a weekly journal 0f practical information, art, science, mechanics, Chemistry, and mandFactures.

Vol, XXIX.--No. 5.

PUBLIC DRINKING FOUNTAIN

We present herewith an engraving of an unusually ornate drinking fountain, presented to the people of London by the wealthy and charitable Baroness Burdett Coutts. The lower portion has a plan quatrefoil in shape, and is of polished Aberdeen grani te, the four basins being each six feet four inches in diame ${ }^{\mathrm{t}}$ er. These rest on detached shafts, thirty six in numb indeed, has been long known to physicists and chemistsSicilian rises marble. The plinth whence these shafts spring er metals, is readily acted upon by acids which have little or in four inches above the ground, and in it are four sets of upon pure zinc. If a plate of chemically pure zinc supplied by the overflow from the upper basins, and between the troughs are placed standpipes to supply water for the use supply water for the use of the horses. There is a fountain in the center of each basin, and in the middle of the group is placed a canopied pedes tal, six feet high and of three feet six inches span, with dolphins placed at the angles From these flow the wa ter for drinking. This pedestal is of Sicilian marble, and, a few inche above the general wate level, is divided into fout richiy molded niches ichy y containing groups ol figures and animals, th former holding vases from which the basin derive their chief sup ply of water. Above the niches the pedestal be comes pedimented, and is enriched with crocket ed pinnacles and termi nals, so as to serve as an ornamental base for a lamp standard, which, at the hight of fifteen feet from the ground, branch es into eight foliated bracket lamps. A larger bracket lamps. Alarger lamp rise from the lamp rises from the cen ter of these, and termi nates the composition which is altogether twen ty-four feet high.
The workmanship is, throughout, remarkably good. The metal work is fine and cleanly cast, and richly gilt, and the granite and marble work is some of the best which has been executed in London. Underneath the fountain itself is a roomy fountain itself is a roomy lighted with chamber lighted with gas, which contains all the pipes and valves that regulate
the supply and discharge of the various water services.
This elaborate fountain is from the design of Mr. H. A. Darbishire. Of its beauty, our readers car judge for them selves; and the solidity of its construction and the genuine character of the decoration mark it as one of the most or namental works lately namental works lately rected in the fountain makes it an the locality in which it is placed; but its value must certainly be considered to consist in the useful purpose for which it, was given to the pub.

PUBLIC EDRINKING 2 FOUNTAIN, REGENT'S PARK.
$\left[\begin{array}{l}\text { \$3 } \\ \text { per Annum } \\ \text { IN ADVANCS. }\end{array}\right.$
lume of water, it is but very feebly acted upon; but if part ly coated with metallic platinum, by drawing a line with so lution of tetrachloride of the metal across the plate, and then the platinum salt by then, after the complete reduction of the platinum sal by the zinc, the plate be plunged into the acid, the latter will
be found to act energetically along the platinum line. This action is essentially electro chemical.
If a plate of ordinary zinc, carrying an inage in platinum, be plunged into an acid containing one part of sulphuric aci in two thcusand parts of water, the metal will only be at tacked when it happens to be in contact wita the platinum and an etching of any desired depth can thu be obtained.
But the production of a good image on the zin is the real difficulty, and under this head we have yet little information The plan pursued by M Gourdon is to place fixed and washed positive silver print on paper face downwards on the zinc and then to moisten, firs with ammonia and then with cyanide of potas sium. A certain amount of the silver forming the image is thus transferred to the plate, which can then be etched by acid containing the one two thousandth of its volume of sulphuric acid.
These and other ex periments hitherto made do not appear to hay been very successful, as half tones were not ren dered; still the plan is not only interesting, but appears to contain the germ of a good and sim ple process of photo chemical or electro-chem ical etching, and is wel worth the attention of those interested in this branch of our art. Before we close these remarks we may offer a suggestion which may aid in the solution of the difficulty. Any process depending on the solution of the silver of a print, and its sabsequent deposition on the zinc by reduction from a liquid, could not be expected to produce satisfactory results; we would therefore suggest that the silver print should be toned with gold or with platinum, and, when washed and dry, exposed to the action of chlorine gas. Soluble chloride of gold or platinum and insoluble chloride of silver will be formed. The print should then be pressed into close contact with the zinc.
Now, since the chloride of gold or platinum carried by the print is deliquescent, we should expect that a sufficient amount of moisture would be absorbed from the atmosphere to enable the zinc to decompose the gold or platinum salt, and reduce upon its surface the noble metal, and so spreading or biurring of the image be avcided by limiting the action to the right place. By some
such plan, we should think it quite possible to obtain a toler ably sharp impression in gold or platinum on a zinc plate and from a sensibly dry paper print, provided the action of the chloride in the first instance is properly regulated, and the pressure to which the print and plate are together sub jected is sufficiently great.-British Journal of Photography

Suntifur Amorican

MUUNN \& CO., Editors and Proprietors. poblished weekly at
MO. 37 PARK ROW, NEW YORK.
$\frac{\text { O. D. MUNN. }}{\text { A. E. BEACH. }}$

VOL. XXIX., No. 5 . . [New Series.] Twenty-eighth Year NEW YORK, SATURDAY, AUGUST $2,1873$.

LATENT HEAT

According to the material theory of heat, there is a certain substance called caloric, which makes bodies that contain it hot, and causes them to become cold when it is withdrawn It was observed, in converting solid bodies into liquids and liquids into vapors, that the bodies took up a great deal of heat that was not indicated by the thermometer, and on this account the heat of liquefaction or vaporization was said to be latent, a name that it retains at present. Though this heat cannot be shown by the thermometer, its existence can readily be proved. W ater is a substance which can easily be made to assume the condition of a solid or a vapor, being called ice in the former and steam in the latter state. Suppose that we have a pound of ice, at a temperature of 32° Fah., and that we mix it with a pound of water at 212°, the ice will be melted, and we shall have two pounds of water at a temperature of 51°. Now take a pound of water at temperature of 32°, and mix it with a pound of water at 212° the resulting mixture of two pounds will have a temper-
ature of 123°. Hence we see that the ice, in melting, has ature of 122°. Hence we see that the ice, in melting, has
absorbed enough heat to raise two pounds of water through a temperature of $122-51=71^{\circ}$, or one pound through 142°, and we say that the latent heat of the liquefaction of water is 142°. The latent heat of the vaporization of water can be determined in a similar manner by condensing a pound of steam at 212° with a given weight of water at a known temperature, and also by mixing a pound of water at a temperature of 212° with the same amount of water as was employed in the case of the steam, and observing the difference of temperature of the resulting mixtures.
Thus, a pound of water at 212°, mixed with ten pounds at 60°, gives eleven pounds at 74°. A pound of steam at 212°, mixed with ten pounds of water at 60°, gives eleven pounds of water at 162°. In other words, the steam, on being condensed, has given out heat (which was not previously sensi ble to the thermometer) enough to raise eleven pounds of water through a temperature of $162^{\circ}-74^{\circ}=88^{\circ}$, or one pound through 968°, and we say that the latent heat of the vaporization of water is 968°
The mechanical theory of heat is now generally adopted; it considers that heat and work are interchangeable, and on this theory we shall be able to explain what becomes of the latent heat. All solid bodies are supposed to be made up of separating by a force called cohesion. If a body is heated to a sufficient temperature the force of expansion becomes equal to that of cohesion, and the body is liquefied; and if still more heat is applied, the force of expansion exceeds that of cohesion, and the liquid becomes a vapor. But in each of hese changes work is performed, and the heat that is supplied is converted into this work. For instance, if ice is at a
temperature of 32°, and heat is applied, this is converted into temperature of 32°, and heat is applied, this is converted into
the work that is developed in changing into water, and we say that heat becomes latent; and when water is at 212°, and we continue to apply heat, this is converted into the work that must be done in changing the water into steam. From this statement, it will appear that what is ordinarily known as latent heat would be more properly called converted heat since it has been changed into work.
We can readily determine the amount of work that is per-
formed in any given case, and will now show how the cal culation is made. A unit of heat is the amount of hea required to raise a pound of water one degree in temperature The mechanical equivalent of heat is the amount of work tha is performed by the conversion of one unit of heat into work.
This has been determined to be equal in amount to the work This has been determined to be equal in amount to the work required to raise 772 pounds one foot high, or one pound 772 feet high. And as heat and work are mutually conver able, if a body weighing one pound, after falling through hight of 772 feet, were to have its motion suddenly arrested it would develope sufficient heat to raise the temperature to
a pound of water one degree. Let us apply these figures to the work done in changing water into steam. Two kinds of work are here performed. If a pound of water at a temper ature of 212° is converted into steam, the latter will have a volume of about $27 \frac{1}{4}$ cubic feet. Suppose that the water is evaporated in a long cylinder, of exactly one foot cross sec tion, open to the atmosphere at the top. Then when all the water has disappeared, we shall have a column of steam $27 \frac{1}{4}$ feet high, which has risen to this hight against the press ure of the atmosphere. The pressure of the air being nearly 15 pounds per square inch, the pressure per square foot is 2,115 pounds; and the external work performed by the water, in changing into steam, will be an amount required to raise 2,115 pounds to a hight of $27 \frac{1}{4}$ fees, or about 57,644 foo unit of heat, the external work will take up $57,344 \div 772=$ 74.67 units of heat. But we have seen that the total number of units of heat required to change water into steam is about 968 (more accurately, $966 \cdot 6$); hence the internal work about 968 (more accurately, $966 \cdot 6$); hence the internal work
will be equai to an amount developed by the conversion of $966 \cdot 6-74 \cdot 67=891.93$ units of heat into work; and this wil $966 \cdot 6-74 \cdot 67=891 \cdot 93$ units of heat into
equal $891 \cdot 93 \times 772=688,569$ foot pounds.

We have received, of late, quite a number of inquiries on the subject of latent heat, and have endeavored in thi article to present the matter in so broad a light as to answer
all these questions. It is exceedingly important that those all these questions. It is exceedingly important that thos who are endeavoring to effect improvements in the econom clearly, so the direction improvements are needed. We shall probabl refer to the use of the steam in a subsequent article.

FRENCH TELEGRAPHY AT THE EXPOSITION

A correspondent of the New Yor
"I am sorry we a"e not represented in telegraphic apparatus, as we have several things in America that would be worth seeing. The French telegraphic department is the besi in the exhibition, and some of the inventions are ex ceedingly interesting. There is a machine that prints an autographic despatch, not chemically like the other auto graphic instruments, but on white paper with printers' ink It cannot be described in writing, and so I will not attempt to say how it is made, except that there is synchronous action of two rollers; one may be in New York and the other in San Francisco, or in any two other places connected by telegraph wire. A written message, a draft, a sheet of music, the portrait of a burglar, anything that can be drawn with a pen-not with a pencil-may be telegraphed from one end of the world to the other and reproduced with printers' ink on white paper, like that whereon the patron of the Mail reads this letter.
'Then they have a machine by which four operators can work over a single wire at once in one direction, just as one operator does with us; and by putting on four operators the other way, you can make the capacity of one wire equal to that of eight by the old system. We are now using in
America a system by which a wire may be operated both ways simultaneously. The French machine is exactly four times ahead of us. They have, also, an electro-magnet that works over a hundred miles of wire."
It is evident that this correspondent is not fully posted in egard to the state of telegraphy in his own country.
The instrument first above described is the "autograph telegraph" of E. Lenoir of Paris. It is a modification of the Bakewell and Casselli instruments, invented years ago. The message to be transmitted is written on a prepared slip which is placed on a roller and turned, under a transmitting stylus. Every line in the original message produces a cor responding dot in ink on the paper at the other end of the wire. By turning the roller often enough and so repeating office. In an transm, the letters are dotted out at the receiving office. In an example now before us, done on the instru-
ment described by the correspondent of the Evening Mail, each letter is composed of a number of dots and dashes, each representing a telegraphic-signal. In making the capital letter B, for example, some forty-two signals were employed. It is almost needless to say that instruments that involve the making of so many signals to form a single let ter cannot compete in rapidity with the simple system of Morse, or the various printing instruments in common use here. The Lenoir machine is more of an electrical curiosity than a business machine.
In respect to the other instrument, by which it is alleged that eight operators can work at once on one wire, this is the invention of M. Meyer, and its capacity is greatly overrated Mr. George B. Prescott, electrician of the Western Union
Telegraph Company, during a recent visit to the continent, made an examination of this Meyer instrument. The capacity claimed for it by the inventor was only one hundred messages of ten words each per hour, which is slow work or eight operators.
The double system, referred to by the correspondent as in use here, is the Stearns duplex instrument, by which two

One hundred and forty-six messages have been sent per hour over a single wire by this system, using the Morse key. The
American system is therefore about fifty per cent faster, alAmerican system is therefore about fifty per cent faster, al though employing only two operators, than the Meye French plan with eight operators.
The Stearns duplex system is only limited in its rate of transmission by the skill of the operators. The fastest operator has been able to reach a rate of 2,500 words per hour. Two operators having this ability would be able, by means of the Stearns instrument, to send over one wire 5,000 words per hour, or 2,500 words each way. A rate even higher than this has been experimentally obtained
The above French telegraph instruments are not indicative f an advance or improvement over the devices in common use here. Simplicity in the instrumentation is the aim of the American telegrapher for ordinary work. Give him a Morse key and a sounder, and he is ready for instant work nywhere, from the lonely summit of Mount Washington to the crowded Babel of the stock exchange.
The observations of Mr. Prescott were that the French official consumes more time in preparing to transmit a mes sage than is taken here to send a telegram across the contisage t.

ANOTHER ARCTIC EXPEDITION BEGUN

The Tigress sailed from this port on the 13th of July en route for the arctic regions, in search of the remaining sur vivors of Captain Hall's expedition and his steamer, th Polaris. On the 15 th of October, 1872 , in latitude $80^{\circ} 02$, thi ill fated steamer became jammed in the ice; and in view of mminent danger, a large portion of her crew and provision were got out upon the ice. Soon afterwards, in a heav ale of wind, the ship broke adrift. The vessel was at this ime destitute of boats, and was in a leaky condition, with hirteen souls on board. The persons left on the ice, afte floating southward for several months, were finally rescued by a seal hunting vessel and carried to Newfoundland. The last they saw of the Polaris was on the 16 th of October, when she appeared, under sail and steam, heading for a bay in Northumberland lsland, a sheltered position where she anchored. It is supposed that here the Polaris was frozen in, as the ice in those regions commences to close in Septem in, as the ice in those regions commences to close in Septem-
ber ; so that, if she remained any length of time at her anchorber; so that, if she remained any length of time at her anchor
age, she must have been nipped hard and fast until the pres ent month of July, when the breaking up of the floes begins. It is believed, therefore, that unless the ship managed to alte her position before being shut in, she could not move unti about this time ; and as her coal must of course be exhausted she cannot have proceeded very far under sail alone. On hese grounds, it is conjectured that, if the Polaris be afloat at all, little difficulty will be experienced in finding her.
The Tigress goes to Disco, Greenland, whither the Juniata another United States vessel, has preceded her, having left New York some weeks ago, laden with provisions and coal Starting from Disco, the Tigress will begin the important part of her cruise completely stocked, that is, with two years rations for the forty souls composing her crew, and with al the coal she has room for, sufficient for twenty-two day full steaming. From Disco, the ship will proceed to Uper navik, where dogs, sledges, etc., will be taken aboard, and thence she will shape her course directly for Northumberlan Island. If the Polaris is not where she is expected to be and the search has to be protracted over the vast and dreary wastes in the neighborhood of the pole, there is little chance of the Tigress returning to civilization under a period of some fourteen months.
The Tigress was originally built for the seal-hunting serv ice. She is a bluff bowed vessel, some 150 feet long by 30 feet beam. Her sides are very thick and solid, averaging from 24 to 30 inches through, and her bow is armored with plank and iron plating to enable her to resist the ice. He motive power is a 60 horse vertical compound engine, and a two bladed propeller, capable of driving her, at best speed about 7 knots per hour. The personnel of the expeditio consists of Commander James A. Greer, U. S. N., command ing, Lieutenant Commander H. C. White, Lieutenants Wil kins, Berry and Sebree, two engineers, two ice pilots, one of
whom is Captain Tyson of the Polaris, and a surgeon, besides whom is Captain Tyson of the Polaris, and a surgeon, besides about twenty-nine men, many of the latter being seal fisher and members of the former crew of the Tigress. The Esqui Tigress. This is the first arctic expedition which has sailed strictly in Government service and under military discipline.

AN AUSTRIAN FARMER'S ENTERTAINMENT
The special correspondent of the Scientific American United States Commissioner Professor R. H. Thurston, has arrived at Vienna, and our readers may shortly expect from his pen some interesting and practical letters concerning the great exposition.
Professor Thurston was lately invited, as one of a select company, to visit the celebrated farm of Herr Ritter Horsky von Horckysfeld, in Bohemia, 200 miles from Vienna, to in spect the methods and appliances of agriculture as there practiced. A special train conveyed the guests to Kolin, where they were received by their farmer host, whose farm is 5,000 acres in extent. His plows, cultivators, seeders, threshers, harvesters and other implements are numbered by scores, and are operated by hand, animals and steam power according to the nature of the work required or the forma tion of the ground. The yearly products of the farm amount to $\$ 50,000$, and the amount invested in machines and other improvements is $\$ 500,000$. The proprietor has, among other concerns upon the farm, a beet sugar factory which cost $\$ 250,000$. Briefly, the process consists in macerating
the beets in water, which dissolves out the sugar; lime is then added, forming saccharate of lime; carbonic acid is then introduced, which precipitates the lime, and the sac charine liquid is then evaporated in the usual manner.
One of the features of the occasion was a simultaneou trial of various agricultural implements. At a bugle signal given by the host, a crowd of operatives, boys, girls, men and women, with asses, mules, cows, horses and oxen, all started to work in strips over the appointed field. The scene was instructive and peculiar.
In the evening a banquet was given, and in reply to the toast of America, United States Commissioner Professo Horsford made an interesting speech in German. The toas to the ladies was answered by Professor Thurston in a very brilliant manner. At 10.30 P . M. the party returned to Vienna. We gather these particulars from an interesting letter in the New York Tribune.
Herr von Horckysfeld is 72 years of age, and is celebrated throughout Austria for his success as an agriculturist. The excursion party numbered 150 persons, and were entertained wholly at the expense of the venerable farmer

THE USE OF ZINC.

Although the use of zinc as a component of brass and imilar alloys was known to the ancients, it did not, for a long time, meet with any use alone. In consequence, the production of this plentiful metal was a limited one. At the beginning of the present century scarce 200 tuns of zinc were produced in all Europe, while to-day the total production is at least 125,000 tuns.
It would seem as if zinc, on account of its low melting point and its relatively great power of resisting the action of the atmosphere, were excellently well adapted to the manufacture of all sorts of things, but its brittleness restricted its use within narrow limits. In 1805 it was discovered, at Sheffield, that zinc heated to 212° Fah. lost its brittleness, and from that time forward zinc began to be used alone, and especially for roofing; but this use was soon abandoned on account of the difficulty of fastening the sheets, and has been but recently renewed. For a long time only large masses, like weights, were cast in zinc. This use was not nearly sufficient to consume the quantities of zinc which could be obtained in Silesia, and hence, in 1826, the Society for the Advancement of Industry in Prussia offered a prize for the discovery of a use for zinc, which should cause an essential and generally useful increase in the consumption of the metal.
The prize was won by Berlin. Krieger, the chief mining counselor, first ascertained that it was possible to cast holcounselor, first ascertained that it was possible to cast hol-
low pieces as well as plates and solid masses, and he had a number of utensils made of zinc for his household, but did not extend it farther. It happened, however, that a friend of his, named Geiss, who was the proprietor of an establishment for making fine iron castings, was hunting around for a suitable material for casting large architectural ornaments, and the idea struck him of employing zinc. He had now found a material which melted at a low temperature, and which could be cast in molds of moist sand, which was easily worked when cast, and which, above all-for this is of the greatest importance in making very large pieces-could be Berlin, now began to experiment very zealously. Beuth and Schinkel also interested themselves in it, and Berlin very soon began to employ zinc columns, capitals, architraves, cornices, and similar pieces of architectural work. The road was now broken for zinc casting, and zinc founderies sprang up rapidly in Berlin and other large cities; the price of zinc, which had fallen to $\$ 1.50$, soon rose to $\$ 4.50$ and the production of zinc in Europe increased, as stated, from 200 tuns in 1808 to 60,000 tuns in 1858, and to $125,-$ 000 tuns at the present time.
This remarkable increase of production, not being followed by a decrease in price, shows that the employment of zinc for casting objects of general use has been kept up, and thatits use has not been limited to architecture. As soon as it became known that zinc could be so readily employed for casting, it began to be used for chandeliers and the like, where it served a good purpose as substitute for the more expensive bronze. The introduction of this use of zinc is principally due to Spinn; Devaranne employed it for theater decorations, a use founded upon the power of polished zinc to reflect the light. Finally zinc was employed for making copies of large statues, which could thus be very cheaply
produced. Geiss, at the very beginning, cultivated this use produced. Geiss, at the very beginning, cultivated this use
of zinc, but it first came into practical use when Hossauer of zinc, but it first came into practical use when Hossauer
introduced a process of depositing, upon the zinc structures, a layer of copper by galvanic action. When thus coated, they soon acquired the appearance of genuine bronze. This use of zinc is still quite general, as it enables persons of more moderate means to possess excellent works of art They are made chiefly by Lippold and Geiss.
At present a great variety of articles are cast in zinc in Berlin; candlesticks and still smaller objects, chandeliers and gas brackets, statues and huge architectural pieces,
whole monuments, and even pieces 30 or 40 feet high and whole monuments, and even pieces 30 or 40 feet high and
weighing half a tun, are made of this metal. All this great weighing half a tun, are made of this metal. All this great
variety can be made in the same establishment, for the operation is exactly the same with all. If we enter a zinc foun ation is exactly the same with all. If we enter a zinc foun-
dery, we see no huge contrivances; in the court yard we saw, perhaps, a copy of the colossal "Amazon," by Kiss, as largeas
the original, or perhaps a monument 20 feet high; we enter the original, or perhaps a monument 20 feet high; we enter the works and find very small furnaces, small crucibles, and in fact only a small space for casting. The explanation of this is in the ease with which zinc is soldered. Everything, however artistic. is cast in small pieces weighing not ove ten pounds each, and then soldered together. For all such
hings the patterns only are kept; and when a cast is ordered a sand mold is made, the pieces cast separately, and soldered together and the joints finished off. In consequence of the small arrangements and fittings required by such founderies, their number in Berlin alone is quite considerable, there betheir number in Berlin alone is quite considerable, there be-
ing about fifty in all. The majority of them, however, combine zinc casting with bronze casting; these are the manufactories of lamps, gas fixtures, and cheap substitutes for bronze ornaments.
The zinc founderies, in the narrower sense, whose chief productions are architectural pieces and duplicates of plastic works of art, employ about 300 hands. Berlin, where this industry originated and where it is conducted with truly ar tistic taste, still takes the lead therein.

SIMPLE TESTS FOR MINERALS.

One of the first tests to which a mineralogist submits a specimen is a test of hardness. Hardness is expressed in two ways: By the degrees from one to ten, or by comparison with familiar substances, which are able to scratch it or which it is able to scratch; so we must begin with a

SCALE OF HARDNESS.

1. Talc, laminated light green variety, which is easily scratched by the nail.
2. Gypsum, crystallized. Not easily scratched by the nail; does not scratch a copper coin.
3. Calcite, transparent. Scratches and is scratched by a copper coin.
4. Fluor spar, crystallized. Not scratched by a copper coin; does not scraich glass.
5. Apatite, transparent. Scratches glass with difficulty easily scratched by the knife.
easily scratched by the knife.
6. Orthoclase, white, cleavable felspar. Scratches glass 6. Orthoclase, white, cleavable felspa
easily ; not easily scratched by the knife.
7. Quartz, transparent. Not scratched by the knife
8. Topaz. Harder than flint.
9. Sapphire. Harder than flint.
10. Diamond. Harder than flint.

With a knife, piece of glass and a copper coin, the hardness is soon determined, and a clue to its name and value obtained.
The minerals which, like quartz, are not scratched by the knife are seldom of value as ores. Their principal uses in the arts are as ornaments, or in cutting and polishing: for example, diamonds, agates, beryls, garnets, topaz, tourmaline and corundum. The most remarkable exception to this is capiterite, an oxide of tin, with a hardness 6 to 7 , infusible and insoluble, but which gives the blowpipe reaction for tin .
Ores of metals are usually heavy; and with a small pair of ccurate balances, the specific gravity is easily taken. Suspend the mineral freely by a horse hair, from one end of the beam or scale pan, and weigh: next allow it to hang freely in a tumbler of water and weigh again; divide its weight in air by its loss of weight in water, and the result is its specific gravity.
The acid test is also easily applied. Effervescence indicates a carbonate, and is frequently some form of limestone. Iron ores usually dissolve in warm acid, especially if pulverized. So too most other ores of any commercial value are dissolved more or less rapidly by acids and heat.

GOLD AND PYRITES.

Gold and platinum occur in the metallic state and are dissolved only by aqua regia. Gold does not occur in large masses nor is it often crystallized. All these serve to distinguish it from iron pyrites, or fool's gold, of which so many specimens are sent to us for analysis. When pyrites are heated on charcoal before the blowpipe, they give off the well known sulphurous acid fumes and form a magnetic 19, that of pyrites 4.5 to 5 ; pure gold is scratched by a copper coin, pyrites are not easily scratched by the knife. Copper coin, pyrites are not easily scratched by the knife. Cup-
per pyrites, chalcopyrites, are of a darker or brass yellow per pyrites, chalcopyrites, are of a darker or brass yellow
color, not so hard as iron pyrites, and dissolve in acid with color, not so hard as
a green or blue color.

TESTS FOR SOME METALS

When gold is dissolved in aqua regia, the solution should ive a purple color with protochloride of tin solution. Gold Silver dissolved in nitricacid gives a white precipitate with hydrochloric acid, which precipitate is soluble in ammonia. Mixed with carbonate of soda and heated on charcoal before the blowpipe, compounds of silver give white, brilliant meallic globules.
Lead also gives a white precipitate with hydrochloric acid, but it dissolves in boiling water. With bichromate of potash or iodide of potassium, a beautiful yellow precipitate is formed. Its compounds are very readily reduced on char coal. Galena often contains silver, which can only be separated from the lead by an assayer.
Very dilute solutions of iron yield dense blue precipitates with yellow prussiate of potash. Since the acids sometimes contain iron, they should be tested first, and the solution greatly diluted. Ores of iron give characteristic black, Lime red streaks on unglazed porcelain
Lime givitated with lime by sulphuric acid. s precipitated with lime by sulphuric acid.
Zinc and tin are not very difficult
Zinc and tin are not very difficult to reduce with a blowpipe, and the coatings formed give characteristic shades of If our friends, when with nitrate of cobalt.
If our friends, who think they have discovered a rich ore of
some sort, will take the trouble to apply the above simple tests, they will frequently ascertain for themselves that it is not all gold that glitters.

SCIENTIFIC AND PRACTICAL INFORMATION.

EFFECTS OF OPIUM

In China, very few physicians employ opium for therapeu ic purposes, though the drug plays an important part hrough its effects upon the customs and hygiene of the naion. In smoking opium, the taste at first is not unpleasant; but as is the case with tobacco, a person must become habituated to its use. The drug is prepared in a semi-fluid state and has a sweet oily flavor somewhat resembling rich cream. Smoking the substance for the first time, not over 130 to 150 grains per day can be used, as it is apt to cause violent vertigo, nausea, and headache. The first puffs render the smoker loquacious, then he becomes stupidly happy, and finally paleness and quick contractions of the face ensue. The sensations and dreams differ according to the temperament and nervous organization of the user. A deep sleep is generally produced lasting from two to three hours, during which time the pulse is low and very feeble. The physical effects are loss of appetite, extreme emaciation, and, fre quently, idiocy.
thallium from vesuvius.
Professor Palmieri has made many spectroscopic analyses of the sublimations of the fumeroles, or small holes on the crust of the volcano of Vesuvius through which vapors escrust of the volcano of esuvius through which va
cape, and finds the metal thallium in most of them.
Thallium is the new metal discovered in 1861 by Dr Crookes. In weight and appearance, it resembles lead When burned in oxygen it yields a splendid green flame, and its chlorate, it is supposed, might be used in fireworks to ad vantage. Thallium is found in various mineral waters; its sulphate is very soluble in water.
important african discovery.
A dispatch to the New York Herald, from the exploring expedition of Sir Samuel Baker in Africa, announces the discovery that the great lakes Tanganyika and Albert Nyanza are connected together, and communicate with the Nile forming an inland sea seven hundred miles in length. Further, that vessels launched on the Nile above Murchison's Falls will be able to sail thence into and through the great lakes. This is a very important discovery, as it brings an immense and fertile portion of interior Africa into easy com munication with the civilized world.

oZone by slow oxidation.

If a small quantity of petroleum benzine be placed in a large vessel and exposed to direct sunlight for a few days in summer, the vessel being frequently opened and shaken, the air in the vessel will contain ozone. The same change will take place in diffused daylight, or even in the dark and at a low temperature, but a much longer time is required. The slow evaporation seems to be the chief cause of this. Tiis has been observed by $\dot{F} u d a k o w s k i$, who published a full description of the oxidizing action of this active benzine in the " Proceedings of the Berlin Chemical Society."
how a surgical discovery was accidentally made.
The Aertzliche Hausfreund is responsible for the following account of the cruel misdeeds of a brutal woman leading to the discovery of an important method of performing pain less surgical operations.
A wicked stepmother placed a net upon the head of her eleven year old stepdaughter, and compelled her to wear it
for two weeks continucusly. On the 5th of March, 1872 , the girl, suffering with headache, was brought to the clini of Professor Dr. Dittel. Dr. Dittel made a careful exami nation of the head and found a deep furrow plowed into the head, at the bottom of which was the elastic cord of the net covered with little caruncles. The poor girl died of inflammation of the cerebral membrane, and upon dissection it was found that not only the pericranium but also even the skull bones were cut through as if with a sharp saw. This proved what power is exerted by elastic cords, and since then Dr. Dittel has employed them for cutting off tis sues and removing swellings and tumors. By this gentle means, the patient does not lose a drop of blood, suffers scarcely any pain, has no fever, and soon gets well. This scarcely any pain, has no fever, and soon gets well. This
method seems to have a great future in store for it. Many patients are so horrified by the sight of the dreadful knife that the date of their recovery is postponed by it, even if they do not faint quite away.
progress of instantaneous photography.
During the recent naval revicw in honor of the Shah of Persia, at Portsmouth, Eng. a number of photographs were taken by means of dry plates, prepared by the use of the salts of uranium, after the process of Colonel Stuart Wort ley. The steam vessels in motion, views of the ships with the men in the act of clambering into the rigging, yachts in full sail, all were produced in faultless perfection by the in stantaneous exposure of the plates.
La Nature is the title of a new French illustrated scien tific weekly, published in Paris. It is edited by M. Gas to Tissandier, a well known littérateur and savant, and enters field, similar to that of the English periodical of like name of popular science and the diffusion of recent and interestin industrial information. The journal is handsome in appear-
ance, and in this wise rather above the standard of Frenou ance, and in this wise rather above the standard of Frenot anewspapers; the two numbers received are well edted ant entertaining.
New Method of protecting the Plates of Iron Ships from Corrosion.-To prevent the corrosive action of bilge water upon the iron plates of iron ships, James Young has suggested and tried the use of lime, to neutralize the acid of the water. Actualexperiment, continued for several months, shows that a small quantity of lime in the bilge water wholly preyents the corrosion of the iron plates.

a substitute fir the bell cord.

In a recent number of the Engineer, almost two entire pages, with engravings, are devoted to the illustration and description of Mr. S. A. Varley's electrical contrivance for giving a signal from a car of a train to the engineer of the locomotive. A bell and magnet, with a peculiar arrangement of levers, are employed, together with a device for indicating the compartment of the car where the signal was given. The reading of Mr. Varley's paper probably occupied an ifour's time of the Scciety of Engineers.
There must be a defect either in the construction of British railway cars or in the moral status of British passengers ; otherwise the use of the simple bell cord, so successfully employed on all American cars, would long ago have been in ployed on an Americ.
troduced in England.
But it appears to be a fact, confirmed by actual experience But it appears to be a fact, confirmed by actual experience
on the British railways, that no sooner is a cord put on the cars than the passengers at once begin to amuse themseives by pulling it, sounding false alarms, bringing the train to a halt, and producing mischief in a variety of forms. The railway companies appear to be powerless to prevent this unauthorized pulling at the bell rope, and are obliged to discard its use altogether.

IMPROVEMENT IN BRICKS.

M. Emile Pavy has recently devised a connected brick, or rather, more strictly, a mode of combining bricks, for building purposes. The nature of the invention, as shown in our en graving, is readily understood. In the extremities of each brick are pressed or cut dovetail moitises which, when the former are placed end to end, come together. Into these portions a connecting piece of suitable form is slipped, which holds the bricks tightly together, mortar, at such points, being merely auxiliary.

The bricks may be made either square or curved and of any size. They are well adapted for constructing vaulting, each being formed to suit the shape of the arch and provided with a number of mortises proportionate to its size. The circular pieces may be used with advantage in the building of lighthouse or other towers. The Chronique de l'Industrie, to which we are indebted for our facts, says that the method bas beèn used in France to considerable extent and with excellent results.

NEW SAFETY PUMP FOR SEA GOING STEAMERS.
Quite a valuable device, judging from what it is claimed to have done, has been invented for freeing sea going steamers from the excess of water taken in ry leakage or through accidental injury. It is an attachment to the air pump, and consists of a pipe, of suitable dimensions, leading from the hold of the vessel to the top of the former and con nected therewith with a valve. Water is taken up, through this conduit and on top of the air pump buckets, with every descent of the piston, and is discharged, with the condensed water and air, overboard through the usual channel.
The inventor, Mr. Daniel Barnum, of No. 255 Halsey street Brooklyn, N. Y., claims that the entire power of the air pump is thus utilized to clear the vessel, and this without interfering with the working of the engines. The arrangement has been placed in two vessels, in one of which, the Saratoga, after she had been pierced with quite a large aperture below the water line, it was, in connection with the other pumps, instrumental in keeping her afloat until repairs could be made. The ship in which the device was most recently placed is the Niagara. of the Old Dominion company's line, now lying at her wharf in this city in a damaged condition, from injuries received during a severe gale encountered during the passage from Bermuda to New York in February last. The storm, according to the statements of the officers, was so violent that the vessel was caused to leak and also to ship large quentities of water, so as to excite serious fears as to her safety. It is stated that, with the air pump attachment in operation together with the usual ship pumps, little ditficulty was found in keeping the vessel free from water,so that her surviving the gale is largely ascribed to the efficacy of the former apparatus.
Mr. Barnum informs us that the device was patented as far back as 1858, but that he has met with much opposition to its introduction from the steamship owners and engineers, owing to their belief that it was impracticable. He considers the two cases above cited to fu'ly prove its efficiency and from the views expressed to us by officers of both ves sels, there appears to be considerable foundation for his claims.

IT is stated that alloys of nickel and German silver with from one to twenty grains of platinum are preserved from oxidation, and that aluminum bronze acquires a permanen brilliancy by the admisture of a small quantity of the pre cious metal.

JMPROVED PROPELLER

Mr. E. C. Hubbard, of Green Bay, Wis., has recently in ented the new propeller wheel illustrated herewith. Th shaft is inclosed in a sleeve which terminates in a conica hub, to which are attached the curved and tapering blades shown. The sleeve is hollow, and, for the purpose of expelling the water more rapidly from the center of the wheel, is made tapering, or larger, at the end next the hub. The radial stays support the blades, and, by means of the nuts and screws, serve to adjust the size of the openings betwee them.

The inventor states that the device is not designed to disturb or displace the water, which, on the contrary, is drawn into or clasped by the wheel, and, when ejected, forms a pow erful resisting force. In backing the motion is reversed, and a vacuum created inside the wheel. The inventor claims that his method is more powerful than the common screw and has greater speed. It is stated that it can retain a certain rapidity with 100 pounds of steam, while a screw would re quire 140 pounds. A new steam yacht, to which the inven quire 140 pounds. A new steam yacht, to whe W ashingto navy yard with very successful results, being propelled navy yard with very successful results, being propelled
without the least jarring and with perfect smoothness. The dimensions of the propeller were 22 inches length by 30 inch dimensions of
es diamete:.

IMPROVED OX BOW.

This is a patented ox bow which, it is stated, does not require bending, and which may be made in parts of the coun try where timber suitable for the ordinary bow is scarce without requirirg much mechanical skill to make.
As shown in our illustration, the neck piece is made of metal with socket holes in its ends for supporting the straight pieces which are secured therein by means of screw bolts. The tenons may extend clear or only partly through the low er portion, which may be either solid or hollow, and of any form to suit the proper curve for the neck of the ox. Any kind of timber for the wooden, and any suitable material for the metallic, portions may be employed. This is quite

convenient and economical device, which will doubtless be appreciated by farmers generally. Patented May 2.4, 1870 For further particulars, address the inventor, Mr. A. L. D. Moore, of La Grange, Fayette county, Texas.

A Sciontific American in Prussia.
An accident occurred the other day, says the Pall Mall Gazette, upon the Hartz mountains, the circumstances of which, as reported, are highly honorable to a young American concerned. This gentleman, Mr. Tatham, formed one of a party of s sudent excursionists from the Prussian School of Mines. It proved nearly dark when they reached the chasm and looked down it. Unhappily one of the party, a
precipitated down the precipice, at the edge of which hi companions were standing, into the depth below, where al sight of him was lost. His comrades dispersed in search of aid, but it proved too late to do anything effectual before night completely closed, and their dismay was increase greaily when they missed Mr. Tatham, who was supposed to have perished in a vain attempt to rescue Kräwel. At dawn the other students were on the spot with plenty of aid, and to their surprise saw the gleam of a fire, far below, in the chasm into which their comradehad fallen. It turned out that Mr . Tatham had managed to scramble down after th fallen man by the aid of bushes and rocks, and finding the object of his search, though terribly bruised, still alive and partly sensible, had tended him through the night, cover ing him with his own outer clothes, and keeping up a fire of sticks, both against the cold and as a signal for aid from above. Although the hight down which Herr Kräwell fell or more properly rolled, is reported to be over 2 CO feet, he had broken no limb, and was making a good recovery at the last accounts, thanks to Mr. Tatham.

PATENT PIG FEEDER

This device has for its object to enforce, by physical means, upon the comprehension of pigs, a certain amount of neat ness during meals, which experience has shown cannot be impressed upon their understandings by any source of argument however cogently or logically stated, in other words it prevents them putting their feet in the trough. It also aims, by regulating the supply of food, to check those habits of gluttony of which no hog is able to divest himself, and which, as in case of the gaunt frequenter of Now York boarding houses, may be traced to the chronic and unappeas able state of internal famine in which he exists.
Corn or other food is thrown in the receptacle, the sides of

which are inclined inwards. Upon the bottom a dividing bar, having sloping sides, is placed, between the surface of which and the lower extremities of the receiver openings are left closed, by movable slides. The latter can be moved up and down to ealarge or diminish the size of the orifices, through which the food passes to the troughs. It will be obthrough which the food passes to the troughs. It will be ob-
served that by no amount of contortion can the hog insinuate himself into the latter vessels, for the reason that, through ate himself into the latter vessels, for the reason that, through
the outwardly inclined sides of the reservoir, a space is left only big enough for him to insert his head. Food is fed out only big enough for him to insert his head. Food is fed out
as it is wanted and is, besides, kept in a cleanly condition. as it is wanted and is, besides, kept in a cleanly condition.
For this useful improvement in its table furniture, the porcine family is indebted to Messrs. J. H. McElrath and L. M. Houghton, of Princeton, Ill., who patented the same August 20, 1872.

The Palinurus.

At a recent lecture in this city before the Nautical School, Dr. Thoms stated an interesting theory to account for the loss of the steamship City of Washington. The disaster, he held, was caused by a deviation of the ship's compass, occasioned by the electrical condition of the atmosphere consequent upon the appearance of the aurora borealis during the voyage. He exhibited an instrument, called the palinurus, employed to detect and note the variations of a ship's compass during a voyage. The Lapland, which sailed from England only a day after the City of Washington, carried such an instrument, which showed that, during the appearance of the aurora borealis, her compass deviated $1 \frac{1}{2}^{\circ}$. This deviation, occurring as it must have done on the City of deviation, occurring as it must have done on the City of
Washington at the beginning of her voyage, would cause Wer to diverge 20 miles from her course in every hundred, her to diverge 20 miles from her course in every hundred,
and she was only 150 miles out of her reckoning when and she w
wrecked.
Some of the witnesses examined during the recent government inquiry testified that they believed that the loss of the vessel was due to deviation of the compasses, caused by the iron and steel of which her cargo was chiefly composed.

The New Hotels of Chicago.

The splendor and large extent of the new hotels in Chicago may be judged of from the following: The Pacific hotel is 325 feet by 186 ; the Wilton carpet, of American manufacture, which covers the halis, is more than a mile long; there are twenty miles of wire in the house, 500 bedrooms, equal in size and quality from the first to the seventh floor, and it takes 218 servants to attend to the guests. There are six acres of carpeting. The whole cost of the establishment was $\$ 1,200,000$, and the furniture cost, besides, $\$ 400,000$.
The new hotel of Mr. Potter Palmer is almost ready for occupancy. Its cost will be $\$ 2,000,000$, and it is claimed to be fireproof. All the floors, beams and rafters are of iron; patent tile partitions are used, and the marble decorations surpass anything of the kind in the world.
Changeable Plow Points.-In regard to the suggestion of L. L. B., on page 383 of our volume XXVIII, P. F. B. writes to say that the idea has been carried outby T. Ed munds, who has patented the invention.

From the Fourth Annual Report of Charles V. Riley, State Entomologis of Missourt.7

THE PERNYI SILKWORM.

(Anacaa]Pernyi, Guer-Men.-(Lepaioptera, Bombyctace.)
This is an oak-feeding silkworm which has been intro duced from northern China, and closely resembles yama mai, published in the Scientific American, June 23, 1873 It was named after M. Perny, a missionary who, in 1850 , sent it to Frence from Mandchouria, China. It has been cultivated in Europe with better success than has attended the culture of yama-mai; and in this country, the success with it has also been greater. It developes more rapidly than the yama mai, and differs essentially from that species in being double brooded, and in passing the winter in the chrysalis state, like cynthia and our native species. This trait gives it a great advantage over yama-mai, as not only can more silk be produced, but we can
more easily obtain sound eggs. It is also less affected by con. It is also less affected by confinement indoors. Its cocoon is
not so valuable, thougl ranking not so valuable, thougll ranking
third best of the eight species treated of.
The egg (Fig. 2, enlarged and natural size) is of about the same size, form, and color. The worm in the first stage is of a chocolate brown, with the tubercles reddish and emitting reddish bristles. In the second stage it is yellowish rreen; in the third and fourth it becomes greener, while silvery spots begreener, while silvery spots be-
gin to show at the base of the gin to show at the base of the
anterior tubercles. In the lust anterior tubercles. In the of a dark green with a faint reddish lateral line over the stigmata; the head and legs are light brown with black spots, and the tr angular anal mark is chocolate brown In form and general appearance it resembles yama-mai.
The cocoun (Fig. 2) is suspended by a cord, which does not however, materially affect its reeling properties, as it is attached only to the loose outer silk. The silk is yellowish gray, stout, brilliant, and valuable. It is almost twice as thick as that of yama-mai, and stuffs made yama-mai, and stuffs made of it are said to have the appearance and nature of mixed silk, cotton, and wool.
The moth (Fig. 2, female) bears a striking resemblance to yama-mai, and varies nearly as much in color. The tips of the front wings are generally a little more curved; there is less black about the eye spots, the hind wings are less produced belind, so that their transverse band is more in a line with that of the front a line with that of the front
wings, and the ground color is usually darker color is usually darker and more

Fig. 2. Cocoou and egg of Pernyt
sIlkworm. uniform

In China, the species is reared in the open air in a wild state, and also indorrs on cut branches kept fresh by insertion in vessels containing water. In this country, Mr. Andrews obtained coceons from the first brood of worms by the 4th of July; the moths began to issue three weeks later; copulation immediately ensued, and by the middle of Au gust, or about ten days from the time of laying, the second brood of worms began to hatch. He also found that the worms would feed on beect ${ }_{1}$ and sweet gum.

Austrian Railway Cars.

The English passenger, when traveling in Austrian car riages, will notice with little comfort the heavy rattling and jingling that surrounds him, disturbing his night's rest and exciting his nerves in a painful degree. The cause of this is that but few of the means, long used in England to secure quet running, have been adopted in Austria. The panels of the carriages are not made as in England of wood or papier maché, but of thin sheet iron, which can never be secured in such a firm manner as to prevent shaking, and which con ducts the sound and the heat in a more disageriag hoter in the former materials, thus making Besides, the frame consist in nearly all cases entirely of iron, this construction increasin, the noise made by the moving of the chains, increasing the noise made by the moving of the chains,
brakes, and the movable parts of the heating apparatus. brakes, and the movable parts of the heating apparatus.
Layers of india rubber brtween body and frame are seldom applied, and wooden disk wheels, which so greatly improve the easy running of the carriages, are practically unknown on Austrian railways, although we notice in the exhibition one carriage-a hunting saloon for the Emperor-which is fitted with them. Finally, the bad custom has been adopted of providing passenger vehicles with brakes fastened directly and rigidly to the body of the carriage, the play of the An unbearable and, for thehealth of nervous passengers, oft en injurious rattling is thus produced, against which the
passengers of our English railways would certainly pro test. Unfortunately the press of Austria is often in the pay of the railways, the result being that it is impossible to get any complaints published.-Engineering.

Phenolcyanine.

This new substance is derived from phenol, and appear to me to possess considerable interest, from the analogies it presents with cortain coloring matters derived from lichens, and inasmuch as it may perhaps throw some light on the constitution of indigo. It is obtained directly from pheno by dissolving the latter in alcohol, adding liquid ammonia, and allowing the mixture to remain for some weeks in a partially closed flask; but, in about fifteen days, when the
pression. In great zenith distances, another obstacle combines with the increased scintillation the strong absorption of chemical rays by the atmosphere

Petrified Tree Stumps in Colorado.

A correspondent of the New York Sun, writing recently from Colorado, gives an account of a visit to the famous pet ifactions existing nearthe residence of Judge Castello, thirt miles west of Pike's Peak
Within a square of a half mile, there were thirteen of these petrifactions. All but one had been ruined by curiosity seekers. That one had evidently been a tree of gigantic size It stood at the foot of a picturesque ledge of rocks. Th stump arose from the soil to the hight of three feet, and it was at least ten feet in diame ter. Though preserving the grain and even the color of the wood, it was a mass of solid stone. The heart of the tree bore a beautiful polish Th bore a beautiful polish. Th petrifaction was smuoth an hard, and resembled the creamy whetstone that used to be so common in the East. It wa more brittle, but it would sharp en a razor or a knife as quickly and as well as a whetstone Where the sun had baked the wood dry and black before i was turned into stone, the colo and the almost imperceptible cracks in the grain of the wood were perfectly preserved. Som of the splinters of the stump seemed to have been rotten be fore petrifaction, and presented a remarkable appearance. The liquid has become a rather dark green, twice its volume of were pure stone, but their edges were frayed, like the chewed water and one quarter of its volume oî ammonia are added, and the mixture is left to itself for about six weeks. By this time the liquid has taken a very fine blue tint, very dark, and a certain quantity of phenolcyanine is found at the bottom of the vessel and adhering strongly to the glass. That which remains in solution can be collected by saturating the liquid with salt. The product is thrown on a filter, and the new substance dissolved in hot alcohol or benzol from which it is obtained by evaporation.
Properties.-Thus obtained, phenolcyanine is a resinous substance of a very dark blue, nearly black, and showing metallic copper colored reflections like indigo. In alcohol, it forms a fine deep blue solution, in ether a reddish purple blue, and in benzol a reddish purple solution. Concentrated sulphuric acid dissolves it easily, forming a bluish green liquid; hydrochloric acid has little action; and nitric acid forms a nitrous compound very different from picric acid. Phenolcyanine is very slightly soluble in water, but dissolves in hydrated alcohol to which ammonia is added, and this solution can be considerably ailuted with water. These alkaline solutions are deep sky blue by day, but of a vinous red by night or when a flame is seen through them. Acids redden these solutions, and alkalies bring back the blue, as with litmus. Nascent hydrogen reduces phenolcyanine, and renders it completely colorless; bat when the solution remains exposed to the air in presence of ammonia, the blue color soon returns. A mixture of ferrous sulphate and lime does not destroy the color of phenolcyanine as it does that of indigo blue; so that the former rather resembles the colored derivatives of orcine than it does indigo. Phenolcyanine melts very easily, and can be partially volatilized in purple vapor; the remainder is decomposed, and leave
porous charcoal.-Dr.T.L. Phipson, in Chemical Nevos.

Stellar Photography.

Professor C. S. Sellack, of the Cordova University, Argen tine Republic, says that the objects of the suuthern heavens are numerous and glorious. He has photographed some twentystar clusters, most of them in the constellation Argo, some in Canis Major and Scorpio. The cluster near Carina Argus gave a hundred and twenty-three stars on the photo graph in the most favorable night. The Pleiades, the rich est northern group, did not yield to Mr. Rutherford more than forty-five stars.

In a recent communication in the American Journal, he states:
The greatest difficulty in" stellar photography is to make the image on the plate stationary during a long exposure The steadiness is absolutely necessary for the production of circular images; the images must be circular, because in el'iptically lengthened images the eye cannot fix the center with the sharpness required for the measurements. Employing even the most perfect clockwork, the steadiness of the image is affected by the eifect of the atmospheric refraction, by the variations in the refraction produced by disturb ances in the a \ddagger mosphere, and by the increase of refraction dependent on the zenith distance.
The photographic image of stars is circularly spread by prolongation of exposure; this is principally the effect of the scintillating motion of the image, not of want of definition, as its amount depends on the state of the atmosphere. Bond has found the increase of the area of the image proportional to time. This admits the explanation of the scintilating motion as consisting of transversal vibrations round the central position in all azimuths, and with uniform velocity. When the state of the atmosphere produces a strong scintillating motion, the images of bright stars become very large by long exposures, and faint stars do not produce any im-
end of a rattan, and the stone was so thready and limber that in some cases it might be used as a paint brush. Most, if not all, of the trees seem to have been spruce or pine, though the large stump looked like the Southern cypress. The gum or rosin exuded from their trunks is petrified. It sparkled in the sun like tiny dew drops. Occasionally, when pieces of the stone were cracked open, great flakes of petrified rosin were revealed. They encrusted the wood like frosted silver.

NEW TOOL HOLDER FOR THE SLIDE REST.

On the ordinary upper plate, A, of the slide rest, a circular

\perp groove is turned for bolts to work in, for the purpose of fixing a round plate or turntable, B. From this turntable, a prism, C, projects of such a length as to suit the variety of work or the raising pieces that are generally used with the lathe. On this prism there is fitted a piece, D , which may be called the tool holder, with a horizontal square hole, E , of sufficient size to admit the largest turning tools that may be required, the tool being secured in the hole with binding screws in the usual manner. This tool holder is kept at the proper hight by means of a screw, F, working in a projection from the tool holder, a vertical hole being made down one of the faces of the prism for this projection to pass through, the point of the screw bearing on the bottom of this hole. It is best to keep this supporting screw as near to the tool as possible. By turning this screw, F , in or out, the tool is raised or lowered at pleasure; and when adjusted to the required hight, the holder is fixed in position by means of a binding screw, G, at the side. It will be seen that by this arrangement the upper sliding plate is never bent, however securely the tool may be fastened, as the bolts which work in the \perp groove merely bind together two that surfaces. Then the tool may be moved horizontally to any required position without disturbing the hight, or the hight may be altered without otherwise disturbing the position of the rool For the purpose of recording as well as assisting in placing the tool horizontally, the edge of the turntable is graduated. -English Mechanic.

A Gentheman who has tried it says the best way to catch a ra:, which has found its way into your room, is to lay a boot flat upon the floor, close to the mold board. The rat will run into the boot leg for protection, when he is readily captured.

A sple indid passenger depot is now in course of erection in Washington by the Baltimore and Potomac Railroad Com pany. The building is 137 by 510 feet, and located at the corner of 6th and B streets
on the manufacture of vinegar.

$\underset{\text { by professor I. A. buchner. }}{ }$

Much has been said and written about the formation of acetic acid and the manufacture of vinegar, yet a few obser vations upon the various theories and methods may be use ful. In studying the conversion of alcohol into acetic acid there is nothing more interesting than the process, first accurately observed by Döbereiner, where alcohol is converted into acetic acid by means of fixiely divided platinum called platinum sponge) or platinum black, or rather its oxidation by the condensed and chemically active oxygen in its pores. In my opinion, the simple apparatus devised by that celebrated chemist for demonstrating this change illustrates the formation of acetic acid better and makes it more intelligible than the cask filled with beech shavings, which is used for the rapid formation of vinegar, where the dilute spirits trickling over the shavings are converted, by the circulation cf the air and a suitable temperature, into vinegar. Döbereiner's experiment must be considered as the fundamental experiment for representing the vinegar formation, and makes the operations which take place in this process very simple. A suitable modification of Döbereiner's vinegar apparatus, which was first described and illustrated in Sch weigger's " Journal," vol. 63, is constructed as follows :
Enough alcohol, diluted with 4 or 5 volumes of water is placed in a large beaker glass to cover the bottom to the depth of half or three quarters of an inch ; a strip of litmus paper is suspended in the beaker, being supported by a perforated glass cover, one end projecting above the top of the beaker while the other reaches to the bottom. The platinum sponge is placed on a little dish or watch glass, and, after being slightly moistened to prevent its becoming red hot, is placed on a glass support a short distance above the surface of the alcohol. The glass cover being replaced, the apparatus is gently warmed to cause the evaporation of the spirits. As soon as this is done the litmus paper begins to redden, thus showing the acid formation. The alcoholic odor is first converted into a pleasant smell of fruit, due to Döbereiner's so called oxygen ether, a mixture of aldehyde and acetal. In a short time, however, the odor of acetic acid is recognized, and the alcohol is soon all converted into acetic acid.
In order to account for the role which the platinum sponge plays in this instructive experiment, we must recollect that platinum in this state has the property of condensing oxygen in its pores and thereby increasing its chemical activity to such an extent that it is able to oxydize the alcohol and convert it into acetic acid. Döbereiner found that very finely divided platinum, prepared by precipitation, absorbed, on drying, 200 to 250 times its volume of oxygen without com bining with it chemically, and that it condensed it with a force equal to a pressure of 800 to 1,000 atmospheres.
Döbereiner's experiment offers a very strong proof that the conversion of alcohol into vinegar is an oxydizing process which can take place without the presence of " mother," of vinegar germs (mycoderma aceti,) or of any other organisms.
The rapid method of making vinegar from dilute spirits, The rapid method of making vinegar from dilute spirits,
introduced by Schützenbach, in 1823, rests entirely upon the same principle. The beech shavings, owing to their power of absorbing and condensing oxygen, act in a manner similar to the platinum sponge, but less energetically. Beside these, there are many other substances which act in the same manner, such as finely divided grape vine, grape stems, bits of wood charcoal, etc., all of which condense oxygen and are used to convert spirituous liquors into vinegar. In some countries it is customary to allow cider to trickle down process, no less than the Schützenbach process, depends on process, no less than the Schutzenbach process, depends on
the action of the oxygen condensed on the surface of the the action of the oxygen
decaying organic bodies.

Pasteur's latest experiments have proved beyond doubt that, in the conversion of fermented liquors into vinegar, in the manufacture of wine, malt, or beer vinegar, the vinegar germs generated in these liquors play an essential
part. But, although the mother formed exerts this power, part. But, although the mother formed exerts this power,
it certainly does not do it as a physiological or vital act, but it certainly does not do it as a physiological or vital act, but
works upon the same physico-chemical ground as the platinum sponge and the decaying vegetable fiber. Many suppose, with Pasteur, that, even in the rapid vinegar process, the vinegar is formed by germs or fungi, and that here too the shavings and charcoal act only in this way : namely, that mycoderma aceti are generated upon them. But this opinion is entirely upset by the observations made by the late Baron Liebig in Riemerschmied's vinegar works in Munich, which are among the largest and best conducted in Germany. In this manufactory, the dilute alcohol has no foreign substance
added to it during the whole operation, and is acted upon added to it during the whole operation, and is acted upon
only by the atmospheric air and the surfaces of the shavings and charcoal. When a fresh quantity of dilute alcohol is to be poured in, it is only mixed with some of the partially formed vinegar of the previous operation. Upon Professor Liebig's asking Mr. Riemerschmied about the action of $m y$ coderma aceti in making vinegar, the latter presented him with a sample of beech shaving from the lowest layer of a vinegar generator which had been used in this way uninterruptedly for 25 years. No mycoderma aceti could be found on this shaving when viewed under the microscope, although it had become brown from the decay of the wood, but the structure was unchanged. This leaves nothing more to be wished for on the subject of the quick process in making vinegar.

In the conversion of alcohol into vinegar, we have to distinguish two stages in the action of the oxygen upon the alcohol. In the first place, the oxygen abstracts two atoms of hydrogen from ar molecule of alcohol to form with it water;
the aldehyde thus formed then takes up an atom of oxygen, whereby it is converted into acetic acid.
That the alcohol is not directly converted into acetic acid by the action of the oxygen, but that aldehyde is first formed, has been proved by several experiments. Döbereiner found that when 70 per cent alcohol was exposed to the action of the air and finely divided platinum, in his acetic acid apparatus above described, only long enough to begin to cause effervescence in chalk, and was then neutralized with pul verized carbonate of soda and afterwards distilled, a distillate was obtained, from which, on mixing with much powdered chloride of calcium, a large quantity of an etherial liquid separated, which he called oxygen ether. We now know, from the important works of Liebig, that this liquid consisted principally of a mixture of acetal and aldehyde; and we know, farther than that, that the former contains' the constituents of ether and alcohol, and that, on heating it in contact with acetic acid, it is actually converted into acetic ether and aldehyde. In a vinegar manufactory, and also in the neighborhood of one, the same etherial smell is plainly perceptible, as is noticed at first when alcohol is oxydized by platinum sponge; and in vine gar from brandy, also, there is still some acetal or so called oxygen ether. When such vinegar is saturated with carbon ate of soda, and evaporated for the preparation of acetate of
soda, the whole laboratory is filled with this etherial odor.

Cenregymudemfe.

To the Editor of the Scientific American
An explanation may be afforded of the prevailing east winds in the higher regions of the atmosphere, under the equator, in this wise:
Let S be the sun, E the earth, and AF the atmosphere the earth revolving east in the direction of the arrow. The atmosphere, in passing from A to B, becomes expanded by the direct action of the sun's rays; but as this expanded ai is carried rapidly eastward by the earth's rotation, the more expanded portion is always eastward of the meridian; but in passing further around, during the night and in the ab sence of the sun's rays, through radiation, it shrinks to its lowest limits just before sunrise, at the point, A ; as it again comes under the direct rays of the sun, it begins to expand, ted line, by reason of the greater contraction and less resis

tance in that direction, and also as affected by the earth's rotation eastward. The expanded particles, as they ascend in currents from the surface of the earth into the upper regions of the atmosphere, are constantly falling back of the meridian, the earth as it were sliding eastward under them, causing them to impinge westwardly. These winds thus
move northwardly until they encounter the expanded volume move northwardly until they encounter the expanded volume of the atmosphere, as it is again brought around from the when thes, wher a still greater shrinkage is constantly taking place; and a they move in this direction, they are carried northeastward or eastward, when they reach the middle latitudes, by reason of their equatorial momentum.
It will be seen, therefore, that these main prevailing cur rents of the atmosphere are put in motion, in the mode indi cated by the unequal expansion' and contraction of the at mosphere, as effected by the earth's rotation.
W. L. M.

The Rights of Authors and Inventors

To the Editor of the Scientific American

In your issue of July 5 occurs the following sentence The invention by an individual of a new device, by which his fellow men are benefited, does not entitle him, by any process of natural right or natural justice, to be a monopo list over his fellows, in respect to such article." Believing that the inventor is entitled to legal protection by right, and hoping to see his claims advocated as much in the name of justice as in the name of expediency, I beg leave to disagree with you in this particular
What is the difference between intellectual and material property? Both are the direct offsprings of labor; both are beneficial to others besides the possessor; and both have no existence save that which is allowed them by the law. Then why not accord to both the same protection under the law? No one (unless it be a rank communist) will assert that the grain which the farmer has sown upon his own land and harvested by his own labor should become the common ner consciousness of each and every man tells him that labor bestowed upon an object gives the strongest title to possession. If this be true, the claims of the author and the inventor to the proceeds arising from their respective callings are as incontestable as those of the farmer and the mechanic. After Noah Webster had passed long and weary years in perfecting his dictionary, than which no prouder tribute to
the genius of industry ci.n be found in the English language, would justice have denied him the ownership of that great work? After McCormick has devoted his time and his tal
ents to the invention and the introduction of his celebrated reapers, the use of which adds so much every year to the national prosperity, shall we say that he has no right to the protection which he now enjoys? When we say this, let us also assert that the farmer has no right to the grain which he has cultivated, and the mechanic no right to the cart which he has constructed.
Although intellectual property should stand upon the same foundation with material property before the law, it does not follow that we should make patents and copyrights absolute and perpetual. There are no absolute and perpetual rights of property. All rights of property are subordinate to the national welfare. The interests of our country de mand that the ownership which a citizen acquires in lands and tenements shall be subject to no limitations with respec to time. But this does not follow where an individual has obtained a monopoly over a particular article. When such is the case, the dictates of the national well-being require that the monopoly shall not become perpetual
Roxobel, N. C. John E. Tyler

The Natural Rights of Inventors

To the Editor of the Scientific American:
You reiterate the declaration that the right, termed patent, is not a natural one, but a species of tyranny, vested in a patentee only by sufferance, or by expectancy of a justifia ble return. The distinction thus made is calculated to bege or foster opposition to the claims of inventors. Club rooms long since agreed to put a limit to the bold declaration, of our Declaration of Independence, that " all men are born free and equal," a man's birth being a matter of date sometime after his exit from the womb of nature, and the circumstances of his birth being as great sometimes as the circumstance of having a birth. The fact is men are not equal by birth or by force of being, but differ in endless individualities; and law at best can only seize ou a few features to found a common law for the government of men, and must necessarily leave exceptions alone. Kings and princes therefore exist nd bear names to suit the places they create by their lif force. The inventors are the princes of a nation, and they reate kingdoms in the aggregate world of mind.
To say, then, that patents are granted by sufferance, is no saying all. The whole proposition is: "Since nature ha created certain men with uncommon abilities in certain directions, whose efforts if properly directed tend to elevate and advance the common weal, it is therefore the duty of wise governments to direct, employ, and compensate such men for the common good of mankind." There is no savor of tyranny about the matter. It is simply compensation, for value received, gratefully acknowledged and so directed as to be paid. Not paid, it is true, as it should be, but prospectively provided for.
The labor of the hand is paid for, not as a tyrannical ex action, but as an equivalent for work done. Thought, the director of the million handed Briareus, is entitlel to a per centage of one multiplied by a thousand, not. by force of tyranny but by reason of the greater result
Besides, the stricture, being drawn on the brain of the inventor, conveys the impression that the claim of the in ventor is piratical on the claims of common men, and leads public opinion to put the brand of Cain on the brow of the benefactor of his race. This is at varıance with enlight ened civil practice and justice. The inventor is known to be a different kind of character. He is not predaceous but benevolent; not greedy, but indulgent. He is the first born son of Brother Jonathan, and inherits his mother's weaknesses. This son is known to be out of money often, out at elbows as he is out of the world he lives in. He goes with a lien toward the future. Old Probabilities has no station out or up so far as the cyclone curve on which he moves. It sweeps by the present into other generations. If the government can employ his time, brain and heart, the nation of a better time will respond: Amen.

Theophilus Weaver

Preparations are being made to institute a series of practi cal experiments at Sandy Hook, N. Y., to ascertain the causes of boiler explosions. As heretofore recorded in the Scientific American, an appropriation for this purpose of one hundred thousand dollars, was made by the last Congress. The board under whose auspices the experiment are to be conducted, consists of General D. D. Smith, In spector General of Steamboats, Captain Low, Mr. John Mushaw, Supervising Inspector, of Baltimore, and Charles W. Copeland, M. E. of this city. The experiments are expected to begin about August 1. Several boilers are to be tested and exploded, and the experiments will probably occupy three months. A series of experiments are also to be made at Pittsburgh, under the supervision of General Smith.

To Harden Plaster Casts
I make use of either a thin milk of lime or lime water, instead of ordinary water, and add to this about ten or fifteen drops liquid silicate of soda for every pint of fluid used; then thicken with plaster to a thick cream. Plaster thus prepared will set in about five minutes, dependent on the thickness of the cream. The addition of lime evidently pre vents the formation of sulph. soda, reducing it to a caustic condition, and thus allowing the plaster to stand a very hot water, besides making it very hard. If, however, too much silicate is used, the soda will effervesce on the surface,
and spoil the shurpness of the impression.-J. F. W., in Den and spoil the
tal Cosmos.

THE GREAT EXPOSITION-LETTER FROM UNITED STATES COMMISSIONER PROFESSOR R. H. THURSTON.

NUMBER 3.

Vienna Welt-Ausstellung, June, 1873.
We have already reached Vienna, coming through from Glasgow by express trains, only stopping at London a few hours to complete our arrangements for continental travel, and spending one day in Paris and a part of a day in Munich, en route. We found the London hotels crowded with strangers and were compelled to take private lodgings paying eight shillings for two rooms-a most exorbitant price for London. The races and other attractions of the season produce, for a few weeks in each year, this immense influx of visitors. Calling on a few friends and making a few purchases, we stored such portions of our impedimenta as were only necessary for the transatlantic voyage; and, in less than ten hours after our arrival in the great metropolis, we were on the rail again, and rapidly traveling toward Dover. We had a beautiful night and a smooth sea, and crossed to Calais in unusually short time. We were but about an hour and a half in making the passage from wharf to wharf. Under even these exceptionally favorable circumstances, however, the experience was by no means a pleasing one. The steamer was moderately fast, but had no other ecommendation. Small, dirty, and crowded, without com fortable accommodation below decks for even the small num ber that the craft was capable of carrying, uneasy in the best of weather and in every way unfitted for such employment, these steamers are most discreditable to all concerned in their employment and management. We spent the greater part of the time, while crossing, on the forward deck; but, even with so smooth a sea, the spray was continually flying over us and besprinkling the tarpaulins covering the baggage, which was there piled in a huge mass without other protection. We were finally driven aft among the disconented passengers, who clustered in those spots which were most protected from wind and spray. Such shameful lack of accommodation, on an important line of travel, would certainly not be as long tolerated in the United States as it has been in the Dover and Calais route. There seems to be no certainty, even yet, that any of the well planned arrangements, proposed by Mr. Fowler and by other well known engineers, will be soon adopted. English capitalists seem to shrink from the expenditure of the large amount of money required for the'prosecution of such schemes, even when proposed by competent engineers; although the proposition to construct a tunnel beneath the straits, and the even more chimerical plan (of Boutet) of bridging the channel, have met with some pecuniary encouragement

PARIS

seems as gay and its people as vivacious as ever; and, except the sadly marred public buildings near the Tuileries and the ruins of the Louvre, there is little to remind the stranger that an empire has so recently been overthrown, and that this great country has seen its enemies passing in triumph through its capital, leaving it in the hands of even less scrupulous domestic foes. Still less does it seem possible that the party in power and the government which it sustains are resting upon a most uncertain foundation, and that another revolution may, at almost any moment, bring about another succession of terrible events.
The five months of siege and the seventy-three days of the reign of the commune have left their mark; but these battle scars are now rarely ob-erved, and the greater part of them will soon be effaced. The loss of the library and collections of the Louvre, that of the splendid collection of tapestries, dating from the time of Louis XIV., of the civil records and of some few other treasures, cannot be repaired. On the whole, the city has suffered far less than might have been anticipated, and what Théophile Gautier calls "her invincible life" has already become as characteristically active and seemingly happy as ever. A few sad faces and a few quiet groups in the cafés are the only evidences, beside the ruins, which can be detected, of the terrible trials to which these people have been subjected.

A glance at a few of the public buildings and monuments, a drive along the banks of the Seine to view its beautifu bridges, a ramble in the Jardin des Plantes, which gave an opportunity to see something of the wonderful zoölogica collection, and a walk through the beautiful Champs Elysées, furnished pleasing employment for the greater part of a day; but we still found time to call at the
ecole centrale des arts et manufactures, to inspect the buildings, to learn something of the methods adopted in instruction, and to see the actual operation of the system in the class rooms and work rooms. The building i old, the class rooms rather dark and badly arranged, and the apparatus by no means what we had anticipated. The sys tem of instruction is excellent. Our little party were unani mously of the opinion that young Americans need not deser their own country to enter here. We will endeavor to visi the Conservatoire on our return, and hope to see mu
there of the French system of practical instruction.

Early next morning, we were off for Munich, and were al day riding through the heart of France-a beautiful and fer tile country. The necessity of planting trees is better recog nized here than at home; and, in all directions, as the train moved rapidly through the pleasant country bordering on the Marne and across to Strasbourg, long lines of flourishing trees indicated the position of the wagon roads or the boun-
daries of the fields. At Meaux-sur-Marne is a fine cathedral daries of the fields. At Meaux-sur-Marne is a fine cathedral several centuries o!d, where that noble French divine, Bos works.

Just beyond Meaux, we noticed a large and neatly designed frame house forming almost as remarkable a contrast with the general architecture of the neighborhood as the old cathedral would be if seen in the heart of one of wooden cities.
From Epernay and Chalons-sur-Marne, the road passes hrough the champagne district, where is produced all of the real champagne, although, it is said, far less than is drank as champagne in the United States. The total production is stated at rather less than $15,000,000$ bottles; and, of these, between $3,000,000$ and $4,000,000$ are sent to the United States. The country beyond Chalons becomes somewhat monotonous. The character of this road, and of its rolling siock, are more in consonance with American practice than the British. The road bed is good, but inferior to the Eng? lish, and the carriages are, on the other hand, quite superior, being well supported, finely upholstered, roomy and comfort able. The speed, including stops, is not equal to either that of British or American trains. Between Paris and Strasbourg, it averages twenty-five miles an hour. The locomotives are powerful and very well built, but have, to an American eye, a rough and ugly appearance. Their working parts are very well made, however, and their perform ance is claimed to be satisfactory.

s'trasboura

was reached in the evening; and thence to Munich, the night ride gave no opportunity of seeing the country or its people, until our stopping at Ulm, after sunrise, awakened us, and we were able to see its fine old cathedral, to obtain a glance at its fortifications, and to take our first look at the Danube, as we crossed to the new town. The old battle ground oí Elchingen, where Ney gained such important advantage over the Austrians in 1805, is very near, and comes in sight as the town is left behind.

munice

was reached in time for breakfast. It is an exceedingly pleasant and interesting city, and its noble buildings and splendid historical and art collections make it one of the most attractive of European towns. The finest bronze cast ings made in Europe are produced here, and Munich bronzes are the standard toward which Connecticut has so well approximated in producing the beautiful bronze doors of the Capitol at Washington. We stopped at Munich until late in the evening, and found time to see the more interesting portions of the city, and to visit a few of the more important fits institutions.
We were gratified by finding, in the public square, before the National Museum, and face to face with the statues of two Bavarian military heroes, statues of the great physicist Frauenhofer and of our own countryman Benjamin Thompson, who, having less commendable views in politics than in science, was compelled, during the revolutionary war, to leave his native New England village, and who, emigrating to France, attained distinction and became Count Rumford. His extraordinary talent was well exhibited by the crucial experiment by which he proved the falsity of the old molecular theory of heat. The fact that science belongs to the world, and not to any province, is pleasingly exhibited by the erection of this statue here

The museum contains an extensive and extremely interest ing collection of industrial products, and of the military accoutrements of all ages. The collection of clocks is won derful for its extent and variety. Two of the most remark able are encased in gold and silver and mounted on stands of most elaborate workmanship. They were constructed by the clockmaker Scheiner and Eichler the goldsmith of Augs burg, two hundred years ago. In several of the large chambers are specimens of those graceful and elaborate forgings which gained for the smith of two or three centuries ago high honors, and sometimes knighthood. Locks and keys, chests, images of animals, saws and various other tools, elegant tracery, doors and gates, and many wonderfully in tricate shapes, which may be seen here, would puzzle the modern blacksmith in their reproduction. A screw vice, two hundred and fifty years old, precisely similar in general form to those which are still seen in all of our older workshops but elegantly adorned with forged tracery, was a very inter esting object. Those ancient smiths were wonderfully skillful workmen
Among the arms, are a mitrailleuse model, and a breech loading rifle, very old, but without date, and of a very cred itable design. The former was made for Gustav Adolf, if the attached legend is correct.
A visit to the Polytechnicum, the polytechnic school of Munich, will always be remembered as one of the pleasantest events of our trip. This splendid institution is supported the State. The building is more than 1,20tifully adorned The collections in all departments are excellent, and, in that of mechanics and engineering, very extensive. The space vailable in this great edifice is already found too limited for twelve hundred students, and the plans are nearly com pleted for additional buildings, although this one is not ye nished
From Munich, a continuous ride of twelve hours bring us to

vienna,

and the pleasing information that the United States section is rapidly assuming a creditable appearance encourages the belief that something interesting relating to it, as well as to the Welt-Ausstellung as a whole, may be found for the next letter. Our exhibitors are receiving compliments, we are old, from all quarters for the excellent character and th value of the articles which make up our modest contribution

The Hotchkiss Revolver Cannon

The following is a translation, from the Revue d'Artillerie f June, 1873, of a report of the trial of the Hotchkiss revolver cannon at Satory, near Versailles, France :
Trials were recently made at the Polygon at Satory with a revolving cannon invented by Mr. Hotchkiss, and desitined for the Italian Government. These experiments were for the purpose of testing the mechanical value of this engine. The new cannon has a caliber of 1.57 inches, and is essentially different from all other mitrailleuses presented up to this time, especially in firing a small cast iron shell with a percussion fuze, the effect of which must be terrible at long ranges.
A complete description of this cannon will be given later. At this time, I shall only give some details concerning the ammunition used. This ammunition is an explosive projectile attached to an iron cartridge. The cartridge case is made from a tinned iron tube, soldered, with one end turned down to form a cup. This cup or tube is reinforced in the interior by two iron cups, and fixed with three rivets on a large washer of sheet iron, which forms the head and is designed to withstand the pressures of the gases, and to give a hold to the extractor. The priming is fixed in the center of this head.
The cartridge shell will hold $3 \cdot 5$ ounces of powder. A thick felt wad is put between the powder and the projectile. In the cartridges fired at Satory, the powder charge was reduced to $2 \cdot 8$ ounces Austrian powder, and the room left was filled up with two washers of ordinary paper, placed on the powder and covered by a little cotton.
The projectile has a length of two and one half calibers, and a portion of its length is covered with brass, having cuts designed to be forced into the rifling. Its weight is $17 \cdot 6$ ounces, and it holds $1 \cdot 4$ ounces of powder. The cartridge, loaded complete and primed, has a weight of 28.2 ounces.
The projectile does not seem to be fastened tight enough in the cartridge case, as it can be taken out with a little effort with the hand, and it is feared that, in transportation of them in boxes, the projectiles might separate from the cartridge shells.
To avoid all chances of accidents, the cannon revolver was placed in battery about 325 feet from the butt, the projectiles being loaded and having their percussion fuses. Forty shots were fired. At the commencement of the trial the fired cartridge shells did not drop out of the extractor regularly. This slight defect was remedied on the spot in a few minutes. After this, no difficulties or irregularities in the firing occurred. The cartridges were oiled previous to firing. The cartridge shells did not show any damage by firing, and can be reloaded and fired several times. One was found unsoldered, but was not broken, and acted perfectly as a gas check, and it could, like the others, be used again by being resoldered, which can be done without difficulty.
Only one misfire occurred, and the same cartridge was fired on the third trial after missing twice. There was also only one misfire with fuses. Generally, the projectiles passe through the board target and exploded on striking the ground. Only one projectile was exploded by striking the board of the target. One projectile broke in the barrel of the cannon; but this accident should not be attributed to the irregular working of the fuses, because the projectiles proved to have been badly cast and one sided, and left very weak by the hole being badly one sided.
Six shots were successfully fired in twelve seconds, by loading the cartridges one at a time. Then fifteen shots were fired in fifteen seconds in loading with cases in which a certain number of cartridges had been placed previously The firing could be kept up for a certain length of time a the rate of sixty shots per minute, which gives thirty kilo or about 70 pounds English) of cast iron fired in this time The firing is very regular, and the sighting did not seem to vary to any noticeable extent.
The projectiles exploded into 12 to 15 pieces, large enough to kill at a certain distance from the exploding point. The butt piece does not generally break, although breaking lines have been prepared on it.
One inconvenience was the rapid brassing of the barrels which took place during the trial. It appeared at the first shots, and increased rapidly. Without any doubt, it is to b attributed to the bad quality of the brass from which the covering of the projectiles has been made.
Generally, the mechanism of the Hotchkiss revolving can non seems to work surely and regulariy, and the ammunition will do good service if the projectiles are more firmly attached to the carriage. The projectiles are difficult and delicate to make, and must necessarily be expensive. This cannon will without any doubt, produce terrible effects at distance
pproaching those of field artillery, and the explosive quality f its projectiles assure to it a superiority over all other mit railleuses, as its fire can be rectified by observing the explosions of falling projectiles.
A. Jouart,

Capitaine d'Artillerie.
Perils of Ballooning.-Frank K. King is reported to have made a balloon ascension from Morristown, Vermont on the 4th of July. When he had risen to the hight of near ly three miles he encountered a snow storm, which so load ed the top of the balloon that it was driven down, and he anded in a deep forest some eight miles distant. It took a searching party, of 500 strong, forty-eight hours to find him. He was discovered in a famishing and exhausted condition but had sustained no other injury.

Of the eight Corliss engines in the Vienna exhibition, two come from Switzerland, one
Germany, and three from Austria.

Improved chain propeller.

In the novel mode of propulsion to which our illustration refers, it is claimed that a very large amount of bucket capacity is obtained, thus allowing of the use of a considera ble percentage of power, and that the action of the device is such that it is suitable for canal as well as for river and lake navigation.
In the center of and length twise the boat, a channel is constructed, at either extremity of which are placed pairs of grooved wheels, B, their axles passing through the vessel at the points represented. To these arles, by means of a belt or other suitable contrivance, power is applied to cause the rotation of the wheels. Endless carriers, A, of wire rope, chain, or similar suitable material, pass over the wheels and support buckets attached crosswise and projecting at right angles. These buckets are as long and wide as the chan nel will permit, and are arranged as close together as necessary for obtaining the greatest effect upon the water. Braces, C, are at tached near the outward edges of the buckets, and extend on to the carrier whereon they bear dy a foot piece, their object being to support the buckets against the resistance of the water. The braces are not attached to the carrier; so that the latter bendfreely around the wheels. The power may be of any preferred kind, and applied to either one or both wheels as desired.
Patented through the Scienti. fic American Patent Agency, Dec. 10, 1872. The inventor, Mr. John Neumann, is the orisinator of several other useful devicis, and attained some celebrity several years ago by making a finely executed copper statue of Washington, entirely with the hand hammer. The work was exhibited, but unfortunately destroyed in the old Crystal Palace. Mr. Neumann may be addressed for further particulars a 159 South 9th street, Brooklyn (E. D.), N. Y

TUCKING ATTACHMENT FOR SEWING MACHINES.

The invention herewith illustrated is a device for forming and sewing tucks at one and the same operation, and also for insuring a perfect uniformity in parallel lines, in tucks and in spaces between tucks, in an expeditious manner. In its operation, the inventor states, it folds the fabric in form for a tuck, regulates the tension of the material while being sewed, maintains its uniformity in parallel lines, and secure the seam, all at one and the same operation.

In the engravings, Fig. 1 shows the apparatus attached to the macine, and Figs. 2 and 3 portions separated. A is the presser foot, the upper end of wich is hollow ans can be slipped on any cloth presser bar. This foot has a lateral arm, B, on which is an index plate; C is the head of a temper screw, by means of which the vertical guides, D, are adjusted laterally, with reference to the presser foot. The opening between these guides is more or less closed by means of two set screws, shown at E . F is the end of the horizontal guide, G, turned at right angles from its body and parallel with the side of the presser foot and vertical guides. The body of the horizontal guide is shaped as a loop, and works
in a dovetail on the index plate, H , engaging with the temper screw, I. The slot represented in the shank of the index plate serves to secure it to the platform of the machine in the position shown in Fig. 1.
The index plate, H , is attached with the point, F, parallel to and drawn laterally by the temper screw, I, against the side of the presser foot, so that the needle will cume near the inner corner of the angle. A set screw secures the presser foot with its attachments to the presser bar, and the ver tical guides are laterally adjusted by the screw, C, to regu late the width of space between the tucks. By tnruing the $\left.\right|_{i}$

NEUMANN'S CHAIN PROPELLER

temper screw, I, the horizontal guide is adjusted laterally fo

 enlarging or diminishing the width of the tucksWhen all these adjustments are completed, the first tuck is turned by hand, feeding it to the needle, in the same man ner as any other plain sewing, until the seam is finished Then a piece of thin metal is shoved inside the tuck to dis tend it to its full width, so that it will appear as standing on its edge. The raw edge of the remainder of the fabric is made into a roll parallel with the tuck just distended, and assed through under the loop of the horizontal guide, G he part of the cloth containing the tuck is next dra F under and then over the outside of the right angled point taining the guide can be introduced edgewise in the opening taining the guide can be introduced edgewise in the opening
of the vertical guides, H. The machine being set in motion, the fabric is fed in the ordinary way to the needle; and when the same is ended, the thin metal strip is withdrawn and introduved in the tuck last made. The cloth is again drawn along until the strip or plate guide can be once more intro duced between the vertical guides, and thus continuously until all the tucks are completed.
The right angled point, F, is in the tuck, being formed and sewed, and the fabric is stretched over and travels paralle with it. The thin plate rests in a tuck already made, stands edgewise in the vertical guide opening, and travels paralle at all times with the point, F , thus giving two fixed parallel guides in combination with the needle; thus, it is claimed effecting perfect uniformity in parallel lines, in tucks, and effecting perfect uniform
in spaces between tucks.
To increase or diminish the width of the latter, the temper screw, I, is turned, thereby actuating the horizontal guide on the index plate, and moving the point, F, laterally from or to the presser foot until the desired width is obtained and noted on the index plate. The distance from the needle to the outer edge of the point, F, is the width of the tuck. To increase the width of space between the tucks, the temper screw, C actuates the vertical guides, D, laterally trom the needle and presser foot. When the desired width has been reached, it can be noted by the index on the lateral bar. The distance from the vertical guide opening to the needle is the width of space between tucks. The vertical guide opening can be closed or opened to suit any desired thickness of stuff by the screw, E. The plate guides are of any suitable material the screw, E . The plate guides are of any suitatch.
similar in thickness to the mainspring of a watch
The inventor claims for this device cheapness and sim licity, and a sample of its work forwarded to us seems to be ery neatly and accurately made
Patented May 13, 1873. For further particulars regarding ights, etc., address the patentee, Mr. Eugene Bouillon, care G. Lavie, Box 1,093, New Orleans, La.

In one of the ancient Indian mounds in Oregon, examined by H. A. Chase, he found among a great variety of stone tools and implements, a hatchet or adze of brass, 4 inches long, 3 inches wide at cutting edge, and 2 inches wide at head. The aperture for the handle was through the sideike a hoe. It may have been obtained from the wreck of some ancient Japanese or Chinese junk; or possibly have been made from copper and zinc, ores of which exist in this neighborhood-Chetko river.

Machine for Charging and Drawing Gas Retorts. A machine for this purpose has been for some time in suc cessful operation at the Dublin (Ireland) gas works. It is by John Somerville, of that city, and consists of improvement on the Best and Holden machine
The method of working is as follows: One man takes off the lids of the retorts of one row, the drawing machine moves opposite to one retort, sends in the rakes, at one draw brings out the coke, and then moves on to the next retort, and the charging machine comes up to the discharged retort and put in the charge of coal. The scoop is made double, and form two small scoops hinged toge ther and discharging in oppo site directions; so that, in turn ing, the coals are spread well over the surface of the retort thus utilizing the greatest amount of heating surface in the retort. As the retorts are charged, the man who preceded the drawing machine and took off the lids now follows th charging machine, closing th charging machine, closing the retorts. Two boys drive the machines, one man filis the coa into the hopper, and anothe attends to the taking off and putting on of the lids or doors The platforms of the machine are now altered to the level of the row of retorts to be drawn and charged next, and those operations proceed as befivie By these arrangements, the re torts are exposed to the action of the atmosphere a much short er time than in the case of hand labor, as the stokers generally "slack out "ten or a doze doors at once, and draw them doll before charging any, thu all before charging any, thu leaving the first drawn retor a long time to the cooling atmo sphere, whereas with the ma chine the retort is charged di rectly it is emptied, an advan tage that must be appreciated by all gas engineers. The wor of drawing and charging is done with a regularity that can not be attained by manual labor; the retorts are supplied with the maximum quantity of coal they will take, and the quantity does not depend upon the caprice of a scoop driver The coke must be raked out clean and a quantity cannot be eft in, as is often the case with manual labor when the ey of the foreman is not on the men. The same quantity of gas is made on Saturday nights and Sundays as on any other day of the week, a result not often obtained with hand labor

COMBINED CRADLE AND ROCKING CHAIR

This invention may be termed a nurse power economizer in that by its aid may be utilized the force developed by that natural see-saw motion which nurses invariably take up while crooning those peculiar and musically un writable me lodies which are supposed to act as powerful soporifics upn heir infant charges. Instead of requiring the landmaiden or maternal parent to oscillate on an immobile chair and, a he same time, by a reciprocating motion of the foot actuate the rocker of the cradle, in the device herewith illustrated she is provided with a rocking seat attached directly to the latter, to which the undulatory motion of the body is thu ransferred.

The back of the chair is hinged to the seat and consequent ly may be folded forward thereupon. The seat is attached to the standard, rocker, and arm of the outer side of the chair; and when the back is turned down flat upon it, both together may be shoved or telescoped into the cradle through an opening made in the rear end and below the slats. The upright portions of the chair then fit snugly up against the foot of the cradle. Suitable stops are secured to the back standard to prevent the back from falling too far to the rea when it is opened, and similar devicess keep the seat from be ing drawn nut too far. Patented February 4, 1873, by Mr Ephraim Hambuger, of Detroit, Mich.

BARON VON LIEBIG.

A sketch of the life of the illustrious chemist and author recently deceased at Munich, has alrsady found place in our columns, so that in presenting the accompanying excellent portrait, reproduced from the pages of $L a$ Nature, we shall allude chiefly to the nature and importance of the discoveries by which his name has been rendered for ever fam ous. A single illustration will render clear the fundamental idea which formed the basis of Liebig's labors in agricultu ral chemistry, and which he has developed through all his works. A field, for example, is cultivated aud fertilized over a pericd of five years, and is required to produce successive crops of potatoes, wheat, clover, wheat again, and, during the last year, oats. The potatoes and wheat are sold; the clover serves to feed an ox, which similarly finds its way to market. Now it is clear that the potatoes and wheat contain phosphates and potash drawn from the soil, and that the ox has formed the constituents of his bones from similar matter in the clover. Consequently this total amount of mineral substance is absolutely withdrawn from the plot of land and not returned. Without doubt, in animal manure, a part of the phosphates in the wheat and oats will be regained if the latter be consumed on the farm; but of only a small fraction of the quantity will restitution be made, and therefore, if such a course be continued, the result will be impoverishment, and in the end sterility of the earth.
Against this system of cultivation, based on the production of manure, Liebig waged systematic war, pointing out in the strong est terms its despoiling nature, and stigma tizing it as "vainpire agriculture." Not content merely with giving warning of the evil, he at once indicated a remedy, and first advocated the use, as fertilizers, of bones rich in phosphates. These he found resisted decomposition in the soil, and pro duced little effect; so he invented a mode of tr-ating them before use with sulphuric acid, thus creating one of the rost pros perous agricultural industries, the fabrica tion of superphosphates. The results a once obtained were marvelous. In England the turnip crop doubled, and the employ ment of the new fertilizer became general then it came into use in France, then Ger many, and finally in this country. The con sumption of superphosphates, however increasing, bones failed to afford an ade quate supply, and then the geologists, firs Nesbitt in England and Delanoy in France searched for and found new sources in the mineral deposits of the earth.
Liebig was an indefatigable worker, con stantly advocating in his letters, his teach ings, and bis books, the necessity of utiliz ing the lost riches in sewage and waste $r e$ fuse. He cited the example of China, whic sustains a vast and dense population with out importation of any fertilizing materia for her land, and also of Holland and Al sace, where, by similar e sployment of waste, the soil is made to give abundan harvests, comparing both instances with th prodigality of English agriculture, for the sustenance of which vessels constantly ar searching the world over for guano and similar materials. Liebig attached much greater importance to the mineral matter in manures than to the nitrogenous consti tuents, a view which involved him in man long discussions with English and Frenc chemists, in many of which the extreme po
sition, sometimes assumed by him, he found to be untenable.
To the precocity of Liebig's genius we have already al luded. At nineteen years of age he was a doctor of medi cine, and at twenty one assumed a professorship in Giessen university. Two years later lie founded his celebrated labo ratory and school, which have since formed models for simi lar institutions throughout the world. If the motive which underlaid his writings can be expressed in a single sentence we should say that it was the desire not only to be usefu but to be useful immediately. Hence his works relating to practical agriculture, and hence the instruction written for the people and not for the savans. His was not the language of the theorist or student, addressed to his peers in learning but rather the familiar argument or practical views calcula ted to interest the indifferent and forcibly enchain the atten tion of a general public. Hiṣ attempts to base organic che mistry on the hypothesis of component radicals were not successful, and indeed, as Laurent remarked, seemed to be
the study of bodies which do not exist."
But where few lave known the names of Kirchoff, of Bun sen, of Mayer, and of Helmholtz, the world has talked of Liebig; where the grand theories of the former need genius to insure their application, his plain words joint the way to ready practice; and even though his labors, great as they are, be exceeded by the greater works of his gifted countrymen, still Justus von Liebig, his writings and his precepts, will be remembered and heeded even so long as man shall seek his sustenance from the bosom of his mother earth.

Pulverized charcoal sprinkled over dressed poultry, after the animal heat is expelled, will preserve it from spoiling for some time in hot weather.

Augmentation of the Induction Spark.

Everybody is acquainted with the experiment which consists'in placing in communication the two coatings of a Leyden jar with the two ends of the secondary wire of an induc tion coil. The length of the spar is reduced considerably but the brilliancy and noise are, on the contrary, increased. I wished to see the effect of large insulated metallic surfaces placed in contact with the two ends of the secondary wire the two surfaces being separated from each other, so as not to produce the effect of a condenser.
For metallic surfaces I took frames having each about eleven square feet covered with silk, doubled with paper upon which had been fixed plates of tin. The spark burst between two insulated points, which can be made to approach or recede from each other at will.
So long as one or more plates of tin communicate with one of the poles only, the spark is in no way modified; but so soon as the other pole of the secondary wire is in contact with the plates of tin of the same surface as the first, the brilliancy of the spark increases and its length diminishes The inclease of the surface produces an increase in the bril liancy and the noise of the spark, and a new diminution in its length. If one of the metallic surfaces be greater than the other, the effect does not surpass that which two surfaces equal to the smallest produce.
baron justus von liebig.
The effect of the plate becomes more sensible by the drawing near of the points of the excitor, and the spark breaks outinto great number of tracks of fire; but if the distance of the points is reduced to about one and a half inches, the effect of the surface seems to disappear.
When in place of the large metallic plates, metallic wire or ribbons of tinsel are employed, three fourths to on inch in width, well insulated by means of glass supports o silk cords, we then obtain, by the use of equal surfaces much more intense effects. Fifty-four yards of these metallic ribbons, placed in contact with each end of the secondar wire, making a total of 108 yards, greatly increase the bri lancy and the noise of the spark.
The stronger the inductiou, the more marked the effect this is what I have proved lately, by means of a powerfu apparatus, which M. Ruhmkorff has been good enough to place at my disposal. It is necessary to be careful, in order to obtain the greatest possible effect, to make tle two ends of the metallic ribbon communicate with each point. If the ribbon be too long, it becomes necessary to establish reater number of similar communications.
In general the effects are the much more intense when the insulated metallic surfaces are greater, more divided, an he different parts are more separated from each other. . M. Guillemin, in Journal de Physique.

Effects of Air upon the Condensation of Steam The conclusions which Professor Osborne Reynolds draws rom a series of experiments are as follows

1. That a small quantity of air in steam does very much retard its condensation upon a cold surface; that, in fact, there is no limit to the rate at which pure steam will con
dense but the power of the surface to carry off the heat. 2. That the rate of condensation diminishes rapidly, and nearly uniformly as the pressure of air increases from two to ten per cent that of the steam, and then less and less rapidly until thirty per cent is reached, after which the rate f condensation remains nearly constant
2. That in consequence of this effect of air the necessary size of a surface condenser for a steam engine increases very rapidly with the quantity of air allowed to be present within
3. That by mixing air with the steam before it is used, the condensation at the surface of a cylinder may be greatly diminished, and consequently the efficiency of the engine craased
4. That the maximum effect, or nearly so, will be obtained when the pressure of the air is one tenth that of the steam or when about two cubic feet of air, at the pressure of the atmosphere and the temperature $60^{\circ} \mathrm{F}$., are mixed with each pound of steam.

New Application of Electro-Plating.

Some three years ago, a working electro plater in London discovered a process by which a white metal having tin as its principal ingredient might be deposited by electricity upon iron and steel, as well as upon ropper and brass. Most of our readers know that to plate steel and iron even with silver bas hitherto been deemed impossible, without the intervention of cop per as a coating; and the process of tinning thin sheets of iron so as to make them tin plates is a familiar one. But to cover any metal with tin by the use of the galvanic bath is new. The invention is now in practica operation in Victoria street, Birmingham where the Electro Stanus Company, who own the process, have their works.
The salammoniac requisite in the makin of tin plates, and which increases the disposi tion of the iron to rust, if only the air can get at it through the tiniest of imperfections, i not called for in this process. If the meta required to be coated should be rusty, it is cleansed in a bath of sulphuric acid ver much diluted; and when it has been immerse in a pot of potash and water, it is free from all grease. Now chemically clean, it is fit for the plating vat. Here, hanging by coppe wire from the metal burs which connect the battery with the opposite pole, the articles to be plated are hung. in the solution, which while it is not exclusively tin, may be prac tically regarded as tin. Immediately that galvanic action takes place, the article is filme with the white metal, and according as it is desired that the coating should be thick or thin, the timeduring which it is kept in con tact with the solution is long or short. The article removed, it is found that it possesses dull white color that is made to acquire toler able brightness by the application of the cus tomary metallic brush moistened with cleansing fluid. If a higher polish is required, then that may be obtained by the ordinary method of burnishing. The process bas evi dently a wide field of application.-The En gineer.
Our readers will find the description of a process analogous to this in the SCIEN'IIFI American of July 15, 1871.

The American Paper Trade

During the year 1872 there were in opera tion in the United States 812 paper mills, wned by 705 firms, and of an estimated value of ove $\$ 35,000,000$. In addition to this actual value of mill pro perty, there is to be added the usual working capital, twen ty-two and a halt per cent of the value of the mills, thus making the total capital invested in paper making through out the country about $\$ 43,500,000$. The mills t mplo 3,420 male and 7,700 female hands besides 922 chil dren, or a total of 22,042 laborers, whose wages amount early to the large sum of nearly $\$ 10,000,000$ dollars. Thei roduct amounted last year to $317,387^{7}$ tuns, valued a $\$ 66,475,825$. The total number of engines running is 3,293 besidiss 299 Fourdrinier and 689 cylinder machines.-Paper Trade Journal.

Forthcoming Exposition in Brookiyn, N. Y.
The success of the fair held, in the very limited space at the disposal of the managers, in Brooklyn last fall has in duced a committee of influential men in that city to announce a more extended display, to be held at the rink on Clermon avenue. Adjoining this building is the large armory an drill hall of the 23d regiment, and we understand that ne gotiations are in progress by which these rooms may be added to the available space.
Especial attention was bestowed last year on the forma tion of an art gallery, and the result was one of the best collections of paintings ever seen in the neighborhood of New York. It is to be hoped that the fair will be similarly ortunate this year.
It is intended that the exposition shall remain open for ne month, commencing September 15
Full information can be obtained at the offices of the exposition, 39 Fulton street, Brooklyn, N. Y.

ENGINEERING NOTES.

At a recent meeting of the American Society of Civil Engineers in this city, Mr. Joseph Whitney, C. E., of Cambridge, Mass., read a paper on the subject of

leakages in water pipes.

He stated that some years since his attention was called to this matter in Cambridge, Mass., where for a considerable period the water supply had been gradually decreasing, thus causing much inconvenience and insecurity in case of fire. In a particular house, the water scarcely rose to the second story at night or day. After enquiry, a series of observations were made wit! siphon pipe and pressure gage to determine the cause, and were conducted in the morning, when the consumption was nearly nothing. Numerous very serious leaks were quickly found and closed; and thus, without any increase of size in the main, an additional head of 35 feet was secured, insuring a full supply to each house in the locality. By continued experiments upon the pipes throughout the city, nearly two hundred leaks, of from 1,000 to 2,000 gallons each per hour, were found. The necessary repairs were made, and thereby the average daily consumption per head was reduced from 85 to 35 gallons, which is not more than one half that in most cities.
Leakage of this character may exist a long time without being known; thus, it may start when the water is first let on, and the water find a passage through some blind channel into the sewer; it will not be seen at the surface unless that up ward and outward is the easiest course.
It is quite probable that this subject concerns other cities, and furnishes a satisfactory reason for the great increase in the consumption of water, and the corresponding growing demand for supply, which more or less embarrasses public authorities.
It is said that in the city of New York the consumption is about one hundred millions of gallons per diem; if so, the speaker was sure at least fifty millions were wasted through unrecognized leaks into the sewers and surrounding rivers. In Boston, more than severteen millions of gallons are supplied, where eight millions should suffice.
It is a fair presumption that one half these great amounts, being but waste, and a corresponding cost in the construction and operation of water works may be saved: surely examination, complete and exhaustive, should be made to determine whether this is presumption or fact.
Mr. T. F. Rowland, M. E., of Greenp.int, New York, presented a paper on the
ADAPTATION OF MECHANICAL POWER TO THE WORK OF charging and discharging gas retorts,
in which it was proposed to take the coal from a pocket outside of the retort house, size, mix, transport and deposit it in proper quantities in the retorts and afterwards discharge therefrom the resulting coke into the coke barrows.
The apparatus consists, first, of an iron car, which transverses the retort house in front of a bench upon a railroad of twelve feet gage, and carries the mechanism for charging and dischärsing; and second, a series of buckets which, suspended from an overhead or "pendent" railway, conveys pended from an overhead or "pendent" railway, conveys
coal to the charging apparatus. The car is fourteen feet coal to the charging apparatus. The car is fourteen feet
square, and is propelled by an engine and boiler upon it. It square, and is propelled by an engine and boiler upon it. It
carries a meter which receives coal from the buckets and carries a meter which receives coal from the buckets and
deposits it in the charger. The meter is a horizontal cylinder, deposits it in the charger. The meter is a horizontal cylinder:
divided longitudinally into three compartments or cavities, divided longitudinally into three compartments or cavities,
such that each will contain enough coal for one retort. It such that each will contain enough coal for one retort. It
revolves intermittently at the base of a hopper or coal pocket, which receives the coal from the buckets, each cavity therein in turn being filled with coal and emptied by discharge into shutes, severally, in connection with the three scoops of the charger. These shutes are placed one above the other, and, as the meter revolves, are automatically opened and closed, so that the coal is discharged into each in succession. The edges of the meter cavities and of the throat of the coal pocket are armed with hard, sharp, steel blades to cut or crush fragments of coal
might clog the machine.
might clog the machine.
The charger is a carriage travelling on the top of the car, transversely; its three scoops are placed one above the other at distances corresponding to the vertical measure between
the retorts; they are D shaped, like the retorts, and have the retorts; they are D shaped, like the retorts, and have
movable bottoms. When the scoops are filled, by a transmovable bottoms. When the scoops are filled, by a trans-
verse movement of the carriage theyare thrust forward into verse movement of the carriage theyare thrust forward into
the retorts; the motion being reversed, the bottoms and then the scoops are withdrawn: thereby the coal is deposited evenly over the retort, and the scoops made ready for another charge.
The discharger is a carriage similar to the charger. The two are placed at opposite ends of the car, and the meter between them. By an automatic device, three hoes or rakes are simultaneously thrust into three retorts, dropped until by the coke is removed and discharged on to the retort house floor, or into coke barrows. One tier of retorts may be charged and the adjacent one discharged at the same, and in a very brief, time.

The pendent railway consists of two single parallel rails, ten feet apart, suspended from the retort house roof over the railroad before mentioned, and connected at the ends by semicircular rails, thus together forming an endless line, from which is suspended a series of coal buckets, attached to a flexible steel belt by which they are separated at uniform distances apart. The belt passes around horizontal drums, ten feet in diameter, and placed one at each end of and below the line, their vertical shafts being in the center of the curved rails. One of these drums is an idler; the other, that
at the receiving end, is in a tower outside the retort house In its periphery are two openings, diametrically opposite which, by two inclined chutes, are connected with a fixed cylindrical hopper or reservoir for coal above. The bucket are vertical cylinders with one half of the upper part cut away, so that when they are in contact with the drums their axial planes coincide with the periphery. The space between the buckets on
of the drums.
When this apparatus is in motion, the buckets pass along the pendent railway; their openings are brought successively in contact with the openings of the drums, so that the coal conveyed by the inclined chutes from the reservoir drops through them, the quantity being regulated by valves in the through them, the quantity be
chutes, worked automatically.
The buckets have hinged bottoms to drop downward, and are opened when passing over the coal pocket on the car, at the will of the operator, by releasing a catch; they are mechanically closed just before reaching the drum, where they are filled.
The coal in the yard, after passing between sizing and mixing rolls, is lifted to the reservoir over the drum by elevators, similar to those used at Messrs. Hecker's flouring mills in New York.
The several parts of this apparatus can be worked independently, and thereby accommodated to the varying demands likely to be made upon it.

Ancient Construction

Explorations at Nineveh have shown that, except for pavng purposes, stone rarely entered into the construction of the walls and buildings. They consisted of clay only, which had evidently been molded in the shape of bricks, and put together without the aid of mortar or cement of any kind. In the few examples in which stone was found to be employed the joints were made in the same manner, that is, by simple juxtaposition. Mortar and cement appear to have been rarely or never employed. The size of the stones was considerable, so that mere weight would, to some extent, render superfluous the employment of any adhesive substance at the joints. But this was not the case with the bricks, which were nearly of a square form, 1 foot 4 inches on the sides by 2 inches in thickness. The question which remains unsettled is: In what degree of consistency were these bricks at the time they were put together? Were they sufficiently plastic to adhere together,or were they wetted be fore being used, so as to soften the mere surfaces which were
in contact? Upon this supposition there would be an apprein contact? Upon this supposition there would be an appre-
ciable difference between the appearance of the body of the ciable difference between the appearance of the body of the
bricks and that of the joints, which does not exist. There is nevertheless, a slight difference in color at these points, which looks like lines. The Assyrians had two varieties of baked bricks; the one was regularly shaped, with parallel faces, and the other of a trapezoidal form. These latter were intended for arches or vaults, and the inclination of the sides varied with the position which the particular brick was intended to occupy in the curve. The dimensions and proportions of the Assyrian bricks differ from those of modern manufacture. Those employed in paving were of two sizes. One class was 1 foot 4 inches by 1 foot 4 inche inches by $4 \frac{1}{2}$ inches thick. A peculiar feature in these old inches by $4 \frac{1}{2}$ inches thick. A peculiar feature in these old
bricks is that they are, with few exceptions, covered with inscriptions in the cuneiform character. Two remarkable features in the construction of ancient cities were, first, that either the diagonals or the direction of the sides pointed
exactly towards the cardinal points, and, secondly, the exactly towards the cardinal points, and, secondly, the
enormous thickness of the walls of the principal buildings. It is probable that astronomical reasons dictated the former of these, and climatic exigencies the latter. In the case of Nineveh, there can be little doubt of this, as the Assyrians were celebrated for their skill in astronomy, and their par tiality for the science. The thickness of the internal walls is scarcely ever less than 10 feet, and that of some of the external varies from 16 feet to 25 feet. Some consideration must be given to the fact, with regard to thickness of the must be given to the fact, with regard to thickness of the
walls, that the mode of building them with bricks merely walls, that the mode of building them with bricks merely
dried in the sun required this dimension to be disproportionately great.
In the building of their domes and vaults the Assyrians employed a roore brittle description of brick than in their walls and pavements, and the joints were made by grouting them with semi-fluid clay. The voussoir shape of these bricks prove that the theory of the arch must have been known at that time, and some considerable progress made in the preparation of artificial stones. There is no evidence of timber being employed as a material of construction by the people under notice. It was used only in small quantities, and for the purposes of ornament. It seems that iron was altogether unknown as a constructive material. Copper was turned to account for the pivots or hinges of doors, and lead was also rendered serviceable. Enamelled bricks for the double and stucco was largely employed, as with us, for the double purpose of protecting the brickwork from the effects of the air, and hiding the roughness of the surface. There is one ceremony which appears to have existed at the
time of the Assyrians, which is common to modern times as well. It is that of laying the first, or foundation, stone of building. A recent French explorer, M. P. Place, discovered in a layer of fine sand underneath one of the monoliths of the gates of Nineveh, a variety of different objects in mar ble, agate, and cornelian, which were cut and engraved, and were, moreover, all pierced with a hole, as if they had originally formed part of a bracelet or necklace deposited at the laying of the stone as coins are deposited with us. While
masonry, the Assyrians were totally ignorant of the art of construction considered in the light of an assemblage of pieces of timber or iron. They could heap up materials so as to cause the structure so composed to resist any outward force by its sheer weight or inertis, but they knew nothing whatever of the distribution of pressures, or how to propor tion a structure so that it should be equally strong in al parts. Both the labor and the material were too abundan to call for economy in either one or the other. -The Engineer.

Steam Power on the Canals.
A correspondent, W. J. B., of Ind., expresses his belief that any means of propelling canal boats in which the water is used as a fulcrum would produce so great an agitation of the water as to prevent their use. He proposes two continuous rails on the bed of the canal, one for boats going in each direction. The boats are to be fitted with driving wheels in the center, with deep flanges, the axles of the wheels resting on frames which could be moved up and down in curves concentric with the main shaft of the engine. In ad dition to the weight of the wheel, pressure on the rail might be given by steam cylinders which would slightly raise the boat in the water. The boat could be guided by rudder wheel with flanges, which should also work in a frame, variable to suit the draft of the boat. Thus both wheels could be raised from the rail to allow the boat to be drawn by horses in the ordinary way.
" As to the power required, considering the great disadvan tage under which horses work at the end of a long tow line from the oblique direction at which the force has to be applied (this being also considerably augmented by the necessity of steering the boat from the tow path and running it obliquely through the water), the boats on the Erie canal,now drawn by two horses at $1 \frac{1}{2}$ miles per hour, would attain a speed of three or four miles per hour, by the means I have suggested and the application of the power of six or eight horses; an the cost of running canal boats, per mile, would be one third of what it is now.

But the consideration that must have the greatest weigh is the increase of the freighting capacity of the canal. Almos any plan that certainly secures this must have the preference over all others, regardless of the cost of construction. When the plan I propose firstoccurred to me, it was seen that its cost would then be an insuperable objection, and, for the time, I let it rest; but at last my anticipations are realized, and now the cost should not, in my judgment, be any objec tion. The whole expense would not probably exceed five millions dollars for the entire length of the Erie canal. Generally I would think it best to drive piles, say 1,000 to the mile, for each track; and as five or six tuns is all each rail would have to bear, iron of forty pounds to the yard would be sufficient. Five tuns would give a traction force of 1,000 pounds, equal to the draft of twelve horses. My estimate of the power required is derived from the consideration of the great loss of power as usually applied in drawing boats by horses, and the unavoidable disadvantage of using paddle wheels, acting as they do argainsta yielding fulcrum. One may appreciate this loss of power by walking over a sandy road.
A boat necessarily drives the water to some extent ahead of itself; and then, if power is applied by wheels to force the boat forward, a depression in the water level at the boat must result, bringing the vessel nearer the bottom of the canal and materially increasing the draft. The boat is settled down into a trough, as it were, and is constantly climbing a hill that sinks or is driven before it. In the plan I propose only the necessary swell in front of the boat is produced, and this is slightly reduced by the lifting of the vessei by the driving wheel being pressed down on the track on the bottom of the canal."

The work of a Circular Saw

Ninety thousand feet of lumber were recently sawn at the mill of John McEwan, Bay City,Mich., in $34 \frac{1}{2}$ hours, besides slabbing for a gang, with two sets of cutting teeth, 36 in each set, without sharpening in any way, each tooth cutting more than 1,200 feet of lumber. The saw never made au imperfect run, and the lumber was sawn much smoorher than by any other method. The saw in question is five and a half feet in diameter and No. 7 gage. This, in all proba bility, is the greatest feat ever performed with a saw with the same number of cutting points without sharpening in any way, so says the Lumberman's Gazette. This saw is provided with J. E. Emerson's improved bits or teeth. Their points are alleged to be tempered so hard that they will cut glass; and they weigh less than one sixth of an ounce. The saw is a novelty in its way, very simple in construction, the bits being changed in about five to eight minutes and never working loose. The saw cuts six inches to each revolution, working loose. The saw cuts six inches to each revolution,
dropping from six to eight boards per minute. Manufactured by Emerson, Ford \& Co., of Beaver Falls, Pa.

The Metals of the Sun.-The latest researches by many distinguished physicists have shown that the following terrestrial elements are present in the vaporous condition round the sun:

1. Sodium.	6. Chromium.	11. Cobalt.
2. Calcium.	7. Nickel.	12. Hydrogen.
3. Barium.	8. Copper.	13. Manganese.
5. Magnesium.	9. Zinc.	14. Aluminum.
4. Iron.	10. Cadmium.	15. Titanium.

Self Propelling Fire Engines.-C. A. M., of Ohio, sugcompressed air sufficient to run the engine till steam is got ten up.

How to Improve the Appearance of Furniture.
Mr. G. J. Henkels, of Philadelphia, Pa., suggests that when the polish on new furniture becomes dull it can be re with clean cold water, and wash over the article. Then take a soft chamois skin and wipe it clean. Dry the skin as well as you can by wringing it in the hands, and wipe the water off the furniture, being careful to wipe only one way. Never
use a dry chamois on varnished work use a dry chamois on varnished work. If the varnish is de-
faced and shows white marks, take linseed oil and turpentine in equal parts; shake them well in a phial and apply a very smali quantity on a soft rag until the color is restored; then with a clean soft rag wipe the mixture entirely off. In deeply carved work, the dust cannot be removed with a sponge. Use a stiff haired paint brush instead of a sponge.
The cause of varnished furniture bemming dull, and the reason why oil and turpentine restore its former polish, it will be appropriate to explain. The humidity of the atmosphere and the action of gas cause a bluish white coating to collect on all furniture, and show conspicuously on bright polished metal. It is easily removed as previously directed. The white scratches on furniture are caused by bruising the gum of which varnish is made. Copal varnish is com posed of gum copal, linseed oil, and turpentine or benzine. Copal is not soluble in alcohol as other gums are, but is dissolved by heat. It is the foundation of varnish, as the oil is used only to make the gum tough, and the turpentine is required only to hold the other parts in a liquid state, and it evaporates immediately after its application to furniture.
The gum then becomes hard and admits of a fine polish. Thus, when the varnish is bruised, it is the gum that turns white, and the color is restored by applying the oil and turpentine. If the mixture is left on the furniture, it will amalgamate with the varnish and become tough, therefore the necessity of wiping it entirely off at once. To varnish stone and water to take rubbed with pulvern then var nished with varnish reduced, by adding turpentine, to the consistency of cream. Apply with a stiff haired brush. If it does not look well, repeat the rubbing with pumice stone, and when dry, varnish it again.

MOTHS IN FURNITURE
The same author says: There are two species of moths which infest furniture. One is a large fly of silvery white color; the worm of the same is shaped like a chestnut worm, and is familiarly known. It rarely infests furniture. The other is a small fly of a dark drab color; the worm is abou one fourth of an inch long, and tapering from the head to the tail. It was first observed by upholsterers about thir teen years ago. This fly penetrates a sofa or chair, generally between the back and seats of sofas, or under the seats, where the vacancy among the springs affords a safe retreat It may make a lodgment in one week after the furniture is placed in the house. If such should be the case, in two months the worm will appear; and the continual process of procreation in a few months increases the number to thousands. This moth has no season. It destroys in win constant the same piece of furniture, the fly, the worm, and the egrs thus showing that they are breeding and destroying all the thus showing that they are breeding and destroying all the time. It doss not eat pure curled hair, but fastens its
cocoon to it, the elasticity of which prevents its being discocoon to it, the elasticity of which prevents its being dis-
turbed. The inside of furniture is used by it only for the purposes of propagation. The worm when ready for food crawls out and destroys the covering, if of wcolen or plush material; and falling to the carpet, destroys it. It rarely cuts through plush from the inside, as it is of cotton back, but there are instances where the worms have cut up mus in on the outside back of sofas. There is no protection against them but continual care. New furniture should be removed from the walls at least twice a week at this season of the year, and should be well whisked all round, and par ticularly under the seats, to prevent the fly from lodging. This is an effectual preventive, and the only one known. Cayenne pepper, Scotch snuff, camphor, turpentine, and all other remedies for protection from the large moth are of with alcohol will not destroy them when in a piece of furniwith alcohol will not destroy them when in a piece of furni-
ture. If the furniture is infested, they may be removed by taking off the muslin from under the seats and off the out side ends and backs, where they congregate most, and exposing to the air as much as possible. . Beat well with a whisk or the open hand, and kill all the flies and worms which show themselves. This done often will disturb them, and may make them leave the furniture, in their desire to be left in quiet. When the furniture is free from moths and is to be left during the summer months without attention, it may be protected by camphor in small bags or highly concentrated patchouli. The safest way is to have the furniture well whisked twice a week. If the moths at tack the carpet, which they will first do under the sofas and chairs, spread a wet sheet on the carpet and pass a hut flat iron over it quickly; the steam will effectually destroy both worms and eggs. If furniture is delivered in a dwelling
free from moths, the upholsterer's responsibility ends there and all rests with the housekeeper, as no tradesman can tell whether the moth will atrack it or not. There are cases where the furniture has been in use ten or twelve years before being attacked. It would be as fair to hold the tailor responsible for the safety of clothing from moths as to hold the upholsterer responsible for the safety of furniture.

A statue of General Israel Putnam, by J. R. A. Ward, i being cast in Philadelphia, Pa.

DECISIONS OF THE COURTS.

 United States Circuit Court---Northern District o $\underset{\text { fire arm paten }}{\text { New }}$

United States Circuit Court.---Southern District of New York.
hug w. collender vs. william h. Griffith.-THE same vs. the same.
 $2+=2$

WVEvavavevaw
NEW BOOKS AND PUBLICATIONS.
Inductive Inquiries in Physiology, Ethics, and Eth
nology, relating to subjects of recent research and
speculation. By A. H. Dana. Price $\$ 1.25$. New York
A.S. Barnes \& Co, 111 William Street.
This volume cont
nerit and show great and varied powers and high mental culture
By J. W. Foster, LL.D., Author of " The OF AMERICA raphy of the Mississippi Valley," etc. Price $\$ 3.50$ Chicago: S. C. Griggs \& Co. New York: Mason, Baker
and Pratt, 142 Grand Street. and Pratt, 142 Grand Street.
The lamented death of Dr. Foster gives a melancholy interest to this
volume, which was published just before his decease. Like all his previous ritings, it is clear and forcible in style, and bears in every page evidence of learning and research. It it the last contribution to a most interesting
branch of study from one of the most capable of the scientific writers of branch of study from one of the most capable of the scientific writers of
this generation.

Inventions Patented in England by Americans.

 drom the Commissioners of Patents' Journal.]From June 27 to July 3, 1873, inclusive. From June 27 to July 3, 1873, inclusive.
Champagne Tap, etc.-W.L. Gront, Boston, Mass.
Distiluing Resin, etc.-R. Lloyd, New Orleans, La
Emaine Brake.-O. Grüninger, New York city.
Fire arm.-W.. Evans, Lyyn, Mass.
Fire Arm.-W.R. Evans, Lynn, Mass
NHaLer. - C. D. Hunter, Marlborough, Mass
Loom.-L.E. Ross, Providence, R. I
making Middlings.-G. T. Smith, Minneapolis, Min
Nickel Plating.-H. T. Brownell, Hartford, Conn.
Printing Carpets, etc.-T. Crossley, Bridgepor
Propelier, etc.-B. T. Babbitt, New York city.
Propeller, etc.-B. T. Babbitt, N
REAPER, ETC.-H. Lee, Beloit, Wis.
Sething Machine. atc.-J. Rose
SEWing Machine, etc.-J. Ross, Philadelphia, Pa.
Steam Brake, etc.-J. F. Taylor, Charleston, S. C.
Valve gear.-J. Tesseyman et al., Dayton, Ohio.
Water Column.-J. N. Poage, Cincinnati, Ohio.

Gecent gurcrian and forcign equtnts.

Improvement in Attaching Metal Caps to Glass, etc. amp tops, covers, etc., to glass and porcelain articles consists of one o tions metaldisks, having slots from the center hole, forming elastic projec made in the disk slightly smaller than the object to which the cap or othe artlcle is secured, and hold better than the plaster fastenings now in use
This kind of fastening is cheaper than the plaster, and it has the advantage This kind of fastening is cheaper than the plaster, and it has the advantage
of allowing the taking off the cap or other article and putting it on at any of allowing the taking off the cap or other article and putting it on at an
time, withoat any more labor than is required to put on any ordinary loos metal cap.

Improved Whip Socket.
James H. Young,Newburgh, N. Y.-The object of this invention is to fur ish for wagons of all kinds an improved whip socket, which firmly grasp he whip therein, so that the loss of whips and other annoyances arising
therefrom may be prevented. Bunches of bristles extend radially from the circumference toward the center of the socket, leaving a suitable space in the center. The whip end enters easily therein and is tightly embrace
by the bristles, which spread and offer sufficient resistance against the dis by the bristes, which spread and offer su tilent resistance against the

Improved Hunting Jacket

Jean Garaud, New York city.-The object of this invention is to furnish to sportsmen a hunting dress to which a cartridge pouch is attached to the back in such a manner that the cartridges may easily and conveniently be carried and taken out for the purpose of loading the gun. The pouch ma
also be detached and carried on the shoulder. The inventionconsists of a aditional lining on the back, with side openings and lapels for the attach ing of the
tachable.

Improved Ash Leach.
John W. Kernodle and Adam H. Haun, Leband tes to means for the leaching of ashes so as to Ind.-This invention re anger of fire, and consists in a metallic covered cylinder, scalloped at the upon which allow the lye to flow therefrom, and a metallic inclined troug tacle.
Improved Lamp Chimney Supporter.
William Mears and Henry Davies, Newport, Ky.-The object of this inven Hon is to construct a device by which the globes of side and center lamp of rallway passenger cars may be easily changed without disturbing the out delay. The invention consi.cts of a cylindrical tube connected by brack ets to the sides or top of the car, which tube incloses the sliding metalic chimney resting on the globe, and allows the same to be set to any desire osition by means of wedge or spring clamp arrangement.
Apparatus for Burning Liquid Fuel and Generating Steam.
William T. Scheide, Tidioute, Pa.-A cylinderof suitable size and strengt William T. Scheide, Tidioute, Pa.-A cylinder of suitable size and strength
has in its center a combustion tube. This tube is open at the bottom, and is has in its center a combustion tube. This tube is open at the bottom, and is
partially filled with broken fire brick, or other incombustible material. The chamber, liquid fuel, or any fuel that burns without leaving a solid as is used, and is introduced through a tube by means of a force pump. Air is forced in through a tube which surrounds the fuel tube. The fuel and ai are forced into the fire chamber together and ignited. The current or cur from the bottom of the combustion tube and through the water, thereby
rent generating steam. By this apparatus it is claimed that the entire heat gen erated is utilized. The incombustible material placed in the combuscion tube tends to break the flame and protect the tube from the effects of heat.

Improved Heating Range.
John Lawlor, New York city.-This invention consists in a certain arrangement of dampers and deflecting plate with relation to compart
ments at the side of the air heating chambers of the range whereby the direc ments at the side of the air heating chambers of the range,whereby the direc
tion of the currents of heated gases and other products of combustion may be controlled so as to increase the temperature either in said air chambe or in the ovens which are supported above the body of the range proper.
Improved Pantaloons.
Frederick T. Hoyt, Brooklyn, N. Y. -It is proposed, in this invention, to employ elastic straps on the pantaloons, at the back, for buttoning them to
the jacket, to compensate for the increase in the length of the back when the jacket, to compensate for the increase in the length of the back whe
the wearer bends forward, and thus allow of fitting boys' pantaloons as icely as those worn by older persons.

Improved Truss Bridge

Dantel C. Bower, Troy, Ohio.-This invention has for its object to furnis an. improved bridge. The lower as or more strength is required. In the spaces between the strands of the chords are placed dovetailed block through which blocks pass the vertical rods to bind the chords to each
other. The rods also pass through triangular blocks, against which the ends of the braces rest. The upper ends of the two central braces rest against the central block of the upper chord, and their lower ends rest against the blocks of the lower chord upon the opposite sides of the center of said
chord. The braces upon each side of the eentral braces are placed parallel with said central braces, the upper end of each outer brace being directly bove the lower end of the adjacent inner brace. By this construction, th the bridge from brace to brace to the abutments, so that the bridge cannot sag in the center.

Improved Rotary Stamp Canceler.
Whilam s nish to brewers and others a convenient apparatus for canceling internal
revenue and other stamps in a quick and expeditious manner, near the cenral part of the same. To the frame of the rotary stamp canceler is secured an ink receptacle, and below the same the inking roller. Directly above
and parallel with the latter is the printing roller. The ink receptacle is ovided with a narrow outlet at its lower end, opened more or less b means of a sliding gate. An ink distributer, of suitable material, is hung
near to, and in contact with, the inking roller. The printing roller has side shoulders which, in connection with a pressure roller, carry the stamp strips
through, so that the stamps will successively be canceled by the rotation of the roller. The lid has a recess slightly conical, from the inside to ward ates, etc. No cutting of the paper of the stamps is produced.

lmproved Lamp.

Riverius Marsh, Flushing, N. Y.-This invention consists of a metal lamp top so constructed as to form an oil receiver or drip cup at the connection
where the burner is attached, also an inverted collar for the attachment of Where the burner is attached, also an inverted collar for the attachment of
the safety tube, and also a collar for attaching it to the collar or neck on the the safety tube, and also a collar for attaching it to the collar or neck on
top of the glass reservoir, by screwing on or otherwise. A vent also is provided for the escape of the gas, all so as to form a strong, ornamental, and protecting detachable metal portion for the lamp.

Improved Binder for Loaded Wagons and Sleighs.
Jacob Paff, Lawrenceburg,Pa.-The object of this invention is to imp the means now in use for binding loads of lumber, logs, rails, and similar loading. The binder is placed on top of the load. The ring of a chain is attached to an arm and pased the lever is carried forward, now takes hold of the end of the chain. Then the lever is brought back, thus bringing the ends of the chain together and binding the load. If the chain is too long, it is brought within a slot in the hook, which holds it while a new hold is
taken by the lever. To unbind the load the arm is raised, which allows the taken by the lever. To unbind the load the arm is raised, which allows the
ring of the chain to slip off. When the load is bound, the chain is held by ring of the chain to slip off. When the load is bound, the chain is held by
the slotted hook and the arm, so that the lever is reversed, and its small end may be used for raising the arm. This improvement does away with the old binding pole, and may be applied in one fourth of the time

Improved Cooking Stove.

George McAdams, Vevay, Ind.-The object of this invention is to furnis a cooking stove, constructed in such a manner that the different parts may
be easily packed and shipped, to be mounted by any tinsmith, and the part be easily packed and shipped, to be mounted by any tinsmith, and the parts
exposed to the fire easily replaced. The oven is placed below the fire box, exposed to the fire easily replaced. The oven is placed below the fire box,
and supplied with a steady uniform heat around both sides. The invention consists in the combination of sheet and cast iron parts in such a manne that the front, back, and top plates are of cast iron, the side and bottom
plates of sheet iron, the interior parts, also, being of sheet iron and cast plates of sheet iron, the interior parts, also, being of sheet iron and cast
iron, and connected by wedge strips of sheet or solid iron. The flues ar ron, and connected by wedge strips of sheet or solid iron. The flues are
arranged so that the draft carries the heat from the fire box around the arranged so that the draft carries the heat from the
oven and below the bottom of the same up the chimne

Improved Circulating Valve for Fire Engines. Charles A. Hague, Hudson, N.Y.-The case is attached to the discharg When the pressure rises in the discharge by the shutting off of the escape the water, acting on a small valve, lifts it against a spring and acts on the oop, thus forcing down another valve and opening a passage through whic the water escapes from the discharge to the suction, and thus relieves the
pressure in the hose. The valve is held up, when not subject to wate pressure, by a spring, and may be adjusted for different pressures or different pumps.
a relief valve.

Bracing and Reintorcing Legs of Chairs, etc. George Francis Dawson, Washington, D. C.-This invention consists in a
ovel mode of bracing and reinforcing the legs of rotary chairs, by formin hereon heads, which are nicely jointed together and held by a flanged plat Improved Boot and Shoe Sole.
Wendell Strasser, Taylorsville, o.-This invention relates to wooden
soled shoes, for skating or walking purposes, and consists in a peculiar method of applying double nails in fastening the uppers of shoes to the soles
so as to form, practically, a metallic thread, which makes the article of so as to form, practically, a metallic thread, which m
manufacture to all intents and purposes a sewn shoe.

Improved Potato Digger.
Henry M. Dowd, Saratoga Springs and willis w. Dow, Jr., North Gran-
Hille, N. Y. - An endless carrier has teeth or fingers arranged in rows across Ville, N. Y.-An endless carrier has teeth or fingers arranged in rows across
t, at suitable cistances apart, for tak ing the potatoes from the seraper and carrying them up so as t., deliver them into the hopper. The scraper or
shovel consists of a straight wide plate of steel extending horizontally between the side pieces and transversely to the longtudinal direction of the machine, with the front edge sharpened and slanting downward considerably. The rear edge of the scraper has parallel bars attached to it,
which are for allowing the earth raised up with the potatoes to fell back, which are for allo wing the earth raised up with the potatoes to fall back,
while retaining the potatoes to be taken by the fingers of the carrier, which are caused to rise up between these bars. The side pieces, to which the the carrier works between them to receive all the potatoes forced up on the bars, and the lower edges constitute runners for gaging the scraper and maintaining it in the required position relatively to the carrier. By suit-
able arrangement of apparatus for raising and lowering the scrap :r and able arrangement of apparatus for raising and lowering the scrap pr and
carr'er, the scraper is raised vertically or very nearly so, and maintaind carr'er, the scraper is raised vertically or very nearly so, and maintained
horizontally. The truck wheelsare made large to support the frame high enough to provide sufficient space under it for the raising of the cirrier and scraper and holding them to be transported above the ground, so that
the evener, to whth the team is hitched con he suspended below the frame, the evener, to which the team is hitched, can he suspended below the frame,
and yet be high euough to work prcperly. The draft is applied directly to and yet be high euough to work prcperly. The draft is applied directly to
the scraper and, through it and the suspending devices, to the truck ; and a chain connection and the mode of suspending the evener and draft bar
allow of the raising and lowering of the scraper and carrier and alse allow he scraper the freedom for swinging required while at work.

Improved Washing Machine.
Edw'n n . Biss, Richburg, N. Y.-This invention has for its object to furnish an improved washing machine of that class in which the clothes are
washed by alternately saturating them and passing them between rollers wy which the water is pressed out, carrsing the dirt with it. The lower
by revolvesin the standards. A bar, the ends of which fit into the slots, rests upon the tops of the buarings. Two lastic bars are arranged above the bar and constandards. The pressure of the spring is regulated by moving the loops out or in upon the projecting ends of the spring bars. A guite apron or bett ttached to and detached from the tub, and when attached will be firml and securely held.
 Invention is to simplify the gearing of hand and self acting mules for pro. ducing the after stretch and for giving motion to the front roller during
the twisting at the head ; also, to render self acting mules suitable for spin ing fine numbers; secondlv, in an improved arrangement for locking the fallere
of a self acting mule.
Improvement in Propelling Canal Boats.
William F. Miller, East Walpole, Mass. - This invention 1 s a ment in the class of canal hoat propellers wherein a vertically adjustable Wheel is arranged to orun on the bottom of the canal, or a rail ladd thercon; nd consists in the connection of a locally fixed driving gear with the rotary verticaly siling diring siaft of the propeling theel, and in the arrange-
ment for throwing the mechanism by which the w (el is raised in and out of gear.

Improved Boot Jack.
Horace Arnot, Barclay, Pa...asignor to himself and G. W. Dickey, of same place.-The object of this invention is to furnsh a boot jack, which takes
hold firmly of the boot at toe ind heel , and allows its easy pulling of invention consists of two jaws with inclincd slotted parts, which grasp the heel by the action of the foot on a pivoted U-shaped rod frame guided therein.

Improved Broom.
John D. Bell, Wattsborough, Va.-Thls invention relates to the construc tubular socket for holding broom corn, or cther material for the brush practice, the batits of the broom corn are ninserted and closely y acked in
the secket. The tapered end of the handle is then forced down among them, thus wedsing them bet ween itself and the inner sides of the socket.
Whent the brush needs renewal the screws which are used to secure the socket and handle together are removed, the handle withdrawn, and the stumps of the corn extracted. The socket is then refilled as befo

Improved Reversible Harrow Teeth.
Avon, o.-This inve forming an angle wis tooth with two arms or shanks, which. forming an angle with the tooth
are attanched on different sides of the longltudinal bar of harrow frame, and thus brace it in two drections.

Improved Sawing Machine.
George Marshall. New York city., This invention relates to an improve-
ment in the mechanism for selding the bearings of the eaw mandrel in a ripping and cross cutting machine; and consists in the connection of the
sildng carriage and its belting with a powertul foot lever and friction rollers, byw whict the saw wan e e moved and operateedin both directions, and
odjusted rapidly for the d dfferent purposes to which the machine is appli Improved Combined Scissors and Tape Line.
 to combine the common scissors or shears with a spring tape measure so
that, by the increased convenience in handling and readineso of having both within reach, a very useful and practical instrument is produced. The in.
vention consists in placing the center of the tape ine case on the extended vention consists in placing the center of the tape line case on the extended
screw pivot of the scissors, so that both instruments can be used without screw pivot of the cissors,
interfering with each other.

Improved Kindling Wood Cutter.
Nitolas Sonnichsen, San Francisco, Cal.-This invention consists of a
 rests suppoting the wood, which is split by the pressure of the knife

Improved Earth Auger
Andrew Sorg \& Samuel C. Bollman, Decatur, Ind..-The object of this in vention is to construct an earth borer which serves at the same time as
ceceptacle for carrying up the ground from the bore hole. The inventio receptacle for carrying up the ground from the bore hole. The invention
consists in a cylindrical body or receptacle, with cutting teeth at the lowe end, which is applied to the end of the bore shaft, and composed of two
parts, the smaller of which is is ivoted to the larger in such a manner that by suitable rope connection the pivoted part acts against the main part, em-

Improved Cgrving Machine
Henri Thomas, Brooklyn, E. D., X. Y. In In this tuproved carving machine two centering holders are employed, one for holding the pattern and the
other the work, on sliding byds arranged on quarter circular ways on the top of the table, which meet each other at the middle of the bacts of the table, and diverge therefrom to the front side. Above these are the tool
and guide ordictator, which hangs verticaly from their supports to free ends of hoizontal arms which are pivoted to a block over the table free ents of hoizontal arms which are pitoted to a alock over the table
near where the ways of the holders meet, in such an anrangement that they traverse the work and pattern in the longitudinan a axes of the center hold-
ers. The work and pattern traverse the paths in which the tool and guide ers. The work and pattern traverse the paths in which the tool and gulae
swing, so that the requisite motions are obtained for the tools to act on all parts of any surface in the holders. Different sides or surfaces are preto which the pattern and tool arms are pivoted is made to slide vertically on a support, with a screw under the control of the operator; the arms of the tool and gutide are also at the control of the att tendant by means of a sliding block to which they are connected, for being swang to move the tools, as requited ta the progress of the work; and the bed plates of the
center holderg are caused to swing for ward and back ward on their ways by ${ }^{\text {center holders }}$ are caused to swing for wardand backward on their ways b b

James H. Newton, Paxton, Impov.- The object of this invention is to furnish In connection with the mop in common use, an effective wringer, by which the cloth may be wrung dry without the use of the hands. The invention
consists in the arrangement of the mop with rollers having spiral soring in their in terior, in connection with a sliding piece and strings, by which the mop is drawn througn the
action of the roller springs.

Improved Combined Furnace and Steam Generator.
Oliver W . Ketchum, Toronto, Canada.-This invention consists in a of producing a continuous combustion of fuel in the furnace of a stean gen erator (after ifnition) by forcing one or more currents of air upon it.
It also consists in conveying the heat and products of combustion (after passing through a horizontal flame chamber) to the water in the boiler by means of a pipe constructed so as to curve u ρ ward from the flame chamber
above water mark, and return below water line, passing through the boiler orizontally : nd discharging into the water through pipe having perfor tions which increase in size and number toward the end. The Invention
also consists in providing the boiler on the inside with concave proiections running through itt length on both sides above the pipes referred to, and
ahove the water 1 ine so that the ebullitions of water above said pipes and aused by waser Ine, so tha thrown back into the mabove sald pipes, and aused escape of gas, are thrown back into the middere of boiler. It also
onsists in providing the dome of boller with concave pieces of iron rest Ing one upon the other, constructed with spaces bet ween each and between
he sides of dome, to act as additional deflectors.

Improved Animal Trap
Jacob Merchen, Brookville, Ind.-The object of this Invention is to furnish to farmers and others a mole trap, durable on account of the strong
and substantial parts. The invention consists of two legs with a collar at each end, connected by a strong spring of plate metal. A piece of square metal is wedged bet ween the emooth legg, so that the e lightest towach will
close the legs with strong force, capturing or klling the animal within
Improved Package for Caustic Soda or Alkali.
Henry B. Hall, New York city.-This invention nonsists of a metalic eup known as Crooke's patent foil, which is composed of lead and tin in strata, caustic alkali is poured in a liquid state, and inclosed and sealed by a cover of melted resin poured in after the alkali has solidified butbefore it has quite cooled, the resin being tempered to correct its brittleness; any other
gummy substance capable of sealing the mouth of the cup airtight will gummy substance
answer as well.

Improved Combined Collar and Cravat.
Frederick D. James, Tamworth, N. H.-This anvention has for its object ing more particularly intended for use on paper or part paper collars, thoug applicable to other kinds. The invention consifts in constructing the col ar with projecting flaps at the ends of its outer fold, for forming the base of the cravat, and with a projecting T flap at one end of its inner fold for
t rming the outer part of the collar, the T flap having several button holes orming the outer part of the collar, the T fap having severia the collar is

Improved Stave Machine.
Benjamin W. Warner, Rome, N. Y., assignor to himself and Albert E.
Smith, of Utica, N. Y.-This invention consists of a pair of tapering and Smith, of Utica, N. Y.-This invention consists of a pair of tapering and
beveling cutters for tapering and beveling the edges of the stave, combined beveling cutters for tapering and beveling the edges of the stave, combined
with the apparatus for sa wing the staves from the bolts, and planing the sides in such manner as to bevel and taper the edges at the same time that he staves are sawed.

Improved Children's Carriage.
Francis Snyder, New York city.-This invention has for its object to furnish a combined perch and spring for a child's carriage, which, should the wheel strike an obstruction, will spring longitudinally, so that the body of the carriage wists in bending tie ends of the perch upward and inward into the form of the letter C , and pivoting the same to the toe irons attached to the carriage body.

Value of Patents,

Practical Bints to Invenitors.

ROBABLY no investment of a small sum of money brings a

0greater return than the expense ircurred in obtaining a patent
even when the invention is but a small one. Larger inventions are found to pay correspondingly well. The names of Blanchard,
Morse, Bigelo:7, Colt, Ericsson, Howe, McCormick, Hee, and others, who have amassed immense fortunes from their inventions, are well known. And there are tho
have realized large sums from their patents.
More than Fifty Thousand inventors have avalled themselves of the services of Muns \& Co. during the TWENTY-SIX years Thev stand at the head in this class of business: and their large corps able of rendering the best service to the inventor,from the experience practically obtained while examiners in the Patent Office: enables MUNN \& Co, other reliable agenc
${ }_{c}^{\text {How T0 }}$ OBRAN Oatents.
This is the closing inquiry in nearly every letter, descril ing
some invention $w h i c h ~ c o m e s ~$ to this office. A positive an he Commissi.onal of Patents. An application consists of a Model Draw ings, Petition, Oath, and full Specification. Various offcial rules and for
mal:ties must a.so be observed. The efforts of the inventor to do all this busicess himself gre generally without success. After great perplexity and delay, he is usual:'y glad to seek the aid of persons experienced in patent
business, and haveall the work done over again. The best plan is to $\%$ olicı proper advice at the beginning. If the parties consulted are honorable men, the Inventor may sat 9 ly confide his ideas to them they will advise whether
the improvement is p.obably patentable, and will give him all the directions

How Can II Best Secure My Invention?

This is an inquiry which one inventer naturally asks another, who has had
some experience in obtain'ng patents. His answer generally is as follows some experien
and correct:
Construct a neat model, not over a foot in any dimension-smaller if pos
 ceipt thereof, they will examine the iavention carefully, and advise you as to its patentability, free of charge. Or, if you have not time, or the meane at hand, to constrnct a model, make as good a pen and ink sketce. of the
improvement as possibie and send by mail. An answer as to the prospect

I a patent will be received, usually, by return of mail. It is sometmes

Preliminary Examination.

 with the fee of 85 , by mail, addresz? to MUNN \& Co., 37 Park Row, and in
due time you will receive an acknowledgment thereof, followed by a writ ten report in regard to the patentability of your improvement. This special searen in made with great care, amon th the modedsls ant patents at washing
ton, to aseertain whether the improvement presented 13 patentable.

Rejected Cases

Rejected cases, or defective papers, remodeled for parties who have made applications for themselves, or through other agents. Terms moderate

To Make an Application for a Patent.
The applicant for a patent shouid furr'sh a model of his invention if sus. ceptuio be chemical production, he must furrish samples of the ingredi-
vention be ents of which his composition consists. These should be securely packed
the inventor's name marked u n them, and sent by express, prepaid. Smal nodels, from a distance, can often be sent cieeaper by mail. The safest way to remit money is by a draft, or pos al order, on New York, payable to can usually purchase dratts from their merchants on their New York cor respondents.
Persons desiring to file a caveat can have the papers prepared in the short est time, by sending 5 sketch and description of the invention. The Govern
ment fee for a caveat is 810 . A pamphlet of advice regarding applications for patents and caveats is furnished gratis, on application by mall. Address

Reissues.

A retssue is granted to the orignal patentee, his heirs, or the assignees of the entire interest, when, by reason of an insufficient or defect ve specification, the original patent Is invalia, provided the error has arisen from inad vertenc.
tion.
A pat

A patentee may, at his option, have in his relssuea separate patent for by paying the required fee in each case, and complying with the other re uirrements of the law, as in original applications. Address M UNN \& C 8 .

Design Patents.
Foreign designers and manufacturers, who send goods to this country ma. secure patents here up se same sods in ths, and thus prevent others A patent for a design may be granted to any person, whether citizen or ulien, for any new and original design for a manufacture. bust, statue, alto relievo, or bas relief; any new and original design for the printing of wool
en, silk, cotton, or other fabrics any new end orighal en, silk, cotton, or ot her fabriss; any new and orignal mpression, orna.
ment, pattern, primt, or picture, to be printed, painted, east, or otherwise lared on or worked into any article of manufacture.
Design patents are equally as important to citizuns as to foreigners. For
full particulars send for pamphlet to MuNN \& Co.. 37 Park Row, New York. Forcign Patents.
The population of freat Britain is $31,000,000$; of France, $37,000,000$: Bel-

 Nuw is the time, while business is dull at home, to take advantage cf these | immense foreigr fields. Mechanical improvenients of all kinds are always |
| :--- |
| in demand in Europe. There will never be $\begin{array}{c}\text { better } \\ \text { time than the present }\end{array}$ | io take patents abroad. We have reliable susiness connections with the rincipal capitals of Eurone. A large share of 9.11 the patents secured in MUNX \& Co., 37 Park Row, New York. Circulars with full information on oreign patents, furnished free

Value of Extended Patents.

Did patentees realize the fact that their tinven tions are likely to be more
productive of profit during the seven years of sxxension than the first full prodnctive of prontit during the eseven years of extextesion than the first full
term for which their patents were gruntea, we titink more would avail themterm for which their patents were grantea, we think more would avail them-
selves of the extension privilege. Patents graited prior to 1861 may be exfor seven years, for the beneftit of the inventor, or of hils
 the benefit of the inv intor, the assignees urder the first term having no
cights nnder the extension, except by special agreemunt. The Government fee for an extension is $\$ 100$, and it is necessar: t that good professional service
be obtained to conduct the business hefcre the Patent Office. Full informa. had by addrossing Munv \& Co., 37 Park Row.

Trademarks.

Any person or firm domiciled in the United States, or any firm or corporation residing in any foreign country where simlar privileges are extended to citizens of the United States, may register their designs and obtain pro.
tection. This is very important to manufacturers in this country, and equally so to foreigners. For full particulars address MUNN \& Co., 37 Park Row On the first of September, 1872, thents.
force, and patents are now granted to citizens of the of Canted States on the same favorable terms as to citizens of the Dominion.
In order to apply for a patent in Canda, the applicant must furnish applying for andion and duplicate drawings, substantially the same as in The patent may be taken out either fo: five years (government fee $\$ 20$) or or ten years (government fee \$40) or for fifteen vears (government fee $\$ 60$), The five and ten year patents may be extended to the term of fifteen years
The formalities for extension are simple and not expensive. American inventions, even ir already patented in this country, can be patented in Canada provided the A.merican patent is not more than one year All persons who desire to take out patents in Caalada are requested to
communtcate with MUNN \& Co., 37 Park Row, N. Y., who will give prompi attention to the business \& do., 37 Parnish full instruction

Copies of Patents.

Persons desiring any patent issued from 1836 to Norember 26,1867 , can be supplied with official coples at a reasonable cost, tha price depencing upon the extent of drawings and length of speci fcation.
Amy patentissued since November 27, 1.8e7, at whish time the Patent Office ting to this office 81
A copy of the claims of any patent issued since 1836 will be furnished
for $\$ 1$.
When ordering coples, please to remit for the same as above, and state \& Co., Patent Soliciters, 37 Park Row, Nerv Yorls city.
MUNN \& Co. will be happy to see inventors in person, at their office, or to advise them by letter. In all cases, they may expect an honest op nion. For
such consultations, uppnions and advice, no charge is made. Write plainly do not use pencil, nor pale ink: be briet.
All business committed to our care, and all consultations, are kept secree and strictly confdential.
In all matters pertaining to patents, such as conducting interferences, of patents, etc., special care and attention is glven. For informe validity Address

OFFICE IN ©ASHINGTON-Corner F and gih streets, opposit

Business and ※ersomal.

The Fagin Flour Mill, Newark, New Jersey
 Sale-neary, new, and in perfect order-beng one 500
Horse Power Eng ne, with Condenser and 2 ton Fiy
Wheel, made by Hewes \& Phil lips, and has given best re-

 Smutters-4 Trimmer Separators-6 Bran Dusters-1 Mat tison and 3 Tagart Packers-1 Barre and Man Lievator
for stories-Conveyors, slevatrrs, Belts, Pulleys,Gears,
Frictons
 the stones are better than new. Atention of Mhilers
and Minluright throughout the country in called to this
Sale. Apply on the premises, or by mail, to Henry Hill, late of Fagin \& Co., P.O. Box $\because 26$. Newark, New Jersey.
 particulars and Price, Bo 555, owego, Tioga Co., N. Y. Y.
 and lay, till currd. . Sold c.
683 Broadway, New York.
Bogardus Wet Mills to exchange for Bogar-
dus Dry Mills. Address Charles
 Closet. Specificaitions and plans srawn to scale
25 cents. H . Kay, Box 210
Jamaica Plain, Mass.
Wate - To purchase the right to manu.
facture in canada sume patented article which is likely facture in canada sume patented articie which is ikely
to cone into geneeal use, made uproninicaly of acast
iron, requ ring 1.ttie labor or machine work on it. Adiron, requ ring 1.ttele labor or machine e
dress X. Y.Z., Uundas, Outarıo, Canada.
Wanted - A good second hand Steam Fire
Engine. Add ess hiciizau Car co., D.troit, Mich. Those who wish to purchase Hurse Powers
and Manines for hhreshlug and cleaning Grain and
Saw Sawing Wood, will do well to send for circ .lar, \&c., of
A. W. Gray and Sons, Middeteown, Vermont.
 Pumps, and steam and nater Appliances generanly.
A perfect cickle Beearator and Wheat Gira.
der for Flouring Mills. Balch \otimes Gidding $;$ Hingham, Wis. T ie Cornell University, Ithaca, N.Y., offers
dberil and practical courses Ior agriculturists, arch1-
 giveers. agricultural and manufacturng chemists, print-
ers, veterinary surgeonss. etc., with laboratories, raught.
 mechanic arts, various courses are provided to meet
wauls of and students also general courses in arts. ile.
raure and science preparatory to the other professions. Over five hundred free shenolarships. Next year begins
Sept. . For Registers, with full information, address

Buy Gear's New Emery Grinding Machine
Boston, Mass. Treat,se on "Soluble Glass," new edition
just out, \$8, maited by L. L . W. Fenchtwanger, 5 Cedar Hydrofluoric Acid, for Etching and Cleaning
Glass, pat up in all size Lead and Rabber Bottes, ior sale by L. \& J. W. Feuchtwanger, Cheinists, 55 Cedar
Street, New York. Mancanese Black Oxide, for Stel M'f'ct'rs
and oil Boilers, for sale by L . J . W Feucht wanger, 55 cetar street, New York. W. Feuchtwanger, New
Write to L. \& J. Will
York, for all Crude Mineras, Metals, ores, Drugs and Boult's Patent Upright Single Spindle Com-
bined Mouldiug, Faneling, and Do etailug Machine. No inf ringement on the c c mbination guid head dhaper.
Does the greetest variety or work with the simplest changes of any machine made. Furniture, Car, C.arriage Hage. Battle Creek Machinery Company, Manufacturers, Battle Creek, Michigan.
Buy Planing and Moulding Machines of
Gear, Boston, Mass.
 Scale in Steam Boilers. -How to Remove
and Prevent it. Address Geo. W. Lord, Pnilidelphia, Pa.
 way, New York, or Box 189.
Nickel and its Uses for Plating, with gene.
raldescr ption. Price suc.a copy, malled free, by L. $\mathrm{L} J$.

 lings, Pulless, Hangers and Shafting a Specialty. Oriders
promptly filled. Cirs lus free Address Shorit Manufacuring Company, Cirthage, N.
Roots Wrought Iron Sectional Safetv Boiler.
1,0.0 in use. Aderess Root Steann Engine Co. 2ै Avenue and 28th Street, New Tork.
Cabiuet Makers' Machinery. T.R.Bailey\&Vail. Celting-Best Philadelphia Oak Tanned. Stave \& Shingle Machinery. T.R.Bailey \&Vail. For Solid Emery Wheels and Machinery,
senid to the Union Stone Co., boston, Mass..for circuar. All Fruit-can Tools, H erracute.Bridgeton, N.J. To Manuacturers - Built expressly to rent,
New Brics Building. © icsizo ft., 3 stories hijh h, dividea by fire proof walls, with ample water power. Room and
power in quantities to suit. Address Iudustrial M'f'g
Company, Rack Falls, Whitesidec Co., Company, Rock Fans, ,hiteside Co., Hit Combined
The Best Smutter and Separator Comber
in America. Address M. Deal \& Co., Bucyrus, onio. Damper Regulators and Gape Cocks-For
Dhe best. addres, Murrul 8 Keizer. Baltimore, Md. Ccvering for Boilers and Pipes. The most
economical and durablearticle in use. Took frrst prize
 The Berryman Heater and Regulator for
Steam Boilers-No one usng Steam Boilers can aftord to be without them. 1. B. Davis \& Co.
Fiven ifferent sizes of Gatling Guns are now
manufactured at Colt's Armory, \#artiord, Conn. The manuracturen at colrs armory,
larger sizes have a ravere of over two miles. These arms Gauge Lathe for Cabinet and all kinds of han-
diles. Shaning Machine for Wood workning. T. R. Bailly
\& Vall, Lockport, N. y.

Manufacturers who wish to be represented
New York can make arrangements with a reliabl The Olmsted Oiler is the best; it is self.
righting, strong and cheap. All Hardware and Tin Bookkeepers should try the Olmsted Patent
Bill File and Letier Clip. They are admirable for all papers. Save their cost in one day's business. Sold by
a.1stationers. Peck's Patent Drop Press. For circulars, Mining, Wrecking, Pumping, I Irainage, or
Irigating Machinery, forsale or rent. See advertisement, Machinists-Price List of small Tools free
Gear Wheels for Models, Price List tree; chucks and Gear Wheels for Moels, Price Lst rie; chucts and
-rills, Price List free. Goodnow W Wightman, 23 Corn-
The Berryman Steam 'Trap excels all others.
The best is always the cheapest. Address 1. B. Davis \& Co.. Hartford. Cono.
For best Presses, Dies and Fruit Can Tools For best Presses, Dies and Fruit Can Tools,
Bliss \& williams. cor. of Plymouth \& Jay,Brooklyn,N.T. For Solid Wrought-iron Beams, etc, see o.d.
Fertisement. Address Union Iron Mills, Plttburgh, Pa.
for lithograph., etc.
ryarties desiring Steam Machinery for quar.
ryng stone. address steam stone Cutter Co..Rutland, Vt.
 Brown's Coalyard Quarry \& Contractors' Ap.
,aratus for hoisting and conveyng material by ron cable The Berry
The Berryman Manuf. Co. make a specialty
ff the economy and satety in working steam Boilers.
B. Davis $\&$ Co Hartford, Conn Key Seat Cutting Machine.T.R.Bailey \& Vail Cheap Wood-Working Machinery. Address Steam Fire Engines,R.J. Gould,Newark,N.J. Sure cure for Slipping Belts-Sutton's pat
ant Pulley Cover is warranted to do double the worn
 The Ellis Vapor Engiries, with late improve
ments, manufactured by Haskins Machine Company

E. R. would like to know how to soften $\underset{\text { rake steam with high water or with low water in the }}{\mathrm{O} \text {. } \mathrm{C} \text {. W. . } \mathrm{W} \text {. }}$ boiler?
en asks: What is the best oil to keep pat
ent leather from cracking? $\underset{\text { D. }}{\text { D }}$ \& Co. ask : 1 . Is hemp preyed upon by asites, and if so, within what radius? Might it be made emicacious in protecting cotton from the ravages of the
coton worm? Could any other plant be utilized in this
way? J. M. R. asks: Why the images of objects,
being reversed upon the retina of the eye, are yet appa: ening reverse apon the retinitions?
rent to us in their proper positions?
W. J. M. asks: How many gold fish can
keep in ank holding
many plants wall Inneed ? keep in a tank holding 32 gallons of water, and how
many plants will Ineed? A. S. S. J., asks how to make the
scintilletes, or Japanese parlor fire werks.

J. K. S. can remove rust from steel articles
following the directions given on for by J. A. M., is given on p. 114, vol. 24.- 1 w. can

 our usual rain having fallen; consequently the wells be.
came ery low.an some entirelt dry. When the ground
froze, anout November ast we had only five or sixinch. ee of water in our well. From that time, the eround
being constantly frozen, the water began to increuse ; being constantly frozen, the water began to increase
and at the time of the spring thaw, boout the middele of and at the time of the spring thaw, about the midate of
March, the water measured ive feet, and after the spring
rains bout sit reet. How is sthe rise of water to be ac counted for? 2. We have recently put up a 10 horse
purtable engine and boiler. I wanted the frebox end purtable engine and boiler. I wanted the frebox en
nexx the door (it was necessary to place it crossways of
 says. No, Nhe irebox must be in the midade of the shop,"
thereby getting about five feet additional length of belt,
Will that compense Will that compensate for carrying the coal in and the
ashes oit? 3 . I amboring outa cylinder of a steam en
 inches inside of onsequently the eylinder is only about five eighths of an insel in thickness, and, when fnished,
will probably be only half an inch in thickness. Will it he safe or run the engnine os, and was the e yindirer of an
engine ever known to burst from the pressure of steam?
 source, which is subject to different climatic influences.
2. You do not send sufficient data to enobile us to answer this question. 3. Cyinders have been known to burst
when tae engines were working. Your cylinder will be deftieient in stifiness, and will have a tendency to become
oval. You can stifen it with bands, and it will then be safe for a reasonable pressure of steam.
$\underset{\text { Cetalmore pliable and not much more expensive than }}{\text { C. }}$ galvanized iron, on which any design can be pressed
 the Francis metal.from which life boats are made? Au
swers: 1. Zive possesses greater malleability and duct swers: 1. Zinc possesses greater malleability and ducta-
bulty than Iron, and Its prece is tess thau that of galvanized iron. 2. The Yrancis life boat is constructed of cor
rugzed rugated iron.
T. P. asks: In arranging a dwelling warmed
y hot air from a furnace, where should the ventilator be place, near the floor or the celling? or should the
egress or vitiated air be at both points? Is it as well to egress for vitiated air be at both points? Is it as well to
taliec cold a ir for the furnace from the hall as from the
 winter, requires ventulating registers both at the fioor
and at the ceiling. In winter it is preferable to and at the ceiling. In winter it is preferable to have the
upper one closed, so that the heated air may not too upper one close, so that the heated air may not too
readily escape, and the vitiated air be driven out of the reawer ose by the pressure of the warm air from the fur-
lace. In summer, by opening the upper one, the warmed
nace nace. In summer, by opening the upper one, the warmed
air will escape in that
direction, and the
fresh air most prevalent at the lower part of the roon, where it it
is most available for use. is desirable also in respect to the supply of air to the
furnace. There should be a cold air shaft arranged to turnace. There should a a cold airs shaf arranged ot
draw the pure air from the exterior of the house, and
this should be the sum this should be the usual source of the supply; but on oc.
casions of casions of extreme cold weather, the heating of this
very cold air may be beyond the capacity of the furnace, and it may then be adm Issible to feed the furnace from
the interior air of the housse, which may thus be warmed a second time; bat the healthier way is to draw the air from the outside of the house.
J. W. S. asks (1) for a recipe for making
matches. ented? 3 . Is not a steam engine that has no oondinser
called high pressure engine? Answers: The mixtures actually used in the trade are kept screret, but the following recipes give some idea of tre composition: Phos.
phorus 8 parts, dissolved in a sufficient quantity y f bisul phorus 8 parts, dissolved in a sufficient quantity cf bisul.
phide of carbon, glue 21 parts, peroxice of lead 2444 parts phide of carbon, glue 21 parts, peroxide of lead 244 parts,
nitrate of potash 24 parts. Another contains phosphor us 3 parts, gum senegal 3 parts, peroxide of lead 2 parts,
Ine sand and smalts 2 parts. The following conipositio was recommended dy Wiederbold: Chlorate of pota.s
$7 \cdot 8$ parts, hyyposulphite of lead 2.6 parts,
 not. 3. A high pressure engii.
carries over 10 ibs. of steam.
J P. J. says: 1. Suppose a hot air engine
is working the airat a temperature on 5000 or 6000 , and I
inder inject a'very small or proper amount of water in the cyl Naier with the hot air, at each stroke of the engine or
piston, his water to be hot and forced in as a spray Would it be beneficial as to power, or would it be liab. to create any explosive or dangerous gases?
have not the various hot air engines met why
mith success do the Roper and other hot air engines use t.ie air? Answers: 1. The effect of injecting the water would
probably be to cool own the air without troducing a probably be to cool down the air, without producing a
corresponding gain. The air would need a much higher any case, the injection of water into the cylinder of an air engine would have a bad effiect; because an air fur.
nace is mucn less efficient that that of a steam boiler, nace is mucn less eficicient than that of a steam boilien
and consequently 1 teteam were to be used, it would be better to form it in an ordinary boiler. 2. A. Air ensines
have been moderately suceessful, when working within the linits of temperature which the cylinder and valves
can sustain. 3. The temperature of the air used in dif.terenchar mies greatly. Joule's engine uses air the Sciermtific Amiritians, employs air at a temperatur of more than 1100° :
S. S. C. asks: What is phosphoric acid
lime? modern chemistry, the formula $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$; in old chemistry $\mathrm{CaO}, 2 \mathrm{HO}, \mathrm{PO}$.
phosphate of
. This is is
when generally known as super with sulphuric acidid a portion of tive ii ne is combined
with the sulphuric acid to form gypsum, and he soluble superphosphate remains, which is employed as fertilizer
and in making phosphorus. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{4}=2 \mathrm{CaSO}_{4}$ and in making ph
$+\mathrm{Ca}_{2}\left(\mathrm{H}_{2} \mathrm{PO}\right)_{4}$.
A. asks: Can you inform me how (1) sul. Answer: :1. Sulphate of nickel is easily prepared by dis.
solving the metal or its oxide or carbonate in dilute sul phuric cacid. If it b be concentrated by yevaporation, it will
crystalize in beaneifule emerald reeen crystals crystiorde of tin is formed by disolvisg metallic Pin hhydrochloric aciid. To avonid the formation of any of
the bichloride, it is well to employ an excess of metal,
J. B. asks if any quality of glass is or can well as cast iron, and which, when heated and cooled
suddenly by water or otherwise, is no more liahle to crack than castiron? What other transparent substances
are there that will bear sudden and great changes of are there that will bear sudden and great changes of
temperature, and where are they found? Answer: We do not know for what purpose you wish to use
but if very well you menticn. We do not give addresses in this column A. B. C. asks how to make a noon mark to
obtain the correct time. Answer: See p. 155, vol. xXVII The meridian can be obtaned pretty nearly by suspend.
ing two plumblines in an open feld or on several feet apart, and placing them so that the two
lines range with the north star. of course the eun lines range with the north star. of course, the sun is
S. C. says: Suppse that two upright tubu-
lar boilers are placed 30 feet apart, and connected with 2\%/ inches wrought iron steam pipe, and two horizontal
tubular boillers 175 feet distant are also connected to
 correct within 3 or 4 lbs. Why is 14 that we cannot fully
equalize the pressure? To a certain extent we do ; but the horizontal boilers will blow off at 75 lbs. on their
gage, and the urightswill also blow of t the sme
 a case of which we do not know more particulars than
our correspondent has given in his letter. It may be however, that the horizontal boilers steam much more
rapidly than the upright, so that the steam issues with munch greater velocity from the frst, and backs up the
pressure in the

Tho asked what the effect of putting two pumps to work on the same discharge ecould ue, the conditions of obth
pumps being the same you say : It will force more water
 of water in the column and the quantity of water discharged Will not the pressure be the same on both
pumps and consequently will not th ? motion be reduced to one half, eaca pump discharging one half the origi-
nal quantity of water? Answer: Attaching a second pump, of exactly the same size and under the same con-
ditions eftect produced by doubling the size of the fust pump and of course more water would be discharged, under these circumstances.
P. V. C. wants to know what power can be
Siven to a a electro-magnet that is about 18 inches acros the poles; also what sized battery it will require, and
what will be the probable cost of the chem.cals to work it. Who has the be t work on electro-magnetism, an
vhat does it cost? Answer: A straight bar electre magnet. with a core 18 inches $10 n g$ and 1 inch in diame
er, with 20 feet of No. 16 insulated copper wire in the elix, and excited with the electricity from a sngle ce wrought tron, placeed in cont s cc: with either pole. On

 S. S. asks: What is the strenoth of wrought
rou shafting? We have now in op ration a $31 /$ inche wrought shaft conveying 110 horse power. Is it large
enough to give 160 horse power, or will a 4/3nches shaft e better? Will it be strong enough under all circuin stances? The length of the shafting is 130 feet. Ah
wer: You do not tell us the speed at which you desir to run the shafting. Send this and also the diameter of

J. A. S. says: : In the practical working of
a small steam engine, that will do all our work with 40 bs. of steam, I find that our wood dre will vary in spit
of all we can do, so that we often have 80 ibs. steam Hownin of at the safety valve, during a considerable
portion of the time. This fact has rased the ent portion of the time. This fact has ratsed the enquiry in
my mind: Why ¥ot have a "governor" to do for the fire what the regular steam governor does for the engine
namely, zeep it steady? But how? This led to t invention of a plan, or at least to a theory, which is to
attach a pipe, to the safety valve pipe. .that would dis. say at 50 blss, and a fire going thit would soon carry it ix to ©0, if not discharged) the surplus in the form of stean might be turned into the fire box; my theory is that
would check the fire just enough to lower the steam and so soon as the steam was down to 50 lbs. the val on continuously. Is the idea new or old, or a chimera? If you know it to be the latter, will you so inform me
If new and not absurd, what is your view of the inven. ion? Answer: We should be afraid that the surplu and pur the fre out altogether. Ordinarily the commo amper reguator is effcient in cases of this kind. A other plan that has been proposed is to place a pipe in
the steann space of the boiler, that is is supplied with water by the feed pump. This pipe is to have a number of
s nall holes driled in it, so that when the valve 1 sopened a fine spray of water will be thrown upon the steam, and
C. E. C. says: I have water power sufficient
 gine and di) the other work required, unt is large enough
when I use water power. Shall I throw out the old boilier and put in a larger one (say 77 borse) or put a 40
horse boiler by the side of the old one, anid use one $w h e n$ horse biiner by the sida of the ood one, aud use one when
using water and both when using steam? Anwer: We
con agne and conalition of the old boiler; but if it would be be
agit serviceable for some years, it would be best to retain it.
We advise you to consult a reliable enginer, who will nspect
be done.
A. G. asks: 1. Why is it that a vacuum
Gage shows 26 IIIs. or inches when the vacuum is only 13 ? 2. Why should the grate bars of a ateam boiler be lower
at the end next the bridge wall than at the front ? Haswell says that they should be, but does not say why.
Answers $: 1$. Mercurial gages were formerly used almost exclasively, to indicate the vacuum. A column of mer-
cury, une inch cross section and absut 2 inches high (more accurately, 2.01 inches) weighs one pound.
Hence 1 t became customary to speak of "inches of racunomenclature. 2. Principally for ease and convenience Cf firing. In a long furnace, with a small door, it would
be very diflicult to keep the back of the fire in proper
G. E. R. says: $1 . ~ I ~ h a v e ~ t r i e d ~ t h e ~ f o r m u l a ~$
for councecting rods given in your issue of May 44 , but I cannot obtain tiec correct result. 2. How do ycu de-
 valve? Answers: I. . We will assume the follown diata:
Diameter of cylinder $=24$ inches. Maximum stam pres
 of cylinder \times steam pressure \times square of length of rod is
$576 \times 30 \times 49=2,257,22$, wich $\rightarrow 20,000=112,836$. Fourth root of $112,996=3 \cdot 26.3 \cdot 26+\frac{2}{6}$ of $24=3 \cdot 56$ inches $=$ about $3{ }^{\circ}$ 品 inches, This is the proper diameter for the rod at the
center,acording to the rule. anal 3 . The length of
lo arm will depend upon the relation bet ween requiree
throw or angular movement of valve, and given throw cf eccentric. Thus, suppose the eccentric has a throw
of ε inches, and the valve must travel 4 , the relative lenghs of
as 3 to 2.
A. K. says: 1. How can I make a glue for
stieking ieather or cork frmy to Iron? 2. How can 1 make the best invisishe ink? S. in ammonizo reaqiires
too much heat to bring it out. Answers: 1 . See pp. 3417

 solution of yellow prussiate of potash or nut galls. The
former produces a blue, and the latter a black. If the writing 18 done with a weak solution of cilloride of co-
balt, it is in invisible when cold, and blue when warm This ink possesses the advantage of becom n ng invisible
every time it gets cold, and hence may be used for secret diaries as well as correspondence. This is due to the
absortion of ydioceoric absorption of hydroscopic noisture when cold, which is
expellea by heat. Common ink, bleached oui by oxalic aciid, can usually be restored by ferr cyanide of potassi
um, and thus alterations in legal documents are discor G. W. M. H. asks: Does the frost all come into or be absorbed by the earth? Answer ; The frost is not a substance, but only the effect produced by the
absence of heat ; it follows that, whenever heat enters the soili, it counteracts the effects previously due to its
absence. The frost can be said to be annlililated. The opinion that frost goes down is due to the fact that frost is found at a distance beloo the esurfacee where absent
near the surface, and also that the earth sometimes freezes to a greater deptha after a thaw sets in. Evapo. ration produces cold, although itself caused by hea
 although green resists sthe action of chlorine and othe powerful bleaching agents, Castile soap and elbow grease
will remove it, if you only persevere. Washa few times with Castile soap, and bleach in the sun.
C. B. S. asks: What are barytes, what are
they used, for and where are they sold? Answer: Baytes is chiefly employed for adulterating white lead given section. Write to some dishonest paint manüfacturer for his price. It is sometimes
papers and in dressing cotton goods.
J. H. P. asks for af reezing compound. Anne adapted to his use. 1. Pour muriatic acid upon pul ammoniac, 5 parts saltpeter, 19 parts water. 3. Take 1 part common salt and 3 parts snow. 4. Take 3 parts T. asks: 1. Can paint brushes which have
been dried hard with paint, or linseed oil in them be soft ened in any manner so as to fit them for use again? ened in any manner so as to fit them for use again? ${ }^{2}$
Where can I procure a small quantity of the paper used for making stereotype molds? Answers: 1. If not too far gone, they can be restored by soaking in benzine or turpentine. 2. The process is not simple enough in
practice for an amateur. It will be cheaper for you to buy more type than to get all the machinery necessary buy more type than to get
for anv sort of stereotyping.
$\underset{\text { Certain fluids in lamps, among which may be mentioned }}{\text { C. P. A. and }}$ gasoline, benzine, and naphtha, combined with smal against risking life and property by the use of any burning oilo or fuid which is more explosive than gun-
powider. General Van Bokkelen slept safely for a while ovar a mine of nitro-glycerin, and so you may burn plosion will come at some time in spite of alum or salt, and the danuage will quite compensate fo
expense. Use good oil, or a tallow dip.
F. W. C. asks : 1. How can I determine the transverse strength of a barof wrought iron, $\%$ of an inch
thick and 8 inches wide, supported at each end and built tion of the pressure? The load is distributed over the tion of the pressure? The load is distributed over the to support the thrust of an arch. 2. I have a turbine
wheel of 25 inches diameter placed 21 feet above the Wheel of 25 inches diameter placed 21 feet above the
water in the tail race. A tight iron tube, 30 inches diameter, leads to the tail race. The whole head and fall is
42 feet. Am I not losing mu\&h of my power? The Wheel makers say not, but I am 9,000 feet above sealevel
does not that make a difference? Answers: 1 . The does not that make a difference? Answers: 1 . The
breaking load in pounds $=12 \times$ coefficient for transverse strength \times breadth in inches \times square of the depth in nches \div length of clear span in feet. An average value
or the coefficient of transverse strength is 2,400 pounds. Use from $\frac{3}{5}$ to $\frac{1}{6}$ of the breaking strain for a safe workin W. R. B. says : The principle of the caloric or hot air engine puzzles me. I cannot understand how
the engine can force air into the heater against the engine. At the same t equal to that of the piston. For instance, in Wenham's air engine (illustrated in the Scientific american page 370, vol. XXVIII) the same piston with an equa the pump side of the piston, when the valves are open to communicate with the heater, equal to the powe Which is being applied on the under side of piston to
drive the same? Why is there not an equitr drive the same? Why is there not an equillbrium
(equal pressure on both sides), and why does not the (equal pressure on both sides, , and why does not the
machine come to rest? Answer: In the engine alluded to, the resistance on pump side, when the valves are open to communicate with the heater, is precisely the
same as the pressure on the other side of the piston; and same as the pressure on the other side of the piston; and
if this state of things were continuous throughout the stroke, the engine would stop. But as the volume of air on the working side of the piston, being highly heat ed, is greater than the volume of cool air that must be forced into the heater at each stroke, the engine, by
means of the accumulated work in its fly wheel, is en abled to overcome the resistance.
$\underset{\text { high pressure, which gives a excellent results; there are }}{\text { F. Bay }}$ 3 tubular boilers, 4 ieet diameter, with 42 four inch flues, 15 feet long, with good draft; we carry 80 to 85 lbs.
steam, and make with this machine about 500 barrels flour per day easily. I have thrown out an old engine; inches bore, 48 inches stroke ; the cut-off is a nuisance. How much power would I gain if I were to attach the
latter engine to the same shaft, carrying 70 lbs. or from 80 to 85 lbs . steam? I think, if I put this engine on, I would throw away the cut-off and make a plain slide valve engine. Answer: With the data furnished, we must give you an answer based on ifs and ands. If you
work the old engine under the same conditions as the d, steam pressure, and point of cut-off), and if the old engine is in as good order as the new one, you should increase your power about 90 per
cent.
A. D. W. asks how to deposit a thin film of swer: We know of no such process. You might try dip-
ping the iron when perfectly clean, or by the aid of \mathfrak{z} flux.
if a turbine will give as good results for power as an an overshot wheel: I run a 10 inch turbine, and it does as
much work as an overshot wheel; the fall is 24 feet and much work as an overshot wheel, the fand 50 cubic feet of water runs per minute. I gener ally run with $2 /$ gate, andi If find that it works nearly as

Minerals.-Specimens have been received from the following correspondents, and examined with the results stated:

sulphuric acid.

J.B. B.-Dark and light colored clays.
H. M. C. sends two specimens of micaceous hematite Irou ore. We give a few of the characteristics which
distinguish this valuable ore. Hardness 5.5 to scratches glass, not easily scratched by the knife. Spe cific gravity, $4 \cdot 5$ to $5 \cdot 3$; color, steel gray to iron black,
streak, cherry ted or reddish brown. When heated on charcoal in reducing flame, becomes magnetic. Soluble in muriatic acid.
G. F. H.-Cryst
G. F. H.-Crystals of magnetic iron ore, which attract cent oxygen. When rubbed on unglazed porcelatn, it
S.M. P. and J. H. S.-Iron pyrites.
S. C. and J.M. B. - The clays seat contain no silver. J. L.M.-A silicate of alumina. It might be of use a F. M. C.-The specimen has a few crystals of sulphide of iron
value.

COMMUNICATIONS RECEIVED.

The Editor of the Scientific American acknowledges, with much pleasure, the re upon the following subjects:
On Patent Rights. By J. E. T., J. W. H. T. W., and J. E. W

On Easterly Air Currents. By W. L. W. On Car Ventilators. By F. S. C
On Psychic Force. By J. M. C.
On the Truths of Nature. By J. M. B
On Water Witching. By A. B.
On Soldering Irons. By J. A. F
On Work By H. E. P
On the Scientific American. By J.E.E
On the Cable Triumph. By H. C.
also enquiries from the following
A. O. W.-HI. W.P. - M. G. R. - C.

Correspondents whe write to ask the address of certain lso those having goods for sale, or who want he had artners, should send with their communications a the head of " Business and Personal," which is speciall devoted to such enquiries.

[OFFICIAL.]
 Index of Inventions

for which
Letters Patent of the United States WERE GRANTED FOR THE WEEK ENDING July 1, 1873
and each bearing that date. [Those marked (r) are reissued patents.]
Acid proof compound, R. Newell. Air, apparatus for cooling, F. D. Kinga
Air compresser, hydraulic, C. Moore Anemometer, electrical, F.S. Bald win Bag machine, N. Biedinger J. G. Garland
Bale tie, W. C. Stiff.
Bark extracts, etc.,., leaching, P................ Church Barrel hoops, securing, H. Ogborn
Barrel transporter, J. Gritting... Beams and celumns, connect Bed bottom, D. Frankfoder
Bed bottom, E. W. Quincy Bed bottom, C. V. B.Reeder

Bee keepers, mask for, L. C. Huff.
Belt fastener, A. Hyde.
 Bench, joiner's work, H. Whit
Blower, rotary, R. F. Knox...
Boiler attachment, wash, I. C. Schramm
Boiler, wash, A. Becker...
Boiler, wash, M. J. Clappe
Boiler, wash, W. J. Thomas..
Boilers, water feeder for, H.
Bolt and rivet cutter, Cone \& Polder
Book support, R. B. Hindle
Boot tree, O. V. Elliott.
Boot and shoe nailer, Blake \& Libby. Boring bit, S. Hipkins...
Bottle, nursing, T. J. Mayall
Bottle stopper, T. J. Mayall..
Bottles, cap for, J. G. Chilling worth.
Brish, tooth, T. D.\& W. O'Donoghue
Bucket, well, C. F. Stites.
Buckle, trace, T. Brownle
Buggies, shifting top for, R. C. Dieh
Cane juice, treating, G. C. Taylor.
Car basket, rallroad, J. F. Hudson.
Car brake, railroad, G. W. Crow
Car coupling, S. Rogers.,
Car wheel, A. Atwood
Car ventilator and guard, o. c. Rife..
Carpet beater, Mowry \& Pulis m
Chair and step ladder, B. F. Green.
Chandelier drop light, R. Cornelius
Chandelier drop light, R. Cornelius...
Chandelier drop light, N. W. Williams
Chandelier, sliding or extension, J. Brannen
Churn, reciprocating, Thompson \&
Clothes wringer, Brooks \& Hartzel
ock, compression, E. Allt.
Cooler, liquid, J. R. Neil..
Cotton gin, B. D. Gullett
Cultivator, J. W. Doud..
Cultivator,
Cultivator, Elwood \& Pitcher.
Cultivator, Simpson \& Ellacot
Dash board bag, S. Hipkins...
Drawers, locking, W. F. Daly
Dress protector, A.Herrman
Drill and bit stock, C. H. Amido
Drill guide and core barrel, G. Frisbee
Edge tools, hardening, L. W. Stuart.
Elevating machine, G. A. Dupu
Engine governor, E .
Engine governor, J. Hend
Engine governor, J. Hendy..............
Engine, rotary steam, Leaver \& Wock
Envelope, L. Gtebrick...............
140,530
140,375

Fire arm, revolving, J. M. Marlin... Fire extingwisher, , Iippincott \& Pat
Fire place, W. R. Robb............
Floor, ireproof tile, W. loor, Ireproof tile, W. I.
Fruit packer, M. E. Lewis. Fuel, artificial, D. Barker. Funnel, w. B. Crother..... Furnace, hot air, G. H. Miller.
Gas cut off and cock, C. E. Sea
Ga
Gas cut off and cock, C. E. Sea
Gas engine blower, J. H. Bean.
Gate, automatic, G. C. Crum..
Glazier's tool, S. G. Monce....
Gun barrels, attaching stock to, Deeley \& Edge Harness fastening, E. Cove
Harness pad, M. W. Pond
Harness pad, M. W. Pond
Harrow, A. C. Car
Harrow, G. Watt.
Harvester and thrasher, J. H. Adamso
Hat steaming apparatus, C. W. Banta.. Hatch ways, closing, E. M. Hackett.
Heating compressed air, H. Bushnell Heating compressed air, H. Bushnell
Heel trimming machine, E. U. Jones
Hinge, J. w. Wood.
Hoisting apparatus, hydraulic, P. Hinkle Hoisting apparatus, G, A. Myer
Hook, check, A. V. M. Sprague.. Hook, snap, O. B. North.
Horses from carts
Hose coupling, J. W. Kenge G. H. Meier ubs to axles, attaching, O. F. Shepard ndia rubber rings, Collins \& Longden. Iron, sheet, W.D. Wood (r).
Jar, fruit, A. T. Jones.
Kin, brick, D. Blocher
Ladder, step, C. Frizell
Lamp, J. J. Walton.
Lead, die for making she....................
Leather working tool, J. S. Alexande
Lime, superphosphate of, M. Tanner
Lock, combination, P. W. Hall..
Lock for doors, etc., T.
Lock, seal, G. R. I'unn.
Log turner, I. W. Pool......................... Mallet, S. M. Willis...............................
Mask for bee keepers, protecting, L. C. Huff.
Medical compound, A. Fuqua..
Mop, wringer and scrubber, W. R. Winter
Motion, transmitting, A. H. Kennedy
Motor, rotary fluid, H. Q. Hawley......
Motor, rotary fluid, H. Q. Hawle
Music stand, O. Schulze........
Nusic stand, O. Schulze
Offal and manufacturing gas, treating, J. Turne Ore crushing stamp Buckley \& Lawrenc
Organ stop action, reed, I. T. Peplumb
Paper machines, belt guide for, R. Hut
Paper, preparing wall, A. W. Paull.....
Pasteboard, H. L. Palmer (r)
Pen holder, A. T. Cross.
Pencil case, A. T. Cross
Pencil case, ornamented, E. S. Johnson (r)
Photographs, polishing, N. S. Bowdish
Piano action, Newman \& Anderson...
Pianofortes, etc., key for, E. P. Needham
Piano, upright, G. C. Manner (r)
Pitcher, molasses, E, B. Manning
Planter, corn, Fulghum \& La wrenc
Planter, corn, E. Parmentier
Planter, corn; Z. D. Waters.
Plow, L. B. Richardson
Plow gang, M. S. Curtiss
Plow handles, making, A. B. Farquar
Plow, subsoil, G. B. Briming'
Plow, subsoil, G. B. Briming'aa
Plow, sulky, D. W. Hughes
Plow, wheel, H. M. Skinner.
Printers' galley, side stick for, R. B. Hendle.
Printing plate, typographical, J. L. Ringwal
Propellerfor vessels, chain T. W. Carter
Pruning shears, J. G. Rogers.
Railroad frog, J. Wood (f)............................
Railroad signal, circuit for electric, t. L. Pope Railroad switch, street, J. E. Pattis
Railroad tie, iron, C. W. Gulick..
Rake, horse hay, Litchfield \& Corbin.
Range, cooking, M. M. Simo
Ribbon case, J. K. Landis.
Rings, etc., die for enlarging finger, G. Kremen
Rings, making finger, G. Krementz........
Roofing composition, Haight $\&$ Gladding. Rope skipper, automatic,
Sad iron, W.P. Dodson...
Saw attachment, J. Giblin.
Saw fling machine, W. B. Bizzell..
Saw mills, dog for circular, J.
Saw mills, dog for
Saw set, G. Swenson...
Scraper, rotary hog, R. Fyfe
Screw machine, wood, C. B.
Screw machine, wood, C. B. F. Tingley (r)
Sewing machine, E. D. Smith
Sewing machine ruffer, M. J. Stoll.................
Sewing machine table and chair, L. N. B. Gray.
Shearing machine, sheep, A. H. Kennedy (r).
Shirt bosom, J. Pagan.......................
Shirt bosom, J. Pagan.
Shirt bosom support an
Shirt bosom supporter, G. F Johnson
Shirt bosom supporter, I. M. Post...
Smoking tube, A. Gedies..
Spike extractor, A. F. Jack
Stalk, cutter, B. R. Harnes
Stove pipe shelf and drum, ,
Stove pipe thimble, H Smath
Stove pipe thimble, H. Smith
Stove platform, W. Westlake
Stove, reservoir cooking, Fales \& Seabur
Sugar from cane, extracting, M. S. Bringie
Sugar stirrer, maple, F. B. Graves.
Table, extension, W. Valentin.
Table, ironing, Frankenfield et al.
Tassel, G. E. Jenkins.
Telegraph, printing, T. A
Telegraph circuit, printing. T. A. Edison Chill coupling, A. J. Patterson..........
Thrashing machine, Ellis, Hoffman, $\& ~$ Le Tiles, dressing, G. \& V. G. Barney (r).... Tiles, dressing
Toy money box, R. Frisble
Trap, pigeon, W. F. Parker

Adoctisemats.

Back Pages of advertising
 Inside Page - $\underset{\boldsymbol{y 5} \text { cents a line }}{1.00 \mathrm{a} \text { line. }}$

Engravings may head advertisements at the same rate per

TO INVESTORS.

The Northern Pacific Railroad Company having determined to close its 7-30 First Mortgage Gold Loan, and thereafter to pay no higher rate of interest than 6 per cent on further issues of its bonds, THE LIMited remainder of the 7 3-10 loan is now being disposed of through the usual agencies.
This affords a desirable opportunity to persons wishing to reinvest July interest or dividends.
The Company now has more than 500 miles of its road built and in operation, including the entire Eastern Division connecting Lake Superior and the navigation of the Missouri River; the work of construction is progressing satisfactorily ; the Company has Land Grant, and sales of lands have thus far averaged $\$ 5.66$ per acre.
All marketable securities are received in exchange for Northern Pacifics

JAY COOKE \& CO.

FINEST FOOT LATHE

August 2, 1873.]

BAIRD'S 3ousis

 Painters.Painter, Gilder, and Varnisher's Companion

Sign Writing and Glass Embossing:

A Complete Guide for Coach Painters:

 Send by Express $C .0 . D$. I Immelatately and doblze rours

NEW YORK STEAM RIGINECO. Machinists Tools
98 Chambers St. New York.

M

T Fce-For sale ritese Factories, Ropewalks
 MANUFACTURER RHA RDSOND NATHES,

Niagara Steam Pump
Maryland Institute, Baltimore 26 th Annual Exposition,

C

C HaMpion spring mattress-The

be u
quir
rigu
steel
stel

$\$ 125$

Cincimati Exposition,

 of gold, with silver medallion center, to each of such
important power machines, or accompanying set of machines, as are adapted to manufacture marketable arti-
cles of all kinds. The entries for these premiums can be madeeither by the manufacturer of the machine or the
manufacturer of the goods the machine is intended to fabricate ; and the machines are to be awarded these
premiums subject to the condition that they are started on the day of opening of the Exposition, and are opera-
ted so as to actually manufacture goods in the bullding at least six hours everyday. Power for all machines will
be stead1ly supplied from 9 till 12 A.M., 1 till 6 P.M., and 7 (VITYTIT D)INS For cutting busine

 COAL vs. FLOUR.
 Messrs. Munn \& Co.
Gents.:-We furnished the Machinery and fixtures for
a five run Flouring Mill to the Union Flouring Mill Company, Delphos, Ohio. When we came to give a trial test, last week, they ran four pairs of burrs and ground CoRD of wood, or equal to twenty-one pounds of coal per
barrel. When the mill is run three months, with good
care, we shall beat this care. We shall beat this work tull ten per cent. The Mill
was driven by one of our 16 x30Automatic Engines repre-
sented in the Scientiric A mericas of June sented in the SCIENTIFIC AMERICAN of June 11. To
appreciate the economy of cur Engines, compare the the country.
THE JOHN COOPER ENGINE M'F'G CO.,

To INYENTORS
 MANUFACTURERS

The Managers of the 42d Exhibition of the American
Institute, of the City of New York, beg to ann ounce 63a the Exhibition Buildings on 2 and and 8d Avenues and
6eanreets, will be open for the reception of heavy Mach hinery. August 18 th and for other articles,
September 1 st 1873 . The Exhibition will be frrmally
opened September 10th. For particumber, address "General Superintendent,
American Institute, New York."
RIVERVIEW ACADEMY, Poughkeepsie,
ROPER HOT AIR

Machinery,

Cold Rolled Shafting. ":

Sturtevant Blowers.

Shearing Machines,

Patent Ground Chilled Rolls, Farrel's Patent Railway Crane,

PGACENT

$\frac{\mathbf{P}}{\text { CTENTS Sold on Commission. }}$

0 'IS' MaFETY Hinctinu

Planing and Matching
 $\overline{\mathbf{S}}$ HINGLE AND BARREL MACHINERY-

R

Fin shle-The right to manufacture and

 III Iry WROUGHT BEAMS \& GIRDERS

 $\$ 25 \mathrm{~A}$ DAY!
"To Have a Cricket Mond.

 $\mathbf{N}_{\text {EWH }}^{\mathrm{E}} \mathrm{INPROVED}$ PATTERNS,-MA.

Moulders'\& Plasterers

 Andicews Patents.

 ITRROVED FOOT LATHES, SELLING

 1832. ${ }^{\text {ECHNCKSAS PATENT. }} 1871$
WOODORTH PLANEHS
 GEAR'S PATENT VARIETY MOULDING MACHINE

$\$ 72.00$ EACH WEEK.

Improved

 THOMAAS LEPREL

 $\mathbf{P}^{\text {ISTON guided from both ends all working }}$

An deuthde ©erminder.

Diefe große und thätige ©lafic unfrer $\mathfrak{B r}$ bölferung madjen wir befotibers barauf zufmerfiam, dáz unire sima burd ifre $\mathfrak{B c}$ Ginbung mit Majgington and Den euvopaitiden ほauptfäbten, bejondere §orthoile zut çuan. gung von ins und ausländijden $\mathfrak{B a t c u t c n}$ bietet.

Seder Erfinder, gleiajubier melder Rationalität angefgörig, ift burd) die liberalen Fratentge fetze ber Wereintgtert Etaaten zum Fiatentiduts fïr Erfindungen becedtigt. Unire gima if bereit, geftiitst auf 26 jährige ©rfalrmig, Dentidde Grfinder jeder Beit zu berather mud olt mäfigen Wreijen rajd und pianftlid "atente ju crifangen Die Dentidue ©ection ift in ben §ünben fäbiger ocutidjer Sngcnicure, wende in bee Dffice periönfiab mit Erfindern butiefren werben.
Der ,Scientife American" wird in feinen Spaltan bie bebentenderen Erfinoungen be \{precticir.
Gorrefpondenz erbeten und prompt beant mortct. Famphlite in Deatider ©prache wer Den auf Berlangen franco zugejandt

Qorefire:

,Scientific American" Patent Agentur 3 Bart Now, $\begin{gathered}\text { New York City }\end{gathered}$

	Advertisements will be admitted on this page at the rate or $\$ 1.00$ per line or earh insertion. Engravings may head advertivements at the same rate per line by meas$u^{\text {rement. as the letter-press. }}$
	The value of the Scientific American as an advertis'ng medium cannot be over-est mated. Itscirculation is ten times greater than that of any similar journal now pub. ${ }^{2}$ ished. It goes into all the States and Territories, and is read in all the principal l braries and reading-rooms of the world. We invite the attention of those who wish to make the r business known to the annexed rates. A business man wants something more than to see his advertisement in a printed news paper. He wants circulation. If it is worth 25 cents per line to advertise in a paper of three thousand circulation, it is worth $\$ 3.75$ per line to advertise in one of forty-five thousand.

SILICATE OF SODA

NEAFIE d LEVY,
PENN WORKS,
MARINEENONES, BOLLERSANDBUILD-
TANNATE OF SODA.

 , 1873. Address J, G ROGERS
SILICATE OF SODA.

EVERY VARIETY SHEAN PJMPS. SEND FOR LLLUSTRATED GATALOGUE HAMILTON,OHIO.

- LATESTIMPROVEMENT
 LUBRTCATORE

 A GENTS WA NTED-Anybody can make
 NTHURNAMSNEWTURBINE TOBE THE BESTEVERINVENTED

$\$ 57.60$
 C SPRINL PATENT DOOR AND GATE

SCITMCE RECORD

1873.

 muNn \& Co., Publishers,

Tir SCIENTIFIC ASERICAN WIII be sent one y gar and one copy of SCIENCE RECORD FOR 1333 , on
receipt of 8450 .

 BLAKE'S STONE AND ORE BREAKER,

 The Blake Crusher Co.,
new york agency, 137 Elm Stree

WIRE ROPE.

JOHNA. ROEBLING'SSONS

Pyrometers. $\begin{gathered}\text { FortestingOvens. } \\ \text { fues } \\ \text { Blast } \\ \text { furnacee }\end{gathered}$ 	

N. Y. PLASTER WORKS,

MORRIS, TASKER \& CO.,

AMERICAN CHARCOAL IRON

Boiler Tubes.
WROUGHT-IRON TUBES AND FITTINGS, FOR GAS, STEAM WATER, AND OIL.

 A GOOD THING-MONEY IN IT-A For

Machinist's Tools,

 LUCIUS W. POND, MNDNVPFFACEDNOYE MILL FURNIGFING NG WORRS

 D $0 Y \mathrm{Y}$ E'S
Patent Differential Pllley Blocks
 Hall's Patent Improved Yokes

500.000 良IRON MELTED IN $8 \frac{1}{2}$ HOURS. MESS THWAITS \& CAREUTT $)^{:-}$MAR 9 ㅍ 1870 makers roots blower encindid abereviateo ctetrar.
'I USED TWO NO 5 ROOTS BLOWER WHEN CASTING
THE 250 TON ANVIL BLOOK MELTINE 30 TONS IRON PER HOUR I SHALL IN FUTURE EXCLUSIVELY RECOMMEND THIS BLOWER? RH.\& F.M.ROOTS CONNERSVILLE IND.)W. IRELAND S.S.TOWNSEND GENL AGT 3PLIBERTY ST.N.Y. patentee rrelands cupola.

THE HEALD\& SISCO

Patent Centrifugal Pumps,
 Perfect satisfactoon Instiute ne, 18

P. BLATSDATLI \& CO

Patent Drill Presses, with Quick Return Motion, also ther Machinist Tools.
SEND For CuTs
WOTRCESTER, MASS.
LEFFEL'S IMPROVED DOUBLE TURBINE
Nater WuEEL NEWBookJustOut-160 Paces sent mate
JAMES LEFFEL \& CO.,
SPBINGFILLD, OHO, oriv9LBEETY ST, N. Y.CITY
MONEY Made Mth Stencil and Kec Check out

MAHOGANY,

ROSEWOOD, WALNUT, WHITE HOLLY SATIN WOOD HUNGARIAN ASH, AND ALL KINDS OF WOODS,
IN LOGS, PLANK, BOARDS, AND VENEERS GEO. W. READ \& CO., Easthampton, Mass.

PORTLAND CEMENT,

 The Pulsometer or Magic Pump.

THE STANDARD MAKE! Emer wheasand Emery Grinding Machinery:

No. 1 Ferry St, New Yonk
Movable-Toothed Circular Saws, PERFORATED CROSS-CUT, SOLID ${ }^{\text {AND }}$ SAWS.

HOUSTON'S PATENT TURBINE WATER WHEEL

RON PLANERS, ENGINE LATHES,

$R^{\text {ANSOM SYPHON CONDENSER perfects }}$

SCTIN ILD RICAN

One copy tenas.
One copy, sise moanths
One copy, tour month
One copy of Sclentific American for one 1.00
one copy of engravinting, "Men of proan for one year, and
ond
ond One copy of sclentuff A merican for one year, and one copy of "science Record," tor 1878
Remit by postal order, draft or express,
The postage on the scientifice A merican is ifve cents per
quarter, payable at the offlce where received. Canaca quarter, payabee at the offle where received. Canacia
subserfibers must remt, to pay postage.
Add ress all

MUNE \& CO.

