

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.
 ble of making square, $h \in$ xagon, T, button, countersunk, and, in fact, any variety of bolt head; also boiler rivets, splice bar bolts, carriage bolts and spikes, etc., of any dimensions, from half inch to 20 feet long, or from three sixteenths to one and a quarter inches in diameter. Further, it is quarter inches in diameter. Further, it is
stated that the invention, for any length stated that the invention, for any length
of bolts of the same diameter, accomof bolts of the same diameter, accom-
plishes its work without change of tools; plishes its work without change of tools; that it can produce a hexagonal or square
headed bolt with the same tools, or every headed bolt with the same tools, or every
alternate bolt may be square or hexagonal as desired, without regard to length, or headed in assorted lengths without the slightest alteration of irnplements.
In our illustration, A is the driving shaft, running upon bell metal bearings and supporting the two heavy fly wheels, as shown. B is a cam upon said shaft, as shown. B is a cam upon said shaft, which takes against the block, C, which actuates the heading ram, D , containing
the heading punch or tool, E . Another cam on the shaft, A, which is not represented, lifts the side lever, F, by which the grip lever, G, is moved through the medium of the toggle pin, H. The grip lever or movable die bed, G, vibrates on two steel center pins, one of which is shown at I. J and K are the dies for gripping the blank, and in which the bolts are formed or squared. L L L are clamps which hold said dies and the heading tool. M is an inclined plane or wedge-shaped M is an inclined plane or wedge-shaped rubbing block, by which the strain or shock of the heading is thrown on the bed of the machine. N is a steel band for taking up any wear or slack of the last mentioned portions. At O is the shear lever operated by the eccentric, P, and
provided with a gage at Q. R is a clamp provided with a gage at Q. R is a clamp for taking up the wear of centers, and the hook, S , serves to connect the grip and side levers, and thus insures the opening of the dies.
The machine is driven by a six inch belt and at about 100 heated. For further particulars address the manufacturers, revolutions per minute. The heated blank, on being drawn Messrs. Lewis, Oliver \& Phillips, Nos. 91 and 92 Water street, from the furnace, is placed between the dies. The movable die, Pittsburgh, Pa. J, actuated bythe lever, G, then closes and firmly holds the blank until the head is formed by the heading ram, which is immediately set in motion. This operation completed, the same cam that brought the heading block forward strikes a tappet and carries it back. The dies open, the bolt is released and falls into a receptacle placed below; for countersunk, round but ton heads or rivets, the work is now done. Fo square or hexagonal heads, the blank is turned, one fourth for the former and one sixth for the latter, for a few turns, when a perfect head is forged, no flash or burr remaining to be dressed off. Very short bolts are headed on the rod and cut off to length by the shears.
Among the advantages claimed for this ma chine are the length of time which it can be run without repairs, and the provisions made in its construction to prevent breakage in event of an undue strain. It will be noticed that the toggle, undue strain. It will be noticed that the toggle,
H , bears the whole force of the grip, and should H , bears the whole force of the grip, and should
the operator, by accident or carelessness, get a the operator, by accident or carelessness, get a
blank foul in the dies, the toggle will bend and yield before a casting will break. It can be straightened and replaced, however, in a few moments, as it is but a piece of rough seven eighths round iron, with the endsslightly rounded, and of about four inches in length.
The castings are well fitted up with gun metal and steel, and the metal parts subjected to friction are chilled. The dies are of steel and are so constructed and held in position that they can be dressed down a great number of times. There are no cogs or springs, by the absence of There are no cogs or springs, by the absence of
which it is claimed that increased efficiency in which it is claimed that increased effiency in many particulars is secured. No special imple
ments are needed for the fabrication of the tools. ments are needed for the fabrication of the tools.
As regards the amount and quality of work the apparatus is capable of performing, we are in formed that, in ten hours, it makes 1,800 square eaded bolts of one inch, or from 5,000 to 6,000 of

WALBRIDGE'S IMPROVED PLANER.

en air.
 THE LEWIS PATENT BOLT HEADING MACHINE.

Pneumatic Foundations.
General W. S. Smith, of Maywood, Ill., recently read beSociety of Civil Engineers, in this city, a paper on the subject of "Pneumatic Foundations," in which the following condations, the greatest difficulties to be overcome are, first, in kee ing the pile vertical; for this it should be made to follow cal; for this it should be made to follow the excavatien, without a reduction of air
pressure; and, secondly, in righting the pressure; and, secondly, in righting the
pile when inclined; for this, wedging unpile when inclined; for this, wedging un-
der the bottom, or propping the top on the der the bottom, or propping the top on the
lowermost side, and drilling through the lowermost side, and drilling through the uppermost side, are the best means yet
tried. The "airlift" is the cheapest and most efficient method of removing sand or mud from within a pneumatic pile or caisson.
A strong and reliable pier can always be built of pneumatic piles; their number, diameter, and the thickness of metal, being determined by the conditions of the case. In cold climates, these piles may be fractured by frost, to prevent which a filling below the frost line, from two to five feet deep, of asphaltic concrete is recommended. Where suitable timber and stone are to be obtained at reasonable prices, a single pneumatic caisson can be sunk with greater certainty and at less cost than a pier of three or more pneumatic piles, where it has to be sunk for a considerable depth through a soft material to a hard one. A pier of masonry on such a wooden caisson, cellular, with its walls well drift bolted and its interior carefully filled with concrete or rubble, is the cheapest and best bridge foundation yet cheapest
devised.
Concrete does not " set" well under air pressure; the water should be let in through a pipe inserted therefor in the cement, to cover the successive layers as putdown; usually, cementfive feetin depth f will seal the pile, the remainder being add-

IMPROVED PLANER.

It is a fact well known to machinists and tool makers that, in order to insure correct work upon a planer, accurate ways are necessary. It is a common trouble, however, wiih machines having ways on top of the bed, that such portions, after oiling, become receptacles for dust, chips, and other substances swept from the table, which, as the latter passes to and fro, cause constant grinding and wear.
Our illustration represents a machine in which this difficulty is claimed to be obviated by the use of an arrangement of underneath ways, shown at A, which, while they are, by their construction, protected from dust and chips, allow of the table being made deeper, consequently stiffer, and therefore less liable to bend or lop when it runs off the bed. The device also admits of gibbing to prevent the gear raising the table or in planing undergear raising the table or in planing under-
neath a flange. Another improved feature is the mode of constructing the uprights, which, the mode of constructing the uprights, which, instead of being flat bolted pieces, which of-
ten allow the tool and crosshead to dodge sideways when the latter is up to the top, are hollow pillars, and therefore much more rigid, They are supported by the braces, B, from bed to cap, the screws and shafts for raising and lowering passing through the centers.
For further information address the inventor, Mr. A. S. Walbridge, Mystic, Province of Quebec, Canada.

Vermilion.

To the uninitiated, the manufacture of color by chemical processes is one of thoseastounding mysteries which are most entrancing to ing mysteries which are most entrancing to witness. Take vermilion, for instance. By sub-
jecting a mixture of quicksilver and sulphur, jecting a mixture of quicksilver and sulphur, placed in strong retorts, to heat, a combination is formed, which producesa sulphuret of mercury or bright vermilion, in a powder, the shades varying in depth according to the heat.

ฐirutifit gluxiran.

MUNN \& CO., Editors and Proprietors. pubusibi weekiv $a t$

NO. 37 PARK ROW, NEW YORK

o. D. Munn.
A.E. BEACH

TMRME.
 One copy, one year One copy, six monthe

 | 8300 |
| :--- |
| 150 |
| 94 |
| 150 |

voL. XXVIII., No. 20. [New Series.] Twenty eighth Year.
NEW YORK, SATURDAY, MAY 17, 1973.

Contents.		
(Hlustrated articles are marked with an asterisk.)		
Bisulphite of carbon, uses of..		
	1i Preamatit	
Caveats, neew rue en respect to.		
EMer the wonaers of	Sclene Reord-New edillon.:3:	
-eleetrric macioline, tie		

Is the éntif the only inhabited world

The idea that in other worids life may exist in conditions widely different from those prevailing on this world in which we live, however plausible at first, becomes highly improba ble when tested by the light shed on this subject by the accumulated knowledge of modern research in the fields of astrononly, geology, spectroscopy, and chemistry, especially that branch of the latter science pertaining to organic compounds. Thus it has been suggested that-granted even that when the temperature of the moon, and other satellites of planets has been cooled to such a degree as to freeze all water-living creatures may exist there, having a liquid in their arteries and veins as uncongelable as mercury, glycerin, alcohol, etc. ; or, inversely-granted that the planet Jupiter is red hot, and the sun much hotter-living beings may exist, consisting of fireproof materials, and of such an organization a to fecl happy and comfortable in an atmosphere of super heated steam, as in Jupiter, or even while swimming on surface of melted lava, surrounded by an atmosphere white hot iron vapor, as would be the case in the sun.
Astronomy, now so powerfully aided by the modern tools of the scientist, having proved that the terrestrial elements exist throughout the whole universe, only differently dis tributed, and chemistry having studied the behavior of these elements under extremes of temperature, we know now that the possibilities of the existence of organic life are compara tively within very narrow limits and confined to a range of not much beyond 100° among the 6000° or 8000° to which our investigations have extended. We have learned that the wonderful properties of that common but most marvelous substance, carbon, aided by liquid water, at a temperature below 110°, are the absolute and essontial conditions which make the development and continuation of ife a possibility. Without these, no life can exist.
It may be objected that in other worlds there may be another substance, as effective in its function as carbon in our regions, and that therefore we cannot make any conclusion as to the necessity of carion for the existence of life. In order to meet this argument, let us consider the properties of carbon, which, by modern scientists, has rightly been called he great organizer.
A substance, in order to take the place of carbon in the economy of organized existence, must be able to combine in different proportions with itself, to form a complex molecule, in order to enter again into complex combinations. It must exist as a solid, but also easily pass into the atmospheric condition by combination with another substance, equivalent to oxygen, so that all vegetation may be surrounded by an atmosphere containing carbon in such a state that the plant may obtain it, and compleie, wish this substance as a solid basis, its organic tissues. We may go on and sum up other conditions which this supposed substitute of carbon would have to fulfill, in order to take its place; but then we should in the end be driven to the conclusion that a substance which possesses all the properties of carbon would be carbon itself. But now comes the spectroscope and teaches us that even the comets consist chiefly of carbon dust, and that their purpose may be to supply the planetary atmospheres from time to time with some of this necessary element, when sweeping lose along them, as is often the case.
As the latest investigations prove the identity of the elementary matter in our whole planetary system (and this even extends to a great number of the fixed stars), we can come to no other conclusion than to accept a unity of chemical op erations, of crystalization, cell building, organicgrowth, and organic life in general, of course greatly modified in accord ance with the conditions of gravitation, atmospheric pressure distribution of elernentary matter on surface, and especially of temperature. If now we look carefully on all the cond
tions required to make life possibls on the surface of a planet, we see that these conditions are very complex, that not only the elementary matter, possessing the different required qualities must be present, but also in the exact relative quantities, in order not to annul the results of this distribution. Let us, for an example, only consider the amount of hydrogen present on our earth's surface. We know that nearly all of this element is combined with oxygen, forming the extensive oceans, rivers, lakes, clouds and moisture in general; in fact, the only source from which we can obtain this elementis by decomposing water. This compound is indeed burnt up hydrogen, and this burning up, of course, took place at an early geological period of our earth's history. Therefore ail the hydrogen has thus been burned up, consuming an equivalent amount of oxygen; and the latter now forms eightyeight per cent of all the terrestrial water. But suppose that there had been some more hydrogen, just enough to combine with the small portion of oxygen (21 per cent) contained in the atmosphere; the result of the combustion would then have lieen some more water in the ocean, raising its surface only a few feet, while no oxygen would have been left in the atmosphere. In this case, life would have been simply impossible, and the earth would now be desolate. It would be easy to adduce other instances proving how complex the conditions of life are. and how improbable it is that all these conditions are fulfilled everywhere at once.
We conclude, then, that our earth is a highly distinguished planet, at present favored above hundreds and perhaps above thousands with conditions which have not alcne rendered the existence of vegetable and animal life possible, but developed it to the highest stage of organic existence: namely, civilized and enlightened human races, able toinvestigate and discuss the highest problems in the universe, which are the laws of its creation, progress and ultimate purposes.

a new rdle in respect to caveats.

Among the recent decisions of Commissioner Leggett is one restricting the descriptive matter contained in caveats. For instance, in machinery for making lightning rods of a peculiar pattern, the inventor describes the peculiarity of the rod, and the new machinery for its manufacture. Whereupon the Commissioner of Patents decides that the machine and the product of the machine shall be classed as separate inventions, and that, before the papers submitted for caveat can be filed, the party must elect which invention he wishes protected by the caveat, and the description of the other nvention must be struck out.
It has been a common practice of the Patent Office to require a model of the machine used in the manufacture of the article on which a patent is sought, and it is not unusual for the office to grant under a single application a patent which covers both the machine and the article. The following are a few examples of patents thus granted, and many others might be cited.
J. S. and T. B. Atterbury, September 15, 1868: glassware Process, mold and article. J. Treat, April 7, 1868: volute spring. Method and article. J. Hobart, August 4, 1868 volute spring. Method and article. G. Hopson, January 7 1873: spring heads. Method and article. Theo. E. Harris, November 14, 1871 : shingle straps. Machine and article. S. N. Smith, September 13, 1870 : shoe stays. Machine and article. W. Acheson and W. H. Ridley, May 28, 1872 : manufacture of hoes. Machine and article. Thomas C. Croven, May 21, 1872 : gin teeth. Method and article. J. C. Richardson, June 15, 1869 : fork blanks. Method and article. C. T. Beebe, December 19, 1871 : barn forks. Meth od and article. Jacob Reese, July 10, 1869 : bands for shingle machines. Machine and article. Wm. A. Lewis, October 10, 1871: wagon axles. Dies and article Wm. H. Knowles , 18 27 1871: Wari D. June 27, 1871: carriage clip. Dies and article. Wm. B Smith, August 9,1870 : shackle blanks. Dies and article.
Jas. P. Thorb, September 18, 1866: shaft shackles. Dies as. P. Thorp, September 18, 1866 : shaft shackles. Dies and article. H. M. Beecher, September 12, 1871: carriage
clip. Machine and article. T. Diebold, December 10, 1872 : jeweller's stock. Machine and article. E. Waters, July 9 1861: manufacture of paper boxes. Machine and article.
Now if both machine and article may be patented under one patent fee, they may legitimately be caveated under one caveat fee. The Commissioner's new decision is evidently erroneous, and from it, we trust, he will gracefully recede. The patent laws were not'formed for the purpose of exacting dnuble fees or drawing revenue from inventors, but to encourage them in making original discoveries by granting to them evary reasonable facility in securing, for a limited peiod, the fruits of their inventions. The present decision is contrary to the spirit of the laws. It imposes additional burdens, and needlessly multiplies official ceremonies in the simple business of filing a caveat.

OPENING OF THE VIENNA EXPOSITION.

The formal opening of the Vienna Exposition took place on the 1st of May. In spite of the overcast and threatening weather, at an early hour a vast crowd thronged the venues leading to the great edifice, and, when the twenty doors were thrown open, surged into the immense hall, fill ing every available space. The scene is described as one of wonderful impressiveness and grandeur; the motley costumes of the multitude, representative of almost every na tion, the brilliant decorations of the throne and the gigantic proportions of the building together forming a spectacle of mposing magnificence.
At noon the Emperor of Austria, with the Empress, the Crown Prince of Germany, the Prince of Wales and other royal guests, with the high officials of the empire, arrived and were received with a tremendous popular ovation. The

Arch-Duke Charles Louis, Patron of the Exposition, opened the proceedings by delivering an address, which was re sponded to by the Emperor, who, in a few words from the throne, welcomed the visiting nations and declared the Exposition open. Other speeches, by the President of the Imperial Council and the Burgomaster of Vienna, concluded the ceremonies, when the Imperial party made a tour of the building and departed
As is usually the case in great fairs, the preparations for the opening day were far from complete. The bare frescoed walls were covered with an oozing dampness and but very few of the exhibits had been finally arranged in their places. Many were siill covered with tleir cases and wrappings, and in nearly all the departments confusion and misplacement seemed to be the general rule. The American section was closed and is described by a correspondent as " looking battered and dingy, like an abandoned railway town on the plains." Even our flag was ominously hoisted with the union down. Judging from the mismanagement which has characterized the doings of the suspended commissionand the obstacles in shape of inexperience and the absence of records with which the body which has superseded it in its labors has had to contend, a not much better condition of affairs could have been anticipated. As matters now stand, the new officials, aided by the exhibitors, are doing all possible to organize and complete the United States arrangements. The displaced commissioners protest vehemently against the summary action of the government and assert their innocence of the charges. A recent cable dispatch exonerates all the members but two, but no definite details of the offences alleged, or the evidence sustaining the same, have as yet been received.
As regards the probability of the United States, through the various causes which have occurred to discourage exhibitors and produce other unfortunate results, falling below other nationalities in the variety and magnitude of its representation, we do not acquiesce in the desponding view taken by many of our contemporaries. Already some seven hundred exhibitors have entered goods; and even if more do not take advantage of the month's extension of time granted by the Director of the Exposition, enough to fill up our allotted space, the country will be fully represented by large numbers of the articles contributed by other nations. It is a well known fact that nearly all of the most important American inventions are manufactured extensively abroad, and the quantity and variety of these, which are sure to be displayed, even if made by foreign workmen, will be ample to demonstrate to the world the industrial genius and advanced progress of our people.

A NEW SPECIFIC FOR RHEUMATISM

Rheumatism, notwithstanding that it is one of thé most obstinate diseases, some forms of which baffle the skill of the most eminent physicians, is, from a medical point of view, highly interesting; the late Dr. Valentine Mott used even to say that "it is one of the beauties of rheumatism that it shows itself in such a great variety of forms." It is a fact well known among the medical profession that many rheumatic patients, in the impatience produced by their affiction, change from one physician to another; at length the disease has run its course, the patient gets well, and the last doctor whom they then happen to have, earns the credit of the cure.
Withoutintending to trespass on the domain of the physician, it may be well to give, for the benefit of all, some information concerning the nature and treatment of this ma. lady.
As it is a constitutional disease, proper diet and close attention to the general health are of more benefit than local applications, which may be useful in exceptional cases, but generally they give only temporary relief, and of ten drive the pain from one part of the body to another. In all cases of this disease, the blood is in an abnormal condition, and may be considered to be poisoned; persons who live high (which means, live on rich and highly nitrogenized food) are apt to have this disease in a peculiar form, which is com monly called gout, of which the chief seat is in the joints. A lower mode of diet is then advisable. Persons who live low and get this disease by exposure, combined with over fatigue,are apt to suffer from the so called chronic form chiefly seated in the muscles, and in these cases, the system may suffer from one of two opposite causes, an excess of either alkali or acid, which, when neutralized, ends the disease. Hence the curious and formerly unexplained fact that sometimes acid treatment, as with lemon juice, and at other times alkaline reatment, as with Rochel!e salt, etc., has produced a cure. There is one very severe form of rheumatism called acute or inflammatory, which is a most formidable disease, and which in olden times was treated by blood letting. This disease has the remarkable feature of suddenly leaving one part of the body to appear in another. If, by blood letting, the heart receives a sudden shock by the withdrawal of a quantity of blood, the malady is very apt to settle there and produce disease of the heart, which is a very common cause of death among persons who once have been treated for rheumatism by blood letting. The latter operation elieves the patient; but, considering the often fatai results, it is now abandoned by all enlightened physicians, and the treatment by colchicum wine and opiates is used instead Besides the derivatives of opium, morphine and codeine (see page 273 of our current volume), sal ammoniac has been ofte praised as an effective remedy when others failed; but per haps these derive their efficiency from their similarity to a ew substance, a derivative of opium and ammonia, whic has recently been found as effective a specific against rheu matism as quinine is against fever and ague. This substance
is propylamin. It is a volatile, watery liquid, with a strong odor of herring pickle, and was found by Lir. Winckler in distilling a watery extract of ergot with potassa, also in distilling cod liver oil with ammonia. But the most effective way of obtaining this substance is that of Wertheim, who prepared it by the decomposition of narcotine and codeine by alkalies. Its name is based on its chemical composition; it is a combination of the third member of the hydrocarbon series (methyl, ethyl, propyl, amyl, etc.) with a derivative of the ammonia (amidogen, mentioned on pages 20 and 144 of our current volume). There is, however, still some doubt about its true chennical composition, so that some chemists suppose it to be trimethylamin; in the mean time, its specific effect on most forms of rheumatism has been established. By taking five drops in a tablespoonful of peppermint water every two hours, the pains usually abate after twelve doses.

NATURE AND ART--THE MYSTERY OF THE

the Scient quoted from an English contemporary a descripe 406, w quoted from an English contemporary a description of the electric machine of Professor Wheatstone; and a reader who evidently preserves his copies of our paper, requests u
to explain the action of that class of machines more fully.
'i he developm:-nt of a current of electricisy by a machin without either a voltaic battery or preëxisting magnetism as its primary source is so remarksble that cur correspond ent is justified in viewing it with wonder and in considering the mystery to be equal to that of the Giffard injectcr, described on page 48, current volume, and we are justified in the endeavor to make its operation clear.
The generation of electrical currents by the relative mo ion of a conductor and a magnet was discovered many jears ago, the earliest known " magneto-electric machine" in 1832 by Pixie; and improvements wer made by Ritchie, Saxton, Clarke, Henry and others, all of whom used permanent magnets, in front of which they rota ted bobb:ns wound with conducting wire, covered with silk or other material to secure proper insulation of the several
portions of the wire from each other. Subsequently, Siemens devised an improved form of bobbin, on which th wire was wound longitudinally, instead of transverse 1y. This invention is a cylinder of soft iron having deep grooves cut on opposite sides, and the two grooves are insulated wire, forming the conductor, is wound upon the core in these grooves, and lies buried in the cylinder, con fined by three or more bends; a brass disk, at one end, carries the commutator, by means of which the currents, which reverse their direction at each half revolution of the bobbin, are so sorted out that the same external wire always conducts from the machine a current of the same kind while the machine continues in motion in one direc tion, the positive currents going through one conductor án the negative through the other.
This form of bobbin allows the use of a large number of small magnets, side by side. in place of one very large; and since small magnets are far more powerful in proportion to their magnitude than large ones, it follows that the Sie mens armature allows the machine to be made far more efficient
The next important step in the improvement of these machines was made by a British inventor, Mr. Wilde, who constructed machines of, until his time, unprecedented power Instead of using directly, the induced current of electricity which he obtained from the permanent magnets, he led it through the coils of. great electro-magnets, thus produc ing a new set of magnets, for induction, of immensely greater power. This current, obtained from the new "magnetic
battery," was, in one instance, used in a similar manner battery," was, in one instance, used in a similar manner
upon a still larger electro-magnet, and this process of intensifying the power of the machine could of course be carried to any extent. The current generated in the armature of the last set of electro-magnets was applied to the production of light or heat, or in electro-plating, as might be desired. From the largest of Mr. Wilde's machines, a powerfulelectric light and tremendous heating effects were obtained. This machine had coils 4 feet high and 10 inches thick on the large electro-magnet, the coils containing 1,400 pounds of copper wire. The
The electric ligit obtained from the machine was so powerful as to cause the flame of the street lamps of Manches ter, (England) to cast a shadow at the distance of a quarte of a mile (London Athencum). The beat could be felt at a distance of 50 yards, and long wires and thick rods of iron, a foot long and two tenths of an inch in diameter, were
raised to a white heat and melted by the current. A rod of raised to a white heat and melted by the current. A rod of platinum, the most infusible of all metals, was melted down in foreign lighthouses, but the expense of the apparatus and of its accompanying steam engine, as well as the necessary skilled attendance, were serious objections.
The well known electrician, Moses G. Farmer, in a letter addressed to us and published in the Scientific American pointed out the fact that, could this method of producing light be perfected so far as to avoid the loss of more than three fourths of the energy condensed in each pound of coal the electric light would cost but about one tenth of a mill, per candle power per hour. He estimates that, a pound of
coal carbon, converted into light without loss, would, if burned in one hour, yield a light equal to that of 12,410 candles
It is evident that inventors who are familiar with the science of electricity have before them a field in which
and we expect ere long to see the pound of coal which, consumed in one hour today, gives us about 15 or 20 candles, made to surrender a much larger percentage of the figure given above as possible.
Improvements in the construction of the magneto-electric machine have progressed as described, but a single step remained to be taken to bring it to the latest form now k
is that which appears so mysterious in its operation.

Professor Wheatstone and Mr. Siemens both sugge

 about the same time, that, if a part of the induced curren were diverted and made to excite a separate small electromagnet, the latter might be substituted for the equally feeble permanent magnets, in which the whole energy of the pparatus originated, and thus a machine might be made of qual efficiency and without permanent magnets. Such a machine would, at first glance, seem very like a perpetual motion apparatus, and the scheme a most absurd one. The thing was done, however, by the invention of the Wheat-stone-Siemens machine.as built by Mr. Ladd, of London. It stone-Siemens machine.as built by Mr. Ladd, of London.
consists simply of an electro-magnet, with a Siemens arma ure, containing two bobbins, of different sizes. The wire from the smaller bobbin connects with the electro-magnet its current keeping that excited, while the current induced in the larger bobbin is used for other purposes as may be
desired. The armature is driven at a high speed by means desíred. The armature is driven at a high speed by mean
of a crank and a band wheel carried in bearings on the elec tro-magnet.
The electro-magnet almost invariably contains enough residual magnetism to start the action of the machine; and, uring its operation, it simply furnishes an illustration of he conversion of the mechanical en3rgy into electricity, ght and heat. We cannot, however, as in the case of the fratical injector, trace every step in the process with mathe ergy into the other is to us, and to men of science, as well ne of those great mysteries of nature which we are every day fathoming more and more deeply, and which still pre sent as wonderful a depth of the unknown as ever.

THE MOVEMENTS OF THE STARS.

We are but upon the threshold of the vast store house of which that most wonderful of modern discoveries, the specroscope, has given us the key. Each day brings us nearer and nearer to the solution of problems which have vexed the master minds of the world for centuries, and science is per mitted to advance still further into the realms of the unknown ressing closer upon those which it is impossible for the uman mind to transcend. We have placed other worlds a were in the balance and weighed them by our infinitesima standards; by the aid of light originated when our earth was
but an unpeopled mass, we have recognized the components nd structures of orbs beside the magnitude of which we ar as a grain of sand; we have determined and set bounds to the wanderings of the vagrant spheres which circle round our sun; extending further into the infinite, we have looked upon the nebulous chaos which was in the beginning, and lastly, armed with precepts drawn from analogy and theory, we have boldly traced, to a glimmering star in the Pleiades, the central point of our material universe.
With the erratic motion of the planets astronomers have long been familiar, and the name itself, derived from the Greek verb meaning to wander, was given in contradistincon to that of those stars to which pplied. But later discovery overthrows this discrimination. The fixed stars are known no longer to be motionless, but to ravel over distances so great and at such rapidity that the mind fails in their contemplation; and yet the observations
of centuries have failed to detect reai changes in position of centuries have failed to detect reai changes in position
other than are extremely small-so minute indeed that other than are extremely small-so minute indeed that
only about 30 stars have, by astronomical calculation, been shown to have moved moie than one second of arc annually, while in others a motion of but a few seconds in a century has been detected. In the year 1868 Mr . William Huggins, noted English astronomer, while comparing the spectrum Sirius with that of hydrogen, by means of a spectroscope of large dispersive power, found that a line on the stellar pectram was displas by about $\frac{150}{255}$ of an inch. This dis showed that the refrangibility of the light of Sirius was diminishing, as the red rays are the least refrangible. The tar, therefore, was receding from the earth. Following ou the calculation and allowing for the movement of our sphere,
Mr. Huggins found that Sirius was moving through space, directly away from us, at the rate of $24 \frac{1}{2}$ miles per second or, taking the resultant of this motion with the transvers movement of the star, previously observed and approxi mately calculated by other means, the real motion of Siriu was computed at 29 miles per second, or $900,000,000$ mile per year, while its distance is estimated at over 128 trillions of miles-numbers of which we can obviously form no coneption.
The want of instruments of sufficient delicacy and exacti tude has until quite recently prevented further researches but the necessary implements have at length been made, and we are in possession of the more accurate results. The mo tion of Sirius has been determined as less than that above
given-22 instead of 29 miles per second-the difference being due to the more perfect instruments. Other stars, however however, have also been examined and their movements rela tive to the earth fixed. The lines of sedium and magnesium were compared with similar lines which indicated the presence of these terrestrial substances in the spectrum of Betelgeuse, (Orionis), and the star was found to be receding at a veloc ty of 22 miles per second. The spectrum of Rigel was com pared wi th that of hydrogen and indicated also retrograde mo
tion, of 15 miles per second. The double star Castor, Regulus, β and δ Leonis, $\beta, \gamma, \delta, \varepsilon, \zeta$, and η of the Great Bear, Spica, α in Corona Borealis, were all examined in connection with the spectrum of hydrogen and found to be receding at rates varying from 15 to 22 miles per sscond. In the case of the tars that appear to be approaching the earth, the velocity is much greater. Arcturus, the spectrum of which was compared with that of magnesium, travels at the rate of 55 miles per second: Vega at 50 miles; α Cygni, 39 miles; Pollux, 49 miles; α of the Great Bear, 61 miles; and γ Leonis, ε Bootis, γ Cygni, α and γ Pegasi, and α Andromedce were undetermined. γ Cassiopeise is believed to have a very slow movement from the earth. In making the calculations the velocity of light was taken at 185,000 miles per second, and it is tated that the above given velocities, in relation to the movement of the stars relative to the earth, are equally true as to theirmotion in regard to the sun. It is interesting to notice hat in ceneral the stars which the spectroscone shows us are receding from the earth (Sirius, Betelgeuse, Rigel, Procyon) re situated in a region opposite to the constellation toward which the sun is advancing, while those near to the former Arcturus, Vega and others) are approaching our globe. There are, however," says Mr. Huggins, "exceptions to this rule:" and in his memoir to the Royal Society, he points out that the movement of the sun is not the only nor even the principal cause of the true or apparent motions of the stars. "It is hardly possible to doubt," he continues, " that the stars have two distinct motions, one common to all stars of a certain group, and another confined to each particular star. Remarkable examples of this fact are shown in the group $\beta, \gamma, \delta, \varepsilon, \zeta$, of the Great Bear, whish have a common movement, while α and η of the same constellation have a proper motion in an opposite direction. Again and more reroper it that the five firt motion the earth, while α is approaching; and η, although apparenty receding, is at too great a distance from α to permit us to consider the two stars in connection.

gCIENTIFIC AND PRACTICAL INFORMATION.

AN EXPERIMENT WITH PHOSPHATE OF LIME.
If a small quantity of phosphate of soda is added to a diute solution of chloride of calcium, a white precipitate is formed which dissolves on stirring. The addition of more phosphate of soda forms a permanent precipitate; if now a current of carbonic acid gas be passed into the liquid in which the precipitate is suspended, the precipitate dissolves gain, in the same way as carbonate of lime does in water containing excess of carbonic acid. The addition of a fresh quantity of phosphate of soda produces a fres ${ }^{1}$ precipitate, which can be again dissolved by carbonic acid. There is, which can be again dissolved by carbonic acid. There is, times, crystals form which do not dissolve, and which may be caught on a filter and washed. They consist of the bibe caught on a filter and washed. They consist of the bi-
basic phosphate of lime with four molecules of water of asic phosphate of lime with four molecules of water of
crystalization. If these crystals be put in water freed from crystalization. If these crystals be put in water freed from
carbonic acid by boiling, and frequently shaken for 24 hours, a salt is formed which contains three equivalents of phosphoric acid to four of carbonic acid ($4 \mathrm{CaO}, 3 \mathrm{PO}_{5}$): a salt richer in phosphoric acid than the bibasic salt with which we started, yet not so rich as a monobasic salt.
ACTION OF SULPHUROUS ACID UPON INSOLUBLE SULPHIDES. Langlois having proved that alkaline sulphites are converted into 'hyposulphites by the action of sulphurous acid nother chemist named Guerout has repeated the experimen with the sulphides of other metals, and finds that the sul phides of copper, silver, gold, platinum, and mercury are not attacked. The sulphides of manganese, zinc, and iron eadily dissolve in a strong solution of sulphurous acid, be ing at the same time converted into hyposulphites. The sul phides of colialt, nickel, cadmium, bismuth, tin, arsenic, and antimony are slightly soluble and undergo the same change inio hyposulphites; varying quantities of sulphuretted hyrogen are evolved, and sulphur separates. Further experiments, however, indicate that the sulphides are not converted directly into hyposulphites, but are first converted into ulphites which are afterwards changed into hyposulphites. This easy and rapid method of preparing hyposulphite of ron, zinc, etc., having been discovered, it remains to apply to new and important uses, and such we doubt not will soon be found.

THE PHOTO-HELIOGRAPH.
A correspondent of the Photographic Bulletin describes a new instrument made by Dallmeyer, of England, and called the photo-heliograph. It is to be used during the coming ransit of Venus, and consists in a telescope, mounted for photography, about eight feet in length and having an object glass of four inches in diameter and five feet focal length. At the focus is placed an instantaneous shutter which serves to increase or diminish an aperture, bchind which is placed a combination of lenses, corrected for the chemical rays. The image passing through is enlarged to four inches. The instrument is mounted on an equatorial stand and actuated by suitable clock work. Five have been ordered by the British government, to be supplied to the different observing stations.

ozone.

M. Boillot, on submitting pure oxygen and atmospheric xygen alternately to the action of the electric current, has discovered that 58 cubic inches of pure oxygen yields but $\frac{1}{8}$ of grain of ozone, while the same amount of atmospheric oxygen gives $\frac{1}{}$ of a grain. Oxygen mingled in the air is therefore in a condition more favorable for its transformation into ozone.

FOOT POWER JIG INAW.

It will be remembered that, towards the beginning of the present volume, we presented an applic ation of the "vertical multiplier" to the band saw. We 1 10w lay before our readers still another arrangement of the ε 'ame ingenious and labor-saving device, this time, however, ir connection with the jig saw.

The machine is fully represented in our illustration; and as a detailed explanation of the multiplier, without the aid of which the operation by foot power of the saws to which it is applied would be practically impossible, can be found in Volumes XXII and XXVI. of this journal, we have anly in the present article to refer to the gem eral capabilities of the invention. Forty steps of the treadle produce 546 and a frac tion mevements of the saw; or, in other words, the motion transmitted by the gearing is as 1 to $13 \cdot 6$, about. At a trial in our presence the blade made its way through presence the blace made hickness, hard ash work of tho inches in thits and was actu wood, with great rapidity, and was actu ated by the sawyer merely throwing his weight upon the treadle, a. motion which, we were informed, could be
a long period without fatigue.
This device, as indeed are all applica tions of the multiplier, is especisily de signed to meet the wants of shops in which there is no steam power. It ocenpie but two and a half by three and a half feet of floor space, has two feet swing, is four and a half feet high, and is strong and durably constructed. The low pric and which the manufacturers offer it wil render it particularlyadaptable to the need render it particularly adaptable to the need of amateurs and hech and cabinet m akers. For further particulars address
the Combined Power Company, No. 23 Dey the Combined Power Company, No, 23 Dey street, New York city.

Uses of Bisulphide of Carbon Until the year 1850, the only industrial application of bisulphide of carbon was the dissolution and vulcanization of india rub ber. Since that time it has been applied to the following uses: 1 . The complete extraction of the fatt matter from bones used in the fabrication of bone black. 2. The extraction of oil from grain and olives. 3. The remova of sulphur from earth in which it is contained and also bitumen from bituminous rocks. 4. The scouring and elimina tion of greasy substance from wool by the Seyferth and simflar processes. 5. The extraction of the soluble principle of spices. 6. The fabrication of yellow prussiate of potash,and of sulphocyanide of ammonium, for making Pharaoh's ser pents. 7. The preparation of Greek fire; a solution of phos phorus in the bisulphide is used for filling inflammatory rockets or shells. 8. For silver plating; a small quantity placed in the bath increases the brilliancy of the deposit. 9 For the destruction of vermin. 10. For flling glass prisms, on account of the brilliancy of the colors of its spectrum. 11. For driving by its vapor all classes of engines, with or without expansion.

TAYLOR'S PATENT FIRKIN HEAD.
Our engraving represents an improved firkin head which

is claimed to save cooperage and to facilitate inspection of the contents, a fact of importance when the latter contains butter, fruit, or other perishable substance. It is depicted in the illustration as applied to a butter keg, which may be thus caused to serve as a "return pail," an especially advantageous arrangement for shippers and commission mer chants. The invention is equally adapted for barrels, etc. The head consists of two pieces of wood, A and B, cut a
indicated by the inner dotted lines in Fig. 2. At one end and underneath, they are connected by a strip of springy wood, C . To the piece, A , are secured the cleats, D , below and, E, above the device. The portion, B, is held only by the wood apring C, and a single nail paseing through by
their bulkheads will not be water-tight. Putty is used in coating them, and the writer would not like to risk his life in tho vessels.
J. L. G. dissents from our opinion that boats are not to be depended on, and would limit our statement to boats heretofore in use. He censures the life boats carried by ocean steamers, as the do not right and baleamers, as they do not right and bale themselves in stantly; and asks us to publish a descrip tion of any that fulfills these require ments. "But it may be said that the dif ficulty exists in launching the boat safely Very truly, a life boat to be depended upon must have the capacity of launching itself; or, in other words, an officer must be able to launch the boat safely and instantly, with himself and several seamen in it, in any kind of sea, in such a way that there is no possi bility of mishap either in crushing the boa against the side of the vessel, in swamping or in carrying a line. Some four years since anotherinventor and myself turned our atten ion to this subject, and by costly experi tion to this subject, and, by costly experi ments and great labor, finally succeeded in oig the pro duction of such a boat and means of launch ng it, as above described in every respect, to the entire satisfaction of the Board of Supervising Inspectors of Steam Vessels, who said in their report that the boat was perfect in all that the inventors claimed fo it. The second thing we accomplished, stil more effectually, if possible, was to so tho roughly impoverish ourselves that any furher inventions from us are out of the ques tion, as is also pressing our invention into use: although its superiority is not ques ioned by any who see its operation, ques ioned by any whe are nd is now being made by government nd is now being made by government off cials, to appropriate the result of our labor o their own credit. From this showing, you will see that you are wrong in the last two sentences of the article referred to, that, cafter being invented and proved capable, the law is strong enough to compel its in. troduction into general use.'

THE WONDERS OF THE EGG.---SECOND LECTURE
 '[by Profrbsor agabsiz.-conclubion.]

If we pass now to the bird, we find in the ovary eggs which can in no way be distinguished from those observed in the ovary of the mammal, only we find in the former a muich larger number. Besides those very small ovarian eggs, there are larger ones-eggs rising to dimensions so considerable that they are not only visible to the naked eye, but may be handled with facility. A mature egg in the ovary of the hen is about the dimension of a small walnut It has no shell, no white; but it is a bulk of yolk inclosed in a vitelline membrane, containing a germinative vesicle with germinative dots. The amount of yolk is very great. If we examine the yolk, we find that its whole substance is made up of cells. This fact at once suggests a further inquiry as to the constitution of the fluid contained in the vitelline egg of the mammalia. The question would be answered differently by different investigators. But unquestionably the mature ovarian egg of the bird differs from that of the mammal in the larger amount of yolk it contains, and in the fact that the whole mass of yolk consists in the and in the fact that the whole mass of yolk consists in the
accumulation of cells in such numbers that they are counted accumulation of cells in such numbers that they are counted
by myriads. These cells may be traced under the microby myriads. These cells may be traced under the micro-
scope. In absence of a well drawn hen's egg, I give a mature ovarian egg of the snapping turtle, which may answer for this purpose.

Suppose I should represent an ovarian egg of the hen enlarged so that the germinative vesicle alone would appear as large as a whole ovarian egg at the time of maturity: we should find that the whole of the yolk consists either in little granules or in little vesicles resembling each other so much as almost to force us to the conclusion that these vesicles are
only granules which have swollen and become hollow. By the side of these smaller vesicles are others somewhat larger, containing themselves a vesicle and granule, that is to say, having the true character of ordinary cells. The whole mass of the yolk consists of such granular vesicles and true cells. The yolk is, in fact, an accumulation of cells in various stages of growth. This large yolk, this large ovarian egg of a hen, with its contents, was itself at one time so small as to escape the natural power of the human eye. We can place a portion of the ovary of the hen under the micro scope and have at the same time in the field small eggs which cannot be seen with the natural eye and other eggs perceptible in different degrees; and we find that the small est are just like the eggs of mammalia, containing a transparent fluid with granules floating in it, while others contain cells already to be distinguished, and others are full of cells so large as to make the whole mass opaque. The peculiar colo of the hen's egg in all its stages leaves no doubt that the cells -at least those within the egg-are formed by the swelling of the yolk particles and their subsequent growth into larger vesicles containing a fluid in which the elements of a perfect cell are finally matured. We are certainly justified in saying that they are cells, and that the vitelline cells are of the number which arise from the enlargement of solid granules, these granules being animal particles secreted by the organs in which they arise
At this stage of the ovarian egg, that is, when it has ac quired the vitelline membrane, the germinative vesicle and germinative dot also acquire certain dimensions differing in different animals and are or may be fecundated. This fecundation consists in the contact of sperm cells with the yolk bag. What the influence of that contact is; nobody has been able to trace. (The way in which the spermatic particles reach and penetrate the egg we shall consider hereafter.) It is from that time that the changes date which lead toward the formation of a new being. But the egg of the hen when fecundated has not yet completed its growth. The hen's egg, as we know it, has a shell, and a delicate membrane lin ing the shell, and a layer of white albumen surrounding the yolk. All these parts are formed after the egg has been fecundated. So you see that the life of the egg, in this class of animals, is something independent, as it were, within cer tain limits, from the growth of these essential portions of the egg which lead to the formation of the new being. Why is it that the egg must be laid in that condition in order to lead more directly to the growth of the young: why it is that in the bird the germ lies dormant in the egg, after the egg has been laid, until a certain temperature is applied to it I cannot explain, but those are conditions which always ac company the formation of the germ in birds, and its final de velopment into a new being. In mammalia-to show you how great a contrast exists between these two classes-th ovarian egg is not dropped when the germ begins its growth, but is retained until the germ has acquired certain dimen sions, a certain stage of development which varies accord forth young so delicate and so imatectly dever bring forth young so delicate and so imperfectly developed that they require protection from the mother long after birth
They become attached to the teats of the female and hang They become attached to the teats of the female and hang
there for a number of weeks before they are capable of shift ing for themselves. Other animals are born already covered with hair, but are blind, as in the case of cats; while other are born so that they are capable of walking away at once, a is the case with horses or cattle. However great may be the similarity between the eggs of different animals, there ar marked specific differences in their subsequent developmen And these are not variable features; they are implied in the very existence of the species in which they occur. They ar specific differences in the growth and development of ani mals, as characteristic as any ultimate differences in thei adult condition. Let us now pass to the class of reptiles The scaly bring forth eggs similar to those of birds. They arise in the ovary in a similar way and produce by successive growth
yolks of a similar bulk, as do the birds. While, however. all these eggs are surrounded with a shell after fecundation the egg is not necessarily laid, as in birds, in order to bring orth the new being. The bird brings forth its young by in cubation, setting upon the eggs, and transmitting to them by its own warmth the temperature needed for their fina development. For the egg of the reptile, that temperature is usually derived from surrounding conditions. It is true that a few kinds of reptiles, the python for instance, set upon their eggs and transmit to them a higher temperature from their body; but this is not usually the case. Some eptiles deposit their eggs in the sand, where they are hatched out under the influence of the summer heat; other to not lay their eggs until the young have completed their rowth, when the new being is born, and the egg shel fterward or about the same time. Others lay eggs from hich the living young are hatched in a very short time. he European viper can readily be made to lay its eggs or retain them and bring forth living young, by a simple in ase or diminution of the temperature to which it is ex sed at a certain stage in the growth of the germ. The -laying animals are called oviparous; but those reptiles ich bring forth living young are as much oviparous as the , for the process of growth is the same, whether the egg atched out in the mother or not. The other reptiles, 1 as frogs and salamanders, spawn. That is, they lay he albuminous envelope, without a shell, and these eggs ecundated after they are laid. You see here what
ecume ed difference there is between those naked reptiles and aly reptiles. On account of this and other differences,
as reptiles proper, and the naked reptiles as batrachians or
When we pass to the eggs of fish, we find there marked dif erences also, and the most striking are those to which I have already alluded, among the sharks, skates and chimeras, the eggs of which are enveloped in a horny covering, formed after fecundation. We have among these animals the same differences as obtain among scaly reptiles, namely, that with some the egg is laid, and the process of hatching take place a considerable period after the laying, while in others the egg is not laid until the young has completed its growt and may be born in a condition capable of swimming.

I will show you som of these curious eggs. This is an egg of the callorhynchus, the cen tral part of which is pea shaped or cylindrical, as is the cavity in which the yolk is contained and there is a flat ap. pendage to the egg case by which the egg is abled to attach itself to good many of the shark and skates, as already remarked, the egg is no laid before the young has completed its growth as have acquired it full form. The yol may then hang like a bag below the body, and into it, serving as nour ishment for the youn until it entirely disap pears. [This was illu page 276 page 276.] You may se
GGG OF THE CALLORHYNCHUS wich exists between th ere the intimate connection which exists between the egg and the embryo, and you may that say the embryo grow
out of the yolk. In those animals which have coverings or out of the yolk. In those animals which have coverings or o secrete these cases. In sharks and skates, for instance, there is a peculiar gland upon the track of the oviduct in which the egg envelope is formed. The egg is received in the sack in which it is first surrounded by only half the shell case, then the other half is formed, and the egg i complete.

STEVENS INSTITUTE LECTURES, -.-GOLD MINING IN CALIFORNIA.
The third lecture of the spring course before the Stevens nstitute of Technology was by Professor Silliman, of Yale College, on the "Dead Rivers of the Sierra Nevada and Hydraulic Mining for Gold." He began by describing th haracteristics of the country, along the line of the Unio Pacific Railroad, through which the traveler passes in his journey to the gold regions of the far West. Our notions of the Rocky Mountains receive a rude shock on beholding the almost insensible slope which leads us for more than 800 miles along the valley of the River Platte, where the ascent is not over 12, 14 or 16 feet to the mile, and we advance towards the summit without being aware of mounting unless we have perchance an aneroid barometer to tell us so. Ye ur government was induced to pay a subsidy of $\$ 16,000 \mathrm{pe}$ mile for the construction of the Union Pacific Railroad on ccount of imaginary difficulties. This was as far as Chey nne, where, it was agreed, the Rocky Mountains realiy be gan. From that place to the Black Hills, the subsidy amounted to $\$ 32,000$ a mile; but the traveler, unaided by th barometer, would be utterly unable to discover the fact tha he was not upon a level plain. Passing through the Grea American Desert, we come to the continental divide at Sher man, about 9,000 feet above the sea level, to the head water of the Green River, and arrive in the plain of the Great Salt Lake, joining the Central Pacific at Ogden, still over 4,000 feet above the level of the sea. On examining the sloping banks of the great basin before us, we can distinctly trace he successive outlines of the ancient shores of the great in land sea, which must have risen about 1,200 feet above th resent level, and whose waters, by concentration of thei aline matter, have produced the present Salt Lake. Con inuing our journey, we pass lofty ranges of mountains, som of them 10,000 feet high and running parallel in a northeast rn and southwestern direction. Finally we come to th majestic snow-capped wall of the Sierra Nevada, which sepa rates us from the Pacific Ocean. This region we find charac erized by precipitous ascents, majestic pine forests and dee cañons. Here we meet with real engineering difficulties, n a country where a slight fall of snow is 16 feet and heavy one 100 feet deep, and where huge avalanches slide down the rocks, the railroad tracks have to be protected by means of snow sheds of solid timber, which, however, a e cually shut out the view from the passenger as thoug verywhere bear witness to the action of glaciers, which sisted there on a vast scale. Along these rugged moun ains, the perseverance of the early miners constructed road for the transportation of all the necessaries of life to th seemingly inaccessible regions where their claims lay, and
these roads will ever be monuments to theirherculean energy.

In one of the basins left by an ancient glacier, is situated tat magnificent sheet of water known as Lake Tahoe. S lear are its waters that fish can be seen swiraming in it at lepth of fifty feet, and that the photograph exhibited upon the screen by the lecturer clearly showed the boulders on the bottom. Von Schmidt has contrived a plan to supply San rancisco with water from this lake, whose surface is ove ,000 feet above the level of the Pacific.
Passing, in our downward course, through the Bloomer Cut, we see rising above us on both sides huge walls of goldbearing gravel; but gold is present in such small quantities that a cubic yard scarcely yields over twenty cents' worth Before considering the means by which even so small a pro ortion is made to pay, the lecturer threw on the screen pic ures of the early methods employed by the Californi miners. At first, a pick, a shovel, an iron pan and a rifle vers all the necessary outfit, and the gold seeker would take his panful of gravel to the nearest running water. Here the gravel was washed out and the grains of gold, which sank quickly to the bottom of the pan by reason of their greatly uperior weight, were gathered. Sometimes the gravel wa winnowed in a blanket, where water was scarce. The firs mprovement was to separate the coarse from the fine by means of a rocking sieve, through which running wate washed the gold into a trough beneath filled partly with quicksilver. The gold combined with this, and the sand wes carried off by the water. When enough gold was collected in the quicksilver, it was strained through a buckskin bag the from the remaining portion of the mercury by heat.
It soon struck the more intelligent miners that they were nly gleaning in a field where nature herself had reaped be only gleaning in a field where nature herself had reaped be
fore; that the streams of water in those regions had been cut fore; that the streams of water in those regions had been cut-
ting their way through auriferous rock and washing it on a ting their way through auriferous rock and washing it on a
grand scale; and that, by turning these rivers from their grand scale; and that, by turning these rivers from the course, they would find the results of nature's washing This grand conception was carried out in many instance and the professor's views upon the screen amply illustrated the immense labor expended in the construction of ditche or turning rivers from their course and laying dry their for mer beds. The water of the rivers being forced into a na ower channel accumulated sufficient force to drive wate wheels for pumping out the deep places of the river beds and laying bare the accumulated treasures.
When we come to the valley of Dutch Flat, we see for th rrst time extensive operations for the working of deep lying hill diggings or "placers." Enormous amounts of mone have been expended in bringing from a distance the wate power which is so necessary everywhere for the washing of he gravel. Sometimes flumes or aqueducts were constructed 140 feet high upon timber, each stick of which represented the full length of a mountain pine. Water companies wer formed, which derived enormous incomes from the rents paid by miners to whose placers the water was distributed. Now however, the precarious wooden structures have been re placed by huge pipes of boiler plate iron; and with the supply from these, the miner washes out the gravel of his claim clear down to the solid rock, using what is called the " water gnn," a knuckle-joint nozzle throwing a solid stream six inches in diameter for a distance of 200 feet, with about on enth the velocity of a cannon ball. The washed out grave is no longer sifted by hand; it passes along its natural courso with the water through sluices made of wooden blocks and urnished with quicksilver, into which the gold rapidly inks, while the sand moves on.
The lecturer then cast upon the screen a drawing of the amous Table Mountain of Calaveras, whose steep walls re minded me of the Palisades. This flat mountain is composed of basaltic rock, filling up the channel of an ancient rive which formerly rolled over golden sands. The Table Moun tain may be considered as nature's monument to this "dead river." The hidden river channel was discovered by some of the earlier miners; and, by a divination which was almost inspired, these untaught men formed correct notions as to the geological character of the mountain, and expended housands of dollars in getting at the gold on the river bot oms by means of laboriously constructed tunnels through the hard rock.
The deposits of auriferous gravel are so vast in extent as to be almost inexhaustible; but so small is the percentage of the gold they contain that the adventurer no longer finds any hance of getting rich quickly, and the deposits can be worked profitably only by associate capital, where a legiti mate outlay of money will bring a legitimate return.
The lecture was profusely illustrated by means of views upon the screen.

SCIENCE RECORD.--NEW EDITION

The first editions of 1872 and 1873 having both become ex hausted, a new edition of each has just been published. The demand for the work has been very great, and universal praise has been bestowed upon it. Condensed descriptions and engravings of the most important inventions and discoveries in science in the years 1871-2, with steel plate portraits and biographies of a number of men distinguished in science, re contained in these annuals, of over 500 pages each. Price by mail, cloth, $\$ 2.00$; library binding, $\$ 2.50$. In ordering tate for which year. Price for both, when ordered together loth, $\$ 3.75$; library, $\$ 4.50$. Address Munn \& Co., publishers fife Scientific American.

OIL of Vitriol.-The manufacture of Nordhausen sul phuric acid is still going on in Bohemia, at the works of Von Starcu, where large quantities of iron pyrites are trans formed into so called "stone of vitriol," from which the oil of
vitriol is derived by distillation in clay retorts. About 1,500 tuns are annually produced

PAPZR MAKING.

Mr. Carl Hofmann, of 406 Walnut street, Philadelphia, late superintendent of paper mills in Germany and in this coun try, has recently published a valuableand exhaustive work on the manufacture of paper. He has not only drawn upon long practical experience for his facts, but has gathered an im mense amount of information by visiting all the prominent pa per mills in the United States. The work, the price of whic is $\$ 15$, will doubtless form a complete guide for those desiring to build mills, as it contains descriptions and engraving every variety of new and improved machinery, prepared in many instances with the elaboration of working draw ings. We cull from its pages the following interesting particulars:
straw paper.
One of the best articles of this description is made by the Manchester Paper Manufacturing Company, near Poughkeepsie. N. Y. Rye straw, delivered by farmer from the adjoining country in perfectly clean bundles, is exclusively used. It is first chopped in pieces of about three fourths of an inch in length, by means of a cutter during which operation all weeds and impurities are re moved by hand. Cleaning, to get rid of grain and dust follows, and then the straw is passed through a pair of heavy iron press rolls, which open out the tubes and knots. It is then passed into horizontal rotary boilers, in each of which is sixty gallons of a solution of caus tic soda for every hundred pounds of straw. Thes boilers are walled in, heated by direct fire to a pressure of about sixty pounds above the atmosphere, and kep so for six or eight hours. The stuff is discharged int a tub with a drawer bottom, where the liquor is washe out, and thence to a chest serving Kingsland engine, in which any knots or bundles of fiber, which may remain, are completely removed. It is then conducted into drainers, where it remains unti dry, when it passes to an ordinary washing engine, in which it is rewashed, bleached with a solution of chlo ride of lime, and sent to a second set of drainers. Mix ing with size, color, and clay follows, then another pas sage through a Kingsland engine, and, lastly, the ma terial is run over a Fourdrinier paper machine

The paper made by this process is soft, clean, and white, and finds a ready market for book printing Since the works of the company above referred to have been reconstructed, superheated steam is used instead of direct fire in the boilers. Nearly fifty per cent o paper from straw and sixty per cent from esparto is ob tained. This is a very extraordinary yield, as it is the expe rience of many manufacturers that not over thirty-three per cent in good white paper can be obtained from straw in the rough condition in which it is received at the mills. The author considers that there are but two ways in which fifty per cent of white paper can be obtained from straw alone: eicher by the production of paper of inferior quality, containing much of the inter-cellular matters, or by not counting the clay and size which have been added in sufficient quantity to make up for the lost fibers.
straw boiler.
We select from the pages of the work under examination the accompanying engraving of Dixon's straw boiler, which the author states, has been found practically successful. The boiler, A, is cylin?rical, stands upright, and is carried by flanges riveted to the shell in any desired place and support ed on solid framework or walls. It is located so that its upper part projects a few feet above the floor, where the straw is stored, and a man standing there can easily open the man hole, D, lift the cover, E, from a corresponding opening in the upper diaphragm, B, and fill the boiler through them al ternately with straw and caustic liquor. The straw, which has been previously cut, is supported by the lower funnelshaped diaphragm, C, and broken down to such an extent while being packed in, that a boiler of six feet diameter and fifteen feet hight between diaphragms will hold from 4,000 to 4,500 lbs. A. rotary pump, F , fed from the liquor tank through the pipe, G, forces the balance of the caustic solution through the coil, H , to the top of the boiler above the diaphragm, B; and after the apportioned quantity has been pumped in, the communication with the tank is cut off by closing the stop cock, I. The caustic solution percolates through the straw, collects under the diaphragm, C, and returns through pipe, G, to the pump, F, which forces it again through the coil and on top of the diaphragm, B. The coil, H , is made of extra heavy two inch wrought iron pipe, placed in a brick furnace and heated from the grate, K. The steam which is thereby raised creates a pressure which can be regulated by the fire, and observed on gages and safety valves connected with the upper part of the boiler. The boiling being finished, the slide valve, L, is opened by means of the handle, N, from the outside, when the contents empty themselves through the channel, M, into the chest or tank below. A pipe, connecting with the steam boiler, enters below the diaphragm, C , and is opened whenever the compact mass of straw requires to be loosened; it is also used before the circulation of the liquor is retarded, and facilitates percolation, as the steam penetrates through and raises the straw bodily.

wood paper

The new works of the American Wood Paper Company, at Manayunk, Pa., have a capacity of fifteen tuns of white wood pulp per day. The material is brought to the
works as cord wood of five feet length. It is first cut into works as cord wood of five feet length. It is first cut into thin slices of about half inch thickness, and then by large steel knives chopped into small pieces, forty cords being thus
treated daily. The material is then boiled with a solution of caustic soda in upright boilers, heated by steam circulalated through a jacket, and in which it is confined between perforated diaphragms. To every two boilers is connected by a capacious pipe, a large sheet iron cylinder, which re ceives their contents, pulp, liquor, and steam. The liquid solution of pulp flows from these receptacles to flat iron drainers mounted on wheels, each of which is large enough to hold the contents of one boiler. The tracks on which these cars run are underlaid with sewers which receive the

liquid as it drains off from the pulp. The latter then goes to washing engines, thence to stuff chests, and from there is forwarded by pumps to wet machines, the screens of which retain all impurities derived from knots, bark, and othe ources, and the pulp or half stuff so obtained is perfectly ean and of a light gray color. It is bleached in engines with a solution of bleaching powders-like rags-emptied into drainers, and kept there from twenty-four to forty-eight hours. The liquid drained from the pulp is gathered in the pipes under the track and evaporated to regain the soda The finished pulp is of soft white spongy fiber, and, mixed with rags, is worked into book and fine print paper. Poplar furnishes very white tibers, and is preferred to other woods. Its fibers are, however, short, so that it is often found expe dient to mix them with those of s.ruce or pine. The autho adds a tabular statement of the per centage of pulp in differ ent kinds of woods, in which we find that hemlock has 45 per cent, the largest proportion, then dry walnut, 42 per cent and least of all, lignum vitæ, 15.8 and ebony, 14 per cent About 28 per cent from young and 30 per cent from old poplar wood, one cord of which weighs from 2,800 to 3,400 poplar wood, one cord of which weighs
lbs. is obtained at the Manayunk works. boiling stock.
After the materials for paper making are dusted and sort ed, the next process is the extraction of ink and fat by boil ing. Writing ink can be extracted with water alone, but a solution of soda is required for printing ink. Our illustra

APPARATUS FOR BOILING STOCK
eight and a half feet at the top, and are covered with a man tle of wood, which prevents the escape of heat. The false bottoms, C , are parforated, and carry in the center upright pipes, D, overtopped by bonnets, E. The steam enters from the pipe, G, into a coil (not shown) below the false bottom from which it is evenly spread through all parts of the tub by means of a large number of small holes. The liquid ca be drawn off through the pipe and valve, H. A flat iron cover, F, in one or two pieces, is laid over the top
The tub is first one quarter or one third filled with a so lution of soda; steam is then turned on, and the liquid brought to the boiling point, when, rising through the pipe, D , it strikes against the bonnet, E , and is spread over the whole surface of the tub. As soon as this takes place, the papers are gradually thrown in so that all will be soaked before they reach their resting place. About 4,000 pounds of material can be placed in each tub, in which it is distributed as uniformly as possible.
After the mass is boiled, it is hoisted out by means of cranes. The false bottom, C , is fastened to a strong frame of iron bars and can be lifted clear of the tub by the hooks, K, which connect, by means of chains, with rings or hooks at the upper ends of the rods, I. The pul ley, L, of the crane is then connected by a belt with th pulley, M, or the crank, N, is turned by hand, until the whole mass appears above the floor, when the crane is moved around on its pivot to a place where the false bottom can be deposited. Another spare false bottom can be at once attached to the hooks, K, lowered into the tub, and a new operation started. The papers come out as a solid mass, looking like a very large cheese, and the time of the operation varies from fifteen to twenty-four hours.

HOW "Greenback" Paper is made.
All the paper for the money issued by the Government is manufactured on a 62 inch Fourdrinier machine, at the Glen Mills, near West Chester, Pa. Short pieces of red silk are mixed with the pulp in the engine, and the finished stuff is conducted to the wire without passing through any screens, which mightretain the silk threads By an arrangement above the wire cloth, a shower of short pieces of fine blue silkthread is dropped in streaks upon the paper while it is being formed. The upper side, on which the blue silk is dropped, is the one used for the face of the notes, and, from the manner in which the threads are applied, must show them more distinctly than the lower or reverse side, although they are embed ded deeply enough to remain fixed. The mill is guarded by officials night and day to prevent the abstraction of any paper.

PAPER BOARDS.
The largest manufactory of binders' boards in the country nd probably in the world, is W. O. Davey \& Son's board mill, situated on Jersey City Hights, opposite New York ity. The refuse of the oakum factory, which forms part of e establishment, and tarred ropes which cannot be other wise utilized make up the hard stock. The ropes are cut into pieces by a machine iike that used in machine shops fo utting sheet iron. The stock is not washed in engines but ground on elbow plates arranged in an effective and improved apparatus. Three cylinder machines are supplied, on which the pulp is transformed into boards of almost any thickness, wich are afterwards subjected to five or ten minutes press re in a hydraulic press. The boards are then placed in peculiarly constructed heater which consists of a number of flat hollow plates of metal in which steam is admitted and between which the boards are arranged and allowed to remain until nearly dry. They are then removed to a drying house, hich is warmed by steam pipes, and afterwards calendered About four tuns of boards per day are produced at the abov mill. Straw boards, which are now applied to a great num er of uses, particularly paper car wheels, are formed, dried nd cut on machines like ordinary paper

LEATHER BOARDS.
very hard variety of boards is manufactured partly from leather clippings. The leather for this purpose is cu into small pieces like rags, reduced in the engine with about the same quantity of bagging and waste paper and made into boards on a cylinder in the ordinary manner. The boards acquire the appearance and to some extent the properties of leather. The materia requires considerable time for washing and grinding and size is unnecessary in its manufacture.

OTHER VARIETIES AND USES OF PAPER
Roofing paper is made principally from woolen rags mixed with a sufficient quantity of hard stock to giv t the necessary strength. The material used is of porous nature, and its quality depends upon the amoun of tar, or similar substance, that it can absorb. Mos of the processes of its manufacture are protected by patents. Parchment paper is made from unsized rag paper, the cellulose of which changes its nature if it is for a short time immersed in diluted sulphuric acid nd then again well washed; it becomes tough, wate tight and transparent, like animal parchment. Tobacco paper for cigarettes is produced by mixing manilla fiber with liquor in which tobacco stems are previously boiled It burns when dry with a whiteash, like a tobacco leaf which it resembles closely. Cotton waste yields from 30 to 50 per cent of paper of an inferior quality, princi pally used for blotting. A bogus manilla paper is some times made from old wrapping paper and straw, colore with Venetian red in the engine. Real manilla fiber is th strongest known, but the supply is small, and so-called m nilla paper is often made from butt ends of jute. Col paper, for paper collars, is cotton and linen, with a la
natised represents an arrangement of boiling tubs in most successful mills. The tubs, A and B, are of light boil er iron, eight feet deep, eight feet in diameter of bottom and
admisture of the former. Hemp bagging and a small pro portion of cotton canvas are used for tissue paper, the fibers of which are very strong. For bank note paper only the best of white linen, imported from Scotland and Ireland, is used. The dried paper is passed through animal size and the sheets are pressed between fine paste board to give them a dead finish.

Sewing on Buttons.

That facetious editor of the Danbury News, whose funn sayings are so widely copied, thus describes the male pro cess of sewing on buttons:
It is bad enough to see a bachelor sew on a button, but he is the embodiment of grace alongside of a married man. Necessity has compelled experience in the case of the former, but the latter has always depended upon some one else for the service, and, fortunately for the sake of society, it is rare y that he is obliged to resort to the needle himself. Some times the patient wife scalds her right hand, or runs a sliver under the nail of the index finger of that hand, and it is then that the man clutches the needle around the neck, and, for getting to tie a knot in the thread, commences to put on the button. It is always in the morning, and from five to twenty minutes after he is expected to be down street. He lays the button exactly on the site of its predecessor, and pushes the needle through one eye, and draws the thread after leaving about three inches of it sticking up for lee way. He says to himself: "Well, if women don't have the easies time I ever see." Then he comes back the other way, and gets the needle through the cloth well enough, and lays himself out to find the eye, but in spite of a great dead of jabbing the needle point persists in bucking apainat the solid parts of that button, and finally when he loses patience his fingers catch the thread, and that three inches he had his fingers catch the thread, and that the button slips through the eye in a twinkling, left to hold the button slips through the eye in a twinkling,
and the button rolls leisurely across the floor. He picks it and the button rolls leisurely across the floor. He picks it up without a single remark, out of respect for his children,
and makes another attenpt to fasten it. This time when and makes another attempt to fasten it. This time when
coming back with the needle he keeps both the thread and coming back with the needle he keeps both the thread and and it is out of regard for that part of him that he feel around for the eye in a very careful and judicions manner but eventually losing his philosophy, as the search becomes more and more hopeless, he falls to jabbing about in a loose and savage manner, and it is just then the needle finds the opening, and comes up through the button and part way through his thumb with a celerity that no human ingenuity can guard against. Then he lays down the things, with a few familiar quotations, and presses the injured hand between his knees, and then holds it under his arm, and finally jambs it into his mouth,and all the while he prancesabout the floor and calls upon heaven and earth to witness that there has never been anything like it since the world was created, and howls, and whistles, and moans, and sobs. After while he calms down, and puts on his pants, and fastens them together with a stick, and goes to his business changed man.

Is Rowing Healthy?

Dr. J. E. Morgan has recently published, in England, work entitled " University Oars," in which he considers the hygienic effects of the rowing contests which for the past forty years have been carried on between the great English colleges. The author is not only an eminent and scientific surgeon, but an oarsman himself of no small repute, so that his qualifications are in every respect adequate to the task which he undertakes. The plan pursued in compiling the facts is worthy of notice, on account of the immense labor it facts is worthy of notice, on account of the immense labor it
entailed in seeking out the men, who have rowed in these inter-uriversity contests, wherever they might be and ob-inter-uriversity contests, wherever they might be and ob-
taining their verbal testimony if living, or that of their taining their verbal testimony if living, or that of their
friends if dead, as to the results, entailed by work at the oar, friends if dead, as to the results, entailed by work at the oar,
upon their constitutions and frames: 294 men had thus to be discovered, and Dr. Morgan states that 245 were found to be living. The results elicited by his inquiries he tabulates as follows: Benefited by rowing, 115; uninjured, 162; in jured, 17. The benefits considered are increase of strength and stamina, of energy to undertake, and of power to undergo physicalexertion: increase of fortitude to encounter and to submit to trials and privations and disappointments. Those termed uninjured are men who state they have "never felt any inconvenience from rowing," while the injured ail as sert with more or less distinctness that their exertions have proved harmful. It is concluded, on an examination of the latter class and the nature of the evil results, that the proportion is very small when the number of men is taken into consideration, and that no other pastime, hunting, ball or cricket, would, if closely scrutinized, yield so small a percentage of harm.

An Improvement in Venetian Blinds.-A novel application of colored and ground glass, instead of wood or iron laths, for Venetian window blinds is worthy of notice. The glass strips are bound round with brass, to preserve their edges; and heavy blinds are simply wound up and down with something like a slock key. The play of colors may thus be managed so as to give beautiful effects: outside by night and inside by day, windows with these blinds affixed will look as if they were illuminated. These blinds, we need hardly say, are expensive, compared with those now generally used; but where cost is not a matter of chief considera tion, they are likely to be appreciated.-Hardware, Metals and Machinery.

What an ass the fellow must have been who made donkey engine and expected to get horse power out of it!

CHorteguondence.

The Proportions of Ocean Steamers.

To the Eatitor of the Scientific American:

In view of the attention now being attracted to the exag gerated length of some of the steamers on the lines between this country and Europe, the annexed diagrams may be of interest sufficient to warrant publication. I have selected the individual ships from the different lines quite at random, and the figures used are taken from Hartshorne \& King' Register."

Wm. Cunningitam.
Baltimore, Md.

Baltimore, N. G. Lloyds' line-L. 185 ft , b. 29 ft ; length to breadth, 6.88 .

Peruvian, Allan line-L. $2 \pi 0$ ft., b. 38 ft.; length to breadth, $7 \cdot 11$.
ioxavian, Allan line-L. 290 ft., b. 39 ft ; length to breadth, $7 \cdot 44$.

Leipzig, N. G. Lloyds' line-L. 290 ft., b. 39 ft.; length to breadth, $7 \cdot 44$.
innesota, Williams \& Guion line-L. 332 ft., b. 42 ft.; length to breadth, 7.90.

Rhein, N. G. Lloyds' line-L. 882 ft ., b. 40 ft . length to breadth, $8 \cdot 30$

Pennsylvania, American S. S. Co.-L. 343 ft, b. 43 ft.; length to breadth, $7 \cdot 91$

Russia, Cunard line-L. 358 ft , b. 43 ft ; length to breadth, $8: 33$.

Queen, National line-L. 358 ft ., b. 41 ft ; length to breadtli, 8.73 .

Ville du Havre, French line-L. 423 ft, b. 49 ft ; length to breadth, $8 \cdot 63$

Sity of Montreal, Inman line-L. 438 ft , b. 44 ft ; length to breadth, $9 \cdot 84$.

tlantic, White Star line-Length 435 ft . beam 41 ft.; length to breadth, 10.61
Appleton's has a timely article on the length of ocean teamers:
"It will be of interest to some to understand how it is that ron, which is between seven and eight times as heavy as the water in which it floats, is not only itself buoyed up, but is able to carry a considerable load in addition. If we place in the water a bar of iron eight feet long, six inches wide, and six inches deep, we know that it will sink at once. But let this bar be rolled into a thin plate sixteen feet long and twelve feet wide, and have an edge turned up all around, orming a box a foot in depth. If it then be placed in the water, it will require to be loaded with a weight of nearly eight thousand pounds before its top edge will sink to the water level. This is because water presses on the bottom af a body inmersed in it with a force equal to the weight of the water that the body displaces by its immersion. It is easy to see then, that, with a given weight of material to be used in the construction of a vessel and a given load to be arried, it is only necessary to spread out the material so a to have sufficient surface for the water to press upon and buoy the vessel up.
The use to which a vessel is to be subjected will have a great influence on the determination of the breadth. A fer ry boat or river steamer, for example, which can have bu a limited draft of water, and is loaded mostly above the deck, with varying weights on either side, is generally made of great breadth. A sailing vessel, which is to be propelled by the wind acting on the sails with great leverage, requires
ufficient stability to counteract this force. An ocean steamer depending largely on its engine for propelling force and car. ying but little sail in proportion to its size, with the greater part of the cargo below deck and with considerable draft of water, can have sufficient stability without great breadth. It is also easy to see that great breadth is far from desirable in an ocean steamer. If the width is great it will take a considerable disturbing force to "heel" the vessel, and it will right itself with great violence also, or, in other words, it will roll very heavily. This can be observed in the case of ferry boats and river steamers, which are occasionally subjected to forces causing them to roll. It seems impossible to build a vessel for ocean service that will not roll under certain circumstances, and it is desirable, especially in the case of passenger steamers, that this rolling motion should be made as easy as possible, and hence great breadth should not be given."

The Concentration of the Sun's Heat upon the

 Earth, Surface.
To the Editor of the Scientific American:

The usual explanations of the method by which the earth is heated by the sun are unsatisfactory. By many persons the sun is considered to be an incandescent body, diffusing radiant heat; but, while approaching a heated substance the sensation of heat is usually increased, on leaving the earth's surface, to approach the sun, a feeling of intense cold is soon perceived. Neither can the heat on the earth's surface be accounted for on the supposition that the beat rays are reradiated; because, on a hot day, a thin screen interposed between the person and the sun greatly diminishes the sensa. tion of heat.
I think it may be accounted for by the fact that the atmosphere is a lens, whose tendency is to concentrate the rays of heat on that part of the earth's surface which is nearest of heat on that part of the earth's surface which is nearest
the sun. This is a lens (convexo-concave) of peculiar refracting power. Its density continually increases from the fracting power. Its density continually increases from the
convex to the concave surface. A ray of heat, then, on enconvex to the concave surface. A ray of heat, then, on en-
tering the atmosphere will be continually passing from a rarer into a denser medium, and will consequently follow a curved line, bending towards the axis of the lens.

Sis the sun ; B A, its axis; $g g$,
 its atmosphere; E , the earth; \mathbf{N} , itsaxis; $h h$, its atmosphere. It is supposed to be winter in the northern hemisphere.
But the atmosphere is also a good reflector; consequently many rays which strike the air at an acute angle will be thrown off, and thus add to the intensity of winter.
If the sun has an atmosphere, the converse of all this would apply to rays leaving his surface. Consequently it would not be necessary that the heating and illuminating substance of the sun should occupy his whole suiface, in order that the whole disk should appear illuminated to us. An equatorial belt would suffice.
If these views are correct, the warmth of the surfaces of the planets need not be affected by their relative distances from the sun, and Jupiter and Mercury may have the same degree of heat as the earth.
Newton's explanation of the movements of the solar system is probably correct in theory, but it is deficient in one important particular: it fails to account for the motive power. The attraction of gravitation we all understand; but what is the counteracting force? An original impulse will not answer, for a transient force cannot successfully contend with a constant force of anything like equal inten. sity. I do not believe that attraction of gravitation is simply due to mass, otherwise a body would weigh heavier at the poles, where there is no opposing force, than it does at the equator. I think that the analogy of magnetic attraction. Which depends more on surface, affords the best solution. An equatorial current of magnetism, then, sweeping round the sun from west to east in the plane of the ecliptic, with immense velocity, would account for the motion of the planets in their orbits, and of the sun on its axie. Such a current is no more inconceivable than is the attraction of gravitation, which acts at such great distances and with such vast power.
reat distances an
W. F. Qumbr.
Wilmington, Del.

Clarifying Water.

To the Editor of the Scientific American:

I noticed in your issue of April 5, an article on water in Kansas city, in which you call for a plan for clearing the water of the Missouri river. I think the following would prove successful:
Let there be a reservoir and clarif ying tank constructed, the tank on higher ground than the reservoir. Then pump the tank full of water, and put dissolved alum into the water, say at the rate of one pound of alum to twenty-five barrels of water. This will cause the impurities to settle to the bottom; the clear water can then be drawn off into the reservoir, the tank cleaned and the operation repeated. Perhaps it would be best to have two tanks, so that one could be filled while the other was setling. I think this plan will prove successful unless the alum in the water should prove to be unhealthy; and even if it could not be used for cooking and drinking purposes, it could be used for washing instead of the sooty water now used.

Harvey Ray.

COUNTRY HOMES-RURAL COTTAGES
Homes in most new villages, such as are continuall springing up in all parts of the country, lack both taste and convenjence in their ornamentation and arrangement. We present herewith a few designs which, though capable of ex ecution at no great cost, show what may be done to make a cottage home an object of beauty and refined taste. Our engravings are selected from a large number in the pages of Downing's "Cottage Residences," an excellent work pubDowning's "Cottage Residences," an excellent work pub-
lished by John Wiley \& Son, of New York city, which will lished by John Wiley \& Son, of New York city, which will
be found more fully noticed elsewhere in this paper. The object in view in designing the cottage represented in our first illustration (Figs. 9 and 10) is internal convenience. There are many families, some composed of invalids or per-
sons advanced in years, who have a strong preference for a plan giving the kitchen and at least one bedroom upon the
room, and other apartments, all on the first floor. Above latter provided with an ample veranda, connected with the re five good bedrooms with a closet in each. For the ex- lower lawn by a flight of steps. There is a basement, and terior of the cottage, to be covered with vertical boarding, a above, on the first floor, a large parlor with a bay window to simple rustic style has been chosen. The veranda and trelises cver the windows are intended for vines, not merely as supports, but rather as thereby giving an air of rural refinement and poetry to the house without expense. They should be constructed of cedar poles with the bark on, and, if neatly put together, will be much more becoming to such a cottage an the most elaborate carpentry work
The design headed "a river cottage" (Fig. 132) is, as its name indicates, a very pretty Gothic dwelling intended to be located on the bank of a river or sheet of water. It has, herefore, a road front and a water front; the former having the entrance porch extended out beyond the line of the
command the view, and also dining room, library, etc. The are of story contains six rooms. The walls of the basement with brick. The detail of the finish, both on the exterior and interior, is intended to be plain, leaving the good effect and interior, is intended to be plain, leaving the good effect ellishment.
In the next engraving (Figs. 105 and 106) we present a plan for a plain house where abundance of room is more of an object than elaborate ornamentation. The decorations are few and simple, and in keeping with the general effect of the structure. The veranda at the entrance is very broad, of the structure. The veranda at the entrance is very broad,
and the entrance hall large and roomy. The dining room

A Cottage in the English or Rural Gothic Style.

A Cottage for a Country Clerghman.

same floor with the living rooms, and in which there is little or no necessity for ascending or descending stairs. A glance at the plan of the first floor will show how this idea is carried out. The second story contains two large and two small bedrooms. The elevation is in the English cottage style, so generally admired for the picturesqueness evinced in its tall gables ornamented by handsome verge loards and finials, its neat some verge soards and finials, its neat or fanciful chimney tops, its latticed
windows and other striking features. windows and other striking features.
The material for the construction is The material for the construction is brick and cement, colored in imitation
of Bath or Portland stone, or smooth of Bath or Portland stone, or smooth
brick colored after some soft neutral brick colored after some soft neutral
tint. The window frames, porch, vetint. The window frames, porch, ve-
randa and verge board may be painted randa and verge board may be painted the same as the walls, and sanded or
else grained in imitation of oak. About an acre and a quarter of ground would be a suitable plot for this dwelling. One half of the area in the rear might be devoted to a garden for fruits and vegetables, and the remainder laid out as a lawn with shrubbery and flower beds.
In our second design (Figs. 81 and 82), a very tasteful and pretty cottage, suitable for a country clergyman, is represented. Here there is a conveniently arranged study opening directly on the veranda, a parlor, dining

A River Cottage.

Fig. 132.
has a bay window and is conveniently situated as regards the kitchen. The second story contains five chambers, and the attic may be divided off into three large rooms. The cellar extends under the whole house. A few vines may be trained to climb the walls, and some rustic vases and other ornaments arranged before the front will give a tasteful appearance to the building.
We add one more design (Figs. 36 and 37), that of a cottage villa in the bracketed mode, the strongly marked character of which is derived mainly from the bold prowhich is derived mainly from the bold pro-
jection of the roof, supported by ornamenjection of the roof, supported by ornamen-
tal brackets, and from the employment of brackets for supports in various other parts of the building. This mode of construction will be found especially suitable in the Southern States, owing to the coolness and dryness of the upper story during hot weather, afforded by the shade of the peculiar shaped roof. On the second floor are five bed rooms. There is a handsome balcony which is entered upon from a casement window at the ends of the hall in this story, shaded by the broad overhanging roof, and two balconies which accompany, in a similar manner, the large company, in a similar manner, the large windows in the two chambers at either side
of this hall. There are three chambers in of this hall. There are three chambers in
the attic story. In the basement story, which is raised about three and a half feet above the ground, are kitchen, laundry, store room, and cellar. The materials for

A Plain House.

A Cottage Villa in the Bracketed Mode.

Fig. 37.
construction are brick and stucco or simply wood-the latter being employed with excellent effect.

With properly laid floors, carpets may easily be dispensed with altogether for four or five months in the year in the extreme Northern States, and much longer in the South. With merely a plain floor, a small hall or a small room may be made to look very pretty indeed, and even elegant, by means of a good sized piece of carpet, with a handsome border in
the center, and a few rugs displayed here and there. In almost any hall a rug or two will alone be necessary, either for comfort or ornament, if the walls or ceilings are properly decorated, and sufficient furniture of good partern and a few pleasing pictures are introduced. The following is a style
of parquetry that is elegant enough for any house, large or small. It is of course more costly than ordinary flooring, but it is not beyond the reach of persons of moderate means, especially if they conclude to economize in the matter of carpets.

Even this, however, may involve an outlay that some can not afford, and we accordingly suggest the following as being less expensive, and scarcely less elegant.

This floor may be made either of one wood, or of two kinds-a light and a dark laid alternately. If this is too costly, and a variety is still desired, every alternate board may be stained, so as to look very nearly as well as genuine dark wood. Such a floor as this. smoothly planed and well oiled, is very stylish, and is not difficult to keep clean-indeed, so far as cleanliness is concerned, an uncovered floor has many advantages over a carpeted one. In Europe parquetry floors are polished by being frequently rubbed with wax, and they are much more beautiful when treated in that manner than they are when simply oiled. We need not expect, however, that waxed floors will be common in this country until the servant girl problem is nearer a satisfactory solution than it appears to be at present.-To-Day.

TREE PROTECTOR.

Mr. Charles Ayers, of Farmington Center, Wis., has recently patented the device shown in ourillustration, for protecting the bark of trees against gnawing animals, boring insects, and the worms which climb and destroy leaves and branches. The invention consists in a wrapper of wire gauze or other reticulated substance provided with rib substance, provided with ribs inside to rest against the tree, holding it therefrom, so as to allow a space for the cir culation of the air. Thisen velope is made large enough to overlap considerably, so as to allow of the growth of the tree, and is held together by elastic fastenings. Thelow er end is sunk a few inches into the ground and packed with wood ashes. For a short distance above the surface, a cuating of tar or other adhe coave material is applied, to which insects will stick, to which the the Above the tar, the wire is painted to protect it from the weather.
This device will be appreciated by all farmers and nurserymen. to whom the beauty of the foliage of the trees and the immunity from damage of fruit are impor

tant considerations. Patented February 11, 1873.

M. Aberlin, of Stockholm, places children afflicted with capillary bronchitis or croup in small rooms where there are vessels in which water is kept continually boiling. This treatment, it is stated, if prolonged for days or even weeks, eventually produces a cure. The mortality from the disease in Paris, Les Mondes says, has been thus reduced from 48 to 18 per cent.

Lye, ofl, and sugar is the latest patented compound to prevent boiler incrustation.

The American Railway Master Mechanics' Association meets this year at Baltimore, Maryland, May 13. The subjects to be reported on and discussed are

1. Locomotive Boiler Construction.
2. The Operation and Management of Locomotive Boilers, including the Purification of Water.
3. The Comparative Value of Anthracite Coal, Bituminou Coal and Wood for Generating Steam in Locomotives.
4. The Construction, Operation and Cost of Maintaining Continuous Train Brakes.
5. The Relative Cost of Operating Roads of Gages of feet 6 inches or less, and those of the ordinary 4 feet 8 inches Gage.
6. The Construction and Operation of Solid-end Connecting Rods for Locomotives.
. Resistance of Trains on Straight and Curved Tracks, and on Wide and Narrow Gage Roads and with Four and Six Wheeled Trucks, and with Long and Short Wheel Bases. 8. The Efficiency of Check or Safety Chains on Engine, Tender and Car Trucks in Lessening the Danger Resulting from Running Off the Track.
7. The Machinery for Removing Snow from the Track.
8. The Machinery and Appliances for Supplying Fue 10. The Machinery and
and Water to Locomotives.
9. The Machinery and Appliances for Removing Wrecks and Erecting Bridges.
10. The Best Form and Proportion of Axles for Cars and Locomotives, also whether there is anything to be gained by the use of Compound Axles and Loose Wheels.
11. Anti-Friction Valves and Valve Gearing.
12. Compression Brakes.
13. Steel Tires.

Tidal Power Machine,

A practical trial recently took place in Brooklyn of Edward W. Morton's maehine worked by the rise and fall of the tide, the power thus derived to be utilized for mechanical purposes. The contrivance was tried at the foot of South Tenth street, East River, before a large number of persons interested. The machine works by means of a "float," which as it rises and falls with the waves or the tide, propels the
machinery to which it may be attached. At the trial it was machinery to which it may be attached. At the trial it was
geared to a saw, and worked with the full rapidity of a cirgeared to a saw, and worked with the full rapidity of a cir-
cular saw run by steam.power, although, perhaps, not quite so uniformly.

Professor Henneberg, in a recent sanitary report made at Cassel, makes some observations of a practical interest with regard to water consumption by animals. In the vital process, the water perspiration (by lungs and skin) is in proportion to the water consumption. With increasing per spiration, moreover, there is an increased formation of car bonic acid, and (therefore) consumption of carbon. Hence
the more water is taken, the less carbon containing food is the more water is taken, the less carbon containing food is
utilized for nutrition. Further, the more water drunk by an animal, the more albumen is discharged by the urine. It is, on these accounts, uneconomical and injurious to give an imals large quantities of water with their food, or to allow them to perspire in hot stables, etc. Bipeds as well as horses will take notice.

By a new railway law in Massachusetts, all roads communicating with Boston are obliged to run early morning and evening trains for the benefit of workmen, at reduced rates. The working men's train on the Eastern Railroad now runs six cars instead of two, with which it began. The only law of this kind in New York State is the clause contained in the charter of the Broadway Underground Railway, New York city, which fixes a low fare between the hours of 5 and 7, morning and evening.

The Japanese Government has founded a College of Engineers at Yeddo, in which natives of Japan are to be thoroughly instructed in technology and practical engineering. Professor Henry Dyer, formerly of the University of Glasgow, Scotland, has been appointed chief of the new institute. Several other prominent English professors are to assist him. Japan is making rapid strides in theacquisition of practical arts and knowledge.

The postal cars are to be run directly into the basement of the new Post Office building in Boston. The new Post Office building in New York was also constructed, so far as the basement portion is concerned, with special reference to the running of the postal cars over the Broadway Underhas a front of three hundred and forty feet on Broadway.

At a convention in which twenty-seven trades' unions were represented, recently held in New York city, it was resolved to postpone the contemplated strike for eight hours until 1874.

A bill is before the New York legislature to authorize the formation of a corps of sappers and miners, with power to blow up buildings during an extensive conflagration
A. Birney, of Jersey city, N. J., has patented a new mode of using coal dust as fuel. He blows it into the fire by air pressure, through perforations in the grate bars, which are
hollow. hollow.
ON Church Island, which stands in the middle of Salt Lake, some veins of copper ore have been discovered. If silver could only be found, the salt now wasted on the desert air might be made useful.

NEW BOOKS AND PUBLICATIONS.

wning's Cottage Residences. By A. J. Downing. New
Edition. Edited by George Harney, Architect, etc. Illustrated by numerous Engravings. New York: John Wiley \& Son, 15 Astor Place.
On another page of the present issue, the reader will find a selection of attage destgns taken from this excellent work, which may be considered its pages. Many of the structures represented have been erected in various parts of the country, so that the author draws from actual experience for the advice and information which he gives relative to their proper construc tion. Each design-there are twenty-etght in all-is accompanted by plans
and such other figures as are necessary to exhblit the details of the work, and such other figures as are necessary to exhiblt the details of the work,
together with general spectilcations and bunlder's estimates of cost. In
In together with general specitications and bullder's estimates of cost. In
addition to describing the dwelling itself, the author furnishes valuable hints for laying out and decorating the adjoining grounds, glving plans of ent localittes, and, occasionally, sketches of rustlc arbors, furniture, vases and other articles of rural ornamentation. The volume is one which we do not doubt will prove a convenient and reliable hand book to all owners of
country property desirous of learning how to improve and beautify the same in the cheapest and yet most effective manner. It is handsomely bound, finely printed on heavy paper, and is issued generally in the usua excellent style of the well known publishing house from which it emanates.
Protection against Fire, and the Best Means of PutTing Out Fires: with Practical Suggestions for the Security of Life and Property. By Joseph Bird. New
York: Hurd \& Houghton. Cambridge: The Riverside Press.
We have recelved advance sheets of this work, in which many little
known and interesting facts about fires are collected. The book, whe pablished, may be read with interest by the whole community; and the suggestions in It, if not very original, are practical and have been, for the most part, tested in actual conflagrations.
The Poetry of Architecture : Cottage, Villa, etc. To
which is added "Suggestions on Art." By Kata Phusin With Numerous Illustrations. New York : John Wiley \& Son, 15 Astor Place.
Wc have here an æasthetic treatise on the beauty and grace which may be by skiliful hauds, given to the cheapest and lowilest forms of house build
ing. The publishers attribute the authorship of the work to Mr. Ruskin ing. The pubishers attribute the authorship of the work to Mr. Ruskin
and the inimitable style in which it is written will justify the assertion The originality of idea throughout the whole book shows that it is the pro uction of a practical man and a practised writer.
Compound Metallic Columns, of either Wrought of
Cast Iron, for Building Purposes. Illustrated. By
John A. Kay, Architect and Civil Engineer. St. Louis
H. R. Hildreth, Olive and Second Streets.

We published, on page 47 of our current volume, the system and design o
Mr. Kay's improvements in fron bullding. The author has in the publice tion now before us, given an elaborate deacription of his invent pabica has added tables and data by which architects can adapt them to bullding of all sizes and for all purposes.

DECISIONS OF THE COURTS.

United States Circuit Court.---Southern District of
New York. Patent por et al.-8ANE Vs. BAME.
quity.

Inventions Patented in England by Americans.
[Complled from the Commissioners of Patents' Journal.] Frome April 14 to April 17, 1873 , inclusive. Cliping Machins.-J. W. Guernsey, Winchester, Mass.
Cutting Screw Threads.-P. Hickey, Auburn, N. F . Equilition Piston Vave-T. Critchlow (of Boldwin. PరMPING MACHINER Y.-E. Cope et all.. Hamilton, ohio.
RAIIING Weigits, tro.T. A. Weston, Ridgewood, N. Raising Wrights, kTc.-T. A. Weston, Ridgewood, N. J.
Triegraph.-M. Gally, Rochester, N. Y.

Trimming Boot Solese, etc.-s. H. Hodges, Lynn, Mass., et al.

zecent Gurcricau aud farcigu ceatents.

Improved Ant Trap.
Theodore G. Ames, Kosse, Texas.-This invention relates to a new annu
lar sheet metal pan arranged so that it can be used advantageously for the purpose of catching ants. In use this trap is placed upon the ground over
and around an ant hill, and earth is plled around. Within the trap moist soll is by preference piled, the moisture belng for the purpose of not chok entrance to the hill may, or will, pass over the upper edge and drop into an annular chamber, and all those attempting to leave the hill will pass into
the same chamber. On the smooth metallic inner fuces of these plates asthe same chamber. On the smooth metallic inner fuces of these plates as-
cent will be impossibie to the ants, and they therefore will be securely caught and retalned.
Improved Adjusting Attachment to Reversing Levers, etc
George W . Jordan, Passaic, N . J.-Thts invention consists of a worm wheel and turning gear to work it, and a toothed face on the quadrant ba for holding the lever of a reversing apparatus, throttle valve, and the like levers, so comblned with the lever and the sald holding bar that the lever can be shifted by the worm when it is desired to adjust it nicely, while at the same time the worm wheel, which also serves for the holding catch, ordinary catch is, when the principal lever is to be shifted to any consider able extent.
Improved Collar.
Andrew Flatley, Brooklyn, N. Y.-This invention has for its object to improve the construction of linen and other collars to adapt them to recelve
an ornamental clasp. The invention consists in forming an obtuse sallent an ornamental clasp. The invention consists in forming an obtuse salient
angle on each of the inner sides of the lappets of a "Byron " collar, thus forming a triangular space avove and below the same when the collar it adjusted for wear.

Improved Ash Sifter.
Samuel Smith, Brooklyn, N. Y.-This inventor proposes to furnish to the
public an ash sifter supplied with a mechanism by which the dust so annoy public an ash sifter supplied with a mechanism by which the dust so annoy
ing in sifting is entirely obviated, and at the same timethe danger of fire incl dent to the present mode entirely avolded. In using this sifter the main vessel is uncovered, the sieve with the ashes to be sifted is placed on the lugs made within, the cover replaced, the hand hever inserted through a slot Into the holes provided in the sleve and projecting band, then the sleve is
thoroughly shaken till the pleces of coal and ashes are separated, when the hand lever is taken out, the vessel uncovered, the sieve with the unburned coal remove
carting off.

John C.Meehan, Spring imeld, Mass.-The Invention cons
tinguishers. A pipe, connecting with the boin the improve in which steam is maintained, is arranged to extend around the room. ant dire is arranged with a cap, having several nozzles pointing in differ alve is open. to hold the valve shut by a stick placed under its free end, and resting oo n adjustable seat. This stick is hollow, and flled with powder or other bout the room, and so disposed the connects, which is wo be so in be ignted oulckly in case of frre in the room and explode the stick, so as to free the valve and allow the
steam to open It and escape into the room. A bell cord 18 attached to an steam to open it and escape into the room. A bell cord is attached to an extension

Improvement in Incasing Caustic Alkali.
W. Humphrey, Pompey, assignor to himself and J. Munr
George w. Humphrey, Pompey, assigior to himself and J. Munroe Taylor New York city.- This invention consists of an Improvement in the mode of sa to secure it most perfectly against atmospheric deterioration and del uescence, which also renders its highly corrosive nature harmless. The
inventor uses for this purpose india rubber cloth, cut into sultable size vientor uses for this purpose india rubber cloth, cut into suitable size ommon Manilla pape

Improved Churn Power.
Springfield, Vt.-The object of th
Timproved Churn Power.
Willam A. Lewis, Springfeld, Vt.-The object of this invention is to im
 sists, frst, of a clutch by which two gear wheels are fastened so as to re
volve together. It also consists in the mode of confining the wheels to the arbor. When it is desired to give the dasher a more rapid motion, the one
wheel is detached from the arbor and placed upon a stud, which enables the wo wheels to mesh together and increse the motion of the dasher

Improved Friction Clutch.
Samuel B. Alger, Oswego, N. Y. -This invention has for its object to fur nish an improved friction clutch grasping the pulley promptly and filmly
The invention consists in certain comblnations of parts, as hereinafter described. The loose pulley is kept in place upon the shaft by means of a collar and by the center plece of the clutch, which center plece is keye with said shaft, and is made in the form of a disk of a less diameter than the pulley, and has a wide transverse groove formed across the middle par of its outer side. The stde edges of the center plece are notched at the end
of its transverse groove to recelve blocks, the ends of which are plvoted to the outer edges of the plates of expanding arms. The outer edges of the ptvoted blocks are curved to correspond with the curve of the flange or or plivoted blocks are curved to correspond with the curve of the flange or of
the pulley, and are, with the groove, formedin the inner surface. This construction gives a greater friction surface to the clutch, and enables it to grasp and hold the pulley more firmly. Double plates are arranged, the
edges of which are slightly inclined to fit squarely against the inclined sides of the wedge keys, which are driven between sald edges to enable the wear of the clutch to be conveniently taken up. The plates are so secured to gether that the arms may be readlly contracted and expanded, as may b
required. The expanding arms can be readlly attached and detached. Improved Washing Machine.
Price C. Dillan, Villisca, Iowa.-This invention has for its object to furnish an improved machine for washing clothes quickly ond thoroughly, an without injuring them, and the apparatus may be used as a receptacl
for unwashed clothes and as a wash stand. The invention consists the combination of a concave stationary rubbing sarface, and a vibrating rubber of corresponding form, plvoted in slotted bars, which are provided with lateral arms or extensions, hinged to the side of the tub or box so that the rubber may move up and down to adjust itself to the thickness of th
clothes. By suitable arraugements the rubber can be conventently turne clothes. By suctabe for the ready insertion and removal of the cluthes. The machine ma be $ө$ perated when desired by a person sitting at the end of the box, the ce operat which may be turned back into a horizontal position to serve as a
table to hold the clothes when being put into and removed from the ma table to
chine.

Improved Horse Power.

 This invention has for its object to furnish an inproved horse power for driving cotton gins and other light machinery. To the middle part of the
base of the frame of the machine is attached a step in which a plvot forme upon the lower end of a vertical shaft revolves. The upper cnd of the shaf shaft is attached a sweep, to the end of which the power is applied. To the shaft and sweep is attached a large horizontal wheel which gears wit another wheel attached to a horizontal shaft of which the bearings silde up
and down in rooves in the inner sides of upright bars attached to and down in grooves in the inner sides of upright bars attached to the uppe part of the frame. By adjusting wedges the sald bearings may be adjusted a
required. The teeth of the gear wheel also mesh into the teeth of anothe small gear wheel attached to a shaft to which is attached the band wheel from which the power is taken to the machinery to be driven. By this con struction, the power, beting applied to the large wheel, is applied at grea advantage, so that more work may be done with a less expenditure of pow er than with machines
Improvement in Extracting the Juices of Sugar Cane, etc.
George Wilkinson, Antonte L. Possoz, Jean P. Lafargue and Auguste E. Dutreth, Paris, France.-This invention is a process and apparatus for ex tracting juice from cane and other sugar-containing matter. The cane in the form of chlps is fed continuously through vats provided with agitator which carry the chips back and forth. The liquid forming the extract is, by the arrangement, constantly becoming stronger, as the nevily admitted Hiquid comes first into contact with the spent chips of cane or other mate
rial. The inventors claim: 1 . The mode of extracting the saccharine mat rial. The inventors clam: . The mode of extracting the saccharine, whe
ter of cane and other saccharine substances, by subjecting the same, whe suitably prepared or divided, to the action of heated saccharine jutce, fo lowed by washing in a mixture of dilute juice and pure water, said opera two or more who or more macerators, substantially such as described, into and throug
which the prepared cane or other saccharine substance is successively passed, as set forth, the liquils with which sald substance is treated during its passage through sald macerators betng obtained and supplied to and
discharged from sald macerators. 3. An apparatus for extracting the discharged from sald macerators. 3. An apparatus for extracting the
juices of sugar cane and other saccharine vegetable substances, the parts of juices of sugar cane and other saccharine vegetable substances,
which are constructed, comblned and arranged for operation.
:Improved Upright Piano Action.
George C. Manner, Mott Haven, N. Y.-This invention is an improvemen ction is adapted to upright planos. The improvement consists mainly in the arrangement of hammer and rebound cushion with the main lever of the French action on which the key operates. The damper, which, in posi tion of rest 18 held by a spring constantly against the cord, is supported on a lever by a sllding rod so that when said lever is swung up by the action of
the keyit will in the first place act upon the hammer, secondly, push the damper off the cord, and, thirdly, carry a cushion forward to recelve the damper off the cord, and, thiray, carry a
hammer when it drops back from the cord.

Improved Machine for Cutting Hoops
Augustus G. Parkhurst, Appleton, Wis.-This invention relates to a new ip wovement in machines for cutng beveled pleced or sheets from block of wood; and consists in the arrangement of the cutting knives in a silding
frame. The plece of wood to becut is placed on a bed, against vertical ribs and between adjustable pleces. Short knives are arranged which may be set to any required angle with a long knife. As the knives are brough down upon the piece of wood; the ends are cut to a bevel simultaneously and then the sheet which is cut from the plece by the lony knife will be
evenly beveled at each end, so that they may be lapped on each other and evenly beveled at each end, so that they may be lapped on each oth

Improvement in Dental Gold.
R. S. Williams, New York city.-In this invention, two plain foll with an outer sheet of frosted gold are rolled into a cyinner ove
a mandrel, and the lapping edge of foll caused to adhere by passing it ove the flame of an alcohol lamp. The frosted gold, by its greater stifness, w1 the flame of an alcohol lamp. The frosted gold, by its great
prevent the several folds forming the coll from adhering.

Improved Washing Machine.
$\begin{gathered}\text { George Seymor, Boone, Iowa.- This invention has for its object to fur- } \\ \text { nish an improved washing machine. The stles and bottom of the tub are }\end{gathered}$ made of sheet metal, the end edges of which are bent over the curved
edges of the lower parts of the vertical ends. The upper edges of the sheet metal are secured to bars attached to the lower edges of the upper
side parts of the ends which project beyond the curved sides to enlarge the
 upper part ort
ani ends. To a bar at one side of the tub 18 attached a board, to serve as a
she shelf and also to prevent the water from spattering out. To another bar
to attacheed an ordinaryruboby board to enable such partof the clothe as
may be very much solled to be rubbed by hand. In the iner surface of the
 ends paralile with and at a little distance from the sheet metal plate is
formed a groove, which, at the side of the tub next the rubber board exformed a groove, which, at the side of the tub next the rubber board ex.
tends up to the upper edge of the sald ends. Rollers, which are made in the form of cyllinders with longitudinal grooves formed in them, are

 pletely over at each stroke

Improved Churn.
Henry A. Hincheer, Hustonville, Ky.-This invention has for its object to furnith an improved churning apparatus. The mode of operation of this Invention is as follows: As the dagher moves down and expresses the
cream,througha a cyllinder within the churn, at stile pertorations which are below the dasher and at the open and ralsed end of sald cyllinder, the vacu-
umereateu above the piston is filled $b y$ the ingress of cream from upper um createu above the piston is filled by the fngress of cream from upper
part of churn. The strokes of the dasher following one another in quick part of churn. . Trulation of the cream in currents, in and out of cyllinder, 18 produced and continuously maintained untll the butter comes.

> Improved Door Spring. Mount Desert, Me.-This invent

Leonard J. Higging, Mount Desert, Me..-This invention relates to springs
for closing door and gates ; and consists in the mode of applytng the arm or for closing door and gates; and consitts in the mode of applytng the arm or
lever which connects the spiral spring shst with the door or gate, sald ar ar lever which connects the spiral spring shyft with the door or gate, , ald ar
rangement allowing the tension of the spring to be varied to prevent slamImproved Litting Jack.
James S. Haldeman, Kansas city, Mo., asignor to hmself and Harry E. Clark, of same place.- This Invention has for its ob ject to furnish an im-
proved jack for ilitting heavy welghts, which shall readly adjuss itself to proved jack forlifting heady welights, which shail readdy adjus. itseerf to
the movement of the end of the heavy body betur raised. Tolugs orined upon the upper side of the foot plate are plvoted the lower ends of two
barg, the upper ends of which are connected and held in proper relative pobars, the upper ends of which are connected and held in proper relative po-
sittons by pins which pass through lugs formed upon the eages of sald up. per onds. The front pth ts provided with a roller to prevent friction as the

 lower end of the lifting bar is forned a shoulder or ortep upon which the ob-
lect to be ratsed rests, and upon the rear side of the bar are formed ratchet teeth to recelve the end of the operating lever' to ralse the body. The lever is passed through a loop or stirrup pivoted to the rear pin to serve as a fulcrum. A pawis 1 pivoted to the rear ptn and is held forward againast
the teeth by a spring, to hold the lifting bar in place while the lever is beting adusted for another stroke. Upon the pawl is formed a projecting
hook

Mimproved Rice Hiller.
Milton E. Stacy, Thomaville, Ga. Ghe Invention consists in the im-
provement of rice hullers. The bed or mortar is made of a single block of provement of rite hullers. The beedor mortar is made of a single bloctio
wood or of several blocks secured to each other. In the upper side of the bed is formed a ring groove, the tnner side of whith inclines toward the
centerand the outer side rises more abruptly. The block or bed is sur center and the outer side rises more abruptly. The block or bed is sur.
rounded by a frame or crib. A Ahaft pasees through and works in a hole in
 chtine below and above, belng so arrangec that the eshart may move up
and down, as more or less rice mey be in the groove. To the shatt above and down, as more or les ritee mey be in the grove. To the shaft a hove
the bed are attached radial arms, to the ends of Which are plvoted wheels
In such positlons as to oroll along the ering groove and operate upon the rice
 to push the rice from the inclined midale part of the bed down into the groove, so that all parts of the rice may be operated by the wheels. Whth
one or both the arma ts connected a scraper to smooth down the rice in the
 fed into the groove from a hopper. In one or more points a discharge open. Ing is formed in the bed through which the rice when halled is drawn uff and which is closed with a gate.
Improved Furniture Caster.
Cevedra B. Sheldon, New York, N. Y.-The above inventor has recently
patented three inventions relating to the construction of casters for furpatented three inventions relating to the construction of casters for furThe frrst conssists in a conical shaped cupp, made of a single plece of metal, with an enlargement or channel around the base, and with a cavity at the center or apex. A series of friction balls are arranged around the caster
ball, and the screw is fastened to the shell of the caster by means of a square head and a cup shaped nut, which nut screws, by means of an Independent screw thread on body of the screw, down on the back of the shell. An elas-
tic lining is provided between the cup and the casing to prevent their contact and lessen noise. The object of the second invention isito Improve the tact and lessen noise. The object of the second invention is, to improve the
means of protecting trunk casters from injury; and it consists in securing
the cup, in which the caster ball is placed and customarily revolves, in a the cup, in which the caster ball is placed and customarily revolves, in a
cavity formed in the bottom of the trunk, by means of tongues or clips cavity formed in the bottom of the trunk, by means of tongues or cllps
struck up from the sheet metal, lining sald cavity. The third invention con-
sists in the arrangement of a series of friction balls in a casing on and above the stand and between sald stand and the cap or socket that is applied to the stand and between said stand and the cap or socket hatis appled to
the furntiure leg, the construction being such that the friction is greatly
reduced and the caster wheel made to readily turn and conform to the motion of the plece of furniture moved.

Improved Moth Trap for Bee Hives.
Pleasant Hill, Mo.-This inventioal consists
Leroy Gates, Pleasant Hill, Mo.-This invention consists in a new construction of moth box or trap. The base is attached to the brood chamber by hooks. The top of the moth trap forms the lighting shelf or platform
for the bees, directly beneath which are the moth entrances. Inclined planes are arranged down which the moths side to the cester, which center is or both, by means of which the moths are destroyed. The comb cuttings from the brood chamber pass down through an orifice in the top into the
moth trap. The bottom of the brood chamber has an orifice of simllar size covered with wire gauze, to prevent millers reaching the upper chamber of the bive. The comb frames stand vertically and sille in from
the rear on ratsed wires. Fach frame nas a groove in its bottom to receive the rear on ralsed wires. Each frame nas a groove in its bottom to receive
the wire, and on top a profecting wire at each end. At one end the wire enters the front of the hive; at the other end it receives a hinged sirap of
iron, which is perforated for each wire. The frames are held in a vertical iron, which is perforated
position by this means.
Improved Basket.
William C. Higgins, North Blandford, Masse. The object of this invention
is to furnish a strong and durable basket-one which, while being elastic is to furnish a strong and durable basket-one which, while being elastic
and yilding, will retain its shape and still be light and handy to use. The body of an ordinary basket is of any desired size and form. The outer
stays extend across the bottom and to the top of the basket. The inner stays extend across the bottom and to the top of the basket. The inner
and outer stays are arranged opposite each other, and are, consequently, equal in number, and riveted flrmly together through the basket. A cen. tral band passes around and another band is placed near the bottom of the
device. These bands are within the outer stays, and are confned by a nut device. These bands are within the outer stays, and are confined by a nut nesses, and is securely nalled or riveted to the vertical stays of the basket.
A sectional band fills the space between the outer vertical stays, and gives a smooth finish to the top of the rim. A foundation cross is fitted over and the basket.
 appliced thereto. Wood stringers or sleepers are to be arranged along the thes, and butted together end to end to support the ralls. These etringers are rounded at their upper Inner corner. Angle bar shaped ralls are sup.
ported on these stringers, the part which tis thick and strong being on the ported on these estringers, hhe part which Is thick and stron being on th
top to recelve the treads of the wheels, and the part which 1 t thin and light the flanges and on the Instide of the stringer to receive the lateral thrust o rounded do correspond to the shape of the tread of a car wheel. A Atrentsth.
ening rib is ormed along the lower edge to prevent the breaking laterally ening riblis formed along the lower edge to prevent the breakling laterally
by the vertical strain. A lip is turned down on the outer edge and forced by the vertleal strain. A A 1 lp is turned down on the outer edge and forcen
into the top of the stringer when the rall 18 ladd, to hold it agalinst working of laterally and in case the bolts work loose ; also, to act in conjunction with the bolts of or colding them on the stringers. A strong fat plate is let into the top of the strIngers flugh with the surface where the ralls meet to
prevent the ends from belng forced finto the wood as they would other
wise be. Improvea Machine for Turning Baxs.
Joseph Martin, New York city. -This invention has for its object to fur
Ish an improvedmachine for turning bags after they have been sewn, an nish an mproved machine for turning bags arter they have been sewn, an
which shall be so constructed as to take the bag after it has been turned and dellver it in a plle upon the platform or table of the machlne. To the
forward part of the table and platform of the machine are attached two uprights, in the tinner sides of whtch, near therl forward adges, ace formed
groves to serve as a way for a frame to move up and down In. To the platiform between the uprights are attached two other uprights to recelve
 Wheels to diminish the fritition as the bags are drawn over sald arns in be-
ing turned. The recelving arms are adjuatably attached to the platform, Ing turned. The recelving arms are adjastably atlached to the platiorm,
so that they may be moved toward or rrom each other, as may be deefred, to aduast them according io the wlath of the bag to be turned. Upon the the bag lis turned and the lower parts of the arms pass below the offset of the reecelving arms, force apart or spread the lower ends of the sald arms
spreading out the bag. The tapes pass around the gulde rollers and dellver spreading out the bag. The tapes pass around the guide rollers and delive
the bag upon the fly, the fingers of which enter the spaces between the tapes as they pass from roller to roller. The fy is operated to deposit

Improved Wheel for Vehicles.

Michael McNalley, Houston, Texas.- The Invention con nits in a one plece
attachment for wooden hubs.
The wooden hub betug turned larger in the midalle, and the grooves for the bars beting cut, a double band is driven on He center of the hub, so that flanges tnclose the spokemortises and support
the spokes as they are driven, Ilkewise preventing the wood from checkiug he spokes as they are driven, 1 , 1 kewlise preventing the wood from checklug,
Thus, while the spoke tenons will be in contact with the wood, the latter
 and durability of thetr sockets or mortises will be attained. The shoulders
of the spokes rest both on the wood and metal bars, thereby insuring a frm of the spokes rest both on the wood and metal bars, thereby insuring a frm
and enduring yet measurably elastic support.
Improved Lubricating Compound.
Ethan A. Tonner, St. Louls, Mo.-The object of this invention is to fur nish a lubricant for car axles and other purposes, which consists of tallow
ofl, Tripoll, and lamp olack. These ingredients are thoroughly mixed to gether after the tallow wis reduced to a allquild stat teby the application of heat The Tripol and lamp black polish the journal, while the tallow and ofl lu

bricate it.

Improved Furnace Block Press.
Alfred Hall, Perth Amboy, N. J. -The object in this invention is to var single mold, and to so arrange the machine or prese that the labor will be
greatly diminished and the blocks be pressed in a more complete and work. manilike manner. The invention consistst in aduastableplungers and change able bearing presser knobs. The movement of the preser bars 18 silght,
but powertul. The pressure is given at each edge of the block, and, whit but powerful. The pressure is given at each edge of the block, and, whill
the thickness is governed by the depth of the mold, the edges are made to conform to the postion of the plungers. Atter the block is pressed it 18 shoved trom the mold by moving up a plunger, and is taken from the plat.
form by hand, when another block is placed upon the platform, and the op. eration 18 repeated. The preses 18 operated
levers - who put on and take of the blocks.

Amos Deweesc, Oak Mills, Kansass.-This invent

class of dexices or apparatus for closing the entran mpovement In hives simultaneousily. The improvement, constits, frrst, in arranging the
sild stand in the place of the usual allighting board; and, second, in a peculia manner of providing the gates with wire gauze ven
the bee entrances are closed, air may be admitted.

Improved Harvester.
Richard A. Roberts, Sallsbury, Mo.-This invention has for its object to improve the construction of animproved harvester dropper for whtch , let
ters patent No. 128,544 were granted to the same inventor July 2 , 1872 . The Anger bar which is hinged or jointed 18 secured to the erain divider, and the
bar 18 supported at or near Its hinge by a shoe. The inner end of the bar is connccted with the frame of the machine. The platform upon which the
crain falls 18 formed of a number of palra of parallel slats. The outer of the slats are secured to the grain divider, and thelr inner ends are con nected with and supported by bars or a framework attached to the frame work of the harvester. To belts are attached teeth, prongs, or flugers of such a leng th as to pass through the slots between the slats and rise above
said slatat sufflctently to to take hold of the cut grain and carry it across the sald slats sufflctently to take hold of the cut grain and carry y across the
plattorm and ap the tnclined part of said plattorm to the dropper. Curved ing operated to drop the gavel to the ground

Improved Washing Machine.
gan, McKinney, Texas -This invention
Willam E. Millegan, McKinney, Texas.-This invention has for its object to ournish n in liproved washing machine which shall wash the clothes
quickly and thoroughly, and without Injuriug them. In using this machine a lever is ratsed to bring the rubber block to the upper part of the wash
board ; a part of the clothes which have been previously soaped and placed In the water in the box is drawn up and spread over the lower part of the
 is washed clean, a bucket, each time the lever is ralised, bringing up water
from the lower part of the box to wet the clothes while belng operated
from th
upon.
Improved Wardrobe Bedstead.
Richard W. Frost, New York city.-The Invention consists in the improve ment of wardrobe bedsteads. The case for Inclosing the bed is constructed
in the form of a bureau, and has a drawer in the upper part, and a detacha able front below, which closes the entrance to the space for inclosing the
bed. The matrese is hinged to the botom the the bed. The mattress i 1 hinged to the bottom of the case and is divided at the
maddele longitudunally In two sections tn order to fold short. The sections down flat on the bottom when the bed is folded un, and have applances fo bracing them wien supporting the bed. When folded up, the parts will be secured by hooks and eyes.

Improved Scarf Ring.
John Haack, Hoboken, N. J., and Salntemme Diolot, New York celty.-The
object of this invention is to supply a scarf ring which, in a neat and effl
 hinged to it,which supports a hook-1like pin entering, througha perforation to the Interior of the ring, and plercing the article to which it is applied ahering securely thereto.

Improved Blacking Brush.
 strengthen and render more durable the brush used for blactitng boots and
shoes, and it consist in a a blacking brusl having the supply brush, polisher and hande Jointed to gether by dovetall tongue and groove, Instead of belug
attached by screws as ordinarilly.

Improved Horse Hay Rake.
Richard B. Sheldon, Canastota, N. Y . - This invention rnish an tmproved sulky or riding horse hay rake, whits object to structed that tt may be readily controlled by the operator. The invention Consisin in thivoted pawis, in combination with the ratenet whell ake: In the hinged form of the semilcircular T grooved plece. and in a semil
 hay rake, in order that the welght will always be diractly over the axis of
the axle, whatever may be the position of the operating parts of the machine: in arrangements to throw said pawls silo gear witli the ratchet
wheels : and also devices to throw sald pawls out of gear with the ratchet Wheels: and aliso devices to throw sald pawlis out of gear with the ratehet
wheels of the drive'wheels automatically. The former pawl mechanism Whels of the drive wheels automatically. The former pawl mechanism
projects the pawls into contact wth the ratchet wheels, so that the revolu projects he phweels may raise the rake teeth to dump the load. The latter,
tion of the wheels rawing the pawls rom the the ground from thelr own welght. By seltable arrangements, by pressilig
lownward and forward upon the upper end of a lever, the rake teeth will be held down frmily to thelr work. By moving the upper end of the lever to
the rearward and pressing 1 t downward, the teeth will be ralsed from the tround for conventence tn passing over any obstruction. A button man ye
turned o holl the teett away from te ground for conventence in passing rom place to place.
Jomprovenent in the Manufacture of Traveling Bng Frames James B. Blaksele and Charles F. Blakslee, St. Petersburg, Pa.-For mak
ng the sheet metal angle bars comprising the frames for the top and ende traveling bagg, the inventors propose to take a fat strip of metal of the eugth required and wide enough for the two bars of a bag, and arrat punch
the holes for sewing the cloth or leather portions of the bags to them, and shape the ends for the blanks of the hinges, to be subsequentiy completed
for jolnting the ends of the trames together. The suripg are then bent tuto Or jinting the ends of the frames together. The strip are then bent Iut
roper form by dies which are male and female, in the orm of right angle ocks with beyeled stdes are male and fomale, in the form or rightangle gles of the beveled sides than the preceding set.

Improved Rotary Printiug Press.

Calvert B. Cottrell. Westerly, R. I.-In continuously revolving cylluder shets on the cyliner. The diffucuty s: ovitig to the high speed of the gripers when they close upon the paier, which is at rest, the pripers
heing on the cylinder and revolving with it, and the paper Isting ol the table, hich causes the gripers to silip a ilttie on the paper while closing upon and before seizing it with sufflclent force to overcome the visi inertia and
ee it tn motion. This sllppagevaries with every variation of the speed of the cylinder; also, with different conditions of the paper and by other Luses. It 19proposed to overcome the difflculty by having the gripers ceas rest, or nearly so, relatively to the cyllinder winle closing upon the paper nd also be gaged relatively to the paper at the same time by the instri he table whereon the sheets of paperare presented to the ripers that th latter will always come to the paper exactly the same, irrespective of the speed of the cyllinder. To this end, the gripers swing or slide or otherwise
nove forward on the cylinder just before coming to the place tor taking the aper-say at the time of discharging or releasing the printed sheet-8o a
 hem to gripe it frmly and securely, and always in the same relation to the rable before beling set in motion with the cylinder again.
Improved Combined Bureau, Wasil Stand, and Wardrobe,
Thomas W. Moore. New Tork city, asilgnor to Fannte N. Moore, of sam place.-This invention consists of an upright wood case, duvided vertically
in two principal compartments, one of which 1s devoted to the purposes of a two princtpal compartments, one of which 1s devoted to the purposes or , by preference, devoted to the purposes of a wardrobe, but may hav wash bowl and the soap dish, which swing out from under the drawc above when a door which Incloses the frout is opened; also, with spectal
places for the other articles of crookery ware apperataining to a dressing places for the other artilece of croskery ware appertianning to a dressing
room. A door is also provided for the wardrobe wheu uscd as such. The ject ts to combine elther two or three of the principyal aritclese of the fu-
$=\mathrm{m}=\mathrm{m}=\mathrm{m}$
Improved Rock Drilling Machine.
Ferainand Joonson, Tolece, onic.-- hie object or his invention is to construct a drill for borng for water or oil, which, by a rapld succession of eeasily ratised and lowered as the exigencles of the work require it. The mparts a strong force to the amme in connection with grooved rollers with a silde arrangement for the purpose of liftling and gulding the drill.
Walter J. Morrs, New York city, This inventio
 nent hammer working behtninat the breech of the barrel or recoll block an Stwen the sides of the lock or sides of tine feed arms. The invention com .ises a cover, over the lock and the opening in the breech block harl
 mer for throwing of any objects lodiging on the cover. To stop the ham-
 the fring point from wedging in or striking aga.nst the walls of the opening
through the recoll block, the hammer is made inside of the lock, so that whough the recoil block, the hammer is made instac or the lock, so

Improved Feeder and Filter for Boilers.
 eed water supplied to them. The invention consistas, more particularly, in the arrangement, within tanks that contain the feed water, of a fixexibl
गrece of plpe which tis connected with floais that hold the end of sad plpe the upjer and therefore purer part of the water contand within sal tanks, 合o that the water fiowing through such fiexible pipes into the boiler
will be comparatively pure, inasmuch as the seaiment settled within such will be comparatvely pure, inasmuch as the sediment settled within such
tanks will not be allowed to enter the pipes. The invention also cousists tanks will not be allowed to enter the plpes. The Invention aliso consists
in the arrangement of stirring devices within such tanks, for agtiating and In the arrangement of stiring devices within such tanks, for agitating and
stiring the eadiment that will settle on the bottom of the tanks, so that irms the accumulated impurtites.

Improved Thill Coupling

John Martin, Henry city, Ill.-The invention consists it a thill coupling ing through, so that when it wears
makes the coupling tight and frm.
Improved Oiler.
Cyrus E.Grandy and Ziba B. Grandy, Stafford Springs, Conn., assignors to emselves and willam D. Heald, of same place.-This invention consisit of an ofl vessel into which wxtends a tube. Within the tube is a second
tube, the lower end of which is closed. The Arst tube has oritices made in It, near the point of its junction with and inside the vessel. The inner tube sliding within is arranged in connection with a lever and spring so that it
may be operated from without too open and close sald orificee and so to allow prevent the

Improved Strap for Street Cars.
, Philadelphia, Pa.-The object of this inv
Mahlon Warne, Philadelphat, Pa..-The object of this inventlon is to fur
Leh an Improved form of hand support for passengers o stand in street or other railway cars or omnibuses, so constructed that it hall also serve as an advertising medium; and it consists in a metallic
rame (Incldentally adapted for contalning advertisements) suspended from the hand rail by a swivel connection, and in a hand strap attached thereto The frame is so constructed that the cards or advertisem
lly changed from time to time, as may be found necessary.

Wanted-The address of parties who can
make anrst class small iron castungs and do Galvanzing. Address C. L. T., P. O. Box 733, New York

Abbe's Boit Headering Machines, latest and | best. For cuts, prices |
| :--- |
| $\&$ Co., Manchester, N. |

The Ellis Vapor Engines, with late improve-
Fitchburg, Mas8.
Patent for
all other Tables.
Adde-Foldings J. Quevededo, 1555 Dean Street, Brooklyn, N. Y. G .
Gear, Boston, Mass., sells Improved Mechancas, Contrivancees.
Amongs the matters now stirring the minds of the people is the new method of Curing Rupture. The the most violent exercise; is worn with ease and com.
fort night and day, and not taken off at all tila cure tis reached. Sent by mall everywhere by The Elastic Truss
 $\underset{\text { perintendent In Machnement as }}{\text { Works by a thoroman or practical }}$ (Su engineer and draughtaman: : large experrence home and
West Indies in destigning and erecting general macol-
 son, Mount Yernon, Ohio.
For the best and cheapest small portable En For Circular Saw Mills, with friction feed
Forks, and Stationary Engines, address m . P. Duncan, Bellefonte, Pa.
Shortt's Patent Couplings, Pulleys, Hang-
ers and shatting a specilaty. orders promptiy nlled. Circulars free. Addresa Shortt Mr'g Co.. C. .rthage, N.Y.
 New England Band Saw Machines, cheapest
and best, ouly 8187. For deescriptive cuts, address 3 . c.
 Children can bind grain-Sheaf binder and
bag-tie rights for sale. Address Patent,P.O. Box 4989, N. \mathbf{T}.

 with management of men and care of horses. Has had With management or men and care or horses. Has had
expertence with manchningr, and, when necessary, can
run run an engine, make a stone boat or keep a a set of books.
Can furnish very highest testimonalas as to character
 For Sale-A complete set of Blanchard's
Pat. Plow Hande Machinery, tin perfect order. G. D.
 A Rare Opportunity is offered to Manufac-
turers of Agricultural Implements, to purcaase the Patent and a complete Set of Patterns, Includng Power and
Jack, for a Small Threshing Machnne, with Elghteen Machlnes completed and ready for work. For particu Key Seat Cutting Machine.T.R.Bailey \& Vail. Hydrofluoric Acid, for Etching Glass and
many other purposes. We are the largest makers in this country. Quallty ganaranteed, by 1 .
wanter, 55 cedar Street, New York.
Cheap Wood-Working Machinery. Address
m. B. coohran © Co., Pittburgh, Pa. Wood workmen-Ask your Bookseller for 65 cuts. Only 81.50 .
Standard Spring. Steel Machinist's Rules,
manufactured by The Star Tool Co., Middiletown, conn, the only company that can graduate on spring steel.
Every Rule warranted. C. \mathbf{W}.sweetland, Selling Agent,
 Wanted-The address of parties who will oontract to cut gas retort carbon tint bocks ins. 1ong,
ins. wide, and 44 of an th. thick. Adress, stating price per thousand, Leclanche Battery Co., No. 40 West
18th Street, New York.
 Hammer Dies and Heads, strong and durable, cast to order by Pittsburgh Steel Casting Co. All Pect's Patent Drop Press. For circulars,
address M110, Feck $\&$ Co.,
New Haven, Conn. Royalty-Manu., Mewurers and Inventors,
have your Machnerry, \&c., made in the west tor western nse. Extra Inducements offered by Doty Manufacturing
Company, Janesyrlle, Wis. Stave \& Shingle Machinery. T.R.Bailey \&Vail. Monitor Leather Belting you can always
rely on. Send for Clrcular. C.W.Arny,soi cherry st,.,Phila. 3 Win's Pat. Improved Portable Steam
Brick Machnes. Average 40 per
 t turing Company, Mount Vernon, Ohlo. Oxide of Manganese, best quality, for Steel
and clase Makers, Patent Dryerf, etc. We are Arst hands tor this articlec. Supply any quantity at loweet rates.
L. \& J. W. Feuchtwanger, 55 Cedar Street, New York. Water Glass, Soluble Glass and Silicates, water, damp and mildew proot. Manufactured by L . $\&$ J. W. Feuchtwanger, bs Cedar Street, New York. Buy First \& Pryibil's Bandsaw machines,
which are more used than any other in the country.
 New York city.
Diamond Carbon, of all sizes and shapes, furnishedfor prilling rock, sawing stone, and turaninge emery
wheels or or monds, by John Dcckingon, 64 Nassau St., New York. Hand Fire Engines, Price $\$ 300$ to $\$ 2,000$. Aldill, and Fire furposes.
ect Falls, N. \mathbf{Y}., U. S. A.
The Best Smutter and Separator Combined
n America. Address M. Deal

Damper Regulators and Gage Cocks-F
the best, address Murrill \& Keizer, Baitimore, Ma. Brown's Coalyard Quarry $\&$ Contractors' Ap,
paratua for holsting and conveylingmaterial by Iron cable, The Berryman Heater and Regulator for
Steam Bollers-No one using steam Bollers can aftord to De without them. I. B. Davis \& Co.
Circular Saw Mills, with Lane's Patent Sets; more than $12 x 0$ in operation. Send for deseriptive pam.
phlet and price list. Lane, Pitkin \& Brock, Montpephiet and price
iler, vermont.
Tree
Tre Pruners and Saw Mill Tools, improvee.
ments. Send for circulars. G.A.Prescott,Sandy Hill, N.Y. Five different sizes of Gatling, Guns are now
manufactured at Colt's Armory, Hartiord, Conn. The later sizes have a ralage of orert two
are tndispenababe e tn modern warfare
Steam Fire Engines,R.J.Gould,Newark,N.J. Cabinet Makers' Machinery. T.R.Bailey\&Vail. 40 different Bandsaw machines, 60 turning
 .. New York City.
For best Presses, Dies and Fruit Can Tools,
Bilse $\&$ Willame, cor. of Plymouth \& Jay, Brooklyn,N. T. Gauge Lathe for Cabinet and all kinds of han-
dies. Shaping Machine tor Wood working. T. R. Balley To Let-For Manufacturing, purposes-a night on Morrls Canal and Midand R.R., and but a ahort
distance from the D. D . \& w . and Eric R.R. Address ox 6 at, Ne
Shafting and Pulleys a specialty. Small or-
ders illed on as-good terms as large. D . Fribble $\&$ Coo, New Haven, Conn,
all Fruit-can Tools,Ferracute,Bridgeton,N.J. The Berryman Manuf. Co. make a specialty. Mining, Wrecking, Pumping, Drainage, or
Irrigating Machnery, tor sale or rent. see advertisement,

Hydraulic Presses and Jacks, new and sec-
ond hand. E. Lyon, 70 Grand Street, New York. Machinists- Price List of small Tools free;
Gear Wheels tor Models, Price List tree; Chucks and cear whense
Drills, Price List Iree. Goodnow \& Wightman, 23 The Berryman Steam Trap excels all others.
The best is always the cheapect. Addreses II B. Davis $\&$ Co., Hartford, conn.
Absolutely the best protection against Fire
Babcock Extinguisher. Y. W. Farwell, secretary, 07 Broadwa, New York.
For Solid Wrought-iron Beams, etc., see ad.
tor lithographt etc.
A Suyerior Printing Telegraph Instrument
(the selden Patent), for private end short tines-awarded
 sitton, 182, for "Best Telegraph Instrument for private
 Williamson's Road Steamer and Steam Plow
with rubber Tires.Address D. D. Willamson, 22 Broad way, N. Y., or Box 1899 .
Parties desiring Steam Machinery for quar-
rying stone, address steam Stone Cutter Co.,Rutiand, Vt.
 w. Feuchtwanger, 55 Cedar street, New York.

(2)

S. asks for the best mode of preparing F. E. H. asks for the best means of clean A. R. asks: What can be mixed with clay F. D. H. asks: How can I make good liquid
stains to titate black walnut and oak? A. H. G. asks: How can I stereotype from
wood cuts? metal poured so that ail the ines win be perrect
W . H. . asks: How can I make a water
proof tarpauiln cover to throw over a wagon In case of proof tarpauilin cover tor
H. D. T. asks what kind of varnish is best
for transerring prints on to wood with their various colors be transerred to hard wood? S. asks: Why will a piece of cold iron covf melted iron, while a plece that is not greased will rise to the top?
A. A. asks: Is it safe to carry a pressure of
20 1bs. to the square tich in $\#$ boller well made or $1-16$ Inch copper, the dimensions of the boller beling 12 tinch-
es long 6 n ncenes
E. H. R. says: I have just finished building
brick killn, and I would luke to know what degree of brick kin, and I would like to know what degree or
eat tit will require to dry lumber, such as aflooring, etc.,
R. B. says: I want to paint an engine. There
is a good deal of grease on it, and I want to know: 1 .
 How can getit off best? 2 . What kind of palnt 18 best
to atay on where tit thot? What kind of palnt 18 ueed
to mate nem J. P. H. asks for a practical plan for boring
or scraping out the cylinder of a portable engline, without detaching it from the boller. "Cannot serapera be set in a wooden shaft and on paper backlng to ralse them
to their work, the shast beling turned to fo the cyllinder, which is of $6 \Varangle$ n inches diameter?
J. M. asks: What is the cause that we can-
not keep the wings on a blower which we ase tor clean-

 3 nnches square. The wing are of heasy sheet tron, nined on the the bock; and they tear of the nail heads.
If we put them on with screws, the screws break off
G. W. K. says: I have a number of heavy nusilin or canvas coverngs which ure made waterproor
by beling saturated with bolled linseed oll. The trouble tis

men to pull them apart. What can be put on and mixed
witt the oll to prevent titckling and yet keep them oot enougi to bear folding without tnjury? Is there any-
and inng that 1
$\underset{\text { dents give ua a recipe by which of we can make a sunngle }}{\text { W. }}$ dents give us a recipe by which er can make sangle
roof fireproof? The roof 1 s felt, composition, and sand ; It has been on for 5 years and 18 so much bother to keep
tight that we have to put on a new root.and would much prefer shlngles provided we can make them so that the ar dippling the sinnglesbefore they are ladi.
C. J. . H. asks: : What is the best thing to do
to work an oll deposit most advantageously? lowing are the circumstances: The bore shows about 10
feet of soll, then from 7 to 15 feet of sand saturated with

 and clay continue. The sand ylelds on disttilation about 30 gallons, and, from the bore, a barrel or so or onl 1 pumped dally. Soon: the bore be continued? Would
 superior on. The chaik oil at 60 Fah. siowe
contains very ilttie tarry mater. After once running the gravity was 905, and the analysis showed: Burning oll at 60, gravity $822,23 \cdot 3$ per cent. Heavy (blue) oill
gravity $98,63 \cdot 2$ per cent. Solld parafna, a trace. Los on refning, $2 \cdot 5$; by aclis and alkalles, $8 \cdot 5$; by distillation,

H. S. will find full directions for making roblem by following the instruction on p. 257, vol. 28 ,
THE Boundary Line Bet ween Aritime be solved so well by the arithmetion of by the shat nethod; but there are others which, although they aprea to consist of conditions belonging simply to the feld of arithmettc, require for their solution the algebraic mode of calling
te unknown quantity by some ign, say x, and trating esulting expression after the regular rules taught by the ora; then the oolution, which otherwise is highly intricate becomes \mathbf{a} work of mere manipulation of signs. A problem
of this kind was recently sent us by of this kind was recently sent us by a correspondent of Cam
briah Wis, who states that some persons claim that it is ut terly insoluble, while others think that there to solution only they could find it; he says further that the Norma school at Oshkosh cannot solve it, meaning, we presume that some of the students were unable to do so. The ques-
tion is this: " A merchant has two grade of wheat with 25 ents difference in their value $; \mathbf{a}$ customer buys onedollar' worth of each grade, mixes them, and fnds that he has es
 Call the price per bushel of the chenpest wheat x cents, then pressed in dollars is $\frac{x}{100}$ and $\frac{x+25}{100}$ of a dollar. As now the quantities obtained for the same amount of money are wheat which the customer buys for one dollareeach will $\frac{100}{x}$ and $\frac{100}{x+25}$, and as the two quantities are stated to be 2 bushels, we have the equation $\frac{100}{x}+\frac{100}{x}+25=2$. Bringling hese two fractions under the same denominator, by mul and of the second by x, we obtain $\frac{100 x+2500}{x^{2}+25 x}+\frac{100 x}{x^{2}+25 x}=$
$\frac{200 x+2500}{x^{2}+25 x}=2$. Multiplying each term of this equation
 $100 x+1250=x^{2}+25 x$ or $x^{2}-75 x=1250$. This reduces th
whole problem simply to the solution of this equation of the second degree, which we do by dding to each number the

 $37.5=89 \cdot 04$ cents, which is the price of the inferior whea per bushel; while the better quality costst $89.04+25$ or 114.04 cents. We have given the operation hero with much more
detail than is customary in such solutions, but this is for detail than is customary in such solutions, but this is for
the beneftt of those not very familiar with such algebraic
 the solution: The amount of wheat worth 89.04 cents per bushel, which can be had for one dollar or 100 cents, 1 er erl
dently equal to -1.a\% bushel, and for the same reason, that or14:04 cents is equal to tiono bushel. If now we bring
 is exactly 2 bushels.
J. asks: Will heat affect the attractive
 es the attractlve power of magnets.
ports combuation. Nitrogen does not.
C. J. C. asks for a
trap spring.
1 want tull directions for tor hardenpering and drawing the emper, and the best method of heating
Will a common blackemith' forge answer, or will Lenigharre do?" Answer: Heat to a bright cherry red.
elther in A turnace, so constructed that they will not ome tin contact with the coal or flame, which are liable to contatin sulppur or other base minerals, or they may
be heated over a charcoal or coke ifre. Harden by plunglng, when hot, into a bath of pure whale oil (be very carefull that t1 18 not adulterated). To every gallon
 aillow, and you may add 1 b. pine pitch. Melt the rosin
Arst, then add other Ingredients, and melt together, and stir into the ofl when hot. The veesel contanining the hardening bath should be surrounded with cold water to prevent overheating. Be sure that the springs alwaya Afterhardening, clean off the loose onl with ane saw dust, brushng off that which rematns loose. Then draw
the temper slowly until the oll 1 s all burned offand stepu smoking. This mas be done e best In an open wire cyllin. to that used for roasting peanuts or browning coffee, or It may be done in a well constructed hot blast oven, or
even over a charcoal or coke blaze. Let them cool offlo the atmosphere. The mixture for hardenting can be kept
ter ap by occasionally adding rosin, beeswax and tallow tofirst get the steel hardened tharoughly, without over.
heating or fre cracking fit: then, by drawing it down to
a dead blue, or until the on is burned off. Four years
experience in tempering cavalry sabers and swords
tant M. P. Th. . Thide of propelling canal boats
by wheels running on the bottom is very old. J. G. asks if there is any machine invented
for fellinglarge timber trees, which will save the great loss consequent upon felling with the common axe, or
that will perform the work in a shorter time. If so, that will perform the work in a shorter time. If so,
What 1 It 1 te Answer: several devices for this purpose
have been pablighed nave been pabished in the
ome of them lllustrated.
S. B. . E. asks: When did James Wait com.
plete his frrst engine, and when aud to whom was the frat patent glven for a steam ounler? Auswer: James
Watt completed and patented his frrst engine in the Watt completed and patented his frrat engine in the
year 1768-9. Papin used a steam presare boller in 1955, and Savory pa
boller In 168.
H. A. B. asks: What proportion of burnt
clay should be mixed with quick llime after the lime is laked, to make good water correspondent should read page 411 of Miller's "Ele.
ments of in
Inorganic Chematry." The subject is too
L. R. asks for further instructions on tem-
 case. This we are unable to do, as we have no know.
ledge of his reaulrements. edge of his requirements. We have lately given much
space to this subject $:$ and on page
ons of our current W. A. S. says: 1 . I enclose a piece of scale
rrm our boiler. will you please tell me of what it is composed, and what I had beteer use to prevent it? 2 .
How long oug hat a stationary bofler to last with careful
 of any gection of anlleabie castlings or for cast fron? Which 1s the stronger? 4. What 18 the cheapest and
most conventent article for making cloth or rope fremost convenient article for making cloth or rope ire-
proof? 5 . I have also a ittle invention on hand. Is there any place in Boston where I can get access to the Patent Records, that I may see if I have got anything
new? Answers: 1 . The scale et
composed of sulphate
 ect with considerable raplatty, chlorlde of nd hard form. The scalling hammer, properly used where the deposit 18 accessible, takes it off most effect
ually and t inexpenatively. 2 . We have known steam boil. ers of the plain cylindicical clase to last thirly years. Marine tubular borliers are expected to last 6 or 8 years,
but somettmes are kept running more than t wice that length of time. 3 . The best cast 1ron, such as 18 used for
ordnance, bears a tensile pull of 30 oco pounds per ordanane, bears a tensile pull or so,000 pounds per square
inch, or more. Ordinary metal has about two thlrrd that strength. Malleabbelzed cast iron has a strength of
trom 25,00 up to 45,000
pounds trom 25,00 up to 45,000 pounds per square tnch according
to quality. 4. Tungtatate of soda. 5. The Public LIbrary.
 It to take about 20 liss.of ofteam to run it? 1 ? When t take turn it with both hands. The boller is an upright, 6 feet
 How many horse power would that be? Is a a good
ldea to have nothing but a thin place tin the eccentricrod to overcome the up and down motion? How long ought
 Angwer: The engine 18 decldedily f need of attencon.
ought to run, without load, with tour or tle pounds of team. The cecentric rod 1 o otten so omade and answers taken care of, should last many yearr, and the engine
much longer than the bofler. Some of James Watt's eng Ines are still at work.
G. T. R. says: A friend states that an ordi-
nary woone pump, placed in a mell with tigh tigk platform, over which a layer of three feet of yellow clay
 by atmospherric pressure, which in this case would be
partly or will removed. Which is right Anser:
If the well were made absolutely air tight, the pump Fould not work. We think 1 t probable that, even where rrauged ag described, suftlient alr would enter the
vell through the surrounding soll or the top to allow f its operation.
C. M. D. asks: Is corn a profitable fuel at
centa a bushel, when wood 1885 per cord, say for a
at horse power engine ? Answer: It requires about 50
bushels of corn to welgh s much as a cord of wood; 40 WIII welth as much asa cord of sort pine. The chem.
ical constitution of wood and gretn is
about the same 1cal constitution of wood and gretin is about the same,
and they theretore should be of about equal heating power, pound for pound. We can therefore conclude that, if wood is worth 85 per cord, a corresponding
weight of grain at 22 cents per bushel would cost 88
\quad I. W. F. asks: Can you inform me how lery. C. W. O. says: In your issue of April 19, Intions per minute, and
kind op box, etc.. he goes on to say that "the box next to
 heating, namely, by putting oiled paper around the Jour-
nal while pouring off the Babbitt metal. Now as we are unning quite a number of saws, large and smail, shoula ine further light on this subject. Whe have at present a
50 nech saw on a 4 inch mandrel, making 825 revolutions per minute, in boxes lined precisely as you advise, In
which it has been running for seeveral monthas, during Which it has been running for several months, during
Which time the box next to the saw has not run cool for a single day, though the box on the other end of the The power for driving the way, runs very nearly cold. belt on 23 2 Inch pulley at the side of the last named box.
Now why does the fournal at the end next the saw heat, nd the one on which the welght, caused by the tension IIned three or ccur time in two years, and always with
the same result. The motion ts steady for 11 hours day, stoppling one hour at noon ; and the best of olls are nsed. Answer: Saws nevernly ground or fled out or sawe end of the mandrel to heat. When the sam is in the
cut, there ts ittle or no weight on the lower part of the cut, there ti little or no welght on the lower part of the
box, unlessthe belt draws dowward ; or, In other words, when the saw teeth are in the cut, the tendency is tolift he mandral and throw the pressure against the cap or
upper part of the box; and the pressure of the timber againgt the teeth forces the arbor back againgt the side
of the box, so that the pressure of the journal is con
stantly changing from one position to another, which
tends to heat the box more than if the pressure were in
W. W. B. says: I use small malleable inon them in what I call a tumbler. I see that others in the same business make them very bright, ; but I am unable
to get the same "shine" on them. Can you tell me how to get the same "shine" yon them. Can yon tell me how
to manage at? Answer: Casting are pollshed by rolling to manage it ? Answer: Casting
them in barrels with plumbago.
J. J. B. asks us to inform him as to the best nethod of rendering solld a liquid stove pollsh.
Answer : Let it stand in an open vessel untll the liquid Answer: Le
evaporates.
A. W. G. says: I have a large pile of cinder, or scale, such as is asually found in rolling millis
It comeses from under the rolls, and is quite full of small partcleses of fron. Would not a magnet be the best way
to get the iron from the cinder? Where can I obtain a heap magnet? it should be quite broad. Answer: You cheap magnet? It should be quite broad. Answer: You
can obtain magnets at toy stores. As to treatment of
cinder, to separate iron therefrom, read the description of the Henderson iron process, heretofore published in A. J. D. says: When a very heavy charge
op power is fred in an ordinary shot gun (very nearly all the gun will stand without exploding), will all the
charge burn, or will part of it be dropped at the muzze charge burn, or will part of it be dropped at the muzzle
of the plece without igniting? Answer : If the charge is excessive, a part of the powder will be burned afte
leaving the gun. Where the gun is short and the charg eavy, a part may even escape unburnt; and, on fring the gun over a smooth or, particularly, a snowy surface, gun should always be found by trial, and will some times be found to be apparently very small. Excess of powder increases greatly
coll, without any gain.
F. A. U. asks: How can a shingle roof be hey are on the side of roof, that is, not at the comb Answer: If the chimney is yet to be buill, make a pro the shingies up under the brick projection. But to re pair a present chlmney, use step flashing of patnted tin
or $\begin{aligned} & \text { Inc, a plece of the metal under every }\end{aligned}$ course of the or zinc, a plece of the metal under every course of the
shingles, turned up against the brick and worked into he joints of the brick work. Put them in as you would a flexible shingle, letting the bottom of the upper one cover the top of the lower one, with the woodeh shingle
continued over it to the chimney; but drive no nails through the metal except at the top of each plece. Fill where the metal enters them. They will enter on the horizontal joints, only, and preak down at every plece like a fight of steps. This method applies to the sides
of a chimney, where the roof crosses it at an angle equal to the pitch; but where, as at the top and bottom, the oof meets and leaves the chimney on a level line, ordinary flashing will do, running under the shingles and
turned up and into the brick work. If the shingles are turned up and into the brick work. If the shingles are
canted up against the chimney well on every side, a cap flashing will sometimes do, worked into the joints of the brickwork, and lyling down on the top of the
ghingles. The step flashing is also very good for the
R. H. asks: What is the differenc9 between ydraulic and steam pressure? If there is any, what makes it? Answer: There is no difference, so far as
simple pressure is concerned. The effect of testing a boller, with cold water in one case and hot in another, mav be quite different, however. Hot water, by expand-
ing the metal, may close up seams and prevent leaks, nder tests, where cold water might reveal an unclosed lap. Hot water will also produce strains due to expan-
sion which might not exist where a cold water test was adopted. A cold water test we regard, thercfore, as the best test of the tightness of a boiler, while hot water gives us the severest test of its
the usual strains of a boller in use.
$\underset{\text { working manufactory, } 50 \mathrm{x} 70}{\text { W. \&eet, this summer, and put in }}$ a new boller, englne, etc. We are at loss to know just
what to build and buy, and not waste our muney. 1 . The shop will stand on the bank of a river, and all of the
foundations will rest on soldd rock. We, have from oundations will rest on solld rock. We have from 25 put the lower floor 27 feet above the bed of the river,
and wish to know how thick the wall ought to be from the bottom to the first floor (2l feet high) to stand against the high water. We can let the water in or keep
It out, if we knew what strength to bulld in both cases. The bullding will be 3 storles and a half above the first or. 2. In a wall 50 feet long, 27 feet high, which would of perch of stone lald regularly, or put in the form of位使ses every 8 feet or so, making the rest of the wall ago for power thiner? 3 . We putin steam 1 wo years fuel under our boller to heat our bullding then we more even when we are not running our engine at all, and use live steam. Yet we are told that we can heat by
steam cheaper than by good stoves and furnaces. We want to see it in that light also. Can you put us in the additional back pressure cost all the difference between using exhaust steam for heating instead of live steam? We have 3 inch plpes in our shop. 5. Three weeks ago we read In your paper that steam at 120 was economical. more satisfactory results than when used higher, and it will not cost as much to keep the steam up; which is the nearest right for a common factory? Our boller and engine are large enough to do thc work at 60 lbs. easily. ed materlal, paying particular attention to the qualty of the cement, which should be quite strongly hydraulic, and should not attempt to carry such a head of water. proportions to those of any other dam walls. The thliar ness of base would be about 12 feet. Allowing the water thicker than ordinarily, if the cement be good: say 36 Inches. 2. The buttressed wall. But do not reduce the
thickness to less than the figure just given. In such a case as the one under consideration, too great care can
not possibly be taken, if the pressure of the water is to be carried, to get a perfectly sound wall through which allow its entrance. A stream once started through the wall may do serious injury when not suspected. 3. Equallyd efficlent and thorough warming of large bulldings should cost less by steam than by stoves. Is not the building more completely and more highly heated than
before? 4 . Yes, if the pipe is not made large. We generally antciclpate that, unless the area of heating pipe
ical In a cold climate. 5. The hikher the esteampressure,
the greater is the amount of expanalon allowable. engine too large for its work is wasteful, but,even in that
case, high steam throttled down is more economica than low, if the bofler, steam pipes and engines are all
carefully protected against losses of heat by radiation nd conduction.
M. F. asks: How much larger will each o
our four hydraulic pumps have to be bored in order t glve us the capacity of two more (six instead of four)
pumps? The outside dlameter of pump is $41 /$ inches, lameter of plunger, 1% inches, ameter (or bore) pump, $1 \frac{18}{1}$ inches, length of stroke, $8 \frac{11}{1}$ inches. Answer:
A pump 4\% Inches diameter has a cross area of plunger of $13 / 8$ square inches. Six such plungers would hav
comblned area of 80 inches, and this, divided among our plungers, again would require each to have an area
 Question: A body welghing 5 lbs. descends vertically
and draws a welght of 6 lbs. up a plane whose inclination is 450. How far will the first body descend in 10 seconds? in this problem, the motive force 185 libs. and the retar
ing force is $6 \mathrm{lbs} \times \cdot \times 071067812=4 \cdot 242606872$. Hence th motive force or power, P, is to the retarding force o
 bs., the accelerating force would be 34 of 40 , or 10 lbs . or, were the retarding force 5 lbs . and the motive force 1001 bs ., then the accelerating force would be $100 \div 5=2$
lbs.; and so in all cases the accelerating force may be ound by dividing the motive force by the retaralng he retarding force would be the greater, and would drag the other down the plane, were it not that a portion o fis force is expended on the plane, whilst the entis
force of the motive power is exerted in pulling W up th incline. Now the lsw of mechanics relating to the in clined plane is this: The power is to the welght as the
inght of the plane to fts length. Consequently the r tarding force dimminishes as the angle of elevation d force increases. Now in this case, the hight of the plane is to its length as 1 is to the square root of 2 . And in this and in all cases, the hight is to the length as the
sine of the angle of elevation is to 1 . The sine of 45° he square root of $5=-7071067812$; hence on this plane,
5 lbs ., is to $\mathrm{W}, 6 \mathrm{lbs}$, as 7071068712 is to 1 . If, in this pro portion, we multiply together the extremes and means, we get 5 lbs.for the motive force, and $4 \cdot 2426406872$ for th etarding force. Hence $4 \cdot 2426406322$, which gives $1 \cdot 1785113$ Had this quotient been unity, or 1 , it would have shown that the motive and retarding forces were in equiliblum, and that they would consequently remain at res But as the motive force exceeds the retarding by the
dectmal 1785113 , this dectmal will express the relativ rate of motion of the motive force, compared with
what it would be were it left to fall freely. Now if the power, P, were to fall freely without obstruction of an Ind, it would descend 16.033 feet the frst second, and be found by multiplying 16.083 by the square of the time expressed in seconds. Hence in 10 seconds it would
descend 100 times 16.083 feet, or 1608 f feet. But the acescend 100 times $16 \cdot 083$ feet, or $1689 \cdot 9$ feet. But the ac $16.083 \times 1785113=2 \cdot 8709972$ feet. But as gravity acts sim larly on the excess of the motive over the retarding
force, the law of tncrease in the acceleration of the decending motive power will be the same as though it fell second, $2 \cdot 8809972 \times 100$ (the square of the time) gives us namely, $287 \cdot 1$ feet, nearly
O. A. B. says, in reply to E. M. C's question
ine veloctty of a body descending vertically, betng acted on by a welght on an Inclined plane : Cosine $45^{\circ}=$ To71=10rce or resistance of any weight on the inclined
plane. $0.7071 \times 6=42425 \mathrm{lbs}$. $=$ the static resistance of 6 o balance the seme $5-4 \cdot 2426=0.7574 \mathrm{lbs},=$ excess of bs. wetght, which, if it had nothing but its own ine da to overcome, would fall $1603 \cdot 5$ feet in ten seconds,
but it has to move a mass of 11 lbs . Hence $1608 \cdot 5$ s7: $=110.75$ feet=the answe
W. R. S. sends a solution of E. C. M.'s an Incline of 45°; required the distance the 5 lbs . woul talin 10 seconds. Answer: Six pounds on an incline o ording to well known laws of inclinged planes. 4.2 . ore the weights $5 \mathrm{lbs} .+6 \mathrm{lbs} .=11 \mathrm{lbs}$., are acted on by orce of only $5-4 \cdot 28=72 \mathrm{lbs}$. Or 72 lbs . has to move it rate of movement and total fall made consequent would be only ${ }^{\text {r }}$?
diz of of its own fall by itself, provided the
directions were both vertical. A body would fall in seonds $10^{2} \times 16^{\frac{1}{2}} \frac{1}{2}$ feet $=1608 \frac{1}{3}$ fect, and under above cir cumstances only $1608 \frac{1}{3}+15 \cdot 28=105 \cdot 25$ feet in the same time.
But the 6 lbs. moves up an Incline of 45°, and, according on diminish the fall of the 5 lbs . In the proportion of 5 to 7 ,
nearly; therefore the 5 lbs . would only fall $\frac{5}{7}$ of $105 \cdot 25$ feet, or nearly $75 \cdot 18$ fect in 10 seconds. No allowance
V. J. S. says, in reply to E.C. M., who asked
or a solution of a problem on the acceleration due to a force: 1 give below the formula required: The accelera lon due to a force is equal to the moving force, divided
by the mass moved. In the casegiven, the movingtor is equal to $\frac{5}{6}$ sin. 45° and the mass moved is cqual to $5+6$ hence, denoting the acceleration by g^{\prime}, we have the equation
$\mathrm{g}^{\prime}=\left(5+6\right.$ sin. $\left.45^{\circ}\right) \div(5+6)=\cdot \frac{70}{1+5}=\cdot 068818$. The equation for passed overby a fallingbory is $s=\frac{3 g t^{2}}{}$, in whic and substituting, f $s=\frac{1}{2} g^{\prime} t^{2}=\cdot \cdot 0 a \frac{a}{2} 16 \times 10^{2}=3 \cdot 4409$ feet.
J. B. H. says, in answer to A. W. T., who papered and then varnished with furniture varnish (to pearance ; It dries in from 15 to 24 hours.
A. says, in reply to F. A. S., who asked how have done it with a commor drill, molstened constan wh spirits of turpentine.
J. E. E. says: On page 406 of your volume
xvi., there is an article under the head of electrical 11ght, which gives an outline of Professor Wheatstone' shoe-shaped soft iron is arranged with the revolving
helix. The regular electro-magnetic machine is made by maging a permanent magnet in a box with an elec tro-magnet or helix, revolving at the poles. This new
is an object. Can some one give me information on the
subject? Answer: See our editorial pages of this issue H. B. says, in answer to E. W. H.'s problem rigid bory, A, A, is supposed to be without weight an orces. Required the motion imparted by a given force , appiled at any point, as A, supposing there be no re
stance of the alr. 1. If a rigid body at rest in space sted upon by a force, directed towards its center of the force, which, after the impulse ceases to act, wil ontinue in the same direction and with uniform veloc , but so that the body will remain parallel to its p r hich before was in a state of equillibrium in space the will tend to impart a rotary motion upon it, the axis of rotation going through the center of mass. This axis
will at the same time be right angular to the plane of will at the same time be right angular to the plane o he conce on this axis. In every other case, the resulting otation will be of a double character, as is that of ou earth, which revolves on its axis between the two poles hille this very axis does not remain paraliel, but again the polar mutation of the stars. (Betng unacquainte ithastronomical terms, I am not sure whether this ast phrase expresses ny meaning, which 1s, the motio of the polar point in the system of stars in a large circle, calculation of the rotary velocity, attained by the actio of a giren couple in a given time, is of a most difflicul nentum of inertia of the body is thy easy, if the m. mentum of inertia of the body on the axis of rotation 1 .
known. 3. If the force, F, acts upon the body, $B_{\text {, }}$ (se

 F / l acting upon the
center, C of the body
in in opp betng equal an parallel to F. Thi
measure can evidently
not affect the not affect the result.
The forces, F and $F, \prime \prime$ form a couple, whtch retary motion, while
the remanning force, F
in the center, produces a progressive one aving the same effect as the three considerea force ogether, produces a progressive and a rotating motio he two or the same length of time, the progressive motion wil e the same in either case; but the entire inertia impar d upon the body will be greater in the latter case, btacted only through the space b c. This difference taken upby the momentum of rotation. If, howeve in these same cases, the forces act through equal space ase will be smaller than in the first one, in the sam atio as bcis to ac. The comparative results will be milar if the forces act till the points of applicatio have a given velocity. A specific calculation in any on omentum of inertia
Minerals.-Specimens have been receive from the following correspondents, and examined with the results stated
R. D. M. -It is tin. We should
men of the ore which yields it.
S. E.-The rock is limestone, and the minute " golden
S. L.-It is a very pure galena, or lead ore
W.A. L.-Iron pyrites.
J. H. P.-It is pure galena; (lead ore) and probab G. C. W.-It
tals of pyrites.
H. P. I.-It is plastic clay-ferruginous and blue. We ountry. It is unusually rich in iro
F. C.H - They are spectmens of chalcedontc quartz
S. B. D.
calctte.
n-
J. S. G.-The specimen is too m
Hon, but it resembles zinc blende.
T. P. Y.-The specimen contains galena, but not to an
J. I. J.-The specimens are brown and yellow oct J. A. H.-The brillant " metal" in the clay is fron

OMMUNICATIONS RECEIVED

The Editor of the Scientific American acknowledges, with much pleasure, the receipt of original papers and contributions on the following subjects
On the Million Dollar Telescope. By D J. E. E., by B. F., and by S. H. M., Jr. On Exhibiting the Carbon Poles. By W. D.

On the Wreck of the Atlantic. By E.W. F On the Scientific American. By J. B. C On the Spanish Inquisition. By H. G
On Searching for Metals. By C. G.
On Transportation of Produce. By S. S.
On Worm Eggs in Apple Trees. By J.J.W On a Cure for Girdled Trees. By A. D. On Power Transmitted by Belts. By A.M.S On Tannate of Soda. By J. G. R.
On Turning Leaves of Books. By J.W. K Also enquiries from the following

Correspondente who wrte

 manufacturers, or where specified articles are to be had partners, should send with their communications and amountsufflctent to cover the cost of publication underthe head of " Business and Personal," which is specially devoted to such enquiries.
[OFFICIAL.]

Index of Inventions

FOR which
Letters Patent of the United States WERE GRANTED FOR THE WEEE ENDING April 15, 1873,
and each bearing that date. [Those marked (r) are relssued patents.]

Ar motor, compressed, H. Bushnell
nimal matter, deodorizing, E. C.
wning, G. W. Gerau....
Basket, grain, H. C. Jone
Basket, grain, H. C. Jone
Basket and brd cage, s. Vanstone
Bedstead, Invalld, O.G.Cosby
see hive, S. T.Da
Biscuits, sweet, H. Even
Boller, wash, J. Davis (r)
Boller, wash, W. Exner.........
Boller manhole lid, R. Tippet
olt for doors, etc., J. S. R. Wrig
Boot, G. S. Lee....................
Boot and shoe last, W. H. Round
Boring blind stles, L. G. Kirkh
Boring blind stlles, L. G. Kirkham
Bottlc stopper, smelling, Marble \& Gildden
Bottles, etc., closing, J. Matthews
Brtdle bit, C.L. Gllkinger.
Broom protector, G. Hunt
Burner, gae, E. Foote..
Burner, gas, I. W. Shaler...
Butter package, J. Andre
Button, M. P. Ca:penter.
Car axle, rallroad, T. C. Theak
Car, convertible, W. Worsley
Car coupling, D. O. Pender
Car, dumping, H. J. Peters
ar driving gear, J. D. Hinckiley
Car single tree, J. Wills.
Carriage, L. Glesenkamp
Cart loading apparatus, B. G. Fitzzugh
Carving machine, H. Grubenbecher.
Cloth, cuiting and perforating,. .,
Clating register, S . Crocke
Coal dust fuel, A. Berney
Coffee roaster, J. Hart.
collar button or stud, J. I. Waddell
Cooking apparatus, C . Hood.........
Cooler, refrigerator water, T . Smith
Corn husking glove, P. N. Harts.
Corn husklng thlmble, Gash \& \mathbf{O}
Corn \&heller, Hollen \& Holla
Corn sheller, R. M. McGrath.
Corpse case, J. s.
Corset, M. Cohn..
Corset, A. M. Weber............
Cotton cultivator, C. F. Ream
Cotton stalk knocker, M. M. Carruth
Cradle, D. Souder..........................
Cranks, apparatus
raynon holder, A. F. Ho
Cuff, reversible, L . H. Foy

CultIvator, J. M. Knox.
CutIvator, A. Leonard

Desk and seat, school, J. B. Sherwoo.......
Die rolling machine, H. Waters...
Digger, potato, D. M. \& G. E. King
Distilling turpentine, A. K. Lee (r)............
Door plate and letter chute, B. Morningstar
Dovetalling machine, T. Cullen
Drain, sink, G. R. Moore..............
Drawers supporter, E. R. Cleaveland
Dress pa
Drin, grain, J. F. Keller................
Duster, broom corn, J. L. Stranahan.
Egg carrier, E. L. Mueller.................
Electrical connecting post, T. Wishart
Elevator, J. F. Marsh
Elevator, W. A. Morr
Engine, hydrodynamic, W. Burnet
Engine, motor, T. D. Richardson
Englne, oscillating steam, A. Nitting...........
Englne piston valve, steam, \mathbf{G}. M. Wetnman
Engine, rotary stcam, L. F. Parke
Fan, automatic, H. T. McCormick
Faucet, H. Varwig.
Fence, portable, Λ. W. Olds
Fille, paper, C. D. Lindsey.
Filter for cane juite, oll, etc., A. K. Lee...........
Fire arn, brecch loading, A. E. and P. J. Jarre.
Fire arm, revoiving, 0. A. Smith....
Frre arm hook attachment, I. Merril.
Fre arm swivel
Fire arm swivel loop, E. Whitney,
Fire place grate, J. M. Woodcoc
Fluting iron, J. Hewitt, (r)..
Frult press, O. Metcalf......
Furnace, blast, J. G. Blunt
Furnace, hot air, J. D. Hall.
Furnace, hot arr, B. . Sayre
Furnace, hot air, B. C. Sayre
Gang plank, F. G. Johnneon
Gas retort compound, Krelscher \& Tartier
Generator, steam, D. Parse
Generator, steam, D. Parsell.
Glove, ganuntet, I. B. Whipple
Glue, O. S. Follett...........
Grain welgher, J. w. Hill.
Harness clasp, M. A. Penn................

Harvester, G. W. . . Yost. Harvester, G. W.N. Yost. Harvester, G. W. . Y. Yost.

Harvester seat, G. W. N. Y
Hasp, trunk, C. Liebrich, (
Heater and fllter, w. T.
Heater and filter, W. T. Ba
Hinge, gate, J. H. Stone

Hinge, epring, J. Palmer.
 Horse collarar.E.E.Batwwiil

Horeseate, M. C. Clart

Horseshoe calk, grinding, J. Little.....
Horseshoc naills, making, H. D. Cowles
Horseshoe swage, Hofstatter \& Shaw
Hose holder, garden, H. C Smith
Hose holdcr, garden, H. C. Smith.
Hose plpe nozzle, Berryman \& Wakcfield
Houses, construction of, D. L. Emerson.
Hub for heavy vehtcles, J. J. A
Indicator, station, J. K. Magle.
Jelly glass, w. Doyle,
Jelly glass, T. A. Zellers.
Knitt Ing machine welght hook, c. H. Koegel.
Ladder, extension, w. ${ }^{\prime}$ Connor Lathe chuck, magnetic, J. A. Ja
I, eather, cutting, N. Paquet
Loom, J. C. Duckwort
Loom plcking mechanism, L............. Lumber tonguing and grooving, D. Perrin nfatches, making, O. H. Hicks. Meat or fruit press, I. S. Starrett......
Mechanical movement, E. C. Hopping Mill, starch, C. Gllbert Millstone picks, stock for, F. Trump Mild
Mold for pasting molds, J. S. Ellott Mortising machine, G. F. Out Mottve power, G. Meyer...........
Mowing machine, G. W. N. Yost. Musing iesf turner, A. Rosenfield.... Nall extractor, Moreland \& Blocher Nut lock, M. Hays.
Nut threading machine, O.P. \& L. W Briggs Ofl, composition paint, J. McCafle Oven, baker's, C. Robbins... Packing, piston rod, T. Lord
Paper cutting machine letine \& Park

Pavement, wood, H. M. Stow
Pen and pencll case, F. Edgell
Photographic skyhght, C. D. Moshh
Pigeon hole, Clements \& Fowler
Pipe, cement lined, M. Stephens.
Plow, T. L. Cotten..
Plow, R. B. Ground.
Plow, Stockstill \& Kutz.......
Plow, wheel, w. P. Sween
Pruning shears, P. Broadbook
Ramp and condenser, steam, E. Reese Rack, towel, J. Rearden..............
Rack, towel and clothes, L..M. Fitch Rake, revolving horse, w. Wells Ranliroad signal, R. Walker Rallroad frog, G. W. Billing Railroacthe Sad Iron, Vaughn \& Blane ash fastener, G. W. Bisho
Sash welglit, P. Ashen.
Saw handle, cross cut,
Saw set, J. Begble.
Saw swage, W. Ferguson
Screw, hinding, F. Shurz
Seams, forming turned, S. W. Shorey
Sewing machine stand, R. M. Wanz Sewing machine thread cutter, F. V. Obur Sheet metal vessel, J. G.L. Bcettcher. Sheet metal wares, handle for, J. W. Lamb......
Shoe pegzing and trimming machine, R.E.Draper Sleve, lour, J. T. Fost Skate, J. T. Larkin.
Sky light, metallic, G. E. Dayton.. Smoothlng and fluting tron, J. Hewitt
Sofas, etc., bottom for, I. Mason.
Soldering nachinc, W. D. Spinning Jack, self-acting, J.E. Knight spring, door and gate, J. T. Foster Starch, manufacture of, C. Gllber steel, manufacture of, J. G. Blun Stilt, G. J. Stevens..... Stone crusher H. R Ma Stove, coal, H. Meldinger. Stove dome, A. Taylor. tove, heating, Akers \&
Stove pipe, LI. Jurgens...
Table, dining, A. Land...........
Table, extension, E. Hambujer
Table leaf support, H. Imhor.
Thras ang machine, Λ. Wemple
Tire tightener, W. D. G. Quigley
Tobacco plant cutter, I. N. Cady
Trap, animal cage, S. W. Rice
Trap for bedsteads, bed bug, C. Legab
Trimming, W. Murray
Trimming, w. Murra
Tube sockets, bendling, W. W. Newsham
Tubing, sheet metal, S. R W. Whot
Tubing, shect metal, S. R. Wilmot Turn table, A.P. Boller.
 Wagon, road, C. W. Saladee....
Water elevator, J. Λ. Λ yres....
Water wheel gate, J. M. Burghard
Water wheel, turbine, J. C. Gree
Winding wads, machine for, A.C. Hobbs
Windmill, W. D. Nichols.
Windmill, W.I. Tustin (r)
Wrench, screw, D. Frank...........
Wrench, rallroad track, P. L. Glbbs
APPLICATIONS FOR EXTENSIONS.
Applications have been duly filed, and arc now pendin or the extension of the following Letters Patent. Hea the days hereinafter mentioned:
24,838.-Pumping Enaine.-H. R. Worthington. July 2 24,863.-SEWING MACHINE.-E. A. Goodes et al. July 9 .
24,947. Journal Box.-J. A. Montgomery. July 16 . 24,963.-Flour Paceer.-S. Taggart. July 16.

EXTENSIONS GRANTED
 23,650.-Boiler Furnace.-J. Amory. 23,655.-Cookina Range.-B. W. Dunklee. 23,703.-Making Drain Pipes.-B. S. \& M. R. Pierce 23,707.-HARvester.-S. Ray \& M. R. Shalters. (A) 23,7o7.-HARvEster.-S. Ray \& M. R. Shalters. (C) 23,716.-STove.-S. B. Sexton.
 23,716.-Heating Steve.-S. B. Sexton. 23,735.-Skamina Maciine.-J. Wilson, $e t$. 23,736.-Corrugating metal.-J. Wilison, et al.

 DISCLAIMERS.23,716.-STove.-S. B. Sexton, Baltimore, Md.
23,716.-STove.-S, B.Sexton, Baltimore, Md.
DESIGNS PATENTED. 6,586.-PARLOR STove.-W. Doyle; Albany, N. Y.
6,587.-GLass Dishes, Etc.--J. Hobbs, Bellaire, Ohio. 6,588-CARPEt.-A. Heald, Philadelphia, Pa.
,589.-Badge.-H. A. Oesterle, Phlladelph1a 6,590\& 6,591.-Carperts.-J. Powell, Kidderminster, Eng. 6,592.-Coffin Handle.-J. S. Ray, East Haddam, Conn.
6,593.-Carrinae Mountinas.-A.Scarls, Newark, N. J.

TRADE MARKS REGISTERED. 1,211.-Frillings, etc.-F.Browett \& Co.,Coventry, Eng
$1,212 .-\mathrm{I}$ ubricator.-Gerdom, Cook \& Co 1,212.-IUBRICATOR.-Gerdom, Cook \& Co., N. Y. city.
$1,213 .-$ Coons MEAL.-Kipe \& Townsend, Chadd's Ford, Pa
$1,21$. i,214 \& 1,215.-LINIMments.-Merchant's Gargling oil Co. 1,216.-PILE Remeny.-J. P. Miller, Baltimore, Md.
$1,217 .-$ Prints. J. R Ogood $\&$ Co, Boston, Mass.

SCHEDULE OF PATENT FEES: On each Caveat......
On each Trade-Mark
On tling each application for a Patent (17 years) on IseuIng each original Patent.
On appeal to Commissioner of Patents On application for Retissue. On application for Extension of Patent Un fling a Disclaimer. on an application for Design (3) years)
on an application for Design (7 years).

TALDE OF PATENPS

And How to Obtain Them.
Practical Hints to Inventors

ROBABLY n money briugs a greater return than the expense incurred in obtain!ng a patent even
when the invention is but a small one. Larg inventions are found to pay correspondingly well. The names of Blanchard, Morse, Blge low, Colt, Ericsson, Howe, McCorsick, Hoe
and others, who have amassed Immense for tunes from their inventions, are well known And there are thousands of others who hav More than Fifty Triousand inventors have avalled Themselves of the services of MUNN \& Co. during th
TWENTY-SIX years they have acted as solictors and Pubilshers of the Scientific American. They stand at of assistants, mostly selected from the ranks of thi Patcnt omice: men capable of rendering the best service
to the Inventor, from the experience practically obtained While examiners in the Patent Oflice : enables MUNN
Co. to do everything appertaining to patents betre HOW TO OBTAIN ©ARCNE色 quiry i ofler a describing some invention which comes to this
offce. A positive answer can only be had by presenting complete application for a patent to the Commissione of Patents. An application consists of a Model, Draw oflclal rules and formalitles must also be observed. The firts of the inventor to do all this business himself are
generally without success. Λ fter great perplexity and delay, he is usually glad to seek the ald of persons expe-
rienced in patent business, and have all the work done veragain. The best plan is to consulted are honorable men, the inventor may safely conflde his ideas to them
they will advise whether the improvement Is probably atentable, and will give him all the directions needful How Can 1 Best Secure My Invention This is an inquiry which one inventor -naturally ask
another, who has had some experience in obtaining pat ents. His answer gencrally is as follows, and correct :
Construct a neat model, not over a foot in any dime ton-smaller if possible-and send by express, prepald, addressed to MUNN \& Co., 37 Park Row, toge:ther with a
description of Its operation and merits. On recelp thereot, they will examine the Invention carefully, and ou have not time, or the means at hand, to construct model, make as good a pen and ink sketch of the Im provement as possible and send by mall. An answer as to the prospect of ε patent will be recelved, usually, by
return of mail. It is sometimes best to have a search made at the

Preliminarv Examination.
In order to have such search, make out a written depencll, or pen and Ink, sketch. Send these, with the fee of 85, by mall, addressed to MONN \& Co., 37 Park Row, thercof, followed by a written report in regard to the is made with great care, among the models and patent at Washington, to ascertain whether the improvement presented is patentable.

Reissues.
A relssue is granted to the orignnal patentee, his heirs,
r the assignees of the entire interest, when, by reason
of an insuffcictent or chefective spectifcation, the original
patent is invalid, provided the error has arisen from in. advertence, accident, or mistake, without any fraudulent or deceptive intention.
A patentee may, at his option, have in his reissue a
separate patent for each distinct part of the separate patent for each distinct part of the invention
comprehended in his original application by paying the requireal fee in each case, and complying with the other
renuirements of the law, as in orlginal requirements of the law, as in original applications.
Address MUNN \& Co., 37 Park Row, New York, for full particulars.

Value of Extended Patents.

Did patentees realize the fact that theirinventions are
1ikely to be more productive of profft during the seven years of extension than the first full term for which thetr patents weregranted, we think more wouldavall themselves of the extension privilege. Patentsgranted prior to 1851 may be extended for seven years, for the beneft
of the Inventor, or of his helrs in case of the decease of fomer, by due application to the Patent Offce, ninety
days before the termination of the patent. The extended days before the termination of the patent. The extended
tme incres to the benefit of the inventor, the assignces except by spectal agreement. The Government fee for an extension is $\$ 100$, and it it necessary that good perofes-
sional service tee obtaine 1 to conduct the business before sional service te obtaine 4 to conduct the business before
the Patent Oflce. Full information as to extensions Mark.

York

Parsons desiring taveats. prepared in the shortest time, by sending a sketch and
description of the invention. The Government fee for a caveat is $\$ 10$. A pamphlet of advice regarding applica tions for patents and caveats is furnished gratis, on ap
pilication by mall. Address MUNN \& Co., 37 Park Row plication by
New York

Design Patents.

Fozelgn designers and manufacturers, who send good
to this country, may secure patents here upon theirnew patterns, and thus prevent others from fabricating selling the same goods in this market.
whether citizen or allen, for any new and original design for a manufacture, bust, statue, alto rellevo, or bas relle ny new and original design for the printing of woolen, pression, ornament. nattern, orint. or pleturè, to printed, painted, cast, or otherwi
nto any article of manufacture.
Design patents are equally as Important to cttizens as
to foretgners. For full particulars send for pamphlet to Munn \& Co., ${ }^{\text {s7 Park Row, New York. }}$

Trademarks.

Any person or firm domiclled in the United States, or any firm or corporation residing in any forelgn country
where similarprivileges are extended to cittzens of the United States, may register their designs and obtaln pro-
tection. This is very important to manufacturers in this country, and equally so to forelgners. For full particucountry, and equally so to forelgners. For full pa
arsaddress MUNN \& Co., 37 Park Row, New York. Canadian Patents. On the first of September, 1872, the new patent law of ittzens of the UnitedStateson the same favorable term s to citizens of the Dominion
In order to apply for a patent in Canada, the applicant
nnst furnish a model, specfication and duplicate draw nge, substantally the same as in applying for can patent.
ernment fee ${ }^{2} 20$), or for ten years (government fee $\$ 40$) or for ifteen years (government fee 860). The five and yen year patents may be extended to the term of firtee expensive.
Λ merican inventions, even if already patentedin this country, can be patented in Canada provi
can patent is not more than one year old.
in Canada Row, New York, who will give prompt attention to th

Forelgn Patents.

T,000,000; Belftum, $5,000,000 ;$ Austria, $36,000,000$; Prussia $0,000,000$, and Russia, $70,000,000$. Patents may be securea by American citizens in all of these countries. Now is th
me, when business is dull at hocie, to takeadvantage o these Immense forelign fields. Mechanical improvements of all kinds are always in demand in Europe. There will
never be a-better time than the present to take patents abroad. We have rellable busincess connections with the principal capitals of Europe. A large share of all the obtalned through our Agency. Address MUNN \& Co., 37 Park Row, New York. Circulars with full information
\qquad
Rejected Cases.
Rejected cases, or defective papers, remodeled hrough otheragents. Terms moderate. Address MUNZ Copies or Patents.
Persons desiring any patent tssued from 1836 to Novem
ber 26,1867 , can be supplicd with offlctal coples at a reasnable cost, the price depending upon the extent of draw Any patent issued since November 27,1867 , at which time the Patent office commenced printing the drawing
Ind spectications, may be had by remitting to this of and spec
tice $\$ 1$.
Δ copy
$\boldsymbol{\Lambda}$ copy of the claims of any patent issued since 1838
will be furnished for $\$ 1$. When ordertng coples, please to remit for the same as
above, and state name of patentee, title of invention,and ave, and state name of patentee, title or invention,and 37Park Row, New York.
MUNN \& Co. will be happy to see inventors in person,
a their offce, or to sdrise they may expect an honest opinion. For such consulta hons, opinions, and advice, no charge is made. Write all a not use pencil or pale ink; be brief. All business commilted to our care, and al
tions, are kept secret and strictly confdential. In all matters pertaining to patents, such as conductir nterferences, procuring extensions, drawing assignnents, examinations into the validity of patents, etc or pamphlets or instruction and advice

or pamph Address

MUNN \& CO.,
 PUBLISHERS SCIENTIFIC AMERICAN,
 37 Park Row, New York. OFFICE in WASHINGTON-Corncr F and

sadurtisements.

Rates of advertisin
Back Page
Inside Page
81.00 a line.
75
cents a line

line, by measurement, as the letter-press.

A RARE CHANCE

FOURTH

CINCINNATI

Industrial Exposiilon,

1873
OPENS SEPT. 3, CLOSES OCT. 4, 1873.

PROPOSALS for ENGINES and BOILERS.

 Proposils will be recetved, till June 1 st, from steamEngine Manufacturers, or the supply for use during the
Exposition, of FOUR FIRST CLASS STEAM ENGINES,

 Proposs Ls will be received alsoo for the gupply of
BoILERS (Tor the sare length of time) having in the
aggregate 400 horse power. FRANK MILLAWARD,

How loPaint

A New Work by a Practical Painter, desimned
for the nse of Farmers, Tradesmen, Mechanics,
Merchants, and as a Guide to Painter. Contzining a pluin Common-senso
statement of the Method e enplopyed by Painters
to produce atisfactor result in Plain and Fan
cy Painting of every Uescription, including Giil
 nishing, Polishing, Kalsomining, Paper-Hanying,
Stripin, LLttering, Copying and OOnamenting,
with Dires $\substack { \text { rith } \\ \begin{subarray}{c}{\text { rit } \\ \text { Hit }{ \text { rith } \\ \begin{subarray} { c } { \text { rit } \\ \text { Hit } } } \\{\hline} \end{subarray}$

T Sewing Machine Manufacturing, an opportunt in

 The CANADIAN PATENT OFFICERECORD

office of the
UNITED STATES Centennial Commission,

No. 904 Walnut Street, Philadelphia, April, 1873
PROPOSALS F0R PLANS CENTENNIAL ANNIVERSARY BUILDINGS.

before noon on the fifteenth day of
After which time no designs will be recelved.
By drrection of the Committee on Plans and Archt
ecture.

BAIRD'S 300us

 For Pracicil inen.
ROSELEUR'S Galvanoplastic

Manipulations.

 cioviryerip

A Manual of Electro-Metallurgy:

 Sill hevist carey baird,

Planing and Matching

SCIENCERECORD

 1873.

 MUNN \& Co, Pubierbrs,
 and one oipy

R

IN $\boldsymbol{V} \boldsymbol{I} \mathbf{N T O R S}$

Machinery,

Cold Rolled Shafting.
 Sturtevant Blowers.
 L Niagara Steam Pump.

For sawing Macinive best. out

 BEAMS \& GIRDER
IR

ONLY 10 CTS.

 Turbine Water Wheels.

BOILERS AND PIPES COVERED

 ASBESTOS FELTING COMPANY,
 R

 WORKING CLASS Mation rixat

Champion spring mattress-The

ROPER HOT AIR

Imitation Gold Watchess and Chains.

PaRTNER WANTED, active or silent

Milling Machines.

4
 א.f. B.
$1,000,000$ NAMES of ratatest in tobe

B biliders, Dealers, and Jore of Wood

 $\mathbf{W}^{\text {OOD.WORKING } q \text { Machiviry Giv }}$

E. P. BAUGH'S PATENT SECTIONAL MILLS,

 TEE RALLROAD GAZETFR of May 10

Andrew's Patents.

 A

SEND TO

THE AMBRICAN SPORISMAN,
For a Sample Copy of sald Paper. ad

 GREAT REDOCTION IN PRICES

 FREY SAW GRINDER

 prosimina
OTIS' mandian STLTCATE OF SODA

PRever iuc

SCIENTIFIC AMERICAN. The Best Mechanical Paper in the World! A year's numbers contain over 800 pages and several inventions, manufacturing establishments, tools, and

Chemists, Architects, Milluorights and Farmers The SCIENTIFIC \triangle MERICAN wlll be found a mos useful Journal to them. All the new discoveries in the
science of chemistry are given in its columns; and the interests of the architect and carpenter are not over looked, all the new inventions and discoveries apper
taining to these pursults belng published from week to week. Useful and practical information pertaining to the interests of millwrights and millowners will bef oun
published in the ScIENTIFIC Amricican, which informa tion they cannot possibly obtain from any other source Subjects in which 1 lanters and farmers are intereste will be found discussed in the Scientific Amprican,
many improvements in agricultural implements being
 We are also rec:1ving, every week, the best sclentif placing in our possession all that is transpiring in me chanical sclence and art in these old countries. We
shall continue to transfer to our columns coplous exshall continue to transfer to our columns coplous ex-
tracts, from these journals, of whatever we may deem of interest to our readers. TERMS.
One copy, one year
One copy, ilx months
83.00
1.50

One copy, four months

A WELL tested article of good thickness

ANTI LAMINA

 THE CALCASIEU SULPHUR \& MINING

Third, 110 feet of co clicar rouas or lime stone; and next.
the sulphur bed, which 18 about one hundred and ten
(110) feet thick.

EVERY VARIETY STEAM PUMPS
SEND FOR ILUSTRATED CATALOGUE SERD FOR LILUSTRAIED CATALOGUE HAMILON, OHIO.

最LATEST YMPROVEMENT
TUBRTCATORS

 MAHOGANY, ROSEWOOD, WALNUT, WHITE HOLLYSATIN WOOD, HUNGARIAN ASH, AND 8ATIN WOOD, HONGARD WOOD,
ALL KINDS HARD WD, IN LOGS, PLANK, BOARDS, AND VENEERS. GEO. W. READ \& CO.,

COVFERING

NILRS TOOL TORKS,
HAMILTON, OHIO.

boring and turning mills
iron planers, RADIAL DRLLING machines,

 R. A. Verralen's's Brick Madines,

SUPMR-FIBATHRRS

HOUGHTON'S
AUTOMATIC HOUSE PUMP
OR WATER ELEVATOR-I8 egpecially adapted for ral
ing Water in welling house and other places where

BUILDING PAPER!

COVERING for BOILERS
 and pipes. Superior quality. Firat Prize Am. Insitute Fair. Van tuyl mpra Co., 528 Water St,, N.

 The "ASBESTOS ROOFING" IA A substantal and rellable material, which can be aqtely ued di place
 Send for Descriptive Pamphlets, Pry

"The Earrison Boiler".

THEA TANTHY CO.
INVENTORS \& BUILDERS OF SPECIAL MACHINERY CONNECTED WITH

 The Tanite Cors., PORTLAND CEMENT,
 B GGARDUS' PATENT UNIVERSAL

Bradley's Cushioned Hammer

 WIRE ROPE. JOHN A. ROEBLING, SSONS,

 McBETH, BENTEL $\&$ MARGES ONT, Hamilton,OHo. PORTABLE BATHS.
P. BLATSDELH \& CO., Patent Drill Presser, with Quick Return Motion,

SEND for CuTs.

