
a WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIEVCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

Vol. XXXIII.--No. 14.]

NEW YORK APRIL 5, 1873.
$\left[\begin{array}{l}\text { \$3 } \\ \text { IN ADVANCE. } \\ \text { per Annum }\end{array}\right.$

REVOLVING STEAM ENGINE.

The steam engine represenied in our illustration is of a entirely novel form, and possesses the peculiarity of a cylin der which revolves with the flywheel. It is claimed that th device is both efficient and desirable, while it is clearly com pact and simple in construction.
A is the steam cylinder, and B the flywheel. The stoam chest is at C, and the exhaust extends through to D. \mathbb{E} the reversing lever, and F a cock for dis charging condensation. The invention is so clearly shown that further detailed reference is deemed unnecessary.

The piston rod, it will be noticed, is at tached directly to the wrist pin, consequently all the friction of slides, cross heads, and connecting rods is done away with. The motion of the cylinder is produced by placing it at half stroke on one side of the flywheel center. The journals are cast solid upon the cylinord upon the cylnder, and both the latter and the flywhee] revolve upon their own axes. The valve is stationary and placed upon the ex-
hacast pipe. The $\begin{array}{ll}\text { haust pipe. The } \\ \text { theam passes } & \text { under }\end{array}$ stieam passes under the face of the valve and then out of the is movable, and if ne-

SCOTT \& MORTON'S REVOLVING STEAM ENGINE.

Scientific Research versus New Inventions. At the recent meeting of the American Institute of Min ing Engineers, Boston, Mass., Professor R. W. Raymond made the following remarks

I I suppose we shall be told that mining and metallurgy re not sciences, but arts; and that we who pursue them oc cupy a place a grade below that of the disciples of scientific
research, the seekers after truth as truth, for its own sake Gentlemen, I woul do no form of science, phy ical, mental, or moral But it should be born in mind that the ab solute truth is what solute truth is what we never can attain our utmost investiga tions give us only the truth as it is related to man. And it is truth for man's sake that w seek.
"It was my good fortune to be present at the farewell ban quet given to Profes sor Tyndall by the scientific and literary men of New York, and attended also by a hos of guests, comprising of guests, comprising an unequalled array of the scientific and literary men of the United States. Asid from the relations be tween religion and sci ence, which received perhaps an undue share of attention from the orators of the evening, the principal stress was laid on the
justable by hand nuts and bolts to thick or thin, wide or nar row, blades. The angle at which the edge of the blade is greund is regulated by the hand bolt, G. E is the carriage or slide which is passed to and fro in front of the wheel, C on the shears or bed, F. This machine is furnished with two small rests having each a surface 4 by $8 \frac{1}{2}$ inches, also with a large rest or table $8 \frac{1}{2}$ by 20 inches in dimensions. These sur cessary both it and the valve can be removed for repairs by |steel, and either rest can be brought to either edge of wheel great value of scientific research, as distinguished from mere simply taking off the cap over the end of the chest. Within at or below the center, or raised, if desired, 8 inches above invention or applications of natural laws to useful ends. It the latter, the steam port is always exposed to the steam. The crank pin has an oscillating motion of about $\frac{1}{16}$ of an inck to a six inch stroke and, it is claimed, is thus preventdrom heating.
The lever is situated upon the exhaust pipe and is attached semi-circular leaves, answering for a link By turning it in one or the other direction the engine can be reversed or started ahead; or by moving it up or down to the proper places, the lap of the valve can be altered while the engine is in motion.
The inventors state that they have had one of these machines in constant use fo six years. Its cylinder is 3×6 inches, and it makes one hundred revolutions per min ute, driving three printing presses. It has been ascertained by experiment that an en cine with a cylinder $6 \frac{1}{2} \times 8$ inches gives, by ine with a cyl 14 herse dynamometrical test, 14 horse power, 55 lbs o team, and 120 revolutions. Attached to a 24 nch bur mill ng corn, a machine of the abo dimension nder 55 lbs. of 430 , 250 revolution per minute, with 430 revolutions of the stone The detailed results given are very satisfac tory, indicating large economy of fuel, al though the boiler employed was of a disad vantageous form.
Patented through the Scientific American Patent Agency by Scott and Morton. For further information in regard to purchase of engines, etc., address Peter Black \& Sons, manufacturers, Hamilton, Ohio; or in relation to rights, etc., address the patentees a the same place.

REVERSIBLE REST SINGLE WHEEL

In the machine here represented especial a adjustable rest upon which to place a convenient and easily supplying an accurate method of grinding long knives or ther straight edges with emery wheels.
In the cut, A represents a knife being ground. B B are braces supporting an extension table, and \mathbf{C} is a Tanite emery wheel. The knife is held in a clamp, D, which is ad-

\section*{THE TANITE CO.'S REVERSIBLE RES' SINGLE WHEEL GRINDER} distinguished from mere or below the center, or raised, if desired, 8 inches above invention or applications of natural laws to useful ends. It he center of the arbor. They can also be adjusted on either is announced that Professor Tyndall has generously devoted side of the wheel at such point as is desirable. The general to the encouragement of the former the entire profits of his design of the machine, combining metal where strength is American lectures. Far be it from me to detract one iota | required, lightness where extra metal would be useless, and | from the praise which is due to the earnest, honest, and dis |
| :--- | :--- |
| artistic taste with utility, will commend it to all mechanics. | interested inquirers who have made the secrets of nature | available for the use of man. But when so much emphasis is laid upon that kind of physical investigations which promises no immediate benefit, as if it were a higher kind; as if truth lost something of its dignity when conjoined with utility; as if it were aristocratic to deal with abstractions, like atoms and ether, but vulgar to find out things that it happens to be worth money to know; then I feel justified in vindicating the dignity of the craft of those who work for money and for man.

"For what is the significance of the state ment that a discovery is 'worth money?' Merely this, that it lessens human toil, re fines or enlarges the product of toil, trans fers toil from the ruder muscular sphere to the sphere of mind, which is the sphere of machinery. A machine, a mechanical or a metallurgical process, is the incarnation of the spiritual power, the symbol of man's control over nature, and every new one lifts us higher in the scale of potency, making the race more and more dominant over its circumstances. The money that a discovery is worth constitutes the general estimate of the good it will do. This estimate may of the good the world may be short-sighted be erroneous, the or thes in the measurement, but the element of util ity is not therefore an unworthy one. 'Not as the servant of Mammon,' says Professor Tyndall, 'but as the supporter and enlight ener of the mind of man, would I have you take science to your bosoms.' Very good;

When the knife-grinding attachment is removed, the table rest forms a true surface for holding gang or mulay saws while grinding the teeth either to sharpen or "gum" them. The machine is very handsome in appearance, and the high tanding of the manufacturers is a sufficient guarantee of its efficiency. For further particulars address the Tanite Company, Stroudsburg, Pa. See advertisement on last page.
but minds supported and enlightened in that way will certainly make money, that is, they will save labor, or do more work with the same labor. The fact is that it is impossible to prevent science from being useful to mankind, unless it be locked upin the bosom of the student. This would be strictly seeking truth as truth, seeking merely for the sake of knowing; but our great philosophers would seorn such
selfish isolation. To know truth that we may tell it, apply it, make it fruitful, is the key note of science; and the truth about ores and minerals, fire clay, fluxes, and blasting powders is as worthy of knowledge as the atmosphere of a fixed star."

Srintifir Ammian.

MUNN \& CO., Editors and Proprietors PUbishikd wierif $A T$ NO. 37 PARK ROW, NEW YORK
O. D. MUNN.
A. E. BEACH.

TIFRMS.

One copy, one year
One coop, six months

VOL. XXVIII., No. 14. [New Series.] Twoenty eighth Year.
NEW YORK, SATURDAY, APRIL 5, 1973.

ontent	
rated articles are marked with an astertsk.)	
Aniline for printing black......... 215 Patented in England by Ámeri- Astronomical notes................. 211 218 patents, ofticial list of...................... 216	
Gur, econooy of orie rejt sinigie	
Japayene moys in the boston ${ }^{\text {ma }}$	
New books and publications	

THE INTELLECTUAL ENJOYMENTS OF SCIENCE.

Those who, for several years past, have been advocating the more generous introduction of scientific training into our schools and colleges, at the expense, if necessary, of giving liss attention to philological studies, have, as a main argument, insisted on the greater utility of the knowledge of scientific trutus as compared with the knowledge of the ancient Greek and Roman authors, so liberally imparted to our college-going youth. They have pointed out the glorious results with which science has enriched human society in the nineteenth century, and the comparative sterility of the socalled classical studies; they have pointed out the success in practical life of those men who have received a scientific education, while those whose whole training was merely philological have, in many cases, been starving for want of capacity to earn an honest living by useful practical labor, either mental or mechanical. In short, they have confined themselves to the task of praising science from a mere utilitarian point of view, forgetting that it may have higher claims, not only equal to those on which the friends of the old and time honored custom of studying the classics base their defense, but even surpassing anything which may be asserted in favor of the effect of studies of the dead lang
and literature on the development of the human mind.
The higher classes of society, especially in England, consid er labor, if not directly degrading, at least below their spe cial domain. They are apt to regard that kind of knowledge which is merely useful and such as men in practical busines are in need of as without interest; and in place of attempting to acquire, for instance, so much knowledge of light and electricity as to be able to understand some optical apparatus or the electric telegraph, they prefer to concentrate their attention upon the writings of Virgil or the poems of Homer. A know edge of Latin and Greek is supposed to be about the high est enjoyment reserved fo a man of high culture, for the reason that these studies are pursued, not for a secondary, base, utilitarian purpose, but out of pure love for what is eautiful and true
Those lovers of science who feel and know that in the study of God's handiwork, Nature, there is much more enjoy ment, beauty and truth than in the study of literature, which is a mere human production, have therefore recently been rais ing their voices so as to persuade the most cultivated class es, if possible, that the pursuit of scientificstudies is at least as much worth their notice as the pursuit of philology; that that they should not abhor a chemical laboratory, or philosophical cabinet, as dull and dry ; that there are fascination hidden in these sacred precincts of science, which have only to be tested, with the purpose of impartial investigation, in order to be appreciated. This order of defenders of science have found a powerful advocate in Professor Tyndall, who, in his recent lectures, so often insisted that the classes of people for whom he spoke "should take science to their bosoms, not as the servant of Mammon, but as the supporter
and enlightener of the mind of man." And the effect of his often repeated appeals has been something marvelous; people of high standing in society, aud of corresponding cultiva
tion of mind, who have been accustomed to occupy themselves in their spare hours with reading poetry and works of fiction or, at the very best, the so called classics, have furnished their libraries with works on science, and are studying optics, the polarization of light, etc.; and some have even gone so far as to buy, in place of useless crnaments, prisms, micro scopes, and polariscopes, and are delighting themselves and their friends with the revelations made by those instruments, which seem to give us additional organs of sense.
We make no objection to Professor Raymond's remarks (republished elsewhere in this number) made lately before the Institute of Mining Engineers at Boston, and again taking up the defence of scientific pursuit from the utilitarian point of view ; we wish only to defend the position of Profes sor Tyndall, who in aristocratic England has, by his social status, during his whole life been compelled to appeal to the status, during his whole lasses in regard to that which is worthy of their attention, and who by his untiring efforts has elevated the standing of science and of the men of science, in the eyes of the rulers of society and of the whole world, to a high never before reached.

PILE DRIVING AND THE LAWS OF IMPACT

A subscriber propounds the following question: "A pil driver, weighing 2,500 pounds, falls through guides 25 feet higlf. With what force will it strike the last blow, friction not being considered?" The reply to this is that the striking force may be any amount from 2,500 pounds upward. The question, as asked, does not give sufficient data for its solution. When a heavy body falls, an amount of energy is stored up in it which is proportional both to the weight of the body and the distance fallen through. It is generally estimated in units called foot pounds. In the given case, the energy accumulated in falling, or the work done on the ram by gravity, is equal to $2,500 \times 25=62,500$ foot pounds. ram by gravity, is equal to $2,500 \times 25=62,000$ foot pounds.
Before the ram can be stopped, an equal amount of work Before the ram can be stopped, an in retarding it, since it is a well ascertained must be done in retarding it, since it is a well ascertained
law of nature that the energy stored in a body while putting it in motion, is precisely equal to that which it gives out in resisting arrest. This amount of work, 62,500 foot pounds, can be done either by a force of one pound acting through 62,500 feet, by 62,500 pounds acting through one foot, or by any force acting through such a distance that the product of force into distance shall be equal to 62,500 foo pounds.
Before we can answer the question asked, therefore, we must know how far the pile moves while resisting the falling weight. Again, if we were told the mean resisting power of he pile, we could calculate precisely how far it would be riven by the last blow. Were the ram to strike the pile fter falling $23 \frac{1}{2}$ feet and to come to rest at 25 feet, the mean orce exerted would be $62,500 \div 1 \frac{1}{2}=41,666 \frac{2}{8}$ pounds. Wer he pile driven 3 feet at the last blow, the ram still having total fall of 25 feet, the mean pressure would be $62,500 \div 3$ $=20,833 \frac{1}{8}$. If the pile moved but an inch, the force devel oped would be $62,500 \div \frac{1}{1}=750,000$. In actual practice the pressures would be less than those calculated, because part
f the work done would be expended in crushing the head of the work done would be expended in crushing the head of the pile, and in overcoming the friction in the guides. Our figures are maximum values, which may be approached but never quite reached.
Knowing the distance moved by the pile under the last blow of the ram, and calculating, as we have done, the mean resistance offered by it, it is customary, with some engineers, to take one eighth the latter figure as the safe load which can be put on that individual pile without danger of its sinking. In ordinary soil this rule is sufficiently correct, but it ometimes happens that a heavy pressure, suddenly applied will move a pile almost imperceptibly, while it will gradu ally sink to an indefinite distance under a very light load n other cases, as along our docks, a pile may be set with apparently very feeble carrying power; and yet, after the mud has become well packed about it, and has been rendered somewhat' compact and adherent by the superincumben pressure, the pile will carry a heavy load. Experience and judgment only can be safely trusted in such cases. The oad carried by a pile in the stiffest soil has been, in some cases,
The velocity of striking is calculated by multiplying the hight of fall by $64 \cdot 3$ and extracting the square root of the poduct. The coefficient, $64 \cdot 3$, has been determined by care ful and a thousand times repeated experiment.

WATER AS FUEL.

"On Monday and Tuesday afternoon," says the San Francisco Alta, " a large number of citizens, by invitation, visit ed the brass founclery on Fremont street, for the purpose of witnessing some experiments with a new fuel recently in vented. They were shown into that portion of the establish ment occupied by the furnaces, and in one corner found a brick furnace, some eight feet long and six feet high. On the top of this was an iron tank holding about ten gallons, which was filled with crude petroleum. From this tank a pipe about an inch and a half in diameter led into the side of the furnace. A small jet of oil, not larger than a small goose quill, was permitted to flow out of this tube; a light is placed beneath this jet, and it immediately ignites. Another pipe about an inch in diameter, leads from a steam boiler stationed some fifteen feet away. This pipe leads a small jet of steam upon the burning oil, and the moment the steam strikes the oil the oxygen in the water is set free and ignites with a tremendous roar, generating in a very few moments a most
intense white heat.

From this small source the entire chamber of the furnace which is some two feet by five feet, is filled with a flame so brilliant and dazzling that one cannot gaze on it for more than a moment at a time. This flame possesses all the heat of an oxyhydrogen flame, and beneath its fierce power the hardest metals melt in a few moments. Tl:e inventor of the apparatus by which the elements of heat, which nature so generously provides, can be utilized is a very modest man saying that he did not want to bring his discovery before the public until he had fully demonstrated that it would do all he claimed for it. He says that the cost of his furnaces will be only a nominal sum that will be within the reach of every one who owns a quartz ledge, while the amount of oil consumed in twenty-four hours will not exceed ten gal ons, at a cost of two dollars.
"Tbe inventor has every confidence in his discovery, and declares his ability to furnish fuel for a voyage of one of the Panama steamers to and from Panama for the insignificant sum of $\$ 200$, while the entire quantity will weigh not to exceed twenty-five tuns. He further says that, at an expense of five dollars per day, he can run furnaces that will smelt ne tun of ore every thirty minutes. If only one half of what is claimed can be accomplished, the discovery will prove of incalculable advantage to the mining interests of the Pacific coast, and will create a revolution in steam trave hroughout the world."
Remarks by the Editor.-There are, in the above article number of points upon which we propose to make a few comments: Many attempts have been made to construct furnace or burning petroleum, but none of them have gained enoug favor to be universally adopted. There are a few establish ments in the country where it is claimed that the fuel is crude petroleum, but authentic reports of the economy of the furnaces are wanting. In Paris an ingenious contrivance was invented by the well known philosophical instrument maker Wiesnegg, which, in a small way, yielded good results. The ppliance for distributing the oil consists of a pipe with branches and of a grooved grate along which the oil flows fter dropping from these tubes. A wrought iron cistern contains the supply of petroleum, and is connected with the distribution by an india rubber tube. The grate is placed ertically; the air, being admitted between the bars, supplies the oxygen for the combustion of the petroleum vaporized by the heat of the fire. The petroleum is supplied to the rate a little in excess of the requirements of the furnace, and the surplus drops into a receiver and is volatilized by he heat of the furnace and the vapor is consumed. No blas is necessary. A somewhat similar contrivance was suggested by Deville for use on locomotives and on steam ships. This avant was employed by the French government to conduc series of experiments looking to the employment of petrc leum as fuel. Samples from all parts of the world were ested and the heating effect was determined by the number f kilogrammes of water that could be raised from zero to one degree centigrade by one kilogramme of oil. A trial was made by Deville upon locomotive engines arranged to permit the use of liquid fuel. One of these consumed about thirteen pounds of oil for every eleven hundred yards of distanc traveled; while the coal burning engines of the same clas required for the same work more than twenty pounds of solid fuel. The Deville furnaces for burning petroleum have been ried in this country, but little is known about them and it is question whether, at the present low rates for crude mate ial, they could not be advantageously introduced for many purposes. Deville and Wiesnegg accomplished the combusion of petroleum by introducing the oxygen of the air hrough peculiarly constructed grates. Neither of them could have been so unphilosophical as to try steam, for they would have known that, in order to generate the steam, so much fuel would be required as to take away the entire conomy of the application. One furnace would have to be built to generate the steam to carry on the combustion of the etroleum in the second furnace. We have here again the perpetual motion of combustion lurking in the minds of th careless spectator, and there is something so captivating in the thought of burning both water and petroleum as fue that everybody is at once ready to adopt the new invention as a wonder of the age. We do not say that water canno be burned; every scientific man knows that it can, but we assert that cannot be burned economically. In order to bring water to the condition of fuel, other fuel must be consumed. If this result is attained by means of a galvanic battery, zinc and sulphuric acid are the fuel; if by a magneto-electric machine, the machine must be driven by a steam engine. If steam is burned in a grate by coals or by petroleum, we must first use fuel to get the steam. It generally happens that the original fuel burned costs more than the fuel produced by the water, so that there is a clear loss. If the two fuels have the same value, the process is not economical, as the cost of machinery and the wear and tear of manipulation must be taken into consideration; and what would be the use of transorming one fuel into another which is no better?
This water burning business has become a nuisance that can only be abated by the dissemination of correct scientific principles. Pumping water into a reservoir by a costly engine in order that it may drive a small wheel at the bottom is fully as economical as any of the contrivances for burning water with which we are acquainted

CHEMISTRY IN LEIPSIC.

The university of Leipsic possesses one of the finest and est equipped laboratories in Germany, with no less a person than Professor Kolbe as lecturer on chemistry. Recently a thick octavo volume of nearly 700 pages has been published, giving a detailed account of the original investigations mado
in that laboratory for the past six years. The results of
nearly, or quite, all of this work were published to the
world from time to time as world from time to time as each investigation was completed, but the collection of them together in book form impresses us with the magnitude of the work, and shows how much can be accomplished in a single institution. Of course, many of these investigations are the direct product of Professor Kolbe's fertile brain, and equal results cannot be expected everywhere. But some results like these, though fewer in zumber and of less importance, ought to be produced in a dozen of our highly endowed American institutions, where to-day the dust lies deep on long unused apparatus.

It may be objected that these investigations have neither lead to startling discovery, nor brought in much money to the investigator. But science can point out so many occasions where the pursuit of knowledge for her own sake has benefited the world at large, that this charge will not avail much among the thoughtful, and especially among intelligent capitalists and inventors. From the time when Priestley discovered oxygen or Liebig prepared chloroform, to the time when Hoffmann discovered the beautiful aniline dyes that bear his name, the most valuable and beneficial chemical inventions have sprung from the study of science for her own sake. Nature can be compared to the wary heiress, who repels each suitor who, as she thinks, is courting her for her money, and bestows her heart only on the true lover who, ignorant of her wealth, adores her for herself alone; and like the cautious heiress too, she often disguises herself as a pauper to test the devotion of her followers. On the other hand, the fortune seeker, who marries the milliner's appren tice in the expectation that she will turn out a millionaire in disguise, deserves the disappointment; and science often thus disappoints her mercenary followers.

SINGULAR CAUSE: OF FIRE.

The works of the Rubber Cloth Company, at Naugatuck, Conn., were destroyed by fire several weeks ago under the fol lowing singular circumstances: The building, an old one of wood, was 100 feet or more in length. The cloth is prepared by treatment with alcohol and linseed oil, and, during the operation, is passed over wooden 'rollers and extended along, for fifty feet or more, into a smaller vulcanizing chamber some thirty feet in length, where it is hung in folds from the ceiling to be dried and heated. The heating is done by steam pipes. Electrical sparks had often been noticed in passing the cloth along over the rollers. On the morning in observed to in progress at the time. The workman, who was engaged in hanging the folds of cloth in the vulcanizing chamber states that suddenly there seemed to come from his hands a sheet of electrical fire, there was an explosion, the whole place was instantly in flames, and himself and others had to run for their lives. The building and contents were soon
destroyed. The theory is that the fumes of alcohol and oil destroyed. The theory is that the fumes of alcohol and oil
formed an explosive gas in the apartment, which the electrical sparks ignited, just as gas ordinarily is fired by elec tricity.
New works have been put up and the rolling machines have been connected by conducting wires with the earth. We are indebted to Mr. Allerton, the manager of the company, for these particulars.

VESUVIUS.

About two thirds of the way up the side of Vesuvius, stands a small building, plainly visible from the Naples side of the bay. During cloudy and wet weather, it is shrouded in the dense veil of smoke which settles around the summit and in times of eruption, the fiery streams seem to encom pass it and flow far below its level. In this structure, thus dangerously located, Professor Palmieri, a well known Italian savant, has established an observatory and, with marvellous intrepidity, has remained at his post watching the convulsions of the volcano at times when his house stood between dows and scorched the solid stone of the walls.

The knowledge obtained at so great a risk has been recently given to the world in an ably written volume, which future investigation of volcanic phenomena. Professor future investigation of volcanic phenomena. Professor
Palmieri considers that, to a certain extent, eruptions may be predicted, a belief which he bases upon late observations that the central crater commences the agitation, which is then followed by a series of light convulsions which terminate in
the grand outbreak. This concluded, the volcano becomes again quiescent. A vivid impression of the enormous force developed during an eruption is conveyed in the fact that on April 26, 1872, the volume of smoke, ashes, lava fragments and bombs projected upwards from the crater attained the hight of no less than 4,265 feet from the edge.
It is difficult to convey an adequate idea of the appearance of Vesuvius when thus convulsed. It was our fortune to witness the eruption of 1868 , which, in point of magnitude, the phenomenon invariably exaggerate it, as they depict a steady column of fire of a hight equal to or greater than steady column of fire of a hight equal to or greater than
that of the mountain. As the latter is over 3,000 feet above the sea level in altitude, the impossibility of a fiery pillar of such proportion is obvious. Red hot stones are occasionally, as we have above stated, thrown to greater hights; but such is by no means of common ocuurrence. By day, an unceasing flow of white smoke rises like a gigantic plume from the crater, and is visible for miles distant; while at night, the During the hight of an eruption, the smoke is ejected in
greater quantities, and the summit of the mountain belches
fountains of flame. The latter fountains of flame. The latter, however, are by no means
continuous. The volcano will often remain quiet for hours and sometimes days, often cansing it to be believed that the convulsions are over. Then all of a sudden, the smoke clouds will thicken, a rumbling becomes heard, and a great jet of fire rises for a short distance above the crater and instantly falls back. At the same time, stones and red hot scorice rise high in the air and add, by their fall, to the noise of the commotion. This goes on at varying periods, sometimes ceasing immediately and again continuing for a day or more. There is a prevalent though mistaken idea that lava, at the time of these great outbursts, pours in rapid torrents down the declivity. In times of repose, it is very seldom that the streak of light due to the red hot mass is seen on the mountain side; though when an eruption first begins probably after night fall, a jagged lurid line will be remarked reaching below the crater. This extends as the convulsion progresses, and, after several weeks, it expands into several dull red streams reaching down a distance perhaps of two thirds of the slope. The onward movement of the lava is very slow, and of course it is totally unlike the molten rivers ciently to permit of being walked over though a stick thrust few inches down becomes quickly charred.
The danger to the villages at the base of Vesuvius does not lie so much from stones or ashes being heaped upon thém, as we have recently seen it stated, but from these de scending lãva streams extending down far enough to reach populated portions. In regard to the mountain throwing populated portions. In regard to the mountain throwing
ashes, such is often the case when the wind is high; but the quantity ejected is never enough to cause apprehension The substance which buried Pompeii and Herculaneum, which seems to be nothing more than fine dry pumice, must have been the result of an eruption to which modern convul sions furnish no parallel. We have seen ashes carried to points several miles distant from the volcano; but, during the entire course of the eruption, the aggregate depth to which they fell could not have exceeded from one eighth to
one quarter of an inch. The substance was in black friable one quarter of an inch. The substance was in black friable material which entombed the Roman cities.
Professor Palmieri has produced a very instructive work on Vesuvius. Now, we would suggest that he supplement his efforts by turning his investigations from an intermittent o a constant volcano-from Vesuvius to Stromboli. The latter, situated on an island in the Mediterranean, is in per petual eruption, and the light from its summit serves as a
well known beacon to sailors. For how long the phenomewell known beacon to sailors. For how long the phenome
non has existed, history does not state; but it seems to u s that much valuable cosmical knowledge might be gained from the results of such continuous volcanic action.

THE GREEK NEW TESTAMENT.

The manuscript copies of the Greek New Testament, written before the art of printing was discovered in Europe, are known to differ among themselves in many small points, such as one or two letters in the spelling of a word, which Testament was put in print, in the sixteenth century, different manuscripts were compared with the printed text, and the variations from it noted. The further this comparison or collation of manuscripts, was carried, the greater was the number of variations discovered; and soon, alarm was ex cited for the safety and integrity of the text itself. The ollation of manuscripts, however, still went on, until a mas f "various readings" was secured, numbering many thou sands and constituting in textual criti
observed facts does in physical science.
observed facts does in physical science.
About one century ago, Dr. John J. Griesbach began to pply these "various readings" to the actual correction of he text; doing it however in a cautious and sparing manner, yet going far enough to show that the text might be both reserved, and purified and established, by the proper application of scientific principles in the use of the observed facts. But the opinion continued to prevail that the genuine tex was to be arrived at by the agreement of the greatest num ber of readings. As the modern manuscripts far outnumbe heir authority, as though, the further you go in time from the original autographs, the nearer you must thus become fact to the very words and letters in which those autoraphs were penned. Considering the liability to error in copying, the truth is indubitably in the opposite direction.
The nearer we can go to the first century of the Christian era, during which all those autographs were written, other thing being equal, the nearer we must get to the actual readings of he autographs themselves.
When our common English version was first put in print, in 1611, the oldest Greek manuscripts available to the trans lators were written as late as the tenth century. Since their ay, manuscripts have been brought to light, and many of tury, and from that point down to the tenth. Two eminent scholars, Dr. S. P. Tregelles, of England, and Dr. C. Tischen dorf, of Germnny, have also each devoted thirty years to the ollection of readings from the anclent manuscripts, and the ractical use of them in revising the text. In addition io he testimony of the ancient manuscripts thus secured, they have also developed other principles of criticism, and reduced
them to practical cules, so definite in i heir application that them to practical rules, so definite in iheir application that,
in most cases, the revised texts of these distinguished scholin most cases, the revised
Thus through the medium of textrial criticiem, and by the patient and intelligent application of its principles during ong years of toil, we now have the text of the Greek New

Testament restored essentially to its original purity, and stablished on a firm and scientific hasis.
Previous to the tenth century, the manuscripts were writ ten in capital letters, and without a space between the words The three most important and valuable of them are the Sinaitic, the Vatican, and the Alexandrian, many of whose various readings are given by Tischendorf in his Leipsic edition of the Euglish New Testament. The Sinaitic manuscript, crit ically marked Aleph, written about the middle of the fourth century, was discovered by Tischendorf, February 4, 1859, in the convent of St. Catharine, on Mount Sinai, in Arabia, and published by him in facsimile in 1862, and in the common type in 1865. It contains the entire New Testament, and is deposited in the Imperial library at St. Petersburg. The Vatican manuscript, marked B, also written about the mid dle of the fourth century, has been published only since 1857. It is in the Vatican library at Rome. The Alexan1857. It is in the Vatican library at Rome. The Alexan-
drian manuscript, marked A, written about the middle of the drian manuscript, marked A, written about the middle of the
fifth century, was first published in 1786 . It is in the British Museum, at London. The Ephraim or Royal Paris manu script, marked C, of the fifth century, and the Cambridge manuscript, marked D, of the sixth century, are next in value.
As specimens of various readings: In Matt. 7:14, Aleph and B have OTT, "Eecause strait is the gate," putting it on the same ground as the preceding motive for "entering in at the strait gate," and OTI, " because wide is the gate," etc. But later copyists dropped the O, and made it read $T I$, "How strait is the gate." In Luke 13:24, Aleph and B have $\Theta U P A \Sigma$, "d door," corresponding with "the door" spoken of in verse 25. But later copyists changed three letters and made it read $\Pi U \wedge H \Sigma$, 'gate," as in Matt. 7: 13, 14. The doxology to the Lord's rayer is not found in any of the oldest manuscripts in Matt $: 13$; just as all omit it in Luke $11: 4$. But in later times the prayer, having come into general use in the church serv ice, was closed with the doxology, and with that addition was copied into the later manuscripts of Matthew.
In 1862, and 1865, the American Bible Union, of New York city, published a first, and a second revision of the English New Testament, under the direction of Dr. T. J. Conant, fol lowing the revised Greek text, so far as it was then settled. That society is now preparing a third revision, from the completed text of Tregelles and Tischendorf, in the current English of the present day. The Canterbury diocese, of England, is also employing revisers for a similar purpose; but they propose retaining the antiquated English of the common version, except where it cannot be readily understood.

CONTAGIOUS AND INFECTIOUS DISEASES.

Dr. Symes Thompson, a well known English physician, recently lectured on the above topic in London; and from his discourse we glean the following:
It is considered a settled fact that diseases of a contagious nature are caused and spread by influences largely within the sphere of human government and control. Every form of infectious fever has its idiosyncrasy. Enteric fever and cholera tend chiefly to disseminate themselves through water, passing into the wells and fountains of daily supply, and a times traveling from house to house in the milk cans of easy conscienced diarymen. Scarlet fever hibernates in a drawer and, after long months, comes forth with some old and cast aside garment,to be thrown with it around the throat or head of some new victim, and so start thence upon a fresh career Typhus fever crawls sluggishly from hand to hand and mouth to mouth and is immensely sociable in its spirit languishing away when condemned to solitary confinement Typhoid fever generates itself where filth, overcrowding and impure habits of life prevail; and relapsing fever glides in he track of privation and misery.
The means now known of controlling these evil ministrants are, in the main, careful isolation of the sick, the preserva tion of the water from which daily supr lies are derived in uncontaminated purity, the uninterrupted ventilation alike of hospitals and dwelling houses, the immediate removal from the vicinity of active human life of all excretions of the sick and the destruction of their morbific influence by mixing them with antiseptic and disinfecting agents (such as carbolic acid, sulphuric acid, chlorides of lime and zinc permanganate of potash, and charcoal), temperate living voidance of any kind of excess, and above all the cultiva ion of an intelligent familiarity with natural laws.
In regard to antiseptics and disinfectants, Dr. Thompson tates that it should be understood that agents of the char acter of carbolic acid are properly antiseptics, and operate mainly by arresting the process of fermentation and decom position, while agents of the nature of Condy's fluid (perman ganate of potash), chloride of lime, and especially charcoal are disinfectants, and act by absorbing the noxious products f decomposition. This he showed by experiment, a few drops of carbolic acid causing a cessation in the evolution of gas bubbles from a fermenting solution of sugar; and the violet color of Condy's fluid was instantly discharged when combined with water in which was a trace of sulphureted hydrogen. The lecturer also exhibited the remains of a rat which had been placed in a jar of charcoal six years ago Only the bones and a few hairs were to be seen; and al hough the jar had been covered with but a piece of paper, hroughout the lengthened period of decomposition, no trace of disagreeable smell was at any time emitted.
Nitric Acid in Springe Water.-The water supplied to the city of Manioh, Ger., contains nitric acid and saltpeter. Professor A. Wagner states that the amount of water used by the city in one year, by the ordinary water pipes, contain saltpeter, sufficient to make $18,106 \mathrm{cwt}$. of gunpowder.

The invention illustrated herewith is an improved ma chine for furrowing the ground for cultivating or prepara tory to planting. The standard posts of the plows, A, are pivoted to the under sides of the beams, B. The latter are held in position by the cross bars, D , in which several holes may be made to receive the connecting bolts, so that the plows may be adjusted either wider apart or closer together as desired. E is the tongue which passes through the keeper, F, attached to the cross bar, D, and is loosely bolted at its inner end so as to have vertical but no lateral movement. This construction relieves the horses' necks from having to support any weight, and at the same time leaves the plows free to follow the surface of the ground. G is the double tree to the bolt of which is pivoted a double plate, H , which extends through the tongue keeper, F, and above and below the tongue. To I indicecu by draft bars, I, indicated by dotted lines which communicate directly with the plows. The small gage wheels shown are pivoted to the V shaped standards, J . In the forward arms of the latter are a number of holes by means of which the position of standards and wheels may be altered so that the latter may be adjusted to cause the plows to work at any desired depth of ground. The handles are supported by a round, and also by braces on the rear cross bar. They may be inclined to allow the operator while guiding the plows to walk at the side of the row of plants being cultivated.
K is a long bar pivoted as shown to the tongue, so that it has a free vertical, but no lateral movement. At its outer end is swivelled a bar,L, at the extremity of which are hooks or prongs which drag along the ground. To the beams, B, are attached brackets, M, to receive the bar, K, and hold it always at right angles to the machine. The above arrangement, which constitutes the marker, may be turned to one side or the other, as the apparatus passes back and forth across the field.
Patented through the Scientific American Patent Agency, October 22, 1872, by Mr. George W. Meixell, of Hecktown, Northampton county, Pa., from whom further particulars may be obtained.
AN IMPROVED FORM OF THE SELDEN STEAM PUMP
This machine is a recently modified form of a well known and efficient steam pump, especially applicable to the purposes of mines and water works, and arranged with particular reference to pumping water containing dirt or gritty matter. The portions in the illustration to which attention is directed, are the device for operating the slide valve of the steam cylinder and the arrangements of the water valve chambers. It will be noticed that the valve rod emerges from both ends of the chest and at its outer extremities is connected with the short arms of levers which are pivoted to brackets on the cylinder heads. To the lower and long arms of the levers, two small rods are suitably connected, which pass into the steam cylinder. Against these the piston at either end of its stroke strikes, thus actuating the levers, and through them the slide valve. This movement is evidently positive. It is stated that the pump will not stop so long as there is steam to drive it, while there is no po: $\cdot:$. 3 which its motion can be arrested without leaving the steam ports fully open,
and thus insuring its operaand thus insuring its opera-

the expense of the pipes, etc., attendant upon the use of pump on the surface. We learn from the manufacturer Mr. A. Carr, of No. 43 Cortlandt street, in this city, that sample pump of this description has been forwarded to the Vienna Exposition, and also that he is in receipt of order for the machine from Germany

slates.

A fine, sound texture is the most desirable among the properties of a slate, for, the expense of slating being very greatly increased by the boarding whereon it is placed, if the slate absorbs and retains much moisture the boarding will soon become rotten. But a good slate is very durable Its goodness, says the Building Newo, may readily be judged by striking, as a piece of pottery is struck. A sonorous, clear, bell-like sound is a sign of excellence, but many pieces of the slate should be tried before such a conclusion is arrived at. Port Madoc slates have a sharp, clear ring, and the slates, though much thinner than Bangor, will bear throwing on the ground without fracture, while the latter often break in the mere handling. The color also is some uide, the light blue sort imbibing and retaining moisture a a far less degree than the deep black blue sort. The feel of
upper and lower chambers are cast in separate parts; an having the plate upon which is the valve seat between them the whole being securely bolted together, should any acci dent occur to the seat plate it can be readily taken out and re paired or renewed, without loss of any other part. The valve seat is made of the best composition and attached to the plate, and may be replaced in a few minutes by removing the cover.
The
The water cylinder being some one and a half or two inch es larger than the plunger gives the pump an advantage over the piston pump in raising gritty water, as the surfa ces are not in contact, and are therefore not exposed to grind ing and consequent leakage. The machine is designed to be placed directly at the bottom of the mine, so that it obviates

MEIXELL'S CORN PLOW AND MARKER.
 been, made of this substance. machine was about $3 \frac{1}{2}$ or 4 horse tion as soon as steam is admitted. The advantage of this a slate is also some indication of its goodness A good one a tun, which fills the air with sooty flakes and coats the
frame provided with arms, cutters, toothed wheels, etc. in such a way that the cutters may be raised by a lever and et fall again with a sudden blow, and this in such a manner as to work the slate out into either plain or fancy surfaces. Besides, billiard tables, pavements, cisterns, walls, partitions and numerous other articles connected with the building and furniture trades are now, and have for some time past

New Magneto-Electric Machine.

We have had an opportunity of witnessing the trial of a magneto-electric machine, which appears to be likely to give atisfactory results, says the Engineer. It consists of a row of modified horseshoe electro-magnets, surmounted by an ther row of inverted simila electro-magnets, the poles con sequently being face to face, bu of course separated by a space In the central space there re volves a drum carrying the a:ma tures, one armature being sup plied to every pair of magnets The armatures are simply ring or hoops of soft iron, surrounded by a number of helices contain ing wire. The ends of the wire of each helix are brought dow to the shaft of the drum, each insulated from the other, and hence the currents are collecte in the usual way. Pieces of iro attached to the poles of the mag nets partly embrace without touching the armatures. In the machine in question there were hree armatures, one of which was sufficient to excite all th magnets by means of the induce current, as above described, an the other two were sufficient to provide a powerful current, which gave an excellent light in one of Mr. Ladd's lamps. The power required to drive the

Water in Kansas City.

A correspondent of the Evening Post says: "There are few instances of more rapid growth in the marvelous settle ment of the great West than that of Kansas city, the extrem frontier town of Missouri. In 1865 it had five thousand in habitants. Today it has forty-two thousand. It is the cen tral point of a spider's web of railroads running to the ut most extremities of the land. Nine railroads come togethe here, over which fourteen different companies run thei trains. These are coming and going all the time-to th lakes, to the Ohio, to California, to the Gulf of Mexico.
" The town is exceptionally well built of brick. The streets are wide, though all up and down hill, and handsomely laid out, and are well lighted with gas. Three or four daily papers keep the town informed of what is going on.
"Among the many causes for amazement that the strange in one of the Kansas city hotels will have, during the firs twenty-four hours of his sojourn, not the least staggerin will be the sight of the water with which he is expected to perform his ablutions. H takes up the ewer and pour out a fluid as black as ink He cannot believe his eyes It is an absurd mistake some how, an accident, and he rings his bell. Quickly comes a negro, who assures him that this is the regulation water of the establishment, tha everybody washes in it, that there is no other than it but well water, which is so hard that it is impracticable for washing altogether.

The water has come from the clouds in the form of rain, and been collected in cisterns Now the fuel used by the people of Kansas city is a sof bituminous coal, furnished abundantly at from $\$ 3$ to $\$ 5$
arrangement, apart from its efficiency and simplicity, also lies in the fact that the steam and water cylinders of the longest stroke pumps can be located very near together, just leaving room to pack the glands, and ensuring compactness and strength. It is claimed that the valves will discharge water of condensation without choking, and that the pump will operate with water as steadily and reverse as promptly as with steam. We are also informed that it will run under water, in case of flooding of a mine or similar casualty.
The combination of the two pump cylinders with the plunger between them, the latter connected directly with the piston rod, is generally understood and indeed plainly indicated in the illustration. The water valves are, it is claimed, made so large that, by lifting from three eighths of an inch in the smaller sizes to one and a quarter inches in the larger sizes of pump, they willgive the full capacity of the suction and discharge pipe. We are assured that their action cannot be heard, even with the ear upon the chamber, when working under a test pressure equal to 350 feet. The point in the construction of the valve chambers to be noted is that the
has a hard and rough feel, while an open and absorbent slate feels smooth and greasy. The best method, however, of testing the quality of slate is by the use of water in two ways. The first way is to set the pieces to be tried edgewise in a tub of water, the water reaching about half way up the hight of the pieces. If they draw water and become wet at the top in six or eight hours, they are spongy and bad; and as the water reaches less up them, so are the slates the bet ter quality. The other method is to weigh the pieces of slate and note their weights. Let them then remain twelve hours in water, and.then be taken out and wiped dry. Those that on re-weighing are much heavier, than they were previous to their immersion, should be rejected. Where the character of a slate quarry is not known, these experiments should always be made.
Improved machinery has of late years been invented for sawing and smoothing the slabs of slate. One is a machine for hollowing out blocks for sinks, etc., by means of cutters secured to the ends of revolving shafts. Mr. Matthew's apparatus for cutting and dressing slate consists of
tun, which fills the air with sooty flakes and coats the house tops with a black deposit. The rain water takes this
up before running off into the cisterns, and holds it in solution, necessarily assuming its hue.
"Every effort has been made by intelligent and far-seeing capitalists to secure water, but in vain. Upon the assurance of a geologist of good standing that the drip of the land from the Rocky Mountains promises water at a considerable depth, the Kansas city railroad company bored for it, at...a poin near Kit Carson, and did not get it fourteen hundred feet be low the surface. There they stopped. They have not relinquished the hope of finding water, however, elsewhere." We wonder if some of the ingenious readers of the ScienIfic American cannot discover some plan of clearing the Missouri, which flows near Kansas city, and thus solve the water problem. If not that, they can certainly invent stove attachments for consuming smoke, so that the small supply of water enjoyed will no longer be filled with soot.

THE first public library at Athens was founded in the year 526 B. C.

ASTRONOMICAL NOTES.

Observatory of Vassar College.
For the computations in the following notes (in which approximate places only are given), and for most of the observations, I am indebted to students.

Spots on the Sun
M. M.

A large group of spots can be seen at this date (March 15) near the center of the sun. It can probably be seen with the eye,protected as it alwaysshould be by smoked glass. The two principal spots of the group are of intense blackness. If this is the return of the cluster seen in February, it has changed its configuration.

Position of Planets for April, 1873.
Mercury.
Mercury can be seen at this date (March 15) shining beauti fully bright in the evening twilight. It does not reach its greatest elongation from the sun until the 18th, when it sets at 7 h . 43 m .
On the 1 st of April it rises at 5 h .48 m . A. M., and sets at 7 h .4 m . On the 30th of April it rises before the sun, being at that time on the other side of the sun, and sets at 4 h . 32 m . P. M.
venus.
On April 1st Venus rises at 6 h .54 m. A. M., and sets at 9 h 56 m . P. M. On April 30 Venus rises at 4 h . 58 m . A. M., and sets at 7 h .46 m . P. M

At this time (March 15) Venus can be seen with the naked eye in the day time. When viewed through a glass, it presents the appearance of the moon as seen just before the first quarter.
Venus will not reach its greatest brilliancy until the 29th of March, and can be seen on that day with the eye, at about half past two in the afternoon, on the meridian at an elevation of 71° in this latitude

Mars.

Mars sets at 7 h .18 m . on the morning of April the 1st and rises again at 9 in the evening. On the 30 th it rises at 6 h 26 m . P. M., and sets about 5 in the morning.
Mars is besoming conspicuous now (March 15) in the late evenings, being known by its ruddy light. On the 1st it will be near the star α Librer, but is moving westward among the stars, and will be further from it on the 30 th.

Jupiter.

Jupiter rises on the 1st of April at 2 in the afternoon, and sets at 4 in the morning. On the 30 th it rises a few minutes after noon and sets a few minutes after 2 in the morning.

On February 17th the 1st satellite of Jupiter was seen pro jected upon the planet, and also the dark shadow of the satellite. The satellite appeared like a snowy white disk upon the brilliant surface of Jupiter, while the shadow was an irregular dark spot, following the little moon it its transit.

On the 25th of February the second satellite was occulted that is, Jupiter seemed to pass over it and hide it from us; on the 11th of March the first satellite was lost sight of in the same way. It was five minutes from the time when Jupiter's limb was seen to touch that of the little moon until the planet had completely hidden it from view.
These phenomena can be seen with a glass of moderate power.
In an occultation the little moons grow dimmer and dimmer as the great planet sweeps across them. In a transit the satellite seems to glide on to the disk.
Saturn.

On the 1 st of April Saturn rises about 9 m . before 3 in the morning and sets a little after noon. On the 80 th it rises at $1 \mathrm{~A} . \mathrm{M}$. and sets at $10 \frac{1}{2}$ in the forenoon.
The apparent diameter of Saturn is increasing, but it is not well situated at present for observations.

Uranus.
On the 1 st Uranus rises about 17 m . after noon and sets be fore 3 in the morning. On the 30 th it sets at 1 in the morning and rises at 10 h .25 m . in the forenoon. It is among the stars of Gemini.

Neptune.

Neptune rises on the 1 st at 6 h .26 m . A. M., and sets at 7 h , 26 m . P. M. On the 30 th it rises at 4 h .37 m . A. M., and sets at $5 \mathrm{~h} .35 \mathrm{~m} . \mathrm{P}$. M.

Auroras.
Auroral streamers were noticed on February 21, February 25, and March 10.

THERMOMETER AND BAROMETER.

New Determination of the Velocity of Light.
M. Fizeau communicates to Les. Mondes the results of a series of very elaborate experiments made with a view of the most accurate determination of the velocity of light. The source of the ray was a jet of oxyhydric gas, and the distance between the two stations, as found by careful triangulation was 33827.1 feet, with a probable error of 0.001 .
Six hundred and fifty satisfactory observations were made, the mean of which, multiplied by the index of refraction, $1 \cdot 0003$, gives 185,368 miles per second as the velocity of light to an approximation of 0.003 . This result agrees with that determined previously by Foucault, and also confirms the value of the parallax of the sun ($8^{\prime \prime} 86$) obtained by Leverrier. M. Fizeau considers that, with stations separated a distance of 12 miles, the velocity of light could be determined to an approximation of 0.001 .

CHILD'S HAT.

Mr. S. B. Pratt, of Boston, Mass., is the inventor of the Mr. S. B. Pratt, of Boston, Mass., is the inver form of child's hat represented herewith. The crown, novel form of child's hat represented herewith. The crown,
A, is made of a single piece, somewhatin the shape of a star, A, is made of a single piece, somewhatinthe shape of a star,
and provided with a number of button holes by which it is and provided with a number of button holes by which it is
attached to buttons on the rim. The latter is simply a cirattached to buttons on the rim. The latter is simply a cir-
cular piece, cut as shown at B in order to give it the necessary conical form. The arrangement of these two parts of

the hat when put together is seen on the head of the child in the engraving, and needs no explanation. When soiled, it is only necessary to unbutton the crown from the rim and wash the fabric in the ordinary manner.

NAIL DRIVING HATCHET

Every one who has ever experienced the peculiar misery of fingers pounded while vainly endeavoring to hold a nail in an awkward position with one hand, while driving it in by means of a hatchet or hammer in the other, will welcome his invention with delight. All others, who have not underone such affliction, will require but ons trial to cause them to institute anxious inquiries for just such a device as we now illustrate.

It is nothing more than an ordinary hatchet, to the collar of which are secured two springs, the bases of which are at uch a distance apart as to hold the head of a nail between hem, while the outer ends grasp the body. A single blow tarts the nail into the wood, when the hatchet is detached and the driving home proceeds in the ordinary manner everything being done with one hand. To Mr. S. Daugherty, of Belle Vernon, Pa., is due the credit of this invention, which was patented, through the Scientific American Paten Agency, September 10, 1872.

WASHING MACHINE.

Mr. Samuel Berry, of New York city, has recently patent ed the ingenious laundry convenience shown in our engrav

ng. The device consists in a tub or bex, the bottom of which is made corrugated. A circular brush fits loosely within the tub, and is movable by the lever handle repre sented. A close fitting cover, held down by a bar and loops, covers the receptacle. The clothes are thoroughly washed by placing them between the brush and corrugated bottom, and retating the former.

It is noticeable that scientific subjects have received more ttention from the newspaper press of late than formerly. This is partly owing to the efforts of scientists towards popularizing their respective specialties, as exemplified in the re cent course of lectures in this country by Professor Tyndall. But there is another and more potent reason for it. In the scramble for wealth or the conveniencies of life, the utility of knowledge is esteemed more than its speculative quality of abstract truth. It is becoming more generally known that discoveries, that seemed at first to be without any application to the wants of mankind, have at length, through the higher development of commerce by means of them, contributed to the general good. Experiments in magnetism and electricity, which led to the invention of the electric telegraph, were made from curiosity only. The modern chemist takeslittle note of the monetary value of his discoveries; but the practical man presently finds their application to some use that has its equivalent in dollars and cents. None could have anticipated the use of spectrum analysis to the arts, and yet it is found invaluable in the manufacture of steel.
Many other instances may be noted to illustrate the proposition that every addition that may be made to physical science is capable of an economic use, and that the prac tical value of all the knowledge we now have may appear with further discovery.
For such reasons, science is likely to receive increased at tention from the practical, money-making world; but a real ove of knowledge for its own sake is the characteristic of few, and we must not expect that a very large portion of mankind will pursue the truth merely for the purpose of know. ing it.-The Typographic.

An Atlantic Cable Broken.

After nearly two years of uninterrupted operation of both the Atlantic cables of the Anglo-American Telegraph Com pany, the 1865 cable failed at twenty minutes past twelve 'clock P. M., on March 11. The tests at Heart's Conent show that the fault this time is on the other side, probably not far from the Irish coast. The eminent English elecrician, Mr. WilloughbySmith, left London on the evening of March 11 for Valentia, to verify the tests made on this ide and definitely locate the fault
The 1866 cable and the French Atlantic cable are both in excellent condition, and will be able to satisfactorily and promptly transmit all the business offering. Probably the only unfavorable result of the interruption will be the ex pense to the company of picking up and repairing the cable, and this they can well afford to do, being in a very prosper ous condition. The new cable which is to be laid this sea son by the French Atlantic company is rapidly approaching completion, and within a few weeks New York will be in direct cable communication with Great Britain.
The project of laying a competing cable, by the Great Western Telegraph Company, has been abandoned.-The Telegrapher.

small Fast Steamer

Messrs J. I. Thorneycroft \& Co., of Chiswick, Eng., near London, have built a number of vessels of this class, one of which, the Firefly, on a recent trial made the excellent speed of 18 miles per hour. Her dimensions are as follows: Length over all, 53 feet, breadth, 6 feet 6 inches, draught of water, 2 feet 6 inches. Inverted direct acting engines, two cylinders 6 inches diameter, 8 inch stroke. After the trial this boat was coaled and lifted on board a steamer and shipped to whent, Belgium, where on arrival she was lowered again into Ghent, Belgium, where on arrival she was lowered again into the water, fi
near Ghent.
The same builders have lately tried another small craft o about same size, with similar results.
The Effect of Flat Wheels on Railroad Track.
A correspondent of the Railroad Gazette considers that the surface or tread of car wheels should be tested by the use of a hammer, and when blisters are found the wheels should be rejected because the blistered spot soon becomes flat and not only damages the rail but shakes the whole car so as soon to do as much damage to the car as the price of a good wheel. It is believed that these flat wheels making 200 revolutions per minute, with the flat spots making steam-hammer blows on the track at each revolution, are a frequent cause of broken rails.
a singular occurrence, illustrating the force of the wind and the mechanical effects of pneumatic power, recently took place at Kaighn's Point, N. J. While twenty-five men were at work upon a vessel in the great ship house of Wood, Dialogue, and Co., the wind suddenly lifted up the building and carried it away without injuring any of the men or the vessel. The building was 250 feet long, 80 feet wide and 80 feet high. Loss, $\$ 15,000$.

Apache Tejegaraph.-The Apaches have a very simple and yet effective system of telegraphy, which has unquestionably been in vogue from time immemorial. Lookouts are stationed on every prominent peak, within the range of one another's vision, commanding a complete view of the one another's vision, commanding a complete view of the
entire country. No human being can enter the region under surveillance unnoticed. Anything happening necessary to communicate to his fellow watchmen, the lookout at once ignites a pitch pine brand, which he moves in a manner intelligible to his confederate on the adjacent eminence, cach movement having a significance familiar to them. This is repeated with lightning rapidity from mountain top to mountain top, until it reaches the chief in his fastness. Instructions are conveyed to his scouts in a like manner.

THE INCREASING WEALTH OF THE WORLD.

 We are at present in such a stage of the development of the industry of all civilized nations that the increase in producing capacity far outstrips increase of population, so that the amount produced and consumed on an average by every person far exceeds in quantity and value that which was ever before known. It should not be lost sight of that only food, drink, fuel, and clothing are entirely consumed, but that all the other products of industry are utilized for building and manufacturing, by which operations nothing in reality disappears; but, on the contrary, the value of the manufactured material is increased. Thus the stone and timber are transformed into dwellings and furniture, the iron into railroads, engines, and steamships, and the products of metal lurgy into all kinds of tools and machinery, all much more valuaible than the material used to produce them; so that in their case the value of property is raised by two steps, first by the production of the raw material, second, by the use of this in making the objects desired. Even the fuel consumed under the steam boiler oí a manufactory gives more than its equivalent in the products of the manufacture; and who will deny that the value of the development of human society is not worth a great deal more than the value of the food and other necessaries consumed by the human race? Therefore, strictly speaking, even in this case nothing can be considered lost, but humanity in general is the constant gainer. So the workman who earns his wages gives the gainer. So the workman who earns his wages gives theproducts of his labor back to his employers, a value surproducts of his labor back that of his earnings if this was not so, he would not have been employed; and thus the workman has, besides have been employed; and thus the workman has, besides
earning a living for himself and his household, contributed earning a living for himself and his household, contributed
his share to the increase of the wealth of the world. Even the Chinaman who, after several years of toil here, returns to his native home, carrying some of his earnings with him, if looked at from this point of view, leaves behind him in the results of his lajors a greater value than all that he can possibly carry off; he has thus been a benefit to us, and has the full right to go where he pleases.
If we look at the statistics of the increase of productive capacity in various branches among different nations, we are especially struck at the developmont that has taken place during the last decade. Let us, for instance, take the single article of iron. In the United States, in 1860 it was confined to half a million tuns, while in 1870 it was increased to over two million tuns, employing 150,000 workmen; while 850 ,000 men are employed to work this iron into all kinds of machines, etc., making one million men employed by the iron industry alone. The value of the raw material is estimated at $\$ 200,000,000$, increasing by further labor to $\$ 1,000,000$, 000 . The production of steel manufacture in Germany is still more startling; in 1860 only 250 tuns of manufactured steel, worth three millions of dollars, was produced by 4,000 workmen, while in 1870, 2,000 tuns, worth twenty millions of dollars, was the result of the labor of 14,000 workmen. Let us take a totally different branch, cheese; in 1853 one million pounds of cheese were exported from here to Eng. land, and in 1870 seven million pounds. The State of New York alone has now nearly 1,000 cheese manufactories, which use the milk of more than 250,000 cows, making therefrom $80,000,000$ pounds of cheese, which is 1,000 pounds of cheese for every three cows. The cheese production of the whole United States is now over $100,000,000$ pounds, of which $60,-$ 000,000 are exported. England exports scarcely $3,000,000$ pounds, while little Holland, which used to be the principal cheese producing country of the world, exports at present
$25,000,000$ pounds. This latter fact suggests the extent $25,000,000$ pounds. This latter fact suggests the extent which the cheese production of the United States may reach
in the course of years, and the wealth which its exportation will bring back, as the Hollanders used to boast that their cheese production alone was more valuable and reliable than a gold mine, very few of which surpassed the Dutch cheese in the profits realized.
We could easily fill many pages with other illustrations of the immense increase of the production which, as it continually far outstrips the increase in population, cannot fail to increase the sum total of valuable property. This view of productive capacity and its results is the best argument against that conservative class of people who sometimes raise their voices against useful inventions and new patents, under pretext that such improvements often take the bread out of the mouth of the workmen, who are unable to com-
pete with hand labor against machine labor. Experience has proved that all such fears are totally groundless, and in every case have the machines which increased production been a blessing in the end, giving more labor and higher wages to those using them than they could obtain by their nimproved methods and much smaller productive capacities. So since the art of printing has superseded manual copying, there are probably a thousand printers for every manuscript writers of the olden times; when at a recen period the sewing machine superseded a great many of that its use would impoverish a large class of women that its use would impoverish a large class of women
who made their living by sewing was not fulfilled. On who made their living by sewing was not fulfilled. On
the contrary, the sewing machine has been a benefit all round; and so it must be with every invention which round; and so it must be with every invention which
enlarges the total amount of the valuable products of labor, and therefore contributes its share to the increase of the world's wealth.

Commissionors to Vienna

There are a sufficient number of Commissioners to the Vi enna exhibition appointed by the President to make a respectable show here if they would remain at home. Some and we are informed that the end is not yet.
sCIENTIFIC AND PRACTICAL INFORMATION. GOLD IN LAPLAND.
Traces of gold had been discovered years ago in different parts of Lapland, but not until a certain Ewast, formerly a California miner, with some companions explored the country was much attention given to it. They found in a shor time gold to the value of more than $\$ 190$. A large number of adventurers rushed to the gold districts, many of whom were without means and had had no experience in mining. By a ukase of the Senate of Finland, dated April, 1870, it was decreed that the privilege of obtaining gold should be granted only to applicants who had sufficient capital for the effective prosecution of the work. Several companies were then formed, and about 19 of them were registered towards the end of June, 1870. They began near Ivalo, on the river Tanna, where large buildings for the workmen were erected. This river forms the boundary line between Lapland and Norway, and the working was soon extended along its shores near Vasko and Tanna-Juk, also along the rivers Kenna and Kytnien. The greatest yield was obtained from the river Tanna. The gold found showed traces of platinum. The gold-bearing sand of the river showed great resemblance to that of the river Sacramento, Cal. The method of obtaining the gold was similar to that used in California, namely by washing it out in a wooden trough.
-In July, 1870, a Norwegian captain named Daal explored western shore of the river Tanna and the result vas that the greatest yield was discovered at the confluence of the Ivalo and Tanna. The Norwegian government then granted to the Russian companies the privilege of extending their works to their side of the river. In the middle part of September, every vestige of vegetation disappeared, owing to the approach of winter, and compelled the abandoning to the approach of winter, and compelled the abandon-
ment of the work tili the following spring. In the seven ment of the work 21 to September $9,124,141$ cubic feet of gold-containing sand were washed, yielding 615 ozs. of the gold-containing
precious metal.

ink Plant

The botanists of Europe are endeavoring to acclimatize a plant growing in New Granada, which is valuble for the manufacture of ink. The juice, called "Chanhi," is reddish, but changes after a few hours into' a deep black, and is then ready for use. The "Chanhi" has less destructive influence on the steel pens than common ink. Experiments made in Spain demonstrated that the ink was not even spoiled by sea water, which is invariably deleterious to ordinary ink.

testing gold used in gilding.

P. Guyot proposes for this purpose the use of a solution chloride of gold or a solution of nitrate of silver. Neither ffects at all the genuine gilding, but imitations, when touched with the forner solution, show a brown spot, and with the latter, a gray spot. The gilt designs of wall papers are examined by Guyot with chloride of sulphur. One drop of this salt, placed on imitation gold paper, produces a dark brown rim, which does not appear when gold has been used. Thin gold leaves, if placed with chloride of sulphur in closed bottles and well shaken, show no change, but alloys of base metals gradually blacken. If the gold is placed in hermetically closed bottles under a slight aerostatic press ure, it will disappear in a short time and combine with the chlorine to form chloride of gold.

CONSUMPTION OF TIN
According to the Polytechnisches Çentral Blatt the annua consumption of tin in America and Europe was in 1868 and 1869 about 22,000 tuns; in 1870, 24,000 tuns; in 1871, 27,000 possibly Should the consumption increase in the same ratio during the last year only about 27,593 tuns were produced, as follows: Of English tin, 10,500 tuns; of Banca tin, 90,000 tuns; of Straits tin, 9,500 tuns; of Billiton tin, 2,700 tuns; tuns; of Straits tin
total, 27,593 tuns.

INCHONA TREES IN INDIA
In the plantations of the English government on the Neil gherry hills, there are about $2,600,000$ cinchona trees, which cover over 950 acres of land. The largest trees are 30 feet high with a circumference of three feet. The quantity of 7,295 pounds of splendid bark was sold last year in London at the price of from 50 to 60 cents per pound. There were also furnished about 35,000 pounds to the Indian depots, so tha
the proceeds amount to about $\$ 8,000$. The capital invested the proceeds amount to about $\$ 8,000$. The capital invested
by the government for the introduction of this important tree will soon have been repaid with interest. Hundreds o natives have been cured of fever annually with the quinine obtained, and the object of the beneficentintention of bring ing the antidote of fever within reach of the poorest has been fully realized.

to preserve chemicals.

Earthen vessels are now constructed with a groove nea the top. The groove is filled with castor oil, with which the cover is brought in contact in closing. The connection
with the outer air is thereby totally interrupted. Chloride of lime, for instance, was preserved in this manner for two years, without deteriorating in the least by the absorption of moisture.
sOLIDIFICATION OF NITROUS OXIDE
Mr. T. Wells exhibited, at a recent meeting of the Chemical Society in London, the formation of solid nitrous oxide in large quantities. Lıquid nitrous oxide quickly solidifies if a current of air be passed through it. Unfike carbonic acid, the liquedied gas can readily be preserved for some length of time in an open vessel, provided it be kept still. Liquid carbonic acid becomes solid immediately it is allowed to es-
cape from the vessel containing it, since the vapor tension of the carbonic snow at the time of its formation is much above the atmospheric pressure: whilst liquid nitrous oxide boils at 1.92 Cent. and solidifies at 1.99°, so that the vapor ten-
sion of the solid is less than one atmosphere. The density sion of the solid is less than one atmosphere. The density
of the liquid at 0° is 9004 , and, like liquid carbonic acid, it is very expansible and immiscible in water.
addlteration of rhubarb and yellow mustard.
When rhubarb or mustard is adulterated with turmeric root, the adulteration is easily detected by shaking it for 1 or 2 minutes with absolute alcohol, filtering and then adding, first a concentrated solution of borax and then some hydro chloric acid. If the solution turns brown on adding the borax and retains its brown color on the addition of the acid, it indicates the presence of turmeric. This is a simple case of reversing the usual turmeric test for borax, and ma king the borax the reagent which detects the turmeric. It seems strange enough that until recently this had not been thought of.
iodine in substances containing tannin.
It is a well known fact that iodine, when dissolved in liquids containing tannin, cannot be detected by the ordinary starch test. Tessier has found, however, that on adding to such a solution a few drops of a neutral solution of chloride of iron, the iodine is at once set free, and can be detected by covering the test glass with a watch glass or an inverted funnel, coated on the inside with a starch paste.
Utilization of soapstone clippings for buttons, etc. The powder or other filings of soapstone (steatite) obtained in the manufacture of gas burners is saturated with soluble glass, dried, and ground. In a suitable press, buttons and similar articles are pressed from this powder, burned in re torts, dipped againin solution of glass and once more burned. They are then placed in a rotating cask, polished by water dried and again polished by rotation in a similar cask with soapstone powder. Dominoes and dice are pressed in similar manner in dies of brass or steel, and then polished.

Hygiene.

A new fortnightly journal of sanitary science, bearing the above title, comes before the public in an attractive form from the press of G. P. Putnam's Sons, New York city. \$2 per annum. From the last issue we extract the following:
Regimen for Spring.-The amount of work done in the human body during the winter, in the mere maintenance of our normal 100° of heat, would of itself be sufficient to over load the system with tissue waste by the return of spring. But when to this is added the special nerve waste caused by the wear and tear of the brain and nervous system, in the whirl of excitement and mental activity of a city winter, there should be no wonder that March is accredited with bringing "humors" and giving rise to "pains." Increased production and reduced excretion of waste, or refuse matter, production and reduced excretion of waste, or refuse matter,
of the askes of the human furnace, are the real causes, and of the ashes of the human furnace, are the real causes, and
not any occult influence of the season. Knowing this we not any occult influence of the season. Knowing this we
are the better able to understand why roots and salads, "green food" and little meat, are now craved by the na
noter able "green food" and little meat, are now craved by the na-
tural appetite; and to recognize the wise hygienic principle in the observance of Lent, with its meager diet and absti nence from worldly gayity and excitement. What we need physically, in this milder weather, is to " train down;" to favor the " moulting of the tissues," as Chambers says; and mentally, to get rid of brain fag and worry-for only by rest can the nervous system be restored.
Abundance of exercise, free bathing, spare diet, should be the rules for the coming month or two. To use the furnace illustration again, the amount and quality of fuel should be reduced, and the flues and pipes be cleansed. Exercise and bathing, by favoring excretion and elimination, will do the latter, and rid the system of much perilous stuff accumulated during the suspension of out door exercise. As to the fuel, fish, with its food for the brain and nerves, but scanter sup ply for adipose and muscle, should enter largely into the spring dietary. Fruits also, of which, thanks to modern methods, there is abundant supply even now, and vegetables too, favor the "wasting" process. The class of agents of which we wrote in our last-tea, coffee, tobacco and alcoholwhich retard tissue change should be used either more spar-
ingly or not at all; and thus the usual "bilious" and other complications of epring may be largely avoided.

A Voice from Colorado.

Messrs. Munn \& Co.,
Gentlemen :-I hereby acknowledge the receipt of the Screntific American for all of the members forming the club which I sent you, also of two copies of the Science Record, and of one copy of your splendid steel engraving, which came in good shape. All of the subscribers express entire satisfaction, and many much regret not having taken your paper years ago. Everybody s.hould have it; lawyers, doctors, ministers, farmers, mechanics, all classes should have it, as it contains the most authenticated, useful and interesting matter published. Accept my best wishes.

Yours truly,
John H. Price.
All new subscriptions to the Scientific American will be commenced with the number issued in the week the names are received at this office, unless back numbers ar ordered. All the numbers back to January 1st may be had and subscriptions entered from that date if desired.
The winter in the vicinity of the White Mountains was very severe. Snow to the depth of twelve feet fell, while he thermometer indicated forty degrees below zero on sev eral occasions.

Stupidities.

Under this head, Dr. Hall, in his Journal of Health for March, 1873, humorously discourses on the tendency of the times, as follows:
It is really a great wonder that everybody is not dead and buried, and the world itself used up entirely, if the thousandth part of what is told us about microscopical and other "discoveries," so called, is true. One man will have it that the glorious Union over which the stripes and stars float so proudly will soon become depopulated, because respectable people don't have children; another has discovered myriads of bugs in the chatelaines and waterfalls of the ladies, boring into their skulls and sucking out all the remaining brains of the dear delightfuls. A German savan now tells us that every sip of tea we take is full of oily globules which get into the lungs direct, weaken them, set up a cough, and the person dies of consumption. Another man has found that the purest spring water, clear as crystal to all appearance, if let alone will deposit a sediment which generates typhoid fever; hence he proposes that everybody shall quit drinking water. Another says that bread has so much lime in it that it is turning us all to bone, and makes us stiff in the joints, that being the reason we have no lithe, sprightly old men now-a-days; hence we are full of limps and rheumatics long before our time, therefore we had better quit eating bread altogether, and live on rice and sago and tapioca. The water cure folk assure us that pork and beans and ham and e egs are full of abominable trichince, and that, if one is swallowed and gets fairly nestled into the system, he, she or it will breed a million more in a short time, and tom, ber, and Harry, all in row, loaded down with come Tom, Dick, and Harry, all in a row, loaded down with
microscopes and spy glasses which show as plain as day microscopes and spy glasses which show as plain as day
that the air is swarming with living monsters and putrid that the air is swarming with living monsters and putrid
possons, which fly into the mouth and crawl up the nose and creep into the ear; hence it is death to breath such pestilential air, and that the best way is to keep the mouth shut plug up the nose, and ram cotton into the ears.
Ever so many learned professional gentlemen have been torturing poor figures for years to make them tell the stupendous fib that everybody is either crazy or soon will be; that the annual increase is ten per cent, consequently in eleven years everybody will be crazy, and more too.

The fact is that the people who spend their time in hatching out these tomfooleries, ought to be put to work and be made to earn an honest living. This world has been pretty well taken care of for some thousands of years, increasing in comfort and wealth and life, the average length of which last has doubled within two centuries, and the population
increased perhaps three fold; and the presumption is that increased perhaps three fold; and the presumption is that
the Great Maker of all will so arrange all the antagonistic the Great Maker of all will so arrange all the antagonistic
forces of life for the future as eventually to make "the wilderness and solitary place to be glad, and the desert to rejoice and blossom as the rose," and the race be happy still.

Rolling Mill Notes.

It is estimated that one tenth of the entire population of the United States is dependen: t for support upon the produc tion and manufacture of iron. The value of the metal annually manufactured is $\$ 900,000,000$, and 940,000 workmen are employed in the industry, the aggregate of whose wage reaches $\$ 600,000,000$. There has been a vast increase of furnace capacity and additional machinery put in by our rolling mills during the past eight or ten months, and ther is every prospect of still further growth.

We are indebted to a pamphlet lately issued by Messrs. Lewis and Rossiter, of Pittsburgh, Pa., for the following in teresting information in reference to iron and rolling mills Regarding material, English and American irons differ from each other in certain general characteristics. American is softer than English. As respects resistance to tensile strain, it is more ductile and tougher; while yielding more readily to immediate force, it will stand a greater ultimate strain ; it also,undergoes vibration without crystalizing better than does English iron. The latter, being harder, stands a greater immediate tensile strain but yields to a less ultimate force. The same general difference exists as regards com pressive strain.
If a bar of iron is measured and found to be exactly one foot long when cold, after it is heated to a darkish yellow it will have expanded from one eighth to one quarter of an inch in its length, varying wich the degree of heat used and the quality of the bar. It follows, then, that in order to turn rolls which shall produce a definite section of iron, the last groove should be madesomewhatlarger than the section
desired. It requires considerable experience and practice to place the exact amount of contraction in bars of complica ted sections. The most accurate way of measuring the contraction is by means of a double ended calliper, having one side longer than the other. A very convenient size for use is when one side measures $4 \frac{1}{2}$ inches and the other $4 \frac{3}{6} \frac{5}{4}$ inches from center to tips. For finishing work in roll turning the best of steel should be used; but in turning up and roughing out hard iron, cast iron cutters chilled on the surface may be employed to advantage. It is also advisable to use water in turning uphard iron or soft iron with fast speeds.
Fire, under rolling mills that have been built on made ground, has been the occasion of much trouble. Some of the mill owners, to prevent a recurrence of damage, have caused to be laid, beneath new furnaces, brick paving some two or
three feet in depth and wider than the base of the furnace usually requires. Others, when making ground, have mixed common earth with the cinders that are thrown from the mill. Lately a fire under a Pittsburgh establishment burned over one year and was then only extinguished by an unusu-
ally high flood in the river. When laying foundations for machinery on ground made from rolling mill refuse, the pits should be dug low enough to reach solid ground, and then only the floor will sink in event of a fire
An ingenious way of getting speeds for a roll train has recently been put in practice. The train has two sets of pinions and two sets of housings which, of course, are in the usual position between the roughing rolls and the crab. The pinions nearest the crab are different in diameter, the top one being the smallest. Between these two sets of pinions, but one spindle is employed, and by using this spindle on the top pinions, the fastest speed is gained. By using it on the larger middle pinion, the train is made to run slower; and by dropping to the lower and largest run slower; and by dropping to the lower and largest
pinion, the slowest required speed is obtained. Between pinion, the slowest requized speed is obtained. Between
the first set of pinions and the crab is the usual breaking the first set of pinions and the crab is the usual breaking
spindle, always coupled to the middle pinion; and between the second set of pinions and the roughing rolls are the the second set of pinions and the roughing rolls are the
three spindles: these are never changed. The idea was put in use with an eight inch guide train that could not otherwise well be altered from the original mode of driving. The plan capable of further application.
A rall mill pinion has been in use for the last twelve months with two false teeth which were put in as follows A dovetail groove was cut about one inch below the roots of the teeth and a cast iron piece having two teeth was nicely fitted in. This piece is firmly held in position by two whought iron bands shrunk on each end near the teeth. A straightening plate, after getting hollow on its surface through use, has been straightened by hammering on its concave sides. A good steel punch is capable of piercing through a thickness of iron equal to the diameter of the punch
A correspondent, referring to the rolling mills of Belgium, says that they are but poorly managed. The largest es
tablishment is the John Cockerill works at Seraing on the tablishment is the John Cockerill works at Seraing on the river Meuse. The buildings cover one hundred acres and marine engines of the most powerful form are cosstructed. The company has its own coal mines and blast furnaces.

High Pressure Steam

The compound cylinders are supposed to be so adjusted, says Professor Osborn Reynolds, that the work done in each cylinder equals half the whole work, that is, the expansion in the first cylinder equals the expansion in the second This rule will not be quite accurate, but nearly ; I do no now that there is any rule in practice. The difference in ylinder room, it must be noticed, is very much in favor of high pressures, as it diminishes in each case as the pressure increases. Thus the area of piston required at 300 lbs . is
only half that required at 20 lbs . pressure in a condensing engine. And it is to be noticed that in the compound engine the necessary increase is much smaller for high pressures than for low pressures. At 20 lbs. the high pressure cylinder has half the area of the low pressure cylinder, whilst at 800 lbs. it has only about one twelfth
Now as regards the strength of the engine. This is the great objection to the use of high rates of expansion. The machinery of an engine to work at 300 lbs . must, only to do the same work, be seven times as strong as that which work at 20 lbs . Here, then, is a fatal objection against the use of steam at high pressures, unless it can be met in some way This is where the advantage of compernd engines comes in while the pressure in the one increases from 76 to 438 , th other increases from 63 to 112. Thus by the use of compound engines the pressure on the pistons can be kept quite within

To sum up then: By the use of steam at 100 lb . we may do with little more than half the coal required for a pressur of 14 lbs. with only three quarters the cylinder room,and shall only increase the greatest pressure on the piston by about 10 per cent. With 300 lbs . we do with 20 per cent less coa than at 100 lbs . with two thirds the cylinder room, and we must increase the strength of the machinery by 40 per cent I think, then, that we must look for economy by increas ing the ratio of expansion and the use of high pressur steam so far, and only so far, as is necessary for the expan sion for engines in which the release takes place at or below the pressure of the atmosphere. There will be advantag in pressures at least up to 120 or 130 lbs. Beyond this it must be a question for experience to decide how high we hall go.
In such engines as use a blast we shall find that there is great economy in using very high pressures of steam, pro vided the rate of expansion is increased. Thus, in a loco motive in which the blast was fixed at 30 lbs. it would be much more economical to use steam at 200 lbs . and expand four times, than at 100 lbs . and expand twice, and the blast would be much the same.

A New Mode of Treating Dyspepsia

The Archives of Scientific and Practical Medicine, a new monthly edited by Dr. Brown Séquard and published by the Lippincotts, contains, among other very interesting articles, one in which the editor describes a novel mode of treatmen which he first tried with perfect success in a very bad case of dyspepsia in 1851, and which has since been tested, with more or less satisfactory results, in many cases of dyspepsia chlorosis, and anæmia. The following is an extract from he account of the first case

After a few days, finding that he had not improved, decided to try a radical change of his alimentation, as re
gards the quantity of food to be taken at a time. Instead of three meals a day, I made him take sixty or more. Every twelve or fifteen minutes he took two or three mouthfuls of
solid food, chiefly meat and bread. He drank a little less than a wineglass of Bordeaux wine and water every thirty or forty minutes. On the very first day this mode of alimen tation was begun his digestive troubles disappeared, and within a week he was so well that he returned to Paris.

He continued the same mode of alimentation for almost three weeks, and then gradually diminished the number of his homœpathic meals, and increased the amoun taken at each of them, until in about eight or ten days he came to eat only three times a day, and a full meal at each came t
time."
The

The following paragraphs will serve to give the reade clearer idea of the treatment commended:

The plan consists in giving but very little of solid o fluid food or any kind of drink at a time, and giving these things at regular intervals of from ten to twenty or thirt minutes. All sorts of food may be taken in that way, bu during the short period when such a trial is made, it is ob vious that the fancies of the patients are to be laid aside and that nourishing food, such as roasted or broiled meat and especially beef, mutton, eggs, well baked bread, and milk, with butter and cheese, and a very moderate quantit of vegetables and fruit ought to constitute the dietary of the patients we try to relieve. This plan should be pursued two or three weeks, after which the patient should gradual y return to the ordinary system of eating three times a day The most varied diet as regards the kind of food can be followed under this plan as well as when one has only two or three meals a day. The only absolutely essential point are that the amount of food taken every $10,15,20$, or 30 minutes be very small (from one to four mouthfuls), and ihat the quantity of solid food in a day be from 32 to 40 ounces, or a little less when, instead of water, the patien drinks beef tea or milk

Japanese Boys in the Boston School

Mr. Charles L. Flint, chairman of the committee of the Rice school district in Boston, in presenting his quarterly report to the School Board, made the following interesting statement respecting the education in that school of a num ber of boys from Japan:
"At the beginning of the present school year, September 2, 1872,four boys from Japan, Kentaro Kaneko,fifteen years, Zeikichi Tanaka, fourteen years, Takuma Dan, thirteen ears, and Chokicni Kikkawa, twelve years of age, entered the Rice school. They had then been in the country only ix months and under the instruction of a private teacher They were found to be able to enter upon the studies of the ifth class according to the present course. Kaneko today anks at the head of the second or sub-masters' class Tanaka and Dan nearly at the head of the third or ushers class; while Kikkawa is among the first of the fourth class. Their conduct has been entirely unexceptionable, and thei example in each class has aided the teachers and stimulated their classmates to greater exertion. Their gentle and gen tlemanly manner has made them friends throughout the school, no boys being more poprlar with their classmate than they. When they entered the school it was with great difficulty that they could be understood. Now they speak nd read quite plainly, and write in better English than a majority of even first class boys! A composition of severa pages recently written by Kaneko required scarcely a single orrection, either in grammar or spelling. It would be most excellent thing for the whole school if there could be a dozen such boys in every class. They are very thorough in everything, aud rarely require to be told anything wice."

A Singular Fish

The Rochester Union describes a curious fish caught three months ago, in Chautauqua Lake, the third of the sam ort captured in the Lake within the past forty years
The fish is about six feet in length, and when caught weighed one hundred and thirty-four pounds. There ar one back and three belly fins. But the head is what is mos wonderful and peculiar about the fish. The mouth opens ar back and wide enough to receive a nail cask. There is a large falling lip or jaw that sets back and upward as the mouth opens. The inside of the mouth is covered with a species of coarse hair somewhat resembling the small feathers or down of an ostrich. Projecting for almost four teen inches from the upper jaw is a sort of shovel blade made of a hard substance. This instrument would seem to be intended for throwing food into its mouth rather than or attacking other objects or defending itself against assault. As this fish has no teeth, it is supposed that it sulsists upon animalculæ or other substances, floating in the water, which are drawn or forced into its mouth by the blade attached t ts jaw.

Economy of Fuel

A correspondent in The British Workman tells how to build a fire as follows: The person laying a fire should fill he grate up to the top bar with coals, putting large piece t the bottom and smaller over them, then upon these, pape nough to light the sticks, which should be laid upon, and ot under, the coal. Cover the sticks with the cinders re maining from the previous day's fire; these will soon be ome red hot; the coal below will be warmed sufficiently to make it throw off gas; this, passing through the hot cinders will be kindled, and will burn with a bright flame, instead of going up the chimney in smoke, as it does when the coal are laid on the top.
The fire thus laid will require no poking, and will burn lear and bright for from six to eight hours without the ne cessity for more coals to be thrown on.

A horseshoe nail must be made from a peculiar descrip ion of iron. It must be tough and flexible and of penetrating the hardest hoof without bending. The head must be well secured to the shank, and not liable to be severed from it by the shocks incidental to the rough wear and

THE ROLLING MILL

qualities are so numerous that mere machinery would be ence, separated by intervals. Each depression corresponds|these dimensions varying with the size of nail to be made inadequate to accomplish its manufacture except in the mat- to two nail heads, each interval to two shanks: and the sur- The rod is then passed whilecold into the flattening machine, ter of shape. Nevertheless machines have been invented face of the roller is curved in the intervals so as to place which affects only the prominences, making them nearly and placed in operation in England which answer every re- the most prominent part in the center. The iron is in the square in section, and afterwards into the cutting machine, quirement, and a single factory at the present time is able form of rods, each eighteen inches long, by half an inch which cuts it into lengths. In the latter apparatus there ar to produce five tuns of finished horseshoe nails per week. $\begin{aligned} & \text { wide and one eighth inch in thickness. These are heated in three blades, two of which are at right angles to the rod } \\ & \text { Of these very }\end{aligned}$ Of these very ingenious devices, we present herewith il- a Siemens furnace, which is provided with two openings, at and cut straight through the center of a prominence, dividing lustrations, for which we are indebted to the Practical Mag- each of which a workman is stationed. The cold rods go in $^{\text {en }}$ into two nail heads, and a central knife which is set skew

THE FLATTENING MACHINE,

THE CUTTING MACHINE
to the rod and divides each shank into two beveled points. The pieces thus formed, called nail blanks, are placed in the rumbling machine, a revolving sheet iron barrel, the motion of which causes the blanks to clean and polish each other by friction.
The finishing process follows, calling into use the heading and shaping machines. The first of these consists of a massive die, which rises and falls in a vertical direction. Beneath it a wheel turns intermittently on a horizontal axis, and from the circumference of this wheel project several pairs of dies, which receive the nail blanks with the heads upwards. When the vertical die descends it meets one of the pairs of wheel dies beneath it, ready to receive its stroke. When it rises, a partial revolution of the wheel takes place, and the next pair of wheel dies is ready in its turn to receive the next blow. The wheel dies consist of blocks of iron hollowed out on their opposing faces to receive the blanks, and hollowed at the top so as to give proper space to the heads. The blocks are kept at a little distance apart by springs inserted between them, so that they hold the nail blank loosely, but as each pair in succession reaches a verti-

THE RUMBLER
cal position, and just before the plunger descends, a pair o jaws closes upon the blocks and presses them tightly togeth er, so that the blank is firmly fixed while being struck. As the plunger rises the hold of the jaws is released. and the blocks are s.eparated by the springs. During the revolution of the wheel each pair of blocks receives, in its turn, a blow from a hammer, which loosens the nail blank so that it falls out as soon as its head turns downwards.
After being thus roughly headed, the unfinished nails are transferred to a Siemens annealing furnace, and thence passed to the shaping machine. In this apparatus they are placed singly but successively on the perimeter of a wheel. They are prevented from falling off by stops, and are compressed between a descending plunger and two lateral dies, which remove all irregularities and produce a nail of perfect finish and form. One more process yet remains to be accomplished. It consists in placing the nails, five hundred weight at a ime, in cast iron pots, which are ranged in a furnace. As soon as the nails become red hot they are emptied out upon conerete floor and left to cool. A thin film of oxide is thus
formed upon their surface, which effectually prevents them from rusting.
These machines, with the exception of the rolling mill, are all attended by girls. The cutting machine can cut over 30,000 nails per day; the maximum number ever reached was 37,000 . One girl, sitting at the heading machine and feeding it, can turn out 24,000 nails in an ordinary day's work.
Horse nail making by machinery in this country, as wel as in England, has become quite a large industry, being car ried on by the Au Sable Horse Nail Company, of Keese ville, N.Y., the National Horse Nail Company, of Vergennes Vt., the Globe Horse Nail Company, of Boston, Mass., a company in New London Conn., and other localities. We hope before long to illustrate and describe the Kingsland patent machinery and processes, owned and operated by the Northwestern Horse Nail Company, of Chicago.

Aniline for Printing Black.
The degree of purity of commercial aniline, says the American Chemist, is of the greatest importance in the manufacture of different colors, and especially of blue and black. As aniline black is developed by printers themselves and not bought ready for use, the following test will enable them to determine the quality of the article they have to use:
Any aniline oil which does not boil under $192^{\circ} \mathrm{C}$. must a once be rejected; and the nearer its boiling point is to that of pupe aniline, 180°, the finer will be the black color pro duced. For practical tests several methods may be followed. Baume's areometer gives some indication of quality. Any aniline of from 20° to $30^{\circ} \mathrm{B}$. always gives a black color if not fraudulently adulterated. If heavier, it generally contains undecomposed nitro-benzol, if lighter, too much toluidine. Fractional distillation gives a more reliable result. The per centage of aniline distilling between 180° and $185^{\circ} \mathrm{C}$. represents the true value of the article. Concentrated sulphuric acid diluted with three times its weight of water is also a good test, About one part of aniline is mixed with at least three parts of the dilute acid; a thick paste of sulphate of aniline is formed, and more water is added to dissolve the salt, when
at the top.
The quantity of aniline oil used is enormous, being, in $1869,3,500,000$ pounds, or about 10,000 pounds per day. Of this, Germany took two million pounds and the rest was divided between Switzerland, England and France. The divided between Switzerland, England and France. The quantity of coal which must beconverted into gas to furnish
sufficient benzol for $3,500,000$ pounds of aniline is astonishing. It is estimated that 1,600 tuns of coal will produce one
\qquad
tun of aniline. Three and a half million pounds or 1,600 tuns of aniline require therefore $2,500,000$ tuns of coal, which, in the first instance, would give $25,000,000,000$ cubic feet of gas.

Dynamical Theories of Heat.

Professor W. A. Norton publishes in the American Journal of Science and Art a lengthy treatise on the above topic, more especially in answer to the query: Is heat any mode of motion of the atoms of ordinary matter: such atoms being egarded, in accordance with the common notion of an atom, as incapable of experiencing any change either of form and dimensions or in the intensity of their acting forces? The conclusions arrived at are that the atoms of bodies must be made up of distinct parts, bound together by certain forces; and that heat must consist in some movement or relative displacement among these constituent parts of the atoms. Two pos sible conceptions of an atom with its essential accompan ments are given: That it consists of a true atom, surround ed solely by an atmosphere of luminiferous ether, or that it has, in addition, an envelope of distinct electric ether im mersed in the ethereal atmosphere. In view of these results, it is considered probable that heat and light originate in some mode of motion occurring in the ethereal atmosphere or in the electric envelopes of the atoms, or more probably, in the orce or forces by which such a movement is produced.
Simplified, Professor Norton's theory, though at first con veying the negative idea of a complex atom, transfers the source of heat from the atom proper to a supposed ethereal atmosphere or electric envelope, one or both, and therefore, following the hypothesis, to a form of matter considered to be nearly, if not quite, as subtle as the medium of light, and whose elastic forces are nearly or quite as intense.

Willis Williams, of Islesboro', Me., was out on the ice hunting seagulls, when an accidental discharge of his fowl ing piece wounded him so badly in the thigh that he could not walk. He smeared the dog's face with blood and told him to go home, which the sagacious animal did, and by signs and the blood alarmed the family, who followed him to the place where the young man was lying

THE HEADING MACHINE.

THE SHAPING MACHINZ

DECISIONS OF THE COURTS.

Inventions Patented in England by Americans (Compiled from the Commissioners of Patents' Journa
From February 21 to February 77,1875 , inclusive. Cournval Box.--s.W. Wilson, Puiliadelpha, Pa. E.Saunders, Nashville, Tenn.

 $\xlongequal[\text { Milton, N. Y. }]{\text { NEW BOOKS AND PUBLICATIONS }}$
 tains 160 pages, full of useful suggestions and fresh information which every photographer oug
York: Milner \& Rogers.

How shall I introduce my invention?

 This inquiry comes to us from all over the land. Our answer is: Adoptsuch means as every good business man uses in selling his merchandise, or such means as every good business man uses in selling his merchandise, or
tn establishing any business. Make your invention known, and if it poss sesses any merit, somebody will want t . Advertise what you have for sale nterestec in thearticle. sent thllustrated ctrrculass odescribngs the merits of
the machine or Implement to manufacturess and dealers in the special the machine or implement to manufacturers and dealers in the special
article, all over the country. The names and addreeses of persons in differarticle, all over the country. .The names and addresses of persins in differ
ent irades may be obtained from state directories or commerciel reg liters.
In If the invention is meritiorious, and if with its utilty it posesesses novelty
and is attractive to the eye, so much the more likely it is to find a purchaser
 ments, and contrivances of novelty, can have their inventions illustrated
and described in the columns of the Scrismriric A AIRRICAN. Civil and me-
 interest can finda place in these columns. The publishers are prepared to
 ings, and artists will be sent to any part of the country to make the neces sary sketches. The furnishng of photographs, drawtings, or models is the
least expensive, and we recommend that course as preferable. The exam ieast
ination of either enables us to determine if it it a a subject we would like to
 The advantage to manufacturers, patentees and contractors of having their machines, in ventions, or engineering works illustrated in a paper of such
large circulation as the Scrievtrifo Amrricicn is obvious. Every issee now exceeds 45,000 and will soon reach 50,00 , and the extent of its circulation is exceed 4,0 and
limited $b y$ no boundary. There is is not a country or a a arge city on the face
on of the globe where the paper does not circulate. We have the best author-
ity for stating that some of the largest orders for machinery and patented Ity for stating that some of the largest orders for machinery and patented
articles from abroad have come to our manufacturers through the medium of the Sicientricic Ampericn, the parties ordering ha
illustrated or advertised

MUNN
Co., Publishers,
37 Park Row, N.

Improved Spindle Bolster.
James Barnes, Holy of same place. -This invention consists of a long tubuar cup wit ha hole
in the bottom, in which ranged in the bolster rail, within which the upper end of the cup, which turns with the spindile, has a bearing. The cap has a tubulare extension
from the hole through which the spindle passes, fitting Into the cup at the from the hole through which the spindle passes, fltting into the
top.
Improved Machine for Planing Clapboards.
IImproved Machine for Planing Claphoards.
James Atisns, Augusta Me.-This improvement relates to that class, of machines which plane the sidio of the clappharad and joitnt the thick e emge e
the same time, and has for its object the feeding of the boards so that the Jointing of the edge straight will be secured, and the feeding of the board and planing of the surface in the most perfect manner will be insured. I
consists in an arrancement of heavy feed rolls geared together in pairs as in ordinary surface planers, but with a series of spurs on each lower roll of the pair, and an adjustable arrangement of the lower rolls for causing them
to correspond exactly to the inclined surface of the bed of the machine, to correspond exactly to the inclined surface of the bed of the machine,
whereby the sald objects are secured. Wm. Schnauffer, Baltimomere, Md. Ththis inventition consists.
reotype plate blockite ble all to be capable of being used sep sately or in connection with each

Henry L. Brower, New York city.-This Anventis

 ight, portable, and ornamental alarm or call bell, so contriteed that the de vices for restraining or holding the clock mechanism (used for actuatin the bell hammer) in check will be caused to release the sald mechanism andallow it to act, if the alarm be ifted from the table or other support, or if knob be lifted or pulled, or turned to the right or left. It may be used for a burglar alarm by attaching small threads or cords to the knob, and arrangling sald threads so that the opening of a window or door, or the passing through an open door or window by a person will, by his coming
agaisst the corrss or threads, pull the knob or turn it, and thereby set the alarm in motion; also, for a arre alarm by having weithts or springs, let go
by the burning of the threads to pull or turn the knob and liberate the sounding mechanism.

Improved Tool for Laying Tile.

George W.Nevill, Richmond, Va.-This invention consists in a tool formed of two adjustably connected tubes on which the tiles are held firmly while
being carried into the ditch, and irom which they may be then readily detached. The advantages of this tool are that the operator is enableu to
 more uniform pitch; to lay a line of tilles with much greater accuracy, with
far greater rapidity and with an economy of at least 55 per cent in the cost.

Improved Sewing Machine Table.

 James W. Cheney, Detrott, Mich.-This invention has for its object to farnish a simple and effective method of connecting the cover of a sewingmachine table to the edge of the same for forming an extension thereof machine table to the edge of the same for forming an extension thereof
when not used as a cover for the operative mechanism. The invention consists primarily in the employment of a hooked or curved plate applied
to the under side of the cover and interlocking with a slotted plate secured to the edge of the table for forming a detachable fastening device which
will cause the cover and table to be flush or even with each other when arwill cause the eover and table to be flush or even with each other when ar
ranged in position. The invention also consists in the provision of a hinged supporting arm applied to a pendent bracket secured to the table, for maln-
till tapining the cover in its proper position when used as an extension neaf.
The invention also consists in combining with the hinged supporting arm and bracket a pair of spring jaws for searing the hinged arm when it is turned into a vertical or inoperative position.

Improved Railroad Train Indicator.
Samuel w. Hemenway, Lansing, owa.- his invention consists of one of more miniature ways constructed on a scale proportioned to the real rail
way as to the stations and distances between them, with the time of start Ing from the end and the time the trains are due at the stations marked op posite them ; also blocks representing cars and a screw, with each way, for
. actuating them. The screw 1s worked by a clock, so that a block beng
put on the track at the time for the starting of a real train will show to the eye the position of the train on the railway James R. Nichols, Bastrop, Texas.-The invenver er having a bend at one end, sharpened at the other and perforated Improved Candlestick.
Charles H.Doughty, Newburgh, N. N. T.This invention consists of an open
socket for the candle formed by the vertical edges of four thin plates ating from a com mon center, but sufficiently distant from the center that in pressing the candle down between them, they will cut or press into the
sides and hold it afast. Three or more of the plates may be used. At the bottom of the socket the said plates extend to the center. The object is to pro ide a candlestick which cannot fill up in the socket by melted tallow
or wax, and by which the lifting of a pusher to expose the light 18 avolded

Philp \quad Improved Paint Brush.
ion brush case. The top or bridge of the brush holter to a new extension brush case. The top or bridge of the brush hol ter, which is usually
soldered flat upon the upper edge of the face plates, is, in this invention, provided with side flanges. The bridge thus made is sprung over the top of
the case and fastened by solder the case and fastened by solder, and will then and by the aid of tits fanges
be held frm and secure. The lower part of the case is made movale up and down, and can be fastened by a screw at suitable hight. This slide or
sieeve is made of metal or other hard material, and will, when set down, shorten the working part of the hairs, or leng then them when moved up.
The paint or varnish will be arrested by the lower eage of the extension The paint or varnish will be arrested by the lower edge of the extension
and cannot enter within such extension. For thicker aranish or paint the sleeve is moved down; for thinner material it is set up, and also when the
hairs are worn short

Improved Grain Binding Harvester
Charles F. Godard, St. Ansgar, Iowa.-This invention has for its object ofurnish an improved harvester, which shall be so constructed as to cut
the gratn, rake it into gavels, and bind it. In using the machine one end of the straw band is attached to a a arm. The other end of the band is passed arounda hook and secured in the spring jaw in the end of the short arm of
a crosshead, placing the band being all the attendant has to do. As the rake moves for ward it pushes the gavel over the arm and ralses sald arm in to a vertical position. As the rake head rises and moves back a lever is op-
erated, which turns the crosshead around one and a haliftimes, twisting the band. As the crosshead completes its movement tt long arm strikes and pushes back the hook, which catches the end of the band and draws it
through said band. At the same time the spring jaws of the crossheads strikeagainst stops, which open said jaws and release the bands, and the bound bundle drops to the ground. As this operation 1s completed the
lever sllpp from a pin and the spring draws t back, which turns the binding device baek into its former position ready to receive another band.
William Ough Or Improved Sulky Plow.
owering, and holding, the frame which sustains the plows, and thereby gradauting the depth of furrow which is to bo cut by the latter. The de.
vice can thus be used in almost every k ind of of sill vice can thus be used in almost every kind of soil. By connecting both
ends of the plow beam with the lever, 1 t is raised and sition, or nearly so, moving the plow up and down, which is much easie

Improved Butter Bucket.

 speedill subdivided and all portionsthereof nicely yand thoroughly cleaned
also also in the particular mode of
locking and unlocking them.

Improved Ditching Machine.
George W. Nevili, R.L. eade nes necessary, and after cutting one layer of earth to return and cut
becomen
another another; also in means for euabling the flanged soll-carrying wheel to ad-
fust itself both laterally ana verucally in an easy and non frictional man. ner to the inside of ditch; and finally, in means for supporting the ditching wheel frame in its true position while the front axle may move inde
pendently of it and vice erersa.

Improved Substitute for India Rubber. Dr. Elbert H. Rogers, Tuscaloosa, Ala

Drecess of obtaining rubber pulp from bamboo and other berres
 thirrly, disintegrating said pulp, hul1, and seed by trituration, and finally
separating the pulp therefrom my a fon
Improved Furnace for
Improved Furnace for Melting Brass and other Metals.
Ira D. Bush, Detrott, Mich. - This inventlon consists of
 ported in the trame on trunnions. The improved grate frame or plate is confined to the under side of the furnace bottom on a central plyot and
pin. There are three, more or less, air ports in the bottom of the furnace one for each space or compartment in the furnace bet ween the partitions.
Each of these apertures Each of these apertures is provided with a removable grate, elther attached
to or cast with the rotating grate plate or frame. By turning the plate the to or cast with the rotating grate plate or frame. By turning the plate the
grates are readily removed froot the air ports, which allows cinders and re
fuse to be discharged during the process of melting

Improved Railway Dust Preventer. shield for cars, carriages, and other vehicles. It is a frame made with close triangular ends, which is designed to be secured to the lower part of
the carbody and which should project downward so as to be he cround as practicable. To the upper parts of the ond of co cose to he ground as pracicable. To the upper parts of the ends of the frame
are plyoted the journals of a roller, to which is attached one edge of a canrep pivoted the journals of a roller, to which is attached one edge of a can-
vas screen, the lower eage of which, when unrolled, is designed to be secured to the lower bar of the frame, so that by detaching the lower edge
of the screen orblind it may be rolled upon the roller to give convenient aceess to the wheels when desired. The end sereens consist of a frame covered permanently with a cover of wood or thin sheet iron, and should
project so that the end screens of adjacent cars may come as near each other as practicable without dangerof being broken.

Improved Bread Worker.
Joseph H. Balderston, Colora, Ma.-This invention has for its object to he bread, mixed to the proper consistency for working or kneading, is placed in the closed end of a box. The lever is then moved up and down
nctactuatesarms to the ends of which balls are fastened. The effect of nhis is to cause the dough to revolve toward said balls, so that by continuing the operation a short time the dough will be thoroughly worked.
Improved Apparatus for Loading and Unloading Hay.
George W. Long, Delaware Center, Iowa.-This invention has for its ject to furnish an improved device for unloading hay, corn in the ear, etc.; it is simple in construction and is sald to be effective in use. The invention consists in the combination of the sling, the ropes attached to it, the block,
crank shaft, lock and trip latch and trip rope with each other. Two timers of a length about equal to the length of the hay rack are connected by hay rack the timbers may hang down atits sides. To one of the timbers is suitably attached the end of a rope, the other end of which is left free. To
the other timber, at equal distances from its center, are attached the the other timber, at equal distances from its center, are attached the
ends of another rope, upon the center of which is formed a loop or eye to ope passes through holes the pulley upon the hoisting rope. The same s formed a large hole or opening. across which extends a shaft to one end of which is attached a crank. A catch and lever is arranged to hold the
crank in any desired position. In using the device, a sling is extended upcrank in any desired position. In using the device, a sling is extended upupon the barn floor, to the side of the stack, or to any other place where
he load is to be unloaded. The end of the rope first mentioned is then a ached to the shaft on the block to wind the rope upon the shaft. When he sling has been drawn sufficiently tight about the load the latch is adJusted to catch upon the crank to lock it, and the hoisting rope is drawn
upon to raise the load and carry it to the desired place. When the load is rought over the place where it is to be deposited, the trip rope is drawn rope to unwind and the load to drop.
John Boyle, New York city.-The Anvention consists in the mode applying tension rods to a wnings. To the ends of the main rod are attachec. he sockets or couplings to which the brackets are fastened. To the sockets
are attached, or upon them are formed, two eyes. Two strengthening or eattached, or upon them are formed, two eyes. Two strengthening or nuts screwed upon one or boih their ends. Bridges are used, according to he length of the rod, and are made with two a rms, through the outer ends which are formed holes for the passage of the straining rods. The eyes od to resist the downward pressure, and the other upon the inner side of

Improved Bed Bottom.
Benjamin Holmes, 95 Grand Street, New York city.--
York city.-This invention relates ttached by straps to the slats of the frame. Each spring has two fasten ngs, one on each side of the slat. By making the slats of the proper width di arranging the springs upon either side, the requisite number of spring distributed uniformly and so that each may bear its proper proportion rranged in the usual manner, with a border band of rattan or wire sur ounding them and forming the boundary of the bottom. The bottom is cased in strong cloth with cotton batting in the sides.

Improved Oscillating Chair.

William T. Doremus, 266 Canal Street, New York city.-This invention has for its object to furnish an improved chair, which shall be so constructed as
oo yield to the weight of the sitter as he sits down and leans back, thus elieving him from encountering the ristd resistance found in stting upo an ordinary chair. Bars are placed at elther side of the chair, the upper
ends of which are pivoted to the chair seat by a pin passing through the said ar and into the said seat. The lower part of each bar passes down throug he pedestal and has a nut screwed upon its lower end. Rubber springs are ion, when a person sits down npon the chair his weight compresses the prings, and at the same time slightly inclines the chair seat to the rearwar Which inclination may be increased by leaning back heavily against the chair back. The front part of the pedestal is provided with a stop to
receive the forward part of the seat when said seatis allowed to come lnto its ordinary position.
Improved Oil Still.
Emil Schalk, New York city.-The retort or still, in which the ofl is to be nd top and top, so that a chamber is preserved below and another above, also
spaces at the sides for the oil to be distilled ; through this passage are arranged vertical tubes as close together as will best promote the direct
application of the heat which passes through the still to the oill, which cir culates through the tubes, and not obstruct the draft. The oil enters the lom ha upper
rom thd having cal und having a large chamber below, will not be obstructed by the accu mulation of impurities.

Improved Torpedo
Charles Nelson, East New York, N. Y.-This invention consists of a tor pedo in which the fulminate is separated from the powder, gravel, and othe wrapper. It is thusplaced at the bottom part of the completed torpedo. I is either inclosed in one wrapper, or in a package of two or more plies of
strong paper. The fulminate is placed at the bottom, and the whole, ncluding an exterior thin fancy colored paper, is folded overthe powde nd securcd by twisting together and gumming the twisted parts. The ob nd to provide a wrapper or case that will not break open easily when sub ject to concussion, as the torpedoes now made do to such extent that if one a mass or package explodes the whole will be fired.

Improved Sofa Bedstead
New York city. - This invention
James K. Stockton, New York city.-This invention relates to a new ${ }^{*}$ sof ed, and has for its object to permit the use of short frames and cushions fo ach purpose. The seat of the sofa, having projecting pins or trunnions, is
poted thereby to the frame so that it can be entirely revolved. To the ront of the seat is hinged a cushioned frame of similar extent, which in the sofa is folded under the seat. To the back of the cushioned frame is hinged the sofa back, which is cushioned on both sldes. A plate of wood is placed admission of the cushion. When the sofa is to be transformed into a bed he cush carried forward, the seat completely revolved on its pivots an of and pivoted to projectit forward of the seat. Legs. 8 iliding in out and turned down for the sumport of the cushion. A foot board is folded ap till it rests on the projecting extension of legs. Clutches, applied to the against the legs, stiffening them and producing a stable support to the cushions. In this manner a bed is completed whose length is obtained b

Improved Steam Generator.
Patrick J. McMahon, New Orleans, La.-An ordinary vertical tubular steam boiler is employed with a superheater above the upper tube sheet,
through and around which the products of combustion pass on their way to through and around which the products of combustion pass on their way to
the chimney. Into the bottom of a tank or reservoir, which is nearly flled the chimney. Into the bottom of a tank or reservoir, which is nearly filled
with water, a steam pipe leads from the steam space of the bofler. The horizontal portion of said pipe is perforated, and extends nearly or quite the
length of the reservoir near the bottom. Another pipe leads from the length of the reservoir near the bottom. Another pipe leads from the
dome to the superheater with which it is connected. An overflow pipe connects with the boller at the surface of the water theretn, and dis-
chargesinto the first mentioned pipe. The reservoir is provided with an charges into the first mentioned pipe. The reservoir is provided with an
independent force pump for its own supply. The water to supply the boiler is taken therefrom. When steam is generated it will be discharged into the reservoir through the pipe, and will escape into the water through the perforations and be condensed. The heat thus generated will be absorbed by the water, which will soon become heated. As the pressure increases in the
boiler it will increase in the reservoir, and the steam generated in the reservoir escapes into the dome and to the superheater, whence it is convoir escapes into the dome and to the superheater, whence in is con-
ducted into the engine. The steam pipe is always open, and consequently any great or sudden accumulation of steam in the boller will be absorbed by the water in the reservoir. This large body of water will therefore store up such heat and power and act as a balance wheel to equalize the action of the
boiler. From this arrangement it will be seen that a sudden evaporation in the boiler cannot cause a sudden increase of pressure, and also that a sudden demand for power will not suddenly reduce the pressure.
Improved Bed Bottom.
Peter Boesen and Michael Bedessem, Kenosha, Wis.-The upper bed bot-
tom frame is supported on spiral springs and covered with canvas or other fabric, which also rests on springs. The springs at the ends of the bed rest upon a frame, but at the middle of the bed they rest upon a suspended
frame which is hung by and moves loosely upon rods extending down from frame above. Braces are arranged which form yielding crossed support for the bed bottom, and serve to steady and equalize the downward and up
ward motion of the same, so that if, for example, one side of the bed is be Ing depressed only, such depression will still laave the bed level, and not cause it to become inclined to the weighted side. When the bed is weighted
in the middele the springsat rest in the frame will be less compressed, because in the middle the springs at rest in the frame will be less compressed, because and will therefore make the middle of the bed softer and more perfectly elastic than the sides.

Improved Barber's Chair. prove barbers' chairs. The chair operates easily, as the occupant adjust the inclination of the back to suit his own comfort by pressing with the extended rest for the and the person sits up, the barber lifts the levers from the ratchets an places the back in an upright position between the hind legs. The arms re main stationary, the back performing the same motion which in the old
chairs is accomplished by the combined back and arms pivoted to the front egs.

Improved Car Ventilato
John J. Crowley, Whistler, Alucting pipe a distributing of two ventilat ing pipes, a fan blower, a conducting pipe, a distributing pipe, and a system is driven by a belt from a pullegy on one of the car axles, will force a blast of air into the car, no matter which way it runs, it being only necessary to Improved Iron Bridge.
William B. Cooper, Albany, N. Y.-The object of the invention is to en tions so that the arches can be transported and put in place without diffl culty, and so that the parts can be put together and adjusted without pre vious boring or fitting. The block or connecting section is a shell, made in open on the under side to admit the eyes on the ends of the braces, which end of the shell is a circular flange, a semicircular half betng cast upon eac half of the shell, which flanges enter the ends of the sections of the arch The ends of those sections or tubes consequ:ently bear against the ends of
the shell or block, and the ends of both are beveled with reference to the curve of the arch. When the connection is made and the parts put in place
the latter are expanded by means of one or more keys, a groove being cas in each of the parts to recelve the keys. The flanges are thus made to bear Machine tor Stin Machine tor Siffening Netting for Bonnet Frames, etc.
Peter C. Ritchie, New York city.-The top bars of the frame are provided with small hooks, upon which the edges of the mosquito net or foundation
are hooked. A box, in which the stifening mixture is placed, slides back middle part of the ends of the box and is covered with several thicknesse of a coarse cloth which takes up the stiffening mixture from the box o trough and transfers it to the mosquito net or foundation as the said box fening mixture to the mosquito net or foundation by the movement of the the surplus stiffening mixture that may be raised by the roller, and thu prevent more than the proper amount of said mixture from being applied to the mosquito net or foundation.

Improved Paddle Mechanism for Boats.

Charles Howard, New York city.-This invention relates to an improve
ment on the "improvement in paddle mechanism for boats," which wa ment on the "improvement in paddle mechanism for boats," which wa
patented March 19, 1872, No. 124,746. The present improvement consists in attaching the upper end of the paddle directly to the pln or wrist of the rod extending from sald short crank to the upper end of the paddle, as in the aforementioned letters patent. The lower or long crank is, as before connected to the paddie near its middie. The paddle shank, provided with a slot or guide, by which the paddle is allowed to slide up and down on the pin or wrist of a crank in such a mane
lengths, to be attached to the paddle.

Improved Cultivator.
William Taylor, Mansfleld the class of cultivators for corn, potatoes, and analogous crops, which have
hinged adjustable wings or sections. To the rear edge of the inclined sides of the hoe plow are hinged the forward ends of the wings or plates, the
lower edges of which are concaved to give the desired form to the hills. To the inner sides of the rear parts of the wings are pivoted the outer ends of back and forth in a longitudinal slot in the rear part of the plow beam, so that the wings may be spread apart ordrawn toward each other by adjusting the position of the said block. To one of the rounds of the handles is piv and its upper end projects into such a position that it can be conveniently in any position into which may be adjusted.

Improved Harvester.

Alexander Rickart, Schoharie, N. Y.-The invention consists in an improve ment upon the usual means for throwing in and out of gear the mechanism
which drives the cutter bar. The drive wheels are connected with the journals of the axle by pawls and ratchet wheels. To the axle, at the inner into the teeth of a small gear wheel attached to a shaft whicll revolves in bearings attached to the frame. To the forward end of the shaft is attached a small crank, to tie crank pin of which is pivoted the end of the pitman the other end of which is plvoted to a slckle bar that slides upon the finger
bar tn the ordinary manner. To the rear part of the platform or frame are slide longitudinally upon the said axle so that the gear wheel may be thrown into and out of gear with the other gear wheel by slididig the said
frame or platform upon the said axle. A pin, having a hole through its
base for the passage of the axle, is kept from sliding upon said axle by
a collar secured to It , and to the pin ls pivoted a lever, having a double a collar secured to it, and to the pin is pivoted a lever, having a dobble
cam formed upon it. The double cam Works between studs formed upon or other direction to the so that the sala platform may be moved in one or the gear wheel. The space between the shoulders or studs is made a little wider than the double cam, and in it, along one of said shoulders or studs is
placed a bar or arm, the lower end of which is secured to the platform o placed a bar or arm, the lower end of which is secured to the platform o rame, and its upper end is left free. The baror arm is hes forward agains en double cam by a set screw, which screws through the shoulder or stu
long which the bar or arm is placed, so that by turning the said screw for ward the wear may be taken up.
Improved Railway Snow Plow.
Peter A. Smith, New York city.-This invention consists in a plow made parallel with each other and directly over the ralls of the track The walls of the plow are made double to form chambers. With the
hambers are pipes communicating with the steam drum, or with the chambers are pipes communicating with the steam drum, or with the ex-
aaust of the engine, to enable steam to be introduced into the said chan ber. In the outer plate of the plow are formed a number of small holes,
hrough which the steam blows upon the snow. The rear or parallel parts of the plow have a number of small holes in their bottoms, through whic the steam may blow
adhere to said rails.

Improved Shoe Brush.
George Wale, Hobo a improved shoe brushe and the shoe polished, without tts being nece sary to touch the box of blacking, or anything but the handle of the
brush. In the brush for applying the blacking is formed a channel, leading brush. In the brush for applying the blacking is formed a channel, leading
in through the rear edge and out through the center of the brush, side of its ock. This latter opening is closed by a valve brush over the hole in said edge. The plate lias a hole formed through it directly opposite the hole in the brush stock, and of a less diameter tha said hole. The box to contain liquid blacking is made close, and with small tube in one end. The tube has several small holes formed in its sides,
and its outer end is closed with a cork. Upon the tube is placed a piece of rubber pipe which, when the tube is pughed into the hole through the plate, is pushed back by said plate so as to uncover the holes in the said
tube and at the same time serve as a packing to prevent the blacking from leaking out between the tube and plate. The box is kept from slippin outward by a flange. A plate is placed at such a distance above the back of
the brush that the box may be readily slipped into place beneath it. The ends of this plate are bent downward at right angles, and are attached to the side edges of the brush, and to it is fastened the handle. The plate an formed as to lever is operated, so that the valve will be opened and the box compress Improved Sawing Machine.
Clarksville, Tenn.-The saws are so
Hugh A. Current Clarksille , about three pleces, and one is 'placed behind the other for dividing th hese belts all work over rollers at the ends of the frame and carry a num of long, curved clamp fingers, whlch are mounted on curved plates so ward and are drawn down toward the belts when they are passing betwee the rollers, so as to clamp the sticks of wood and hold them firmly ; but hey come up over the rollers from below they project up ward so as to allow
the wood to be placed immedately in front of them so that they will come wn on, and clamp it fast. Rails or waysare made alongside of the belt upporting rollers may be employed, as required to support the belts. Th aws are arranged to be adjusted on the mandrels so they can be shifted

Value of Patents,

Practical Hints to Inventiors.

ROBABLY no investment of a small sum of money brings greater return than the expense ircurred in obtaining a patent
even when the invention is but a small one. Larger inventions are found to pay correspendinglywell. The names of Blanchard Morse, Bigelow, Colt, Ericsson, Howe, McCormick, Hee, and tions, are well known. have realized large sums from their patents.
of the services of MuNs \& Co. during the TwENTY-SIX yea her have acted as solicitors and Publishers of the Scientific Amirricas Thev stand at the head in this class of business; and their large corp
of a;sistants, mostly selected from the ranks of the Patent office: men cap able of rendering the best service to the inventor, from the experience prac-
tically obtained while examiners in the Patent offtic: enables MUNN \& Co. to do everything appertaining to patents better and cheaper than aay ther relia

This is the closing inquiry in
nearly every letter, describin
some invention which come
his offlce. A positive an解 Ings, Petition, Oath, and full Specification. Various official rules and for
mallties must a:so be observed. The efforts of the inventor to do all this usiness himself are generally without success. After great perplexity an elay, he is usually glad to seek the aid of persons experienced in paten
business, and have all the work done over again. The best plan is to solicil proper adviee at the beginning. If the parties consulted are honorable men, he inventor may satoly confide his ideas to them ; they will advise whetho the improvement is probably

How Can I Best Secure My Invention

 This is an inquiry which one inventor naturally asks another, who has ha
nd correct

Construct a neat model, not over a foot in any dimension-smaller if pos New Fork, together with a description of its operation and merits. On res ceipt thereof, they will examine the iavention carefully, and advise you a at hand, to construct a model, make as good a pen and ink sketck of the of a patent will be received, usually, by return of mall. It is sometimes best to have a search made at the Patent Office such a measure often sav

Preliminary Examination

ion, in your own words, and a pencil, or pren and inks, sketch. Send these with the fee of $\$ 5$, by mail, addreszad to MUNN \& Co., 87 Park Row, and in due time you will receive an acknowledgment thereof, followed by a writ
ten report in regard to the patentability of your improvement. This specia earch is made with great care, among the models and patents at Washing n, to ascertain whether the improvement presented is patentable. Rejected Cases.

Rejected cases, or defective papers, remodeled for parties who have made

 pplications for themselves, or through other agents. Terms moderate
To Make an Application for a Patent.

The applicant for a patent should furnish a model of his invention if sus-
eptible of one, although sometimes it may be dispensed with; or, if the in ention be a chemical production, he must furnish samples of the ingred ats of which his composition consists. These should be securely packed, inventor's name marked $\subset n$ them, and sent by express, prepaid. Sma odels, from a distance, can often be sent cheaper by mail. The safest
way to remit money is by a draft, or postal order, on New York, payable to the order of Muns \& Co. Persons who live in remote parts of the country
can usually purchase drafts from their merchants on their New York cor

Caveats.
Persons desiring to file a caveat can have the papers prepared in the short st time, by sending \AA sketch and description of the invention. The Govern-
nent fee for a caveat is $\$ 10$. A pamphlet of advice regarding application or patents and caveats is furnished gratis, on application by mail. Addres

Reissues.

A reissue is granted to the original patentee, his heirs, or the assignees of
he entire interest, when, by reason of an insufficient or defective specifica he entire interest, when, by reason of an insufficient or defective specific vin, the original patent is invalid, provided the error has arisen from inadtion.
ach distinct part of the invention comprehended in his original applicatio paying the required fee in each case, and complying with the other r Park Row, tor full

Design Patents
Foreign designers and manufacturers, who send goods to this country rom fabricating or selling the same goods in this mar'et.
A patent for a design may be granted to any person, whether citizen ilen, for any new and original design for a manufacture, bust, statue, alto relievo, or bas relief; any new and original design for the printing of woo ment, pattern, print, or plcture to be printed, painted, cast, or otherwis laced on or worked into any article of manufacture.
Design patents are equally as important to citizens as to foreigners. Fo

Foreimn Patents.

The population of Great Britain is $31,000,000$; of France, $37,000,000$; Be
um, $5,000,000$; Austria, $36,000,000$; Prussia, $40,00,0,00$; and Russia, $70,000,000$. Patents may be ser,ured by American citizens in all of these countrie Nuw in the, whe in demand in Europe. There will never be a better time than the presen patents abroad. We have rellable business connections with the in
oreign countries by Americans are obtałned through our Agency. Addres ONA \& Co 37 Park Eow, New York. Cicul oreign patents, furnished free.

Value of Extended Patents.

Did patentees realize the fact that their inventions are likely to be more productive of profit during the seven years of extension than the first full
term for which their patents were granted, we think more would avail them elves of the extension privilege. Patents grainted prior to 1861 may be ex of the decease of the former, by due application to the Patent Office, ninety days before the termination of the pitent. The extended tine inures to
the benefit of the inventor, the assignees uider the first term having no rights under the extension, except by special agreement. The Governmen fee for an extension
be obtained to conduct the business before the Patent office. Full informa-
tion as to extensions may be had by addressing MUNN \& Co., 37 Park Row. ion as to extensions may be had by addressing MUNN \& Co., 37 Park Row Trademarks.
Any person or firm domiciled in the United States, or any firm or corpora-
tion residing in any foreign country where similar privileges are extended tion residing in any foreign country where similar privileges are extended
to citizens of the United States, may register their designs and obtain pro tection. This is very important to manufacturers in this country, and equal y so to fore
New York.

Canadian Patents.

On the first of September, 1872, the new patent law of Canada went into force, and patents are now granted to citizens of the United States on the In order to apply for a patent in Canada, the applicant must furnish odel, specification and duplicate drawinge pplying for an American patent.
The patent may be taken out elther for five years (government fee \$20) or or ten years (government fee \$40) or for fifteen years (government fee $\$ 60$) The formalities for extension are simple and not expensive. American inventions, even if already patented in this country, can be All
Am persons who desire to take out patents in Cauada are requested to ttention to the business and furnish full instruction.

Copies of Patents.

Persons desiring any patent issued from 1836 to November 26,1867 , can b upplied with official coples at a reasonalle cost, the price depencing upon
he extent of dravings and length of speci ication. Any patent lssued sunce November ing to this offlce $\$ 1$.
A copy
for \$1.
When
ordering copies, please to remit for the same as above, and state \& Co., Patent Solicitors, 37 Park Row, New York city
MUNN \& Co. will be happy to see inventors in person, at their office, or to
advise them by letter. In all cases, they may expect an honest opinion. For advise them by letter. In all cases, hey may expect an honest opinion. For do not use pencill, nor pale ink be brief

and strictly confidential.

In all matters pertaining to patents, such as conducting interference of patents, etc., special care and attention is given. For info the validity f patents, etc., special care and attenti

[^0]
Susimes aud extsonal.

 the Chargefor Insertion under tuts head $881 \mathbf{1}$ a Line. The Best Smutter and Separator Combined Buy Gears Improved. Automatic Dovetail.

 Wanted-The price of Engines, Boilers,

A A ents wan ted every where to Sell our Cir
 for Circulars. Taylor Mf'g Go., Westminster, Md. Screw and Drop Presses, Fruit Can Dies and
Dies of every description. Thomas \& Robinson, Cinn., 0 . To Manafacturers of Pile Drivers and Hoist

You needn't be always behindhand with

 Wn. scoutt, Bunghangomon, W. W.ood turning Lathes. Just published--Richards' Treatise on the
 New York, and Bookselier generall
For Sale-Fur Second Hand Iron Planers,
For dimensions and prices, apply to Poole $\&$ Hunt;
 Street, Pnliadaedipha, Pa

Address for Seldeuen's Steam Packing, Boston.

 Brooklyn, N
 Have enour Shop fitted out by Gear, of Bos-
ton Nass toinvas pers in this whole country will
Ner buy one of of the paintul metal epring Truseses atter he has once seen thenew Elastic Truss which retanns the
rupture under rupture under the hardeset exerctie and the most guden
strain of the body, 1s worn inght and day wtit com fort,

 March fith, 1873.
Wanted-By a man of 25 years experience
in Bulding Reparing, and running Engries, situation

 stantaneously, the same now used in New York; are be-
ine adopted everywhere. Offlce, 669 Broad way, N. Y. Needles. for Sewing Mochines- General Rare Chance for first class Meehanic. See

 Shorts s Patent Coupling, Pulleys, Hang-
ers and shattug a specialty. orders promply yilead.

 Damper Regulators and Gage Cocks-For All liacksmith Shons need a Holding Vise
to upeet botrs by hand. $J .5$. abbe, Mancheserer, N. He -Millstone Dressing Diamond Machine-
 Dlamonas. Cabinet Makers' Machinery. T.R.Bailey\& Vail.
 lic craining Toolse J.J.Collow, manult, olereveland, ohlo.

 Brown's Coalyard duarry \& Contractors' Ap-
 bewithout them. I.B. Davis © Co
 J.R.Abbe, Manchester, N.H.,sells Bolt V ises.

 ier, Vermont.
Key Seat
Kit
Key Seat Cutting Machine.T.R.Bailey \& Vail. Tree Pruners and Saw Mill Tools, improve-

The Berryman Manuf. Co. make a specialty. 3. Davis \& co., Hartora, Conn.
 Shafting and Pulleys a specialty. Small or
ers flled on as good terms as large. D. Frisbie \& Co. ew Haven, Conn
All Fruit-can Tools,Ferracute,Bridgeton,N.J $\underset{\text { Newark, N.J. }}{\text { For Steam }}$ Fire Engines, address R. J. Gould, Hammer Dies and Heads, strong and durale, cast to order by Pittsburgh Steel Casting Co. Al For Solid Wrought-iron Beams, etc., see ad.
vertisement. Address Union In on Mills, Pittsburgh, Pa., Mining, Wrecking, Pumping, Drainage, or
Irrigating Machinery, for sale or rent. See advertisement, Hydraulic Presses and Jacks, new and sec-
ond hand. E. Lyon, 470 Grand Street, New York. Machinists-Price List of small Tools free ; Gear Wheels for Models, Price List free; Chucks and
Drills, Price List free. Goodnow \& Wightman, 23 CornDrills, Price List
hill, Boston, Mass.
The Berryman Steam Trap excels all others. Covering for Boilers and Pipes. The most
Cortict
Conomicaland durable article in use. Took first prize at American Institute Fair. Van Tuyl Manufacturing
Company, 528 Water Street, New York. Absolutely the beist protection against Fire
-Babcock Extingulsher. F. W. Farwell, Secretary, 407 Babcock Extingulsr.
Broadway, New York.
For best Presses, Dies and Fruit Can Tools,
Bliss \& Willams, 118 to 120 Plymouth St., Brooklyn, N.Y. A Superior Printing Telegraph Instrument
(the Selden Patent), for private and short lines-a warded
 the First Premium (a Sliver Medal) at
sition, 1872 , for " Best Telegraph Instrument for private use"-Is offiered for sale by the Mercht's M'f'g and Con-
structiou Co., 50 Broad St., New York. P. O. Box 6865 . Williamson's Road Steamer and Steam Plow,
with rubber Tires.Address D. D. Williamson, 32 Broadwith rubber Tires.Addr
way, N. Y., or Box 1809.
Lathes, Planer, Shaper, Shafting, 30 Boilers, Engines and SSteck, of Machine Shop, for, sale very low.
Henry McColium, Long Island City, N. Y.

J. B. asks: Is there anything poisonous
from a cast tron furnace when wood is used for fuel? J. W. J. says: How can I make a cheap calI use?
E. T. C. asks : What kind of oil is best for a
blacksmith's bellows? Is there anything not injurious blacksmith's bellows? Is there anything not injurious
to the leather or poisonous that can be used in the oll, to the leather or poisonous that can be used in the ofl,

that will prevent rats and mice from gnawing the | that will |
| :--- |
| leather? |

R. H. D. asks: What advantage have turn-
buckles over nuts and check nuts, for the shrouds,stays, buck les over nuts and check nuts, for the shrouds,stays,
etc., of small boats? The latter are so much cheaper,
J. Q. asks: What is the difference in the
crushing welghts of a stamp that crushing weights of a stamp that weighs 500 ibs., with a
face six inches in diameter, and a wheel that is six feet in diameter and 18 incheses face, and weighing eight tuns, rolling or twisting around on a circle of six feet in A. Z. says: I have a portable steam engine, 120 lbs . power, 4 feet stroke, and $31 / 2$ Inches bore; the
length of the boller is 6 feet, the diameter 38 inches, with 32 flues. In trying to run a 50 saw cotton gin, I hitched of $51 / 2$ feet diameter. The gin runs perfectly well with 70 lbs. of steam, but soon the speed diminishes till it runs
very slowly. What must be done to make it run? What very slowly. What must be done to make it run? What
is the reason it does not keep its speed? If a tatach two is the reason it does not keep its speed? If rattach small iy wheels to the main shaft of the gin, on one or
both sides, do youthink that it will help the steam to seep up a suffcient speed?
A. M. says: I am running a circular saw inch, friction feed; saw mandel is $33 /$ inches cast steel running in self onling babbit ined boxes. The box
next to the saw is hot all the time, but the box next to
beltruns cool. Ihavereflled the box several times and next the saw is hot all the time, but the box next to
beltruns cool. Ihavereflled the box several times and
n different ways without success. I use lard oll and in different ways without success. I use lard ofl and
have changed mandels twice in sixmonths. It will get hot, whether the saw
Can any one explain?
H. C. D. says: I have an 18×77 foot open
flat boat, which draws 4 lnches: also have (and wish to apply to it as a power, by sultable cog gearing and pit-
man connections to a steam wheel) a 10 or 12 horse power portable engine of 150 r evolutions per minute. I wish diameter of wheel, and speed of same. What size should the shaft be to drive said boat 3 milles an hour against current of 3 mille
draw10 inches ?

C. C. S. asks: How can I construct an ice
boat? Answer: Read page 88 of our volume XXVI. H. E. B. repeats B. W. C.'s query. Answer
see our reply on page 171 of this volume. D. A. K. will find full directions for a bath W. E. G. Says: I received the ScIENTIFIC
AMERICAN dated March 1st on February 22 containing "Index of inventions for which letters patent of the ary 28,1873 , and each bearing that date;" how can this be
when you publish your paper and subscribers recelve it when you publish your paper and subscribers receive it
on February 22 ? Answer: The ScIENTIFIC AMERICAN
for each date is issued in the preceding week, and confor each date is issued in the preceding week, and con-
tains the latest Index of Patents published by the Patent offce. Our correspondent's statement is perfectly cor-
J. A. \& Co. say: We put a set of new tubes

In a small upright boller; and in eleven months they
were corroded so that we had to putin another set. Wil
you please inform us what ingredients and what propor-
tion we ought to put in our tank (which we pump from) to prevent the corrosion in the bofler? Would it be best to use copper tubes? Answer: We should require a
knowledge of the character of the impuritles of the feed ate
A. H. M. says: In your paper of March
you inform A.B. s. that the back pressure on engine about $1 / 2 \mathrm{lb}$. per foot of submerged end of exhaust pipe,
Ifthis is correct, please explain this phenomenon. I
have a steam pump, and within about ten feet of stands a cistern, the bottom of which is 6 feet above t th exhaust pipe of the steam pump. I placed an upright wooden pipe,3inches bore,between the pump and cistern,
of suffclent length to reach from the ground to above of sufflclent length to reach from the ground to above
the top of the cistern. I took the exhaust pipe (11 inch the top of the cistern. Oook the exhaust pipe (1/2 inch
gas pipe) Into the side of the wood pipe, level with the
engine, ten feet above, at the top of the wooden pipe. run a 2 inch pipe horizontally over the top of the cistern
and turned it down into the cistern, which 184 feet deep and turned it down into the cistern, which is 4 feet deep,
within a foot of the bottom. The cistern is usually fuil or nearly so, of cold water. The pipes were all airtight
from end to end, except a hole, $1 / 4$ inch in diameter, from end to end, except a hole, $1 / 4$ inch in diameter,
bored into the perpendicular wood pipe 2 feet below the bored into the perpendcuar of lef the condensed steam. Result: Upon starting the engine (pump), a stream of
cold water started from the small opening with the force of say about 10 feet head. I enlarged the hole until,
finally, I made it $1 / 2$ inches in diameter, which had only the effect of increasing the dischange of water. In fact pump was running or not. The speed of the pump did not appear to be affected, but it occasionally pounded as
from water in the steam cylinder. I inally overcame from water in the steam cylinder. I Inally overcame
the diffculty by a valve in the top of the perpendicular pipe opening Inwardly, but held closed by a slightspring.
Now when it nclines to draw the water over by the Now when it Inclines to drai the water over by the
vacuum found in the siphon, the valve admits air which vacuum found in the siphon, the valve admits air which
the next exhaust forces down into the cistern, keeping
up a commotion at Intervals of say three to five strokes of the pump. If there had been the back pressure stated, could a vacuum have been formed sufficient to have
made a siphon? Answer: The arrangement described made a siphon? Answer: The arrangement described
forms a pretty effective condenser, as first made. As modifiled, our correspondent will find, we presume, hould he measure it , a back pressure such as we stated,
so long as the mingled steam and air are being forced down into the tank. With a steam engine exhausting
into Its own feed water tank, the first effect, on starting Into its own feed water tank, the frst effect, on starting
the engine, might be to produce a vacuum in a simt lar manner, but, as the exhaust is capable of heating sev-
eral times the welght of the feed to the boillug point, eral times the welght of the feed to the boillig point,
condensation would soon cease, the vacuum would be destroyed, and
on the engine.
W.S. B. says: I was with Mr. LeVan when Van found the fron reduced to three sixteenths in one
place, which was not where the boller purst from the place, which was not where the boller purst from the
strain upon it, but where the mud drum was torn off. strain upon It , but where the mud drum was torn off
His statement that the steam gage ten minutes before Hhs
shoded a pressure of 55 pounds is inccrrect, because
there was butone gage in the mill, and the boiler was there was but one gage in the mill, and the boiler was
shut off from that one. There are today worse botlers
in in this mill working at from 60 to 125 pounds pressure
I saw one, this week, taken from the next furnace t the exploded one, with 18 patches on the fire sheets. heard the proprietor say last summer, In reply to the
engineer's opinion that they were carrying to engineer's opinion that they were carrying too much
pressure, namely 100 to 110 pounds, that it was all nonpressure, namely 100 to 110 pounds, that it was all non-
sense, that those bollers were able to stand 150 pounds pressure. The trouble was that they wanted one man to
do three men's work, and one man was doing it for less do three men's work, and one man was dolng it for less
than one good man's wages, and he forgot to open the lives was the result, with many more persons crippled for life. Pleases state at what pressure the safety valve,
as described last week, would blow off. Answer: Such as described last week, would blow off. Answer: Such
an arrangement of steam gage has been a cause of quite an arrangement of steam gage has been a cause of quite
a number of explosions of old and worn out boilers. The effort to obtain the labor of three good men by paying a
low prive for the time of one man is another cause, which, perhaps, operates quite as often in producing ex itself. We fear it may be a long time yet before it shall have become a well recognized fact that nething is ever
saved in the long run by attempting to obtain service of saved in the long run by attempting to obtain service of
any kind without giving the proper equivalent. Should any kind without giving the proper equivalent. Should
other explosions occur, as apprehended by W. S. B., he other explosions occur, as apprehended by W. S. B., he
will have the satisfaction of knowing that he has done a duty in the premises by giving fair warning through the
Scientific Americas to those interested. We do not now to what safety valve the last paragraph refers. $\underset{\text { Jorse portable tubular boller with soft coal. How much }}{\text { J. W. S. }}$ more fuel will it take to fire with the furnace door open
than with th closed? I run steamlown hill to one 12 horse engine through 350 feet of 114 Inches pipe, boxed in
and packed with sawdust. Thinking that some of the power was lost in carrying steam so far, we fitted on a steam gage on steam pipe at engine and found 2% pounds
more pressure than the gage showed on the boiler. Wé more pressure than the gage showed on the boiler. We
then placed our gages together on the boiler and found then placed our gages together on the boller and fout th1s
them both alike, both standing at 80 lbs. How does
occur? I have seen it stated in four paper that steam occur? Y have seen it stated in your paper on seam
loses one pound in passing through each ten feet of pipe. We also run steam uphill 300 feet, in $11 / 1$ inches pipe to a
12 horse cngine. Placing the gage there, it indicated 5 12 horse cngine. Placing the gage there, it indicated
lbs. less than gage on boiler. But the pipe runs under a road, and the dampness may condense the steam there. Does it take more steam to run up hill than it does
down? What is the difference (if any) in the pressure on top of a boiler and on the bottom? Take a very light
carriage, something like a velocipede only three wheeled with one person on it. How many pounds of force is re-
quired to propel it one thousand yards, on level ground, quired to propet it one thousand yards, on level ground,
in one minute, and how much on an iron track? The in one minute, and how much on an iron tracl.
power is to be applied in the form of a weight.
C. E. G. Says: I want to know how the
black glove finish is put on to such articles as harness buckles. Answer: Dissolvo three sticks of black sealing wax in half a pint of alconol. Apply with a sponge. J. L. J. asks: What do you mean by exces-
sive priming? Answer: Priming is water carried into the cylinderof an engine by the steam, and it causes
pounding of the piston and wears away both piston and cylinder. Dry steam alone should be admitted to an en-
gine. In answer to your other question: Yes, very cred-
J. B. F. asks: Why is heree a star markee ne the constellation Leo (second star from point of while it is not to be seen there? Answer : This star ime in the designated place.
Several correspondents have called our atention to an omission in the paragraph relating to the
given. It should be made equal to the difference be N. C. M. Says: On October 15, 1872, a short
time before sunset, I saw a spot upon the sun with my naked eye. Viewed through a fild glass of good power, it was resolved into two spots, very close together, and
several other smaller spots were visible. The atmoseveral other smaler spots were visibe. The atmo
sphere at that time was quite hazy. Were the sun spots at that time remarkable for their size? Answer: November 10, 1872, and thereabouts was a period remarkable
for the size and number of the spots on the sun ; for the size and number of the spots on the sun; one
double spot was to be seen as single with the naked eye. Taking into consideration the time of the sun's revolu-
tion on its axis (about 25 days) the same group would have been vis
C. W. W. asks: When did the vernal equi-
nox fall back from March 21 to March 20 ? Answer: The inswer to the question in regard to the vernal equinox calenes the whole theory of the construction of the
cal may be found in any encyclopædia and almost every work on popular astronomy. Lockyer's
"Elementary Lessons in Astronomy" well discusses the subject, in the chapter on the measure or ever has been any posittre fixed date for the occurrence of the equinoxes. It is impossible to avoid some
variations, as the time of the sun's revolution from one variainox to the same equinox again is not an from one equinox to the same equinox again is not an exact num-
ber of days. It has been the object of all calendars to so
correct the resulting errors that the variations are correct the resulting errors that the variations are kept within as small a limit as possible. By the system now
In use, instituted by Pope Gregory XIII in 1582, the ver. nal equinox is always reckoned on or near March 21 . This year it happens on March 20.
J. W. P. requests us to publish information thereof. Answer: To make soop, boll fatty or oleaginand time, the ebullition being still continued until these substances, acting on each other, combine to form a tewater; to promote this separation and the grom the water; to promote this separation and the granulation
of the newly formed soap, some common salt is added and, the fire being withdrawn, the contents of the boiler
are allowed to repose for some hours in order that the soap may collect into one stratum, and solldify. When quite sopens, it is pressed into molds or cakes and, when quite solid, cut into bars. If the soap be made from the satisfy the thrifty washerwoman; but it can De prevent-
ed from melting too rapidly in ho ed from melting too rapidly in hot water by the introduc.
tion of 5 per cent of fused sulphate of soda. Ure says tion of 5 per cent of fused sulphate of soda. Ure says
that this addition not only hardens the soap, but im-
W. R. J., Jr., asks at what rate and to what extent mercury expands on the applioation of heat. An${ }^{7} \overline{0}$ of its volume for each additionaldegree (centigrade) of heat up to $100^{\circ} \mathrm{C}$. From 100° to 200°, the average ex-
pansion for each degree is 5^{2}, ${ }^{2}$, and from 2000 to 300°
$\underset{\text { correspondent that the rotundity of the earth fs } 8 \text { inches }}{\text { E. }}$ per mille. By the rotundity of the earth, expressed in from the extremity of a line whose other end is tangen-
tial to the curve. The common formuls is: $\% /$ of the square of the distance in miles will give the rotundity P. L. D. asks: Can any of your readers give
any information as to the best method of making paper transparent, but the substance used must not prevent
the use of mucllage on the paper? Answer: Canada he use of mucliage on the paper? Answer: Canada
balsam and turpentine make a good preparation for tracing paper.
$\underset{\text { prodnce gutta percha, and India rubber or the world }}{\text { L. E. H. asks: }}$ Answer: Gutta percha comes chiefly from Borneo and ther islands of the East Indian archipelago, and caouthouc from South America and the East Indies.
W. F. C. S. asks: 1. What proportion ought it and the next tooth? 2. We have a six wheeled The enginewith four equalizers, two on each side. he engine when started with a train of cars would
cock up her front and duck her rear, as far as the rertical play of the taws would allow. The fault was this? 3. What tis meant by the polnt of suspension betng
above the center of gravity? Is it a seen in a cale heam? Answer: 1 . The side clearance in gear wheels
will properly vary with circumstances. We have seen but a sixteenth allowed in a well cut mortise gear of 41/2 inches pitch, and, on the other hand, that amount of
clearance is none too great, in a rough cast gear of an
inch pitch. 2. With the second arrangement, the engine inch pitch. 2. With the second arrangement, the engine
was tied down forward, while, with the first, as we unthe mand the two arrangements, the equ line of draft the main frats
3 Precisely.
H. P. \& C. asks : In the construction of a
h;draulic ram should the pipe that conducts the water from the ram to the place required be larger at the axle
end or vice versa? Is tin lined lead plpe preferable to ordinary gas pipe for that purpose? Answer : A pipe of
the same size all through will do. Tin lined pipe unneccessary.
J.B.J. says: You replied toP.R. S. who want-
ed to know how much water it takes to run a ten er steam engine per hour; your a nswer is from 50 to 200 gallons per hour, according to quality of boiler
and machine. Is the answer correct? Should it not be per day? Answer: Our reply reads as we intended it should. A good 10 horse power engine with equally
good boiler should require about 50 gallons of water per hour. This is something over 300 pounds. and it would
he evaporated by 30 pounds of coal. Three pounds of coal perhorse power per hour is extraordinarily good
work for such small power. About 1,700 pounds, or 200 work for such small power. About 1,700 pounds, or 200
gallons of water requires frequently 200 pounds of coal
for its evaporation, and a ten horse englne has been nown to reach this igure on many occastons.
W. H. W. asks: How is petroleum applied
boilers to remove scales, I mean such as locomotive bollers, that cannot be got into? Is it not apt to make and just before flling it, put in the petroleum. Then
turn on the feed, and as the boiler flls, the ofl, floating on the water, reaches every part and saturates every incrustation.
$\underset{\text { M. J. D. . asks: Will you give me the rule }}{\text { mind }}$ 3:wer: We know of no recorded experiments on this
point. If ourreaders cangive the information, we shall e pleased to receive it. We think that some of our riends of the Engineer Corps of the navy can enlighten
T. P. Says: My friend argues that a chain
wound around a log and fastened to a pin in the log will roll up the skid poles on to a wagon more easily than it
will by simply runnling the chain once around the log and fastening to the wagon. I contend that it makes no
difference where the end raft to the horses is the always on the top of the log. He contends that winding the chain around the log helps to roll lt , as part of the chain is pulling down o
Answer: T. P. Is right.
M. D. asks: 1. How long is a knot, used area of a sphere or globe four feet in diameter? Please
give a rule for the same. 3. How much more water will a forty horse power boiler evaporate with one pound on
the safety valve than if there were ninety pounds, things remaining equal? Answers: 1. The knot or nautical mile is about one sixth longer than the common statute m!le. It is given by various authorities as $6,776 \cdot 5$
$6,0866,6,120$ and $6,139 \% 75$ feet. Bowditch gives 6120 . The ccepted lated by multiplying the square of its diameter by $3 \frac{1}{2}$ or more exactly, by $3 \cdot 1416$. The solld contents is meas-
ured by the product of the cube of its diameter by ured by the product of the cube of its diameter by $y, 2$, or,
to be precise, 0.5236 . For a sphere 4 feet in diameter these values are $50: 265$ square feet and $33 \cdot 510$ cubic feet. 3. In the inverse proportion of their total heats. If in both cases the boiler was fed with water at a tempera-
ture of 32° Fahr., the proportion would be as 1,148 to "Anxiety" says: I have a brother fourteen nclination for books. I am without sufficient patience to teach him, and I have found after schooling him two years that he cannot spell the simplest words, netther Evidently the schools should share equally the blame but I write for your advice regarding a trade for him. He can make a good pigeon house, ladder, and chicken house, appears to be fond of lending a hand to every-
body about the house, and centers every interest in pigeons and chickens. What must I do with him, I
mean, to have him out of my sight? Can I apprentice him? Answer: In the first place make up your mind to loving and devoted friend. Bear with his in firmittes, en courage the development in him of a good character by
the exercise of the most patient kindness on your part. Take an interest in what interests him, and kindly endeavor to help him therein. Poultry breeding, espectal-
ly of improved varieties, is not a bad occupation and requires the exercise of considerable intelligence. Supply him with pictures upon the subject, tools, materials and specimens of poultry, that is if you have the means. He
will thus insensibly acquire a taste for that kind of inWill thus Insensibly acquire a taste for that kind of in
formation and ability to make use of what he knows; and thus a stepping stone to improvement in other directions, mental and practical, will be insensibly gained. he is a nulsance; on the contrary, strive to see how much you can improve and lift him up. But if there is
ny body in the world who can be a better friend to hin any body in the world who can be a better friend to hin!
than yourself, it might be your duty to encourage him $\underset{\text { M A. H. says : I have in view the improve- }}{\text { M }}$ The hight of dam will be 10 feet. I propose to use a
small turbine, and convey the water from dam to wheel in a penstock. The whole length of penstock will be base of dam and the last 80 feet will be bullt down a steep neline, the lower end being 28 feet lower than the upper water per minute. The diameter of penstock when at tached to wheel is 12 inches. What I want to know is
Shall I get the benefit of the whole fall if I make th penstock the same sizeall the way? If not, would it do to construct the portion on a level with base of dam of 16 which would be cheaper, water or steam power? Can bines be relied on? Answers: 1. Make the penstock of section at least as great as the wheel and of uniform size. erate friction of the pipe. 2 . Where it 1s uniform and during which it may be required, water ioner is cheap est. The advantage of steam power lies in its reliabilit and uniformity and the privilege which it permits of and proximity to market may make it desira ble. 3. The tables of power of turblnes are often unze-
fiable; consult only those which are known to be based upon actual tests of the wheels themselves If a manu-
facturer will consent to allow a test of his wheel before purchase he can eridently be trustec.
F. H. D. says: 1. How far is it practicable pressure with pipe well protected? 2. How high vertically can water be raised with steam siphon through an paint tin roofs? 4. With 10 feet fall of water, what per cent of same could be raised 90 feet with hydraulic
ram? Answers: 1. By very carefully protecting the pipe with non-conducting and non-radiating covering, tion, steam can be conveyed almost any distance without great loss. Always make a steam pipe as short as
possible, nevertheless. We have seen steam conveyed several hundred feet in well covered ptpe, but the most observation have had short steam pipes. 2. We know o no experiments on this point directly. The Giffard in while supplied with tis own steam from a steam boile e of the first. We should from this fact, judge it possible for a well proportioned
steam siphon to lift water to a hight of nearly 120 feet. with 60 lbs. steam. We should make the pipe large in of water in pipes is often a serious retarding force. 3 .
Yes. 4. The hydraulic ram, if well designed, shoul force. with a fall of 10 feet, about flve per cent of the A. W. asks: Did you ever know of an in tance of the water leaving ateam boilerand going into steam pump? If so, what was the cause and what the remedy? There has been a case of the sort brought to my notice, and I know of no cause unless it was because It was a new boiler, and that there was animal grease connected with seven others, six of which are old boilers and never known to foam. It has always happened in the night time, when the rest were making lititle or no steam. The water used is riverwater. If this boiner
becleaned first, so that there is not much fre under it
before cleaning the others, it has ceased to trouble. An
wer: Cases have occurred in which steam has gradually
filled a pipe as described, by condensation, where litt or no current was passing through. Other cases ar often met with in which so great a velocity has occurred
as to take over sufflccent water mechantcally -by foam-Ing-to choke a pipe. Our correspondent can judge fo
sives belongs.
E. R. D. says: I have charge of a 20×48 the side of the cylinder, there are two $1 / /$ inch glebe alves for attaching an Indicator. Can you tell me why galves? II it owing sto the friction of the escapingsteam, or to superheated steam let in from the superheater
Let me ask, as to my letter, pnblished on page 164 of this Let me ask, as to my letter, pnbilished on page 164 of the
volume: Were the fires caused by electricity or super heated steam? I will add a little more information:
About 20 minutes before stopping, the last fire is put on consisting of shavings and coke screeningsmixed. Five minutes before stopping, full feed is put on and kept
ill the water ts six inches above the top Twentyminutes after stopping and shutting offall valves, steam rises from 40 to 100 ibs., and will continue to rise
if more cold water is not let into the boiler. Answer The discharges are produced by electricilty Answer by the friction of particles of water, mingled with the scaping steam,against the sides of the orifice. Farada proved that perfectly dry steam would not produce thi
effect. Superheated steam therefore, is not the cause in this case. It is very probable that the fre refere mayhave been due to electrical sparks, which are quit
C. asks: If it is 14 feet from the rim of on driving wheel of a locomotive to the rim of the othe how wide should the tire of the driver be to remain on
the track going around a 14 degree curve? 2 . Is it, or the track going around a 14 degree curve,
is it not, atmospheric pressure which causes water to
ise in a pump to fill the vacuum caused by the valve nswers: 1 . Lay it down on paper and determine it fo ourself. You will be better satisfied than with a mer
estimate. 2. It is. W. S. H. asks: Which is the best form

lowed, as at C? Answer: The straight punch will F. says: There are two lines of heavy shaf ach other of 330 I wish to communicate 100 wro power from one to the other. The common mode,, am us objection. The driving shaft runs at a speed of 10 evolutions. Hooke's undversal jont can be use
uccessfully up to 15°. Can you inform me whether s practicable to use three of Hooke's universal joints of
1° each, and in this way make the angle of 33°, communicating 100 horse power, and driving the second line o
shafting? Will it work? Will the percentage of loss power be greater than it would be if gears are used Will the motion of the shaft driven be irregular? The size of shaftused $1833 /$ inches diameter. Answer: Three
Hookes joints would be llkely to give trouble by the them. The motion would be slightly irregular The are patented modiffcations of Hooke's joints which ar claimed to work well at any angle. If practicable,
belt led around guide pulleys would probably give mos atisfaction, if it is impossible to use gearing. A double Hooke joint will give regular motion. In this form, a
ntermediate shaft is connected with each main line Hooke joint at each of its ends
J. C. C. says that our answer to J. H., as to
silding of wheels on curves, was correct. Without coning, the flanges would last but a short time. The proposition of J. J. C. will not convince any railroa
man that coning is an injury, from the simple fact that

of equal diameters, that is, the parts of the treads bear-
ng on the rail (see engraving) as at A , curve to the left and at B to the right. The wheel, being largest at or number of revolutions than it does at figure 3 , allowing it to curve without grinding the flanges, that 18,
the curve is not too sharp; but the instant the whee comes to a straight track, the bearings on the rail become of equal diameters, and the least tendency to vary
from the center of the track is regulated by the cone.
If coning worn off, he will find the flanges half ground off also, that is if the drivers are run very long after they W. T. asks: Will you please give me the
calculationfor horse power practically in use under the alculation or horse power practically in uee und
following conditions: 10 inch cylinder, 2 feet stroke, cut off at end of stroke. Steam enters through a bout 10feet of $21 /$ inch pipe. Pressure on boiler, 100 lbs., number of
revolutions, 90 . I do not know what to allow for fric tion and loss of pressure of steam in transmission; and it would seem to require a considerable deduction to ac cord with our ideas of what we are using. Answer: A ten inch cylinder has $881 / 2$ Inches area of piston; steam
entering through 10 feet of $2 \% / 2$ Inch pipe from a boiler carrying 100 pounds steam should reach the cylinder with a prossure of, probably, not less than 90 pounds,
the engine making 90 revolutions per minute. The mean pressure will be reduced somewhat in the steam port and, it may be, very greatly. We can tell nothing a bout
it withoutseeing an indicator card. We can only guess that the average pressure on the piston in such an engine, nder such circumstances, will not exceed 60 pounds per $78 \frac{1}{2} \times 60 \times 90 \times 4 \div 33000=51$ remember, is merely an estimate. An engineer ac remember, is merely an estimate. An engineer ac
customed to the use of the indicator can settle the mat-
ter at once. The steam pipe is large enough. The valve
should not be allowed to follow full streke. It would ave fuel and give more power if cutting off at
engine following full stroke usually gives an
card like No. 1, while, if cutting off at ξ, it would make

N. T. P. says: I propose to bore a hole oisture, insert a lightning rod into this hole to the bot om, and then fill the hole nearly to the top with smal Answer: The ground connection which you propose nuch betterthan the common practice of merely stick ing the extremity of the rod into the ground for a shor on the quantity of conducting material which is intro The greater the quantity of the conducting materia he better. Scrap iron is good
J. M. M. asks: Is there any liquid that can ent from common blacking? Answer: There is nothin
W.McC.asks: Can you tell me whethe Ine stumps can be blasted by any known process that will be cheaper than extracting them with a machine
What would be the cheapestand safest mode of blasting Answer: Removal by the machine would be more effec tive than blasting, probably also cheaper. We have seen
it stated that a good method is to bore the stumps and pour in petroleum. In a few days the oil will have and pour in petroleum. In a few days the oil will have pen-
etrated the stump, which is then set on flre and willburn J. E. W.
J. E. W. says: I have two shafts parallel to Idesire to transmit positive motion from one to the other, both to run at the rate of from 3,000 to 3,500 revo
lutions per minute and with as little noise as possible Please tell me the most practical, durable and econom
ical way to accomplish it. A.nswer: Will not this do
 nches from center to center. Fit plate, C D, and connect with links, E F, each
three inches from center centh links of same
length by drilling the moles for pins simulta eously, clamping them together during the operation to take the pins. Then assemble as in the next gure. The face plates must be of such size that the ceed the iength of links over
pass each other while revolv-
ing. Grind the pins to fit.
f this will not do, try friction

T. A. claims that January 1st, 1901, is the
rst day of the twentieth century. H. claims that Jan uary 1,1900 is the first day of the twentieth centur

Wm. H. Seaman, Lecturer on Botany, How rd University, Washington, D. C., says in reply to E. S. Who askediow to preserve the corning glory pollen with a mixture of glycerin, distilled water and alcoho you can keep it in a natural condition. The proportions
of the Ingredients must be varled according to the na ure of the object. The density should be that of the sap of the plant and this is arranged by altering the propo very little alcohol must be used, and a drop of carbol acld to a dram of fuld is a useful addition. Verrill's so

COMMUNICATIONS RECEIVED.

The Editor of the Scientific America

 acknowledges, with much pleasure, the re ceipt of original papers and contributions pon the following subjectsOn the Million Dollar Telescope. By S.V.C nd by S.L.D.
On the Creeping Rail Problem. By M. S. M On Small Pox and its Remedies. By A. B. On Steam Launches. By J. T. B. S
On the Atmosphere and the Milky Way By H. A. C.
On the Motions of the Sun. By C. H. B Also enquiries from the following
J. D. N.-C. W. H.-W. I. L.-J. F. E.F.C. J.-W.C.-R. C. L.-H. B. M.-F. B. M.
D. D. E. C. W.-J. A.-S. D. N.-G. R.
$\overrightarrow{\text { W. N. B.-C. W. J.-W. D. P.-S. \& Co.- }}$
 -R. A. D.-R. C.-A. C.B.-J. C.-J. C. H J. S.-A. B. \& Co -W. H. O.-W F. L.A. D. H. - R. H.

Correspondents who write to ask the address of certain manufacturers, or where specifiled articles are to be had partners, should send with their communications an
mount sufficlent to cover the mount suff clent to cover the cost of publication unde devoted to such enquiries.
[OFFICIAL.]

Index of Inventions

 For which
Letters Patent of the United States

were granted for the week ending
March 4, 1873,
and each bearing that date.

Alcohoi and ozone for vinegar, R. D.
Annunclator, magnetic, w. Human Annunclator, magnetic, W. Humans.. Auger, earth, J. B. Smith.
Auger, die, S. A. Smith
Auger, die, S. A. Smith
Banjo, H.C. Dobson.... Bed bottom, Ogborn \& Kendrick Bed bottom, Turnbull \& Web
Bed bottom, C. A. Tousley Bed bottom, C. A. Tousle
Bed bottom, S. Dunlap. Bed bottom, S. Dunlap..........
Beds, head rest for, B. F. Walto Bedstead, etc., C. May..
Billiard cue, L. Nemetz
Boiler, sectional, Pancoast \& Maule Boner, wash, C. D. Kelnk Bolt, flour, C. A. Harper Boot heels, etc., pricking, C. W. Glidde Boots, shank for, J. M. W
Bottle stopper, W.Dick Bottle and stopper, H. Nay........
Bottle envelope, W.F. Tillinghat Bracelet, F. M. Sweet (r)..
Brick machine, D.J. Irvin Brick and tilie machine, G. Bald win
Bridge Iron, w. Sellers Bridge iron, W. Sellers
Bung, W. F. Class.
Button fastening, N. B. Smith
Can, oil, A. P. Quinby..................
Can for oil and paint, J. T. William
Car coupling, J.W. Jones.
Car coupling,, . Porter..
Car coupling, S. B. Replo
Car, railway, H. Buck..
Car, roof, J.c. Wands.
Car starter, N. J. Wilkinson..
Car wheel, G. W.\& L. W. Snyder
Car axle box, s. Ustick.
Carriage gear, J. L. Ware..........
Cartridge, metal, etc., W. H. Tooth.
Caster, funniture, J. Johnson.......
Cigar tip, W. M. Herron
Cigars, bunching, H. B. Bunster.
Cigar molds, clamp for, S. Wilm Cigars, etc., treating, J. Cudd
Comb, band, E.Brown.
Cooking vessel, W. F. Thoms
Croquet mallet, E. A. Ross.
Culinary press, etc., G. B. Fowler
Cultivator, L. M. Ganong.
Cultivator, E. Wiard......
Cultivator, W. Willerton
Digger, potato, H. B. Norton.
Door spring, G. Geer...........
Door and gate spring, Bean \& Mills
Doors, etc., relishing, F. D. Green.
Dovetailing machine, J. E. Haskell
Drill teeth, S. Black
Engine, etc., sllde valve, J. Nesbitt
Fence post, J. M. Beebe
Fences, stretchlng, J. T. Manghan
Fire kindler, C. A. Nisbett.
Fireproof bullding, A. K. Holte.
Fire pipe, H. Palmierl
Float, peg, P.A. Schoellho
Floor clamp, J. J. Foster.
Food, artificial, H. C. Morr
Fuel, J. R. Hayes................
Furnace, boller, M. A. Foster....
Eurnace, reheating, H. Chisholin.
Furnace, etc., B. R. Hawley..
Furnace lining, S Danks......
Funniture, school, J. L. Riter
Gurniture, spring, H. Hara illutt
Generator, ozone, R. Heneage.
Generator, ozone, R. Heneage.
Generator, steam, o. W. Ketch
Grain, etc., protecting, J. M. Joannides
Hand rest, J. Belford.
Harness hames, guard for, C. H. All
Harvester dropper, J. B. Gathright
Hatchet blank die, J. Yerk
Head rest, o. M. Mitchell..
Heater, gas, C. H. Prentiss..............
Hogsheads, etc., moving, F. o.J. Bur
Holder, tool, I. F. Murch..
Horseshoes, calk for, J. J. Mervesp
Hose coupling, G. Westinghouse
Hub, vehicle, Royer \& Rouse
Hydrant, T. Ragan..............
Ice cream freezer, S. s. Fitch.
roning apparatus, R. A. Tyler
Jar, fruit, H. Hering...
Ketlue, tea, C. D. Woodruft
Kiln, brick, Walsh \& Taylor
Znife and fork, folding, H . Schumache
Lamp, F. A. Flaneg'n
amp, G. H. Simmons
Lamp, White \& Knight....
Lamp, street, F. Hartmann

1，atch and lock combined，G．Mullar Leather belt clasp，I．Sander
Lever for presses，J．P．Gates
Life float，T．Hosme
Liquids，cooling，H．Meidinger
Links，R．C．Schenck，Jr．
Loom shuttle，A．Gartenmann
Medical compound，A．B．Simpson
Medicated towel，S．Stewart
Medicated towel，L．Stewart．．．
Meter，water，E．E．P．Clausolle
Metronome，J．A．Heckenbach
Milk，etc．，cooling，Prince \＆Martin
Mill，barley，J．Msh．
Millstones，dressing，F．A．Hoy
Mosquito net，Peterson \＆Roescher
Mowing machine，H．Michaux
Nail，picture，G．Vintschger．．．
Nails，arranging，A．Knowlton，
Neck tie supporter，E．Peltz． Nut lock，A．McKenney．（r） Oil still，Stewart \＆Dubler Oven，biker＇s，Rayney \＆Cairn
Pavement，C．Wheeler，Jr．．．．．
Pessary adjuster，O．M．Muncas
Photographic negative，J．Kirk．
Pipe coupling．J．Conner
Pipe，cigar shaped．S．N．Buynitzky
Pipes，swing joint for，Worswick
Piston packing，Babbitt \＆Harrls
Plaiting machine，box，O．M．Chamberlain
Plane，carpenter＇s，J． A ． Ma
Plow．N．Burch．
McGinty \＆Nolan
Press，cotton，J．P．Derden
Pump nozzle，c．o．Wilson ．．．．
Railroad raill，A．McKenney，（r）．．．
Railroad rail chair，D．D．Eldridge
Railroad rail joint，M．F．McIntyre
Railroad ralls，spice for
Roofing，J．H．Hood．．
Sadiron，G．W．o．Loov Sash balance，J．M．Simps Saw mill，D．C．Prescott．．． mill，circular，L．L．Leslie Sawing machine，scroll，G．S．Grig Sawing staves，N．J．Templeton
Sewing machine，w．C．Hicks（r Sewing machine braider，E．H．Alexander
Sewing machine braider，E．H．Alexande Sewing machine hemmer，H．A．Ellis Sewing machine table，s．J．Pusey．． Sewing machine tray，G．A．Kirchner．
Sewing machine treadle，C．J．F．Kraf Sewing machine，Howard \＆Jaclzson Sewing machine needle，Freimuth \＆Buttn Sewing machine table，M．A．Browne Sewing machine，water wheel for，C．H．Palme Shipping mechanism，F．N．Bix ships，constructing，A．W．Thomps Shoe uppers，cutchng，E．h．Tharsto Shuttle binder，F．Rea
Skirt，hoop and tratn，L．Guelle
Soldering tool，L．Cutting
Spindle，lubricating，J．Goulding
Stamp，haiad，G．H．Rountree．．．．．．
steam brake coupling，J．Westing Steamboat chinney，J．Christy Steering apparatus，J．F．Sparr Street sweeper，O．W．Kellogg．．．．．
Stone，machine for turning，A．S．G stove，heating，J．Spear（r） Stoves，emptying，B．Connell Table，ironing，H．C．Smit Tallow，rendering，P．W．Dalt Tanning，Carter \＆Keith．．．．． Teiegraph，printing，M．Gally Tin clippings，treating，F．G． Tires，upsetting，C．J．Peterson Tobacco pouch，D．Read．．．．．．．． Truss spring，J．W．Riggs Tumbler，jelly，W．Doyle valve，hy draulic，T．Critch Valve，slide，J．Nesbitt（r）
Vehicle wheel，J．L．Do
Vehicle wheel，S．B．Hindma
Vehicle wheel，S．Yreeland．．．．．．．．．．．．．
Vehicles，bolster spring for，H．Buck Ventilating railways， 0 ．Vandenburg Vessels，propelling，J．Weich． Vessels，steering，w．W．Dunga Washing machine，C．Watson． Well valve，M．T．and M．C．Chapm Whip socket，Coe \＆Merritt．

APPLICATIONS FOR EXTENSIONS Applications have been duly flled，and are now pending，
for the extension of the following Letters Patent．Hear he days hereinafter mentioned：

24，30．－Iron Moving Machine．－C．Hewitt．May 21 2，402．－Steam Regulator．－A．P．Pitkin．May 28. 21,336 ．－Rallmoad Bar．－H．Webb．May 28. 24，478．－Stone Saw Machine．－A：M．MerrI 21，483．－Loom Brake．－R．\＆G．B．Reynolds．June 4 24，512．－Car Bolster．－A．Ward．June 4.
$24,819 \ldots$ Stena Drying Cyinder．－A．P．Pit 24，819．－Stram Drying Cylinder．－A．A．P．Pitkin．July 2.
26，415．－Winding Trread．－H．Conant．June 4.

EXTENSIONS GRANTED．
93，152．－Roling Maohine．－J．B．Blair． 28，173．－Tioket Printing Mathine．
23,246 ．－Meat Minokr．－A．W．Hale．

 CANADIAN PATENTS． Official List of Patents Granted in and including February 14， 1873

```
# Patents tak
```

［No＇v．－Under the new patent law，now in vogue， Americancitizens may patent theirt inventions in Canada on favorable terms．For full particulars，address Munn
\＆Co．，Office ScIENTIFIC AMERIOAN， 37 Park Row，N．Y．］

Sharpening cutters，W．H．Daniels，U．S．．Jan．22．．．．2，000
Cutter holder，W．H．Daniels，U．S，Jan．22．．．．．．．．．2，001 Pipe coupling，J．C．Shaty，U．S．，Jan． 22.1
Nail machine，P．Dunn，et al．，Jan． $22 . .$. Nail machine，P．Dunn，et al．，Jan． 22.
Duplex telegraph，J B．Stearns，U． Shingle machine，T．McCabe，
Line reel，W．Murphy，Jan．25．．．．．．．．．．．．．．
Gas purifier，E．Duffee，et al，U．S．，Jan． 25
Gas purifier，E．Duffee，et al．，U．S．，Jan． 25
Pipe machine，J．S．Patric，U．S．Jan．
Sewing machine，J．A．House，U．S．，Jan． 25
Spring bed，E．B．Wood，Jan． 25.
Bed bottom，T．S．Sarney，et al．，Jan．
Wheat drill，W．Morlock，et al，Jon
Wheging machine，L．R．Blake，U．S．，Jun． 29
Paint，E．J．Chapman，Jan． 29
Wash boiler，J．C．Tilt
Oiler，J．Telfer，Jan． 29.
Wood pulp machine A．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2,017 Spring bed，J．White，Jan．29．．．．．．．．．．．．．．．．．．．．．．．．．．．2，019
Cutting hard substances，B．C．Tilgham，U．S．，Jan． 29 2，020 Hinge，O．S．Garretson，U．S．，Jan．29．． Tent spring，G．O．Freeman，Feb．1．，
Saw socket，J．E．Emerson，U．S．，et
Vent Lath machine，J．H．Butler，U．S．，et al．，．Feb Treating mispickel，E．J．Chapman，Feb．
Grain scourer，S．Dodson，U．S．，Feb．3．．． Grain scourer，S．Dods．
Stove，w．J．Keep，U．S．，Feb． 3
Carbureter，W．C．Nunn，Feb．
Shoe，G．A．Richardson，U．S．，Feb．
Twin sleighs，R．C．Beckett，Feb． 3
Sewing machine，E．F．Rlchardson，U．S．，Feb． 3 ．
Hot ail furnace，B．Huot，Feb．
Setting buttons，etc．，H．C．Bradfora，U．S．，Feb． 4.
ruck folders，W．C．Nunn，Feb．
Tuck marker，J．F．Kellogg，Feb．
Celegraph，etc， ，Feb．
Preserving meat．etc．．，T．F．Henley，Eng
Gas generator，A． Gas generator，A．I．Ambler，U．S．，Feb． 12. ．
Treating oils，etc．，J．W．Burton，Eng．，Feb． Treating oils，etc．，J．W．Burton，Eng．，Feb． 12
Raising saw logs，W．Hamilton，et al．，Feb Lubricating compound，B．French，U．S．，Feb． 12. Bracket sheave，W．Murphy，Feb． 12.
Lap board，S．Mahan，U．S．Feb．12．．． Engine packing，J．Partington，et al．，Fel． 12 Railway frog，J．Wood，U．S．，Feb．12．．．
Grinding mill，S．Churchman，U．S．，Feb． Making bale hoops，A．H．Larochelle，Feb． 1
Tucker，W．C．Nunn，Feb．．L．．．．．．．．．．
Heating furnace，M．P．Hayes，Feb． 12
Medical compound，C．H．Kermott，Feb． 1 Exca vator，J．Williams，Feb．12．．．
Railway frog，G．N．Geddes，Feb． 12.
Stone dresser，T．W．Baxter，U．S．， Stone dresser，T．W．Baxter，U．S．
Farm gate，J．R．Spencer，Feb．12．． Washboard，E．B．Jackson，Feb Coulter，w．L．Bragg，Feb． 12
Sewing machine，J．F．Kellogg，Feb． 12.
Metallic pipe，D．A．Ritchie U． Metallic pipe，D．A．Ritchie，U．S．，Feb．12．．
Head block，W．s．Jenks et．al，U．S．，Feb． Wringer，G．Merrick，Feb． 12 Middlings purifier，W．W．Huntley et．all．，U．S．，．Feb Nut lock and washer，B．F．Baker，U．S．，Feb．14．．
Nut lock and washer，B．F． Nut lock and washer，B．F．Baker，U．S．，Feb．14．．
Steam brake，etc．，J．W．Gardner，U．S．，Feb．14．．
Frre grate，ete．，F．Proudfoot，Fee．14．．．

Back Page ．．．．．．．$\$ 1.00$ a line． Inside Page－．．．．．$\quad 75$ cents a line Engravings may head advertisentents at ihe same rate per	
MILLERS． GRAY＇S PURE HOP YEAST POWDER－FOR MANU Facturing Pure Hop Yeast Sclf－Raising Flour，also Superior Family Flour，patented．Not peri invaluable． 60 West 4 dd St．，New York City． Agents Wanted．	

Ro．，玉q．，and Flat Iron，

WRW

120 TO 150 BUSHELS OF SHELL The increased yield per acre over the old varieties will
pay for the seed 20 times over，besides every farmer that
ilants prices．Price $\$ 2.50$ a peck $; \$ \$ 500$ a bushel 1 ，ive beed bushels $\$ 820$ ．

 O LE COUNT＇S PATENT HOLLOW －
H1s expanding Mandrit 18 a first class tool which ha
long been needed by cyery Machinist．
Send for latest circular．
CINCINTMTI BPASS WORES Cincinnati brass works－Engineers

PGEES WATER FLAME COAL LIME
 TOLLE MICROSCOPES－From 50 Dollars

An deut）dic © Erfinder．

Dieje grobe und thätige ©lafje unfrcr be bolferung madjen twir beforbers barauf aufmertiam，bā̃ mifre firma burd）ifre $\mathfrak{B e r}$ bindung mit Bafgington und den curopäijdici Sauptfäden，bciondere ふortjeile jur ©eran gung von ins und ausländijden 放atenten bietet．
Seder ¢fffinder，greiduicy melder shationali－ tät angehörig，ị̂t burd die liberałen Frate！tge， feke ber $\mathfrak{B e r c i n}$ ：gten ©taaten oun Patentidute fïr ©゙rfindungen becedtigt．llatre sirma it bereit，gcitutit ani 26jährige ©ryalrung，bentich
 Preijen rafd）und piiuftlidd Fatente zu crilangen． Die Dentfde Esection ift in ben よanion fäbiger beutfder Sngentieure，veade in ber Dffice perjönlid mit Erfindern berfefler merber．

Der ，Scientife American＂wird it feiner ©palten bie bedeutenderen Erfindurgen be ipreficit．

Corrcipondenz erbcten und prompt beant mortct．Bamplyte in ocatider Spradje wer ben auf \mathfrak{B} erlangen franco zugejant．

அठrefifire

3
，Scientific American Patent Agentur ${ }_{\text {Now }}^{\text {Row }}$ York City

CHE SCIENCE OF HEALTH，FOR APRIL，

$\mathbf{R}_{\text {A widely known }}^{\text {ARE CHAN GOOD MECHANIC．}}$ RA widely known Company in Cinctnnatt，with

THE MORRIS \＆HEYWOOD TIMBER Bending Co．Manufacture，Sell．and License the use
of Wood bending Machinery Address ．．M．BAREETTT，
Prest．，corner Front and Wainut Sts．Cincinnati，Ohio．

I ILDEBRAND PATENT AIR AR ESCAPE
 ton，Cotton Baling Supplies，etc．， $104 \stackrel{\mathrm{~S}}{ }$ ．Charles Street，
Batimore，Md．

SCIPNCR RECORD

1873.

A Compendlum of the Scientific Progress and Discove
ries of the Preceding Y Yar．Illustruted with Steel CHIS NEW AND SPLENDID BOOK is now Ing Facts．Ind contents will embrace the most Interest．
 1．－CPEMISRY AND METALLURGY．
2：MECMNICS AND ENGINEERNG．
i－ELECRICIT
i－TEGNOLOGY，LIGT，HEAT，SOUN

12．GEOGRAPHY AND MINERALOGY
14 \＆A5．BIOGRAPHY
Every
int the Progress of oreerire to be well informed concern－

 MUNN \＆CO．，Publishers，

The SCIENTIFIC AMERICAN will be sent one year
and one copy of SOIENCE RECORD FOR 1873，on and one copy of

April 5, 1873.]

- \quad risutific

BAIRD'S Books
FOR PRACTICAL MEN.

henry carey baird INDUSTRIAL PUBLISHER,
$\mathbf{~} \mathbf{~ W A L N U T ~ S T R E E T , ~ P h i l a d e l p h i ~}$
Baird's Books for Practical Men. Armengaud, Amoroux, and Johnson.-The

 mechanism of the day. By Willita
Innt. . .E. Illustrated by fity fol
fifty wood cuts. A new edition, 4to

 of coat and car frathintinand arar.

 Baird.-The American Cotton Spinner, and

 Bauerman-A Treatise on the Metallurgy of
Iron: Containing Outlines of the History of Iron Ma
uffacture, Method hof Assay and Analysis
Processen Iran Ore
 Beans.-A Treatise on Railway Curves and
Location. By E.W. Beans, C. E. 12 mo. Full bound
pocket book torm................................. Bell.-Carpentry Made Easy : Or, The Science

 Bemrose.-Manual of Wood Carvings: Wit
 Bicknell's Village Builder. Elevations and

of The above, or any of my Books, sent by mail, fre
of postage, att he publication pricee.
My new and enlarged CATALOGUE OF Practical an

HENRY CAREY BAIRD
 0 NLY 10 CTS. Tor tivo numbers of the dow

 JENNINGS STEAM WASHER.

 WORKING CLASS MALF or FExAFE,
 THE SELDEN DIRECT-ACTING
 Steam Plimp IS THE best
Pump made. Send for Circulal
and Price List to

[^1]Tin and Sheet Iron Work, Cornices and Boiler Making.

 NEW PATTERNS.

Machinery,

Machimists' Tools.

coat Rolled Shafting

Sturtevant Blowers.

Pat. Punching Presses

Wood-working Machinery.

Milling Machines.

ROPER HOT ATR

12 Samples sent by mail for 50 cts., that retail quick ro.
810. R. W. WOLCOTT, 181 Chatham Square, New York.
The TRADE WAGON.

WEIGES BUT 400 POUNDS.
 S. n. brown \& Co, or Dafton, Ohio

VIENNA EXPOSITION.

 THE AMERICAN SPORTSMIAN,

For a sample Copyof said Paper.

1832. SCHENCKS PATENT. 1871.
WOODWORTH PLANERS

 IIILN WROUGHT
BZAM \& GHEDNAS $\mathrm{T}_{\text {The }} \mathrm{HE}$ Union Iron Miils, Pitsburgh, Pa

Planing and Matching

 SAFETY Holsting
MIachinery. owas bes © co

$\mathbf{A}^{\mathbf{A}}$
B URON IRON WORKS-Manufacturers

E. P. BAUGH'S

PATENT SECTIONAL MILLS

protection against fire HALL B $\bar{R} 0 T H E R S$
Are prepared to introduce their "System of Sprinklers, ${ }^{\prime}$ into Mills, Factories, \&e., at short notice. Call and see a practical operation of same at their works,
36 CHARDON STREET,
$\bar{B}^{\mathbf{0}}$
B RRC'S WATCHMAN'S TIME DE

 $\mathrm{R}^{\mathrm{ICHARARDON}, \mathrm{MERLAM}}$ Man CO.

PRTABLE STEAM ENGINES, COMBIN

Niagara steam Pump. CHAS. B. HARDICK

Boilers \& Pipes covered

Asbestos Felting Co.,

Ticen Proprie ors of C. N. Goss patents, re

MACHINERY, MOSTLY NEW

SCIENTIFIC AMERICAN.
The Best Mechanical Paper in the World! A year's numbers contain over 800 pages and several hundred engravings of new machines, useful and novel
inventions, manufacturing establishments, tools, and processes.
The SCIENTIFIC AMERICAN is devoted to the inter ests of Po tures, fnventons, Agraly, and, is valuabbe and instruc
dustrial pursuits generalle
tive not only in the Workshop and Manufactory, but also tive not only in the Workshop and Manufactory, but als
in the Household, the Library, and the Reading Room

To the Mechanic and Manufacturer
No person engaged in any of the mechanical pursuits
should think of doing without the Scientific AmeriCaN. Every number contains from six to ten engravings
of new machines and inventions which cannot be found In any other publication
Chemists, Architects, Milloorights and Farmers The SCIENTIFIC AMERICAN wlll be found a most
aseful journal to them. All the new discoveries in the science of chemistry are given in its columns; and the ooked, all the new inventions and discoveries apper week. Useful and practical information pertaining published in the Scientiric American, which informa
tion they cannot possibly obtain from an tion they cannot possibly obtain from any other source.
Subjects in which !lanters and farmers are interested Will be found discussed in the Scientific American,
nany improvements in agricultural inuplements being Illustrated in its columns.
We arealso receisiving, every week, the best scientific
Journals of Great Britain, France, and Germany; thus placing in our possession all that is transpiring in me chanical science and art in these old countries. We racts, from these journals, of whatever we may deem of nterest to our readers. TERMS.
One copy, one year
One copy, six months
One copy four
83.00
1.50
1.00

One copy of Scientific American for one year, and

ne copy of "Science Record," for 1873 . . . 4.50
Remit by postal order draft or
\qquad
\qquad
\qquad
MUNIJ \& CO.
37 PARK ROW, NEW Y RK.

gavetisiande
 Advertisements will be admitted on this page at the rate of $\$ 1.00$ per line for each insertion. Engravings may
 $\underset{\substack{\text { Fror the beat } \\ \text { Leather Beits }}}{ }$ BELT HOOK $\xlongequal[\substack{\text { for Rubber or } \\ \text { Address }}]{\text {. }}$ CREENLEAF WILSON, Lowell, Mass.

 8100 SAVED IN LEARNING
 H8 ILELUSTRATED HNSTRUCTION BOOK 1
 $\underset{\text { for grinding Tools and Metals,gum }}{\text { Emery }}$

Q ice huliing machinery.-Manu
 Grant's Bolt Cutter \& Drill Combined

 WHITWORTH HYDRADLIC MANDDRE PRESS.

INDUSTRIAL MONTHLY Highly lllustrated, SUBSCRIPTION 1,50 NAN The Industrial Publication Co. (ADDRE
 NEW

WIRE ROPR,

MIAHOGANY,

ROSEWOOD, WHITE HOLLY, SATIN WOOD
HUNGARIAN ASH, AND ALL KINDS Hard wood,
mplank, bafdis, AMD VENEERS GEO. W. READ \& CO,

 Wondew ! $\} \quad$ For Boys and Girls.

AMICROSOOPE

A. S. Cameron \& Co. ENGINEERS,
Works, foot of East 23d Street, New York City.

STEANT PUNPS,

Adapted to every Possible Duty.-Send for a Price List.

Seven years' service in some of the largest estabilish
nents in New England and elsewhere, with boiler
 With repeated orders from the same partles, shows that
this
the umproved sted generator has taken a apermanent t lace in
Fifty Thousand Horse Power have been made and pu

Machinist's Tools,

 in place, the setting costing no more than that of the
ordinary Forought ingn botier
be made information, circuiars, etc., application must HARRISON BOILER
Grays Ferry Road

New York PLASTER WORRS

MORRIS, TASKER \& CO.,
american charcoal iron
Boiler Tubes.
WROUGHT-IRON TUBES
and Fittings, For gas, steam WATER, AND OIL.

 $\frac{4}{4}$ Turhine Water Wheel

IUMBERMEN,

JOHNA.ROEBLING'SSONS.

SUPER-HEATPRS

An bile.
Pyrometers. For feestha Orena, Boner
$\frac{1}{2 l}$

MACHINE SHOP with or without Mor Sale,

P

BUILDING PAPER!
and Circulars, to B. E. Hale \& Co., 56 \& 58 Park Place, N. Y., or Rock River Paper Co., Chicago.

R. A. Vervalen's Bridek Machines

w. T. Carpent

Diamond-Pointed STEAM DRIHSS.
T Till adoption of new and improved applica

VENTORS \& BUILDERS OF SPECIAL
MACHINERY CONNECTED WITH EMERY GRINDING.

ThMe Tanite Co. TON PLANERS, ENG, ENGE LANE LATHES,

Bradley's Cushioned Hammer

$\frac{\text { Por Pamphlet. }}{\text { American Saw Co. }}$
 Circular, Mill, Crossschlt Saws.

 T "Scientific American", in printed with

[^0]: MIUNN \& CO.,
 PUBLISHERS SCIEN IIFIC AMERICAN,
 37 Park Row, New York.
 OFFICE I
 atent OAtice

[^1]: $\xrightarrow[\text { Anerichi RoLLED NUT \& TUBE CO, }]{\substack{\text { Min }}}$

