

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

NEW YORK, AUGUST 9, 1873.

impfoved ice and refrigerating machine. The various inventions which, during late years, have been devised for purposes of refrigeration, or for the manufacture of ice, may be divided into three principal classes : (1) Those in which evaporation is effected in a vacuum, the process being assisted by the use of an air pump, as in the ether machines of Messrs. Siebe, Tellier, and others. (2) Those in which air is first compressed and afterwards expanded, or, more generally speaking, those in which heat is adplied in order to ultimately produce cold, exemplified in

Our engravings present an elevation, Fig. 1, and plan view, Fig. 2. A is the compression cylinder, and B the expansion cylinder, both of which are worked simultaneously by power applied to the crank, C, by the low pressure engine shown in the lower portion of Fig. 2. Air enters in the direction of the arrow into the upper part of cylinder, A, which is of such dimensions that, at every move of the piston, nearly thirty-five cubic feet of air, or, as the former is double acting twice that number, are compressed with every revo lution of the engine. Thirty:six revolutions per minute, for
the water and the length of time the air is submitted to its action. An atmosphere is thus obtained which, although under two and a half compressions, is but slightly warme than the ordinary air previous to treatment, while the expan sive force and effect of a volume two and a half times large is retained. Consequently, it is claimed that the 125° of temperature above noted are clearly gained.
In this condition the air enters cylinder B, where the ex pansion takes place under a gradually diminishing pressure, regulated by automatic valves worked by the simple expan-

THE WINDHAUSEN ICE AND REFRIGERATING MACHINE.

the apparatus of Kirk of Glasgow, Mignot of Paris, and the example, compress 150,000 cubic feet per hour, and at a sive force of the compressed airitself. To dilate the latter Windhausen invention, to which the following description will more particularly refer. (3) Those in which cold is produced by the direct action of heat without the use of power, as in the case of refrigeration by the liquefaction and subsequent vaporization of ammonia, to which class belong the systems of Carré, Reece, Mort, and others of more recent date. In addition to the machines coming under the above heads, may be noted others employing freezing powders and different hydrocarbons, numbers of which, possessing various degrees of merit, exist both in this country and abroad. The Windhausen apparatus, which our engravings illustrate, was first patented in Germany ; and in March, 1870, similar protection was obtained for it in the United States. It has already found general notice in our columns in connection with other devices of similar construc vices of shilar construc tion, and may be fairly considered as among the most successful machines of its class yet produced. The principle upon which it is based is one of the simplest in physics, namely, that the compression of the atmosphere generates heat, and its subsequent expansion, cold; an axiom too generally understood to need explanation here. The particular mode of its application in the presentinstance is, however, an important point; and, indeed, the entire efficiency of the device is claimed to rest \mid which are surrounded by a current of cold water which en- The apparatus, it is claimed, will sustain a pressure of 85 upon the circumstance that, instead of cooling the air heat- ters at G (dotted lines, Fig. 1), passes up through the cooler, pounds per square inch, or nearly six atmospheres,' produed by compression by means of running water, and then conducting it directly to the space or apartment to be refrigerated, it is led into a chamber where dilation takes place. In brief, expansion is effected by the simultaneous action of the machine before the air is sought to be utilized.

to its normal volume, it is evident that the same amount of pressure, it is stated, of only 35 pounds per square inch, that to its normal volume, it is evident that the same amount of is, reducing two and a half volumes of air to one volume Supposing the air on entrance to be at $80^{\circ} \mathrm{Fab}$, it is stated that after compression, experiment proves its temperatued to be 205° inding a 125° pravin to the cylinder, A, the current enters the condenser, D, from which, in the direction of the arrow, it passes to a similar receptacle, E, thence down, as indicated by dotted lines in
Fig. 1, to another cooler, F. Within Fig. 1, to another cooler, F. Within these chambers, are ar ranged series of pipes through which the blast passes, and only be partially returned by the small quantity of air with in the expansion cylinder, so that a low degree of tempera ture is at once obtained. This is still further reduced with every movement of the machine, as the original air in the expansion cylinder becomes colder, or rather replaced by the cooled and compressed atmosphere. As the compression and expansion cylinders are simultaneously double acting, the
latter receives its supply only from the former, so that the compressed air is that by one and the same pro cess; hence, if $150,00 \theta$ cu bic feet are compressed in one hour, necessarily the same amount must be ex panded in a similar time.
From the cylinder, B, the air escapes into the to be refrigerated with great velocity, sufficient, it is stated, to be capable of conducting the current through channels two feet in diameter a distance of 300 feet from the exit aperture, the measured temper ature of the air at the ori fice being from 30° to 35° below zero Fah. It is also asserted that under a press ure of 35 pounds to the square inch, at 33 or 34 re volutions per minute the machine has, with an inad equate supply of equate supply of water since its erection at New Orleans, produced a tem Orleans, produced a tem
perature of 54° below the perature of 54° below the
Fahrenheit freezing point. F , through pipe, H, through the next cooler, and emerges at cing a most intense cold, scarcely susceptible of thermome 1. The effect of this water is to abstract a portion of the trical measurement. Perfectly dry cold air is said to be heat imparted by compression, reducing the temperature of formed, the contained moisture being condensed into snow the air to a few degrees above that of its natural state, the and appearing at the exit orifice
extent of this reduction depending upon the temperature of This machine, we are informed, has already received the
first prize at the Vienna Exposition. The apparatus now operating in New Orleans was built by Eygels, of Berlin, and was the first constructed on a large scale in Germany. The driving engine is 31×36, and works at from 50 to 55 pounds pressure. The patent right for the entire continent has been purchased by the Windhausen Ice Making and Refrigerating Asseciation of North America. Further information may be obtained by addressing the President of the Company, Mr. J. Kruttschnitt, Lock Box 144, New Orleans, La

Suntifir Ammita

MUNN \& CO., Editors and Proprietors. PUBLISHED WEEKLY AT
NO. 37 PARK ROW, NEW YORK.

$\begin{array}{ll}\text { O. D. MUNN. } & \text { A. E. BEACH. }\end{array}$

TIRIMS.

One copy, one year...
Club rates $\left\{\begin{array}{l}\text { Ten coples, one year, each } \$ 2 . \ldots . \\ \text { Over ten copies, same rate, each. }\end{array}\right.$
VOL. XXIX., No. 6 . . [New Series.] Twenty-eighth Year.
NEW YORK, SATURDAY, AUGUST 9, 1873.

IS IT A DASTARDLY OUTRAGE

Executive Department, International Union of Machinists and Blacksmiths.

Cleveland, Ohio, July 21, 1873.
Messrs. Munn \& Co:
Dear Sirs:-Enclosed please find a copy of an oath re quired by Messrs. Stearns, Hill \& Co., of all the men in their employ and all who apply to them for employment. I think you will agree with me in pronouncing this attempt, on the part of the firm in question, to rob men of their liberties as one of the most dastardly outrages, on the rights and prerogatives of American freemen, ever attempted in this country since the ratification of the Declaration of Independence. I admired your criticism on the Joliet (IIl.) Iron and Steel Co., and send you the enclosed, feeling confident you will do the matter justice. I remain,

Respectfully yours,
John Fehrenbatch.
The following is a copy of the paper referred to in the above letter :

APPLICATION FOR EMPLOYMENT.
stearns, hill \& co.
ment in the manufactory of Messrs. Stearns, Hill \& Co C ment in the manufactory of Messrs. Stearns, Hin \& Co., and in all good of the time I may remain in the employ of said Stearns, Hill \& Company become a member of any "Machinists' and Blacksmiths' Union," or any other socity or associstion which assumes to control or regulate the rela-
tions existing betwen employers and workmen in any business whatso tions existing between employers and workmen in any business whatso
ever; and that'I will not countenance or assist in any combination of workmen having in view any interference whatsoever with the business of said Stearns, Hill \& Company, and I hereby agree with said Stearns, Hill \& Company, that in case I have made any misstatements in this application, or in case I shall violate any of the conditions of the agreement herein
contained, I shall forfeft to said firm of Stearns, Hill \& Co., any and all pay contained, I shall forfelt to said firm of Stearns, Hill \& Co., any and all pay
that may be due me at the time of the discovery by them of such misstate that may be due me at the time
ment or violation of agreement.

187.
 \qquad

Erie County, ss
Personally comes the above named.. sho being duly sworn, deposes and says: That all statements by him made in the sing application are true
Sworn and subscribed before me this,$\ldots . ~$. recurring difficulties between employer and employee, we propose to make them the subject of brief comment. At the outset, it may be noted that there is no parallel between the "application" quoted and the "receipt and contract" of columns, as intimated by our correspondent. The latter was an acknowledgment for a sum received, accompanied by an agreement by the workman to conform to certain conditions in consideration of receiving his legally due wages. These provisos released the company from damages for accident to the signer from any cause, gave it the right to discharge him at a moment's warning but prevented him under penalty of forfeiture of his earnings, and, besides, im posed other festrictions, ex post facto in operation, and hence clearly oppressive and unjust. In that case the employee was obliged to yield to a disadvantage to get his money after he had worked for it, and hence a moment's thought wili he had worked for it, and hence a moment's thought will
show the circumstances to be entirely different from those now under consideration.

Enclosed with the letter of our correspondent is a printed hand bill addressed to the public. So far as we are able to
understand its purport,it consists of an answer to statements made by Messrs. Stearns, Hill \& Co., in relation to matters of internal regulation of their shops, subjects which to our
mind are peculiarly the business of the above firm and not at all of the public. There are also some remarks about individual difficulties and recriminations, possessing no general interest, so that, in fine, from all the evidence before us, the trouble narrows itself down to the simple fact that Messrs. Stearns,Hill \& Co., for doubtless good and, to them,sufficient reasons, have seen fit to exclude society men from their works. Now, we hardly imagine that the Union to which we are indebted for the above epistle or any other association will have the hardihood to deny that the firm has a perfect right to do exactly what it pleases with its own property and manage its affairs as it thinks best, so long as its perty and manage its affairs as it thinks best, so long as its
doings are legally conducted and no unjust or oppressive doings are legally conducted and no unjust or oppressive
measures are exerted. If a concern should decide to employ measures are exerted. If a concern should decide to employ
only society men, to the exclusion of all others, would not a "dastardly outrage" then be committed on the latter? And is not one party, if either, as much entitled to considera tion as the other? Clearly we think the employers can exclude from their establishment whatever person or persons they choose, and the remarks of our correspondent, based on this grievance, in the usual exaggerated mode of expression com mon to the trades union harangue, are entirely misplaced and without substantial foundation
We are of opinion, however, on the other hand, that the requiring of workmen to sign agreements by which they bind themselves to any definite or prescribed course of action is not sound policy. It is true that the hand is not obliged sign, and that he can refuse the situation as the alternative but documents of legal form, no matter how innocent in
tenor, are,by men possessing but vague ideas of the law and tenor, are,by men possessing but vague ideas of the law and
its restrictions, almost invariably misapprehended, just as in the present case the above form of application is stigmatized as "bond and mortgage" and "death warrant." The rela tion of employer and employee is very simple and require no such formality ; the former,if he wishes to exclude society men from his estabiishment, should inform himself fully as regards a hand before hiring him; and after arrangements are completed, the man can be easily made to understand that his first overture toward trade union fallacies wil bring prompt dismissal and disqualification for re-employ ment. Documents of almost any description are sure to b seized upon by unscrupulous persons as a tangible basis fo unfounded assertion. The mere fact of a paper existing i enough for them to exaggerate its purport in order to work upon the passions of the ignorant, and thus foment dimcul
ties alike prejudicial to the interests of employers and employed.

THE VIENNA SHOW

In another column will be found an interesting letter from ur special correspondent, Professor Thurston, from which we learn that he has safely arrived in Vienna and commenced is examination of the great show. His first impressions of the display are here given, and we cannot refrain from remarking how completely the statements made, as regards American exhibits, accord with the views expressed by us before the opening of the Exposition. The United States section is but poorly filled, a fact under the circumstances to be expected; but there is unquestionably an overwhelm ing display of American inventions coming from the work hops of foreign manufacturers. Close imitations of eve in the space allowed to other countries, exhibited not only a specimens of the handiwork of their makers, but a American devices, a fact cited as a means of recommenda ion. In spite, therefore, of the poverty of our individual exhibit, it will be seen that we are abundantly represented, not merely through advertising our own products to th world's notice, but by having them heralded for us by other ations through the sincerest flattery of imitation.
The Fourth of July in Vienna was the occasion of a colossal jollification by all the Americans in the city. Speeches were made by Messrs. Schultze and Adams, and Baron Senborn also by Professor Thurston on "Agriculture and the Me chanic Arts;" by Mr. Hill of Massachusetts on "Manufac ares in the Old and New Worlds," and on "Science" by Profescor Horsford.

PROGRESS OF CABS.

The inhabitants of London and other European cities en oy luxuries in the way of conveyances that the people of our American cities know but little about. We allude to acks and cabs, of which some 10,000 are employed in Lon on, and which convey two passengers any where within distance of a couple of miles for 25 cents.
At the International Exhibition, London, a committee, of which the Duke of Beaufort was chairman, and Lord Somer set and other prominent persons members, recently made an fficial trial of the various improved cabs presented for the prize competition. The committee went through considerable xercise in jumping into and out of the various vehicles, and inally concluded that there were no very notable improve ments in any of them.
One of the best was a novelty in the shape of a cab fo four persons, set on very small wheels. The idea was that such vehicles may be started and stopped more easily than he large wheeled machines. The traction of the small wheels is a little more, but it was contended that the sum of the work upon the horse, in ordinary cab traffic, is less han the large wheeled vehicles.
Another improvement for two wheeled cabs was a shifting Another improvement for two wheeled cabs was a shifting
ballast box which the driver could readily move at pleasure
and thus counterbalance the weight of the vehicle in respect to its pressure upon the horse's back, to correspond with th
number of passengers occupying the interior of the cab.

A GREAT ONRECOGNIZED INVENTOR.

Under this heading the Wool Bulletin devotes a half col umn to the consideration of the marvelous advantages that have been conferred upon this country and the world in gen eral by the mechanical duplication of parts, in the man ufacture of machinery; an idea which, it alleges, is of American origin. The Bulletin says:
"The American manufacture of implements and smaller machines owes its superiority not only to a larger use of ma chine tools, but to an idea more important in its results than any merely mechanical invention, and one which is unques tionably of American origin. This idea is the making each of the several parts of many different machines interchange able. For instance, in making a lot of muskets, the manu facturer does not fabricate each musket separately, but heconstructs each of the smallest pieces of then thousand muskets, it may be, separately, and makes them so precisely alike that each will fit exactly any one of the ten thousand muskets. It is this system which makes it possible for a single factory of arms in this country to make more muskets in a day than can be made in all England in a month. It is this which enables us to supply all Europe with arms and this which enables us to supply all Europe with arms and
to export sewing machines to all the European nations, notto export sewing machines to all the European nations, not-
withstanding the vastly higher cost of our labor. The name of the inventor of this, perhaps the greatest of all Ameriof the inventor of this, perhaps the greatest of all Ameri-
can inventions, but one which from its nature could not be can inventions, but one which from its nature could not be
secured by patent, is hardly known out of his own town and the object of this note is to place it on record.
" We have received from Hon. C. C. Chaffee, of Spring field, formerly chairman of the Commitlee of Patents in the United States House of Representatives, the following note :

Mr. Thomas Warner was master armorer at the time the musket, in all its parts, was made interchangeable. He is credited by his associates with the suggestions that led to the result. Out of this has grown all the enormous industry of the interchange of parts of sewing machines, watch es, and indeed of all machinery composed of a large number of pieces; and, as you say, it was the 'greatest discovery of the age,' and like all great improvements it has been one of growth. Mr. Warner is now in his eightieth year, is hale and hearty, walks to the post office every pleasant daythree quarters of a mile-and is very justly proud of what he has done for mechanics.'

We appreciate very highly the motive of our cotemporar in his desire to render honor to whom honor is due; but re gret that his statements are not supported by the facts of mechanical history.
Perhaps Mr. Warner, as boss of the armory, was the firs to suggest, in that concern, the making of the parts of the musket interchangeable; but he most assuredly was not the first inventor or suggestor of th it method in respect to the manufacture of machinery in general. It was unquestiona bly not of American origin. It was a common mechanical expedient in use in the old country before Warner was born or the Springfield Armory thought of.
How entirely at home the Yankee is in the art of self puff ery! He takes to it like a young duck to the water. "It is his system," he modestly alleges, "which makes it possible for a single factory of arms in this country to make more muskets in a day than can be made in all England in a month It is this which enables us to supply all Europe with arm and to export-sewing machines to all European nations, not withstanding the vastly higher cost of our labor." We are sorry that there is so little basis for so much of the spread agle.
In respect to fire arms and sewing machines, while it is true that we export them, to some extent, the quantity sent abroad is but as a drop in the bucket compared to the aggre gate continental production of these goods.
The practice of Europeans, when they find an American nvention to be profitable, is to order goods here until they can fit up or import the machinery for the manufacture on he spot. It is in this way that a temporary exportation from this country, of certain novel kinds of mechanism, i from time to time produced. But it is only temporary, be cause Europeans have the same appliances that we possess while they pay less for wages and living than the manufac turers of this country. It is therefore impossible at present greatly to extend the exportation of American machinery But if the prices of coal and iron shall continue to rise in Europe, it will then be possible for the United States to do a great mechanical trade with England and the continent.

CONCRETE FOR BUILDING PURPOSES.

An esteemed correspondent writing from Indianaoplis says: "I would like to know something about the con struction and durability of cement gravel houses, and I write you for the information. Are they durable? What is the cost of building as compared with a like quality of brick or frame? Is it better to make foundation of brick or stone instead of cement? We have an excellent gravel bed for foundation.'
In reply to our correspondent,we would say that the dura bility of concrete walls depends upon the quality of the in gredients. If the sand and the cement are of good quality, the walls will be quite as durable as stone walls. The walls of some of the ancient buildings of Rome, such as the Col iseum and the Baths of Caracalla, were built partly with con rete and partly with stone, and the concrete remains a durable as the stone. Many buildings with concrete walls
have been constructed with care, they appear well. Some buildings erected with building blocks or large bricks made of lime and sand under pressure have proved worthless.
To erect walls of concrete, the essential thing is to secure good mortar in which to imbed the gravel and larger pieces of stone. The mortar should be made of cement and sand (the cement fresh from the kiln and tested as to its se biting quality); and the sand should be sharp quartz perfectly clean and free from loam
Clean sand will not soil the hand. Sand may be freed from loam by washing. Place the sand in a shallow box 4 or 6 feet square, or larger, and flood with water, stirring the sand with a hoe. The loam will discolor the water and flow off with it. Keep stirring and flooding until the water runs off colorless. The sand is then clean.
Combine the dry cement with the sand in the proportion of one measure of cement to two of sand, thoroughly mix them dry, and just before use add water enough to make a thin paste. To this paste add the gravel and small stones, and stir them about until the surfaces of the gravel and stones are all covered with the paste, taking care that no more of the stone filling is added than the paste will coat. The mass, thoroughly compounded, should be immediately carried and deposited within the boxes upon the wall, and the boxes allowed to remain until the concrete is set. The time for setting will depend upon the quality of the cement but ought not to exceed from 6 to 12 hours. The propor tions between the cement and sand should vary, in accordance with the quality of the sand, from two to five measures of sand to one of cement. There should be enough cement to coat the sand on all its surfaces.
Concrete is quite as good as stone for the foundations. The quantity of gravel used will depend upon its coarseness, usually about twice as much gravel as sand. It is better that the gravel be of various sizes. The resultant concrete will measure no more than the gravel measures; the cement and sand are lost in the interstices between the stones. The cost of concrete will depend upon the cost of the materials of which it is composed and the labor. These vary in different localities, but may be estimated from the above data.

MADDER, VEGETABLE AND CHEMICAL

The ordinary red pigments used in dyeing and calico printing have heretofore been derived from the roots of the madder plant, cultivated in Turkey, France, and to some extent in the United States. By steeping and fermentation the roots are made to yield fine needle crystals of yellow color termed alizarine. If this substance is administered to animals, certain peculiar results are alleged to follow. For example, the bones of pigs are made red; a red circle is produced around the iris of the eyes of pigeons; cows give reddish milk and the cream yields red tinted butter. It has been suggested that ladies who wish for red hair should swallow alizarine. But then it might also make their teeth red, and perhaps over-tinge their complexions.
The cultivation of madder is very extensive, thousands of acres of land being given up to the crops, while the preparation of the root forms an important branch of industry. But the onward march of chemical discovery is likely to effect a change, and there is every probability that the occupation of the madder root grubber will soon be gone.

Alizarine, one of the coloring principles of madder, is now 'xtensively produced by chemical means from coal. When wituminous coal is distilled in the production of illuminating gas, coal tar comes over with the gas.
This tar, when again distilled, yields a variety of substances, which are separated by the application of different degrees of heat. For example, the light, brilliant-looking naphtha liquid known as benzole first comes over from the tar. If to this benzole nitric acid is added, the product is nitro-benzole, a peculiar red oil, having the odor of bitter almonds. Distil this with water, acetic acid and iron filings, and aniline is produced. The aniline is in turn refined, treated with preparations of arsenic and other substances, the results being the production of the magnificent series of colors known as aniline dyes. Among the last substances distilled over from coal tar is anthracene, consisting, when pure, of bluish-white crystals. A tun of coal yields about one pound of anthracene. The latter, when treated with manganese, sulphuric acid, bromine, potash and hydrochloric acid, yields alizarine, identical in nearly all of its properties with the alizarine of madder roots.
By the mixture of carbon and hydrogen in certain proportions, the chemists have artificially produced anthracene, from which, in turn, alizarine may be evolved. Thus are the productions of the vegetable world imitated in the laboratory.

The discovery of alizarine in coal tar is credited to Grazbe and Liebermann, German chemists, in 1868 , since which time the processes for its production, on a commercial scale, have been successfully and extensively introduced. In Germany there are at present some twelve large manufactories of alizarine from coal tar, and the product, which is rapidly increasing, is now 22,000 hundredweight per annum, valued at $\$ 2,000,000$.
Germany also supplies the world with aniline colors.

THE STAR SHOWER OF AUGUST 10

We hope that our readers will not forget to look for this well known star shower, which appears to radiate from the constellation Perseus. On the 10th of August, the earth annually passes for about six hours through the belt of meteors which originally formed a part of comet III, 1862, returning once in a hundred and twenty years.
It is estimated that four hundred million shooting stars daily traverse the atmosphere, adding, perhaps, a thousand
pounds to the earth's mass. These bodies move in space as dust clouds or nebulæ. When they come within the sun's attraction, the nebula assumes the form of a comet, under the influence of gravitation, and the comet is gradually drawn out by the same force into a ring revolving round the sun in the same orbit and periodic time as the original comet.
The star showers bring us specimens from the remotest realms of space; sometimes meteoric irons, containing occluded hydrogen from the atmosphere in which the fragment was last heated; at other times, meteoric stones containing hydrocarbons and phosphorus.
Aerolites contain oxygen, nitrogen, phosphorus, sulphur, carbon, silicon, hydrogen, copper, iron, cobalt, nickel, manganese, magnesium, aluminum, etc., probably most if not all of the terrestrial elements. Their weight is generally inconsiderable, but varies up to fifteen tuns. The loud report which attends the fall of the larger masses is caused by the air rushing into the vacuum in rear of the projectile when it reaches our atmosphere.

PROPERTIES OF SATURATED STEAM.

We have recently received an inquiry, from one of our cor respondents, as to the boiling point of waterat different pressures; and we propose, in this article, to give the formula asked for, with several others. Nearly all the properties of saturated steam have been carefully investigated by M. Rég nault, of France, and tables have been prepared from his researches. These tables, in very convenient form, adapted to English measures, may be found in Charles T. Porter's work on the steam engine indicator-a book which contains much useful information, in addition. The formulas by which these tables are computed are somewhat complex, but we will endeavor to render them as simple as possible, and we trust that our readers will find them both interesting and valuable.
In a previous article, we have spoken of the absolute zero, or theoretical temperature at which all heat motion ceases. This temperature is used in making calculations of the pres sure of steam, because water forms vapor of appreciable tension at all temperatures except that of "absolute zero. We will use the same notation in all the formulas, and will first explain the meaning of the terms: $T=$ temperature of the steam as shown by the thermometer, on Fahrenheit's scale. $\mathrm{t}=$ absolute temperature of the steam $=461 \cdot 2^{\circ}+\mathrm{T}$, because the absolute zero is fixed by theory at $461 \cdot 2^{\circ}$ below 0° Fahrenheit. $P=$ pressure of steam, in pounds, per square inch. $\mathrm{p}=$ pressure of steam in pounds per square foot $=\mathrm{P} \times 144$ $=$ units of latent heat per pound of steam at the pressure When water is converted into steam, a portion of the heat applied is used in the work done in producing a change of state. This heat is not indicated by the thermometer, and is called latent heat. A unit of heat is the number of degrees necessary to raise the temperature of a pound of water one degree. l=units of latent heat, in foot pounds of energy, per cubic foot of space occupied by the steam at the pressure P. The amount of heat that will raise the temperature of a pound of water one degree, if converted into work, will raise a pound weight through a distance of 772 feet; conversely, to find the units of heat that will be produced by the conversion of 1 foot pounds of energy, this quantity must be divided by 772. W = weight of cubic foot of steam at pressure P. V = number of cubic feet occupied by a pound of team at pressure P.
We will now give the formulas, working out an example or each case.

1. To find the boiling p oint of water at a given pressure $=1 \div\left(\sqrt{\frac{82591-\log \cdot \mathrm{p}}{396944}+\frac{(2731 \cdot 62)^{2}}{4 \times(396944)^{2}}}-\frac{2731 \cdot 62}{2 \times 396944}\right)$. O to find the absolute temperature of the boiling point at any pressure, subtract the logarithm of the pressure per square foot from $8 \cdot 2591$, divide the difference by 396944 , add the quotient of the square of $2731 \cdot 62$ divided by four times the square of 396944 , take the square root of the sum, subtract the quotient of $2731 \cdot 62$ divided by twice 396944 , and divide unity by the quantity so obtained.

EXAMPLE. - $P=30, p=30 \times 144=4320$

$t=1 \div\left(\sqrt{\frac{8 \cdot 2591-\log }{396944} \cdot 4320}+\frac{(2731 \cdot 62)^{2}}{4 \times(396944)^{2}}-\frac{2731 \cdot 62}{2 \times 396944}\right)$

$=711^{\circ} .6$.
Then the temperature of the boiling point, on Fahrenheit's cale, is $711 \cdot 6^{\circ}-461 \cdot 2^{\circ}=250 \cdot 4^{\circ}$
2. To find the pressure of steam, knowing the boiling point log. $p=8.2591-\frac{2731 \cdot 62}{t}-\frac{396944}{t^{2}}$. Or,the logarithm of the pressure per square foot for the boiling point whose absolute temperature is t, is found by subtracting from $8 \cdot 2591$ the quotient of $2731 \cdot 62$ divided by the absolute temperature of
the boiling point, and the quotient of 396944 divided by the the boiling point, and the quotient of 396944 divided by the square of the absolute temperature.
ExAMPLE.-Temperature of the steam by thermometer $=$ $65 \cdot 8^{\circ}$. Absolute temperature $=265 \cdot 8^{\circ}+461 \cdot 2^{\circ}=727^{\circ}$
log. $\mathrm{p}=8.2591-\frac{2731 \cdot 62}{727}-\frac{396944}{(727)^{2}}=3.75077$.
From a logarithmic table, we determine $\mathrm{p}=5633 \cdot 4$, and the pressure per square inch $=5633 \cdot 4 \div 144=39 \cdot 12$ pounds.
3. To find the latent heat of evaporation:
$\mathrm{L}=1091 \cdot 7-0.695\left(\mathrm{~T}-32^{\circ}\right)-0.000000103\left(\mathrm{~T}-39 \cdot 1^{\circ}.\right)$ Translating this expression, we have, the number of units of latent heat in steam at the temperature T is found by subtract ing from $1091^{\circ} 7,0.695$ times the difference between the temperature and 32°, and 0.000000103 times the difference etween the temperature and $39 \cdot 1^{\circ}$.
Example. $-\mathrm{T}=321^{\circ}, \mathrm{L}=1091.7-0.695\left(321^{\circ}-32^{\circ}\right)-$ $.000000103\left(321^{\circ}-39 \cdot 1^{\circ}\right)=890 \cdot 8$.
4. To find the latent heat of evaporation in foot pounds of nergy, per cubic foot of space:
$\mathrm{l}=\mathrm{p}\left(\frac{2731 \cdot 62}{\mathrm{t}}+\frac{2 \times 296944}{\mathrm{t}^{2}}\right) \times 2 \cdot 3026$, which may be thus expressed: To find the latent heat of evaporation in foo pounds of euergy, per cubic foot of space, add the quotient of 2731.62 divided by the absolute temperature, to the quotient of twice 396944 divided by the square of the absolute temperature, and multiply the same by the product of the pressure per square foot multiplied by $2 \cdot 3026$
Example.- $P=79 \cdot 03, p=79 \cdot 03 \times 144=11380$. The tem perature corresponding to this pressure is $\mathrm{T}=311^{\circ}, \mathrm{t}=311^{\circ}$ $+461 \cdot 2^{\circ}=772 \cdot 2^{\circ}, \mathrm{l}=11380 \times\left(\frac{2731 \cdot 62}{772 \cdot 2}+\frac{2 \times 396944}{(772 \cdot 2)^{2}}\right) \times$ $2 \cdot 3026=127500$
5. To find the weight of a cubic foot at the pressure P.

Were steam a perfect gas, the pressure would vary in versely as the volume, and the weight of a cubic foot could be readily ascertained. Experimental researches in the density of steam have not been sufficiently extended to ena ble a relation to be established between the pressure and volume. Approximately, the pressure varies inversely as the tenth power of the ninth root of the volume. More ex actly, the weight of a cubic foot of steam can be obtained, in directly, from the latent heat, and we will give the formula for its computation in this way : $1 \div 772=$ latent heat, in heat units, of a cubic foot of steam at pressure P
$\overline{772 \times W}=$ units of latent heat in a pound of steam a pressure P. But according to our notation, this is equal to L. Hence, $\frac{1}{772 \times W}=L$. Solving this equation for W we obtain, $W=\frac{1}{772 \times L}$
Example. $-\mathrm{L}=916 \cdot 6, \mathrm{l}=88740, \mathrm{~W}=\frac{88740}{772 \times 916.6}=\cdot 1579$ pounds.
6. To find the space in cubic feet occupied by a pound of team at any pressure.
$\mathrm{V}=\frac{1}{\bar{W}} . \quad$ Or, to find the volume of a pound of steam at the pressure P , divide one by the weight of a cubic foot.
Example.-W $=\cdot 08285, \mathrm{~V}=\frac{1}{0.08285}=12 \cdot 07$ cubic feet. It will be observed that these formulas are progressive, the results obtained from one being needed for substitution in the next.
7. To find the hight of a column of mercury at a tempera ture of 32° Fahrenheit, corresponding to a given pressure per square inch.
RULE: Multiply the pressure by 2.037
Example.-For 30 pounds pressure, the hight of the merMercury be $30 \times 2 \cdot 037=61 \cdot 11$ inches.
Mercury expands 0.0010085 of its volume for every degree of increased temperature. Hence, for any temperature other han 32°, a correction must be applied.
Example.-Suppose that, in the preceding example, the emperature of the mercury had been 80°. Then the expan $61.11 \times 0.0010085 \times(80-32)=2.95$ inches,解d the hight of the column of mercury corresponding
The results obtained in the preceding formulæ are for The results obtained in the preceding formulæ are for the
case in which water boils in the open air at 212° Fahrenheit, case in which water boils in the open air
the barometer standing at 29.913 inches.

SCIENTIFIC AND PRACTICAL INFORMATION

coating fabrics with tin

According to Richard Jacobsen, linen and cotton goods may be covered with a thick and flexible film of tin, which gives to them a very silvery appearance. The method to be adopted is as follows: Ordinary commercial zinc dust is rubbed up with a solution of egg albumen to a thin paste, and applied to the goods with a brush or roller. When dry, this coating is fixed by coagulating the albumen with steam, and the fabric is then placed in a solution of bichloride of tin. The tin is precipitated upon the zinc in a very finely divided state. The stuff is then washed with water, and, after drying, put through the finishing machine, when the tin comes out with a brilliant luster. A very beautiful effect may be produced by printing different designs in this way, or applying the material with stencil plates, and its use may be extended to decorations. It is even possible that this strong, elegant, and waterproof material may yet replace tin foil for packing certain articles.

PHOSPHO-TUNGSTIC ACID.
This acid was first discovered by Scheibler. Its crystalline form depends upon the manner of its preparation, being either beautiful, regular octahedra, with strong refractive power for light and the sparkle of a diamond, very soluble in water and effiorescent in air; or it occurs in cubical crystals. Both forms of acid have a property, which is possessed also by the phospho-molybdic acid, of precipitating the natural organic bases from acid solutions, no matter how dilute. A clearly perceptible precipitate is formed in a solution of 1 part strychnin in 200,000 of water, while 1 part quinine is precipitated in 100,000 of solution. The precipitate when first formed is very bulky, but, if left a short time in the acid solution, it becomes thicker and may be filtered out and washed.
Phospho-tungstic acid is very important in toxicology and in judicial chemistry for detecting the alkaloids, since it can be safely trusted for separating them from large quantities of the liquid, and thus preparing them for further tests. It can also be used with advantage for the preparation of separate alkaloids.

A NEW APPLICATION OF SPECTRUM ANALYSIS.
We published some months since a brief notice of a lea ture by President Morton on "Fluorescence," in which al lusion was made to some very curious discoveries which owe their origin to an application of the spectroscope in connec tion with that peculiar action of light. This subject, however, possesses so much general interest that we have thought well to prepare, from various papers published by Dr. Mor ton, an abstract of the most important points. Assuming that, from the lecture above mentioned, our readers have been enlightened as to the meaning of fluorescence, we pass at once to the special application in hand. As early as 1852, Professor Stokes, the real discoverer of fluorescence, had observed that, when the light emitted by certain fluorescing salts of uranium was examined with a prism, it gave a spectrum consisting of equidistant, brightly colored, shaded bands. He also observed that, in the case of two salts, the nitrate and the acetate, these bands occupied different positions. The spectroscope had not, however, at that time been invented, and no attempt at accurate measurement of these bands was made. In 1859, the famous French physicist Edmond Becquérel, in physura tigation of phosphorescence, examined in a casual manner, with a spectroscope of simple form, a few of the uranium salts, together with other materials, and he gives two spectra as representing the appearances presented by these, one standing for nitrate of uranium and canary glass, the other for potassio-uranic fluoride, uranic chloride and the mineral uran ite. He also figured the fluorescent spectrum of what he describes as "a hydrocarbon of the color of the uranium salts, obtained from Fritsche," who was the first to study an thracene and some of its kindred products. So matters stood when, more than a year since, President Morton, a year since, President Morton,
while engaged in a general study of fluorescent phenomena, received from Professor E. N. Horsford a specimen of the last run of the still in certain petroleum refineries, which was remarkable for its strong fluorescence. A study of this material led to the elimination from it of a crystalline solid body, of a rich yellow color, and possessing the property of fluorescence in a degree quite unparalleled, and show. ing with the spectroscope a very characteristic spectrum. To this body President Morton has given body President Morton has given
the name "thallene," in allusion to
 its brilliant green fluorescence. Observing a striking resemblance between the thallene in a certain stage of its prepara tion and commercial anthracene, he was led to a similar spe cial study of that body, which resulted in proving, among

Fig. 4.
other things, that the hydrocarbon described by Becquére must have been anthracene, but that the spectrum repre sented by him, and found with all ordinary specimens of an thracene, was due to the presence of a trace of another sub stance, in all probability identical with that described by Fritsche as chrysogen.
These and other results were mentioned in a paper read before the American Institute, March 29, 1872. and published in their transactions, 1871-2, page 910 . After.searching in various directions for a further supply of the thallene material, Dr. Morton detected it in some petroleum product brought by Dr. G. F. Barker, from the works of Mr. John Truax, in Pittsburgh; and from the last named gentleman, a large amount was obtained, with which a thorough study of its physical properties has been carried on.

For full details of these we must refer our readers to th American Chemist and other purely technical journals.
The wonderfully intense character of fluorescent action in this substance led Dr. Morton to apply it in a very striking manner during a lecture delivered by him in the Academy of Music, of Philadelphia; and, on this occasion, it so im pressed Mr. James Hamilton, the eminent artist, that he made it the subject of a large oil painting, from which our artist has developed the accompanying engraving (Fig. 1). Here we see the stage set to represent a cavern with its vispremeditated. dation of obscure theoretical points. nything in Becquérel's memoir.
tas, columns of rock, and pendent stalactites, and, in th foreground, the lecturer with his electric lantern, from which issues a jet of faint blue light, whose rays fall upon a group of figures bearing banners, whose devices are painted with the new fluorescent bodies, and which, invisible in the ordinary light, blaze out as with colored fires when thus illumi

Fig. 1. FLUOORESCENCE--[From a Painting by James Hamilton.]
by Jan inton a specimen which Dr. Morton had sent him), expressed hi surprise and delight in a manner as emphatic as it was un

While work on the abovementioned substances was in pro-

Fig. 3.
gress, Dr. Morton naturally turned to account the same meth ods of examination with other bodies, and among them to the uranium salts; and in this work he was so fortunate as to secure the co-operation of Dr. H. C. Bolton, an able chemist who had distinguished himself, among other things, by his nvestigations upon certain of these very uranium salts Working together in this research, Dr. Morton conducting he physical and Dr. Bolton the chemical part of the labor hese gentlemen have attained results which promise to be f no little value, both in practical analysis and in the eluci-

It should be mentioned that, after this work of Drs. Mor ton and Boiton had made considerable progress, a new re search by Becquérel, in the same direction, was published in the Annales de Chemie et de Physique. This, however, is so very brief and imperfect, as compared with the work of th abovementioned gentlemen, that, while of course deprivin them of any claim to priority in the field, it in no respect de tracts from the substantial value and importance of what they have done, which is in only a few points anticipated by

The methods of observation, employed by Dr. Morton in all these observations, do not differ in any essential particu lar from those before used by Stokes, Becquérel, and others, but only in perfection of detail, and the accuracy thereby
secured ; and they may be briefly described as follows: The porte lumiere, A, Fig. 2, being attached to the shutter of a window facing toward the south, a beam of sunlight was thrown by it horizontally into the room, and concentrated by a lens of twelve inch focus placed at B. At C was placed an apparatus (Fig. 3) consisting of a circular horizontal table adjustable up and down on a vertical rod, and turning with a click. Around the circumference of this table were eigh itle stalls, capable of holding test tubes or specimen bot tles. By this means eight dif ferent specimens could be rap idly compared, each in succes sion, by the action of the click being brought into an identica position with reference to the exciting light and the spectroscope. This whole apparatus was so placed that an image of the sun was formed on the tube or bottle nearest to the lens, B. A glass tank, filled with a strong solution of am monio cupric sulphate was placed between B and C, and to this was sometimes added a plate of violet glass. The fluorescent light emittted by the substance in C was exam ined by the spectroscope D .
For examining absorption bands everything else remained the same, except that the spectroscope was turned round into the position indicated at E in Fig. 4, and the stand for specimens was replaced by a plane table;D, on which the substance to be studied was supported, either in a cell of glass or in bottles. To study the optical behaviour of these substances under the influence of heat, a little oven, such as is represented in Fig. 5, was employed. In this, the substance to be examined was either placed in a small bottle, at E , surrounding the bulb of a thermometer, or between flat strips of glass. The openings through the oven were covered by a piece of thin mica kept

Fig. 5.
in place by the rings, G G .
Many hundreds of specimens of uranium salts, in differ ent states and in solution, havebeen examined, and number less experiments on the effects of heat have been made, with the development already of many curious results and the promise of others for the future.

Thus, in the first place, it appeared that while there were certain points of likeness, running through the spectra of many classes of salts, which are useful as a means of recognizing their relation, yet that, either by some obvious peculiarity of character or position, many may be at once recognized and identified, while others, by their various behavior nized and identified, while others, by their various behavior
on drying or heating, may be as certainly distinguished. It on drying or heating, may be as certainly distinguished. It
thus happens that the presence of impurities in some of the thus happens that the presence of impurities in some of the
commercial uranium salts were recognized and identified commercial uranium salts were recognized and identified
without so much as opening the bottles which contained them

Thus Fig. 6 represents, in 1, the spectrum of the potassio uranic oxychloride, and, in 2, that of the uranic oxychloride In Fig. 7, 1 represents the spectrum of the normal uranic acetate, 2 that of the same salt deprived of its constitutional water, and 3 that of the sodio-uranic acetate
But what is far more interesting in a scientific point of view, is the fact that a change in composition or the formation ofa new compound may thus be optically recognized, and the actual progress or development watched, step by step. This can be best illustrated by a relation of the instance in which this method was first applied.
Having heated for a short time some of the ammonio-sulphate of uranium, Dr. Morton noticed that, in place of its

Fig \%
usual spectrum, shown at 1 of Fig. 5, it showed; as in 2 of Fig. 8, one in which, to the former bands, were added as many more, each located a little further down in the spectrum than its companion in the original spectrum. Now it was evident that water was being driven off from the salt in the process of heating, and therefore natural to suppose that these new lines belonged to a spectrum of the anhydrous salt which was being formed and mixing with the other. By salt which was being formed and mixing with the other. By continuing the heat until no more vapor escaped, the body was found to yield the spectrum shown in 3 of Fig. 6, which was thus probably the spectrum of the anhydrous salt; and, in fact, the salt in this state, being submitted to Dr. Bolton for analysis, proved to be the anhydrous ammonio-sulphate of uranium. But this was not all. On further heating to a

Fig. 8.
temperature approaching redness, the spectrum changed to the appearance shown at 4 of Fig. 6 ; fumes, evidently consisting of ammonium sulphate, being given off ; and on continuing the heat until these fumes were no longer evolved, the spectrum assumed the character shown in 5 of Fig. 6. This material, again being submitted to Dr. Bolton, and analyzed by him, proved to be an ammonio-di-uranic sulphate, a salt not before known to chemistry.
Treatment, more or less parallel to the above, has deve loped a number of similar facts, and has shown that some of the spectra_observed by Becquérel are not those of he salts named, but of mixtures of various hydrates, or even, in some cases, of different salts.
Thus, for example, the annexed engraving (Fig. 9) represents four distinct spectra, shown by perfectly pure sodio-

Yet, again in Fig. 11, we have, in 1, the spectrum of the normal potassioruranic sulphate, and, in 2 , that of the same salt in its anhydrous condition. One of the most remarkable developments, how ever, is that which has been obtained by a comparison of the absorption bands seen in various salts and their solutions; thus seventeen double acetates have been examined, and a different arrangement of these bands has been discovered in each case; but when they are dissolved in water, all are exactly like, and are likewise identical with the solution of the simple acetate, thus seeming to prove that no double acetate exists as such in solution, but that all are reduced to the simple salt.

Fig. 11.
In Fig. 12, 1 represents the bands of the solid normal aceate ; 2, those of the same salt when anhydrous, and 3,

Fig. 12.
those given by a solution of the simpleacetate or any of its double salts.
Another very interesting result was obtained in observing the effect of a rise in temperature upon the position of the fluorescent and absorption bands. It was found in a vast number of cases that a rise of temperature lowered the position of the bands both of absorption and fluorescence. When we remember that the heating of a tuning fort lowers its note, and that wherer bodies a re, and that, wher without involving some chemical action, the tint is depressed in the spectrum, we see how this observation fitsin with genral theory.
There were no cases in which the displacement was opposite in direction; the exceptions were simply instances in which no displacement could be detected, and the observations were made as well with solutions as with the solid salts.
Another application of this method was to the determination of the moment at which combination in the case of double salts actually took place; and it was found that in all cases the spectrum of the simple salt changed into that of the double one only in the act of crystalization.

The effects of change of state by freezing solutions, of great pressure; and of solution in various solvents have been extensively studied; and indeed more has been done than we can well afford space to enumerate and with results which, as we have shown, are already importantand promise to be more so.

The Shoe and Leather Chronicle.-The already long list of contemporary journals devoted to special interests has, this week, been increased by the appearance of a well arranged and neatly printed sheet under the above title. The extent and importance of the shoemaking industry is a guaranty for its extended circula-

Fig. 9.

uranic sulphate. No. 1 is the spectrum of the normal salt, holding, in combination, five equivalents of water; 2 represents a mixture which was one of the first observed, and caused no little perplexity; it is now known, however, to owe its complex character to the overlapping spectra of several different hydrates. No. 3 is the spectrum of the mo-no-hydrated salt, or that containing only one equivalent of water; 4 is the spectrum of the anhydrous salt, or that from which all the water has been expelled.
Again, in Fig. 10, we have, in 1, the spectrum of the nor-

Fig. 10.
mal uranic sulphate which contains three equivalents of water; in 2 , that of the mono-hydrate, while 3 is that of a mixture of the mono- and bi-hydrate into which the normal salt is apt to pass if suddenly heated, placed in a vacuum, or is apt to pass if suddenly hed
tion. Mr. W. A. Van Benthuysen, of 6 Ferry street, New York city, is the editor and proprietor, who will please accept our good wishes for its success.

Paraffin Gas.-Paraffin oils are now produced at a very low price in Austria and Saxony, from peat. These oils may be used for the manufacture of illuminating gas instead of coal. The gas gives a light three times brighter than coal gas, and the apparatus for making gas from paraffin is simpler and less costly than the coal gas apparatus.

How to Measure the Hight of Trees.-When a tree stands so that the length of its shadow can be measured, its hight may be readily ascertained as follows: Set a stick upright (let it be perpendicular by the plumb line). Measure the length of the shadow of the stick. As the length of its shadow is to the hight of the stick, so is the length of the shadow of the tree to its hight. For in stance: if the stick is four feet above the ground, and its shadow is six feet in length, and the shadow of the tree is ninety feet, the hight of the tree will be sixty feet ($6: 4:: 90: 60$). In other words, multiply the length of the shadow of the tree by the hight of the stick, and divide by the shadow of the stick.

In the digging of a well at Newark, N. J., the other day, the workmen struck "ile." About two barrels of good oil were pumped the first day. The owner proposes to bore deeper with proper apparatus, in the hope of finding a more abundant supply of the valuable liquid.

CHEESE SKIPPER EXTERMINATOR.

Many and varied are the devices which human ingenuity has provided for the extermination of the "creeping things of the earth." We have set forth at length the lyric effort of the inventor whose muse gushed into poesy on the inspiring theme of mechanical cockroach traps; we have alluded to the "deadly bug buster," by which the offending insects are persuaded into a hopper, placed under the influence of an anæsthetic and stabbed in the back with a pitch-

Jork, or else are dosed with large quantities of laughing gas so that they meet a hilarious death in violent hysterics. Brief mention has been made of the tumbler fly trap, in which the hapless fly meets his doom in an alkaline bath; and recently, in glancing over an ancient volume of the English Mechanics' Magazine, we discovered a valuable recipe for poisoning bugs by a material " which they will never fail to eat while they can get it, and will as surely die; it causes them to froth at the mouth and to split in the back occasionally." Another inventor has now joined the great army which is ceaselessly waging war upon the noxious insect tribe, and the offspring of his genius is represented in the accompanying engraving. Its object is the slaughter or, more strictly speaking, the asphyxiation of cheese skippers. The cheese is placed upon a raised grating within a circular box, the is placed upon a raised grating within a circular box, the with a rim. The intermediate annular space is filled with water. A tightly fitting cover inclosed the entire box, its edge reaching to the bottom of the projecting flange, and is rendered airtight by the water packing. Suitable vents are arranged for obvious purposes. The unhappy mites, thus deprived of fresh air and cut off from the light of day, in the words of the patent, "all leave the cheese and drop down dead." Why they should pursue such a course, or as to the nature of the malady with which they are seized, and which invites the approach of the fell destroyer, our origi nal researches, into the physiological constitution of the cheese skipper, are as yet not sufficiently extended to enable us accurately to determine. Suffice it that, after a period of twenty-four hours, their bodies, once sc athletic and active are senseless clay upon the bottom of the box. Mr. Caleb Green, of Osseo, Mich., patented this useful device on Feb ruary 4, 1873

IMPROVED MILK REFRIGERATOR.

This is an English invention, made by Lawrence \& Co., London, who say that, by the aid of these refrigerators, the milk intended for transit, or for the making of butter or cheese may be cooled as soon as it leaves the cow, and before any injurious change can possibly havetaken place. It has long been a well known fact that milk is preserved in proportion to the rapidity with which it is cooled. Why this is so has never been satisfactorily explained, but recent scientific in vestigations have proved beyond a doubt that, when milk is

suddenly cooled, the infusorix or vital organisms, the cause of rapid decomposition, are destroyed, and the milk is consequently preserved, whereas if cooled by slow degrees, living infusorix will still be found in it.
By passing warm water through the refrigerator, instead of cold, the temperature of the milk may be readily raised to any degree required, which, in cold weather, is an advan tage in cheese making.
The warm milk is poured into the receiver, A, whence it passes through the refrigerating box, A, in which is a coil of pipes through which cold water enters at D, discharging at E , while the cooled milk is drawn off at C .

Cotrepyoudatic.

Diurnal Movement of the Earth--Is it Retarded at all
To the Editor of the Scientific American:
In your issue of June 28, "Orthodox" claims that the two great tide waves act on the earth's surface as do brakes when applied to a revolving wheel. And he (admitting my statement that the earth is constantly revolving between two great never falling waves) asserts that "we have here an exact picture of a rotating wheel, to which a brake is applied and held in position by some external power.
Will "Orthodox" be kind enough to inform us what "external power" is pressing the tides down on the earth's surface? We have some little idea that there is an internal power forcing them up or apart from each other; for we conceive that each wave is highly charged with electricity, and is therefore repellent of the other. I would like to learn the name and origin of the "external power." If it be extra pressure on account of the extra waters, that extra tery or wave from wave. But even if it did exist, such pressure would not act as a brake; for the oceans of the earth, where the tides are and where they are not, do not move in opposition to the rotary movement of the earth, but are constantly and continuously moving, where not obstructed, eastwardly upon the earth's surface, the same as do the higher strata of air, far above the earth's surface. " Orthodox" talks as if the two tides were solid, frozen sheets, standing still, in a sense, and bearing and grinding hard upon the earth's surface, as she moves round between them. But this is not the case, for although the earth passes under the tides, the waters composing them constantly run before the earth, as it were; and therefore, friction, through such a cause, is impossible, absolutely impossible
"Orthodox" supposes that "it is well known that the slow retardation of the earth's diurnal motion is an established fact in astronomy." Perhaps 0 . will be astonished, when I tell him that astronomy does not know, at this moment, whether the earth is retarding or the moon advancing. The latter is by far the most likely. And even if the forme such retardation is the result of meteoric accumulation, of the withdrawal of matter from the bowels of the earth and piling it upon its surface, of the so called friction of the tides, of their butting against the eastern coasts of Africa and America, or of some hitherto unknown and unadvanced cause. We are perfectly willing to admit that friction, ap plied anywhere upon the earth's surface, will tend to stop in time the earth's diurnal motion; but we must know firs about the friction, and then where and how it is applied.
Friend "Orthodox" concludes by saying: "If J. H. will sta tion himstlf at the opposite celestial pole," etc. I have been there often in imagination; and among the last times I was there, I saw that upon earth there was a fierce contest going on between Old Orthodox and Young Orthodox; and I was glad to see that Young Orthodox was fast gaining the mast king " the world, and hindering the progress of science and society by the pressure upon the world of its two mighty tide waves, ignorance and superstition; and, by this means, he (Old Orthodox) had retarded the world's progrossive rev olution so much that, under such pressure, the arrival of society at meridian splendor was impossible. Young Ortho dox, seeing this state of things, walked boldly forward, with true scientific sledge hammer in hand; and as I see him now he is dealing such blows upon Old Orthodox's head as will soon knock out his brains; and he is every moment lessen ing the pressure, relaxing the hold, and giving the world more room to revolve and rotate onward and upward to the shining day.
It was once considered "orthodox" in astronomy to tel and teach man that the sun, moon and stars-the whole universe-revolve around the earth westwardly every twenty sun moun, that crath the each; that Joshua commanded the sun to stand still and it did so; that the earth was flat, and poised upon the head o a huge coiled snake; and hundreds of other things which are now proven to be entirely erroneous. And to come down
to the present time: It was, a short time since, taught that to the present time: It was, a short time since, taught that the sun is moving in his orbit in "direct" movement whereas it is now proven, beyond doubt or question, that the sun's orbital motion is retrogressive. And so it may yet be proven that the earth is not "braked" by the tides; that her diurnal motion is not hindered at all by any power; but that the moon has advanced a little in her orbit, which at least is as like truth as the other, although we cannot as yet point out how and why. But admitting that the earth is retarding: Is not such result as likely to come from cooling and contraction of the earth (admitting that the
earth is but little more than the bones and sinews of some old comet, or the extinguishing embers of an old worn out sun) as from tidal friction, meteoric gatherings, material ex tractions and heapings, or any other hypothetical cause hith rto offered or assigned
If the earth be retarding, this last is the most likely to be the cause. But we conclude that there is evidence enoug elsewhere to prove satisfactorily that the moon has advanced and will advance; and so settle the question.
Gloucester, N. J.
John Hepburn.

The Patent Right Question.
 To the Editor of the Scientific American

In expressing my views in regard to the first inquiry of
pediency, and the justice of the expedient. This question pediency, and the justice of the expedient. This- question
was agitated in England forty-three years ago, when it was proposed to abolish the system of patent rights; and, in stead of being abolished, the patent laws were made more liberal. I hope that a similar effect may follow the investigations by the coming International Patent Congress, to be eld in Vienna.
The evidence before the Select Committee of the House o Commons, in 1830, proves that many of the most useful in ventions would never have been prosecuted to public advantage if they had not originally been worked under a monopoly; and it may be safely asserted that if inventors had never been encouraged in their labors by the prospect of a reward, proportionate to their success, we should be a cen tury behind in civilization.
It is stated, in the course of the testimony, that Watt's invention and the perfection he gave to it during the operation of this act of Parliament has proved of more value to the nation than can be calculated; probably as much as the in ventions of Lord Dudley for smelting iron by pit coal, in 1619, or as those of Hargrave, Arlwright, and Crompton, for spinning machinery, about the same date as Mr. Watt's. Dudley and Hargrave were not encouraged, but were perse cuted, and their works destroyed by mobs; after Dudley's death, his process lay dormant during a century, probably for want of support to him. These great inventions have had a close connection, and each one has promoted the progress of the other very greatly
The steam engine is an invention from which the nation has derived immense wealth during the last century, and increasing means of wealth for the future. After the enunciation of the principle of action had been made by De Caus, in 1615, and by Papin, in 1690, the real inventors of the engine have been: Savary in 1698, Newcomen in 1713, Watt in 1769, Trevethick in 1802, Woolf in 1804, and Fulton, in America, in 1807. Of these Watt is the oniy one among us who has derived any adequate advantage or recompense for his labors. Woolf's failure of a recompense was entirely owing to the want of protection by an extension of his term, for his engines came into general use in Cornwall soon after the expiration of his patent, in place of Watt's engines, and with such great advantage in economizing fuel that Mr. Woolf would have been amply recompensed if his term had been made as long as Mr. Watt's was.
I think that the quotations above referred to are more than sufficient to settle the question of expediency in the adoption of a liberal policy toward inventors. If the principles of justice only were taken into consideration, those who devote heir time and energies to the study of new improvements ould be entitled to a compensation for their labors and ex penses even in case of failure, and in case of success they ould be entitled to a recompense proportionate only to the labor, ingenuity and expense they have bestowed upon their invention. But as the rights of individuals are subordinate to the interests of the community, it becomes expedient to encourage men to study improvements by the prospect of a future reward, adequate, not to their labors or expenses, bu to the usefulness, to the value, of their inventions. The grant of a patent, in certain cases, may not repay the actua outlay of the inventor; in other cases it may prove an ex ravagant reward when its value is compared with the origi of the invention. I can cite an instance of a patent, originted in a dream, being sold afterward for thirty-six thousand pounds sterling. The inventor in this case received a re ard to which he had no claim on the grounds of justice, while Hargrave, Arkwright, Crompton, Woolf and many thers derived no profit from their inventions, although they btained patents from their government.
A monopoly, whether held by the State or by private indi viduals, being, in any case, an infringement of equal rights, is contrary to justice; therefore the grant of exclusive property, even for a limited period, of a new improvement to the inventor
Baltimore, Md.
Laurens E. de Ward

To the Editor of the Scientific American:
I cannot drop this question there your reply to my forme tter leaves it ; for I am even mas right which you do not recognize. It is a personal, individ ual title, which is superior to any claims of society, and one of the many for the protection of which society is organized the same inherent, sacred and inviolable right which a pa rent has to the possession of his children. The government which does not recognize this is of a necessity weak and unstable, because it has not the full support of the individual The same law of justice which applies to the one has equal force for the other; hence, it is as much the duty of the tate to support the individual in the maintenance of thos ights as vice versa. And I have yet to learn that the State can take from me either my property or liberty without, in the one case, rendering an equivalent, and, in the other, exept as an act of self preservation. If my land is wanted, amages and benefits are assessed, and I am recompensed if my liberty, because the protection of public and individual rights demand it; if my life, because I have forfeited that
which I, as one member of society, was bound to maintain but the condition which elicits forfeiture, according to your theory, is that in which every member of society exists, thus assuring him of no security except as the whim of society may direct. This is nothing more nor less than despotism and is contrary to the spirit and principle of a governmen which is preëminently " from the people, by the people, and for the people."
It is of course expedient for the State to offer premium for inventions, discoveries, improvements, etc.; but I cer
tainly do not understand that it can, by any " law of justice or natural right," appropriate to its own use an invention until certain conditions are fulfilled. If it could, civil government would be a failure, and progress would be retrograde. Now, although an invention is, in one sense, an offspring; it assumes the character of transferable property, which makes it marketable, and its price is the exclusive ownership and consequent enjoyment of its benefits for a term of years. Hence my reason for regarding a patent simply as an official statement to the world that the inventor is the sole owner, and that it is, or should be, subject to the laws which govern other property until the term of years has expired, when it then belongs to the State by virtue of the compact entered into between the State and inventor, at the time when the patent was issued. In the end, it amounts to the same thing as if it originally belonged to the State, and its monopoly by the inventor was tolerated for a season, eventually to be seized by the State, as you say; but it is degrading the office of the inventor if we say "it belongs to us; you found it, but it is not yours." For if the Giver of all has given to him light which He has not to others, it is manifestly his by an inalienable right until such time as he shall make mankind the recipient of what it is in no wise the claimant; thus following out the law that every man must, by the exercise of hisown abilities, first provide for himself, and after that comes the privilege and duty of giv ing, of his plenty, to those who are less fortunate than him self.
J. E..Wilson.

Bridgeport, Conn.
To the Eaitor of the Scientific American
It seems to me that it would be a lamentable thing for inventors to accept what you state in reply to the questions asked by the State Department, on pages 7 and 8 of your current volume. A patent is a privatemonopoly just as any other species of property is, and it is surely a disguised form of communism to speak of it as a tyranny and an infringement of equal rights. Inventors are comparatively few and poor, and it is easy to be blinded to the truth in regard to their rights; but if they were a large and wealthy class, such as the manufacturers and other classes of wealth-creators among us, the very assertion that their products are by nat ural right the property of their fellow men, without compenation, would refute itself.
Of course every man is " bound to contribute his best powers of mind and body to promote the common welfare ;" bu that does not abrogate his individual right to the property he may acquire while doing so. It is, in fact, the strongest guarantee that he shall be protected in its enjoyment. Soci ety is the offspring of individual compromise; and, in consideration of its protection to us, we give over to it the control of ourselves and our property, so much as may be ne cessary for the mutual benefit of all.
You say that "patents are granted upon the ground of expediency, not of justice;" but I am sure that the official patent is only the authorized publicevidence of an invention, and that the right to the invention existed before the public issue, which is only the guaranty. Therefore it seems to m that the converse is true, that patents should be granted upon the ground of justice, and that governments after time (with the consent of the patentee, given in the fact o application) do not resume but, upon the ground of expedi ency or necessity, seize upon the invention for the free use of all. The supposed discoverer of bread should, there fore, not have had a monopoly of it to the detriment of all His right existed, but necessity compelled the State to take possession, that is, to refuse to protect. So it is with patents when the invention is made, it, by right, belongs to the in ventor, and it can only be taken away by the sovereign pow. If of the State, exercised for the protection of its citizens done, and let the patent laws be repealed, so that all may comprehend the matter; but in thename of human progress do not put our noble army of inventors in the position of suppliants for favor at the expense of justice and the rights of their fellow men.
The view advocated by you is held by many; but it is surely wrong, and I hope soon to see the day when th Scientific American will take its place, as the mouthpiec of American inventors, upon the side to which natural jus. tice, material prosperity and private interest inevitably lead I have written this article because I sincerely feel that this heresy, as I believe it to be, must be met, or it will fasten itself upon legislation to the blight of the spirit of invention at home, and to its repression, where it is less able to speak or itself, abroad.
J. W. Heysinger.

Philadelphia, Pa

Hatching from Cold Eggs.

To the Editor of the Scientific American
Having taken interest in the articles published in. you aper. on "The Egg," particularly in a communication signed H. P. in your number of June 14, in which the write supposes that the eggs, which were cold for four hours,
would hatch, I cannot refrain from relating an incident, would hatch, I cannot refrain from relating an incident,
whicb occurred under my immediate notice, which I think much more remarkable than the one before mentioned A hen having left her nest for two days and a night, afte tting within two or three days of the time of hatching, and the eggs being perfectly cold, out of curiosity I determine to try an experiment. I removed them to a garret room, whic was very hot, the thermometer in the coolest part of the house being at the time $95^{\circ} \mathrm{Fah}$. On the third day from the time the eggs were left by the hen, they hatched by themselves, and the chickens are now running about the yard quite strong and hearty. I would like to know if any on ever met with such an incident
H. E. H.

Vienna Welt-Ausstellung, June, 1873.
On arriving in Vienna, after passing the douane, the stranger finds himself confronted by a most important problem, namely, to determine where he shall find accommodation during his stay. Experience teaches that a week's notice may be insufficient to secure rooms at an hotel; and although we had taken this precaution when in London, we were compelled to drive from one hotel to another until we finally found refuge in a queerly arranged old building, whose lofty and once finely decorated rooms had probably been the scene of many interesting events in earlier days. The oddly caparisoned bedstead in our sleeping room, the great and ancient porcelain stove towering up in one corner, the antique furniture, and the absence of all modern improve ments, indicated that the wealth of the family which had erected this pile of buildings had long since taken to itself wings. Neither the place nor the price suited us, and we moved into one of the modern hotels (of which a dozen or more have been recently erected in Vienna) at the earliest possible moment. After becoming fairly settled in our new quarters, and recovering somewhat from the fatigue of th journey, a visit was made to

he welt-austellung

As we rode up the central avenue of the Prater, as the Viennese call the noble park in which the exhibition is located, we caught sight of the industrial palace, and, above it the great dome of the rotunda. The first sentiment was on concealed by the lack of surroundings with which to compare it, and its somewhat ungraceful shape and peculiar propor it, and its somewhat ungraceful shape and peculiar proportions do not aid the mind in the effort to realize that this is
the largest dome in the world. Like all very large objects, it requires time and repeated visits to enable the spectato fully to realize its magnitude, and to appreciate it as a tri umph of architectural construction.
The first visit to this wonderful exhibition of the products of all nations is bewildering and fatiguing in the highest degree. The visitor comes away confused and dissatisfied. He can hardly remember whether the splendid silks and satins he has seen are the product of the looms of France or China; whether the dazzling collections of gold and silver ornaments and of precious stones are exhibited by oriental or exhibition of the products of the metal industries remain undetermined. Our first impression in regard to the display made by the United States was decidedly confirmed, howmade by the United States was decidedly confirmed, how-
ever, by more systematic and leisurely subsequent examinaever, by more systematic and leisurely subsequent examina-
tion. In quantity, we are far behind every civilized nation, and, even in some important departments, we are excelled by some uncivilized countries. Many of our most import ant and characteristic industries are entirely without repre sentation, and those which are represented at all appear only partially and in disjointed divisions.
Other countries exhibit very complete and thoroughly well arranged
mineral and metallurgical collections,
illustrating their natural resources. In the United States show, excepting Professor Cox's excellent collection of Indiana minerals and productions, and two or three other similar local exhibits, there is little toindicate that we possess more extensive, more valuable, and more accessible mineral resources than any country on the globe, and that we are earnestly and intelligently working at developing them as rapidly as we can earn or borrow the capital requisite Rock drills and mining tools are not exhibited in our section Had they been placed here in competition with their Euro pean rivals, they would have readily carried off the premi.
ums, and would have readily entered the foreign markets The Burleigh drill is exhibited by Germany, and seems to be The Burleigh drill is exhibited b
well and favorably known. Of

textile products

we exhibit but few samples; and, although those are ex celient in quality, the stranger who may compare our department in this group with those of other nations would other, and far less important, countries in the extent and variety of textile manufactures. We exhibit a good coll. lection of leather, and a few manufactured leather goodst Our great India rubber industry is practically withou-
representation, although it is one of our peculiarly Amer-
ican, and markedly successful, manufactures. Our manufacturing jewellers do not exhibit, and, of manufactured iron and steel products, many single firms, of nearly every other country, present far more extensive and far more interesting collections than appear in the whole of the space apportioned to the United States.
Similar remarks will apply to every other group in the official catalogue, except, perhaps, Group XIII, which includes machinery; and, even here, our exhibition is by no means what it should be. Our collection of

SEwing machines

is exceedingly extensive; and the elegance in design, the beautiful finish and the fine
excite universal admiration.
The exhibition of mowing and reaping and similar agricul tural implements from the United States also stands unrivalled in extent and in quality, but Great Britain is far ahead of all nations in the heavier classes of portable engines, steam plows, and road locomotives. We have sent none of these. Our wood and metal working tools are, at least, well represented, and Whitney's pail making machinery and the small collection of shoe manufacturing machines, from New England, with several single machines, represent, in an interesting manner, the peculiar talent possessed by our me chanics in designing machines for special purposes.
We have in our section no representative of our standard drop cut-off engines, with regulation by the adjustment by the governor of the point of cut-off; although the fact that early every other manufacturing country exhibits engines which is due to our inventors in this field. Of the smaller and less complex classes of engines, we exhibit several superior examples. We find but one or two exhibits of cotton or woolen machinery in our section, although here, and in woodworking machinery, our mechanics are represented by creditable copies from almost every other country.
Not a locomotive appears from the United States, but close mitations of the standard American types appear elsewhere. Copies of our sleeping cars and other railroad stock are shown by several European builders.
Indeed, American mechanics are universally copied, and their genius finds its illustration in every section of the machinery hall. They are more fully represented, in many epartments, by the exhibits of foreign countries than in hat of their own. So patent is this latter fact that it is a subject of general remark among those visitors, of whatever
nationality, who are familiar with our position as a nation nationality, who are familiar with our position as a nation
of mechanics. Every product of American inventive genius, of mechanics. Every product of American inventive genas,
from the sewing machine to the steam engine, is imitated, and the copy appears here, while the original frequently, indeed generally, remains at home. Some of these imitations and copies are exceedingly creditable, and, in some cases in the British section, they even excel the original in some re culars of the foreign manufacturer, and they are usually perfectly willing to acknowledge their indebtedness to us. They seem to look upon the fact as one of the strongest re ommendations of their work. Jury work will soon bring hese instances more fully under observation, and in suc eeding communications they will be noted as they appear.
Excursions are proposed into the neighboring country Excursions are proposed into the neighboring country,
which promise to be enjoyable, as well as instructive. One which promise to be enjoyable, as well as instr
of these excursions was made a few days ago to

kolin,

in Bohemia, where the party spent the day with the venera ble Ritter von Horsky von Horskysfeld, who has had the boldness and the enterprise necessary to break down the conservatism which impedes progress in this country so seriously; and who, by the introduction of agricultural machinery, some of it imported and some of it his own invention, has increased threefold the income from his great late on Friday evening, carrying the party, among whom a half dozen of us were "aus Amerika." After riding all night, we breakfasted at Kolin, at 8.30 next morning. Our meal, which consisted of a glass of bier and the beautiful bread for which this country is justly celebrated, was quickly despatched; we re-entered the train, and were soon at Karo-
linenhof, entering the place through a beautiful deer park, evidently greatly to the consternation of the beautiful ani mals whose home it was. They had never before seen a railroad train, for the rails were laid expressly for our ac commodation; and we caught occasional glimpses of the does scampering off as rapidly as the less fleet motion of their pretty fawns would allow. The masculine members f their family, being unimpeded, were all out of sight lon efore our train could bring us near their resting places. The party were received and entertained with character farm buildings, which were remarkably well built and well rranged, and after examining his singularly heterogeneous collection of old and new, rude and creditable, farming tools, the cattle were presented for criticism. Many were of Hungarian stock, long horned, large framed and muscular, excellent for draft but of little value for other purposes. The remainder were of Swiss and other breeds, smaller and bet ter filled out, sleek and well kept.
A gabelfrühstück followed: a more pretentious meal than the preceding, but at which the absence of meats and of plain bread was not compensated by the abundance of native wines and of beer, excellent although they were, nor by the variety of cake presented. Before breakfast was over, the carfor miles which had been collected from neighboring domains soon comfortably seated in ninety-six of them, and those remaining unoccupied were sent home again.

THE FIELDS,

through which the long procession passed, were in fine condition. The principal crops seemed to be wheat, rye, and beets. The latter were the sugar beet, and a large propor tion of the cultivated land was devoted to its production.
We were given an opportunity to witness the operation of all the agricultural implements used by our host, and also of the Fowler steam plow. Some of the latter are in use in our own country, and the time cannot be far distant when the steam plow will supersede the ordinary apparatus on all the large farms of our Western prairie districts. The manfacturers of the Fowler apparatus in England are building up a splendid business. At one point, we were shown the

rope tramway

in operation, transporting clay a long distance across the farm to the compost heaps, where it was used to correct the sandy character of the soil under cultivation. The wire rope was about five eighths of an inch in diameter, running ove pulleys of thirty inches diameter ànd a hundred feet apart, the rate of about four miles per hour. In such situations, this method of transportation affords many advantages over any other, from its cheapness p^{f} construction, its adaptation to every variation in the character of the country over which it is led, and its low cost of operation. Roebling \& Sons, of Trenton, N. J., have been the pioneers in the introduction of wire rope transmission in the United States.
An inspection of a well arranged
SUGAR MANUFACTORY,
where the sugar beets raised on the farm are worked up, a isit to the American elevator, as it was called, where the rain is all cleaned, dried, and winnowed, and finally an ex cellent dinner, with speeches and congratulations in all lan guages, were the closing events of this most interesting ex
cursion.
R. H. T.
.
R. H. T.

The Hartford Steam Boiler In

The Hartford Steam Boiler Inspection and Insurance Com pany makes the following report of its inspections in the month of May, 1873 :
During the month, 1,237 visits of inspection were made and 2,386 boilers examined, 2,017 externally and 754 inter nally; 168 were tested by hydraulic pressure. The defects in all discovered were 1,062 , of which 218 were regarded as dangerous. These defects were in detail as follows:
Furnaces out of shape 29-8 dangerous; fractures, 59-23 dangerous ; burned plates, $34-18$ dangerous; blistered plates, $33-32$ dangerous; deposit of sediment, 173-25 dangerous incrustation and scale, 197-16 dangerous; external corro ion, $62-10$ dangerous; internal corrosion, 18-9 dangerous internal grooving, 12-4 dangerous; water gages defective 88-7 dangerous ; blow-out defective, 17-1 dangerous safety valves overloaded, 14-2 dangerous; pressure gage defective, 180-24 dangerous; without gages, 135-8 dan gerous; deficiency of water, $9-3$ dangerous; braces and tays broken, 29-12 cases placed the boilers in dangerou condition; boilers condemned as unsafe to run, 8. The defects enumerated in the above report are sufficient to show the importance of good care in the use of boilers. The ten dency is to run boilers too long, and inspectors are often asked if they cannot "fix things up for another year, six months, or even one month." We are sorry to say that, in some instances, those who have used boilers for years do not (or will not) understand that an overworked, worn out boiler is unsafe, even when the evidences of weakness and insecu ity are most shockingly visible. There is a disposition to "patch up and run along" a little longer, and so the matte often goes until accident and disaster put an end to such recklessness. If any persons pursuing such a course read his article, we desire to say to them that the kind of econom hey practice is not infrequently attended with great loss of life and property

A Preventive against Hot Journals

We have received a sample of a new elastic waste, which, from its appearance and the statements made as to its merits, seems superior to cotton or wool for the packing of journal boxes. It is composed of cow hair, sponge, and asbestos, and is quite elastic, a quality, we are informed which effectually prevents its caking in the receptacle The agents, Messrs. W. E. Allen \& Co., of No. 4 Great Jone street, in this city, submit many testimonials as to the value f the compound from railroad officials by whom the article as been in use.
The advantages claimed are that the material is composed of incombustible and lubricating substances, wears onger than cotton or woolen waste, does not grind into mud, equires less oil, saves several brasses per annum in each journal, reduces friction and hence economizes traction power, and, lastly, effectually prevents the heating of jour als. The invention, which has recently been patented, is known as Devlan's Patent Elastic Waste.

$\overline{\text { Meteoric Iron irom California. }}$

The analysis made by Mr. F. A. Cairns, assistant in the School of Mines, Columbia College, of this city, is as follows .

Of the twelve elements quantitatively determined by this analysis, aluminum, calcium, and potassium have been rarely observed in meteoric iron-meteors free from silicates -while the absence of copper, tin, manganese and sodium -while the absence of copper, tin,
will be noticed.-American Journal.

PNEUMATIC SCREW VENTILATOR FOR CARS.
It is no very difficult matter to promote currents of air in railroad cars by means of the ordinary tubes and funnels, properly arranged; but to prevent the entrance of smoke, cinders, and disagreeable fumes with the incoming draft is a difficulty to obviate, requiring more efficient apparatus than the common devices above ailuded to.
The improved ventilator, which forms the subject of our illustrations, aims to remedy most existing evils in quite a novel and ingenious manner. To a common spindle a wind wheel, A, of four or more paddles and a screw are attached, B. The screw, driven by the wind wheel, revolves in a cylinder C, set upon the roof of a car, or connected with it sideways by an elbow pipe, D. A perforated cylinder is set on cylinder, C, and supports a plate which protects the opening, and forms a support for the portion around which the türportion around which the tur-
ret or hood revolves. The wind wheel and the sides of the perforated cylinder exposed to the current of air are protected by the turret, which forms a shield around the open part, and moves independently of the motion of the wheel and screw, following that of the vane, E . In the direction of the vane the upper half of the turret is perforated on the right or left, as the case may be, the openings being slightbe, the openings being slighty lager than the paddles. This a bange the importance, because the returning paddles meet with little resistance, being shielded by the other closed half of the turret; the wind wheel consequently revolves at a high velocity and with it the screw. The latter is of peculiar construction; it is a double half spiral, winding from right to left and left to right around the spindle. It is made of thin sheet dle. I its its diameter corres metal, ponds C ly nder, C, leaving only room enough for play. This form of the screw is claimed to secure an excellent ventilation with a lower velocity than is required for fans.
It is evident that, with every revolution, the air before the spirals is pressed out of the way, upward if moved to the right, downward if to the left. The inventor states that actu-

Safety Valve Levers.

An esteemed correspondent, J. M., of Cal., says: "I notice that some of your correspondents are puzzled how to compute the effective pressure that a taper safety valve lever adds to the load on the valve. Takethe weight of the lever and make a mark on the side of the lever on line with the place where the lever rests on the center of the valve spindle, or at exactly one distance from the fulcrum. Make a loop of wire, slip it on the lever to the mark, hook a spring balance on to the wire, and raise this balance till the lever floats clear of the valve spindle; the number of pounds in-
corners of the head. The object of the inventor of the herewith illustrated machine has been to produce a tool which should combine these advantages with all the require ments of every class of bolt forging. Four dies are used nd the bolt is held firmly and securely in one position unti finished, always, it is claimed, producing a bolt, under the head, just the size of the rod, with the sides of the head in parallel lines with the body. All classes of bolts and shape of head desired are made, especially the fish joint or T headed bolts, which, we are informed, cannot be made on machines where the bolt is turned to receive the action of
the forging dies. The production of the apparatus varies the forging dies. The production of the apparatus varies with the size of the bolt to be forged, from eight to sixteen perfect oolts per minute; and changing from one size of bolt to another, or from on shape of head to another, it is stated, requires hardly moment's time, especially adapting the device to the use of railroad shops.
Among the points of ad antage claimed are, first implicity; every bolt and joint being dispensed with except those which produce the result of working the our dies, while there ar our dis, while there ar either goan, cams, no pus saving to the user both thus saving to the user both the expense and the time oc cupied in making necessary repairs. The slides are al gibbed so that any trifling wear can be readily taken up without removing the slides to put on a thin strip of iron. The sliding surfaces are al ways running in oil, as the are placed above the wate and cinders. The machine is provided with a cupboard for its tools, a new featur in this class of devices
The holding vise is opera ted by a handle, A, attached to the cross shaft. On each end of the latter are the arms, having links, B, at tached to work the sliding frame, which open the radi al arms that carry the holding dies. These holders are backed up by a filling-in piece, adjusted 'forward by means of the screws. The length of the bolt is raged from one inch upward by from one inch upward by adjusting the end screw The driving wheel is in op-
eration all the time: the machine only when it is forging the
make at least from 500 to 600 revolutions in a minute; and consequently three ventilators, of 8 inchesdiameter of and and 5 inches high, will remove the volume of air in a passenger car in about 15 minutes when running at the above speed. No drafts are produced, and the air changes constantly, the effect being not ai all disagreeable to the passengers. Smoke and gases and fine dust also disappear rapidly.
The principal operation of the invention is suction, to bring away the foul and vitiated air, openings for introduction of fresh air being easily provided; or when a still more vigorous ventilation is required, the apparatus, with a slight alteration of the turret, can be set to forcing air into the car.
Fig. 1, in section, shows how the device can be attached to the skylight in the raised roof of a car. Fig. 2 shows the mode of attaching the ventilator to the flat roof, and also how the opening, in which the screw revolves, is protected against wind, dust and rain, the aperture for the exit of air from the car being on the opposite side. Fig. 3 is a section of the socket for the spindle, lubricator and hanging cup. If the lubricator be filled, re-oiling will not be needed for months, friction, it is claimed, being reduced to minimum. The hanging cup serves to catch any oil that leaks out s circular egister may also be attached to the bot om of the cylinder to graduating the ventilation at pleasure. In Fig. 1, doors like those now in use will answer the purpose.
This entering draft, it is suggested, may be conducted around the stove so as to warm the interior during cold weather. Patented December 31, 1872, by Philip I. Schopp, C. E., who may be addressed for particulars at No. 445 W . Jefferson street, Louisville, Ky.
 bolt. The long slide carries the bottom die on its lowerend. The top slide die, C, works on the face of the long slide, which is actuated by two levers, D, E, having curved slots, the top die slide having one lever with reverse curve; all working on the same pin. The pin in the upset carrier, F, passes through the curved slots, and as it acts back and forth moves them in opposite directions. The side dies have their motion by means of links, G, attached to the upset carrier.

When the bolt blank is placed in the holders and clamped tightly by means of the handle, A, the handle, H, clutches in the driving wheel with the shaft, the upset carrier advances by means of the connections to upset the iron, the forging dies being all open. As the upset carrier recedes to half stroke, the side dies compress the sides of the head, and at extreme end of stroke the top and bottom dies act upon the other two sides of the head, and so continue to do until the bolt is finished, which is done in four revolutions of the driving wheel.
Two sizes of these machines are now being manufactured, one for both large and small bolts, and the other more particularly for the smaller sizes.
Two patents have been granted for this header, bearing date of May 1, 1870, and June 6,1871, respectively, while a third is now pending.
For further particulars address the in ventor, John R. Abbe, or the manufactur ers, S. C. Forsaith \& Co., Manchester, N. H., at whose works the machines can al ways be seen in practical operation.

New Plastic Composition.-A new plastic composition, said to be capable of very pretty effects, consists in mixing finely divided mica with liquid shellac. A paste or putty is made of these substances, and then pressed by means of dies into any desired ornamental form.

From the Fourth Annual Report of Charles V. Riley, State Entomologist

THE CECROPIA SILKWORM

Attacus [Platysamia] Cecropia, Lin.-(Lepidoptera, Bombycidee.)
The Cecropia silkworm is common, and its great size and beauty attract general attention. It is also more easily obtained, for the cabinet, than most of our other large moths, because its cocoon is always fastened to a twig where it remains all winter, a conspicuous object. The ground color of the wings is a grizzled dusky brown with the hinder margins lay yellow; near the middle of each of the wings there is an opaque kidney shaped white spot, shaded more or less on the outside with dull red, and edged with black; a wavy dull red band, edged inside with white, crosses each of the wings, and the front wings next to the shoulders are dull red with a curved white and black band, and have near their tips an eye like a black spot with a bluish white crescent: the upper side of the body and legs are dull red; the forepart of the thorax and the hinder edges of the rings of the abdomen are white, and the venter is checkered with red and white, There is considerable variation in the ground color of individuals, the ground color of individuals, some being quite dark and others quite light, but the female differs from the male in nothing but her larger abdomen and much smaller
antennæ or feelers. antennæ or feelers.
The genus attacus-meaning ele-gant-was founded by Linnæus, and our moth received its specific name from the same author.
During the winter time, the large cocoons of this insect (Fig. 2) may be found attached to the twigs of a curran arry, plum, hickory, blackberry, elderberry, elder, elm, lilac, red root, maple, willow, and honeylocust. It has also been found on the pear. This cocoon tapers both ways, and is invariably fastened longitudinally to which is loose, wrinkled, and resembles strong brown one, which is loose, wrinkled, and resembles strong brown paper,
covering an inner oval cocoon composed of the same kind of covering an inner oval cocoon composed of the same kind of silk, but closely woven like that of the mulberry silkworm.

Fig. 2.-Cocoon of the Cecropia

Fig. 3.-THE CECROPIA sILKWORM

Inside of this cocoon will be black, and with longitudinal rows of black dots running befound a large brown chrysalis. In the month of May, in the latitude of St. Louis, and latitude of St. Louis, and
earlier or later the further earlier or later the further
north or south we go, our CeHorth or south we go, our Ce-
cropia moth issues from its cocoon, and there can be no more beautiful sight imagined than one of these gigantic fresh born moths with all its parts soft and resplendent. The uninitiated would marvel how such an immense creature had escaped from the small cocoon which remains at its side, retaining the same form which it always had, and showing no hole through which the moth could escape. The operation-so interesting and instructive-can be wit-
nessed by any one who will take the trouble to collect a few nessed by any one who will take the trouble to collect a few
of the cocoons and place them in some receptacle which has sufficiently rough sides to admit of the moth's crawling up, to hang its heavy body and wings while they dry and expund. The caterpillar has the wonderful foresight to spin the upper or anterior end of its cocoon very loosely; and
when the moth is about to issue, it is still further aided in when the moth is about to issue, it is still further aided in its efforts by a fluid secreted during the last few days of the so firmly unites the fibers of tho cocoon. This fluid is secreted from two glands, which open into the mouth, and as soon as the chrysalis skin is split open on the back, by the restless movements of the moth within, the fluid flows from the mouth and wets the end of the cocoon, dissolving the gum and softening the silk to such an extent that, by repeated contractions and extensions of the body, the moth is at last enabled to separate the fibers, and to thrust out its
head and unbend its front legs; after which it rapidly draws

Fig, 1.-THE CECROpia moth, male.
and they are deposited in small patches on the plants which are to form the food of the fu ture larvæ. They are deposit in June, and hatch in from six to ten days thereafter.
When first hatched they are entirely black, with the tubercles placed in the same position; but are larger at the base and with a narrower stem than in the more mature individu: als, the upper and smaller end being crowned with a whorl of conspicuous stiff black bristles. After the first molt, the body is of a deep orange color, with the tubercles and head which survives them. After the Cecropia worm has formed its cocoon, the parasitic larva, which had hitherto fed on the
out the rest of its body, the mouth of the cocoon afterwards closing by the natural elasticity of the silk. At this moment the body of the moth is much swollen and elongated, the wings are small, folded, and pad-like, and the whole insect is soft and moist; but, attaching itself to the first obect at hand where it can hang its heavy body and clumsy wings, the latter become expanded in about twenty minutes, and the superabundant fluids of the body sufficiently evapoate in a few hours to enable the insect to take wing.
The eggs of the Cecropia moth are 0.09 inch long, sub-oval, flattened, and of a pale cream color, shaded with light brown; torehouse, as well as the blue jay, and, indeed, inclines to believe that the former is the sole proprietor. He has seen it, with corn in bill, searching about apple trees for such a storehouse, and has witnessed it deposit a kernel in the crack of a board fence.
The Cecropia worm, as may be inferred from its size, is an immense feeder, and a small number will soon defoliate a young apple tree. It has, on a few occasions, been found numerous enough to do injury in this way; but as a rule, natural enemies keep it so thoroughly in check that it can hardly be classed as an injurious insect. The same may be said of the other large and native worms which I include with the silkworms, and which on account of their silk-producing qualities may with propriety be treated of rather as beneficial insects, though their products have not yet been utilized Their great size and conspicuity not only renders them a ready prey to their natural enemies, but enable us to easily destroy them by hand picking whenever they happen to become unduly multiplied on any of our fruit trees. parasites of the cecropia silkworm.
The Long-tailed Ophion.(Ophion macrurum, Linn.)-This large yellowish brown ichneumon fly (Fig. 4) is often bred from the cocoons in place of the moth which one expects. It is one of the most common parasites of this large insect, and the females appear to be altogether more common than the males. The female, according to Mr. Trouvelot, deposits from eight to ten eggs upon the skin of her vic tim, and the young larvæ soon hatch from them and commence to prey upon the fatty parts of the worm. But as only one of the parasitic larve can find food sufficient to mature the of the die from hunger, or else are devoured by the strongest one fatty portions of its victim, now attacks the vital parts, and, when nothing but the empty skin of the worm is left, spins its own cocoon, which is oblong oval, dark brown, inclining to bronze, and spun so closely and compactly that the inpactly that the in-
ner layers, when se-

Fig. 4.-Ophion. ner layers, when se-
parated have the a parated have the appearance of goldbeater's skin. If we cut open one of these cocoons soon after it is comple ted, we shall find inside a large fat legless grub (Fig. 5), which sometimes undergoes its transformations and is. sues as a fly in the fall, but more gene-
 fall, but more geneFIG. 5.-Grub of the Ophion.

rally waits till the following spring.

The Cecropia Tachina Fly.-(Exorista leucanice, Kirk var. cecropio, Riley.)-The ichneumon fly last mentioned usually causes a dwarfed appearance of the worm which it infests, and parasitized cocoons can generally be distin guished from healthy ones by their smaller size. The larvæ of this tachina fly, which is also parasitic on the Cecropia worm, seem to produce an exactly opposite effect, namely an undue and unnatural growth of their victim. This fly differs only from the army worm tachina fly (exorista militaris, Walsh) in lacking the red tail entirely, or in having but the faintest trace of it, and I consider it but a variety of that species.
The Mari Chalcis Fly-(Chalcis marice, Riley).-I received from Mr. V. T. Chambers, of Covington, Ky., nume

rous specimens of the beautiful large chalcis fly figured herewith (Fig. 6), which he had taken from the cocoon of the Polyphemus moth, which is quite common, and issues as early as the middle of February in that locality. He says, "I was satisfled that the cocoon did not contain a living Poly:
phemus, and therefore opened it. Jt contained so little be sides these insects and their exuviæ as to suggest strongly the old idea that the caterpillar had been metamorphosed into them (as in a sense it had). There were forty-seven of them, of which twenty-three were females. As all the males and some of the females were dead when I opened the cocoon, I think it likely that the former never do emerge, and perhaps few of the latter, otherwise Polyphemus would soon be exterminated."
I can very well imagine that most of these chalcis flies would die in their efforts to escape from the tough cocoon of the Polyphemus, but it so happens that these same parasites have been found by Mrs. Mary Treat, of Vineland, N. J., to prey upon the Cecropia worm, from the cocoon of which they can more easily escape.
This fly is of a yellow color, marked, as in the engraving, with black
The Cecropia Cryptus-(Cryptus extramatis, Cresson).Another ichneumon fly (Fig. 7) often infests the Cecropia worm, the larvæ filling its cocoon so full of their own thin

Fig. 8.-The Cecropia Cryptus. Fig.9.-Cocoons of the Cryptus. parchment-like cocoons, that a traverse section (shown in flies issue in June. The wings have a smoky appearance caused, as may be seen when viewed under a microscope, by innumerablelittleh ooks regularly arranged over their surface
DOUBLE-ACTING BUCKET PLUNGER STEAM PUMP.
The fire pump illustrated in our engraving is of a form and manufacture doubtless already familiar to many of the readers of our journal. It is therefore not a new invention, but rather one which, during the three years that it has been before the public, has been made, from time to time, the subject of useful improvements; so that, in presenting it now, it is desired not merely to call attention to the advantages claimed for its peculiar mode, but also to the success which it has encountered from the period of its introduction.
The points to be noted consist in the arrangement of the bucket plunger and its method of operation. About the steam cylinder and valve there is nothing peculiar, unless it is the entire absence of complicated valve gear. The bucket plunger is composed of two cast iron cylinders, the larger one being below and packed with composition packing rings. The water cylinder in which it operates is made twice the area, in comparison to the steam cylinders, of the ordinary forms of dou-ble-acting steam pumps, the object being, it is stated, to dispense with half the number of water valves, as the quantity discharged on the upward streke is, as will be explained hereafter, thrown out through an opening in the top of the pump cylinder, and does not pass through the valve opening. Water is drawn in, on the up stroke, through a suction valve near the bottom of the cylinder, filling the latter. The downward stroke forces the contents out through the discharge valve, one half the quantity passing into the air chamber, and the other half flowing up into a passage and thence into the upper part of the cylinder encasing the small part of the plunger. The reason that one half of the water is forced out is that the small part of the plunger takes up that proportion of the interior space of the cylinder. On the next upward stroke, the water around the plunger is forced out through a passage and into the air chamber, thus filling up the pump, the same stroke replenishing the cylinder as before. Thus, it is stated that, after the pump has made a few strokes, a steady stream is kept up, as the quantity of water taken into the cylinder through the suction valve on the up stroke is just double that forced out through the passage from the upper end of the cylinder on the same stroke. It will be observed that there is another reason for con be obser wher in the proportions above structing water cylinders in the proportions above noted, from the fact that, while a large portion of power is required to discharge water, but littl
needed to draw it through the suction valves. needed to draw it through the suction valves.
The fly wheel is operated by a crank, sli
The fly wheel is operated by a crank, sliding block and cross head; to the latter, the steam piston and bucket plun ger are attached by their piston rods. The pump barrel and steam cylinders are in line with each other.
The working advantages are claimed to be ready taking of water, facility of running with greatest rapidity without jar ring or thumping,and strength and durability in material and
construction. Pumps of this description have been exhibited at the recent Fairs of the American Institute in this city, one of them receiving a medal and being rated first in order of merit at the exhibition of 1870. Numerous testimonials as to the successful operation of the device, from many leading firms, are also submitted by the makers. Patented by Mr. William Wright, of New York, March 8, 1870. For further particulars, address the manufacturers, the Valley Machine Company, Easthampton, Mass.

Lake okeechobee

This is the Indian name of a large lake in the southern part of the peninsula of Florida, distant 45 miles inland from Jupiter Inlet on the Atlantic coast, and 200 miles south of St. Augustine. The lake is 65 miles long and 30 miles wide, surrounded by extensive marshes which render it difficult of approach, and hence but little is known of its precise character. It contains several large islands, which we believe have never been carefully explored. A recent number of the New York Herald contains an account of a visit to this great lake by G. K. Allen, of San Marie, Florida, and four companions. It was with extreme difficulty that they made their way through the swamps and over quicksands, but they finally gained the edge of a bayou which floated them to the lake; and once upon its bosom, no further obstacles to progress were encountered.
From the first two or three miles out from the shore, they were terribly annoyed by mosquitoes and flies of various kinds, from which they could only in part protect themselves by thick veils over faces and hands. But at eight miles distance, the insects were no longer troublesome. Three miles from the shore they found shallow water-five feetand sundry low islands inhabited by immense alligators. At a distance of eighteen miles from the shore, the water be came clear and bottom was found at 170 feet. Here they discovered a group of three islands; the largest about six miles long, and four miles wide. The northern portion of this island was a barren, rocky waste, which extended back from the shore nearly a mile and a half, to the base of a line of rocky cliffs, about one hundred and fifty feet high, which extended across the whole width of the island. To the south of these cliffs is a magnificent forest, composed chiefly of large mahogany, palmetto and laurel magnolia. Many of the latter trees, being in full bloom, presented an enchanting scene. This forest extends over the whole of the southern portion of the island, except to within a few hundred yards

In the forests spiders of a gigantic species were found One was seen which was fully two feet long. It had long and
very strong looking limbs, and would have weighed thre very strong looking limbs, and would have weighed three or four pounds. In its head, which was jet black, were sev ral eyes, each surrounded by a bright yellow and scarle circle. The body was encircled by bands of scarlet, yellow and black. Altogether the spider presented a very brilliant appearance
Upon the largest island, north of the cliffs, the explorers were surprised to find heaps of stones, lying in such a position as to resemble ruins of some kind of structures. None of the ruins were extensive, and the structures must, there fore, have been of small dimensions. Similar ruins, if such they were, were found in great numbers upon the small island, north of this one. Upon the summit of a cliff which stands upon the eastern shore of the large island, the party found a large heap of stones lying in a semicircular form and facing to the east.
The length of these ruins was nearly two hundred feet. In front of this semicircle, and about fifty feet from it, was largeheap of stones, nearly twenty feet square. The ruins found on the plain below, and upon the small island, were much smaller than those found upon the cliff, being only rom five to ten feet square.

One Hundred Miles an Hour

The highest railway speedsin the world are attained in England, and thehighest railway speed in England is attained on the Great Western Railway, and this speed may be taken roundly as fifty miles an hour. There is a tradition in ex istence that Brunel once traveled from Swindon to London at eighty miles an hour; but we have never been able to obtain a shadow of proof that this speed has been reached under any circumstances or at any time whatever on a railway. Mr. Stirling has run with one of his great outside cylinder express engines and a train of sixteen carriages at seventy miles an hour on the Great Northern, on a level or with a slightly falling gradient; and we know that the Yarmouth express on the Great Eastern sometimes has reached a speed of sixty-four miles an hour down the Brentwood bank. On two occasions, some years ago in Ireland, we ran 14 miles in sixteen minutes with a powerful engine and a train of but two carriages. Much of the run was done a over 65 miles per hour. On the Boston and Albany road, United States, the 54 miles between Springfield and Worcester were run by an engine with 16 inches cylinder, 22 inches stroke, and $6 \frac{1}{2}$ feet driving wheel, in tifty-eight min-

Much of the run was done at nearly seventy miles an hour. On a first class line there can be no question, therefore, but that a speed of six.ty-five to seventy miles an hour may be available with safety. We believe that it would be possible to lay permanent way so well, and to maintain it in
such excellent order, that trains might travel on it such excellent order, that trains might travel on it with perfect safety at 100 miles an hour. Miles upon miles of such track are to be found now on most of our great main lines, but it is not to be disputed that nowhere can 100 consecutive miles of permanent way in perfection be found; and as a chain is no stronger than its weakest link, so a few hundred yards of bad track would spoil for the purpose of traveling at 100 miles an hour a whole line. It would not be impossible, however, to maintain a line of such rails from London to Livंerpool or York. The really important question is, given the line and the carriages fit for it, what shall the engine be like, and is it possible to con struct an engine at all which, with a moderately heavy train, will attain and maintain a velocity of 100 miles an hour, on a line with no grade heavier than, say, 1 in 300 . The first points to be settled are, how much power can a locomotive of a given size develope, and how much power shall we re quire to haul a train which will suffice to satisfy the demand of that portion of the public wishing to travel at 100 miles an hour. At 60 miles an hour on an ordinary line, and making due allowance for contingencies, the resistance to be overcome cannot, according to experiments carefully carried out both in France and in this country, be much unde 40 lbs. per tun. At 30 miles an hour the resist ance is about 20 lbs. per tun; at 47 miles an hour the resistance reaches 32.5 lbs . If the resistance goes on increasing in this proportion, then the re sistance at 100 miles an hour cannot be less than 75 lbs. per tun; but it may be very much more, and it would not, we think, be safe to take it at less than 120 lbs . per tun. Now a speed of 100 miles an hour is 1465 , or in round numbers, 146 feet per second, or 8,800 per minute. This, mul tiplied by 120 and divided by 33,000 , gives, say, 32 horse power. Therefore each tun moved at 100 miles an hour will represent 32 horse power. The "Great Britain" broad gage Great Western engine, with its tender, in running order represents a weight of about 64 tuns, and a heating surface of 2,100 square feet. This engine has indicated ove 800 horse power. To run such a machine and a The island next in size is about one fourth of a mile west of
his large island; it is about four miles long and a mile and
in round numbers 100 tuns, at a gross load of 100 miles an hour would this large island; it is about four miles long and a mile and a half wide, and is covered by a forest like that on the large island. The third is quite small, being only about one mile long and from a half to three quarters of a mile wide. Very few animals of any kind, and none of a savage nature, were found upon these islands.
in round numbers 100 tuns, at 100 miles an hour would
require 100×32, or 3,200 horse power, or just four times more power than the most powerful high speed locomotive that has ever been built could exert. To run the engine weighing 38 tuns, alone would require a power of 1,216 horses, assuming that the engine resistance was identi-
cal with that of a carriage. These figures suffice to prove that it is absolutely impossible to obtain a speed of 100 miles an hour on a railway if the resistance is anytbing like 120 lbs. per tun.
It is little more than waste of time to discuss any other question connected with the matter, such as safety and working expenses, until it has be settled whether it is or is not possible so far to reduce resistance that it will become possible to construct an engine of sufficient power to fulfil he intended purpose
If it can be shown that the resistance could be brought much below 120 lbs. per tun, then it may be possible to attain a velocity of 100 miles per hour.-The Engineer.
The Daily Graphic says that the individual avho styled himself Professor La Mountain, and who was lately killed in Michigan by a fall from a balloon, was an imposter who traded on the name of the real La Mountain. The latter died six years ago, and was one of the most distinguished aeronauts.
J. H. P. says: My brother and myself are in mechanical pursuits, and we owe half our success to your journal.

DECISIONS OF THE COURTS.

United States Circuit Court--Southern District of ohio.
patent rotary blower.
Emmos, r.
Patent rotary blower.
F. m. roots ve. william G. hyndman.

United States Circuit Court--Southern District of Ohio THE UNION PAPER BAG COMPANY vs. NIXON \& CO.

Inventions Patented in England by Americans, [Compiled from the Commissioners of Patents, Journal.] boor Sewing Machine.-A. M. Loryea, Portland, Oregon. Cartridge box.-S. McKeever, Mobile, Ala Cutting Gems.-C. M. Field, Boston, Mass. Dyeing Machinery, eto.-C. G. Sargent, Graniteville, Mass.
FLuid Meter.-J. O. Johnson, New York city. Flutd Meter.-J. O. Johnson, New York city.
Motive Power.-P. Protheroe, Baltimore, Md. Preparing Hides.-J.Davis et al., Pittston, Pa.
Preserving Fabrics.-S. W. Torrey, New York city Printing Yarn.-J. R tary Engine.-W. H. Eayrs et al., Boston, Mass Semi-Steri, etco -C. J. Caumon, New Yorkity. SEMT-STERL, ETI.--C. T. Call, Northampton', Mass SHoe Fastener, etc.-J. Wulfi (of New York city), London, England. Window Gratings.-T. Hyatt, New York city.
Wood Pulf, etc.-T. B. Armitage, New York city.

Fecent amoriad and forciqu satents.

Improved Street Railway Switch.

 in applied to a tilting or oscillating perated by the weight of the draft animal rocating piston rod in connection with two narrow platforms, the switch can be adjusted from the main track to the side track, and vice versa, asrequired, whether one or two animals are used for the car. The animal required, whether one or $t w o$ animals are used for the car. The animal
whose weight is not required passes over the space between the platforms

Charles M. Powers, Ridgewood, N.J.-A veessel similar in form to an ordinary beer tankard is divided into two compartments by a vertical slid
ng partition. This partition slides in grooves on the sides of the vesse and extends from near the cover to near the bottom. A horizontal stationary strainer is in one compartment, and another strainer in the other com-
partment is hinged to the partition so that it can be withdrawn with the partment is hinged to the partition so that it can be withdrawn with the
partition for cleaning, when necessary. The beer to be strained is intro duced into the one part through the opening and passes through the strainer and flyds its way into the other compartment. It then ascends and passes through the horzontal strainer and through the perforated side
the vessel, and is discharged from the spout, clear and free from froth
Improved Middings Purifier.
Joseph W. Willson, Pawtucket, R. I., assignor of one half his right to John W. Vose, of same place.-This invention consists in using a fan blower and exhaust f an, in connection with a sieve so fine as to allow the passage of no middlings therethrough while being cleaned. By suitable construction, as
the middlings are fed into the machine intermittently, each portion is sub jected to the blast from the fan blower, which causes the fine woody flber, whst, and all other impurities, to rise into the upper part of a chamber, exhaust fan. The other parts of the middlings pass down to the coarse cloth where they are separated.
Charles Zocher, Augusta,Ga.-This invention has for its object to furnish an improved sweep for cultivating cotton and other crops. The upper arm arm is designed to rest upon the ground, and thus give steadiness to the sweep when at work. The wings of the sweep are made solid in one piece and the middle part fits upon and is bolted to the foot. The wings project and slightly curve rearward and outward, and the lower parts of their for-
ward sides are made with offsets, which break up their edges, and thuscause ward sides are made with offsets, which break up their edges, and thuscause
them to readily discharge the grass or weeds that may collect upon said edges. Each offset is formed by cutting a way the edge of the sweep both slopes or is ackward, while the portion of the edsil or other substance with which it may come in contact will readily escape or be turned off. It
is thus an improvement on the plow share of L. M. Reed, patented in is thus an imp
1869, No. 85,533
Improved Turn Table.
William H. Burch, Port Gibson, Miss.-This invention has for its object William H. Burch, Port Gibson, Miss.-This Invention has for its object rests upon a bed of brickwork, and carries a cast steel socket to recelve
the center balancing screw. At the end of the track are secured the bear ings of two wheels in such positions that they may be directly beneath the end of the track of the turn table when in position for the engine to pass
to or from said table, The wheelsare designed to take the weight off the circular track, upon which the table revolves, when an engine is passing to or from said table. The stringers to which the ralls are attached a rebolted to each other. Each ismade in two equal parts, whichare strengthened at the
joints and bolted at the centers to the center cross beam. To the stringer at the inner sides of the end cross beams are bolted the truck frames. To the under side of the center cross beam is bolted a cast iron plate, which
plate is made suffliently long to recelve the bolts that secure the splice bars to sald central beam. Through the center passes the pivoting screw, the bearing for which is lengthened by a boss formed upon the lower side of said plate. The said screw can be securely locked in place, and may be ed. The table is locked with the that the table may be accurately adiust ed. The table is locked, with the rails in line with the rails of the track,
by the V shaped locking bar,attached to the shaft which works in bearing is worked by a lever. The free end of the V-shaped locking bar enters a groove in the catch block, one of
which blocks is attached to each end of the track of the turn table. Suitable stays prevent vibration and hold the table securely aud firml under counter strains.
Philip F. Wells, Milford, Mich Cultivator. ells, of same place.-The livention consists in the improvement of cu tongue by an angle plate, to which they are securely bolted. The latter is
made with a vertieal and a horizontal flange, to strengthen it against the strain in the different directions in which it is exposed to strain. The plow tandards carry the cultivator teeth or plows, and the draft strain is sus dinal bars, and the rear ends to the sald standards. The rear ends of the draft bar are connected with the standards by means of wooden pins, so
that, should the plows strike an obstruction, the pins may break and allow the standards to swing back without being broken. The upper ends of the standards are connected with the bars by bolts, so that the sald standard equired, so that the standards may be parallel with the draft line whil being attached to inclined bars.

Improved Muff Lining.

Charles F. Butterworth, Troy, N. Y.-The lining of this muff is composed
partly of fur and partly of elastic leather. The outer pieces arefur, and re blocked or crimped so that the lining part and the end part are at abou rightangles to each other. The former part extends in to the muff so as t o
inclose the wrists after the hands are admitted, which the natural elas ticity of the fur permits. The middle part is of material which readily ex pandsand gives the required room.

Improved Butt Hinge.

Improved Butt Hinge.
Somers Van Gilder, Knoxville. Tenn.-This invention relates to the con struction of hinges for hanging doors and for other purposes; and it con-
sistsin a divided leaf and in a pintle pin fast in the other part of the hinge The pintle is stationary, and each part of the divided leaf bears tits own por tion of strain whichever end of the butt may be up; and the butt may be reversedas may be found convenient, so that making the buttsin pairs or rights and lefts is not nece ssary

Improved Clothes Washer.
George J. Terrell, North Blanford, Mass.-This apparatus is placed in the
ordinary wash boiler, and is designedto fit the inside thereof with ordinary wash boiler, and is designedto fit the inside thereof, with its oute rim resting on the bottom, and form a false bottom itself. A tapering tube
is attached to the center, which extends to near the top of the boiler, having upon its end a removable T-shaped exhaust pipe. The outer edge of a
lining rests at its ends upon the bottom of the boiler, but its sides are raise up so that the water readily passes beneath it to the bot tom of the boiler The lining is arranged a short distance below the false bottom, leaving an open space between the two, and is held in position by means of a shor
tube. Holes are made through the false bottom. When water is placed in the boiler, it at once findsits way to the bottom. Heat being applied, steam is generated, and the water, or steam and water combined, is forced upwar by the pressure through the tube through the agency of the conical imper forate lining which prevents the flow or escape of the same laterally. Th clothes to be washed are placed in the bolier, resting on the false bottom,
and the water thus raised is discharged through the T pipe on top of the clothes, and percolates by its own gravity down through the clothes; passe next through the holes, and thus enters the space between the false bottom and lining, whence it flows downward to the bottom boiler. A circulation
of water is thus kept up through the clothes, the rapidity of which is accor of water is thus kept up through the clothes, the rapidity of which is acco
Improved Wash Boiler.
William J. Thomas, Frederick City, Md.-In the end parts of the boller are formed tubular chambers, in which are formed transverse slots, through
which the steam and water are discharged upon the clothes. The bases of the tubes project tinward a little above the bottom of the bofler. In a false
botom are formed two rows of holes, one row upon each side of the cenbottom are formed two rows of holes, one row upon each side of the cen-
tral line and about half way between said central line and the side edges of said bottom. The holes are covered upon the upper side of the bottom by
strips, which prevent the clothes from being forced into the holes by the pressure of the water. In using the boller, the pressure of the steam when generated presses hinged'plates up against the lower side of the bottom closing the openings in said bottom untll the sald plates are again forced
d own by the pressure of the water, thus establishing a current.

Improved Fireproof Roof.
is invention conwist dovetail grooves, which is secured to the rafters or beams by metal brackets riveted to it, and hooked under the rafters. A top covering of fire and waterproof cement, and a mortar coat on the inside, are applied and plastered on the sheet metal, and secured by the dovetail grooves and ribs
the whole constituting a light, durable, fireproof roof, which is not subject to the dampness on the inside common to the metal-lined fireproof by the condensation of molsture on the iron.

Improved Apparatus for Pitching Barrels.
George Sichler, New York city.-This Invention has for its object to fur nish an improved apparatus for rolling beer kegs after they have been pitched to keep the pitch spread over the inner surface of the kegs until
they have become so cool that it will not flow. The kegs are placed upon they have become so cool that it willnot flow. The kegs are placed upon
the forward or upper end of an upper skid, down which they roll and pass upon another skidd which is pivoted and balanced by a weight. The keg overbalance the latter and tilt the skid until the forward ends of its side bars come in contact with the upper side of the rear end of the lower skid along which the kegs roll to the forward end of the machine, where they
are raised and again placed upon the upper skid. In this way a number of are raised and again placed upon the upper skid. In this way a number of
kegs may be kept in motion at the same time, the only labor required being to raise the kegs and place them upon the upper skid.
John H. Guest, Brooklyn, N. Y., assignor to Augusta Guest, of same place. - The object of this invention is to construct a reliable instrument for closing the circuit of an electric fire alarm as soon as the temperatur of the surrounding air has reached a certain degree ot heat. It consists of
a bulb with an expansion tube surrounded by an outer vessel, which is bulb with an expansion tube surrounded by an outer vessel, which is the wire passes through this outervessel and the bulb into the mercury being in continuous contact with it, the action of the instrument being hus not disturbed by the changes of temperature and consequent acces of air. Whenever the temperature will rise to the degree to which the coming in contact with the wire therein, establish the circuit and produc
cone the alarm.
Archibald C. Würtele, New York city.-This inven
ay, which it artele, New York city.- his invention is an improved suspended in It , it may be made to revolve in various positions and direc suspen
tions.

Horatio Nelson, New York city.-This compound is claimed to posses antiseptic properties, which render it more desirable than other paint Where such properties are not found. It is composed of plumbago, clay Hifeate of potash or soda, and on

Improved Sofa Bedstead.
Charles F. Grundin, Boston, Mass.-The object of this invention is t uch a and consequently less worn, retaining its form and appearance. Any spring bitom can therefore be used for the bed part, and the whole be placed o asters, to be easly moved as sofa or bed. The invention consists of fous pen by disconnecting the arm top pleces from the arm braces, which form the legs of the front part of the bed. The sofa back and seat form the outer side, a spring bottom the inner and bed part of the sofa bed.

Improved Medicine Spoon.
James L. Colby and Le Roy B. Thomson, Saxonville, Mass.-The object of thisinvention is to supply a spoon for the nursery by the use of which the minnsterng of medche tochinaren is greatly facintated, without spilplaced on suitable supports on the bed table, so that the medicine may b filled into it before the actual time of taking has arrived. To the bod of the spoon is attached, at the connecting point between bowl an andle, by means of hinges, a convex cover of the same size as the bow and resting edgewise upon it. A crescent shaped opening at the foremon part of cover serves, when the same is thrown open, as a rest for the vial,
to steady the hand for counting the drops of the medicine; when closed, or the purpose of allowing the contents of the bowl to flow freely into the mouth of the patient. To the lower side of the bowl are connected sup orts for sustaining the spoon in such a position that the medicine is leve n the bowl and d

Improved Mode of Constructing Wells.
Curtis, Bastrop, La.-Thisinvention relates to a new
Asahel Curtis, Basion, La.-Thisinerin for the curbing thew and usefu ne thod of forming wells with less brick for the curbing than has hereto
fore been used. The ordinary wooden earth box, sharpened at the low end and having bands at top and bottom, is intended to receive the brick that are usually superposed thereon, while the wall and the box graduall sink lower and lower as the wallis built. A cylinder placed about the box
is gradually raised as the work progresses, and is removed at its termina isgradually raised as the work progresses, and is removed at its termina ion. This not only enables wells to be constructed with great evenness of
he wall bricks, and with perfect perpendicularity, but also enables one to conomize the number and expense of the bricks themselves, especially in country places, to whichthey are hauled from a long distance.
Improved Cotton Press.
William W. Patrick, Midway, , C.-The object of this invention is to construct, for the use of cotton growers and others, a powerful press for
packing the cotton in bales, which, on account of its plain construction can be furnished at very moderate price. The invention consists of a frame re pivoted to the upright posts of the frame, the lower one with semi-cir cular head carrying the pendent follower block, the upper or king lever pressing on the lower and packing thereby the cotton in the box. By pulleys and ropes at the en
the poweris obtained.

Improved End Gates for Wagons

Stephen F. Robertson, Rockford, TIl.-This Invention has for its object to boards, at their ends, is attached a plate of malleable iron, which is cas with two flanges upon its outer side to form a groove to receive the end of the end board. Upon the lower end of the plate is cast a bolt which passe own through the bottom board, and through the cross bar placed beneat aid bottom boards, and has a hand or lever nut screwed upon it. Upon the cast upon the malleable iron cleat attached to the end board. A bol attached to the end board passes down through the bottom board and the ross bar, and has a hand or lever nut screwed upon its lower edd. By thit
onstruction, the parts of the wagon box will be much more firmly hel construction, the parts of the wagon box will be much more firmly h
ogether than when the ordinary wooden cleats and cross rod are used.
$\underset{\text { verstraw, }}{\text { Improved }} \mathbf{~ S e e d ~ P l a n t e r ~}$
William Call, Jr., Haverstraw, N. Y.-This invention has for its object to anting seeds. A clutch whis pin to the axle. Upon the axle are secured star cams by which the droppin indes are operated. The main frame consists of two long bars, connected by three cross bars, while the auxiliary frame consists of two long bar
connected by short bars, having sockets that enable the frame to slide mis. lides of the hoppers. By suitable construction the hoppers and furrow peners may always be adjusted to rows of different distances apart.

Improved Chair.
William T. Doremus, New York city.-This invention has for its object to frnish an improved chatr, so constructed as to yield, as a person sits down it it and as he leans in either direction, thas avoiding the rigid resistance
experienced in sitting in an ordinary chair, and which at the same time djusts itself to the weight of the person, and thus operates equally well on sits down in the chair, his weight compresses rubber blocks more or less, so that the said blocks will always adjust themselves to the weight
they may have to support.
$\underset{\text { Improved Hinge. }}{\text { James W. Wood, Conshohocken, Pa.-The obje }}$ furnish an adjustable hinge, by means of which the doors can be easily set to any position desired on the shinking or swelling of the door frame and
door, or adjusted up and down to preventaragragging or catching at the sill or op frame. The invention consists of a fanange cast to one wing or leaf of a cop rmame. The invention consists of a finange cast to one wing or leaf of a
common butt hinge, to slide and be adjusted by set screws in a metalic
socket mortised

> Improved Dog for Circular Saw Mill ber Recockord Mich.-This invention has for itio ob James Taber, Rockiord, Mich.-This invention has for its object co furnish an improved dog for securing the log or other timber upon the carriage
in circular saw mills. By suitable construction the engaging ends of the dogs are thrown forward and inward, to enter the log, by moving the free end of a lever downward, and are thrown back and outward by moving the free end of said lever upward. The lever when moved upward moves along
a spring to keep it from dropping down when released. By raising the free end of another lever a block will be drawn forward, causing the engaging ends of the dogs to project, to enable them to take hold of a rough, knotty or crooked log. By lowering the free end of the lever the dogs are drawn back to their former position. The sliding plate and its attachments may

Aaron Fuqua, Woodville, Medical Compound.

Aaron Fuqua, Woodville, Ky.-The object of this invention is to furnish compound composed of red oak berkes of the bowels; and it consists in a compound composed of red oak bark, sweet gum bark, blackeerry ro
cloves, pimento, cinnamon bark, extract of logwood and refined sugar.
Improved Thrashing Machine.
Frederick R. Sutton and William O. Sutton, Wellington, Ill.-The crushing rollers are arranged directly in front of the upper edge of the concave so as to deliver the flax and grain to it. There is an endless roller or apron
arranged on a feed table in front of the rollers for delivering to them. The lower roller is mounted in stationary bearings, but the upper one is The lower roller is mounted in stationary bearings, but the upper one is
arranged in movable bearings to slide up and down in a yoke; and springs
of elastic rubber are arranged in yokes above them, so as to allow the upper of elastic rubber are arranged in yokes above them, so as to allow the upper
roller to rise, as required by the flax or grain passing under it, and to keep roller to rise, as required by the flax or grain passing under it, and to keep
the press down thereon, no matter how much or little it may be. The apron the press down thereon, no matter how much or little it may be. The apron
works over rollers, the latter bearing at the outer end of the table, and provided with adjusting screws, by which the requisite tension may be maintained on the apron. The beater blades of the thrashing cylinder are ar-
ranged upon projections of the arms of the cylinder beyond the head, and tained on the apron. The beater blades of the thrashing cylinder are ar-
ranged upon projections of the arms of the cylinder beyond the head, and
they are screwed by hook-shaped angle bars, which engage the bars of the they are screwed by hook-shaped angle bars, which engage the bars of the
cylinder at one edge, and are clamped by the clips, which engage the other cylinder at one edge, and are clam
edge, and are held by hook bolts.
Improved Till Alarm.
John F. Baldwin, Nashua, N.H.-The object of this invention is to furnish improved means for detecting fraudulent attempts to gain access to money drawers or "tills." The case consists of front and side plates atplate, and act as levers, the back motion being produced by spiral springs. There are several bolts which work through a swing bar. The lower por-
tion of each bolt extends down from the foot piece through a fiange, and as the spiral spring around it, which springrests upon the flange and press ${ }^{\circ}$ es the bolt upward with a constant pressure. The lower edge of the swing
bar is forced forward in contact with the keys by a spring. On the inside of the swing bar is a small lug for each bolt, and each bolt is made with a shoulder which catches under this lug and holds the bolt down when it is
not in use for locking. The openings in the top of the swing bar, through not in use for locking. The openings in the top of the swing bar, through
which the bolts work, are broad enough to allow the bolts to be forced one side, or into an inclined position, and when so forced one side and pushed
down the shoulder catches under the lug of the swing bar. When the bolts are not required for locking they are not disposed of in this manner. The locking bolt or bolts may be changed, and one or more brought into requi-
sition, as may be desired. When the bolts are thus pushed down and held the toe of the key (when the finger piece is pulled) slides down on the face of the bolt and thereby pushes back the swing bar and gives the alarm. When the bolt is up (as when used for locking) the toe of the key passes by
the side of the bolt, and the angle of the key strikes the foot piece and the side of the bolt, and the angle of the key strikes the foot piece and
draws down the bolt. When the drawer is closed a catch plate will be raised by the end of locking bolt; but when the bolt has passed behind, it with a constant pressure. A spring rod keeps the drawer in position when this is done whenever a key is made to operate upon a silent bolt, or a bolt not employed in locking

Improved Railway Frog.
John Woodville, Washington, Ind.-This invention consists of a turn out
for mining railways, constructed with particular reference to the cars used for mining railways, constructed with particular reference to the cars used
in mines, in which it is necessary to have the wheels revolve on the axles, on account of the short curves necessary on such roads, and which said
wheels, in consequence of so working, have considerable lateral play. The invention comprises improvements in the form or construction of points of switch rails. The peculiarities of these points are : The pointed end of one switch point terminates at such a point in the line of the outside rail
of the branch track that the gage is increased on a radial line about one and a quarter inches ; and the pointed end of the other point is so arranged that a quarter inches; and the pointed end of the other point is so arranged that
the gage on another radial line is increased about an inch and a half, so that notwithstanding the lateral play of wheels on the axles they will be switched
oft on the curve with certainty in case the car is pulled by the team to the left. In some cases, where the turn out is not very short, so that the team ts desirable to employ a movable tongue, which is pivoted at the concave end of one switch point by a pin extending down through the wing plate, and having an arm fixed on it, and extending outside of the rail a suitable
distance, and connected with levers and weights for holding the tongue open or closed, as may be desired, the weight being put on one arm to hold rod extending along the track each way, so that when it is desired to have the car take the course which the tongue would, under the infiuence of the
weight, prevent it from taking,fthe driver can shift the tongue while riding on the car by reaching out and pulling the cord.

Improved Harvester
Tmproved Harvester.
John Werner, Jr., Prairie du Sac, Wis.-This invention has for its object
to improve the construction of that class of harvester platforms that conto improve the construction of that class of harvester platforms that con
vey the grain longitudinally along the platform, and raise it into a recepvey the grain longitudinally along the platform, and raise it into a recep-
tacle to be conveniently taken by the binders and bound. The invention consists in the improvement of platform conveyers. When the cut grain
falls upon a harvester platform it usually fails with its heads inclined toward the elevator, and is carried forward in that position to the elevator, When an ordinary conveyer is used. With this improved conveyer the
heads of the cut grain fall upon the platform, and its butts upon the belt or belts, so that the said heads will lie still, and the butts will be carried for ward until the grain lies straightacross the platform when it will be carried forward by the slats to the elevator.

Improved Coffin Plate.
George Brabrook, Taunton, Mass.-This Invention relates to coffin or other plates intended to receive an inscription; and consists in providing a tapered body with a circumjacent flange at the bottom, and a detachable beveled border

Tmproved Mreat Chopper.

Hugh P. Rankin; Allegheny, Pa. - This invention consists in a novel mod of combining a rotary table and a series of chopping knives; also, in a pe
cullar mode of constructing the knites, so that, when the edge of a knife loses its exact horizontal line by sharpening, it may be still adjusted o the stock so as to strike horizontally; and, finally, in a novel mode of pre-
venting the mechanism from being broken by the contact of the knives venting the mechanism from being b
with bones or other hard substance.

Charles A. Fisher, Baltimore, Md.-This invention relate making earthenware plates, engraved or otherwise, for stoves, flooring, cr other purposes; the same being made in two parts, hinged together at on
end.
$\xrightarrow[\text { Improved Curtain Fixture. }]{\text { Lloyd J. Earll, Union City, Pa.-This invention consists in suspending a }}$ Lloyd J. Earll, Union City, Pa.-This invention consists in suspending a
curtain from the cornice so that it can be adjusted with respect thereto and at different distances the refrom. It also consists in a suspended wire
frame, provided with bearings, in which rotate the curtain roller. It also frame, provided with bearings, in which rotate the curtain roller. It also
consists in providing a novel detachable journal for the roller, whereby if a journal is injurèd or impaired it can be easily replaced.

Improved Toy

Albert R. Batchelder, Newburyport, Mass.-This invention if an mprove-
ment upon the toy for which letters patent were granted to E. L. Morris, June 25, 1872, No. 188,239 . The improvement consists mainly in suspending balls from the handle by fiexible cords or strings. The object is to increase
the difficulty of operating the toy, and to enable a series of beautiful parthe difflculty of operating the toy, and to enable a series of bes
allel curves to be described about the handle in various planes.

> Improved Button Hole Cutter. osen, New York city.-This invention con

Casper Van Hoosen, New York city.-This invention consists in arranging,
a cloth gage within a circular slot of one scissor blade, which is shouldered, nd a stop screw on the other slotted blade which acts against the shoul der. When adjusted, a stop will prevent the blades from closing beyond the required point, so that all the button holes will be of exactly the same
length. The part of the scissors upon which the stop slides is provided length. The part of the scissors upon which the stop slides is provid
with a scale of division marks for convenience in adjusting said stop. Improved Shutter Worker
Hervey s. Phillips, Wilmington, Del., assignor to himself and Robert Blair, of same pabe object of ular form, or zigzag in shape, having offsets therein, is attached to the in-
side of the shutter at its ends. A lever is attached by a pivot screw to the window sill, so that it may be made to swing horizontally. The opposit end of this lever is curved, and has lugs projecting upward, between which
the bar is placed. When the lever is moved outward ihe bar slides between the lugs, but there is sufficient play to allow the offset to pass without binding, and when the lever is held at rest without the lug in the angle of
one of the offsets, the shutter is held immovable, while, by a movement of one of the offsets, the shutter is held immovable, while, by a movement of
the lever one ug slips from the angle, and another lug pushes the bar out the lever one lug slips from the angle, and another lug pushes the bar out-
ward. The blind or shutter may be securely held by the lever when either open or closed, or in three, more or less, intermediate positions. The lever tally through the casing above the window sill from the inside.

Improved Ant Trap.
Leander Rubarth, Davilla, Texas.-This trap is for catching burrowing
insects, but is especially adapted for exterminating a species of large ant insects, but is especially adapted for exterminating a species of large ant
which infests portions of the Gulf States, and is very destructive to vegetawhich infests portions of the Gulf States, and is very destructive to vegeta-
tion. The trap is in the form of a hollow truncated cone,and has downwardtion. The trap is in the form of a hollow truncated cone, and has downward-
ly projecting annular flanges or "overhangs " applied to the inner and the tra the trap when necessary. The ants reach the inner chamber by crawling up
Improved Fruit Jar.
Mrs. Ella G. Haller, Carisisle, Pa.-This invention consists in forming a groove for the packing on the outside of body, while the cover is construct-
ed with a lip or flange that overlaps the groove and packing, allowing each ed with a lip or flange that overlaps the groove and packing, allowing each
to be blown in a single piece; whereby the liability to fracture, which exists where the neck is blown separately and applied in a plastic state, is
entirely obviated; and whereby a jar of much greater simplicity and efflentirely obviated; a
ciency is produced.

Improved Lag Beater.
John W. Condon, Logansport, Ind.-This invention consists in providing a suitable vessel with beaters and scrapers rotating in opposite directions, out by scrapers and into the path of the beaters. It also consists in the means for operating the beaters and scrapers.

Improved Churn Power.
Geo. W. Fenimore, Franklin,
Elijah Barrett and Geo. W. Fenimore, Franklin, Tenn.-This invention consists in an arrangement of a supplementary driving shaft, so arranged of changing the rapidity of reciprocation of the dasher. It also consists in
of of changing the rapidity of reciprocation of the dasher. It also consists in
an attachment

Value of Patents,

AND HOW TO OBTAIN THEILI.
Practical Fints to Invenitors.

等ROBABLY no investment of a small sum of money brings a greater return than the expense incurred in obtaining a patent
even when the invention is but a small one. Larger inventions re found to pay correspondingly well. The names of Blanchard
Morse, Bigelow, Colt, Ericsson, Howe, McCormick, Hce, and Morse, Bigelow, Colt, Ericsson, Howe, McCormick, Hce, and
others, who have amassed immense fortunes from their inven tions, are well known. And there are thous
have realized large sums from their patents.
More than Fifty Thousand inventors have availed themselves of the services of MUNA \& Co. during the TWENTY-SIX years
acted as solicitors and Publishers of the Scientific Amertcas Thev stand at the head in this class of business; and their large corps of a
able of rendering the best service to the inventor, from the experience practically obtained while examiners in the Patent Office : enables MUNN \& Co
to do everything appertaining to patents BETTER and OEEAPER than any

H0W TO
 swer canonly be had by presenting a complete application for a patent to the Commissioner of Patents. An application consists of a Model Draw-
ings, Petition, Oath, and full Specification. Various offlicigl rules and formalities must also be observed. The effiorts of the inventor to do all this
business himself are generally without success. After great perplexity and delay, he is usually glad to seek the aid of persons experienced in patent proper advice at the beginning. If the parties consulted are honorable men, the inventor may safely confide his ideas to them they will advise whether
the improvement is probably patentable, and will give him all the directions the improvement is probably patentable, and will give him all the
needful to protect his rights.
This is an inquiry which one inventor naturally asks another. Who has had some experie
and correct:
Construct a neat model, not over a foot in any dimension-smaller if pos sible-and send by express, prepald, addressed to MUNN \& Co., s7 Park Row,
New York, together with a description of its operation and merits. ceipt thereof, they will examine the invention carefully, and advise you a to its patentability, free of charge. Or, if you have not time, or the means
at hand, to construct a model, malke as good a pen and tnk sketch of the
of a patent will be received, usually, by return of mall. It is sometimes
best to nave a search made at the Patent oflice. Such a measure often saves the cost of an application for a patent.

Preliminary Examination.

In order to have such search, make ouc a written description of the inven tion, in your own words, and a pencil, or pen and ink, sketch. Send these
with the fee of $\$ 5$, by mail, addressed to MUNN \& Co., 37 Park Row, and in due time you will receive an acknowledgment thereof, followed by a writ ten report in regard to the patentability of your improvement. This special Rejected Cases.
Rejected cases, or defective papers, remodeled for parties who have made applications for themselves, or through other agents. Terms moderate

To Make an Application for a Patent
The applicant for a patent should furnish a model of his invention if sus-
ceptible of one, although sometimes it may be dispensed with; or, if the inceptible of one, although sometimes it may be dispensed with; or, if the in-
vention be a chemical production, he must furnish samples of the ingredithe inventor's name marked on them, and sent by express, prepaid. Sismal models, from a distance, can often be sent cheaper by mail. The safest way to remit money is by a draft, or postal order, on New York, payable to
the order of MUNN \& Co. Persons who live in remote parts of the country the order of MONN \& Co. Persons who live in remote parts of the country
can usually purchase drafts from their merchants on their New York corespondents.

Caveats.

Persons desiring to flle a caveat can have the papers prepared in the short
est time, by sending a sketch and description of the invention. The Govern est time, by sending a sketch and description of the invention. The Govern-
ment fee for a caveat is $\$ 10$. A pamphlet of advice regarding applications ment fee for a caveat is $\$ 10$. A pamphlet of advice regarding applications
for patents and caveats is furnished gratis, on application by mail. Address MUNN \& Co., 37 Park Row, New York.

Reissues.

A reissue is granted to the original patentee, his heirs, or the assignees of the entire interest, when, by reason of an insufficient or defective specificavertence, accident patent is invalid, provided the error has arisen from inadverten
tion.
A pa
A patentee may, at his option, have in his reissuea separate patent for
each distinct part of the invention comprehended in his original application each distinct part of the invention comprehended in his original application
by paying the required fee in each case, and complying with the other requirements of the law, as in original applications. Address MUNN \& Co. 37 Park Row, for full particulars

Design Patents.

Foreign designers and manufacturers, who send goods to this country may secure patents here upon their new patterns; and thus prevent others from fabricating or selling the same goods in this mariset
alien, for any new and original design for a manufacture, bust, statue alto ahen, for any new and orgna and original design for the printing of wool-
relievo, or bas relief; any new
en, silk, cotton, or other fabrics ; any new and original impression, ornaen, silk, cotton, or orther fabrics; any new and original impression, orna-
ment, pattern, print, or picture, to be printed, painted, cast, or otherwise ment, pattern, print, or picture, to be printed, paint
placed on or worked into any article of manufacture.
Design patents are equally as important to citizens as to foreigners. For Foreign Patent
The population of Great Britain is $31,000,000$; of France, $37,000,000$; Bel-
glum, $5,000,000$; Austrla, $36,000,000$; Prussia, $40,000,000$; and Russia, $70,000,000$. Patents may be secured by American citizens in all of these countries. Now is the time, while business is dull at home, to take advantage cf these
immenseforeign fields. Mechanical improvements of all kinds are always in demand in Europe. There will never be a better time than the present to take patents abroad. We have reliable business connections with the
principal capitals of Europe. A large share of all the patents secured in解 MUNN \& Co., 37 Park Row, New York Circulers with full information on

Value of Extended Patents.

Did patentees realize the fact that their inventions are likely to be more productive of profit during the seven years of extension than the first full selves of the extension privilege. Patents granted prior to to 1861 malt bee ex-
tended for seven years, for the benefit of the inventor, or of his heirs in case tended for seven years, for the benefit of the inventor, or of his heirs in case
of the decease of the former, by due application to the Patent Office, ninety days before the termination of the pattent. The extended time inures to the benefit of the inventor, the assignees under the first term having no
rights under the extension, except by special agreement. The Government fee for an extension is $\$ 100$, and it is necessary that good professional service
be obtained to conduct the business before the Patent Office. Full informahad by addressing MUNN \& Co., 37 Park Row.
Trademarks. Trademarks.
Any person or frm do tion residing in any foreign country where similar privileges are extended to citizens of the United States, may register their designs and obtain protection. This is very important to manufacturers in this country, and equal
ly so to foreigners. For full particulars address MUNA \& Co., 37 Park Row ly so to foreig
New York.

Canadian Patents.

On the first of September, 1872, the new patent law of Canada went Inio force, and patents are now granted to citizens of the United States on the In order to apply for a patent in Canada, the applicant must furnigh a model, specification and duplicate drawings, substantially the same as in The patent may be taken out eit
The pacent may years (government fee \$40) or for fifteen years (government fee $\$ 60$) The five and ten year patents may be extended to the term of fifteen years he formalities for extension are simple and not expensive.
American inventions, even ir already patented in this country, can be patent
old.
All p

All persons who desire to take out patents in Canada are requested to
communicate with MuNs \& Co., 77 Park Row, N. Y., who will give prompt

Copies of Patents.

Persons desiring any patent issued from 1836 to November 26,1867 , can be uppiled with official copies at a reasonable cost, the price depencing upon Any patent issued since November 27, 1867, at which time the Patent Offce mmenced printing the drawings and specitications, may be had by remit A copy of the claims of any patent issued since 1836 will be furnished for $\$ 1$.
When
When ordering copies, please to remit for the same as above, and state name of patentee, title of invention, and date of pate
$\&$ Co., Patent Soliciters, 37 Park Row, New York city.
MUNN \& Co. will be happy to see inventors in person, at their offce, or to advise them by letter. In all cases, they may expect an honest opinion. For uch consultations, opinions and advice, no charge is made. Write plainly all buse pencil, nor pale ink; be briet.
All business committed
In strictly confidential.
In all matters pertaini
In all matters pertaining to patents, such as conducting interferences, of patents, etc., special care and attention is given. For information, and

Address MIITNN \& CO.

MIUNN \& CO., PUBLISHERS SCIENTIFIC AMERICAN,

OFFICE IN WASHINGTON-Corner F and \quad.7th streets, opposite

Futiness and extimal

Nobody will buy the metal Truss with its
pitiless Iron Finger. The New Elastic Truss, 688 Broadpitiliess Iron Finger. The Nee melastitic Truss, 688 Broad.

Buy Boult's Patent Moulder for all kinds of Baye and Buntrf's Pee
Batte Creek, mich.
Wanted - A KKife, for cutting Veneers any
tickness from a block, while rotating by steam. Burnet \& Co., Cottage Grove Avenue, Chicago, 1 Manufacturersof Brick Machines \& Presses,
send circulars to Wm. Wassall, Columbus, Ohio. sena cracuars Brass Cock Makers wishing to manưacture
on Rosalty the Best Pan Water closet in the U. S., address Wm. Smith, 522 Jackson St., san Francisco, Cal.
 Also, three Second hand Dummeres, welght 7 tuns-Cylin-
ders $7 x 10-$ good order. Address Geo. W. Grice, 135 South ${ }_{\text {ders }}$ Trith Streeod order. Addre
All kinds of Machinery for Sale. Address,
for particulars, Abbott M'f'go., Seneca Falls, N.Y. A Mechanical Draughtsman and Practical Portable Hoisting and Pumping Engines-
Ames Portable Engines-Saw Mills, Eagers, Burr Mills, Climax Turbine, vertical and Horizontal Engines and Boilers ;all with valuable improvements. Hampson, Whitenill \& Co., Newburgh Ste
98
Cortlandt Street, New York.
$\underset{\text { lars, address Geo. C. Wilent } 1906 \text { Richmond }}{\text { For }}$ St., For particuSpons' Catalogue of Scientific Books, mailed
free on application. E. \& F. N.Spon, 446 Broome St., N.Y. Fine Machinery Oils.-We take pleasure in
calling attention of our Manufacturng readers to E . H . Kellogg's ad rertisement in another column, and saying that we believe his claims in regard to fine Engine, Spin-
die, and Signal oils are fully justifed by the facts, and than parties who try his goods will not have cause to
regret it.
Subscribe for "The Mechanical Advocate," Boston, Mass.
Wanted
Engine. Address Mood Michigan Car Coro., Detroit, Mich. Those who wish to purchase Horse Powers
and Machines for Threshthg and cleaning Grain and
and Sawing Wood, will do well to send for circular, \&c., of
A. W. Gray and Sons, Middeletown, Vermont. Prov. Pump Co., Providence, R. I., Dealers,
want Illustrated Circulars and Prices of all kinds of Pumps, and Steam and Water Appliances generally.
A perfect Cockle Separator and Wheat Gra.
 Iberal and practical courses for agrienturists, archi
tects, civl enginers, master mechanics, mechanineal en-
sineers, apricultural and manufacturing chemists, print ers, veterinary surgeons, etc., with laboratories, ranaght. ing rooms, farms and work shops. In agriculture and
mechanct ants, various courses are provided to met
met
 rature and sclenee preparatory to the other professions.
Over five hundred free scholarships. Next year begins as above.
A Specialty wanted in light machinery or
cast Iron (not malleabele) on Royalty or Cortract.
Conard M Murray, Founders and Machinlists, 30th and cast ron
Conar \& Murray. Founders
Ghestnut Sts,
 just out, \&1, mint
Street, New York.
Hydrof foric Acic, for Etching and Cleaning
lass, put up in all size Lead and Rubber Bottles, for Glas, put up in in all size Leead and Rubber Bottles, for
sale by L. \& J. W. Feuchtwanger, Chemists, 55 Cedar
Manganese Black Oxide, for Steel M'f'ct'rs
Mand olile silers, for sale by L. \& J. W Feuchtwanger, 55 Cedar Street, New York.
W Write to L . J . W
.
York, for all crude Minerais, Metals, ores, Drugs and Lathes, Planers, Drills, Milling and Index
Machines. Geo. S. Lincoln \& Co., Hartord, Conn.

 way, New York, or Box 1899
By Mortising and Tenoning Machines of
Gear, Boston, Mass. Catalogue on Transmission of Power by
Wire Rope. T. R. Bailey 8 Vail. No Bolts, no Keys, no Set Screws used in
Coupling or fulle Fastening. Shortt's Patent Coup. lings, Pulleys,Hangers and Shafting a Specialty. Order

tacturlng Company, Carthage, N. Y.
Cabinet Makers' Machinery. T.R.Bailey\&Vail.
 Stave \& Shingle Machinery. T.R.Bailey \& Vail For Solid Emery Wheels and Machinery All Fruit-can Tools,Ferracute,Bridgeton,N.J To Manufacturers-Built expressly to rent fre proof walls, with ample water power. Room an power in quantities to suit. Address
Company, Rock Falls, Whiteside Co.,II.
The Best Smutter and Separator Combined Damper Regulators and Gare Cocks--Fo
De best, address Murrilt Keizer, Baltimore, Md. Five differerent sizes of Gatling Guns are no
manufactured at Coits Armory, Hartford, Conn. Th manufactured at Coits Armory, Hartira, Conn. The
larger sizes have a range of over two miles. These arm
The Olmsted Oiler is the best; it is self

righting, strong Houses have it.
 Machinists-Price List of small Tools free Gear Wheels for Models, Price List free; Chucks and

 ${ }^{\text {Gearl}}$ Orils, Price List hoensFor Solid Wrought-iron Beams, etc, see ad
Gauge Lathe for Cabinet and all kinds of han
Gles. shaping Machine for Woodworking. T. R. Balle dies. Shappng Machine
\pm vall, Lockport, N. \mathbf{Y}.

Water power-Abundant, never falling.
Stone Factory building, 30 by $120 \mathrm{ft}, 3 \mathrm{f}$ Sold improvements, ilght and air, comfortable. 2privileges, falls 12 ft f. 30 ft t., Black River.
Nostoppin forrepairs. No fuel ore Cheap freights. Rail and Lake.
30 rods from depots of competing rallroads,
 2 hours, day or right. sleepers 7 P. M. arrive 7 A. M. In business center of Watertown, New York,
I2,00 inhabitants, neat healthy city, lilght taxes,

 Pre Price, 815,000 , two or 883,000, or
Including other sites with 3,00 horse power 8120,001 $\underset{\text { Irrigating, Machrinery, for sale or rent. see advertisement, }}{\text { Minity }}$ Bookkeepers should try the Olmsted Patent
Binl File and Letier Clip. They are admtrabe for papers. Save their cost in one day's business. Sold by
all Stationers. J. J . WHITE, Newark, N. J., sole Man. ufacturer.
Pekk's For best Presses, Dies and Fruit Can Tools
Biss $\&$ Weilliams. cor. of Parties desiring Steam Machinery for quar-
ying stone, address steam stone cutter Co..Rutlana, Vt. Boring Machine for Pulleys-n. M . limit to
Man Brown's Coalyard Quarry \& Contractors' Ap. D. Andrews \& Bro. 414 Water st.N.

Key Seat Cutting Machine.T.R.Bailey \& Vail. Cheap Wood-Working Machinery. Address Steam Fire Engines,R.J.Gould,Newark,N.J. Sure cure for Slipping Belts-Sutton's patnt Pulley cover is warranted to do double the work
before the belt will sllip. See sci. Am. June 2ist, 1873,
ind The Ellis Vapor Engines, with late improve -1 ments, manuarac
Fitchburg, Mass.

C. H. S.'s query as to blue paper is a busi-
ness question. For waterproof paper, read articies on pp. 129 and 177 , vol. $28 .-$ T. is informed that the four
world'sfars were held in London, 1851 , Paris, 1855 , Lon

F. E. T. asks: 1. How can I Idstil water little expense? 2 . Can powdered silica be found in mar-
ket, and where?
It is used in white for the comjlexion Ket, and where? It is used in white for the complexion,
and s composed of white sand and anhydrous soda. 3 . Where can I gee the white sand? 4. Is Herr Artus' recipe, swers: 1. You may make itin large quantities and quickly, by the use of a large stlll; but unless you are using.
heat for some other purpose, 1 t will not be very cheap.
 tating a solution of water glass with murlatica acti, and
igniting. Electro-silicon is infusorial silica.
3. Fine white sand can be obtained from the beach. 4. Liquid.
N. W. questions ur reply to F. B. who
. ing hidden springs of water, and refers him and us to the Patent office ereport for 1851 , part 2, "A Agriculture,")
for evidence as to the error of our view given on p. 882 for evidence as to the error of our views given on p. 282
of our volume XXVIIT. Answer The etatement in the eport 1s merely an assertlon in a letter to the Commis.
toner of Patents, and is unsupported by independent testimony.
F. P. C. asks: How can I remove the oil properly removed? I have tried commercial (188 per
cent) alcoohol, and find that pure white lead and zinc, naced some of the lead and zinc in a porcelain dish nd placed it on charcoal ; I find a dark brown residue ifter treating with aliute nitric (C.P.) accia. In a mix 4re of lead, zinc, and baryta, If Ifd (after burning) that
he precipptate is very dark, almost black, having all the appearance of baryta excepp the color. Can I Precipi-
tate the z Inc, after preciptating the lead with sulphurlc tate the zinc, after precipitating the lead with sulphuric
acid? Answer: You can free white lead from onl by gitating it with sucecesive portions of common ether
a a closed bottle. The lead is free from oll when it ap. pears dry and its particles do not stick together. You
ean separate barytes (sul phate ofbaryta from amxture can separate barytes (sulphate ofbaryta) from a mixture
of white lead, zinc and barytes after the ofl is removed of white lead, z Inc and barytes after the 011 is removed
by treating with dilute antrric acild. This will dissolve The lead and zinc, while the barytes will remain undis
olved of lead and zinc formed will throw down the insoluble sulphate of lead. By adding carbonate of soda, to the
solution of sulphate of z zinc remaining, until efferves
 fance ceases, zalimate analys. however, to determine the quan
fult of lead, zinc, ind barytes in a given mixture, will cost $\$ 10$.
I. W. asks: Is a lead vein, with its wall
rocks well defined, for instance, limestone on one side and sandstone on the other) a sure indication of a valu. abie eead mine ; and if fo, is a large sized vein or medil
um mizec one the most proftable? Answer: We should udge from your description of the occurrence of the Salena that it was a veritable lode. Galena often occurs
in limestone, as in the counties of Northumberland Derby and Durham, England, in vetns which travers compact limestone. In Kentucky, at Millersburg n virgina, wythe county, and in Maryland, near Balti kiomen creek, 23 miles from Philadelphia, galena has been mined. Here there is a shaft 170 feet deep, wth
horizontal drift of 30 feet entering the shatt 80 feet be low the surface. The ore found here is in the old red
sandstone formation. The value of a mine can only be approximately estimated betore working. of cours valuable the mine.
S. W. asks: How can I remove inkstains
rom linen? Answer: Dissolve a teaspoonful of oxalic acla in a gill of water. By means of a sponge or cloth dipped in the solution, soak the estann thoroughly, an
after wards rinse or wash with water. Throw away, or keepi.
tion.
J. S. C. says: In an engine running from
150 to 200 revolutions per minute, can an expansion of one quarter of the length of the cylinder be besed to
don advantage? A mechanic of good abllty and long e a
perience says the engine will paund t self to perience says the engine will pound itself to pleces,
Will expansion make any difference in the pounding of an engine? Answer: The best to inito of cut.on depend
upon intial pressure, clearance, etc. But you can cut an engine? Answer. cle iarance, etct. But you can cut
apon intilial pressure
off the steam at the polint mentioned, with perfect safety, of the steamat the point mentioned, with perfect safeety
and all shock can be prevented by giving a prope t of exhaust cushio
 blacksmith forge? Does it injure the iron or not? If
not, does it save fuel enough to pay for itself? 2 . Is not, does it save fuel enough to pay for itselt? 2.1 is
there any known cheap compound that will make an in-
then Answers : 1. The hot blast will cause the fron to be heat ed more quickly, and will not injure tit. Under ordinary circumstances it would hardy pay to introduce the ho
blastin a common forge, if much trouble or expense blast in a common forge, if much trouble or expense
were involved. 2 . We do not know of anything except blast.
W. F.-White gunpowder is granulated in
W.W. O. asks: What acids and in what pro portion are ue uskod of rrightening gerran silver or prass,
and how are the articles cleaned after dippling in the and how are the articles cleaned after dipping in the
acia? Answer: Brass is cleaned with oxalic acid. The acid must be washed off with warer, and the brass rubbe with whiting and soft leather, A mixture of muriatic
cild and alum dissolved in water imparts a golden col to brass articles that are steeped for a feve seconds in in VInegar and common salt may be used Instead of the seen zinc white (IIrst quality) recommended.
J. D. asks: What can be used effectually to ooat the inside of clder cisterns, to prevent them from
leaking? I have made 12 cisterns of Norway pine, and the clider seems to ooze right through the wood. An-
swer: Parafin is not acted upon by alcohol or aclis. Soluble water glass Will also answeryour purpose ife not
too expensive. Pitch and bitumen are the cheapest expensive. Pitch and bitumen are the cheapes
J. B. says, in reply to To T. W. S., who asked
what would keep flour paste from fermenting: I have an excellent paste composed of 3 parts of gum traga. curlc bichloride; will alcohol or carbolic acid prevent it
from souring? Answer: It a sufficient quantity of mercurlic bichloride (corrosive sublimate) 18 added, that
anone ount to orevent decomposition. That is the
only object in putting in this polsonous substance. If times used to prevent paste souring
J. A. M. asks: What other (if any) ingredi-
ent is used with starch, and how is it applied to to produce the fine polish on linen as it comes from the laundry? Answer: A small piece of pure paraffn, added to the
starch when hot, and well incorporated, will givea brilliant gloss to starched linen. Add a plece as
hickory nut to an ordinary bowlful of starch.
 are good but when hot In the journal or in in boring, it any process by which we ean refine it so that it will lose it offensiveness without destroylng the lubrricating prop.
erty?
Answer:
Filter the oil through freshly burnt and calcined magnesia.
W. F. asks: Can you inform me of any sim.
ple process for softening the water in a well? The bottom of the well is rock. Answer: You can soften the
water by adding a solution of carbonate of soda, known as washng soda, as lon gas the water turns milky After settling, draw of the clear portion. If the hard-
ness of your water depends on the presence of limestone dissolved in it, simply boiling it and allowing the min.
eral matter to subside will soften it.
$\underset{\text { A. B. W. says: : We make the gas to light }}{\text { our bullding in iron retorts, from what is known in the }}$ trade as "resilduum." It is the black tar-1like ofl from refined petroleum; it makes good gas, put is quite ex amount of fuel (coke) it requires to get up the heat. I there anything we could use that would not require so
great a heàt and that would be equally as free from danand nasing? The high heat soon burns out the retorts and new ones are quite expensive. Answer: Try the
ordinary gas coal or cannel coal, which, as you mention coke, ought to be within reach. You can then make
M. G.S.S. says: A Leffel 56 inch water wheel was set oran feet head, going at 6 revorutions, 1 Ving
with an open gate 66% horse power. Under this head
 requires 8 of 36 or 24 horse power to run our machnnery
at the required speed. During low water, our main shaft decreased in in revoluturions from 175 to less than 140 Tht an open gate. Our hydraullc engineer says that by
changing the set of the wheel from a 6 feet to a 4 t fee head, we could obtain the required speed with a $\%$ open gate. He is now setingit for a 4 feet head (49 revolu-
tions) and enlarging the main driving pulley to countertons and enarging the main driving pulley to counter
balance the decreased speed of the wheel. We claim that, Instead of running at 49 revolutions, the wheel will decrease its sped, that the surface of the enlarged
pulley will have the same velocity as pefore, that the pulley will have the same velocity as before, that the
main shatt will still run less than 140 revolutions, and further that, by no posill run lesse than mans under the clrcumwer: B Btea, can the required wer: By decreasing the head, the nower of the whee
vill of course be decreased. And your assertion, that by no possible means under the circumstances can the
equired speed be obtained," is correct. It can only be done by a sacriflece of power.
A. B. asks. 1. Where should an encine 8 it full stroke, when the crank is on the center, or a lit tle before it reaches the center? 2. Is there anything
that will prevent lime collecting in my boiler? ${ }^{3}$. Are
 team when the engine is on the center; and if you nee cashon, obtain it from the exhaust. 2 . Try tannate of
soda. 3 . The paper you refer to is published at the
sel soda. 3. The paper you refer to is published at the
Patent Office, Washington, D. C.,andis called the P Patent atent Offlce, Wash
oftce Ofticial Gazette.
W. W. A. asks for an explanation of a litsel. Answer: Read Hamlet's meditations on the skul
of Yorick " 'Imperial Cesar, may stop a hole to keep the wind a way," "etc. J. J. B. asks how to get rid of red ants.
Anser:
C. W. B. says: I have a thresher which
wish to ievel ane then setting wwith an ordinary spirit
evel. The sills to to e levelid Wish Wo level at each setting with an ordinary siritit
ievel. The illt to be leveled are 4 feet cong the ris.
tance between the wheels 1 is 4 feet 10 inches. Can you tance betwen the wheis 184 feet 10 inches. Can you
give me a rule by which I can determine just how much sive me a rule by which I can determine enat how much
to raise or lower one side to compensate for any give
devile deviation of the level? Answer; Place the level on the
sill the the direction of tits length, and measure how muct sill in the direction of tis length, and measure how much
the level itself requires to be raised or lowered at one nd ; and then raise or lower the curresponding end the sill a distance equal to this amount multipilied by evel. Supose for instance, that the level 1 is 2 , and the
ent sill 4, feet long: and that when the level is placed on th
sill one Inch, to bring the bubble to the center. Then applying
the rule, multiply one sixteenth by 4 and divide it by 2 and thus obtain \% $_{6}$ of an Inci as he distance the corre W. B. F. asks how to obtain the sulphate carbonate of soda in the manufacture of carbonic acia
 of sulphate of soda to the carbonate 1 s a dificult opera
tion, and cannot be carried out on a small scale. Le banc's process for making soda ash accomplishes this by mixing the sulphate of soda with chalk and fine coal and fusing the mixture in a reverberatory furnace. Ca Sou not employ muratic acid nstead of sulphuric, an
thus produce common salt? Sulphate of soda ever, used in the arts, and you should try to sell it to
Elass house, if there be one in your nelghborbood.
M . asks for a material that is both flexible
and transparent, which may be folded up without destroylng its trans
or tracing cloth.
C. O. S. says: We have a a steam cylinder
for drying puryoses, placed about 100 feet from tne boil. er. and fed through an inch pppe direct from the boller.
Does it make any difference, in the drying capacity of the cylinder, whether the steam goes through fast or 1 i pine to keep it clear from water?
In other the exhaust steam lose its heat by passing through pipes as long as
it remains steam?
Our freman insists on a a strong curit remains steam? Our freman insists on a strong cur-
rent of steam passing through, which we would like to save, if possible without loss of heat, for drying. An. ser: Fou will probably obtain satisfactory resalts by
the method the method you propose. Suppose that you try it one
day byour plan, and the next by the engineers, and
compare the ressults. We would be glad to hear from OU in case you make the experiment.
D. B. T. asks in what ratio with the pres-
sure the frictiof of waterincreases in its passage through an iron pipe of a given size and length, that 1 s , what is
the difference in friction between one and ten atmo. spheres pressure? Anction between one and the resistance due to to fric tion will be about 10 times as great in the second as in the irst case, increasing nearly as the pressure, or as
the e square of the velocity. See article on " Friction in
and
D. C. asks how to make nickel solution for
 gallon of water, or of $1 / 1 \mathrm{lb}$. of the double chloride of nickel and ammonia in a gallon of water. The main
condition of nickel plating lies in these points : (1) to ave the solution almays kept neutral, it is neeessary to if it be acid, to add sufficient caustic ammonia to make the lilquor perfectly neutral; (2) to have the materials to
be plated always perfectly clean, which, if the goods are be plated always perfectly clean, which, if the goods are
of fron, can be done by dilppling them in a mixture of murratic acid and water. The surface or coated, and may be much greater. See also page 187 of A. D. C. says: In pumps of the same size
of barrel and length of piston rod, does the length of the column of water under the piston valve (Whether 15 or
20 feet) make the pump work easier or harder? The pump is under 33 feet long. Answer: The shorter the length of the water column, the easier the pump will
work The welght lifed 1 s proportionate to the length of the column.
A. B. asks: What is the customary rule for
measuring charcoal? How many nches area bushel, or how many cubbec feet are a hundred bushels? Answer Charcoal is measured and sold in Neew York by the bar.
rel, the size being that of a flour barrel, which holds 3 ushels or 33 cubic eet. A barrel of charcoal is sold here for 81.
 H- P. asks: 1 . Would it be practicable to a float being a atached to one end and a vessel for ralising
the water the water at the other, and the float operemed by by the
tide? 2 . How high does the tide rise at New York? 3 . tide? 2. How high does the tide rise at New York? 3.
A friend says that, by placing rubber inside of a wheel hub around the arxie, the shock to the wheel will be
much less when striking against obstructions than when much less when striking against obstructions than when
nothing is used the monentum being the same in each case. What is your opinion? 4 . Can attraction be accounted for otherwise than supposing some sort of a
vacuum? 5 . Will a magnet have any attraction, being detached entirely from any connection with the earth?
Answers: 1 . Yes. 2 . From 3% to 5% feet. 0 . We think he rubber would help to prevent injury to the wheal.
C. B. says: I have built a small slide valve
orizontal steam engine, cyllinder $11 \neq \mathrm{sz} 2$ inches. What horizontal steam engine, cyllinder 1 1\% $\times 2$ 2 inches. What
power would such an engine have? Answer: About tworenhs of a horse power.
J. S. T. asks: Why is it that a screw can
be driven more easily and farther into wood with a long driver thana short one, the handle and everything else
being equal? Answer: Because the screw driver is held at an angle, and the long driver aff ords greater leverage right anghort one. If both were secured so as to be at right angles to the face o
difference in their action.
S. W. Says: In SCIENTIFIC AMERICAN of
July 26 , page 59, you speak of oil of rhodium asif it were a name without a reality. I I have bought an essential oil name.," says that "rhodium is the wood or root of a tree supposed to be the genistatc canariensis of Linneus, of the family leguminosice. The essential ollis a per-
fume [of a rose-like odor, we may add] and possesses ordial and tonic virtues. Its smell is attractive to fish rats, etc." The Encyclopedia Americana says of rose
wood that the tree (amyris balsamifera) yields an odor-
S. G. Jr. says: Suppose I take 20 gallons of
ydrogen gas, and compress it to 10 gallons, would the 20 gallons of gas while under pressure lift twice as muc
as the 10 gallons of free gas? Answer: 10 gallons of as the 10 gallons of free gas? Answrer: 10 gallons of
free, uncompressed hydrogen gas will lift about 1 I\% ozs. free, uncompressed hydrogen gas will lift about 12Y ors.
By compressing 2 gallons of hydrogen into 10 gallons,
you double the density and consequently double the you doobere the densitt, and consequently dooble the
welght of the compresed gas. Therefore 10 gallons of weight of the compressed gas. Therefore 10 gallons of
free, uncompressed hydrogen will lift twice as much as free, uncompressed hydrogen will 1 lift twic
20 gallons of hydrogen compressed into 10 .
D. asks: Is there any way to restore meat
hat is musty or tainted? in wheat bran and rye after it was smoked, and the wet spring caused the rye to sprout, thus giving the meat a
musty flavor. Answer: Pack the meat in freshly burnt
F. D. B. asks for a good recipe for making
birdime? "The only recipe for it that can find contalins white holly bark, and this is is not procurabaleind this coun try." Answer: If you cannot obtatn nolly, use misletoe
or other parasite with a or other parasite with a gummy or glutinous resin in it
which does not dry.
$\underset{\text { power vertical engine ; it is not as large as we want and }}{\text { Y. }}$ power vertice ing ine; it is not as large as we want and
we cannot sell it to any advantage. How would it do to connect another eng ine of the same size to the other end
of the shaft? Twenty-four horse power isall we want. of the shaft? T Tenty-four horse power is 141 we want.
2. Our boiler is $4 / 4$ nch shell, 16 feet tong and 42 inchess in diameter, with two 14 nich in lues. Could we make it dilimetero, 1 h horse power engines?
pressure would thear with safety to much ste the square tinch? pressure wolld it beare with safety to the equare ench?
It is nearly new. 4. What is the "science Record

 increased strain. 2, We do not think the boiler would
be large enough to drive both engines.
3. About 5 .
and
 malled to you from our office on receipt of two dollare.
J. G. asks: In raising weights, if the upper
pulley has two grooves with notenes where the unks fit in, and there are 20 notches in one groove and 21 in the
other, the lower pulley being much smaller, with but one smooth groove, and the chain beling continuous: if both grooves in the upper pulley had an equal number of
notches, would it holst faster. supposing the chain on both constructions was pulled at the same rate? An
swer: The amount the welght rises in one revolution of swer: The amount the weitgh risesi in one revolutiton of
the eupper pulley is equal to the difference of theirdiam. eters, and if both were of the same size, the welgh
$\underset{\text { power, and have a plain sillde valve eqgine, }}{\text { H. }}$, 10 inches cylinder and 12 incenes stroke, : Thave thought of getting be as economical as regards fuel as an 8 horse engine o
 What difierence would there be in favor of the smaller
engine? Answer: If the engine you have is in good engine? Answer: If the engine you have is in inoo
order, it would hardy pay to get a new one, as, by arranging it to work with high steam and short cut-off, it could probably be run very economically.
T. J. J. asks: Which will produce the great-
est amount of heat, a cord of green wood, or one of wood dried or seasoned in the open field for, say, four or six
months before using? Which contains the largest mount of carbon, and what is the relative amount of heat of the different kinds of wood? Answer: Green wood contanss about the esame amount of caranon as ary, and the chief dilference is in the amount of water in the
green wood. From careful experiments on the total green wood. From carefue expenmo of fuel, it its found
heat of combustion of different kind
that that a pound of dry wood, contanning 50 per cent of
carbon, will gite outaboutr,000 units of heat in its com. carbon, will IITe out about, 7,000 units of heat in its com-
bustion, while a pound of the same wood, contanining 20 per cent of moisture, will give out something less than heat glven out by the combustion of each quality would probably be the same. In ordinary practice, dry wood
st the best thecuuse it
can be most easily consumed is the best, because it can be most easily consumed;
though, where combustion is very rappla, there might not be much difference.
S. C. H. asks: 1 . Which is the best way to
feed the boiler of a feed steamer? 2 . Can it be done with a small force pump? 3. Should the water be hot
before entering the boiler; and if heated by passing therves? In feeding fro pressure ot steam must be as great in the barrel as in the boller, makingit slow and unsafe. Ansserss: 1 . Con tinuously, near the bottom. If but a little feed is ree
quired, It could be managed with a vessel arranged on the princtple of an equilibrium oil cup. 2. Yes. . 3. Yes,
If a pump is used, draw cold water through the pump, and forceit through the heater, into the boiler, placing
J. A. says: You tell G. van H. to place his bave water. Will this answer for wells of all depths, sa from 24 feet to to 20 feet or more? Why showld he place
his pump within 20 feet if the water will rise 32 feet after a vacuum is produced in the pump barrel? Why dititional column of 12 feet of water? Anserg. th difficullt to give a universal rule for the best position of
a pump, but in general It should not be placed further
 pump in good working order. But the more importan reason is that it is necessary to have a surplus of vacu um, tn order to give the necessary velocity to the wate If nearly all the vacuum is used up in lifting the water
there will be very little to give a head to the entering water. The water will therefore enter slow $\mathrm{y} y$, and if the pump makes many strokes, it will run away from the water. In practice, it is found thatit tis cheaper to for
water to an elevation, than to lift tit by a vacuum.
J. H. B. says: 1. Would a glass water gage
for a high pressure boiler be stron enough if it had $t w i c e$ the present inside diameter (It think it is now $3 / 6$ nich) and were made of the same thickness and strength
if lass as at present? 2 . Are there any of glass as at present? 2. Are there anfy nowin use that
are larger? 3 . Is the present size made with reference to the size of the two pipes supplying it, or only to the
eecessary strength? Answers : 1 Probably not. 2. Yes up to one inch outside diameter. 3. Generally with ref.
erence to the size of the pipes. Glass tubes, if well an erence to the size of the pipes. Glass tubes, if well an
nealed, could stand much more strain than is ordinarils nealed, could stand much more strain than is ordinarily put upon them. They
changes of temperature.
Minerals.-Specimens have been received from the following correspondents, and exam ined with the results stated:
J. W.-The specimen is not eorundum, but felspa

You had better adver
etc., in ourcolumns.

COMMUNICATIONS RECEIVED.
The Editor of the Scientific American acknowledges, with much pleasure, the reeipt of original papers and contributions pon the following subjects
On Explosive Projectiles. By J. T. F.
On Medical Practice in Early Times. By P. H.

On Sailing Faster than the Wind. By H. B On Retrogression of the Sun. By J. A. B. and by J. S. P.
On Constructing Large Lenses. By F. H. R
On the Patent Right Question. By J. S. P
On Deep Sea Soundings. By T. H.
On the Zodiacal Light. By H. B.
On Testing Steam Boilers. By W. S. K.
Also enquiries from the following:
A.B.-T.F. M

Correspondents who write toask the address of certain anufacturers,or where specified articlese are to be had artners, should send with their communications an amountsumfif clent to cover the cost of publication under
the head of "Business and Personal," which is specially the head of " Business and
devoted to such enquiries.
[OFFICIAL.]
Index of Inventions for which
Letters Patent of the United State July 8, 1873,
and each bearing that date.
[Those marked (r) are reissued patents.]
dominal supporter, M. M. Mer Auger shaft, coupling for eart
Bag fastening, mail, J.A. Paul.
Bale tie, cotton, R. W. Cobb.
arrel stand and keg holder, C. N. Cass ed bottom, H. Benedict
Bee hive, E. E. Henegan...
Blasting plug, J. H. Holsey
Blind, stitching gage for the, W. H. Richardson...........
Boiler plates, etc., steel for, Bolton \& P
Boiler, upright steam, G. W. Rawson oilers, ventilating ships and heating, J. Thoma Boiler incrustation compound Boots, making counters for, E. Andre Boring machine, earth, W.H. Saly
Brake mechanism, o. Gruninger Brick machine, J. S. Thomas......... Butter printing machine, A. F. Hines
Butter worker, P. M. Stackhouse. Butter worker, P. M. Stackhouse
Button fastening, W. Holloway Button fastening, W.
Can opener, J. Wood.
ar coupling, B. Atkinson.
Car coupling, s. Mille
Car frame, W. G. Von Staden (r).....
Car journal box, rail way, R. N.Allen
ar seats, frames of, G. Buntin (r)...
arbureting apparatus, Judd \& Piers
Card stripping machine, G. E. Taft.
Carriage curtain knob, C. M. Munson
Carriage seat fastener, M. Brockway,
Cartridges, capping and uneapping, G.V. McGraw
Chain machine, F. Leonard.
Cheese vat, D. F. Barclay...
Clamp, joiner's, E. A. Walker
Clothes clamp, W. Tunstill.
Clothes clamp, W. Tunstill...
Coach or carriage, J. Allgaier.
Cooler, water, w.S. Kimball.
Cork extractor, C. F. Hunt..
Corset spring, G. O. Schneller
ows from kicking, preventing, Sadier \& Spence Dish stand, table,
Doll, H.C.Work.
Door spring, C. W.Oldham
Dough machine, o. B. Fuller...
Drill, rock, Nutting \& Githens.
Drill, rock, H. C. Sergeant....
prill seed attachment to grain, J. P. Fulghum Egg carrier, G. M. Huston
Egg stand and boiler, Woods \& Sherw ood (r)... Emerry wheel, W. A. Johnston Fare box, H. Barange
Fifth wheel for vehicles, G. A. Brice
File and binder, letter, Buell \& Lilley
Fire extinguisher, J. S . Tibbets.
Fireplace, J. L. Garlington
Fishing rod, w. M. Smith
Furnace door, puddling, J. S. Rees.
Furnace, metallurgic gas, w. C. W
Gas lighting apparatus, A. Potter Gas retorts, compound for cleaning, Pittin Gate, farm, M. Burtless.
Gearing, , Emmerich.
Glove fastening, $\mathrm{H} . \mathrm{P}$.
Grave guard, A. Rank.
Harvester, I. W. Bragg...
Harvester, G. H. Spauldin
Harvester, G. H. Spauldin
Hat brim, extension, I. Y. Cassiano
Hat brim, extension, I. Y. Cassiano
Heater and filter, L. F. Meunier
Horse collar, O. Lafreniere
Horse power, w. Gllfillan.
Jewelry bases, manufacturing, s. Cottle
Znitting machine, s. ∇ Essick
Knitting machine, G. Merrill
Knitting machine, G.Merrill......................
Knitting machine needles, J. H. Bullard.
ader, step, C. Frizell.....
Lead for pigments, white, E. Milner... Loom shedding machine, G. C
Marble, artificial, B.Auguste eat chopper, o. Gardner Mechanical movemant, J. Daguier Medical compound, A. Racicot Molding, cutter head for, E. H. Hinners Music leaf turner, G. W. White.

Nut tapping machine, s. W. Putnam
Oils, etc., from wells, raising, H. W. F
Organs, reed board for, A. W. Wilcox. rgans, reed board for, A.
Oven, baker's, D. Donald.. Packing piston, C. s. Ba
Pan, cake, J. B. Firth
Paper box, G. K. Snow..........
Peg cutter, hand, P. Summiter
Pipes, mold for clay and ce
Planter, seed, w. J. Saffery
Plastic composition
Plow, A. s. Mann..
Plow, l. B. White
Plow, subsoil, A. L. P. Vairin
Plows, equalizing attachment for, King \& Hul................. Pump, C.D. Rathbone
Pump, glass piston and packing for, A. E. Gay.
allway signal, electric, H. W. Span
Railway snow plow, W. Whe
Rake, horse hay, J. H. Bean.
Rake, horse hay, W. C. Mart
Refrigerator and beer cooler, G. Nus
Refrigerator, etc., T. W. Johnso
Ridge sidewalk plate,-T. Hyatt
Ridge sidewalk plate,T. Hyatt
Roofing, sheet metal, G. F. Leonard
Saponifying apparatus, G. W. Ha
Saw gummer, W. G. Blacklldge..
awing laths, machine for, G. P. Appleto.
awing laths, machine for, A. Rodgers...... Sawing machine, H. M. Stow. Scaffold, M. D.Drake
seaming sheet metal, G. D. Brooks. Sewing machine, Lincoin athe, J. A. Smith.... Sewing machine motor, w. Young.......
Sewing machine treadle, S. B. Bushfield Sewing machine, shoe, T. L. Miller
Sewing machine, feed, $\mathbf{W} . \dot{\text { E. W}}$ Sewing machine movement, etc., E. Cowles, (\mathbf{r}) Shaft coupling, E. Swain................
Shoe soles, trimming, B. J. Tayman
Shoemater Shoemaker's cutting boa
Show case, D. D. Elder..
skylight bar, C. Sellman
Soldering machine, w. D. Brook
peed in machinery, changing, W.H. Wilson Splint, A. Wheat.
Spoke polishing machine, G. L. Rouse.. Stave jointer,J.J. E. Green..
Stone, splitting, P. Croghan Stone, splitting, P. Croghan
Store, coal oill, J. . . Thorp
Tape measure, H. B. Tyler
enoning and boring machine, G. Witte
Thrashing band cutter and feeder, sulilivan et
Time to dials, transmitting, H. J. Wenzel. Toy, C. Ball, (r)........
Toy, J. Schwennesen.
Track lifter, G. J. Kinze
Vault cover, illuminating, T. Hyatt Vinegar and aging spirits, making,
Wagon, dumping, J. Highifield..... Washing machine, M. L. Hawks. Washing machine, F. B. Preston Washing machine, J. Sheffler.
Washing machine, G. L. Witsi Washing machine, G.L. Witsil.
Watch, hand setting, F. A. Jones
Water meter, A. M. Rouse
Water wheel, I. S. Roland.
Water wheel, turbine, H.
Well, driven, A. Wilson De Wate
Well, driven, A. Wilson............
Window sash, metal, J. D. Moran
Window screen, J. W. Boughton.
APPLICATIONS FOR EXTENSIONS Applications have been duly file, and are now pending
for the extension of the following Letters Patent. Hea ngs upon the respective applications are appointed fo he days hereinafter mentioned: 55,726.-Blind Wiring Machine.-B. C. Davis. Sep. 24
 2,814.-SLEEPING CAR.-J. Danner. October 1 .
25,843.-CuLIVATOR.-T. McQuiston. October 1 .

EXTENSIONS GRANTED. 15,861.-NUt Making Machine.-W. E. Ward.
24,734 .-Paper Making Machine.-W.Goodale. 24,748.-Paint Can.-J. W. Masury.
24,755.-Operating Windlass.-P. Philip. 24,772.-OPOWDER KEG.-J. WIIson et al.

DESIGNS PATENTED.
746.-AdVErtising Frame.-M. M. Barnham et al.,Sy
acuse, N. Y.
6,747 to 6,752.-CARPETs.-R. R. Campbell, Lowell, Mass. 6,753 to 6,756.-CArpets.-J. M. Christie, Lowell, Mass.
6,757.-TABLE Cutlery.-J.D. Frary, New Britain, Conn 6,758.-САЕРЕет.-H. F. Goetze, Boston, Mass.

 6,663.-Sword Hilt, ETC.-V. Price, Woodside, N. Y. 764.- Bolf Tfreading Machines.-S. W.Putnam, Jr Fitchburg, Mass.
,765.-CEmetert Fencr,etc.-J.Sharkey,Brooklyn,N.Y
766 to 6,768 .-SHELF PAPERS.-S. Simon, New York city 6,769.-Printing TyPe.-R. Smith, Philadelphia, Pa.

TRADE MARKS REGISTERED.
352.-Cranberry Package.-N. H. Bishop, Manahaw
ken N.J.

1,366.-PERFUMERY.-T. E. Jenkins, Louisville, Ky. 1,357.-Oin CaNs, Etc.-Meissner $\&$ Co., New York. 1,35\%.-OIL Cans, etc.-Meissner \& Co., New York city. 1,358.-SHIRTINGs.-J.L. Moss, Jr., Westerly, R. I., et al. $1,359 .-$ W ATER GAGIs.-Tomey \& Sons, Perth, Scootland SCHEDULE OF PATENT FEES
 .$\$ 10$ $\$ 25$ $\$ 25$ On issuing each original Patent... On appeal to Examiners-In-Chief.
 Bductisuments.

Back Page
$\$ 1.00$ a line.
5 cents a line

TO INVESTORS.

The Northern Pacific Railroad Com pany having determined to close its 7 7-30 First Mortgage Gold Loan, and thereafter to pay no higher rate of interest than 6 per cent on further issues of its bonds, THE LIM ited remainder of the 7 3-10 loan is now being disposed of through the usual agencies.
This affords a desirable opportunity to per ons wishing to reinvest interest or divi dends
The Company now has more than 500 miles of its road built and in operation, in cluding the entire Eastern Division connecting Lake Superior and the navigation of the Mis souri River; the work of construction is pro ressing - satisfactorily ; the Company has Land Grant, and sales of lands have thus far Land Grant, and sales of
All marketable securities are received in exchange for Northern Pacifics.

JAY COOKE \& CO.
E. Send or IMs PATENT BOLT CUTTERT

LYe-SPAN) RALLWAY BRIDGES (Re-

解 seminiary Instruction, with preparation for college or business. Personal cat
Terms, $\$ 360$ per year.
Terms, $\$ 360$ per year.
Fortieth year begins Sept. 15. S. T. FROST, A.M

Planing and Matching

$\$ 57.60$

BAIRD'S Boox

Paper Making.

a practical onthe treatise
MANUF 1 CTURE OF P P PER
 Illustrated by one Hilliton, Md went-ine Wood En In one volume, Quarto, Cloth; 400 Pages. Price sis. practical guide
MANUFACTURE OF PAPER\& BOARDS. Civil Ennine are and Gradanate of the School of Arts

 HENRY CAREY BAIRD 406 WADUSTRIALPUBLISHER STRERT, PRiliadelphi

The Managers of the ${ }^{20}$ Exhibition of the American

 heavy Machinery. August 18 18h and for other articles,
September 1st 18 . The
opened Septenlier 10th. Exhibibion will be formally For particulars,
American Institute, New Yos York.
Foot or Steam Power Scroll Saw.

Massachusetts Agricultural College
 $\$ 15$ A Movri to Lady Apents. Address ELLI R ALWNAY ENGINEERING; or Field

 $\mathbf{S}_{\text {who negotiates sales of valuable natents, wisteses at }}^{\text {ELL }}$ Once, one or two really $\begin{aligned} & \text { ood Patented fnentions to sell. } \\ & \text { No a davance charge made. }\end{aligned}$ Address
G. E. ILLINGW ORTH,

P ing the maximum of efficiency, darability and econ-

 NEW YORK STEAM ENGTNE CO. Machinists Tools:

98 Chambers St. NEW York. | WHALEN TURBINE, No riskg to purenaser |
| :--- |
| Pamphile tent free. SETM |

 FINEST FOOT LATHE In the market for Amateurs, Je welleres
sco
Made with special tools.
Price

ROPAR HOT ATR

THE NEW YORK EXPOSITITON \& MANUPACTURING COMPANY,

Niagara Steam Pump. Maryland Institute, Baltimore 26th ANNUAL Exposition,

 $\begin{array}{r}\text { President and Cohirimentexht Extion } \\ \hline \text { Civit and Mechanticat Engineering at }\end{array}$

Cincinnati Exposition,

 In addition to the regular list of premtums to be
warded for superior merit in competing machines, the Board of Commisisioners offier a "Complimentary Medal"
of gold, with siver medallion center, to each of such important power machines, or accompanying set of ma
chines, as are adapted to manufacture marketable art cles of all kinds. The entries for these premiums can be
made either by the manufacturer of the machine or the manufacturer of the goods the machine is intended to premiums subject to the condition that they are started
on the day of opening of the Exposition a and are opera ted so as to actually manufacture goods in the building
at least six hours every day. Power forall machines will be steadily supplied from 9 till 12 A.M.., 1 till 6 P.M.,. and
till 10 P.M. For furtherintormation address
 Stencils and Key Checks, with which young men ar
making from \$5.tosioa day. Send for cotalogu an
mamples to s.M.SPENCER,117 Hanover St,Boston, Mass.
s. To RAILROAD COMPANTES AND CAR-BUILDERS

S Improved AND BARPREL MACHINERY.-

Machinery,
 Cold Rolled Shafting.

Sturtevant Blowers.

PATENT PUNCHING

shlpment
MOSES G. WiLDer, 121 Chambers St., New York

Farrel's Patent Railway Crane Patent Ground Chilled Rolls,

W OODWOR'H SURFACE PLANERS

The fat that this shafting has 75 per cent greater

B UERKS WATHMMAN'S TIME DE-

 $\mathbf{W}_{\text {erally. Wpecialties, Wood worth Planers and R Rich }}^{\text {OOD }}$

UNS' SAFETY HOISTING

DUNCHING

 $\$ 25 \mathrm{~A} \mathrm{DAY}!$ Agents wanted. Bustnessentirely "Io Have a Cricket

 $\frac{\text { E. GOULD. } 97 \text { to } 113 \text { N.J R.R. Ave.. Newark. N.J }}{\text { IVERVIEW ACADEMY, Poughkeepsie, }}$
 Andrew's Patents. ers, sinted to every want. Satety store Elevators ir revent Accident,

 Alliticht Simple, Durable, and Economic
1832. SCHENCR'S PATENT. 1871

GEAR'S PATENT VARIETV MOULDING MACHINE

$\$ 72.00$ EACH WEEK.

100 HORSE POWER Horizontal Engine

MPROVED FOOT

HARTFORD
Steam Boiler
INSPECTION \& INSURANCR CO. CAPITAL $\$ 500,000$. ISSUES POIICIES OO
nspection of the Boiler, coverrancen after a arareful Boilers, Buildings, and Machinlery, STEAM BOILER EXPLOSIONS.

Srientific Ammtican.

Universal Wood Worker,
Horizontal and Upright Boring Machines. McBETH. BENTEJ \& MARGEDANT Hamilton, Ohlo - $\$ 75$ to $\$ 250$ per month,

RON PLANERS, ENGINE LATHES

1873.

 Notion

 mUNN \& CO., Publishers,

THE BEST OILS ARE THE CHEAPEST IN THE LONG RUN ThAll viotry

 AM ${ }^{\text {the }}$ Trirbine Water Whee

WIRE ROPE.
JoHN A. ROEBLING'S Sons

LUBRECATORS

SUPER-TEATMRE

Pyrometers. | For testnnorern. Brone |
| :---: |
| fues, |
| Blast |
| turuaces |

N. Y. PLASTER WORKS,

B. F. STURTHVANT, PRESSURE BLOWERS \& EXHAUST FANS SEND FOR CATALOGUU, ILLUSTRATED WITH 2 I

MORRIS, TASKER \& CO. american charcoal iron
Boiler Tubes.
Wrought-iron tubes
and Fittings, For gas, steam WATER, AND OIL

Machinist's Tools, LUEXTRA HAAVY AND IUPROVED,

$\left\lvert\, \begin{gathered}\text { D } 0 \text { Y L E's } \\ \text { Patent Differential Pulley Blockss. }\end{gathered}\right.$

P. BLAISDELL \& CO,

Patent Drill Presses, with Quick Return Motion

Working Models And Experimental Machnery, Metal, or Wood, made
order by
J.F. WEKNER. 62 Center st., N. Y.
Gray's Patent Double Car Axle Lathe.

Niles Tool Works. Hamilion. Ohio.

SILICATE OF SODA.

$\mathbf{R}^{\text {ANSOM SYPHON CONDENSER perfect }}$

MAHOGANY,
ROSEWOOD, WALNUT, WHITE HOLLY SATIN WOOD HUNGARIAN ASH, AND IN LOGS, PLANK, BOARDS, AND VENEERS GEO. W. READ \& CO

DOUBLE ACTING

SteamPumps

GALLEY MACHINE COMPANY, Easthampton, Mass.

The Pulsometer or Magic Pump

AMERICAI SAW CO.

No. 1 Perry St. Ner York. Movable-Toothed Circular Saws, PERFORATED CROSS-CUT SOLID ${ }^{\text {AND }}$ SAWS.

 Reyvoins $\&$ CO. $\underset{\text { For Machinery of every varctes. }}{\text { Screw }}$ Bridge and Root Bolts. ATEEL \& IRON SET SCREW
 HOUSTON'S PATENT

TURBINE WATER WHEEL

THE STANDARD MAKE:

CCINIMIC OTCAN

One copy, one year
One copy, six months
One copy, six months
One copy, four month
One copy of Sclentific Amertcan for one year, and
one copy of engraving, "Men of Progress " 10.00 One copy of Scientific American for one year, and
one copy of " Sclence Record," for 1873 . ${ }^{4.50}$ one copy of "Sclence Record," for 1878
Remit by postal order, draft or express.
The postage on the Sclentific American is five cents per quarter, payable at the office where recelved. Canada subscribers must remit, with subscription, 25 cents extra
to pay postage.

MUNT \& CO
37 PARE ROW NEW YOR

