
a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

Vol, XXVIII.--No.25.]

NEW YORK, JUNE 21, 1873.

[${ }^{\$ 3}$ per Annum

NEW DOUBLE SPINDLE IDRILL

We present herewith an engraving of a spindle drill which has been recently introduced into the market, and which, we learn, is coming largely into use for lccomotive and railroad shops. The chief point of advantage to be noted is that both drills, having an automatic feed, can be attended by a single workman. The drills are also entirely independent of each other, and both can be moved to either end or any point in the frame. The table is so arranged as to rise
|which, when the vessel is being emptied of its liquid, are pressed upon by the bail, thus holding the lid in place. On the side of the pot is made a projection, to which a handle is applied and the utensils thus readily tilted. Patented Sept. 17, 1872, by Mr. W. W. Tice, of California, Ohio.

The Origin of Mountains.

Professor James D. Dana contributes to the American Journal of Science and Arts a very learned treatise on some

NEW DOUBLE SPINDLE DRILL.

and fall to suit the work to be operated upon. The tool is \mid one end only, and birdy creeps therein, as into a diminutive ciaimed to have all the advantages of two complete drill presses. The side frames of a locomotive may be placed upon the table against an angle plate, and all the holes, for nine feet, drilled without moving the work; this, we understand, has been accomplished. The table is made long enough to move the locomotive frame on end to drill the balance of the holes.
The machine has also been found to save a great amount of labor in drilling the bottom rings around the locomotive boiler furnace, where many holes have to be placed. It is stated, by a party using two of these drills, that one man is running all four of the spindles on water bottoms.
To Mr. W. S. Hudson, superintendent of the Rogers Locomotive and Machine Works, is due the credit of having suggested the idea and produced the plans which were the criginal of this machine. For further information addres Hilles \& Jones, makers of machinists' tools, Wilmington, Del

An Invention Wanted.

A correspondent, L. L. B., says: " Plowshares, as now used, are enough to make any farmer complain, especially if they are steel ones, which are generally ruined after being they are steel ones, which are generally rua a d being Why could not the ands. Why could not the share be made smaller, so that it would not be necessary to weld a plate of iron on it? The share and point might be made of two pieces, and the point used in some way to fasten the share. Plugs or wedges could be used instead of bolts, which are so placed that they are hard to unscrew. Would not such a contrivance be as successful as the movable saw tecth? I think so. If such a thing could be made, it would be one of the most paying inventions."

This is an ingenious device, which may be easily arrange

in connection with eny ordinary pot, serving to retain the lid while draining the water from the contents. It consists in attaching to the cover two lugs or care, A, by which the
bail is supported in convenient position for grasping, and
results of the earth's contraction from cooling, including a discussion of the origin of mountains and the nature of the earth's interior. In speaking of the kinds and structure of mountains, he draws a hitherto neglected distinction between: 1. A simple or individual mountain range or mass which is the result of one process of making, like an individual in any process of evolution, and which may be distinguished as a monogeneticrange being one in genesis: and 2. A composite or polygenetic range or chain made up of two or more monogenetic ranges combined. The Appalachian chain-the mountain region along the Atlantic border of North America -is a polygenetic chain and consists of several other ranges, principal among which are the Green Mountains, the Alleghanies and the Highland, including the Blue Ridge and Adirondacks. Of these the first was completed essentially after the lower silurian era, the second immediately after the carboniferous era, and the third are pre-silurian in formation.
Mountain making is shown to be very slow work. After the begining of the primordial, the first period of disturbance of North America of special note was that at the close of the lower silurian, when the Green Mountains were finished. This interval between the beginning of the primordial and the metamorphism of the above range was at least $10,000,000$ years. The next epoch of disturbance in 0,000,000 years. The next epoch of great dish carboniferous era, in which the Alleghanies were folded up; carboniferous era, in which the Alleghanics were folded up; and altogether it is stated that the Appalachians were at
least $35,000,000$ years in making. The displacements of the least $35,000,000$ years in making. The displacements of the
Connecticut river sandstone and the accompanying igneous Connecticut river sandstone and the accompanying igneous ejections, which occurred before the cretaceous era, took place for some $7,000,000$ years after the Appalachian revolution. Thus it is demonstrated that the lateral pressure resulting from the earth's contraction required an ex-
ceedingly long era in order to accumulate force sufficient to produce a general yielding and plication or displacement of the beds, and to start off a new range of prominent elevations over the earth's crust.

Srientific Smexican.

MUNN \& CO., Editors and Proprietors. published weekly at
NO. 37 PARK ROW, NEW YORK.
O. D. MUNN.
A. E. BEACH.

TアIRME

One copy, one year..
Club rates $\left\{\begin{array}{l}\text { Ten copies, one year, each } \$ 250 \text {. } \\ \text { Over ten copice, same rate, each }\end{array}\right.$
8300
.250
VOL. XXVIII., No. 25. [New Series.] Toenty-eighth Fear
NEW YORK, SATURDAY, JUNE 21, 1973.

the digestive apparatus.

It has rightly been said that the greatest object of study for man is man himself; this is true in a physical as well as in a moral sense. The human body, indeed, is almost a universe in itself, including many kinds of physical appara tus, statical, dynamical, hydraulic, chemical, optical, elec trical, etc. The system of bones and muscles gives an ex ample of the most perfect statical and dynamical arrangement; the heart, arteries, etc., of an admirable system of hydraulic contrivances; the digestive apparatus is a most complete chemical laboratory in itself, by which the material called food is metamorphosed into the living tissue of which man consists. We have, on a former occasion, glanced over the most striking features of man's hydraulic system, of whicr the heart is the main organ; let us now take a glance at the chemical laboratory which we carry with us, of which the stomach is the main organ, and which, as well as the circulation of the blood, is carried on incessantly, inde pendently of our will and, when perfect, even without our knowledge
The stomach is only one of the organs necessary for di gestion. This operation, indeed, commences in the mouth, and exiends nearly throughout the whole length of the so called alimentary long, and presents a surface, to be acted upon by the food, of
some 4,000 square inches. In the mouth the food undersome 4,000 square inches. In the mouth the food under-
goes two operations, one mechanical and another chemical. goes two operations, one mechanical and another chemical.
The movements of the teeth, aided by the tongue, grind it up into small particles of proper size, while the simultaneous intermisture of the liquids secreted from tirree pair of salivary glands constitute the first chemical operation. Coated with a glary juice, the food passes along the cesophagus into the stomach (which is only an expansion between the cesophagus and the duodenum); this consists of three coats, one mucous, one muscular, and one serous, which is exterior. The interior or mucous coat has a velvety appearance, and is folded in wrinkles, so as to admit of much extension. When thus extended, certain appendages are stimulated and secrete three more liquids required for digestion. They are the gastric, pancreatic, and biliary juices
The chemistry of these different agents, in the process of digestion has, during our time, been most minutely investigated. The saliva consists of a mixture of liquids, which differ for each of the three pairs of glands from which they originate; to these a fourth liquid is added, the buccal proceeding from the lining membrane of the whole mouth; this mixture has the capacity of changing starch into grape sugar and, further, into lactic acid, which is essential to normal digestion. At the same time, the atmospheric oxygen is entangled in the saliva during mastication, and exerts an important influence in promoting the action of the saliva and gastric juice in the stomach.
The practical lesson which we draw from these well estab lished facts are most important in a hygienic point of view. It deeply impresses us with the importance of well chewing our food, and with the injury which we do ourselves by eating hastily, by washing down imperfectly masticated food with water, tea, coffee, or something worse, and (which is the most injurious of all) by indulging in the bad habit of spitting, and thus intentionally wasting one of the main substances required for a healthy digestion. The result of the
$\mathrm{ki}_{\mathrm{d} n \mathrm{n}} \mathrm{ys}$, and a consequent increase of the saline ingredients in the saliva, the salivary glands being thus induced to take W part of the functions of the kidneys; and, as Dr. John W. Draper very forcibly remarks, the dirty habit of pro-
fuse spitting results in "a partial conversion of the mouth fuse spitting results in "
into an urinary aqueduct.
Another important fact has been discovered by physiolo gists, namely, that the saliva of an infant, before it has its teeth, is incapable of converting starch into sugar. This ex plains at once why all attempts of substituting farinaceous food in place of mother's milk, in the case of infants, invariably fail; such children cannot digest starch, and are un derfed, or even starved, dying finally of marasmus. Starch, arrowroot, sago, tapioca, etc., are useless, because indigesti ble, for children before they have cut their teeth.
The gastric juice, which is the principal ingredient for di gestion, consists chiefly of the solution of a substance which has been called pepsin, and is remarkable from the fact tha it contains nearly two per cent of nitrogen, a larger amoun than any other substance in the body. The gastric juice be haves, chemically, like a very strong acid, dissolving zin and iron under evolution of hydrogen; and its digestiv power is impeded by the presence of any alkaline salt, while it is increased by the presence of fat.
The interior mucous membrane of the stomach, in which this gastric juice performs its functions, is reticulated; and at the bottom of each compartment are the mouths of the so.called follicles which, when seen under the microscope, resembles the fingers of a glove; and every stomach contains perhaps a million of them, each performing its absorb ent function, as the polype extracts the nutritious paris of the food which he envelopes with the bag of which he consists, rejecting afterward the undigested portion. A human stomach may thus be considered as a colony of polypz, which do not labor for their own sole benefit, but (under the control do not abor for their own sole benefit, but (under the control
of the vitality of the individual) for the good of all, and of the body which they are destined to maintain.

thick cylinders.

A cylinder exposed to internal strain, if composed of elas tic material, is stretched before rupture. The inner portion of the cylinder is stretched more than the outer; and the amounts of estension of the inner and outer portions will vary as their lengths. For instance : if the cuter circumfer ence of a cylinder is three times as great as the inner circumference, and, by the application of pressure, the inner cir cumference is stretched one thirtieth of its length, the outer circumference will be stretched one ninetieth of its length. It is easy to see, then, that all parts of a cylinder do not bear equal portions of the strain, and that the interior may be stretched to the point of rupture without an excessive strain being put upon the outer portion. It is found that the resistances of the different portions of a cylinder, subjected to internal pressure, vary inversely as the squares of their distances from the center ; and an application of this principle will give the following rule for determining the rupturing strain per square inch: Multiply the tenacity of the materia in pounds per square inch by the thickness of the cylinder in inches, and divide the product by the sum of the thickness and the internal radius in inches.
This rule may be thus expresssed: $P=\frac{T \times t}{r+t}$, where P is
the rupturing pressure per square inch, T, the tenacity of the material, t, the thickness, and r, the internal radius. Where the thickness is small in comparison with the internal diame ter, $\frac{T \times t}{r+t}$ is nearly equal to $\frac{T \times t}{r}$, which is the formula usually employed to find the bursting strain of a thin cylin der, such as a boiler. This will give a good idea of the distinction between thin and thick cylinders.
In our columns of "Answers to Correspondents" in this issue will be found a question relating to thick cylinders The dimensions given are : $\mathrm{T}=16,000, \mathrm{t}=5, \mathrm{r}=4$; and by an application of the rule, we find the rupturing pressure per
$16,000 \times 5$ square inch to be $\frac{16,000 \times 5}{4+5}$
the thickness of this cylinder, the strength is increased very slowly in comparison; and it is a very common practice, in constructing thick cylinders, to place bands on the outside, to compensate for the small resistance to rupture offered by this portion.

PNEUMATIC FOUNDATIONS

Colonel James B. Eads, well known to our readers as the engineer of the St. Louis bridge and other important struc tures, addresses a letter to Engineering, in which he takes issue with Colonel Roebling regarding some statements relative to the pneumatic foundations of the East River bridge, made by the latter gentleman in a pamphlet recently published. The disputed point relates to the position of the air lock within the shaft in the caisson, it being placed at the bottom and within the air chamber, making ingress and egress much more convenient than by any previous method, rendering it unnecessary to make the shaft airtight, and, besides, having many other advantages which need not here be enumerated. The idea of this improvement is, by Colonel Roebling, ascribed to Lord Cochrane, whom he states proposed it in 1831, and also to Wm. Bush and G. Pfanmuller, who subsequently brought it forward at intervals of some
ten years; but he adds: "It remained for Captain Eads, in his St . Louis caissons, to make the first practical application of the same on a really large scale in this country.
Colonel Eads, in contradicting the above, asserts that ment, and then leads the public to suppose that they are the
same as introduced by Pfanmuller nineteen years ago. He claims the origination of the idea, and not its mere applica ion, and hence considers that Colonel Roebling does him an injustice in not giving him the credit to which he is justly entitled
the preparation of gelatin.
In the ordinary manner of making light-colored gelatin, thin skins, sinews, cartilages, and bones are employed, whicb must be treated with muriatic acid and lime before being dissolved. These have furnished a good article, but at a high price. The expense of this process therefore induced F. Henze of Berlin to thoroughly investigate the subject of its manufacture in t'le hope of producing an equally good article at a lower price. The material employed was the brown, or almost black, glue of very poorquality, which is a by-product in a Berlin neatsfoot oil manufactory, and which sells for $\$ 5$ per hundred weight. This substance does not swell up in cold water like glue, but forms a gummy mass, dissolving as a thick, sirupy liquid, not very adhesive but resembling that of which printers' rollers are made. It is now used only in making cardboard and as a dressing for very dark-colored fabrics.
In preparing this glue, the feet are first freed from hoof and the more solid bones of the leg, which are used for turn ing into buttons and ornaments, and washed. They are ing into buttons and ornaments, and washed. They are
then exposed for three hours to the action of superheated then exposed for three hours to the action of superheated
steam under a pressure of 2 atmospheres in a closed vessel; steam under a pressure of 2 atmospheres in a closed vessel;
and after standing quietly half an hour, the liquid is drawn off. After skimming off the supernatant grease, the strong mmoniacal glue solution is strained and evaporated on team bath, and then furnishes the before mentioned black ish glue. When perfectly dry, it is very brittle and easily ubbed off between the fingers. Attempts to bleach it have yielded unfavorable results. It shows that it is already decomposed and is no longer gluten, or contains only very little of it. A large quantity of sulphurbus acid partially bleaches it, but to employ this on a large scale would involve many technical difficulties. The fragile apparatus for mak ing sulphurous acid would soon be broken in the hands of the workmen. Sulphite of soda could be dissolved in a very dilute glue solution, and then muriatic acid added to de compose this salt, if the quantity of the sulphite of soda required were not too large; but 50 kilogrammes of glue would require at least 2,500 grammes sulphite of soda and 2,250 rammes muriatic acid. The salts formed, which are sulphate of soda and chloride of sodium, as also the free acid, would in no case increase the quantity of glue, but on the contrary would ender it utterly useless for many purposes in the arts. The process of bleaching with mineral acids would also destroy the iron craporating pans, so that this method must be given pentirely.
All attempts at giving to the glue, when finished, the color desired having failed, no other course remained but to ascertain the cause of its becoming so dark-colored. The presence of sulphur and of considerable quantities of ammoniacal salts in the glue solution was too striking to escape notice very long. They could only have been caused by allowing the steam to act too long and too violently, whereby not only were the cartilages and gristle converted into glue, but the hair too had been dissolved, and thus caused the dark color. In order to reduce the decomposition of the glue and formation of ammonia to a minimum, the process may be varied in such a manner that, insteal of drawing of the contents of the digester once at the end of three hours, they shall be drawn off hourly. On standing a little, the grease rises to the top and can be skimmed off, and then a quantity of fresh wood charcoal mixed with 25 per cent bone black is put into the liquid and left over night for the purpose of absorbing ammonia and other impuriies. The following morning it is heated to the temperature at which gelatin melts, about 70° to 85° Falli., strained and evaporated to the desired consistency. The amount of charcoal necesary is about 4 per cent of the quantity of glie in solution. The odor given off by evaporation after it has been purified with charcoal is quite pleasant and resembles that of bouil lon soup, while that given off by the former method is one of the most disagreeable smells that ever polluted the atmophere
Glue prepared in this way answers all the requirements of a first class article. Even in thick layers the color is a pale wine yellow, and it possesses a high degree of elasticity. It has neither smell nor taste; and being always prepared from fresh material, it can be employed for all the purposes of so called gelatin.

THE SPECTROSCOPE SIMPLIFIED

Professor C. A. Young of Dartmouth College has recent y made some interesting experiments in substituting fine ruled metallic plate in place of the pr'sms in a solar spectroscope designed for the observation of the solar prominences through the C line. The grating was ruled on spectrum metal by Mr. Rutherfurd of this city, the lines being ${ }_{64} \frac{1}{8} \sigma$ of an inch apart and the ruled surface covering something over a square inch. Professor Young says: "Combining this with the collimator and telescope of a common chemical spectroscope, we get an instrument furnishing a spectrum of the first order, in which the D lines are about twice as widely separated as by the flint glass prism of 60° belonging to the original instrument. In the neighborhood of C , the dispersion is nearly the same as would be given by four prisms." The outline of the chromosphere and the forms of the prominences were as well seen, both in spectra of the first and third order, as with the ordinary instrument. The spectra are somewhat fainter but their appearance is not in jured.
President Morton,of the Stevens Institute, informs us that
he has also tested a similar ruled plate with like satisfactory esults. He suggests that, the ruled plates may be dupli cated by electrotyping, and thus readily furnished by opti cians at a price far below the expense of a tran of prisms. If so,the production of spectroscopes at a very low price may be expected, and all who desire may possess them.

THE CHICAGO INTER-STATE INDUSTRIAL EXPOSITION.

 New York is to have the yearly American Institute Fair and, sometime in the future, a perpetual Industrial Exposition ; Philadelphia is absorbed in the prospect of the grandeur of the coming Centennial; Boston, probably, would announce a gigantic show, had not her triple infliction, in the shape of the Gilmore Jubilee and the two big fires, exhausted her energies; Cincinnati is to repeat the great Fair of last year; Louisville, doubtless, also; and even little Newark, not to be behind, is busy endeavoring to eclipse the admirable exhibition of her manufactures inaugurated in 1872. We have been waiting to hear from Chicago, and our expectation is at last gratified. Rebuilt from her asbes, the " Garden City of the West" proposes to "celebrate" the second anaiversary of her scorching by a grand Inter-State Industrial Exposition, which the Land Ooner says is to be the "crown ing glory" of that mom + ntous orcasion.The building, which will be of a very ornate design, will occupy a portion of the lake front at the foot of Adams and Jackson streets, and will be 800 feet long by 200 feet wide. The main walls will be 24 feet high and composed of brick and glass, and the center will be surmounted by a dome 160 feet high by 50 feet in diameter. There is to be a grand art gallery, between which and the center of the building a large fountain will be placed. With the exception of the brick used in the walls, the entire superstructure will be built of glass and iron. It is the intention to have the edifice completed by September 1, so that a large force of workmen is employed and the work is being pushed forward as rapidly as possible.
as possible. soon be issued, and it may be sufficient to state at present that the plan embrace a representation of the products o every branch of art, including liberal and fine arts; the processes and products of every species of manufacture, togethe with collections, models, drawings, etc., illustrative of the sciences. No more comprehensive scheme could be devised, except that it does not include live stock, nor such operations and processes relating to agriculture as require to be con ducted and shown in the open air. It is intended to be a re flex, not only of practical art and manufactures as they are found in this corntry, but, to a large extent, of those of Chicago, as shown in her trade and commerce.
Mr. Potter Palmer is president of the company managing the enterprise, and a large number of the leading citizens

FREIGHT BUSINESS OF NEW YORK CITY ACROSS THE NORTH RIVER.

The amount of produce and general merchandise constantly being moved to and from New York city is so great that any statement of the business, by simply giving totals, can the commercial transactions of the present day. The money represented, in the moving merchandise which constitute the basis of the commerce of New York with foreign coun tries alone, is briefly toll in the statement that the declared value of the imports and exports at the port of New York
is upward of cight hundred millions of dollars annually ; but in this estimate, of course, the vast amount of freight which is annually handled in supplying the wants of home consumers as furnished by home producers is left entirely out of the question; and this. it is safe to say, is in bulk, as it is probably in value, far greater than the traffic directly connected with the export trade.
Aside from the highly important arteries of communication which connect New York by rail with the north directly and thence west over the Hudson river at Albany, and those which perform the same work as between the commercial metropolis water transportation up the North river and thence through the Erie and other canais, the shipping in the Sound and to the Erie and other canais, the shipping in the Sound and to
th; south, along the Jersey shore or through the canals in that the south, along the Jersey shore or through the canals in that
State, Deia ware, Maryland, Pennsylvania, and southern New State, Deiaware, Maryland, Pennsylvania, and southern New
York-apart, we say, from all these facilities, all of which York-apart, we say, from all these facilities, all of which
make it most convenient to land goods on New York piers and at t'se doors of its warehouses: there are the more im portant lines of railways, stretching west and south in every direction over the country and all having their proper ter-
mini on the west shore of the Norch river, whence their mini on the west shore of the Norch river, whence thei goods must be re-handled for shipment over the river, or the cars towed over on floats built for that purpose. This no only involves delay, but the expense for transportation
over so small a portion of the route is great, vasily beyond comparison with that on any other portion of tire distance reached.
The principal railroad lines which are situated to deliver their freight naturally on the Jersey shore are the Erie, the Pennsylvania railroad-which runs the Camden and Amboy and the New Jersey railroad-the New Jersey Central, and the Morris and E sex railroads. The total amount of freight delivered daily, as well as that taken westward, va-
ries greatly, as many as fifteen hundred cars coming in on ries greatly, as many as fifteen hundred cars coming in on
some days, with as many going out; while at other times some days, with as many going out; while at other times
tliere will not be more than one: third of this business. As these roads have connections all through tha South even to
Texas and through the west to San Francisco, it is obvious Texas and through the west to San Francisco, it is obvious
that the freight which they carry must include almost every
kind of merchandise known: it is, also, equally apparent kind of merchandise known: it is, also, equally apparent
that, where there is competin! water transportation, by canal that, where there is competiny, water transportation, by canal
or river, the more bulky and less costly articles will take the cheaper way, thereby reducing the amount of freight deliverable or taken by these channels when the carals and rivers are open to navigation; and so nearly the entire coal production of the country is brought forward to tide water or taken to its principal destinations inland by water
For the vast amount of freight coming and going from New York by rail, however, the methods of its handling and shipment over the river have changed very little for some years past,except in the increased accommodations which the rapid growth of the business has called for. The Erie railread company does not now, as formerly, run any cars to New York city, the whole amount of its freight being re shipped, on canal boats, barges, and lighte:s, to the d + liver ing points in New York. The number of cattle daily re ceived by this road is very great, and it has extensive cattle yards at Weehawken, about four miles above its main depnt at Jersey city, with a track running there, whence the cattle may either be taken by the cattle barges or be driven by droves across by the ferry landing at 42 d street, New
York. As might be expeted the York. As might be expected the cost of transportation over the river forms a considerable item in the running ex penses of the road, not including the extra handling, which must increase the amount by at least fifty per cent, being reported at $\$ 184,514$ for the year 1869; though from this sum must be deducted the profits of the Pavonia ferry, the gros earnings of which for the same period were $\$ 34,523$.
On the barges now used by the Erie company 8,000 bar rels, or 80 car loads, of flour can be transported at once. O some days 200 car loads of flour alone have been delivered by this road at Jersey City. For other kinds of freight the facilities would be comparative both as to bulk and weight. For a car load of cut meats, such as hams, shoulders, bacon, etc., 36 packages is the rule, or fifty barrels of whisky, or about 1,000 sides of leather, etc.
On the Pennsylvania railroad, which runs the Camden and Amboy and the New Jersey railroads, nearly all the freight, and all of that brought by fast express lines running over the road, is delivered in New York without breaking bulk. The cars are run on what are called car floats, carry ing eight to ten cars each-four or five on a side-and these are towed over to the depot on the New York side, and taken gack in the same way. These car floats are simply large quare built, flat boats, and not very expensive; but as the
business of this line and its connections is very heavy, axd it also includes the Dela ware and Raritan canal, quite an also includes the Dela ware and Raritan canal, quitude
extensive fleet is needed for its business, which includes four freight steamers, fourteen towing steamers, six freight barges, ten car floats, twenty schooners, twenty-one coal barges, and seventy seven canal boats.
The New Jersey Central
The New Jersey Central and the Morris and Essex rail roads, also large carriers of freight to and from the New York market, do not run any cars over the river, although there are several fast freight lines running over the former road under special contracts, which have their cars floated over the river by the same means as the Pennsylvania ooad, so that they do not break bulk until reaching New York city. The bulk of the carrying, however, on the of canal boats, lighters, barges, and freight steamers.
It might be supposed that no small proportion of the freigh delivered and taken by these roads would be accommodated o supplied from the large number of ocean steamers which now have their landings on the Jersey shore, thus saving the ex-
pense of handling and shipping over the river; but this is true only to a very small extent. A very considerable proportion of their outward bound freight, especially in the summer season, is furnished direct by canal or steamboa ines from the interior, and substantially all that they bring here is first taken to stores in New York city, or to the bond ed warehouses, when ee it is subsequently withdrawn to the thus. That which is imported in bond for the interior migh cessary any special accommodations for it.
The total cost of passenger and freight ferriage for the use of railroads having their termini on the west bank of the Hudson can only be estimated, as these ferries also serve fo: he accommodation of a local business, though established nd run mainly foy their several railroads. There are eigh passenger ferries, with boats ruuning on each at interval
varying from teo to twenty minutes. Estimating the num varying from ten to twenty minutes. Estimating the num he number of passengers at a fixed price each, we think wo are quite within the mark in considering the cost of passen ser and freight ferriage over the North River at fully two and a half million dollars annually.

the american institute fair.

We call the attention of our readers to the advertisemen in another column, announcing the opening of the forty second Annual Fair of the American Institute, at the buildin of the association, on Third avenue, between bad and 64 n se noticed thata change has been made in the management of the exhibition, and that the usual communications are to be addressed to the general superintendent, Mr. Charles W Hull.
We take the present opportunity to urge upon inventors and manufacturers, intending to contribute, to lose no time in prtparing their exhibits, securing space and completing the necessaly preliminary arrangements. There is no excuse for the state of chaos which has mar!sed the opening days of this sesson the past four or five years. Timely notica has
tage of it they must ascribe the unfinished condition, lessened advantages, and consequent temporary lack of public inter est in the exposition mainly to their own neglect.

A New Fire Escape.
A new extension ladder for enabling firemen and others to enter and escape from burning buildings was recently tested in the City Hall Park in this city. A ladder is set on a four wheel truck and is composed of sections ranging from eight to twelve feet in length, and stands independently of any building. The sections are mortised together and fastened with bolts and pins in a horizontal position. When secured they are raised perp ${ }^{2}$ ndicularly by cog^{2} wheels and ropes, and the track is made steady by suspended weights that may be increased at will. Two of these aerial ladders were experimented upon, the longest one of which reached 125 feet, was about three feet wide at the base and tapered to eighteen inches at the top. The rungs were a foot apart, and side fastenings were arranged to form a rail when the sections were united. It took seven and a half minutes to place the apparatus in working position. By means of a b'ock and fall on one of the sections, a fireman was hoisted in a canvas bag to the roof of the City Hall, and afterwards a lead of hose was carried up, strapped to the joints, and a atream thrown from the summit of the ladder. The tests were quite successful, though rather abruptly terminated by one of the firemen falling and sustaining severe injuries. The invention is the propurty of Mrs. Scott Uda. an American lady, the wife of an Italian gentleman, and was first introduced in Milan, Italy.

scientific and practical information.

new ateering devic̣e for war vessels.
Mr. N. Scott Russell proposes to place the tiller or yoke under t'e water and connect it through tubes to the steering apparatus. The advantages to be gained by this ar rangement are complete protection of the tiller from shot the tiller can be made of any length, and the afterpart of he vessel need not be armored, thus lightening the ends and leaving a great weight to be disposed in thickening the ar nor over the vital parts of the ship, or increasing tie e amoun of coal to be carried.

NICKEL.
Within the past three years, more especially since the discovery of practical methods for electro plating with nickel, the demand for this metal has greatly increased, and it. price has advanced. It has risen from $\$ 1$ to $\$ 3.75$ per b., and its expense has become so great that a substitute ted, may be found in the metal manganese. Dr. Percy, in a letter to the London Times, states that 20 years ago be made an alloy in which manganese was used in place of made an alloy in which manganese was used in place of
nickel, and the resemblance of the alloy to the ordinary Ger man silver was perfect. Copper 75 per cent, manganese 25 per ent, makes an alloy resembling Gerasan silver, and bette in its qualities. By the improved process of Hugo Tamm, heretofore described in the Scientific American, mangan se may be much more cheaply produced than nickel.
experiments on the respiration of fishes.
M. Quirquand arrives at the following conclusions: 1st. The quantity of oxygen absorbed is proportional to the unit f time. 2d. The relative power of respiratory labor in fishes diminishes with the weight. 3. The species has but ittle influence on the activity of respiration. 4. Carps of two pounds weight breathe from seven to nine times less
than man, for the same period and unit of weight of living substance. 5. Fishes have a cutaneous respiration, as recog nized by Humboldt and Provengal, but it is feeble.

thermo-diffusion

M. Jedderson says, in Poggendor:f"'s Annalen, that if a por ous body be made in the form of a diaphragm and each face be exposed to a different temperature, a current of gas is immediately formed from the colder to the hotter side. The uthor considers this phenomenon as entirely differing from ordinary diffusion, and proposes to distinguish it by the uame heading this paragraph.

NEW WOOD CARVING PROCESS.
M. Lanteigne, says Annales Industrielles, has invented a machine for producing wood carvings at the rate of a yard a becond, and at a cost of about one per cent of those executed he hand labor. The operation consists simply in passing it is stated, is not deformed, and greater density is given to it by the pressure, while the sculpture is as delicate as that nade by the chisel. The process can be used for producing cornices, furniture decoration, and similar ornamental work.
RANSMISSION OF PHTHISIS PULMONALIS THROUGH DIGESTION
M. Colin says that, after experimenting upon some thirty animals, he lias determined very clearly that the idea that phthisis pulmonalis can be transmitted through using the flesh of animals affected with tubercular diseases is erroneous. Such maladies are never inoculable through the inthisic animals does not offer the danger generally sup. posed.

PURIFICATION OF HYDROCHLORIC ACID.
M. Engel Introduces, in 1.06 quarts of hydrochloric acid, 60 o 75 grains of hypophosphite of potash dissolved in a little water. After an hour or two the liquid becomes yellow and hen brown, and a precipitate is deposited more or less abundant according to the degree of impurity of the acid. At the end of about forty-eight hours, the deposit ceases and the clear liquid above is decanted off and discilled. The acid thus obtained is completely free from arsenic.
ries of illustrations of silkworms which feed upon the se and which are now being acclimated in the United States Our illustrations and description are from the fourth An nual Report of Charles V. Riley, State Entomologist of Missouri.
the yama-mai silkworm-Attacus [Anthereea] Yama-mai Guér--Mén. (Lepidoptera, Bombycidae.)
This worm is a native of the northern parts of Japan. It feeds on a species of oak known botanically as Quercus serrata. Its silk is produced in large quantities in its native country, and already forms an article of export. It has been found more difficult to acclimatize than the ailanthus worm, and but indifferent success has attended its culture. Yet th re are striking exceptions, and in Austria it has been successfully reared in considerable quantities for several years. It is, withal, so valuable an insect that further trial is fully justified. In America it has been experir.ented with only since 1868.

Mr. W. V. Andrews, of New York, who has taken great interest in the intro duction of foreign silkworms, gives me tho encouraging information encouraging information that, in 1871 , nearly 800 cocoons were obtained from about 1,600 eggs, in the vicinity of New York. Yama-maï undoubtedly
belongs to the belongs to the same natu ral genus as Polyplemus, which it closely resembles in habit and appearance. Its culture may be carried on in the same manner as that of cynthia, and it will suffice here to point out such of its peculiarities as will guide in its management.

Fig. 3.-The yama-maï silkworm
The egg is rather larger (Fig. 3 shows it of natural size and magnified) than that of Polyphemus, less flattened, and of a pale straw color with a pinkish tint. It appears brown from being more or less thickly coated with a brown tena cious gum, which may be washed off by any alkaline fluid. The eggs should be kept over winter in a temperature never higher than $40^{\circ} \mathrm{Fah}$. When hatching they should be moistened or kept in a moist atmosphere. As in the case of our American tent caterpillar, the younglarva is fully developed within a month after the deposition of the egg, and passes the winter in a curled-up, quiescent state within the egg shell.
The worm thrives best in an atmosphere that is cool, moist, and shady, and the heat, if it can be controlled, should not exceed $80^{\circ} \mathrm{Fa}$. It is a lazy slothful creature, and of ten rests for hours in the position given in Fig. 3. As we learn from Mr. F. O. Adams, who has made an interesting report on the culture of this species, the color of the more mature worms so thoroughly corresponds with that of the leaf on which they naturally feed that they can with difficulty be detected while clinging, motionless, to the branches and leaf stems. They are of a beautiful clear green, with generally two sil very spots each side on the fif h and sixth joints, and a pale yellow line running along the sides. This line, with the position which the worm sometimes assumes, strengthens the resemblance to the leaf, and I reproduce a rough outline (Fig. 4) from Mr. Adams' Report, which will well convey this resemblance to the reader's mind-the worm being outlined at a.
The life of the worm lasts from 50 to 80 days, and it feeds on all kinds of oak, but prefers those of the white oak group. Dr. Alexander Wallace, of Colchester, England, to whom I am indebted for specimens of the moth, and who has extensively experimented with it, found that the worm would feed also on beech, apple, quince, white thorn, Neapolitan medlar (photinia glabra), and chesnut.

The cocoon (Fig. 1) is large, heavy, and handsome, an requires a full week for its completion. It is formed withi single leaf or within several drawn together and attached to a twig. It is oval and usually of a bright golden yellow color on the outside, though nearly white inside. Thos raised out of doors are more green, while those raised in doors are more yellow, and white specimens have already been produced. The silk is strong and valuable; it bleaches well, and may then be dyed; fewer threads are required to make a strand than in that of mori, and it unwinds with perfect facility by the ordinary process. It shows its affinity to that of our Polyphemus by the gum which surrounds it containing a chalky or calcareous substance which may be oticed upon tearing or rubbing the cocoon.
The moth (Fig. 2, male) is magnificent in point of size and clor. The front wings are broadly falcate, and more so in the male than in the female. The collar and broad costal
the most valuable silk producer next to mori, it is neverthe tss very difficult to rear. It cannot well endure a heat be yond 80° Fah., and will doubtless thrive best in the more northern States, for it will bear a moderate amount of cold ven below freezing point, for brief periods, with impunity It is invariably single brooded, and runs a longer course o life than any of the other species treated of. The hatching f the eggs must be retarded till the first oak leaves (the buds of the post oak are among the earliest to swell, but some species of the black oak group, especially the laurel leaved oak, leaf out first) put forth; and moisture, which is prejudicial to the mulberry silkworm, is grateful to this one at all times. I have already said that the embryo larva is fully formed soon after the egg is deposited. Now all ou eggs, so far, have been obtained indirectly from Japan $v i$ Europe, and in the transit they must necessarily be subjected too much dampness and continement, too great change from heat to cold, and the reverse, and the vitality of the young worm thu impaired. Mr. Andrew believes that to this fac nust be attributed much of our failure in this coun try, and I fully cuncu with him. In this coun try which, compared with Europe, is so rich in oak and in the large silk-pro ducing insects so closel allied to yama-maï and which is so varied in which is so varied in cli mate, we certainly ough to meet with better suc cess than our European friends; and until w procure eggs more direct ly, or obtain them from insects reared in this coun try, so as to preserv them in uniform and fa
Fig. 2.-The fama-mai moth, male.
margin are always of an ash gray. The eye spots are sur rounded with more or less pink and yellow, white and black the black always being on the outside. The broad lines across the wings are either wayy and slate colored, with an inner wavy coincident shade, or more straight with a whitish outer shade, relieved ly a darker and more reddish posterior shade. The posterior margins are either paler than the general sur face, or ornamented with a dark wavy line. The median shade across the front wings is either very distinct and scolloped, or obsolete; and there is either one or two such shades on the hind wings. The species varies, in fact, very much in the detail of ornamentation, and in general color, being either yellow, brown, grayish, or olivaceous, and some specimens much resembling certain forms of our Polyphemus.
According to the testimony of those who have had most experience with this species in Europe, coition invariably takes place at night, and lasts but a comparatively brief time. As the moths issue very irregularly and the males are apt to appear many days before the females, and as it has been further ascertained that unless they emerge within a day or so

Fig. 4.-Resemblance of the worm, a, to the leaf.
of each other, the sexes show little affinity, it is best to retard the male cocoons. This can be done by first separating them by weighing, and keeping the male cocoons in a cooler place than those of the female.
From the fcregoing it is evident that, while yama-mar is
vorable conditions, it cannot be said that we have taken the proper steps towards acclimating it.

Fig. 1.-cocoon of the yama-maï silkworm.

A Common Sense Decision

Chancery proceedings were lately begun in London by the proprietors of a weekly newspaper entitled The Iron Trade Circular (Ryland's) to stop the publication of another jour nal entitled Griffiths' Iron Trade Circular. The Vice Chan cellor delivered the following judgment: This is a motion for an injunction against the defendant to restrain him from continuing to publish a paper under the name of The Iron Trade Circular, and the motion is made on the ground that the plaintiffs are the proprietors, and lave been so for eight years past or thereabout, of a publication, published every Saturday, which is entitled The Iron Trade Circular (Ry land's). Now, the doctrines of the Court upon this matte are very plain. When a name has been used and appropri ated, whether it be the name of a newspaper or a book, or a mark on an article produced for the purposes of trade, the person who first uses or appropriates the name or mark is entitled to prevent any other person using the same mark or name. Therefore (by way of illustration), nobody could be name. Therefore (by way of illustration), nobody could ber
permitted by the laws of this country to start a newspaper permitted by the laws of this country to start a newspaper
in Lindon to be called the Times, because that is already apin Lnndon to be called the Times, because that is already ap-
propriated and has long been appropriated by the proprietors of that well known paper. So with regard to the Sat urday Review, which is also a well known name; nobody therefore, could be permitted to bring out a new publication to be published weekly called the Saturday Reviero, because that name is already the property of other persons. Judgment for the plaintiff.

Effect of Street Gas on Trees.-Experiments have been lately made, in the Botanical Garden at Berlin, as to the effects of ordinary gas on vegetation. Gas was conducted through pipes to the roots of various trees continuously for several months. The principal conclusion arrived at wa that 25 cubic feet of gas, daily diffused through 576 cubic fee of earth, is sufficient to kill trees of any species, and the mor quickly the more compact the upper layer of soil.

IMPFOVED PLOW.

The principal advantage claimed for the invention repre sented in the accompanying engravings consists in the arrangement of the plow stock, which is so constructed as to be readily connected with any desired form of blade. For use on cotton and other farms where varying patterns of plowshares are necessary for different purposes, the economical value of this device is obvious. The farmer in purchasing this plow need only procure in addition thereto a suitable selection of blades, with one of which he is at once fur nished in the efficient form of turning plow which constitutes a portion of the complete implement.
In Fig. 1 the blade and standard are shown connected, and in Fig. 2 the same are represented separate in order to represent the mode of attachment. The beam and handles are of the usual description. The standard, A, consists of a single bar of iron made into A, consists of a single bar of iron made into
a loop with two diverging arms. One of the a loop with two diverging arms.
latter is bent forward edgewise, and both to gether act as braces. In securing them, the forward arm passes through and the rear arm is bolted to the side of the beam. Two or more holes in either branch allow of the adjustment of the angle of beam and stand ard to suit plow blades of different curves. The cast turning plow is made with a shoulder, B, on the under surface of the mold board, and its under face rests on the front side of the loop of the standard, a projection, C , fitting in said loop. The object of the shoulder is to give the backward inclination to the mold board, and the purpose of the projection, C , is to assist a bolt, D, in uniting the mold board and standard immovably when needed for service. This modification of the mold board enables cast plows of any pattern or size to be adjusted to the standard, the latter of course varying in
size, according to the power to be applied. A saddle with size, according to the power to be applied. A saddle with its under surface, modified as the mold board just described, is to be used when a wrought mold board turning plow is to be employed. In this case the saddle, on which is a land side, is introduced between the mold board and standard, and the same bolt passes through and secures all parts.
Among the additional advantages claimed for this device are that it is universal in its uses, is an efficient turning plow, and an excellent standard for a subsoiler. It can also be made at as low a price as any other good plow. The inventor is a farmer and has thoroughly tested the plow on his farm for a period of two years with uniformly good results Three patents cover the improvement, the latest of which is dated Oct. 29, 1872. For further particulars regarding sale of rights, interest, etc, address the inventor, Dr. F. M. McMeekin, Orange Spring, Marion county, Fla., or Bent Goodnow \& Co., 84 Washington street, Boston, Mass.

IRON SHIP CONSTRUCTION

The progress of ironship construction in this country has, of late, advanced so rapidly as to engender a reasonable hope that the time is not far distant when American-built vessels

THE UNIVERSAL STANDARD PLOW

our now dilapidated commerce will soon regain if not exceed the proud proportions which it had attained before the out reak of the war
In the following description, though necessarily brief and general in detail, it is proposed to give an outline of the me thod of proceeding with the work of building iron ships We are indebted for the facts and illustrations to a new vo lume, recently published by Messrs. John Wiley \& Son, of this city, entitled "An Outline of Ship Building." The book, we may here remark, is a thorough and careful exposition of the whole theory and practice of the subject to which it is devoted, and emanates from the pen of Assistant Naval Constructor Theo. D. Wilson, U.S.N., an officer of well known experience and ability.

PREPARATORY WORK
As soon as the drawings have been completed, a model of he ship, on a scale of half an inch to a foot, is prepared, on which the general arrangement of the edges and butts of the lating, the directions of longitudinal work, deck lines, etc., are marked. Simultaneously, the laying down of the ship is proceeded with, that is, the different parts of the vessel are delineated in their full size upon the mold loft floor. This completed, the lines, to which the angle iron frames are to be bent, are transferred to boards prepared for the purpose nd razed in. There are two of the latter, each being large enough to take the midship section, the fore body being transferred to one and the after body to the other. In order to show these lines more clearly the upper surface of the "shrive" or shriving braids, as they are termed, is covered with a composi. tion of lamp black size and water. Beside the lines to the outside of the frame, the position of the plate edges, diagonals, level lines, hights of floors, beam ends, ctc., are also marked upon the boards, which are then removed to a place near the furnace in which the angle irons are heated.
bending the angle irons for the frame is the first operation. The leveling blocks or bending slabs on which this is done are made of cast iron, the upper surface being straight and out of winding, and perforated with holes placed at intervals of about six inches. The line to which the frame is to be bent is transferred from the blackboard to the slab by means of a soft iron bar, known as a " set "iron, which is bent to the line on the board, has the beveling spots, etc., marked upon it, and is then removed to the slab on which the curve is drawn and the spots are marked. After the bending and beveling are completed, the angle iron is allowed to cool, and is then taken to the blackboard and tried to its curve, any unfairness or alteration of

Fig. 2.-section of iron vessel, built on bracket plate ststem

plating.

A strake is a breadth of plank, or, in iron vessels, plating wrought from one end of the ship to the other. According to the plan now in general use, each alternate strake is worked directly on the frames and the intermediate strakes forn an outer layer, each of which overlaps the edges of the two adjoining strakes. This will be rendered clear by a glance at the section of the exterior plating, as shown in Fig. 1. The lovest strake is generally an inside strake and is first put on, the work being continued upward. Afte holes have been punched each plate is curved by passing it through rolls, and is then put in place and temporarily secured. Pieces filling up the space between the frames and outside strakes, called "liners," are fitted after the plates are prepared and fixed. While the plating is thus proceeded with, the work on the interior of the ship is also advancing; the riveting of the reversed angle irons and Hoor plates being completed, the beams being gnt in and fastened, the deck and hold sıringers being fitted, fastened, etc. The edges and butts of bottom plating are generally double chain riveted, but in some cases treble chail riveting is employed for butt fastenings.

final operations.

The deck planking is of wood, almost invariably, the planks being usually secured by a screw bolt driven down from above with a nut underneath the iron deck. Watertigbt bulk heads, in iron vessels, are always placed trans-
versely, and in some cases longitudinal divisions are employed versely, and in some cases longitudinal divisions are employed
in addition. In many stgam ships the longitudinal bulk in addition. In many steam ships the longitudinal b
heads enclosing the coal bunkers are made watertight. heads enclosing the coal bunkers are made watertight.
After working about three fourths of the outside plating, men are set to work closing up the joints, reaming out unfair holes, ctc., preparatory to riveting. The latter is done by piece work, a set of riveters being two riveters, a holder up, and two boys to carry the rivets. Care is taken that the holes are well filled and the points of the rivets flush with the surface of the plates. When this work has advanced to some extent, caulking of the butts and edges commences, the closeness of the joints being first tested by trying to insert a thin steel blade at various points. Lastly the rainter follows, and the vessel receives coatings of red lead which preven oxidation of the finished portions.

bracket plater system of framing

In Fig. 2 is represented a section of H. B. M. frigate Bellerophon, showing a system of framing universally used in the construction of heavy armored vessels in Europe. It has b een recently introduced in this country and has been first employed in the torpedoboat now in process of construc tion from the designs of Admiral Porter at the Brooklyn navy yard. The difference in the mode of construction is apparent by a comparison of the two illustrations.

Prevention of Artisans, Disease

In a recent lecture by Dr. Mapother, on the subject of the prevention of artisans' diseases, he said that the special diseases which ili regulated trades induce may be placed under three classes: 1. Those due to the entrance of dust into the lungs: 2. Those due to slow poisoning: 3. Those which constrained positions or overwork in close rooms engender Stone cutters suffer from lung affections by inhaling minute particles of stone, which irritate the lungs and excite inflammation. The working of flax is also very detrimental, giving rise constantly to asthmatic complaints. At paper works the teasing of the shoddy, and at marine stores th picking of rags, create a most stifling and hurtful dust. The remedy for dusty trades was, first, to use a respirator which would filter the air. He had devised one some years since which was found to be very effectual, and cost only a few pence. It consisted of a wire gauze covering the mouth and nose, lined by a layer of cotton wool a quarrter of an inch thick. Other remedies were ventilation by means of McKinnel's tube; the action of steam fans; and the peremptory exclusion from all labor requiring vigorous muscular and breathing efforts, of persons under eighteen, whose organs up to that age are not strong enough to resist ill usage Having referred to the diseases which occur among those who work with lead, copper, mercury, phosphorus, and arsenic and the chemical and mechanical appliances for their pre vention, he alluded next to the case of seamstresses. Weak ness of sight, from over-use of the eyes. with badly arranged light, and indigestion, from bad and hasty meals and long sitting in a close room, are diseases which have been commonly observed among needle workers, who number in Dublin between geven and eight thousand.

The Telegraph in Austria.

G. B. Prescott Esq., the electrician of the Western Union Telegraph Company, says, in the Journal of the Telegrapl that in Austria \& telegraph system constructed differently from any on the continent is found

In France, Belgium, and North Germany, cross arms are not used, the insulators being fastened directly to the poles but in Austria the cross arms again appear. They consist o round sticks of wood, of about three inches in diameter, ap parently the natural timber with the bark taken off, and un painted. When many wires are carried, two poles are used which are joined together at the top and separated at th bottom about five feet, thus forming what the English cal an A pole. The cross arms are alternately fastened upon each side of the pole, as they are in England, a preferable plan to ours, where they are all placed on the same side. In Vienna the wires are carried on iron poles, no underground wires being employed either here or in any part of Austria The pole is made of cast iron, and is very ornamental. It con sists of an iron column about twenty feet in hight and on
foct diameter. The lower end is screwed to a stone base At the top of the column a horizontal arm extends about wo feet on either side, and from the ends there extend two vertical shafts fifteen feet in hight, thus constituting a ron column with two branches, resembling a candlestick holding two candles. The two upper shafts support eigh ron cross arms, and each cross arm carries eleven wires, so hat eazh pole carries eighty eight wires. The poles ar bout one hundred and thirty feet apart. The Governmen has only one office in Vienra for transmission of despatches but it has eleven offices at which messages are taken in, and rom which they are sent to the transmitting office by mes engers. There is a private company, however, the Wiener Privat Telegraphen," which has about sixty sta ions in Vienna and forty in the vicinity.
The Austrian territory is divided into two telegraphic zones. The charge to the first is 40 kreutzers, and to the econd, 60. The male operators receive from 600 to 1,000 uldens or florins ($\$ 300$ to $\$ 500$) per annum. The femal perators from 250 to 350 florins (from ($\$ 125$ to $\$ 175$) per annum. In addition they both receive half a kreutze (quarter of a cent) per message as a commission for thei work when employed on the Morse, and three quarters of kreutzer on the Hughes. The number of employees to do a given amount of work is always strikingly greater in Europ han in America. There is none of that hurry and bustle which we see at home. The Director General comes to his office at 12 or 1 , and gets through at 3 . In the offices, every where and at all times, everybody smokes. In Vienna they are building a splendid telegraph office. The walls and roof are already up, and they are now at work upon the in terior. The building is five stories, and is built of stone, re sembling the Nova Scotia freestone but of a better quality and highly ornamented. In front there is a sculptured figure of Time and a group representing the telegraph Tl: building will cost 800,000 florins, or $\$ 400,000$. It is square, and has an inner court also square, and admits ligh from four sides, without and within. The operating room is on the top floor, and occupics three sides of the building On the opposite side of the street they are erecting a splendid change and, adjoining it, a new post office. These are to be connected with the telegraph by a pueumatic tube, and a pneumatic tube will also convey the messages to the operating room from the receiving office.

Preparation of Chlorates for use in Calico Printing It has heretofore been customary, in preparing the various chlorates, to first decompose the chlorate of potash with tar aric acid. The cost of the latter, however, made them more expensive than the chlorate of potash from which they wer made. Schlumberger now uses the sulphate of alumina for decomposing the potash salt, thus forming chlorate o alumina and alum, and from the former the other salts may be obtained, not in a state of purity, to be sure, but suf ficiently so for printing. Ammonia, lime, baryta, soda. and ven aniline, are able to decompose the chlorate of alumina and combine with the chloric acid to form chlorates
Chlorate of ammonia is obtained by precipitating the alum na with ammonia or carbonate of ammonia, and filtering The solution will contain chlorate of ammonia with a little sulphate of potash and sulphate of ammonia, so that we ind that Schlumberger's chlorate of alumina must contain lso some alum.
Chlorate of lime is obtained by precipitating the alumina with milk of lime; and since sulphate of lime, which i formed at the same time, is almost insoluble, it settles and eaves the chlorate of lime purer than the ammonia salt.
Chlorate of lJaryta is made in a similar manner, and is th purest of all, for caustic baryta precipitates all the sulphuric cid present in the alum.
Chlorate of aniline contains also very little of the sulphat because of the insolubility of sulphate of aniline, and only the chlorate of aniline and a little sulphate of potash re main in the solution
This preparation of chlorate of aniline without tartaric acid, seems to be very important in an economical point of iew, since aniline black is now prepared from chlorate of niline.
The chlorate of alumina is very acid and dissolves consid rable hydrated alumina; hence its formula is uncertain. It also dit solves magnesia, and in this way a mixture of chlo ate of alumina and chlorate of magnesia is obtained whic is useful in printing with camwood.
Cat's Tail Paper.-Among the novelties at the late Ly ons exhibition were certain products obtained by M. Dupont of Nismes, from the reed mace or cat's tail, a plant which ery abundant in marshy districts, and which has been util zed for mats, chair bottoms, baskets, etc. M. Dupont pre pares the filer by first boiling the cut and dried leaves sev eral hours in an alkaline solution, then pressing them betwee ollers and washing. A specimen of yellowish, very fiberous paper made from the plant was exhibited. The fiber is yel owish, but it can be easily bleached, and takes dye color readily. Some specimens of ropes and cords from this fibe were also exhibited

Tragacanth Mucilage.-Take of powdered tragacanth, dram ; glycerin, 6 drams; water, enough to make in all 10 unces. Rub the tragacanth in a mortar with the glyceri and then add the water.

How to Clean Bones.-Soda ash, 1 lb ; lime (burned) b. ; hot water, 3 quarts. Mix ,ard soak the bones for 24 hours
them.

Carrespondence.

The Diurnal Variation of the Magnetic Nsedle.

To the Editor of the Scientific American

The diurnal variation of the magnetic needle has always been a perplexity to land surveyors. I cannot ascertain, from any authority I have ever consulted, what allowance per hour to make for it. I can only learn that the needle changes from east to west about fourteen minutes between 8 'clock A. M. and 2 o'clock P. M. To supply this deficienc f the text books, I have experimented through three day with the following results
My experiments were made with a surveyor's transit, wit five inch needle, read with the aid of a magnifyng glass. As the forlowing table shows, there is a great and unreliable ack of uniformity in the hourly change, both in the differ ent hours of the same day, and between the same hours of different days.
By reference to the table, it will be seen that from 8 to 9 a. M. on May 16 the change was eastward, while, during he same hour on the 17 th, it was westward. On the 16 th , from 9 to $10 \mathrm{~A} . \mathrm{M}$. the change was westward, while during the same hour on the 17th the change was east ward. On 17 th , between 3 and 4 P . M., the needle made a sudden hange westward, after it had commenced to return east nd a like oceurrence took place on the 16th, between 5 nnd P. M. On the 15th, the needle began to return east be ween 1 and 2 o'clock P. M. On the 16th, it did not begin to return till between 2 and 3 P . M. : and on the 17 th , it be an returning to the east between 1 and 2 as on the 15 th There were no local causes to make the difference in th changes during the same hours. The weather was through out the three days alternately sunshine and clouds, warm a noon and cool at morning and evening.

A. M. 8 to 90 'clock	$\underset{\text { West }}{\text { May } 15 t \mathrm{th} .}$	$\begin{gathered} \text { May 16th. } \\ \text { East } \\ \mathbf{1}^{\prime} \text { in } \text { 6ijnninutes. }_{\text {West }} . \end{gathered}$	
9 to 10 "		$1 /$ in 12 West	${ }^{1}$ in ${ }^{121 / 2}$ West
10 to 11		$1 /$ In $\frac{12,1 / 2}{\text { West }}$	1^{1} In ${ }_{\text {W }}^{\text {West }}$
to ${ }_{P}^{12}$ "	${ }^{1}$ in 12 \% mintinutes	${ }^{1}$ in $7{ }^{\text {W }}$ West	C/In ${ }_{\text {c }}^{60}$ West
12 to ${ }^{\text {P }}$ " ${ }^{\text {l }}$	1^{\prime} in $18{ }_{\text {West }}$	$1 /$ in ${ }_{\text {W West }}$	$1 / \mathrm{in} 36$
1 to 2	1^{\prime} in $6_{5}^{2}{ }^{\text {Wrest.}}$	l^{\prime} in 40 est	1 ' in 54
2 to 3	1^{\prime} in $12{ }^{\text {East }}{ }^{\text {c/ }}$	$1 z_{2}^{\prime}$ in ${ }^{\text {East }}$ East	East
3 tod		1^{\prime} in 30 Fast	
4 to 5	1^{\prime} in $10 \mathrm{ESast}^{\text {cid }}$.	${ }_{1} 1 \mathrm{lit} 9 \mathrm{East}$	${ }_{1} \mathrm{in}$ Eust
5 to 6	$1^{\prime} \text { in } 17 \text { East }$	${ }^{\prime}$ in 150 West ${ }^{\text {a }}$)	${ }_{1 / 1}$ East
\% 7			${ }_{1 / \text { in } 11}$ East

Are there any reliably recorded observations to guide Rockville, Ind.

Jno. T. Campbell
The Effect of Electricity upon Metals.
To the Editor of the Scientific American:
Tlie deterioration of metals is of interest as an economic question, as well as a fit subject for scientific research. As the health and longevity of human life have been promoted by intelligent effort, so also has it been deemed possible to resist the destructive influences which attack the metals that enter so largely into every department of industry. Of the arious agencies sought to antagonize the oxidation of metals, especially iron and copper, none presents more interesting phases than electricity. Almost in the infancy of electrica discoveries, it was ascertained that galvanic action, in some unexplained manner, exerted a protective influence upon ne metal at the expense of another when both were plunged in the same solution, effectually checking all oxidation of protected metal, even under circu ordinarily suffice to rapidly destroy it
A saline solution attacks iron or copper; but if a piece of zinc be attached to either, it is preserved, while the zinc is consumed. It was upon this principle that Sir Humphrey Davy based his plan for the protection of iron and copper bottomed vessels from the action of sea water, a plan, how ver, which has not been found practicable for reasons whic o not affect metals under other conditions. Napier consid ers the application of zinc to iron a bayrier to corrosion ' Not only as a coating but from its more electro positive character, it protects it by a galvanic influence" Upon this ubject, Faraday asserts that "zinced iron would no doub esist the action of sea water so long as the surface wa covered with zinc, or even when partially denuded of that metal; but zinc dissolves rapidly in sea water, and after it is gone the iron would follow." The same writer says: "A to voltaic protection, it has ofien struck me that the cast iron piles for lighthouses or beacons might be protected by zin in the same manner that Davy proposed to protect coppe by iron." Faraday's hint has been acsed upon by the British Government, and perhaps by others, in the protection of the iron cables with which the buoys are moored in the English Channel and various British sea ports. M. Van Beck observed that a copper vessel, filled with sea water for forty even days, connected voltaically, by means of a platinum wire, with a plate of iron plunged in the same liquid, was preserved from all oxidation. De La Rive says: "A metal opper, for example, may be protected against the corrosio erted upon it by an acid or a saline solution, such as se water, by associating it voltaically with a more oxidizable metal, such as zinc." M. Schönbein demonstrated, by a nu merous series of experiments, that iron and copper oxidiz in air, in water, and in a saline solution, as well when the are in contact with zinc as when they are not so, if there is oo electric current; but that as soon as there is one estab ished, the negative metal is no longer oxidized. Dr. Schorm found that iron plunged in nitric acid beconies negative to untreated iron, and acquires a singular property enabling it
to resist the action of the strongest acid; commenting upon which, the editor of the Scientific American (March 16,
1872) ascribes the result of the experiment to electrical action 1872) ascribes the result of the experiment to electrical action
and anticipates that "investigation may give us some new and anticipates that " investigation light on the subject of electrolysis.'
Having thus based the statement of this protective principle upon the highest authorities, I will enter into the consideration of a phenomenon as valuable in the practical arts as it is instructive to the student and scientist: yet, unfortunately, as a distinguished writer has aptly expressed it, the subject " has occupied the attention of practical men for a long time; it is one of high importance; nevertheless there seems yet to be a great deficiency in our knowledge of the extent of this influence, and how and when it is effective." The object of this article is not to attempt an explanation of the unknown or to develop a new theory, but rather to invite attention to a principle in Nature which may be made of practical utility in many ways when better understood.
One new feature, not mentioned in any of the text books, has been developed by a single experiment which any of the readers of the Scientific American can try. It has been found that instead of making the metal to be protected one of the elements of the voltaic combination, it may be made simply the conductor of a current generated by an independent battery. Immerse a sheet of copper in a saline solution, and, instead of attaching zinc to the copper, connect the latter by wires to the poles of an ordinary galvanic battery; latter by wires to the poles of an ordinary galvanic battery;
the result is that, so long as the electric current is mainthe result is that, so long as the electric current is main-
tained through the copper, the solution in which it is plunged tained through the copper, the solution in which it is plunged
is inert and will not attack it. This only corroborates, more is inert and will not attack it. This only corroborates, more
forcibly than ever, the conclusions of the Scientific Amerforcibly than ever, the conclusions of the Scientific Amer-
ican and the other authorities quoted, that these phenomena are attributable purely to galvanic action; and it widens the field for future investigation.
J. L. Waite.

St. Louis, Mo

Estimating the Power Transmitted by Belts.

To the Editor of the Scientific American:
On page 257 of the current volume of the Scientific American, you give two rules for estimating the power transmitted by belts. Not long since, some experiments were made, in a large woolen manufactory, to determine the amount of power consumed in working the machinery in several of the departments of the factory. Selected from a large amount of data obtained, the following, relevant to the subject under discussion, will, I trust, be found of interest to very many of your readers; and the importance of your hints in relation to the employment of
ought to be placed, by it, beyond question
From a 46 inch pulley, an ordinary horiz
From a 46 inch pulley, an ordinary horizontal 8 inch belt drives a counter line abcut 40 feet long, by a 20 inch smooth iron pulley; and from pulleys on this line, the picking machinery and fans for drying wool were driven. The 8 inch belt having been thrown off, a similar 8 inch one was employed to drive from the 46 inch pulley in nearly a vertical direction to the 24 inch leather covered pulley of the dynamometer, about 6 feet distant from center to center. From the driver on the dynamometer (also leather-covered) a 6 inch new double belt ran on a 20 inch iron pulley, about 12 fect distant, on the counter line before mentioned, rising at about an angle of 30°. The new belt was put on with clamps and was considered tight. It transmitted, without difficulty, 13.9 horse power at a speed of 1,130 feet per minute. Addiny $2 \cdot 19$ horse power, the belt slipped so that speed could not be obtained. Three inches were then taken out, the belt becoming quite taut, not more so, however, than is
quite usual on woodworking machinery. It would then quite usual on woodworking machinery. It would then
transmit $17 \cdot 27$ horse power without any appearance of slip whatever. By the formula given, the 8 inch belt would be rated at 3.875 horse power. By actual test it was found equal to more than four times the estimate. An 8 inch belt could not be made to drive from the dynamometer on to the 20 inch smooth iron pulley on the counter line. By the same formula, a 6 inch belt would be rated at 2.53 horse power, and Ω double belt at 3.8 horse power (adding one half for a double belt). The common millwright's rule in this instance is much nearer the truth, and that estimate, 8.22 horse pow er, is less than one half the power actually transmitted.

The best possible conditions under which a belt can be used is when running horizontally, with the draft on the under side of the pulleys, and, of course, the slack or sag of the belt on top; thus wrapping a little more of the circumference of both pulleys when at work. On the contrary, a vertical belt, if of considerable length, is always in difficulty withou
$\begin{aligned} & \text { a tightener. } \\ & \text { A. Mwain. }\end{aligned}$

North Chelmsford, Mass.
A Hailstorm at St. Louis, Mo.
To the Editor of the Scientific American:
A severe hail and rain storm took place here on May 19, 1873. All day the weather had been sultry, and at about 3.30 P . M. the thermometer registered 85° Fah. Just then, it began to rain, and soon the hail came pelting down thick. ly and fast, with an occasional heavy dash of rain. In eight minutes the thermometer fell 24°, and, in twenty-five min utes after the thermometer was at the maximum of 85°, it fell
to its minimum, 57°. The storm came from the southwest, to its minimum, 57°. The storm came from the southwest, and was a thunderstorm, with hail and rain. The wind was
from the southwest when the storm began, but suddenly from the southwest when the storm began, but suddenly
changed around to the northwest and then to the northeast. Many of the hailstones were of extraordinary size; one weighed over half a pound when it fell, for it weighed $6 \frac{1}{2}$ ounces $3 \frac{1}{2}$ hours after the storm was over. At the time it was weighed, it measured $3 \frac{1}{2}$ inches wide by $1 \frac{8}{4}$ inches thick. St. Louis, Mo. George W. Allen.

The Concentration of the Sun's Heat upon the To the Editor of the Scientific American.
On page 309 of your current volume is illustrated a theory on the above named subject, in which it is claimed that the atmosphere acts as a concavo-convex lens, by which the sun's rays are conceutrated upon the surface of the earth. To my mind, this cause is quite insufficient to produce the great difference of temperature between the higher and lower strata of air, and for these reasons: The extent of the atmosphere above the earth's surface (supposed to be 50 miles) on all sides, viewed in its ratio to the earth's size, is as 1 to 80 ; hence the earth car obtain no more rays of solar heat with its atmosphere than it would if $\frac{1}{80}$ were added to its diameter and it had no atmosphere; and this would be quite insignificant. If the depth of the atmosphere bore anything like the proportion to the earth's size as it does in the illustration to the article, the case would be quite differ ent. If the writer will draw his figure in true proportions, he will see at once that the heat rays have so very short a distance to traverse, after being refracted, before they reach the earth's surface that their convergence is imperceptible. I see no more mystery in the accumulation of heat on the surface of the earth than I do in the accumulation of snowflakes there. While in mid-air they are not arrested, and this is precisely the case with the rays of heat; they accumulate only where they are arrested by some more or less solid substance.
The low temperature of lofty mountains has sometimes been attributed to the rarity of the atmosphere through which the rays pass, by which the heat fails to be intensified, as it is supposed to be in some mysterious way when passing through denser air; but I think a more probable cause is simply that, so very small is the area of space where the rays are lodged, being surrounded by so vast a body of cold air continually floating upon it from all sides, the heat is carried away as fast as it is received; but on lower ground, where the rays are being retained for thousands of miles on the same plane, the heated air simply moves from one locality to another, the mass remaining nearly of the same temperature. The clear atmosphere is evidently not perceptibly warmed by the passage of the sun's rays through it, but rather from its contact with the earth and solid substances on its surface where the rays are arrested; and thus, as this heated air rises constantly, mingling with cooler air above, there is secured the most beautiful system of circulation which even the Infinite Wisdom could devise.
Milford, Mass.
E. Brown.

Horse Power. Scientific American
 To the Editor of the Scientific American:

Seeing a communication on page 320 of your current volume, on the power of horses, I am reminded of some notes which 1 took of the work of a pair of horses cutting wood at railroad station. They weighed 2,000 pounds, 1,000 each, and worked on an endless bed power machine, such as is
used in New England for threshing grain. The bed was raised so as to incline 34 inches to the foot, and ran at the rate of 105 feet per minute, making a rise of $28 \frac{1}{2}$ feet per minute, which of course is equal to 2,000 pounds falling $28 \frac{1}{2}$ feet a minute, which would make 57,000 foot pounds per minute, including friction, which in that class of machinery would be enough to make it up to 66,000 pounds, the stand ard of two horse power. This amount of power would cut, with the ordinary sawing arrangement, 15 cords of mixed wood (hard and soft, 4 feet long), 2 cuts, in 10 hours and do it day after day.
The horses were not harnessed, but merely tied by a halter o that it was actual weight that drove the saw. It was so rood an illustration of the power of a falling weight that, eing very much interested in such matters, I took down he figures, thinking that they might be of use or interest a some time, as a criterion to judge from in working or using
the power of the horse.
W.A.J.

Boller Explosion at Syracuse, \mathbf{N}.
To the Editor of the Scientific American:
I wish to remark upon the cause of a disastrous exploion which occurred in our city on May 5, 1873:
The boiler was a portable one, of about 10 horse power was about 10 feet long and of 30 inches diameter. It had 24 three inch flues, and a furnace 3 feet 3 inches $\times 2$ feet 1
inch, with a water bottom. The inside sheets of the furnace vere $\frac{5}{16}$ of an inch thick, of an excellent quality of iron. The entire outside firebox and shell were of $\frac{1}{4}$ inch iron, of a poor lamellar crystalline structure; the quality, however was no worse than is usually used for the outsides of such
boilers. The stay bolts in the furnace, crown sheets, etc., boilers. The stay bolts in the furnace, crown sheets, etc., were insufficiently riveted over on the inside, which was th only defect of workmanship which appeared to exist.
But the safety valve was much too small, and the manner of weighting it was bad. The diameter of the opening was but $1 \frac{6}{16}$ inches, and the valve was held down by a down 34 inches upon the stem. It is well known, among railroad men at least, how the steam pressure used to run up in the boilers with the old style of spring balance; the only way to reduce such excess was to slack off the thumb nuts. It is
easy to imagine that a boiler, short of water, the engine tanding still, will rapidly get up steam ; and there was an im mense fire in the large furnace of this boiler, of tar barre staves, left to itself and to the mercy of a safety valve as described above. Of course, the engineer is not to blame, as (being green) he knew no better; but what can I say of his employers? The cause of explosion was an excessiv
pressure of steam, from over firing and the center of the crown sheet being dry and overheated. The effect of these combined causes was a reversal of the arch of crown sheet which was then the cause of the destruction of the other por tions of the boiler
It is seldom that the causes of explosions are as visible as they were in this case, and in one which occurred at th
Geddes rolling mill some time since.
OPERA MUNDI.

Diving Bells.

To the Editor of the Scientific American

It has occurred to me, while reading in jour current volume an account of a submarine observatory and photo graphic gallery, invented by M. D. Toselli, that, instead of the top chamber for containing respirable air (which the operator will consume in a short time), he should take with him the materials used for evolving oxygen gas; he could then stay under water for a longer time.
Oxygen gas is generally obtained from substances by heat; but if aqua regia be poured on black oxide of manganese the gas is evolved without any other aid.

Quintis.
Philadelphia, Pa
A NEW PREVENTIVE FOR SLIPPING BELTS
We doubt if any more prolific source of loss of power in its transmission from motor to work exists than through the medium of slipping belts; nor, as a moment's consideration will show, is there any ordinary mechanical defect more destructive to that system of careful economy which should be the rule in every well regulated workshop. It is of little use to maintain and run a powerful engine, if the very power which represents the cost of so much labor and so much fue! is to be wasted before it can be applied to useful purposes. Suppose, for example, a pulley makes 100 revolutions per minute. Experiments conducted in England in 1863 proved that. when the power is transmitted by belting, 1863 proved that. When the power is transmitted by belting,
there are, out of this number of revolutions, two slipped. Clearly, then, but 98 per cent of the power is forwarded to Clearly, then, but 98 per cent of the power is forwarded to
the work; and if there be numerous intermediate gearings, a the work; and if there be numerous intermediate gearings, a
still proportionally less fraction of the original efficient labor of the engine becomes utilized. In a case of which we were recently informed, fully 8 per cent of the power was thus totally lost. For a 200 horse power engine, 8 per cent means 16 horse power thrown away, or at a low esti mate 32 pounds of fuel per hour burned without producing any other result than wearing out the belt and heating the pulley.
There are, of course, means for obviating slip to a certain degree. Probably those most commonly employed are the reprehensible habit of covering the periphery of the wheel with oil, resin, or adhesive matter, or of tightening the band, thereby bringing heavy pressure to bear upon the journals, increasing the friction and expediting the wear of the belt. Better than either of these is a plan which has lately come under our notice, which consists in covering the pulley with a tlat band of elastic rubber and cloth made about one inch per foot shorter than the circumference, and with its inside face unvulcanized. This is stretched around the wheel and cemented fast. It is plain at once that, by this means, friction between belt and pulley must be materially increased, but to what extent the following results of exper iment will best show. The tests made in our presence were conducted on an special apparatus consisting of two 12 inch pulleys on a shaft in bearings so that it could freely revolve. Upon one wheel the inventor (Mr. John W. Sutton, room 2, 95 Liberty street, this city) had placed his cover; the other had a piain smooth face. Over the plain wheel was passed a four inch belt, one end of which was secured to the floor to the other extremity (the slack side of the band) werehung djustable weights. Upon the covered pulley a two inch belt was placed, which also carried a weight at one end but
at the other was attached to a hand lever. On suspending at the other was attached to a hand lever. On suspending
29 pounds to the small band, and some 60 pounds to the large one, it was found, on applying a pressure to the lever, that the smooth wheel was caused to slip with grea readiness. Without augmenting the weight on the smal band, that bearing upon the smooth wheel was increased to 108 pounds, in spite of which the latter was easily and by the same means made to slip. Above this limit, however, the power of the covered wheel did not extend, and on the addition of more weight it also began to yield. The result may therefore be summed up in the fact that the friction of 39 pounds opposing the pressure of a hand lever on a 2 inch belt, aided by the pulley cover, was sufficient to overcome he friction of 108 pounds acting on a four inch belt, oppos ing a solid support, but applied to a smooth though other wise similar pulley.
A second test was made with a smallerapparatus having an 8 inch pulley and a 1 inch belt. The result was gained by the aid of a lever and steel yard suitably arranged. With the pulley smooth the scale marked $3 \frac{1}{2}$ pounds, when the belt slipped freely. When, however, the cover was applied to the surface of the same wheel, the pointer indicated 19 pounds, or some 5 times the resistance. It would seem from the above that the claim of the inventor, that his device will ransmit 100 per cent more power than the smooth pulley and consequently do twice the work before the belt will slip, is well founded, as such estimates are manifestly much below hose obtained by actual trial.
So simple and effective an invention as this is worthy of the attention of machinists generally. It is readily and quickly applied, and in point of expense is inconsiderable in comparison with the economy which its employment must produce. We are informed that it is durable. The exam ples now in use for fourteen months exhibit no appreciable sign of wear.

TANITE EMERY GRINDER WITH ADJUSTABLE TABLE. The accompanying illustration shows a machine designed to run emery wheels for accurate facing or grinding on surfaces. The principal difficulty encountered in performing this operation has been to so hold the work that the metal being ground should press evenly at all parts cut by the wheel, and yet not bear so heavily as to generate too much frictional heat, which frequently causes injury to both the metal and the emery wheel. The Tanite emery wheel here shown is 16 inches in diameter by 3 inches face, and is run on a steel arbor 2 inches in diameter. The journal boxes are each 9 inches long. The table is 29 inches by 8 inches, and is faced with an accurately ground steel plate, in which is an opening over the top of the emery wheei. If so desired, this plate can be of sufficient size to cover the whole surface of the table. The adjustment is ef fected by turning the hand wheels, which are on the same rod, and are shown at eith er end of the table. Motion is transmitted through the worm and crown gear close under the table to two inch and a half screws, working in the two vertical sleeves similarly located. This adjustment is very accurate and, if desired, very slight, even to the $\overline{500}$ of an inch. The vertical screws are hidden from view by the sleeves, which work on the principle of the tail stock to a lathe. The support through which the sleeve operates is fastened to the frame of the grinder at each end by a bolt and nut and is leveled and adjusted by four set and is
screws.

It is well known that all makers of solid emery wheels manufacture their products with the same general gradations of coarse ness and fineness, dependent on the size o grain emery used. In addition, however to the varied qualities produced by these differences, the Tanite Company's wheels possess others, dependent on their special processes for tempering the wheels. Thus, if two wheels are made of the same sized emery, and one is for edge and the other is for surface work, they are so varied in tem per as to fit each for its special use. This pifference in temper is difference in temper is seldom understood
by the users of wheels, who, supposing all to be alike, except in point of coarseness, to be alike, except in point of coarseness,
subject all to similar treatment, and thus, subject all to similar treatment, and thus,
through misusing the goods, fail to obtain proper results.
The machine now illustrated is specially
designed to prevent this misemployment of wheels tempered
for surface operation, which are so constituted that a for surfuce operation, which are so constituted that a too heavy or an unequal pressure results in rapid wear of the wheel and small product of work.
The adjustments of this machine are claimed to be such that the least steady and most heavy handed workman can not fail to bring wheel and metal together in light and even contact. It is unnecessary for us to point out to machinists generally that this use of wide-faced wheels, properly tempered and so mounted that they cannot be recklessly used up or worn out of shape, is an important step toward making solid emery wheels as successful for grinding large flat sur faces truly as they now are for general edging, spruing and rough grinding. The varied uses of this machine are ob vious and will readily suggest themselves.
For further information address the Tanite Company, of Stroudsburg, Monroe Co., Pa., as per advertisement on last page.

LOCK ENVELOPE

There are few who, at some period, have not experienced the annoyance of receiving or sending letters, the envelope

of which have, through a careless handling or other causes, sprung open in their transit. In the course of a voluminous correspondence, such as is carried by express companies and
large business houses, improper sealing of missives is very apt to occur, and through such oversight important inclosures are often defaced or irretrievably lost.
In the invention which we herewith illustrate, this diffi culty is guarded against, and the letter securely contained even if the mucilage fail to adhere, by a very simple locking arrangement of the envelope. On the lower fold of the back of the latter is made a dovetail-shaped slip, A, as shown, and in the upper fold are cut two slits, as shown at B. To lock the envelope, the corners of the slip are bent inwards.

No. 4 TANITE EMERY GRINDER WITH ADJUSTABLE TABLE

Manufacture of Carmine
This is one of Nature's most gorgeous products in the way of color. That lovely, rich shade of red is solely produced from a decoction of the cochineal bug. Wherever the cac tus is indigenous, there this little insect is to be found in myriads, feeding on the plant and imbuing its own blood with the glorious red of the flower. Only the females are used for making carmine; but as there are 300 females to one male, there is not much difficulty in picking out tha solitary representative of the ruling sex. Woman's rights have full sway in this particular branch of the insect kingdom. The excellence and pu rity of this color and vermilions-in fact, of all colors-depend on carefuland thorough washing in water. Some vermilions are washed as of ten as sixteen times before the pigment is sent to the drying rooms. In the manufacture of some of the finer colors too, milk, eggs, or cheese are used with the chem:cals as purifiers. The most sur prising thing, says a correspondent of the New York Times, describing the Plymouth Color Works at Bergen Point, N. J., is to see the water that is drawn off from the huge tanks of color after it has been wel stirred and washed. The tanks being lined with fine muslin, not a particle of color es capes, and the water is pure and clear a drinking water. Lakes of different shade are made from carmine combined with a chemical body, which cheapens the colo and makes it of any desired hue Rose pink and cheap lakes are made from de pink and cheap Brazil Pure wood wnich is found in Brazil. Pure carmine is very expensive
costing in bulk at wholesale $\$ 8$ a pound.

IMPROVED SPINDLE STEP.

The object of this invention is an im proved construction of the steps of mil spindles or other vertical shafts, whereb they are made adjustable to compensate for the wear of the bearing surfaces.
. The illustrations show, Fig. 1, a perspec tive view with a portion broken away, and Fig. 2, a vertical cross section. In the base, A, of iron is formed a recess, the walls of which are screw-threaded to receive a cor respondingly formed guide or bearing, B. respondingly formed guide or bearing, B The latter is constructed with an inverted conical opening to inclose the toe of th spindle, C, the end of which extends through and rests upon the upper of two or more
hardened steel disks, D, placed in a suitable
as in the upper figure, and the latter is then easily pushed through the opening in the upper fold. The horizontal por tion of the cut then admits of the slip being spread out flat when, its back being gummed and moistened, it adheres to he envelope.
The efficacy of this device is obvious from the fact that, ven in case the paste does not stick, it is impossible for the dovetail to come out of the slit unless it be deliberately folded and pushed through. For circulars and other documents generally forwarded unsealed, this envelope is also well suited.
For further information address the inventor, Mr. J. D McAnulty, No. 127 South 9th (corner 4th) street, Williams burgh, L. I.

Perfumery and the Sense of Smell
It may be doubted whether anything is really known re garding the actual composition and nature of the substanc of most of the pleasing odors. We know perfectly well,say Mr. James Paton, the bodies which yield odors, and chemists can tell with absolute precision what is their chemical struc ture; but although they can further tell the conditions essential to the sensation of smell, the subtle essence which gives rise to it appears to be too ethereal for human detec tion or manipulation. A grain of musk will perfume mil lions of cubic feet of atmospheric air and still it continue apparently a grain of musk. The following minute quanti ties of different substances spread out on the surface of smell cause a distinct sensation
Phosphoreted hydrogen, $\frac{1}{3} \frac{1}{0} \overline{0} \overline{0}$ grain ; sulphureted hydrogeen $30 \frac{1}{900}$ grain; bromine, $\frac{1}{4000 \mathrm{E}}$ grain; oil of resin, $130 \frac{1}{0} 000$ grain. A still smaller quantity of musk than the last given smells strongly, but the actual measure has not been ascer tained.
It is assured that, for the perception of an odor, it is necessary that the body to be smelt must be in a gaseous condition, just as it is required that, before we experience a taste, the substance must be dissolved; and for the sensation of touch, a resisting solid is necessary. Odorous gases are such as are readily and energetically acted on by oxygen and the presence of oxygen is therefore a necessary cond ion of smell. Such gases as mix freely without uniting with oxygen-as hydrogen and nitrogen-are inodorous. In order also to experience the sensation of smell it is necessary that the odoriferous particles impinge with some violence upon the surface of the sensitive membrane in the nose which corresponds with the olfactory nerve; therefore, when we wish to experience a strong sensation of smell we sniff strongly, and when a disagreeable odor is to be avoided, we yond its influence
cavity at the bottom of the recess. The top of the guide forms a collar, E, which is beveled off around the interior to re ceive oil for lubricating the spindle. The passages, F, in the base also serve to conduct lubricating material to the spindle toe. G is a lock nut screwed upon the guide between the collar and the base. In the engravings, Fig. 1 shows the guide let into the base to the full extent and locked in position by the nut, G, screwed down to bear upon the upper surface of the latter. As the guide becomes worn by the rotation of the spindle, it is unscrewed and moved up, Fig 2 , to the requisite hight to fit the toe snugly and prevent th apindle from vibrating or running out of true; thus, in short compensating for the wear. The nut, G, is then again screwed down to lock the parts in place. By using a number of disks, D, one, two, or more can be removed as the spindle drop down, thus adjusting the step regularly to supply the de ficiency by wear. The invention appears durable and simple

ts efficiency will doubtless be proved by actual employment. Patented April 1, 1873. For further information address the inventor, J. J. Henry, 236 Lexington st., Baltimore, Md

CAR AND PASSENGER ELEVATOR.

Our illustration represents a proposed method of securing rapid transit between Hoboken (opposite New York city, in New Jersey, east of the Palisades), and Jersey City Hights, North Bergen, Bonnville, and other localities in Hudson county, in that State. The topography of the route is very irregular, necessitating circuitous roads to avoid high eminences, and rendering a direct path by ordinary means impracticable. The present system is now being carried out by the Hudson County Elevating Company, an association incorpoHudson County Elevating Company, an association incorpo-
rated ' to erect elevators, driven by steam or other power, rated to erect elevators, driven by steam or other power,
at the base of Jersey City Hights or Palisades, at such points as said Company may select, for the easy elevation of street cars, teams, passengers, etc.
The mechanism of the invention was devised by Edwin L. Brady, civil engineer, of Jersey City. The lifting cars will be constructed entirely of iron, with strong angle iron frameworks, all centering upon a huge ring bolt at the top of the car, to which wire cables are attached To the latter steam power is applied, which it is estimated will accomplish the lift of 200 feet in about one and a quar ter minutes. Safety idlers, moving on in dependent cylinders, are arranged, and a system of check pawls, attached to each of the eightiron columns, are also provided to guard against any danger of accident. Each co. accident. Each co-
lumn will be twenty lumn will be twenty four inches in diam ter and, with the ex ception of the two upper sections which are of wood, constructed entirely of iron. They will be securely adjusted by iron truss braces, and strongly keyed to the rocky sides of the cliff.
At the base of the elevator two large baildings are to be erected, in order to afford means of utilizing the surplus steam power. Am-ple-room will be pro vided for elevating cars and teams and for the transporta tion of cne hundred foot passengers at once. Galleries will be added to the up per portions of the per portions of the structure, from which a fine view of
the surroundings will the surroundings will
be obtained. The work now in pro gress, it is estima ted, will be comple ted by the first of Ju . ly next.
Should the plan be found feasible for elevating horse cars, teams, and passen gers, it is not un likely that the rail roads extending westward may adopt a similar plan for taking their passen gers over the hill in stead of through Ber gen tunnel, which the Erie, and the Delaware, Lacka wanna, and Wester railroads now have to traverse.

The Planet between Mercury and the Sun At a recent meeting of the Manchester Literary and Philo sophical Society, Mr. Joseph Sidebotham, F.R.A.S., said " As there is again some speculation as to the existence of an intra-mercurial planet, and every little fact bearing on the subject may be of value, I have referred to my diary, and find that on Monday, March 12, 1849, our late member, Mr. G. C. Lowe, and I saw a small circular black spot cross a por tion of the sun's disis. We were trying the mounting and adjustment of a seven inch reflector we had been making, and used an ink box between the eye piece and the plane speculum. At first we thought this small black spot was
upon the eye piece, but soon found it was on the sun's disk, and we watched its progress across the disk for nearly hal an hour. The only note in my diary is the fact of the spot being seen; no time is mentioned; but if I remember rightly, it was about 4 o'clock in the afternoon.'

Nickel Plated Speculum

In a leiter which Mr. Sidebotham had received from Profes sor Hamilton L. Smith, of Hobart College, Geneva. N. Y., the writer suggests the use of iron or bell metal specula coat ed with nickel, for reflecting telescopes. He says: "I ground and prepared a bell metal speculum, which I coated with nickel, and this, when polished, proved to be more reflective (at least I thought so) than speculum metal. The two object which I sought were, first, to have a polished surface unat tackable by sulphuretted hydrogen (this, for example, is not injured by packing with lucifer matches), and, secondly, for d specula, doing the most of the work by the turning too
I really think a large, say three feet
hazel or yellowish color, leaving the pupil brown. The fore feet, or hands, have the fingers formed very like the human hand, while the thumb or toe, corresponding to the human thumb, is quite short and is large and round. The joints are protected and covered by a formation resembling armor, and the body and tail seem at first glance to be free from scales, though a closer examination shows the scales to be small and smooth. The reptile has not yet been identified as belong ing to any species heretofore known. as it does not appear in Cuvier. It is the intention of Dr Woodward to kill it and prepare the skeleton for mounting; but it has been suggest ed that a cast be taken, before killing for exhibition in the collection of the Smithsonian Instftute.

The Salt Deposits of Western Ontario, Canada.
The superficial area of the Ontario salt deposits is compar atively small, and the whole salt bearing district may be in atively small, and the whole salt bearing district may be in
cluded within the counties of Huron and Bruce. Mr. John Gibson, B. A., in a pa per in the American Journal of Science and Arts, gives some interesting facts re garding the principa wells, eight of which he has recently ex amined. The Ainley ville well was sunk 1,244 feet, and then abandoned. The po sition of the boring marked the north eastern margin of th anciept salt lake, and the geological hori zon of the salt wa passed without th passed without the least evidence of it occurrence. The Kin cant 0 fet a depth of 957 feet and the Godericl ${ }^{\text {l }}$ com pany's boring struck the salt rock at ex actly 1,000 feet be low the surface. From this depth was ob tained, by pumping a saturated brine from whichlarge quantities of salt continue to be manufactured. The salt bearing stratum lies immediately a the base of the Onon daga formation, and is at once recognized by the presence of saliferous and gypsi ferous magnesian marls, lying as a gen eral rule above th salt bed. The Dom nion well was sun 1,113 feet, and the brine pumped up con stantly marks 87° sal inometer, with a tem perature of 62° Fah Hawley well extend 967 feet, and the Clin ton well 1,136 feet From the Stapleto well, 1,220 feet in depth, brines of grea purity are yielded. I may be mentioned that the prevalence of vast quantities of gyp sum and salt in mixed state naturall suggests the utility of a shaft by which no only could pure rock salt be obtained, but also the combined gypsum and salt for agricultural purpose The drilling done in Coleman and Gowin lock's well is said
ccated with nickel, but cast of iron, and finished mostly in to be unprecedented, both for speed and absence of mishaps. the lathe, while it would not cost the tenth of a similar sized Actual boring commenced on the 10 th of March, 1870 , and th one of speculum metal, would be almost equal to silvered of glass the same size, and vastly more enduring as to polish.'

Iguana or Tree Lizard.

The largest specimen of the iguana or tree lizard of South America that has ever been seen in this country was lately re ceived, in good health, at the Army Medical Museum, Wash ington. The reptile is almost entirely black, or a dark chocolate brown, is thirty inches long, and on the top of the head has a large round protuberance like a swelling, while on each ide of the head, near its base, appears a similar immens ball. The eye is prominent, very bright, and is of a bright

Actual boring commenced on the 10th of March, 1870, and th alt-bearing stratum was reached on the eve of the 22 d of he same month at a depth of 1.035 feet. After passin through 100 feet of pure rock salt, without the least evi dence of change the boring was abandoned.
In no other portion of the American continent has ther been discovered a deposit of salt so magnificently great. The supply is practically illimitable and may favorably compare with the production of the salt mines of Droitwich, in cen tral England, or with that of the solid salt hills of Cordova

The residues from molasses are used in France for the manufacture of carbonate of potash,

This is a term Anæsthetics. This is a term derived from the Greek word ancesthesis, meaning those agents which, like nitrous
chloroform, produce insensibility to pain.
That there are two sides to every question is very forcibly That there are two sldes to every question is very forcibly
illustrated in the attempt to place the honors of the discovery of anæsthetics where they rightfully belong. In a recent scientific lecture, on this subject, delivered here by Dr.
Sims, he awards the credit of first using anæsthetics, for Sims, he awards the credit of first using anæsthetics, for the relief of human sufferers under disease or surgery, to Dr. Wells, of Hartford, Conn. The Evening Post, of this
city, in cormmenting upon the statements of Dr. Sims, says:
"The difficulty with Dr. Wells' clain is that, though he experimented with anæthesias, with nitrous oxide gas, perhaps with ether, he never established their use. The real question at issue is, not who discovered the possibility of
producing insensibility under surgical operations, but who producing insensibility under surgical operations, but who
established the possibility with a known agent and brought established the possi
it into practical use.
into practical use.
Sir Humphrey Davy, early in this century, relieved pain by the use of nitrous oxide gas, and suggested that it might "be used with advantage during surgical operations." Pliny, and some Greek physicians after him, recommended the use of certain herbs, especially of mandragora, for their soporific power; and, said one of them: " Medical men use it for those who are to be cut or cauterized." The Chinese, who preceded the western world in so many discoveries, are
supposed to have used anæthesia at a remote age. In the middle ages, other agents were used for the same purpose. In 1823 Mr . Hickman, a surgeon of London, and in 1832 Dauriol, a French physician, used gas, and, they asserted, successfully. Other French physicians, recommended and performed operations with some success when patients were under the influence of alcoholic intoxication, and later mes merism was suggested and tried in some cases. Thus for
many centuries, alleviation from pain has been sought for many centuries, alleviation from pain has been sought for ; discoveries have been made, and perhaps some limited prac-
tical application of them maintained; but the man had not tical application of them maintained; but the man had not
yet appeared who had made it clear to surgeons and to the world at large that any of the known agents were so safe and so available that they could be brought into common use.
Neither Jackson, Morton nor Wells, then, was the dis-
use. coverer of anæsthetic agents, any more than Fulton discovered steam, or Morse, electricity. The question is: Which of them first successfully applied such an agent and estab-
lished its general use? Unquestionably Wells tried, as others, scattered along through the centuries, had tried others, scattered along through the centuries, had tried
before and failed. He pulled a few teeth, but either he before and failed. He pulled a few teeth, but either he
wanted the energy or the confidence to persevere; Jackson wanted the energy or the confidence to persevere; Jackson to Morton; perlhaps he even recommended ether to Morton as the agent he was in search of, but he did not establish its use; there is even evidence that he doubted if it could be used without danger, to produce insensibility. But it was Morton who had the energy and perseverance to insist upon trial after trial till the virtue of the remedy was established to the satisfaction of the world at large. It is the first step that costs and counts, and that step was Morton's.
In reply to this, Dr. G. Q. Colton very emplatically upsets the theory of the Wells abandoument. "We have," he says, "the sworn testimony, of about forty of the most re-
spectable citizens of Hartford, that during the years of 1845 and 1846 Wells extracted teeth for them without pain, using the gas as the anæsthetic. He was in constant use of the the gas as the anæsthetic. He was in constant use of the
gas for about eiguteen months, when his health gave way, and he went to Europe. Even in Europe he did uot abandon his discovery, for he presented his claims to the Academy of Sciences in Paris, and that institution, in recognition of the services, conferred on him the title of M. D.
As soon as Wells returned to this country he resumed the use of the gas, and continued it until his death, which oc curred on the 24 th of January, 1858.
But he met the most determined and bitter opposition from all quarters. It was at that time too much to believe that the inhalation of so little gas or vapor would destroy the pain of a surgical operation! Dr. Wells did all that a man could do, while he lived, to prove to the world the value of his discovery. Should he be deprived of the honor of the discovery becau
repudiated his claims?
Wells died before the merits of the gas were generally recognized. After his death Dr. Morton set up the claim that nitrous oxide was not an anmsthetic, and therefore that Wells had discovered nothing. No one had used the gas to produce anæsthesia save Wells, and Morton was enabled to gain a general assent to the position he took, namely, that,
nitrous oxide not being an anæsthetic, therefore he, Morton, nitrous oxide not being an anæsthetic, therefore he, Morton,
was the discoverer of anæsthesia! If at that time and dur ing the lifetime of Mr. Wells the gas had proved to be what it really is, and what I have demonstrated it to be, the best and safest anæsthetic known, we never sho
of Morton as the discoverer of anæsthesia.
When I revived the use of the gas in 186
When I revived the use of the gas in 1863, I had this gen eral incredulity respecting its powers to contend with. I
was met on all sides by the assertion that Wells had tried the was met on all sides by the assertion that Wells had tried the
gas and it had proved a failure. I expended eight thousand gas and it had proved a failure. I expended eight thousand
dollars the first year in advertising, advocating, and defending it; and in all this time did not realize a dollar of profit from my business. Is it any wonder that poor Wells, who had no money to spend, should encounter opposition and discouragement in its first introduction?
It should be remembered that Wells' first experimentfor which I gave him the gas-was on the 11th of December,

30th of Se ptember, 1846; also that Morton was stimulated 30th of September, 1846 ; also that Morton was stimulated
to this experiment by information derived from Wells and to this experiment by information derived
newspaper notices of Wells' operations.
In view of all these facts," says Dr. Colton," how can any one hesitate to award the honor of the discovery of anæsthe
sia to Dr. Wells?" sia to Dr. Wells?"

The A B Process.---London Filth transforme

 into Shining Gold.The process of precipitating by sulphate of alumina the valuable constituents of sewage, and utilizing at the same time the purifying power of charcoal and clay, is that to which, says the Journal of Science, we decidedly give the to be discharged into a running stream, and the deposit is retained in a form entirely inoffensive and capable of being turned into a dry and portable manure. This process has een before the world for some years as the A B C process being derived from the initial letters of the principal consti In contact with sewage-a slightly alkaline liquid charged with nitrogenous organic matter-the alumina is separated in flocks, and, by virtue of its remarkable affinity for dissolved organic matter, each particle seizes hold of, and drags down
with it, a corresponding particle of nitrogenous impurity. The blood here comes into play; this is essentially a liquid highly charged with albumen; albumen. is instantly coagu ated in the presence of alum; and in the same way as this ready coagulability of albumen is utilized in fining wine and coffee, so it is made use of in this process by joining with the alumina in its precipitation, uniting it in a network of fibors, and giving it, as it were, arms wherewith to seize upon and
But the precipitated hydrate of alumina is light in charcter; and although it would ultimately settle, leaving a clear liquid above it, the slightest agitation causes it to float up, and thus renders it difficult, on the large scale, to drain of he mud. Here the action of the clay is apparent. This substance has a curious physical property; when finely
ground up with water, it forms a creamy emulsion, which ground up with water, it forms a creamy emulsion, which takes many days to settle. But when this creamy liquid meets with sulphate of alumina, the clay coagulates like in the A B C process dhown in heavy granular flakes. Now alumina, that of the albumen, and that of the clay-take place simultaneously, and in each other's presence; they become closely locked together in a triple alliance; the heavy character of the clay particles gives density to the mass, and causes it to settle rapidly, and remain in a compact form at the bottom of the tank
There still remains the probability, if not the certainty, of foul gases being present, while the water, though clear, may nevertheless be colored. These residual impurities are at tacked by the charcoal; the powerful affinity of animal char coal for crganic coloring matter corrects the one evil, while the well known absorptive action exerted by vegetable charcoal on the gaseous products of putrefaction corrects the ther.
The method of applying the ingredients is extremely simple. The clay and charcoal are incorporated in a grinding This with the aid of sufficient water to form a thin paste it is required to be mixed with the sewage. By the side of it is required to be mixed with the sewage. By the side of
the mixing room is a smaller room, through which passes a channel or trough. At one end of this channel there rushes in the London sewage, and with it an unmistakable odor. The B C mixture, or thin water paste of clay and charcoal, is admitted to the trough by a pipe from the store tank; the
sewage in its passage past this pipe carries with it the mixsewage in its passage past this pipe carries with it the mix-
ture, and the two, after well mixing, proceed on their way ture, and the two, after well mixing, proceed on their way
past a second pipe connected with a tank containing a supply past a second pipe connected with a tank containing a supply
of sulphate of alumina dissolved in water. All that is now of sulphate of alumina dissolved in water. All that is now flow in inodorous company to the settling tanks. The channel leading to the tanks has its course interrupted by numerous ledges, which serve to cause the more perfect intermixture of the sewage and the disinfectants. The first tank in which the sludge is allowed to settle contains the principal portion of the precipitate. The clear water is allowed to flow off continuously from the first tank into a second tank; and the remainder of the mud is deposited in this and in the
other tanks into which it flows. From the last tank the other tanks into which it flows. From the last tank the
water is conducted to the river, appearing as a clear, inodorous and tasteless effluent. When sufficient sludge has been collected in the first tank, the treated sewage is shut off from this and permitted to flow into another tank, which then forms the first of the series. As much of the water as possible is then run off from the mud, and the latter is drawn into the acidifying tanks, where a small quantity of sulphuric acid is added to prevent the loss of any ammonia. From the acidifying tanks the semi-dry mud is pumped into the drying presses, whence it issues in a cate. This semi-solid mud is then further dried by a most ingenious application of heat in revolving iron cylinders. The wet mud is passed in at one end, and dry manure, in the form of an inodorous and inoffensive powder, falls from the other end, at the rate of 5 tuns in ten hours, at the expenditure of a few hundred weights of coal.
If space enough be available, the mud may be simply pumped, from the bottom of the settling tanks, into large
open air stanks, where it dries under the influence of the open air stanks, where it dries under the influence of the
sun and air. Not the slightest offensive odor is apparent during any stage of this drying.

The dry mud in powder, forming excellent manure, is re-
oved from the sheds, and packed into bags for transport.

Crossness is situated on a projecting part of the southern shore of the Thames, between the Plumstead and Erith marshes, and is the southern outfall of the London drainage The quantity of sewage now daily discharging at Crossness is $50,000,000$ gallons. Large as this quantity may appear, he enormous engines employed in pumping the sewage ar fully equal to the task, for they are capable of lifting 280 tuns in a minute, or nearly double the average flow. The transformation of such a mighty mass of filth into heaps of shining gold is a f(at worthy of the days of the alchemist or rather of the days of modern chemistry. Of this quantity of sewage, the works of the Native Guano Company are ca pable of dealing in the twenty-four hours with 500,000 gal lons, drawn from the cross-cut or culvert through which the sewage runs into the principal reservoir. This quantity amounts to 1 per cent of the whole delivery. Thither the sewage flows into the sump of a pump worked by a 15 horse power steam engine, whence it flows into contact with the A B C constituents as we have described.
During an official trial, lately completed, extending over eighty days, there were used 80 tuns of dry A BC materials, while the " native guano" obtained amounted, in the dry state, to 131 tuns, showing an increase of more than 63 per cent. The amount of sewage treated during this time was $11,672,000$ gallons. Therefore 1 tun of dry native gua no was obtained from 89,100 gallons of the Crossness sewage With scarcely an exception, the farmers are unanimous in their approval of " native guano:" many of them, shrewd, intelligent men, well acquainted with the various artificial manures in the market, have tried " native guano" with in telligence on different fields against other manures, and were assured that, putting equal values per acre, it was superio to most manures in the market.

SANITARY NOTES--MILR AND ITS ADULTERATIONS. It is proposed in this paper, drawn from the report of Dr . . H. Nichols and Professor J. F. Babcock, to consider brief y the various methods which are resorted to for the purpose of adulterating milk, and the means which have been afforded to us by chemistry for their detection.

THE COMPOSITION OF MILK

Genuine milk is composed of water holding, either in sus pension or solution, fat globules, casein or cheesy matter sugar, and various mineral matters or salts. It is a physiological fact that the quantity and quality of milk may rary not only in different cows, but in the same cow, this vari ation depending upon: 1. The breed of the cow from which it is obtained. Alderneys, for example, give milk containing a large proportion of cream, and hence forming a very nutritious food for infants; while Durhams produce a fluid richer in casein ande, on this account, especially adapted to the manufacture of cheese. 2. On the number of calves born, and time since calving. Less milk is given with the first calf than with the subsequent ones; and for a week or ten days after every birth a yellow, thick, strinyy substance, called colostrum, is secreted, which is unfit for use. 3. On the character of the food furnished to the animal. When fed principally on carrots, there is a slight diminution in the amount of casein and butter and an ircrease in the quantity of sugar. This is still more marked when beet root is made of sugar. This is still more marked when beet root is made
the chief article of diet. If the food consists of the refuse of distilleries, the animals often become diseased, and the of distilleries, the animals often become diseased, and the
milk given is manifestly unfit for consumption. The yield milk given is manifestly unfit for consumption. The yield
of milk is most abundant in spring. In dry seasons the of milk is most abundant in spring. In dry seasons the
quantity secreted is less, but the quality is richer. An unpleasant taste and odor is said to be imparted to milk by an exclusive diet of turnips or oil cake, and the same is also the case when the cows feed upon wild garlic or other weeds and leaves of plants where the pasturage is bad. 4. On the cleanliness and ventilation of stables, and care bestowed upon the animals. It often happens that milk, of high specific gravity and yielding a large per cent of cream, becomes so thoroughly impregnated with the vitiated air of the stable as to be decidedly repulsive to the taste. 5. On the time as to be decidedly repulsive to the taste. 5. On the time
of milking. The afternoon milk is richer, on the average, of milking. The afternoon milk is richer, on the average,
by one fourth than that obtained in the morning, and the by one fourth than that obtained in the morning, and the
last portion of a milking is much the richest and is often reserved for cream.

METHODS OF EXAMINATION
The hydrometer alone affords an imperfect test of the richness of a specimen, for many reasons, prominent among which is that the specific gravity of impoverished milk may be fraudulently lowered or raised by the admixture of various ingredients, principally water and salt. The ordinary specific gravity of milk at $\tilde{0} 0^{\circ} \mathrm{Fah}$. ranges between 1.029 and $1 \cdot 037$, and it is no secret to milkmen that this specific gravity is not much changed if four per cent of water be added for every one per cent of cream abstracted. The lactometer is simply a long tube graduated into a hundred parts, and intended to indicate the percentage of cream which has spontaneously separated from the milk and risen to the surface within a given time. This quantity generally measures from 8 to 20 per cent, and, in certain breeds of cows, may amount to even 50 per cent. The instrument furnishes no knowledge of other constituents, such as casein and sugar. The lactoscope determines the richness of milk by, measuting its opacity, on the principle that, while the fat globules are opaque, the liquid in which they float is nearly transparent. It is considered to present no material advantage over the lactometer. The microscope enables the eye to estimate the number of fat globules a specimen contains, as well as abnormal constituents, infusoria or fungi which may be present.
These are principally water, flour or starch, gum arabic o
dextrin, cerebral matter, chalk or whiting, turmeric or annatto, gum tragacanth, carbon sugar, emulsions of almonds or hempseed, carbonate of
Water lessens the specific gravity, and may be detected by Water lessens the specific gravity, and may be detected by
measuring the density of either the milk, the skimmed milk measuring the density of either the milk, the skimmed milk
or the serum. If a few drops of acetic acid be added to the or the serum. If a few drops of acetic acid be added to the
milk, the fatty matter and casein will be coagulated, and may milk, the fatty matter and casein will be coagulated, and may
be removed, les:ving the serum. The effect upon this substance by the addition of water is shown by the following: Serum containing percentages of water. Specific gravity Pure serum

serum	.1•029
10 per cent	$1 \cdot 025$
20	.1.022
30	.1.020
40	.1.017
50	$1 \cdot 014$

The quantity of water may also be estimated indirectly by determining quantitatively the a eount of the solid constituents or of the milk sugar present
Flour or starch is easily recognized by adding a few drops of the tincture of iodine to the whey. If this produces the characteristic blue color, it indicates that some amylaceous substance has been added. Starch can also be found by the microscope.
Gum arabic or dextrin is detected by the action of a small quantity of alcohol upon the whey. A dull abundant white precipitate falls, which may be proved to be gum by its properties, and which differs essentially from the light bluish or diaphanous flakes which alcohol produces in pure milk.
Cerebral matter is usually some villanous mixture of the brains of sheep, employed to counteract the blue tinge of impoverished milk. It is rarely used; and if present, gener ally sinks to the bottom of the vessel. It may be made out by the microscope.
Chalk or whiting is sometimes employed to neutralize the acidity of soured milk. Chalk is insoluble in milk, and hence will form a sediment, the character of which may be detected by the effervescence caused by a drop of acid.
Turmeric or annatto is used to give a rich cream color Evaporate a portion of the sample to about one eighth its original bulk, and add a small quantity of caustic potash. If the yellow color becomes brownish, turmeric is present; if bright red, annatto.
Gum tragacanth, carbonate of magnesia and arrowroot add consistency and counteract the blue color of the milk. 'To detect the former, let the fluid stand for some hours and observe if any gelatinous deposit is formed. If so, wash it with water and test with a few drops of the tincture of iodine when a blue color will be produced, due to the starch con the microscope, by which instrument the round particles of carbonate of magnesia can also be made out. The latter will carbonate of magnesia can also be made out. The latter will
be found to disappear upon the addition of a drop of acid.

Sugar, in the form of caramel or brown sugar, is used to add to the color and develop the flavor of impoverished milk. Its presence is ascertained by mixing a little yeast with the serum of the sample and exposing the misture to a temper ature of between 70° and 80 Fah . An abundant and rapid disengagement of gas will take place in the course of two or three hours, fcrming a sure sign, as pure milk cannot ferment in so short a time.
Emulsions of almonds or hempseed are inexpensive sub stances, and impart an unpleasant flavor to the milk. The addition of a few drops of amygdaline to an ounce of milk containing milk of almonds will cause a development of the odor of bitter almonds.
Carbonate of soda is added to prevent milk from quickly turning sour. When this sulstance is present, there is a slight increase in the quantity of the cincrated ash, which will be found to effervesce upon the addition of an acid.
Eggs, the admixture of which is one of the most harmles adulterations, are recognized by diaphanous clots formed in boiling the milk. When present in small quantity, the serum of the milk must be boiled, and the flocculi formed compared with the effect of boiling upon serum known to be pure.
Salt is understood to be used quite extensively to increase the specific gravity and develop the flavor of the milk. Its presence cannot be detected by the ordinary observer, but is made manifest to the chemist by the weight and taste of the ash.

adUlteration in large cities.

The report from which we draw our facts states that in large cities adulteration of milk is carried to an extent, the feariul nature of which is best evidenced by the mortality among children, of which it forms the principal nourishment In 1868, the last year of which the records were published 487 deaths of cholera infantum occurred in Boston, while, in an equal population outside the city, but 100 took place. The cause is attributed to the impure milk, which the coun try children were not obliged to live upon.
It is stated that, in crowded localities, adulteration is th rule, and the fact is admitted by milkmen generally. It is estimated that the daily supply of milk for the city of Boston for the year ending March, 1872, was 24,009 gallons, which, for the entive year, would amount to $8,763,285$ gallons, the ccst of which, to cunsumers, may be reckoned at $\$ 2,979.517$. If we assume the average amount of water, fraudulently added, to be but twelve per cent, and this is putting it at a low figure, the amount expended by the citizens during this year for water, apart from the legitimate water rates, amounted to the sum of $\$ 35^{7}, 542$.
To indicate more accurately the full amount of the fraudulent gains in this trade, there should be added to this sum
he value of the cream poured off from the top of the cans, to fifty cents a quart

Ship Canal in Scotland.

The Caledonian Canal, which, with Loch Ness and other akes, cuts across Scotland from northeast to southwest, for distance of sixty miles, between Inverness and Fort Wil liam, affords easy passage to ships drawing not more than eighteen feet. The necessity for such a canal is not very great. It serves only to avoid the somewhat dangerous voy age around the northern extremity of the country. But what seems an unwise policy diminishes its usefulness to the smillest possible degree. The tolls are so high that commerce avoids it almost entirely. Steamers, which com bine their own motive power with good passenger accommo dation, monopolize the usefulness of the canal and pay tolls sufficient to defray the labor of working the locks. Main taining the canal is thus a large government charge for a very small result. A small toll would serve the country and the interest of the government to greater advantage.

A New Dietetic.-Dr. Goodman, writing to the British Medical Journal, says that artificial fibrin is an admirable dietetic substance, being unparalleled for lightness and digestibility, and a great delicacy besides. It is obtained by xposing albuminous material to the action of cold water fo time, the hen's egg, from its great abundance, being the most suitable source of the albumen. When the content of an egg are immersed in cold water for twelve hours or thereabouts, they undergo a chemico-molecular change, be coming solid and insoluble; a change indicated by the opaque and snowy whiteness of the white. The action of heat to the boiling point is now brought into the process, and the fibrin is then ready for use. In cases of deficient nutrition and rejection of food, Dr. Goodman says this artificial fibrin is o the greatest service, as the weakest stomach is able to retain it, and its use appears to promote the app tite for food.

A C'olossal Beer Cask.-The great Hungarian cask, hich is capable of containing 2,000 ei ners (or $25,000 \mathrm{gal}$ ons) of beer and which has been sent for show to the grea xhibition at Vienna, is made entirely of wood grown in Hungary, and is said to be a perfect marvel in workmanship.
Progress of the Hoosac Tunnel in May. 1873.-Head ing advanced from east end westward, 150 feet; from wes nd eastward, 120 feet. Advance during May, 275 feet. To tal lengths opened to June ist, 23,367 feet. Rock remaining to be penetrated, 1,664 feet; being 96 feet less than one third of a mile.
J. A. B. says: "I have taken the Scientific American ver since I commenced to learn my trade, and it is not too much to say that that journal has had a great deal to do with the raising of my salary from $\$ 500$ a year to $\$ 1,700$."

Value of Patents,

 and mow ro obrain ruen. Practical Fints to Inventors. ROBABLY no investment of a small sum of money brings agreater return than the expense ircurred in obtaining a paten on is but a small one. Larger invention are found to pay correspondingly well. The names of Blanchard,
Morse, Bigelow, Colt, Ericsson, Howe, McCormick, Hee, and tions, are well known. And there are thousands of others who have realized large suins from their patents.
More than Fifty Thousandinventors have avalled themselve
of the services of MUNS \& Co. during the TWENTY-SIX year hev have acted as solicitors and Publishers of the Scientific Aarerican Thev stand at the head in this class of busness; and their large corps
of a vistants, ble of rendering the best service to the inventor, from the experience prac to do everything appertaining to patents bettre and cheaper than aay

HOW T0

OBTAIN OAtente

This is the closing inquiry in | nearly every letter, descril ing |
| :--- |
| some invention $\begin{array}{l}\text { hich come }\end{array}$ | me invention which come

this offlce. A positive an he Commissi.oner of Patents. An application consists of a Model Draw Ings. Petition, Oath, and full. Spectication. Various offctal rules and for mal:tles must a:so be observed. The efforts of the inventor to do all thi
busicess himself are generally without success. After great perplexity an delay, he is usual'y glad to seck the ald of persons experienced in paten business, and have all the work done over again. The best plan is to $\begin{aligned} & \text { olicit }\end{aligned}$ proper advice at the beginning. If the partles consulted are honorable men the inventor may satoly conflde his ideas to them; they will advise whethe
the improvement tis poobably patentable, and will give him all the directions ne improvement is p-obably

How Can I Best Secure My Invention?

 This is an inquiry which one inventer naturally asks another, who has ha nd correct :Construct a neat model, not over a foot in any dimension-smaller if pos sible-and send by express, presald, aduressed to MUNN \& Co., 37 Park Row
New York, together with a deocription of its operation and merits On re New rork, together with a description of its operation and merits. On re
celpt thereof, they will examine the finvention carefully, and advise you as to its patentablity, free of charge. Or, if you have not time, or the mean at hand, to constrict a model, make as good a pen and ink sketch of the improvement as possibie and send by mall. An answer as to the prospec of a patent will be recelved, usually, by return of mall. It is sometime best to have a search made at the Pate
the cost of an application for a patent.

Preliminary Exarnination.
In order to nave such search, mare ouc a written description of the inven thon, in your own words, and a pencil, or pen and ink, sketch. Send these
with the fee of 85 , by mail, hddrese ?d to MuNN \& Co., 77 Park Row, and in due time you will recelve an acknowledgment thereof, followed by a writ ten report in regard to the patentability of your improvement. This spectal
search is made with great care, among the models and patents at Washing. search is made with great care, among the models and patents at Washing

Rejected Cases.

oled for parties who have mad Address MUNN \& Co., stating particulars.

To Make an Application for a Patent.
The applicant for a patent should furnish a model of his invention if sus.
eptible of one, although sometimes it may be dispensed with; or, if the in ention be achemical production, he must furulsh samples of the ingred ents of which his composition consists. These should be securely packed he Inventor's name marked \subset n them, and sent by express, prepald. Smal
models, from a distance, can often be sent cheaper by mail. The safeat way to remit money is by a draft, or postal order, on New York, payable t the order of MUNN \& Co. Persons who live in remote parts of the country an usually purchase drafts from their merchants on their New York co respondents.

Caveats.

Persons desiring to flle a caveat can have the papersprepared in the shor est time, by sending $\&$ sketch and description of the invention. The Govern
ment fee for a caveat is $\$ 10$. A pamphlet of advice regarding application or patents and caveats is furnished gratis, on application by mall. Addres MUNN \& Co., 37 Park Row, New York.

Reissues.

A reissue is granted to the original patentee, his heirs, or the assignees of the entire interest, when, by reason of an insufficlent or defectlye specifica
tion, the original patent is invalid, provided the error has arisen from inad tlon.
A pat
ee may, at his option, have in his relssue a separate patent fo distinct part of the invention comprehended in his original applicatio by paying the required fee in each case. and complying with the other re
uirements of the law, as in original applications. Address Paizk Row, for full particulars.

Dcsign Patents.

Forelgn designers and manufacturers, who send goods to this country may secure patents here upon their new patterns, and thus prevent other am fabricating or selling the same goods in this mar.et.
A patent for a design may be granted to any person, whether cltizen or ellevo, or bas rellef; any new and original design for the printing of woo en, sillk, cotton, or other fabrics; any new and original impression, orn ment, pattern, print, or picture, to be printed, painted, cast, or otherwis ared on or worked into any article of manufacture
Design patents are equany as important co citizens as to forelgners. Fo Forcign Patents.

The 300000 ; Briain As $31,000,000$; of France, $3,000,000$: Be um, $5,000,000 ;$ Austra, $36,000,000:$ Pruss1a, $40,00,, 000$; and Russla, $70,000,000$ Nuw is the time, while business is dull at home, to take advantage of thes mmense forelgn fields. Mechanical improverıent: of all kinds are alway in demand in Lurope. There will never be a bettur time than the present ta take patents abroad. We hive rellable business connections with th
 MUNN \& Co., 37 Park Row, New York. Citculars with full information on oreign patents, furnished free.

Value of Extended Patents.

pic patenesrealize the fact that their inventions are likely to be more productive of profit during the seven years of "xtension than the frst full
term for which thelr patents were grunted, we thtniz more would avall them lves of the extension privilege. Patents graited prior to 1861 may be ex tended for seven years, for the beneffit of the inventor, or of his heirs in cas
of the decease of the former, by due application to the Patent Ofice ninet days before the termbaation of the patent. The extended time inures to the beneft of the invintor, the assignees urder the first term having no rights under the extension, except by special agreement. The Governmen
fee for an extension is $\$ 100$, and it is necessar $/$ that good profession be obtalned to conduct the and it is necessarj that good professional service e obtained to conduct the business befcre the Patent Offlce. Full informa

Trademarks.

Any person or firm domiciled in the United States, or any firm or corpora. xtended tection. This is very important to manufacturers in this country, and equa y so to forelgners. For in pan New York.

Canadian Patents

On the first of September, 1872, the new patent ree, and patents are now granted to citizens of the United States on the In order to apply for a patent in Canada, the applicant must furnish a model, specification and duplicate drawings, substantially the same as in pplying for an American patent.
The patent may be taken out elther fc:five years (government fee \$20) o The ten years (government fee ${ }^{840}$) or for fifteen years (government fee $\$ 60$, The formalittes for extension are simple and not expenistve. American inventions, even if alrealy patented in this country, can b patented in Canada provided the American patent is not more than one yea All persons who desire to take out patents in Cauada are requested t
communticate with Muns \& Co., 37 Park Row, N. \bar{T}., who will give promp attention to the business and furiish full instruction. Copies of Palents.
Persons desiring any patent issued frorn 1836 to November 26,1867 , can b upplied with offlcial coples at a reasonalle cost, the price depencing upo he extent of dravings and length of spectication
Any patent issued since November 27,1867 , at which time the Patent Offle mmenced printing A copy of the
fi.
When ordering coples, please to remit for the same as above, and state Co., Patent Solicitcrs, 77 Park Row, New York city.
MUNN \& Co 111 be MUNN \& Co. will be happy to see nentors in person, at their offce, or such consultations, opinions and advice, no charge is made. Write plain do not use pencll, nor pale ink : be brief.
All business committed to our care, and all consultations, are kept secre In all matters pertaining to patents, such as conducting interferences ocuring extensions, arawing assignmetion, examinations into the valida or pamphlets of instruction and advice

Address

MINNN \& CO., PUBLISHERS SCIEN CIFIC AMERICAN,

37 Park Row, New York.
OFFICE I

Ferent 2 American and forcign eqatents.

Improved Supplementary Wheels for Car Trucks.

 diminish the friction and consequent wear of car wheels in passing around curves. The invention consists in applying supplementary wheels to run
loose on the axle of the ordinary fianged wheels. It is especially applicable
on street rallways, a wide flat rall being provided for the supplementary wheels to run on.
Improved Washing Machine.
Clarance L. Rose. Roseville, Ill.-This invention is to furntsh a washing muchine which turns, rubs, and presses the clothes, thus washing them
leanly in a short time, with comparatively small exertion in handing. leanly in a short time, with comparatively small exertion in handing. The
nvention consists in the double action of the beater by the motion of the sclllating tab, producing rubbing and pressing at the same time, the beater
arrying the clothes against the rubber and pressing them against it and he bot the colhes a
Eugene B. Tanner, Attica. Ohlo.-The object of this invention is to fur
 depositing rapidly hay bales to the desired place in the barn, eaving time
and labor thereby. The invention consists of lever and gulde pleces, in
connection with a pulley having a weighted catch lever for suspending the connection with a pulley having a weighted catch lever for suspending the
load till ready to be dropped. Sultable gulde strings and pulleys facilitate load till ready to be dropped. Sultable gulde s
the rapid action of the conveying apparatus.

Improved Stop Mechanism for Looms.
Thomas Isherwood and william Nuttall, Westerly, R. I.-This invention onsists of two or more wires, with device or presenting them behind the weft thread at the middle of the lathe, or thereabout, after the shuttle
passes, to insure the action of the weft fork or feeler for throwing off the shipper lever when the weft is present. It also consists of a novel arrangement of means for presenting the feeler to the weft in a suitable position
in advance of the cloth, and then moving it away, so as not to interfere with the beating up of the weft by the reed. The arrangement of the stopping mechanism at the olddle of the lay saves the necessity of employing one near each edge of the warp. It often happens in looms carry'ng several shut-
tles that the wefts break, so that the ends are long enough to raise the tles that the wefts break, so that the ends are long enough to ralse the
latches, owing to the cutting or overstraining of them in particular places latches, owing to the cutting or overstraining of
by the boxes in which the shuttles are changed.
Improved Skate.
Wendell Strasser, Taylorsville, Ohio. This invention relates to an im proved ronstruction of skates with a view to rendering them more durable, enabling the repair or renewal of the runners to be more easily effected
than heretofore. The runners are secured in a groove in an fron which is than heretofore. The runners are secured in a groove in an fron which is
secured to wooden soled boots or shoes, and sald fron is detachable from the wooden sole by a pecullar but simple device. The runner is also readlly

Improved Lock Fastening for Mail Pouches, etc. Brice X. Bluf, Huncing to pouches, sat articles ; and it cousists in employing two hinged silding clamps, and in providing the adjacent end of each with a corresponding eye through both of which the padlock is passed and then locked. It also consists in an aper-
tured plate sliding in a recess on top of a plate to hold frmly the name, Improved Sewing Machine.
George Webster, Jr., and John Fraser Webster, Hamilton City, Province of Ontario, Canada.-This invention consists in a new mode of a pplying the feed bar mechanansm; In a pecullar relative construction of the shuttle carrler and feed bar to enable the former to raise the latter at every forward
motion ; and in a very simple and conventent mode of regulating the length motion; an
Improved Fence. one season of the year and obstructed wable to be flooded with water at one season of the year and obstructed with ice at another. The invention
consists in a jointed post which will enable the panel to stand erect in the grazing season, and to be thrown down with its top up the stream in the sea-
son of fce.
Dr. John E. Park, Sequin, Texas.—This Invention Cement. ic cement, and to a process of burning the intion relates to a new hydrau. he cement, and to a process of burning the same to develope its highest
cementitious qualitles. The cement is composed of 1 part lime with 30 to 40 per cent of clay (alumina and silica), and 5 to 10 of fine sand (silex), and 5 per cent of soda (carbonate, muriate or caustic). or potssh. The principal
feature of the process is determining the degree of calcination by means of feature of the process is determining the degree of calcination by means of exact degred quallty.
Improved Steam Engine Valve.
Afexander baumau, London. England.-
off the steam from the main cylinder before its piston has reached its throw by detached leading valves, one at each end of the maine cylinder and an
intermediate one, all moved by the pressure of the steam that flls the main Intermediate one, all moved by the pressure of the steam that fills the main cylinder at or near the completion of each stroke. The piston valves cut off
the exhaust of the main cylinder before the end of each stroke, thereby he exhaust of the main cylinder before the end of each stroke, thereby
orming theren a steam cushion which checks the momentum of the main piston and receives it with a yilelding resistance like s spring, thus making high speeds much safer. It Is also economical, because the steam cuashion
storce up power which is exerted in the reaction to send the piston back. Clevis Bar, Hook, Whiffletree, and Whiffetree Staple.
Robert Glbbs, Suring Hill, Mo.-This invention consists, first, in a peculiar Robert Gibbs, Syring Hill, Mo.-This invention consists, first, in a peculiar
mode of constructing and combining the clevis bar with its brace ; second, In a peculiar construction of double hook for clevis bars or whiffletrees third, in a novel mode of swiveling the shank of a clevis hook in the clevis
bar and combining it with a laterally adjustable front plate; fouith, in a ew way of applying a hook staple to a swingle tree in connection with a derforated plate.
Improved Turpentine Scraper.
John G. Cobo, Shoe Heal, N. C. - This invention rela
scrapers which are used to detach the resinous substance that exudes from the tree, and consists in a double edged reversible scraper. This obviate
entirely the cmployment of two implements to complete the operation.
Impioved Carriage Protector.
George Bruce Brown, Newburgh, N. Y.- This invention consists in a plate
provided with a subjacent and projecting strip of rubber applied in the rear of a carrlage wheel and attached to the carriage spring by a curved arm and blfurcated holding plece
Improved Sleigh and Sled Runner.
Jacob W. Karn and Eugene W. Karn, Watking, N. I.
relates to the construction of sletgh runners, and consists in making the to rall bottom, runner, and intermedg runners, and consists in making the

Improved Wash Boiler.
Improved Wash Boiler.
$\begin{aligned} & \text { Joseph Adams, Newark, Oho..This invention relates to the construction } \\ & \text { of parts which make up a wash botler, and consists in a false bottom con- }\end{aligned}$ vex on top and provided with adjacent channel ways, the latter recelving the water from the former and dellvering it to the steam generating cham-
ber: also in a two part end-closed and side-perforated plpe, through which the hot water is forced in jets upon the clothes; and also in a perforated
clothes shelf that fits over the pipes of the false bottom. clothes sheif that its over the pipes of the false bottom.

Improved Belt Hook. Greenleaf Wilison, P. O. Box 1180, Lowell, Mass.-T

Greenlear Wilson, P. O. Box 1180, Lowell, Mass.-These hooks act on the same principle as perging on the sole of a boot, the teeth taking the place
of pegs. The belt is not weakened by punching holes; and, the teeth takIng hold in so many places, the strain comes uniformly on the ends of the
belt, which prevents tearing out the ends. The hook is particularlyadapted for rubber belts. The inventor manufuctures different sizes and supplies
them by the quantity, at low rates.

Improved Machine for Cutting Hoop Locks.
John McGrew, Ravenswood, w. Va. - The invention consists in a series of knives in a reciprocating holder, one above another, and each ne projecting further out than the subjacent one, so as to cut out success ily shavings from the shank. It also consists in an intermittent aud later ally moving gage, that is automatically adjusted to each successive knife the knife holder, for the purpose of placing the gage in its proper relative position to each knife as it comes to its work. It also consists in providing
the grooved uprights of the sliding toil the grooved uprights of the sliding tool holder with a separate and detach-
able cap, so as to permit an easy access to the sald holder. It consists in a able cap, so as to permit an easy access to the sald holder. It consists in a
pecullar construction of cutter shanks, so that they may be readlly applied
and supported in grooves of holder.

Improved School Desk.

John Wallace Childs, Kansas City, Mo.-The invention consists in a pecu articles, so that the desk ild is easily held by gravity in an inclined position or use, and lifted before it 18 allowed to fold against the back

Improved Curtain Cord Fastener. mel, Utica, N. Y. - This invention has for its

Improved Curtain Cord Fastener.
Charles Gammel, Utica, N. Y. -This invention has for its object to furnish improved pulley for the cords of window shade rollers. A plate, designed to be secured to the window casing, is cast with a socket or hollow rib to
recelve a rod. The upper end or head of the rod is slotted to receive a pulley, around which is passed the endless cord by which the shade is raised and lowered. The rod is made considerably longer than the length of the
plate, and has a hand nut screwed upon its lower end, so that, by simply plate, and has a hand nut screwed upon its lower end, so that, by simply
urning the nut on or off, the tension of the shade cord may be adjusted a urning the nut on or uff, the tension of the shade cord may be adjusted as
required. In the side of the rod is formed a groove, into which is inserteda pquired. In the side of the rod is fo entirely out of sight.

Improved Sofa.
William R. Conger, Newark, N. J.-The invention consists in the improve ment of sefa bedsteads. The back is hinged to the frame of the seat, so
that it will turn over and hang down. In this manner the lounge may be used as a double lounge whenever such use of it is desired. The back may iso be fastened in an inclined position. To the front side of the lounge it attached an adjustable side or shield. When the lounge is in ordinary use
the shield Is dropped down in front so as to be entirely out of the way When it is desired to use the lounge as a bed, the front is turned up and fastened in any desired position. The head may be ralsed and adjusted to sult the occupant of the loange.

Improved Telegraph Cut-out and Switch.

Robert tenning, ottawa, In., assignor to himself and J. D. Caton, of same
place. The object of this invention is io substitute, for the different separate instruments used at present in telegraph offcecsas cut-outs and ground
switches, a combination instrument which not only offers all the advan tages of the former, but, by its simple construction, is clearly understood eaelly operated, and furnished at less expense. The invention consists,
mailily, in the combination of a cut-out and ground switch by means of two parallel metallic plates, connected with the line and local wires, which con nection may be interrupted or established by the adjustable buiton or cir
cuft closer and a metallic peg, which may connect elther wire, or both, to cult closer an
the ground.
Improved Copy Holder.
Stephen French and Rufus D. Chase, Orange, Mass.-The invention con sists of a board, supported in any way in an oblique position sultably for reading " copy." Near its upper edge is a pair of rolls with clastic surfaces
arranged sultably for drawing a half sheet of paper along the table from bottom to top, one of said rollers betng provided with a thumb bit at one
or both ends for turning it. Just below the rollers is a slotted plate, ar ranged so that the paper, containing the matter to be copled, will be drawn under it and hidden from view, except a line or two which may be scen
through the slot, and thereby be clearly indicated to the eye of the copyist, through the slot, and thereby be clearly indicated to the eye of the copyist,
so that no time will be lost in following the copy in the right connection. Improved Shank Laster.
Almond, N. Y.-The object of th
Richard B. Perkins, Almond, N. Y.-The object of this invention is to con struct a shank laster, which may be adjusted to different sizes of boots
holding the shanks firmly, and allowing the use of both hande in pegging holding the shanks firmly, and allowing the use of both hands in pegging
The invention consists of a curved main plece, with pinchers, guard, and regulator pivoted to the end thereof. The curved lever is placed under the knee, the pressure on guard and pinchers stretching firmly the shank leath er for pegging.

Improved Cooking Vessel.

Laurence P. Bodkin and John S. Bodkin, Brooklyn, N. Y.-This invention as for its object to improve the construction of bollers, sauce pans, and
other cooking vessels, in such a way that the liquid contents may be poure off and the solld contents retalned. Upon the edge of the forward side of the boller is formed a lip, inclining upward and out ward, to serve as a spout
in pouring out the liquid contents of said boller, to gulde them into the receiving vessel and prevent them from trickling down the outer side o
boller. Upon the innerside of the edge of the forward side of the do boller. Upon the inner side of the edge of the forward side of the bolle
is formed a grate, the bars of which are connected with each other at inner ends, and at their outer ends are formed solid with the body of the vessel. The bars of the grate are made triangular in form, and are so ar-
ranged as to form the ieast possible obstruction to the outfowing liquid.

Improved Railroad Switch.
JJhn R. Adams, Sacramento, Cal.-The cbject of this invention is to con truct a switch connection which avoids the disadvantages resulting from the expansion and contraction of the switch rail at different temperatures
causing either a too close contact, so as to prevent the working of the rall, or a too wide opening, so that the battering of the ends of the rails necessitates their replacement. The invention consists in the arrangement of an Inverted rall under the switch rall, connected and plvoted to it at one end,
and the extension of the lower inverted rail under a rest plate to the track ralls, to which the same is also rigitlly connected, producing an expansion from the track rails, and no interrruption of the working of the switch or battering of the ralls is possible.
Improved Folding Bedstead.
Alfred G. Bayles and John W. H. Carroll, New York city, and George D Miner, Williamsburgh,N.Y.-This invention has for its object to improve the
construction of the folding bed described in letters patent No. 133,137, Issued construction of the folding bed described in letters patent No. 133,177, Issued
to the said Alfred G. Bayles, November 19, 1872 , so as to make it simpler in contlcle of furniture. make it more nearly resemble a mproved folding bed formed of the two parts hinged to each other. One part has a molding
around its top so that when the sald part of the bed body is turned back the around its top so that when the sald part of the bed body is turned back the
molding may swing out and serve as legs to support the weight, the cress molding may swing out and serve as legs to support the weight, the cress
bar of the molding supporting the weight, the hinges being simply intended to plvot the molding in place. The spaces in which the parts of the mattres parts of the body of the bed may project sufflectly above the mattress to give space for the bed clothes. An end board is fitted into the open space
formed by recessing the adjacent edges of the hinged sides of the parts formed by recessing the adjacent edges of the hinged sides of the parta
when the bed is closed, so as to closely cover said opening. The edge of the part of the body opposite the hinges may be provided with a boar which, when the bed is closed, overlaps the
opened, serves as a head board to the bed.

Improved Feed Water Heater for Steam Boilers.
Idney T. Taylor, Baltimore, Md. - Thts invention consists in a ne rangement of a cone and induction and eduction exhaust-steam pipes o tubes, with a perforated circular water discharge pipe, within a case o
cylinder, whereby a cylinder, whereby a very thorough absorption of heat by the water, and
corresponding condensation of the steam, Is assured. It also consist in providing a well at the bottom of the aforesala case and arranging a piston and valve the
ly removed.

Improved Sash Cord Guide.
willam Shaw, Brooklyn, N. Y.-The case has flat surfaces in which is ournaled the rod or pulley shaft, and the rollers or pulleys have end cham bers combines with sets of loose balls placed in said en.
take the pressure of the rollers and les3en the friction.

Improved Soldering Apparatus.
Willam D. Brooks. Baltimore, Md.-This invention relates to means fo avoiding the necessity of changing the circle of blow plpes at every change
in the size of cans to be soldered, and consists in a novel and pecullar mode of attaching the burner plpes to their supply chamber

Improved Butter Worker.
Warren N. Golden, Coldwater, Mich.-This invention consists in butter and in the combtnation with two butter workers and one butter holder of aneously operated from a stngle crank arm.
Improved Harvester
Wm. K. Rairigh, Plumville, Pa.-This Invention consists in making the shaft that drives the cutter pinions in three sections, easily applicable to
and removable from each other, and in makin;s the seat to slide back and Improved Veneer Cutting Machine.
John W. Lesile and George R. Smith, Cairo, IIl.-This invention consists ane employment o. a pressure roller so small that the curvature of the the edge of the cutter, with two secondary pressure rollers acting upon 1 to make up the capacity for pressure, in which it is considerably reduced by which is considerable in the machines using only one roller, because the size necessary for strength makes the curvature so large that the point of
contact with the wood must be considerably in front of the cutting edge. Improved Extension Settee.
Cornellus Beatty, Elizabeth, N. J.-The object of th
onstruct settees or " lounges ". that they mayect be readily converted into beds for sleeping purposes; and it consists in the mode of extending th legs, the same betng so constructed and arranged as to be folded back caed together
Improved Sewing Machine.
Cyrus Lewis and Joseph sonthill, Howard, Ill.-The invention consists in means for facilitating the application of glass to bearing surfaces. The vertical wall of the shuttle race and the bottom are of glass. The glass
race is supported by a metal plate to which it is fastened by detachable cllps at the ends. A groove or a slot is made in the part for the needle. Clips at the ends. A groove race is bedded. thereon, on its metal supports, in cement, shellac, or other elastic substance calculated to back it throughout, take up the
Improved Compound Explosive Projectile.
Frank A. Markley, Waynesborou ε h, Va.-The object of this invention is mprovementin the class of shells or explosive projectlles which are formed
of several detachable parts; and the improvement consists in the construc of several detachable parts; and the improvement consists in the construc
tion of the projectile whereby the several auxillary shells or chambers are connected to the main cylinder. On the ignition of the fuse connection, the powier charge in the nain. chamber explodes and throws the quarter
shells in different directions. The fuse of each shell will take fire from the rst explosion and igutte the powder charges of the auxiliary shells, scat
Ing
Improved Water Wheel.
Allisha B. Reniff, Bing ham's Mills, N. Y.-This invention has for its object fornish an improved water whecl. Around the body of the wheel it formed the inner rim. The inner edges of the buckets are secured to this
innerrim, and to their outer edges is secured an outer rim. The buckets
are so arranged that their uppel edges are about uno are so arranged that their uppel edges are about upon a tangent with the rearside of the shaft. They also incline to the rearward, and their inner
side edges pass to the rearward faster than their outer side edges, and are made longer, so that their bottome elges may be horizontal. The inner rim is made deeper than the outer rim which, in connection with the form of
buckets, causes the wheel to dischargefreely. The wheel when et work in onnection with the spent a suction pipe wholly unnecessary. The size of the buckets and thelr numthe scroll or stationary wheel is made convex upon its upperside an horizontal upon its lower side. The lower edges of the chutes are arranged
about upon a tangent with the forward side of the shaft, and are inclined In the opposite direction from the buckets. This construction of the sta-
tionary wheel allows the water to pass readily and freely fito the chutes, and enables the wheel to be rut

Improved Wheel Cultivator.
John H. Randolph, Jr., Bayou Goula, La.- The invention consists in the mprovement of cultivators. The tongue of the machine is attached to the
crossbars of the horizontal frame and strengthened by inclined braces. T the near cross bar of the frame are attached a pair of vertical standards placed at such a distance apart as to recelve one of the drive wheels be with them in their revolution. The shafts revolve in bearings, while thet inner ends project through keepers on long bearings attached to a stand ard, so that the latter may be raised and lowered withoutd disturbing the
shafts. Upon the forward edge of the standards are rack teeth into which gear the teeth of a segmental toothed wheel, the hubs of which are place upon shafts to which are rigidly attached the lower ends of the levers Lows or scrapers are attached to the lower ends of the standards, and ar
so formed as oo move the sill in ward or toward the plants. By means of so Cormed as to move the sin in ward or toward the plants. By ncans of the plants, sald blades operating upon the soll somewhat as the blades of propeller screw operate upon the water. The blades may be used in con-
nection with the plows, or elther may be used without the other, and both nection with the plows, or etther may be used without the
may be adjusted to work at any desired depth in the soll.

Improved Swaging Machine.
Henry M. Crippen, Bartlctt, assignor of one half his right to James C chine for the use of carriage smiths and metal workers generally, by mean of which the time and labor required for forging the various light irons re quired in the prosecution of their business may be greatly diminished an the work performed in a superior manner. The bed plate of the machine
is elevated on an fron frame and supports a stand. Vertical rods are held in the jaws of this stand, upon which are spiral springs. The bar which car ries the upper swages rests upon the top of the eppral spring3. The rods,
with the barconnected, play freely up and down in the jaws. The down action is produced by means of a treadle. The back or upward motion is pro-
duced by the recoll of the spiral springs. The die plate has on its face duced by the recoll of the spiral springs. The die plate has on its face
grooves which correspond with the grouves in the faces of the hammer dies, and is moved and adjusted on the bed laterally to sult the operator, and may be secured in any desired position.
James C. Chaffee, Titusville, Pa.-The shaft is connected with the driving power by cranks to which are attached habs made with pairs of paralle flanges to recelve the inner ends of the paddles. To sald ends are secured
the paddlesbent in the midddle, flanged on their outer ends, and bolted to disks. Upon the outer edges of the disks are formed flaring rims to pro-
tect the buckets from obstructions in the water. This construction, the paddles befng set oppositte to each other, makes the boat more steady and nary way.
Wm. K. Rairlgh, Plumville, Pa. - Thits Invention co
djustable elts will always be automatically tightened or loosened whenever the ff-stroke but ; in a pivoted rectprocating rake that is held upright on th rame gathererattached to a detachable gulde frame; and flially, in opera ting the rake by a shaft having two reversed and crossing spiral slots.

Alt new subscriptions to the Scientific American will be commenced With the number issued in the week the names are recelved at this offlce,
unless back numbers are ordered. All the numbers back to January 1st unless back numbers are ordered. All the numbers back to January 18
may be had, and subscriptlons entered from that date if destred.

Gusinest and Textomal Wanted Brick MachCirculars, Box 5501 , NY Belting - Best Philadelphia Oak Tanned

Diamond Carbon, of all sizes and shapes, for
 Buy Belting and Mechanical Supplies of
 Spons' Catalogue of Scientific Books, mailed
freeon application. E. $\&$ F. N.Spon, 446 Broome St.,N.Y. Patent Office Report for Sale-Complete. Ad
drees L.H. Trook, 68 V V. Ave. W., Washington city, D.C. Wanted-A Portable or Stationary Steam
Eng tine (new or second hand), from 20 to 30 H.P. W. $\&$ Engine (new or second hana,
J. Reld, West Hebron, N. F .
Buy Gear's Improved Variety Moulding Ma-
chine, Boston, Mass. Patent for Sale at a great inducement. Ap-
ply, for partculars, to Patentee of "Advertistig LanMachinery for Sale-For particulars, ad-
drose-The Abott Mr Patent for Sale of an article needed by
Book Keepers. Addrees W.F. West, Haverstraw, N. Y. $\underset{\text { Sori , gives "rPleas ant and Protitable Employment" to }}{\text { So }}$ suchas whos to "earn a dollaror two," whileabout their
regular Washing Maching-Best, 83.50 . Easy work.
Crceluarstre, Jy Stationary Engines; Double and Single Cir-
cular Saw Mills ; Portabie Farm Engines mounted on trucks with Iron Water Tank, steam Jacketed Cyllider
and Balance Steam Valve, the only Portable Engine made with Stean Jaccereted cylinder and Balance Steam
Valve. Send for Decertitive Circular and Prict Lstat to the Mansfield Machine Works, Mansfella, Ohio. Liberal Portable Steam Engines for Plantation-
Mining, Mill work, \&c. Clrcuilar Saw Mills complete for
 tine Mfg. Co., Mt. Vernon, O
Inon Casting Sirnirect from the Ore Wanted.
Send name and address to Castings, Box 2913, New York. Nickel and its Uses for Plating, with gene-
fal deceritition. Price soc. a copy, mailied ree be by L Improved Wood Handle. Retchets, 18 in, $\$ \%$. For Solid Emery Wheels and Machinery, State and County Rights for Duryea's pat-
ent Refrigerator, the best in the world or willexchange Cor Real Etatat. Apply at 693 Seventh a anenue.
Sure cure for Slipping Belts
ent Suutton's pat-
Culley Cover tis warranted to do double the work ent Pulley Cover is warranted to do double the work
before the belt will sllp. CIrcularstree. John W. Wutton, Patent Chemical Metallic Paint-All shades,

 Cabinet Makers' Machinery. T.R.Bailey\&Vail. Steam Boiler and Pipe Covering-Economy,
Safety, and Duraollty. saves from ten to twenty per
 The Ellis Vapor Engines, with late improve-
ments, manufactured by Haskins Machne Company,

 Stave \& Shingle Mat inery The Best Smutter and Separator Combined Damper Regulators and Gage Cocks-For The Berryman Heater and Resulator for
Steam Bollers - No one using steam Bollers can aftord to

Gauges, for Locomotives, Steam, Facuum,
Alr, and Testing purposes-Time and Automatic Recording Gauges-Eng!ne Counters,Rate Gauges,and Test
Pumps. All kind Pteam Gauge Company, 911 Liberty trreet, New York, Five different sizes of Gatling Guns are now
manutactured at Colt's Armory, Hartord, Conn. The larger sizes have a rai.ge of vore two miles. These arms Gauge Lathe for Cabinet and all kinds of han-
dies. Shaping Machine for Woodworking. T. R. Balley vall, Lockport, N.
All Fruit-can Tools,Ferracute,Bridgeton,N.J. The Berryman Manuf. Co. make a specialty.
of the economy and satety in working steam Boilera. $\underset{\text { Ross Bro'e, } 85 \text { Firtat Street, Willambsurgh, N. Y. } \mathrm{Y} \text {. }}{\text { Gills. }}$
 Key Seat Cutting Machine.T.R.Bailey \& Vail. Cheap Wood-Working Machinery. Address
M. \mathbf{B} Cochran $₫$ Co, Pittsburgh, Ps. Peck's Patent Drop Press. For circulars,
address Milo, Peck $\&$ Co., New Haven, Cona. Steam Fire Engines,R.J.Gould,Newark,N.J.
 tng Co. All work warranted.
Mining Wrecking, Pumping, Drainage, or
urrigating Machnecy,
 Drills, Prtce Lust free. Goodnow $\& 1 \mathrm{ghtman}, 23$ CornThe Berryman Steam Trapexcels all others.
The best 18 alwas the cheapest. Address I. B. Davis \& Co.. Harttord. Conn.
Borng Machine for Pulleys-n
capactitr. T. R. Ralley \& Vall, Lockport, N.. l.

For best Presses, Dies and Fruit Can Tools,
Biluse $\&$ willame, cor. of Plymouth $\&$ Jay,Brooklyn,N. . Ccvering for Boilers and Pipes. The most
economical and durable article in use. at Aner ican Institute Fair. Van Tuy
Cempany, 528 Water Street, New York.
 or lithograph, etc.
Williamson's Road Steamer and Steam Plow way, N. Y., or Bos 1809.
Parties desiring. Steam Machinery for quar.
rying stone.adress steam Stone Cutter Co..Rutland, vt. Hand Fire Engines, Price $\$ 300$ to $\$ 2,000$
Also, over 800 different Style HIlls, and Fire Yurposes. Addrees Rumsey \& Co., Sen Hydraulic Presses and Jacks, new and sec
ond hana. E. Lyon, fio Grand Street, New Fork.

J. H. P. asks for a good recipe for blacking
painting a portable boiler, so that tit would retain tite ${ }_{8}$ gloss.
G.F. C. asks where a description of the
electro- plating proceess or Meserr.Jacops and Klefn may e. A. J. asks: With an area of steam pipe
of 1 square inch, and a pressure of 50 bse. per gage , if the steam flowed into a vacuum, with what force would tstrike a disk suddenly sild over the opening?
B. F. J. asks: What is the striking power
the largest hammer used in Burden's horseshoe
 IPerhaps some of our realiers who have seen the ham-
mer mentioned will torward some information on the mubject. The largeest hammer tn the world Is supposed
to be the 100 tun hammer at Krupp's steel works in rusela. -ED8.]
W. B. asks for a recipe for cement which can be applied around the joint of a tin box, which will
keep ofll from coming out during transportat ton. When the ox and contents reach the destination, the cement
t to be removed. "I do not wish to oolder the cover on, but merely to keep the oll from oozing out.'
J. N.H. asks: Will a turbine wheel give as
good results for power as an overshot, the amount of water beln from 100 to to ano inchene in volume, and the
call 20 feet?
Both wheels are proportloned to that smount. A man was degirous of puttling tn a turbine
wheel: but a millwright sald it would do well enough in he spring for a month or two when water was plent.ful, but In low water it would not do the work tnat an
overshot would. [The question proposed by our correspondent to one of great tutereetet and we would be glad
ohear trom those of our readeres who have inform to hear from those of our readers who have informa
tono the matter. Some turbtne wheels have given an and
ind on olency of more than 85 per cent, but there is general-

R. will find full directions for kalsomining
on p. 30 , vol. 24.-J. C. s. will ind a rule by which he
 would be the cost of common glass in that ahape per
ball? I Im Informed that tit cannot te done, as the glase would crack tn hardentng. Anserer: Thoese who have
worked in lias housen say there would be no danger of worked tn glass houses say there would be no danger of
the glase cracking if annealed. We cannot tell the E. S. asks: What will remove iron rust
 in carefully washed, thoroughly dried and olled. Parai
in will protect tron frou rust.
B. W. W. asks (1) for a recipe for making
"Pharaoh's serpents".
2. How are a number of clockg kept regulated by means of galvantc connections?
How can I make a cheap electric alarm bell? I have batteries and an electro magnet. Answers: 1. See an
 ard clock so arranged as to make and break the electric.
11
clrcult at each escllation of the pendulum. When contact ts made, an Impulse of electricity 18 sent through
the wrres connecting the clock with the tndicators.
 antsm and peudulum omitted. In place of the pendulum there is an electro-mggnet so connected with a bar
of tron that every time the circult ts made the bar of
 one tooth. As soon as the circult tis broken, a spring re.
tracts the bar of tron, and it tis ready for another beat tracts the bar of fron, and it to ready for another beat.
Perrapas an easier method for convertug an ordinary clock 1 nto a copytng clock or tndicator, if you are not a
clock maker
 nect the drlving power (spring or welght) and remove
the pendulum ball. In place of the latter, attach to the pendulum rod a coll of ingulated wire, arid attach to the zontal positton with therr south poles toward the ends of the coil. When a carrent passes through the coll one
end acuulres north magnetism, and 18 atracted end agcaulres north magnettem, and is attracted by the
magnet near it, he other end becomes south and Is re. pegned. TThe regulating clock $\begin{aligned} & \text { now reveresest the diricetion } \\ & \text { of the current and the pendulum coll } 18\end{aligned}$ carred to the opposte side. 3. You may atuach a small electro-mag. net to a spring, so as to prevent the clock work from Inging the alarm bell; when the current tis broken the
spring ts releasea and the bell rings or the bell can be rung by electrictity.
C. A. asks what kind of varnish is used for
the process of etchnng designs in glase plates. The use of the varnish 1s to prevent the action of the hydrofuuor
Ic actd upon the parts of the plate which are not to be
 glass, it tis better to warm tit gently and apply the wax
which melto and flows evenly over the surface, as the which melts and flows evenly over the surface, as the
turpentine varnish sometimesremalins sticky and soft. Engravers etchtng ground can be used on elther glase or
copper. It ts made of 2 ozs. white wax, $\%$ oz. black pitch, and y o oz. Burgundy pitch, melted at a moderate
heat ; then str In 2 ozs powdered asphaltum and botl.

Pour the mass Into wa ter and workinto balls, which are
lied up in smooth worn sikk and aptud
 A Lady asks if camphor put up with furs
causes them to fade. Answer: Persons who have used camphor for a long time do not notice any change of
color, even where the gum is in direct contact with the W. A. S. says: Herewith enclosed please
and a eection or lead pipe, cut from a plece eleven fee Iong; the whole leng this perforated Ilike the esample enent We are somewhat puzzled as to the cause of decay. Th
plpe was put down, stx feet below the surface of the
 he leakage, through the stoppage of water in the bulld
nng. Belliving that it would be interesting and in
tructive, we ask your structive, we ask your opinion. Answer: The spectme
appears to have been gnawed by some animal but appears to have been gnawed by some anfmal, but 11
may havc been corroded by some mineral actd in the
soll, which attacked the lead. Such cases are not comW. H. P. says: I have been using the folsurpass anything of the kind in use. The object is to plng the making of steam. Set the check valve on the center of the boller, thence run a pipe (inside the boiler)
to the front end, elbow it and run it to the back end to the front end, elbow it and run it to the back end,
and to within an inch of the bottom; so that, as a natural consequence, by the time the water passes through that length of plpe in the steam, it will be as hot as it
would be when it gets to the water in the boller. Pleas Ive me your opinton. Answer: If the water is heate y the steam in the boller, it must, of course, abs'rac eat from the steam, so that our correspondent's a
rangement, while it is efflent, may not be economical.
J. B. F. asks: What is the most suitable engine for driving a street car, that is, the one that
would do the work with the least steam? What is the weight of the engine and the amount of steam require would require too much space to answer our corres pondent's inquiries in full. By consulting back number of our paper he will gain considerable information on the subject. Opinions differ as to the best form of en
Ine for street cars. We have seen an account of gine for street cars. We have seen an account of a
steam car containing an engine of 5 horse power, and ansuming coal at the rate
D. C. says: A low pressure engine has a steam as a high pressure; whatis the reason? If I werc be called a low pressure or a condensing engine? An swer: In common parlance, a low pressure engine is one
that has a condenser, and a high pressure engine ex hausts into the air. Modern condensing engines fre quently carry as high pressures as non-condensing enare the most appropriate. A condenser and air pump
and and and can be attached to any non-condensing engine, and 1
then becomes what ts commonly known as a low pres sure engine. In this case, the initial pressure of the to cut off the steam at an earlier point of the strok and the engine will then develope the same power a
C. A. B. Says: A hydrostatic press having a
cylinder whose internal diameter is 8 inches and exter ual dameter 18 inches (thickness of metal 5 Inches), the
tensile strength of the material betng 16,000 pounds per quare inch: what pressure per square finch will it tak o burst the cylinder? I find so muchdifference bet wee Rankine and Molesworth that I ask you to give an ex planation. Answer: The bursting pressure per squar
nch will be nearly 9,000 pounds. The rule given in
Inder Clesworth is derived from experiment, and is applie ditions. See article on thick cylinders on page 884.
J. E. P. says: Suppose that a steam pump nd say 100 lbs. water pressure, throwing 150 feet throug 14. Inch nozzle. If I connect another engine of the same sure, with the throttle wide open, to the same line of hose, using the same nozzle, will the two comblned intance than the single engine by itself? Answer: The ffect of connecting the second engine will be to forc sure per square inch on the hose will be increased, and $\underset{\text { Ore }}{\text { Y }} 3$ inches stroke and a silde valve, would a shaft \% Inch dameter be stiff enough for the fly wheel and
crank, or should it be $₹$ inch? 2 . The boller is 18 inches nches $x 10$ inches diameter, and is to have two flues 2 aches diameter through it. The fire is under the boller
rom which place it goes to the back end, and return through one flue and then through the other to the
smoke stack. Would a boller of that size be large enough to run an engine of the size mentioned at 150 revolutions? The boller is made of copper three thirty
seconds of an inch thick. It is to be fred with shaving etc. 3. How many pounds pressure ought it to stand per square inch, and how many pounds would it requir
orun it at the speed mentioned, to drive a lathe 6 in ches 8 wing, turning 21 inches long, etther fron or wood Answers: 1 . A shaft, \% of an inch in diameter, would
ne large enough. 2. You will find remarte
 ournal. 3. The bo.ler ought to stand a pressure of 80
30 mand or 90 pound to the square inch, and
pressure not exceeding 60 pounds
J. E. E. says: 1. I want to set the valve
a locomotive engine. Please give the simplest mod of placing eccentrics in the right position on axie, the position of the reverse lever, and the lap and lead of the
valves. 2. For a four horse stationary engine, what should be the size of the boller, number of flues, pres sure per Inch, number of strokes per minute, and size of cylinder, valve seat, and valve. Answers: :. You wint
tind detalls as to size of ports and methods of setting chincloss. It would take too much space to give you all the information you ask for in this column. 2. Make
the cylinder 4 inches diameter and 6 inches stroke with a piston speed of 200 feet per minute. Theboflershould the steam pressure should be about 70 pounds per square
F.
F. C. B. asks: 1. How is the oxide of man-
ganese put in around the carbon plate of a leelanche batterv? Is there any other substance with the coke?
2, How can I make nitrate of silver? Answers: 1 . The
arbon plate is plaeed inside the porous Jar, which is ese, and sealed with melted asphalte. A solution of
chloride of ammontum Is used outside to act on the zinc. Reduce a sllver cont to fllings, by means of on ordina y fle or rasp, dissolve the fillngs in more or less nitrio acld, according to the strength of the actd, and evapo rate the solution until the salt will crystallize ; any e
cess of actd will be driven off in the process of evapora tion. The copper of the coin will not interfere for or
inary use, but pure sllver may be obtained fromalmo dinary use,
F. W. says: I have a stream of water no spring for feedng a hydraulic ram; and
the pornt where I want to use the water the
has little welght, but has a depth of 7 o

ries in the drlest seaso
abou
about 800 cubic feet
water per minute.
propose
thally a cast tron pip
to the bottom of the engraving. The pipe
and its supports act as akind of dam and pre water, except from the surface at mouth of
plpe at A. This would
create createa fall of 9 feet a The perpendicular par feet inside and a drameter of 7 inches, and 7 inche Sives an area of $38-484$, which, multiplied by 9 feet fal
hows 1,980 gall:ng perininute. According to your art cle sbout hyd raulic rams, the 1.980 gallons falling 9 feet
would raise 280 gallons per minute to a hight of 63 feet, o ne seraise 280 gallons per minute to a hight of 63 feet, 0 of this would be 112 gallons. A good deal less would be nough water englne or the ram can be screwed to the borde Beate the fall of said qcantity of water whin n create, per $8 e$, a rise of water to the hight of 63 feet in
maller streams, which is the best way to effect it Answer: The pipes would simply fill up and no result
would fellow in the desired direction. If there is no would follow in the desired direction. If there is no
avallable permanent fall, no water can be raised, even wallable permanent fall
J. A. B. says: I noticed on page 210 of your
current volume an artlcle on a large magneto-electric machine, copied from Engineering. For some time pas
I have been anxlous to make an electric light, and hought I might possibly make a magneto-electric ma netals, to. I noticed that in reporting Tyndiln the ecture in your journal of January 4, you say that he
used a small voltatc battery for his light. I wish to ave some apparatus to experiment with. Part of thi pparatus, I have already fintshed, such as bisulphide of etc. I wish to ask you: Which would you adviseme to use, a series of batteries or a magneto-electric machine?
2. Are Bunsen elements the best? 3. What would be the smallest number to use so as to get a good light with Bunsen's are most generally used. 3. It will depend o heamount of light wanted, and the time it is required to be kept up; five cells will give a good light. Thirt pose, provided you scrub the zincs with a wire brush
When you are through ; the price per cell is about $\$ 1.75$ he running expense is the zinc and actd; the zincs yo can cast yourself, using one new zinc as a pattern. N
tric actd is about $121 / 2$ cents per lb. Sulphuric acid 18 cents per 1 b .
S. L. G. asks: How much power could I get
rom a stream of water $11 / 2$ inches in diameter, with about twenty feet fall? I would have to carry it about
a mile in pipes to get that much fall. Would it be neces to run the pipe thus, or would it do as well thus

Ith wheelat the bend? Answer: An inch pipe a mile long would discharge too little water to be of any use
With a pipe sufflecently large to discharge the require mouncor waterunder a head ap proximating the a moun roposed methods of termination was a dopted.
J. C. L. says: In your answer to N . N . B. D.
page 267 of your current volume, I think you do not get at the idea in regard to electro-magnets. He says
he has 600 feet of fine covered wire on which is too much resistance for any ordinary local battery to overcome as it is sometimes called, requiring a battery of 8 or Bunsen cells to have first rate effect. A local sound has only about 100 feet of No. 23 wire, and that is much qs a local battery wants to do. Answer: We re armature with an electro-magnet a o No. 30 wire and of
afty Ohms resistance, and only use a batery formed wo copper pennies and two zines of same size, in dllut sulphuric actd; the same battery will produce no no Wire of less than one Ohm resistance, but, con versely,
using five Daniell's cells. The second magnet will hold its armature with about three times the force of th first, both armatures betng of the same size and under
the same recoll tension. N. B. D.'s magnet, if properly made, is sultable for obtaining the most attractive force from a very slight current of electricity; but if he wish
es to obtain the greatest magnetic effect from an ordina so to obtain the greatest magnetic effect from an ordin ou say, coarser wire and less of it. Telegraph instrument makers try to follow this rule : Have the resistance the battery and the wires connected with it. N. B. D. id not mention the particular use for which his mag
et was intended, and forthis reason wedidnot that the fineness of the
B. F. W. asks: What should I use to deadcleaned by scouring against the sides of an upright fron cylinder? We place $\mathbf{8}$ wood hoop around it, having a
space of foom 3 to 5 Inches between the two; with what can we flil the space, cheaply, to produce the desired re-
sult? Answer: The sound would be deadened in the most perfect manner by exhausting the air from the
A. S. R. asks: 1. If an article weighs one
pound at the pole, ought it not to weigh very much less at the equator, from the greater centrifugal forceat the
equator caused by the dally revolution of the carth? equator caused by the dally revolution of the carth?
If centrifugal force, caused by the revolution of the earth bas any influence on a body on the surface of the
earth, and if there is not a corresponding difference in the welght of the body at the equator and at the poles,
would not the fact conflict with the general idea of the laws of gravitation? Answers: . The force of gravity at different points of the carth's surface is diminished
by the centrifugal force in the ratio of the square of the cosine of the latitude. Hence, a body is lighter at the equator than the poles, and a body which. weighs one
pound at the pole will weigh about -995 of a pound at
the equator. In gencral, it may be stated that the welghts of a bolly at the equator and at the pole are in the ratio of 194 to 195, or that
will be 195 pounds at the pole.
D. D. A. asks: 1. Which is the most likely
to roll over or upset, a long boat or ship or a short one supposing the width and depth of hold in both instances
to be the same? 2. Which is the staunchest, or rather. Which has the greatest strain on it, a long boat or ship
or a short onc, if in both instances they have a proportionate width and depth of hold? Answers: 1. Other things betng equal, a long vessel has greater stability
than a short one ; or in other words, the long vessel has a stronger tendency to right itself quickly on being
heeled than the short one. 2. We do not underatand ex actly what our correspondent means by this question
A long vessel fis ordinarily more strained than a short one, and requires to be made stronger
J. C. asks: Has stone been used in a steam
voller for f float? Answer: The device mentioned has boen frequently used in a boller, a counterpolse being
bein
placed outside. placed outstde.
F. A. M. asks: What is the cause and pre-
entive of the foaming of the water in my boller? It occurs only when the engine is in motion. The boller is
a 10 horse power upright: the feed water is very pure well water. When the engine is at rest, I can tell just
where the water is, but wlien I start it, if the water is the lower gage, it will often come out at the upper, and
if it is a: the second gage and near the third gage, it will If it is a: the second gage and near the thrd gage, it will
overflow into the engine for 15 minutes after it is started. I run with about 50 lbs. of steam. No matter how
oon wetry the gages, after the steam is shut off fron the engine the water is at rest ; but the instant the throtthe valve is opened, the upper gage will show water,
when before only the lower gage showed it. Answer: If you can increase the pressure and keep the throttle valve but partially open, you may remedy the trouble. If, however, the water only " lifts" in the boiler, with-
out being carried over into thr cylinder it doesmo provided that you are careful to have cnough water in
the boller so that, on stoping the engine, the fues will he boller so that, on stopping the engine, the
not be uncovered when the water level falls.
E. G. S. asks: How can I best conduct sound through 1,500 feet distance? Ihave been told that
gas ripe is good; if so, what klad and what sized plpe is
best? Answer: The ordinary speaking tube, with cst? Answer: The ordinary speaking tube, with
mouth pleces and whistles, will p:obably answer your
G. F. S. asks: 1. What are the best sized
ports for a 4 inches bore steam cylinder?
2. What size in the bearings ought a solld cast tron crank shaft to be the bearings being 6 inches apart? 3. Does it cool the
water much faster in a boiller to pump in at the top of dre box than at the bottom of boller? Answers: 1 and 2. Sufflcient data are not given. The length of stroke,
length of posts, steam pressure and number of revolu. tions would be required to auswer the question. 3. Under ordinary circumst
bollerat a low point.
A. S. asks: 1. What is the cause of our not get out? They will stand the pressure of the steam. We had a two inch pipe split last Saturday, and there
have been many of them split througn the winter. I do not think that it is the frost. 2 . What is the best and
cheapest way of heating water to feed our boller? We have thought of putting a roll of two inch pipes ints the chimney and pumping through them, and we set the so hot that it would not work. 3. We have been buruing sawdust in our bollers, and there is a hard crust inside
the cubes: It is difficult to get it off. Is it the wet saw. dust that causes it; and if so, what is the best means of split by the concussion of the water. When steam Is ad intted into a cold pipe it condenses, and the rush of steam forces the water with great violence against the
pipe. Put drain plpes at the lowest polnts. 2. It is better to force the water through the heater than to draw from the heater. If the exianst steam from the will probably give satisfaction, the plan you propose conveniently be removed by a scraper, it may be loosened by a jet of stean. This
J. H. D. asks: 1. If I send you sample of
ooller scale, could you tell me what the impurities of the water are; or could you tell better from a sample of the
water? The water will eat holes in an tach iron has Water? The water will eat holes in an inch iron gis
plpe used for running it in about one year. 2 . Is it pos. stble to make a siphon work over about 33 feet, or any further than acommon pump will lift water? Answers: Probably the impurities of the water could be deter-
mined by simple inspection of the scale and some reme.
F. L. S. asks: 1. What is the difference beWhat quantity should 1 put in a boiler of 2 horse power?
Ourboiler is thick with scale and we have to siop and pickit off once in six months. The scale has a dark slaty appearince. Answers: 1. Washing soda is a hy-
drate of soda, or a compound of the oxide of sodium and water. Tannate of soda is a compound of soda and tannic acid. 2. The a mount of the compound required in a boller depends largely on the nature of the water used, and the amount of scale already ceposited. Try ${ }^{25}$
pounds in your boller; and at the explration of a week, clean out the loose scale. In a few weekks, you will be
able to determine, by the condition of the boller, whethr to ue more bie
T. F. D. asks: 1. Will water rise higher then forced by the pressure of the water through a pipe rom the bottom, the end of sald pipe belng higher tha
the main level? 2 . Wnich is the proper way to use a reamer on cast iron for general purposes, dry or with oll? 3. Where are the cerminit of the first Atlantic eable
to this continent? 4. Are visitors ailowed to go toto to this continent? 4. Are visitors ailowed to go into
ihe printing offlces of any of the daill or weekly papers?

Will they be allowed to go through the Scientific
Amprican printing offlce? Answers: 1. No. 2. Dry . The American terminus is at Trintty Bay, Newfoundland, and that on the other side is at Valentia Bay, in
Ireland. 4. Printing und publishing rooms are private establishmen s: but in general, visitors are allowed, b b ourtesy, to inspect them.
C. N. I. says, in reply to B., who said that
sulphuric ether would not dissolve rubber: Use chloroorm ; you will find that it will dissolve readily.
Minerals.-Specimens have been received from the following correspondents, and examned with the results stated
C. A.-It is fint.

COMMUNICATIONS RECEIVED.
The Editor of the Scientific American acknowledges, with much pleasure, the re ceipt of original papers and contributions upon the following subjects:

On t
J. M.
On the Million Dollar Telescone. By R. H nd by V
On the Stages of Invention. By S. H. H On a Coal Dust Burning Furnace. By On Soap. By F. E. W.
On a Fly Destroyer. By J. C. C. On Deep Sea Soundings. By L. de W. and by H. N. C.
On Storm Signals. By A. W On
J.
On Meteors and Meteorites. By D.
On Trisection of the Angle. By P. H.
also enquiries from the following
W. S. G-W. F.-G.S. C.-J. F.-J. H. M.-W. D.-
J. B. H.-H. A. W.-J.H.D.-P. Q. L. R.-S. W. E.

Correspondents who writetoask the address of certain manufacturers, or where specified articles are to be had partners, shoula send with their communtcations an amountsufllcient to cover the cost of publication unde
the head of " Business and Personal," devoted to such enquiries.

[OFFICIAL.]

Index of Inventions

 FOR WHichLetters Patent of the United State were granted for the week ending May 20, 1873,
and each bearing that date. [Those marked (r) are relssued patents.]

angling fy, J. Mullals.

Augers, forming the lips of, J. Swan Axle box cover, Moyel \& Howell Basket form, A. F. Scow.
Bell, door, A. A. Stewart
Bell rlnging, J. Harrison..... Bilnd Bats, entering. J. Church
Bolleralarm, milk, S. Mangold. Boller feed, etc.., F. A. Fischer..
Boller flue intmble, J. C. Farmer Boller water alarm, etc., R. Safely Boot tip, detachable, M. R. Haw Boots, etc., sample holder for, J. Closs Boot, attacining heels, etc., Ellis \& Glidden, (r) Box 1 lifter, B. H. smith.
Box or can for palnt ${ }^{\text {et }}$, Box, packing, D. L. Bartlett Branding apparatus, J. W. Jodge, Building blocks, forming, A. Derrom. Bureau and froning table, w. W. Adam Bustle, H. H. May, (r).
Can, C. A. Murdock.
Cane, M. Osborn
Car coupling, B. D. Moody
Car coupling, E. Wi:cy.............
Car starter, G. Felter....
Cars, brake for coal, D. Wetsel.
Car p'pe coupling, M. Henszey, J.
Carpet beater, w. H. Hankins
Carriage top, G. H. Young
Carriage running
Caster, J. Toler.
Casting scaboard ornaments, v. Price
Centrifugal machine, E. J. M. Becker
Chair fan, rocking, o. Bruec
Chair, tilting, M. v. B. Howe, (r
Chandelier, J. Kintz
Chimney cowl, J. H. Richardson.
Churn motor, J. B. Sweetland..
Cigar trimmer, A. Het tinger.
Cloct striking works, Leeds \& Thorpe.
Clothes line pulley, G.H. Ryer...........
Clothes pressing machine. H. E. Smith.
Clothes pressing machine. H. E.
Clothes wringer, H. E. Smith
Clutch, friction, E. Allen
Conying press, letter, G. C. Taft, (r)
Cotton worm destroyer, J. Helm
Coupling, union, w. B. Snow
Cuitivator. E. M. Graham
Cultivator, R. Rust
arntior, rotary, R. McEinle
Darning machine, B. Arnold.
Darning machine, B. Arnold.
Dental drill, J. W. Baxter

Dental fillings, block for, C. H. Mac
Jigger, post hole, A. E. Lindsley. Joll joint, J. A. H. Ellis. Oor check, G. E. Rittenho
OrIII, seed, E. G. Mathews ग illing stock, G. Bunch. Jrop IIght, center slide, C. Deava....
Deing madder colors, F. A. Catty jyeng madder colors, F. A. Catty..
Edging machine, Gronberg \& Ferry. gge, etc., prese Bald win Engine, compound steam; C. E. Emery
Engine governor ste Engine governor, stenm, E. Ware
Engine variable cut oft; Engine varable cut on, W. Wrig Eycleting machine, A. Dawes... Feather renovator, S. G: Thanhauser.
Filter for water coolers.C. Schnclder Filter for water coolers. C. Schnclder
Flice arm, breech loading, T. Restell. Fruit Jar, T. B. Carroll
Frutt jar, sealing. R.S.
Fruit plcker, H. Mewes...............
Gage, speed, J. W. O8borne..........
Gas purifler and regulator, J. A. Fnos
Gace, farm, Westbrook \& Cle
Glass coffn, J. N. it T. Wallis
Governor, R. W. Gardner
Gre.in binder, S. D. Locke
Grain, elevating, etc., H. I., P. F., \& E. D. Chase
Grain, ventilating, B. Dunwiddle...
Grater, vegetable, McNetr \& Stockt Halr curling, E. F. Craln
Harrow, T. M. K.ng....
Harvester, J. S. Davis
Harvester,
Garvester, H. J. Silvernale...........
Hat blocking machine, E. C. Fales
Hatchway protector
Hatch way protector. J. W. Meaker
Hatchways, closing, J. S. Bald win..
Hedge hook, E. S. Turner..................
Geelling machine, Glldden \& Fairfield. Horses, detaching, H. Latshe w
Iorses, treating, D. Sullivan Horses, couphing, Wilison \& Kendal
Tock, Hifting. W. A. Brunker....... Jack, lifting, W. A. Brunk
Jelly glass, D. C. Ripley....
nnife cleaner. T. \& L. Gingras
Knitting machine, W. \& W.C.
Ladders, elevating. A. MIller.
Ladder, step. Oakley \& Post.............
Ladder, step, Harden brook \& Belford.
amp, J. E. Ambrose (\mathbf{r})
Lanp ho, T. Sntti....
Lantern, T. C. Saville

Lithographic press, C. C. Maurice..
Lock for sllding doors, A. W. Cram
toom stop mechanism, C. Barnes
Mall bag, T. J. Hardaway.
Mantcl, false, J. T. Fleehea
Mattress, H. E. Smith
Mattress, E. Parker
Medical compound. J. Conzelinan
Medical compound, T. B. Owens
Mills, grater for cider, w. Barr.
Mill feeder ore. C. P. Stariford
Music leaf turner, J.H. Gerry
Nut and cotite roaster, D. T. Gale.
oil tank, self-measuring, S. Schat
Oll wells, cleaning, J. J. Looney.
Pad, etc., metallic sweat, J. M. C. Bennett
Paper bag macbine, H. G. Armstrong.
Paper clip, T. Orton...........
Paper clip, T. Orton......................
Paper collar die, Harrington \& Rollins
Paper cutter, rotary, H. S. Miller...
Paper feeding machine, J. T. Ashle
Paper feeding machine, J. T. Ashles
Paper washer, E.S. Hanna (r)
Pavements, composition for, G. L. Eagan.
Photographic camera, E. P. Spahn.
Pholographic camera, E. P. Spahn...............
Photograph burnishnng press, Entrekin \& Bramb
Plano lid prop stict,
Plano lid prop stick, M. Doherty
Pipe stems, bending, J.
Pipe tongs, F. H. Merrill.
Planter, corn, A. II. Stark
Planter, corn and cotton, Savage \& Doty.
low, I. Gibbs (r)...
Plow, G. B. Vaughan
Plow, whee, , B. Green.
Plow,: heel, C. B. Stevens
Pocket openings, fastenng, J. W. W. Davis.
Pollshing device, J. C. Morris
Printing ink attachment, E. A. Howitt.
Printing press, G. A Hunt.
Propellers, operating screw, J. Wilcoxen
Pruning shears, J. S. Crum.
Pump, compound stcam, A. J. L. L......etz
Pump, compound steam, A. J. L. Loret
pump, compound steam, A. J. L. Liford
Pump, steam, W. Aldrich.
Pange, cooking. J. L• Pfra, J
Zailroad switch slgnal, J. Culle
Rallroad tie, W. H. steriing.
Rallroad water column, J. N. Poage.
Rallway links, forming, F. H. Healey
Razor strop, J. B.Luca
Reamer, ndjustable, A. Shedlock
Lefrigerator, w. H. Lewis....................
Refrigerator and sidetoard, G. L. Packard
Refrigerator and side. F. Schneider
? 2 lling metal, George \& Durfee.
Roofing slates, attaching, S. Farau
jafe, milk, J. P. Dale..............
jaw blanks, case for, C. . Walke
jaw flling machine, C. F. Henis
jaw sharpentug machine, F.E. Frey
Scraper, road, L. P. Wrigh
Screw and clamp jack, Jack
Screw and clamp jack
screw driver, C. Law
Seat, folding, w. W. Park
seed dropper, E. L. Gross
Jewing machiue, E. W. Bccbe
Sewing machine, J. A. Davis
Sewing machine,L. W. Lathrop
Sewing machine hemmer, E. Howell (r)..
jewing machine ruffler, etc., A. Johnston.
Sewing machine ruffer, etc., F. Stever
Shaft, vehtcle, Connor \& Pfisterer...................
Shatting, manufacture of, Knet 31 o \& Wensthoff.
Shingle machine, S. M. King.
Shoe fastening, M. Boch..
Spark arrester, E. Fontaine.
Spark arrester, J.W. Gray...

adertiscments.

rates of advertising.
Back Page
Inside Page
$\$ 1.00$ a line.
Inside Page - $\quad 75$ cents a lin
Engravings may head advertisements at the
line, by measurement. as the Letter-press.
The value of the Scientific Amprican as an advertising mimes greater than thrit of ony s'milar journal now pub l shed. It goes into all the States and Territories, and is read in all the pr incipul l. braries and reading-rooms of the ecorld. We invite the attention of those who wish to
make their business known to the annexed rates ness man wants something more than to see his adverIfsement in a printed nevos paper. He wants circulation.
it worth 25 cents. per line to advertise in a paper of Lf it is worth 25 cents per line to advertise in a paper of
three thousand circulation, it is worth $\$ 8.75$ per line to

Write for a Price List to J. H. JOHNSTON.

SCIENCERECORD

1873

 MUÑN \& CO., Publiehers, $3 y$ Park Row, New York City. TEE SCIENTIFIC AM $\overline{E R I C A N ~ W I l l ~ b e ~ s e n t ~ o n e ~ y e a r ~}$
and one copy of SCIENCE IFCORD FOR 1873, on

BAIRD'S

 Books
Chemists,

 WOHLER'S FAMOUS Chemical Analysis. Hand Book of Mineral Analysis. BY FREDERICK WOHLER.

 trated. Oneor postrace.
Few more useful or valuable books on Chemical Analysis, for laboratory practice or industrial use, have ever
been stsued from the American press. The work of one
of the most fame od thed for th
Mineralogy Simplified: A short method of

Cinderground Treasures: How and Where t
 Assayer's Guide: or, Prartical Directions to

 HENRY CAREY BAIRD, INDUSTRIAL PUBLISHER,
406 WALNUT STREET, Philadelphi

$\overline{\mathbf{W}}$

 ED IN ENGLAND-A First-class

$\$ 72.00$ EACH WEEK

NOTICE

 the claim of the invenolor:

SCAE IN STEAM BOLLERS

OOODBURY'S PATENT
Planing and Matching

R MHARDSON, MERIAM\& CO.

Little Giant.

To Quarriers of Marble, Slate and Limestone:

To Electro-Pluters.
B

S ILICATE OF SODA,

Nikel.Antmon, Tha, Rismatit Caimum, meaial

Publishers of 1 Tr Lquors and Nickel.

MACHINERY For Sale.
 Reduced Prices,

MILLING, STOCEING, NUT BORING, QUICK
BUNING, SMOOTH BORING MACHNES, PUNCH RUNNING, SMOOTH BORING MACHINES, PUNCH
PRESS, FOUR SPINDLE DRILLING PRESSES, PRESS, FOUR SPINDLE DRILLING PRES
EIGHT FOOT WOOD PLANER, \&c. \&c.
Send for Catalogue to
COMPAN

Gumticau.

MANUFACTURERSS, WoRERESAN

Andrew's Patents.

ROPER HOT ARR ${ }^{129}$
 GEAR'S PATENT VARIETY MOULDING MACHINE

 \mathbf{I} Everovered Foot Lathes. SELLING

T HE B BS S
 OR Orders from Hart trade solicited: WAYNESBORO' STEAM ENGINE and

BOILER WORKS.
 Wood-working Machinery.

 Gingle and barrel machinery-

 $\$ 25$ $+5=$ 2F? = = =

QAAENTL SHAEDING.

I ATHE CHUCKS-HORTON'S PATENT
 Improving the Harbor of San Francisco. S. ENGINRRR Orfrce, 533, Kearney St. ;

C HAMPION SPRING MATTRESS-The

Machinist's Tools, LUCIUS W. POND, MAD NTMPROCED,

[^0]A. S. CAMERON \& CO.,

 Steam Pumps,

 THE AMERICAN

NEAEIE \& \& LEVEY,
PENN WORKS,

$\mathbf{K}_{\text {Asthma. STOWELL } \& \text { Co. Charlestown. Mass }}^{\text {IDDER }}$
AVETENGAPORTNER,
ROCHESTER, ENGLAND. ROAD LOCOMOTIVES
STE M PLOWS (Din ROAD ROLLERS,
LOCOMOTIVE CRANE ENGINES,
TRAMWAY ENGINES
portable engines.
Agent- 43 $_{\text {Exchane }}^{\mathbf{W}}$ Place, New York

Boiler Tubes.
WROUGHT-IRON TUBES
and FITTINGS, FOR GAS, STEAM WATER, AND OIL.
IGF
Steam and Gas Fitters' Supplies, Machinery for
Coal Gas Works, \&c. $\&$.
NO. 15 GOLD ST.. NEW YORK.

Dispense with Blowers and Save your Fuel. L. B. Tupper's Furnace Grate Bar.

BOILERS AND PIPES COVERED ASBESTOS FEITINGCOMPANY,

 BLAKE'S STONE AND ORE BREAKER

 137 Elm Stree

ASBESTOS Wanted in Crude State-any quan.
 MAHOGANY,

ROSEWOOD, WALNUT, WHITE HOLLY
SATIN WOOD, HUNGARIAN ABH, AND SATIN WOOD, HUNGARIAN ASH, AND
IN

N OYE'S MILL FURNISHING WORK

Underground Treasures. HOW AND WHERE TO FIND THEM.
NEW YORK.

 Telling them plainly how to seek for Mineral Trecrour

 R ANSOM SYPHON CONDENSER perfects

"The Harision Boiler"

 thr use of steam. Horse Power have been made and put
fitt Thousand Hor

WORKS,
Gray Fery
Philadead
Hia, NEW YORK SAFETY STEAM POWER CO, 30 CORTLANDT-ST., NEW YORK
SUPERIOR

SUPPR-TREATPRR

Pyrometers. $\begin{gathered}\text { For teathngorena, Bolier } \\ \text { nues, } \\ \text { Blast } \\ \text { turracese }\end{gathered}$

BU.ILDERS $\begin{gathered}\text { SEND FOR BOOK CATALOGUR. } \\ \text { BICKNELL, } 27 \text { Warren Bt.,N.Y }\end{gathered}$

TRON PLANERS, ENGINE LATHES

PORTLAND CEMENT,

LEFFEL'S IMPROVED DOUBLE TURBINE

JAMES LEFFEL \& CO.,
B est and best in use. For Cllustrated Catalogueap

Sounducacam

one copy, one year TERMS.
One copy, silx menths
83.00
1.50

One copy of Sclentific American for one year, and 1.00
one copy of engraving, "Men of Progress", ${ }^{10,010}$ One copy of Sclentifc Amertcan for one year, and
one copy of "Sclence Record", for 1873 one copy of "Sclence Record," for 1878
Remitt by postal order, draft or express.
The postage on the Sclentific American is five cents per quarter, payable at the office where recelved. Canad. 3 nobscribers must remit, with subscription, 25 cents extns
to pay postage. to pay postage.
Address all le

以N2N \& CO.

THE "Scientific American" is printed with

[^0]: COMPAN 98 Lber Emert Wheel Machinery

 Working Models

 n. A. Vervalen's Brick Machiness, Made at Haveratraw, Rockland Co, N. Y. Makng nine
 tentho of all hebrick uecilin the Staite. Send forcircular

