

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES. Vol, XXIX.--NO. ${ }_{\text {[NEW SERIES.] }}{ }^{13 .]}$

NEW YORK, SEPTEMBER 27, 1873.

HAVENS' AUTOMATIC WIRE ROPE RAILWAY.
Our illustrations represent a novel and ingenious inven tion, or rather combination of devices, having for its object the speedy, cheap, and economical transportation of merchandise, of any description, directly from vessel to store house, yard, or dock, or between different points of the latter localities. It consists chiefly in a suitably supported

wire rope, over which, by the action of gravity alone, buck ets slide to the desired place of deposit of their contents. Discharge follows, and then, by an ingenious switch ar rangement, the receptacle is shifted to another rope, along which it returns to its starting point to be refilled. There are other devices, for sending the charged bucket from the
end of the first rope as a center to any part of a yard or other storing place, which will be explained as we proceed In our large engraving, which gives a general view of the apparatus in operation, the invention is represented as in use as a coal railway, taking the coal directly from the barge and dumping it at a considerable distance away. Two tall poles, it will be observed, are placed close to the edge of the wharf. One is provided with a platform on which a work man is standing, and also a suitable support to which the outrigger, A, is pivoted, so that the latter, moving only in a vertical plane, can be swung into a perpendicular position.

The other and taller pole carries at its upper extremity a pulley, over which the hoisting fall passes. This rope leads from the drum of the hoisting engine (which, by the way, is of a novel and improved form, and is also the invention of
the originator of the apparatus we are describing) through a block on the ground up over the pulley on the pole, and thence through a sheave or similar arrangement on the end of the arm, A. The end of the rope is hooked to the ring, c, of the bucket, shown in Fig. 2. The engine being set in motion, the filled receptacle is hoisted from the barge until a knot, cast in the rope, takes against the pulley on the arm,

A, preventing the further passage through of the line Movement is thus imparted to the outrigger, and it is swung from its horizontal to a vertical position, thereby bringing he bucket directly over the upper of the two wire rope that the bale of the bucket is connected to an iron bar

which terminates above in two rollers, the smallest of which serves to gaide the larger, as both rest upon and glide over the rope. The receptacle being in the position above described, the hoisting fall is slackened, and the workman on the platform guides the rollers directly on the wire rope and then removes the hook from the upper ring. The buck

HAVEN'S AUTOMATIC WIRE ROPE RAILWAY
et, now full, begins its downward course, and, acted on by gravity, travels down to the end of the rope.
Before proceeding further, it will be well to notice the arrangements for supporting the wire lines in order to keep them from sagging along their length. This is accomplished by clips, Fig. 3, one of which for each rope is attached to a midway post. The lower end of this device is turned up and shod with a metal plate. The line fits, as shown, in an and shod with a metal plate. The line fits, as shown, in an
inside groove, and is there secured by a key, D, driven firminside groove, and is there secured by a key, D, driven firm-
ly in. This means of support clearly offers no obstruction ly in. This means of support clearly offers no obstruction
to the passage of the bucket rollers, and still holds the line to the passage of the bucket rollers, and still holds the line
up firmly in position. The usual nuts, screw, and washers, up firmly in position. The usual n
serve to attach the clip to its post.
We left the filled bucket near the end of the upper line and supposing it to have arrived over the coal heaps, it is ready to discharge its contents. Referring once more to Fig. 2, pivoted to the side of the bale is a slotted piece, E, which slips over an upwardly projecting stud, thus holding the bucket in the position shown. Attached to piece, E, is a rod, F. The construction of the bucket is such that the rear or bottom curved portion is the heavier, so that, when empty, its tendency would be to invert to the left of the engraving; but this is prevented by a lug, G, which takes against the bale, so that the receptacle naturally assumes a level position. When, however, it is full, the delivery side over balances the other; and to prevent its turning over and thus discharging, the catch, E , is used. If, therefore, the filled burket be started down the rope, it will hang square until the rod, F, strikes some obstacle and, thus pushed back, swings up the catch. Discharge immediately takes place, as shown in the large engraving, and then the bucket reassumes its level position, the piece or catch, E, falling naturally back again over the projection on the side.
The empty receptacle will now have arrived at the end of th:e upper rope and is ready to start on its return along the lower line. In Figs. 4 and 5 vertical and plan views, the switch mechanism is represented. H is the upper wire rope, and I the lower one. J is a peculiarly shaped metal arrangement, to which both of the above mentioned ropes are secured, as represented by the dotted lines. Pivoted to J is a tongue, K , directly in line with the rope, H ; and this tongue is counterbalanced by a weighted lever which ordinarily holds it in the position indicated by the dotted lines. When
the bucket comes rolling from the left along the rope, H , its the bucket comes rolling from the left along the rope, H , its
wheels strike this tongue; and pushing i , down so that its further end rests against the opposite side of the piece, J , they run over it and up and along the line which forms a continuation of the rope, I. That is, the bucket runs up hill until its motion is arrested, when of course it takes up a return movement. As soon, however, as the bucket clears the tongue, the weight on the latter pulls it up again; so that, when the returning bucket reashes the piece. J, the tongue no longer forms a bridge between the opposite ends. The bucket is therefore compelled to continue straight on down the rope, I, which, as shown at K, in both Figs. 4 and 5 forms a downward path leading off at an acute angle.

If the reader will refer again to the large illustration, he will see the empty bucket on its returning course near the middle post. The lower rope is firmly secured at its end to a hanger on the pole, which forms the starting point of the apparatus, but is continued by another line, B, which leads out along an arm, passes over a pulley, and ends in a weight which keeps it taut. On this line the bucket runs and necessarily drags it down, its weight counterbalancing that on the rope, so that it is gradually eased down into the hold of the vessel. Here the fillers remove it from the line, and then, by suitable means, allow the latter to become gradual ly once more taut.
In Figs. 6 and 7 are shown the plan and elevation of the turntable device, by means of which a bucket may be transported to any desired point in the yard. L is a curved metal arm connected to a support, at M, to two pivots, transverse and vertical, so that it has free movement in both of these directions. Atits opposite end is all 7, on top of which is arranged a small roller, 0 . Fastened to the solid framework of the device is a metal band or track, P, which has a curve conformable to a circumference, described with the arm, L, as a radius, as shown in Fig. 6, and also, besides, a downward bend, as shown in Fig. 7. On this band, the roller, 0 , rests, and thereby supports the arm, L, hanging beneath. At the upper part of standard, N , and near the roller is secured a cord which, passing over a pulley, at Q, terminates in a weight, R. The object of this arrangement is to draw the arm, L, up automatically to the highest point of the curved band, P , or in the position of Fig. 6. When thus placed, the end of the upper wire rope, H, directly meets the end of the arm, L. Consequently a bucket sliding along rope, H, will run up on the arm until its motion is stopped by the ascent and then start down again Meanwhile to coincide with the bar, if the latter were carried over (its upper roller running on P) to the position marked by the dotted lines. The bucket, however, it is evident, running back over the arm, L, would fall from the end, unless prevented while the arm was being shifted. This difficulty is obviated by arranging boards inside the track, P, against which the receptacle takes and is stopped. At exactly the point, how ever, where the dotted arm and rope, I, coincide, an opening is made out of which, of course, the bucket escapes and travels away down rope, I, to the aesired point. The boards inside the track may be made movable so that, rope, 1 , be made.
It is hardly necessary to explain the advantages of this very ingenious apparatus, since, we think, they are obvious
from the details of the description. The fact may be noted,
however, that this device differs from many others of its class, in that the road itself does not move, endless belt fashion, but merely the buckets. Hence a single line may almost apy over itby connecting a light endless cord or equivalent arrangement.
The absence of cumbrous trestle work or staging, and of elevated or underground tracks, is a point of merit, as is also that of gravity being the sole agent for performing the work. As to its employment the inventor considers the arrangement especially adapted to retail coal yards, on account of its portability and economy. Anattachment, he states, may be applied to weigh and register the weight of each bucket passed over the rope, so the only power required is that needed to hoist it to the necessary elevation.
The device is covered by several patents, and is the invention of Mr. A. F. Havens, a well known engineer of this city. Further information regarding right to use, etc., may be obtained of the proprietors, the American Gas Works Construction and Supply Company, room 33, 61 Broadway, New York city.

Stientifir Ammerian.

MUNN \& CO., Editors and Proprietors. published weekly at
NO. 37 PARK ROW, NEW YORK.
O. D. MUNN. A. E. BEACH.

T®MMS.

One copy, one year...
$\$ 300$

150
2500
250
VOL. XXIX., No. 13. [New Series.] Thoenty-eighth Year
NEW YORK, SATURDAY, SEPTEMBER 27, 1873.

THE VIENNA PATENT CONGRESS ONCE MORE.
It will be remembered that this body, after long discussions, adopted a series of resolutions affirmatory of the duty of all nations to encourage the arts and sciences by the grant of patents to inventors, in reward for useful discoveries, specifying also the various legal provisions by which inventive rights ought to be secured. But the Congress then proceeded to destroy the practical value of its labors by adopting as its final resolution the absurd proposition that inventors ought not to be allowed to sell their patent rights except at such rates as government officers might dictate.
The most singular circumstance connected with the pass age of this silly proposition is, that it was supported and its adoption secured by American votes. Mr. R. W. Raymond rate, is our authority for this statement. He says that the American party was strong enough in numbers and in logic to defeat the obnoxious resolution, and would have succeeded in doing so had not two of their number, Hamilton Hill of Boston and Mr. Hall, changed their minds during the night, and voted next morning with the opposition. These gentlemen palavered at a greatrateduring the five days' dis cussions in favor of granting liberal rights to inventors, and then, at the last, they changed front and voted against the essential thing for which they had been arguing. It is to be hoped that American inventors may never again be misre presented by such a pair of incompetents.

MANUFACTURE OF ILLUMINATING GAS FROM CRUDE PETROLEUM.

The Pittsburgh Commercial states that the method dis covered by Mr. Charles Gearing, of that city, has been put into successful practical operation at Sharpsburg, Pa., and the borough is now admirably lighted by gas made from crude petroleum oil, 8,000 feet of gas being produced from one barrel of the oil.
As the subject is one of great importance, not only to the nhabitants of our towns and cities, who need good light a a cheap price, but also to gas companies and oil producers, we will give a few details of the Gearing process, from which practical gas men may, in some degree, judge of its actua merits. To us it looks like a good improvement, worthy of the careful investigation of all who are interested in the ex In the aime industry to which it pertains.
retorts are employed in connection with one furnace. These
retorts have double chambers, made by enclosing small cylinders within other cylinders of large diameter. The inner cylinders are filled with pebbles, the object of which is to provide very extensive heating surfaces. A jet of steam and air is, by means of an injector, introduced at one end of the first of the series of retorts, and then passes on through the pebbles, successively into and through three other retorts, until the steam and air are thoroughly dried and heated; thence the jet goes into contact with the crude petroleum in another retort and takes up therefrom a supply of the oil vapor, thence on successively through three other retorts contained in the furnace, where the final heating takes place thence into the gas holder. The operation is simple and continuous. The peculiar construction of the retorts is al leged to prevent loss of oil by conversion and deposit into solid carbon, the only resulting deposits in the retorts being the sand usually found in crude oil, with some other foreign matters.
A company has been formed, we understand, to put this process in operation in Titusville, Pa. We shall look with much interest for the practical results. The suc cess of this or any other method of employing crude oil for permanent gas illumination would create an immense demand for the article and give relief from the depressing ef fects of over production under which the oil market now suffers.

THE DEPARTMENT OF PARKS, NEW YORK CITY.
Mr. S. H. Wales, formerly of the Scientific American has recently been chosen President of the Department o Parks in this city, with a salary of $\$ 10,000$ a year. This is a post of much responsibility, the duties of the office are onerous and varied, and their discharge with satisfaction to the public requires the exercise of marked ability on the part of the incumbent. Happily for Mr. Wales, he retired some time ago from active business life, and is therefore enabled to devote his whole time, if need be, to the important functions that now devolve upon him, and which, we tant functions that now devolve upon him, and which, we
are glad to say, are especially congenial to his tastes. In æsthetics Mr. Wales is a gentleman of the highest cultiva æsthetics Mr. Wales is a gentleman of the highest cultiva-
tion, a lover of science, an extensive traveller, a careful tion, a lover of science, an extensive traveller, a careful
observer and an indefatigable worker. He possesses, moreover, an intuitive appreciation of the wants of the people he is an approachable man, and a gentleman of the noblest integrity. His administration is, therefore, likely to prove not only popular but most useful. His unąnimous election as President reflects the highest credit upon his associate commissioners.
The general scope of the powers and labors of our Depart ment of Parks is not generally understood, and is far more extensive than is commonly supposed. It embraces the custody of twenty-four parks, covering an area of more than 1,000 acres, of which the Central Park has cost nearly $\$ 12$, 000,000 . The work also iucludes the surveying and laying out of all streets and avenues north of 59th street, the hydro graphical surveys of the Harlem river, the care of bridge graphical surveys of the Harlem river, the care of bridges
across the river, the building of tunnels and suspension across the river, the building of tunnels and suspension
bridges, and the establishing of bulkhead lines. It also takes in the surveying and laying out of streets and avenues in the adjoining towns of Kingsbridge, West Farms and Morrisania and upon the annexation of those towns, the regulation and grading of streets and avenues, drainage, etc., will be long to the Department. It has charge of the construction of the Museums of Natural History (the two structures now in progress costing $\$ 500,000$ each), also the care of these museums and of an observatory. All these require the con stant service of a large force of architects, engineers and laborers (some 1,500 in all.) A distinct police force is also maintained by the department. It also runs a menagerie, and an exotic and plant-propagating department, which requires many skilled gardeners. In addition to these the Depart ment employs blacksmiths, tailors, carpenters, painters plumbers, stonecutters, masons, etc.
The ordinary expense of maintaining the parks is abou $\$ 500,000$ per annum ; and for construction of works, $\$ 1,000$, 000 was appropriated for the year 1873. The Commissioner are now laying out and constructing two new parks (River side and Morning Side); and in short the details are very numerous.
From the foregoing, which is only an outline of its labors it will be seen that the Department of Parks is one of the most important institutions in our midst. The effective management of its extensive concerns involves more rea labor, watchfulness and ability, on the part of its executive than almost any other department of municipal or state government.

CHEMICAL SUGAR.

Dealers and manufacturers of the important article of sugar have lately experienced a disturbance of the even tenor of their ways by the announcement of a new chem ical discovery, by which saccharine commodities may be produced as by magic, without the troublesome and ex pensive methods of cane growing and grinding. The new discovery is credited to M. Jouglet, a French engineer, and his process is alfeged to involve the mere bringing togethe of certain common and cheap articles, from which the best qualities of sugar are rapidly and economically produced. The process is claimed to be the subject of a patent, which is at present in the hands of a large company.
We imagine that the stock of the company will be for sale on the market a long time in advance of the sugar, and we advise sugar manufacturers not to shut up their existing es tablishments just at present.
There is undoubtedly room for improvement in the manu
upon the subject. Every year adds to our knowledge and facilities for conducting this great industry, which is so extensive and involves so much capital, that the smallest economical advance, in any of its processes, is a matter of importance to the world. But we should about as soon expect to see the steam engine superceded by the hot air machine, as to find the present sugar processes set aside by the novel ty now announced.
The production of sugar by chemical means from various materials, is by no means a new thing, having long been practiced. Thus starch, treated with warm diluted sulphnric acid, is converted into sugar. It is cheaply produced, and an extensive manufacture is carried on. This product is known as grape sugar, or glucose, and the only drawback to its substitution for cane sugar is the fact that grape sugar has only half the sweetening power of the cane. Starch sugar is employed to adulterate honey and cane sugar, and is used in lieu of the latter in various saccharine prepara tions.

The cheap and common materials suggested by this French engineer may refer to rags or other refuse containing woody fiber, such as cotton wool, paper, etc. Exhaustive attempts have heretofore been made by chemists to induce people to eat their linen rags, after a cooking which converts them in to sugar. This consists in treatment with sulphuric acid by which means a fine crystaline article of sugar may be produced from old collars and shirt tails. But rag sugar, like that from starch, lacks sweetness, and the stuff is un suited for the poular taste

TIDINGS FROM THE MISSING ARCTIC EXPLORERS. The United States steamer Juniata has arrived at New foundland, bringing news that the steamer Tigress, the ves sel which was sent by our Government in search of the sur vivors of Captain Hall's expedition, had found and visited their last winter encampment, near Littleton Island, Greenland, in latitude $78^{\circ} 23^{\prime}$.
It will be remarked that the statement of the persons be longing to the Hall expedition, who were rescued from the ice this spring, after floating southward for several months, was to the effect that, when they last saw their vessel, the Polaris, she was at anchor near the shore, with sails furled, and they were astonished that she did not come to their rescue.
It now appears from the statement of the natives that the Polaris was so badly injured as to be incapable of movement, and Captain Buddington and party took to the shore. Here they wintered in good health; and this spring they built a pair of whale boats, and on the 1st of July launched out southward, intending to find their way home by intercepting some of the whaling vessels that visit Baffin's Bay. These are the latest tidings of the missing men, who are supposed to be safe on board some one of the whalers, now cruising in that vicinity and soon io return home. The Tigress has gone from Disco on a new search among the
whalers, to find the Buddington party if possible. The natives say that when Captain Buddington left he presented the wreck of the Polaris to them; but in about a month af. terwards, during a gale, the ship was carried off shore and sunk.

FAILURE OF THE BALLOON TO EUROPE

The departure of Professors Wise and Donaldson on their proposed aerial flight to Europe was brought to an adjournment, sine die, on the 12 th instant, by the sudden collapse of their balloon, which unfortunately proved to be deficient in strength. The day above mentioned was most beautiful and auspicious for a ba'loon ascent. The air was clear, the wind gentle, the preparations complete. Early in the day it was announced by the Messrs. Goodsell, the projectors, proprie tors of the Graphic, that the inflation had begun and that the balloon would start in the afternoon, from the Capitoline grounds, Brooklyn. Yielding to the urgent written petition of many of our prominent but verdant citizens, the Messrs. G., reluctantly, of course, consented to admit a few select thousands of spectators to the grounds, at 50 cents per head and 50 cents extra for reserved seats, to witness the ascension.

We regret to say that the veteran aeronaut, Professor Wise, who in the early stages of the enterprise expressed his unlimited confidence in the use of the gigantic balloon, who was in fact the consulting engineer for the apparatus from the very beginning, and who, in several public letters, announced the brave intention of going up in the machine, came to the conclusion, towards the last, that the apparatus was unsafe, and declined to risk his life in the car. He left
the grounds before the final catastrophe occurred. Professor Donaldson, however, who is afraid of nothing, stuck to his pust, determined to go up if such a thing were possible. So the inflation proceeded, and the gigantic bag, over 100 feet in diameter, swelled majestically in the air,impatient of restraint and tugged with tremendous force upon the retaining ropes. The gas kept pouring in, the balloon grew larger and larger, the inflation was all but complete, Professor Donaldson made his final arrangements to leave the earth, and the thronging multitude stood gazing at the great air ship with breathless interest, when suddenly a ripping of the cloth was heard, and several rents in the top appeared, through which the gas took instant flight; and the enormous envelope fell flat to the
earth, a mass of shapeless rags. The result fully justified the fears of Professor Wise.

Professor Donaldson states that the Graphic people have agreed to furnish a new balloon, of smaller size, to be made of silk, and that it will be ready in October, when he will again essay the voyage to Europe. Professor Wise complains of bad faith on the part of the Graphic people, who,
he says, did not furnish the strong materials agreed upon, but made everything as showy, as cheap and flimsy as possible. The result appears to sustain these charges. On the part of the Graphic people, the whole thing was designed as a pure advertising dodge for their newspaper, and in this respect has proved an undoubted success. Let no one therefore, suppose that the great transatlantic balloon did not accomplish what its projectors originally contemplated.

GAS AS FUEL

Two of the three prime necessaries of civilized housekeep ing, water and light, are now provided in our city homes without carriage. The third, fuel, is still subject to many roublesome and expensive handlings. Consider the cost of poor man's fire, after the coal is paid for at the retail coal yard. The retailer's profit and the cartman's pay for delivering the coal in small lots being included in the purchase price, we will leave them out of the account-though the cost of distributing a year's supply of coal throughout a city like this is something enormous-and take up our dirty fuel like this is something enormous-and take up our dirty fue
from the pavement at the consumer's door. If there is a hole in the side walk through which the coal can be pitched to its place in the cellar, its conveyance thither is a matter
the side walk through which the coal can be pitched to its place in the cellar, its conveyance thither is a matter
of small moment; but the chances are that there is no such of small moment; but the chances are that there is no such
convenience. In this more common case, the coal must be shoveled into pails, buckets or baskets, and toilsomely car ried to its receiving bin, perhaps through a preliminary alley way of considerable length. This cannot be done without an expenditure of time and strength, having a measurable money value, which increases by so much the original cost of the coal. The fire is wanted on the third, fourth or fifth floor. Some one must descend to the cellar, shovel up the coal, and bear it by hand up the intervening flights of stairs, putting forth, it may be more human effort than was required to lift the coal from its native bed in the mine. At the mine, coal lifts and carries coal; in our houses, the work is done by human muscles. In the process of feeding the fire the coal is handled again: a small matter when we think only of one bucketful: but multiply it by the number of bucketsful handled every day in the city, and the product is an amount of labor not at all to be despised. While burn ing, the fire calls for constant attention; it must be watched, regulated and renewed, each step costing still more time and
labor, the grand aggregate of which, for all the coal consumed, is very great. The the ashes must be taken up sifted and carried away, involving yet more cost of time and strength; and coals and ashes soil the hands, clothes and furniture, which must be made clean agian by additional labor. The burden of all this labor falls heaviest on the poor, for by them the coal is most frequently handled; but the rich are far from exempt. Could we sum up the cost of service employed in caring for our household grates and furnaces the aggregate would swell immensely our yearly biils for the

Further, the burning of coal in small quantities, as in cooking stoves and small heaters, is wasteful in the extreme. The combustion is imperfect; but a fraction of the possible heat is cooled; and much of that is wasted in cavernous
chimneys. Then a large percentage of the coal is consumed when no heat is required, when it is objectionable even, to keep the fire in readiness for the time of need. In short, there are a thousand ways in which the original cost of coal is augmented and its efficiency diminished in the common never sud uncted by those who for household purposes. ways has none of the drawbacks of coal: which burns cleanly, quickly, perfectly and requires no carriage, namely, gas. It is more than probable that our children will live to look ack upon our wasteful, troublesome, and expensive fires as in buckets from the town pump. Already the use of gas as fuel, especially for cooking, has been proved to be not merely convenient but economical; and economical in spite of the fact that the gas used has been expensively and, for fuel, needlessly refined, and paid for at an exorbitant rate even
for illuminating gas. A cruder product would answer just for illuminating gas. A cruder product would answer just as well. "Don't never prophesy unless you know" is the sound advice of one of our humorists. In the face of the caution, however, one may safelypredict that the fuel of the future will carry itself, and will leave no soot or ashes. Further, the combustion will be perfect, and under perfect control; and however small the quantity burned in any case, its full heating power will be developed.
For several months a friend of ours has been testing the vailability of gas for these purposes. He has used a range having two separate burners for boiling or frying, and a third burner heating at once a roasting chamber (on the principle of a Dutch oven) and an ordinary closed oven for baking. Broiling is done in the roasting chamber under a sheet of flame which covers uniformly the top of the chamber. The range has ample capacity for a family of six or eight persons, though in the present case the cooking was rarely for more than two, living modestly yet fully up to the average of people in moderate circumstances, and having two meals always, generally three meals, a day. Biscuits were baked ways toasted in not bread, which, how, wall sheet flame. During the three months just past the gas consumed -measured by a standard meter officially sealed-amounted to a trifle short of one thousand feet, costing, even at the high rate charged by our metropolitan gas companies, two dollars and a half, and averaging not more than one cent a meal. Had coal been used for the same cooking, it would
have cost more to hire a boy to fetch it from the celiar and carry cost more the hire
words. There was no fuel wasted. Its full heating power so much as was wanteloped, where it There was no waiting half an hour for the fire to kindle and heat up the stove; half an hour for the fire to kindle and heat up the stove degree would suffice; and the instant any portion of the heat was no longer required, that moment, generally speaking the flow of gas was stopped. Was a certain temperature required at a given point for ten minutes, half an hour or any other interval, the gage could be set to maintain it uniform ly and trustily. It was certain the fire would not get too hot, or go out, or vary in the least. This divested the cook ing of half its trouble and nine tenths of its anxiety; and there was no food spoiled by accidental causes. It is true that such economical cooking involves more than ordinary care, intelligence, foresight and conscientiousness on the part of the cook, still it is not more than the majority of women are capable of ; and when cooking is thus made light cleanly, and free from uncertainty and worry there will b less repugnance on the part of well to-do wives to this most important domestic duty.
If costly illuminating gas can be used economicaily for fuel, there can be no question of the feasibility of warming our rooms and cooking our food with gas less highly refined and consequently much cheaper.

SCIENTIFIC AND PRACTICAL INFORMATIGN.

FACTOR OF SAFETY FOR STEAM BOILERS.
A committee, appointed by the Franklin Institute of Phil. adelphia to determine a factor of safety for the iron of steam bcilers, assume the ultimate strength of a single riveted sheet to be 34,000 pounds per square inch, and recommend that 6,000 pounds per square inch be adopted for the work ing strain. This allows a factor of safety of $34,000 \div 6,000$ $=5 \cdot 67$, if we consider the ultimate strength of the material, or an a verage value for the factor of $(34,000 \div 2) \div 6,000=$ $2 \cdot 83$, with reference to the elastic strength of the iron When we remember that many boilers are subjected to shocks and pulsations, and that allowance must be made for deterioration and for uneven quality of the iron, this large value for the working loads seems open to grave objections.

converting bones into fertilizers.

How to dissolve bones conveniently on one's farm or country place, for fertilizing purposes, without resort to sulphuric acid, is an inquiry frequently asked, and has been more than once answered in the Scientific American Place the bones in wood ashes, the pile being moistened with water, is the reply that has been given.
A method, said to be in use in Russia, is as follows: A trench, three or four feet deep and of any desired length, is dug in the earth, and filled with alternate layers of ashes and whole bones, each layer being about six inches thick. The lowest as well as the top layers are of ashes, and each layer of ashes is thoroughly saturated with water. At distances of three feet, poles are rammed down to the bottom of the ditch, and every eight or ten days they are taken out and enough water poured in the holes to saturate the ashes. At the end of two months the whole heap is thoroughly stirred up with a fork so as to mix the ashes and softened bones, which are then left to ferment again, water being added as often as necessary. In about three months more, the heap being worked over twice or three times more, the decomposition of the bones will be so complete that only a few of
the largest bones remain, and these are taken out and put in another heap

CRANK pins for steam engines,
A paper on this subject by Theron Skeel, C. E., was lately published in the Iron Age. As the conclusions therein es tablished are of interest and importance to those designing engines, we give below a brief sumraary of the paper:
A crank pin has a tendency to become hot, because the work absorbed by the friction of the bearing is changed into heat. By reducing the friction, we reduce the tendency of the journal to heat. The friction can be reduced by makirg the rubbing surfaces smooth, and using a good lubricant. At high pressures, the lubricant is forced out from between the surfaces. The pressure at which this occurs is supposed to be somewhat above 2,000 pounds per square inch of bearing surface, as millstones can be run, withoct excessive heating, with a pressure of nearly 2,100 pounds per square inch on the spindle. The tendency of a crank pin to heat is independent of its diameter, it being only necessary to pro vide sufficient area to dissipate the heat stored up by the friction. The bearing upon a crank pin is less than the projected area of the pin, and the length (of the pin) that bears should always be used in making calculations.
Let $1=$ length of the pin in inches; $S=$ stroke of engine in inches; $I=$ indicated horse power of the engine. Then the formula deduced by Mr Skeel is as follows: $1=\mathrm{I} \div(\mathrm{s} \times$ k), or the proper length for a crank pin of an engine is equal to the indicated horse power of the engine, divided by the stroke, multiplied by a coefficient which is determined by ex periment. An examination of the best modern practice shows that this coefficient is betwoen 1.3 and 1.5 ; and that if a crank pin gives a larger coefficient than this, it is liable to heat.
Example: What length should be given to the crank pin of a steam engine having a stroke of 30 inches, and developing 250 indicated horse power? $1=$ from $250 \div(1 \cdot 3 \times 30)$ to 250 $\div(1.5 \times 30)=$ from 6.41 to 5.56 inches, the latter being the least length of pin advisable.

THE liability of safety valves to stick, in consequence of corrosion, is obviated by nickel plating both the valve and

NEW STEAM MOTOR.

Among the novelties at the World's Fair, Vienna, is the steam motor of Friedrich Siemens, of Dresden, Saxony, which is worked without the use of pumps, valves, or special moving parts, but operates through the rotation of the steam generator itself. The exertion of power begins instantly with the development of steam, and is continued by the expansion of the steam until close to the vacuum, so that the greatest possible amount of power is developed from the steam pressure and made useful.
Our engraving, from the Deutsche Industrie Zeitung, repre sents such a motor, one tenth the natural size. The machine consists essen tially of a rotating boiler placed in an inclined position. A is the boiler or shell, inside of which there is a worm or screw, s, made out of plates cut fun nel shape, and attached to A. At the nel sher end the boiler, A is provided with double bottom, d, while the up with a di bed by per end is surrounded by a spiral tube c, its spirals being in reverse of those of the interior worm or screw, s. The double bottom of the boiler forms a water space, K, which communicate through circular holes, a, with the in ner space of the shell, A. The machine is mounted on a sloping axle-tree which is stepped at t, and supported above on the shaft, l, and bar, b. The motion of shaft, l, is transmitted to the horizontal shaft, h, by means of the flexible connection. The lower part of the shell, A , is surrounded by a fur nace of clay, B; and fire is applied through an opening at f. In this ex ample a gas flame is employed. The products of combustion rise from f and surround the shell, A, finally escaping through the upright pipe, at the uppe end of B. The boiler, A, is filled with water at i, and here a fusible plug is used, which melts when the tempera
ture of the steam rises above that of given pressure, and permits the escape of steam into the atmosphere, thus ensuring the safety of the apparatus. When the fire is kindled at f, the steam which developes rises through the water and acts on the spirals, s, causing the turning of the whole machine. The steam continues to rise until it reaches and enters the spiral condensing pipe, c, which surrounds the upper exterior portion of the shell, A. In passing through the pipe, c, the steam is condensed, and the water of condensation is screwed back by the rotation of the pipe, c, down below the water level in the boiler, A , near o, where the water enters the boiler, and is again converted into steam. In starting the machine the steam must first be allowed to escape at o, out of the spiral condenser, in order to drive out all the air; then the opening, o, is closed, and the steam, then rising into the cooling pipes, c, is condensed as before described.

The machine, if once filled and made completely tight, continues to work without requiring any other attention, except to keep the fire going. No pumps to supply water, on
valves or other devices are required; but a constant use of the same water over and again takes place; the water being first converted into vapor, which is then condensed, then aain evaporated, and so on
In lieu of water other liquids may be employed, and it has been suggested that quicksilver might be advantageously used.

A Remarkable Poison.

This poison is obtained by pressure from the seeds of strophanthus hispidus, an apocynaceous plant, found in Afri

NEW STEAM MOTOR

ca; and from experiments made with samples of it, taken from arrows upon which the natives place it, it appears that it acts more powerfully than digitaline or antiarine, and quickly paralyzes the heart. The ${ }_{17} \frac{1}{0} \frac{1}{0}$ of a grain will kill a frog, a sparrow, or a dog,though the resistance of certain animals varies. A snail, for instance, requires $\frac{1}{0} \frac{0}{00}$ of a grain a mouse has withstood 1 of the extract (obrained by macerating the seeds in alcohol), while the latter dose kills a dog nearly a thousand times heavier than the mouse. The heart comes to a complete standstill after a few irregular efforts.

THE RIGI RAILWAY.
The construction of railroads over mountains has made wonderful progress in the last year or two, and some of the greatest achievements of modern engineering science have been made in developing the plans for such schemes. The railway up the Rigi (in Switzerland, on the borders of Lake Lucerne) is the work of three German engineers, Herren

Riggenbach, Naeff, and Zschokke, the first named gentleman having proposed the consiruction, an idea which was sug. gested to him by a visit to the Mount Washington railroad, in this country. We present an illustration which shows the general character of the work.
The Rigi line starts from Vitznau, on the borders of the lake, and rises up the mountain side to a station at Staffelhöhe, which is above the hotel and bath establishment, called Rigi Kaltbad and well known to most travelers in Switzer land. The length of the line is 5,760 yards (about 34 miles), ue upper terminus above the lower is 3,937 feet, being an average ascending gradient of about 1 in $4 \frac{1}{2}$. After leav ing Vitznau, the grades vary from 1 in $5 \cdot 56$ to 1 in 4 . Among the instances of bold and difficult construction exhibi ted by this work are a bridge of three spans over a defile in the mountain, the track going into the side of a rock and through a tunnel. The bridge and tunnel together are 525 feet long, the grade being 1 in 4 and the direction a very sharp curve. The track is very very sharp curve. The track is very
solid and well built, and the engines have vertical boilers placed in the mid dle of their length. The boilers main tain their perpendicularity even in ascending grades of 1 in 5 .
It is proposed to continue the line to the Rigi Kulm, the summit of the mountain, and perhaps down the other side to Certh, at the eastern foot. The line at present existing was opened for public traffic on May 23, 1873.

Slate Roofing Paint

Our attention has been called to the superiority of a new paint compound superiority of a new paint compound
advertised on another page of this is sue, which consists largely of pulverized slate. We have not tried the article, but we have the evidence of acquaintances who have used it, and speak of it merit in the strongest terms. It is equally adapted for new and old shingle roofs, rendering them impregnable to sparks; and it preserves the shingle equal to any other paint.

We have received a letter from " Some of Your Readers, who are shocked at our incredulity respecting the miracles at Lourdes, France. They call our attention to the fact tha a French gentleman has offered a reward of 10,000 franc $(\$ 2,000)$ to any one who can explain away the facts stated in a published book which gives an account of the miraculou cures, etc. This is a liberal and courageous offer, and it proves nothing but the public spirit and implicit faith o the gentleman who makes it.

The annual exhibition of the American Institute in this city is now open; but some days will elapse before the mahinery department will be in full blast.
G. A. P. writes to say that he has a preserved specimen

THE PLANET MARS-IS IT INHABITED ? Can it be possible that in all the vast universe but a single planet, and that the merest infinitesimal portion of the rand whole, can be the abode of living creatures such as ourselves? Does Science teach that other worlds are unpeopled deserts, serving no other purpose than to traverse their orbits obedient to the Divine will? Such are the questions which astronomers have been forced to meet and answer, unaided except by the testimony afforded by analogy and by deductions from theory, based perhaps on evidence mainly presumptive.
Leavingout of their consideration the possibility of organisms existing under conditions unknown upon the earth, the searchers of the heavens have examined the brilliant orbs which circle round the sun, first crudely and imperfectly, but as their knowledge and means intheir knowledge and means increased with the progress of science, with aug dented accuracy and power, adil link after link discovery ; until, link after link, the chain of proof has been forged, leading to but never reaching a universally accepted conclusion. As to all the planets, but two, the answer is certainly negative ; the condition of all other worlds is such as to render human existence upon them absolutely impossible. Of the excepted pair, on one, Venus, life may exist, but every probability is to the contrary; regarding the other, Mars, divided opinion is encountered; and while it is asserted on one hand that, with reasonable certainty, the planet may be assumed as the abode of living beings, on the other the presumption is as specifically denied. Deferring the consideration of Venus to some other opportunity, it will be of interest to examine the present state of our knowledge regarding the Planet of War, and, at the same time to glance briefly over the arguments, pro and con, which have been advanced to prove or disprove its habitability.
Just at the present time, Mars is plainly visible in the evening heavens, a ruddy star in or near the constellation Virgo. Forty millions of miles, at least, divides us from the bright globe of light which modern revelation tells us is the miniature of our own earth; 5,000 miles is its diameter, bearing a proportion to the similar terrestrial dimension of 5 to 8 ; consequently the relative surfaces are as 25 to 64 , or more plain1 y , our world is two and a half times the larger of the two Comparing the relative densities, Mars' is about three fourths that of the earth, hence the force of gravity at its surface is much less than the corresponding te rrestrial attraction. If therefore, the inhabitants of that planet are proportioned similarly to ourselves, their strength must be far greater in reference to their dead weight than is the case with us. I fact, if that organization, known as the Fat Men's Club, could be trans ported to Mars, its members, here bare ly able to support their mountainous protuberances and walk, would easily skip lightly over six-foot fences bound along the ground in a way that would leave the best of our runners far in the rear. The nature of the in habitants of Mars, we shall allude to habitants of Mars, we shall allude to , in detail further on
The orbit of Mars is very eccentric Its center is $13,000,000$ miles from the sun, so that the light and heat received on the surface of the planet must vary considerably. It is less than ours in the proportion of 4 to 9 . The Martial year lasts for 687 of our days, and the Martial day is 40 minutes longer than urs. The inclination of the equator to the plane of its orbit is $27 \frac{1}{4}^{\circ}$, or very little more than is the case with the earth, which is $23 \frac{1}{2}^{\circ}$. The changes of he seasons, so far as depending upon the seasons, so far as depending upon These general points being fixed, let us now turn to the planet's geography, or areography more properly, as we say selenography in referring to themoon. Comparatively speaking, our knowledge of the surface divisions of Mars is next in extent to our information regarding the earth. We know more, in fact, about the hemisphere of the moon than we do of our own globe; for while the vast lunar deserts have been measured to nearly an acre, and the mountains and craters to within thirty or forty feet, there are on the earth $11,400,000$ square miles unexplored and unknown.
Jupiter and Saturn are almost constantly obscured their closed envelopes, so that their true surface is rarely if ever beheld. Uranus and Neptune are mere points of light. Mercury is almest always eclipsed by the rays of the sun. Venus, nearly twice as largeas Mars in diameter, is nearer to the earth, and comes within $30,000,000$ of miles of us, but travels between the earth and the sun, so that her brightface is turned to that luminary and her dark hemisphere toward us. Hence Mars is the best fitted for examination
In regarding the planet through a powerful telescope, it is at once observable that the poles are marked by brilliantly white zones which, it is believed, are caused by deposits of
snow and ice. These arctic regions appear to extend during the Martial winter to parallel 45° of latitude, or as if the ice of North America, in our winter, should reach down as far as the northern part of New York State. We have said that Mars is ruddy, and the fact is easily discernible by the naked ye. Aided by the telescope, however, the surface appears to be far from uniformly red. The color is confined to par icular spots or regions, the intermediate parts being of a greenish hue. Observations extending over long periods have demonstrated that the relative position of these divi sions has never changed, hence they are not accidental phe-

THE HEMISPHERES OF MARS.

nomena. Thus, being considered as physical peculiarities, they have been made the subject of close study by almost all eminent astronomers.
For reasons which we shall explain hereafter, the red por tions of the planet have been considered as land and the green regions as water, and their appearance has been carefully mapped.

We give herewith "a map, constructed by Mr. R. A. Proc tor from a number of drawings, in which the various seas and continents are marked with the names of noted astronomers, by which they are distinguished. It will be observed that the seas seen are all land-locked-true mediterraneansand communicate with each other only by narrow straits. The most remarkable features are the great equatorial zone of continents-of which there are four, namely, Herschel, Dawes, Madler and Secchi-and the peculiar forms of th bell-shaped seas in the first of these grand divisions.
The waters, or rather the spots which we assume to be fluid are of the same color as terrestrial seas, grayish green; but
the land is a uniform ocherous red. To explain this latter the land is a uniform ocherous red. To explain this latter
peculiar tint, various theories have been propounded. I
isphere at any time: and it has been found that when it is winter in one hemisphere and summer in the other, the former portion is always obscured. Just as upon the earth, the wintery sky is rarely clear. Aeronauts tell us that, at high altitudes, the clouds below them sometimes entirely obscure the surface of the earth, or, at times, breaking away, admit but small portions of its dark surface to the view. Hence, when Mars is thus covered in parts, it is as if such portions were blotted out, while the shape of the true surface below is changed Careful observations, therefore indicate with every appearance of probability, that the misty vail is formed of clouds, vapor, or fog; is formed of clouds, vapor, or fog;
so that, in fact, unless it be a fine so that, in fact, unless it be a fine
day on Mars, we cannot see his surday on
face. \qquad
[To be continued.]

Is Phosphorus Thought?

There appears still to be much difference of opinion among chemists about the changes which occur in the secretion of the kidneys after waste of nerve tissue For exam ple, Dr L Hodges Wood as the ple, Dr. L. in 1869, denied the corre in 1869, denied the correctness of the generally received statement that the amount of phosphates in the urine is increased by fatiguing mental exercise. He found that, while the alkaline phosphates were slightly increased, the earthy phosphates were notably diminished after mental work, and that, when the mind was not much employed the excretion of earthy phosphate was increased instead of dimin ished. He accounts for this on the hypothesis that, when the brain was worked it, withdrew more phosphorus from the circulating fluid.-Medical and Surgical Reporter.

EARWIGS.

The insects popularly termed earwigs are known scientifi cally as forficulce, a name derived from the Latin, and mean ing " small scissors." The French appellation is perce-oreille, or ear piercer, and is given on account of a pair of claws or nippers extending from the posterior extremity of the body, which resembles the instrument sometimes used by jewelers for boring the ear to admit earrings. The vulgar name earwig, is owing to the supposed predilection of the insect to enter the human ear; an erroneous impression, doubtless based on the instinct of the animal which teaches it to take refuge in dark cavities. Even if it did enter the organ of hearing, it could do no harm, as it could not penetrate any further than the drum, and might be easily dislodged from the passage by a drop or two of oil
The color of the insect is from brown to dusky yellow. The body is elongated and flattened; and the head is slight ly movable and heart shaped, having fili
form antennce of from twelve to forty ar ticulations; on the sides of the head are small eyes. A breastplate, rectan gular in shape, follows; and, in the segments in rear of the thorax, two pairs of differently constructed wings. The first pair are shorter than the ab domen, cut squarely in rear, united to the frame in the center, and not crossed upon each other like the similar appen dages of grasshoppers and crickets The wings proper would hardly be sup posed to exist, as exteriorly they ap pear as a horny shell which, when fold ed close to the body, become a means of protection. The rest of the mem ber is formed of a diaphanous, rain bow-tinted membrane, which folds up like a fan and is completely covered by the exterior scale. The abdomen is covered with scales, similar to those on the tail of the crawfish fro n which the sex of the animal may and , the male having nine above and eight below, and the female, seve above and six in the ventral region

EARWIGS

 was at first supposed to be due to the atmosphere; but this nippers, and the last segment of the back is larger than view was soon abandoned; and at the present time it is generally believed to be the prevailing tint not only of the soil but of the vegetation. So that instead of verdant expanse of prairie or green forests, the eye is met by crimson trees or scarlet grass, and the dull lurid shades peculiar to such hues.But it may be well urged that we are assuming too much in jumping to the conclusion that the red spots on Mars are land, the green ones water, and the white ones ice and snow. What proof have we that land, water, and ice exist on the planet at all? Mars has clouds. The invariable appearance of the moon, even under the strongest telescopes, does not exhibit the slightest trace of floating vapor on its surface, nor do the occultations of the stars indicate the existence of an atmosphere. With the planet we are considering the contrary is the case. Its spots change in brightness, and it seems at times as if a vail b].urred the configurations of its surface for hours and days at a time. We can tell by the position of the Martial equatorw? nat season is in progress in either hem-
 ers, and the last segment of the back is larger than in the female. The claws attached below the thorax are six
in number, short, and only suitable for running. They terminate in tarses of three articulations.
The young, on leaving the egg, and after the first change of skin, have no vestige of wings except a slight elevation on the posterior sides of the second and third segments of the thorax. After the second change, short wings appear, more or less united in a thin envelope or sheath; and it is not untilth
Earwigs dislike light and live entirely in obscure places concealing themselves under stones, in cracks of trees, and sometimes in deep flowers. They are social, and numbers are found together. They are voracious eaters, feeding on flowers and boring into ripe fruit, or, if they cannot get vegetable diet, contenting themselves with carrion or manure. If kept without nourishment, they devour each other. Their only utility to man is the war which they wage on several
insects. destructive to wheat and other grain, particularly
those varieties the larvæ of which bury themselves in the kernels of the plants.
The females have a remarkable and curious fondness for their young. The eggs are developed in little cavities in the earth and always in damp places. The mother watches them carefully, transporting them from the place if the moisture dries, or gathering them if they become scattered. The larvæ at first are white, and appear to swell after emerging from the egg, but become dark and hard in a few hours The female still guards them, and, it is said, gathers them under her, as a hen does her chickens. Earwigs are desti tute of feelings of gratitude or filial affection; for just as soon as they attain sufficient size, they proceed to devour
their mother, if she happen to get injured or die, and also their mother, if she happen to get injured or die, and also
such of their relatives as fall under the inevitable law of natural selection.
The engraving, extracted from La Nature, given herewith represents the three varieties of the earwig common in Europe. The insects marked 1 are the ordinary garden, species or true earwig. No. 2 is called the " giant Labidour" and is the largest of the different kinds. The antennce have a large number of articulations, the elytres are elongated and rectangular, and strongly protected by a shell-like covering. The nippers are nearly straight, have a tooth in the middle, and appear dark at the extremities. The male in sect represented grows, nippers and all, to about an inch in
longth, and the female to about two thirds that size. In longth, and the female to about two thirds that size. In
Fig. 3 is shown the " apterous Chelidour," a variety confined to the Pyrenees mountains; a similar and smaller species is also found in the Alps and other ranges. The head is somewhat triangular, and the body, of a chestnut brown The insect attains the length of half an inch.

Caxrespundeufe.

Spontaneous Generati To the Editor of the Scientific American:

In your issue of August 23 is an editorial on "Spontane ous Generation," containing some interesting facts and statements on that important subject. Knowing that your desire, as a friend and votary of science, is to give your readers " the truth, the whole truth, and nothing but the truth," and knowing also that very many of your readers are most deep
ly interested in the results of the investigations referred to, ly interested in the results of the investigations referred to,
I venture to ask space for some additional facts and stateI venture
Your article opens with the statement that "All experi ments thus far made with infusions of different substances, for the purpose of producing infusorial animalculæ, appeared to prove that the access of air was necessary for their forma-
tion." The truth of this was admirably shown by Professor tion." The truth of this was admirably shown by Professor
Huxley, in his great address, as President of the British Huxley, in his great address, as President of the British
Association, in September, 1870. After pointing out the fact that the theory of spontaneous generation (the doctrine of abiogenesis) was the accepted theory of the world, on the origin of life, until two hundred years ago, he proceeds in a most masterly and exhaustive manner to trace the history of the opposing theory, that all life originates from some anteced ϵ nt germ (the doctrine of biogenesis), from its first enunciation by the philosopher Harvey to the date of that address before the Association.
Professor Huxley's conclusion, which is very guardedly and yet very strongly stated, and which was reached by passing through all the experiments up to that date, is as follows: "But though I cannot express this conviction of mine too strongly, I must carefully guard myself against the supposition that I intend to suggest that no such thing as abiogenesis ever has taken place in the past or ever will take place in the future. With organic chemistry, molecular physics, and physiology yet in their infancy and every day making prodigious strides, I think it would be the hight of presumption for any man to say that the conditions under some day, be artificially brought together. All I feel justified in affirming is that I see no reason for believing that the feat has been performed yet."
Perhaps no one will deny that Professor Huxley is as wel fitted as any man living to reach a just conclusion on this subject. Notwithstanding his strong desire to believe the
theory of abiogenesis true-a desire, the strength of which is shown by the unwarranted admission concerningithe possible power of organic chemistry, etc., thrown in by the way -he feels himself compelled to declare that he sees "no reason for believing" that the feat of produci
spontaneous generation has yet been performed.
That at the time of making his address, Professor Huxley was familiar with Professor Bastian's loudly trumpeted experiments, that after sufficiently investigating them he determined to ignore them in that address as being unworthy of scientific consideration, and that he had the very best rea sons for doing so, appear from an eminently spicy and tren That letter furnishes data from which any ordinary reader, who makes no pretensions to science, can reach a judgment for himself upon the value of Professor Bastian's experi ments and the caliber of Professor Bastian. It is as follows :
"Dr. Bastian and Spontaneous Generation.-I find that the address which it was my duty to deliver at Liverpool fills thirteen columns of Nature. The reply with which Dr. Bas-
tian has favored you occupies fifteen columns, and yet protian has favored you occupies fifteen columns, and yet pro-
fesses to deal with only the first portion of the address fesses to deal with only the first portion of the address.
Between us, therefore, I should imagine that both you and your readers must have had enough of the subject; and, so
far as my own feeling is concerned, I should be disposed to leave both Dr. Bastian and his reply to the benign and lethe
an influences of time.
whom Dr. Bastian's really wonderful effluence of words
weighs as much as if it were charged with solid statements weighs as much as if it were charged with solid statements
and accurate reasonings ; and I am further told that and accurate reasonings, and I am further told that it is my
duty to the public to state why such distinguished special duty to the public to state why such distinguished special
pleading makes not the least impression on my mind. With your permission, therefore, I will do so in the briefest possi-
ble manner. The frst halt of your permission, therefore, 1 wil do so in the briefest possi
ble manner. The first half of Dr. Bastian's reply occupies
seven columns of your number for the 22d of September In all this wilderness of words there is but one paragraph which appears to me to be worth sereious notice. Itt is this:"In the first place, he does not attempt to deny: he does not even allude to the fact [that living things may and do arise as minutest visibe specks in solutions in which, but a
few hours before, on such specks were to be sen.] And this
is in itself a very remarkable omission. The statement must be true or false; and if true, as I and others affirm, the ques tion which Professor Huxley has set himself to discuss is no longer one of such a simple nature as he represents it to be
It is henceforth settled that, as far as visible germs are con cerned, living beings can come into being without them." cerred living beings can come into being without them."
If Idid notallude to the assertion of Dr. Bastian, put between the brackets, it is because it bears absurdity written upon its
face to any one who has seriously considered the conditions of face to any one who has seriously considered the conditions of microscopic observation. I have tried over and over again to
obtain a drop of a solution which should be optically pure, obtain a drop of a solution which should be optically pure,
or absolutely free from distinguishable solid particles, when or absolutely free from distinguishable solid particles, when
viewed under a power of 1,200 diameters in the ordinary way Viewed under a power of 1,200 diameters in the ordinary way
I have never succeeded ; and, considering the conditions of observation, I never expect to succeed. And though I hesi observation, never expect os succeed. And though heasi
tate to speak with the air of confident authority which sits so
well on Dr well on Dr. Bastian, I venture to doubt whether he ever has
prepared, or ever will prepare, a solution in a drop of which prepared, or ever will prepare, a solution in a drop of which
no "minutest visible specks" are to be seen by a careful no "minutest visible specks" are to be seen by a carefu
searcher. Suppose that the drop, reduced to a thin film by the cover glass, occupies an area one third of an inch in diam to make sure that it does not contain a germ one forty-thousandth of an inch in diameter, is comparable to the endeavo to ascertain with the unassisted eye whether the water of a
pond a hundred feet in diameter is or is not absolutely free pond a hundred feet in diameter is or is not absolutely free
from a particle of duckweed. But if it is impossible to from a particle of duck weed. But if it is impossible to be
sure that there is no germ one forty-thousandth of an inch in siameter in a given fluid, what becomes of the proposition, so valuable to Dr. Bastian that he has made your printer waste special type on it?
I now pass to the
I now pass to the second part of the reply, which, though it contains two important statements instead of only one. The first is, that Dr. Dastian has found baccterium and leptothrix in some specimens of preserved meats. I should have been
very much surprised if he had not. If Dr. Bastian will boil some hay for an hour or so, and then examine the decoction,
he will find it to be full of bacteria in active motion. But the motion is a modification of the well known Brownian movement, and has not the slightest resemblance to the very rapid motion of translation of active living bacteria. The
bacteria are just as dead as those Dr Bastian has seen in the bacteria are just as dead as those Dr. Bastian has seen in the
preserved meats and vegetables; and which were, I doubt not, as much put in with the meats as they are with the hay, in the experiment to which I invite his attention
The second important statement, in the second part of the
reply, is: "Professor Huxley is inclined to believe that there reply, is: "Professor Huxley is inclined to believe that there
has been some error about the experiments recorded by my self and some others." In this I cordially concur. But I do not know why Dr. Bastian should have expressed this my ments, inasmuch as I thought it my duty to let him know, both orally and by letter, in the plainest terms, six months ago, not only that I conceived him to be altogether in the wrong, but why I thought so.
Any time these six months
Any time these six months, Dr. Bastian has known per-
fectly well that I believe that the organisms which he has fectly well that I believe that the organisms which he has
got out of his tubes are exactly those which he has put into got out of his tubes are exactly those which he has put into
them; that I believe that he has used impure materials, and that what he imagines to have been the gradual develop-
ment of life and organization in his solutions is the very simple result of the settling together of the solid impurities which he was not sufficiently careful to see, in their scattered conditions, when the solutions were made. Any time these
six months, Dr. Bastian has known why I hold this opinion He months, Dr. Bastian has known why I hold this opinion bring for my examination certain preparations of organic bring for my examination certain preparations of organic
structureh he declared he had clear and positive evidence to prove to have been developed in his closed and di-
gested tubes. Dr. Bastian will remember that, when the first of these wonderful specimens was put under my microscope It the him that it was nothing but a fragment of the leat of he common bog moss (sphagnum); he will recollect that
had to fetch Schacht's obok "Die Pflanzenzelle," and show him a figure which fitted very well what we had under the microscope, before I could get thim to iistento to my suggestions; and that only actual comparison with sphagnum, after he had
left my house, forced him to admit the astounding blunder left my house, forced
which he had made.
TTo any person of critical mind, versed in the preliminary Dr. Bastian has rashly approached, the appearance of a scar let geranium, or of a sunff box, would have a appeared to be
hardly more startling than this fragment of a leaf, which no one even moderately instructed in vegetable histology could possibly have mistaken for anything but what it was; but to
Dr. Bastian, a aape with speculative expectation Dr. Bastian, agape with speculative expectation, this miracle
was no wonder whatever. Nor does Dr. Bastian's chemical criticality seem to be of a more susceptible kind. He sees no until Dr. Sharpey puts the not unimportant question Whence did they get their nitrogen? And then it occurs to him to have the alum analyzed, and he finds ammonia in it.*
And as to elementary principles of physics: In his last And as to elementary principles of physics : In his last
communication to you, Dr. Bastian shows that he is of opincommunication to you, Dr. Bastian shows that he is of opin-
ion that water in a vessel with a hole in it, from which the steam freely issues, may be kept at a temperature of " 230° hope that Professor Tyndall, whom Dr. Bastian scolds a authorititively and unsparingly was he does me, will take note
of this revolutionary thermotic discovery in the next edition of this revolutionary
of his work on heat.
of his work on heat.
It is no fault of mine if I am compelled to write thus of Dr. Bastian's labors. I have been blamed by some of my ing them. But when, because I have preserved a silence ing them. But when, because I have preserved a silence presumes to accuse me publicly of unfairness, and to tell
your readers that my address "is calculated to mislead" hem, have no alternative left but to give them the mean of judging of the competency of my assailant.
Jermyn Street, October 10.
*See Nature, No .36, 198 + + ,
After such a damaging exposition of Dr. Bastian's claims ing
by so great and so competent a man, you will doubtless agree with me that no scientific man woul from such an experi都 come to his experiments. The opinion of Mr. Wallace, and all his school of prejudiced and purely imaginative philosophers, will have no weight with the true scientist when rrayed against the careful research and clear logic of Pro Huxley's ley's
The truth is Professor Bastian has attempted to prov what can not be proved even if it be true. Such is the delib what can not be proved even if it be true. Such is the delib-
erate conclusion of my esteemed friend and teacher, Dr. Arerate conclusion of my esteemed friend and teacher, Dr. Ar-
nold Guyot. Said this great man, in conversation a few days nold Guyot. Said this great man, in conversation a few days
since: "The conditions of the problem-in the material and since: "The conditions of the problem-in the material and
instruments used and in the limitations of the eye and the microscope-are such that, even if life should be spontane ously generated, in the manner claimed by Professor Bastian, it could never be proved." It can never be known that there is no life germ as a minutest visible speck present in any flask of liquid. To ascertain with a microscopic power of 1,200 diameters that there is no germ one forty thousandth of an inch in diameter in a flask that exposes to view a lat eral surface of three square inches, would be just as easy as to ascertain with the naked eye that not a single flea is liv ing on the side of a pyramid of 600 feet base and 900 feet ascent, or on any one side of Cheops itself. This, however provided the miniature ocean currents in the flask should be not more active than the living inhabitant of the Cheops. But the germ of one forty-thousandth of an inch in diameter is too large; reduce it to one one-hundred-thousandth of an
inch and then make the calculation. A microscope which inch and then make the calculation. A microscope which
would make such a germ, when brought into its range, clearly visible would lift up a man to the hight of the Himalayas.
I trust that these facts and statements will not be uninteresting to your numerous and intelligent readers.
Princeton, N. J.
D. S. Gregory,

Professor in University of Wooster, Ohio.

The Devil Fish.

To the Editor of the Scientific American
I notice in your last issue an illustration representing the devil fish. Until I saw it, and your announcement of two living specimens, I was not aware of the existence of any living specimens in the world. My attention was particu-
larly attracted to the matter because I have a most perfect larly attracted to the matter because I have a most perfect
fellow (in alcohol), and have earnestly endeavored to find out how many there were either in Europe or America. Thus far I have not been able to find any in America, except my own. If the one in the Hamburgh aquarium is but two feet feet three tipche mine is more than as large again, being four vantage of being alive.
The strength which these creatures possess is almost beyond comprehension, as is evidenced by what took place when my pet (!) was captured. He had seized hold of a submarine diver, at work in the wreck of a sunken steamer off the coast of Florida. The man was a powerful Irishman, who claimed to weigh three hundred pounds. His size and build fully verified his statement, and, to use his own lan guage, " the baste landed on top of my shoulders and pinned my arms tight. I felt my armor and myself being cracked into a jelly." It seems that he was just about being brought to the surface, else the monster would have killed him, for
he was suffering so from the terrible embrace that he could move no part of himself. Whrbe embrace that he cound from which he had descended, and finally released, he had fainted. The men on the raft seized the fish by one of its wriggling arms, and tried to pull it off, but could not break the power of a single one of the suckers. The fish was only removed by being dealt a heavy blow across the sack containing the stomach. This sack stood stiflly up above the eyes, while the eyes stood out like lobster's eyes and gleamed like fire. The monster is, all in all, one of the most fright ful apparitions it could be the fate of a man to meet. It fulfils in every particular the horrible features attributed to it in Victor Hugo's " Toilers of the Sea." Notwithstand ing the severity with which the able Frenchman has been criticized for "creating a nondescript with his weird imagi, nation." the truth must be granted that his "nondescript" has an actual existence, as is evidenced by the specimens in Brighton and Hamburgh, as well as my own. The likeness of the picture to mine is perfect in every particular.

Charles B. Brainard.
Winthrop House, Boston, Mass.
J. H. says: "I am building a planing mill inside the fire limits, and have concluded to use perpetual motion in place of steam power. I do not care about a highly finished machine, but it must be all right in its working parts, have a capacity of about 80 horse power, and be easily controled Whom do you consider to be the most reliable maker of per petual motion engines?" [Inventors of perpetual motion engines would do well to advertise their devices in the Scr entific American.-Eds.]
Burnt and broken Grate bars.-R. F. writes that he recently visited Cape Breton, N. S., and there saw, in a boiler furnace, a system of protecting the bars from the burning to which they are subject, and from the violent raking which is necessary when they are choked with clinker. The means employed consist of a layer of flat pieces of freestone, placed underneath the coal. The clinker adheres to the stones, and ing.

THE GREAT EXPOSITION-LETTER FROM UNITED STATES COMMISSIONER PROFESSOR R. H. THURSTON.

nUMBER 11.

Vienna, August, 1873.
While there is not very much that appears new or spe cially interesting among the metal or the
wood-working tools
of the exhibition, there is occasionally one which attracts the attention of the American mechanic by its novelty; such, for instance, is the combination of wood-working tools referred to in the preceding letter and known among English builders, as well as at home, by the name of the "universal joiner," and the planer also there referred to. Among them may perhaps be also included the dovetailing machines of Hall in the United States section, and of Armstrong in the British section. The former, by the ingenious application of boring tools, cuts a peculiar and very pretty form of dove tail, and the latter, by an equally ingenious use of circular saws having parts of their edges turned over to form por tions of cylindrical saws, cuts the usual form of dovetail in very neat and rapid manner. . Both of these machines are most creditable in design, workmanship, and performance. A considerable amount of

SAW MILL MACHINERY

is exhibited in other sections than in that of the United States. We have none at all on show. The British exhibit is by far the most extensive, and is the best in all respects. Some German firms present good exhibits, however, and, in the Austrian section, one or two of the most creditable of all their exhibited machines are of this class.
The general design of these machines presents no important novelties. For log sawing, the use of the circular saw seems quite unusual. The best machines are what the builders call the portable or, more usually, the semi-portable log frame. In these machines the frames are made stiffer and stronger than we are accustomed to make them in America; the saw frame is carefully counterbalanced; the balance weights are placed at the side and quite out of the way, below the level of the floor, and the machine as a whole is strong and compact, and its performance seems most satisfactory. These frames are constructed to take logs of two and a half feet in diameter, and they find a marketin all parts of the wood-producing States of Europe and the Brit ish colonies. They require comparatively light foundations and as they may therefore be readily removed from one locality to another, they are very well entitled to the name which has been given them. One of these machines, which seems, if possible, a better specimen of the type than its neighbors, takes a log sixteen inches in diameter and is said to weigh four tuns. The Armstrong dovetailing machin and several of the tools made by Ransome \& Co., includin the band saw and their mortising machine, are recognized at once as American designs; and in every part of the exhibit of wood-working machinery, we find familiar types, usually strengthened and made some what more substantially than a home, by continental as well as by British builders. The fact is simply another illustration of the extent to which our people and our institutions have benefitted those older countries from which our population has been derived
The visit to the Exposition of a large
party of english workmen
has excited some interest, just now, among all classes. A society of mechanics and of those interested in the " promotion of scientific industry" has sent to Vienna thirty-five delegates from among its working members. The London En gineering, in an articie referring to this delegation, remarks, very justly, of the English mechanic, that while he may have no superior as a workman, "he is behind the average continental mechanic in mental and scientific training," and
that "England is no longer without rivals in industrial prothat "England is no longer without rivals in industrial pro-
duction," and further that the British are "heavily weighted with the evils of discord between capital and labor." Still, while laboring under the disadvantage of a lack of opportunity for obtaining the superior education of the German, and while having no such inducement to exercise that native inventive talent which he undoubtedly possesses in a hardly less degree than the American, and while involved in those sad quarrels which are a natural consequence of a misapprehension, by both masters and men, of those laws of political economy which control the relations between capital and labor, the English mechanic holds a position here which commands the highest respect; and it may well be a
cause of pride that we who are most closely competing with him are his nearest relatives. Other nations have, like the United States and Great Britain, sent corps of observation to Vienna, in which are included some of their most skilled ar tisans; and it may be fully expected that this enlightened policy will produce most valuable results. No nation, how ever, has as many representatives from among the class of "practical artisans" as the United States. Large numbers of our most intelligent and most experienced mechanics have visited Vienna to see for themselves what the world on this side of the Atlantic is producing that is worthy of imi tation. All are, probably, in some degree disappointed in their expectation of finding a large proportion of novelties here, yet probably none will go home feeling that the time here, yet probably none will go home feen
and the money expended has been lost. From

THE GERMANS
they learn the value of a practical mental and scientific training, and see what it has done for a nation that canno be termed a nation of mechanics. They learn also how splendidly the Teutonic nations have developed this kind o education, and how much we, and still more the British, have been
learn from

THE FRENCH
that we do not excel in the combination of the useful with the ornamental, or in the exhibition of good taste in general work, or in the manufacture of those delicate kinds of ap paratus and those marvellously perfect constructions which have become the ordinary tools of scientific work. From

THE BRITISH

hey learn to admire that simplicity of form and that subtantial construction which distinguish the mechanical works of that nation to a degree that we may well hope at some
future time to imitate, though perhaps hardly to excel. They learn, finally, that, while we may feel proud of the position already attained, we have still ample opportunity to improve many ways.
The exhibition of machinery for
MAKING CLOTHS AND FOR WORKING TEXTILE MATERIALS is exceptionally large,and includes a most interesting variety In this department, the United States exhibits almost no hing, but every other manufacturing nation is quite well and, in some cases, magnificently represented.
The Avery continuous wool spinner deservedly attracts much attention. It is the machine which excited so much interest in the Fair of the American Institute of 1872, with ne or two small but valuable improvements in details. The machine spins continuously and rapidly, and does its work well. It is compact and forms a remarkable contrast wit "Hors Concours." This machine is claimed to be specially adapted to working short wools, and, on trial, to hav worked a very large percentage of shoddy. Wool-preparing machines are largely exhibited. Cards are present in some variety, and at least one example of a comber is exhibited in the British section. Platt Brothers, of Oldham, exhibit a fine collection of cards and the comber referred to. These machines are well known in the United States, and no very remarkable novelties are found here. They are all well and neatly made, and are capable of doing the best of work. The whole exhibit of textile machinery is far more remark able for its magnitude than for novelty. In the exhibit of Bede \& Co., the use of friction gearing is an innovation which, if as successful as it is claimed to be, will be largely mitated.
The exhibition here, of one of our best card setting machines, of our harness making machines of some of our well known inventions, and of our standard machinery in this important department, would have added immensely to the interest of the United States section of the exhibitio
contained in the machinery hall. The manufacture of silks
is with us a comparatively youthful branch of industry, although the Cheneys and a few other manufacturers have, in isolated cases, been long engaged in it. Naturally, it has no representation in the United States section. France and Switzerland have very interesting exhibits of silk-working machinery, and it is easy to trace the whole process of silk manufacture, from the winding of the fiber from the cocoon to its final appearance in the woven goods.
In one of the annexes may also be seen illustrated the whole previous history of this invaluable textile material. Beautiful specimens of many varieties of the moth are shown; the eggs, the grub, the cocoon, are all exhibited, and the whole process of treatment, not only of the cocoon but of the butterfly and its eggs, is fully exhibited. With the baking of the cocoon, for the purpose of killing the unfortuate insect withinit, the process of silk culture ceases and hat of manufacture begins. The thread is wound from the cocoon by means of winding or reeling machines, which are, in some examples seen here, so contrived as to slightly
twist the fiber while winding it. The process of spinning is remarkably well and largely ilustrated in the Swiss section. It is quite different from cotton or wool spinning, and consists merely in twisting together the requisite number of fibers to produce the desired size of thread. The "drawing" which is so important a part of the process of spinning textile materials of short fiber is not necessary or possible here. Among the silk looms are several very fine specimens, which are at work veaving silks of various widths and patterns.
Switzerland exhibits some examples of waste silk working machinery. As the fiber is, in this case, much broken up, and resembles more nearly those more familiar textiles, cot.
on and wool, the process of working is intermediate be tween that by which new silk is worked and the ordinary method of working long wools.
If we may judge by what is shown here, the silk manu facture of Switzerland must be a large and an exceedingly mportant branch of that nation's industry

SEWing machines

can hardly be classified with the textile machinery, but they are hardly second to them in importance, and they appear in very section of the machinery hall in wonderful variety nd in great numbers. As a matter of course, the more im portant and most effective of these machines, wherever ex hibited, are of American make or are copies, made with great accuracy frequently, of American machines. The manufacturers of Great Britain and on the continent have mitated our methods of manufacturing, and sometimes produce exceedingly creditable work. The exhibit of sewing machines in the United States section is very extensive, and all of our standard machines are well represented. This is one of the most attractive departments of the whole Welt-Ausstellung, and interests all classes of visitors. Examining carefully the construction of these machines and comparing those of foreign make, it is soon discovered that, where defects occur in the latter, they are generally the re sult of a lack of knowledge of the proper distribution of matt of a lack of knowledge of the proper distribution
material. The machines are made of standard forms and heir parts are always made to gage and are interchangeable; but still the fits are sometimes a little loose, and the neat daptation of the special qualities of steel and of iron, or of case-hardened iron, which invariably distinguishes the American productions, is sometimes not seen in the foreign copies.
The large number of ingenious and convenient attach ments, which accompany the American machines is also one of the distinguishing characteristics. The foreign manufac turers do not invent them, and they are somewhat slow in adopting those invented in the United States. It is not at all remarkable that, notwithstanding the fact that so many sewing machines are now built in Europe, hundreds of thousands are still annually exported from America. Even the humble cottagers of Bohemia and the semi-civilized people of Russia and of Turkey are now becoming purchasers of these un versally useful little "labor savers." An old subscriber to he Scientific American, who resides in Sweden, states hat the poor peasants of that country also are succeeding frequently in satisfying the ambition, which is common to all, of possessing an American sewing machine. The sewing machine has thus become one of the most important aids in the advancement of civilization. Increase of production and the decrease of prices are therefore matters of great moral, as well as commercial, importance. The expiration of the last of the important patents upon essential details will now soon take place, and these very desirable conse quences must soon follow. \quad R. H. T.

The Multiplex Telegraph.

On page 64 of our current volume, we called attention to n article in a contemporary, describing a French invention by which four operators can, it is asserted, each work a telegraphic communication over a single wire in one direction simultaneously; and not only this, but four others can operate at the same time in the other direction. A correspondent, J. T., writes to inform us that the honor of this invention belongs to the United States, and that the original and only inventor of the system by which more than two telegraphic instruments can be worked at the same time over one wire is Mr. Merritt Gally, of Rochester, N. Y., the inventor of the "Universal" printing machine. Mr. Gally's telegraph improvement has been patented in the United States and in some European countries.
Our correspondent states as follows: "By the use of Mr Gally's invention a large number of operators at different stations along a single wire can be simultaneously employed sending different messages in either or both directions without conflict, each accomplishing as much or more work thin would be possible for him to do by the use of the Morse key. Mr. Gally has adapted his system to each and every kind of receiver or register. The operator can receive his letter in
print or by sound, or both simultaneously; or by the embossing, marking, or the electro-chemical recorder; and his instruments are so simple and accurate in their manipulation that it seems impossible that a mistake could occur in their operations. No time whatever is wasted in adjusting the instruments. They are always in readiness, and the first stroke of the operator sends the first letter of his message. Each touch of the key board represents a letter or other sigal complete. The operator may be sending a message to a distant station, be receiving another from an intermediate or more distant station, and through a third part of his intrument be in active communication with every office on the line, receiving or sending calls or explanations; while on the same wire numerous other operators, all along the line, may be similarly employed. By using the electro-chemical recorder, on Mr. Gally's system, at least sixty operators may be simultaneously employed upon a single wire sending messages to any destination along the line; thus entirely doing away with the necessity of previously preparing the messages in punched slips of paper, as is done for the automatic machine."
The writer makes other claims as to Mr. Gally's invention; but the above will suffice to show the nature and great importance of the discovery. We hope soon to publish full particulars and illustrations of this last addition to and improvement in our telegraphic apparatus, the capabilities of which multiply with astounding rapidity.

IMPROVED RAILROAD HAND BRAKE. We illustrate herewith an improved form of railway hand brake, which, it is claimed, saves fully two thirds in dis. tance run and time occupied while setting brakes. It is also stated to be much safer in use than the ordinary "twist up" stated to be much safer in use than the or "wist up" feet from the end of the car roof, so that, in case of accident feet from the end of the car roof, so that, in case of
there is less danger of the brakeman being thrown between the train.
The device is quite simple, and consists of a bed plate, to which is pivoted, in lugs, a segment, A. On the latter is formed a hook, to which the brake chain is attached, and also a fork, B, for guiding the same. C is a wrought iron lever, connected with the segment and provided with a steel lip to engage in the teeth of the rack, D. The brake chain passes from the hook on the segment over a pulley, journaled in suitable bearings cast with the purd plate, and thence down under another pulle bed plate, and thence down under another pulley, secured as shown under the car, and so to the is, secured by but two bolts; and having merely a single motion, can necessarily be quickly operated.
The inventor informs us that on the occasion of a competitive trial between his device and the ordinary brake, which took place on the Little Miami railroad, while the latter stopped four cars and an engine in 1,130 feet, actual measurement, his invention performed the same operation within 425 feet, thus gaining 705 feet; and this although the cars in both cases were of the same weight and running as nearly as possible at the same speed.
From our engraving, giving two perspective views of the apparatus, and also showing how it is applied, a clear idea of its construction will be obtained. It appears strong and durable, and, according to the inventor, is not expensive.
Patented by Mr. W. S. Foster, of Foster's Crossings, Warren county, Ohio, who may be addressed for further particulars.

To Prevent Burrs from Heating. Says a correspondent in Leffel's Mechanical News, writing on the above subject: Dress from cens, writing on the circumference, leaving no bosom. Draw a line across the center, each way, dividing a four feet burr into 16 squares or divisions, and other sizes more or less, in the same proportion, with all straight furrows. Let the draft be one half the diameter of the rock. Lay off the lands and furrows one quarter inch each, observing to dress smooth. Sink the furrow at the eye one quarter inch deep for corn, and run out to three sixteenths at the periphery; for wheat, three sixteenths at the eye and one eighth at the periphery. When thus finished, crack the lands in straight lines, square with the draft of cross lines, so as to make lines face in the runner and bed direct. This will never heat.

COMBINED SPADE AND FORK.

Our illustration represents an ingenious arrangement for adapting a fork for use as a spade in a speedy and convenient

manner. The fork may be of any ordinary pattern and the device, consisting of a sheath of corresponding form, is made to slip over the tines.
In our engravings, Fig. 1 shows the attachment partially in place. From the back is cut a triangular piece, A, which is hinged at its lower angle to the main portion. The same has a right-angled flange formed on its upper edge, which, has a right-angled flange formed on its upper edge, which,
when the fork is inserted, forms the top of the sheath. B
is a projection on the triangular piece made semicircular so as to fit around the handle of the fork.
When the sheath is slipped entirely over the fork, a ring or sleeve, C , on the handle is brought down so as to surround the projection, B, and thus firmly hold the attachment in place. The sheath is made of sheet metal and, when affixed, forms the spade, as shown in Fig. 2. The plan is novel

FOSTER'S RAILROAD HAND BRAKE

and economical, as the appliance can necessarily be obtained at a much less cost than an entire spade.
Patented July 15, 1873. For further particulars addres W. Senver, Mr. Heber Stone, Galveston, Texas, or care of The Geographical Distribution of Mineral oils. M. J. Girard says, in $L a$ Nature, in relation to the above subject, that sources of bitumen have been known from an tiquity. Those of the Euphrates, of Judea, the naphtha deposits of Bakou on the Caspian Sea, and the asphaltum of the Dead Sea, have existed from the earliest times. At Bakou, the inflammable gas or vapor of naphtha often produced remarkable phenomena, believed by the inhabitants to be supernatural and hence made an object of worship. A temple consecrated to fire was once erected there; but on its ruins, a paraffin factory now stands.
There is a certain relation between the mud volcanoes of Sicily and the Crimea and the sources of natural oil, as the emission of gas, surely indicating inflammable substances within is very common at times of eruption of the former. Bituminous deposits are found in the mountains of the Caucasus, in South America, and especially in China, where the inhabitants utilize the gas flowing from the wells for domestic purposes. Before the discovery of the Pennsylvania petroleum, the sources of Burmah furnished the material in sufficient quantity to warrant exportation. There are important deposits of mineral oil at Pegon,and emissions of gas are observed at Chittagong and are locally known as the burning fountains of Bramah. In Assam, wells"have been sunk for the extraction of oil, and recently petroliferous regions have been discovered in the south of India, in Australia and in Sumatra.
These mineral products are found all over the globe, though in the greatest quantities in the basins of large rivers, like the Indus, Euphrates, St. Lawrence,Mississippi, Colorado and many of the streams of California and Mexico; and also near lakes and inland seas. Pure and mixed oil has also been discovered in the islands of the Mediterranean, in the Grecian Archipelago, and in Ceylon

Incrustation of Water Pipes.

The Boston fire insurance companies are now calling attention to the condition of the water pipes in that city. It seems that the water supply is greatly diminished by the incrustation formed on the inside of the iron pipes by the action of the water, so that a three inch pipe that has been laid ten years becomes reduced to two inches, those of four inches to three, and the six inch mains reduced to five and four inches. A pipe was recently taken up in Howard street through which one could not see, though water flowed slowly: and a pipe of three inch bore was taken up in Beacon street, filled up solid with rust. Here is a chance, says the Boston Advertiser, for an inventor to the action of water. In the suburbs cement pipes are used, but it said that they are hardly strong enough to bear the pressure of the Cochituate water. - New York Times.

A Chemical Remedy for the Potato Disease. Professor Alexander S. Wilson, in a communication to the ubers of dios, states that he has made analyses of the eficiency in the salts of mandia lime. In the ash of the healthy tuber from 5 to 10 per cent of magnesia salts ar usually found, and over 5 per cent of lime. But in the ashe of diseased tubers, although the proper quantities of other minerals were found, the percentage of mag. nesia was only from 1 per cent up to 3.94 per cent and of lime only 1.77 per cent.

With these considerations before us, I think, says Professor Wilson, that we are justified in appealing to chemical science-to solve the prob lem as to the prevention of the disease-to suggest not a substance that will destroy the enemy, fo this is next to impossible, but to give the plant such nourishment that will enable it to resist the adverse circumstances in which it is placed, a well as the attacks of its own peculiar enemies.
Some years ago, Professor Thorpe found, from the analyses of diseased and healthy orange trees, that, in the former, the amounts of lime and mag nesia are deficient; the same thing, we have seen is the case in the diseased potato plant.
It has lately been shown by Dr. Crace Calvert, that lime is one of the few substances which we know that are capable of altogether preventing the development of fungi in organic solutions. He does not give any experiments relating to the action of caustic magnesia on fungi, but doultless its action will be found to be similar.
Here, then, is a curious and, at the same time significant fact: Diseased potatoes are deficient in lime salts: lime prevents the development o fungi. May not the development of fungi in the vessels of plants be furthered by this deficiency The circumstances are such as scarcely to leave room for doubt. So far, then, theory and practice agree; lime has been found by experience to be useful in preventing the disease, and I canno doubt that magnesia, if tried, will be found to have a similar effect.

COMBINED WATER AND PRESSURE GAGE.

The inventor of the device of which we herewith give an illustration has combined the glass tube water gage, the try cocks, and the pressure gage in one neat and compact arrangement, which is claimed to be far cheaper than the separate articles: The boil er need be punctured in two places instead of six; the pressure gage is placed right before the eyes of the engineers, boile tenders, or other workmen; and the gage glass is specially arranged to prevent, by a most ingenious contrivance, acci dents from broken glass tubes. The three try cocks are opened by compression, and are self-closing, being fitted with spiral springs. In each of the horizontal passages at the top and bottom of the glass tube is a valve, consisting of a ball o solid material. This is so placed that if the tube be broken the cing each other, the ball is instantly driven into its seat cing each other, che preventing the escape of hot water and closing the orifice, preventing the escape of hot water and steam and the scalding of the bystanders, as well as the loss of power from the boiler. The engineer can then, withou danger or waste of time, put in another glass; and by slightly pressing in the piston, on the bottom at the left, the ball is driven from its seat, and water rushes into the upright tube,

the pressure of which drives the ball in the upper part away, and equilibrium in the gage is restored.
By the valuable safety improvement, and by bringing together the various parts, frequently distributed about a boiler to the great inconvenience of the attendants, the inventor, Mr. A. P. Brown, claims that he has effected an important improvement in boiler engineering. For further particulars address T. Holland, 8 Gold street, New York city.

IMPROVED CLUTCH DRILL.

Little explanation, in addition to our illustration, is needed to show the action of this invention. By communicating the motion of the lever to the drill spindle by means of a friction clutch, the strain is distributed all around the spindle, and the liability of the drill, when acted upon on one side only, to swerve from the perpendicular is prevented. The merest possible motion of the lever moves the drill; and it will be seen that the clutch can be slid lengthwise on the spindle, allowing the latter and the lever to work clear of obstructions. The inventor claims that, by using cast steel as a material, he has produced the best and cheapest drill stock now in market, and the only one which uses friction as a means of communicating the motion, and which has, consequently, the advantages above men tioned.
For further information, address Mr. George W Gill, 405 Commerce street, Philadelphia, Pa.

Value of Foreign Patents.

In Europe the American origin of an invention is looked upon as a sort of guarantee that it is a good one, and those inventors who have, in addition to their American patents, secured patents in Europe have generally realized a larger profit from them than from those obtained at home. The reason of this i obvious when we consider the large amount of capi tal invested in the manufacturing branches of indus try in England, France, and other European countries, and the competition which is naturally created thereby. Under this state of affairs it will readily be seen that the monopoly or control of any special branch of industry will, in a measure, free the manu facturer from the incubus of competition, and enable him to make a larger per cent upon his invested capital.

Cheap manufactures beget cheap labor and com petition begets cheap manufactures. Therefore it is policy for the manufacturer to secure a monopoly of some branch of industry which he can manage and control, independent of his neighbor and competitor. In the United States, our manufacturing business has not yet resolved itself entirely into the hands of large manufacturers, but is divided up among a large number of small manufacturers who are not able to control more than a limited patronage. It would not, therefore, always justify them to invest in patent rights; and being small manufacturers, there is no inducement to get up such a close competition in business as would reduce their profits. The inventor depends mostly upon supplying the wants of the manufacturers, and it therefore behoves him to secure his inventions where the largest manufacturers and the closest competitition is found, and it is there he will realize the largest profit from his invention.-Mining and Scientific Press.

DOWN HALL, NEAR HARLOW, ESSEX, ENGLAND
This mansion, the seat of Sir H. Selwin Ibbetson, Bart. M. P., occupies the site of the former house, once the resi dence of Prior, the poet, of which, however, nothing remained of the smallest architectural interest. Building materials of a good character being wanting in the neighborhood, and the site being upon an excellent gravel, it was determined to build the whole of the walls in concrete. The quoins, cornices, and columns, dressings of openings, etc.,

GILL'S CLUTCH DRILL

ect of the house, which is important not only as a fine spe cimen of construction in concrete, but as a most elaborate and handsome dwelling of the best modern type.

A Butter and Cheese Exchange.

A new exchange for the butter and cheese dealers of this city was formally opened, on the 10th instant, in the large building at the corner of Reade and Greenwich streets, owned and occupied (as a sugar refinery) for many years by Messrs. R. L. and A. Stuart. The location being near the North River, by which most of theso products arrive, and the building having been refitted to accommodate the business, the promoters of the enterprise look forward to advantageous results to the trade generally. From facts gleaned at the opening ceremonies, we are able to present some statistics of the dairy and provision products, which, by their ex tent, surprised us, and will be new to many of our readers. It is estimated, from the present average of receipts from the 1st of May last, that there will arrive at the piers of the Hudson, during the current year, $3,500,000$ packages of butthe value of wheat is estimated at $\$ 24,000,000$, corn at while

000,000 , flour at $\$ 20,000,000$, cut meats at $\$ 12,000,000$. It will thus be seen that dairy products and provisions represent by far the largest amount of business in the produce trade.

The Electric Ligh

Up to the present time, as is well known, the electric light has been used only for lighthouses, as an electric sun illumination for signals, or on the stage, where a strong light may be required without regard to cost; but thus far it has been quite impossible to employ it for lighting streets or houses. By the old method the electric spark was passed between two points of charcoal, each attached to a copper wire connected with an electro-magnotic machine The disadvantages attending this mode consisted in the facts that for each light a separate ma chine was required, and that the light so obtained, although very powerful, was impossible to be regulated, besides being non-continuous, owing to the rapid consumption of the charcoal points from exposure to the air. All these difficulties Mr. A. Ladiguin, of St. Petersburg, Russia, has tried, and apparently overcome most successful ly. By his newly invented method, only one piece of charcoal or other bad conductor is re piece of which, being attached to" a wire connected ith glass tube, from which the air is exhausted, and replaced by a gas which will not at a high tem perature combine chemically with the charcoal This tube is then hermetically sealed, and the machine being set in motion by means of a small steam engine, the charcoal becomes gradually and equally heated, and emits a soft, steady, and continuous light, which, by a most simple con trivance, can be strengthened or weakened at the option of those employing it, its duration being dependent solely on the electric current, which of course will last as long as the machine is kep in motion. Taking into consideration the fact that one machine, worked by a small three horse power engine, is capable of lighting many hun dreds of lanterns, it is evident that an enormous advantage and profit could be gained by the illumination of streets, private houses, public buildings, and mines, with the new electric light. In the latter, it must prove invaluable as no explosion need ever be feared from it, and these lanterns will burn equally as well under water as in a room. Without mentioning the many advantages this mode of illumination has over gas, which by its unpleasant odor and evaporation is slowly poisoning thousands of human beings, and from which explosions are frequent, we can state that, by calculations made, this electric light can be produced at a fifth of the cost of coal gas. We hope shortly to place be fore the public more complete particulars, as well as reports of further experiments which are proposed to take place in Vienna, Paris, and London.-Golos, and Journal of Society of Arts.

The London Underground Railway is now in process of extension from Moorgate street to Aldgate. The new line passes under Finsbury Circus, under Bloomfield street, under Finsbury Chapel and the Moorfields Roman Catholic Chapel But it is stated that these buildings will not be disturbed by the works.

THE MAGIC LANTERN AS A MEANSOF DEMONSTRATION

by henry morton, ph.d.
Part 3.
EXPERIMENTS WITH THE VERTICAL LANTERN
1st. Propagation and reflection of waves. For this we either use the water condenser or a shallow tank made by cementing a ring of glass five inches in diameter and about one inch deep upon a piece of plate glass. To produce the waves an admirable contrivance has been made by Mr. George Wale, of Hoboken, N. J., which is constructed as follows The little box, A, is covered with a sheet of elastic rubber,
 and has attached to it the
bent tube, C D. A light tap upon the elastic cover drives a puff of air out from the end of the tube
and produces single defined wave in the wate over which it is held. The reflection of this wave from the sides of the tank can be well observed, and admirably illustrates the law of reflection from a concave circular surface. By plaeing an elliptical ring of thin brass in the tank, the peculiar properties of that curve in connection with reflec tion can be admirably illustrated. Thus, when the waves are produced at one of the foci, they are seen to develope a reflected center at the other, while in other positions curious patterns are evolved from the crossing and interfering lines.

2d. Cohesion figures. With the same tanks used in the foregoing experiment and some specimens of oils, we can exhibit, in a very perfect manner, those characteristic differences, in the behavior of films of the latter on the surface of water, first studied by Tomlinson (Philosophical Maga zine, October, 1861, and March, 1862). Thus, some perfectly clean water being poured into a tank which has been washed with a solution of caustic potash, well rinsed and drained (not wiped) dry, a single drop of oil of coriander is allowed to fall uponits surface. It will instantly spread into a large circular sheet which, in another instant willbreakinto a moss like pattern, such as is represented in Fig. 13, and this, in a moment more, will fall apart into a multitude of minute globules. Taking a fresh tank and dropping upon it some oil of cinnamon, we have, as before, an instanta neous flash into a large circle (see Fig.
Fig. 13.
14) ; but this slowly developes a series of beads around its edge, and then, one by one, circular openings break out in the interior, each of which acquires its string of beads and gradually expands until one of them, reaching the margin, breaks through, and the whole figure, with a jerk, passes into some new and irregular form.
Again, with a fresh tank and several drops of carbolic acid, we obtain an-

Fig. 14.
Each drop assumes the shape of a sort of jelly fish (Fig. 15) having a globular center and irregular fringed margin, which last is in constant motion and changes its outline, while the entire object sails about from point to point of the tank. Ether, likewise, makes a very beautiful though transient figure; and indeed, by changing the substance, an indefiaite variety may be given to the experiment.
The most scrupulous cleaniness is essential with the tanks and water. The former, after use, should be washed with a little solution
Fig. 15. of caustic potash, be thoroughly rinsed, and then allowed to dry by draining.

OTHON OF CAMPHOR ON WATER.

This phenomenon, which has exercised the ingenuity of scientific men for nearly a century and has finally, we think, received its full elucidation at the hands of Professor Tomlınson (Philosophical Magazine, Vol. 34, page 409), admits of striking and amusing exhibition with the same arrangement as we have above described, an absolutely clean tank being, however, essential. Into this a few grains of gum camphor are thrown (contact with the hands being avoided as much as possible); and at once they will set up a rotary motion and one of translation, like so many waltzers in a ball room. The accidental shapes of individual pieces or groups of fragments clinging together, with their motions, sometimes produce effects ludicrous in the extreme.

This experiment (Fig. 16), devised by the present writ is arranged as follows: By means of a clamp which fits the front part of the vertical lantern, a plate of glass, ab a foot square, is so held by its middle that one corner co the condenser. This corner has cemented to it a thin ring of soft rubber of abou five inches in diameter, and in this is poured water to the depth of one tenth of an inch In the figure, $C D$ being the clamp and A B the glass plate, E F is the ring or rub ber exactly over the condenser. The parts being so ad justed, we draw a violin bow

Fig. 16. over the edge of the plate so as to produce a low musical note. At once the water withi the ring of rubber is thrown into a system of large waves which are seen on the screen in a shaded network of singu lar beauty. On so drawing the bow as to produce a highe note, smaller waves take the place of the larger ones, and with a mixed note we can even get two or more systems, su perposed. The sound emitted by the plate is distinctly heard at the same time; and as an illustration of the connec tion between sound and vibration, wave length and pitch, this experiment certainly answers well, to say nothing of the beauty of the wave patterns as exhibited on the screen

dust figures beneath a chladni plate.

If a little impalpable silica, such as may be obtained by passing fluoride of silicon into water and drying the gelatinous silica so formed, is scattered on the surface of the condenser and the Chladni plate is adjusted close over it: then on sounding the plates, the figures, which Faraday showed to resuit from the vortical air currents developed by the various motions in the vibrating plate, can be well exhibited. If the same light powder is scattered in a glass tube, and the latter is sounded with a moist cloth, so as to produce the figures of Kundt, these can likewise be readily exhibited in the lantern. A more convenient method is to sound the tube with a whistle, and the tube itself may be made square, of plate glass. These arrangements, as also the method of exhibiting the dust figures, are due to Mr Wm. E. Geyer, Instructor in the Stevens Institute of Technology.

EXPERIMENTS IN ELECTRICITY.

If a piece of thick platinum or tin wire is bent into a hoop circling the interior of one of the glass tanks above men tioned, and the tank itself is filled with a strong solution of bichloride of tin: then, on inserting another wire at the center of the solution and connecting with a series of two or three Grove's elements, so as to make the center wire the negative and the hoop the positive pole, a beautiful growth of metallic crystals will shoot out from the center and spread over the entire surface of the field. A similar experiment may, of course, be performed with a vertical tank, but the unsupported weight of the metallic blades then soon breaks them down. In this arrangement, however, they are supported perfectly, resting, in fact, on the bottom of the tank, as the solution should not be more than an eighth of an inch deep.

If a small compass needie be mounted on a pointed support, like an inverted tack or drawing pin, its motions are, of course, vastly amplified in the huge image projected on the screen, and may thus be utilized in a number of ways which are too evident to need mention and too nume rous to admit of it. If, moreover, a piece of covered copper wire is bent into a flat rectangle and placed beside the needle, with its ends, of course, in binding screws or mercury cups, it will form a galvanometer quite delicate enough for all ordinary use. It will indeed show the induced current developed by introducing a magnet into and withdrawing it from a helix. This, of course, opens a wide field of illustration.
A more complete apparatus for use as a lantern galvano meter has been described and used by Professor A. .M. Mayer, of the Stevens Institute of Technology, with great success, but as it involves several modifications in the constructive detail of the instrument, we must refer the reader to the Professor's original description. (See American Journal of Science, 1872, Vol. 3, page 414; Journal of the Franklin Institute, 1872, Vol. 63, page 421; and "The Earth a Great Magnet," Chatfield \& Co.
Another arrangement, superior to this for many purposes and not requiring a vertical lantern, has since been devised by Professor Mayer, and will be found described in Ameri can Journal of Science and Arts, 1873, Vol. 5, page 270.

MAGNETIC EXPERIMENTS.

If a powerful steel magnet, about an inch and a half long, be laid upon the horizontal condenser, and a plate of glass, on which fine iron filings have been previously sifted, be then brought close over it and gently tapped, the iron filings will be seen to arrange themselves in that beautiful system of curves known as the magnetic spectrum.
A great variety of similar experiments, illustrating the laws of magnetic force, will suggest themselves to any one familiar with the subject, and a number will be found in the little book already named, "The Earth a Great Magnet," which is the substance of an illustrated lecture which was delivered by Professor Mayer at the Stevens Institute of Technology, as well as in the Academy of Music, in New
York, and at New Haven.

The fireless locomotive, heretofore engraved and described in the Scientific American, has lately been tried in Chicago. The Chicago Tribune says:
" In front of the cars was the motive power, contained in a small, compact, and neat locomotive, manipulated by an engineer. This was the fireless locomotive. It consisted of a boiler, eight feet long by three feet in diameter, and the usual machinery on a small scale. There was no fuel no fire, no fireman. The steam was supplied for the round trip of six miles before starting. At the depot was a sup trip of six miles before starting. At the depot was a sup-
ply boiler, sixteen feet by three feet, in which steam was ply boiler, sixteen feet by three feet, in which steam was
generated until 200 pounds pressure was indicated by the generated until 200 pounds pressure was indicated by the
steam gage. The locomotive boiler was three fourths full steam gage. The locomotive boiler was three fourths full
of cold water. Instead of boiling this by means of a fire and raising the pressure to a required hight, the heat was introduced from the supply boiler through an iron tube The iron tube was connected with the locomotive boiler the latter running under the water along the bottcm of the boiler and letting out the superheated steam, as it was freed from the supply boiler, into tise locomotive boiler. This steam, rising through the cold water, permeated it and quickly raised its temperature to 170 degrees. With this supply of steam the locomotive started, drawing a heavy four horse car over the three miles, to 35th street in ten minutes. The amount of steam consumed was 80 pounds, minutes. The amount of steam consumed was 80 pounds,
the locomotive starting back with 90 pounds remaining. When the starting point was reached, there was 57 pounds When the starting point was reached, there was 57 pounds
of steam in the boiler, the pressure being reduced oniy 33 pounds in the return trip, which was down a grade. It must be borne in mind that there was a large car, heavily laden, making eighteen miles an hour. The experiment proved con clusively that, as a substitute for dummy engines, the fireless locomotive is, beyond question, a success. There is no fire or fireman required, very little steam escapes, and the locomotive, not being one half the size of the clumsy pummy engine

Railway Dead weights.

We think it may be safely de said, remarks the National Car Builder, that, as a rule, every piece of inferior wood or metal used in the construction of a car adds unnecessarily to its weight; and on the other hand, the better the stock from which castings or other iron work are made, and the greater the care in selecting, seasoning, and applying to their special uses the various kinds of timber, the more the aggregate weight can be reduced without impairing the requisite strength. The modern buggy and other vehicles built at our carriage shops, are illustrations of this. Their strength, light ness,and slender proportions, as compared with their predeces-
sors of former days, are almost a marvel, and are due to the sors of former days, are almost a marvel, and are due to the
quality of the material and the skill with which it is util quality of the material and the skill with which it is util
ized. Let the same principle be applied, as far as practicable in car construction, and a vast quantity of dead weight may be got rid of.

Budding:lifruit Trees

This is the proper season for budding most trees. Peach es especially are growing luxuriantly, and a bud or two inserted at this time will in two or three years give a bounteous return. It is very easy to go to a nursery and purchase a few young trees in spring, but it is not quite so easy to procure large ones of a bearing age. Therefore when there are any old pear, or even peach trees, standing around our dwellings, it is but a few minutes' work to put in a few buds of some excellent kind, and thus insure a crop that will be remunerative in time to come. By the way, the quickest, easiest and surest method, when the bark separates easily from the scion, is to cut beneath the bud, half way through the scion, commencing half an inch below the bud and ending the same distance above. At the latter point merely run the knife around the bark and twist the bud off, leaving as a matter of course all the wood adhering to the stick. These in the case of peaches rarely fail under the worst of treatment, and in fact so sure has the operation now become that the large propagators use this method in preference to all others.-Correspondent of New York Tribune.

Preventing Fires on Board Ship.

Dr. M. Schuppert, of New Orleans. La.,', writes to call at tention to the frequent destruction of vessels by fire, and the consequent loss of life and property; and he points out the special liability of cargoes of cotton to spontaneous ignition, as bales are often put in places where they may absorb oil. He proposes to have, in the holds of such vessels, boxes filled with marble dust, into which pipes are to be led to convey dilute sulphuric acid. The carbonic acid gas disengaged by the contact of the sulphuric acid will undoubtedly extinguish fire; and Dr. Schuppert points out that the gas, being heavier than atmospheric air, can easily be confined to the hold of the vessel.

Squaring the Circle.-A correspordent sends us a paper by an author who wisely conceals his name. It proposes to square the circle by the following irresistible logic: $\frac{11}{14}$ of the diameter $=\frac{1}{4}$ of the circumference. Therefore a quadrilateral figure $14 \times 11=$ a circle whose diameter is 14 . The objection to it is that $\frac{11}{14}$ of the
C. M., of Reading, Eng., says: "You cannot think how eagerly your admirable publication is sought after in these parts, and what interest is taken in it. The knowledge I have gained in my little way has proved not only beneficial, but of great and lasting advantage to others; and I wish my scribble would bring you 5,000 more subsbribers."

American Progress in Stock Breeding.

In nearly all matters relating to industrial and material progress, the United States are making unquestionable advance, the basis of which isindividual effort. Here every man aspires to better his condition, and tries to attain improvement in whatever his hand may find to do. If a mechanician, he is not satisfied until his devices are made superior to the old fashioned styles. If a horse breeder, his mind is given to the raising of a stock that shall beat the world. This per vading spirit of enterprise, this constant study for improvement, ramifies into almost every pursuit, and the general re sult is an elevation of the quality of American productions which makes them specially sought for in foreign lands.
An exemplification of this is seen in the circumstances
connected with a recent cattle sale at New York Mills, N. Y., connected with a recent cattle sale at New York Mills, N. Y.,
near Utica, at the farm of Mr. Samuel Campbell. The animals sold were chiefly of the short horn variety, imported twenty years ago from England, and since that time subjected constantly to American study and improvement. The result is now seen in the production of cattle of such great superiority that bidders for them have come from distant lands to pay down probably the highest prices ever before given for animals of this variety.
The New York Tribune says that about 500 people were in attendance at the sale, among whom were: the Right Hon. Lis Mr. Halford, of Papillon, Market Harborough; Mr. Calthorpe; Mr. Richardson, who represents Sir Curtis Lampson, of Sus sex: Mr. Berwick, agent for Lord Dunmore, but who buys for Earl Bective, recently Lord Kenlis, of Underley Hall, Lancashire, and Mr. Kello, agent for Mr. R. Pavin Davis, of Horton, Gloucestershire.
A three year old bull brought $\$ 12,000$. A cow, $\$ 30,600$. A yearling heifer, $\$ 19,000$. Another cow, $\$ 35,000$, bought by Lord Bective. The culmination of the intense interest, however, was reached in the bidding for the Eighth Duchess of Geneva, which was sold to Mr. R. Pavin Davis, of Gloucestershire, Eng., for the unprecedented sum of $\$ 40,600$. After this 11 cows of the Duchess family sold for $\$ 238,800$, an average of over $\$ 21,700$. Of these six went to England at a cost of $\$ 147,100$, and five remain here at a cost of $\$ 91,700$.
After the Duchess family came the Oxfords, then the other families, the bulls being brought in after all the cows were sold. There were in all 111 animals presented. The sum realized was $\$ 380,890$.

Poisonous Undershirts.

Well authenticated instances of poisoning, resulting from Waring fabrics colored by some of the dyes in common use are by no means unusual. A highly intelligent gentleman, B.P., Esq., of Byfield, Mass., called a few weeks ago to consult us regarding his own case, which was of so serious to his family.
He had a few days previous purchased some new under shirts of cotton, colored with various tints, among which aniline red predominated. In a short time after putting on the garment, a peculiar eruption of anirritating nature appeared on the portion of the body covered by the cloth. The effects were not mereIy local, but to a considerable extent constitutional, pain and uneasiness being experienced in the back and lower extremities. In proof that the eruption was caused by the dye colors, it may be stated that a portion of the garment about the upper part of the chest was lined with linen on the under side: and wherever this came in contact with the skin, no eruption or redness appeared. The gentleman had worn cotton stockings, upen the upper portion of which there was woven in the fabric a narrow line of red. Besponding band of irritated skin after wearing the hose one day sponding band of irritated skin after wearing the hose one day The poisonous influence of the dye colors in this case cannot
be disputed. It is not probable that the number of persons is be disputed. It is not probable that the number of persons is
large who possess such idiosyncrasies of constitution as to large who possess such idiosyncrasies of constitution as to
be easily poisoned by dye colors, but that three are some be easily poisoned by dye colors, but that three are som
does not admit of a doubt.-Boston Journal of Chemistry.

Prizes for Electrical Invention

Among the general subjects for which prizes of gold and silver medals are offered by the Society of Arts, London, are the following:
A galvanic element which shall combine the constancy fo the Daniell's cell with the low resistance and high electromotive force of a Grove's cell.
An electric condenser which shall combine high capacity with small bulk and small residual charge.
A sensitive pocket galvanometer. The size should not ex ceed that of a watch.
To which may be added, as of use in telegraphy:
A varnish or coating which can be applied to iron wires so as to protect them against rust, and which shall not be liable to chip off when the wire is bent or rubbed.
Electric weaving. To the manufacturer who first practically applies electricity to the production commercially of figured fabrics in the loom.
Telegraphs. For an economic and permanent means of telegraphing through uninsulated wires, between places not less than 1,000 miles apart
All communications and articles intended for competition must be delivered addressed to the Secretary, at the Society's House, free of expense, either on or before the 31st December, 1873 or 1874, except where otherwise stated. In the first ease they will be considered during the session 1873-74; in ease they will be considered during the session 1873-74; in
the second case during the session 1874-75. Any communicathe second case during the session 1874-75. Any communica-
tion rewarded by the Society, or any paper read at an ordiary meeting, will be considered as the property of the Societ y .

VIENNA PREMIUMS AGAIN AND THE AMERICAN SEWING MACHINES,

By reference to the "General Regulations of the Vienna Universal Exhibition," published by Archduke Regnier, President of the Imperial Commission, we find medals were to be awarded, in the mechanical department, in two classesone for merit, and one for progress. The medal for merit was for the article possessing the greatest merit of its kind and class; and the medal for progress, for the article or thing which had made the greatest progression toward per fection. (In this country, the award of progress would be called a second premium.) Hence we conclude that, as the called a second premium.) Hence we conclude that, as the
Wilson Sewing Machine was the only sewing machine that received the Grand Medal of Merit, when the awards were made at the Vienna Exposition, it must have been the best sewing machine on exhibition; although other sewing machines that received medals for progress should not be considered very inferior machines. At the great American Centennial Exposition of 1876, they may have so improved as to equal the world renowned Wilson Shuttle Sewing Machine.-New York Tribune, Sept. 8, 1873.
Thi number of complete patents granted in England, in 1872 , was 2,734 .

NEW BOOKS AND PUBLICATIONS

Treatise on Civil Engineering. By the late D. H. Mahan, LL.D., Professor of Civil Engineering at West Professor of Mathematics and Mechanics in the Sood, Institute of Technology. New York: John Wiley \& Son, 15 Astor Place.
Dr. Mahan's "Civil Engineering" is one of the standard American text
books; and we have here a new edition, containing the methods and:formule of the present day. The work is too well known to need commenda tion in this place; but we are happy to give unqualified p.
ner in which this new issue has been Improved and edited.
Sound and Music: a Non-Mathematical Treatise on the
Physical Constitution of Musical Sounds and Harmony Physical Constitution of Musical Sounds and Harmony including the chief Acoustical Discoveries of Professor
Helmholtz. By Sedley Taylor, M.A., Fellow of Trinity College, Cambridge, England. Price \$3. New York and London: Macmillan \& Co.
This book is an acceptablesupplement to Dr.Tyndal1's "Lectures on Sound,"
and applies the masterly reasoning of that work to the explanation of the theory of musical intervals and harmonics. We cordially commend it to students of a
of their art.
Progression: Devoted to the Railroad Interests of the West and South. Volume I., No. 1. Subscription, $\$ 2$ a
year. St. Louis, Mo.: Lee and Josselyn. year. St. Louis, Mo. : Lee and Josselyn.
This is an excellent specimen of contemporary josrnalism; and the field The Practical Magazine: a Monthly Illustrated Cyclopædia of Industrial News, Inventions, and Improve\& Co., Boston, Mass.
The eighth issue of this very handsome publication has just come to hand
from the well known publishing house of J. R. Osgood \& Co. There is no from the well known publishing house of J. R. Osgood \& Co. There is no
falling off elther in the literature or illustrations of this first class magafalling off either in the literature or illustrations of this first class maga-
zine, which includes in its present issue, among other engravings, an admirably life-like portrait of Robert Crawshay, of Merthyr Tydvil, one of the

The American Textile Manufacturer: a Journal devoted to Textile Manufactures, Market Reports, Practical Information and Scientific Subjects.
This neatly printed sheet is issued by the Textile Publishing Company, 234 and 235 Broadway, New Tork. It contalns a considerable amount of
trade information, and some articles, original and selected, relating to the trade information, and some articles, original and selected, relating to the
Industries on which it relies for support. Weare glad to see that our efforts In the cause of industrial progress are appreciated by the editors of this

Inventions Patented in England by American
[Compiled from the Commissioners of Patents' Journal.]
Battery Guv.-J.P. Taylor, Elizabethton, Tenn.
BRUSH MAKING.-Florence Manuf acturing Company, Mass.
BUFRER AND Couping.-W. H. Skidmore, Philladelphid
Buffer and Coupling.-W. H. Skidmore, Philade
Compound Favcert.-W. S. Bate, Philadelphia, Pa.
Gas making -
Gas Maing Machine.-J. C. Todd, New York city.
Hackernal Screwing.-J. . Prpe, Cleveland, Ohio
Lock and Kex.-D. K. Millor et al., Philadelphia, Pa
Loom Harenss.-F. Condit, Providence, R. I.
Shaft Coupsing, ETC.-J. Charlton, Philadel
Shuttle Guard.-E. M. Stevens et al., Boston, Mass.
Trimming Papre, ETT.-M. H. Semple, Lowell, Mass.
Watch Regulator.-C. Teske. Saratoga Springe, N.

Gecent Anncticam amd foreign © Patents.

Improved Sawing Machine

Allen Xander, Slatington, Pa.-This invention consists in the improvement of sawing machines. The abe provided with one or more boards ar-
ranged to sidde in and out of supports in the under side of it, to hold the work directly in front of the saw when it may be required to do so for cut-
ting slotsor notches in the end of the work. This tool may also be used ting slots or notches in the end of the work. This tool may also be used
for making long grooves in the work by running it over the cutter ou the for making long grooves in the work by running it ov
table.
John Churchill, Cross River, N.Y.-The object of this invention is to contruct a hoisting jack which is easily operated, effective in action, and
eadily adjusted to different hights. The invention consists of a bell crank lever with treadle, which acts by means of an intermediate connectin
and weighted link on a sliding rack, guided between a strong frame. Improved Automatic Gate.
John S. Foit, Kenton, O.-This in vention has for its object to furnish an and closed by simply moving the end of the lever in one and another direction. The invention is an improvement in the class of gates having appliances for swinging them at a distance; and consists in the arrangement of a set of parallel levers and their connect Ing rods with a pivoted plate, upon
which the gate itself is pivoted and partly supported. By this arrangement which the gate itself os pivoted and partly supported. By this a rrangement, the post, and by moving either lever in the opposite direction the gate will be swung shut.

Improved Land Marker.

George W. Betts, Shadeville, o.-This invention relates to an arrangement of a sliding bar and plvoted lever with the pivoted frame to which the
markers are connected. The plows or markers have a free vertical, but no lateral movement. The rear ends of levers pass throigh keepers attached same time, by ralsing and lowering the sald bar. The bar is attached to
the rear ends of two levers which are pivoted to short studs, attached to
the rear bar of the frame. The forward ends of the levers are connectect the rear bar of the frame. The forward ends of the levers are connectec
by a board for the driver to rest his feet upon, so that he can, with his feet, raise the plows from the ground, to pass an obstruction or for convenience in surning around. To a hand lever is pivoted the forward end of a ba Which slides in the slot of an upright, attached to the rear bar of the frame The bar projects rearwardly, so that, by adjusting it by means of the lever it can be made to support the plows when raised fron the ground; or it
can be adjusted to act as a lever for forcting the plows farther into the can be adjusted to act as a lever for forctng the plows farther into th
ground. The slotted upright has several holes formed through it to receiv gins. between which the bar slides, so that by adjusting the said pins the
bar may be adjusted to support the plows at any desired distance from the
gre

Improved Machine for Making Taper Tubes. Thomas J. Jones and John T. Jones, Sharon, Pa.-This Invention consist
of a taper mandrel, with a clamp for holding the plate of which the tube i of a taper mandrel, with a clamp for holding the plate of which the tube is
to be formed at one edge, and a lever and bending plate, so contrived that the tapered plate is bent to the form of the mandrel by pressing sald bend
Ingplate upon tit by the lever, the mandrel being shffed around rom tme Ingplate upon it by the lever, the mandrel being shifted around from time to time, and held stationary while the pressing is performed. The invention
also consists of a mandrel and holding clamp, a welding roller, and a car also consists of a mandrel and holding clamp, a welding roller, and a car-
riage, so combined and arranged that the bent plate, being reheated and arranged on the mandrel with the edges lapped and adjusted in the carriage
is quickly and thoroughly welded by the pressure of the welding roller, un Is quickly and thoroughly welded by the pressure of the welding roller, un-
der which the lapped edges are caused to pass forward and backward until der which the lapped edg
the joint is completed.
August Heyse, Terre Haute, Ind.-The object of nish an improvement in the class of door locks having a sliding spindle
with wedge-shaped pieces attached to it. The invention consists in the Win wedge-shaped pleces attached to it. The invention consists in the
arrangement of gulde pleces in connection with the bolt spindle. The
latch bolt consists of three parts: Head, shank and latch bolt consists of three parts: Head, shank, and wedge extension. The head is considerably larger than the shank part, and is acted upon at its
rear side by the end of a band spring. The wedge part extends sidewise in a right angle from shank, forming, with gulde piece, a square aperture fo the knob spindle. Two wedge projections are placed cen trally, but in op-
posite directions, on spindle, and act from both sides on wedge extension. The latter is, therefore, pressed back whether the knob is pressed or pulled opening thereby the door. A spring presses the bolt forward again as soon well as the side face plate, provided with slotted perforations.

Improved Circular Saw Guards.
Oscar A. Dean, Bethel, Vt.-The object of this invention is to provide
means for protecting the operator in using circular saws: and consists in guard consisting of two or more pleces. By raising and lowering the guard bar the two guards may be kept nearly in contact with the plece of lumber
which is being sawn, and all danger from pieces, splinters, or loose knots Which is being sawn, and all danger from pieces,
being thrown toward the operator is prevented.
lmproved Reversible Rotary Steam Engine. to furnish an improved rotary steam engine. To the main shaft is object to furnish an improved rotary steam engine. To the main shaft is keyed
the drum, through slots in the face of which the pistons move in and out. The shaft works in cast steel bearings made adjustable. The pistons are bolted to yokes, which work upon the shaft. To the pistons and yokes, at
or near their point of intersection, are secured slides or near their point of intersection, are secured slides, which move along
the outer surface of a circular guide to force and hold the pistons out, and along the inner or concave surface of an elliptical guide to force and hold the pistons in. Steel circular rings, working against themetallic packing in edge of the drum, are let into the heads of the cylinder, and are adjusted by set screws. The part of the cylinder above the points of intersection of
the guides is recessed to allow the exhaust steam to escape freely around the guides is recessed to allow the exhaust steam to escape freely around
the edge of the pistons, as soon as they have completed their stroke. The steam is prevented from passing dirrectly from one port to the other hy a
packing held against the drum by springs. To the shaft, at one end of the packing held against the drum by springs. To the shaft, at one end of the
cylinder, is secured a cam which moves a bar downward by striking against cylinder, is secured a cam which moves a bar downward by striking against
a pin and friction roller attached to the said bar. The bar is moved upward a pin and friction roller attached to the said bar. The bar is moved upward
gradually, as allowed by the cam, by a spring, and is slotted to recelve and slide upon a spindle and shafts, and to tts upper part isattached a dog which as the said bar moves upward gradually, through suitable mechanism opens
the valve suddenly at the beginning of the stroke. As the valve opens the
俍 valve stem is caught and locked by a tapet. At the end of the stroke the valve will be instantly closed by the action of a stiff spring. To reverse the engine, the valve works are thrown out of gear, and the cut off is
thrown open by a lever. The engine, when reversed, works at full stroke and is regulated by the throttle valve. The cut off may also bemade revers tble by an extra cam, friction pulley, and lever arrangement
Improved Crib.
Ward B. Carpenter, West Topsham, Vt.-The object of this invention is
to provide an attachment to a crib, by means of which the same can be o provide an attachment to a crib, by means of which the same can be readily changed from the rocking position into a stationary one without
being perceptible to the child sleeping therein, and permitting the quick and easy removal of the crib from one place to another. The invention consists of a slide attachment pivoted centrally to the rockers, made of two halves, having casters at their outer ends, by which the rocking crib can be changed directly into a crib moving on casters.

Improved Grain Sieve.
Lorin D. Carpenter, Buffalo Grove, Iowa.-This invention relates to the construction of sieves for cleaning and separating grain, designed for all
kinds of separating machines; and consists in a series of perforated angle plates so as to overlap each other, and bent up at their lower edges so as to form long narrow troughs, into which the grain is received, and whence form long narro
it is discharged.
Improved Device for Preventing Horses from Cribbing. Alexander stil well, Dwair's Kill, N. Y.-This invention consists in a device or machine for causing pain when the horse attempts to crib. In fastening
the device to the horse it is brought in contact with the throat. It consists of a metal frame with levers, guards, ete., sultably arranged. When the horse attempts to crib, the cribbing action distends the larynx and presses upon a cross, which causes points to rise and punish him. When he is qui-
etly eating his feed this action does not take place, and he is fully protected. Improved Foot Power Apparatus.
Ebenezer Harding and Henry Harding, Delavan, Minn.-This in vention consists of a fly wheel, foot treadle, and crank for obtaining motion, and a lever vertical saws, mortising machines, and the like, arranged in a simple and efflcient way, calculated to provide driving mechanism for small shops, by
which sawing, mortising, and the like can be done to better advantage than which sawing, mortising, and the like can be done to better advantage than with the ordinary hand power machines.

Improved Lamp.
Mich. - This invention
John Kirby, Jr., Adrian, Mich.-This invention is an improvement in the
class of hanging or chandelier lamps provided with a detachable feeding class of hanging or chandelier lamps provided with a detachable feeding
eeservolr; and the improvement relates to the construction of the suspending devices of the detachable reservoir, and the means for drawing off the settlings of the permanent reservorr.
Carroll J. Atkins, Louisiana, Mo.-This invention
platform for ferry boats arranged to swing down, withists of a bridge or with the boat deck at low water; and an incline aise it to the level of the boat deck, whether the end of the bridge and rats in to the level of the boat deck, whether the water be high or low.
The invention also consists of large V-shaped notches in the edge of the platform or bridge, and corresponding projections on the boat to enter hem, and thus bring the boat and bridge into alignment. This partis more
particulary designed for railroad ferry boats and bridges, to insure the lignment of the tracks for running the cars frem one to the other.

Improved Boot Heel Screw.
William Ackerman, Filint, Mich.-The object of this Invention is to fasten boot heels made partly of wood and leather to the upper part of the boot
heels by meansof screw bolts, so that by unscrewing them the heels may be easily taken off and put on again, or new ones substituted in their stead. The screws may a aso be provided with sharp points, to be used in winter
and by persons employed in occupations which require a firm hold of the feet, as raftsmen and others.

Improved Packing for $\mathbf{H y d r a n t s}$.
John W. Murphy, Baltimore, Mdi-This invention consist John W. Murphy, Batitimore, Md.-This invention consists in a hydran packing ring, cylindricical on the inside and tapering downwardly on the out
side, whereby leaking and waste of water or other liquid is effectuall prevented.

Improved Manufacture of Friction Matches. urnish to manufacturers of matches an improved dipping machine, by furnish to manufacturers or matches an mproved apping machine, by
which the matches may be diped more quickly and conveniently than
with the machines hitherto inj use: and also a more even and complete head of the matches be produced, and the workmen to a great extent pro tected against the deleterious innuence of the phosphoric vapors. The in-
vention consists of the combination of the receptacle for the phosphorus paste and surrounding water bath with stirrers and transferring rollers together wu

Improved Weighing Attachment for Wagons.
W . Hill, Jefferson, Iowa.-This invention is intended to f
 Improved weighing attachment for wagons, to enable the load or be eonve-
niently weilghed without the necessity of friving to a plat form ceale, and Whicl shall be so constructed that the knife edges will not be liable to wear
while transporting the load. The bolsters are made in two parts, one attachedt to the axxe, while the other or false part supports, and is movable
with, the wagon box. The levers for lifting the box are pivoted to the with, the wagon box. The levers for lifting the box are pivoted to the
fixed part of the bolster, and the weighing levers-which have for their fulcrums bars that are pivoted to the lifting levers-pass through slots in
the ilxed bolster, and converge and connect with the graduated arm of the the fixed bolster, and converge and connect with the graduated arm of the
beam or eveinhng lever, which has a fixed fulcrum beneath the box, and
projects laterally through a sloted keed projects laterally through a slotted keeper.

 pendent shaft that any desired repositor suitable to the special position of
the uterus may be applied relieving the the the uterus may be applied, relieving thereby any undue pressure on the
same and protecting against irritation and ulceration. The invention consists in the improvement of pessaries by providing the adjustable stem with a ring jointed to the support at one point only
 post having its upper part of Iron, its lower of iron, wood, and cement or
artificial stone, and provided with an intermeeiate cap. By means of the
Ironcle sster artilicial stone, and provided with an intermediate cap. By means of the
Iron claspsthe entire stranthof the wooden rail is secured, while splint-
ing by ordinary use 1 is rendereo impossible.

William Harnach, New York city.-This invention isa cane ond

 tassel made of a a alithed strow strip of paper phin colored inkent the color of of leamberer andvarnished with a waterproo varnish. varnished with a waterproof varnish. The appearance is better, because
the surface is smoother, the substance more compact, and the color bright the surface is smoother, the substance more compact, and the color bright-
er. It is claimed to beequanly if not more durable than leather, and is con-
Id er. It is claimed to be.equally
siderably cheaper than leather.

Improved Window Sash Ventilator.
 John C. Bates, Cold Spring, N. Y.-This invention has for its object to

 furnish an improved device for ventilating rooms, cars, etc., through thesashes of the window. In the bottom of a window sash is formeda 1 longitudinal spot, which is covered upon the inner side by a plate. 'The upper part of the sash bar is cut away adjacent to the plate so as to form an up. ward opening into the room, which opening may be surrounded by a box
attached to the plate. A metallic plate is hinged at its upper edge to the
 Ing the opening through it. The ends of the hing hinged plate are tlanged or
ment inward, and the said plate is made of such a size as to shut and fit closely into the opering through said sash bar. To the middle part of the Inner side of the hinged plate is pivioted a long nut into which screves a
screw, swiveled to the plate and having a knob formed upon its end for convenience In operating it. A Anf wire gazze placed in the opening of the
vent
vent ventilator prevents
air to pass in freely.
Christoph Weeke, St. Charles, Mo.-This invention
boats arranged at somedistance apart, connected by frame work and supi porting a couple of revolving drums between them, whereon enduless
chains with a series of buckets work, one of the drums belng provided with chains with a series of buckets work, one of the drums being provided with
tackle for swinging it up and down, and havingdeflectors connected with it to vary the influence of the water on the buckets according to the power
required. The other drum, which is in stationary bearings, gears with a vertical drum which is to transmit the power by a belt, and 1 is as long as
the extreme distance between high and low wate , the extreme distance between high and low water, to allow the boats to

Improved Hub Boring Machine and William H. Arnold, Buchanan, Mic

James Duncan and william H. Arnold,Buchanan, Mich.-The wheel for centering and ololing the wagon wheel, the hub of whith is to be bored.
s monted on os to revolve in a vertical plane, and has a large central is mounted ao as to revolve in a vertical plane, and has a large central
hole for the hub, also radial arms t to which the rim is ot be ellppeb by
hold holders, so as to hold the hab in the hole. The small end of the hap pro.
jects through the wheel to the right and extends between slididing centering jaws, which are drawn up against its sides by a right and left screw, so as
to line the hub with the boring mandrel before it is fastened to the arms
 ened, then the wheel is turned a quarter of a revolution, and the inter-
mediate two points are adjusted and fastened. The jaws are mounted on mediate two points are adjusted and fastened. The jaws are mounted on
a frame and may be adjusted to hubs of different lengths. The boring man.
 ways, being moved by a hand crank shaft.
by a long drum in rev the belt to run along
 ternatelyreversed, as shown, to cut on opposite sides of the mandrel, to
divide and balance the pressure.
Improved Cooking Stove.
king stow which is so constructed that all the heat may be thrown to the top of the stove and directed to one or more of the boiler rolies, as do.
sired, to e enable cooking to be done without heating the lower stove; or allt the heat may be made to pass around the oven, to onable the
baking to be done without heating the upper part of the stove; or the heat maybe made to circulate through both the upper and owwer parts of the
stove before escaping into the chimey; or may be made to pass directly stove before escaping into the chimney; or may be made to pass directly
Into the chimney without heating either the upper or lower part, thus en. abling the fuel to be used with reat conomy, and the room to be kept comparatively cool when desired, it theing necessary to use no more fuel
than the especial purpose may reaire. than the special purpose may require.
Improved Compound for Destroying Insects, etc.
John B. Lunbeck, Leoon, Iowa.-The object of this Invention is to furnish a compound for the e estruction of the " borere", and other worms, grubs and insects, which prey upon fruit and other trees; and it consists in 21 iquid
or semililiquid compound, composed of pine tar, soft soap, tobacco juice,
 and strong alkali. These ingredients are boiled together, and unslaked
lime and strong dry ashes added. When all are stirred together, oll of
tanss is put in. The compound isapplied to the body of the tree, both above tanss is put in. The compound is applied to the body of the tree, both above
and below the surface of the ground, after excavating the earth and scrap. and below the surface of the ground, after excavating the earth and scrap-
ing the loose bark from the tree. A single coat of the compound applied

Improved Fly Trap. ford, Mich.-The object of

Andrew J. Davis, Hartfor nish an effective and simple fiy trap, by which the files are caught rapidily
and killed easily therein. The invention consists in the arrangement of an upper cage with cones for the entering of the files, which cage is connected
to a lower chamber with one cone leading into the upper cage, forming a
 dipped Into hot water, and the filies are then emptied out on taking off a
cover. By detaching the cage from the lower chamber, the bait may easily
be put into the lower chamber and through the top into the upper cones.

Improved Feed Water Heater and Purifier. Samuel J. Sadler and Henry Volmar, Cleveland, ohto. -This invention
consists in separating the reservoir by a diagonal plate into two parts, of which one retains the water until the sediment is precipitated and then al ows it to flow over the other from the surface.
Improved Flooring Clamp.
Sylvanus B. Woor, William S. Terry, Robert Y.H. Terry, and Alonzo w.
Cerry, Hamburgh,
 proved clamp for forcing and holding jointed or matched work. In a lever
aboout four or five feet long and of such a size as to give it the requisise tlot to receive the tongue or tenon place by a pin. The block is placed transversely upon the ever, and up
 each end, and one extremily is passed through a hole in the lower end or
theleverat right angles withthe plane of the slotin the said lever, where the evererat right angles withthe plane of the slotint the said 1 ever, where
it is securea in place. Upon the other end of the bar is screwed a nut hav With the inner surface of the said nut, and each successive flange being set back about half an inch farther than the next preceding one. Upon the rear side of the bar, at or nearits lowerend, is formed an arm projecting outward and upward. The outer end of the arm is made pointed, and to it
is attached a brace the other end of which is connected with the bar. To formed in its upper part to receive a pin attached to the lever, to limit the movement of the bar and prevent it from fallling over back when being ad
justed to the work. In using the clamp, the flanged nut is adjusted upo Justed to the work. In using the clamp, the flanged nut is adjusted upon
the end of the bar, accordingto the thickness of the joist, so that a flang the end of the bar, aceordingto the thickness of the joist, so that a tlange
of the said nut may rest against the outer side of said joist, and the poin the arm aga pon the edge of the board, and the leveris
ts place, and holding it thereuntill nailed.

Improved Street Lamp.
Baltimore, Md.-This invention
James S. Hagerty, Baltimore, Md. -This invention relates to means fo
scuring the glass cover to lamps, and particularly street lamps, so that may be comparatively inexpensive, securely held, and easily detached. It
consists in a novel mode of locking the means for preventing the seat from lurching forward: and finally, in a new means or preventing the seat from lur
deverice y which the cap may be elid up
off or on the glass with equal facillty.

Improved Water Regulator and Cut-Of. Seal, Winchester, Va., and Edwin F. Brooks, Belt

 Charles E. Seal, Winchester, Va., and Edwin F. Brooks, Baltimore, Md.-This invention consists in improving water cutoffs, by combining with the main valve, that operates the waste valve, a hand mechanism by whic
both may be simultaneously operated from any part of a building

Improved Hay and Cotton Press.

David A. Nelson, Tyler, Texas.-This invention relates to presses for re for transportation. It consists in a novel mode of attaching the sides of
the press box so that they can be speedily thrown down from the cotton after compression and allow its convenient manipulation. Also in a new
mode of connecting the follower with its superposed lever so that it can Mode of connecting the eollower with its superposed iever so nhat
readily turned up out of the way when the cotton is being filled into the press box. Also in a pecciliar mode of combining. levers to cause
owers to clamp and press the cotton between them as if in a vise.

$$
\begin{aligned}
& \text { Impoved Fence. } \\
& \text { Durant, Bryan, Texas. }
\end{aligned}
$$

Improved Fence.
George W. Wand Jamen B. Durant, Bryan, Texas.-Tis invention eonsists
in a pecullarly constructed metallic post support; in anchors thrown out in a peculiarly constructed metallic post support; in anchors thrown out
on each side of the post support to steady the same and cause it to preserve
 conomical construction; and in a peculiar method of preparing the lum ber so that it can be conveniently packed for transportation, easily put together to form a fence, and withal so that great saving in the cost of fence is attaincd.
Improved Lathe Chuck.
Willilam Johnson, of tamberville, N. N. C - The hhell is cast in a single pece, and to it are attached three worm wheels, which are made e o revolve
on their respective arbors at equal 1 distance from the center of the chuck
 by plates which revolve with them; and on each is an arm which projects
out over the chuck, to which the holding jaws are attached. The jaws are out over the chuck, to which the holding jaws are attached. The jaws are
grooved to tit the arm ; but when they are turned round on the arm to a certain position, they can be removed from the holding pin at will. When
the worm wheels are turned, the jaws, when thus attached to tie arms the worm wheels are turned, the eaws, when hus atached to te anms,
will be carried toward or from the axis of the lathe, as may be desired. These wheels are revolved by means of a worm screw which is made to
engage with the worm wheels-t wo wheels upon one side of the screw and one upon the other. This screw is turned by means of a wrench.

Improved Cotton Seed Planter.
the seed hopper is regulated to regulate the quantity of seed dropped by slides which work in guides attached to the bottom of the hopper, and are secured in place, whea adjusted, by set screws. The conductor spout is
made long and narrow, and is secured beneath the discharge opening. Sweeps overlap the upper part of the openerplow and are designed to push
back the clods and top soil, leaving the furiow of a uniform deppth. They can be adjusted higher or lower, to e enable the seeds to be pe panthed. deeper
or shallower in the ground, as may be desired. The face of the drive whee nas a deep and wide v shaped groove formed in it, so that 1 lt may press the side of the furrow inward to cover the seed without packing it upon said seed. With the wheel 1s connceted gearing which moves the shaft within
the hopper, to which are attached radial arms, which, as the said shaft is revolved, keep the cotton seeds stirred up so they cannot clog, and will
pass readily to the discharge opening. Two fat arms, set at an angle with the axis of the said shaft, are inclined in such directions as to push the seed from the sides toward the center of the hopper, so that they may more
readily pass out through the discharge opening. With the drive wheel is connected other gearing communicating with another shaft that passes
through the conductor spout. To the shaft are attached two circles through the conductor spout. To the shaft are attached two circlee
of radial arms, at such a distance apart that the arms rigidly attached to the front and rear edges of the spout may pass between them. By this de vice the seeds, as they pass through the spout, will be selyarated from their
fibers, or said fbers will be torn apart, so that the seeds will be deposited
the furrow uniformly and not in clumps or clusters.

Improved Cotton Press.

James D. Pridgeon Marion Court House, S. C., assignor to J.P. Pridgeo $\&$ Co., of same place.-The follower which works upward in a vertical case
has two arms jointed at one end to the e lower side, one near each end, bed frame ther ena, have roilers to roll forward and backward on the bed frame. A rope is attached to the foilower at one enan, and is sol led and
arranged with sutable mechanism that a drum being turned one way will force the follo wer up into the press case by moving the arms toward each
other, so as to cause them to rise up erect, or nearly so so and said drum

gain. Method of Forming Hollow Cores for Castings. James Semple, Chicago. Ill.-This invention consists in combining, with
wax or other suitable mold, an elastic, inflitable and collapsible tube pro wax or other sultable mold, an elastic, inflatable and collapsible tube pro
vided with connections by which it may be filled with air, emptied thereof or closed airtight.

Improved Bridge Truss.
a, United States Army, now at No
Frederick Schwaka, United States nimy, now wat North Platte, Neb. - The construction of this truss cannot be intelliligibly described without the aid
of a drawing. It allows, however, the braces and counterbraces to be made shorter, thus increasing their strength and decreasing the weight of the bridge. The centers are upon the longer lines, which gives points of sup-
port to these long lines whenever they are subject to compression, thus of torsion. The mass of the iron, also, is thrown toward the top beam, thu allowing a liberal use of wrought iron in place of cast tron,

Improved Feeding Elevator for Corn Shellers. Peter Kaufman, Hudson,, Ill.-To dispenise witha second hand or " "feeder vating chain, constructed as described. The chain is composed of wire links and plate links connected together. A Portion of the plate link are
made elevating links one end of the plate of which this link is formed made elevating links, one end of the plate of which this link bs formed
being turned outward a a right angles and divided and spread. Pulleys are being turned outward at right angles and divided and spread. Pulleys are
attache, one to the machine and the other to to be box, the former being
that attached, one to the machine and the other to the box, the forme As
revolved by the motion of the machine which carries the elevator. As the
ent belt is revolved, the ears of co
oo the hopper of the machine.
Durbin L. Badey, Afton,Iowa.-The object of thisinvention is to furnish a tyre shrinker, which accomplishes, by its powerful action, the tightening
or shrinking of tyres, with less time and labor than similar devices hitherto in shre. The in invention consists in the construction and anrrangement of a
in xed blocks, and pivoted segmental blocks operated by a suitable
echanism. The turning of d disk to one side presses the segmental gainstother blocks, so that the tyre can be ffrmly clamped between the ough uneven surfaces of these blocks. The reversing of the disk releases fif the lever en the tyre is firmy clampea, the forway from that plate, so that the shrinking or loosening of the tyre in a slow and powerful nanner is obtained.
Improved Car Coupling. Phillip Maughan Thompson, Toronto, Canada. -This invention consists in a peculiar construction of the inner chamber of the dra whead, wherebby
the link is not only guided but maintained in its true and nearly horizontal osition ; in a device by which the coupling plate may be lifted by the safety and run the risk of being precipitated between the cars; in a simple ovel and effectivemeans for enabling the cars to remain uncoupled during une making up of a train; in making a car-coupling link in two parts whicil loyed for connecting these two parts of coupling link detachably togethe Improved Method of Casting Water Traps. James semple, Chicago, M11.- - nisis invention consistan in the improvemen
of stench traps, by locating a reinforcement at and on the inside of the bend. This becomes absolutely necessary in their construction because
of the common practice that prevails of thrusting sticks or metallic rods Improved Wood Grinding Machine for Making Pulp. Soren B. Zimmer, Elkhart, Ind.-This improved wood grindingmachin consists of a a arge flat horizontal stone disk inee stationary on he frame,
with a bevel face nuclining toward the axis above the stone, around which the wood is caused to revolve in boxes operated by arms projecting from a rotating shaft above the stone. The boxes contain springs, which press
the wood on to the face of the stone. The arms are jointed to lower the
 boxes off the stone. Water is discharged upon the face of the stone by tubes from a hollow penstock projecting up through the center, and con nected br a pipe below with any suitable supply.

Improved Steering Apparatus.
Charles A. Seavey, Hodgdon's Mills, Me.-A casing is placed upon and at-
ached to the deck, having a top. A bracket is rigilly attached to the to tached to the deck, having a top. A bracket is rigidly attached to the top,
the end o o which supports the point of the
the wheelshatt. A bevel pinion on per end of this shaft issupported by a bracket. Itt lower end revovevesin a
box int the lower part of the casing. There is a spur pinion on the verical
shaft which engages with horizontal rack bars which receive an alternate shaft which engages with horizontal rack bars which hrective an anternate
horizontal motion as the pinino is turned in either direction. Thes rack
 grooves. Swivel blocks on the ends of the rack bars rest in the grooves,
Theswivel pins allow the yoke to vibrate without binding, while the blocks have a slight movement in the slots. It will be seen that the move-
ment of the stering wheel 1 sinstantly imparted to the rudder.

Improved Wagon Jack.

Nelson Crandall, Wooster, Ohio.-This inver relates to the construc tion of jacks for raising carriages and wagons. The stand consists of two
plates separated by a longitudinal strip, a base block, and ano her block plates separated by a longitudinal stirip, a base bookk, and another block,
all of which are about the thickness of the lift ing bat and lever, but which allow the lifting bar and lever free play between the plates. The lifting
bar is provided with a slot, in which slot is a stationary pin for limiting its vertical motion. The bar is confned between the plates. The lower en fithe bar 1s cut on a circle, so that the end of the lever will aiways 1if series of ratchet notches and a pawl. The pawl holds the lever and lifting bar in position when the latter is loaded. When the pawis is removed the
long end of the lever will rise, and the lifting bar will drop py its own grav. 1ong end of the lever will rise, and the lifting bar will drop by its own gra,
ity. Friction rolls prevent friction against the edges of the lifting bar.
Improved Pole for Vehicles.
ar are screwed into short rod or double nut. Upon the outer ends of the parts are screwed ornamental knobs. Upon each of the parts of the rod
is placed a sleeve, upon the upper sideof which is formed a sloo to reee y a tongue formed upon the upper side of the parts, so that the sleever ma be free to slide longitudinally, but cannot turn. The outward movement of the sleeve is stoped by a knob, and its in ward movementis is iimited by
a collar. To the lower side of each of the sleeves is swiveled a bow, the ends of which are secured to the harness saddle by the screws that secure the sadale tree and par to each other. . Which upper side of the sleeves
are attached short bars, to the ends of which are attached rings to receive the reins. To the center of the bars is attached an ornamental device which may be so formed as to receive and hold the check rein. In case it is
desired to use the bar with a single horse, the part to be used is unscrewed desired to use the bar witha single horse, the part o e o used is unscrewed
from the double nut, and the knob from the outer end of the other part is ewed upon it, thus forming a neat single bar.
Improved Machine for Making Basket Splints.
B. Poe, worthington, Ind., assignor to himself and John F, All John B. Poe, worthington, Ind., assignor to nimself and John . . Alli-
 fiber or the bark. The forward end of the feed table, upon which the slab
is placed to be sawn into bolts, is slotted to pass between the cutters so that he said cotters maycome colose to the feed ronler. The journals of held down to its work by springs, so that the roller may accommodate itself tel
to the warying thicknoess of the stabs. The cunterers revovive in water in a
trough placed upon the table, from which the water may be withrawn trough placed upon the table, from which the water may be withdrawn,
througha hole in its botom, to remove the sawdust. This arrangement keeps the cutters from becoming covered with gum. To the end of the shaft which is geared to the feed roller is attached a crank wheel, which may be made large and heavy and and
crank pin of the wheel is pivoted the end of the connecting rod, to the
Other ent
 saw. The cutter is made with teeth when hard wood 1s to be operated up
on, and with a sharp edge when bark or soft wood is to be worked. Against
the forward edge of the end the forward edge of the end parts of the cutter rest plates, upon one en
of which are formed bevelect toes to rest under the beveled edge of the

 is held down to its place by bearing plates which can be adjusted as re-
quired. A plate is is attached to the feed table to a djust the thickness of the aired. A pate tha achach to ne fer

Improved Fireplace.
William Lossie, Owensborough, Ky.-This invention consists in adjust Ing the hingea upper portion the coscrict the grate by means of a screv
rod and swiveled nut, and in the construction of the grate proper with revolving bottom section in connection with two fixed side sections.

Fusiness and extional.

 The Chargefor Insertion under this head is $\mathbf{\$ 1}$ a Line. To Village Authorities and Others, who de-sire, by the Establishment of a Hard ware Manufacturing Company Employing at present about forty hands, to
improve their village and enhance the value of their Real Estate by donating sultable land and bulldings, and by subscribing to a portion of the Stock, are requested
to communicate, stating the size of the building offered and the amount of Stock they would subscribe for. The present Capital of the Company is $\$ 40,000$. The size of the building required, about $50 \times 100 \mathrm{ft}$., two stories. The
ocation preferred, New York state, in the vicinity of Wanted-A Rotary Veneer Cutting Machine.
Address, with particulars, and state lowest cash price,
"Veneers," 199 Centre street, New York.
How I turned $\$ 2.50$ into more than $\$ 1,000$
and expense, in four months. Patented in U. S. and Can ada. Manufacturing partners and agents wanted. A
household necessity. W. T. Bunnell, Ottawa, Ontario Canada.
Persons Interested in the Manufacture of
Gas for Illuminating from Petroleum Oll, please corresHickory and Honey Locust buggy posts,
best qualty and common, Hickory for Shafts, Felloes Handles, \&.., very low. Also, White Walnut Lumber.
Address Chestnut \& Co., Waverly, Chio. Cabinet Makers' Machinery. T.R.Bailey\&Vail Waker, to act as Superintendant and Foreman of a Foundry and Machine Shop. A man with some capital,
who would take an interest in the establishment, preferred, so as to increase the business. Address T. S. C. Cumberland, Mand Car Wheel Press for
Srice \$175. E. L. Kirsley, Cambridgeport, Mass, Agency in Boston Wanted-First-class Bonds
will be furnished. T. Ray, P.O. Box 1268, Boston, Mass. Washing Machine Dealers and others can
buy the first class self-adjusting Crown Wringers lower than other good Wringers. Address, for Circular, \&c.,
Am. Mach. Co., 430 Walnut St., Philiadelphia, Stam. Yacht for Sale 60 ft. long 25 horse
engine. Beautifully fitted up. Address H.L. R. 40 West Catalogue on Transmissi
Wire Rope. T. R. Balley \& Vall. Buy Boult's Pat. Molding and Dovetailing
Machine, for all kindsedge and surface molding. BatMachne, Creek Machinery Company, Battle Creek, Mich. Best Steam Fire Engine or Hook \& Ladder The New Elastic Truss presses uniforml.
all around the body, and holds the Rupture easy, night all around the body, and holas the Rupture easy, night
and day, till cured. Sold cheap by the Elastic Truss Co..
G83Broad way, New York. A Condensed Treatise on Silicate or Soluble
Glass just published and mailed free on recelpt of $\$ 1$. Chemicals of all kinds for all trades made W. Feuchtwanger, Chemists, 55 Cedar street, N. Y.

Houses have it. Irrigating Machinecking, for sale orrent. See advertisement,

Andrew's Patent, Inside page.
Key Seat Cutting Machine.T.R.Bailey \& Vail. Portable Hoisting and Pumping Engines-
A mes Portable Engines-Saw Mills, Edgers, Burr Mills, Climax Turbine, Vertical and Horizontal Engines and
Boilers; all with valuabbe improvements. Hampson, Whitehill \& Co., Newburgh Ste
38 Cortlandt Street, New York.
38 Cortlandt street, New York.
Buy Gear's Improved Variety Moulding
Machine. Ware Rooms, Boston, Mass. Lathes, Planers, Drills, Milling and Index
Machines. Geo. S. Lincoln \& Co., Hartord, Conn. Williamson's Road Steamer and Steam Plow,
with rubber Tires. Address D. D. Williamson, 32 Broadwith rubber Tires. Address
way, New York, or Box 1809.
For Solid Emery Wheels and Machinery,
nd to the Union Stone Co., Boston, Mass.,for circular. All Fruit-canTools,Ferracute,Bridgeton,N.J. For best Presses, Dies and Fruit Can Tools $\stackrel{\text { Bliss \& }}{\text { Stave }}$ Five different sizes of Gatling Guns are now
manufactured at Colt's Armory, Hartford, Conn. The manufactured at Colt's Armory, Hartiora, Conn. The larger sizes have a range of over two miles. These arms
are indispensable in modern warfare.
-Machinists- Price List of small Tools free ;
Gear Wheels for Models, Price List free; Chucks and Gear Wheels for Models, Price List free; Chucks and
Drils, Price List free. Goodnow \& Wightman, 23 CornFor Solid W
For Solid Wrought-iron Beams, etc., see ad-
vertisement. Address Union Iron Mills, Pittsburgh, Pa.,
for lithogra for lithograph, etc.
Gear, Boston, Mass., sells Machines and Sup-
plies of all kinds. plies of all kinds
Bookkeepers should try the Olmsted Patent
Bill File and Letter Clip. They are admirable for all papers. Save theitc cost in one day are buaiminess. Sold by all
Stationers. J.H.White, Newark,N.J., Sole Manufacturer.
Hydraulic Presses and Jacks, new and sec-
ond hand. E. Lyon, 470 Grand Street, New York. Bolt Makers, send for descriptive cuts of
Abbe's Bolt Machine, to S. C. Forsaith \& Co., Manchester, N.H.
Root's Wrought Iron Sectional Safety Boiler.
1,000 in use. Address Root Steam Engine Co. 2̈d Avenue 1,000 in use. Address Root
and $28 t h$ Street, New York.
Boring Machine for Pulleys-no limit to
capacity. ${ }^{\text {T. R. Bailey \& Vall, Lockport. N. Y. }}$. Brown's Coalyard Quarry \& Contractors' Ap-
paratus for hossting and conveying material by iron cable Waratus or howsting and conveying material by iron cable
The Andrew \& Bro. 414 Water st.N. Y.
Thutter and Separator Combined The Best Smutter and Separator Combined
In America. Address M. Deal \& Co., Bucyrus, Ohio.
Damper Regulators and Gage Cocks-For Damper Regulators and Gage Cocks-For
the best. address Murrill \& Keizer, Baltimore, Md.
Lightning Mill For Sale-A Walker Bros Lightning Mill For Sale-A Walker Bros.
Warcuss on Mill for pulverizig hard Bubstances. Thos
Sto Colora, ceciil Co., Md. Steam Fire Engines,R.J.Gould,Newark,N.J. Peck's Patent Drop Press. For circulars,
address Milo, Peck \& Co., New Haven, Cona. Gauge Lathe for Cabinet and all kinds of han-
dlees. Shaping Machine for Woodworking. T. R. Bailey
\& Vail, Lockport, N. Y

(\%)

E. M. McD. \& \& Bro. ask: What will dry and
aarden black paint for use on a carriage? G. G. asks: Can a pine tree be grafted, and le time to transplant a locust tree,and to cut it down.
H. D. A. asks: What can I use to stain the
npolished part of tools? Japan will not answer.
T. M. Jr. asks: How can I preserve grapes
n the bunch, fresh as when taken from the vine? P. T. Says: $:$ hear that water used in steam
bollers will not go as far in hot dry weather as in cold damp weather; in other words, that a botilier will use a
great deal more water to make atven amount of steam
in dry weather than in wet weather. Is it it so? a subject rather new to us, and we would be eglad to h
from others of our readers on the matter. EDD.]
F. G. asks: What effect has Portland cee
ment upon coal tar and pitch? Would a dry mixture of barts coarse sand and one part of Portland cement stirred into boilling tar or pitch, makea better concret
than the sand and cement alone, when elastictity was a object? II sand, highly ympregnated with iron (so much
so as to be discolored and lumpy) a good ingredient for so as to be discolored and lumpy) a good ingredident for
cement concrete? Would it make the concrete harder cement concrete?
and more enduring?
P. H. asks: What is the best thing to clean
brass on fine toflet boxes S. S. asks: How can I mend a glass vase
It is cracked for the distance of 3 to 4 inches and lets the dust.

L. K. can find Kepler's laws in any book ularly, and would not then ask a question which we
have repeatedly answered in the last few weeks R.s. . B, spaecimen of leather has the platin color given
by the bark, and is not dyed at all.-T. G. A. can waterproof and freproof wood by using the process describe on p. 289, vol. 28.-S. P. P. had better try the metho
mentioned on p. 406 vol. vol
 tach, rubber to brass by following the edrection for
fannelon ron on p. 107, vol. 28.- E. B. can make print. ers' rollers by melting together glue and molasses t. the proper consistency, and casting in a mold.-S. E.
can cement wood to glass by ysing plaster of Paris.
 mensuration, and he had better read up that subject.-
P. B. will ind his query as to the effective weight of safety valve lever answered in an articele which wil shortly be published.-J. A.
colored fires on p .165 , vol. 24.
G. W. . . asks: How many cubic feet will a
porier of i horse power heat to 60° ? 1 Answer: A bout 140 ? M. R. asks: Which describes the largest
circle, the bow or the stem or a ship or boat when ahe is goling head with the helm hard over? In other words, Which end goes off end ways the most? Answer: This
will probably remalin an open question untll some careful experiments are made. It would seem likely that
sailing vessels, side wheel steamers, and ships sailing vessels, side wheel steamers, and ships ifted
with serew propellers, all turn oin different points and
and lilght changes of rif
any particcular case.
H. K. says: Upon a shaft are keyed two
wheels, namely, a belt pulley and a gear wheel, both o
 lighter dare I make the arms of a pulley than those of
the gear wheel?
The pulley drives the shaft. 2. What are the proper proportions of arms fer pulleys and
gears?
Haswell givesproportions forgear wheels, but does not take the width of face into oconsideration. I
not that an important omission? Answers 1. Divide
 ber of arms, and proportion them according1. 2. The
arms of a ear wheel ordinarlly recuire to be about arms of a gear wheel ordinarliy require to be about
twice as strong as those of pulley hhith transmits
power by be belto owng to the different ways in which the strain acts in the two cases.
J. H. F. asks: Can some one give me direc-
tions how to carburet pure hydrogen gas made by the action of sulphurrc acid on zinc seraps? Answer: Pass the hydrogen gas through spirits of turpentine, benzine,
or naphtha. The hydrogen in this case does not chemically combine with the carbon in the turpentine, etc., but carries off, mechanically suspended in It , a certain
portion of the volatile hylr
J. B. asks: What is the best and cheapest
process of bronzlng somes small articles made of tron process of bronzing some small articles made of iron
wire? Answer: Clean the wire perfectily, and then 1 m . merse it in a solution of sulphate of copper (blue vitriol)
until covered with wash and im merse the articles in the following solution:
 on boilied for a aew minutes and inltered. The articlees
of wre are steeped in this liquor at the bolling polnt until the desired effectis produced; but do not keep them
in too leng. When taken out, wash carefully in hot in too long.
water and dry.
J. T.D. asks: 1 . What is the cause of the
preees of lumber clattering and inclining to raise up pleces of tumber clattering and inclining to raise up
back of the eav when uphning hara a gianst tit ? 2. What
 much hook shouid 2 saw tooth have? Our saws vary
from 8 Incheses to 19 Inches diameter. 3 . How fast should
 sto 20 Inches in diameter, known as bench saws and
sawing by a gage. The back hall of the saw, having an upward motion, has a tendency to lift and raise the
piece being sawn, especially when it springs and pinches on the saw or crowds between the saw and gage, while
the cut at the front of the saw has the opposite tendency of holding that part of the piece downt this would cause
the;piece to tremble. 2 . The hook or titch of the to theppece to tremble. 2. The hook or pitch of the tooth
should be on a line to from one fourth to one iffth the
diter diameter of the saw; a one fourth pltch 1s mostly used
for hard and one fifth for softer timber. For very fine
shingles, etc., even from soft wood, one quarter pitch
is best. $3.9,000$ feet per minute 18

 them,
ith safety say 12000 feet per minute. - J. E. E., of Pa W. H. P. asks: How can I polish mineral spectmens Answer: The easiest way for you tis to frrs
grind the stones on the grindstone to the shaperequired
and then to smooth wit and then to smooth with emery, finishing by polishing
with rottenstone.
F. L. R. asks: What will cement meer of Paris sito a cream with water, by sifting or dusting
the plaster into the water, and apply as a cement to the roken parts. It sets in a few minute but takes a fe
J. I. asks: I s there a way to dissolve or dis
integrate burnt clay, whtch, In hardness and cohesion is about the same as a soft burnt brick? Hydroftuoric acta 1s too expensive; caustic potash or soda is too
low; heating and quenching in water is not effectual sulphurlc or other acid softens but does not dissoclve o cause crumbling. Answer : If your clay were not burn
so hard, sulphuric acld would effectually dissolve it, a these are the materials used in the manufacture of what is known as aluminous cake. As chemical means have
fafled, however, we would suggest mechanical ones, in he shape of the pickaxe and hammer.
D. J. G. asks: How bones are treated beAnswer: Expose the bones to the alr and heat of the sun Antil hard and dry; then crush and grind.
W. C. D. asks: 1. Can you give me a regive me directions for putting the above enamel on a
brass plate, making a good clear enamel? Answers: Sake tin 3 parts, lead 10 parts, mits; calcine in an iron
pot at dull red heat, and scrape off the oxide as it forms, pot at dull red heat, and scrape off the oxide as it forms,
keeping it free from metal. Reducethis oxide to fine powder by grinding and elutriation. Take1 part of th fine oxide, ine crystal glass2 parts, manganese a few
grains; powder, rinse, melt and pour fused mass into
water, and repeat this process of powdering and meltwater, and repeat this process of powdering and melt
ing, etc., 3 or 4 times. This powder is finally fused on the surface of the polished brass,
pipe or the heat of a small furnace.
R. C. G. Says: I want to construct an engine
for a boat 20 feet long by 4 feet beam, and to occupy as little room (with boiler and fuel) as possible. Iprope to put inan oscillating engine 6×6 to make 200 revolucondenser, with a boller of 20 square feet of heating surface. Please glve me your opinion as to the prac
ticability of the plan. Answer: The engine is probably larger than you need, and we
small for the proposed engine.
C. F. C. says : 1 . I have a vertical engine of
$51 / 2$ inches diameter 6 inches stroke, and a boat 25 feet long x 6 feet beam. I propose to use the engineto drive the boat with a three blade propeller of 20 inches diame-
ter. Please tell me what are the proper dimensions of vertical tubular boller sufficlent to driveit. Answer
You do not give sufficlent data, but we can probably fur nish you with figures bymeans of which you cananswe the question for yourself. Calculate the power your
engine is to develope, and allow about one square foot engine is to develope, and als tow about one square foot
of grace, and from 18 to 20 square feet of heating
S. asks: Can you give me a formula for a retain its fluidity after being exposed to the air? 2.
What workon fermentation and its preventives should What workon fermentation and its preventives should
you recommend? 3. What practical work on chemistry 1. You can make an ink which will write black at once by using white copperas instead of the ordinary kind, andby leaving the infusion of galls to itself some time before mixing. Here is a recipe: Galls, 125 parts, white
copperas, 24 parts, gum arabic, 24 parts, water, 827 parts, in all 1,000. 2. Dussauce on "Vinegar." 3. Bloxam's 1
M. T. asks several questions as to water supply for a town. Answer: These are professional ques-
tions, the solution of which you should entrust to some reliable and competent engineer. A mall outlay in
curred for a thorough report will more than repay you
E. E.P. asks: What will remove grease or printed matter? Answer: We think you can restore
he parchment to its fornier appearance by the use of concentrated benzine.
C. H. asks: 1 . How much power can I re-
alize from a steam pipe $3 /$ of an inch in diameter with a pressure of 10 pounds only? 2. How should such an en-
ginebe constructed? Answers: 1 . Consult our article gine be constructed? Answers: 1. Consult our article
on the "Eflux of Steam," page 113, current volume. 2
Ye You wirlifin
F. A. asks: 1. What amount of fall would
stream of water conducted by a one inch pipe require to produce one horse power by a sultable wheel? 2.
Would a 2 inch pipe with one half the fall give the same power? 3. How can I harden copper and bronze? An-
swers: 1. A horse power would be produced by the fall wers : 1. A horse power would be produced by the fall
of one pound of water for a distance of 33,000 feet in a minute, or by producing an effect of 33,000 foot pounds.
2. You can calculate the discharge of water from pipes of different diameters, by means of the for mulas given in the article on "Friction of Water in Pipes" (page 48,
present volume of the Scientific Americas), and thus presertain the amount of fall required. 3. Copper and
aronze an be hardened by heating them and allowing
brone them to cool slowly
G. P. A. Says: 1. In raising and setting a
pair of steamboat shafts, open on the bottom center and on the after half center, I contend that the shafts out oard must go back and be lowered to bring them right
a. What is the rule for ralsing shafts, how much to a foot, and what must be taken off forthe length
of the cranks? Answers: 1 The outhoard ends of of the cranks? Answers: . The outboard ends of the shafts should be lowered, and should go back, if the cyl
inder is forward of the shaft. 2. To find how much the outboard end of the shaft must be lowered, measure the
throw of the crank, the length of the shaft from face of throw of the crank, the length of the shaft from face of
crank to center of outboard bearing, and the amount the cranks have opened at the bottom center (or the differ nafts and center of crank pins), all in inches. Multiply the length of the shaft by half the opening of the cranks,
and divide by the throw of the crank. The result he the amount that the outboard shaft must result wil
A. R. S. asks: Is there any method, either can measure land, in plots of from 50 to 640 acres,
A. B. says: What kind of a cable would be
best, a chain, a wire rope, a common rope, or a tarred rope, to be used on a holsting machine, exposed to the
weather and in use every day, where the cable is re quired to ralse a welght of 1,200 or 1,500 lbs. a distance o pulleys and winding up on a drum? What size should
the rope be? Answer. If the drum is of good size, wire ope, five eighths of an inch in diameter, will probably
ive better satisfaction than a chain or hemp rope
B. S. E. asks: 1. What should be the di nches stroke? Of what metal can it be most conven ently constructed? 2. What are the formule for the
Ay wheel and the safety valve? Answers: You will nd answers to both these questions by consulting r F. N. asks: 1. Why does the water in a rise more in one locomotive than in another? 2. When
a locomotive is running at 16 miles an hour and is at once reversed, where is the pressure on the valves (top or bot tom side) to cause the reverse lever to want to fly
back to where it was before she was reversed? 3. Will an engine working pretty hard use as much water with the pressure is relleved. If there is such difference ou state bet ween the two bollers, it is probably on ac action does occur, it may be due to the motion of the the pessure wannot be stopped at once; in which cas O. G. says: 1. The supply pipe to a boiler
and the waste water pipe from a heater are two inches in diameter, and were put in new two years ago; the I can take the lime out of them, or not? 2. Are all
steamers in the United States subject to the Government Inspection or not? I own a tow boat and do no or out of it. Answers: 1. Possibly you may be able to remove the incrustation by the use of some of the scale J. H. asks: 1. Please give an illustration
and description of an injector as used to supply bollers with water. 2. Suppose an engineer on board a steam of order, steam rising, and it is desired of him to kee unning, how can he get out of the dificulty withou hauling the fire? Canhe keep the machinery running?
Answers: Write to the manufacturers and you can obtain a fulldescription. 2. Engineers do sometimes try almost invariably burn the iron of the boller
T. C. W. asks: Can a locomotive push a anser
But the engineer is unable to see the track or control the train very w
sidered unsafe.
C. K. asks: Can you give directions for f air driven by a direct action of water? Answer: You will find a diagram and desc
C. M. N. asks: How can sal ammoniac and Cirate of silver be prectpitated? Answer: We
no method of prectpitating these soluble salts.
J. G. T. Says: I have a pulley 8 inches di-
meter with groove cut for $1 / 4$ fnch round belt; required the diameter of small pulley to make $41 /$ revolutions to
one of the 8 inch pulley. Answer: Take for the radius of the pulley, the distance from center of pulley to cen er of belt when placed in groove, and make the calculations as before. Strictly speaking, even in the case
flat belt, the working radius should be the sam amely, distance from center of pulley to center of bel ess of belt. In practice, the thickness of belt unle ery great in comparison with the diameter of the pulley, mav be neglected without much error

COMMUNICATIONS RECEIVED.

The Editor of the Scientific American acknowledges, with much pleasure, the re ceipt of original papers and contributions upon the following subjects:
On Ships on Fire. By M. S.
On the Devil Fish. By G. A. P
On Squaring the Circle. By -.
On the Lourdes Miracles. By
On the Lourdes Miracles. By -.
On the Million Dollar Teluscope. By W. M. \& Co.

On Blasting in a Coal Mine. By C.M. On the Patent Right Question. By A. B. F. On an Ocean Railway. By C. A. B. On Church Clocks and Chimes. By W.M On Toads in Rocks. By W. A. A. On Jumping from Railway Trains. By B. T

On the Zodiacal Light. By A. D
On Aeronautics. By M. B.
Also enquiries from the following
J. B. A.-J. C. L.-W. C. B.-A. J. B.-J. M.-R. W.
T. . S. S.-J. M. H.-D. M. G.-R. B. M.-R. L. \& S. Co
-o.S.-W.S.-E. M. D. - W. T.-A. B. W. - R. - H.G Correspondents who write to ask the address of certal nanufacturers, or where specified articles are to be had, also those having goods for sale, or who want to find
gartners, should send with their communications an amountsufficient to cover the cost of publication under
a the head of "Business and Persoual," which is specially the head of "Business and Personal," which is spectally evoted to such enquirie
Correspondents
Correspondents in different parts of the country ask Where can machinery for boring wells be obtained
Who makes ore crushers? Whatis the cost of a brick compressing machine? Who makes egg beaters, and what is the wholesale price? Who makes drive wells?
Who makes jig saws? Where can I get a cabinet maker Who makes jig saws? Where can I get a cabinet maker
work bench? Who makes the best pick with a change able point for miner's use? Where can I get a machin or cutting splints for lighting cigars, etc.? Where ca find a hand power drill that will do the work of 8 or 10 has for sale a peat compressing patent? Where can has for sale a peat compressing patent? Where can I
obtain a machine for splitting match wood? Where
can diamonds suitable for dressing millstones be obtained? Who makes stave cutting machines? Makers
thand of the above articles will probably promote their in
terests by advertising, in reply, in the Scientific AMER

Index of Inventions FOR WHICH

Letters Patent of the United States
were granted for the week ending
August 26, 1873,
and each bearing that date.
[Those marked (r) are reissued patents.]

Arithmetical frame, E. T Auger, earth, S. Emery...

A wning frame, H. Stephens ..
Bale tie, cotton, A. J. Goitg,
Ball and socket joint, M. W. St. John
Ballot box, registering J.
Basket, fruit and berry, Swan \& Finch
Bedstead, sofa, E. Lovell...
Bee hive, Rogers \& Maso
Bee hive, A. T. Wright...
Bell attachment, alarm, A.
Belting, W. D. Powers......
Billiard table, A. \& F. Braun.
Blocks in triple chalns, fasten.................................
Bobbin winding machine, W. Atkinson...... Boiler, steam, T. W. Pratt.
Boiler for warming bulldings, steam, G. W. Blak Bolt, flour, Choat \& Rich.
Bolt and rivet machine, N .
Boot and shoe heel, M. Bray
Boot, half, L. U. Williams...
Boot lining, H. White.
Boots and shoes, rubber sole for, D. E. Hayward.
Bottles, apparatus for corking, A. C.Jordan
Boxes, machine for making, G. W. Swan.... Boxes, machine for making, G. W. Swan
Bracket, adjustable, J. B. Morrison.... . Brtck, J. Dennen
Brick machine, McLean \& Bennor
Brush handle, J. Ames,
Buckle, J. M. Borchard
Butter cutter and lifter, gaged, T. E. Colbrunn. Candlestick, S. D. Hill.
Candlestict, S. D. H.w......
Car axle box, J. Hogan..
Car axle box, S Ustick.
Car axle box, S. Ustick.
Car coupling, J. Crist..
Car coupling, J. M. Enos.
Car coupling, E. N. Gifford
Car coupling, J. Hiers.
Car replacer, A. Whit
Car roof, J. B. Slichter...
Card, playing, H. Billings
Carriage window, Hensgen \& Kruge
Cartridge implement, W. . Fowle
Case, packing or show, G. G. Bates.
Cellars, etc., emptying, R. Boeklen
Chair, spring rocking, F. Chichest
Chandelier center, J. Kintz.
Chandelier, extension, L . Hul
Check runner, J. Haggerty...............
Chimneys, flue casing for forge, H. S. Wilcox.
Churn, reciprocating, H. Hatch
Cigar lighterss, plane for cutting, w. H. D.............
Circuit closer for rallway signals, H. W. Spang. Clothes line esupport, J. E. Roache.
Coal, etc., apparatus for washing, M. Evrard
Cock, H. S. Ross.
Coffee package, H. C. Lock wood
Column, metallic, s. Brandels...
Composition, wood and ir
Cooler, water, T . Smith
Corset clasp, J. B. Roby
Cotton seed, hulling, W. R. Fee, (r)
Croquet wicket drver, E. A.
Cultivator, C. P. Norton, (r).....
Drching machine, J. W. F
Drill, rock, S. H. Terden..
Drilling machines, cutter
inng machines, cutter head for, E. Weicks Engine governor, steam, A
Engine, steam, J. H. Strehl
Engine valve, steam, W.J. Steve....
Eye glass, M. Risley............................
Fan, automatic, J. D. Bush
Faucet, beer, O. T. Earle.
Faucet, self-closing, W. H. Bate
Fender and ash lifter combined, w. C. Dobbins... Fille, paper, P. W. Derham
Filter, J. B. Ellis.
Fire arm, revolving, W. H. Philips
Frite pacace, W. M. Kepler..
Fishing rod holder
Fishing rod holder, F. Senieu
Frutt crate, D. Crane.....
Furnace, etc, rotary puddling, S. Dank
Furrowing machine, W. H. Rutledge
Gage, pressure, G. Sewell...
Gas regulator, C. F. Ed wards.......
Glass, ornamenting, C. Schüssler
Grain binder, J.Waddington.
Grain dryer, R. J. Williams...............
Grate bar, G. H. Clark
Griddle, S. Kennedy.
Harvester, P. F. Hodges.............
Harvester rake, T. Murphy
Harvester rake, T. Murphy.
Head band, D. McKinnon.
Hinge, A. Wirth..........
Hinge, table, . . C. Brinser
Hinge, table, w.
Hoe, J. H. Gould
Hoe, weeding, H. Crossland
Horse power, E. G. McMillan
Horse shoe, C. Goodenough.
Horse shoe, C. Goodenough
Hydrants, etc., packing for, J. w. Murphy
Indicator and alarm, low water, F. Strange.
Journal, lubricating, G. A. Chapman.......
Journals, etc., packing for, C. Stevens (r)

142,151 142,218 142,291

 \begin{tabular}{r|l}142,218 \& M

142,299 \& N

5,553 \& M

142,293 \& M
\end{tabular}

\section*{| 2,291 |
| :---: |
| , 53 |}

5,553	
42,293	
42,124	
1	

Knitting machine, W.A. Tangeman (r)
Lamp, R. Hitchcher

Lamp, pracket, L. Hul

Lantern, W. Westlake..........
Lantern, signal, H. B. Fernald
Lantern, signal, s. H. Miller
Lathe chucks, jaw for, M. . . Johnsi...
Lathe for turning spools, A. T. Wing
Lathe for turning spools, A. T. Wing....
Lead. manufacturing white, E. A. Boehn
Lead, manufacturing white, E. A. Boe Log canting machine, A. Rodge

Mitten, knit, O. F. Tripp Davenport... Moccasin, A. Margesson...
Motor, hydraulic Mowing machine, w. A. Kirby
Nut lock, H. W D Nut lock, H. W.Dopp................
Ore, fux for smelting, s. D. Young
Ore Ore, rotating sluice for washing, w. H. Patton
Pan, bake, w. B. Chamberlain.............. Pen and pencil case, J. H. Knapp Pianoforte, W. W. Bennett
Picture hanger, F. W. Ely.
Picture hanger, F. W.Ely
Pipe tongs, J. R. Brown.
Pipes, cock for two, J. \& T. D. Richardson
Pipes, mold for earthen, P. McIntyre.
Plow, J. F. Benton.
Plow, E. Ward.........
Plow colter, E. Wlard.
Plow, rotary, C. T. Ellist
Plow scraper, H. Leach
Pct, coffee, Blaisdell \& Estabrook.
Press,
Press, Res, operating, Earle \& Rider.
Propen, or, ,screw, N. A. Patterso
Pruning knife, A. C. Hulse.....
Pruning knife, A. C. Hulse.
Pulley block, G. A. Ford...
Pulley block, G. A. Fo
Pump, E. G. Russell...

Pumps, attachment for steam, o. T. Earle. Punching machine, W. Woiceski...
Purifier, middlings, J. H. Dedrick Purifier, middlings,
Railway rall, R. Steel
Railway rall, Wales \& Cushmanan
Rall way rall chair, W. Huffman Rallway water crane, Cubberley \& Mann. Regulator, cotton opener feed, D. Harding. Rice cleaner, D. L. Geer......................
Roofing cement, fireproof, J. B. sichter Safe doors, bolt work for, H. B. Tripp Sash holder, J. Ware...
Sauce for food, Agresta
Saw tooth, W. P. Miller...
Saw teeth, device for dressing, w. Rowe
Saws, machine for gumming, S. P. Olney
Sa ws, forming backs of, c. Majer
Sawing machine, J. M. Stowe
Sa wing wood, machine for, I. G. Ringstad.
Screw, wood, Ladd \& Corning
Seed dropper, F. W. Young.
Separator, seed, F. C. Miller.
Se wer cleaner, J. H. Jenings...................
Sewing machine trimmer, W.A. Springer. Shaft coupilng, W. J. Silver.
Shafting, hanger for, J. Gree Shingle machine, A. Anderson. Shirt front, T. M. Denham... Silgnal apparat for skelning, R. Simon... Silk, reel for skeining, R. S.
Spark arrester, J. White...... Spark arrester for locomotives, M. B. Mason Spike, G. N. Sanders, Jr.............
Spinning machine bobbin, P. Laflin Stamp, hand, w. B. Gorham... Stamp, hand, H. Holt (r).. Steam whistle, O. Kromer...........
Stirrer, apple butter, G. W. Colins Stocking supporter, E. K. Rand
Stool, milking, G. T. Lincoln Stone channelling machine, A. S. Gear....
Stone facing machine, cobble, L. Dutertre Stove, cooking, R. M. Hermance (r) Stove, heating, R. H. Brown Stove, heating, S. B. Patterson.
Stove, laundry, J. H. Mitchell.. Stove pipe coupling, H. A. Mears Table, folding, C. H. Wheeler...
Table leaf support, J. K. Moffett Teeth plugger, T. L. Buckingham Telegraph pole, J. L. Chapman.
Thermoscope, Baker \& Mayer.. Thill coupling, G. R. Davis... Thill coupling, B. R. R. Rapp....
Trap, steam, H . Bessing (r) Turpentine filter, F. G. Richa
Vehtcle wheel skein and box, N. L. Holmes. Vehicle stay spring, A. A. Horn
Vehicle rein
Vehicle retn gutide, A. D. Smith
Velvet, etc., renovating, M. J. \& J. т. Dewey.. Velvet, etc., renovan.
Vessels, raising sunken, J. Rice......................
vessels, removable celling for, W. F. Morgan. Wagon, hana, s. D. scotc...
Washing machine, T. F. Kiff.............
Washing machine, Marcar\& Mehaffey
Washing machine, w. Parker......
Washing machine, A. M. Wilson..
Water wheel, E. Hacket
Weather threshold, J. P. Stark................. Windmill, Bodwell \& Atw ood.
Windmill, W. Jones...
wind wheel, G. Metcalf
Wood, bundling kindling, c. B. Whittemore Wood, machine for splitting. R. Murray............ 142,116
Wood, softening and toughening, G. W. Swan.... 142,298
APPLICATIONS FOR EXTENSIONS.
Apphe extension of the following Letters Patent. Hear ings upon the respective applications are appointed fo the days hereinafter mentioned:

$\underset{\substack{5,528 \\ 2,108}}{\substack{10 \\ \hline}}$

And How to Obtain Them.
Practical Hints to Inventors.
ROBABLY no investment of a small sum f money briugs a greater return than the expense incurred in obtaintng a patent even
when the invention is but a smallone. Large inventions are found to pay correspondingly well. The names of Blanchard, Morse, Bige
low, Colt, Ericsson, Howe, McCormick, Ho low, Colt, Ericsson, Howe, McCormick, Hoe
and others, who have amassed immense for tunes from their inventions, are well known
And there are thousands of others who have realized large sums from their patents.
More than Fifty trousand inventors have avalled
themselves of the services of MUNs \& Co. during th TWENTY-SIX years they have acted as solicitors an
Publishers of the ScIENTIFIC AMERICAN They stand a the head in this class of business ; and their large corp of assistants, mostly selected from the ranks of the Patent Office: men capable of rendering the best service
to the inventor, from the experience pracucallyobtained while examiners in the Patent Offlce: enables MUNN agency.
 aname office. A positive answer can only be had by presenting of Patents. An application consists of a Model, Drawings, Petition, Oath, and full Specification. Various official rules and formalities must also be observed. The efforts of the inventor to do all this business himself are delay, he is usually glad to seek the ald of persons experienced in patent business, and have all the work done
over again. The best plan is to solictt proper advice a over again. The best plan is to solicit proper advice a
the beginning. If the parties consulted are honorab1e they will advise whether the improvement is probably patentable, and will give him all the directions needful

How Can I Best Secure My Invention? This is an inguiry which one inventor naturally asks
another who has had some expertence in obtaining pat. ents. His answer generally is as follows, and correct : Construct a neat model, not over a foot in any dimen-
sion-smaller if possible-and send by express, prepaid sion-smaller if possible-and send by express, prepald,
addressed to MUNN \& Co., 37 Park Row, together with a description of its operation and merits. On recelpt thereot, they will examine the invention carefully, an
advise you as to its patentability, free of charge. Or, you have not time, or the means at hand, to construct a
model, make as good a pen and ink sketch of the tmmodel, make as good a pen and ink sketch of the im provement as possible and send by mall. An answer as
to the prospect of a patent will be recelved, usually, by made at the Patent Office ; such a measure often sav

Preliminary Examination.

In intion of the invention, in your own words, and pencill, or pen and ink, sketch. Send theese, with the fee of $\$ 5$, by maill, addressed to MUNN \& Co., 37 Park Row,
and in due time you will receive an acknowledgmen and in due time you will receive an acknowledgmen
thereof, followed by a written report in regard to the patentability of your improvement. This special search is made with great care, among the models and patents at Washington, to ascertain whether the improvement

To Make an Application for a Patent

 his invention if susceptible of one, although sometimes hit may be dispensed with; or, if the invention be a chem.ical production, he must furnish samples of the ingredi-
ents of which his composition consists. These should
be securely packed, the inventor's name marked on them and sent by express, prepaid. Small models, from a dis way to remit money then eheaper by maill. The safest New York, payable to the order of MUNN \& Co. Person Who hve in remote parts of the country can usually pu correspondents. Foreign Patents.
The population of Great Britain is $31,000,000$; of France $40,000,000$,and Russia, $70,000,000$. Patents may be securea by American clitizens in al or these countries. Now is the
time, when business is dull at home, to take advantage of these immense foretgn fields. Mechanical improvement of all kinds are always in demand in Europe. There will neverbe a better time than the present to take patent orincipal capitals of Europe. A large share of all the principal cocured in forelgn countries by americans ar obtained through our Agency. Address MUNN \& Co., 3 Park Row, New York. Circulars with full informatio

Rejected Cases.

Rejected cases, or defective papers, remodeled fo parties who have made applieations for themselves, or
through other agents. Terms moderate. Address MUNA \& Co.. stating particulars.

Reissues

A reissue is granted to the original patentee, his heir of an insufficient or defective specification, the origina patent is invalid, provided the error has arisen from in advertence, accident, or mist
lent or deceptive intention.
A patentee may, at his option, have in his ressue a separate patent for each distinct part of the invention
comprehended in his original application by paying th equired fee in each case, and complying with the othe equirements of the law, as in original applications,
AddressMUNN \& Co., 37 Park Row, New York, for full particulars.

Persons desiring any patent issued from 1836 to Novem
eer 26,1867 , can be supplied with official copies at a reas ber 26,1867 , can be supplied with offlcial copples at a reasonable cost, the price depending upon the extent of draw
ings and length of specification. which and specifications, may be had by remitting to this of fice $\$ 1$.
A copy
A copy of the claims or any patent issued since 1836
will be furnished for $\$ 1$. When ordering coples, bove, and state name of patentee, title of invention,and FPark Row, New York MUNN \& Co., Patent Sohcitor MUNN \& Co. Will be happy to see inventors in person, their office, or to advise them by letter. In all cases,
they may expect an honest opinion. For such consulta tions, opinions, and advice, norcharge is made. Write plain ; do not use pencll or pale ink ; be briff. All business committed to our care, and all consulta
tiens, are kept secret and strictly confdential. In all matters pertaining to patents, such as conducting interferences, procuring extensions, drawing assign ments, examinations into the vallidity of patents, etc.,
specialcare and attention is given. For information and or pamphlets of instruction and advitce

MUNN \& CO.,
PUBLISHERS SCIENTIFIC AMERICAN,
37 Park Row, New York.
OFFICE IN WASHINGTON-Corner F and \boldsymbol{y}^{\prime} in Streets, opposite Patent Office.

The attention of the investing public is called to the Imited remainder of the NORTHERN PACIFIC RAIL ROAD SEVEN-THIRTY LOAN. The unsold balance wil pany have resolved to issue only six per cent. bonds.
There are now more than 500 miles of the Road in reg. ula operatinn, with a growing traffic; surveys and con truction are progressing satiffactorily; the surve Stanley military expedition has resulted in the locatio of an excellent line through western Dakota an proposals for grading and bridging the Yellowsto proposals for grading and brigro Bismarck, at the crossing of the Missouri River, to the crossing of the Yello wstone in Montana. The Company's lands (amount ing to more than 20,000 acres per mile of road) are selling 0 settlers at an a verage price of nearly six dollars pe
cre, and the proceeds of land sales constitute a Sinking Fund for the repurchase and cancellation of first mor gage bonds.
The Company's seven and three.tenths per cent. gold
bonds, the last of which are now offered, yield nearly 8 , bonds, the last of which are now offered, yield nearly 8
per cent. per annum at the present price of gold.
All marketable securities are recelved in exchange at
current rates, and full information furnished on enquiry
JAY COOKE \& CO.,
20 Wall st., New York.

BAIRD'S 3003:

For Pracicial Mill.

OVERMAN'S Manuifacture of Steel. OY A new and enlarged edition, price $\$ 1.50$. THE MANUFACTURE OF STEEL: Con taining the Practice and Principles of Working and Making Steel. A Hand Book or Blackssiths and Workers insee and Iron, Wagon Makers. Diesinkers Cutlers and Manufacturers of Files and Hardware, of

The Moulders' and Founders' Pocket Guide

The Practical Brass and Iron Founders' Guide:

of The The above, or any of my Books, sent by matl, free of postage, at the publication prices.
MY new and enlarged CATALGUE OF PRACTICAI
AND STIENTFIC BOOKS
any one who will furnish his adaress. HENRY CAREY BAIR 406 WALNUT STREET, Philadelph

JUDSON'S
PATENT LATHE CHUCK. THESTRONGESTCHUCK NADE OK

MODERN MARINE COMPOUND EN

E. \& F.N. SPON, 46 Broome St., N.Y.

REVERSIBLE MOULDING MACHINES

 notion, asfore not an

\section*{1 Set of "teen colamps:} | $\begin{array}{c}\text { Snches, } \\ \text { for chr } \\ \text { for cila }\end{array}$ |
| :---: |

Machinery, Cold Rolled Shafting.

Sturtevant Blowers.

PATENT PUNCHING
 Farrel's Patent Railway Crane, Patent Ground Chilled Rolls,

SHINGLEAND BARREL MACHINETY.-

 N EW \& IMPROVED PATTERNS.-MA

0TIS

Machinery

NEW YORK STEAM ENGINE CO. Machinists Tools
98 Chambers St. NEW YoRK
E. M. MA YO'S PATTENT BOLT CUTTER

Planing and Matching

 $\mathrm{R}^{\text {ICHARDSON, MERIAM \& CO }}$
 Ris Manufaturers, of the fatest moproved Patent Dan

 $\$ 25$ A Movri to Lady Afents. Address Euris

The Best Made Set of Harness,
The Best Made Side Saddle, The Best Boot and Shoe Work,
And' the Best Samples of Cloth Sewing.

No other Sewing Machines received Prem
iums on their merits, which we will prove by evidence at our ofice, which we will prove by lating to the contrary are false.
Machines Sold on Easy Monthly Payments SALESROOM

And all other Cities in the United States. W ANTED $\begin{gathered}\text { Manager for alate } \\ \text { Rolling } \\ \text { Mill. }\end{gathered}$

 P ing the maximum of efflencer, daranaility and econ

Andrew's Patents.

 ${ }^{1832}$ SCHENCK'S PATENT. 1871

$\$ 72.00$ EACH WEEK.
 $\mathrm{F}_{\text {sell }}^{\mathrm{ORAL} \text { She-The right to mantatare tand }}$

1

THE "PHILADELPHI

$\boldsymbol{H} \boldsymbol{D} \boldsymbol{R} \boldsymbol{C}^{\top} \mathbb{I} \boldsymbol{J} \boldsymbol{A} \boldsymbol{C}$ PISTON guided from both ends; all workin

 W00DWARD'S ARCHITECT Plans, Details, MONCKTON'S NATVONAL $\}$ Six Dollars, post
 ORANGE JUDD IMRROVED FOOT LATHES. SELLING $\mathbf{A}_{\text {Hoe Handles. S.C. HLLLS, }}^{\text {LCOTCourtlandt St., N. } \mathrm{Y} \text {. }}$

$\mathrm{H}_{\text {sirous of purchen }}^{\text {ARRISON } \& \text { CO., Belleville, Ills., are de }}$

Alumininium Gold Jewelry,
Thickly plated with 18 carat gold

 $\mathbf{B}^{\text {UERK'S WATCHMAN'S TIME.DE- }}$

 $W_{\text {erally. }}^{\text {OODPRectatites, Wood worth Planers and R Rich }}$

TRACKLAYING THE ROADMASTER'S ASSISTANT
 airoteas drections for trackslay ling, ballasting and keep

 MILLING MACHINES.

THE HEALD \& SLSCO Patent Centrifugal Pumps,

Nater Mheel

New Book UustOut-160 Paces SENT FREF

JAMES LEFFEL \& CO, Hio, or 109 Liberry ST, N. Y.C.TTY

NEAFIE \& LEVY,
PENN WORKS,
MARINEENGNES BOLLEREANDGULDD-
$\mathbf{K}^{\text {IDDER'S PASTILESS-A Sur }}$ Aethan. sTow ief for
N. I. Safety Steam Power Co.,

PROTECT YOUR BUILDINGS, Mhit
Proin
Than
than
ond
ind

 NEW YORK SLATE ROOFING COMPANY,

SILICATE OF SODA. L. \& J. W. FEUCCTTWANGER, 55 Cedar st.,N. Y
Todd \& Rafferty Machine Company,

 LUBRTCATORS, $\mathrm{D}_{\mathrm{and}}^{\mathrm{R}}$
 B EACH'S Scroll Sawing Machines.-Cheap

Working Models

 PORTLAND CEMENT,PAT. WATER-PR00F BUILDING PAPER.

WIRE ROPE.
JOHN A. RO OE BELING, NS ONS

WIRE ROPE.

AMERICAN Tunhine Water Wheel

r

AIERILICAI SAW CO
No. 1 Ferry St., New York. Movable-Toothed Circular Saws PERFORATED CROSS-CUT, SOLID ${ }^{\text {AND }}$ SAWS.
 DOUBLEACTING

SteamPumps

valley machine company, Easthampton, Mass.

R ANSOM SYPHON CONDDENSER perfect

A pelirl MADE SOLID EMERY WHEEL,

UNIVERSAL

WOOD-WORKER,

For Railway Car Buiderss Carriage and Warind Works, Planing Mills, Sash, Door an The most useful and labor.gaving Machine of modern invention, which HAS NO EQUAL FOR VARIETY horizontal and upright boring machines, SUPERIOR to any in use.
BENTEL, MARGEDANT \& CO., Hamilton, Ohio.

E OF SOD

SILICATE OF SODA.

P. BLATSDALL \& CO.,

Patent Drill Presses, with Quick Return Motion,

- mass.
ent to any adaress tor 25 cts
$\mathbf{N}^{\text {OYE S'S }}$ MILL FURNISHING WORKS

ROSEWOOD, WALNUT, WHITE HOLLY SATIN WOOD HUNGARIAN ASH, AND IN LOGS ALL KINDS OF WOOD

GEO. W. READ

Fire! Fire!

We are now offering our Entire Stock of Veneer
Slightly damaged by the fir of tith inst., at our Branch
Sale srooms, 170 and 172 Center ter treet at at an
Less than Half their Cost.

 Veneer Cutting Machines FOR SALE.

 The Pulsometer or Magic Pump.

Machinist's Tools, LUCIUT W, POVD AND MUPROVED,

SCIENTICICRICAN

One copy, one year TERMS.
One copy, six months
$\$ 3.00$

Өne copy, four months 1.50
1.00 One copy of Scientific American for one year, and
one copy of engravin, "Men of Progress ", One copy of Scientific A merican for one year, and
one copy of "Sclence Record," for 1873 . Remit by postal order, draft or express
The postage on the Scientific American is five centsper quarter, payable at the office where recetved. Canada to pay postage.

MUNN \& CO

T HE "Scientific American" is isprinted with

