

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

 NEW YORK, AUGUST 30, 1873.
 [${ }^{\text {83 }}$ iver Annum.

THE PULSOMETER.

A steam pump with no cylinder, no piston, no piston rod no stuffing boxes, glands, cams, or eccentrics, no slide valves, cranks, or fly wheels, and consequently requiring none of the repairs or renewals incident to the above mechanism, is the negative definition of the invention, the distinctive name of which heads the present article. Positively speak

ing, the invention is a device in which steam and water are brought in direct contact in suitably arranged chambers, where, by the alternate vacuum and pressure of the former, the fraid is first lifted and then forced out, in other words, moved by direct acting pulsation: a utilization, in fact, of the simplest principles of hydro-dynamics by means of one of the simplest forms of machine.
From the sectional view, Fig. 2, the interior arrangement of the apparatus will be easily understood. Two long necked chambers, D and E, are joined together at their upper extremities, forming a common passage into which a metal ball, C is fitted so as to oscillate freely between seats formed at the junction, thereby clos junction, thereby clos ing the orifice of either it may fall which may fall. Steam nters from above, an ence the position of the ball, C, governsits entrance into one or the other vessel. Wa ter, on the other hand, comes into the appara tus by the fipe, B, from below to the in duction passage, F, which connects the low er portion of the two receptacles throug receptacles through circular orifices. In the latter, two spherical shells are arrange and seated so as to ac as induction valves to the chambers respec tively.
A is the delivery passage (shown in dotted lines), common to both chambers, and is also provided with spherical shell, oscillating from side to side between seatings formed in the entrance to the conduits leadin

HALU'S PULSOMETER OR STEAM PUMP.-Fig. 1.
tion. A small air check valve is screwed into this vacuum
into the two chambers, which acts as a delivery valve to each alternately. G is a vacuum chamber, connected with the nduction passage through a downward extension (not shown) on the side opposite the delivery opening, A. Suitable flanges and covers are arranged at the bottom of the chambers to allow of the removal of the shell valves when necessary.
This entire apparatus, with all its chambers and passages, is cast in one piece, and at the same time with the induction shell valves in their proper positions, thereby forming their respective seatings, while chills of suitable form are placed so as to mold the seating of the steam and discharge valves also. Stud bolts are similarly cast in their proper positions upon all the flanged passages, ready for the screwing on of the flanges. As soon, therefore, as the core sand is removed he lag bolted ond the steam and discharge valves he fa put in ation
Such is the simple arrangement of mechanical details, the working of which is equally uncomplicated. Referring again to Fig. 2, it will be observed that the ball, $\mathrm{C}_{\boldsymbol{g}}$ is on its right hand seat. Consequently steam has free entrance to chamber, D, the latter, with the suction pipes and other chambers, being supposed to be filled with water. The fluid in the left hand receptacle is therefore subjected to a pressure directly from above and the steam is thus applied in a manner to secure the least amount of condensation. The result is that the water line is gradually depressed, and the liquid forced out past the ball in the lower part of the chamber, which naturally takes the position indicated in the engraving, and thence out through the discharge opening, the shell in the latter yielding to the pressure and falling toward the right. It will be noticed that the shape of the chamber allows the steam to expand gradually as the fluid surface is depressed, so that the water is not agitated until the discharging outlet is reached. At precisely that moment agitation commences, the steam mingles and condenses, and, as the inventor expresses it, if a vacuum gage were applied to the chamber, "the needle would fly round from 0 to 28 like a streak of lightning."
The result of this sudden collapse is evident; the ball, C , is instantly drawn over to close the opposite orifice, the shell on the delivery conduit falls also back to the left, prevent ing the reflux of the water, and the induction valve ball is forced back against its guard, leaving a clear port for the column of water in B. To cushion the ramming action of the fluid thus drawn violently in, the vacuum chamber, G,
comes in play. This, as before remarked, is connected with a mher check val in into this vacuum herein, allowing the entrance of a small quantity of air but closing against its return. The valve opens at each pulsation and its lift, and thus the amount of air permitted to enter, may be regulated by a suitable screw.
The operation described as going on in chamber, D, is in

stantly repeated in chamber, E , the moment the ball, C , flies ver. Consequently the receptacles filling and emptying lernately give, it is stated, all the elements of a double acting pump, drawing and forcing a constant stream at the ame time.
Sufficient of the working of the apparatus has, we think, now been described to insure clear comprehension of the general operation. The functions of the various moving parts in detail, the reader interested can readily determine for himself. It remains, therefore, to note the advantages claimed and the various uses to which the pump may be profitably applied.
Our larger engraving (Fig. 1) represents the pulsometer as arranged in a mine. In such local ities, as many are aware, the pump is aware, the pump is very liable to get out of order, work irre gularly, and, in fact, form a troublesome part of mining economy. The present device, according to the inventor, is free from the difficulties inherent to ordinary apparatus. We are told that it works constantly as long as supplied with steam requires no attention shows no perceptible whoar of parts, wear of parts, and does not become choke by sand wood, or mud. The patentee also states that he has success fully applied the pump at a distance of 800 feet from the water to be raised, where 150 feet was clear lift. He adds that economy of
steam is one of the principal advantages of the invention, in addition to the saving effected in repair and care
In Fig. 3, our artist has depicted the application of the pulsometer on shipboard, showing a double arrangement whereby it may be used for freeing the ship from bilge, or for drawing sea water, in case of fire or to wash decks. A shows the bottom of the suction pipe near the keelson, fitted with a suitable rose nozzle. This, provided with proper valves, connects with the pump and thence overboard at C. At B water is drawn in through suitable adjustment of the valves and carried to the coil of hose represented. The arrangement is simple and, doubtless, very convenient and effective. Another application is to the locomotive: the small space required by the machine rendering it easily located and thus convenient for filling the tender from roadside streams, in cases of necessity. In addition to these instances, the pulsometer, it is claimed, may be employed for pumping deep wells, being suspended by a chain or rope, and lowered as the work progresses; for removing water from foundations, as we are informed that it will raise fluid containing fifty per cent of sand or mud; as a working meter, as, by knowing the exact capacity of the working chamber and counting the pulsations, the quantity of liquid moved at any time may be
determined; and in fine, through its absence of complicated determined; and in fine, through its absence of complicated parts, freedom from requirements of oiling, packing, and constant supervision, for a multiplicity of other uses which circumstances will suggest.
The device, which is covered by some thirty patents, is the invention of Mr. C. Henry Hall. It may be seen, and other information obtained, at No. 20 Cortlandt street, in this city, or at the manufactory of C. H. Hall \& Co., corner Hudson and Sussex streets, Jersey City, N. J.

Srientifir Ammeram.

MUNN \& CO., Editors and Proprietors. published weerly at
NO. 3 T PARK ROW, NEW YORK.
O. D. MUNN.
A. E. BEACH.

TIGIMNS.

One copy, one year...

VOL. XXIX., No. 9 . . [New Series.] Twenty-eighth Year.
NEW YORK, SATURDAY, AUGUST 30, 1873.

the "Granges" and their object.

The agriculturist is, from the nature of his pursuit, necessarily isolated; and the greater the scale upon which his perations are conducted, the wider is he separated from the thus compelled not only to raise but transport his produce thus compelled not only to raise but transport his produce his profits, he, on the other hand, also labors under the addihis profits, he, on the other hand, also labors under the additional disadvantage of being far removed from his imme-
diate sources of supply; hence he is obliged either to purchase his necessaries of life at an augmented cost of importation, or else submit to the often extortionate exactions of agents and middle men.
It was a fact, evident to every thinking observer, that the state of affairs which existed in the agricultural districts of the west during last fall, resulting in the burning of corn as fuel rather than pay the high rates demanded for its transportation to eastern markets, was such as to necessitate speedy means of relief; while it lead many to the thought that, if reform could not be effected through individual effort, it might be gained by aggregation. To. these causes may be attributed the very rapid spread of an organization, the object of which is-setting aside all political construction, w ich is beyond our province-to bring the farmer into direct relations with the manufacturer and capitalist; and at the same time, by the agency of association, to improve his intellectual and social, as well as financial, condition. The system of granges, as they are termed, originated in 1867 ; but on being broached to farmers, it was regarded at the time with suspicion and virtually discountenanced. Up to the beginning of 1871, but 125 societies had been formed; but from the autumn of 1872 , the plan has grown in popularity to such an extent that there are now over five thousand granges, aggregating 300,000 members; while it is estimated hat fully 8,000 will have been organized before the close of the present year. The order of so-called Patrons of Hus-
bandry is modeled something on the Masonic principle, so far as secresy and the observance of a ritual is concerned, the object of ceremonial restriction being principally, however, to excite an interest and engender a more fraternal feeling among individuals. The National Grange in Washington grants dispensations to form other lodges, and the masters of the latter, when a certain number are organized in a State constitute a State Grange. The last body elects its own mas ter, who is a member of the National Grange or governing authority. Both sexes are eligible to membership, and a certain amount of internal discipline is maintained
These societies deal directly with producers, buying their supplies in quantities and paying cash. Contracts are made by agents with manufacturers to furnish various articles at the lowest price attainable. A list of parties thus agreeing is sent to every grange. If a farmer requires, for example, reaper, a sewing machine, or a piano, instead of buying it from a middleman, he notifies the master of his grange, to whom he pays a stipulated price. An order from the official to the maker procures the desired article, and the same process is gone through with for anything else that a member may need. Necessarily, manufacturers are willing to sell to the granges; and in some cases, we learn, are satisfied to do an exclusive business with them. On their part, they save agents' commissions and send their wares direct from factory to depot for a certain cash profit. There are no vex atious delays, time sales, nor bad debts to distribute, perhaps, among the bills of other customers.
The cost of buying being lessened, the organization has yet to reduce that of selling. At present, and indeed for some period past, the attitude of many of the Western rail way corporations and the farmers has been open hostility. The former refuse to reduce their freight charges, and the latter, except where compelled by circumstances, decline to pay them. Of course, politics are brought in, which add to the asperity of the war. The farmers point to the goods of the manufacturer traveling from terminus to terminus at charges far below those demanded for the transportation of the crops, and ask an equalization of expense, decrying the carrying of the wares of one man at rates less than that re quired for the produce of another. The railroads, on the contrary, assert thatitis cheaper for them to transport goods
in unbroken bulk from one end of their main lines to the in unbroken bulk from one end of their main lines to the other, shipping and unloading at points where facilities exist for the purpose, than to gather single ind
from sparsely scattered intermediate stations.
Although no particular compromise has been suggested, the policy of the granges is toward negotiation and diplomacy rather than a continuation of the difficulty, toward securing as advantageous terms as possible from opposing capital rather than undergoing the losses of open rupture. The system, so far as its fundamental principles are concerned, is of material benefit to the farmer; but how far it will stand
the test to which time will subject it, it is hardly the test to which time will subject it, it is hardly possible to predict. It is not coöperation, nor are its supplies derived from establishments in the nature of coöperative stores. Briefly summed up, its object is to break away the barriers encompassing the farmer, which are the natural consequence
of his isolation, and to bring him at least to a level, so far as of his isolation, and to bring him at least to a level, so far a the advantages of trade and
with men of other callings.

THE FLOWING OIL WELLS OF PENNSYLVANIA--
 GREAT DECLINE IN THE PRICE OF OIL

Within the past few weeks, a new section of the Pennsyl vania oil region has been tapped by enterprising well drillers, and their labors have been rewarded by the opening of flow ing fountains of the unctuous commodity. So prodigious has been the flow of oil that the proprietors, so it is reported, have scarcely been able to provide barrels and tanks fast enough to catch the liquid as it spurts from the pipes, and considerable quantities have run to waste.
The result of these new petroleum supplies is the over stocking of the market and the decline in price to the insignificant sum of 75 cents per barrel, delivered on the cars near the wells. At this figure the oil is almost givenaway. This is a condition that, probably, cannot long continue, and the price will undoubtedly soon rise again. But the depression is likely to prove very disastrous to large numbers of honest and industrious oil pumpers, who, from their wells furnishing ten or twenty barrels of oil per day (working night and day, Sundays included), were just able to make a living, and give employment to their hardworking assistants. Hundreds of these oil dealers will, we fear, be made bankrupt, their pipes and engines sold for old iron, and their families brought to suffering
The new flowing wells are in Butler county, Pa., a consid erable distance south of Oil City. The new oil region is supposed to be quite extensive. The opening of every new section is the signal for the formation of a new city. The Starr farm, near Grease City, is at this moment the most highly favored by the caprices of petroleum fortune. One well, here located, has been flowing over a thousand barrels of oil per diem for more than a fortnight, and several others n the immediate vicinity are regularly delivering five and ix hundred barrels daily. Large numbers of new wells are being bored. Already a new town is in existence on this farm, having its hotels, boarding houses, livery stables and rum shops. Seventeen of the latter were in full blast within ten days after the oil began to flow.
The principal use of petroleum at the present time is in the form of illuminating oil. Various attempts have been made to employ it as a substitute for bituminous coal in the manufacture of illuminating gas; and 14 校in could bo accomplished with economic anvantage, the wimat for crude petroleum would soon be equal to the supply, and steady,
. ifficulties connected with the conversion of petroleum into lluminating gas are suggested on another page. The sub ject is well worthy of study, and we hope that some one wil be able to solve the problem.
The discovery of new uses to which this abundant article can be put likewise presents itself as an excellent subject for research.
The employment of petroleum as a fuel, in lieu of coal especially for use on steam vessels, has been repeatedly at tempted, but without economical success. Weight for weight, petroleum yields fifty per cent more heat than coal. In markets where coal is worth $\$ 6$ a tun, petroleum must be supplied at $3 \frac{1}{2}$ cents a gallon or $\$ 1$ a barrel in order to com pete, as a fuel, with coal.

THE STUDY OF MATHEMATICS

We have frequently advised our readers who are deficient in a mathematical education to devote some time to the study of this science. It is scarcely necessary for us to advance any arguments in support of this advice. The statement that "knowledge is power" is always true, with certain limitations, and especially true with regard to the power which it puts into the mechanic's hands.
We have seen men who, in spite of strong efforts, had labored in vain from a lack of favoring circumstances. Not knowing how to study, and having no one to show them, all their time has been thrown away. Nothing can be equal in value to the efforts of a good teacher, in smoothing the path of the pupil; but perhaps a few general hints on how to of the pupil; but perhaps
study may do some good.

We suppose that our reader is thoroughly acquainted with arithmetic or the science of numbers, and that he is ready to commence the study of algebra, which may be called the generalization of arithmetic, operations being performed on general quantities, producing results that are general in their nature. If the student will fairly master this idea at the outset, it will be of great value to him in his future studies. Many a young man has gone entirely through a treatise on algebra without really understanding the purpose of his pursuit.
We say that the product of 4 multiplied by 6 is 24 . Here we have two factors and a product. Now let us see if we can form a perfectly general expression of this nature. In this case, we would say that the product of two quantities is equal to a third quantity, and the next thing to do will be to represent this statement by an algebraic expression. To do this, let us represent the first quantity by a, the second by b, and the product by c. Then the algebraic expression of the statement given above will be $a \times b=c$, and the state ment is called the translation of the algebraic expression. Simple as this may appear, we have seen many students who professed to be well acquainted with algebra, who were unable to translate the most elementary expressions. The reader will doubtless see at once the value of this kind of practice. Since algebra is a process of generalization, or, in other words, since the results obtained are perfectly general in their nature, it is necessary to be able to translate these expressions and interpret the results. How unmeaning an algebraic expression appears to those who are not familiar with the subject! But, on the contrary, how much is conveyed by a few symbols to those who hold the key to the veyed by a few symbols to those who hold the key to the
translation! Let the young student, then, make himself translation! Let the young student, then, make himself
expert in the translation of algebraic expressions at the com. mencement of his course of study.

A teacher of great experience once told us that a very common answer to his question to a student: "Why is this so ?" is: "The book says so, in such a place." An answer of this kind shows an utter want of appreciation of the nature of the study. Algebra is eminently a rational science, and the reason why can be given for any one of its propositions. The student should exercise himself in finding out the reason why, in any particular case, and should receive no statement in the book on trust. To say that there is such a rule without being able to give the reason for the rule is evidence of learning merely by rote, a method applicable to some branch. es of study but wholly out of place in this pursuit. A rule is merely the translation of a general formula, which formula has been established by exact reasoning. All the arguments must rest on some basis; so the principles of mathe matical science are based on a few simple propositions, or axioms, which cannot be demonstrated and can scarcely be denied. These axioms being admitted, various propositions are established, the axioms being used as a starting point. The student can then have a sure test, as to the truth or falsity of any statement made by the book, by tracing it back to its original source.
We frequently receive questions from correspondents who ask for rules that can be worked out by arithmetic, as they do not understand algebra. Frequently, as no data are sent, the question could not be answered without the use of algebra. But as the correspondent does not understand how to use a formula, the translation is sent, and he has only to apply the data. So, after all, we are using an algebraic formula in answering his question, merely putting it into a shape in which he can use it. This is quite sufficient to show the general nature of the science. We feel convinced, from the many communications we have received on the subject of a mathematical education, that our present remarks are timely, and we shallye amply repaid if they prove of any assistance to the yopens student. Wedo not mean for him to rest satisfied when he has finished the study of algebra; but our hints on this subject will apply with equal force to any other ranch of mathematics.
matter so much what text book the student
written with the expectation that they will be interpreted by teachers, our remarks may not come amiss to those who ar obliged to study without assistance from an instructor
We shall be happy at all firmes to aid the young student in his difficulties, and hope that those who are in need of assistance will apply to us freely. We shall, from time to time, give the solution of simple problems, illustrating the value and use of a right understanding of mathematics and mechanical principles.

ENGINES OF ADMIRAL PORTER'S TORPEDO BOAT.

In a recent number of the Scientific American, we gave an illustration of this vessel, and we now present a sketch, showing the general arrangement of the engines, which are quite novel in design. The engines are of the compound variety, with four cylinders, the condenser, A, being placed between them. There are two high pressure cylinders, B, diameter 20 inches, stroke 30 inches, and two low pressure cylinders, C , with a diameter of 38 inches and a \approx troke of 30 inches. The low pressure cylinders are jacka atroke of eted. Short connecting rods, D, from the crossheads are attached to two bell crank levers, E , which have a throw of attached to two bell crank levers, E, which have a throw of
27 inches. The crank connecting rods, F, are attached to 27 inches. The crank connecting rods, F, are attached to
the other ends of these bell crank levers, and to a common the other ends of these bell crank levers, and to a common
pin in the driving crank, G, which latter crank has a throw pin in the driving crank, G, which latter crank has a throw
of 15 inches. The valves (not shown in the sketch) are on top of the cylinders, and are operated by eccentrics working on an intermediate shaft which is actuated by levers from the crossheads. No links are fitted to the valve gear of these engines, as the revolution always takes place in one direction, whether the ship is going ahead or backward. It will be observed that the propeller shaft, H, is vertical, the This can be described as a Manley feathering paddle wheel

yplaced on its side, the position of the feathering eccentric being adjustable by hand. By shifting this eccentric, the vessel can be steered without the aid of a rudder, and can be propelled ahead or backwards, without reversing the engines. The diameter of the wheel is 10 feet. The air and circulating pumps for the condenser are independent steam
pumps, of the Blake patent. There are four cylindrical pumps, of the Blake patent. There are four cylindrical
tubular boilers of the type ordinarily fitted in modern ocean steamers. Each boiler is 10 feet in diameter and $11 \frac{1}{2}$ feet long. The total heating surface of the boilers is 4,600 square feet, and the grate surface, 170. The diameter of the smoke stack is 6 feet. Superheaters are placed in the common uptake of the boilers. The machinery described above, with the exception of the propeller, was built at the Morgan Iron Works, in this city.
the sun's distance and how it is measured.
One of the simplest problems in applied trigonometry is to find the hight of an inaccessible object. The solution involves the measurement of a base line and the angles formed on it by two lines connecting its extremities with the object whose elevation is to be found. For example, suppose the object to be a balloon. If at the same moment two persons, in line with the balloon and a considerabie distance apart, make a note of its angle of elevation, the angles thus obtained, with the distance between the observers, are all the data required for calculating the hight of the balloon above the earth. In like manner, if two observers, say, one at
Washington and the other at Lima, or one at Paris and the other at the Cape of Good Hope, observe the position of the moon's center at the same moment, they will have two angles of a triangle, which, with the included side-the distance between the observers,-will enable them to determine the ength of the remaining sides of the triangle, that is, the
distance between either station and the moon. In this case, the triangle is extremely long and narrow, the longer base line mentioned giving an angle at the moon of only about a degree and a half.
It is obvious that an object much farther off than the moon would give, with any base line obtainable on the earth, an angle too small for direct measurement. In the case of sun, for instance, the distance is so great that the nicest observation fails to show any measurable difference in his position, whether he is viewed from one or another part of the earth's surface. The determination of his distance mu therefore be by other means than by direct triangulation.
Several ingenious attempts were made by ancient astrono mers to solve this problem of the sun's distance indirectly but the limits of error by their method were so wide that the results obtained by them had no value even as approximations. Indeed it was not until Kepler discovered the proportions of the solar system that it became possible to attack the problem with any hope of success. As soon, however, as Kepler's third law made all the distances of all the system calculable as soon as one was exactly known, it was clear that, if the distance from the earth to one of the nearer planets, say Mars or Venus, could be found, then a simple proportion would give the distance of the sun
Mars was the first planet to be studied for this purpose. Venus approaches nearer to the earth; but as her orbit lies within that of the earth, her position during her periods of conjunction is unfavorable for observation, save at remote intervals when she happens to be exactly in line with the the sun's disk, that is, during her transits. Of these more far away to be reached by direct triangulation-that is, so far that two lines connecting the extremities of the longest base line to be had on the earth with the planet's center would be so nearly parallel that the angle of their convergence could not be directly measured-it is obviously necessary to devise some other means of discovering the value of that important angle. Omitting all but the fundamental elements of the problem, the plan adopted may be roughly il lustrated as follows: Hold a small object, say a pencil, steadily at arm's length and note the spot on the wall which the pencil point covers when looked at with the right eye, the left being closed. Now cluse the right eye and look at the pencil point with the left eye. Its position is shifted to the right, more or less according to the distance of the pencil from the eye and from the wall. The amount of this shifting, in angular measurement, may be called the pencil's parallax.
Suppose that, instead of being held between the eye and a wall, the pencil is placed before the moon at such a distance from the face that, when looked at with the right eye, its point covers the left horn of the moon, and, when seen with the left eye, the right horn. We may now imagine two simthe left eye, the right horn. We may now imagine two sim-
ilar triangles: one having for its base the distance between the eyes, and for its sides two lines proceeding from the eyes and meeting at the pencil point, the other formed by the prolongation of the same lines to the opposite sides of the moon's disk. The measure of the vertical angle of the triangle standing on the roon's diameter is the portion of the great circle of the heavens covered by the moon, that is about half a degree. The vertical angle of the triangle having for its base the distance between the eyes is the same; hence the remaining sides of the triangle-that is, the distance of the pencil from either eye-can be determined by a simple process of calculation.
Precisely the same principles are involved in the determination of the distance of a heavenly body like Mars, the displacement of the planet, as seen from two distant observatories, being measured with reference to some star lying as nearly as possible in the same direction. (Since the distance of a star is so extremely great that its position is not appreciably altered by any difference in points of view possible on the surface of the earth-in other words, since the star has no parallax-it answers perfectly as a fixed point of comparison.) As soon as the distance of the planet has been calculated, the distance of the sun can be determined by an application of Kepler's third law. Kepler made the calculation on the basis of Tycho Brahe's observavations of Mars; but owing to the rudeness of those observations, he could only say that the sun's parallax could not be greater than one sixtieth of a degree (1^{\prime}) which would make his distance not less than thirteen and a half million miles.
Subsequent observations of greater exactness enabled Cas sini to calculate that the sun's parallax could not exceed ten seconds of arc $\left(10^{\prime \prime}\right)$ and he was confident that it was not greater than $9 \cdot 5^{\prime \prime}$, corresponding with a distance not less than $85,500,000$ miles. The establishment of more widely separated points of observation, and the immense improvement made of late years in the construction of astronomical instruments, have enabled modern observers to make great improvements on these figures, which will be noticed directly. In the meantime, however, the transits of Venus in 1761 and 1769 furnished data for another and entirely different set of calculations.

The importance of the transits of Venus hinges on the fact that at such times the planet appears as a black spot on the sun's disk, so that her position can be observed with great exactness. The conditions which serve to complicate
the problem are too numerous and complex to be taken into account here. The apparent position of the planet on the sun's face at any given moment of her transit necessarily depends on the position of the observer. The amount of such displacement is the essential term for calculating the
distarce of the planet, and from that the distance of the sun.

The observations made during the transit of 1761 were inerpreted as giving a solar parallax of $8.65^{\prime \prime}$, corresponding to a mean distance of about $94,500,000$ miles. More elaborate preparations were made for the observation of the tran sit of 1769 ; but the conditions were less favorable, the ob servers were unprepared to meet a grave difficulty which arose, and the results were exceedingly discordant. Some made the sun's distance nearly $109,000,000$ miles, others less than $88,000,000$. About fifty years ago, Encke re-examned the observations made on both transits and, combiǹing results, deduced the distance $95,174,000$ miles-an estimate which was accepted as the best that could be hoped for until he transit of 1874 should furnish data for a new determina tion. It could not hold its ground, however, in the light of modern science.
From a study of the perturbations of the moon depending on the position of the sun, Laplace had deduced a solar parallax closely corresponding with that subsequently obtained by Encke from the transits of Venus. But in 1854 Hausen applied the same method to a larger number of more exact observations, and obtained $91,650,000$ miles for the sun's disance.
By another methcd, depending on the apparent motions of he sun, Leverrier calculated a solar distance of $91,330,000$ miles. Mr. Stone, of Cambridge, Eng., discovered a numerical error in Leverrier's work, and, on correcting it, made the sun's distance $91,739,000$ miles. By the same method, our own Professor Newcomb obtains $92,500,000$ miles. Foucault, by an experimental study of light, obtained results which would make the sun's distance $91,400,000$ miles. Applying improved methods to the study of Mars, several astronomers, including Newcomb, Stone, and Winnecke, obtained, between 1860 and 1864 , slightly varying figures approximating $92,000,000$. It was clear that Encke's estimate was too great, Thereupon the observations of 1769 were subjected to another scrutiny with results soclearly confirming the later and smaller estimates that the distance, $92,000,000$ miles-with a marin of possible error of 500,000 miles-was provisionally adopted. The finer instrumental and other appliances, which will be brought to bear on the transits of 1874 and 1882, will no doubt establish an exacter estimate, which it may take centuries to improve upon

SCIENTIFIC AND PRACTICAL INFORMATION.

NEW ROUTE FROM NEW YORE TO LONDON.

A quicker route from New York to London is suggested. to wit: By rail to Shippegan, on the Gulf of St. Lawrence, thence across the Gulf by steamer to St. George's Harbor, Newfoundland, thence by rail to St. John's, thence by steamer to Valencia, Ireland, thence by rail to St. George's Channel and by steamer to England. The time of this route can be reduced to seven days three hours, the longest water teaming being 4 days, to wit, St. John's to Valencia, 1,600 miles. At the present time, from 10 to 12 days is occupied by the
pool.

POISONOUS COBALT COMPOUNDS.

According to some experiments of Siegen, the compounds of cobalt are to be reckoned among poisons. This savant experimented with the nitrate and chloride of cobalt, and found that one sixth of a grain of either substance would kiil a frog in half an hour, and five grains killed a strong rabbit weighing over 3 lbs. in three hours. The poison seems to act directly upon the muscles of the heart. A frog was poisoned whose heart had been previously exposed, and its contractions became from 50 to 25 per cent less frequent; and after five minutes it stopped, and mechanical scratching failed to produce any farther contractions. With rabbits $1 \cdot 66$ grains produced a strong dyspnœa, and the pulse fell from 178 to 128 per minute.

POWER OF EXPLOSIVES.
Some experiments have been made recently in a German iron mine at Hamm, to ascertain the relative efficiency of powder and some of the nitro-glycerin compounds for blasting purposes. The following were the results obtained:
Ordinary saltpeter gunpowder, 1 unit of force; extra best powder, with excess of saltpeter and cherry tree charcoal, made by L. Ritter at Hamm, 3 units; dualin, obtained from Herr Dittmar, lieutenant of artillery, Charlottenburg, 5 units; lithofracteur, from Krebs \& Co., Deutz, 5 units; colonia powder (a sort of powder saturated with 30 to 35 per cent nitro-glycerin) 5 to 6 units; dynamite, 6 to 7 units. It will be seen that dynamite far exceeds the others in power, and its use is displacing theirs in German mines.
the transatlantic cable and planet no. 131.
An example of the free transmission of telegraphic dispatches relating to astronomical discoveries was presented on the occasion of the last new planet (No. 131), discovered at Washington on May 26 and observed at Marseilles on May 27 of the present year. The news was received by Atlantic cable and telegraphed from Paris to Marseilles in the Atlantic cable and telegraphed from Paris to Marseilles in the
following cabalistic terms: " Planet, sixteen, fourteen,south, following cabalistic terms: " Planet, sixteen, fourteen,south,
twenty-one, eighteen, movement, right, west, eleventh." twenty-one, eighteen, movement, right, west, eleventh."
This, being interpreted, means: "A planet has been disThis, being interpreted, means: "A planet has been dis-
covered, of which the right ascension is 16 h .14 m ., and the covered, of which the right ascension is 16 h .14 m ., and the
declination, southerly, $21^{\circ} 18^{\prime}$: its movement is directly toward the west, and it is of about the eleventh magnitude." It is an odd coincidence that the first planet discovered in America (during the year 1854) was No. 31, so that this last new comer, No. 131, also first noted in this country, is the hundredth found since.

To Remove Paint.-Chloroform will remove paint from garment or elsewhere, when benzol or bisulphide of car bon fails.

CONCRETE SIPHONS ON THE CANAL QUINTINO SELLA, LOMELLINA, ITALY.
The importance of concrete made water cement, as a substitute for brick or stone in the construction of hydraulic works, is now beginning to be more fully recognized by Italian engineers. A few notes on some important works of this class that have recently been carried out for the Quintino Sella, will not fail to prove interesting to our readers. In consequence of the scarcity of bricks, and the short time (four months) that was allowed for the construction of this canal, the company determined to accept the proposal of Signor Giuseppe Frattini-who has successfully introduced the use of cement concrete into Italy for the construction of hydraulic works-to build all the siphons for the passage of existing irrigation channels under the new

The dials are ten feet in diameter, each hour being cut in relief from a single block of stone. The hour hands are four feet in length, and the minute hands about five feet four inches. The clock is forty feet above the dials, and the movements of the hands work through long tin tubes encased in oak. There are in the clock tower three large cylinders, carrying steel and brass cog wheels, the largest wheels being two feet six inches in diameter, and the smallest being seven inches. In all there are twenty seven wheels, not counting the friction rollers. The pendulum rod is made of wood, twenty-one feetin length, and having at the lower extremity about five feet swing. In this there is a trade secret. Wood shrinks sideways, while iron, steel, brass and other metals shrink in all directions. Therefore wood, well seasoned and waxed, is used for tower clock pendulums. Three weights are used, hung at the ends of
H. The latter then rotates in the direction of the arrow on the right of Fig. 2. To reverse the revolution, the cylinder is carried over to engage with the opposite wheel. The valve, E is consequently rotated in the contrary direction, compressing the air in the annular chamber, K , which slowly escapes by the small orifices, $i i$, in the wing, F , thereby filling the free space formed in rear of valve, E. The rotation of the cylinder continuing, the pressure on F augments and can be rendered as strong as desirable by regulating the size of the escape orifices; so that, in fact, the reverse motion of the escape orifices; so that, in fact, the reverse motion of the
cylinder may be gradually started by the confined cushion of air, before the valve comes in contact with the opposite side of the wing. The latter, with the valve, may of course be suitably packed so as to ensure the air escaping from no points except the apertures, $i i$.
This device, though open to objection, principally through

LONGITUDINAL, SECTION OF SYPHON

CONCRETE SIPHONS FOR CANALS.

canal in this material. This system of construction is exceedingly simple, requiring no skilled labor, and, when bal last can be had easily, is far cheaper than brickwork, and probably more durable. The cement used was that manufactured at Grenoble, and known as "ciment de la porte de France," the quick setting quality-a prise prompte-being mixed with the slower setting quality-à prise lente-or socalled Portland cement, manufactured at the same place. The mixture of the rapid setting quality with the Portland is for the purpose of making the work set quicker than it would otherwise do were only the latter used. The proportions in which the two qualities of cement are used should be regulated according as it is required to hasten the setting of the work, so as to be enabled to draw the core and carry forward the molds. It must be borne in mind, however, that the addition of the quick setting cement tends to weaken the cements, and should not be used in greater quantity than that absolutely necessary. The sand and ce. ment are first mixed with water, the requisite proment are first mixed with water, the requisite pro-
portion of gravel is then added, and the liquid concrete is poured round a wooden core supported by two molds placed about 6 feet apart, and of the exact section of the work to be executed. Laggings are placed round the external diameter of these molds, and the concrete is well rammed in the space thus formell between the outer casing and the core, this latter being drawn forward as the work proceeds. To facilitate the drawing forward of the core it should be made slightly tapered, and in order to obtain a truly cylindrical section. in the concrete tube it should be covered with a plate of sheet zinc, which is kept in place by small wedges. On drawing the core these wedges fall out, and the sheet of zinc that remains behind can then be easily removed. The sand and ballast should be clean; and when easily obtained, the granite chips from a stone cutter's yard add considerably to the strength of the work. The tube being completed to the required length, wingwalls are then added of any required dimensions, and in this manner a monolithic mass of concrete is formed, which, a few hours after completion, when struck lightly with a hammer, rings like a bell. The siphons constructed by Signor Frattini on the Quintino Sella canal are fifteen in number, of which eieven were of a circular form, varying in diameter from $0 \cdot 25 \mathrm{~m}$. ($9 \cdot 8$ inches) to $1 \cdot 00 \mathrm{~m}$. ($39 \cdot 1$ inches), one double syphon, of which each tube is 0.80 m . (26.24 inches) in diameter, and three of oval section, $2 \cdot 00 \mathrm{~m}$, (6 feet 6 inches) in width by $1 \cdot 60 \mathrm{~m}$. (5 feet 8 inches) in hight (vide illustration), probably the largest works of this class that have ever been made. For building thesesiphons movable cores were not used, as the difficulty in drawing them forward would have been too great, and it was thought preferable to form the invert in the usual manner, building the arch afterwards on centering, which was struck as soon as finished, and set up again for building the next length. Signor Frattini is now in treaty for carrying out a colossal work of this nature, which will surpass in boldness anything that has hitherto been made in cement. This work will consist in a double siphon about 100 meters (330 feet) in length, each tube being of the same dimensions shown in illustration. This siphon is intended for carrying the water of a canal derived from the river Sesia under a tributary torrent for supplying motive power to a large paper mill near the village of Serravalle, Val Sesia.-The Engineer.

The Clock of Trinity Church.

One of the largest and best tower clocks in this country is that of Trinity Church, Broadway, New York. "It was made in 1846 by James Rogers, and is a splendid specimen of horological workmanship.

REVERSING GEAR FOR ROLLING MILLS.

the weakening of the arbor by the mortise, seems nevertheless of considerable merit, and serves to exemplify an idea doubtless susceptible of extended application.

Hydraulic Fireworks,

At the Peterhoff Palaces, Russia, they have spray wheels mounted on posts, after the manner of the firework wheels. The spray wheels are driven by water pressure, and on turning they throw out beautiful streamers of water, which, when illuminated by sun light, or at night by colored lamps, present a most beautiful appearance.
Water pipes are also conducted through the branches of artificial trees, and splendid effects produced by the dis charge of water in fine jets from the many branches.

A New Blue

When phenol is treated with chlorine water, no reaction is observed, and ammonia added to the mix ture subsequently developes no coloration. It is known that aniline, on the contrary, suspended in water, with the addition of a solution of chlorine, takes a rose color, which rap idly becomes purple, violet, and, lastly, brown ish red, and that ammonia added at this last juncture increases the brownness. It is no longer the same when a mixture of a drop of phenol and a drop of aniline is submitted to the action of solution of chlorine. A permanent action of solution of chlorine. A permane to is obtained, which may be turned to a rose red is obtained, which may be turned to a
blue either by ammonia or by the alkalies or blue either by ammonia or by the alkalies or
alkaline corbonates. Acids restore the original alkaline cerbonates. Acids restore the original
redness. The author concludes that there exredness. The author concludes that there ex-
ists a phenate of phenylamin; that the new ists a phenate of phenylamin; that the new
body produced in the above reaction is a red acid, forming blue salts; the erythrophenate of soda may be produced by causing hypochlor ite of soda to act upon the mixture of phenol and aniline. The blue thus formed is remarka ble for its purity and extraordinary tinctoria power. If two drops of the mixture of pheno and aniline be added to two liters of water, and then treated with hypochlorite, the blue in an hour or two becomes so intense that it could be recognized even in 4 liters of water. This re action maybe useful in toxicological researche either for aniline or phenol. The purity and permanence of the blue might render it fit for the uses of the dyer, butit will not bearsteaming. The extreme facility with which it is reddened by the feeblest acids is likewise an objection. In this respect it far exceeds litmus.-EE. Jacquemin.

Artificial Ivory

Two pounds of pure india rubber are dis solved in thirty-two pounds of chloroform and
ted, the engravings and description of which we extract from the Belgian Bulletin du Musée:
B and C, Fig. 1, are gear wheels which move freely in opposite directions upon the arbor, H. The cylinder, D, carries clutch couplings, which, as shown in Fig. 1, may engage with either wheel; for which purpose, the cylinder is capable of longitudinal motion along the arbor, H , around which it also revolves. E, in Fig. 2 (a sectional view through the ine, A A), is a lug secured to or formed upon the inner surface of the cylinder, and fitting closely against the periphery of the arbor. The latter carries a steel wing, F, which bears against the interior of the cylinder and slides longitudinally in a mortise cut in the arbor, so as to follow the movement of the cylinder when the latter is transported, in either direction, to engage with one or the other wheel.
On power being applied, the motion of the toothed wheel is imparted to the cylinder, and from the latter (through the medium of valve, E , acting against the wing, F ,) to the arbo
the solution saturated with purified ammoniacal gas. The chloroform is then evaporated or distilled off at a tempera ture of 185° Fahr. The residue is mixed with pulverized phosphate of lime or carbonate of zinc, pressed into molds and cooled. When the phosphate of lime is used, the resulting compound partakes in a great degree of the nature and composition of genuine ivory, for we have the requisite proportion of the phosphate, and the india rubber, which takes the place of the cartilage; and the other component parts of the genuine article are of little importance.
The railway tunnel of the West Side Railway, Hudson River, is now being pushed under the grounds of the United States Military Academy, West Point, N. Y. About 250 feet of tunnel have so far been cut.
The Railroad Gazette estimates that the extent of new railways built in this country in 1873 will be more than forty per cent less than for 1872.

NATURE AND ART.

Conversing recently on the inborn genius of all true art ists, and the futility of attempting to supply Divine gifts by a forced educational training, an eminent sculptor of ou acquaintance remarked that he had really learned very little from his instructors, in fact, that he never had a master.

A fine cambric needle and the sting of a wasp, under a microscope. We replied that we could name his master; and when he surprised, asked the name, we said: "Nature." He at once agreed and acknowledged that the artist is always learning in Nature's school. Painters give the same testimony, and admit that, for instance, the highest achievement of the greatest landscape painter falls far short of the reality. The strongest proof, however, of Nature's superiority is found in the accuracy of her handiwork. If we critically examine a human production, and compare it with the result of Nature's mysterious manipulation, we are amazed beyond conception. Take, for instance, the point of the finest cambric needle, and place it under the microscope with the sting of a bee or wasp: the apparently polished and pointed needle poill then por needle wlunt bar which, in fact it bluyt bar, whis, in fact, it really is; but the deficiency of our vision prevents us discovering this, while by help of the microscope we become able to perceive the truth. What, however, does this powerful aid to our vision reveal in regard to Nature's similarly shaped product, the sting of the wasp or bee? It shows as that it is smooth and uniform in its tapering dimensions, and has a point so fine that the highest power of the instrument does not cause it to appear blunt, as is the case with the needle. In fact, it is the most perfect apparatus for the purpose for which it is intended, while our needles are only attempts to produce a sharp point, which the microscope shows us we cannot do. We give here an engraving of the appearance, in the microscope, of the two objects named; the drawing is taken from an drawing is taken from an ancient work of Lieberkûhn, published in Ger
many in 1760 . many in 1760
The comparison of these
two objects is only a single illustration of a general fact which the investigator of Nature observes everywhere. The anatomist is continually surprised and fascinated by the
structure of the animal under investigation; he finds, no only that every part is exquisitely adapted to its purpose but that this fitness is carried into the minutest details, which the human eye can only unravel when aided by the powerful modern microscope.

THE DEVIL FISH.

There has always been a certain fascination about the marine monsters of the old myth ologies; but modern researches in natural his tory have played havoc with the authenticity of many of these legends, and the See Polyp. octo pus, or devil fish, is almost the only survivor of the world of the prodigies who choked Laocoon and would have devoured Andromeda. Greek writers astounded their readers with accounts of octopi large enough to devour ships, and these and many other exaggerated stories have caused many persons to deny the existence of this ani incredulity. But the large aquaria erected late ly at Hamburgh, Germany, and Brighton, Eng land, have each obtained a specimen; and the habits and configuration of the creature can now be easily studied.
The illustration here presented to our readers was drawn from life from the specimen at Hamburgh, by Herr Karl Stelling, for the Illiustrirte Zeitung, from which we produce it. The corpo ral economy of the creature is most peculiar. The body consists of two parts, one a bag, con taining the stomach, etc., provided with two eyes, and the other a nucleus and eight arms, each tapering to a point. On the under side of these are seen orifices by which the fish can at tach itself, by suction, to any living object which would have little chance of escape. By rapidly extending and closing the arms, it can

rise in the water with great force and even throw

 itself into a boat. In repose, it curls itself up and remains \mid later years as the astacus Bartonii-fresh water lobster. almost motionless in a corner; but its ferocity is to be seen \quad Sanborn Tenney, A. M., in his "Manual of Zoölogy for in its incessant watchfulness and the constant state of nervous activity in its long sinuous appendages.The species shown in our illustration exists in the Atlan
tic and Indian Oceans and the Mediterranean and Red Seas. page 463 (he and page 463 (subject, Macrurans, the long-tailed decapods) simply mentions that the "homarus contains the American lobster, h., Americanus (De Kay), which is from one to two feet long." With this meager information, he passes to the gastrurans or stomapods.
The accompanying figur represents the full size of our common species found in the streams, and I have seen them in the bottom of springs, in Lancaster coun ty, Pa., and I presum they are equally common elsewhere.

My attention was called to this species by Squire Wright, of the Lancaste Intelligencer, who gave me two beautiful pearl-white hard substances, flat on one side, with a centra ly depressed disk, the oth er side slightly convex, fully five sixteenths of an inch in diameter, of a cir cular form, smooth and hard as ivory or pearl, nearly one eighth of an inch in thickness. He in formed me that he took these out of the body of a crayfish found crawling (and apparently sick) on the banks of the Conesto ga, near Lancaster. Hav ing been a druggist for over twenty years, I recognized these bodies, once in vogue as a medicine, and known to me as crabs eyes, but why or wher eyes, but why or wher fore, I knew not, as a drug gist. However, as a natu ralist of later years, I knew their source, so fa asit regarded foreign spe cies, but it was new to me to find they were so large and fully developed in our native species. Linnæus classified the crustaceans among the insects; Cuvier and others clearly showed that they were as distinct from insects as a whale is from a fish, properly speaking. The crabs' eyes speaking. The crabs' eyes called oculi cancrorum o formerly used in medi-
cine as a powerful alkali, or absorbent. Old authors sup posed they were formed in the brain of the animal; Van Helmont first found them in the region of the stomach M. Geoffroy the younger has observed the manner of their formation much more accurately: "While the shel of the crayfish, which is shed every year, is hardening, a white nutritious juice, secreted in two portions of the stomach, forms, by degrees, a soft calculous substance, of a crustaceous texture, from successive appositions of the juice Before the casting of the shell, the animal is in a weak and sickly state; it takes no food for some days, and in this pe riod the calculi seem to serve for its nourishment; and on this account the crabs' eyes are met with only while the fish are losing their shells, and for a few days afterwards."
The prevailing idea is that these pearl-like bodies are cas off with the stomach and the old shell, and the old stomach is the first food the new stomach receives to digest ; and it dissolve the crustaceous deposit, which goes to reproduce and harden the new shell, provided as a reserved accumulation to meet the emergency. Much of interest to the naturalist is related and known about these scavengers of the sea and fresh water, as they are by no means choice in the selection of their food.
Although crustaceans, directly, do not greatly add to the supplies of our food, yet they indirectiy assist very mate rially in contributing to our wants. The molting of a crab seems a mysterious process to the novice in natural history who finds that the shell, a coat of stony hardness, which re quires great strength to open, cut, or break, can be cast off entire-the joint of every part of its thousand jointed body, antennce, foot, jaws, claws, and tail. And not only does i cast off these hard external parts, but the very linings of its gills, of its stomach, of its eyes, and other parts are thrown off, and thus, when the creature has escaped, the shell seems as perfect nearly as the animal itself. You may often meet with cases from the Brazils of a gaudy grapsus (more delicate even than the new coated animal, seeing the parts are translucent); these are the cast-off skins. Mr. R. Q. Couch a most able naturalist, says "that he could never under stand how that broad flat surface inside each claw could be got rid of without injury to the new claw; however, by at tentively watching the process in several instances," he continues, "I observed that, in the act of drawing out the new claw, the edge is cut through by these flat horny platen, the divided parts immediately closing again, and speedily becoming so adherent as to preclude their being re-opened." Crabs, when they lose a claw, are said to get a new one at the next casting of the shell. Mr. Couch says: "This can take place only in the joint which is nearest the body; if any othe be injured, they bleed to death; but if the nearest joint b removed, there is little blood lost, and over the wound a
thin film forms, in the middle of which is a tubercle. After the shell is cast, the tubercle suddenly enlarges, and un der it may be discovered a small claw doubled on itself be neath the membrane of the scar. This remains in a soft state until the crab again casts its shell, when the new claw is set at liberty, is straightened out, and becomes hard and calcareous like other parts of the body; so that a claw, in stead of being removed and perfected at once, or at the first casting of the shell, is not so in reality until the shell has been cast the second time." That, in their contests with each other, they often lose their claws, there is no question. This will recall the amusing article devoted to lobsters, in Dick ens' Household Words, July 29, 1854, where he says: "They are a kind of marine Muscovites, bristling with rage agains every one-fierce, hard, horny, and pugnacious, always tear
ing and rending something, and losing their limbs with as much indifference as if they belonged to some salt wate Czar."
The tail or, rather, abdomen of a lobster, the joints of which fold so beautifully on each other, suggested to James Watt the idea of a flexible pipe, which he constructed for some water company. Nature has given many valuable hints, which are worthy of study, for she is truly prolific in devices and adaptations to ends, as wonderful as they are marvelous, filling him who duly contemplates the matte with awe and adoration.
J. Stauffer.

The Patent Right Question.

To the Editor of the Scientific American

A citizen has a right to claim from the State only such protection in the use and ownership of property as shall re dound to the publicgood. The exclusive right to use an invention is not for the public good; but as inventors, with out some remuneration more than the personal use of the thing invented or the honor of being the inventor, might allow their powers to lie dormant, or be tempted to keep their inventions secret, the authorities of the State require the public good to be ignored for a term of years, for the benefit of the inventor, to encourage study and experiment which study and experiment the State would have as much right to compel by direct legislation, were the enforcemen of such laws practicable, as it has to compel military servic when the welfare of the State demands it.
As every person in a lawless country could and would de fend the possession of ordinary property by force, the public good demands there should be laws to enable men to do peaceably what, without law, they would do by force, and these laws follow more naturally from the fact that a large majority of every people are property holders of some kind. But an inventor is not prevented from the use of his invention by its being used by others, nor could he by force prevent this use by others of an idea he can never actually tak possession of ; and inventors being greatly in
The possession of ordinary property is the origin of law
whereas the ownership of a monopoly is the creature of the law and could have no existence but for the law. There is a wide difference between the two kinds of prop erty, and the right to both cannot be claimed upon the sam grounds.
H. A. Walker.

Tarboro, N. C

To the Editor of the Scientific American
I cannot see that an inventor has any inherent right in his own discovery. Our own government has wisely seen fit to offer an inducement to inventors for the discovery or repro duction of any lost art which may be useful to the public His reward is an exclusive property for a fixed term of years in the discovery or invention. It is only intended to grant his exclusive property to genius, and not to ordinary talent Genius, being supremely greator than talent, originates and gives to the public that which was not before known and still ordinary talent is better rewarded, pecuniarily, than genius. An inventor must of necessity be a genius; and he has a just and legal claim upon the public so far as the law enacts that he is to be protected in the ownership of his in vention. So he directs his mind, occupies his time, and spends his money in order to receive the reward. Not, however, for the simple act of inventing, do the laws reward him. He must pooduce something that will enure to the public welfare; if he invents a device for burglarious purposes or for picking pockets or locks, or to aid in counterfeiting, the law does not aliow him any property in his invention.
It is a prudential question as to how far a people should go in rewarding inventive talent. England has had a very costly experience in this direction. Millions of money have been spent in a contest of inventive ability between the Admiralty and the constructors of ordnance, between armor to resist and missiles to penetrate. This contest still goes on a he expense of the public. I cannot see that the inventor can set up any claim, except just so far as he benefits the public and the laws grant him a reward. But when it be comes a question of duty, every one is bound to ed to both lents for the good of mankind; and he is entitled to both fair remunerative and appreciative reward, simply because uch reward serves to stimulate like action in others, and J. E. E. Beaver Falls, Pa

Sailing Faster than the Wind.

To the Editor of the Scientific American
You recently told a correspondent that a boat might sail aster than the wind, if carried across the river by the force f the downward current. To me, this answer was not en irely satisfactory, as I knew by observation that rafts, boat and barges, floated down the river with the current, alway ran faster than the water, and I cited the case of cil barges being run out of Oil Creek by pond freshets, which outran the water so much that they had to stop and wait for it I then asked: Why wasthis so? I will give you my reason or it.
A raft of boards is comprised of about 300,000 feet, board measure, and each foot weighs about $4 \frac{8}{4}$ pounds; so that a raft of 300,000 feet will weigh $1,425,000$ pounds. Suppose hat the fall in the river is at the rate of four feet to the mile, or one foot in 1,320 feet, an indirect plan is formed, pon which the inclination is 1 in 1,320 ; and the quantity putting force upon the raft would be $\frac{1}{320}$ of $1,425,000$ pounds, or something over 1079 pounds. A raft of boards unning at the rate of five miles an hour does not meet with ery much resistance from the air in a still day among the high hills of the Alleghany River. Would not this 1,079 pounds of constant gravity pull have tendency to make it sail faster than the water that carries it? I consider this to be a scientific question, and I would like to see somethin Cobham, Pa.

Henry Baxter.

Car Ventilators

To the Editor of the Scientific American

I recently noticed in one of our papers a description of a ailroad car ventilator, that was submitted to the Car Build rs' Association at their last meeting in this city. I do no recollect the name of the inventor; butthe idea was to make he front of the car double, with openings at the edges cov ered with wire netting. I am not interested in any ventila tor whatever, except that I desire to see the one introduced
that will give us pure air; and I fear we shall not see that that will give us pure air; and I fear we shall not see that who advocate introducing " air through an opening over th door of the car," as appears to be the case on the Harlem railroad. Every one who has ever ridden on a railroad car knows that the dirtiest place on the whole train is between he cars. There is no trouble in ventilating a car ; it require o intricate machinery; just open the doors and all the win ows, and the thing is done. But ventilation is not all w freed from not only cinders but from fine railroad dust and shes, which, inhaled by the breath, are quite as detrimenta to health as vitiated air. Now for a person to assert that a
ventilator containing dry wire netting, however fine, will admit fresh air to a car, and at the same time arrest railroad ast that is fine enough to permeate the closest woolen clothing, is, to my mind, simply absurd. From the very nature of the case, it is impossible to separate air and rail road dust without moisture; with moisture the thing is perfectly feasible,.and, if inventors are inclined to give us pure air, the only possible way they can do it is to use moisture relse give us air taken from forward of the engine tender But do not give perspiring humanity a dust-laden air, mak ing them believe that it is pure because it comes through
wire gauze and double partitions with many intricate windings. We had better have the windows open and brush of the cinders which are the least of our troubles. The car might be kept pretty free from impure air by giving us might be kept pretty free from impure air by giving us
another employee on the train whose sole duty should be to nother employee on the train whose sole duty should be t see that all the windows on the leeward side of the cars were kept closed, and let what windows are to be opened be those
on the windward side, and see that the doors are always on the windward side, and see that the doors are always
kept closed except while the train is in motion. The great trouble is that passengers on the windward side close the windows because the air is too fresh and strong, while those on the leeward side open them and fill the car with smoke, dust and cinders, which are on that side only. If the win dows were opened on both sides, the wind might perhaps blow through and keep the car clear. But perhaps the best way of all would be to cover the road bed with small stones to the depth of five or six inches, sow grass seed on the sloping sides of the cuts, and convey the smoke and ashes either above or below the cars and discharge them at the rear of the train. The speed of the train would give the draft re quired.
F. S. C. Boston, Mass

The inillion Dollar Telescope

To the Editor of the Scientific American:
Mr. Alvan Clark,Jr., of Cambridge,Mass. ,informs the writer that, at the rate of compensation paid for the Washington telescope (26 inch objective, $\$ 50,000$), the sum of one million dollars would pay for an equatorial telescope complete, of which the object glass would have a diameter of 5 fee $6 \frac{1}{2}$ inches in clear aperture and a focus of 75 feet.
When the air is very clear, a gool achromatic will bear power of one hundred for each inch of aperture. The aper ture of the object glass being $66 \frac{1}{2}$ inches, the highest power will be 6,650 diameters. This will bring the moon within 34.08 miles, as the moon's mean distance $=230,000$ miles which $\div 6,650=34 \cdot 58$ niles
If, however, the object glass were perfect, and the atmos phere were of uniform temperature, we could apply a 1 ni croscopic eyepiece $\frac{1}{80}$ of an inch focus; then the magnify ing power would be 72,000 , and the moon would appear within 3.19 miles. The drawings of the Great Nebula in Orion, made with the Harvard fifteen inch glass, show more detail than those made with the Parsonstown six foot reflector. Our great telescope, therefore, will be at least equal in performance to a reflector twenty-six feet in diameter.
S. H. M., Jr

To the Editor of the Scientific American
F. H. R. says, in his letter on pare 100: "Of course the field would be divided by dark bands into polygonal sections similar to the object glass." Such would not be the case. The field would be unobstructed, its shape and size depend ing wholly upon the eye piece. There would be a loss in definition, in the use of such an object glass as compared with one of the ordinary construction, arising both from the reduction of the available aperture, and also from the reflec ion and diffraction of the rays of light coming in contac with the interior frame work of the object glass.
Slatersville, R. I.
A. F. Kelly.

To the Editor of the Scientific American
I noticed recently on page 100 of your current volume, an article on the million dollar telescope, in which the writer says that,if the object glass be composed of seven pieces,one in the center and six around it, the field would be marked with dark lines corresponding to the joints. I can show it to be otherwise.
If you put an opaque disk in the place of the object glass, screen in the field or in place of the eye piece, and pierce the disk, you get an image opposite the aperture on the creen. Another hole would form another image. With seven holes, one in the center and six around it, you would have seven images with dark bands between them. If you put glass in the center, the corresponding image is only made more distinct; but one put at the side not only makes the image clearer, but also throws or deflects it towards the cen-
tral one so that they correspond. Each one would be thus tral one so that they correspond. Each one would be thus
brought into the center and the shadow of the joints would ot appear
New York city.

Convex.

${ }^{6}$ For Inventors and Mechanics,"
Messrs. Munn \& Co.:
Gentlemen :-Please accept my thanks for a copy of your nestimable little handbook for the current year, embodying a copy of the United States Patent laws, with many valua ble hints and instructions to inventors. Its one hundred and forty illustrations of mechanical movements are well calcula ted to, and will undoubtedly, in many instances, save the young and old inventor many a weary hour of brain racking. It is invaluable to inventors as a pocket companion. Let me know its price, including postage, as some friends who have seen it are desirous of getting a copy
Houston, Texas.
J. J. Martin.

To Restore Color.-When color on a fabric has been accidentally or otherwise destroyed by acid, ammonia is applied to neutralize the same, after which an application of chloroform will, in almost all cases, restore the original olor. The application of ammonia is common, but that of chloroform is but little known.
The yellow pine, an invaluable building material for bridge and car work, is being rapidly thinned out in the South. No tree of this kind grows afterward where one is cut, but only a worthless scrub pine of another species Those who now set out new plantations of these trees will Those who now set out new plantation.
in a few years find them very valuable.

THE GREAT EXPOSITION-LETTER FROM UNITED STATES COMMISSIONER PROFESSOR R. H. THURSTON.

number 7.

Vienna, July, 1873.
The number of visitors entering Vienna seems to increase slightly as the increasing warmth of the season drives tourists northward from Italy. Rome and many other of the more interesting cities of the peninsula become extremely unhealthy, as the heat of summer begins to produce putrefaction and decay wherever organic matter is left exposed to the air; and miasmatic emanations, thus set free to contaminate the atmosphere, produce a class of diseases, of which fever and ague, the dreaded Roman fever, and th still more dangerous yellow fever, are examples. The prev alence of such diseases in Southern Europe this season is at tracting comparatively little attention, however, as occasion al outbreaks of the cholera, here and there, distract the at tention of the people, and give warning that a vastly more dreadful disease may become epidemic, if not provided against with the greatest possible care.
Cases of cholera occur in Vienna daily, but they are not usually of the Asiatic type. The government is taking every precaution against the entrance and the spread of the disease. The police are compelled to watch for cases of sickness and to remove at once to the hospital any person ill with cholera, or with any contagious disease. The use of disinfectants throughout the city is compulsory, and the police are charged with the supervision both of public streets and of private dwellings. Men are detailed to distribute disinfecting materials, and to see that they are actually used. Where such precautions are taken to keep a city thoroughly clean and to guard against the importation of disease, it may be confidently anticipated that no disease will become epidemic. Unless the action of the authorities of New York during the present summer is in marked contrast with that taken during those which have preceded, Vienna is far more cleanly and is far better fortified against epidemic diseases than is our own metropolis.

Some other European cities are equally well cared for. The city of Dresden is an example. During the past month, it is officially reported that 36,614 pounds. of disinfecting powder have been used by the police of that city, and 34,318 pounds of sulphate of iron and carbolic acid. The dreaded disease has entered the neighboring villages, but the newspapers to-day report that no cases have occurred in the city itself for many days.
It begins to appear probable that our own country will be compelled to learn by experience the importance and the necessity of making special provision against epidemic diseases a matter of municipal and governmental action. It would be far more economical and more satisfactory to learn from the experience of European cities.
At the Welt-Ausstellung there is no change observable in the number of visitors. Those departments in which are exhibited the finest works of art are always crowded, while those in which are to be seen objects of less interest have comparatively few visitors. The magnificent collection of

erecious stones and jewnerr

in the French Department is naturally very attractive, particularly to the ladies, and is really wonderful in the variety and richness of the display.
The French excel in all such work, and wherever delicate workmanship, elegant design, and richness of decoration go together. One of the most attractive cases in the French section is that in which are displayed the automaton birds. A number of small cages contain each a bird, whose lifelike attitudes and motions and melodious songs almost convince the visitor that the card indicating the fact that they are automatons is placed here by mistake. However, the general rule that beautiful plumage and the power of singing well are not conferred by Nature upon the same individual, and the prices asked-from 250 francs ($\$ 50$) upward,-are good evidence on the other side.

The French are well represented by their artists and quite well in
sCulpture,
but, as might be expected, the finest statuary is from Italy. The space assigned to the latter country contains a large number of excellent contributions, either by her own or by foreign artists resident there. One of those which, together, constitute a group forming a circle in the middle of the
main building, is to many one of the most interesting ob jects in the exhibition. It represents the Egyptian girl presenting the infant Moses to the princess. The face of the girl is characteristically Egyptian, yet beautiful and full of expression. Her form and her attitude are equally gracefu and natural, and the admiring spectator is almost persuaded that she is about to step forward and tell her story. Th child is equally well represented. The boy half reclines in the ark of bulrushes, one little hand grasping its edge, and,
with head raised, looks earnestly forward with an expres sion upon his face which can be interpreted either as indi sating the child's prophetic vision of his coming life with cating the child's prophetic vision of his coming life with
its great work, or an earnest effort to read in the face of the its great work, or an earnest effort to read in the face of the
princess some assurance of a kind reception. The features princess some assurance of a kind reception.
remind one strongly of the child's face in one of Raffaelle' paintings of the Madonna. This work of Barzagli has rarely been equalled by any sculptor of ancient or modern times. From the Industrial Palace, I have been accustomed to go to the Machinery Hall through the British Agricultural De partment, where are exhibited some exceedingly fine exam ples of agricultural machinery, and where I have been par ticularly interested in the display of

poritable engines,

a branch of steam engine construction, in which, as in com pound marine engines, our transatlantic cousins have decidedly taken an important step in advance of us. We have very few builders of portable engines in the United States who produce machines of fair design, good workmanship, rue that but few British builders place really it is also machines in the market. Yet the majority of the best builders of Great Britain have produced portable and agricultural steam engines which excel very greatly those con structed by the majority of the best known builders in the United States.
At the annual exhibition of the Royal Agricultural Society, the premium for the most economical portable engine has, during late years, been given to the victor at a compet itive trial made under the rules of the society and under the superintendence of competent judges appointed by the soci ety. At these trials there is, as a matter of course, some jockeying," but it may be assumed, with some probability of correctness, that the most skillful half dozen builders are likely to be the most skillful half dozen jockeys, and the results will serve very well as indications of the degree of per fection reached by them. The horse power is determine at these trials by the dynamometer as well as by the indicator, and, taken altogether, the reports afford exceeding] aluable contributions to engineering knowledge and litera ture. In some instances, the dynamometrical horse power has been obtained by the expenditure of but from two and half to two and three quarters pounds of fuel per hour by the best machines, while some of their competitors expen five pounds or even more. These remarkable results are ob tained only by the most careful preparation for, and conduc of, the trial. The engines are built in the most careful man ner and are frequently kept under an informal trial for weeks before being sent to the exhibition for competition Every fault is thus discovered, and the attendants are also thus made thoroughly trained "jockeys." On the trial, the fuel is handled as if it were worth its weight in gold. Every piece goes into the furnace at the right time, and is thrown upon precisely the same spot on the grate. The feed wate is uniformly supplied and enters the boiler heated by the exhaust steam to the highest possible temperature. The draft is carefully regulated, and the steam pressure and th speed of the engine are kept as nearly as possible unchange from the beginning to the end. It is not so surprising, to one who understands what wonderful effect such precau tions have in saving fuel, that remarkable economy should thus be attained, but it is not all due to management alone much of this success is a consequence of excellence of design. It may probably be questioned whether any such en gine, now to be found in the market and built in our own country, can compete successfully, undersuch circumstances, with some of these British built engines. While capable of teaching good practice in building stationary engines, we are capable of learning something in this humbler field. The machines exhibited here have such beautiful finish and are made of such exceptionally good material that we are probably justified in assuming that they are built to secure pre miums, and that they do not represent in these particulars the average practice. They are, however, of standard de-

sign.
 What may be termed the

standard english

portable engines, as built by the best firms, may be described as follows: The engine is mounted on the top of the boiler as in the usual style with our own builders. The cylinder is made with a steam jacket, and the valve gear is the ordinary arrangement of three ported valve, for small sizes, or the Meyer valve gear, in which the cut-off valves ride on the back of the main, in larger and more economical engines. Where provision for reversing it is necessary, the Stephenson link is used. At least one firm of high reputation have adopted the solid bar link, in place of the usual form of strap link. The readiness with which wear can be taken up, and its consequent comparative noiselessness and freedom from shock, also, are its advantages. The regulation is generally effected by the ordinary fly ball regulator operating a valve in the steam pipe. One firm uses the approximate parabolic regulator of Farcot; and in other cases a peculiar arrangement of governor on the crank shaft, by which it is
made to alter the position of the eccentric, has been adopted, made to alter the position of the eccentric, has been adopted,
but whether successfully or not I am unable to state. The
governor is invariably attached. The very excellent practice of bending the crank shaft to shape instead of building it up is general. Provision is made by means of an ordinary harness buckle on the regulator belt, for tightening it at any moment. The boiler is of the ordinary locomotive type with large heating surface and a liberal calorimeter. The team enters the steam cylinder by passing through the steam acket, which it reaches through openings large enough to allow the steam to pass without interference with the drain age, back into the boiler, of all water of condensation. The exhaust passes through a feed water heater of large surface area, and thence into the chimney. Engine and boiler are both thoroughly covered and guarded against losses of hea y conduction or radiation. This last point, as well as th team jacket, is too often neglected by engine builders, and with less excuse.
The casting of a steam jacket with a cylinder involves the isk of obtaining a largely increased proportion of bad cylin der castings; and its construction separately, as it must b made with large engines, is a matter of some expense, to say nothing of the fact that but few designing engineers under stand the "dodges" which seem essential to successfully unite the cylinder and jacket; but there is no excuse fo carelessness in covering the boiler and the steam cylinder with protectors against loss of heat and consequent waste of uel. Many good enginears doubt the efficacy of steam jack ting, but none doubt the expediency of a liberal use of non onductors and non-radiators wherever heat is to be retained
But no design, however perfect, will secure satisfactory performance unless it be embodied in good material by good performance unless it be embodied in good material by good
workmen, and unless its management be confided to experienced and skillful men. In material and workmanship, some of these engines are probably as near perfection as any machines that have ever been produced, and that good men an be found to take charge of them is proven by the splen did performance already alluded to. The use of

STEEL,

or connecting rods and piston rods, and for crank shafts, is becoming quite general, and progress in this direction may be regarded as one of the most important changes here ob servable. The substitution of steel for iron is taking place very rapidly now that the new metal, with its greater strength and toughness and its homogeneity, may be secured without very much greater expense than is incurred in the use of the less reliable material. The general use of "low steel" for ocomotive work is also equally general, and is observed by the most careless visitor; and among the most creditable ex hibits in Group VII are numerous locomotive crank shafts of "homogeneous metal," of which the beautifully perfect and highly finished surfaces are in strong contrast with the treaked and welded examples, of similbr constructions in ron, with which only we were familiar but a few years ago
R. H. T.

Artificial Fibrin as a Diet.

Dr. John Goodman, in a communication to the Britis/c Medical Journal, says of artificial fibrin: "As a member of the British Medical Association, and in the common interests of humanity, I have much pleasure in calling attention to my discovery of this new dietetic substance. So far as I have employed it, it promises fair to be invaluable in medical practice, especially in cases of feeble alimentation and deficient nutrition, and second to none in those cases where rejection of food forms a prominent feature, or where the appetite and digestive powers are reduced to a minimum. As fibrinous material, it is of course highly nutritious, and eminently adapted to all cases where there is a deficiency of fibrin in the blood. It is, perhaps, unparalleled in its qualities of lightness and digestibility, and is, moreover, a great delicacy. In many urgent cases of rejection of food, etc., it not only remains where an egg otherwise cooked would not be tolerated, but its presence in the stomach has been found to create a feeling of want rather then of superfluity, and to promote rather than decrease the appetite for food.
The production of this substancs is within the reach of very sick room, and is effected with great facility. It is formed by exposing albuminous material to the operation or influence of cold water, for a given period; and on account of its great plenteousness we employ the ordinary hen's egg for its production. When the shell is broken and removed, and its contents are immersed in cold water for twelve hours or so, they are found to undergo a chemico-molecular change, and to become solid and insoluble. This change is indicated by the assumption, by the transparent white of the egg, of an opaque and snowy white appearance, which far surpasses that of an ordinary boiled egg. The product, and the fluid n which it is immersed, must now be submitted to the action of heat to the boiling point, when the fibrin will be ready for use."
We will add that on trial we find that, for table use, the eggs thus prepared are most excellent, and this method of preparation will no doubt soon come into general use. Instead of boiling in the water in which the eggs are originally placed, they may be removed therefrom after standing twelve hours and put at once into boiling water.

Jeannel's Horticultural Fertilizer

We are in receipt of several inquiries regarding the ingredients of an artificial fertilizer mentioned some time since in our columns, as devised and used with great success by Jeannel, of Paris. The recipe was translated verbatim from Les Mondes, as that journal extolled the performances of the compound in the most laudatory tertis. The biphosphate of ammonia, which forms the stumbling block for many of our correspondents, should probably be phosphate of ammonia.

BRICK COMPRESSING MACHINE.

The constantly increasing demand for materials for fireproof construction has recently directed much attention to the manufacture of pressed brick, and there seems to be lit-
tle doubt that a well made, well burnt brick is the most thoroughly indestructible substance known. We extract from our contemporary Iron an illustration of a brick pressing machine recently invented by Mr. Henry Large, of London, Eng. The machine is to be driven by a steam engine or other prime motor in the usual way, by means of a belt and fast and loose pulleys on the shaft of the fly wheel. The belt is shifted by the fork and key handled sliding lever, as plainly shown, brought to the side of the machine where the at tendant stands, so as to be readily accessible. On the shaft of the fly wheel there is also a small spur wheel, which drives the large one above, fixed on the second motion shaft. On the farther side of the large spur wheel there is a reciprocating cam, which actuates a horizontal bar by means of a stud pin. This horizontal bar is a ben lever, having on the end opposite the stud pin peculiar mechanism for work ing the compressing piston, the head of which is seen below the end cover. The large spur wheel carries on its front a friction cam roller on a stud axle, which actuates one of the arms of a double bent axial lever, the other arm being furnished at its lower extremity with a long friction roller for pressing forward the molds across the table under the compressing piston On the right hand side is seen a sec ond piston, for emptying the molds, by pressing the bricks down through a suitable aperture in the table, one a suitable aperture in the table, one
at each stroke, on to a platen table, at each stroke, on to a platen table which forms the head of another piston seen below, which i raised by a weighted lever. The counter balance is not sufficient for the weight of a brick, so that the brick presses the piston down; and when it is removed by the attendant, the weighted lever again elevates the platen table to receive another brick. As the bent arm on the left hand side pushes the newly filled mold forward under the compressing piston, it at the same time pushes forward the mold with the newly pressed brick a stage towards the emptying piston (displacing the mold occupying that stage under the emptying piston) and the empty mold a stage forward; while a fourth piston, working hor izontally, and actuated by a cam on the side of the large spur wheel, pushes the empty of the large spur wheel, p
mold forward to be refilled.
In this way the machine works continuous ly, turning out from 5,000 to 6,000 concrete bricks daily, which are ready in three or four days for the builder, and fit for use; while the fire bricks and common clay bricks made thereby are turned out in a drier state than by. the ordinary processes, and hence are sooner ready for the kiln, and at less expense. These machines can be made for compressing two or more bricks at one and the same time by means of a corresponding number of compressing and emptying pistons.
The machine does not require skilled labor to work it. It can be driven by a common farm engine, water wheel, or horse power, so that laborers experienced in such are quali fied to control the whole. When burnt bal last and sand are at command, bricks can be made on the spot where the buildings are to be erected, and used, on an average, three or four days after they are made; at the same time, the older they are the stronger, and they can be made at all seasons of the year, as they require no drying or burning. For water tanks, liquid manure tanks, and all buildings under water, concrete bricks are much superior to common ones. They can be made of any color, for ornamental work, more suc cessfully than can common bricks, and they can be made of ny shape, and perfect in form, for plain, arched, groined, ny cornice work Such machines, therefore, areadminebly lap f on lan well as for general builders and contractors.

Dining Table of the Emperor of Russia One of our correspondents now travelling in Russia sends us a description of the novel dining table of the Emperor, now in use in one of the Peterhoff palaces, near St. Petersburgh. The table is circular and is placed on a weighted platform. At the touch of a signal like the rub of Aladdin' lamp, down goes the table through the floor, and a new table loaded with fresh dishes and supplies, rises in its place. But this is not all. each plate stands on a weighted disk th隹 table cloth being cut with circular openings, one for each plate. If a guest desires a change of plate, he touches a sig ral at his side, when, presto, his plate disappears and anoth er rises. These mechanical dining tables render the pres ence of servants quite superfluous. In this country, at the
Oneida community, they employ dining tables having the
central part made to revolve. Here the goblets, spoons, tea and coffee, castors, pitchers and other necessary articles of table furniture are placed; revolving the center piece, the sitter brings before him whatever article may be desired without the intervention of a special waiter. The Russians $\left.\right|_{\text {guid }} ^{\text {its pa }}$

BRICK COMPRESSING MACHINE.
are evidently in advance of the Yankees in respect to dining tables.

THE DIAMOND COTTON CHOPPER AND CULTIVATOR

 The invention herewith illustrated, and the distinguish ing title of which forms the heading of the present article, is a labor-saving implement, claimed to produce work supeWith one man and a horse, we are informed, it chops out

COTTON CHOPPER AND CULTIVATOR.
cotton at regular intervals, scrapes and bars it on both sides, and effectually weeds it , at the same time throwing the soil loosely around the young plant for its protection. The hills of cotton are thus left in a diamond shape, about twelve

Fig. 2

Ig. 1 is a perspective view. A is a U shaped bar hinged to the un der side of the frame at B, and has on its lower side bearings in which the axle of the wheels turns. A screw bolt connects the forward end of the bar, A, with the front prolong. ation of the frame, and serves to adjust it at various elevations, in order to regulate the depth of the cultivator plows. The latter are represented at C, and are bolted to a projecting plate of a standard made in the same piece with the curved and concaved chopper bar, D. The plows in Fig. 1 are used at the first working of the cotton crop, and Fig. 3 shows the instrument substituted therefor in the second working. Fig. 4 is a double sweep plow, used in the last operation of " laying by" the crop. It is run on each side and then through the middle of all the spaces between the rows, so as to pulverize all the soil, and to more or less hill up the plants. The last mentioned plows are attached to the standard by bolts, similarly to those first described.
At E are horizontal chopping knives attached at intervals around a cutter stock, which is adjustable by means of a sleeve on the vertical shaft, F. By the bevel gear, G, the latter engages with a horizonta shaft. This arrangement is dupli cated on the opposite side of the ap paratus. On the shaft is a loos pulley, having a notched side flange and a fast disk. The latter has a spring-pressed lever pawl and a fast disk. The latter has a spring-pressed lever pawl
on its side, and a notch on its periphery. By means of a pul ley on the axle a drive chain, H, is operated. As the cultiva tor moves forward, the notch of the pulley catches agains the down pressed end of the pawl, which is actuated by a lever connecting with the handle, I. The fast disk is thu carried around, and with it the horizontal shaft, so that th choppers are rotated. By pulling the handle, I, the front end of the pawl is lifted out of and above the notch of the pul ley, so that the latter revolves loosely on the shaft, thus causing the choppers to be inopera tive. The horizontal knives, E, being moved forward at the same time they are rotated, pass through the ground, cutting up the plants and weeding off the grass about a quarter of an inch below the level, leaving hills of plants at regular intervals. The knives may be ad justed so as to cut the spaces shorter or longer by leaving out as many blades as necessary for the purpose. For example, if it be desired to leave a large quantity of cotton on each hill all the blades but one on each sleeve should be removed, as in Fig. 2. To lessen the amount another knife on each cutter stock is added, so that, by suitable adjustment, the space cut and quantity left for any distance not over 13 inch es may be provided for. Above the latte figures, say for 15 or 18 inches, a larger pulley on the shafts and three blades may be required Where no thinning may be needed, the end of the lever connected with the handle, I, extends over the disk so as to lock the choppers in proper position and leave the plants standing.

The clevis rod, J , is adjustable, so that the horse may walk on one side of the plants with

out injuri

the row.

The device was patented through the Scientific American Patent Agency, July 8, 1873, to J. B. Underwood, but for a year past it has been the subject of careful trials, with, we are in formed, complete success. A number of testimonials from farmers in the south bear witness to its efficiency and econo my as a labor-saving machine, The patent is owned by the Diamond Cotton Chopper Company, to the Secretary of which, Mr. John W. Hinsdale, No. 2 Hay street, Fayetteville, N. C. letters for further information may be addressed.

To our subscribers.

Any of our readers who do not bind their volumes, and have copies of Nos.' 4 and 6 of the current volume (July 26 and August 9), will much oblige us by forwarding such numbers to this office.

Mining Picis.-A number of patents have been secured to present the miner with a pick with shifting points, says the Mining Journal, all of more or less merit, but none have come into any extended use; but if such a tool could be manufactured to meet the requirements of the miner for working hard ground, no doubt it would be a saving of time, material, and muscle, as the miner could take equivalent to a dozen picks in his pocket, each point not weighing over six ounces, which, being made of the best cast steel over six ounces, which,
would do good service.

FRENCH FOUR AXLED ARTICULATED LOCOMOTIVE.

We select from the Annales des Ponts et Chaussées the accompanying illustrations of a new locomotive recently in vented and constructed by M. Rarchaert. It is a tender engine, weighing, complete, 34 tuns, and resting on two American trucks, which are connected with the frame by pivot bolts, so that they follow the bends of the road in a horizontal plane. Measured in a straight line, the extreme wheels of the machine are separated, axis from axis, a distance of $13 \cdot 1$ feet; and the space between wheels of the same truck is 3.9 feet. These dimensions reduce to the ratio of about 10 to 3 the rectilinear length of the apparatus which measures, so to speak, its stiffness; and the minimum radius of curves around which the machine travels freely, is found to be below 96 feet.
The wheels are 3.5 feet in diameter. The maximum speed developed is thirty miles per hour, and the tractile force is estimated at $4 \cdot 17$ tuns. The transmission of motion from cylinders to driving wheels constitutes the essential feature of the device. Instead of directly attaching the piston rods, E , to cranks on one of the motor axles, and then transmit ting its rotation to the others, the former are caused to act upon a false axle, A, hung in the center of the frame longitudinally, which always retains the same position in relation to the cylinders. The extremities of this false axle carry
cranks, F, to which the piston rods connect, and, beyond these arms set at right angles, which work the valve rods. The middle portion of the axle is made in the form of an elbow imilar in shape to the working axles, B C, to which it imparts motion by the arms, A B and A C. The latter, as the false axle is situated some inches above the center of the driving wheels, form in combination a triangular rod. The advantage of this arrangement is that the false axle has a double purchase on either of the driving axles, that is, diectly by means of the straight rods which connect it with each, and indirectly by the rod which actuates one axle, transmitting its motion to the other through the medium of the con nection between the two, the lower arm, which, in the upper figure, forms the base of the triangular attachment. A moment's thought will show that there is in this mechanism practically no dead center
In order to insure the transmission of power in spite of the play- of the trucks around their pivot bolts, spherica bearings are arranged for the connecting rods upon the axles, o that the latter conform readily to the angular deviations due to the passage of curves. In fact, the bending of the machine can produce no effect upon the proper application of the power, because the transmitting mechanism is concentrated in a central position, where the length of the parts undergo no sensible alteration. Ordinary coupling rods, G
nd H, connect the wheels of each truck. K K are the pivo bolts and L M, longitudinal and cross pieces of the frame. Experiments conducted in France with this locomotive have proved it an excellent machine for freight traffic on secondary lines, the construction of which necessitates many sharp curves, thus saving the expense of making extensive cuttings to avoid the latter. The form of the ground can thus be more closely followed and the road built at a consid rably decreased cost. The engine is stated to have drawn train of 16 cars, loaded to a weight of 11 tuns each, up slight grade, at the rate of 13.2 miles per hour.

Mineral Oils for Gas.

Within the last 10 or 15 years, many patents have been taken out for processes or apparatus for the destructive disillation of mineral oils, but up to the present time no pronas been sufficiently successful as to secure for in general recognition. In Germany and the tave with author believes to be the best is the invention of a German chemist, Dr. Herch. The apparatus consists of a circula retort set in the usual manner. The retort is fitted with a mouth piece and lid at each end. The front mouth piece is connected to a large cylindrical chamber or receiver by

FRENCH FOUR AXLED ARTICULATED LOCOMOTIVE.
taper pipe, which is substituted for the ordinary ascension pipe. At the back of the retort is placed a small cylinsrical vessel or chamber fitted with a cover and stuffing box. In the interior of the chamber a weighted piston or plunger is placed, the rod of which passes through the stuffing box. To the upper end of this rod a cord is fastened, which passes over a series of compound pulleys, the end being connected with a train of clock work machinery. From the bottom of the box or chamber in which the piston is placed, a small tube or pipe is connected with the lid at the back of the tube or pipe is connected with the lid at the back of the
retort, and thence a small taper tube projects into the retort, and thence a small taper tube projects into the
interior of the retort. The process of manufacturing the interior of the retort. The process of manufacturing the
gas is as follows: The chamber or cylinder in which the gas is as follows: The chamber or cylinder in which the
plunger is placed is filled with the petroleum or mineral oil plunger is placed is filled with the petroleum or mineral oil
until the plunger has risen to the top. The cord is then until the plunger has risen to the top. The cord is then
coiled over the pulleys, and the end attached to the clock coiled over the pulleys, and the end attached to the clock
work. As soon as the retort is sufficiently hot, the penduwork. As soon as the retort is sufficiently hot, the pendu-
lum of the clock is set in motion, and the cord is gradually uncoiled. This liberates the plunger or piston,and thus the liquid in the cylinder is forced through the small connect ing pipe and taper tube into the retort, where it is distribu ted in a very thin sheet over the heated surface. A considerable quantity of the vapor is thus converted into gas, and is conveyed by the large taper pipe into the vertical receiver. Here the gas and vapors are separated by the cooling effect of the receiver, the permanent gas passing to a suitable gas holder; the condensed vapors, in the shape of tar or oil, fall to the bottom of the receiver, and are drawn off and returned to the first cylinder, when a fresh charge of oil is put in. The process is exceedingly ingenious, but the author is not able to say what the result of the experiment has been in a commercial point of view. In the United States, many forms of apparatus have been tried, but most of them have failed on account of the great difficulty of getting rid of the rapid deposition of soot or solid carbon on the surfaces of the retorts, or the materials placed within the retorts to effect decomposition. It is found in practice that a comparatively thin layer of this finely divided carbon materially interferes with the process of decomposition, and the result is that, when an apparatus has been at work for only a short time, it happens that the make of gas is reduced 50 per cent. If some arrangement could be invented by which this deposit could be prevented, there is no doubt that the mineral oils would
be found most useful substitutes for cannel coal in the probe found most useful substitutes for cannel coal in the pro-
duction of gas of high illuminating power.-Journal of Gas Lighting.

Camphor.

Perhaps the most common and popular medicinal agent for household use is camphor, a drug which has been regarded as a cure-all by mothers, grandmothers and great great grandmothers down through many generations. The dilute alcohol, is found upon a shelf in almost every dwelling; and if among the younger or older members of the famiiy an ankle is turned, or a limb bruised, or there is head ache, or tooth ache, or ear ache, or belly ache, down
comes the camphor bottle, and the suffering member is well comes the camphor bottle, and the suffering member is well
dosed. Camphor is a powerful agent, and in moderate dosed. Camphor is a powerful agent, and in moderate
doses is capable of doing much mischief. It is a matter of wonder that so few instances of injury result, considering its wide spread, empirical employment.
Camphor is brought to this country in a crude or impure state, and here it is subjected to the process of distillation to render it fit for employment. There are several important refineries in the country, one of which is at Rumney, N. H. A correspondent of The People presents the following interesting facts regarding camphor and this refinery:
The camphor of commerce comes from Formosa, Sumatra, Borneo, Japan, and China. It is obtained in crystalline masses already formed, and also in grains by distillation.
The tree which produces the former kind is a near relative The tree which produces the former kind is a near relative
of our basswood, which we know as a charming tree, perof our basswood, which we know as a charming tree, per-
fuming the air and yielding the finest honey in the world. It grows on the Diri Mountains in Sumatra, and in Borneo. It towers upward more than a hundred feet, and has been known to attain a girth of fifty feet. The spirited persuasion of the axe draws from this forest monster the white treasures secreted in the longitudinal fissures in its heart wood, sometimes, though rarely, in a layer as large as a carefully extracted by some sharp pointed instrument. It is not an abundant bearer. Twenty pounds is a rare yield for a great tree; ten pounds is a good harvest from one of medium size, and many are felled and split that furnish no
camphor. This, however, is not an entire waste, since the camphor. This, however, is not an entire waste, since the
wood is easily worked and is never attacked by the voracious wood is easily worked and is never attacked by the voracious
myriads of Eastern insects which destroy all other varieties except the teak and calambuco. House and ship timber are made from it, besides many articles of furniture, and the aromatic trunk is extremely valuable to the housekeepers of our colder climate. This kind of camphor seldom finds its way to Europe and America. The Chinese ascribe to it marvellous medicinal properties, and pay for it enormous sums, thereby securing the entire yield.
Common camphor is obtained by distillation from the root, stem, and leaves of certain species of lauracecs, but more especially from the laurus camphora. Of this, also, there are in junks to Canton and there packed in square chests lined in junks to Canton and there packed in square chests lined
with lead, whence it is sent to the different Eastern ports, where we procure it. It is of a grayish color with a grain like sugar, and usually unattractive in appearance. The Dutch or Japan camphor is prepared in Batavia, is packed in tubs securely matted, is pinkish in hue, and coarser th
the Chinese. Both kinds need purification before using.

Camphor is slightly soluble in water, but yields freely to alcohol, acetic acid, ether, and the essential oils. A pretty experiment may be tried with it, which the young people
will find amusing. Scatter a few pieces of clean campho will find amusing. Scatter a few pieces of clean campho upon pure water, and they will whirl and sail about, keep ing up the dance sometimes for hours. Drop among them
some greasy matter and the merry little performers will stop on the instant.

An Ice Cutting Ferry Boat.

The Erie railway has completed a new ferry boat, with ron hull, for the ferry from New York to Jersey City. The boat, which was designed by Mr. Theodore Allen, naval en-
gineer, and built by John Roach \& Son, of New York, is of he following general dimensions: Length between perpendiculars, 180 feet; length on deck, 193 feet; beam over hull 36 feet; beam over guards, 64 feet. The hull has been designed to give great stiffness, with unusual strength to re sist ice. The longitudinal framing is much heavier than is generally used in iron vessels of this size, and at the ends the plating of the hull is made thicker, and intermediate frames and breast hooks are added, with the intention of rendering and breast hooks are added, with the intention of rendering it so strong that, even when the full force of the engine is
exerted, it will be perfectly safe to drive the vessel into the exerted, it will be perfectly safe to drive the vessel into the
thickest fields of fresh water ice. For additional safety there is, about twenty-five feet from each end of the vessel an iron watertight bulk head. The boat is driven by a beam engine of 46 inches diameter of cylinder and 11 feet stroke of piston, driving paddle wheels of 22 feet diameter the steam is supplied by a boiler of the drop return flue type, the engine is handsomely finished, the engine room neatly painted, and the floor laid with encaustic tiles of neat design. In addition to the usual steam pump for feeding the boilers, there is a large size Woodward steam fire pump, with hose connections in hold, on main deck and hurricane deck. A vertical tubular boiler of sufficient capacity, in which steam can be quickly raised, is provided for use which steam can be quickly raised, is provided for use
when the boat is not running, thus affording great protecwhen the boat is not running, thus affording great protec-
tion in case of fire, both for the boat itself and also for the tion in case of fire, both for the bo
company's wharves and property.

Sole Sewing Machine

During a recent strike in the boot and shoe trade in Edinburgh, the masters experienced great difficulty in supplying their customers with their orders as quickly as they were wanted. They began to look out for a machine that would
do stitching in a satisfactory manner, and after some considdo stitching in a satisfactory manner, and after some consid
eration they at length agreed to give the Blake sole sewing machine a trial. This is an American invention, and is now extensively used in London, and in some of the large towns in England; and there are not fewer than seven of the machines in operation in Glasgow. The boot or shoe is laid upon a revolving " horn," which is heated by a small lamp, in order to keep the wax upon the thread in a semi-liquid state, so that it may fasten the thread more firmly in the sole: while, by means of eccentric wheels, a strong needle, like that used in crocheting, is forced through the thickest sole, and brought up again by means of a little lever. The machine is capable of being worked either by steam or by hand power, and can sew 300 pairs of boots in one day, while the work, it is said, is even better done than it can be by hand sewing, inasmuch as the waxed threads are drawn more firmly together than it is possible to draw them
by the mere force of the hand. By means of the machine by the mere iorce of the hand. By means of the machine
it is quite possible for a man to sew the sole of a boot comit is quite possible for a man to sew the sole of a boot com-
pletely in about half a minute, whereas it takes a shoemaker nearly an hour to do the same amount of work; hence it will be seen at a glance that the machine confers great advantages. Attracted by the reputed usefulness of the ma chine, a large number of the members of the Edinburgh Bootmakers' Association have formed themselves into a company, and have procured a license from the inventor to use the machine. They pay 5 d . per 1000 stitches in the shape of royalty, and an indicator is fixed to the machine, which shows the number of stitches made.-Iron.

Gear Wheels and Shafts of Phosphor-Bronze. M. Gillieaux, of Charleroi, and M. Blondiaux, of the Thy-le-Château Society, have, from the first production of this alloy, employed it in the construction of rolling mills, and the following are the results of three years' experience: This bronze has been employed for the great bearings of plate and general rolling mills, and for conical gearing in universal rolling mills. The motive power of the steam engine that drives the rolling mills in which it is used is of 170 horse power to 200 horse power, and the speed of the rollers about sixty revolutions per minute; the engine drives a sheet iron mill, a universal mill, and a rough-shaping mill, and is not at a standstill for more than one hour and a half in the twenty-four. The rollers are 1.90 meters ($6 \% 3$ feet) long, and 0.62 meter (2.03 feet) in diameter, and weigh five tuns. It was found that the gears made of hard cast iron broke frequently; these were first replaced by ordinary bronze, and finally by phosphor-bronze. The duration of ordinary bronze wheels did not exceed, on an average, five months, while those made of phosphor-bronze wear for about nine months. The latter alloy is found equally superior to the former when applied to bearings.
M. Blondiaux has applied phosphor-bronze, not only in the making of pinions, but in the driving axes of mills, with great advantage; in the latter case the superiority seeming o depend not in the hardness but in the very great resistance of the alloy, the arbors in phosphor-bronze twisting much
less than those made of forged iron, and not being liable to less than those made of forged iron, and not being liable to
break like those of cast iron.

The Hartford Steam Boiler Inspection and

The Hartford Steam Boiler Inspection
pany make the following rem month of June, 1873 :
During the month, 1,131 visits of inspection were made and 2,084 boilers examined, 1,929 externally and 622 inter nally; while 220 were tested with hydraulic pressure. The defects discovered were 850, of which 207 were regarded as dangerous. These defects were in detail as follows:
Furnaces in bad condition, 35-4 dangerous. We have often called attention to the fact that manufacturers, in pro viding themselves with boiler power, do not look beyond present wants. If their business increases and new machinery is added, they instruct their engineer to run at an increase ressure, and the boilers are often furced beyond their saf ability. The severe firing necessary burns and contorts the urnace sheets. This practice furnishes many of the case designated in these reports as "furnaces out of shape." Abundance of boiler power and slow combustion is true conomy. Fractures, 45-19 dangerous. Many of these
rise from the same cause as that which occasions furnace arise from the same cause as that which occasions furnaces
out of shape: too small steam room and heavy firing. Burned plates, 45-7 dangerous; blistered plates, 152-29 dangerous; cases of deposit of sediment, 144-22 dangerous ncrustation and scale, 139-18 dangerous; external corrosion, 53-11 dangerous; internal corrosion, 25-13 dangerous; internal grooving, $15-7$ dangerous; water gages defective, $25-9$ dangerous; blow-out defective, 11-5 dangerous safety valves overloaded and in unsafe condition, 27-12 dangerous; pressure gages defective, 117-16 dangerous. By dangerous, we mean unreliable, and consequently unsafe to run by. Their variations were such in some cases that the indicated pressure was so much less than the actual pressure hat the limit of safety had been passed. Gages require fre uent examination and testing. Boilers without gages, 46 1 dangerous. The latter was dangerous from the fact that
the pressure was high,and the engineer depended entirely on the safety valve and "the sound of the steam as it issued from the upper try cock." Deficiency of water, 11-7 dangerous; cases of broken braces and stays, loose braces, pins out, etc., 58-24 dangerous. Some of these were found in boilers where the engineer had made an inspection only a few days before, and he "knew that every thing was in good order," and was a good deal put out because we insisted upon having the boilers cold, so that a thorough inspection might be made. Boilers condemned as unfit for use, 12 .

The Log House of Norway.

A correspondent, who has been having a week of uninter rupted sunshine near the North Cape, gives us some descrip"You Norwegian houses which may interest our readers. on Plymouth Rock; but I find the most convincing evidence that they existed in Norway centuries, perhaps, before Plymouth Rock was known. A. yet more interesting fact-at mouth Rock was known. A yet more interesting fact-at
least to me-is that the fashion has not changed. Improveleast to me-is that the fashion has not changed. Improve-
ments there have been in many ways, but the log house of ments there have been in many ways, but the log house of
Norway is the most fashionable, perhaps because the most comfortable, house. In regions far removed from timber, and where stone and lime and clay abound, even there the log house obtains universal preference. During my trip up and down this long line of Norwegian coast, I have had many opportunities to examine the old as well as the new constructions. Let me tell you first of the old. The logs are squared and nicely dovetailed at the corners. Grooves are then cut, with the broad axe, on both the under and the upper surface. When the \log is finally laid to its place, this double groove is filled with moss, and moss is afterward caulked into the log seams. The partitions are built with caulked into the log seams. The partitions are built with
the house, and in the same thorough manner as the outside the house, and in the same thorough manner as the outside
walls. The houses are never more than two stories high, and walls. The houses are never more than two stories high, and
the roofs are steep and heavily timbered. A covering of the roofs are steep and heavily timbered. A covering of
slabs is fitted, round side down, to the roof timbers ; and over these slabs comes one or more layers of birch bark. Then comes a heavy timber coping along the eaves and up the roof at either end. On this is laid sods of rich earth well packed to a thickness of about six inches, and these, in this moist climate, furnish an abundant grassy finish. The we essential differences between the old and the new or tiles, and occasionally of slate, for the sod roofs, and the casing of the timber, which forms the body of the house, with thin boards, for looks' sake.
Within a year the town of Namsos, about one hundred miles north of Drontheim, was almost totally destroyed by fire; and it is now in course of rebuilding. Here, notably, the work of building is going on upon and the two modes appear side by side. A few finished
buildings there are, which would hold high rank, among the best of our American country homes, in architecture; while in comfortable exclusion of cold, we have not a country house, of whatever material, that would bear a rigid comparison with the poorest of them. Double glazing of window sashes-outside and in-the packing of every window and door frame with moss, and a careful papering of every room, are some of the means taken to prevent any circulation of the frosty air. For winter comfort, combined with the utmost facility for every conceivable
mend to me the Norwegian log house.
The puddlers in the Phonixville (Pa.) Iron Works struck for higher wages on the first of April and the company laid not a straw in their way. Now after having lain idle near ly four months, they go to work at their former wages, and only on condition that they have nothing more to do with only on con
the Union

American Asphaltum

Under this heading, Professor S. T. Peckham, of Buchtel College, Akron, Ohio, communicates to the American Chem ist an article in which he takes issue with several of the statements previously made by Dr. Newberry on the same has already publie same pel papers on this topic, and has personally examined, over a considerable period of time, the bituminous out-crops of Lower California. The latter, he states, may be roughly estimated as covering an area of 75 miles in length by from 5 to 40 miles in width, and they probably contain more asphait than any surface of equal extent in the western hemisphere, except the Pitch Lake of Trinidad.
Bitumen occurs there of every variety, from green petroleum of the consistence of olive oil to solid asphaltum heavier than water. There are millions of tuns of asphalt, some of it pure, but the largest portion contains from one to ninety-nine per cent of all sorts of impurity, chiefly soil, shale, gravel,sand, and organic matter, both animal and vegetable. The maltha passes by imperceptible degrees, from dense oil, through tar, to a mass resemblin barrels of maltha and a few barrels of petroleum; but there is not a particle of asphalt or any other natural bituminous product in that region, that is a residuum from the evaporation of petroleum.
Maltha, or tar of varying density, has been obtained a from ten to four hundred and sixty feet from the surface-
a depth too great to admit of the slightest action of the sun's a depth too great to admit of the slightest action of the sun's
rays. Nor could the evaporation be due to solfataric action, since, where such action was most apparent, on the south side of the sulphur mountain, were obtained the least dense and most slightly altered petroleums. Without a single exception, every outflow of bituminous material, whether natural or artificial, proved that the change from petroleum to maltha and asphaltum is due to the action of atmospheric oxygen, either direct or transmitted by rain water. The only natural springs of petroleum that I saw or heard of in that region were the Canada Laga and Pico Springs. The first issued from an almost perpendicular cut in strata over laid by several hundred feet of shale. The second issued from shale that was overlaid by unbroken bands of sandstone and conglomerate, affording ample protection. The tunnels in which petroleum was obtained were invariably driven into the nearly perpendicular face of a cliff or mountain side, into strata that were well protected by hundreds of feet of overlaying rock. Tunnels of the same length driven on strata that were not thus protected, invariably yielded nothing but maltha or oil more or less changed. On the plains northwest of Los Angeles, an artesian boring, that penetrated sandstones interstratified with shale, yielded maltha at a depth of four handred and sixty feet. Profes sor Peckham goes on to deny the fact that maltha at the bot tom of wells is the result of evaporation, and cites variou facts and testimony in support of his position. As regard the Canada asphalt beds, he maintains similar views and does not believe that the origin of albertite, grahamite, or any such substance, has the remotest connection with petro leum of any description, or that these asphalts bear any rela tion to still residues. He continues that he never saw a residue of Pennsylvania petroleum that was not coked that did not contain ${ }^{\text {E }}$ paraffin, or a particle of California petroleums, malthasor asphalts, or any substance distilled from them, that did contain a trace of paraffin or any other solid matter. The distillates from California bitumens, of the same specific gravity as those from Pennsylvania oils, have a different color and odor, and cannot be burned in the same lamps without smoking. They evidently contain a larger propor tion of carbon. It is needless to add that none of these sub stances derived from petroleum bear any relation to coa tar residue.

It is important that the relations of these substances be properly understood, and that the language of science be cleared of the obscurity in which, from the time of Boerhaave to the present, this subject has been involved. We might just as well now as ever, concludes the writer, deny the existence of maltha or mineral tar, as distinguished from petroleum, as talk about the "petroleum springs" of Califor nia and the "far west." Does it really add anything to the value of a tar spring to call it a petroleum spring, or to a hill side smeared with maltha to call it a "petroleum cascade?" Just as well call a barrel of tar "spirits of turpentine," and insist that a purchaser should take either at random.

Waterproof Paint for Canvas
The following is a cheap and simple process for coating canvas for wagon tops, tents, awnings, etc. It renders it impermeable to moisture, without making it stiff and liable to break. Soft soap is to be dissolved in hot water, and a solution of sulphate of iron added. The sulphuric acid combines with the potash of the soap, and the oxide of iron
is precipitated with the fatty acid as insoluble iron soap. This is precipitated with the fatty acid as insoluble iron soap. This
is washed and dried, and mixed with linseed oil. The addition of dissolved india rubber to the oil improves the paint.

The Meteoric shower of August 10
We have reports from observers at Mont Clair, N. J., who noted fourteen meteors, seen within forty-five minutes, be tween the hours of eight and nine in the evening of August 0. General direction of movement, from N. E. to S. W A correspondent at Keyport, N. J., reports the obs
of brilliant meteors there on the evening of the 10th.
A correspondent at Milwaukee, Wis., reports quite a num ber of meteors seen on the 10th. But the largest number were seen on the evening of the 9 th.

Inventions Patented in England by Americans. from the Commissioners of
From July 22 to July 31,1873 , ernor.-G. Merrill, New York Door Bell.-J. b. Sargent, New Haven, Conn. Driving Kild, erc.-J. A. Locke, New York city.
Engine and Piston.-G. Merrill, New York city. ilte acking Water Colors.-C. T. Raynolds \& Co., New York city. Purifying Gas.-W. H. St. John, New York city. Sewing Machine attachment.-H. M. Hall, Philadelphia. Pa.
Sile Spreading Machine.-J. Sault, South Manchester, Conn.

zecent dufricam and farcigu equtats.

Improved Sawing Machine.
Harry M. Stow, Milan, 0 .-The object of this invention is so to improve e contraction of the saw gulde that the stroke of the saw may be rapi nerease and decrease of the strokike is produced by simple meanats, and easily
regulated. The invention consists of lever connections, acting on the front nd pitman end of tha nd pitman en

Improved Music Leaf Turner.
consists in a series of leaf turnntg armsarranged loosely on a pivot at the top of a a support adap heel with an arm which acts against all the leaf turning arms on one sid and swings them around to the side from which the leaves are to be turned, ing with said wheel, is pressed down by the player. There is another wheel on sald pivot for throwing the arms in the outer direction one at a time, to
turn the leaves, when a similar lever at the bottom of thestand, connected with said wheel by a toothed segment, is pressed down. This last wheel is
thrown back by a spring, and the first one is turned back by the last when
 swing, which is so constructed that it can be opened readily for engaging the leaves by pinching it between the thumb and finger.
Improved Cake Pan.
John B. Firth, Brooklyn, N. Y.-This invention consists of cake pans on
rames, in which the pansshall be secured in place firmly and neatly and in frames, in which the pansshall be secured in place firmly and neatly, and in
such a way that they can be conveniently cleaned and washed, and that Improved Portable Fence.
Theodore L. Wiswell, Olathe, Kansas, assignor to Ray Amasa Wiswell, of
me place.- The object of this invention is to improve what is known he "worm fence." Triangular shaped posts govern the position of the panels and the shape of the fence. These posts do not extend into th
ground, but the rails are fastened to them by a single bolt or pin at eac ground, but the rails are fastened to them by a single bolt or pin at each
end, so that they will turn on the bolts or pinss, and thus give the fence a
degree of flex:bility degree of flexibility for crossing uneven ground. The panels are connected together with iron staples. Two of these staples are usually employed,
one near the top and one near the bottom. Keys are driven through them, by taking out which the fence may be taken down, removed, or packe way.

Improved Reciprocating Winnower.
Henry Kelle Sauk Center, Minn.-The lower grading screen is made in ones, so that the wind from the fan can act with much better effect on the grann, obth for separating the oats and other light matters at the upper end of the upper sections, and the screenings at the point where they are sep-
arated. The upper section of the lower screen is made shorter than the upper section of the upper screen, to give the oats a better chance of drop uite as low down as the end of the upper screen does, and dellivers it grain between the partitions of the grain box and the side of the screen
box. The upper screen delivers its grain on the other side of partition box. The upper screen delivers its grain on the othe
which separates the grain box from the fan chamber.

Improved Evener for Thread

 Company, of same place.-This invention is an improvement in the class of other; and the improvement consists in adapting the jaws to be adjuste dependently and also simultaneously, as occasion may require,
Improved Corn Planter.
Edward Parmentier, Clinton, Ill.-The drive wheels revolve upon and arry the axle with them in their revolution dy clutches held up by spring and operated by levers. By sultable mechanism, the said levers may b end of the tongue when the furrowing and dropping devices areraised from the ground. To the lower ends of the conductor spouts are rigidly attache ormed in then directly beneath the discharge opening of the spouts, s that the seeds may be deposited in the bottom of the furrow before said
furrow becomes partially filled by the soil falling inward from its furrow becomes partially filled by the soll falling inward from its sides
The forward part of the lower edge of the openers are inclined or rounded upward to enable it to pass through the soll and over obstructions more readily. The openers enter slots in the shoes, which are drawn along the
surface of the ground, pushing back obstructions and smoothing the said surface of the ground, pushing back obstructions and smoothing the said
surface. The openers may be adjusted to project below said drags accord urface. The openers may be adjusted to project below sald drags accord
ing as the seed is to be deposited at a greater or less depth in the ground the outer sides of the drive wheel are attached rings, which are groove outer ends of the journals of the axie, and which are made of such a length that their ends may come in contact with and maris the surface of the
ground as the sald wheels revolve. The markers are connected with the ground as the said wheels revolve. The markers are connected with the
wheels, so as to be carred around by and with the said wheels in their revo Wheels, so as to be carrled around by and with the said wheels in their revo
lution by set screws, so that the bars may be conventently aojusted to the ground Cirectly opposite the hills.

Improved Horse Hay Rake.
Watson C. Martindale, Philadelphia, Pa.-This invention consists in a alsed to discharge the hay by the advance of themachine, and may be disngaged automatically and allowed to drop back to the ground when the hay has been discharged. By suitable construction, as the machine is drawn
forward, a rod will be revolved. When a sufficient amount of hay has been collected, the lever pawlis throwninto gear with the ratchet wheel. This the rod and axle are carried forward, which ralses the teetlo and discharges the hay. As the rod and axle are carried forward the projecting end of the ages the pawl from the ratchet wheel and a:lows the teeth to drop back to he ground, ready to again collect the hay.

Improved Cane Stripper.
Robert C. James, Denison, Texas.-This invention is an imprevemen t in
ane strippers of the classin which a pair of drawing rolls are arranged in combination with a fixed and movable spring stripping blade. A single stack is passed through each hole in the table to the rollers below by the
attendant, so as to be seized by them and pulled through while the stripthe hole on the other, which strips off the leaves and other substances suit able for fodder, and prevents them from going into the kettle, and saves a large amount of skimming.

Improved Brake for Railroad Cars.
James Temple, Mooresburg, Pa.-This invention relates to a novel an effective brake for railroad cars, designed to operate to a more advantage-
ous degree than brakes of the description upon which the improvements are based. The invention consists in tithe employment of a longitudinal

Improved Heel Trimming Machine Elisha . Jones, wo machine for trimming shoe heels for its object to means of which motion is given tothe machine, is attached to a shaft whic revolves in bearings in the frame. To the shaft is attached a small bevel
gear wheel, which engages with the large bevel wheel attached to a vertica gear wheel, whind. To the upper end of the latter is attuched a wheel, the edge of which
shat is made in the form of a double cam, to allow the arm that carries the knife the knife and serves as a guiderod to hold the coiled spring by which th knife is held out to its work. The knife is made with a finger, which pro ects in front of its cutting edge and rests against the edge of the gulde, Which rests upon the top of the cam plate and is secured detachably to the iven to the heel, and must be changed with every change in the form or siz of the heel. A short hook rod on the arm enters a groove formed in the
under side of the cam wheel, which groove is so formed as to cause the nife to move forward quickly to cut the elongated sides of the heel, an slowly while cutting the short curve of the rear part of the heel. A clutch
grasps the top of the last directly over the heel, so as to hold the shoe hee achine, the shoe is placed in position, and the crank is operated to give half revolution; the shoe is then removed and the revolution complete t bring the mach int portion to

Improved Water Wheel.

Oliver J. Bollinger, York, Pa.-This invention relates to that class o water wheels with which hinged or pivoted gatesare used; and has for its
object to remedy the diflculties arising from themanner in which the studs are fo ned and secured to the gates. The invention consists in the lug of pivoted or hinged gate of a water wheel, made with a vertical hole to re-
cive the stud, and a transverse hole to recelve the wedge key; and in the cross head stud, made with a transverse notch to receive the key for secur-
ing it detachably to the lug of the pivoted or hinged gate of the wate कheel.
Improved Method of Restoring Tinned Sheet Iron Whinam E. Brock way, New York city, assignor to William L. Brockway re considered worthless when emptied of their contents, and are throw is way by the million; but the iron which 1s inned and used for these can better alapted for many purposes when restored especially for bindin runks, and for many similar purposes where pleces of large supericia measurement are not required. The object is to utilize these cans no thrown to waste; and this invention consists in the process of restorin he iron to its original state, but in small sheets, and thereby utilizing it In melts at about 450°, but will not entirely leave the iron until subjecte
to a higher temperature. The iron is therefore subjected to a temperature of about $1,000^{\circ}$, or to a cherry red. This cleans offi the tin and anneals the iron, rendering the latter very pliable, and adapts it for many purpose
where toughness and pliability are essential. When the iron is taken from here toughness and pliability are essential. When the iron is taken from the oven the pleces are passed between rollers, whic
sufficient to straighten it and prepare it for market.

Impreved Rock Drill.

George E. Nutting and Joseph C. Githens, New York city, assignors to mproved steam rock drill, which shall be so constructed that the val may be shifted at the proper time to cut off the steam, and at the same tim admit the steam in front of the piston, so that it may cushion itself upon eam and diminish the jar or shock, and in which the piston may turn, an tem are rigidly attached two disks, at a distance apart equal to the di ance required for the throw of the valve, and an apdititional thirty-second of an inch, more or less. Upon the stem upon each side of the valve are placed pistons of such a length as to give the valve and two pistons a pla about a thirty-second of an inch upon the stem, between the disks. Th iameter of the disks is made enough less than the diameter of the end
arts of the valve chest to allow the steam to pass the said disks freely. By uitable construction,as the piston comes to the upper part of the cylinde the lower port is uncovered and the steam passes through it into the lowe end of the steam chest, below the lower disk. As the steam enters the low er part of the steam chest it forces the disks, pistons, valve, and valve stem apward until the upper disk strikes its stop and stops the forward move lower disk and forces the pistons and valve upward until stopped by the apper disk. This movement allows the steam in the end part of the stea chest to exhaust through the exhaust. The exhausts are so arranged asno to be fully closed until the valve pistons and disks have nearly complete heir stroke. By this construction the valve and its attachments and th iston will always move in the same direction, which lessens the Jar, an
consequently the wear, of the mechanism. A simple friction device is rranged as to rotate the piston as it rises, but to allow sald piston to d scend without turning. The lower end of the piston rod is made hollow to receive the drill bit, and is slotted loggitudinally to divide it into three o more parts so that the drill bit
ently detached when desired.

Richardso Fort Sming Gage for the Blind.

Willam Hist Smith, Are.-This invention consists of a plates. In the upper pari of the front plate is formed a horizontal a through which the stitching is done. The upper edge of the rear plate bout upon a level with the lower edge of the slot in the front plate, an the sald plate are formed two vericalslets to recelve the buckle bar enable the work to be held firmly against the slot in the front plate. I hich passes screw the upper end of which is rigidly attached to latform, upon the lower edge of which the work rests when titt th straight work. The platform slides up and down along the inner side of he front plate, and is kept in place by grooved flanges. To the outer side the front pate is attached a horizontal bar to prevent the gage fro the front plate is detachably attached a ratchet bar which outer side teeth to the inch as the work should have stitches to the inch. Upon the outer side of a slide, where the awl is to be inserted, is formed an incline projection, against which the tapering forward end of the ferrule of the 2 wl strikes, and thus pushes the slide forward one tooth each time the awl s inserted. In using the gage, when the work has been stitched the lengtt
of the slot. the work is moved forward until the awl strikes the other end of the slot,the slide is moved up toit, and the gage is again ready for work. Improved Cotton Planter.
Robert E. Bowen, George's Creek, S. C.-This in vention relates to the con
truction of cotton planters with a view to enable them to be easily an heaply manufactured, while their efficiency is maintained or increased consists in improving the ordinary shaking hoppers, which have arm may be easily and conveniently stopped and resumed.

Flame Extinguisher for Lamps.

consists in making a very durable and compact joint of both spring and extinguisher with.
movable arm of the latter by bending and riveting the end of the arm.
Improved Box Scraper.
Charles Elis, George Wi Ellis, John D. Elis, Philadelphia, Pa.-This in ontion consists in a certain construction of stock and scraper, and mean attaching the same to each oth

Improved Windmill

his invention relates to improve ment in the class of windmills having vanes so pivoted that the force o the wind tends to turn them a round it ; and consists of a double crank shaf and around which it swings, so contrived that a connection is made with pump rod, or two or more, If desired, on the side of the post, and the rod or
rods worked thereby without hindrance to the turning of the wheel frame and without any cramping or side draft.

thuitres and zexsomat.

The New Elastic Truss presses uniformly The New Elastic Truss presses uniformly
all around the body, and holds the Rupture easy, night and day, till cured. Sold c
683 Broadway, New York.
For Sale-A Walker Bros. Percussion Mill
for pulverizing hard substances. for pulverizing hard
Colora, Cecil Co., Md.
For Sale-3 Sat's at less than half their value,
two for Impr'ts in advertising Lanterns, one for Impr'ts in Envelopes, by S. Kuh, Jefferson, Iowa.
Gasoline or Stove Oil Vapor Burners-Manufacturers,send circular to J.R.,Box 183, Middletown,Md.
A Chemist wants a situation as teacher,
lecturer or analyst. Address J. . New York Post Office. For Sale-A Thomson', Patent Road Steamer
at half cost. Enclose stamp to James C. Smith, Fayetteille, N. C
Liberal cash price or share in profits for any
marketable article that will sell. Cash advanced for patmarketable article that will sell. Cash advanced for pat-
ent ti not patented.Address Jarvis \& Co.,Broad way,N.Y. To sufferers from batteries that get out of
order on Burglar Alarms, etc., the Leclanche Battery Co., 40 West 18 th st., New York, guarantee
es to last one year without any attention.
New Motion-One Shaft rotating, rotates in
opposite direction another Shaft at any distance. Only opposite direction another Shaft at any difstance. Only
one connecting bar used. Rights for Sale. W. H. Benson, Waynesboro', Virginia.
Bolt Makers, send for descriptive cuts of
Abbe's Bolt Machine, to S. C. Forsaith \& Co., ManchesAbe's Bor
ter, N.
in.
ter, N.H.
Mills forFlour,Feed, Paint,Ink,Drugs,Spices
and all other purposes. Ross Bros., Williamsburghi,N.Y. Hydraulic Presses and Jacks, new and sec-
ond hand. E. Lyon, 470 Grand Street, New York. Sure cure for Slipping Belts-Sutton's pat-
ent Pulley Cover is warranted to do double the work ent Pulley Cover is warranted to do double the work
before the belt will slip. See Sct. Am. June 21st, 8773 ,
Page 389. Circulars free. J.W.Sutton,95 Liberty St.,N.Y. Page 389. Circulars free. J.W.sutton,95 Liberty st.,N.Y.
Catalogue on Transmission of Power by
Wire Rope. T. R. Bailey \& Vail. The Olmsted Oiler is the best; it is self-
righting, strong and cheap. All Hardware and Tin Mining, Wrecking, Pumping, Drainage, or
Irrigating Machtnery, for sale or rent. See advertisement, Andrew's Patent, inside page.
Buy Gear's Improved Balanced Jig Saw, Boston, Mass.
Inventors who desire to have their inven-
tions and patents introduced and represented in Europe tions and patents introduced and represented in Europe
by a gentleman of experience and integrity, should
ddress K., Box 2979 , New York Post Office. daress K., Box 2979, New York Post Oftce.
State Rights for Sal Sale, or work on royalty.
A valuable Patent on Boiler Feeders.' Must be seen to e appreciated. Address E. Brockway,Haverstraw, N.Y.
For Sale-New Patent for Refrigerator and
Beer Cooler, etc., comblned. Enquire of or address Beer Colore, etc.. combined. EEquure of or address
G. Nuss, 55 1st Avenue, New York City. G. Nuss, 55 1st Avenue, New York City.
Key Seat Cutting Machine.T.R.Bailey \& Vail. Buy Boult's Patent Moulder for all kinds of
Edge and Surface Moulding on Wood. B. C. M. Co.,
Battle Creek, Mich.
Portable Hoisting and Pumping EnginesClimax Turbine, Vertical and Horizontal Engines and Boilers; all with valuable improvements. Hampson,
Whitehill \& Co., Newburgh Steam Engine Works, Depot
38 Cortlandt Street, New York.
You can get Improved Machinery from Gear, Boston, Mass. iberal and practical courses for agriculturists, architects, civil engineers, master mechanics, mechanical en-
gineers, agricultural and manufacturing chemists, print-
ers, veterinary surgeons, etc., with laboratories, draughters, veterinary surgeons, etc., with la boratories, draughting rooms, farms and work shops. In agriculuare and
mechanic arts, various courses are provided to meet
wants of all students; also general courses in arts, litewants of all students; also general courses in arts, 1 ite-
rature and science preparatory to the other professions. Over five hundred free scholarships. Next year begins
Sept. 8. For Registers, with full information, address Lathes, Planers, Drills, Milling and Index
Machines. Geo. S. Lincoln \& Co., Hartford, Conn. Scale in Steam Boilers-How to Remove
and Prevent it. Address Geo. W. Lord, Philadelphia, Pa. Williamson's Road Steamer and Steam Plow,
with rubber Tires. Address D. D. Williamson, 32 Broadwith rubber Tires. Address
way, New York, or Box 1809 .
way, New York, or Box 1809. 1,000 in use. Address Root Steam Engine Co. 2̃d A venue 1, ond 28th Street, New York.
I wat the sole or part agency of Can. of a
few Spectalties that are protected by patent or cheap manufacture. A
Inventors or parties having specialties fo
sale, which they would like introduced and represente in ctities of Pittsburgh and Allegheny, address C.
Runyan, Box 598, Pittsburgh, Pa.
Belting-Best Philadelphia Oak Tanned.
c. W.Arny, 301 and 303 Cherry Street,Philadelpha, Pa. For Solid Emery Wheels and Machinery,
send to the Union Stone Co., Boston, Mass.,for circular. All Fruit-can Tools,Ferracute,Bridgeton,N.J. For best Presses, Dies and Fruit Can Tools
Bliss \& Williams, cor. of Plymouth \& Jay,Brooklyn,N.․ To Manufacturers-Built expressly to rent,
New Brick Building, 60×300 ft., 3 stories high, divided by fire proof walls, with ample water power. Room and power in quantities to suit. Address I
Company, Rock Falls, Whiteside Co., Ill.
Stave \& Shingle Machinery. T.R.Bailey \&Vail. Five different sizes of Gatling Guns are now
manufactured at Colt's Armory, Hartford, Conn. The manufactured at Colt's Armory, Hartford, Conn. The
are indispensable in modern warfare.
Machinists-Price List of small Tools free;
Gear Wheels for Models, Price List free; Chucks and
Drills, Price List free. Goodnow \& Wightman, 23 Cornhill, Boston, Mass.
For Solid Wrought-iron Beams, etc., see ad-
vertisement. Address Union Iron Mills, Pittsburgh, Pa., for lithograph, etc. Bookkeepers should try the Olmsted Patent
Bill File and Letter Olip. They are admirable for all papers. Save their cost It one day's Business. Sold by all
Stationerss J.H.White,Newark,N.J. Sole Manufacturer. Gauge Lathe for Cabinet and all kinds of han-
dles. shaping Machine for Woodworking. T. R. Bailey

Covering for Boilers and Pipes, The most
conomical and durablearticle in use. Too \because first prize conomical and durablearticle in use. Too Airst prize
at American Institute Fair. Van Tuyl Manufacturing
Company, 528 Water Street, New York. Nickel and its Uses for Plating, with gene-
ral description. Price 50c. a copy, marled free, by L . W. Feuchtwanger, 55 Cedar St., New York Silicate of Soda and Potash-All grades, in
iquild, jelly, and dry state, for sale in quantities to suit, by L. \& J. W. Feuchtwanger, 55 Cedar St., New York. Parties desiring Steam Machinery for quar-
rying stone,address steam Stone Cutter Co..Rutland.Vt. Boring Machine for Pulleys-no limit to
capacity. T. R. Bailey \& Vall, Lockport, N. Y. Brown's Coalyard Quarry \& Contractors' A
paratus for hoisting and conveyingmaterialby iron cab W.D. Andrews \& Bro. 414 Water st.N. Y.

The Best Smutter and Separator Combined Damper Regulators and Gage Cocks-For
the best, address Murril \& Keizer, Baltimore, Md. SteamFire Engines,R.J.Gould,Newark,N.J. Peck's Patent Drop Press. For circulars,
address Millo, Peck \& Co.i New Haven, Conn.

J. B. F. asks: What is the best p
J. W. S. asks: Is there any substance which,
tinuous light, brighter than phosphorus?
T. E. asks: How can I prepare gelatin for
heliotype printing? What are the materials and proporheliotype printing? What are the materials and propor-
tions for making the inking rollers? A. M. asks : How is the solution used in
electroplating with tin, described on page 71 of the present volume, prepared?
W. A. B. asks: How can I restore ivory to its
natural color? What is the composition of the cement with which knives are fastened in the handles?
H. R. E. asks: Can articles be coated with H. R. E. asks: Can articles be coated with
steel by an electrotype battery, and how? P. L. B. asks: What will keep cherry
Doards from warping? G.P. asks : 1. How can I make oiled silk?
2. How can I make a waterproof varnish for muslin 2. How can I make a waterproof varnish for muslin
bags, which will not crack when the bags are folded up? B.I. L. asks: 1 . Of what substance are Mr.
Rogers Rook which describes the tools and modus operand $=2$
 ufactory where I require thirty or forty horse power.
Can you advise me how it is practicable to transmit the water power over thatthreemiles to drive the manufac-
tory?
E. asks: Is there any value in a miner's
compass? "i bought one, and when new, the north pole was readily influenced by the presence of metallic fron.
It was sent 300 miles by rall, and lost its attraction for metallic fron; but when carried into a shaft of limonite mere the sounth end points down and the north end up, at
an angle of about 70°. Outside the mine, the south pole an angle of about 70°. Outside the mine, the south pole
dipsabaout 10°, and at other places 20°. Why does the
south pole dipinstead of the north pole? Is the needle south pole dipinstead of the north pole? Is the needle
of any practical value in prospecting? What are the of any practical value in prospecting? What are the
diffieulties in using it , and how are they to be guarde

A. F. A. Says: Please give a rule for cal
culating the power of a tube bovler. The fire is under culating the power of a tube boller. The fire is unde
the boller and comes through the tubes. Answer: Cal.
culating the heating surface in square feet, and dividin. culating the heating surface in square feet, and dividing
by 15, will give you the horse power, approximately.
J. W. asks: What are the component parts
of nitro-glycerin, and the relative amounts by welght of each ingredient? Answer: Into a mixture of four and
two thirds pounds of concentrated sulphuric acid and two and one third pounds of concentrated nitric acid,
pour one pound of glycerin and you have the terrible ve agent, nitro-glycerin.
Z. M. P. K. asks: What cheap chemical from a tough sediment adhering thereto, supposed to
be caused by grease and soap suds from washing dishes; etc.? Answer: Try washing with milk of lime, or strong W. K. M. asks if apple pomace distributed
round a well of water would cause anengine which uses round a well of water woula cause anengine which uses
the water to rust or cut. The engine is sometimes found
to be quite rusty in the morning. Answer: We do not to be quite rusty in the morning. Answer: We do not
think the result you speak of is produced by apple pomace, b
phere.
W. P. B. asks: What is the comparative how much difference will the form, square or round,
make? What is the rule for size and hight of chimneys, computed from the boiler? Can you mention any cheap
work giving reliable information on kindred subjects? work giving reliable information on kindred subjects? No. 1 of Van Nostrand's "Scientiftic Series" will proba-
bly give you the desired information.
G. T. L. asks: In working steam expansive-
iy in the ordinary reciprocating engine, does it make any difference whether the port is left wide open during
the first part of the stroke and entirely closed during the first part of the stroke and entirely closed during during the entire stroke, the width of the opening, in
the latter case, being of course regulated by the desired the latter case, being of course regulated by the desired
degree of expansion? Answer: It is much more eco-
J. B. M. says: I have an engine thaty reJ. B. M. Says: I have an engine that re-
quires 40 ibs. pressure, but sometimes I have extra
heavy work and have to run it at 60 lbs. Will it take any more fuel to keep the pressure at 60 lbs. all the time, provided that here is no escape of steam through the
safety valve? Answer: Theoretically, it takes scarcely
any more fuel to make steam of 60 bs. pressure than it any more of 401 lbs ; but in practice, there is a noticeable difference in the amount of consumption in the twe cases.
It will be ordinarlly more economical, however, to carry It will be ordinarlly more economical, how
steam;at th ehigher of the two pressures.
J. S. M. asks for an easy rule for setting a
slide valve with a link motion? How would you set
 slide valve, with a right and a left hand double thread on
the stem, they being drawn together by a wheel on th the stem, they being drawn together by a wheel on the
top of the stem? How can I set out the rings of the steam piston? How shall I key up the connections with the cranis pin and cross heads? How can I set the Ing? What is the beart thgs, especially the thrust bearprevent the water from being drawn over from the boiler into the engine? Is it a good plan to give a boiler
plenty of steam room, so that the sceam may clear itself of the water that is apt to rise with it? Answer: We
are glad to receive a letter containing such intelligent questions; but our correspondent, without perhaps being a ware of th, has mace by a lengthy treatise on marine engines, He must study such things for himself; and while he will
find many valuable hints in our paper, he can only mas find many valuable hints in our paper, he can only mas-
ter the subject by dillgently reading the best textbooks, ter the su bject by diligently reading the best text book
and carefully investigating the best practice.
T. T. says: We have a well about 40 feet from a pond, and want to lay a one inch iron pipe under draining the pond? We want to lay it about 4 or 5 feet
below the surface of the water. Answer: Perhaps you had better lay the pipe in another manner. If the well
is below the pond, a siphon will answer very well, and can be easily applied.
B. M. asks: How can I mix chalk or othe will be no sedimentat the bottom? By what the can it be brought to a creamy appearance? Answer:
The nature of a precipitate is insolubility. Chalk is insoluble in water or alcohol, and therefore precipitates the chemical properties of chalk in this respect. You chalk and water by frequent stirring.
H. M. B. asks: What is the best mode of
extracting, from linen or clothing, the stains produced by the tincture of muriate of iron, after they have been washed? Answer: Soak in solution of oxalic acid, an
wash thoroughly. Oxalic acid is poisonous when swal-
H. J. B. Jr. asks our opinion of a system of H. . .B. Jr. asks our opinion of a system of
hydraulic rams for propelling water for extinguishing
fres. Answer: Probably when steam is not used in a fires. Answer: Probably when steam is not used in a
building, this would be a good arrangement. But when steam is available, a steam pump could
effective and quicker in its operation.
D. A. I. asks: Can you inform me of the such as an anillinedye, the object belng to have the coatIng as thick as possible without scaling off readily? The
color at the same time should be soluble in water. I color at the same ime should be soluble in water.
have tried common gum arabic, but, while it prevents calng off, it is insoluble in water, and is very difficult
o work. Answer : Try a very weak solution of gum arabic. This has veryslight consistency, and
venting scaling, cannot be dificult to work.
A. M. R. asks for information concerning
the most recent process of making malleable iron cast. ings, on a large and small scale. Answer: A process of to redness while imbedded in powdered chalk or char coal, or oxide of Iron (hematite, for instance), so as t cast iron. See Osborn's "Metallurgy of Iron and Steel," and " The Manufacture of Steel," by Grüner.
J. T. B. Says: A friend and I have a quesof an ear trumpet, it is of great importance that th It transmits, such as light metal or other material capa ble of sonorous vibrations while 1 , on the contrary,
maintain that the whole design of the ear trumpetis for the purpose of collecting and transmitting or conduc ing the sound already produced, and that it should b
constructed in bell form merely to collect the soun waves and thus make a direct impression on the mem.
brana tympani with greater force. I contend that the orm has more to do, with its effectiveness as an aid to and that tit being sonorous or capable of vibration does not increase the sound or make it more easily heard. Which is right? Answer: Itis generally considered that tmakes very little difference of what material the instru hat the outer opening is greater thanthat which enters the ear. The effect of this is to transmit the sound vi-
brations to portions of air continually growing smaller thus increasing the intensity, as the vibrations approac
R. H. asks: 1. In which case has a vesse with compressed air, or when exhausted of air alto-
gether? 2. What is the relative buoyancy? 3. Give ule for finding the weight which a given quantity o air will support in sea or fresh water. 4. What is th
best shape for buoys? 5 . What amount of horse powe would be required to move a horizontal column o 2 miles an hour, the column discharging horizontall against an open body of water 3 feet below the surface
6. What resistance would be offered by the opentody water? Answers: 1. When exhausted. 2. Common
atmospheric air weighs about 0765 pounds per cubic oot, compressed air at a pressure of two atmosphere weighs twice as much, and so on. 3. Weightwhich can the displaced water. 4. They are usually made can
shaped. 5 and 6 . We cannot answer these questions without some further particulars being given. If, a we suppose, the questions are askedin reference to pro-
pulsion by a water jet, we must refer you to some good
T. R. B. asks how to get the exact radius fora link for an engine? Answer: We think you will
ind full and correct information on this subject in "Link Valve Motions," by w. s. Auchinclos.
M. H. asks: Will linseed oil mixed with
slaked lime do to paint old buildings with? Answer Linseed oll and slaked lime when mixed together will form a soapy compound, not suitable, we should imagine,
for a paint. You want for a body some substance that will not chemically combine with the oill, such as red
oxide of fron or red ocher, a favorite color in some chalk.
C. P. asks for the best method of restoring Answer: You can remove grease spots from a carpet by oakingit with benzine or naphtha, by means of a rag.
We know of no way to restore the faded colors in
W. B. J. asks: What material must I use on make a tough elastic mold for casting center flowers
n plaster of Paris? Answer: Use a mold of gelatin, C. R. C. asks: How can I make powdered matter of soapstone is due to some metallic oxide in
its composition. You might try the action of vitriol upon it in a very finely powdered condition G. B. asks: What salts and gums are the
nostaffected by the weather? Answer: The most dell quescent salt, or one that attracts moisture the most, is
the chloride of calcium. The gums, on the contrary, the chloride of calcium. The gums, on the contrary
have generally the property of parting with their com
S. C. A. Says: In Colorado the atmospher very difficult to perform any active labor on account
of the difficulty in breathing, until they become accli-
mated. This is more noticeable in sickly persons, or mated. This is more noticeable in sickly persons, or
persons with weak lungs. Is it to be accounted for by there being a less per centage of oxygen in this pure
dry atmosphere?
2. Must the lungs expand to al low one to inhale sumfictent aifr to obtain the required
amount of substance to sustain life? Answer: Yo amount of substance to sustain life? Answer: You purpose of absorbing it, thus oxydizing the blood and
keeping up the standard of animalheat necessary to life. keeping up the standard of animalheat necessary to life.
On the mountain hights of Colorado, the air is less dens On the mou than hights of Colorado, the air is less dense
than that at the sea level. and consequently, bulk for
bulk that, where you live, the lungs must inhale more air in a given time, in order to obtain the required amount of
oxygen, and consequently one must breathe faster. It oxygen, and consequently one must breathe faster.
would naturally take some time for the lungs of persons paratively rarified atmosphere and this change of air would affect sickly persons or thos with weak lungs more than those with sound ones.
J. W. R. asks: By what process can I ob J. W. R. asks: By what process can I Ob
tain the greatest amount of carbon? Answer: Tha
depends upon the kind of carbon wanted. Charcoal epends upon the kind of carbon wanted. Charcoal
one kind, and a very compact variety forms sometimes in gas retorts. Lampblack is nearly pure carbo
J. F. W. asks: What metal is the best
onductor of electricity? Answer: Silver is the best S. T. B. asks: What battery power will it
require to heat red hot a platinum sheet, 5 inches square and the thickness of a sheet of writing paper? Answer Supposing the platinum to be the one. hundredth of an nch thick, about seventy five cups of the largest size
Bunsen's battery, all well connected and in active ope ant
G. A. asks for a simple method,suitablefor
class illustration, of producing a current of electricity class filustration, of producing a current of electricity
by light, to show the relations of heat, light, electricity, and chemical force. Answer: Adjust a prism so as to get a well defined polar spectrum, bring the violet
rays to a focus on the eye of a fine cambric needle rays to a focus on the eye of a fine cambric needle
made so hard that it will scratch glass; this wil
magnetize the needle, proving that light will pro mace magnetism, by which a current of electrictity
duce
may be induced in a small coil of very fine wire con may be induced in a small coil of very fine wire con
nected with the binding posts of a sensitive galva nometer; a slight movement of the galvanomete caused to enter the coil, and a movement in the oppo site direction when it Is withdrawn, delicately prove
H. W. S. Jr.-In the compound engine, the F. J. S. says: 1. Is the "Science Record" of the magnetic force which controls the needle of compass? 3. What is the variation of the compass at
New York? 4. What is the cause of the variation whic he magnetic needle makes with the true meridian? is quite reasonable to regard the earth as an immens magnet, whose south pole is at its north geographical needle. 3. About two degrees west of north; the vari-
netion is not fixed, and is more or less every day in the year, and frequently several times in a day. 4. It is
upposed to be caused by local electric action. 5. It a valuable lower oxide of iron, and is found in th
D. M. B.-The machine you describe in your
communication does not seem to us to embody any Dommunication does not seem to us to emboy an
novel features. The fact that a heavy body, when put in motion, requires considerable force to stop it is by no
means new. The announcement that you get rid of the resistance is scarcely worthy of comment, as it amount to saying that you have created power. You must ex-
cuse us for not being willing to give up what you are pleased to call the old theory of the lever. If your ma
chine really destroyed resistance, it would accomplis this equally well whether running fast or slow; and in point where the power is applied, would, in falling a oot, raise something more than a pound (suspende
E. T. asks: Does the burning of coke af
ect theiron of a boiler more than coal? Answer: We D. K. S. asks: Will corn meal put into of it (put in to stop a leak) that my boiler is as clean
and free from scale as when new. Answer: We think W. H. F. asks: Are any oscillating engines
made in this country with cut-off valves? As far as I can learn, they are all made to open and close thei
ports by the oscllation of the cylinder, and are there fore invariable in their action. I wish to procure, if possible, two oscillators wherenn I can regulate th
steam as with a link motion. Answer: We have see such engines as you describe, but it would probably be
necessary for you to have them built to order, as we do not think they are regularly in the market.
J. J. R. asks: For a small steam yacht, say ier, fastest and cheaper, as far as machinery is co cerned, a side wheel or propeller? Where space is no so much an objectigh or horizontal engine and boiler Answer: The side wheel will be the steadier, and th screw propeller the faster and cheaper. For such the upright boiler can be made of large diameter ant
T. H. says: The English plan of sounding
in deep water is to a attach a block to one of the yard arms ; then another block is is secured too the end of a a
rope wich is rove through the yard bock and secured to the matn rail by elastics, the second block being
hauled close up to the yard block. Then the sounding line is rove through this second block and the sinking
weight and grapnel attached. The line is marked with weight and grapnel attached. The line is marked with
a conspicuous mark at each hundred fathoms and told off by the officer in charge as the line runs out. A large
number of pins are elaced in the man railo which the
num
 to see that the line runs off clear. A a mall engine con-
neected with a winch is employed to haul in the line. Two or three turns are taken around the winch head
with the line, and held by an experienced man who al.
 IIne by the shp"s motion and yet, with and
the line is often parted and lost. . What orovertion
.
 eter, were attached toa weight sumficient to sink it rap.
Idly to the bottom in 5,000 fathoms water, weight detand sufficient buoyancy to return rapidly to the surface with
10 pounds weight attached? 8 . To what stize would the
 original weight under the pressure. 5. Is there any
agent that an be employed that will return rapldy to
the surface with 1 poonnds weight attachen from 5,000 fathoms depth, which will not reaure more than
pounds to each 1,000 fathome to sink it rapidy?
swers: We presume that the strain on the line is is due its own weight and the friction of the water, the weight
of the line befing greatly increased by its becoming soaked. If the whtee pine encar werer thorounhly drited
tis doubtfun if it would be sensibly compressed would readily absorb water, until all its pores were
illed. It would be impossible to tell without experiment how much water it would absorb, under the press
sure to which it would be exposed, but probably no more than it contains when just filled - in which c
would weigh from 30 to 33 pounds per cubic foot the weight of the displaced water would be somethin more than 64 pounds per cubic foot, it is evident that the spar would rapidly rise to the surface. If it could
be coated with some preparation to exclude water, it and it would rise more rapidly. Perhaps some of our eaders have made experiments, to find how much the merged; and if so, we would be glad to hear from them. It might be better, instead of using a spar, to sink a bag or a telescopic cylinder which contains a mixture that
would form gas of considerable pressure when the weight was detached. The effect of this would be that
the bag would be inflated, or the cylinder lengthened, and in either case, as the bulk of the submerged body
would be largely increased while its weight remained the same, it would rise rapidly. The advantage of this body with constant volume
F. M. H. asks: 1. What sized pipe will I
require to convey steam 600 feet from a two flue boiler 12 inches diameter by 20 feet long to a four horse power
engine, the pipe not to be coated? If the pipe be coatget as much power with a turbine near the top of the
penstock as at the bottom, the latter being full of
water whenstarted? The turbine is supposed to run water when started? The turbine is supposed to run keeps the penstock full. 3. Is it practicable to bore arte-
sain wells to run water engines? At what depth is water usually found where springs a re numerous? Answers 1. About $1 /$ inches in diameter. By properly coating
the pipe, you will effect a great saving, probably more o be placed as low down as is convenient. 3. Wate ne obtained in some localities, by digging down a few feet; ; but borings for artesian wells must generally lenty of, however, to construct them when there plenty of water close to the surface. The boring ma-
chinery can be driven by water wheels. There are two artesian wells, close together, in the city of Chicago,
and the machinery for boring the second one was driven nd the machinery for borng second
$\underset{\text { power transmitted underfollowing circumstances ."Our }}{\text { J. C. S. would like to know the maximum }}$ power transmitted underfollowing circums tances. "Our
driving pulley is 8×24, and runs at rate of 130 revolutions per minute; the driven pulley is 8×24 and is distanced from driving pulley 28 feet. Belt runs nearly
horizontally. The day it was put on (as tight as could be, wíth stretcher) 12 Inches was cut out in consequencne
of its becoming too slack; next day 22 more inches was out out; and today the belt is slack. A rule laid down by your paper gave 11,000 feet per minute to the inch
for a horse power, making this belt about 5 horse power ; according to a test by a practical man with a dynamom-
eter, as described in the ScIENTIFIC AMERICAN, it would produce over 11 horse power. If the belt is strong enough and does not slip, this is not a very good rule
for calculating its power." Answer: The rule referred to probably gives average results, and not the maximum amount of the power that can be transmitted by a belt.
We shall be glad to hear of relliable tests on the subject; We shall be glad to hear of reliable tests on the subject;
and if we receive enough data, we willcorrect the forl and if
W. B. E. asks: Why will not direct acting
steam pumps work with single slide valve alone, without having auxiliary piston and tappet valves to move
the slide valve? Answer: We believe the first direct acting steam pump was made as you describe; ; but it is tappets and an auxiliary piston, because in this case the motion of
ture of power.
W. J. R. asks: 1. What horse power, theoW. J. R. asks: 1. What horse power, theo-
reticaily, ought one pound of good bttuminous coal to
furnish? 2. Given a mine in which the air travels two milles through gang ways 8×6 feet, with difference in
elevation of pit mouth 50 feet, increased 50 feet by furnace stack: Supposing that you can burn, theoretical ly, one tun of good bituminous eoal per day, what is
the greatest velocity and amount of air you can draw the greatest velocity and amount of air you can draw
througb in a day? Answers: 1 . Theoretically, every througb in a day? Answers: 1 . Theoretically, every
pound of good bituminous coal burned per hour would develope about $53 /$ horse power, if its whole effect were
realized. 2. You do not send enough data to enable
W. B. E. Says: Your answer in regard to
two pumps discharging into one pipe was incorrect. To increase the quantity of fluid discharged, you must increase the pressure. Answer: We have already re-ex-
plained this matter, and until we see it clearly proved that a smallsteam fire engine throws as much water as
one double the size, with same steam pressure and number of
opinion.
H. A. D. asks: 1 . In turning a curve, does
one wheel or a lecomotive turn any faster than the one whee oi a locomotive turn ang raster than the
othre, and if so, how, both being secured to the same
xxe? 2. Can a locomotive with two driving wheel connected by the roo, travel as a lo loomotive wwht only
one driver? Answers 1. No. 2 . Yes, if we understand one driver?
the question.
A. P. Y. asks: Can a boat sail faster on a
tack, that is, golng against the wind, than when going directly before the wind, the veloctty of the breeze be Ing the same in both cases? Answer: A salling vessel
under some circumstances, goes faster on a tack thai before the wind. You will find an art
ject, on page 177 of our volume XXIII
B. A. S. asks: 1. What are the methods of digging? What peculiarities of soll, or other surface in dications, are there, which denote the presence of iron Can a miner's or dit needle be relled upon, and caa
 rellable work on geoolog. 2. The miner's needde is
chiefly employed to locate velns in mines. 3 . We think
T. ON. asks: Is the arrangement shown
in the diagram the proper one for a belt from A to drive In the dagram the proper one for a betr from A to drive
anhaft on B a a r right angle, both shafts being horizon
tol

tal, and one about

from an upright one
vill the pulleys have o be arranged in the
gme way, and will the eitt lead from the is in the case of the Answer: When tran mitting power with a
quarter turn belt from one horizontal shaft to
another, alaso horizo. it, gutid pulieys are generally employed. When on
shaft ts oorizontal, and the other vertical, the arrange nent shown in your seer wil
nclent distance between centers.
E. W. H. asks: 1 . What is the fireproof
composition used in the manutacture of sates? 2. Would yot the same material placed on the outside of and
around a steam boller confine all the heat to the inside round a a steam boiler confin e all the heat to the inside
of the boiler? 3 . Are these non conducting compounds safe filling
 one conducting materi
W. A. M.-The reason why your plan will vet whr 1 is the same as would be assigned in case a sollt
velig to sink the recelver, instead of the weight of the compressed air.
C. J. B. asks: How can I regenerate ink
that has been frozen? Answer: Prussiate of potash will not regeneratef frozen ink, though it will bring out Writing written with such ink. When potassium ferro-
 We know of no method to regenerate frozen ink, it
pale color after frezzing being due to the decomposition
G. W. B. asks: How can ordinary dark brown maple sugar be clarified so as to be made of a they would be suitable to make up into hunting jackets eggings, etc.? Answers: 1 . Dissolve the sugar in wa er, add whites of eggs to the solution; heat to the boil
ing point; and skim off, while bolling, the impurittes from the top. While still hot, tilter through recently
burnt animal charcoal (bone black). Boll again to the burnt animal charcoal (bone black). Boil again to th crystallizing point, and then run off into molds, etc. 2.
Soak the skins in lime water, and cleanse as perfectiy as possible. Then soak tn dilute oil of vitriol to open the
pores of the skin. Then soak in an infusion of oak bark
E. E. G. asks: How can double sulphate aicke and ammonia be made from the sulphate, for a hate, c nd collect the light blue erystals that form.
C. R. C. asks: Can rubber be made pure lose its elasticty? What work treats upon the subject ored dark by the smoke of the fire used in drying it. obtain it pure,mixt he fresh white juice with 4 or 5 time its weight of water; let it stand for a day and then heat,
and
and Repeat unt11 all the gum is extracted, and then press sum with white cead, or simmilar body, to harden it, but the proper manufacture of what you seem to be looking
for can only be attained by careful experiment. See Musprat's " Chemis
Mrs. H. H. asks: How can I make fibrin
 and thea raise the same water contaninng the eggsto the W. E. T. asks : Are not lightning rods The rod should be attached directly to the nouse with
H. W.S. asks: What is the general rule or calculating solar and lunar ecllpses, and what is th
pest text book on the subject? Answer: Ecli pes the sun and moon recure every efghteen years, eleven and
ne third days, in nearly the same order. They occus Whenever a lunar conjunction or opposition conncides
with one of the moon's nodes. See Burritts ""Gee Thy one of the moon's nodes. See Burritt's "Geogra phy of the Heavens," "pp. 214-224, or Chavyen
ical and Practical Astronomy," pp. 436-521.
A. S. asks: 1 . What is the best kind of a
batters to attach to a steam boller to prevent lime from
 electric current to prevent scale from forming in boill
ers? I have seen batterics used for that purpose ers? Thave seen baterics used for that purpose, an
hear them highly spoken of. Answers: 1. . One that constant, such as Lecclanche's and Danielis's sustatining
battery. 2 . We should think, having no positive evidence to the contrary, that som mach battery poswer would berequired to do efflcent service that it would hard
W. A. B. says, in answer to A. D. W., who
asked how to deposit a thin film of lead on iron: Dis salve the ae atate or nitrate of eaci in wate. Precip-
tate the lead with a strong solution of carbonate of po
assa
 raltimes in water, and then add a solution of cyanid Of potassium, say two ounces to the gallon of water, t
edissolve the precipitate. By employing this In a weak state, with moderate battery power, I have
coated articles admirably. The iron must be wel

cleaned

 fany one doubts this, let him run his boiler, say one ay with water bet ween the lower and middle gages, an he next day with water
J. E. C. asks: Which is the best water for
drinking and household purposes: water obtained from drive pipe well, or by the common well, providing that年 lath having the B Whether the water be obtailned from a drive pipe well or an ordinary one will make no difference as regard
the quality of the water for household or drinking pur-
W B his Whang tume.
W. B. asks: What can I use to remove ink
ains from a pair of tweed trousers?
Answer: Rub a little melted tallow on the spot and then wash; ; or ap.
ily lemon jutce, or a lltte powdered cream of tartar mate
B. H. B. Says: In your issue of June 14 , you
ive a mode of tinning hooks and eyes, pins, etc. I wish o apply the process, and I ask for the proportion of the ngredients of the recipe. Answer: You can tin arti-
cles of ron by frrst dipping them into dilute oll of vitriol
J. S. B. asks: What is paint or plumbago
ixed with to make a composition ft for filling pencilis Answer: The plumbago used in lead pencllsistgenerally
nixed with clay and moistened with water, then pressed mixed with clay and m m
nto the form destred.
E. asks: How can mold stains be removed rom books without injuring the paper? Answer: You
can wititen papers discolored with mold in the following way: 1. Wet werth purs clean water. 2. Soak in a d dulute
solution of tleaching powder. 3 . Pass through water made sour to the taste bymuriaticacild. 4. Soak in pur ater unt11all traces of actla are removed, and dry. It 1
 a good bleaching agent, and then passing it throug
T. S. asks : How can I make the portable
 tion of aniline black in water or anconol. Soak thick
unsized paper thoroughly until 1 It 1 sas dark as the solu-
J. G. nays dry. I have broken about two dozen
Jo good wiles. How can I fxx them? Can they be osidered dn any way? Answer: You might secure the
piecesfor use upona wooden bar. We think you could lieces for use un
ot solder them.
D.S. H. asks for a formula for calculating te work of one falling welght. Answer: Theoreticilly falls multiplited by the weight. The mean pressure on
the pile is equal to the work, dividea by the distance the

 t pounds. Mean pressure on pile $=62,500+11=41,66$ L. M. C. asks: What will be the best ce lamp? Answer: The following is is recipe fora afreproof
cement for mineral substances: Fine riversand 20 parts, litharge 2 parts, quick lime 1 part, linseed oil to
thin paste. Let it harden before applying heat.
S. D. E. asks: What is the proper focal distance for a 2 f foot refeetoro and how parge should the
small reflector be to correspond?
Answer: A two too

e. 1 s.
E. J. L. says: 1. Suppose a half inch pipe perpendicular hight of 33 feet, and water poured in till
 is the rule to ascertant the pressure? 3. If a one inch
tipe is placed instead of the abo plpe, at the same pipe is placeat Instead of the above pipe, at the same
hight, will there be any difference in the pressure?
any hit how much o estimate the water pressure at half a pound pe
quare inch for every foot in hlght of the water column Whether your barrel will stand the pressure of a wate column 33 feet high depends on its strength. 2 and 3
The pressure on the barrel would beabout 15 pounds to he square tnch.
D. M. Says: On page 75 of your current vol-
me, I. M. B. asks why the images of objects, being re
 was upon the retina of his eye an image of objects seen
by him? It will, think, be readily granted that the ob ect of vision is not the image upon the retina, but the thing of whith it is the image. In other words, what
the faculty of sight apprenends is the external object not the mage of it upon the retina. This image is, no the objeet of the faculty, but the means by which the
acculte elicits the act of seelng; not that which we see, aculty elictst the act of seing; not that which we se
but thatby means of which we see. If the spectator not conscious of the image upon the retina of his eye he has no knowledge of it in the act of vision, the
he difliculty proposed by I. M. R. vanishes ; for that diffleulty arrses from his assuming that what we see is
the image upon the retina, while in fact no man has a direct knowedge of that image
dge, ace houlchave asked: Why, the images of objects befin eversed upon the retina of the eese,we enevertheless see
the objects in therlir proper positions? The question I. G. points out, in reply to J. E. E's ques worms, that the light is only emitted by the female
D. B. M. s. sys, in answer to several inquirie
to
ho w to determme themeridan of any localtiv: on
as
venient distance apart, and align them as exactly as
possible with the pole star. Twelve hours afterward ossibe with the pole star. Twelve hours afterward
observe them again, when, without the merest chance they will not be in alignment with the star. Align them again by moving elther of the lines to the east or west
as
may be necessary The first position of the tine noved should be carefully marked before moving it itions of the line point between the frrst and becond p his point, and the wo lines will hang in a true mer ian line. Of course hhis method can be used only whe lantern, properly shaded, will be found useful 1 aaking the alignments. A moonilght night is not ver sultable, because the star is not then so distinct. Trouble will sometimes be caused by the wind. Thi
W. A. B. says that a piece of brown paper, foled two or three times and placed between the up-
perlip and fie gums, will immediately arrest bleeding the nose. Press the lip gently with the finger so O. C. Says. I would suggest to A . K ,., who
asks for sun invisible ink, that sulphuric acid greatly di inted with water will be invisible until gently heated When it will become a jet black, if rightly proportioned.
if too much acti is used, it will eat tho paper.
J. E. S. says, in reply to J. H., who asked
or a ruie to determine the position of the frets on the for a rule to determine the postion of the frets on the
finger board of a guitar: The following is avallable for rdinary use: Divide the length of the string from nu arts for the space between nut and frrst fret. Then
a vide the distance between that fret and the bridge into
eighteen parts and take one of those for the seeond fret dighteen parts and take one of those for the seeond fret,
nd so on, always shortening the string one eighteenth to raise the pitch halif tone. This, if accurately spaced,
will bring the octave fret a little belo w the center of the rring, which is as it should be to produce a perfect o he harmonic, the string, being in higher tension whe orced on to the fret, gives ton high a tone if the
ret be in the center. To space for the frets with com passes in the ordinary way, if done with any degree of

nethod shown in figure, it will become simple and inte dge, make the base line A B some three or four fee ong; set a pin at the point C and erect two perpen
dicular lines $A D$ and E, which shall be one elghteenth f the distance from AC apart, that is, if it is 36 inche rom A to C, then from A to E will be 2 inches. Lay of nd with the straight edge strike the diagonal C ; from he intersection H draw the horizontal I , which give zental K give the position of second fret, and so on t ull number. The finger board spaced in this way wil not be likely to correspond exactly with the finger
boards on the guitars made by regular makers, nor do those of different makers agree, from the simple fac hatany instrument that makes the same tone for the sharp of one note and the flat of the next is an imperfect
nstrument, as there should be somethinglike a quarter or ird of a tone difference; so when a single tone is use romise made by the regular spacings is as good as an or the difference is so slight as not to be discernible by
he ordinary ear. If one has a guitar of which the localon of the frets is satisfactory and wishes to transfe is either longer or shorter, the use of this same tring ular draft is available and perfect. Make the triang sengths shall correspond with the two different length f strings, transfer this portion of the frets on to one of the lin
other.
Minerals, Insects, etc.-Specimens have een received from the following correspond nts, and examined with the results stated:
S. H. C., to whom we submitted certain (sent to us by another of our correspondents), report that he has examined the specimens under the micro-
scope. He also sends us sketches of their appearance nder the instrument, with descriptions. From the in, our correspondent has magnified them up to fo pin, our correspondent has magnifed them up to He
midable looking monsters six inches in length. He
states that they belong to the group acaridea, and ar A.F. S. The bright brassy crystal is iron pyrites, 0 A.F. s.-The
C. O. T.-All three are iron pyrites, a compound of
ulphur and iron, of value when in sufficient quantity sulphur and iron, of value when in sumficient quantity K. J.J.-The black specimen appe
other specimen contains plumbago.
G. W. A.-The metal looks like zinc
R. S.- Your specimen is probably the humming bir mistaken for the bird.
R. H. McG.-The metallic specimen seems to be an al-
loy of silver and lead ; the other material is bituminous coal.
J. M.-Thearticle enclosed is a kind of grass which from the spent products of the dye house in which 1 ,
E. A. S.-Iron pyrites.
J.S. T.-The enclosed specimens are iron pyrites,
J.A.E-Your mineral resembles oxide of iron. An
Jalysis will cost $\$ 10$.
J. R. W.-The metalic composition of thismineral ca

COMMUNICATIONS RECEIVED

The Editor of the Scientific American acknowledges, with much pleasure, the receipt of original papers and contributions upon the following subjects :

On the Composite Lens. By A. F. K. On Letting Air into Pumps. By E. On the Water Cooling Monkey. By J. W. H. On Hot Air Engines. By F. G. W On Algebraical Problems. By M On Lunar Acceleration. By J. H. On the Hight of the Atmosphere. By S. B. On the Zodiacal Light. By T. R. L. On How Pianos are Ruined. By H. C. F. On Large Pumping Engines. By W. L. C. On the Sun's Heat. By W. C.
On the Million Dollar Telescope. By F.M.B., nd by J. P. W.
B. B. H .

On Propulsion on Canals. By F. G On CaloricEngine Valves. By F. H. R. On the Patent Right Question. By W.R.R On Patent Wrongs. By W. P. P.
On a Balloon Valve. By S. W. G
On an Improved Journal Box. By C. W. C. On a Theory of Heat and Light. By J. A. H. Also enquiries from the following: H. J.C.-P.S.A.-C.A. C.-W. B. N.-W.E.M.-C.R.
-R.D.J.-G. H.-F. Z.-J. H. C.-J. A. G. \& Bro.S. M.L. Jr.
manufacturers, or where specified articles are to certain also those having goods for sale, or who want to find partners, should send with their communications an
amountsufficient to cover the cost of publication under he head of "Business and Personal," whioh is specially devoted to such enquiries.
Correspondents in differ
Where spark arresters can be parts of the country ask: Where spark arresters can be obtained, suitable for
chimneys In which shavings are burned? Who make
reliable wind mill reliable wind mills for pumping water? Where can the
best fire extinguishers be obtained? Whatis the price of, best fire extingulshers be obtained? What 1s the price of, and where obtained, the best cement for jacketing steam
botlers? Where can diamond drills be purchased? Makers of the above articles will probably promote their interests by
Amprican.

[official.]
 Index of Inventions
 For which

Letters Patent of the United States were granted for the whek ending July 29,1873 ,
and each bearing that date. [Those marked (r) are reissued patents.]
Alarm, burglar,M. H. Perkins..
Alarm,fog, C. and G. M. Stevens...........
Auger bits, machine for forming, Auger, earth, S. H. Dickerson
Baggage check, J. M. Curless. Baggage check, J. M. Curless....... Balusters, cutting, Frantze et al........
Barrels, dressing and crozing, W. Bro
 Bit stock, A. D. Goodell. Blind, inside, E. Metcalf. Boat lo wering apparatas, G. W. Mallory (r) Boiler attachment, wash, C. P. Chapma
Boiler, straw burning, Kellogg \& Coffin. Boiler, straw burning, Kellogg \& Coffin.
Boilers, water regulator for, C. J. Weld Bolster plates, manufacture of, W. J. Lewls. Bolt cutter, Fawcett \& Sefton. Boot brushing apparatus, Beck \& Schneidt.
Boots and shoes, manufacture of, J. Boyle.. Boots and shoes, manufacture of, J. Boyle.. Bottling liquids, J. Klee. Brake device, steam, G. We.tingho............ (r)
Brake device, air, G. Westinghouse, Jr. (r) Brake device, air, G. Westinghouse, Jr.
BrIdge, iron, Bender, Latrobe \& Smith.. Bridge truss, F. Schwatka..
Bridle bit, V. C. D1 Tergolin Burner, smoke and steam, Ki Camera stand, N. S. Bowdish.
Can for oll, etc., M. W. House Car axle box, Hill \& Sargen Car coupling, W. B. Barnes Car coupling, E. Bick
Car coupling, G. Koeb.
Car coupling, E. W. Pel
Car mover, R, A. Cowell.
Car roof, J. . Wands (r)
Car starter, J. Corbell.
Cars, etc., heating, T. H. Mott....
Car brake and propeller, J. W. Hil
Carpet cleaner, J. Spaulding.............
Carpet lining machine, J. R. Harrington.
Carriage seat shifting rail
Carriage top, w. I. Peck
Casket, burinl, w. H. Ross
Caster, table, C. B. Sheldon
Chain for horse powers, A, w. Gr
Chair,folding, B. J. Harrison
Chair seat, J. P. Sinclair.
Chair seat or back, R. W. My
Churn, rotary, E. A. Hewitt
Copper balls, hardening, Deacon
Corpse cooler, S. H. Crump
Cultivator, E. Briggs....
Cultivator teeth, G. F. Stroud.....
Disinfectant compound, J. Hilton
Door hanger, A. K. R.c.
Ejector, G. Hibberd.....
Door hanger, A.K. Ri
Ejector, G. Hibberd...

Electromagnetic date stamp, J. C. Hinchma
Hngine, ammonia, w. H. Smith et al.
Engine rotary, G. w. Cummings...........
Engine, rotary steam, E. W.\& S. Jenkins...
Engine, steam, A. Fraser.......................... Engnine, steam, A. Fraser......................
Engtnes, balanced valve for steam, W. Glen Engines, ofler for steam, A. Worden..... byelet setting machinery, A. B. Edmand

Fence, farm, W. S. McKenzie

 Fence, portable, S. G. Burke.Fence post stub, G. Lakins..
File cutting machine, A. Weed
Fire arm, breech loading.P. Bourdereaux
Fire arm, breech loading, J. Rider.
Fire escape, A. Pelham.
Flue for buillings, fireproof, T. Gould.
Furnace, reverberatory, J. Morriso
Gas meter, De Castro \& Burton.
Gas nipple holder,L. W. Stockwell
Glass, ornamenting
Glove, R. D. Burr
Glue, manufacture of, W. Plumer
Harvester cutter, J. W. H. IIoubler....
Harvester cutter, F. R. \& W. O. Sutto
Harvester cutter, F. R. \& W. O. Sutto
Hat block, expansible, R. Eickemeyer
Hat stretching machine, R. Eickemeye
Hats, machine for lustering, R. Etckemeyer
Hinge, lock, C. B. Clark Hinge, lock, C. B. Clark
Hoe, J. M. Baird.......
Hoe, J. M. Baird......
Hoe, T.B. Loekwood
Hoisting apparatus, steam, J. Beggs.
Hoist
Hoop cutting machine, P. Welch.
Horses from crowding, preventing, o. C. Ross
Hub boring machine, Duncan \& Arnol
Ice cream freezer, J. Dooling......................
Iron, manufacture of refined cast, C. Burgess. Kiln, brick, H. Tugby
Knobs to spindles, attaching, F. M.Merriam et al. Knobs to spindles, attaching, H. J. B. Whipple
Lams, shade holder for, M. W. House. Lamps, shade holder for, M. W. House Lantern, L. F. Betts...
Latch and lock, combined, A. M. Adams Lathe, D. Heer............. Lathe for turning tobacco opipes, C. Krap
Leather folding machinery, E. B. Stimpso Letter box, A. Rosentjerna.
Line, fire safety, C. A. Grea Line, fire safety, C. A. Gregory
Lock, master key, A.
Loom, H. D. Davis.
Marble molding machine, J. Finn.
Meter, rotary, I. Cook
 Nal extractor, G. J. Capewell
Nut lock, E. P. Thompson..
Organ swell, reed, J. R. Loma
Paint, distemper, H. M. Johnston, (r)
Paper cutting machine, H. Law, (r)......
Paper folding machine, G. W.D. Upton.
Paper folding machine, A. Washburn, (r)
Paper making machine, N. Keely
Penholder, J.S. Orndorft.........
Pessary, E. P. Banning...
Phot.
Photography, W. H. Hill.......................
Pipe mold, cement, F. A. Sage...........
Pipe machine, smoking, H. E. Merril.
Plpe machine, smoking, H. E. Merrill....
Pipes In wells, lowering,. . P. Okerlund. Piston heads, centering, o. S.
Planter, cotton, Cox \& Smith.
Planter, cotton, Cox
Plow, C. o. Nason..
Plow, cotton, Z. B. SIms, (r)..
Plow, reversible, G. W. Howe
Press, cotton, T, s. Smith....
Printing tickets, etc., J. Dyer.................
Printing press, rotary, Braldwood \& Hewitt
Hewitt
Pruning shears, H. C. Hills.
Pump, force, O . Snell..
Pump valve, W. Barne
Pump valve, W. Barnes.
Rallway rail chair, S. Hu
Ralway rain chair, S. Huber....
Railway signal, electric, D. Rousseau.
Railway signal, musical, R. A. F1lkins. Railway signal apparatus, electric, H. W. Spang Railways. rall for street, M. L. Ghrardin
Rake, horse hay, J.H. Mears................. Rake, horse ha, J. A.
Rice cleaner, , I . L. Armb
Rock, blasting, I. Whitcomb Roof, freproof mansard, Fryer \& Johnson. Saccharine matter, extract
Safe, fireproof,D. O. Paige.
Safe, ireproof, D. O. Paige
Sash balance, G. N. Joss..
Sash fastener
Sasw fastener, $\mathrm{A} . \mathrm{C}$. Roger
Saw buckle, C. W. Hubbard
Screw cutting machine Pesing, J. Luci
Screw cutting machine, Peace \& Cox.....
Screw cutting machine, C. C. Walworth
Screw threading machine, R. F. Fowler.
Sewing machine, C. S. Cushman.
Sewing machine, W. Wh. Whiting.
Sewing machine, w. W. Whiting......
Sewing nachine, s. W. Ward well, Jr.
Sewing machine
Sewing machine caster, J. Robertson.....
Sewing machine, hat banding, J. Stewart
Sewing machine motor, G. W. Manson
Sewing machine plaster, W. Walke
Sewing machine plaiter, W. Walker...
Sewing machine table, F. R. Wollinge
Sewing machine treadle, F. Smiley.
Shade holder, L. J. Atwood.
Shaft coupling, J. M. Stone.
Sheet metal, bending, Cozzens \& Wiggin
Shoe edge burnishing machine
Shoe soles, die for molding, s. B. Fuller.
Shutter worker, S. R. Foster
Sign, w. B. Lambert........................
Sinks, etc., emptying, F. J. Wildenthaler
Soda water apparatus,
Spark arrester,R. Ash.
Sittoon, W. H. Topham, (r)................
Steam gage, registering, E. H. Ashcroft.
Steam gage, registering, E.
Steam Injector, E. Korting.
Steam whistle, O. Kromer..........
Steel, manufacture of, C. Burgess.
Stool, adjustable, A. D
stool, C. B. Sheldon...
Stove pelisll, Chamness \& Vaughn
Street sweeper, W. Sm1th
Stump extractor, I. Flanders...
Submarine foundat'on, E. Manico.
Sugar cutting, Brunjes et al.......

Amuxican.

Wiench, A. Partridge.

APPLICATIONS FOR EXTENSIONS.
Applications have been duly flled, and are now pending-
for the extension of the following Letters Patent. Hear-
Ings upon the respective appycat
the days hereinafter mentioned:
26,003.-TElegraphic Machxne.-G. M. Phelps. Oct 26,003.-TElegraphic Mactine.-G. M. Phelps. Oct. 15.
26,060--Box Joint Machive.-J. Stimpson. Oct. 22.
26,069.-SLeEping Car.-J. Danner. October 22.

EXTENSIONS GRANTED. 24,947.-Jotrnal Box,- - J. A. Montgomery
24,987.-FIsHing Reet. - W. Billinghurst. 25,061.-Elevator.-O. Tufts.
25,015.-Wood Saw Frame.-J. Haynes,

DISCLAIMER.
25,061--Elevator.-O. Tufts.
DESIGNS PATENTED.
6,7856 to 6 ,789 -OIL CLOTHs.-C.
6,790.-CARPET.-H. Smith, Kidderminster, Eng.
1,383.-CIDER, ETC.-Berlin Mineral Water Co., Boston,M
i,384.-BLuing PAPER.-Dole Brothers, Boston, Mass,
1,384.-BlUING PAPER.-Dole Brothers, Boston, Mass.
$1,885-$ APPLIE PARER.-D. H. Goodell, Autrim, N. H.

1,387.-Butter.-S. Straight \& Son, Hudson, o.
1,388 .-Chewing Tobacco.-Wall \& Co., St. Louis
1,388.-Chewing Tobacco.-Wall \& Co., St. Louis, Mo.
1,399.-MEDICINE.-C. D. Bradley, Taunton, Mass.
1,390-SEAP.

1,392.-MEDICINES.-Willson Carbolated Cod Live
Co., New York city.
SCHEDULE OF PATENT FEES:
On each Caveat......
on each Trade-Mark.
on flifng each appication for a Patent (17 years)
On issuing each original Patent..
On appeal to Commissioner of Patents..
On application for Reissue................
On application for Extension of Patent.
On granting the Exten
On fling a Disclaimer

On an application for Design (14 years).................. $\$ 3$

VALDE OP PATEMPS

And How to Obtain Them.
Practical Hints to Inventors

ROBABLY no investment of a small sum expense incurred in obtaining a patent xpense incurred in obtaining a patent even
when the invention is but a small one. Large inventions are found to pay correspondingly low, Colt, Ericsson, Howe, McCormick, Hoe and others, who have amassed immense for tunes from their inventions, are well known And there are thousands of others who ha
realized large sums from their patents.
More than Fifty thousand inventors have availed
themselves of the services of MUNN \& Co. during the TWENTY-SIX Publishers of the Scientific American. They stand at the head in this class of business; and their large corps
of assistants, mostly selected from the ranks of the of assistants, mostly selected from the ranks of the
Patent Oflice: men capable of rendering the best service to the inventor,from the experience pracucally obtaine While examiners in the Patent office: enables MUNN
Co. to do everything appertaining to patents BETTE

closing is in- uiry quiry in nearly eve-

 office. A positive answer can only be had by presenting a complete application for a patent to the Commissioner of Patents. An application consists of a Model, Draw-ings, Petition, Oath, and full Specification. Various official rules and formalities must also be observed. The
efforts of the inventor to do all this business himself generally without success. After great perplexity and delay, he is usually glad to seek the aid of persons experienced in patent business, and have all the work done over again. The best plan is to solicit proper advice at
the beginning. If the parties consulted are honorable men, the inventor may safely confide his ideas to them: they will advise whether the improvement is probably patentable, and will give him all the directions needful
to protect his rights.

How Can I Best Secure My Invention This is an inquiry which one inventor naturally ask another, who has had some experience in obtaining pat nts. His answer generally is as follows, and correct: Construct a neat model, not over a foot in any dime Hon-smaller if possible-and send by express, prepaid ddressed to MUNN \& Co., ${ }^{77}$ Park Row, together with description of its operation and meris. Carefully, an advise you as to its patentability, free of charge. Or, you have not time, or the means at hand, to construct model, make as good a pen and ink sketch of the improvement as possible and send by mail, An answer a to the prospect of a patent will be received, usually, by return of mail. It is sometimes best to have a search made

Preliminary Examination.

In order to have such search, make out a written de
 of 85 , by mall, addressed to MUNN \& Co., 37 Park Row and in due time you will receive an acknowledgmen
thercof, followed by a written report in regard to the patentability of your improvement. This special search is made with great care, among the models and patents
at Washington, to ascertain whether the improvement presented is patentable.

Reissues

A reissue is granted to the original patentee, his heirs, of an insufficient or defective specification, the origina patent is invalid, provided the error has arisen from in ant A patentee may intention.
A patentee may, at his option, have in his reissue
separate patent for each distinct part of the invention comprehended in his original application by paying the
required fee in each case; and complying with the othe required fee in each case, and complying with the othe Address MUNN \& Co., 37 Park Row, New York, for full particulars. Caveats.

Persons desiring to file a caveat can have the paper repared in the shortest time, by sending a sketch an a caveat is $\$ 10$. A pamphlet of advice regarding fee fic tions for patents and caveats is furnished gratis, on ap.
plication by mail. Address MUNN \& Co. 37 Park Row Design Patents.
Foreign designers and manufacturers, who send good to this country, may secure patents here upon their new selling the same goods in this market.
A patent for a design may be granted to any person,
whether cttizen or allen, for any new and origtnal design for a manufacture, bust,statue, alto rellevo, or bas relie any new and original design for the printing of woolen, silk, cotton, or other fabrics, any new and original in pression, ornament, pattern, print. or picture, to
printed, painted, cast, or atherwise placed on or worke into any article of manufacture.
Design patents are equally as important to citizens a o forencers. For for pathlet MUNN \&

Rejected Cases.

Rejected cases, or defective papers, remodeled for
parties who have made applications for themselves, or trough other agents. Terms moderate. Address MuN

Value of Extended Patents.
Did patentees realize the fact that their inventions are Keay to be more productive of profit during the seven
years of extension than the first full term for which the patents were granted, we think more would avall them to 1861 may be extended for seven years, for the benefl of the inventor, or of his heirs in case of the decease fomer, by due application to the Patent Office, ninety
days before the termination of the patent. The extended time incires to the benefit of the inventor, the assignee except by special agreement. The Government fee for an extension is $\$ 100$, and it is necessary that good profes-
sional service be obtainea to conduct the business before the Patent Offlce. Full information as to extensions
may be had by addressing MUNN \& Co., 37 Park Row,New York. The appricant for a patent should furnish a model of his invention if susceptible of one, although sometimes it may be dispensed with; or, if the invention be a chem ents of which his composition consists. These should be securely packed, the inventor's name marked on them, and sent by express, prepaid. Sm ill models, from a dis-
tance, can often be sent cheaper by mail. The safest tance, can orten be sent cheaper
way to remit money is by a draft, or postal order, on way to remit money is by a draft, or postal order, on
New York, payable to the order of MUNN \& CO. Person who live in remote parts of the country can usually pur
chase drafts from their merchants on their New Yorl chase drafts from
correspondents.

Trademarks.

Any person or firm domiciled in the United States, any firm or corporation residing in any foreign countr United States, may register their designs and obtain protection. This is very important to manufacturers in this country, and equslly so to forelgners. For̀ full partic Canadian Patents.
On the first of September, 1872, the new patent law of
Canada wentintoforce, and patents are now granted to citizens of the United States on the same favorable term as to citizens of the Dominion.
In order to apply for a patent in Canada, the applican can patent.
The patent may be taken out either for five years (go ernment fee $\$ 20$), or for ten years (government fee $\$ 4$ or for fifteen years (government fee $\$ 600$. The five and
ten year patents may be extended to the term of fifteen years. The formalities for extension are simple and not
American inventions, even if already patented in this
can patent is not more than one year old.
All persons who desire to talke out patents in Canada

Row, New York, who will give prompt attention to the business and furnish full instruction. Foreign Patents.	
ecu	
American citizens in all of these countries. Now is the time, when business is dull at home, to take advantage of	
of all kinds are always in demand in Europe. There will neverbe a better time than the present to take patents	
a broad. We have reliable business connections with the principal capitals of Europe. A large share of all the patents secured in forelgn countries by Americans are obtained through our Agency. Address Munn \& Co., 37	
Park Row, New York. Circulars with full information on foreign patents, furnished free.	
ns desiring any patent issued from 1836 to Novem	
ber 26,1867 , can be supplied with official copies at a reasonablecost, the price depending upon the extent of draw	
ings and length of specification.	
time the Patent Office commenced printing the drawing and specifications, may be had by remitting to this of tice $\$ 1$.	
will be furnished for $\$ 1$. When ordering copies, please to remit for the same as	
ove, andstatename of patentee, title of invention,and	
d ate of patent. Address MUNA \& Co., Patent Solicit	
37Park Row, New York.	
UNN \& Co. will be happy to see inventors in person,heiroffice, or to advise them by letter. In all cases,	
they may expect an honest opinion. For such consulta-	
tions, opinions, and adviee, no charge is made. Write plain; do not use pencil or pale ink; be brief. All business committed to our care, and all consulta-	
tions, are kept searet and strictly confdential.	
interferences, procuring extensions, drawing assignments, examinations into the validity of patents, etc.,	
special care and attention is given. For information and for pamphlets of instruction and advice Address	
PUBLISHERS SCIENTIFIC AMERICAN, 37 Park Row, New York.	

Attertistments.

RATES OF ADVERTISING.
Back Page
Inside Page ----
 H ${ }_{\text {men. }}^{\text {AND }}$ SAW MILLS, 51 Courtlandt St., New York.

Proposals

 For Contracts| Sealed proposals will be received by the Board of Water Commissioners of the City of Yonkers for entering into contracts for fornishing the following described Work and materials, or any portion threreor
 10,00 feet 12 inch wrought ron and cement pipe. ${ }_{5}$ 5.000 feet $4-1 \mathrm{Inch}$ wrought iron and cement p ipe. 10,003 feet 12 -inch cast iron pipe. 15,000 feet 6 -inch cast iron pipe.
 5,000 feet 4.inch cast iron pipe.
 100 feet 6 .inch curved iron pipe.
 ${ }_{60} 50$ heet 4 -1nch charyed iron pipe.
 125 Branches, 3 and 4 way, 4,6 and 12 inches. 80 sleeves for 12 inch pipes.
 40 sleeves for 6 .nch pipes.
 20 sleeves for 4 -Inch pipes.
 812 -Inch stopcocks. |
| :---: |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

 $\$ 50$ Ti \$150 PER WEEK guaranteed to

A GNTSS-Most fortunate chance to make

OTTS SAFETY HoIsting
 Machinery.

 $\frac{\text { No. } 348 \text { BROALWAY, NEW YORE. }}{\text { SHINGLLEAND BARREL MACHNERY. }}$

ROPER HOT AIR

P. M., Greenfield, Ind.
Massachusetts Agricultural College,

 S ELL YOUR PATENT.-The advertiser

$\$ 72.00$ EACH WEEK.

NGN YORE STHAT ENGINECO.
Machinists Tools
98 Chambers St. NEW YORK. E. M. MAYO'S PATENT BOLT CUTTER,
$\mathbf{A}_{\text {A Family Boardings.shool. On the Harlem Rail- }}^{\text {MENIA }}$ road, elghty-flive miles from New York. Fill courseg
of seminary instru tion, with preparation for college r business. Personal
Terms, $\$ 360$ per year.
$\frac{\text { Fortieth year begins Sept. } 15 \text {. S. T. FR }}{\text { WOODBURY }}$
Planing and Matching

TO INVENTORS $s^{s}{ }^{\circ}$ MANUFACTURERS

The Managers of the 42 d Exhibition of the American
Institute, of the City of New York, beg to announce,
that the Exhibition Buildings on 2d and 3 A Avenues and

Te FOUNDERIES, Factories, Ropewalks,
 HARTFORD
Steam Boiler
INSPECTION \& INSURANCBCO. CAPITAL

Boilers, Buildings, and Machinery, STEAM BOILER EXPLOSIONS.

STEAM BOILERS,

Fullinformation concernnng the plan of the Company
pperations can be obtainee at at the
hоме office, in Hartford, Conn.
at any Agency
M. ALLEN, President. S. C. M. BEACH, Vice Pres

shumicau.

I EPROVED FOOT LATHESS. SELLING

Machinery,

Cold Rolled Shafting.

Sturtevant Blowers.

cription, constantly on hand.
GEORE PLAACE
21Chambers Street, New York.
PATENT PUNCHING

Tremean atapted to aill kinas of work in store ready for
Farrel's Patent Railway Crane Patent Ground Chilled Rolls, ROLLING MrITHS AND MIMLMACHINERY,

COWELL PATENT DOOR AND GATE

A POPUTAR TDRA.

$\mathbf{R}^{\text {ICHARARDSON, }}$ MERIAM $\&$ CO.

R Red
and
and
tarb
Arbe
orther
other
$\mathrm{F}_{\text {Sell the }}^{\text {OR Patent }}$ SALare right to manufacture and

$\frac{\text { Ciagara Steam Pump }}{\text { Cingie. }}$

EMABINS, , THIRTY-FIVE PER CENT
 Andrew's Patents.

 GEAR'S PATENT VARIETY MOULDING MACHINE

 1832. SCHENCK'S PATENT. 1871
 C thit and Mrofanical Engiverbing AT

 GREAT REDJCTION IN PRICES
 -

Porta

An deutfdie ©ryfinder.

Diefe groß̃e unt tyätige ©laffe unfer Be boblferung madjen tir befonders barauf
 Bindung mit Mafigington mitr den europaiidjen
 gung
bietet.
Seder ©r fintber, greidybiel melder શationali tatt angefjörig, ift burdf bie liberalen $\Re_{\text {atentge }}$ feste ber $\mathfrak{Z e r e c i n i g t e n ~ © t a a t e n ~}$ zum Fatentidutb fiir ©rfindungen becedtigt. Uutrre firma if bercit, geftiilst auf 26jährige ©rfafurung, beutiche Erfinter jeber Beit zu berathen und zu näpigen Freifen rajd unb piinttilid gatente zu erlangen.
Die Dentidye Section ift in ben ફänden fägiger bentfider Siggenieure, weidfe in ber Dffice perförlid mit ©rfinberit berfegren zwerben.
Der ,Scientific American" wirb in feinen ©palten bie bebeutenderen Exfindungen be= ipredifut
(Sorrefponbenz erbeten und prompt beants wortet. Wamphlete in bentidicer ©practe ber: ben auf $\mathfrak{B e r l a n g e n ~ f r a n c o ~ z u g e f a n d . ~}$

$$
\mathfrak{N r o r e f i r e : ~}
$$

$\mathfrak{B H}$
"Scientific American" Patent Agentur,
37 ßart $\begin{gathered}\text { Pow, } \\ \text { New } \\ \text { York City. }\end{gathered}$

Stuctitsuxtue
Adverttsements will be admitted on this page at the rate of \$1.00 per line for each insertion. Eingravings may head advertisements at the sume rate per line by meas- urrement. as the letter-press. ,
No. 222 Fifth Av., New York, FURNISH Information Free

Waltham Watches

amizican Imbiine Tater Thed
 bine Wheel ever known. A full re
port may bebtaned of
MILLS \& TEMPLE, Dayton, ohto. WIRE ROPE.

 Machinist's Tools,

 NOYE'S MILL FURNISHING WORKS
 R IVERVIEW ACADEMY, Poughkeepssie, NUMEROUS TESTSHAVEAROVED
NF.BURNHAM'SNEW TUREINE
M
TOBE THE BESTEVERINVENTED
 Pass This By if yon are artol or an luatct,
 $\mathrm{B}^{\text {UERK'S WATCHMANS }}$ TIME DE

 hey siould properly use great care in the selection. To ully describes the vartous grades of Waltham Watches,年体d cases. We esend this frec to those who write forit. Single watches will be sent by express, with bll to col lect on delivery, to any part of the country, no matter I. Y. Safety Steam Power Co.,

 PATTERNS\&TOOLSFOR SALE

 NILESTOOL WORKS,

be quir refu stee libs

SCIENCE RECORD

1873.

Every person who desires to be well informed concerm-
Ing the Propress of the Arts and Sclences should have a

 the price. A liberal parts of the country, on recelpt on the the trade and to cian
vassers. For sale at all the princlpal Bookstores. MUNN \& CO., Publiehers, 37 Park Row, New York City
Tie SCIENTIFIC AMERIC AN will be sent one year and one cony
recelpt of $\$ 450$.

LUBRTCATORS.

Working Models

Nater Wheel
 NewBookJustOut-160PAGes
 SDNT FRED

JAMES LEFFEL \& CO.,
SPRINGFIELD, OHIO, or 109 LIDERTY ST,
$\mathbf{K}_{\text {Astma. }}^{\text {IDER'S PASTILEST-A Sure Relief for }}$
NEAFIE \& LEVY, PENN WORKS,
 PORTLLAND CEMENT,

 THE HASKINS MACHINE CO . FITCHBURG, MASS., Mannfacturers of
PATENT VERTICAL STEAM ENGINES.

EVERY VARIETY STEAM, PUMS HAMILTON,OHIO.

MONEY made with stencil and Kove check ort
THE HEALD \& SISCO
Patent Centrifugal Pumps,

$\mathrm{A}^{(\text {UENTS }}$ WANTED-Anybody can mak

SteamPumps

alley machine company Easthampton, Mass.
 The Pulsometer or Magic Pump.

 AMERICAM SAW CO., No. 1 Ferry St., New York. Movable-Toothed Circular Saws, PERFORATED CROSS-CUT, SOLID SAWS.

P. BLAISDELL \& CO. Patent Drill Presses, with Quick Return Motion

SEND For CUTS.

HOUSTON'S PATENT
TURBINE WATER WHEEL

TIIE

LUBRICATORS

MIAHOGANY,

ROSEWOOD, WALNUT, WHITE HOLLY ALL KINDS OF WOODS,
IN LOGS, PLANK, BOARDS, AND VENEERS.

GEO. W. READ \& CO.,

DOUBLE ACTING

Soin Miceacan

One copy, one year
One copy, six months $\$ 3.00)$
1.50
1.00 One copy, four months 1.00 One copy of Sclentiffc American for one year, and One copy of Sclentific Λ merican for one year, and one cony of "Science Record," for 1873
Remit by postal order, draft or express
The postage on the Selentifig American is five cents por subscribers must remit, with subscription, 25 cents extra Address all letters and make all Post 0ffice orders of

MUNIN \& CO

37 PARK ROW NEW YORE
T CE "Scientific American" is printed with

