$ stones, may be gained from Fig. 1, representing diamonds of $1,2,3$, and 4 carats. Of course nothing is wasted; the dust that falls through the false bottom of the box, we shall find again in the hands of the polishers, while the odd scraps are cut into rose diamonds, or the little sparkling grains used for inlaying initials and similar fine work in gold jewelry.

THE SHAPES IN WHICH DIAMONDS ARE CUT.
Leaving the klover at his delicate labor, we were after wards conducted to the cutter or snyder. Three workmen were engaged in shaping the diamonds after the rough forms indicated by the work of the cleaver. Regarding these
cut by No. 3, this by No. 4, and so on. Again the gems were handed to us for examination; all their mica-like sheen was gone; and, were it not for their form, they presented no different appearance from rough quartz pebbles. The fric tion dulls them, for they are ground together with consider able force, the workman being obliged to protect his hands by thick coatings against the rubbing action of the tool.

POLISHING THE DIAMOND-THE SETTER.
The polishing operation next claimed our attention; and ascending to an upper story, we found the polishers or $s l y$ pers at their work, each man with a machine before him, a represented in the large engraving on our front page. In

the cleaver or klover

were flaws in the stone which had to be cut off and, besides, other pieces to be removed to give the gem its proper shape; so that probably, of the whole rough jewel, hardly one half would be available. We looked wisely for the flaws but utterly failed to detect them, a fact not be wondered at when we were informed by the artist that this ability constituted an important part of his art. "Indeed," he observed, "I have to know the structure of a diamond far more intimately than a physician that of the human body." As hardly any two s-nus arn alike, and no rule can be laid down for the woris, r-ma idea may be gained of the consummate skill which enables a $m \cap n$ to pick up a tiny fragment, glance at it once, and instantly detect not only flaws or streaks bu', where they are located, in the heart or on the surface, to mak uphis mind exactly what microscopic piece must be removed, their size, and how they may be cut to turn them to best account, and, finally, how to so divide the stone as to produce the best color. And all this so quickly that, although we saw half a dozen stones operated upon,

Tig. 4
 we asked afterwards: When the workman had examined them? We had not noticed the single swift look given at each, as one after another was split by the artist as he con tinued his explanations. splitting the diamond. We left the diamond, to in dulge in the above digres sion, with a streak cut acros it at the point at which it was to be divided. Placing the spindle containing the gem upright before him, the operator placed one of his knives directly over the cleft. The knife used was nothing more than a piece of steel, perfectly flat with a square edpe and about six inches long. It is ground wlunt purposely for if it were quickly turn the edge. Tapping the back of the blade lightquickly turn the edge. Tapping the back of the blade lightmelting his cement and removing the parts, showed us a clean smooth cut (see Fig. 4).
"But is not this a very risky performance?" we almost involuntarily exclaimed. "Suppose that you make a mistake?" The workman smiled superior, and explained that such is hardly possible, though he admitted that it would be a very easy matter to halve the value of a gem by a single false stroke. Imagine a $\$ 5,000$ diamond-and that is not a large one一thus treated ; $\$ 2,500$ irretrievably lost by a single tap

of the hammer! But then, with good sized stones, the work does not seem so difficult as with jewels no larger than pin heads, so small indeed that, in some cases, they number as many as 300 to the carat in the rough, or 400 finished. An
hapes, a word is here necessary. The brilliant (Fig. 2) dis plays the luster of the stone to the greatest advantage, and is described as obtained by two truncated pyramids united together by one common base, the upper pyramid being much more truncated than the lower, a is the crown and the collet, the two principal divisions formed by the girdle , d is the The faces are called facets, and, including table and culasse, may number sixty-four. The rose diamond (Fig. 3) has a crown but no collet, that is, one side is flat; and it is usually made from stones and fragments which would not, without loss, form good brilliants. Then there are table diamonds, which are flat and have little luster, and bastard diamond

THE SETTER.
or those of mixed shape. The brilliant and the rose are the general types, and those with which we have in the follow ing description to deal.

He CUTTERS

Our artist has graphically depicted the cutter at his work in the engraving. The same form of box used by ihe cleaver is before him, and the diamonds are fastened by cement, as before, in the ends of spindles. The cutter's labor is purely "diamond cut diamond." The stone to be cut is held in its setting firmly in the left hand, while the cutting piece is moved by the right. Both gems are of course affected by moved by the right. Both gems are of course affected by
the mutual abrasion, but the attention of the workman is dithe mutual abrasion, but the attention of the workman is di-
rected to but one. Very slowly the faces are ground away; no measurements are taken or angles calculated. The eye is the only guide, and it seems to be a faultless one. As soon as the first stone was finished, the diamond used for cutting it is operated upon, so that diamond No. 2 is, in turn,

THE CUTTER OR SNYDER
addition to these workmen is the setter, and with him we have first to deal. At one side of the room was a small charcoal urnace in which a number of metal acorns seemed to be roasting. Each of the latter consisted of a copper cup about an inch and a half in diameter, provided with a stem of stout wire of the same metal and filled with plumber's solder. As these rested on the glowing coals, the setter occasionally tried the hardness of the solder with his forceps until the metal became of about the consistency of putty. Quickly removing an acorn, or, to use the technical name, a "dopp," from the fire, he placed it upright in a small stand. Then he fixed a diamond exactly in the center of the plastic metal, and, with his fingers, coolly molded the latter in conical shape around it. Burning seemed to have no terrors for him, and although when the dopp was plunged in water it hissed at a great rate, the hand of the workman showed no effect of the heat. Each brilliant, large or small, has to undergo this operation once for each facet;", that is, the setter must reset it so that every one of its facets in succession may be exactly horizontal and

THE DOPP. outside the holding metal, in order that each face may re ceive its proper polish-an operation requiring no smal amount of delicacy and skill.

THE POLISHERS.
Again referring to the large engraving on our front page, the polishers were seated before long tables, on which were swiftly rotating horizontal disks fastened on vertical spin dles, the lower ends of which revolved in antifriction steps. The disks, we were told, revolved at the rate of 2,000 turns

minute, and yet the bearings kept perfectly cool. The ma chine is an invention of Mr. Hermann's and an im provemen pon the old apparatus used in Amsterdam, a specimen of which he exhibited to us. The construction of the latter
seemed very rude and primitive, being formed almost en tirely of wood; the bearings, it is stated, were continually beating and wearing out.
The disks or shives are circular plates of a composition containing both iron and steel, and are made and turned in the establishment. They are ground in lines, at an angle from center to circumference, so as to hold the oil and diamond dust used in the polishing operation.
Three diamonds, set as above described, are ground at once, by each polisher. The stem of the dopp is fastened in tongs or clamps, the extremity of the latter being supported by legs an inch or so high. Two thirds of the dust ground off in the cutting is allowed to polish each diamond, and this, mixed with oil, is applied to the stone by the quills which the men seemed to be phlegmatically chewing. The whish the men seemed to be phlegmatically chewing. The
anjusting of the gem on the disk requires wonderful accuanjusting of the gem on the disk requires wonderful accu-
racy in order that exactly the proper facet be ground and no racy in order that exactly the proper facet be ground and no
more; for the slightest mistake might cutaway an angle and more; for the slightest mistake might cutaway an angle and
produce serious damage to the stone. The reader will share produce serious damage to the stone. The reader will share
in the astonishment we felt on learning that this extremely delicate work was done by feeling. So sensitive is the touch of the artist that he tells by pressing on the stem of the dopp
exactly whether it lies true against the shive or not, and by exactly whether it lies true against the shive or not, and by his fingers adjusts the stone over incredibly minute angles and distances. This goes on until each facet is brought to the requisite brilliancy. Standing by one of the machines,
we saw, as the diamond was removed from time to time from the disk, the bright spot on its dull face gradually enlarge, as heavier weights were put upon the tongs to press the stone with increased the gem defies all efforts, the hard outer coating refuses to yield, and then it is passed from hand to hand, and for weeks each workman tries to conquer it. Sometimes they fail; at
others, a bright spot at length appears, and the difficulty is over.

renewing injured stones.

It is to this portion of the establishment that injured stones are sent for repairing. We were shown a number of diamonds that had been through the Chicago fire. They had become intensely heated and then suddenly cooled. A white hard film had formed over them, necessitating as careful re polishing as the unfinished gem. We were told that it is a common fault among jewelers to thus hurt the stones during the process of setting them. The difficulty can be easily avoided by allowing the diamonds to cool gradually instead of plunging them at once into cold water. It is the sudden transition and not the heat that does the injury.

about the workmen and their pay

Our examination here concluded, for polishing is the last process. The workmen, numbering thirty-five in all, we learned, were all Israelites, and, with the exception of the cleaver, were paid by piece work. Their wages reach from
60 to 200 dollars a week, depending on the skill and experi60 to 200 dollars a week, depending on the skill and experience of the artist. The greater number of carats manipulated and the more diamonds there are to the carat, the higher the price paid for the work. The establishment is necessarily organized with great strictness, and every diamond is weighed, registered and fully traced throughout its entire course. Large and valuable stones, before being operated upon, are made the subject of a consultation between the head of the company, the cleaver, chief cutter and chief polisher. Each gives his view, and thus the question of shape, color, etc., is carefully determined.

WHERE THE DIAMONDS COME FROM
The diamonds are principally imported hither from Brazil. South African gems have caused no very marked effect in the market. They are fine, but, it is stated, more difficult to
cut than those from South America. The Arizona swindle cut than those from South America. The Arizona swindle created considerable excitement when the first "salted"
stones reached the trade, but of course the dismay of the diamond merchants was allayed when the fraud was exposed. diamond cutting in england.
We notice that diamond cutting has recently been introduced in Birmingham, England, where there !is every pros pect of the art reaching a flourishing state. Recent advices also inform us that a huge diamond has been discovered and brought from the Cape. It weighs $288 \frac{8}{8}$ carats in the rough, and when cut will be half as large again as the world re nowned Koh-l-Noor.

PROSPECTS OF the art.

We see no reason why the art which we have described should not grow in this country to be an important branch of national industry. To Mr. Hermann, now the President of the New York Diamond Company, a corporation of wealthy gentlemen, founded by himself, belongs the credit of its establishment among us, and the consequent enabling of the artisans of the United States, who may be instructed in his ateliers, to compete with and successfully rival the monopoly which, for centuries, has maintained an exclusive and undisputed supremacy in the old world.

The Smokometer.

We have heard of the idea of laying oxygen in pipes through dwellings for purposes of ventilation and purifica tion of the air, of the scheme for similarly supplying car bonic acid for the extinguishment of fire, and of the ingenious proposal to supply milk to our dwellings through conduits leading from suitable reservoirs. Further still, we have perused the glowing prospectus of the electric piano on a flow of music as easily as a stream from a water faucet, and we remember having read of the telephone by which and we remember having read of the telephone by which the choicest vocal efforts of celebrated singers our parlors as easily as the voice of the Bridget hailing us from the nether world through the speaking trum
pet. But now we have found an idea which surpasses all According to the Virginia City Territorial Enterprise, a Pro fessor Maulesel is going to erect extensive works similar to those of a gas company. In these, there will be large retorts in which tobacco will be burned, and the smoke thus produced will pass through proper pipes to a large bell shaped receptacle, similar to a gasometer, where it will be cooled and purified and so scented as to have the flavor of pipe will lead up into the city, and from this will be small branch pipes leading to all the principal houses and saloons in the town. In every house where the smoke is taken, there will be placed a meter, similar to a gas meter but much more delicately constructed. Running from these meters will be pipes leading to all the rooms in the house, and connected with these pipes, at convenient points, wil be long flexible tubes, each tipped with a handsome amber mouth piece for the comfort and convenience of smokers.
When a man desires to take a smoke, he has not to go to
When a man desires to take a smoke, he has not to go to the trouble of hunting up tobacco and filling his pipe, then ingers, and afterward getting fire and ashes upon his clothes half a dozen times before his smoke is ended. There is none of this trouble and vexation. He has only to place the amber mouth piece between his lips, turn a smallsilver thumb screw, and the cool, delicious, perfumed smoke glides into his mouth. By this ingenious and delightful arrangement all danger of fires from pipes and cigars will be obviated, and millions in valuable property annually saved.
An india rubber receptacle filled with smoke is arranged in the breast, inside the shirt bosom, for smokers to draw from while walking in the street; and ladies, with whom it is conjectured the delicately flavored fumes will become very popular, are to have for their use elegantly carved amber
mouth pieces, hooped about with gold and set with diamonds and other gems. When out walking their reservoir o smoke will be contained in the pannier, to which it will impart a much more symmetrical shape than can be attained by the use of newspapers; besides, by giving the rubber of the smoke tank a suitable thickness and strength, it will be found to be very convenient when the wearer desires to sit as it will serve as a cushion, a something which is often great convenience and comfort.
Maulesel is a name as yet unknown to fame; and it ma noticed, as a coincidence quite remarkable, that the gen eric name of the ingenious idea is contained in its last sylla
ble. The Professor, we presume, is some wise ble. The Professor, we presume, is some wise connected
with Professor Cantell A. Biglie, who recently aroused popular curiosity in this city by announcing, in widely distributed handbills, an aerial flight from the steeple of Trinity Church.

Three Hundred Miles of oll Pipes

The system of transporting oil, by means of pipes laid over moderate distances, has been in practice in the oil dis-
tricts of Pennsylvania for several years, proving a convenient means for amounts of capital. While the success of the scheme has thus been demonstrated as applied to comparatively small sections of country, it remains yet to be deter mined whether the project can be carried out on a gigantic scale over more extended space. With the late discovtic scale over more extended space. With the late discov-
eries in Butler county, Pa., it appears that interest in the eries in Butler county, Pa., it appears that interest in the
plan, suggested we believe some years ago, has revived, and plan, suggested we believe some years ago, has revived, and
the idea of transporting oil through iron pipes, from Titusthe idea of transporting oil through iron pipes, from Titus-
ville over the Alleghanies to Philadelphia on the sea board, a distance of 260 miles, is now exciting considerable attention .
Mr .
Mr. G. W. Platt, an engineer quite well known through out the country from the fact of having superintended the construction of the Holley waterworks system in various cities, gives, in a letter to the Titusville Herald, detailed specifications for the construction of a huge conduit of this description. He considers the scheme entirely practicable, and estimates its cost at $\$ 4,406,150$. It is proposed to lay a cast iron six inch pipe, in a beo line between the points above named, which at one locality of its route will be 3,000 feet above the sea level; 40 miles of pipe will be allowed for unabove the sea level; 40 miles of pipe will be allowed for un-
dulations, so that the tube will, from end to end, measure dulations, so that the tube will, from end to end, measure
fully 300 miles. Its contents will be 37,000 barrels of oil, and it is asserted that there will be no more difficulty in ensuring a flow through the bore than there now is in the
water mains of London or Chicago, both of which systems water mains of London or Chicago, both of which systems
each aggregate 300 miles in length. Between Titusville and the summit, a distance of 40 miles, eight pumping stations will be established, so as to relieve undue strain on the pipe. Each pump will have to raise the oil 300 feet. Water by the Holley plan of piston pumps is elevated to this hight, and the friction of eight miles (the space between stations) is overcome at the rate of a million gallons per twenty-fou hours, which is equivalent to 23,000 barrels of oil, fluid measure. The cost of the five pumps, machinery, etc., is estimated at $\$ 50,000$; in addition to which, there must be as
many tanks of 25,000 gallons capacity, each costing $\$ 72,500$, and finally a huge 100,000 gallon reservoir, worth $\$ 50,000$ more at the summit.
Mr. Platt enters into detail regarding friction with the tube and other drawbacks, which, however, he proposes to obviate at once by establishing, if necessary, more pumping
stations: and he finally concludes that 23,000 barrels may be delivered every twenty-four hours, at ten cents per bar rel. He figures up the profits as follows: The pipe would deliver $7,300,000$ barrels of oil per anuum,which, at a trans portation rate of 50 cents per barrel, would yield $\$ 3,650,000$ amounts to $\$ 412,717$, giving, therefore, a profit per annum of
$\$ 3,237,738$, supposing the line to be run at its full capacity The pipe could be thoroughly tested with water and thu leakage obviated, while, it is believed that, it would be as ndestructible as an ordinary water main. The loss from other sources of waste during transport, it is further con sidered, would not be so great as is now the case in the regu lar tank cars.

Word to Apprentices.

"Forfex" gives our youths the following advice: "Educa tion is the basis of all success in life. It is much to you interest to recognize this fact as early as possible. Your shiftless, elder companions in the shop will tell you that affluence and ease result from mere luck. With display of dignified independence, they challenge your admiration for their manliness by proclaiming themselves as good as those persons whose apparent leisure, luxury and dress awaken a feeling of hostility, which they endeavor to intensify by the bitterness of comparison. As you have little intercourse with the world during the active hours of the day, unless warned by the voice of experience you are apt to imbibe these hurt ful impressions, which indicate vindictive jealousy, the con equence of dense, wilful ignorance. The senseless discor that destroys the identity of interest of capital and labor i orn of such parentage. Persons advocating these sentiments are generally men who ridicule the efforts of young mechanics desirous of self improvement. They harangue dle crowds at strike meetings and demonstrations, which they are pleased to consider, in spread-eagle phrase, the efforts of downtrodden working men to achieve their inde pendence.' Drinking saloons are the chosen theaters of thei wordy disaffection. They crave applause, and endeavor, by mock heroism, to entice you to places where lost time and squandered earnings are not the only expenses; for, unde their tuition, the root of false principles is made to flourish in the soil of intemperance. Such influences should be shunned as carefully as we avoid a loathsome disease. Every munned as carefully as we avoid a loathsome disease. Every man will gravitate to the sphere of life for which his acquire
ments fit him, and neither higher nor lower. Those ster ing men round us, who represent the wealth and weight of great people, are but reaping the reward of time well spent and could we retrace the course they have pursued, we woul find the student's lamp illuminating the hours that end day sent in exhausting toil. You may be told that many edu ated men achieve but little in the great struggle of life; ye would they not have done much less if they had been aided by the brute force of ignorance alone? We know of a man, now occupying a position of responsibility under the govern ment, who, some years since, broke scrap iron with a sledge for a foundery and axle forge, day after day, unsheltered from the weather; yet he found time to read at least one hour per day, as well as to educate himself in useful bran ches of learning. His first expenditure for mental improve ment purchased a Webster's Dictionary, a year's subscrip ion to a leading scientific journal, and a daily newspaper He now owns a library which would do credit to a university,
and he is known to and esteemed by our most prominent and he is known to and esteemed by our most prominent
citizens. A different course when a young man would have nrolled him in that army which stupidly drudges out a mer existence.
As you value your future happiness, dèvote as much time as you reasonably can to education. 'Throw away your boxing gloves, for the exercise which they afford can be had from other sources, without pernicious associations. Let your shop mates dub you 'a flat,' if they choose, because you resign billiards, and know nothing of the mysteries of keno and spend your evenings in the peaceful acquirement of knowledge, which brings length of dayis, and tranquillity unembittered by the experiences of the mere stnsualist."

New and Remarkable Cannon.
The German journals announce that the recent trials of new guns on iron plated targets, which took place at Tegel near Berlin, fully satisfied all expectations. The shot from the 11 inch ring cast steel gun penetrated an iron plate 12 inches thick, that from the 10 inch gun of the same pat ${ }_{i}$
tern an iron plate of 11 inches, and there was force to tern an iron plate of 11 inches, and there was force to
spare in both cases. At Krupp's works, at Essen, trials have spare in both cases. At Krupp's works, at Essen, trials have been made with the newly constructed $30 \frac{1}{2}$ centimeters (12 inch) ring cast steel gun, and the result justifies the belief that this gun will pierce 14 and perhaps 15 inches of armor. Thus, the strongest ironclad now ex:sting, her British Majesty's ship Devastation, which is provided with an armor of 14 inches, will no longer be invulnerable if opposed to such guns.

Church Clocks and Chimes

W. M. says that the Church of the Holy Redeemer, on 3rd street, between avenues A and B, New York city, has a very interesting clock. This specimen of workmanship was made in 1869, by Edward Emrich, of Rochester, N. Y The movement is guided by an anchor escapement with solid jeweled pallets; the wooden pendulum is a 2 second ne, its length being 14 leet; the weight of the move ment is 100 lbs.; the hour-striking part has a weight of
600 lbs. and the hammer striking the bell weighs 32 lbs 600 lbs . and the hammer striking the bell weighs 32 lbs
Thequarter striking part has 500 lbs . weight, bearing three lev ers for the three hammers striking the four quarters. Th wheels of the clock are made of fine bronze and are as well finished as a watch. The dials are 8 feet in diameter and the figures are cast in composition. The same maker also fin ished in 1869 the clock and attachments to the great chimes of St. Joseph's Cathedral in Buffalo, N. Y. The chime numbers 43 bells, which were cast at Le Mans, France, and were of Buffalo, after being exhibited in the World's Fair in Paris, 1867.

Secondary Spectra.

Professor O. N. Rood, of Columbia College, New York city, communicates a paper to the American Journal of Science and Arts, on the secondary or residual spectrum found on passing a ray of white light through two prisms of diferent substances arranged to compensate each other for color. This secondary spectrum is generally of small dimensions and peculiar appearance, and is due to the circumstance that the spacing of the colors in the two original spectra is not accurately correspondent. In dimensions, it varies with the amount of the disproportion of the original constituents.
The writer, after alluding to Sir David Brewster's investigations in the same direction, observes that, by proceedings of a different kind, he has succeeded in producing secondary spectra, comparatively gigantic in size, which display the heir peculiar construction by an ordinary spectroscopic mirror. The constituents used are one spectrum furnished by oil of cassia, bisulphide of carbon, or even flint glass, and the other a normal spectrum obtained by the diffraction grating. Thus it is considered that a very near approach is made to the maximum difference of spacing attainable in the present state of optical science; and hence to the secondary spectrum is given its maximum dimensions
The lines of the solar spectrum not being adapted for the study of the arrangement of the secondary spectrum, a number of chemical lines of easy identification were selected. The cases considered in experimenting were three. 1. Where the opposing spectra are of equal or nearly equal lengths. 2. Where the spectrum from the grating predominates. 3. Where the prismatic spectrum is the longer of he two. Measurements are given, in each instance, of both primary spectra, also of the actual secondary spectrum due o the same in combination, and of the secondary spectrum btained by construction. In the last case, Pofessor Rood finds that the distance of any two lines apart in the secondary spectrum will be equal to one half the corresponding distances in the primary constituents; and that the secondary spectrum, thus constructed, will always be half the size of the actual physical spectrum which it represents. From this, he deduces a formula by which, taken in connection with maps of the primary spectra, he is enabled to construct correct map of the secondary spectrum in any case
This construction furnishes a simple means of determining the size and arrangement of the secondary spectrum furnished by two prisms of selected angles, placed in any desired positions relative to the incident ray and to each ther. The accuracy of the result depends on the exactnes with which the measurements on the primary constituents ful in dealing with the secondary spectra in optical instruments.
In order to reveal the nature of the secondary spectrum at a glance and permit of its study in a qualitative way, in stead of using the slit as a source of light, a pin hole is em ployed; and the refraction edge of the prism being vertical the diffraction grating is revolved in its own plane, some what so that its lines shall be no longer vertical. This pro ess reduces the secondary spectrum to a line which, on roating the grating or prism, assumes various curves. It is considered, therefore, that a true secondary spectrum must be regarded as a resultant spectrum in which any two, even closely adjacent, ines are united; even although the actual union of different tints has not been effected and the general appearance still resembles that of one of the primary constituents.

A Trap to Catch Lions.
In Algeria, there is annually a great loss of life and property, by the depredations of lions. The loss of property is estimated at $\$ 50,000$ a year. The inhabitants cut away the orests as a means of protection against the wild beasts . Cher As an assisting means in this, his life work, he has invented lion trap, made as follows:
The frame and hars are of iron. It is 10 feet long, 6 feet 6 inches wide, and the same in hight. Mounted on three cast iron wheels of small diameter, it can be moved on difficult ground. The upper part opens with folding doors, like a wardrobe, which close of themselves at the slightest shock given to springs of steel. Catches retain the lids as they fall, and imprison the animal as soon as he touches the bottom of the trap. The plan is to place this trap, properly baited, on the ground frequented by the wild animals, and hen, when the game is caught, to wheel the machine away then, when the game is caught, to wheel the

Fatalities from Lightning.

The human mortality from lightning is not generally on a large scale, and might be very much reduced by precautions on the part of builders; so thinks the Building News. Arago estimated that the number of deaths from this cause amount ed in France to about 70 in the year; Bondin calculated that from 1835 to 18521,308 so perished; none in November, De cember, January, and February, but most in June and Au gust. The lowest rate is assigned to Belgium, and the next to Sweden, the United States and England being about on par. As a rule, however, these fatalities do not occur insid a structure of any kind. The peril, as experience shows, is less in a crowded town than in a village or in the open coun ry, and, naturally, the more elevated structures are th most liable to be struck. Fuller, indeed, in his "Church History," asserty that there scarcely ever existed a great ab bzy in England which had not been, at one time or another wholly or partially destroyed bylightning, and his citations, taken in comparison with the records of our own times, ar
certainly remarkable. In all cases it is the spire, the tower habitations, all sorts of theories are in vogue on the subject of danger and safety. Some rely on thick glass in the windows, and some on register stoves; others recommend stone roofs instead of slate, and others tell timid people that they should live in a hollow. It is contended on this side that
there should be the least possible admixture of metal in the combination of an inhabited structure ; and on that, that al the bells beneath the roof should be kept continually riag ing, just as, in obedience to an old superstition, cannon ar fired at sea. The mass of evidence upon this topic points, however, to the one conclusion already suggested, that good lightning conductor is the solitary safeguard; but that unless good, it is worse than none.

Cumberland Gap Cave.

A correspondent, A. L. S., says, in reference to this re markable formation, described in our issue of September 13, that, after General Morgan's retreat from that spot, the cave was explored for a distance of four miles by Confederat soldiers, and a new opening was discovered, 3 miles from the one mentioned by H. B. N. The place has never been thoroughly investigated, but chambers, far surpassing in grandeur that described by our earlier correspondent, have
been found. In penetrating the rock, it is found that the new entrance leads for $6, \mathfrak{c} 00$ yards through sandstone, and in this section of the cave, vast quantities of human bones of gigantic size were found, some of the skulls being large enough to put on over a man's head. It is intended, during the current month, to thoroughly explore the cave.

NEW BOOKS AND PUBLICATIONS.
"Earth and Man." New York : Scribner, Armstrong, $\& \mathrm{Co}$
This is a very excellent work on a most Interesting branch of study, an a model school book, full of accurate information, plaeed before th wood engravings.
Catechism of High Pressure or Non-Condensing Running and Management of Steam Engines and Stean Boilers. By Stephen Roper, Engineer. Philadelphia Claston, Remsen, \& Haffelfinger, 624,626 , and 628 Mar ket Street.
This is yet another handy book on the steam engine, and contains muci needed general information, as well as descriptions of many Americai
Practical Designing of Retaining Walls. By Arthur
Jacob, A.B., A. I. C. E., late of H. M. Bombay Service. Jacob, A.B., A. I. C. E., late of H. M. Bombay Service,
Price 50 cents. New York : D. Van Nostrand, 23 MurPrice 50 cents. New York
ray and 27 Warren Streets.

Inventions Patented in England by Americans. [Compiled from the Commissioners of Patents' Journal.]
Frona August 99 to

From August 29 to Septem

```
BLowzr.-P. S. Justice, Phlladelpula, Pa.
```

Electrio Trlegrape.-J. B. Stearns, Boston, Mas8.
GAs.-W. Sters, New York city.

Thomas L. Booker, Shady Grove, Vame Fissignor to himself and E. H. Book er, Donaldsonville, S. C. -The obsect of this invention is to provide ready nd convenient means for adjusting and fastening hames on the collars o clips at the ends of the hame. The invention is specially adapted for
Willam H. Bunch, Windsor, N. C..The body of the
. ides of its center, are attached wings or stationary dashers. These wings re made curved upon the side against which the milk dashes

Improved Picture Hangers.
Franklin W. Ely, Duluth, Minn.-The picture frame has a web attached he other near the top. The web, similar to suspender webbing is double at one or both points where it is attached to the frame ; but to outer por-
tion a ring is attached, with which the suspending cord is connected. The use of the slide is to vary the inclination of the picture or frame. Bymovo an upright position; and when the slide is moved down the effect is con
trary.
Samuel D. Hill, Downieville, Call-This invention consists in arranging
She socket of the candlestick for different sizes of candles, by making it in the socket of the candlestick for different sizes of candles, by making it in
Improved Metallic Lathing.
Timothy O'Callahan, Boston, Mass.-The object of
furnish an improved, Boston, Mass.- C o obect if this invention is furnish an improved metallic sheathing for the inner walls of buildings
The ceiling and side walls of a building may be covered with sheets of cheap netal, having stamped, cast, or otherwise connected to its face dovetail
shaped studs. The studs are in the shape of truncated pyramids, with face
recesses for the firm adhesion of the plaster to be placed around and over
them. These sheets are to be nailed or otherwise secured to the wall. Much less plaster is required for flling the space between the studs than
for covering the ordinary lathed wall, and the work is performed in less

Axle Box and Sleeve for Vehicle Wheel.
William H. Cowell, Columbus, o. -In this invention the axle is
wood and the skein is fitted to the axle in the usual manner. Therade of on the outer end of the skein and the sleeve is made of sheet metal and fitted on to the axle over the skein. A recsss opens in this sleeve for the retention of the lubricating material. The interior of the pipe box is on a chill, to render it hard and durable. The sleeve may be made of sheet steel or composition metal, and not being confined.except by a lug or other
device, to prevent its revolving with the wheel, it may be turned, when worn, upon one side, thus presenting a new surface for
Improved Advertising Lamp
Francisco R.Warner, Paris, France.-This invention consists of a metalic frame of pecullar form, adjustably attached to a lamp post and provided

Retnhard Scheidler and John H. McNamar, Newark, Ohio.-This invention consists in the improvement of the heaters of portable engines. The pum ipe, attaching it to a vertical supporting plate having a concave side, fit ing the boiler and bolted to it ; also having a bearing at the upper end fo
 carries a in front of the smoke pipe, to a bearing on the other side, wher dos a pulley for turning it by a belt from the crank shaft at the fron can be taken off readily for shlpping. The portion of the shaft havin he crank for driving the pump connects with the other portion by a clutc Fhich is shifted by a lever, so that the pump can be worked or not, at will. his arrangement is claimed to afford a simple, compact, and reliable con. coping of the pump in a portable engine, so that it can be stopped without ens, and causes considerable unnecessary delay in all portable engine having the pump directly connected to the cross head in the ordinary way Mreover, it saves the unneces
ump when it is not required.

Improved Mallet.
Albert Holbrook, Providence, R. I. - The object of this invention is to fur nish a durable rawhide mallet for the use of machinists and others in put
ting together, taking apart, fxing, or adjusting metallic or wooden machi ting together, taking apart, fxing, or adjusting metallic or wooden mach rawhide heads secured in a metallic socket, which is made of metal in on solid piece. The handle is secured in the socket in the ordinary manner
 turned to the desired size made of rawhide coiled up and dried, and the e socket
John W. Moore, Bellefonte Preserving Beer on Draft. ame place.-This invention, Pa., assignor to himself and P. Gray Meek, en , and it consists in the combinatio ovel construb bag or air holder, of a valve and bellows mechanism of quid that waction. Into the bung hole of a cask containing beer or othe ng a nozzle formed upon its inner endi, to which is secured the mouth the bag, made of rubber or other suitable material, and of sufficient size and
elasticity to fill the cask when expanded. By this construction, is drawn out of the cask, the air will enter the bag through the hollow bun and expand said bag to take the place of the liquid drawn out.

Improved Extension Table.

Christian Rieger, Morrisania, N. Y.-This invention consisis in extensio rails, hinged to the rails of the side table, and to extension legs. These e tension rails are each made in two pieces, connected together by pivote strips on the bottom and top of the rails. When the rails are extended
they are held in position by means of knob buttons. These buttons ar thus holding the two pieces parallel with the ralls of the side table
The cover of the table is in two parts, hinged together like ordinar The cover of the table is in two parts, hinged together like ordinary
card tables. When the extension rail is drawn out, the half of th card tables. When the extension rail is drawn out, the half of the
table top is turned over on to it, thus making a square table. When the table top is turned over on to it, thus making a square table. When the
extension rails are folded, they are in a position with the half of the top extension rails are folded, they are in a position with the haff of the top
turned back and resting on the otherpart of the top. There is a spring catch on the bottom of the drawer frame whitch engages with a lip on the sich rail which holds the parts securely together. When the table is
extended, the rails of the four sides present a uniform and finished extended, the

Improved Corn Planter
ul,
Ill. - In this invention the
ed hoppers are at tached to the frame of the machine. The ends of the dropping slide enter tached to the frame of the machine. The ends of the dropping side enter
the lower parts of the hopper through holes in their inner sides. A spring
has its upper end attached to a cross bar of the frame, and its lower end has its upper end attached to a cross bar of the frame, and its lower end
enters a hole in the drapping slide, to bring said slide back to its position enters a hole in the drapping slide, to bring said slide back to its position
when released from the device that moves it. To the slide, toward one When released from the device that moves it. To the slide, toward one
end, is pivoted the end of a connecting rod, the other end of which is bent at right angles, passing through a short curved slot in a wheel or disk, an is secured in place by a nut or other convenient means. The wheel or disk
is attached to the end of a short shaft which revolves in bearings attached is attached to the end of a short shaft which revolves in bearings attache
to a cross bar of the frame, and to its other end is attached a bevel gea to a cross bar of the frame, and to its other end is attached a bevel gear
wheel, the teeth of which mesh into the teeth of a similar wheelattached to the axle, which revolves in bearings a ttached to the frame, and to it ends are rigidly attached wheels, so that the saill wheels may carry the said axle with them in their revolution. In each end of the axle, at a little dis tance from the wheels, is formed a universal joint, so that the said wheels
may accommodate themselves to the surface of the ground, however unmay accommodate themselves to the surface of the ground, however un
even said surface may be. A further use of the joint is to enable the wheels even said surface may be. A further use of the joint is to enable the wheel
to be lifted by levers and rods when the machine is to be turned about, o discharge of seed requires to be arrested.

Improved Door Fastener.
Henry Orcutt, Amherst, Wis.-This invention consists in applying a semicircular bar to a door and arranging a weighted lever to engage therewith
(the bar being notched or perforated for the purpose), so that the door may be locked in any position, shut, open, or partly open. The contrivance is designed more particularly for stable, carriage house, barn and shop doors but it is alike applicable for doors of dwelling houses.

Improved Steam Generator.

Harry P. Wright, Bonaparte, Iowa.-This invention consists of secondar return flues, arranged in the masonry along the sides of the boiler, above
the furnace, into which the heat is turned at the front of the boiler, instead of discharging into the smoke stack, thus economizing the heat by causin biler arrangements.

Improved Fireproof Shutter.

John B. Cornell, New York city.-This invention consists of a door or
hutter composed of three plates of metalunited together side by side the two outer sheets ofeing plane, and the middle one being bent in zide, th other form, so as to form channels or spaces between it and the outersheet for the circulation of air or water to cool the door or shutter in case it is

Improved Earth Boring Machine.
Joseph Burns, Anamosa, towa.-In this invention the square auger shaf has a screw point fixed in it permanently. The lower part of the screw auger is fitted so as to be adjusted relatively to the point, to use said point
with it or not, and will have a set screw to fasten it where it is required to be. The upper part of the screw auger is arranged to slide up and down freely, and rests on the lower part when boring. By the bar or plate, in
which it is fitted to turn freely and in which it is confined by the collar which it is fitted to turn freely and in which it is confined by the collar his part of the auger is connected to cords, which pass over pulleys under the platform to a drum, which is fitted loosely on the crank shaft, and
clutches with it to be turned by it for elevating the borings when moved to the right by a lever, so that studs will angage, and it disengages them and lets the auger fall again when the lever is moved the other way. This shaft is the same one that is employed to turn the shaft for boring, and is itself turned by a shaft, pinion and wheel. The driving power is applied to the shaft by a belt f
oved Mold or Box for Brick Press.
John McK \in nna, Cambria, Pa.-The press boxes for making fire brick have
heretofore been cast solid and lined with steel. The stel facing soon wears way, so that the bricks are too large and untrue. The steel has then to be taken out and replaced with new, which can only be done at considerable expense. The object of this invention is to furnish a mold which shall ob-
viate the difficultes experienced

Improved Plow Coupling.
tion has for its object to furnish an improved coupling for connecting two plows, to enable them to
be guided and controlled by one man; and it consists in the bent bars trengthened at their bends by extra rods, provided at their lower ends withswiveled clamping plates and set screws, and at their upper ends with
yes, slides, and notches to receive the key.
 a calcining proneess, from fluor spar, animproved fux for iron ore, and, by
similar treatment of lead ores, , mixed with fluor spar, the rapid separaa similar treatment of lead ores, mixed with fluor spar, the rapid separa-
tion of the calceined spar from the lead ores. In its natural state fluor spar tion of the calcined sparrrom one iren furnaces. The fluor spar, however,
is detrinentatot the heartho
which is treated by the calcining process deseribed forms a superior fux which is trated by the calcining process described forms a superior flux
for iron ore without destroying the brick lining of the furnaces. The calfor iron ore without estroyin the brick ining of the firnaces. Me
cined spar, when produced from the lead ore with which it is formed, 1 is

 sulphurized, and the carrying off of particlese of ead t through the chimney prevented for the sal
duced from the ore.

Improved Chuck.
Eli Horton, Windsor Locks, Conn.-1t it a well known experience in case Ein Horton, nesor the relative positions of the metallit particlese change
hardening jaws that the fectly true. To overcome this diffeculty the inventor has introduced on the face of the jaw a raised seat, together with a groove betwen the face and
bite of the j aw, rounding off thereby the corner, and allowing the use of a Tanite or vitrifed emery wheel, by which the raised seat may,be ground ranite orly true. On the face part of each jaw, on which the work rests for
perfect turning, is introduced a ralsed seat, of sut table size, together writh a grovove or recess formed in the corner of the bite and face of the jaw, removing and
rounding off the same. The groove admits the use of an emery wheel for rounding off the same. The groove admits the use of an emery wheel for
grinding off the raised part, so that work coming to a sharp corner will rest grinding oft the raised part, so hat work comingto and assume a perfectly
upon the ground seat and the bite of the jaw only, and upon the ground seat and the bitit of the jow only, and assume a perfectiy
true position thereon, as an equal pressure is exerted on the same.
.
 corner can do its work accurately, as 1 t projects beyond the raised part in-
to the recess formed by the groove, grinding the seat perfectly without to the recess formed b b
fracture at the edges.

Improved Log Turner. kegon, Mich.-In this inventio

Esau Tarrant, Muskegon, Mich.-In this invention the forward part of the 10 g deck is made inclined, so that when 2 log is rolled past its center it
may roll directly upon the carriage, where it is stopped in proper position may by the standards in the head block. A wheel or segment of a wheel has an axle which works in short guide slots in the middle part of the log deck.
The wheel is preferably in the form of a half wheel or semicircle end an The wheel is preferably in the form of a half wheel or semicircle, and an
axie is arranged in such a position that the straight side of the sald wheel or segment, when turned into the horizontal position, may be a little below the top line of the log deck, so as to be out of the way of the logs when rolled upon said deck.
Amproved. Steam Envine Governor.
Anders Matson, Quincy, III. - In this invention a pipe conducts the steam from the boiler, and is connected with a chamber. The valve and seat are made of metal suitable for the purpose. The cylinder has a fange which
fits steam tight into the base flange of the chamber. The cylinder is closed at the top and fts inside the valve. The steam presses equally on each side of the valve, so that it is balanced, and has free motion to regulate the
speed of the engine. The top part of the shell of the chamber its into the upright bow, so that the latter can be tured to give the driving shaft any required direction.

Improved Hydraulic Motor.
Arkada, Washington Territory.-This
William Walter, Arkada, Washington Territory.-This invention consists n the application of the stream or body of water to a vertical cistern and
cistern valve, which is balanced by a welghted lever, so that,on floating the water rushes into a horizontal pipe and trough filled with water. The for
ward motion of the water, in connection with Ward motion of the water, in connection with the closing of the cistern
valve, produces a forward motion of a piston valve at closed end of horivalve, produces a for ward motion of a piston valve at closed end of hori-
zontal pipe, which is connected to the machinery to be driven by ti. Both the lever power and piston power may be utilized, as desired-the lever po wer foo roushing quartz ane stamping bones, the laster, by suitable
powansmission, for driving different machines.
trat

Improved Spring Bottom.
In this invention, three bottom rails, , preferably, are employed in one
bed. The top slats are placed transersely apon three rows of springs that stand on the rails. Each slat is mortised, near the end, to receive a loop from each spring beneath, except from the midale springs, which bave
loops that lap around the slats. Straps are fastened to the head and foot pieces of the bed bottom, and pass through the loops of the side row of springs and overthe slats, so that the said straps will serve to prevent the
loops from being drawn down through the mortises of the slats. These
 the lower ralls, and are a very convenient and practical mode of attachment

Adjustable Treadle for Sewing Machines.
ment of the treadle pivot rod, in curved slots in the end frames or other supports, for ajausting the treadle toward or from the front of the machine
to suit the operator ; the slots are curved to the axis of the crank shaft, so to suit the operator; the slots are curved to the axis of the crank shaft, so
that the distance between the rod and the center remains the same. It is that the distance between the rod and the center remains the same. It is
applicable to the table of a sewing machine, lathe, or any other machine to Improved Drill Rod Coupling.
Robert A.Chrk, Petroila City, Pa.-This invention consists of one sec.
ion, having a screw threaded portion at the end, of smaller size than the rod screwing into a socket tin the end of the other section by ar right hand screw, and a sleeve serewing on the two sections by a left hand thread
down against a collar on the lower section, by which the joints are locked down against a collar on the low
so that they cannot work loose.

Improved Device for Dressing Saw Teeth.
Rowe, Westerville, ohio.-This invention consists in clamp, provided with recesses to receive the saw, to which it a slotted
 clamped in place against the same by a wedge pin. The anvil is placed di-
rectly under the inner side of the saw tooth, so that the same rests fullv rectly under the tnere side of the saw tooth, so that the same rests fully
thereon: then the set serews are firmy applied to the saw, so that the tooth can be forged ordressed to the width and thickness required.
Richard J. Williams, Ottumwa, Grain Dryer.
Ing by toughering the husk or bran has hitherto been done by mor grind. the grait and then heating the same, the main object being the dampening of the bran and keeping dry the inside of the errain. The cryying the grain
after moistening does not only take longer time, but has also a softening after moistening does not only take longer time, but has also a softening
Infuence on the interior, which is to be arovided, while by heatitig the graing
first and dampening the inside part of the grain remain perfecctly dry. This apparatusis 1 con structed on this principle; and consists of a a series of tubes which pass the grain through the heating chamber into the steam chamber. The ends of
the tubes which enter the steam chamber are perforated to facilitate the the tubes which enter the eteam chamber are perforated to facilitate the
moistening process. By means of alfferent steam chambers and increased moistening process. By means of different stean chambers and tncreased
ammission of stemm, husks of different texture may he prepared and passed
through at the same time.
George H. Hume, Paola, Kansas, assignor to Lo L . C .
Hume, and Chas W. Whar, Kassas, assignor to L. C. Crittenden, Geo. H. viding the metal slats composing the protector with sharp downwardly
proieting project ing spurs. The protector, placed around the tree, is made of wipright
sheet metal slats which are connected gether around the tree. The lower part may be ent outwardy to rest on
he ground. The slats may be made of any sultable material, preferaly of of the ground. The slats may be made of any sultable ematerial) preferably of
sheet iron; and a are covered with coal tar or other preservatlve against the sheet iron; and are covered with coat tar or other preservative against the
influence of the weather. For still further protecting the trees against
rabtits and other destructive ant rabits and other destructive animals, the slats may be provided with pro-
ecting parts or spurs placed at convenient hights. Improved Fruit Crate.
of samel Crane, of Saginaw, Mich., assignor to himself and Charles A. Lee
on
tance from each other, according to the use for which the crate is intend
ed, and In number according to the size or diameter desired. The head ed, and in number according to the size or diameter desired. The head
may be two or more in number, according to the size and number of compartments of the crate.
Improved Shingle Machine.
Alanson Anderson, Chad wick Mills, N. Y. T-This invention
consists of two reciprocating block holding frames, which are alternately moved against horizontal circular saw by means of the vertical saw shaft in gear connec-
tion with sloted lever arms. The blocks are properly set in frames by tion with slotted lever arms. The blocks are properly set in frames bb
tilting plattorms, as in other machines of this class, the same being opera ted by a pawl and ratchet mechanism, in connection with a bent lever and spring arrangement for engaging and disengaging the blocks.
Henry S. Crossland, Dresten, Texas., -This invention consists in a hoe with an inclined cutting edee: the object being to enable it to enter the
ground more easily and to prevent dirt adhering to the blade underneath ground more easily and to prevent dirt adhering to
the eye.
Improved Harvester Rake.
Samuel Clevenger, Vibbard, Mo.-This invention consists in a slide,
toothed bar, slide rod, gulde, rake head, rake bar, trip pin, two shafts, fou gear wheels, and two segments of gear wheels, in combination with each other and with the frame, the platform, and the drive wheel of a harvester.
By this construction, as the rake head begins to move invard to sweep Sy this construction, as the rake head begins to move in ward to sweep.
gavel from the platform, the guide enters a noteh in the under side of the rake head, which allows the rake head to!drop, so that tts'teeth may move along the plat form and carry the grain with them. As the rake head begins its out ward movement, the pin strikes the inclined inner end of the guide
plate and moves its outer end for late and moves its outer end for ward, so 'that the slide a attached to the said rake head, so that tt may pass back without its teeth coming in con. act with the grain upon the platiorm.

Improved Micrometer Gage
Antoine Bonnaz, Paris, France.-This invention isintended for measuring
articles in minute fractions, and with unusual accuracy. A frame supports apper and lower screws formed with threads, whose section shows an equiateral triangle, and which are reversed in their direction. A milled head
or knob, swiveled on a screw, is fastened in the head of the upper screw. A plain outer socket is rigidy attached to this screw, while the knob has a this ward flange extending over the e upper part of the eocket. Bet ween
his the knob is a washer having a series of spitngs which produce within the three parts a frictional connection that will cause them to turi together until a resistance is met with, asequate to overcome this friction
Packing rings are let into annula r receesses of sockets to exclude dust. A numerical circular notation is made
notation on the stationary socket.

Improved Air Gas Machine.
Pelag Werni, Newark, N. J. J-This invention has for its object to turnish a mproved apparatus for forcing a ir in uniform quantities into a carbu-
eter. The invention consists in the combination of series of water sealee vessels, to thed uprights, segmental toothed gear wheels, shafts, , Inlet pipes providied with valves at their inner ends, outlet pipes provided with valves
at their outer ends, water sealed vessels, and discharge pipe with each other ; and is an improvement on a device patented on Jull 33,1827 , to the same inventor and Henry Curliss
Frank C. Miller, Blue Earth City, Mininn.-In this invention, a hollow sheet metal cyllnder has its interior surface studded with numerous small cellis
too small for the grain, but large enough to admit the cockle and othe small matters, to be retained and carried above the grain, and thus separated from it. A stationary trough or receptacle extends through the cyl. nder from end to end, and is arranged with one edge close to the surface of the cylinder near about the center vertically on the upwardly moving ide so that the matters contained in the emall celis will be carried above
it and then fall into it. A small perforated cylinder is arranged in the hollow sheet metal cyllinder to receive the grain frrst, and separate the large coarse matters. The foul matters accumulating may be scraped out at one
end from time to time.

Improved Tool Receptacle
Levil. Lamb, Chelsea, Mass, assignor to humself and Sewell K. Loveofmechanics, artisans, and machin nsts, an improved die stand, into which loss or accidental demage; and the device consists terial, surrounding a block with holes, corresponding to the number of

Value of Patents, aND How To Obrain mein. Praciciad Iints to lineniors
ROBABLYY no investment of a small sum of money brings ROBABLY no investment of a a mall sum of money brings
greater return than the expense incurred in of obaining a paten
even when the invention is but even when the invention is but a small one. Larger inventions are found to pay eorresppndingly well. The names of Blanehard,
Morse, Bigelo $\begin{aligned} & \text {, Colt, Ericsson, Howe, McCormick, Hee, and }\end{aligned}$ others, who have amassed immense fortunese from thencr inven.
tions, are well known. And there are thousands of others who tions, are well known. And there are thousands of others who
have realized large sums from their patents. More than FIFTY THovssand inventors have availied themselves
of the services of MTNX \& Co. during the TWENTY-SIX years acted as solicitiors and Publishers of the ScirsNTric Amerricis.
 able of rendering the best service to the inventor, from the experience prac-
tically obtained while examiners in the Patent office e enables MuN $\&$ Co. to do everything appertaining to patents BETTER and ofraper than any
other reliable agency.
HOW TO

This is the closing inguiry in nearly everyletter, describing
some invention which comes to this oftlce. A positive anthe Commissioner of Patents. An application consists of a Model Draw-
ings, Pettitoo, oath, and full Specification. Varions offcialia rules and for-
ingl mailites must also be observed. The efforts of the inventor to do all this delay, he is usually glad to seek the ald of persons experienced in patent business, and have ail the work done over again. The best plan is to solicitit
proper advice at the beginning. If the parties consulted are honorabile men, the Inventor may sately confide his didas to them they will advise whether needfui to protect his rights.

How Can I Best Secure My Invention?

This is an inquiry which one inventor naturally asks another. who has had
some experience in obtatn'ng patents. Hus answer generaly
Construct a neat model, not over a foot in any dimension-smaller if pos sible-and send by express, prepaid, addressed to M MNN \& Co.. 37 Park Row,
New Tork, together with a description of tits operation and merits. On receipt thereff they will examine the invention carefully, and advise yon as
to its patentabilty, free of charge
 improvement as possible and send by mail. An answer as to the prospect
of a patent will be received, usuanly, by return of mail. It is sometines
best to nave a search made at the Patent offlce. Such a measure often saves the cost of an application for a patent. $\mathbf{P r e l i m i n a r y}$ Examination.
 with the fee of 85 , by mall, addressad to MUNN \& Co., 37 Park Row, and due time you will reecive an acknowledgment thereof, followed by a writ
en report in regard to the patentabulity of your improvement. This spectal sarch is made with great care, among the models and patents at Washing-

Rejected Cases.

Rejected cases, or defective papers, remodeled for parties who have made applications for themselves, or through
Address MINNX \& Co., stating particulars

To Make an Application for a Patent.
The applicant fora patent should furnish amodel of his invention if sus
ceptible of one, although sometimes it may be dispensed with; or \mathbf{r} it the invention be a chemical production, he must turrish samples of ot the ingredi
ents of which his composition consists. These should be securely packed the inventor's name marked on them, and sent by express, prepaid. Smal modeds, from a distance. can often be sent cheaper ry mail. The safest
way to remit money 18 by a draft, or postal order, on New York, payable to the order of MUNN \& Co. Persons who live in remote parts of the country can usually purchase drafts from their merchants on their New York cor

Caveats

Persons desirng to file a caveat can have the papersprepared in the short
est time, by sending a sketch and description of the invention. The Govern ment fee for a caveat is 810 . A pamphiet of advice regarding applications or patents and caveats is furnished gratis, on application by mail. Addres

Reissues.

A reissue is granted ho by riginal patentee, his herrs, or he assignees of

he entsc ion, the original patent is invalid, provided the error has arisen from ina ertence, accident, or mistake, without any fraudulent or deceptive intel | tion. |
| :--- |
| p |

A patentee may, at his option, have in his reissuea separate patent for
each distinct part of the invention comprehended in his original application by paying the required fee in each case, and complying with the other requirements of the law, as in original applications. Address MUNN \& Co.

Foreign designers and manufacturers, who sen
Forelgn designers and manufacturers, who send goods to this country rom fabricating or selling the same goods in this mart'et
A patent for a design may be granted to any person, whether cetizen or elievo, or bas relief; any new and origignal design for the printing of wo en, silk, cotton, or other fabrics, any new and original impression, orna-
ment, pattern, print, or picture, to be printed, painted, east, or otherwise ment, pattern, print, or picture, to be printed, painte,
plared on or worked Into any article of manufacture.
plared on or wrike into any article of manufacture.
Design patents are equally as important to citizens Foreign Patents.
The population of Great Britain is 31,000,000; ;f France, $37,00,000$: bel Sum, 5,000,000; Austria, s6,000,000: Prussia, 40,00,000; and Russia, 70,000,000. Patents may be escured by Anericican citizens in all of these countrics
Nuw is the time, while business is dull at home, to take advantage ct these mmense foreign fields. Mechanical improvements of all kinds are alway In demand in Europe. There will never bea better time than the present
to take patents abroad. We have reliable business connections with the
wis. principal capitals of Europe. A large share of sall the patents secured in Coreign countries by Americans are obtained through our A Aency. Addres
MuNN \& Co., 3 Prark Row, New York. Circulars with full information oreign patents, furnished fre
Did patentes realize the of act Ext that theided inventions are likely to be mor productive of profit during the seven years of extension than the frist full
term for which their patents were granted, we think more would avail theraselves of the extension privilege. Patenta. granted prior to 1861 may be ex of the decease of the former, by due application to the Patent office, ninety days before the termination of the patent. The extended time inures to
the benefit of the Inventor, the assignees under the first term having no the benentit of the inventor, the asigneesu under the first term having no
rights under the extension, except by spipecial agreement. The Government rights under the extension, except ty special agreement. The Governmen
fee for an extension is sto0, and it it is neeecssary that good professional service pe obtained to conduct the business before the Patent office. Full informa. Trademarks.
 tection. This is very important to manufacturers in this country, andequal 1y so to foreigners. For full particulars addressMUNN \& CO., 37 Park Row New York.
On the first of September, 1872, the new watent law of Canada went int Yorce, and patents are now granted to citizens of the United States on the
same favorable terms as to coltzens of the Dominion. In order to apply for a patent in Canada, the applicant must furnish a
model, speciication and dupplicate drawings, substantially the saxie as in applying for an A merican patent.
The patent may be taken out elther for five years (government fee 820) or for ten years (government fee 840) or for fifteen years (government fee 860)
The five and ten year patents may bs extended to the term of \#fteen years. The formalitites for extension are simple and not expensive.
American inventions, even if already patented in this country, can be patented in Canada provided the American patent is not more than one year ${ }_{\text {all pe }}$
All persens Who desire to take out patents in Canada are requested to
communicate with MUNX \& Co., 37 T Park Row, N. Y., who will give promp
Loir to tie ousmess and furnish fallinerructio

Persons desiring any catent issued from 1886 to November 26, 1867, can supplied with official copies at a reasonab)e cost, the price depending upon
the extent of drawings and length of speciication. the extent of drawings and length of specitcation.
Any patent issued since November $27,186 \%$, at whic
ing to this
A cony of the clailms of any patent issued since 1836 will be furnished
$\underset{\text { For } 81}{ }$
name of patentee title of inver Mu., Patent Soliciters, 37 Park Row, New York city.
MUNN \& Co. will be happy to see inventors in person, at their offlce, or to
dvise them by letter. In all cases, they may expect an honest opinion such consultations, opinions and advice, no chareve is madee, Write plainly donot use pencil, nor pale ink: be brie
All business committed to our care,

In all matters pertai

In all maters pertaining to patents, such as conducting interferences of patents, etco, special care and attention is given. For information, and or pamphlets of instruction and advice

MiUNN \& CO.,
PUBLISHERS SCIENTIFIC AMERICAN,

sonsiness and tersomal.

 The Charree for Insertion under this heed is $\mathbf{\$ 1}$ a Line. Dry Steam for best Lumber Dryer, and bestHouse Furnaee. Circuliars free.H.G. Bulkey. The Leclanché Battery Co. supply the best
batiery for Burglar Alarums, Bells, \&c., No. 40 West 18th Mica, 100 Tuns, Cuttings and Blocks, for
sale, cheap. Adress P. O. Box 7 IT, E., London, ont., Ca. Belting-Best Philadelphia Oak Tanned.
c. W. Arny, 30 and 303 cherry Street, Yhilidelphia, Pa. For Sale-An interest in a a well established,
profitablemanufacturing business, capable of great en. proftable manufacturing business, capable of great en.
largement, for which personal assistance and additional capital is wanted, to the amount of from ten to thirty thousand dolars. The
permanent demand the made are en in extensive
therighy the right of manufacture exclusive. Any active man or
company desirous of securing a good and substantial business and frrst rate article for manufacture, will find
his a bona fide opportunity. Address F. C. Beach, Box 773, New York eity.
Encine and Doiler makers, please send de-
seriptive circulars and prices of 5 5, 40 and 50 H.P. to

 For patent Electric Watch--locks, address
Jerome Redding $\&$ Co. 39 Hanover Street, Boston, Mass. Cart Looder-One half of the Patent for See illustration, page 266, "Scientific American," April Foundry and Machine Shop for Sale-A gooo locatition for all kinds of work, and manutacturing
Agricultural Implements. Goood reasons for selling, and description of property given. Address John Ziegler,
Dovetailing Machines and Surface Planers,
 L. H. Mace \& Co., Refrigerator Manufactu-
rers,115. Houston St., V Y., have 2 of A. Davis' DoveNobody will buy the metal Truss with its
pitiless Iron Finger The New Elastic Truss 683 Broadway, New York, holds the rupture easy till cured. Pres sure all around the body
Cabinet Makers' Machinery. T.R.Bailey\&Vail. Gear, Boston, Mass., sells Improved Me-
chanical Contrivances Steam Yacht for Sale 60 ft long 25 horse
engine. Beautifully fitted up. Adress H.L. R. 40 West 1sth St. Neiw York.
Catalogue on Transmission of Power by
Wire Rope. T. R. Baile \& Vail. The Olmsted Oiler is the best; it is self-
righting, strong and cheap. All Hardware and Tin Houses have it.
Buy Gear's Improved Balanced Jig Saw, Mining, Wrecking, Pumping, Drainage, or
trigating Machinery, for sale or rent. see advertisement, Andrew's Patent, Inside page.
Key Seat Cutting Machine.T.R.Bailey \& Vail. Portable Hoisting and Pumping Engines-
Ames Portable Engines-Saw Mills, Edgers, Burr Mills, Climax Turbine, Vertical and Horizontal Engines and
Bofters; all with raluable improvements. Hampson,
 Lathes, Planers, Drills, Milling and Index
Machines.' Geo. s. Lincoln $\&$ Coo.,Hartord, Conn. For Solid Emery Wheels and Machinery,
Fend to the Union stone Co., Boston, Mass.,.for circular. all Fruit-can Tools,Ferracute,Bridgeton,N.J. For best Presses, Dies and Fruit Can Tools.
Bliss \& Willtams. cor. of Plymouth \& Jay,Brooklyn.N. Stave \& Shingle Machinery. T.R.Bailey \&Vail. Drawings, Models,Machines-All kinds made
to order. Towle $\&$ Unger Mf'g Co. 30 Cortlandt st., N.Y. Five different sizes of Gatling Gus are now
manufactured at coirts Δ armory, Hart tord, Conn. The
 Machiuists-Price Listor of small Tools free;
Gear Wheels for Models, Price List tree; Chucks and Gear Wheels for Models, Price List tree, Ghucks and
Drills, Price List tree. Goodnow W1ghtman, 23 Cornhill. Boston. Mass.
For soolid Wrought.iron Beams, etc., see ad.
vertisement. Address Tnion Iron Mulls, PItsburgh, Bnorkeepers. should try the Olmsted Patent
Bill rike and Letur Clip. They are admirable for all papers Save their cost in one day's business. Sold by all
Statoners. J.H. White,Newark, NJ.J. Sole Manufacturer. Hyraulic Presses and Jacks. new and sec-
ond hand. E. Lyon, q70 Grand Street. New York. Bolt Makers, send for descrintive cuts of
Abbe's Bolt Machine, to S. C. Forsaith © Co., Manchester, N. H.
2 to 8 H.P.Engines, Twiss Bros.N.Haven,Ct. Boring Machine for Pulleys-no limit to
capacty. T. R. Bailey \& vail, Lockvort. N. Y. Brown's Coalyard Quarry \& Contractors' Apparatus for histing and conveynngmate
W.D. Andrew $\&$ Bro. 414 Wuter st.N.
Damper Regulators and Gage Cocks-For
the best. address Murrll \& Keizer, Baltimore, Md. Steam Fire Engines,R.J.Gould,Newark,N.J. Peck's Patent Drop Press. For circulars,
address Milo. Peek \& Co. New Haven, Conn.

Hatust 4 huries

P. C. G. asks: How can I take India ink
$\underset{\text { Cive the process of churning butter from milk on a large }}{\text { C. . W. . Wo }}$ give the proeess of churning butter from milk on a a large
scale, as is done in large butter dairites in New York.
G. C. R. asks: How can I make sheet iron
soft and malleable? Are there any books on the sub-
 D. B. W. asks: How fast ought the reels
of a bolt, of the following dimensions, to run?
reels of a bolt, of the following dimensions, to run? 2 reels
of 52 inches
diameter, 20 feet long, with $5 / 2$ inches fall 10
 4, and 5 feet No.0. These reels run at 37 revolutions
per minute. We make to much seconds flour and it is
very coarse very coarse. The shorts are very bad and very light.
2d. Ought reens tor run faster or slower with little fall?
Icontend that the flatter the reels, the slower the Icontend that the Hitter the reels, the slower the
ought to run, as the flour will not travel so fast as it
does in reels with more does in reels with more fall, and consequently it will get
more knocks on its route htrough the reels. (There is
such such difference in the practice of millers that we plac
vour letter before them, in preference to answering it ourselves, as we could only glye you general figures.
We think, however, that your reels are running rather too ast.-EDss.]

W. O. C. asks: 1. What is the difference I. The cosmon text boo ks wot on physics and say: y fallow corn
Inting body

 of bodies of difierent specinic c gravilies through water?
4. If the upward motion throun wate of bodies pee
cifcally lighter than water cilically lighter than watera a niform or accelerated mo-
tion? If accelerated,
That tis the le law? Answers : 1 . un. 3. Thenere is no o enemeral law gevernce. . . the rate of
fall of ifferent bodies through water. The rate will depend not only upon the specific gravity of the body, bu
pion its shape, whereby its resistance to the water falling through it will be more or less modified. 4. The forece with which a body specifically lighter than wate
is urged upward is equal to a weight which equals the Is urged upward is equal to a weight which equals the
difierence between the weight of the body and the weight of an equal bulk of water. The motion of bodie either falling or rising hrough water is at irst aceete-
rated but beomes uniform when the resistance of the
water equals the accelerating force. Consult Jamiewater equals the acceelerati)
W. B.M. asks: Is there a cheaper, less dan-
gerous to hande, or more practicable, solvent for siligerous to handle, or more practicable, solvent for sili
cate of ooad than itroric acid? Would water dilute this misture? If not, what will? What I want is a glaze
for articles made of hydraulic cement. Answer: Th proper solvent for silicate of soda (soluble glass) is
boling water. We do not know how nitric acid could boling water. We do not know how nitric
be used without decomposing the sllicate.
E. D. S. asks: Can silver be precipitated (chloride of silver) by metallic or sulphate of iron; or
must it (the paper proper) be first reduced by sulphuric acid by fron, as we now do? The former, as recommende in your journal of August 23 , is much easier, but
thought it an error. The chloride of silver is forme by floating a chloride paper on a nitrate of silver solu-
tion. Please give proportions of fron to the ounce of silver. Answer: The method of precipitating metallit
ilver, given in the answer referred to, is one practice in Germany on a large scale in treating certain ores of silver. In this proweess the chloride of siflver, which tr
insoluble in water, is shaken up in ontact with metalic
ind ron and water. Water alone will not dissolve the
 A. G. Jr. asks, in reference to the conver.
sion of starch into glucose: Can it be accomplished in
 ing. Would the free acid so be detrimental to fermenta tion? Would bringing the erightly acidulated solution
to the bolling point and then stirring in the starch diffused in tepid water do, or must the starch be gelatin
zeed frrst and then boiled? How can I tasily determine ized drrst and then boiled ? How can I easily determine
as to the time when the starch is mainly converted into glucose and not into dextrin? Answer: Glucose isman-
ufactured on the large scale, especially in continenta Europe, in the following way: A mixt ure of starch an
 with 1 per cent of sulphuric acid, kept at the boiling
point. In about half an hour the starch is converted into sugar. The liquid is drawn off, and the sulphuric
acid neutralized by the gradual addition of chalk till there is no longer any effervescence. staphate of lime precipitates. and the ciear solution. atter concentration
by evaporation, is set aside to crystallize. The molasses is drapined of
current of air
H. M. C. says. I am building a small boat Would it be as good as paint? Could you not suggest
some way to varnish a boat? Answer: You can make some way to varnish a boat? Answer: You can make
waterproof varnish as follows : Pale shellac 5 ozs., borax 1 oz., water 1 pint; digest at nearly the boiling point
until dissolved; then strain. It would perhaps be bet ter to give your boan a good coat of paint before apply.
ng the varaish. ing the varnish.
P. R. asks: 1. Is slate a mineral or vegetable
substance? 2 . When was slate introduced into use for roofing purposes? 3. In what country was it first used stance, consisting of silica and alumina, with varying proportions of fron and other metallic oxides. 2 and 3 . The history of the use of slates for roofng purposes in-
dicate Europe as the place where they were first used, dicate Europe as the pace was.
but at w hat date is uncertain.
L. T. B. asks: How can I remove the bitu
minous substance from the Egyptian mummies?
It ob
 substance you refer to is ib itumen, trynnaphtha as a solv-
ent. Rub with a sponge or clott soaked in the naphtha. G. W. S. asks: What is the best way to ex-
tract trease from pork crackings tract grease from pork cracklings, and what is done
with the residuum? I understand that potash is made from it. Answers: Digest the pork cracklings in bisail.
phuret of carbon, covered closely to prevent evapora. phuret of carbon, covered closely to prevent evapora-
tion and in the cold, until the fat is dissolved. The fat extracted by the bisalphuret of carbon can be recoveren
by careful distilitition, and the fluid recovered by con densing it in a receiver surrounded by ice, while the fat remains behind. The residuum not dissolved is valua-
ble in the manufacture of prussiate of potash (potassi fa furro oyanide), , which is largely used in the manu-
facture of Prusian bue.
A. K. asks: 1 . How can I calculate the loss
of
power caused by forcesacting on levers under differ

zontal line 20 feet long, $B C$ C 18 inclies long, D F and
$E B C$ are verticallines. How much power willa welght E B C are vertical lines. How much power willa welght
of 1,000 lbs. at F exertat D , and how much at E or G, not

 it to be as strong and light as posible. Answers: 1
The pressure at E or G is equal to the weight multiplied yits distance from A, measured in a horizontal direc
ion, divided by the distance of E from A, measured in direction perrendicular to the direction of the cord BE . 2. If the wheel is fora carriage, observe the practice o
the best builders, who have worked out the matterpretty horoughy in light trotting wagons.
 Why is tt that, when glycerin is used in the manufacture of printers' inking rollers, less glue should be used?
would naturally suppose that more glue would be re voulan naturally suppose that more glue would be re
quired. Answers : We would recommend you to apply aired. Answers: We would recom mend you to appl
Portand emment, mixee with water to the consistence
f ordinary mortar over the eoting of ordinary mortar, over the coating of ordinary san
and lime. This willset t ard vaterproof cement, as well as a comparatively chea one. Do not mix more coment than you can conven. Iycerin, which is a non-drying material, is to keep the rollers soft, and the greater the proportion of this, the less, of course, the pro
tity of the compound.
O. S. says: The force exertad in the direc
tion $B A$ is 20 tuns. $B C 18$ a lever 12 inches fulcrum at C. The point B is 3 inches above the cente line. Required the weight at D necessary to hold the
point Bin eualibrim. Also required a rule to deter.
mine the weight of wis

Disregarding friction, the welght required at D, in the
iven case, will be about 5145 tuns. The welght for any position of the e everer may be.found by meltiplying the
otuns by the distance of the ond 20 tuns by the distance of the point B above the center
line, and dividing the product by the square root of the difference of the squares of the length of the le
the distance of the point B above the center line
B. C. asks: What cheap substance will pre-
vent lubricating oil from gumming and semarating after eing manufactured? It is composed of equal parts N
 owing to oxidation, the oxygen being absorbed from the
air. You cannot prevent this unless you can use it Where it will not come tin contact with the air. The uncombined water will always separate from the oil on account of its
he back numbers.
A. L. asks: Will muriate of tin evaporate
or change its quality and lose its strength (so as to be unft for use in dyeing if left in a a ottle or vessel open
to the action of the air and exposed to the heat of the sun? Answer: The compound of tin to which you re fer, being a volatile substance, of course is lost, is
pen to the arr. It thhould be kept in close vessels. A. B. asks: 1. Would it not require a cur-
rent of air blowing at the velocity of a storm to carry he big balloon to Europe in the short opace of tim
hat Mr. Wise has calculated on? 2 What is shesto 3at Mr. Whis has calculated on? 2 . What is asbestos blue to give them a consistency for marking like penci ieads? 4 . How ean I make a good permanent marking
ink for marking dry goods? Would a solution of vine. ar and iron ehavings answer, or would be to othe cloth? Answers: 1. No, although to an oppos.
ng force the velocity of the current of air which Mr. Wise expected to meet woald bc decidedyly felt. Whe
once the balloon reaches such a current, there is
 This wind might blow a hurricane, and yet be unfelt b) in 50 hours, , velocity of from 30 to 40 miles would be
in sufficient. This relocity is not nearly so great as the Wind some times attains, namely, 100 miles an hour.
Asbestos is a silicate of magnesia. Fromits property o withstanding heat is derived its name, which signifies in Greek " unconsumable." It is found, among numer
ous other localities, on Staten Island. 3 . Use fine clay . A good recipe for an indelible ink, to be used with stencil plate, is is Dissolve asphaltum in in amber wartith
W. W. E. asks: Is the following, intended for a fuid gas liquid, a dangerous compound " "Oo
make one gallon: Add to one gallon gasoline, 1 tabie spononulo of salt, tablespoonful of sal soda, half as
much alum, 1 piece of alkanet root 1 inch 1 Ing., What is gasoline? What is alkanet root? Answers:Gasoline is highly rectiffed naphtha obtained from petroleum,
very volatile and inflammable, explosive when mixed with air, and consequently yery dangerous to handle.
Alkanet root is the root of a deciduous plant which the botanists tern luthospermum cinctorium. It contain Ine blood red color, which it freely glves out to fumers, varnish makers, etc. It grows in Asia Minor Greece, and Hungary. The additions you propose to make to gasoline would not sufficienty destroy its in
flammable properties, so as to render it safe to hande lammabe proper
in open vessels.
P. G. G. asks: Is there any cheap prepara
tion with which I can clean paint from the outside of Iron gas pipe so that it will leave the pipe in good con-
dition?
The paint is thoroughly dry and the pipe is old. Answer: The most effective way, if the paint is hard and ary is to frrst scrape as clean as possibie, and afterwards
remove the adhering particles
A. G. asks: What if the cause of the ex
plosion of fulmanates if effectedy a blow? Is it the
the amount of heat developea, or only the change or dis-
turbance of the particles, independent of any tempera ture? Answer: Both the causes that you have named
 percussion, however, seem to be the chief causes, a fulminating mercury explodes violently by both friction
and percussion, but burns with almost a noisel ess flass when kindled in the open air; and fulminate of silver
which can hardly be touched with safety, may, when mixed with oxide of copper, be burned in a tube to de
termine tts composition.
C. \& Co. ask: What is iron pyrites used for,
and where? Answer: Iron pyrites sis used very exten sidelyineen Enland, ard to onome extent in this country,
or the manufacture of oil of vitriol or sulphuric acid
or
 mined, and near means of transportation. Means hav
peen tried, after burning it for the sulphur, to make th residue available as an ore of iron, but so far as know without success. If this should be accomplished, , ow
ver, iron pyrites would be a much more sought for min veraliron pyrites wous.
eral than it it at at present.
B. asks: How can I prepare crude india rabber so as to make a sman balloon? Dissolving it
nd allowing the liguid to evaporate would answer the
 heapestsolvent for your use is carbor bisulphide, ordi. narily called sulphuret of carbon. After the rubber is
dissolved, pour it out thin upon a smooth, slightly reased surface, and leave until dry
R. W. W. A. asks: How is the silver jewel re two distinct shades which can be formed in oxidiz. ing silver. One is produced by chlorine, which has
brownish tint ; the other by sulpur, which has
 wash the article with a solution of sal ammoniac. A
more heautiful tint may liovever be btained by using a solution composed of equal parts of sulphates of cop
per and sal ammoniac dissolved in vinegar. A fine blac
and int may be pronuced by a slightly warm solution of Suret of potassium or of sodium.
S. L. C. says: I I have a pair of cavalry boots
ornamented with considerable stitching around tops and sides of legs. This is all hand work, done with waxe ends. The wax exudes upon the boot, and nothing wil apparently stop it. I have scraped it off with a knife
and washed with benzine, apparently removing already

nd. M. asks if there is anything. that will
Joften buckhorn or bone so that it tan be readily cut and carved, becoming solid atter it is dried. Answer: Im
merse the horn or bone in cool dilute hydrochloric acid
 will dry hard.
J. W. . B. asks: When is the sun on the
meridian? Anewer: When shadows are shortest. See Gillespie's "Land Surveying," pp. 190-192.
W. J. asks: In making artificial fibrin, do
you separate the white from the yoll of the eggs? An. wer: Break the raw eggs, one by one, Into a dish conhours. Then careruly remove them one by one, and
place in boiling water for two or three minutes, or nger, a s desired
E. N. C. says: Suppose you have a smal
amount of power to drive a saw mill the majority of amount of power to drive a saw mill, the majority of
the timber being rather mall, but occasionally there is
 nily when the 42 nech top saw lat in We should prefer the 42 inch Baw.
W. L. M.-The pressure of the wind at 15
miles per houris 11b. 2 oz. per square foot. At 20 miles W. S. asks: 1 . How do you determine the of lift for a foree pump? 2. How do you ob obain the
length of lever and throw of eccentric for a rotary ent of lever and throw of eccentric for a rotary
valve? How yo you obtain the diameter of a steam chest? Answer: It would require too much space t
answer these inquiries in this column. Consult some tandard work on the subject
E. F. R. says: $:$ I have made brass lacquers
acording to various recipes which I have seen in your Ans ers to Correspondents, ", and applie them tn the thener described ; but he work has a daubed 1ook, and
the lacquer will not adhere evenly. I have tried it at dill temperautures. DIpping gives no betere ruccess.
Does it require great practice to do it incely? Or does Doesi treaire great practice to do it nicely? or does
it depend on the manner in which the brass is finished ? Should it be eery smooth or slightly rough ? Answer
Poilsh your brass as smooth and briy Poilsh your brass as smooth and bright as possible, and aply with a fine brush. the following lacquer; Seed la
ozs., turmerie 1 ozz, dragon's blood $1 / 4$ ozz, rectife pirit 1 pint; digest for a weekk, frequently shaking
W. W. P. says: 1. A ball is set in motion except the ball; ; will the ball stop or move on forever?
2. What is the best definition of inertia? Answers: 1 . 2. What is the best definition of inertia? Answers: 1 .
In the impossible case mentioned, tree ball would con tinue to move with the velocity and direction (if thes
an p. can be conceived of, in this connection) that it had a
he time of the general annininiation. 2 . Inertia is ody's incapacity to change its state of rest or motio E. W. asks: What will take grease out of
heep skins? Answer: Try bisulphide of carbon. J. W. C. asks: 1. Is a vein or pocket of the coal formation? 2. What book is best for an ama
teur mineralogist to study? Answrs: 1. We should teur mineralogist to study? Answres: 1. We should
say not. Lignite is usually found in alluvial earths, or say not. Lignite is uspally found in alluvial earths, or
connected with rocks of the more recent formations While oal, strictly so callede appears on be of the same ow them. Anthracite coal most frequently ocurs primtitive or transition rocks. 2. Dana's' "Mineralogy'
S. C. C. asks: Is there any chemical solu Hon which will renew the color of the ink in an old an
aded manuseript? It should be colorless itself, lest $i t$ hould stain the paper. Answr: Try the application
ff a solution of nut galls with a soft sponge or rag to he writing, or damp with a strong solution of yellow
russitate of potash. The latter will turn the ink blue
H. H. J. says: I have been studying upon
a harvester to reap and thrash the grain asit runs, 位 ing the straw on the ground and delivering the grain to
a proper receptacle ; but I am told that the idea is not California, but it takes 25 horses to run them. What the reason that such a machine is not in general use? . Can a chemist ascertain by a quantity of scum on the Where in the United States is manganese found? swers: 1 . The reason such a machine as you speak of
has not come into general use is probably either on account of the expense attending its employment, or its not being adequate to the work required, on account He can. 3. Oxide of manganese is found in the United States in Vermont and Massachusetts.
$\underset{\text { rifte rise above a horizontal line drawn through the cen- }}{\text { W. F. }}$ ter of the barrel, or willit continue on a direct line pen- In
neither case is the rifle elevated. Answer: The ball will neither case is the rifle elevated. Answer: The ball will
follow neither of the paths mentioned, but will describe a curve, continually falling under the influence of grav-
D. \& W. Say: A reservoir at a certain hight
has a pipe leading from it, which pipe has a stopcock at its end. Is the pressure on each square inch of the pipe to fiow, or shat, cutting offt the water? If not, why not No account is to be taken of the coup p de marteau caused
by closing the cock. Answer: The pressure will be iifby closing the cock. Answer: The pressure will be dif-
ferent in the two cases, for the reason that when the water is in motion.
C. E. A. asks for the modus operandi of of logarithms. For example, raise 2 to the power of $3_{2} \frac{e}{20}$. Answer: Raise the number to the power indicated by
the numerator of the fractional index, and extract the the numerator of the fractional index, and extract the
ooot indicated by the denominator. In the example
given, you should take the tenth root of the thirty-sixth given, you u sid
power of 2
J. B. P. asks what is asbestos, and what is
its original formation? Answer: Asbestos is a mineral its original formation? Answer: Asbestios is a mineral
substance. It is a silicate of magnesia. It is composed of the three
and oxygen. G. R. B. asks: What should be mixed with
ground asbestos to keep it from being blown out of
stuffing boxes when used for packing? Will oil or talsluffing boxes when used for packing?
low do? Answer: Try plenty of tallow.
W. S. A. asks: Would a balloon filled with
smoke rise? Answer: Smoke really consists of fine smoke rise? Answer: Smoke really consists of fine
particles of unconsumed carbon, which are elevated in the atmosphere by the warm current of air or gases from combustion in which they are suspended. These par-
ticles of carbon, however, after the air surrounding them has cooled, or after they have drifted into a cool-
er atmosphere, ultimately fall to the farth. The term smoke, though, asgenerally understood and as you evidently regard it, embraces both the unconsumed carbon raise a balloon a certain hight until the hot airr, etc.., fill-
ing it, fell to the temperature of the surrounding air, when the balloon would fall.
S. asks: From 900 gallons liquor at 15°, how
much evaporates at $22^{\circ} 5^{\circ}$, at 30° and at 36° ? Answer: The question does not give sufficient data foran explicit
answer. What is the alcoholic strength of the liquor, answer. What is the alcoholic strength of the liquor,
that is, what percentage of alcohol does it contain, and that is, what percentage of alcohol does it contain, and
does the writer refer to Fahrenheit's or the centigrade
C. M. asks for a recipe for removing print-
ers' ink from paper. Answer: Printer's ink consists of a mixture of linseed oil and lamp black, a kind of very finely divided carbon. There is no solvent for the carbon,
but the dried oxydized oil might be removed to some extent by sulphide of carbon or ether, and with it some carbon might also be washed a way. On the large scale, when old paper stock is worked up for the manufacture where the pulp is exposed in a vat to the action of chloride of lime. Tne removal of the carbon of the ink
in this process is due to mechanical not to chemical, action. The carbon is not bleached by the chlorine, but
the severe mechanical operations through which the he severe mechanical operations through which the material is passed, as pulping, washing, etc., serve to
wash away and obliterate all traces of the carbon of the
ink. On thesmall scale, as removing the ink from a ink. On thesmall scale, as removing the ink from a
ininted page, the only effective way is by scraping with printed page, th
a sharp knife.
W. P. H. says: In coating friction match not hold the emery on to the tin firmly, and it does not arnish, or can I put something into the varnish that will cause it to dry quickly? Auswer: Your varnish
probably does not contain a sufficient amount of spirits of turpentine cr other dryer, or it is other wise improp-
erly prepared. Use a spirit varnish, consisting of shelac, broken fine, and yellow resin, each $11 / 2$ lbs., rectified spirit 2 gallons, or shellac 8 oc., alcohol 1 quart; digest
n close vessel in warm place 3 or 4 days, then decant and strain. You can try a strong solution of glue, ap-
plied to the metal with a brush, like a varnish, dusting
A. says: The following question has arisen:
A stood within three feet of a window trying to get the focal length of a watchmaker's eye glass, by forming the image of the window on a piece of paper and meas-
uring the distance from the paper to the glass, assuming that to be the focal length. B, who was standing by,
said: :"Go farther back from the window ; an object so close as the window is no fair test." A insisted that it the image at four inches from the lens, no matter how near or remote the object. The following statement
was drawn up at the time; " The nearness or distance of
an object from the lens dos not an object from the lens does not vary the focus, that is,
the image formed by the lens is constantly the image formed by the lens is constantly at the same
distance from the lens, no matter what the distance of the object." B contended that the focus receded as the
object advanced ; or that the focus for near objects object advanced ; or that the focus for near objects
would be fartherf from the lens than for distant ones ; and that the test to get at the rated focus of a lens was
with parallel rays. Which was right, A or B? Answer: 3 was right. The solar focus would be practically the ocus for parallel rays of the lens mentioned
S. H. S. asks: 1. If green hams are put into
tank filled with brine (ham pickle) and a strong pressure put on the brine, will the meat take up the brine and cure faster than if there were no pressure? Will
the brine be forced into the meat? 2. Are there any
methods of curing hog meat in pickle, other than the one now used, namely, brine made of water, selt,

Can a flayoring be added to such a plckle, as lemon,
vanilla, orange, etc.? Answers: 1 . The brine will be forced into the meat at a greater or less depth, accord-
ing to the pressure. 2. There are various recipes for pickle. The following is said to give a fine red color and superior Alavor to ham: Bay salt, 3 lbs., saltpeter
2\%/ ozs., molst sugar 1 bb, allspice and black pepper, each, brused. 1 oza, water 9 pints simmer together in clean covered tron or enameled vessel 17 or 8 minntes;
when cool, remove scum and pour it over the hams. 3 4. Yes
W. M. R. says, in relation to the idea pubinch magnifier to a telescopic imageis a good thought. I once looked at the image of my Gregorian with a spy
glass, and saw things on the moon. I could not hold it still, but I wished that I could put them together proper-
ly. Answer: The ordinary compound microscope is
"under corrected" for nse "under corrected" for use as an eyepiece, and must be specially made for the purpose. The small telescope is phere. The combination of collimator, prisins, and small telescope is attached to two parallel balance rods, H. G. says: Our power is a turbine wheel nd with the head and fall, we have, according to the makers' estimate, about 15 horse power. There are 2
lengths of shafting, each 40 feet, connected by 2 feet bevel
gears, and at the extreme end of the said gears, and at the extreme end of the said shaft, 80 feet
rom the wheel, the greatest a mount of work is required or it. Upon the machine driven is a 5 feet drum, and cunis connected with the main shaft by a 10 inch bel keep the belt down. The distance from center to cen-
ter of puliey and drum is 11 feet. There are eight journals or bearings in the entire shafting. When there i ower do I ent and dot lose power by wing the tightener? Answer: We could not answer this ques-
tion without more data. It ordinarily takessome powe to drive a tightener; but as it prevents the belt from a gain of useful effect.
Minerals, etc.-Specimens have been re ceived from the following correspondents, and examined with the results stated:
E. D. L.-The
ly antimony.
V. E. H.--Beryl, a mineral composed of nd glucina, and allied in composition to the emerald. W. F.S.-Selenite, a transparent variety of gypsum E. W. T. - Pyrites in ferruginous quartz.
W. K. S.-Chrysocolla, a silicate of copper C. G.-Sandstone with the imprint of some fossil aniG. W. S.-One is cetable nut.

T. B. J.-Ferruginous quartz.

A. G.-The green mineral occurring in spots in the copper.
G.A.F.-Your specimen of 1^{\prime} mestone is hard and com R. T.-Iron
R. T.-Iro
quantities.
L. M. L.-The mineral is sulphide of zinc or blende,

COMMUNICATIONS RECEIVED.

The Editor of the Scientific American cknowledges, with much pleasure, the re ceipt of original papers and contributions apon the following subjects:
On Indelible Pencils. By R. B. F
On Meteorology. By E. J. M., Jr.
On the Million Dollar Telescope. By J. H. S., and by J. S. P.

On the Cumberland Gap Cave. By A.L.S. On the Bursting.Strain on a Balloon. By T. W. B.

On Steel and Quill Pens. By W. V. R. On the Compass on Board an Iron Ship By J. S.
On Lunar Acceleration. By J. H
On Down Draft in Stoves. By C. W
Also enquiries from the following A. E.-A. K.-E.M. D.-N. P. S.-D. M. B.-W. P. H.

- W. S. B.-R. B. G.-w. S. $\&$ H.-H. W. P.-J. C.T. A.s.-J. B. R.-G. H. H. Correspondents who write toask the address of certain nanufacturers, or where specified articles are to be had,
also those having goods for sale, or who want to find partners, should send with their communications an amount sufficient to cover the cost of publication under
the head of "Business and Personal," which is specially devoted to guch enquirles.
Correspondents in different parts of the country ask:
Where can I obtain sulphuret of sodium? Who make Where can I obtain sulphuret of sodum? Who make steam road carriages? Who builds really economical
coal-burning portable engines? Where can I obtaln Mushetsteel? Who makes the best piston for steam enines? Where can I obtain a lathe for turning axe and broom handles? Is there a successful machine for sep
arating pebbles or gravel from clay for brickmaking Who makes steam engines at a cost of $\$ 20.00$ each an nder? Makers of the above articles will probably pro mote their interests
ScIENTIFIC AMERICAN.

[OFFICIAL.]

Index of Inventions

Letters Patent of the United States Were granted for the week ending September 2, 1873,
and each bearing that date. [Those marked (r) are reissued patents.]
Air compresser, H. P. Fairfle
Auger handie, F. B. Pease.
Axle, wagon, G. A. Bolser.
Bale tie, cotton, W. J. Orr.
Bale tie, cotton, H. D.
Basket, H. E. Jones....
Basket, grin

Basket, grain, H. E. Jones....
Battery, galvanic, A. L. Nolf. Bed bottom, spring, C. H. Dunks.
Bed bottom Bed bottom, spring, Hill \& Van Valkenbur Bell do Bell door, W. M. Preston.........
Billiard table cushion, J. E. Cam
Blind slat fastener Blind slat fastener, T. G. Springer.
Boat detaching device, w. F. Morgà Boller, agricultural, c. M. Cloud Boiler, steam, Douglass \& Brown Boiler, wash, E. Schofield
Bolt and rod cutter, H. Schmidt
Boot crimping block, Bordner \& Sullivan
解
Boot soles, channeling, M. Wesson (r)
Boot uppers, crimping, A. Knowlto
Boots and shoes, P. Ware, Jr....
Boring and drilling, J. J. Sherid
Brick machine, P. K. Dederick
Bridge, J. B. Eads....... J. B. Eads
Eridge, iron, J. B. Eads.
Bridge, iron, J. B. Eads.
Bridge, iron, J. B. Eads
Bucket, butter, Gllberds \& Harris
Building block, T. Hyatt.........
Building, fireproof, J. H. Walke
Buildings, wall for, T. Hyatt...
urner for heating, gas
Can, fruit, M. O'Conner
ar coupling, F. E. Howard
Car coupling, H. E. Lowrie.
Car coupling, A. Mid
Car propeller, J. Day
Cars by air, propulsion of, W. H. H.Bowers
Carbureter, J. F. \& G. E. Lockwood
Ctc., gas, T. G. Springe
Carbureting, etc., gas, t. G. Springe
Card for social games, West \& Lee.
Carriage, G. K. Tichenor.
Carriage, steam, J. Grantham...
Chest protector, etc., Austin \& McMurphy
Coal breaker, R. A. Wilder.
Cock, regulating, Sell \& Brooks
Cock, stop, Regester \& Bowen.....................
Combing tampico and bristles, etc., G. Willett orpse cooler, J. Hoffman
Cultivator, cotton, E. H. Nelson
Doors, air cushion for, J. Wetmore.
Doors, weather guard for, C. A. Wo
Dounling and twisting, Cockeroft \& Ackroyd Drawing frame top roil, H. T. Potter Drill, ratchet, T. J. Sloan..........
Envelope, letter, J. D. McAnulty Ferrule, Green \& Bod well...........
Fertilizer distributer, M. W. Faubio File, H. Disston.
File and binder, paper, L. P. F. Keech
Fire arm, revolving, B. K. Dorwart.
ire arm, breech loading, D. Hug.......... Fire place grate, J. L. Runyan..
Furnace, air heating, J. M. Wilson
Furnace, oil burning, F. Hungerford
Furnace, etc., iron smelting, S. W. Harris
Gage, siding, J. Eaton.
Garments, etc..ironing, R. B. Sanso
Gas tar, burning, A. Smith
Gate, hanging, E. Secor...............
Generator, steam, W. P. Trowbrige
Governor cut-orf gear, H. H. Meyer
Hair wash, R. Travis.
Harness maker's elamp, D. Eighme.
Harness, check hook for
Harvester binder attachment $\begin{aligned} & \text {, J. H. Garnhan }\end{aligned}$
Harvester cutter, W. E. Shoales.
Harvester rake,J. B. McMillan.
Harvester reel, C. F. Goddard..
Heater an: blower, W. M. Ja
Heating alr, J. A. Morrell....
Heating air, J. A. Morre
Hinge, spring, W. Hoar.
Horseshoe nalis, J. C. Paige
Horseshoe nails, finishing, R. Ross.
Horseshoe nails, making, A. H. Caryl....
Hose coupling, G. S. Goble............
Indicator, high and low water, G. Walton
Inking apparatus, G. P. Gordon.........
Irrigation, subterrranean, W. H. Pugh
Jack, lifting, D. Putnam...
Journals to rollers, attaching, G. M. Amsde
Knitting machine set-up, H. L. Arnold
Knob, door, H. H. Elwell............
Lamp, Blaisdell \& Young.
Lamp, J.C. Wharton
Lamp extingulsher, Pike \& Graham
Lamp, street, H. Nahe................
Lath bolting machine, J. C. McIntyre.
Lead, white, M. Tolle.
Lock, F. Gorris..................
Lock, permutation, E. Stock wel
Loom, shuttle, J. Brown.....................
Loom stopping mechanism, L. J. Knowles
Lounge, hammock, J. C. Craft...
Lubricator, steam, R. A. Fllkin
Lumber, preserving and drying,
Mechanical movement, δ. Armstro
Medical compound, M. P. Munder..
Medical compound, S. E. Paddock.
Metal working machine, G. L. Jones. Mill, smut, J. Hintey.
Mop head, J. Davis............
Nozzle for dra wing liquor, F. C. Edward Oils, distilling heavy, H. Ryder. Ore washers, gudgeon for, S. Thoma Organ, reed, w. J. Ken
Paddle wheel, I. Atkins

APPLICATIONS FOR EXTENSIONS

Applications have been duly fled, and arenow pending
for theextension of the following Letters Patent. Hear ings upon the respective applicat
the days hereinafter mentioned:
26,399-Water Whreil.-J. P. Colilins. Nov. 19.

EXTENSIONS GRANTED.
25,239.--ELastio Hose Tuinina.-
25,343.-Stove.-E. M. Manigle.

25,344.-Wiring Joints.-A. C. Mason.
25,373.-PAPEr Box Machine.-S. B. Terr
DESIGNS PATENTED
6,832.-TAILor's Gooss.--J. Hargrave, Chacinnati, $\mathbf{0}$.
,, $833 .-$ Fabric.-C. 6,834.-Chair Frame.-J. H. Travis, Charlestown, Mas
6,335 to 6,864 .-Siawls. - F. Wink, Philadelphia, Pa. $6,865 \& 6,866$.-CA RPETS.-J. Crabtree, Philadelphia, 6,867.-EscuTCHEON Plate.-W.Gorman,New Britain,Ct,
6,868.-Toy Rail Car.-W. A. Harwood, Brooklyn, N.Y 6,869.-CAPE.-M. Landenberger, Phladelphia, Pa.
6,870 .-Vails.-S. M. Meyenberg et al., Paterson, N. J. 6,871.-OIL Clotr.- C. T. Meyer et al., Bergen, N. J.
6,872.-CAN.-H. G.Shook, New York city.

TRADE MARKS REGISTERED
1,430.-PEncils.-American Lead Pencil Co., N. Y. city.
1,431.-HAIR Preppration.- - M. T. Clackner, Baltimore. 1,434.-MEN'S FURNISHING Goods.-Fisk \& Co.,N.Y. clty 1,434.-MEN's FURNI, $1,336 .-$ STEAM PACEING, ETC.-J. GlandIng \& Co.
Philadelpha, Pa.
1,437. AxLE GREASE.-Palm Oil Axle Grease Co.,Charles. 1,437.-AXLE
ton, S ..
1,438.-Brushes.-C. C. Thum, Philadelphia, Pa
1,43.-White Lead.-Beymer \& Co.,.PIttsburgh, Pa.
1,439.-Wertinizer.-G. Dugdale \& Co., Baltimore, Md.
1,40.-Ferine
1,440.-Fertilizer.-G. Dugdale \& Co., Baltimore, Md.
1.441.-Cleaning Powder.-Wright \& Co., Keene, N. H.
SCHEDULE OF PATENT FEES: On each Caveat......
On each Trade-Mark..................................
On filing each application fora Patent (17 years On Issuing each original Patent...
On appeal to Examiners-in-Chief.
On appeal to Commissioner of Patents. On application for Reissue................ On granting the Extensi
On Aling a Disclaimer
On fling a Disclaimer
On an application for Design (7 years).
On an application for Design (14 years)

Back Page
Inside Page
Biterxisements. 75 cents a line.

BAIRD'S goous

For pracitial ilid.

$W A T S O N^{9} S$

Practice of Machinists \& Engineers.
The Modern Practice of American Machinists

FAIRBAIRN'S
PRINCIPLHS OF MECHANISMI. The Principles of Mechanism and Machiner

 reiw The abooe or any of my Books, sent by mall,

 HENRY CAREY BAIRD,

Escaped from Death.

 PaTENT REVERSING AAVEE \&STEAM AGENTS, \$30. ${ }^{\text {L Lhirdy }}$ thewaz

 SCHENCK'S PATENT. 1871
WOODWORTH PLANERS

[^0]

Alnminium Golld Jerelly, THest Chains, 82.50 ,

HARTFORD Steam Boiler INSPECTION \& INSURANCB CO. CAPITAL $\$ 500,000$.
 Boilers, Buildings, and Machinery, STEAM BOILER EXPLOSIONS.

$\boldsymbol{S T E A M} \boldsymbol{B O I L E R S}$,

STATIONAR, MARINE, \& LOCOMOTIVE.
 $\underset{\text { or at any Agency. }}{\text { Home OF }}$

 New Adamon..of Baeder, Adamson \& Co., Philadelphit

VIENNA PREMIUMES.

THE WILSON SHUTTLE SEWING MACHINES

PRTMF MFTHAL

AND MEDAL OF HONOR FOR THE
BENI SEWING MACHINE,
THE BEST MADE SEWING MACHINES,
Co-Operative Medals
The Best Made Set of Harness,
The Best Made Side Saddle The Best Boot and Shoe Work,
And the Best Samples of Cloth Sewing.

No other Sewing Machines received Prem
iums on their merits, which we will prove by evidence at our offlee, and that all reports re-
lating to the contrary are tals.

MachinesSold on Easy Monthly Payments ALESROOM:
707 BROADWAY, NEW YORK,
And all other Cities in the United States

Machinery,

Cold Rolled Shafting.
 Sturtevant Blowers. PATEETT PUNCHING

 | $\substack{\text { rese } \\ \text { ship } \\ \text { MOSES } \\ \text { M. . WILDER. } \\ 121 \\ \text { Chambers St., New York }}$ |
| :---: | Farrel's Patent Railway Crane Patent Ground Chilled Rolls, ROLLING MILLESANDMMLMMACHINERY

SHINGLE AND BARRELL MACHINERY-

COWELL PATENT DOOR AND GATE

 N EW \& IMPROVED PATTERNS,-MA
UTYS SAFETY HOISTING
NEW YORK STRAM BNGINE CO.

Turbine Water Wheels.

THE HVDRAULEE ROTARX GOVERNOR
 nds. Warranty unimited. No pay till tested.
JoHNS. ROGESS Treas,, 9 Jobn tit
Boston, Mase
 $\$ 100$ to $250 \begin{gathered}\text { per month guaranteed } \\ \text { sure }\end{gathered}$
 $\overline{\text { WhHALEE THUREINE }}$

STPAM RECORDS!!

Universal MILLING MACHINES

An deut)dir © ${ }^{\text {Pr finditer }}$

[^1]

B. F. STURITHENANT,

 PRESSURE BLOWERS \& EXHAUST FANS SEND ${ }^{2} 2$ SUDBURY STREET BOSTON, MANS
1 Averistos iodi:WG

 These materialsare prepared ready for use, can be applied by any one, and are put up for shipment to all parts
of the world.

RESOR ELBOW M; F'G CO., Cincinuati.
87 MAIDEN LANE, NEW YORK,

Todd \& Rafferty Machine Co.

Working Models

PORTLAND CEMENT,

 I RON PLANERS, ENGINE LATHES

$\boldsymbol{D} \boldsymbol{R} \boldsymbol{I} \boldsymbol{L} \boldsymbol{L} \boldsymbol{C} \boldsymbol{H} \boldsymbol{U} \boldsymbol{C} \boldsymbol{K}$

 WIRE ROPE. JOHN A. ROEBLING'S SONS

WIRE ROPE.

AMERICAN Turbine Water Wheed

BUIEDING

 AMERICAN SAW CO. No. 1 Feriy St, Nee York: Movable-Toothed Circular Saws PERFORATED CROSS-CUT, SOLID SAWS. DOUBLEACTING

SteamPumps

VALLEY MACHINE COMPANY, Easthampton, Mass.
$\mathrm{R}^{\mathrm{ANSOM} \text { SYPHON CONDENSER perfectis }}$

BUILDING PAPER!

first ciass atmit

TIETANTIE ANMTr COMPANY

 EmeryWheels \sim TANITEE A EmeryGrinders
PEREETUAL MOTION-W Wated, a part

$\mathrm{N}^{\text {Orest }}$ MILL FURNIISHING Works

Reriom in e Co. Scruawsed Bolts

P. BLAISDELL \& CO., Patent Drill Presses, with Quick Return Motion,
also other Machinist Tools.
SEND For Cots.
WORCESTER, MASS.

Machinist's Tools,

Emery Wheel Machineri

 The Pulsometer or Magic Pump.

LATEST IMPROVEMENT
TUBRTCATORS
This NEEDLE-VALVE OIL FEEDER for

INDEPENDENT
BOILER FEEDERS
SEND FORILUSTRATED CATALOGUE
COPE\&MAXWELL MFG.CO.
HAMILTIN.DHID. NILESTOOLWORKS,

ROSEWOOD, WALNUT, WHITE HOLLY SATIN WOOD HUNGARIAN ASH, AND IN LOGS, PLANK, BOARDS, AND VENEERS. GEO. W. READ \& CO

Fire! Fire!

Less than Half their Cost.

Veneer Cutting Machines FOR SALE
ONE ROTARY MACHINE, cutting 4 f. lons

SCENMEGICAN

The SCIENTIFIC AMERICAN is devoted to the inter ests of Popular Sclence, the Mechanic Arts, Manufac
tures, Inventions, Agriculture, Commerce, and the industrial pursuits generally, and is valuable and fnetruc. tive not only in the Workshop and Manufactory, but also
in the Household, the Library, and the Reading Room. The Best Mechanical Paper in the World A year's numbers contain over 800 pages and several
hundred engravings of new machines, useful and novel
inventlons, manufacturing establishments, tools, and
processes.
To the Mechanic and Manufacturer!
No person engaged in any of the mechanical pursults
should think of doing without the Scientifio Ameri should think of doing without the Scientifio Ameri-
can. Every number contains from six to ten engravings CAN. Every number contains from six to ten engravings
of new machines and inventions which cannot be found in any other publication.
One copy, one year TERM
One copy, sixx months
One copy, four months
One copy, four months
One copy of Sclentific American for one year, and
one copy of engraving, "Men of Progress" . 10.00 One copy of Sclentiffic American for one year, and
one copy of "Sclence Record," for 1873.4 .50 one copy of "Sclence Record," for 1873
Remit by postal order, draft or express
Remit by postal order, draff or express.
The postage on the sclentific American is five cents pe quarter, payable at the office where received. Canada subscribers must remit, with subscription, 25 cents extra to pay postage.
Address all let

MUNN \& CO

$\bar{T}{ }^{\text {HE }}$ "Scientitic American" is is printed with

[^0]: | 1 IIIII \& WI WROUGHT |
 | :--- |
 | BEAMS \& GIRON |

 THE UMOM Hron Nills, Pittsburgh, Ya

 E. M. MA MO'S PATENT BOLT CUTTER

[^1]: Diefe groß̉e und thätige ©raffe unfrer $\mathfrak{b e}$ bofferung madfen wir befonbers barauf גufmertiam, bā́ unfre శirma burd ibre ßer Gindung mit Baffington und ben europaiidden §auptfitioten, befondere $\mathfrak{B o r t f g i i l e ~ z u r ~ E r r a n ~}$ gung bort ins und ausländijden \mathfrak{F} atenten bietet.
 Yeber Érfinber, greifbbiel welder $\mathfrak{\Re a t i o n a l i}$ tät angefobrig, ift burd bie liberafen \mathfrak{P} ntentge fege der $\mathfrak{B c r e i n i g t e n ~ S t a a t e n ~ z u m ~ ß a t e n t i d u n t ~}$ fiir Exfinbungen bereatigt. $\mathfrak{U n f r e}$ §irma $\mathfrak{i f}$ bereit, gctititet auf 26 jährige Erfafrung, beutid Erfinber jeber Beit zu berathen und zu mäßigen

 Die Deutfide Cection ift in ben $\mathfrak{b a n n b e n}$ fäbiger bentifder Sngenieure, "weidfe in ber Dffice perïntlid mit Erfinbern verfeffen merben.
 Der ,,Scientife American" wirb in feinen Spalten die bebeutenderen ©rfindungen be〔prectent.
 (Sorrefpmbenz erbeten unt prompt beant wortet. Bamphlete in beutidfer ©prade wer, ben auf \mathfrak{B} erlangen franco zugefandt.

 2brefifire:
 $\mathfrak{Z} \mathfrak{A} \mathfrak{u t u} \& \mathbb{E} 0 .$,
 ,Wcientific American" Patent Agentur, 37 §att Mow, New York Cits.

