A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

most entirely removed from the gearing, which serves only to keep the revolvers in their proper relative position. The blower, as will be seen from the sectional view, Fig. 2 , doe not operate on the principle of a fan, that is, by imparting momentum to the air by running at a great velocity, but by regular displacement of the air at each revolution, whethe driven fast or slow; in this respect it resembles an air pump The current entering the case is closed in by the wings of the revolvers, absolutely confined and forced forward until brought to the eduction pipe, where it is discharged. There can be no backward escapement of the air after it once enter the case, the contact being kept up at all times in the cente of the blower, between the pistons or revolvers. The exter nal case is made of cast iron, and the cylindrical parts are bored out. The head plates are faced off on a boring mil especially arranged for the purpose.
The blower is adapted to all purposes where either blas or exhaust is required, such as founderies, smith shops, o rolling mills; it is suited for the ventilation of public build ings, mines, and tunnels of any magnitude. As a gas ex hauster, it has been adopted by many of the leading gas com panies in the United States and, besides, has found employ ment in woolen, paper, and other manufactories. One of it most notable applications was that of furnishing the blas for driving the passenger car of the Beach Pneumatic Tran sit Company, in their experimental underground railway tunnel under Broadway, in this city. The immense blower there employed delivers, when worked at maximum speed, a volume of 100,000 cubic feet of air per minute.
The subject of our article is also largely employed abroad nd is manufactured in several of the principal industrial centers of Europe. We learn that it has been introduced in the well known steel works of Herr Krupp, at Essen, Prus sia, and in the equally celebrated works of Messrs. Sir Jo aph Whitworth \& Co Manchester England, and in

ROOT'S ROTARY BLOWER MANUFACTORY.
all the Bessemer steel works of Great Britain, nearly one hundred being in use in the city of Glasgow alone. In all, about one thousand are in use in England at this time, and a large number on the continent. By the aid of one of these machines Mr. W. Ireland, the noted iron founder, made a 250 tun anvil block, probably the largest casting ever made melting the iron at the rate of thirty tuns per hour, and completing the entire work in a little over eight hours.
This blower received the highest award conferred on machines of this class at the Paris Exposition of 1867. We notice that it is on exhibition in the American departmenta the exposition now being held in Vienna. It has also received the highest awards for three years successively at the Fair of the American Institute of this city, and also the highest premium at all the industrial expositions held in the city of Cincinnati, Ohio

For further information address the inventors and proprietors at Connersville, Ind., or S. S. Townsend, general agent 31 Liberty street. New York city.

Siuntifir Ammitan.

MUNN \& CO., Editors and Proprietors. PEBLISHED WIEELY AT NO. 37 PARK ROW, NEW YORK.

(1. D. MUNN.	A. E. beach.
Onc cony, one your.. 83300
One copy, six menths 150

VOL. XXVIIL., No. 26. [New Series.] Thoenty eighth Year
NEW YeRK, SATURDAY. JUNE 28, 1973.

END OF ANOTHER HALF YEAR.

With this issue a number of six months' subscriptions which commen ed with the year, will end. We hope all such subecribers will renew, and it will gratify the publishers if each would send a new subscriber. It is just as easy to remit $\$ 3$ for two names for six months as half the amount for one name, and it suits the publishers much better. Remittance by postal order is the safest and best. Address Munn \& Co., 37 Park Row, New York city.

NECESSITY FOR SANITARY REFORM.

In another column of this issus will be found a continuation of our series of "Sanitary Notes," a paper on the subject of "Sewerage and Sewage," devoted mainly to a brief description of the various projects for the utilization of refuse filth, so as to transform it from a source of expenditure to one of valuabls profit. In large cities the question of ob raining the fertilizing matter from the material, though in itself one of no small importance, is, owing to the vas quantitics of the latter pruduced, subordinate to the problem of disposing of the noxious substance in such a marner that it shall not breed disease or nurture pestilence in the narrow and confin \because d limits of thickly populated districts. It need not be puinted out that without an effective system of sewers, which not only convey away the filth but also form complete drains for every portion of the city, the re moval of this waste is impossible. Here, where the main conduits are on a level below the high water mark of the rivers into which they empty, or are distorted to convey their contents (hypothetically) up hill, or where the branch sewers connect with mains set on a superior level, nothing else is to be expected than a stagnation of contents in the tubes, and in the former instance their reflux through the action of the entering tides.
Bad as such a state of affairs is, and pressing as is the in vitation which it holds out to epidemic and zymotic diseases, it nevertheless obtains in New York and probably many other cities of which the growth has been proportionally rapid. Some of the daily journals, notably the World, have recently taken up the subject, and the information published is well calculated to arouse the citizens of the metropolis to ly exposed. The death rate from zymotic diseases alone averages 9,000 a year within the corporate limits, and the cases of sickness aggregate from the same period at least

100,000 . It requires but a casual stroll through certain por tions of the city to determine the reasons for this fearfu mortality.
Probably the action of the tides, as above described, for cing the filth back and often out of the street culverts, is a prolific source of the miasm of the lower lying districts. It is but a few days sizce that, in passing through a street contiguous to the Hudson river, we oureelves observed that after a heavy rain and at high tide, the gutters and roadway in the neighbcrbood of the openings were flonded over a considerable area, and to several inches deep, witt: a black, horrible liquid, in which, despite its disgusting odor, the street urchins were holding especial revel. For such glaring faults as this there is clearly no excuse, even if any in de precation be admitted for the negligence to which the more hidden defects of the uptown sewers must be ascribed. Cel lars are flooded, and the soil, permeated with filth, giving rise to deadly mephitic gases, makes the locality a bot bed for disease, criginating that scourge of children, cholern infantum, and also the rheumatism, scrofula, ferers, and in numerable pulmonary complaints of adults. In the new and manufactured portion of the city, in the neighborhood of Central Park and above, the condition of matters, though less apparent, is not much better. Some years since Gene ral E. L. Viele published a map of Manhattan Island, show ing the lead of the natural water courses and ponds, the beds of which, like that upon which the Tomlis or city prison now stands, were quagmires and soaking bogs. Thi map disappeared, but was resurrected by the Citizens' Asso ciation in 1865, and from its topography the origin of the maladies prevailing in certain quarters is readily traced Old marshes, which, in the overwhelming desire to raise grades and make streets, were filled up with sand and stone have asserted their existence and converted the land iato a sponge, absorbing the filth which flows from the fiulty sew sponge, absorbing the filt which fows from the falty sew
ers. In the upper portion of our city, even at the presen ers. In the upper portion of our city, even at the present
time, there are streets, raised far above the normal grade, en time, there are streets, raised far above the normal grade, en
closing lots on the bottom of which stagnant pools still ex ist; and we can recall localities which, now thickly built up wele, hardly ten years since, sites of skating ponds of con siderable extent. This land, as well as whole districts indi cated by General Viele's map as the former beds of water courses, is now covered with many of the finest residences in the city, the owners of which, though experiencing sick ness in their families, little suspect the hidden cause to which the preva:ence of disease is due.
We notice with gratification a revulsion of opinion against filling in, as a means of reclaiming ground from bogs and swamps. The health authorities of Brooklyn have already taken steps in another direction, and have appropriated funds to pump off the water from submerged land 1 efor raising the grade. This, we think, is the wisest course th Health Board can pursue. Burying a nuisance out of sight is not abating it, and merely covering up so formidable an enemy to puilic health renders it doubly dangerous by concealing its existencs until it becomes recognized through its deadly effects. The pumping operations can be accom plished very expeditiously, while the filling up process take a great deal of time; and the expensive nature of the latter for ma!erial, labor, and cartage, would cost the city or the owners a much greater sum than that for which the property when filled in could be sold.
We need rapid transit, and our present system of docks is disgrace to any civilize l people; but great as are both our wants in this direction, they are excee led by the urgent ne cessity which exists for a thorough overhauling and, if need be, entire alteration of our sewerage.

RENEWAL OF THE REWARD OF ONE HUNDRED THOUSAND DOLLARS.

The Legislature of the State of New York has recentl renewed, for the period of one year, the offer of one hundred housand dollars reward for improvements in canal na
Th. This will be good news to cores of inventors
lly passed in 1871, and the test thereof was was origin ly passed in 187, and the test thereof was given in the Cientific American of May 6 in that year. It provides for the payment of one hundred thousand dollars to th introducer of a plan, for navigating the Erie canal in this State, which shall prove on actual trial to be better and more economical than the existing method of towage by horses. The following are the chief requirements of the law:
A Board of Commissioners is appointed, consisting of George B. McClellan, Horatio Seymour, Erastus S. Prosser, David Dows, George Geddes, Van R. Richmond, Willis S. Nelson, George W.Chapman, William W. Wright, and John D. Fay, whose duty it is to practically test and examine al inventions that may be submitted to them, by which steam. caloric, electricity or any notor other than animal power an be practically and profitably applied to the propulsion o oats upon the canals. Such tests and examinat beconfined to the season of canal navigation in the year 1873 and the Commissioners are required to demand that the com
peting inventions shall be tried practicaliy upon the canals at the expense of the applicants; that the boat shall, in addi tion to its weight of machinery and fuel, be able to transport at least 200 tuns of cargo, be able to run at a speed of not less than three miles per hour, be easily stopped and backed by its own machinery, which should be simple, economical, and durable, and readily adapted to the present canal boats. Lasidy, the law requires before an award is made that "the Commissioners shall be fully satisfied that the invention or device will lessen the cost of canal transportation, and increase the capacity of the canal."

Quite a number of boats were tried last year on the canal
and in our paper of February 15, 1873, will be found a brief description of their construction and performances.
Individuals who propose to compete for the prize should bea n mind that it is not simply the propulsion of the boat ahead hat is required. It is not only the propulsion, but the steer age, rapid and economical handling of the vessel when in the canal. It is easy enough to drive a canal boat in open water by steam power, faster and cheaper than by horse towage But to do so in a narrow canal, where the stoppages are fre quent, the water shallow, the delays considerable, the boats constantly passing or repassing or dashing into each other crowding together, jamming fast, etc., is a difficult problem Evidently the boat should b; provided with a variety of ap pliances to meet and promptly overcome the various exigen cies to which it is to te subjected. It should have power to move laterally as well as longitudinally, at the will of the commander, and should have facilities for quickly anchor ing and getting under way. Inventors will do well, thereing and getting under way. Inventors will do well, there-
fore, to turn their attention to other things besides the mere fore, to turn their attention to other things besides the mere
form of the propellers. These have been invented already form of the propellers. These have been invented already
by the hundred, and little or no advantage has been cecured rom any of them. A velocity of only three miles per hou is needed, and this the ordinary propelling devices wilh assi y supply.
The dimensions and other particulars of the Erie canal are as follc ws: Depth, 7 feet; width at top, 70 feet; wirth at bot tom, 56 feet; length, 345 milos; number of lecks, 72. The locks are 110 feet in length over all, admitting boats $9 C$ feet long. The width of the locks at the surface of the water is 18 feet, and at bottom 17 feet $4 t$ inches. The larg eft boats used on the canal are 96 feet long by 17 feet 8 inch. es beam, with a depth of 9 feet. Such boats draw 6 feet of water, and each of them carries 240 tuns.

COMETS...THEIR CHARACTER AND SJURCE.

The spectroscope shows us that comets consist of a mas of carbon dust, so diffus. d as t: make them bulky with lit the weight, and this explains at ence the cause of the total ab sence of refraction of the light freely passing between those minute dust particles.
In regard to the question " whence these masses of dust particles came," Zöllner, whose observations and calculations we mentioned in a former article on the sun, holds that the olar eruptions throw up masses, consisting chiefly of hydro en, rjected from the sun with a velocity of 133 miles pe econd. He comes to the conclusion that as thrice this velociry would carry material entirely beyond the limits of solar at raction, a somewhat less velocity would throw it to distan ces corresponding to those of the comets. He thinks, there ore, that comets originate from the sun, and are thrown out rom that body finally to return thereto, just as volcanic ma erial is thrown out from the earth and carried through our tmosphere, eventually coming down at remote spots.
Any doubt in regard to the possibility of the existence of such enormous projectile forces is removed by the actual observations of Jansscn, Lockyer, and Respigbi. The latter says: "The solar surface is the seat of movements of which no terrsstrial phenomenon can afford any idea; masses of matter, the volume of which is many hundred times greater than that of our earth, completely change their position and form in the space of a few minutes, showisg motion of which the velocity is measur d by hundreds of miles in a single econd." Professor Young has observed a solar ex plosion o which the mean velocity, between the altitude of 100,00 and 200,000 miles above the solar surface, was 166 miles pe second; as this indicates an initial velocity of 200 miles per second, it is sufficient to carry the projected matter beyond the orbit of the earth.
Schiaparelli, in the Astronomische Nachrichten, calls th comets "cosmical clouds." He says: "Cosmical clouds wil always appear to us as comets when they pass near enough to the eartl to become visible." The comparison is indeed striking; as watery clouds ascend in our atmosphere and loat around the earth, so the fiery clouds from the solar sur face ascend into jlanetary space and float around as ccmets. face ascend into planetary space and foat around as col B .
It is possible that the hydro ren in the solar protuberance It is possible that the hydroyen in the solar protuberances
is at first so abundant tha. its spectrum overcomes the spectra at first so abundant tha. its specirum overcomes the sper materials which it may hold, as it were, in soluion; and that while being projected, it expands by its gase ous nature in the planetary space, leaving the carbon an ther materials, as a mass of dust which slowly disintegrate by the disturbing influence of the solar heat, planctary at ractions, and adhesion of the different particles, forming inally great numbers of small and dense masse?, which will fy around the sun in the form of a belt; and when some of them at last come down upon the earth, we call them meteors. Schiapartlli further says: "Gradually the products of disintegration are distributed along the comet's orbit; and if the earth's orbic cuts this, tho phenomena of shooting star re produced.
Two interesting facts are connected with these views; one is that the position of some well determined meteor streams coincides with the orbit of a comet; the other fact is that recently chemists have extracted hydro-carbon from meteoric masses: indicating the hydrogen which the spectroscope shows to exist in excess in the solar protuberances, and the carbon which the same instrument shows to exist in excess in the comets.

A PERFECT VACUUM.

The ancient philosophers who dofended the theory that "Nature abhors a vacuum" were greatly derided by their opponents; but modern research would seem to contirm their views. There is an anecdote that Galileo, who, as our readers know, lived in the seventeenth contury, on being con-
sulted by some engineers of Florence who found it impossible to ralse water in a pump barrel higher than thirty-four feet, told them that Nature's abhorrence of a vacuum ex. tended only t a a hight of thirty f f ur feet; and that beyond that hight, it had no objection to an empty space. Galileo's pupil Torric-rli fisst demonstrated, by actualexp-riment, the cause of water rising in a pump barrel from which air had been exhausted, and his theory was firmiy establisher by the eiperiments of Pascal. Torricelli's experim-nt can ber readily reproduced. Take a glass tube, more than thirty incles long, filled with herecury, from which the air has been expelled Put the open end of this tube into a cup filled with the same liquid, and the mercury in the tube will fall until it lias reaclied a night that can $\mathrm{b}+$ balanced by the pressure of the atmosphere. The space in the tube above the mercury is called the "Torricellian racuum," and is the most perf ct vacaum that can be produced by mechanical means. By a perfect vacuum we mean empty space, and this space above the mercury is supposed to contain two substances: 1st. The vapor of mercury, which is there in virtue of the principle that evaporation takes place from the surface of all licpuids, at all temperatures except that of absolute zero. 2nd. 'rue subtle and elastic medium of ether, which is sup. posed to pervad ; all space. Many physicists bave ت.ade ex periments to delermine the existence of this ether, but its effects are best observes in the motions of Encke's comet, who-e periods of return to its perihelinn are constantly diminishirg. The undulating theory of light is also based on the existence of the cther.
It becomes int-resting, thev, to inguire whether a perfect vacuum can be produced in any manner. Admitting the existince of the ether, which has some tension, even though it be too small to be measured by the most delicate instrument, it will be seen that the problem cannot be solved, unless we can destroy the tension of this ether. There is a theoretical temprature, at which (if it could be produced) all vapors would lose their tension. This is the point of absolute zer:, at which all heat motion ceases. This is a point which can never be reached in practice, but can
readily be determined, and is marked on the thermometric rcadily be determined, and is marked on the thermometric
scale as follows: - $219 \cdot 2^{\circ}$ Réaumur's scale, -274° centigrade scale as follows:-219: $\overbrace{}^{\circ}$ Réaumur
scale, $-401 \cdot 2^{c}$, Fahrenheit's scale.
seale, $-401 \cdot 2$, Fahrenheit's scale.
Befosing. we will explain how a degree of exhaustion can be reached, which is almost perfect with the exception of the ether. In the use of an ordinary air pump, at each stroke a pump full of air is removed, and the remaining air expands and filis the whole space. Hence, with the most delicate machine, there will always bo some tension in the receiver, untess other means are employed. L the pump and receiver b. filled with carb nic acid instead of ordinary air, and let thisb: $\begin{gathered}\text { axhansted by successive strokes of the }\end{gathered}$ pump until the teusion is very slight. Then introluce potassa or caustic lime, which will absorb the rest of the car bonice acid, leaving a perfect vacuum. as far as can be ascer ta:nel by a measuring instrument or gage.

TIME AROUND THE WORLD.

We have rec sived cif late sundry queries from correspondents relative to the gain or loss of time in circumnavigating the globe. Those who have not found answers in the col umns devoted to such iurpose will receive a general re-
sponse in the following rather amusing discussion recently carriel on between two grase and learned French stoants on the same rather paradoxical topic. M. Jules Verac, of the French Geographical Society, has written a book entitled a "Tour around the World in 'Twenty four Hours." What the nature of the contents of the volume is, we know not; but at all events it excited M. J. Bertrand, of the Academy of Sci-nces, to attempt to pose M. Verne with the following conundrum: "A person, supposed to be furnished with the necessary means of transportation, leaves Paris at noon on Thursday; he travels to Brost, thence to New York, San Francisco, Jeddo, ctc., returning to his starting point after twenty-four hoars, that is, encircling the globe at the rate of
15 ' of longitude per hour. Atevery station, as he passes on this journey, he asks: "What time is it?" and he is invariably an swered: "Noon." He then inquires " what day of the Weck is it?" At Brest, "Thuriday" is the reply, at New York the same; but on his return, supposin. he lasses Paris from the east and stops at Pontuise, a town some 19 miles to the northwest of that city, le will be answered
"Friday" Where does the transition happen? Or when, if our travel-r is a good Catholic, shouid he consider Friday's abstinence from meat to berrin? "It is evident," continues the questioner, "that the ransition must be sudden, and may be considered to take place at sea or in a country where the nambs of week days are unknown; but," he continuce, "suppose the paraliel at which it happens should fall on a continent habited by civilized people speaking the same lan grage, ard that there should be two neighbors separated,
say by a fence, on this very parallel. Then would not one say by a fence, on this very parallel. Then would not one
ss y it was Thursday, at noon, while at the same monent the ss y it was Thursday, at noon, while at the same mon
other would assert it to be Friday, at the like hour?"
M. Verne answers as follo $r^{\prime} \mathrm{s}$: It is true that, whenever a person makes the tour of the globe to the cast, he grins a day, and similarly when traveling to the west he loses a like period, that is to say, the twonty four hours which the sun in his apparent motion occupies in describing a circle around the earth. This is so real and well $r \in c o g n i z e d ~ t h a t ~ t h e ~ a d-~ . ~$ ministration of the French navy gives a supplementary Cape of Good Hops, whilu it retnins on the contrary a similar provision froma ships rounding the lifora. It is also true that, it a parallol existed, such as above described, across an inhabited region. there wurald bo comrlete disagreement be tween tho poeple adjacent thercto; but this paraliel does not
exist, for Nature has placed oceans and deserts in our path
where transiti:n is made and a day gained or lost unconwhere transiti,n is made and a day gained or lost unconfor making the days agree has been fixe 1 at the meridian of Manilla. Captains of vessels, under the same rule, cbange the dites of their \log books when they pass the 18th meridian.
Edgar A. Foc, if we are not mistaken, avails himself of this apparent puzzle, in one of his desultory sketches, to point the story of an individual whose would-be father in. law refuses him the hatd of his adored, with her concomi tant of an agreeably large dowry, until that time shall happen when "t two Sundays fall in a week." The luckless loper in despair goes to sea, sails round the world, and returus to renew his suit exactly one year from his departure. In the course of events a discussion takes place hetw-en himself and the stern parent relative to the present day of the week, in which he insists that it is Monday, and the old gentleman is equally positive that it is Sunday. The one produces his diary, kept since his departure; the other falls back upon the calendar. Finally it transpires that the traveler in sailing round the globe to the east has éained a day in his reckening; hence both disputants are right, two Sundays have come together, and the happy denouement follows.

THE TEXAS PACIFIS RAILROAD.

The line of the Texas and Pacitic Railroad, which is one of the youngest of the great transcontinental routes now in process of construction, is, with its connections, to connect
New York with San Diego, on the Pacific coast, and thence witt. San Francisco. In extent, the road to its terminus will be four hundred and fifty miles shorter than any line now conuecting the metropolis with S_{n} Francisco, or, with its branch to the latter city, will not exceed, in the distance passed over, any of the present routes.
The surveys across the continent, which have recently been made, indicate that the region chosen is especially adapted to the construction. Among the remarkable features, it may be not-d that the summits to be crossed are about thirty-two per cent less than those on existing Pacific roads, while the grades and curvature will be about sixtytwo per cent less. The climate through which the line is lo zated is so favorable that notrain need be delayed by snow or similar obstructions, common upon the northern roads; and an abundance of excellent coal for fuel is accessible at numerous points. The entire rail transportation between the waters of the Pacific and New Orleans will be less than 1,800 miles, and with ports in Texas, som thing under 1,500 miles. Adding to these advantages the bordering Mexican States, with their great mineral wealth, together with the immense trafic of Texas, Califoroia, New Mexico, and Arizona, it certainly. seems that the enterprise will prove of great value, both nationally in opening to trade an almost unr.valed section of the country, and individually in the large profit which it must yield to its projectors,
As regards the progress of the road, we have before us the report of the Presid.nt, Hon. Thomas A. Scott, in which it is stated that nearly four hundred miles of the line have been graded, and the bricging so far ad vanced as not to retard the laying of the iron. T ie greater portion of the ties need
have been distributed, and the rails, etc., for three bun ed have been distributed, and the rails, etc., for three bun rapidly as possible. The labor has been accomplished since last October in the face of serious obstacles in the way of transpurtin: material. Work has al o been begun at San Dieg., and is being rapidly pushed forward. The grant of six millions of dollars of bonds, made by the State of Texas west from Marshall, and west from Texarkana, should be west from Marshall, and west from Terarkana, should be cempleted to a point of junction near Fort Worth. by Janu-
ary 1,1874 , so that by that date quite an extensive portion of the route will be finished
Preident Scott considers that, judging from past progress the entire road will be built within a period of five years and consequently much within the time granted for its completion.

Fishing Tackle.

We were shown a few days ago a troat fishing rod, made for ε friend of ours by Mr. Thomas Tout, of Kingston, Mass., which excels in beauty anything we have seen in this line for some time.
It was made of lance wiod, and provided with a number: of extratips of the same material and of bamboo. The mountings were silver plate, finely finished and of chaste pattern. The rod possesser, in an unusual degree, that peculiar clastic quality which an expert fisherman readily understands by the hanaling, but which it is difficult to adequately describe. It was very light, weighing only 8 ouncris, as flexible as a whip thong, and strong enough to land a grampus.
A Competitive Trial of Rock Drilling Machines It has been announced that a trial of apparatus used in quarrying and boring rock will be held at Pittshurgh, Pa., on July 8, 9 and 10 proximo. To this competition, owners and patentees of drilling apparatus, whether worked by hand, compressed air or steam, drilling bits and tools, electric and other fuses, and all other appliances used in rock cutting and mining are invited to send their inventions. Steam power will be furnished gratuitously, and the trials will take place in a quarry, so that, really practical results will be ob tained. These experiments are likely to be of great interest to the coal mining population, to whom the necessity of practical mechanical appliances is one of great importance.
Farther particulars will bo found in our advertising columns.

SCIENTIFIC AND PRACTICAL INFJRMATIGN

THE PROPER MOTION OF PROCYON.

M. Struve, director of the Russian Central Observatory at Pulkowa, has discovered a very small star, at a distance of about two seconds from Procyon. The position which this body occupied during the observations acenrds perfectly with the hypothesis of Dr. Auwers that the irregular movement of Procyon is dus to its movement around some smaller and hitherto unknown companion, through a period of about forty yaars. The mass of this new star, it is con cluded, cannot be less than half that of the sun.
progress of tie st. gotilard tunnel
During the month of March last, the piercing of the St. Gothard tunntl advanced to $806 \cdot 4$ feet. The total number of workm n employed is 813 . Considerable difficuliy has been experienced owing to the preolation of water through the micaceous rock. At one time, the flow averaged 75 quarts per second, greatly delaying the progress of the work.
rusbian observation of transit of venus
The Russian governinent has appropriated 70,000 roubles (about $\$ 55.000$) for observation of the coming transit of Venus. Twenty-four expeditions will bo dispatched to various parts of the globe.

A New blue color.

A new slade of blue of great beauty has been obtained by Springmühi from a secondary product derived from the manufacture of artificial alizarine. The color is consequently ex aracted indirectly from anthracene, produced from tar. It is stated that, under certain conditions, it is superio to the aniline blues, but at present its cost is quite hig'.

casting tee standard meters.

The International Metric Commission, which met in Paris in October last, deci fed that each of the States represented should be supplied with a standard meter made from iridia ted platinum, and that the manufacture of all the bars
should take place at the same time and from one melting of should take place at the same time and from one melting of
the alloy. Before procreding with this estensive and delicate operation, the French section of the commission, to which
onder proceding with this extensive and delicate the work is entrusted, have recently caused to be made two type meters in order to test the processes which will be hereafter employed in forming the standards. M. Deville liav ing succeeded in cbraining iridiated platinum in a perfectly pure state, the fusion and casting of the types recently trok place in his laboratory in presence of the President of the Republic and many other distincuished personages. Nine teen and four fifths lbs. of platinum were, by the action of the osyhydrogen flame, me!ted in 45 minutc:s with $2 \cdot 2 \mathrm{Jls}$. of oxyhy rogen flame, metted in 45 minutcs with $2 \cdot 2$ Jos. of
iridium, the latter, it muy be here remarked, being ly far the least fusible and hardest of the metals which accompany the least fusible and hardest of the metals which accompany
platinum in its hatural state. The ingot was cast in a mold platinum in its hatural state. The ingot was cast in a mold
formed from a block of carbonate of lime. the interior surformed from a block of carbonate of lime. the interior sur-
facs of which was brought to the state of caustic lime under face of which was brought to the state of caustic lime under
the excessive temperature therein developed. By th s means all risk of fissures within was a voided. The metal cooled in the mold, retaining its brilliant surface, after which the bar was suitably roll-d and finished. The nperation was a complete success, and will be repated with the $440 \mathrm{lbs}$. of alloy allurgical process, says L ?s M indes, far exceeding in magnitude anything of similar nature that has yet been attempted with these inalterable meta's.

NEW HORTICUL'TURAL FERTILIZER.

Some time since we called attention to Ω new chemical for tilizer for horticultural purposes, suggested by Dr. Jcani:l of Paris. Les Mondes of recent date, in commenting on re sults obtained by its use, says that it represents the feriiliz ing principles of at least one hundred imes its weight of concentrated animal manure, and supplies to the plants nitrogen, phosphorus, potash, sulphur, and iron in a completely soluble state. The compound consists of 400 parts of nitrate of ammonia; 203 parts biphosphate of ammonia 250 parts nitrate of potash; 50 parts muriate of ammonia ${ }^{61)}$ parts sulphate of lime, and 40 parts sulphate of iron. These ingredients are pulverized and mised. One dram of the powder (about a teaspoonful) is then dissolved in a quart of water and a wineglassful of the solution given two or three times a week, in accordance with the health and lux uriance of the vegetation.
The plants may be placed in any kind of carth, howerer poor, eien pure sand, or may not be potted at all. It is stated that certain flowers, the fuchsia, for example, may be cultivated without earth by simply placing the stalk in a jar, at the bottom of which is an irch or so of water, just suf at the bottom of which is an ir ch or so of water, just suf-
ficient to cover the ends of the roots. To the fluid a yroporficient to cover the ends of the roots. To the fluid a yropor-
tional quartity of the fertilizer is added, as above specified, once in eight days. The foliactous development of plants treated with the substance is said to be truly wonderful, and yet the rapid growth of the leaves does not int rfero with the most luxuriant flowering. To this we may add that quite recently we have tried a compound hastily composed of the majority of the substances above detailed, merely as an experiment, on a small and sickly fuchsia. Tho plant was crooping and little else remained than a half dry stalk. After two applications of the fertilizer, its effect was appar ent, and at the end of ten days, during which probably hulf a pint of solution had been supplied to the earth, new shonts had sprung out, leaves formed, and the entire plant became perfectly loaded down with buds.
T. J. A. says: The Soientific American is the most valuable paper within my knowledge, and I havo rend all
the foremost papers in tho land.

NEW RIFLE ATTACHEENT FOR FOWLING PIECES

We were recently shown, at the store of Messrs. Cooper Harris \& Hodgkins, No. 177 Broadway, in this city, a ver ingenious device whereby an ordinary central fire breech loading, double barreled fowling piece can be at once trans formed into a rife. The appliance, which may be combine with either one or both barrels, is simply an extra barrel, tube, of ateel, rifl within ly fit the interior of the bore, a suitable enlargement at one extremity rendering it conformable to the cartridge chamber. It is pushed into the breech with no more trouble than à ordinary metallic cartridge, and completely lines the barrel from the rear flush to the muzzle.
For sportsmen who desire to travel light, without the extra weight of both fowling piece and rifle, we should think this to be an excellent and convenient arrangement. Its smal size enables it to be readily transported in the field, so that the hunter is provided with a piece, one barrel of which is adapted for shot and the other for ball; or if, while pursuing birds or small animals, he suddenly sights larger game, he can immediately alter his gun from a smooth bore to a single barreled rifle, or, if he has two extra tubes, to a double barreled rifle.

NEW MODE OF CHALR CONSTRUCTION.

We have, in the past, called the attention of our readers to the defective construction of modern household chairs, which, however well seasoned the timber used in their manufacture may be, are rarely durable, or even able to with stand for a short time the ordinary wear and tear of moderate use. The inventor of the device which we illustrate herewith proposes a simple arrangement which, he claims, adds greatly to the strength of the piece of furniture through disposing the material so as to provide for opposing the strains in the most effective manner possible. The most de structive of these strains occurs when the chair is tilted back by a heavy occupant. The tendency is for the seat and back legs to close or form a more acute angle, and for the seat and fore legs to open or form a more obtuse angle, as also for the fore legs to withdraw from the seat

These tendencies hedirectly opposes by introducinga brace, counterbrace, and tie; and in order that one shall assist the others, these various parts are embodied in light and handsome metallic trussings, which, at the angles, are let into and attached to the rails and legs of the chair by means of bolts or heavy screws, as shown in our illustration.
Very light castings, thus applied, securely hold the articles together, and give permanent stiffness and strength to the lightest chairs. These castings, of malleable iron, may be made plain or ornamental, japanned, silvered, or gilded, and are applicable to the cheapest as well as to the most costly chairs. Patented March 18, 1873. For further particulars ly chairs. Patented March 18, 1873. For further pa
address G. F. Ells, Deposit, Delaware county, N. Y.

Miller's Combination Sprinkier

Messrs. Underhill \& Miller, of No. 183 Water street, this city, manufacture an improved form of combination sprink ler, which is excellently adapted for farm uses. The implement consists of a large syringe provided with a one-sided spout full of small holes on the upper side, through which a liquid, destructive to noxious insects, can be thrown in a liquid, destructive to noxious insects, can be thrown in spray on the under side of the leaves of plants. The sprinkling spout can be easily detached and straight pipes of various sizes substituted in order to fit the device for use as a syringe for cattle or ordinary medical purposes. All the appliances are packed in a neat case, and are accompanied by packages of Miller's compounds for trees and plants and also for veterinary uses. We have used the apparatus and can recommend it to those of our readers who may havegardens to cultivate and cattle to care for.

Professor Cryni, of Brussels, and others, have found favorable results from the administration of large doscs of iodide of potassium in the second stages of Bright's disease.

BLACKING BOX.

Our illustrations represent an improved form of blacking box, affording both perspective (Fig. 1) and sectional (Fig. 2) views. It will be noticed that the receptacle for the black ing is made saucer-shaped, the rounded bottom allowing all of the composition to be used The sides are vertical, extending down from the upper edge to form a support for the box and also to receive the cover which fits over the uppe flanged portion, as shown.

Fig. 2

The advantages claimed are economy in the use of black ing, none being wasted by caking in sharp corners, ready re moval or affixing of the cover, and the absence of rough or harp edges which cut the brush. Patented July 11, 1871 For further particulars address the inventor, Mr. Dennis O'Leary, Hubbard, Trumbull county, Ohio.

CARRE'S ELECTRICAL MACHINE.

This machine consists of an arrangement by which a cur rent of electricity is derived from a combination similar to he electrophorus.
A is the base of wood or metal, $1 \frac{1}{2}$ inches thick and 16 inches aquare. B and C are two round pillars of wood (or ebonite) B being 10 inches and C 17 inches long; they are both 2 nches in diameter. These pillars pass through the base and have nuts below to fix them securely. E is a round ebonite (or glass) rod, $1 \frac{1}{4}$ inches in diameter and 16 inche long + the piece of it screwed into B. The rod, D, is of glass or ebonite, 8 inches long, and the same diameter as the other, with a piece 1 inch long at the lower end fitted with cement into C, and a piece $2 \frac{1}{2}$ inches long at the upper end going up into the prime conductor, F. The conductor is a cylinder of tin plate lacquered black, with two brass spheric al ends filted into it, one of which has a pipe soldered into it, up which the end of the glass rod, D, goes and fits tight. The rod, E, has a hole, tapped with a screw thread in the upper end, and a screw is put down from inside the conduct or into this, and secures the conductor to the rod.
1 and 2 are disks of ebonite- 1 being 12 inches and 2 being 18 inches in diameter. They are fixed to the axes 4 and 3 espectively. 4 is turned by the pulley wheel and handle 5 and this pulley wheel drives 2 at a rate six times as fast a 4 goes round. The rate of the upper disk may be more than this, but should not be less. The lower disk is $\frac{1}{8}$ inch thick, the upper one a full $\frac{1}{16}$. The axes are of wood, with brass fittings at the ends.
The band in the figure is represented as crossed, but it is no matter which way 2 turns. At G is a collar of brass, with a pinching screw to hold it on the rod, E , and this collar carries the pin at the end of the axle 3, on which it turns. H is a brass pipe carried by a similar collar, and carrying the comb for collecting the electricity as near as possible to the surface of 2 ; at the other end is a bell, K, capable of rota-

ting stiffly on its axis, carrying the brass wire, J, with a bal at the top, which can be thus made to touch the conductor or be fixed at any distance from it. At I is a comb attached to the conductor; and on the other side at 0 a piece of ebonite, about $2 \frac{1}{2}$ inches long and 1 inch wide, is attached to the conductor parallel with the disk 2, and having on the side next the disk a piece of varnished paper cemented to it with four or five points cut on the edge of the paper, which is somewhat wider on one side than the ebonite plate, so that
these points are projecting in the direction in which the disk is turning. A correspondent says that he put this apparatus to his instrument as a matter of faith : it seems to work as well without it, and he does not in the least understand what its office is. Lastly, at $L L$ is the rubber, consisting of two cushions, which clasp the disk 1 closely, and are supported by two thin wooden springs, L L, fastened to a block of vood at the bottom, which slides on and off on a dovetail fixed to the base A. The cushions are covered with thin leather, stuffed with horsehair; and the amalgam is bisulphuret of tin, called aurum musioum, rubbed on the cushions. The disks overlap by 4 inches, and run as close together as possible. The disks should be carefully selected, without winding or buckles in them. When the machirg is in action, the comb at H is connected with the ground bjea chain, and the ball at the top of J is brought away from the conductor till the striking distance is attained. This machine gives from 3 to 5 inch sparks easily and in torrents, with a condenser showing a square foot of surface. One or two of the sparks showing a square foot of surface. One or two of the sparks
are enough for most people. There is a necessity for occaare enough for most people. There is a necessity for occa-
sionally washing the disks, first with fluid magnesia and then sionally washing the disks, first with fluid magnesia and then
with paraffin, as the ozone appears to turn the sulphur of with paraffin, as the ozone appears to turn the sulphur of
the ebonite into a coating of sulphuric acid, which attracts moisture. This would be avoided by glass discs, but they produce much more friction. A piece of Bristol board well dried, and when well dry well coated with shellac, might be tried for the disk 2. If glass rods are used for E and D, they should be coated with shellac, as the machine is much inclined to blow and leak everywhere.
The above, from the English Mechanic, will inform those of our correspondents, who have asked for descriptions of the construction of an clectrical machine, how they may make a good instrument

TOBACCO HANGER

Green tobacco is suspended in the drying house by lashing the stalks to horizontal poles with twine, an operation requiring some skill, necessitating waste of cord, and often causing injury to the leaves. Dr. Frank C. Johnson, of Brooklyn, N. Y., in order to improve upon this system, has recently patented a simple and ingenious invention, illustrated herewith, which will doubtless find ready appreciation

among all cultivators of the nicotian weed. The butt end of each stalk is passed through an oval metal ring, Fig. 1, n the inner side of which are formed a number of notche and two spurs. By the means shown in Fig. 2, the plant is then suspended to a hook or nail, its own weight crowding it against the sharp projections, which firmly hold it. To re move the stalk when the tobacco is dry, it is only necessary to lift it and crowd it to the side of the ring opposite the two spurs, when it will readily pass out of the holder. Patented August 27, 1872.

How Deltas are Formed

It appears from the observations of Mr. David Robertson, F. G. S., that in fresh water particles of clay were held suspended for a long time before wholly subsiding, while salt water, or a mixture of salt and fresh, became comparatively clear in the course of a few hours. The results showed clear in the course of a few hours. The results showed
that water only slightly brackish had a great power in precipitating the clay, and from this he concluded that the great bulk of the clay carried down in solution by rivers must be deposited before it could reach any great distance from the seashore. This may throw some light on the for mation of deltas, and on the silting up of river courses within the influence of the tides. It may also assist in determining how far the glacial mud, for example, could be carried into the seas by tides and currents.

New Mode of Preparing Animal Manures.-Coigne purposes to treat animal refuse of all kinds with super heated steam to effect its conversion into manure withou nuisance. He is convinced that this will be the best method of treating the offal of the slaughtered oxen or the I_{3} a Plata.

STRAW-BURNING PORTABLE ENGINE

The main obstacle to the employment of steam to any great extent, in the agricultural operations carried on over the great prairies of the West, is the difficulty of obtaining fuel. Forests are scarce, and from this are made the objects of preservation rather than depletion, while the high freights, and consequent expense of coal materially diminish the economical advantages of steam. It was for this reason that corn has recently been burned as fuel, the staple, owing to the excessive transportation charges to the Eastern markets, being cheaper to use for such purposes than either coal or wood. Inview of the above facts the importance of the invention represented in our engra vings, for which we are indebted to Engineering, will be widely apprecia ted, more especially when we add tha it furnishes a means of empioying straw, corn stalks, reeds, and similar vegetable matters, which abound in enormous abundance in our Western States, as a valuable and effective fuel capable of generating sufficient heat to keep up steam in a boiler
The principalideas of the device were conceived by Mr. Schernioth, a Russian engineer, who communicated his plan to Messrs. Ransomes, Sims, and Head to Messis. Ransomes, Sins, and Head of Ipswich, England. This firm, add Engineering, " after fifteen months of continued trial, have at last produced the most perfect engine yet invented for burning straw or other vegetable products."
In some of the early experiments much trouble was experienced in obtaining sufficient atmospheric air through the bottom of the fire box, owing to a deposit of silicious matter which covered the bars with a sort of clinker; and after trying various schemes, the following simple method was found to be the most practical: The bars are placed about 4 inches apart, and are placed about 4 inches apart, and beting about in kint projecting about $2 \frac{1}{2}$ inches above them. sliding is attach a cross ba sliding on two guides under the grate one end of this bar terminating in a long handie extending beyond the ash pan. When the bars require to be cleaned, the fireman moves the knives backwards and forwards, giving them, at the same time, a side action, which cuts out the clinkers, these falling into the ash pan, where they are immediately quenched by a jet of cold water from the feed pump, thus avoiding any danger from the escape of the burning ashes in cases of windy weather
The apparatus for feeding the engine consists of rollers, which force the straw in so that each separate piece comes under the action of the flame. It is self-acting, and driven by means of a strap, and steam may be got up in the same way as with any other combustible, by attaching a handle to the feeding rollers and turning them by hand instead of by steam power. One man only is necessary to feed the straw into the engine, provided the material is brought to him and placed alongside the feeding trough. Theaverage consumption is about four to five times the weight of coal; and according to experiments made obout ten to twelve made, about ten to twelve sheaves of straw are required to thrash one hundred sheaves
of wheat. of wheat.
The engine represented is an ordinary 10 horse power portable, except that it is provided with a larger fire box than is used for coal burning, and that the tubes are of slightly smaller diameter than those ordinarily employed. The straw-burning apparatus is constructed precisely as shown by our engraving, and the straw is burnt in its natural condition, and not subject ed to any artificial eess On first lighting process. On first lighting up, the rollers have, of course, to be turned by hand to feed the straw into the fire box, but this is very light labor and can easily be performed by a boy. On the occasion of a trial, detailed in our cotemporary, in thirty-two minutes from applying a light, the steam had got up to 20 lbs. pressure, and the steam jet in the chimney was then opened. Jn eight minutes more, or forty minutes from lighting up, the steam pressure had reached 31 lbs ., and the engine was then started, the steam jet being shut off and the belt put on to drive the straw-feeding rollers. The steam pressure then began to rise rapidly ; and in fifty-one minutes from lighting up, pressure of 60 lbs. was reached. Subsequently, the pressur
was raised to 70 lbs. , and a brake, applied to the fly wheel, was loaded so as to cause the engine to develope 20 effective horse power, the speed being 140 revolutions per minute. With this load steam was maintained steadily and with the utmost ease, the whole of the arrangements working admirably. The combustion of the straw was thorough and com plete, only a few stray particles of unburnt material occasionally finding their way into the ash pan, while, by an occasional use of the rake or knives already mentioned, the grate bars were readily kept clear The water jets in the
straw back into the ash pan, and j is a wooden trough to contain the straw which is to be fed into the furnace, and which can be removed when the engine is traveling. The whole apparatus swings on a hinge, k, and can be taken off in a few minutes, and the ordinary fire door substituted when coal or wood is burned.
This is without doubt one of the most important steps that has been made in the construction of portable steam engine since their introduction, as they can now be used in any coun try where vegetable produce can be raised, instead of, as heretofore being practically restricted to those countries where coal or wood can be procured.

Trial of the New Elestric Light Machinery at the House o Commons.
Gramme's magneto-electric machin has bcen now for several months before the public, and the effects obtained says Engineering, have been of such a nature as to confirm our statement that scientifically and practically, it is on of the great inventions of the age.
The essential requisite for the pro duction of electric light is that the machine evolve a current of considera ble quantity and tension, for experi ment proves that the most effective ar rangement for illuminating purposes is neither quantity nor tension alone, but a combination of both, which may be easily obtained by paying due attention to the gage and length of the wire, the connection of the bobbins, and the spee with which they are driven. In the present case, the velocity need not ex ceed a maximum of 350 revolutions per minute.
Such a moderate rate obviates the great inconveniences caused in othe machines by the overheating of the ar matures. This is the great drawback in Ladd's and Wilde's apparatus, whic in other respects are admirable piece f workmanhip and skill Practical y this advantag y this advantage appears to us to be of as much importance as the distinguish ing feature of the Gramme itself, name ly, the absolute continuity of the cur rent and its uniformity of direction This development of heat eauses no only mechanical inconveniences, but also, by raising the temperature of the conductors, it increases the resistanc and thus diminishes the strength of the
STRAW-BƯRNING PORTABLE ENGINE.
ash par1 also thoroughly fulfilled their purpose of preventing ignited particles from flying about-an important matter where thrashing is going on-and altogether the trial was a most satisfactory one in all respects.
One of the illustrations which we give represents a per spective view of one of these engines getting up steam, showing the position of one man feeding and the other turning the rollers by hand. The other engraving consists of a section of the fire box. In these views, $a a$ are toothed rollers tion of the fire box. In these views, $a a$ are toothed rollers
fitted with malleable teeth, and connected with the engine
 current. Now the heat developed in the Gramme machin becomes perceptible only when the work to be done is no proportional to the current generated. But as the electro-mo tive force varies with the rapidity of rotation, it is evident that the latter may be regulated to suit the requirements of the case. By attending to this, little or no heat may appea in the coils, and a very large fraction of the power expended may be converted into useful work. On the night of May 25 , we had the opportunity of examining the apparatus on the clock tower; the spoed was only 300 revolutions per mi nute. The machine is in theen gine rcom under the peers' lob by; the interpolar wires ar bracketed to the walls from which they are insulated by passing through the space be tween V shaped pieces of ebonite. The wires are no covered, insulation from the air being deemed unnecessary They are carried from the en gine room to the lantern of the tower, a distance of 900
feet; consequently three times feet; consequently three times
that of the Foreland, and the greatest distance, we believe the terminals of an electric light generator have as yet been carried. The gage used is the 000 B . W. G., or 425 of an inch in diameter. The in tensity of the light on the 25 th of May was equal to 8,000 can dles. Very dark glasses wer required to look ai the lantern even from a considerable dis tance. The beam, as it sho through the air, reminded on of the lustrous silvery appear ance of the tail of the come
by means of a pulley, b, driven by a strap from the crank shaft. These rollers make 48 revolutions per minute, and can be turned by hand when getting up steam. The movable sliding blunt knives or rake, $c c$, attached to a crossbar; d, slide on guides, $e e$, below the grate, as already explained. This rake can be moved with a forward and side motion by he stoker by means of the handle, f, thus breaking up the ilicious crust deposited on the grate bars, g, while a perfo ing ashes. h, is provided for injecting water upon the
of 1858 when in perihelion. At the place illumined by the beam, objects could be seen, and books and letters read with as much ease as in solar lizht, allowance being made for the mellowness of the one and the brilliant argent color of the other. At Trafalgar square, a very black shadow of the pil ar was cast over the National Gallery; at the Duke of York's column, a very pleasing effect was produced by the sharp and well defined shadows cast by the trees and their foliage At these two places, we endeavored to realize the difference between the electric light and that emitted also from the
ciock tower by the 300 gas burners of Mr. Wigham, enhanced by the most claborate optical aids; and we must say that the contrast was indeed very striking, a few minutes having elapsed before we wert abe to discover the path o the beam projected by the latter. In the immediate vicinity of the Houses, Mr. Wigham's light is very softand pleasing to the eye; but at a distance, by no mrans considerable, it is scarcely visible. Perhaps the proximity of the electric light may contribute to diminish its splendor; if so, the results are all the more in favor of the new machine
The carbon prints are eight inches long and half an inch in thickness. They last for about four or five hours, and theu require to be eplaced.

Currcspoulence.

To the Editor of the Scientific American:

In company with Professor Garth and Messrs. Willcox and Green, the undersigned made a second visit to the recently discovered corundum mine, near Unionville, Chester county, Pa. Tiue proprietors, Messrs. Ball, Chandler \& Perrey, are now engaged in mining the corundum and preparing it for the market. For the latter purpose, they have erected the appropriate machinery to reduce the corundum to powders of appropriate machinery to red uce the corundum to porvders of
various degrees of fineness. In the reduced state, it has a various degrees of fineness. In the reduced state, it
nearly white appearance and looks exceedingly clean.
nearly white appearance and looks exceedingly clean.
The mine in its present state exhibits a good exposure of the nearly vertical $b=d$ of corundum. A deep excavation exposes a breast of almost fourteen feet in width, disappearing east and wost beneath t'se superincumbont gravel and clay on the sid-s of the pit. The crest of the bed, upon which the corundum is being removed by blasting, is about five and a Lall feet in thickness. It is of course impossible to estimate the extent of the bed of corundum. It probably extends along the breadth of the hill, but may reach in depth for miny hundred feet. I'rofessor Garth has rrcently been investigating the corundum and the associated minerals of this mise and those of North Carolina; and he will shortly present us with a highly interesting and valuable communi present us with a highly interesting and valuable communi-
cation on the subject.
Joserf Leidy.
Remaris by the Editor.-Corundum, it will be remembered, is the substance chemi ally known as alumina, which is an oxide ot aluminum, being composed of two parts ol the metal aluminum and three parts of osygen gas. An impure variety of corundum or alumina is known as emery, while the purer varieties rank among the precious stones, known as the ruby and the sapphire. Corundum starde nest to by cur creapondent aru ostensively used in the arts for polishing and grinding purposes.

The Chlorodizing from Rofractory or Extracting Silver

To the Editor of the Scieritific American:
I forward you a specimen of refractory silver ore (from the Gilpin mine noar Georgetown, Col), containingargentiferous galena, sulphuret of silver, black sulphide of silver, green carbonate of copper, covellirie, copper pyrites, marcasite and zinc blende.
Enclosed you will find a sample of amalgam obtained from the saine grade of ore (mineral from the same vein.) It wire worked on a largo scale, one tun and a half at a time, by the chloridizing process, and afterivards amalgamated at a cost (here) not exceeding ten dollars per tun, the mineral being delivered at the reduction works.
The specimen of retorted silver is from the same amalgum, and is over 021) fine, a quality which I believe hits never before been produced in the United Stutes, especially from rufrac tory ore, exc ${ }^{\circ}$ pt by John N. Palmer, Jr., who, in compans with your humble servant, worked the ore above referred t). The ore was chloridizell to 91_{i} per cent.
As much has bren said about the impossibility of amal gamating refractory ores of Colorado, I forward yo 1 the samples so that you may examine them and test them for the benefit of science; und, if you consider this article
worthy of publicity iu the columns of your illustrious paper, worthy of publicity iu the columns of your illust
please insert the facts after having t-sted them.
Georgetown, Col. Percival Stockman.
Remaris by the Editor.-This result evinces considerable prorress in American metallurgy. A iow bullion of
from 303 to 500 fine used to be an ordinary result. The from iximum chlorination by the Scetefeldt furnace is $92 \frac{1}{2}$, or two per cent less than by M.ssirs. Palmer and Stockman.

The Retardation of the Earth's Rotation by rides. The Retardation of the Earth's is
Tho the Elitor of the Scientific ${ }^{\text {Imerican: }}$
Having given John Hepburn, in your number for June 14, permission to ventilate his reasons for holding that the tidal movements cannot influence the earch's rotary motion, pleave allow me to show why he should change his mind straightway.
Le'. us suppose that, in the course of a year, the tro great tide waves make tivelve revolutions, in direct order, that is, from W. to E : also, thit the earth rotates, in the same time and direction, 365 times. It is evident that the earth gains upon the tides over 350 revolutions; which is plainly the same thing, in all its mechanical effects, as if the tides stood still and the earth rutated brtwren them 350 times. And we have here an exact picture of a rotating wheel, to whicb a brake is applied and held in position by some external porvar.
I supposes it is well kaown that the slow retardation o! the earth's diurnal motion is an established fact in astronomy. If J. H. will station himself at the opposite celestial pole If J. H. will station himself at the oplosite celestial po
perhaps he can faror us with an explanation of this fact.

Obthoduz

AICJHOL FROM FLINT AND QUARTZ.

 Regeyt lecture brforz fhe rovalpropissor ramrson reynolds, m. d.
Carbon has hitheito been considered the sole alcohol form ing element; but the chief constituent of flint and quartz namely, silicon, must now be admitted to share in this power, and likewise in the ability to form other remarkaiole compounds. I have here a quantity of finely divided fliat mixed with some powdered fluor spar; when I pour o:l of vitriol on the m:xture, and apply heat, a colorless gas is obvitriol on the m.xture, and apply heat, a colorless gas is ob-
tained, which, when passed into water, produces a highly tained, which, when passed into water, produces a highly
acid and gelatinous liquid. The gas is a compound of the element fluorine with silicon-the tetrafluoride of siliconand this, when brought in conlact with water, produces an acid called hydrofluosilıcic and a quantity of gelatinous
lydrate of silica. hydrate of silica.
The clear acid liquid, when treated with caustic soda yiclds this white salt, the fluosilicate of sodium, from which we directly obtain the silicon, as you see, by simply heating with some metallic sodium. In this case the sodium replaces the silicon, the latter scparati
tube as a daik brown substance
Unlike carbon, silicon in any of its forms easily combines directly with chlorine, producing the liquid chloride which I have in this tube. This is a very volatile body, boiling at $50^{\circ} \mathrm{C}$, and is half as heary again as water. It can also be prepared from silica by heating to full redness the finely di-
vided oxide and carbon in a current of chlorine. In compovided oxide and carbon in a current of chlorine. In compoposition, this chlor
chloride of carbon.

We can easily obtain the impure gas by Wöhler's method, in treating a compound of silicon and magnesium with hydrochloric acid. We thus obtain a colorless, spoutaneously inflammable gas, which burns with a bright light on contact with the air. In its pure condition, siliciuretted hydrogen is not spontaneously rombustible at ordinary pressure, but in a slightly rarefied atmosphere it easily inflames.
The siliciuretted bydrogen is evidently the chemical ana ogue of marsh gas, the tetrabydride of carbon.
It is usual to regard marsh gas as the typical carbon com. pound from which some alcoholic series may be supposed to pring, and, in fact, all the alcohols belonging to tite group pring, and, in fact, all the alcohols belonging to t.je group
of whicis the well known wood spirit and spirit of wine are of whicis the well known wood spirit and spirit of wine are
the chief members are commonly regarded as derivatives the chief members are commonly regarded as derivatives
of marsh gas, in which a part of or all the hydrogen has J3en replaced by one or more compound radicals, such as hydroxyl, methyl, etliyl, propyl, etc.
In these cases the carbon of the marsh gas is the grouping element of the compound, or that constituent which serves to bind together the different materials of which the molecular edifice is constructed. In the same way, the silicon in silicisretted hydrogen may be siown to be the nucleus round whi $\cdot \mathrm{h}$ can be grouped hydroxyl, methyl, etc., so as to form the alcohols I shall presently have to refer to.
In 1857 Buff and Wöhler obtained a volatile fun.ing liguid on heating crystalline silicon nearly to redness in a curre:it of dry hydrochloric acid gas. The precise naturs of this of dry hydrochloric acid gas. The precise naturs of this
liquid was unknown until 1871, when Friedel and Crafts liquid was unknown until 1871, when Friedel and Crafts
published the results of their admirable researches upon published the results of their admirable researches upon
Buff and Wöhler's liquid, and showed that it was a mixture Buff and Wöhler's liquid, and showved that it was a mixture
of chloride of silicon with a new body, which proved to be of chloride of silicon with a new body, which proved to be
the strict chemical analogue of our well known chloroform, silicon re! lacing carbon.
$\mathrm{SiHCl}^{3} \quad$ Clioroform. CHCl^{3}.
This body is a color:ess, mobile, and rery volatile liquid coling at $35^{\circ} \mathrm{C}$. I have a quartity of it in this tube. One of its most remarkable properties is that of exploding with great fuciity when its rapor is mised with air. If I pass the vapor of silicon chloroform into water nearly ice cold, a white solid boùy is obtained without any evolution of hydrogon, and an acid liquid produced. The white so'id then collected, washed, and dried at a low temperature, forms a white in tirmmable powder, which was first described by Buff and Wölher. Friedel and Ladenburg have shown that this re markable body is the anhydride of the silico-formic acid. According to the results of my own investigations, the acid liguid to which I referred just now contains. in addition to hydr.chloric acid, the true silico.formic acid-a body possissing ncarly as energetic reducing properties as the corresponding acid derived from wood spirit.
Starting from silicon chloroform, then, we have been led, by analogical reasoning in the first instance, to infer the existence of a simple silicon alcohol precisely corresponding to wood spirit. On testing this induction by experiment, we hare obtained answers which are, so far as they go, altogether facorable to the view just stated.
In the course of their elaborate and able investigation of silicon compoundis, Friedel and Crafts discovered that chloride of silicon casily acts upon common alcohoi, produciug a body which Friedel and Ladenburg have recently shown to be easily attacked by a mixture of sodium with a curious
substance c matained in this tub:-zinc ethyl. The product, substance c matained in this tube-zinc ethyl. The product,
when treated with caustic potash, yields a budy which bears the same relation to silico propyl alcohol that formic acid does to wood spirit.
This silico-propionic acid is in this tube,and is a white.combustible powler, like the silico formic-anhydride. It is soluble in warm caustic potash, but not in caustic soda; by which character it can bu distinguished from silica. It is lution, and in the pure state, by Professor Graham's valua ble dialytic procrss.
When chloride of silicon acts apon absolute alcohol a body is obtained which, on treatment with zinc ethyl and sodium, yields an ethereal product from which silico-propi onic acid can be obtained by treatment with caustic potash.

If, however, instead of using the caustic alkali we continuc the actiou of zinc etbyl and sodium, decompose the products with watur in staled tules, and distil, a liquid is obtained which contains one of the "alcohols from flint" we are in search of. In this tubs I have a mmall quantity of the alco hol. It is tie silico-lh-ptyl alcoliol, precisely corresponding to a simple carbon alcotiol recently discovered by Natape tian, both being tertiary alcohols. We owe to Ladenburg the discovery of this lowest known term of alcohols containing silicon. As you can observe, it is a colorless liquid, not unlike the ordinary alcohol of wine. It is insolu ble in water, but easily dissolved by spirit and ether. Chemically it acts just like any of the other alcohols, produc ing ethers, and dissolving the al!:ali metals to form sodium or potassium alcoholates. When common spisit burns, you are aware that its flame is neally colorless, but I shall now burn some of our alcohol from tlint, and you will fiad, particularly when wo feed the flame with oxygen, that a bright light is emittcd.
Clearly defined though this alcohol is, it does not stand alone, for at least one other compound of the same order is known. It was suggested in 18i0, by Friedel and Cratts, that silicon ethide-a body easily prepared by the ac.ion of chloride of silicon on zinc ethide-might be r.garded as tue hydride of silico nonyl, and should stand in the same rulation to an alcohol that marsh gas does to common wood spirit, or ethyl hydride to ordinary alcohol. This liappy iden, when put to the test of experiment, was fully justified by the result, for on treating silicon ethide in essentially the same manner that we should adopt in preparing wood spirit from marsh gas, a colorless Iqguid, lighter than, and ineılu ble in, water is obtained. The boiling point of this boily is $190^{\circ} \mathrm{C}$. It yields an ether with acetic acid, dissulves sodiun, forming an alcololate, and, in fact, conforms to the gencral habits of the alcohols of the series to which common spirit belongs. It is precisely similar to the nonyl alcohol prepared by Pclouzs and Cahours from American petrolcum.
Ladenburgh has very recently adranced even beyond the point we have now reached, and has shown that the chlorido of silicon can be made to yield t wo (thers, which corre pond, as I may suggest, to silico nonyl diatomic and triatomic alcohols.
In all the preceding compounds but one atom of silicon is present, and though the silicon in these cases occupies the chief position as the grouping element, we should much like to see silicon uniting with silicon and forming a more condensed compound with hydrogen. Happily, however; very important evidence, even upon this point. is forthcoming, for Friedel aud Ladenburg have discovered corresponc.ing hera-chloride, iodide, and bromide of silicon, and treatment of the hexa iodıde with zinc ethyl enables us to obtain the ethide.
It is not improbable that, in the last named compound, we have the sta!ting point of a new series of still more com. plex bodies, analogous to derivatives of olefiant gas rather han to those of marsh gas.
A rich and beautiful field for chemical research appears to lie $b+$ fore us in tracing out the analogies between the compounds of carbon and silicon, and recognizing the chemical representatives of many of the most complex " organic com-
pounds" in the native silicates which form so large a part of the crust of this carth.
The practical value of scientific research is rarely apparent at first. Who could have susprcted that the benzole dis covered by the venerable philosopher whose name is so ir. separably connected with this institution, would have proved, in the all llands of Perkin and of Hoffman, the chief souico of many of the exquisite dyes now largely manufactured in this country? Yet in this, as in a hundred of other instances, the small and apparently uzeless scientific secdling has gradually expanded into the strong tree, yielding its rich store of useful fruit. Let us hope that a s milar future avaits some of the alcohols from tlint which have been 15 ferred to, and that, in pursuing our studies of the silicon analogues of the more comples. carbon compounds, we may be led to appreciate more fully than we lave hitherto dono the admirable economy and harmnny of Nature.

Booming.
" Booming" is the name of an operation with which pro bably our Eastern readers are not generally familiar. Hence we extract, from the columns of the Minin! Rerico, an ex planation of the process as practised by the miners of Colorado. Booms are built and run for two purposes: the discovery of reins hidden uncier the deep slopes of the mountain sides and the working of gold placirs on a large scale.
The reservoir is first constructed at the head of the ground to be worked; into thi s water is conducted, from the most convenient source still ligher up, by flumes or ditcher These reservoirs vary in size from a small pond to an acre or two lake, and ihe ditches are often eight, ten, and twelve miles long. When the basin is full, and a continuous liead of water is in running operation, gates are opened, letting loose the whole volume of the liquid, which tears down the mountain side in a huge volume, sweeping everything beforo it, carrying tuns of boulders, gravel, and dirt down to the gulch below. If auriferous ground is to be worked, a long and massive wooden flume is built at the foot of the hill, into which the débris is carried, with all the force of the falling waters and the sand and rocks washed along in its cour: 0 while the gold is deposited by its own gravity, bethind the riffles in the bottom of the race. These flumes are often thousands of fwet long, and as rocks of all sizes and weights are carried along in them, they must be built with great angth a ind solidity, to withstand the immense wear.
If it is the objcict, however, morcly to uncover the veins of
which no trace can be found by scientific prospecting, no which no trace can be found by scientinc prospecting, no
flume is built in the gulch, but the water allowed to take its own course. On its way down the mountain side, it cuts out a huge trough from 20 to 50 feet wide; and if the operation is prosecuted with vigor and plenty of cash,the bed rock is reached and swept clean from top to bottom, and a huge delta of mud, rocks and clay left in the valley below. The water is then shut off, and the owners of the boom examine the clean rock and elaim all the veins exposed.

sanitary notes --sewerage and sewage.

It is no exaggeration to say that the problem of the con
ersion of the excremental waste of towns aad people and version of the excremental waste of towns and people and the refuse of factories into useful materials is now engaging as much of the attention of intelligent minds throughout the world as any social question. The English press is burdened with publications on this generai subject. Chemi:ts, farm. ers, political economists, ergineers, and physicians are all at work upon it. Costly experiments are being constantly made to test the worth of the various proposed plans. Stock made to test the worth of the various pruposed plans. Stock
companies are formed, whose business is first to make money for themselves at any rate, and, secondly, to bencfit the rest of the world by their ventures. From all this excitement we ought to derive much useful information, and, from the experience ; ained in foreign countries, gather knowledge which may be turned to practical account in solving a prob lem which, in the natural course of the country's growth. must eventually bo forced upon us. In briefly considering the tubjict, we draw for our facts upon the recent report of the State Board of Health of Massachusetts, and premise by explaining what is meant by the words
"semer," "sewerage," and "sewage."
The last two are often confounded; bat they signify quite different things. A sencer is an underground passage for the conveyance of water, filth and fluid, or half fluid, refuse emp tied into it from the smaller drains from houses, factories, and streets. Ssxecrage is a system of sewers or subterranean conduits, and the word refers only to these works or constructions, while serage is the material which is or may be convesed in sewers. Puilic health requires that the foul fluids, half solids and solids, resulting from human excretion from the waste of food, from washing, and from the refuse of various manufactures, shall be either speedily removed from among the living, or that the character of these mate rials shall be so changed that they will not underjo decay Wetting rid of this nosious waste; and second, how to utilize getting rid of this nosious waste; and second, how to utilize
its valuable properties after we have provided for its reits valuable properties after we have provided for its re-
moval. For merely disposing of human refuse, there are two principal systems to which we shall allude. The first is the

dry earth aystem

Abundant experience has shown, and in these columns we have repeatedly explained the fact, that earth (not gravel or sand). when carufully dried so that it has lost all cohe rence or stickiness, and has become a powder, possesses th power of absorbing and reducing to an inodorous form the excretions of the human body, provided it be applied in quantitios so as to completely cover and absorb all fluidity
thereof. The mass may be removed at convenient times and thereof. The mass may be removed at convenient times and
seasons and used immediately as a fertilizer for land, or it seasons and used immediately as a fertilizer for land, or it
my be dried and employed many times without giving of any offensive odor. Similarly, dry ash of hard coal o antluracite may bs used instead of earth.
In densely populated cities and towns there are difficulties inherent in this system which will render its general use impracticable. If it is intended to absorb both the solid and fluid excretions of the human body (and the latter contain far more fertilizing material than the former), four or five pounds of dry earth must be supplied daily for each indiidual. Thus, in a city of 100,000 people, 250 tuns must be brought in every day from the surrourding country, and a somewhat larger amount carried out. And this must be divided among some 10,000 different houses, each of which raust be carefully provided for. At the prosent high price on labor, it is evident that, financially, such operations are ou of the question. The case, however, is altogether different with country houses with land from which the earth may be taken and to which it may be profitably returned. Here the wells will be protected from fouling, the stench of unsightly outhouses prevented, and the annoyance occasioned by frost obviated. In prisons and large establishments where labor is cheap, and possibly in boarding schuols, the system may also bè advantageously applied. Without 1 roceeding furtber into a subject which we have already fully treated both in theory and practically, by illustrating and describing the many excellent inventions which have been introduced for its application, we proceed to the second systematic mettoo of disposing of human excretion known as the.

iter carkage hisua.

This is by the underground drains and sewers which al compactly built towns are obliged to have in order to get rid of the surface water falling as rain, and also for drainage of the soil. With these sewers, by means of water closets, baths, etc., the interior of dwellings are brought into close connection. Consequently, whatever gases are contained in these underground passages seek to diffuse themselves throagh the buildings. These gases are dangerous to henlth, though what the specially noxious element in them is, no one
can define. can define.
The sensible properties of sewer air are quite remarkable. It is by no means footid, as many people suppose, neither is
it pungent or ammoniacal. It is rather ncgative in charac. ter, faint in odor, mawkish, smolling perhaps, more like soap than any other familiar sabstanco. This air frequent
ly escapes into houses, diffusing a virulent poison and carrying with it the seeds of disease; it is subject to pressure trom sudden influx of water in rainstorms, and in sea board towns by the action of the tide. It is also caused to rise from the difference of temperature of the house and sewer; and unless the joinings of the soil pipes are perfect, and have not become leaky through contraction and expansion, it is forced out and quickly spreads through the dwelling. Defective traps and similar imperfections in the plumbing also form free vents. For these reasons, it is best to give
the whole draiuge plan of the house the freest possible the whole draiLage plan of the house the freest possible communisation with the outer air at a p pint so elevated that
the sewer gases cannot fail to be diffused and got rid of. This the sewer gases cannot fail to be diffused and got rid of. This
can readily be done, while building, by carrying the soil pipe, made of iron, ac full size, through the roof, and leav. ing it open like a chimney. By this arrangement all stag. nation is prevented; the contents of the house drains are constantly exposed to the oxidizing and purifying intluence of currents of air; when rain conductors are filled with water, there is still free escape for the sewer gases; and the water traps throughout the house arerelieved from pressure both of the pent up sewer air on the one side, and of suc tion or atmospheric pressure on the other. In the houses
already built, a lead pipe may be readily cerried from the highest point of the soil pipe directly through the roof but the larger the pipe and the straighter its course, the better.
the treatment and value of sewage.
Experience having shown that the best method of getting rid of excrotal and other matters is by the water carriage system, the question arises what shall be done with the sewage. As we have above intimated, many and various plans have been proposed, from which the conclusion may bility to an extent that it may be discharged into running bility to an extent that it may be discharged into running
streams without vitiating the water to any extent other than streams without vitiating the water to any extent other than
to unfit it for drinking purposes. The writer of the report before us qualifies this view, however, with the opinion tha no process has yet been proposed which, :nless in excep iocal cases, renders the purification an operation of real profit, although it may be conducted so that there shall be some pecuniary return. Before entrring upon the description of some of the priucipal plans, it may not be anniss to add a word as to the value of this waste material The value of the annual voidings of an average individual is, by competent authority, estimsted at from $\$ 1.61$ to $\$. .01$. The alue assigned to "average" sewage by the English Rivers Pollution Commission is per 100 tuns $\$ 1.10$, or about 4 cent pe amount to $260,000.000$ tuns annually, which, considered as worth only two cents a tun, aggregates $\$ 5.000,000$; that of New York would be worth close upon $\$ 2,000,000$.
tee lime process
consists in mixing the se wage with a certain proportion of milk or cream of lime, agitating the misture violently and hen allowing it to subside. There settles from the mixture copious precipitate of a highly putrescille mud, while the purifying the sewage is concerned, the process is a failure. The suspended matter; removed are also found to contain only about one tenth of the valuable constituents; so that,as manure, the product is of no special merit. The drying of the mud is a very offensive operation. Practised in
Eng and, the manure only brought 1s. per tun, and sold syaringly. This sum was about one third its cost of pro duction.

flyte's process

onsists in attempts to recover the ammonia from the sew age. Superphosphate of lime and a salt of magnesia are aided, under the supposition that an insoluble phosphate of ately resence of an excess of ammonia; and, moreover, analyses show that a third part of the phosphoric acid added is left in he solution, proving absolute loss. The English Sewage Commission consider this the worst and most costly plan yet proposed.

Holden's process

watented operation, and consists in mising the sewag with sulphate of iron, lime, and coal dust. It not only fails oo remove the putrescible organic matters in solution, bu actually augments their quantity. An annlysis of the air dried mud showed the presence of only 3 per cent phosphoric acid, 004 per cent ammonia, and 0.555 per cent of
organic nitrogen; so that, as a manure, it is practically organic
worthless.

the abc process

we fully described in a recent issue of our journal. It de rives itz name from its essential ingredients, alum, blood, clay, and charcoal, which are mixed with water and run into
the sewage in a continuous stream. The good results obtained by its use we have already fully detailed.

the phosphate process

is founded on the fact ilat certain mineral phosphates, especially those containing alumina, when in a hydcated or freslily precipitated state, eagerly combine with the organic matter contained ia the sewage, it being sufficient mercly to dor and color even if tinctorial substances of great it of all its oder and color, even if tinctorial substances of great intensity be present in the solution at the same time; while the phosphate of magnesia combines with the ammonia contained in the sewage, and precipitates it alsu in the state of the double phosphate of ε mmonia and magnesia. The process delays putrefaction in the eflluent water, but the amount of ammo nia carried down by the precipitate is found to be practically
nothing. The manure is of course valuable on account of the proportion of the phosphate used in its manufacture; but it is hardly probable that it could be made the source of extended profit.

MORFIT's PROCESS
replaces the natural phosplate of alumina by a new artificial material, which is in fact a waste product at present, being the "mother water" as eliminated by the processes of the inventor for the precipitation of pure phosphates of lime from hydrochloric solutions of mineral phosphates of lime. In his recent work on chemical fertilizers, Dr. Morfit says that the precipitate forms a superior special manure for clay soils, and devotes an entire chapter to detailed descriptions of methods for its utilization.

The Largent Rallroad shops in the world.
Located in Cheslire, one of the midland counties of England, and situated on the London and North $W_{\text {estern Rail }}$ way, some five sixths of the distance between the metropo-
lis and Liverpooll is Crewe, a small and in ignificytt town lis and Liverpooll, is Crewe, a small and innignnificyut town
by itself, but a city of no mean importance when considered by itself, but a city of no mexn importance when considered in connection with the vast works which it contains. The estallishment which supports, and, in fact, forms the town, the population and extent of which is about half that of Worcester, Mass., was originally laid down by George and R bert Stephenson, and is known as the Crewe Works, or, as it would be termed in this country, the shope, of the Londun and North Western Railway. Here no less than six housand hands are employed, building or rebuilding the two housand locomotives used upon th s longest of English railways, or working upon the two liundred and twenty engine hich, it is calculated, are always at the works for repairs. A correspondent of the Boston Journal of Commerce has recently visited this great factory, and, from the graphic let ter which he writes, we extract the following interesting par ticulars: He says that a most extraordinary variety of es pecial tools is employed, among othess seve ral testing ma chines for trying the strength of materials ured. Samples of every variety of material, and especially the boiler iron and steel, are subnitited to these machines. For che proving of the iron for axles, there was a litile machine in which a sam ple was eubmitted to a rapid series of torsional strains till it broke, the number of these, registered by a counter, being an index of the character of the iron. As an illustration of he attention to the smaller details of expense, a cl-aning machine was running in the brass shops, consisting of an ndlfss belt studded with small magnets, which, passing through the mass of filings in an inclined trough, thoroughly leaned them of all fragments of iron. A large number milling machines were in use fcr smaller work, especially such as finishing the heads of nuts and bolts, and many smal bench shaping and Elotting machines were running as many as 160 strokes per minute; engaged in a similar work, by using cheap labor (boss of twelve), the latter could compete with the former. Among other larger machines was one for grinding large plane surfaces, such as base and frame plates and side plates of tenders, instead of planing them, the work moving in a trough containing water, and the whole arrangement being quite on the plan of a Daniells planer. Much maller flat work was finished by grinding in machines arranged to produce a level surface by self-operating atta:hments.
Perhaps the most remarkable thing in this part of the works was the huge lathe room, more than two hundred feet long. and filled with a double row of driving wheel lathes. Many of these were of eight feet swing, and o: the heaviest description, carrying four cutters at once. A r-markable machine, near these, was a milling tool for milling out the inside cranks. All the engines have inside connections, the axles are forged solid and milled, instead of being turned out. The sutter of this machine was four feet in diameter and about five inches fall. There were here many other peculiar tools, such as a machine milling two key ways, exactly at right angles, at once, in the two ends of a loconotive axle. Also a wheel rimming machine, and another for sloting out in a proper curved form, the inside rims of locomotive wheels between the spokt s .
A new process for making steel tires is here employed. The steel is cast in the form of truncated conea, the smaller end to form the outside of the tire. While still hot it is introduced io the horizontal steam hammers. These consist of a couple of enormous masses of iron, each running on a little track, and moved back and forth, by means of piston and rod, by a large steam cylinder behind each, the steam valves of each of which cylinders are operated by a common ?ever. By passing through two sets of these hammers, the steel is thoroughly worked up, and leaves them in the form of a thick disk. Carried from these, it passes to an upright hammer, with a sharp conical end to the strikiug part. This soon forces a hole through the disk, which, being turned round and round, and over and over. becomes a thick ing. Again heated, it goes to another hammer. This hammer has a very leavy anvil, with a peculiar slope to one side, from which projects a stiff horn. Upon this horn the ring is hung. The face of the striking part is form+d to the slope of the rim and tlange of the wheel, and as the workmen ma-
nipulate the wheel under its blowe, slipping oneportion after another of the rim up to receive the stroke, the whole tire gradually expands to the requisite diameter, and is ready to be turned on the inside and driren on to its wheel.
These details were noticed in but a small portion of the vast factory, but serve to give an idea of the completeness and magnitude of its construction and fittings.

All new subscriftions to the Soiestific argerican will be commenced With the number issued in the week the names are received at this office,
unless back numbers are odercd. All the numbers bacis to Janaary 185

BEE PROTECTOR

The ingenious inventor of this device, before putting hi ideas into practical shape, doubtless became convinced o the immutable truth of these facts: First, the busy bee im proves only "shining hours," and gathers honey from open ing flowers only by day; second, the bee moth has a predi lection for stealing honey under cover of the night, and third, chickens retire to their roosts at twilight, and are aroused by the "shrill clarions" of the masculine portion of aroused by the "shrin clarions" of the masculine portion of
their population at an excessively early matutinal hour. To their population at an excessively early matutinal hour. To
utilize these propositions to compass the desired end, was utilize these propositions to compass the desired end, wa the problem: how it has been solved, we proceed to show. The bees are expected to enter their domicile
dark. After they are all in, the period for dark. After they are all in, the period for
the roosting of the chickens arrives. The latter, alighting on their perches, operate machinery which closes the hive gates and shuts the bees in. The bee moth, on attempt ing his burglarious operation, finds himsel barred out, and as the mechanism of the de vice is beyond his comprehension, it is to be inferred that he retires in disgust. Mean while the chickens repose until the early vil lage cock proclaims the morn, when they abandon their perches to resume their geolog ical investigations into the surface of the ad jacent soil, and thus return the bees, their honey all safe, to the airs of heaven and flowers of earth. For the benefit of all who may be interested in this strikingly novel applica tion of the force of gravity through the me dium of chickens, we append the following detailed description of the mechanism, a pa tent on which was granted June 28, 1870, to Jeremiah Cory, of Holden, Mo.
A is a horizontal rock shaft, secured in suitable bearings and provided with three arms, B, C, and D. The arm, B, within the hcuse supports a vertical sliding post which is held in guides, and bears the perches. The arm, C, car ries an adjustable weight, sufficiently heavy to overbalanc the post and keep it elevated when the roosts are unoccupied The upright arm, D, is connected as shown by the dotted line with the rods, E E, attached to the gates of the hives. Suitable weights, F, are arranged in connection with the rods, E , so as to hold the gates open.
As the fowls mount upon the roost their weight depresse the post, and it, in turn, presses down the arm, B, and there by rocks shaft, B, and its arm, D. The latter, operating the rods, E , closes all the hives. As soon as the roost is vacate ${ }^{\text {d }}$ the weights bring the parts to their original positions. The advantages claimed are the regularity and certainty with which the hives will be closed and opened, and the fact that any number of hives may be connected with the device an simultaneously operated.

BREWSTER'S PATENT COMBINATION TALLOW CUP
The object of the invention herewith illustrated is a steady

or continuous lubrication of the cylinder and slide valves o a steam engine, thus preventing all wear of the working parts and economizing power without the usual waste of lubricating material. It consists in a combination tallow cup and is claimed to be equally well adapted to marine, stationary, and locomotive engines, and also to have afforded results in every waysatisfactory, during the period in which it has been in use.
In the sectional view annexed, A is the main reservoir and B an auxiliary reservoir or charger, containing one tenth the quantity of material that the former receptacle is capable of holding. C is the main valve connecting directly with th cylinder, and D is a secondary valve closing communication with the reservoirs, A and B. These valves are operated by the handle, E. F is the feeding valve, closed when the mai valve, C, is opened and actuated by the wheel, G, serving to regulate the openings, H, in the stem, I. J is the inlet fun-
nel with valve-seated plug. The main valve, C , being closed by means of the handle, E, the plug, J, is unscrewed, and the reservoir, A, is filled with tallow to the openings, H , pening the val C and closing D, the tallow in the charge B, is allowed to pass into the cylinder, when the valves re brought back into position. Nothing further is require nil the supply tallow thus afforded is exhausted until the supply of tallow thus afford is exhausted, whe ger again allowed to escape.
To render the action of the apparatus continuous, th valve, F, is opened, when the steam, passing up through tha
which the rotary portion, B, of the apparatus is divided. Ho air passes through these chambers entering from the pipes C and D, in the manner hereafter to be described.
The hollow fixed base, E, and also the similar upper por ion, F , are, by radiating partitions, divided into inclosed ectors to correspond and coincide with the compartments in he rotating part above and below. All of these partitions, with the exception of those which form, as it were, the pro ongation of the walls of one chamber, are provided with pertures, as shown in section at G The solid partition just alluded to are securely packed with felt, so that when by the rotation of the revolvingportion, B, any one compart ment is turned so that its walls correspond with them, suc compartment is completely cut off from a communication with the rest of the device, and hence from any supply of heated air The object of this is to enable each chamber to be filled in succession without allowing of the escape of the heat during the operation From this it will be observed that, of the cight compartments, one is always ready for filling, and consequently the evaporating pro cess is restricted to the remaining seven.
Let it be supposed that a chamber has re eived its supply when in the position, H, and that the machine has been revolved to th ight, and the compartment opened as shown The heated air then enters from below by th pipe, C, passes in the direction of the arrow up through the material on the shelves, thence hrough the orifice, G, down through the nex chamber, thence under the right hand wall of he latter through the perforated partition, up gain through the following compartmen and finally makes its exit through the con uit, I. In the remaining four compartment he heated air proceeds down from the pipe , through the first division, up through the econd, and so on through all the chambers,
m, raising the tallow to a level with the openings, H , from which it is sucked into the cylinder by every stroke of the iston as long as the supply of tallow remains. The reser oir is left filled with distilled water, which is let through the cylinder after stopping the engine, by removing the plug J, and opening valves C and D. In case of any foreign sub stance entering the reservoir, it may be blown out while the engine is in motion by allowing the steam to rush through he plug funnel.
Among the other advantages claimed may be noted strength and cleanliness, together with beauty and simplicity of con truction;it is also stated that the device is steam.tight, pre cluding leakage, and thus dispenses with the usual means mployed to absorb the waste. It may be used as an injec or at stated intervals or, by arranging the valves as above described, as a self feeder, as desired. The cup requires fill ing but once a day, feeds regularly, has no cocks or similar mechanism to get out of order, and is economical in its ex penditure of lubricant.
The manufacturers state that it has elicited favorable tes imonials from many leading engineers and master mechan ics, and that its efficiency has been, in every respect, demon strated. For further particulars address Messrs. Davis DuBois, southwest corner Leopard and Otter streets, Phila delphia, Pa.

SOLDERING TOOL.

Mr. John C. Tauber, of Ridgeville, Ind., proposes to do away with the present rather inconvenient method of hand ling a stick of solder and the heated iron, by the use of the device illustrated herewith, for which he has recently ob

tained a patent. It consists in a metallic vessel, in the form of an inverted cone having a minute aperture at the bottom It is provided with a flanged rim and socket to receive a handle; and around its lower part is placed an annular bow or trough. The conical vessel is filled with solder and flux, and the trough, with cotton cloth or wick saturated with keosine. The latter, being ignited, melts the solder, which lowing from the hole, can be distributed uniformly upon th work, in greater or less quantities, as may be desired.

BOYNTON'S REVOLVING EVAPORATOR.

The invention represented in the accompanying engraving is a portable revolving evaporator, by means of which it is laimed that fruit, vegetables, meat, fish, and similar pe shable substances can be dried, each forming an excellen reserve which, while compact in bulk, retains all the valu climate.
The material to be treated is spread upon the shelves etted wire shown in the foreground of the illustration. A number of these when filled are placed upon the projecting
rails, A, which line the sides of the eight compartments into

last escaping through the chimney, J

When the material is over the pipe, C , it is acted upon by ir heated to 220°; when under the pipe, D , the temperature is 180°; and in the last compartment from which it is finally withdrawn, the heat is 120°. The windows shown in the covers of the chambers afford admission to the shelves for examination; and at any time the rotary portion can be set in motion, carrying any desired compartment to the filling door. It is hardly necessary to point out the advantages of this device for preparing vegetables and articles of similar nature for transportation or for naval and military purposes. The inventor states that, during the past year, apples, peaches, pears, strawberries, raspberries, grapes, potatoes, corn, and, in fact, almost every variety of fruit and vegatable, have been uccessfully treated producing preserves equal to the best canned articles. For fruit growers, who during the coming season may suffer through overstocked markets, an excellent means of utilizing their produce, which might otherwise prove a total loss, is here afforded. The apparatus can be seen in operation and in all its various sizes at the factory of the Vineland Dehydrating Company, Vineland, N. J., or fur-

ther particulars may be obtained from the manufacturers, Messrs. C. A. Boynton \& Co., at same address. Patented April 23, 1872.
Putting Screws in Plabter Walls.-It often becomes desirable to insert screws in plaster walls, without attaching them to any woodwork; but when we turn them in, the plaster gives way and our effort is vain. And yet a screw may be inserted in plaster, so as to hold light pictures, etc., very firmly. The best plan is to enlarge the hole to about wice the diameter of the screw, fill it with plaster of Paris, such as is used for fastening the tops of lamps, etc., and bed the screw in the soft plaster. When the plaster has set, the screw will be held very strongly.
Robert Marsden Latham, Secretary of the Inventors Institute of London, and editor of the Scientific and Literary Reviero, died recently at Hampstead, England. oct. 38.

parlor aquarivi and fountain

That there are no ornaments so beautiful as those formed by the hand of Nature, is a fact which is becoming gener ally recognized in the decoration of our dwellings. Rusti baskéts, filled with gracefully trailing plants, vases of grow ing flowers, clinging vines allowed to run in unkempt pro fusion over windows and doorways, are now among the most admired embellishments even of the stateliest saloon or draw ing room. Not only is growing vegetable life in its ever changing form thus employed in the beautification of modern homes, but, beside, animal and insect existence is called in to aid in the general adornment. A foreign cotemporary recently published an engraving of an insectarium, consisting of a Wardian case of glass, inclosing a number of growing plants, among the verdure of which were epresented gorgeously hued butterflies, which, placed in the receptacle, were kept alive and nourished by the growing vegetation.
Our engraving illustrates a very taste ful parlor aquarium, made of cast iron and bronzed. The design is taken from th: catalogue of the Jordan L. Mott Iron Works, of 90 Beekman street, in this city, from which work we recently made other selections of ornamental objects in metal. The hight of the stand is 57 inches, andits diameter 34 inches. Above is an octangular glass-sided vessel for the reception of the aquarium, in the middle of which is arranged a miniature fountain, and around the corners are placed. vases for living plants.
The constant inflow from the fountain will keep the water always fresh and pure, though, even if the latter be not always in operation, the sanitary condition of the finny inhabitants can be maintained by a suitable selection of aquatic plants, placed in the bottom of the vessel. To prepare an aquarium of this kind, about an inch of clean sand should first be put in, and above that a light layer of gravel; then a few stones, bits of coral, shells, or clean cinders, may be built up in miniature grottoes or other pleasing forms, which will serve as shelpleasing forms, which winserve as shelters for the fish and add to the beauty of the ornament. Fresh water plants, suit able for planting in the bottom, may readily be obtained from any country brook. Eel grass, water weed, arrow head, frog's bit, duck weed, are all well adapted for the purpose. After setting out water is poured in, and the aquarium left for a week for the plants to vegetate. To absorb the fungous and mucous growths, fresh water snails are added, and afterwards the fishes are put in by degrees, care being taken to maintain the due balance of animal and vegetable life. A day's ramble, near a brook, will life. A days reme ne wil be sufficient to obtain a multitude of both animals and plants. Newts, tadpoles sticklebacks, small sun fish, water beetles,
minnows, one or two frogs, and may be minnows, one or two frogs, and may be
a turtle, will thrive in a receptacle of a turtle, will thrive in a receptacle of
this kind, and form an endless fund of amusement and instruction to lovers of natural history. The temperature of the aquarium should not rise above $70^{\circ} \mathrm{Fah}$., nor fall below 50°. In hot summer days a screen should be used to cut off the sun light.

A Wonderful Model
An elaborate model of a harbor, ordered by the Senate of Hamburgh to be constructed for the Vienna exhibition, has beei completed in due course. The model is 17 feet by 6 feet in dimensions, and it exhibits the ships moored to the wharves, and the laborers employed in their differ ent occupations. On the side of the dock is a railway with a freight train to receive goods from the ships. The vessels are of all sizes, from the huge steamer down to the smallest yawl. The whole represents, wit pleasing accuracy, the busy life of a sea port.

Dyeing Aniline Green on Wool.

This dye, unlike the majority of aniline colors, has but a feeble affinity for wool. When this fiber is dyed in a green bath without previous preparation, but a very slight amount of the color is fixed. Some manufacturers have proposed to employ for this color the alkaline process, which gives such excellent results for blues, but it is with greens less certain ly successful. The author's process is to prepare the woo in a bath containing a solution of hyposulphite of soda mixed with an acid or an acid salt. The sulphur suspended in the water becomes fixed in the wool, and enables it to attract the aniline green. It is advisable to add to the mordanting bath a small quantity of alum, or of a salt of zinc, the presence of which prevents the "tendering" of the wool. It is singular to see the action which the sulphur of the hyposul phites exerts upon this fiber. It becomes soft, loses its elas-
ticity, and contracts considerably. This depends evidently on the penetration, into the capillary tubes of the wool,of tha soft and viscid sulphur which is liberated from the hyposul phites. The singular property which sulphur in this stat possesses of acting as a mordant for aniline green is not com mon to sulphur in all its modifications. Thus the solution of flowers of sulphur in the sulphide of carbon leaves woo completely incapable of attracting the dye. The same rule olds good, though to a less extent, with the polysulphides, which in all probability generally contain traces of hyposul phite. The mordant for aniline green is the insoluble elec tro-positive sulphur, as proved by the following experiment:
When a sample of wool mordanted with hyposulphite is exhausted with sulphide of carbon, it loses nothing of its
it appears that the green does not "work on" sufficiently, ittle acetate of soda may be added. With the aid of these two salts the dyer can produce blue or yellow shades of green at his pleasure, and can make use of his bath for an indefinite length of time. This procedure applies equally well to mixed goods of wool and cotton. After the wool is mordanted as above,the pieces are washed in sumach for an hour or more. The dyeing is then conducted in the ordinary manner, beginning at a low temperature. Or the wool may be dyed first, and the goods may then be sumached, and the cotton dyed in a cold color bath.-Chemical Nevos.

Metal Casting under Compression.
By Smith \& Locke, of Boston, Mass.-The patterns are first, brushed over with a mixture of olive oil and parafin, after which they are coated with a slip composed of clay and fine sand. They are then placed in a flask which is filled in with a mixture of terra cotta (the old molds ground to powder) and clay. The flask is then placed under a powerful press, and submitted to a pressure of 400 lbs. per square inch, the mold thereby becoming condensed. From the press the molds are taken to a furnace, where they are hardened, and when ready they are placed in a casting chamber, to the number of ten or twelve at one time. The chamber is then tightly fastened, and the molten metal is forced into it, becoming distributed among the molds, and entering into the most delicate tracery of the patterns. The metal is injected through a cylinder attached to one end of the casting chamber, in which a piston is fitted, the cylinderbeing lined at each operation with a nonconducting substance, which prevent refractory metal from becoming cbilled or adhering to the cylinder, and at the same time serves as a packing for the cylinder. The end of the cylinder nex the mold chamber is fitted with a clay heading, to which is a gate stopped by a movable plug, and opening into the chamber. The molten metal having been run into the cylinder the piston is screwed up, slowly at first and afterwards quickly, when the plug is forced forward into the chamber, the metal following it, and running into the molds under considerable pressure, which is maintained until such time as the metal has set.
The above description is from Engi neering. Mr. Smith is now in England engaged in the development of the im provement. The process has been in operation at Somerville, near Boston since the 1st of May, 1869, where Mr Smith has produced round as wel as flat castings, such as ornamenta columns. He has also cast monumen tal tablets 7 feet 6 inches high by 3 feet 6 inches wide, and one quarter inch thick, notably one to the memory of 400 soldiars, whe to the on it The process is both ingeni on it. The proces is both ingeniou and successful, and is capable of a wide
range of application in the arts and manufactures.

Paper in the Boston Fire

 Curious results followed some of the experiments made upon charred papers and documents, and the examination of books in safes which proved worth less in the great fire. It was found that what paper makers call poor paper, paper considerably "clayed," stood the test best. Parchment paper, used for bouds and legal documents, shriveled up exceedingly, and the print blistesed
PARLOR AQUARIUM AND FOUNTAIN.

power of attracting and fixing aniline green; while anothe

 portion of wool saturated with the bisulphide of carbon which has served to extract the former, and which has been subsequently concentrated by distillation, takes up the colo no better than does unprepared wool. If the operation carefully conducted, taking suitable proportions of hyposul phite, and of alum, or zinc salt and acid, success is certain and the wool is uninjured. It is scarcely needful to add hat the wool must be previously cleansed from grease, and freed from all metallic contaminations, by passing it through very weak hydrochloric scid. If this is neglected the shade may be saddened by the formation of metallic sulphide upon the fiber. The actual dyeing is performed in a solu tion of the green in hot water, raising the temperature to close upon $100^{\circ} \mathrm{C}$. If yellowish greens are desired it is ne cessary to add to the bath some picric acid, and a salt capa ble of raising this coloring matter, which will only dye in presence of an acid. As, on the other part, the green doe not dye in presence of acids, a difficulty presents itself. This is overcome by the use of the acetate of zinc. This salt attracts the picric acid without injuring the green dyeing. Ifso that it could be read when writing was illegible. So it was with the engraved work on notes. The gilding, on the account books burned and charred, showed out as bright and clear as when the books were new, which brings up the question if to introduce gilt-edged account books would not be well, on the ground that the gilt would stay the passage of fire to the pages within. Books crammed into a safe, so that it was difficult to get them out, suffered considerably less than those that were set in loosely, and in some cases came out from safes, in which every thing else was worthless, so far preserved that the figures on their pages could be deciphered. With charred papers, which could not be made ransparent by any light whatever used, it was found, after the employment of vitriol, oxalic acid, chalk, glycerin, and other things, that any thing that moistened them to a certain stage-to which it was delicate work to get and not to pass-made the lines, words, and figures legible through a magnifying glass. It has been the almost universal experience that lead pencil marks show out all right where ink marks cannot be distinguished. The success of the use of photography has already been noted.-Boston Advertiser.

gecant Amarian and forkigu fatents.

 nish an inn - ved rotary stcilm engine, wnich shall be so constructed as to
relieve ane shafic from all side pressure, and thas diminigh the friction and relieve we shafi from all side pressure, and thas diminish the friction and
the ..asequent weyr. The cylinder is made clliptical in form, and to its cyllnder is secured a cylindrical drum of such a size as to revolve in the sald cylinder, a space belng left upon the opposite sides of the drum for the
steam. In the opposite sides of the drum are formed decp loustur steam. In the opposite sides of the drun are formed decp lougitudinal grooves to recelve the valves, upon the inner part of the end edges of
which are formed plvots, which enter elliptical gulde grooves formece in the which are formed plvots, which enter elliptical gulde grooves formec in the
inner surfaces of the heads, which arc so formed as to hold the outer edges of the pistons out close against the inner surface of the cyllinder. Two inlet ports are used, for.ued in the opposite sides of the cyllinder and provided
with slide valves. Sald valives may move t ggether, befng connected by a yoke with whicn is connected one end or a lever, which is pivoted to
bracket attached to the cylinder head. into such a postition as to rest upon a cam wheel attached to the shaf against, which it is held by a spring. By this construstion the steam will be
recelved upon the opposite sides of the cyltnder, so as to balance the enrine a pherent

Improved Doll Joint.

Joel A. H.Elifs, Spring itcld, Vt., assignor to the Coöperative Manufactur
ing Company, of same place.-This invention relates to the manufacture Ing Company, of same place.-This invention relates to the manufacture
of dolls, and to the class of dolls which are usually made of wood. with of dolls, and the the class of dons whin armand and consist in the mannerof forming the
joints
joluts and securing the requifite friction thereto. A slot and tenon are fastened together by the pivot pin. The tenon is divided by a saw kerf.
The double 4 is The double t non is designed to fit the slot a hittle full, and be sprung
together silghtly, when the tenon enters the slot, thus producing the together slightly, when the tenon enters the slot, thus producing the
requiki e friction, and preventing any binding or looseness by the shrinking and fwelling of the wood at any time. The shoulder plece is
cut or silt at right ingles, and fited into a round soclet having a groove to recive a pin, so that the orm will be securely held, while it wi.l freely
revolve. The socket is a lituc smaller at the back end, so that the shoulder revolve. The socket is a little smaller at the back end, so that the shoulder
piect. is compressed, as represented, whitch secures at this point the replect, is compressed, as re.
quired degree of friction.
manner already described.
Improved Mail Bag.
Thomas J. Hardaway, Macon, Ga.-This favention is an improvement in
the class of mall bags provided at the mouth with hinged bars or plates adapted to be locked together. Four bars are hinged together so as to otorm a rectangular and nearly square opening, and a locking plece is attached to
one of the bars near the jolnt. The sald picco may be conventently used as a handle for opening and clositig the bag. When adjusted for locking it covers the contiguous and middle joint of the hingid bars, and thusimparts a strength aud rigidity high!y necessary to security of the contents of the
bag. The plece is also adapted by its postion to recelve a label relating to bag. The plece is also adapted by its postition to recelve a label relating to

Improved Detachable Boot and Shoe Tip.
ael R. Hanley, Providence, R. I. - The object of this inven Michael R. Hanley, Providence, R. I. - The object of this invention is to
so construct a metallic tip that it can be appled not only to shoes or boot so construct a metalic tup that it can be applied not only to shoes or boots it consists in a tip having lips or teeth turned inward from its lower edge and hook pins at each end.

DECISIONS OF THE COURTS.
United States Circuit Court---Southern District of New York.

Inventions Patented in England by Americans.
Compled from the Commissioners of Patents' Joarnal.1
arr Moror.-H. Bushnell et ol.. New Haven, Conn. Anchor.-C. A. Cbamberin, Pittsburgh, Pa.
Bale Fastening.- E. J. Beard, St. Louls, Mo. BADSA, ETC,-T. Tucker, Oakland, Cal Oosts, ftc.-T. Tucker, Oakland, Cal ne, Ind.), London, Eng. En INE, ETC.-R. Elckemeger, Yonkers, N. K . Generating Steam. -J. H. Mills, Boston, Mass. Harvister.-J. F. Gordon, Rochester, N. Y
Hose Pipe.-T. A. Dodge, Cambridge, Mass. Hose Pipe.-T. A. Dodge, Cambridge, Mas8.
Life Raft.-S. W. Torrey (of New York city), London, Eng. MAEINAGAB, ETC.-W. H. Spencer, New York city. Oil burning Stove.-L. E. Truesdell, Warren, Mase. freserving Miat, bTc.-G. W. Scollay (of St. Louls, Mo.), New York city Purifying Gas, etc.-E. Kavauagh, Peabods, Mass.
Railway Bars, etc.-J. Henderson, New York ctts. Railway Bars, mtc.-J. Henderson, New York cits.
Sewing Machine.-W. P. Prock, Philadelphia, Pa. SPEED INDICATOR.-J. W. Osborne, Washington, D. C Stupfing Box Packing.-J. Glanding et al., Philadelpha, Pa.
Uniting Metalbands, etc.-C. G. Johnsen, New Orleans, La Uniting Metalbands, $\begin{aligned} & \text { bTc.-C. } \\ & \text { Vapor of Carbon.-W. Wells, Salem, Masen. }\end{aligned}$

-

Value of Patents,

AND EOT TD OPRIIN RHEIL. Practical Fints to Inrentors.
ROBABLY no investment of a small sum of money brings a greater return than the expense ithourred in obtataligg a p patent
even when the invention is but a small one. Largar Inventions are found to pay correspəndingly well. The na mes of Blanchard Morse, Bigclo:7, Colt, Ericsson, Howe, McCormick, Hee, and others, who have amassed immense fortunes from thelr inven
tions, are well known. And there are thousands of others who have realized large sums from their patents.
More than Fiftr Thousand inventors have avalled themselve
of the services of Munr \& Co. during the TWENTY-SIX yeara they have acted as solicitors and Pubilishers of the Scientific American. of ε ₹81stant s, mostly selected from the ranks of the Patent oflce: men aapable ofrenal
tically obtained while examiners in the Patent office: enables MuNN \& Co to do everything appertaining to patents bettrer and ceraper than aay
H0W T0
OBTAIN \qquad This is the closing inquiry in nearly every letter, descril ing some Invention Which comes
to this offlce. A positive answer canonly be had by presenting a complete application for a patent to
the Commissioner of Patents. An application consists of a Model Drawings, Petition, oath, and full Specincation. Varlous offctal rules and formalities must a a so be observed. The efforts of the inventor to do all this delay, he is usual:' glad to seck the ald of persons experienced in patent
diter bustiness, and have all the work done over again. The best plan is to \boldsymbol{t} olicit proper advice at the beginning. If the partiesconsulted are honorable men, th \geqslant Inventor may satily conflde his ideas to them; they will advise whelher ths improvement is p oobabiy patentable, and will give him all the directions

How Can I Best Secure My Invention? This is an inquiry which one inventer naturally asks another, who has had
some experitence in obtann'ng patents. His answer generally is as follows. some expertien
and correct :
Construct a neat model, not over a fcot in any dimension-smaller if pos siblc-and send by express, prapald, adiressed to MONN \& Co., s7 Park Row, New Tork, together with a desoription of its operation and merits. On re
celpt thereof, they will examine the liavention carefully, and advise you a celpt thereof, they will examine the invention carefully, and advise you as
to its patentabilty, free of charge. Or, if you have not time, or the means at hand, to constrnct a model, make as good a pen and ink sketct of the Improvement as possibie and send by mall. An answer as to the prospect

bent to have a search made at the Patent Offico. such a m the coot of an apritcation for a natent. Preliminary Exarnination.

In order to have such search, make ouc a writ ten description of the inven tion, in your own words, and a pench, or pen and ink, sketch. Send these
with the fee of 85 , by mall, addres ?d to MUNN \& Co., 37 Park due time you will recelve an acknowledgment thereof, followed by a writ ten report in regard to the patentability of your improvement. This spectal search is made with great care, among the models and patents at Washing-
ton, to aseertain whether the improvement presented is patentable.

Rejected Cases.

Rejected cases, or defective papers, remodeled for parties who have made applications for themselves, or through other agents. Terms moderat

To Make an Application for a Patent.

The applicant for a patent should furntsh a model of his invention if sus-
ceptible of one, although sometimes tf may be dispensed with ; or, if the in vention be a chemical production, he must furuish samples of the ingredients of which his composition consists. These should be securely packed, the inventor's name marked cn them, and sent by express, prepaid. Sma way to remit money ts by a draft, or posial order, on New Tork, payable to the order of MUNN \& Co. Persons who live in remote parts of the country can usually purchase drafts from their werchants on thetr New York correspondents.

Caveats.
Cersons desiring to file a caveat can have the papers prepared in the short ment fee for a caveat is $\mathbf{8 1 0}$. A pamphlet ot advice regarding application for patents and cavcats 18 furnished gratis, on application by mall. Address MUNN \& Co., 37 Park Row, New York.
Reissues.
A retgsue is granted to the original patentee, his heirs, or the assignees of the entire interest, when, by reason of an insufticlent or defective spectifca-
tion, the original patent Is invalid, provided the error has arisen from inad tion, the original patent is invaild, provided the error has arisen from inad-
vertence, accldent, or mistake, without any fraudulent or deceptive intention.
A patentee may, at his option, have in his relssuea separate patent for each distinct part of the invention comprehended in his original application by paying the required fee in each case, and complying with the other re-
quirements of the law, as in original applicalions. Adtress MusN quirements of the law, as in orig
37 Paiks Row, for full particulars.
Design Patents.
Foys secure patents here upon theirnew, patterns, and thus to this country from fabricating or selling the same goods in this mari.et.
A patent for a design may be granted to any person, whether cittizen or ainen, for any new and origlnaldesign for a manufacture. bust. statue, alto
reliero, or bas rellef; any new and original design for the printing of wool en, silk, cotton, or other fabrice ; any new and original impression, ornament, pattern, print, or picture, to be printed, painted, cast, or otherwise plared on or worked into any article of manufacture.
Design patents are equally as important to cittzcns as to foretgners. For
Foreign Patents. Foreign Patents.
The population of areat Britain is $31,00,000$; of France, $37,000,000$: Be
glum, $5,000,000$: Austria, $36,000,000$: Pru $881 a, 40,00,0,0 \mathrm{~N} ;$ and Russia, $70,000,000$ Batents may be ser,ured by Amertcan cittizens in all of these countrles Nuw is the time, while business is dull at home, to take advantage $\mathrm{r} f$ these immense foretgn fields. Mechanical improvernents of all kinds are always in demand in Europe. There will never be a bettor time than the presch to take patents abroad. We have rellable business connections with the
princtpal capitals of Europe. A large shard of all the patents secured in forctgn countries by Americans are obtalued through our Agency. Address MUNN \& Co., ${ }^{37}$ Park Row, New York. Cliculars with full information on

Value of Extended Patents.

Dadpatentees reailize the fact that their inventions are likely to be more productive of proft during the seven years of "xtension than the first full erm for which their patents were granted, we bilnk more would avall thentended for seven years, for the beneft of the is ivent or, or of his heirsin cas of the decease of the former, by due applicati on to the Patent Office, ninet days before the termination of the patest. The extended thme inures to the beneft of the inventor, the assignees uader the first term having no reefor an extension is $\$ 100$, and it is necessar, that good professional service
find be obtained to conduct the business before the Patent oflloo. Full informa-

Trademarks.

Trademarks.
Any person or firm domiciled in the United States, or any firm or corporathon restding in any forelgn country where simular privileges are extended tection. This is very important to manufacturers in this country and pqual iy so to forelgners. For full particulars address MUNn \& Co., 37 Park Row
New Yore New York.

Canadian Patents.

On the first of September, 1872, the new patent law of Canada went inio force, and patents are now granted to cttizens of the
same favorable termsas to citizens of the Dominion.
In order to apply for a patent in Canda, the applicant odel, apecification and deplicate drawings, substantlanty the sazue as in The por an American patent.
orten yent may be taken out elther fo: five years (government fee 820) or The five and (government fee 840) or for fifteen years (government fee ${ }^{860}$) The formaltten year patents may bs extended to the term of fifteen year American inventions, even if aiready patented in this atented in Canada provided the A.merican patent is not more than one yea All persons who desire to take out patents in Casada are requestel to ommunicate with MUNN \& Co., 37 Park Row, N. Y., who will give prompi Copies of Palents.
Persons desirfng any patent Issued from 1836 to November 26,1867 , can he
年plied with offlial coples at a reasonable cost, the price depenc":ug upon the extent of drawings and length of spect Ication. Any patent issued since November $2 p, 1 \mathrm{Ref}$, at whish time the Patent Offlc
Ant ing to this offlice 81.
A copy of the claims of any patent issued since 1836 will be furnished
for $\$ 1$. ${ }^{\text {or } 81 .}$
me of ping coples, please to remit for the same as above, and state ame of patentee, title of invention, and date of pate
Co... Patent Soliciters, 37 Park Row. Nerv York city.
MUNN \& Co. will be happy to see inventorsin person, at their oflce, or advise them by letter. If all cases, they may expect an honest op:nion. For
uch consultations, upinions and advice, no charge is made. Write platinly such consultations, upinions and advice,
do not use pencll, nor pale ink: be brief.

All business commilte

In all matters pertaining to patents, such as conducting interferences procuring extensions, drawing assignmunts, examinations into the valldity
patents, etc., spectalcare and attention is given. For info:mation, and of patents, etc., spectalcare and attention is given. For info:mation, an or pamphlets of instruetion and advice

MITINN \& CO. PUBLISHERS SCIENITFIC AMERICAN,

OFFICE WASHINGTON-Corner F and Th streets,

Susiness anl Ersomal.

 TVanted, Brick Mach.Circulars, Box $5: 01$, N.Y. Improved Automatic Hub Mortiser, Hub Spoke B I ling Machine
Works. Defance, n onlo.

 botules, at. lo wes: pricers. W. F. Tye, New Bedford, Mass.

 Box 75^{\prime}, Plttebargh, Pa .

 Patent for Sale at ar great inducement. Ap ,
ply, for partlculars, to pas entee of "Adveristug Latl Buy Gear's Improved Variety Moulding
tern, S. Kun, Jeferon, Iowa.
Buy

 trucks with Iroil Water Tazk, steam Jacketed Cylludel
and Balance Steam Valve, the only Portable Enginc

Iron Casting. Direct from the Ore Winted.
send name and addres. to Castings, Box 29313, New Yorb.

 For Solid Emery Wheels and Machinery,
send to che Uulon Sione Coo., boston, Mass.,for circunar Sure cure for Slipping Belts- Sutton's pat
ent Palleg Cover is w.urcanted to do dounle the wori

 Stuve \& Shingle Machinery. 'T.R.Bailey \& Vaii. The Best Swutter and Separator Combined
th Americi. Alduress II Deal \& Co... Bucyrus, oulo.

 N.D. andrewze Ero. 414 Witter st.N. Y.

Fivediffremt sizes of Qatling Guns are now
manufacured at coile Arnory, Hartiord, Conn. Thic
 (Bature Lathe tor Cabinet and all kinds of han.
dlea. Shapiniz Machine for Woodworking. T. R. Balles \& vanl. Lockport, N.

All Fruit-can 'Toole,Ferracute,Bridgeton, N.J. Hammer Dies and Heads, strong and durable, cast to order by Pittsburgh Steel Casting Co. Ali ${ }^{\text {work warranted }}$
Thu Berryman Manuf. Co. make a specialtr
of the econony and safety to working steana Boilers.
 Drawiugs, Models, Machines-All kinds made
to order. Towle \& Ungrr MF E Co., jo Cortlandt St., N.F. Key Seat Cuttiug Maclune.'I'.K.Bailey \& Vail Cheap Wood-W Orking Machinery. Address
M. B. Coc.arau \& Co.. Pittsburgi, P.4. M.B. Cuc.aran \& co... Pittsburghi, Pa.
Peckis Patent Drop Press. For circulars,
addess Milo, Peek \& Co.. New Haven, Cona. Steam Fire Engines. K.J.Goula, Newark,N.J. Mining, Wrecking, Pumping, 1 Irsiuuge, o)
trrigating Machtnery, for salc or cent. See advertisement. Nactiuists-Price List of small Tools free:
Acar Wheels for Models, Price List free; Chucks and Gerir Wheis
Drills, Price List Mree. Goodnow \& Wigutman, 23 Corn

Boring Machine for Pulleys-no limit to
anp.citr. T. For best Prespees, Dies and Fruit Can Tools,
Bliss \& willame, cor. of Plymouth \& Jay, Brooklyn,N.T.

 Rubber Machinery of all kinds manufa
(ured by W. E. Kelly, Now Brunswick, N. J.

V. V. will probnbly find the directions for
silvernng glass on p. 88 , vol. 24 auswer his purpose.-

J. W. L. asks how to separate the constitu.
ent parts of sawdust or wood so as to get the pure cell

 with great obstlacy; bit tit is presentel In a pure con-
itton in finely carded cotton, in linen, and in the
 the propertles of cellulu: Cellulln or celluluse ts dis. iolved by a solution of oxxde of copper in ammonia,
 3lay for llunng a furnace that is partly burnt out, and to
tand the fre? 2. What ts the best way to take soft
 the it fractory fre clay 18 mixed with old trebrick pul.
verzed or with sharp, clean sand and gravel. Such brick
 sr metrs at at 2 ower temperature than zinc, so that fou
nas be able to remove part of the oolder by carerulls neating it to temperature of about 600 . Fahr. If you
with to use the sulphate of zinc (white vitriol) for uns wish to use the sulphate of zinc (White vitriol) for any
purpcse, or are able to dispose of tit, you can dissolve
 tacks the solaer. Hydrochloric or murratic acia aisa
Hiseolves zinc, forming chlorde of zinc, witch has the Hoperty of rendering paper hard and waterproof.
NItric acld w'll d lissolve both lead and zlinc and leave the Vitrrla acld will dissolve
in as a white powder.
W. McN. asks: What set, and what differ-
:nce of set, 1 i any, should there be bet ween gaws cut
 Cor ordunars thmber. Generally the same set would be
-equired forboth kinds of timber. some kinds of plne
 to elear; ;ther p. ne timber has a very tough iber. IL
such, more set would be requlred. Spruce varies ta the zuch, more set would be required. Spruce varies tia the
jame manner in indff rent localltios $;$ practical experience 8 the best guide.-J. E. E.
B. G. asks how to prepare caustic lye from
oda ash. A aswer: Cuastic soda lye tor soaij making an be prepared from soda ash by the use of quitek lime.
ine soda ash is first dissolved in hot water and to the villng g olutiton is gradually added thin slaked llme in
imall quantties, and the bolling continued untll a drop If the clear llauld Ives no effervescence with a drop telid. The line take the carbontc actd from the soda
tyl and 1 s treelf converted into an insoluble carbonate rfilme, which settes to the bottom, so that the clean
iolut on of causte soda lye can be easilly decanted after
 thould take place ti an iron vessel ; for a very pure qual.
ty of caustic alk lies silver reesels are employeá as '5 of caustic alik lies silver reesels are employea, al
he alkalles attack both blase and porcelain perceptibly he alkalice attack bot
vhen hot and strung.
A. R. asks: 1. What is the Newtonian heory of astronony? 2. wiat is the cause of the di
rnal motion of the earth on its axis? 3 . What is the
 ual atraction e sisiting between all hodices of the ant
erre, that tit 18 drectly proportional to the inases
 the distances between then; and that the planet:

W. D. D. asks whether the principle, for
 in or multitplying pon
C. D. R. \&. Co. sgy: We have a return tub). ind wculd like to know what size and hight of stack we
 ound stack, 15 tiches $I n$ dlameter and 50 feet hlgh,woul
A. 33 asks: What are the dimensions and
eet form of a steam engline of about $\&$ a

 uch an engine has long been felt in the dairy regions,
ior churalug, etc. Auswer: The bofler sbould have acour 12 suare feet of efticlent hestugg surface. The
 on speed of 75 feet per minute. You will find dimen.
Ions and descriptious of small bollers in communtcaions and descriptious of small b
ions from other correspondents.
 vecuiliar form, canled a " "Chlnese crane." will sou glve
ne vour oplnon whether there Is any mechanical ad. ranlage in ito over aco common windlass? A friend of ninc, who gees sto the mathematics of the question,
hinks that he proves that there is none. My fath in he cleverness of the Celestlals m ikes me doubt his cou
 swer: It has a mechanical adyantape over the common
windasas. because the ratio of power to welght can be Winduass. because the ratio or power to welight can
increased to almost any deof ed extent, without graat comolica tion of parts or excessive almmenslons of wheel.
 qutcesillvor to it. He can so lift from 1 a a sale that will
eftectual: patcli the damaged mirror, the spot of glase ettertual: H patch the damaged mirror
having been previonally mell cleaned.
D. R. W. asks: Will a cup made of plaste
Paris answer as the finner cylnder of a Dantull's eu

 tery are only $82: 5$ perdozen.
W. H. I. says: I have a small cylinder boil
er $2 \Varangle$ feet long 10 inches dameter, made from \neq inch rron, with cast tron hacad. What presure ought it to
beer and what poweranould the der bear and what power should dt develope with an engine
113 Inches dameter $x 3$ Inches stroke? Answer: The
 1bs. per square tnch. At 100 lbs. Fiessare and a speed
150 revolutions per inmute, the entive would deval about $\%$ of a horse por

 through a plipe stem. Every 3 or 4 days, I have to tak oat the plug contanning the pipe stem to let ont the air
or the water would stop running. Can you tell me thi cause of this? Answer: The arit tit the water generall,
collects at the highest potnt of anthen which 1 use
 continually, as the pressure ts least there. There is no
way of preventing this, and every few dass the air nuas way of preventing thas, and every few dass the alr musi
be drawn of. By placing an atr vessel at the highees polnt or tiee siphon, it will work much longer before re
uiring. to be freed from alr. Silpons ure sumet re
 of which the ulr can be drıwn off whenever necessars.
 In tinntig gunall malleable castings, I cannot get a
 nd how can I obtain a bright flagh? Answers: 1. W, whlch our correspondent desires information ab following method is commonly employed to tin tron and generally with good results: Clean the castung with
ultric acta, afterwards washing it with water. Dip it
E. A. F. T. asks how to make a small port.
able boat, IIght enough to be carrice on horseback or it a small buggs? Answer: Try a boat made of canvas,
stretched on a frame, which can be folded up andis 1 Igh and porianle. Such a boat was used by our soldiers in
T. J. says: In a train of wheels, 3 drive The frrst drven is the crank of a 5 horse power englue
 he pltch 1 ne of each wheel? The engiveer says $1 t 1$ s follows: 5 h . $\mathrm{p} \times 20$ (donble of crank) +20 (18t driver) $=2$

 hoise power, the last driver, 60 , and last driven, 33 , coul
not beara a tratn of more than 1.25 horse power, withou
 Hioned by a food englin cer. Please let me mow if thid 18
;alculated right ; and, if not, glve me a atmple rule for salculated right; and, if not, give me a smple rule for
doling ti. Should not the pitch of the wheels in each palr be altered? If 5 horse power would break the
crank, bow mueh would break cach wheel separately Angwer: The resulto obtanined by the engitiner are cor
rect, ff the diameter of first wheel 1 s double the length rect, if the dis
of the crank.
E. O. L. asks: What is nitro-glicerin com-
posed of Answers: The wonderful expiosive
 arits of the above accias and adading glscerin to the mix ure, to the extent of one sixth of the welght of th
iclud. Precautions to prevent explosions sre required itas. Precaucure.
M. A. asks how to manufacture paraffin Lnswer: You can procure paratiln at the drug stores.
It made from wood tar, which is distulled, and th.
 The latter is then pressed and purifect. The the paraifi Hissolving the parattlut ta a hot mixture of alcohol an :ther, whilit causes the deposit of the para tifn In beant: 1 found tis Sco land.
C. F. asks (1) if there is any rule for lining
 the fioor? Answers: 1. Whth pleces of tine cord and s. suare, IInes can he iadd of, parallel or perpendicular to
the Ine of themain shaft. 2. By makling a dlagram nnd

 18e? Answer: It depends entirely upon how much yater you wish to delliver per minute. That betng set.
cled, you can Ind the size of wheel reaulred, by examin ing the circularof the water wieel bullder. By consult ing our advertsting columns, son will find the numes on
pump makers, to whom you can write for further infor
M. M. asks by what procezs he can harden
Cast or German steel plow mulls, 4 fluch thick, to make

 or potash, mixed with Hour paste. When 1 tts dry, cover
with clay to keep the potash from com!ng oft, and it with clay to keep
heat to a bright red.
 the bad suell that is in all stables? If so, what can

 What hook contaling engrarings of the latest and bes vilectrcal machines, for motive power? Answers: Use chllorlde of lime or cal bollic aclid. 2. Consunt ou
dvertising columns for informaiton as to makers of
 less he coal is of uuusuanly good quallis, woud will b

 Joods exposed hhere. Iron or meel is quickly covered
with rust. and hrase wire or thin

 ton. Put a plece of stove ptpe perpendtculary ity
he upper end of the window and buru a j jet of gas in under ift to produce a draft. A A opentiog at the bottom
uvered with duze wrill overed with gauze will admit alr and keep ont IIsecto
Iare you no hing but hardware in the window, and nothng to generate sulpharous fames?
F. E. W. asks: How can I remove an old ous acld
o. $\&$
A.
 that 1 sintended to drive the 6 Inch belt runs off the pul-
ley, which leares A without power. Λ claims that Sis not got sumpicient power tio that Ariving belt to glv
 belt will drive. A contend shat, if he did, the 6 Inch
bett would run of the pulls, acd the driving belt would
 the 30 Inch pulley aud puts on an 18 inch ; this, he claims will give more spee 1, which will give more power.
clamm that to torease the speed 18 to decreose the
 B then puts an 8 Inch belt on the 18 inch pulley and leti
it han over 3 Inches, and clatma that A has more poier A clalins that he has leess power. A and 13 leave it to eclde a qu tion of this kidud, without a personall exan nation, to reuder it certain that we are in posesestion
 he scoond case, if, as we understand it, the changed resent modifcalion, 5ou: 6 inch bell is driven sathotac torlly, sou have more power than betore.
S. A. H. asks usto state, briefly and clearly,
what we understand by " Sciecoce," as used and appliti
 tions: : Scl
nettiodicall

 that they could have been discorered and known, eliter
vith certulnty or with such probabluty as the subich vith certalnty or with such probability as the subjet admits of , by other means than their own evidence."
-isclence is sapplea to any branch of knowledge which cover and apply fres princtples.
D. C. asks: 1 . What percentage of power
has ever been developed with rotary engines, compared With other tinde? 2 . Can prrfect condensation be se-
cured aured ciny ower of a locomotve when the cowecting
 Answers: 1. We have neerer sen reports of ..ny careful
testu of the performance of rotary ennires. $\%$. No, if op and bottom, the tull power of the englne, multiplited
 hic crank, fs exerted; at the othet twopolnts, no power W. P. asks: 1. How can I set a plain slide
valve ofa satitonary horizontal engine (so
us to co cut oft at any given polnt), without removing the stcam chest ?
2. Whet ingreclents con I uee to stop the foamting in m my boiler? Answers: 1 It can on'y be done by nisking a
 oaming is caused by musumtclent steam room, no Ingre Hents will have any eirect. Carrising a higher pressur of steam, if sour boiler will safeiy tustann it, may remed
the trouble. If it is caused by drry water, frequent blowtag of wili be advisaille.

 is that tif takes less power to cut one elzzhth of an
 and if the side cut were the eame in both, one tooth
would take but half the power. But if it tis wice

A. S. says, in answer to (G. F. C. Who asked for a deserivitun of the electro-plating process of Pru-
eessors IJacobl and KIleti: Professor J Jacoll states that
 oiner double sulohate of nuckel salts as from the sul.
ohate of nickel and ummont. He remarks furihe hat the depositlon of nictelsels. ceeesde far better by the
 phate of nlekel and amiuona, etc. Professor Kilen says
inat, in the Imperial pritutug cestablishment, the proces of Becquérel (publishod in 1882 in (omptes R n n nu $u x)$ in inplied. namely:a solution of a double salt of niek

 the solution; on the con rary, experlence hae proven
that regular deposits will be obtalined from solutiona contaninng considerablle quantitices cf sulphate of pot.
assa or sulphate of socla. Sec "Bualiness and Personal" assa or sulptate of 8o.
C. A. says, in answer to E. F. C.'s question
cor something that will preveut rats from gnawng his vellows: Skunk's oll lis the only preventive I have ever
iound, and I have perifict conddence in it for the asoore
 mal's fesh. But I feel justifed in recommending it for the above purpose. It not only pr-vents rats and imice
rom gnaw.ng bellows, but tus use ought to be apparen to careleses farmers, who oftel leave thelr harness, sad-
diese elc., wherever they use them last. Skunk's onl is a dies, etc., wherever thes us them last. Skunk' 1118 a
sure remedy in all csees, as no antmal will chew or gnaw
 on which 1 t is used.

R. B. V. replies to EA W. H.'s problem:
 oody would move th the directity
belng welghtleas, it has no gravity.

 molding sand,, shovelsful $;$ mix thoroughly and then add thovelful sea col facing (pulverized Cumberland or
tituminous coal ,according to locallty); mix well and Hade through a Ane sieve, then dampen, and ridale on your pattern. The lighter the casting is to be, the
weaker you must make your facing ; or a p pate x an

 put any facing on the cope side; t then, it you want to
sillck" the mold, shake on a
nitle plumbago, and silck" with your tool. On a very heavy casting, use a faccing of 1 shoveltul of coal to 5 or 6 of sand. If the
facling be too strong, the casting will look cloudy or tacclng be too strong, the casting will look cloudy or
wormy. To make black wash for a dry sand mold, put or 3 handsful charcool tin a dish or pot and add clay
wash that has been stralned until the whole wwll be so as to drip of your finger nall and leave a coating; or use molasees water Instead of the clay wash, putting th
lack wash on with a fine brush, then " sllck"" with y vou ool. If there are cracks in your dry sand mold, fll F. A. M. replies to J. V. D.'s query for
tain to
imitate rosewood: Frrs rub the wood with vin
 uccess of the imitation depends on the skill of the
 nd polsonous form. The Pharmactst (Cnicago) 1871

J. D. T. says, in reply to J. H. W. W.s query
about the hydrometric strength of dlute esprits : If we
 dquor will be 55° under proof, or 250 (real strength) by
Tralles' hydrometer ; and tis specifce gravity would be roci7, providac no
 cwo numbersadded together $100+100 \cdot 7=200$ gallong spprit
$25^{\circ} \mathrm{by}$ Tralles ; spectic gravity would be 9 -90057. In

 reduce 10 gallons of spirtst 60 above proof to 200 belo
proof, 100 gallons of water. But there would not be 200 proof, 100 gallon of water. But there would not be tan
gallons of the new compound. owing to the contraction Which takes place wheu alconol and water comblne. In
order to allow for the contraction, the spirit must be reduced by welght or spectice gravity. For reduclng 10 gallons of spirtt 60 above proor to to 200° below proot, 14
gallons of water are required. The two numbers added together, $100+104=200$ gallons of spirits at 20° below proof It will be noticed that 20t gallons of fuld have been used yet the product 18 but 200 gallons, showing a coutrac.
tlon of 4 gallons. 100 gallons of gifrlt at 60 above troor, and 100 gallong of water will not make up gallons. But the strength will be ra ther higher than 20 elow proof. In answer to the question: How many gallons of spirit at 60 below proor willit require to r root? Forty gallon of spirtit 900 above o60 gallons of spirtts 600 below proof, equal 100 gallon f spirtis at proof. Thus:

100 gallons at proof.

$\overline{100}$ proof gallons.
J. D. T. says, in answer to J. H. R.'s query
sto measuring the contents of a partly filled cask: In. struments oalled wantage rods are kept by nautical in
trument and hydrometer makers, and are used $b y$
 capacity of the cask 18 known; if not, the package
must be gaged, atter which the wantage rod is used to and the deficiency
R. J. H. says, in reply to J. J. P., who says
that his telegraph line of 200 yards iength won't work In case of the absence of gas or water pipes or a pond,
the trouble can be remedied by using a metallic circult, hat ts, put up another wire on the same poles or sup. ports, , Insulated from the Arrat wire , this 18 the proper
way to do to. Short clrcuits cannot be worked success fully In connection with the earth; ; 11 i a very popular
fallacy to suppose that the earth acts as a return con ductor; the earthmerely y acts as a condenser or reserVoir, and a battery 18 merely an apparatus for drawing
lectricty out of the ground in one pluce and forcing it In at another. When these potnts, ground plates, are
very near each other, the battery force required is as much as if they were a great distance apart. There probabiy another diffeculty with his une, and that is in
 equipment, namely : The maximum magnetic or workng strength is obtained when the sum of the resistance of the clrcutt; that 18 , in this casee, the two the rest must have a realistance equal to the une wre and the battery, and 11 t 18 not probable that such is the case, if
they have only 20 feet each. In the absence of apparat. us for electrical measurement, J.J. F. can only get at resistance of wires by thelr stize or dlameter, which he ndard work on practical teeegraphy.
R. H. A. says, in reply to many queries in ouly one, seems to be this, that the action of acla reduces the acute angle, which the cutting polnt of the tooth and the fle has none of the means of force which ren. der a blunt tap effective. To illustrate, we suppose a file tooth to be in sectlon like a ${ }^{\text {jon }}$; the acld acta on one slde and in the groove between the teeth equally. If
this V is an angle of about $\mathbf{0} 0^{\circ}$, It will be been, by any one who chooses to prove tit, that the first cut of the acid, or the act ton on one side only, has lowered the potnt of the tooth double the distance of the depth of the perpendicular cut; and when the effects of the ecld on both gldes
of the tooth are comblned, the best result will be rilght angled edge or potnt. In the grooves, the accld has a far
greater surface, proportionally, to act on, and becomes
raplay saturated, whine at the points the reverse is the
case. Now if, after rendering the fle chemically clean as is requisite, a delicate touch of resisting mattercould
be applied to the points of these tecth, the actd action would be retarded untilenough metal had been removed from the grooves to render the process successful. It
would need care and tact to accomplish it, but I believe Fould need care and tact to accomplish it, but I believ
it may be donc. Perhaps if an accurately round rubbe ver the fle after the manner of the printer, or if nativ ubber were dissolved in bisulphide of carbon and in tantly used, the experiment might be successiul would depend on the skill of th 3 operator. The nd would not go through, the protecting substance iving time (which is always an element in chem try) for prolonged action in the grooves, befor the poi
length.

COMMUNICATIONS RECEIVED.

The Editor of the Scientific American cknowledges, with much pleasure, the re ceipt of original papers and contributions pon the following subjects
On Retardation of the Earth by Tides. By
On the November Meteors. By D. K
On Cleansing Incrusted Boilers. By T.J.A
On a Refractory Silver Ore. By P. S
On Iron Tie Rods. By E. M
On the Spleen and Electricity. By S.W.J
On Corundum in Pennsylvania. By J. L
On the Million Dollar Telescope. By S.H.M ., and by F. D. J.
On Professor Haeckel on Embryology. By M. W.

On the Bodies Associated with Biela' Comet. By D. K
On Industrial Education. By S. C. Arm rong.
On a Cheap Fire Alarm. By A. N. J.
Also enquiries from the following
A.G.-E.L. E.-W. H. S. \& Co.-M.C.-D. C.-J.W.H
-P. K. F. - P. C. B. - B. W. C. - W. McC. Correspondents who write to ask the eddress of certaln manufacturers, or where specified articles are to be had partners, should send with their communications a mountsufflelent to cover the cost of publication under he head of " Business and Personal,". which is specially

Minerals and Fossils.-Specimens hav been received from the following correspond ents, and examined with the results stated A. H.-You are partially correct in your conjectures a most interesting of your spectmens is No. 6 , whic The organic matter and lime have been leached out,an nly the eartiny matter remains, which is, in this cas ane grained sandstone. You will find this species full described in Dana's "Geology." No. 3 contains iron py res; the black streaks are impressions of plants, wt longed to. It is probably from the Hamilton group. Will you please intorm us in what county of New Yor
hese specimens were found? No. 2 is only quartz, ou say.
L. F. I.-An argllaceous yellow ocher ; it would doubt
[OFFICIAL.]
Index of Inventions
FOR WHICH
Letters Patent of the United State
WERE GRANTED FOR THE WEEK ENDING
May 27, 1873,
and each bearing that date
[Those marked (r) are retssued patents.]
Alarm, automatic fire. H. L. Brown..
Amalgams, quicksilver from, M. B. Howard Bar and hook, clevis, R. Gibbs Billiard cushion, W. St. MartII Bleaching IIquor, H. Deacon Boller, wash, J. Adams. Boller, wash, J. W. Demin
Book rest, L. Tarring.......

Boot, moccasin, E. A. Bu
Boot bottoms, molding, S. W. Baldwin.
Boot heel blanks, making, C. W. Glldden Boot heels, trimming, C. H. Hel Brace, shoulder, N. C. Burna
Bracelet, Grant \& Cook...
Bracket, shelving, J. V. Mel
Bullding, freproof, J.E. Mulford. Burner, gas, B. Andreae
Button hole cutter, Tebbets \& Nutting Can, oll, H. Keller
Car axle, rallway, R. N. Allen
Car, dumping, T. Bootsmann
Car hanging signal cord, raliroad, J. F. Rice. Car, rallway frelght, R.H.Gordon, Sr..........
Car ventilator, etc., pocket, J. B. Timberlake Carriage cllpp, swaging, R. R. Miller
Carrige curtain fastener, N. M. Terry
Carriage protector, G. B. Brown
Carriage window sash holder, S.E................

Cask, beer, M. Settz.............
Churn, rotary, G. Walker...
Cigar machine, H. E. Tyland
Coftee roaster, G. W. Dobson
Coloring metal, J. Kintz.
Cooking utensil, E.J. Sprague
Coorset, beer, J. GImlich........
Caltivater, self- P. Lock
Curtain cord fastener, J. P. Arnol
Curtain cord fastener, H. Lull........
Desk and dook case, J. A. Payne
Desk and book case, J. A. Payue.
Drawing board, H. H. Meyer,
Drawing, device for teaching, A. C. Covell. Egg carrier, S. H. Smith
Engine and saw mill, steam, I. Brown ngine piston valve, steam, A. Ba
Engine, steam, Nicoll \& Hollman. gine val Excavator carrier, J. Williams. ye glass, A. D. Ansell
Faucets, etc., inserting, K. A. Wattendorf
Fire arm, breech loading, A.Marcll1.
Fire arm, breech loading, W. Richard Fire escape, J. O’Brien
Fire escape, I. Merritt
Fire escape, I. Merritt.
Floor clamp, J. G. Rogers......
uel, etc., artifictal, A. Berney
Furnace alarm, blast, E. Davis.......
Furnace door and btt, J. G. Haberfie
Game table, s.s. Schindle
Gate, nursery, J. W. Bough
Generator, vapor, W. Wells
Grain, nuts, etc., cleaning, J
ater, metalic, T. McClunte.
Harrow, J. F. Gazley...
Harvester, c. Creok, (r)
Harvester, C. Crook, (r)...

Harvester dropper, N. Johnson.
Hatchway, Follett \& Brummel.
Heel breastingmachine, V. K. Sp
Heel stlffener, L. C. C.
Hook, flower pot, etc., I. A. Lovejoy.........
Horseshoe nalls, making, E. W. Kelley.
Horseshoe naills, finishing, R. Ross.......
Horseshoe nalls, etc., swa
Hub band,
G. H. Johnoon
Insect destroyer, S. W. Tho
Iron, rolled, G. W. Bllings
dron, steel, etc., treating,
Lamp lighting apparatus, M. A. Ly
Lamp, street, Jacobsen \& Burger...
Last and shoe holder, B. J. Tayman
Leather cuttIng tool, J. Demarest...
Lock, hasi, A. B. Smith....
oom for weaving piled fabrics, E. Pickford... oom suttle box mechan B. Boodyea
Lubricator, E. McCoy.
Machinery, preventing noise in, G. Ames Medical compound, J. G. Hucks. Mortar mixer and grinder, E. Spaulding Motion, reproducing, C. T. Ches Meck yoke, P. Epler.
Vut lock, A. Por
Pan, dish, S. Laff
Pan. dish, S. Lafferty.........
Paataloon tree, E. B. Vets.
Paper cllp, M. A. Wheeler.
Pavements, laying concrete, J. W. Snyder. Photographic chair, chilld's, M. H. Prescot..... J Planter, corn, H. A. Sharp
Planter, corn D. F. Taft. Planter, corn, D. F. Taft......
Plasterer's float, I. A. Goods Printer's quoln, C. W. Ames. Printing press, plate, Howard \& Danty
Printing press, rotary, S . H. Bingham Printing press, stop cylinder, H. Barth Printing type, D. W. Bruce
Puddlers' balls roller, R. M. Bassett Pulleys to shafts, securing, W. B. Van Voorhis
ump or syringe, hand, W. B. Robins........ Pump, steam vacuum, W. Burdon
Purifier, middllngs, Hardenbergh
Purifer, middIngs, N. Lacrorx. Quartz mills, feeder for, T. A. Cochrane Rallroad frog, J. Brahu
Rallroad frog, Skinner $\&$ Gifford Railroad frog, Skinner a Gifira Rallway signal, electric, Digney et Raker and loader, grain, G. S. Dudley
Refrigerator, M. Shaw........... Rerrgerator, M. Shaw...
R1bbon block, W. Obrist.
Rolling blooms, machine for, G. W. Billings Ruche holder, J. V. Rockwell
Safe, Areproot, N. Constable. Sate, freproof, J.E. Mulford.....
Sash and door clamp, T. S. Urie. Sash holder, S. E. Totten, Jr. (r). Saw mill head block, A. Rodgers
Saw, scroll, E. A. Walker.......
Saw, etc., sharpening, E. Dufty Saw teeth diamonds, rastening, T. Smi
Saws, hanging, H. W. Brown Scales, druggist's, Cyrane
Settee. J. \& E. R. Holzer
Sewing machine, R. Chandler...........
Sewing machine, Henderson \& Wright Sewing machine, G \& J. F. Webster
Sewing machine cutter, L. H. Allen Sewing machine cutter, L. H. Allen....
Sewing machine folding guide, J. E. E Sewing machine shuttle, G. Rehfuss.........
Sewing machine tuck creaser, w. D. Kane Sewing machine tuck creaser, W.D. Kane..
Scwing machine tucker, , H.H. Bean (r).....
Sewing machine,'wax thread, E. E. Bean (r).

	Soldering compound, c. Cox \qquad 139,297
	Spark arrester, E. Lannay 139,399
	ne, making artificial,
	Stool, ife preserving, H. T.
	e, heatting, D. N. Mason...................... 139,256
	0
	Tobacco, machine for rolling, D. W. De Forest... 199,975
	ace fastening, F. M. Snively....................... 139,432
	Trap, fly, R. P. \& W.I.
	Treadle movement, J. Evans......................... 139,005
	Trunk lid supporter, J. Stott...................... 139,435
	Tube expander, C. W. Deane............... 139,374
	Turpentine tool, J. G. Cobb......................... 199,669
	Umbrella and cane, combined, \boldsymbol{T}. R. L. Chevers.. 199,295
	ella tip retainer, Lusby \& Winter............. 139,405
	Valve, liquid sealed, L. Winterbauer................. 139,377
	Valves, steam and other, E. F. Spaulding......... 139,339
	Vault cover, J. C. French............................ 199,41
	6
	achine,E. M. Hodgson................. ${ }^{139,913}$
	LI'
	cations have been duly flled, and are now pending
	the days herelnatter mentioned:
	25,183.-Nail Machine.-D. Dodg
13	25,235.-MANUPAOTURE OF IRon.-B. Lauth.
	2,
	$2{ }^{2}, 3400$ -
139,2	
	EXTENSIONS GRANTE
	atrorm
	$24,200-$-Hydrocarbon Vapor aprarates, -E.
	DESIGNS PATENTED.
	6,651 ¢ 6,652.-STocrinc FABRICs, -M . Landenberger, Jr.
	ade
	Floor Cloths.-C. T. and V. E. Meye ${ }_{\mathbf{r}}$
	6,65s.-CAAIR FRAME.-B. J. Harrison, New York city.
	$\begin{aligned} & \text { oor C } \\ & \text {, N. J. } \end{aligned}$
	¢,679.-O
	P.
	.
	6,686.-BRACKET.-A, D. Juda
	6,687 \& 6,688.-CARPETS.-H.S
	${ }_{\text {Pa }}^{\text {IV }}$
	6,69
	6,691.-Floor Cleth.-J. Meyer, Lansingburgh, N. Y.
	TRADE
139,279	1,2
	1,275.-Plow.-J. Oliver, south Bend, Io
	${ }^{1,2676}$ - SALT
199,588	
139,423	1,279.-Bou
	1,280.-Frise.-The A
	1,281.-FILI
	${ }^{\text {Mr }}$
	-B
	1,885.-White Zinc Paist.-Wadsworth Bros,N.Y.
	On fllng each application fora Patent (17 year3)... $\mathbf{8 1 5}$
	On rrating the Extension........................ss0

Fuel, economy of u.ntu d. sangre n Hoïdaras, the Fulminate of mercury , Irusel oll, teats for	
answered.	
carbout	
Gas light and	
dileg tree	
Glass	
Gly erin on st ychia,	
Goid in Lapland Gold	
Goldsolution tor coathng	
(tay	
Grapes in winter fresh. triea-ing the gridaje	
Greelev, a typo statue to Horace ${ }^{5 \circ}$ trludur sle wheel	
Gun cat	
Gun carrige and elevator, pneu. inatic	

 Iron, Aneric̈an.................:

叚群

s.r
ser
sed
Sea

aut wos

5

For Pracicil Men.

SHAW'S Civil Ancilietirure.
 A Magnificent Book.

 form
The Rudiments of Architecture and Building.
 The American Cottage Builder. A Series of

 $\underset{\text { American Houses.-A Variety of Original De- }}{\text { sigcs for Ru al Build ings. }}$
 Elements of Bullding, surverlag and Architecture
 A Hand-Hook for Architectural Surveyors and

 etc.eitc. By, JiF. Hurst, C.E. Second Edtliou, pocise
book form,
Puil bound....................50 Practical Specifications of Works executed
In Archltecture, Clvil and Mechantical Engineerligg
aud in Road Ma 1 In and Sewerng: To whichare added

 The Geometrical Stair-Builders' Guide: Be-
 The Practical Stair Builder: A complete
 of The above, or any or my Books, sent by mall, free
 HENRY CAREY BAIRD

throuzhout the country wipe out ill their brsi oratio
 "To Have a Cricket

BOILERS AND PIPES COVERED ASBESTOS FELTING COMPANY,

I ATHE CHUCES-HORTON'S PATENT

The Manager of the 42 d Exhibition of the America

 For partlculars, address
Niagara Steam Pump.

PORTABLE STEAM ENGINES, COMBIN

To Electro-Pluters.
B ATTERIES, `HEMICALS, AND MATE-
RIA NALS. In nete or single. With hooksot instruction

PAGES Water Flame Coal Lime Kiln, with
$T_{s=1}^{0}$ FOUNDERIES, Factories, Ropewalks

$\mathbf{W}^{\text {ANTED-Work for Lathes, Milling and }}$
 Machinery,

Cold Rolled Shafting.

Sturtevant Blowers.

BUERK'S WATCHMAN'S TIME DE 1) TECTOR.-Important for al. large Corporation

 W OOD.WORKING MACHINERY GEN

soluble glass

 Planing and Matching

FREY'S SAW GRINDER

D ICEA

Little Giant.

To Quarriers of Marble, Slate and Limestone

 $\overline{\mathbf{W}}$ ATTED IN ENGLAND-A Firstclase

 and

A GENTS-Most fortuante chance to make

INDIANA STATE FAIR

 make this the orand est opportunty for the display
Industrial Products ever presented fin the Unted State \&rticles may be entered for Competition or Ex bition only. Lists, with Rules and Regulations, B'ank
Apremium
Applications for
by addreseate, and otherinformation, iurnished

 NOTICE
Is hereby 1 riven to parties making Punching Presses with
 one-gears and now in our p
one claim of the inventors:
"Combining, with the ellde 2 nd shaft of a power-presse
and the wheel,
 THE STILES \& PARKER PRESS CO.,

Andrew's Patents.

 Stuatybuyfinple, Durable, and Ecooomical.

New \& MPROVED Patterns.-MA

ROPER HOT AIR

 WOODWORTH PLANERS

GEAR'S PATENT TARIETMOULDING MACHINE

MOLDING, MORTISING, ENONING \& SHAPING MACHI SCROLL SAWS, Planiur \& Matatiing J. A. FA M ${ }^{\text {s.entran }}$
 WOOD-WORKING MACHINERY. WORKING CLASS MALL OR FEMALE:
 PATENT SA BOL E

 FGito

M

 P

Turbine Water Wheels.

 Improving the Harbor of San Franciico. Seale proposas, , with a coprs of this advertisement
 Sill $\$ 72.00$ EACH WEEK.

Sidrotistafite

OF ROCK DHIBITG DN

 burgh. Pa., Agent for Hazard Powder Co. sporting and
Mining Powder and all applances for biasting seam
wil be furlibied free to all Machines. All Machines
admitted free.
B ARGAINS IN NEW TOOLS-Large four

AMERICAI SAW CO
No. 1 Ferry St., Neer York.
Movable-Toothed Circular Saws, PERFORATED CROSS-CUT, SOLID ${ }^{\text {AND }}$ SAWS.
 $\xlongequal[\substack{\text { Yor the beent } \\ \text { yoather Bets } \\ \text { BELT }}]{\text { HOOK }}$ \&REENLEAF WILSON, Lowell, Mass. HOUSTON'S PATENT TURBINE WATER WHEEL.
 cit hine past, Beat,

 Underground Treasures. HOW AND WHERE TO FIND THEM. By JA. Ortor,A.M., Prof. of Nat. Hist. In Vassar College.
 how to recognize, distinguleh, and to know their value.
 TRON PLANERS, ENGINE LATHES
 B est and best in use. For Sinustrated Catalogue and rice List, send to H. L. BEACH, 90 Fulton St., N. Y.

ำน
 ALanM

min
the necessity of the age? To protect Llfe and Property from Destruction by Fire Will givenotice of a FIRE, at its very commencement, b areport as loud asa musket, suftcient to a araken ever
person in the building in time to extingulsh the flames. THE ALARM IS SIMPLE, SAFE AND RELIABLE It is three Inches long, an inch and a quarter in diame

 Canvaesers Wanted forall parts of the Country Sample with cartridge and two fases sent for 81. . Spe-
clal rates made with Dealers and large consumers. UNITED STATES FIRE ALARM M'F'G CO.,
697 Broadway, New Yor
R ANSOM SYPHON CONDENSER perfects One per cent its Value, and by its use Vacum Pans are
Vnn with full vacuum without Air Pump. Send to

Clothiers \} FREEMAN \& BURR, \} Clothiers, The STOCK, espectally adapted to SUMMER WEARR, emb aces all the popular Sylys and Fabrics in
Linens, Flanneek, Casilmeres, Ducks, Alpacas, Marsellies, Stripes and Checks of every dcecripilon, for all clasees ORDERS to measure neatly and promptly executed at Moderate Prices.

Suits, 810.
$\left.\begin{array}{cc}\text { Sommer }^{\text {Sumpr }} & \text { Coats } \\ \text { Summer } & \text { Coats }\end{array}\right\}$ s1 to 810. Orders

By Mail. SuITs, 840
Suits, 850 FREEMAN \& BURR'S NRE STBTRM FOR SRLF-MrasURR, of mhich thousand

THE
AMERICAN Trubine Water Wheel

WIRE ROPE.
JOHNA. ROEBLING'S SONS

SECOND

Grand National Industrial Exposition, Louisville, Ky.

WILL OPEN SEPTEMBER 2d, 18\%3, AND CONTINUE UNTIL OCTOBER 11th,
 charge will be made to Exhbitiors for Entry Fee, Space, or motlve power. The unprecedented success of their Exposition ever held in America. For circulars and full information addresi INDUSTRILL 2
BUILDING PAPER: MORRIS, TASKER \& CO MANUFACTURERS OF
AMERICAN CHARCOAL IRON
Boiler Tubes.
WROUGHT-IRON TUBES
AND FITTINGS, FOR GAS, STEAM WATER, AND OIL.
Cfr Steam and Gas FItters' Supplies, Machinery for
Coal Gas Works, \&c. \&c. NO. 15 GOLD ST.. NEW YORK. THE STANDARD MAKE! Emery Wheels and Emery Grinding Machinery.
THE TANITE CO., Stroudsburs, Pa.
 ?

 Working Models
 a. A. Vervalen's' Bridk Machiness

MAHOGANY,

ROSEWOOD, WALNUT, WHITE HOLLY SATIN WOOD, HUNGARIAN ASH, AND ALL KINDS HARD WOOD,
IN LOGS, PLANK, BOARDS, AND VENEERS GEO. W. READ \& CO., oflce,MM111 and Yard, 186 to 200 Lewis st.. cor.bth st., E.R

NOYE'S MILL FURNISHING WORKS
 Machinist's Tools,

THE BAND SAW!

H ISTort, with Entraying of the onper
 J875 to 8250 per moth eavimer

 3OCORTLANDT-ST, NEW YORK.

GUPMR-FIRATPRS
 Pyrometers, Fortes.

 COVVERTITG

 FOR 1 CFNT
 COREMAN WANTED - A thoroughly

PORTLAND CEMENT,

SCIENINICHCAN
 One copy, one year TERMB.

One copy, one
One copy, six months
One copy, four months
88.00
1.50
1.00

One copy of sclentific American for one year, and one copy of engraring, "Men of Progress", 10.00
One copy of Sclentific Amerlean for one year, and one copy of "sclence Record," for 18T3
Remit by postal order, draft or express.
The postage on the Sclentile American is Ave cents per quarter, payable at the omce where recolved. Canad to pay postage.

- Addresse all letters and mate all Post oflle ordcre or drafts ayable to

MUNS \& 00.

$T^{\mathrm{HE} \text { "Scientific American", is printed with }}$

